Oracle® Application Server Web Services
Developer's Guide

109 (9.0.4)

Part No. B10447-01

September 2003

ORACLE

Oracle Application Server Web Services Developer’s Guide, 10g (9.0.4)
Part No. B10447-01

Copyright © 2001, 2003 Oracle Corporation. All rights reserved.
Primary Author: Thomas Van Raalte

Contributing Author: Rodney Ward

Contributors: Jeremy Blanchard, Marco Carrer, Anirban Chatterjee, Daxin Cheng, David Clay, Tony
D’Silva, Neil Evans, Bert Feldman, Kathryn Gruenefeldt, Steven Harris, Anish Karmarkar, Prabha
Krishna, Sunil Kunisetty, Wai-Kwong (Sam) Lee, Gary Moyer, Steve Muench, Giuseppe Panciera, Wei
Qian, Eric Rajkovic, Venkata Ravipati, Susan Shepard, Alok Srivastava, Rodney Ward, Zhe (Alan) Wu,
Joyce Yang, Chen Zhou

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, SQL*Plus, SQL*Net, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org.) Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Contents

SENA US YOUT COMIMENTS ..ottt ettt ettt ettt et et st e ettt eee e ee e e Xiii
P I A C ettt ettt ettt ettt et ettt ee et et XV
11T g Lo (=10 I AN B o [1=1 o o1 ISR XVi
Documentation ACCESSIDIITYcoviiiiiii e XVi
L@ o T=T 2= 11 o] o SOOI Xvil
Related DOCUMENTALIONococuiiiiiiiee ettt cetee ettt et e e s st e e s st e e e s eba e e s sbb e e s sabaessabeeessbbasssntaessabeas Xviii
(0000 1VZ=T 01 1o o 1T XiX

1 Web Services Overview

WAt AFE WED SEIVICES?....oiiiiiie et ettt e e neesaeresnesnesreneennens 1-2
Understanding WED SEIVICES........cciiiiiiieeieeee sttt re e nren 1-2
Benefits OFf WED SEIVICEScc.oiiiiiii e 1-3
About the Web Services e-Business Transformation...........cc.ccocveevivnieiencnenencce s 1-3

Overview of Web Services Standards..........cooviieiiiiiees e 1-5
SOAP STANUAIT ...ttt bbb b b e be e e b e b e e et eb e et e e be e bt ebesbeseesbeneas 1-6
Web Services Description Language (WSDL) ..ot 1-6
Universal Description, Discovery, and Integration (UDDI).........ccccocviivieiieicisienie e 1-6

SOAP Message Exchange and SOAP Message ENCOAING.........ccocoiiiininiieicienencsese e 1-7
SOAP MeSSage COMPONENTSvoviiiieieiei ettt ar b nresnennes 1-7
Working With RPC Style SOAP IMESSAQESccucoveieieieriieiesiesesesiese e aesasss e e ssesre e ns 1-8
Working With Document Style SOAP IMESSAQES.ccuiiriiririerieieeieie e 1-9

Oracle Application Server Web Services

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services.................... 2-2
Oracle Application Server Web Services Standards ... 2-2
Oracle Application Server Web Services FEAtUIES ..o 2-3
Developing ENd-t0-ENd WEebD SErVICES........ccoiiiiiiiiec e 2-3
Deploying and Managing WeD SEIVICEScocvcieiiieie s 2-4
Using Oracle JDeveloper With WED SErviCes..........cccoiiiiiiiiiieniee e 2-5
SECUNING WED SEIVICES ...ttt bbbttt 2-5
AGGregating WED SEIVICEScccv ittt sa e e e enesrenrenrens 2-6
Oracle Application Server Web Services ArchiteCture ..o 2-6
About Servlet Entry Points for Web ServiCes ... 2-8
What Are the Packaging and Deployment Options for Web Servicesccccoovevvvivinnnns 2-10
About Server Skeleton Code Generation for Web Services. ..o 2-11
Understanding WSDL and Client Proxy Stubs for Web Services..........ccccovvnnieniieneennn 2-11
Overview of a WSDL Based Web Service CHleNt............cccooviviineineineeneeseese e 2-12
Overview of a Client-Side Proxy Stubs Based Web Service Clientcccccocoevveeinnen. 2-12
WeD SErvices HOME PAQEooiiiiiiiiii bbbt 2-13
About Universal Description, Discovery, and Integration Registry........cccccocvvveveiveivcnnnnnn, 2-14
Oracle Enterprise Manager Features to Register Web Services.........cccoceveveiiiciniencenne, 2-15

Developing and Deploying Java Class Web Services

Using Oracle Application Server Web Services With Java Classes..........ccccoceovveininnicnen 3-2
Writing Java Class Based WED SEIVICES..........cccuiiiiiiiiiriereses e 3-2
Writing Stateless and Stateful Java Web SErvicCes.........cccccvovvivviviiiinene e 3-3
Building a Sample Java Class Implementationc.ccocooiiiieninenciceeeeees e 3-3
Using Supported Data Types for Java Web Services..........cccooeiiiniiniincinccscies 3-7
Preparing and Deploying Java Class Based Web Servicesccccocvvveiencrciciecn s 3-9
Creating a Configuration File to Assemble Java Class Web Servicesc..cccooevvvveiennnnn, 3-9
Running WebServicesAssembler To Prepare Java Class Web Services...........ccccooeevveenen 3-14
Deploying Java Class Based Web SEIrVICES.......ccocvcviiiiiicie e 3-15
Serializing and Encoding Parameters and Results for Web Services..........ccccccooevvvicinnn, 3-15

Developing and Deploying EJB Web Services
Using Oracle Application Server Web Services With Stateless Session EJBSc.ccocc...... 4-2

Writing Stateless Session EJB WED SEIVICESccovoiiiiiiiee e 4-2

Defining a Stateless Session REMOte INTEITACEccvreiiiiiiiric s 4-3
Defining a Stateless Session HOMe INterface.........ccoocvevvieiicici s 4-4
Defining a Stateless SeSSION EJB BEANccccuviiiiiiieii et 4-4
Returning Results From EJB WeD SEerviCes ... 4-5
Error Handling for EJB WED SEIVICEScccuciveieiiieise st ne e nnens 4-5
Serializing and Encoding Parameters and Results for EJB Web Servicesc.ccccvvevuenen. 4-6
Using Supported Data Types for Stateless Session EJB Web Services..........ccocvevvinnnnn 4-6
Writing a WSDL File for EJB Web Services (Optional)cccccvovvievieiencncienececese e 4-8
Preparing and Deploying Stateless Session EJB Based Web Services...........cccoovenninnncnn. 4-8
Creating a Configuration File to Assemble Stateless Session EJB Web Services................. 4-9
Running WebServicesAssembler To Prepare Stateless Session EJB Web Services........... 4-12
Deploying Web Services Implemented as EJBS ... 4-13

Developing and Deploying Stored Procedure Web Services

Using Oracle Application Server Web Services with Stored Procedures............cccooveenenennn. 5-2
Writing Stored Procedure Web SErviCes.........oiiiiiics e 5-2
Preparing Stored Procedure WeEDh SEIVICES. ..ot 5-3
Creating a Configuration File to Assemble Stored Procedure Web Services...........c.......... 5-3
Running WebServicesAssembler With Stored Procedure Web Services...........ccccocveenene. 5-10
Setting Up Datasources in Oracle Application Server Web Services (OC4))........ccccevnene 5-11
Deploying Stored Procedure Web ServiCes ... 5-12
Limitations for Stored Procedures Running as Web Services ..o, 5-12
Supported Stored Procedure Features for Web Services.......cccoovvvevienevcncieiecie e 5-12
Unsupported Stored Procedure Features for Web Services.........cccveveieiinciiniiiine 5-14
Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services . 5-14
TIMESTAMP and DATE Granularity Limitationcc.ccccvivvieiineneiceeseeece s 5-15
LOB (CLOB/BLOB) Emulated Data Source Limitationcccccevevieiiiicnesecse e, 5-15

Developing and Deploying Document Style Web Services

Using Document Style WED SEIVICES.........coii ittt 6-2
Writing Document Style WeD SEIrVICES. ... 6-2
Supported Method Signatures for Document Style Web Services.........ccccccevevveevcevvivnennnn, 6-3
Writing Stateless and Stateful Document Style Web Services........cccoovvevivvievvccecn e 6-4
Writing Classes and Interfaces for Document Style Web Services ..o, 6-4

vi

Preparing Document Style WED SErVICES..........coiiiiiiii e 6-9

Creating a Configuration File to Assemble Document Style Web Services...........ccccovnee. 6-9
Running WebServicesAssembler With Document Style Web Services.........cccceoveevevennnen. 6-15
Deploying Document Style WED SEIVICEScc.ooieiiiiiiiiicise e 6-16

Developing and Deploying JMS Web Services

JMS WED SEIVICES OVEIVIBW ...ttt bbbttt b et sbe e 7-2
USING JMS WED SEIVICES ...ttt ane e 7-2
JMS Web Services Backend Message PrOCESSINGcovivivrerereresesiisieseseessesesesseesessesesnens 7-3

Writing JMS Web Services and Handling MESSAJEScccocvvveieiieie it 7-6
Using an MDB for Backend Message ProCeSSING........cccvieriirieenieenieinsesieesieesnee e 7-6
Using a JMS Standalone Program for Backend Message Processing.......cccccooeeveiviivsvnnnenns 7-9
Message Processing and Reply MESSAQEScooiiiririiirineie sttt 7-10

Preparing and Configuring JIMS Web ServiCes ... 7-11
Creating a Configuration File to Assemble JMS Web Services.........ccccvcvvvrvvevcreiecinannn, 7-12
Running WebServicesAssembler With JMS Web Services.........cocovvviveviiveevce e 7-18

Deploying JMS WED SEIVICES.......cciiiiiiiiiitiiitt et 7-18

Limitations fOr JIMS WED SEIVICES ..ot 7-18

Building Clients that Use Web Services

0 or= L1 T VAT =T o T =T V7 [8-2
Getting WSDL Files and Client-Side Proxy Jars for Web Services..........cccccvvvevvivvevciceeseennn, 8-2
Using the Web Service Home Page to Save WSDL and Client Side Proxiesc.cc.co...... 8-2
Getting Web Service WSDL and Client-Side Proxies Directlycc.ccocvvvrerevevicinniesnsnnens 8-5
Generating Client-Side Proxies With WebServicesAssembler.........c.ccccooevivvieiiiiesvecesneenn, 8-8
Working with Client-Side Proxy Jar to Use WEeD SErvViCesS.........coociiiriiineiineinensesenie e 8-9
Setting the Web Services Proxy Client CLASSPATH ... 8-11
Using Java Beans as Parameters for Web SErvices..........cccoovvveieiiciii e 8-12
Using Web Services SECUTNTY FEATUIES.........ccoiiieireiierese et 8-12
Working with WSDL Files and Oracle JDeveloper to Use Web Services.........ccocoovevvvivinnnns 8-15

Web Services Tools

Running the Web Services ASSEMDBIY TOO ..o 9-2
Web Services Assembly Tool Configuration File Sample........ccccooiiiiiiiiee, 9-2

10

Web Services Assembly Tool Configuration File Sample Qutput ... 9-3

Generating WSDL Files and Client Side ProXies.........cccooeoiiiiininnenseesecseeseesesese e 9-4
Generating and Assembling WSDL FileS.......coov i 9-5
Generating Client-Side Proxies With WSDL ... 9-8

Web Services Assembly Tool Configuration File Specification.............ccccooecniineiniiniinenns 9-9

Web Services Assembly TOOI LImMitatioNs.........ccccoviiiiiiiinnie s 9-11

Discovering and Publishing Web Services

L0 T T I =T |13 1 -1 1 o] o PSS 10-2
UDDI Registry Data STrUCLUIEccuviiiiicie et sbe e sae e sre s 10-3
OracleAS UDDI Registry for Enterprise Web SErviCes........c.ccooevieineinennenseeeseee 10-5

WWED SEIVICES DISCOVEIYoiiiiiiiiieiiesiiitise ettt e ettt st st e b e te e et esaeseeneaneereareaneerenrenes 10-7
L Y1 o T 10T £SO 10-7
USING the INQUITY AP ..ot 10-7

Web Services PUBIISNING ... 10-11
Using Oracle ENterprise MANAGETcooiiiirieieieieietese sttt 10-11
Publishing Web Services Using Deploy Applications Wizardcccccovniiiincennne 10-12
Publishing Web Services Using Web Services Details Window...........cccccoceveveieivcvennnn. 10-13
Updating Published Web Services in the OracleAS UDDI RegiStry........c.ccoccoeivinvennne. 10-14
Using the PUDLISRING AP ..o 10-17

OracleAS UDDI Registry AdMINIStrationccccooeieiciiiiscccse e 10-25
Using the Command-Line Tool uddiadmin.jarc.ccccooeviiiiiieie e 10-25
Server CONFIGUIATIONccuiiiiiiicit et 10-25
LT AV, =T =T 1= 0 1= o PSS 10-26
(O 18 o) r= W =1 g (o] o<1 0 1 =] o | A USRS 10-28
Administrative Entity Management..........ccooiiiiiiiiiiieese e 10-32
L] o] o A @] 0 T=] - 1 (o] o SRS 10-33
Set Operational INFOrmMAatioN ... 10-33
UDDI REPIICATION ..ttt ene e 10-35
Registry-Based Category Validation ..o 10-38
EXtErnal ValidatioN ... 10-41
Performance Monitoring and TUNING ..o 10-43
Data Backup and ReStOre OPEratioNS..........cccvvverreriereeieeieeseseseseseseseeseesseseeseessessssesessens 10-44
Additional INTOrMATION.ccciiii e e 10-44
Server Configuration Properties Reference Information ..o, 10-48

Vii

11

12

viii

OracleAS UDDI Server Error Message Reference Informationccccceoevvevinveccinennn, 10-64

OracleAS UDDI Content Syndication Ul Implementation Error Message.............cc.cce..... 10-71
UDDI Open Database SUPPOITccccviiiiiiiiseeieseeieese s e e e sre s see e e stessese e seensessssessessens 10-71
MICIOSOTE SQL SEIVEN ...ttt sttt e s et e st e s aeeneesreenees 10-72
IBIMI DB2 ...ttt ettt bttt et bR bbb ettt et e rennas 10-74
Oracle (Non-OracleAS Infrastructure Database)ccccevvevviiieiinninnie e 10-77
UDDI SUDSCIIPTION SEIVICEiiiiiiiiiieitiie ettt bbb ene 10-79
DefiNiNG OIS ..ot 10-79
Advanced Topic: Creating New UDDI Content CONNECLOrsSccocvvvvievereeniereereeeennnns 10-82
SUBSCIIBING 10 @N OFFEI ..o 10-83
Using the UDDI Content Subscription Manager as a Publisher.............cccocoviniiicnne. 10-84
Canceling @ SUBSCIIPLIONociiiie et re e eneas 10-91
Using the UDDI Content Subscription Manager as a UDDI Administrator 10-91
Canceling @ SUDSCIIPLIONcoouiiiiiieiiee ettt 10-95
Consuming Web Services in J2EE Applications
Consuming XML or HTML Streams in J2EE Applicationscccooveiieniinsieneeneeeeee 11-2
Web Service HTML/XML Stream Processing Wizard..........cccccoovoevevieniencneieisicesiesnanens 11-2
SAMPIE USE SCENAITOS. ...ttt bbb bbb ettt ebe e 11-3
Advanced Section -- Editing Changes You Can Make to Generated Files...................... 11-33
Consuming SOAP-Based Web Services USiNg WSDLcccccoovivvininninnenene e 11-35
Advanced ConfIQUIAtioNoocveiiiieie e 11-37
Known Limitations of the wsdl 2ej b ULIlity ..o 11-42
RUNNING the DEMONSIFAtION.........coiiiiicice s 11-43
Dynamic INvocation 0F WED SEIVICEScccvciiiiiicccr st 11-54
Dynamic INVOCATION APcoiiiiii s 11-55
WEDBSEIVICEPTOXY CHENT ..ottt naereene e 11-58
KNOWN LIMITATIONS ..ottt bbb bbb ettt 11-62
Advanced Topics for Web Services
Setting the Web Services Debugging Property Ws.debugc.cooeririneneneiiicseeeeeeee 12-2
Untyped Request HaNdling OPLIONSc.cociiiiiiiiiiee e 12-2
1@ YA o [T To [S U o o o (SRS 12-4
Client Side SOAP Request Header SUPPOIT ..o 12-4
Server Side SOAP Request Header SUPPOIT ..ottt 12-6

Limitations for SOAP Header SUPPOITccooiiiiiiiiienese st 12-8
Using the WSDL ANalyzZer UTHITY ... 12-9

Using Oracle SOAP

Understanding Oracle Application Server SOAP ... A-2
Apache SOAP DOCUMENTALION.........coiiiiiieriirieieeee s eereeresresnesre e es A-2
Configuring the SOAP Request Handler Serviet ... A-3
Using OracleAS SOAP Management Utilities and SCriptS........ccccoeoviiniininniniceces A-6
1V =T Vo [T o T {01V T =T S A-6
Using the Service Manager to Deploy and Undeploy Java Servicescocovvnininennens A-7
Generating Client Proxies from WSDL DOCUMENTSccooevireiirieiiieinieneee e A-8
Generating WSDL Documents from Java Service Implementationscccceeveevvivvvnennnn, A-9
Deploying OracleAS SOAP SEIVICES. ..ottt A-10
Creating Deployment DESCIIPIOIScuiiiiiiieirieisieie et A-10
Installing a SOAP Web Service iN OCAJ......cccvcvieiieeieeeeeesie e e e sne s A-12
Disabling an Installed SOAP Web SEIVICE.........ccocviii i A-12
Installing a SOAP Web Service in an OCA) CIUSTEcccooiieiiiiniieneee e A-12
Using OracleAS SOAP HaNAIEIS.........cocoviiiiii it A-13
REQUEST HANAIES ... e ettt eb e A-13
RESPONSE HANAIETS ...t A-13
EFTOr HANAIETS ...ttt A-13
ConfiguriNg HAaNAIEIS........ooeeiee et sre s A-13
Using Oracle AS SOAP AUIt LOGGING ..ot A-14
Audit Logging INfOrmMatioN..........cccieieieecc e A-14
AUAITADIE EVENTS ... bbb ettt eb e A-15
Configuring the AUIT LOGOETcuoiiiiiiiieieee b e A-18
Using OracleAS SOAP Pluggable Configuration Managers.........cc.ccoovveveriererereresiesnesenenns A-19
Working With Oracle AS SOAP TranSPOrt SECUMTYc.cceiiiiieieneieie e A-20
Apache Listener and Servlet Engine Configuration for SSL ..o A-24
Using JSSE with Oracle Application Server SOAP Client.........ccoccocvviveievencicceecc e A-25
Using Oracle AS SOAP SamMPIE SEIVICES. ..o A-27
The Xmethods SAMPIE ..o e A-27
The AddressBOOK SAMPIEccueiviiiiiececees s re e nesrenns A-27
The StOCKQUOTE SAMPIE..... .o ettt A-28
The ComPAaNY SAMPIE........oi bbb A-28

The Provider SAMPIE ... bbb A-28

The AddressBOOK2 SAMPIE.........coiiiiiiie e A-28
The MeSSagiNgG SAMPIEc.ocuicieece ettt sresr e nenneneeneas A-28
THE MIME SAMPIE ...ttt bbbt A-28
Using the OracleAS SOAP EJB ProVider ... A-29
Stateless SeSSION EIB PrOVIAEN ..o e A-29
Stateful Session EJB Provider in APache SOAP ...t A-29
Stateful Session EJB Provider in Oracle AS SOAP ...t A-29
Entity EJB Provider in OracleAS SOAP. ...t e A-30
Deployment and Use of the Oracle AS SOAP EJB ProViderccccoeveinieniiinieneneniens A-30
Current Known EJB Provider LIMitationsccocooieiiriniieneeieeeees e A-31
Using PL/SQL Stored Procedures With the SP Provider.........ccccoovovviviiiiene v, A-31
SP Provider Supported FUNCEONAIITYccoiiiiiiiieee e e A-31
SP Provider Unsupported FUNCLIONATITY ..ot A-32
SP Provider Supported Simple PLZSQL TYPES.....cciiiiriererererierienesieeesiese e sesee e saesseseens A-32
USING ODJECT TYPES ...ttt ettt b bbb b n et A-33
Deploying a Stored Procedure PrOVIEN ..o A-33
Translating PL/SQL Stored Procedures int0 JAVAccccvivverene e sese e A-33
Deploying a Stored ProCedUIE SEIVICEcciiiiiiriieriere et A-34
Invoking a SOAP Service that is a Stored ProCedure ... A-35
SOAP Troubleshooting and LIimMitatioNsS..........c.cccciviiiiiiiiinine e A-35
Tunneling Using the TcpTunnelGui Commandccocoiiiiininenieieeeeeeeese e A-36
Setting Configuration Options for DEDUGQINGccceviiiiiirieee e A-36
Using DMS to Display Runtime Information...........ccococe v A-37
SOAP Limitations for Java Type Precedence with Overloaded Methods.............c.cc.c..... A-37
OracleAS SOAP Differences From ApPache SOAP........ccciiiiiie e A-38
Service Installation DiffereNCES. ..o s A-38
Optional Provider ENNANCEMENTSoociiiiiiiiiiine et e e A-38
Oracle TranSPOIt HDIAITES.ciiiiei bbb A-39
Modifications to ApPache EJB PrOVIAENccccviviiiiiiereie e A-39
Stored ProCedure PrOVIAEN ...ttt bbb e A-39
ULility ENNGNCEMIENTSoviiiiiiite ettt bbbt A-39
Modifications to SAMPIE COUE.......cc.cieiiieecece e A-39
Handling the mustUnderstand Attribute in the SOAP Headercccooeveviviieivececnnns A-39

Apache Software LiceNse, VErsionN L.l ...t A-41

B Web Services Security

ADOUT WED SEIVICES SECUNTLY ...o.viviiiiiitiieetiiete ettt B-2
Configuring WED SEIrVICES SECUTNITYcciiiiiiiieiiceeee et ene e sre e B-2
About Oracle Application Server UDDI RegiStry SECUFILYcoooieiiiiiiiiiiiieinene e B-5
Protecting Oracle Application Server UDDI Registry RESOUICES..........cccooveieinienenenienennens B-5
Managing and Enforcing Protected UDDI RESOUICES.........cccvvvverieneienieieieeeeeesesesesee s B-6
Using Oracle Application SErver SECUNItY SEIVICES. ... B-6
Configuring UDDI SECUTTLYcueiiiiiiiiitei bbbttt B-7
Configuring the Oracle Application Server UDDI ReQIStIYccccevvveieerieieieiesr e B-7
Configuring the UDDI Content Subscription Manager............coccoeieieieeieiniencscse e B-7
Configuring the UDDI CHENTciiiiiiee e B-7
Glossary
Index

Xi

Xii

Send Us Your Comments

Oracle Application Server Web Services Developer’s Guide, 10g (9.0.4)
Part No. B10447-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

Electronic mail: appserverdocs_us@oracle.com

FAX:650-506-7365 Attn: Oracle Application Server Documentation Manager
Postal service:

Oracle Corporation

Oracle Application Server Web Services Developer’s Guide

500 Oracle Parkway M/S 1op6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

Xiii

Xiv

This guide describes Oracle Application Server Web Services.

This preface contains these topics:

Intended Audience
Documentation Accessibility
Organization

Related Documentation

Conventions

Preface

XV

Intended Audience

Oracle Application Server Web Services Developer’s Guide is intended for application
programmers, system administrators, and other users who perform the following
tasks:

« Configure software installed on the Oracle Application Server.
« Create programs that implement Web Services
« Create programs that run as Web Services clients

To use this document, you need a working knowledge of Java programming
language fundamentals.

Documentation Accessibility

XVi

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://wwmv. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

This document contains:

Chapter 1, "Web Services Overview"
This chapter provides an overview of Web Services.

Chapter 2, "Oracle Application Server Web Services"

This chapter describes the Oracle Application Server Web Services features,
architecture, and implementation.

Chapter 3, "Developing and Deploying Java Class Web Services"

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as Java classes.

Chapter 4, "Developing and Deploying EJB Web Services"

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as stateless session
Enterprise Java Beans (EJBS).

Chapter 5, "Developing and Deploying Stored Procedure Web Services"

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as PL/SQL Stored
Procedures or Functions.

Chapter 6, "Developing and Deploying Document Style Web Services"

This chapter describes the procedures you use to write and deploy Document Style
Oracle Application Server Web Services implemented as Java classes.

Chapter 7, "Developing and Deploying JMS Web Services"

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that expose JMS destinations as Web Services.

Chapter 8, "Building Clients that Use Web Services"

This chapter describes the steps required to build a client application that uses
Oracle Application Server Web Services.

XVii

Chapter 9, "Web Services Tools"

This chapter describes the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er, that assists in assembling Oracle Application Server
Web Services.

Chapter 10, "Discovering and Publishing Web Services"

This chapter provides a description of the Universal Discovery Description and
Integration (UDDI-compliant Web Services registry in which business Web Service
providers in an enterprise environment can publish and describe their Web
Services.

Chapter 11, "Consuming Web Services in J2EE Applications"
This chapter describes to consume Web Services in J2EE applications.

Chapter 12, "Advanced Topics for Web Services"

This chapter describes several advanced Oracle Application Server Web Services
topics, including untyped request handling options and SOAP header support.

Appendix A, "Using Oracle SOAP"

This appendix describes Oracle SOAP and covers the differences between Apache
SOAP and Oracle SOAP.

Appendix B, "Web Services Security"

This appendix describes the architecture and configuration of security for Oracle
Application Server Web Services, including the Oracle Application Server UDDI
Registry.

Glossary
The glossary contains the Web Services glossary terms and descriptions.

Related Documentation
For more information, see these Oracle resources:
« Overview Guide in the Oracle Application Server 10g Documentation Library.

« Oracle Application Server Containers for J2EE User’s Guide in the Oracle
Application Server 10g Documentation Library.

Printed documentation is available for sale in the Oracle Store at

xviii

http://oracl estore. oracl e. conf

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com nenber shi p/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e.com docunent ati on/ content. htm

Conventions

The following conventions are used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the Command Language prompt in

Windows and the Bourne shell prompt in UNIX

Xix

XX

1

Web Services Overview

This chapter provides an overview of Web Services. Chapter 2, "Oracle Application
Server Web Services" describes the Oracle Application Server Web Services features,
architecture, and implementation.

This chapter covers the following topics:
« What Are Web Services?
= Overview of Web Services Standards

« SOAP Message Exchange and SOAP Message Encoding

Web Services Overview 1-1

What Are Web Services?

What Are Web Services?

Web Services consist of a set of messaging protocols, programming standards, and
network registration and discovery facilities that expose business functions to
authorized parties over the Internet from any web-connected device.

This section covers the following topics:
« Understanding Web Services
« Benefits of Web Services

« About the Web Services e-Business Transformation

Understanding Web Services

A Web Service is a software application identified by a URI, whose interfaces and
binding are capable of being defined, described, and discovered by XML artifacts. A
Web Service supports direct interactions with other software applications using
XML based messages and internet-based products.

A Web Service does the following:

» Exposes and describes itself — A Web Service defines its functionality and
attributes so that other applications can understand it. By providing a WSDL
file, a Web Service makes its functionality available to other applications.

= Allows other services to locate it on the web — A Web Service can be registered
in a UDDI Registry so that applications can locate it.

« Can be invoked — Once a Web Service has been located and examined, the
remote application can invoke the service using an Internet standard protocol.

« Web Services are of either request and response or one-way style, and they can
use either synchronous or asynchronous communication. However, the
fundamental unit of exchange between Web Services clients and Web Services,
of either style or type of communication, is a message.

Web Services provide a standards based infrastructure through which any business
can do the following:

« Offer appropriate internal business processes as value-added services that can
be used by other organizations.

« Integrate its internal business processes and dynamically link them with those
of its business partners.

1-2 Oracle Application Server Web Services Developer’s Guide

What Are Web Services?

Benefits of Web Services

The benefits for enterprises seeking to develop and use Web Services to streamline
their business processes include the following:

« Support for open Internet standards. Oracle supports SOAP, WSDL, and UDDI
as the primary standards to develop Web Services. Web Services developed
with Oracle's products can inter-operate with those developed to Microsoft's
.NET architecture.

« Simple and productive development facilities. Oracle provides developers with
an easy-to-use and productive environment for developing Web Services using
a programming model that is identical to that for J2EE applications.

« Mission critical deployment facilities. Oracle provides a mission-critical
platform to deploy Web Services by unifying the Web Services and J2EE
runtime infrastructure. Oracle Application Server Web Services provide
optimizations to speed up Web Services responses, to scale Web Services on
single CPUs or multiple CPUs, and to provide high availability through fault
tolerant design and clustering.

See Also: "Overview of Web Services Standards” on page 1-5

About the Web Services e-Business Transformation

The move to transform businesses to e-Businesses has driven organizations around
the world to begin to use the Internet to manage corporate business processes.
Despite this transformation, business on the Internet still functions as a set of local
nodes, or Web sites, with point-to-point communications between them. As more
business moves online, the Internet should no longer be used in such a static
manner, but rather should be used as a universal business network through which
services can flow freely, and over which applications can interact and negotiate
among themselves.

To enable this transformation, the Internet needs to support a standards-based
infrastructure that enables companies and their enterprise applications to
communicate with other companies and their applications more efficiently. These
standards should allow discrete business processes to expose and describe
themselves on the Internet, allow other services to locate them, to invoke them once
they have been located, and to provide a predictable response.

Web Services drive this transformation by promising a fundamental change in the
way businesses function and enterprise applications are developed and deployed.

This e-Business transformation is occurring in the following two areas:

Web Services Overview 1-3

What Are Web Services?

Business Transformation with Web Services

Technology Transformation with Web Services

About Business Transformation with Web Services

Web Services enables the next-generation of e-business, a customer-centric, agile
enterprise that does the following:

Expands Markets - Offers business processes to existing and new customers as
services over the Internet, opening new global channels and capturing new
revenue opportunities.

Improves Efficiencies - Streamlines business processes across the entire
enterprise and with business partners, taking action in real-time with
up-to-date information.

Reaches Suppliers and Partners - Creates and maintains pre-defined,
systematic, contractually negotiated relationships and dynamic, spot
partnerships with business partners who are tightly linked within supply
chains.

About Technology Transformation with Web Services

Web Services enables enterprise applications with the following technology
transformations:

Development and Deployment — Web Services can be developed and deployed
quickly and productively.

Locating Services — Web Services allow applications to be aggregated and
discovered within Internet portals, enterprise portals, or service registries which
serve as Internet Yellow Pages.

Integrating Services — Web Services allow applications to locate and
electronically communicate with other applications within an enterprise and
outside the enterprise boundaries.

Inter-Operating Services — Web Services allow applications to inter-operate with
applications that are developed using different programming languages and
following different component paradigms.

1-4 Oracle Application Server Web Services Developer’s Guide

Overview of Web Services Standards

Overview of Web Services Standards
This section describes the Internet standards that comprise Web Services, including:
« SOAP Standard

« Web Services Description Language (WSDL)
« Universal Description, Discovery, and Integration (UDDI)

Figure 1-1 shows a conceptual architecture for Web Services using these standards.

Figure 1-1 Web Services Standards

Client Application
(Web Service)

Web
Services
Directory
(UDDI)
@ rubiish
Interface (WSDL)
Application Program -+— J2EE, Java Class,
(Service Implementation) PL / SQL Stored
Procedure or
Web Service Function
Interface Application
WSDL Program
(Service
Implementation)

Web Services Overview 1-5

Overview of Web Services Standards

SOAP Standard

The SOAP is a lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP supports different styles of
information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange. RPC style information exchange allows for
request-response processing, where an endpoint receives a procedure oriented
message and replies with a correlated response message. Message-oriented
information exchange supports organizations and applications that need to
exchange business or other types of documents where a message is sent but the
sender may not expect or wait for an immediate response. Message-oriented
information exchange is also called Document style exchange.

SOAP has the following features:

« Protocol independence

« Language independence

« Platform and operating system independence

« Support for SOAP XML messages incorporating attachments (using the
multipart MIME structure)

See Also: http://ww. w3. or g/ TR/ SOAP/ for information on
the SOAP 1.1 specification

Web Services Description Language (WSDL)

The Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet. Client-side
programmers and development tools can use published WSDL descriptions to
obtain information about available Web Services and to build and create proxies or
program templates that access available services.

See Also: http://ww. w3. or g/ TR/ wsdl for information on
the Web Services Description Language (WSDL) format.

Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) specification is an
online electronic registry that serves as electronic Yellow Pages, providing an

1-6 Oracle Application Server Web Services Developer’s Guide

SOAP Message Exchange and SOAP Message Encoding

information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

There are two types of UDDI registries, public UDDI registries that serve as
aggregation points for a variety of businesses to publish their services, and private
UDDI registries that serve a similar role within organizations.

See Also: http://wwv. uddi . or g for information on Universal
Description, Discovery and Integration specifications.

SOAP Message Exchange and SOAP Message Encoding

The SOAP standard defines a lightweight, XML-based protocol for exchanging
information in a decentralized, distributed environment. SOAP supports different
styles of information exchange, including: Remote Procedure Call, RPC Style, and
Message-oriented exchange, or Document Style. SOAP Messages, whether RPC
Style or Document Style use a certain encoding, as specified with the

encodi ngSt yl e attribute specified for SOAP message elements. This section
describes these SOAP message features, in the following sections:

« SOAP Message Components
« Working With RPC Style SOAP Messages
« Working With Document Style SOAP Messages

SOAP Message Components

Each SOAP message is a transmission between a SOAP sender and a SOAP receiver.
Each SOAP message consists of a SOAP envelope containing two sub-elements, a
Header and a Body. The SOAP Header is optional. The children of the SOAP
header are called header bl ocks; each header block represents a logical grouping
of data. The SOAP Body is a mandatory element within a SOAP message. This is
where the end-to-end information conveyed in a SOAP message is carried. The
choice of what data is placed in a header block and what data goes in the SOAP
Body element are decisions that are taken at the time that an application is
designed.

Using Oracle Application Server Web Services, developers determine if an
implementation supports RPC Style or Document Style messages. Developers write
the appropriate application logic and the WebServicesAssembler configuration files
for the implementation.

Web Services Overview 1-7

SOAP Message Exchange and SOAP Message Encoding

Working With RPC Style SOAP Messages

Oracle Application Server Web Services supports two types of SOAP message
exchanges: RPC Style exchanges and Document-Style exchanges. RPC Style
exchanges represent exchanges that can be modeled as remote procedure calls
(RPC); these are used when there is a need to model a certain programatic behavior,
with the exchanged messages conforming to a well-defined signature for the remote
call and its return. Using RPC Style messages, SOAP specifies the form of the SOAP
message body.

RPC style information exchange allows for request-response processing, where an
endpoint receives a procedure oriented message and replies with a response
message. Using the RPC style SOAP message exchange, the contents of the SOAP
message body conform to a structure that specifies a procedure and includes set of
parameters, or a response, with a result and any additional parameters. The SOAP
message in the body is an XML document, but it is XML document that conforms
the limitations specified in the SOAP specification.

Example 1-1 shows a SOAP RPC Style request that includes the

Char geReser vat i on method with several parameters. Example 1-2 shows the
SOAP RPC Style response message that includes the

Char geReser vat i onResponse, with a "Response” string appended.

Example 1-1 SOAP RPC Style Request Message

<?xm version="1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: / / schenas. xn soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM.Schema" >
<SOAP- ENV: Body>
<nsl: hel l oWorld xm ns: nsl="urn: oracl e-j 2ee- ws_exanpl e- St at el essExanpl e"
SOAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ " >
<paranD xsi:type="xsd:string">Wendy</paran0>
</nsl: hel | oWor| d>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 1-2 SOAP RPC Style Response Message

<?xm version='1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: / / schenas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"

1-8 Oracle Application Server Web Services Developer’s Guide

SOAP Message Exchange and SOAP Message Encoding

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<SOAP- ENV: Body>
<ns1: hel | oWor| dResponse
xm ns: nsl1="urn: oracl e-j 2ee-ws_exanpl e- St at el essExanpl e"
SOAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ ">
<return xsi:type="xsd:string">Hello Wrld, Wendy</return>
</ nsl: hel | oWr| dResponse>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Working With Document Style SOAP Messages

Oracle Application Server Web Services supports two types of SOAP message
exchanges: RPC Style exchanges and Document-Style exchanges. Document-style
exchanges, also called message-oriented exchanges, model exchanges where XML
documents are exchanged, where the exchange patterns are defined in the sending
and the receiving applications. For Document Style messages, SOAP places no
constraints on how the document sent in the SOAP message body is structured, the
application, or an externally specified XML schema determines the structure of the
XML document that is sent in the body of the SOAP message.

Message-oriented information exchange supports organizations and applications
that need to exchange business or other types of documents where a message is sent
but the sender may not expect or wait for an immediate response. Message-oriented
information exchange is also called Document style SOAP message exchange.
Document -style messages model exchanges where XML documents are exchanged,
where the semantics of the exchange patterns are defined in the sending and the
receiving applications.

Example 1-3 shows a sample Document Style SOAP message that is sent from a
client to an Oracle Application Server Web Services document style service. The
client sends an XML document that contains employee records with elements
including name, emp_id, department, and contact information. A web service that
processes this XML document to produce a phone listing may supply an XML
document that contains only the name and phone number elements.

Example 1-3 Document Style SOAP Message

<?xm version='1.0" encodi ng=" UTF-8' ?>

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schenas. xn soap. or g/ soap/ envel ope/ "
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_.Schena-i nst ance"

xm ns: xsd="htt p: // www. w3. or g/ 2001/ XM_Schema" >

<SOAP- ENV: Body>

<or gani sation>

Web Services Overview 1-9

SOAP Message Exchange and SOAP Message Encoding

<enmpl oyee>
<nanme>Bob</ nane>
<enp_i d>1234</ enp_i d>
<depar t ment >hr </ depar t nent >
<contact >
<phone>827 644 5674</ phone>
<emai | >bob@r gani sati on. conx/ emai | >
</ contact >
</ enpl oyee>
<enmpl oyee>
<name>Susan</ name>
<enp_i d>2434</ enp_i d>
<depar t ment >i t </ depar t ment >
<cont act >
<phone>827 644 5674</phone>
<emai | >Susan@r gani sati on. conx/ emai | >
</ contact >
</ enpl oyee>
</ organi sation>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 1-4 Document Style SOAP Message Processed by a Web Service

<?xm version='1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schenas. xn soap. or g/ soap/ envel ope/ "
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://wmw. w3. or g/ 2001/ XM_Schena" >
<SOAP- ENV: Body>
<enpl oyee>
<nane>Bob</ name>
<phone>827 644 5674</ phone>
<name>Susan</ name>
<phone>827 644 5674</phone>
</ enpl oyee>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

1-10 Oracle Application Server Web Services Developer’'s Guide

2

Oracle Application Server Web Services

This chapter describes the Oracle Application Server Web Services features,
architecture, and implementation.

This chapter covers the following topics:

« Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services
« Oracle Application Server Web Services Standards

« Oracle Application Server Web Services Features

« Oracle Application Server Web Services Architecture

« Understanding WSDL and Client Proxy Stubs for Web Services

« Web Services Home Page

« About Universal Description, Discovery, and Integration Registry

Oracle Application Server Web Services 2-1

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web

Services

Oracle Application Server supports two different Web Services options, a J2EE
based Web Services environment built into Oracle Application Server Containers
for J2EE (OC4)J), and an Apache SOAP based Web Services environment called
Oracle Application Server SOAP.

The chapters in this manual describe the OC4J (J2EE) Web Services environment.
This environment makes it easy to develop and deploy services using J2EE artifacts,
and is moving the Oracle Application Server Web Services features toward the
evolving Web Services standards included in the next release of J2EE (J2EE 1.4). The
Oracle Application Server Web Services environment includes many development
and deployment features that are integrated with the advanced Oracle Application
Server features.

Appendix A, "Using Oracle SOAP" describes the Oracle Application Server support
for Apache SOAP (Oracle Application Server SOAP). Oracle Application Server
includes support for Apache SOAP because this implementation was one of the
earliest SOAP implementations and it supports existing Web Services applications.

Note: Oracle recommends using the Oracle Application Server
OC4J (J2EE) Web Services environment for developing Web
Services. The Apache SOAP (Oracle Application Server SOAP)
implementation is currently in maintenance mode.

Oracle Application Server Web Services Standards

Oracle Application Server Web Services supports the following Web Services
standards:

« SOAP 1.1, including the following:
« RPC/Encoded
= Document/Literal

« WSDL11

« UDDI2.0

See Also: "Overview of Web Services Standards” on page 2-2

2-2 Oracle Application Server Web Services Developer's Guide

Oracle Application Server Web Services Features

Oracle Application Server Web Services Features

Oracle Application Server provides advanced runtime features and comprehensive
support for developing and deploying Web Services. The Oracle Application Server
infrastructure includes support for the following:

Developing End-to-End Web Services
Deploying and Managing Web Services
Using Oracle JDeveloper with Web Services
Securing Web Services

Aggregating Web Services

Developing End-to-End Web Services

Oracle Application Server Web Services provides comprehensive support for
developing Web Services, including:

Development Environment — Oracle Application Server Web Services allows
application developers to implement Web Services using J2EE components. In
addition, you can use Java Classes or PL/SQL Stored Procedures to implement
Web Services. Web Services inherit all the runtime and lifecycle management
elements of J2EE Applications.

Development Tools and Wizards — Oracle Application Server Web Services
Developers can use the same set of command line utilities to create, package,
and deploy Web Services as other Oracle Application Server Containers for
J2EE (OC4J) applications. In addition Oracle Application Server Web Services
provides the Web Service HTML/XML Streams Processing Wizard that assists
developers in creating an EJB whose methods access and process XML or
HTML streams.

Automatically Generating WSDL — Oracle Application Server Web Services can
generate WSDL and client-side proxy stubs. This generation occurs when the
Web Service is assembled using the WebServices Assembly tool or alternatively,
for a deployed Web Service, the first time the WSDL or the client-side proxy
stubs are requested (after the first request, the previously generated WSDL or
client-side proxy stubs are sent when requested).

Registration, Publishing, and Discovery — Oracle Application Server Web
Services provides a standards-compliant UDDI registry where Web Services can

Oracle Application Server Web Services 2-3

Oracle Application Server Web Services Features

be published and discovered. The Oracle UDDI registry supports both a private
and public UDDI registry and can also synchronize information with other
UDDI nodes.

« Developer Simplicity — Using Oracle Application Server Web Services,
developers do not need to learn a completely new set of concepts — Web
Services are developed, deployed and managed using the same programming
concepts and tools as with J2EE Applications.

« Business Logic Reuse — Application developers can transparently publish their
J2EE Applications to new Web Services clients with no change in the
application itself. Their existing business logic developed in J2EE can be
transparently accessed from existing J2EE/EJB clients or from a new Web
Service client.

« Common Runtime Services — Oracle Application Server has a common runtime
and brokering environment for J2EE Applications and Web Services. As a
result, Web Services transparently inherit various services available with the
J2EE Container including Transaction Management, Messaging, Naming,
Logging, and Security Services.

Deploying and Managing Web Services

Oracle Enterprise Manager and the Web Services Assembly Tool assist with
deploying and managing Oracle Application Server Web Services. These tools
provide the following support for Web Services:

« Packaging and Assembly - The Web Services Assembly Tool assists with
assembling Web Services and producing a J2EE .ear file.

« Deployment — Oracle Enterprise Manager provides a comprehensive set of
facilities to deploy Web Services to Oracle Application Server. Oracle
Enterprise Manager provides a single, consistent Deploy Applications wizard
for deploying Web Services to Oracle Application Server. It accepts a J2EE .ear
file, and walks you through a set of steps to get information about the
application to be deployed, and then deploys the application.

« Register Web Service - The Deploy Applications wizard is only available when
deploying Web Services. This step provides access to facilities for registering
Web Services in the UDDI Registry.

« Browse the UDDI Registry - Oracle's UDDI Registry provides the UDDI
standards compliant pre-defined, hierarchical categorization schemes. Oracle
Enterprise Manager can drill-down through these categories and look up
specific Web Services registered in any category.

2-4 Oracle Application Server Web Services Developer's Guide

Oracle Application Server Web Services Features

Monitoring and Administration — Once deployed, Oracle Enterprise Manager
provides facilities to de-install a Web Service and also to monitor Web Service
performance, as measured by response-time and throughput, and status, as
measured by up-time, CPU, and memory consumption. Oracle Enterprise
Manager also provides facilities to identify and list all the Web Services
deployed to a specific Oracle Application Server instance.

Using Oracle JDeveloper with Web Services

The Oracle JDeveloper IDE supports Oracle Application Server Web Services.
Oracle JDeveloper is the industry’s most advanced Java and XML IDE and provides
unparalleled productivity and end-to-end J2EE and integrated Web Services
standards compliance.

Oracle JDeveloper supports Oracle Application Server Web Services with the
following features:

Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and
WSDL file for you.

Provides schema-driven WSDL file editing.

Offers significant J2EE deployment support for Web Services J2EE .ear files,
with automatic deployment to OC4J.

Securing Web Services

Oracle Enterprise Manager secures Oracle Application Server Web Services in the
same way that it secures J2EE Servlets running under OC4J. This provides a
comprehensive set of security facilities, including:

Complete, standards-based security architecture for encryption, authentication,
and authorization of Web Services.

Single Sign-on to enable users to access several Web Services with a single
password.

Single Point of administration to enable users to centrally manage the security
for Web Services.

Oracle Application Server Web Services 2-5

Oracle Application Server Web Services Architecture

Aggregating Web Services

OracleAS Portal facility provides the ability to aggregate Oracle Application Server
Web Services within an organization into a Portal. Additionally, portlets in the
OracleAS Portal framework can be published as Web Services.

Oracle Application Server Web Services Architecture

Oracle Application Server Containers for J2EE (OC4J) provides the foundation for
building applications as components and supports Oracle Application Server Web
Services. Oracle Application Server Web Services supports both RPC Style and
Document Style web services.

Oracle Application Server Web Services supports the following RPC Web Services:
« Java Classes

« Stateless Session Enterprise Java Beans (EJBS)

« Stateless PL/SQL Stored Procedures or Functions

Oracle Application Server Web Services supports the following Document Style
web services:

« Java Class Document Style Web Services
« JMS Document Style Web Services

For each implementation type, Oracle Application Server Web Services uses a
different Servlet that conforms to J2EE standards to provide an entry point to a Web
Service implementation. Figure 2-1 shows the Web Services runtime architecture,
including the Servlet entry points.

The Oracle Application Server Web Services runtime architecture discussion
includes the following:

« About Servlet Entry Points for Web Services
« What Are the Packaging and Deployment Options for Web Services

« About Server Skeleton Code Generation for Web Services

See Also: "SOAP Standard" on page 1-6 for information on RPC
Style and Document Style Web Services.

2-6 Oracle Application Server Web Services Developer's Guide

Oracle Application Server Web Services Architecture

Figure 2-1 Web Services Runtime Architecture (RPC and Document Style with Servlet Entry Points)

SOAP Binding

—
Encode / Decode 0C4J
g — Servlet Entry Point | | Stateless
SOAP Binding Java
— Encode / Decode Class
— > SOAP Binding
&
Browser or XML Document
F lien ;
at Client Servlet Entry Point | | Stateful
Encode / Decode é?;gs
SOAP Binding
Servlet Entry Point | | Stateless
Encode / Decode Egs;lon
SOAP Binding
Servlet Entry Point | | Stateless
Encode / Decode PL/SQL
Apache OracleAS

Servlet Entry Point | | Stateless

Encode / Decode é?;:s
(Document
SOAP Binding Style)

Servlet Entry Point | | Stateful

Java
Encode / Decode Class

(Document
SOAP Binding Style)

Servlet Entry Point | | JMS Java

(Document
Encode / Decode Style)

SOAP Binding

Oracle Application Server Web Services 2-7

Oracle Application Server Web Services Architecture

About Servlet Entry Points for Web Services

To use Oracle Application Server Web Services, you need to deploy a J2EE .ear file
to Oracle Application Server. The J2EE .ear file contains a Web Services Servlet
configuration and includes an implementation of the Web Service. Oracle
Application Server Web Services supplies the Servlet classes, one for each
supported implementation type. At runtime, Oracle Application Server uses the
Servlet classes to access the user supplied Web Service implementation.

The Oracle Application Server Web Services Servlet classes support the following
Web Services implementation types:

« Java Class (Stateless) - The object implementing the Web Service is any arbitrary
Java class. The Web Service is stateless.

« Java Class (Stateful) -The object implementing the Web Service is any arbitrary
Java class. The Web Service is considered stateful. A Servlet Ht t pSessi on
maintains the object state between requests from the same client.

« Stateless Session EJBs - Stateless Session EJBs can be exposed as Web Services.
The Web Service is considered to be stateless.

« PL/SQL Stored Procedure or Function - The object implementing the Web
Service is a Java class that accesses the PL/SQL stored procedure or function.
The Web Service is considered to be stateless. The Oracle JPublisher tool
generates the Java access class for the PL/SQL stored procedure or function.

« Java Class Document Style Web Service (Stateless) - The object implementing
the Web Service is a Java class using a supported method signature. The Web
Service is stateless.

« Java Class Document Style Web Service (Stateful) -The object implementing the
Web Service is a Java class using a supported method signature. The Web
Service is considered stateful. A Servlet Ht t pSessi on maintains the object
state between requests from the same client.

« Java JMS Web Service - Supports sending and receiving messages to or from
JMS destinations. Using the JMS Web Service you can include an MDB to
handle or generate messages.

When a Web Service is deployed, a unique instance of the Servlet class manages the
Web Service. The Servlet class is implemented as part of Oracle Application Server
Web Services runtime support. To make Web Services accessible, you deploy the
Web Service implementation with the corresponding Web Services Servlet.

2-8 Oracle Application Server Web Services Developer's Guide

Oracle Application Server Web Services Architecture

Note: Using Oracle Application Server SOAP, based on Apache
SOAP 2.3.1, there is only a single instance of a single Servlet entry
point for all the Web Services in the entire system. The Oracle
Application Server Web Services architecture differs; under Oracle
Application Server Web Services, a unique Servlet instance
supports each Web Service.

RPC Style Web Service implementations under Oracle Application Server Web
Services that take values as parameters or that return values to a client need to
restrict the types passed. This restriction allows the types passed to be converted
between XML and Java objects (and between Java objects and XML). Table 2-1 lists
the supported types for passing to or from Oracle Application Server Web Services.

Document Style Web Service implementations under Oracle Application Server

Web Services restrict the signature of the Java methods that implement the Web

Service. Only or g. w3c. dom El enent can be passed to or sent from these Web
Services.

Note: The preceding restriction means that
or g. w3c. dom El enent types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

Table 2-1 Web Services Supported Data Types (for RPC Parameters and Return
Values)

Primitive Type Object Type

Bool ean j ava. | ang. Bool ean
byt e java.l ang. Byte
doubl e j ava. | ang. Doubl e
fl oat j ava. | ang. Fl oat
int java. |l ang. | nt eger
| ong j ava. | ang. Long
short j ava. | ang. Short
string java.lang. String

java.util.Date

Oracle Application Server Web Services 2-9

Oracle Application Server Web Services Architecture

Table 2-1 (Cont.) Web Services Supported Data Types (for RPC Parameters and
Return Values)

Primitive Type Object Type

java.util. Mp

or g. w3c. dom El enment

or g. wdc. dom Docurnent

org. w3c. dom Docunent Fr agnent

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table

What Are the Packaging and Deployment Options for Web Services

Oracle Application Server Web Services are accessed as Servlets, thus, Web Services
need to be assembled. The WebSer vi cesAssenbl er tool prepares J2EE .ear files
for Web Services by configuring a web. xni file that is a component of a J2EE .war
file, and including the required resources and the implementation and support
classes.

To build a Web Service with the assembly tool, you can supply a Jar file, .war file,
ebj.jar, or .ear file that includes your Web Service implementation. The assembly
tool then builds the Web Service using configuration information specified in its
XML configuration file.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 4, "Developing and Deploying EJB Web Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

« Chapter 6, "Developing and Deploying Document Style Web
Services"

2-10 Oracle Application Server Web Services Developer’s Guide

Understanding WSDL and Client Proxy Stubs for Web Services

About Server Skeleton Code Generation for Web Services

The first time Oracle Application Server Web Services receives a request for a
service, the Servlet entry point automatically does the following (this discussion
does not apply for IMS Web Services, which are handled differently):

Validates the class loading. All the classes that are required for the Web Service
implementation must conform to standard J2EE class loading norms.

Validates the data types. All the Java classes or EJBs must conform to the
restrictions on supported parameter and return types as shown in Table 2-1.

Generates server skeleton code. The server skeleton code is only generated the
first time the Web Service is accessed or when the ear file is redeployed (when
an application is redeployed, the server skeleton code and other Web Services
support files are regenerated). The generated code is stored in the temporary
directory associated with the Servlet context. The server skeleton code controls
the lifecycle of the EJB (for Stateless Session EJB implementations), handles the
marshaling of the parameters and return types (for SOAP RPC based Web
Services), and dispatches to the actual Java class or EJB methods that implement
the service.

After the server skeleton class is generated, when subsequent requests for a
service are received, the server skeleton directly handles marshalling and then
invokes the method that implements the service (for Web Services implemented
with PL/SQL stored procedures or functions, the server skeleton invokes the
Java class that accesses the Database containing the PL/SQL stored procedure
or function).

For document style Web Services, the server skeleton passes the DOM element
to the method that implements the service.

Understanding WSDL and Client Proxy Stubs for Web Services

Oracle Application Server Web Services provides a tool to generate a WSDL file that
can be packaged with a Web Service at assembly time, (if you do not package the
WSDL file, it can be generated at runtime). This tool also supports generating
client-side proxy stubs, given a WSDL file.

There are several elements to Oracle Application Server Web Services WSDL
support. First, RPC style Web Services are based on interoperable XML data
representations and arbitrary Java objects do not in general map to XML. Oracle
Application Server Web Services supports a set of XML types corresponding to a set
of Java types (see Table 2-1 for the list of supported Java types).

Oracle Application Server Web Services 2-11

Understanding WSDL and Client Proxy Stubs for Web Services

Second, using Oracle Application Server Web Services, an application developer can
either statically generate the WSDL interfaces for a Web Service or the Oracle
Application Server Web Services runtime can generate WSDL and client-side proxy
stubs if they are not provided when a Web Service is deployed. These files can be
generated by the runtime on the server-side and delivered when they are requested
by a Web Services client.

Oracle Application Server also provides a client-side tool to statically generate
WSDL given a Java class or a J2EE application. Likewise, the Web Services
Assembly tool can generate the client-side proxy given a generated WSDL file or a
known WSDL endpoint.

See Also:

« "Generating Client-Side Proxies With WebServicesAssembler"
on page 8-8

« "Generating WSDL Files and Client Side Proxies" on page 9-4

Overview of a WSDL Based Web Service Client

Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client
application development, the Oracle Application Server Web Services runtime can
generate WSDL to describe a Web Service. Using the WSDL, development tools can
assist developers in building applications that invoke Web Services.

See Also:
« "Using Oracle JDeveloper with Web Services" on page 2-5

« Chapter 8, "Building Clients that Use Web Services"

Overview of a Client-Side Proxy Stubs Based Web Service Client

Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client-side
application development, Oracle Application Server Web Services can generate
client-side proxy stubs. The client-side proxy stubs hide the details of composing a
SOAP request and decomposing the SOAP response. The generated client-side
proxy stubs support a synchronous invocation model for requests and responses.
The generated stubs make it easier to write a Java client application to make a Web
Service (SOAP) request and handle the response.

2-12 Oracle Application Server Web Services Developer’s Guide

Web Services Home Page

See Also: Chapter 8, "Building Clients that Use Web Services”

Web Services Home Page

Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web Service.

A Web Service Home Page provides the following:

« A Linktothe WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

« Links to Web Service Test Pages for each supported operation-To test the
available Web Service operations enter the parameter values for the operation, if
any, and select the Invoke button.

« Links to the Web Service client-side proxy Jar and the client-side proxy source -
To obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

Figure 2-2 shows a sample Web Service Home Page.

Oracle Application Server Web Services 2-13

About Universal Description, Discovery, and Integration Registry

Figure 2-2 Web Service Home Page

StatefulExample endpoint

WWSDL for Service: StatefulExample, generated by Oracle WSDL toolkit (version: 1.1}

For a formal definition, please review the Service Description (rpe sfyie).

StatefulExample service

The following operations are supported.

« count
« hellovorld

ocdj client

The java proxy is packaged in a jar either as classes or sources files.

« Prowy Jar
+ Prody SoUrce

About Universal Description, Discovery, and Integration Registry

The Universal Description, Discovery, and Integration (UDDI) specification consists
of a four-tier hierarchical XML schema that provides the base information model to
publish, validate, and invoke information about Web Services. The four types of
information that the UDDI XML schema defines are:

« Business Entity - The top level XML element in a UDDI entry captures the
starting set of information required by partners seeking to locate information
about a business' services including its name, its industry or product category,
its geographic location, and optional categorization and contact information.
This includes support for Yellow Pages taxonomies to search for businesses by
industry, product, or geography.

« Business Service - The businessService structure groups a series of related Web
Services together so that they can be related to either a business process or a
category of services. An example of a business process could be a

2-14 Oracle Application Server Web Services Developer’s Guide

About Universal Description, Discovery, and Integration Registry

logistics/delivery process which could include several Web Services including
shipping, routing, warehousing, and last-mile delivery services. By organizing
Web Services into groups associated with categories or business processes,
UDDI allows more efficient search and discovery of Web Services.

« Binding Information - Each businessService has one or more technical Web
Service Descriptions captured in an XML element called a binding template.
The binding template contains the information that is relevant for application
programs that need to invoke or to bind to a specific Web Service. This
information includes the Web Service URL address, and other information
describing hosted services, routing and load balancing facilities.

« Compliance Information - While the bindingTemplate contains the information
required to invoke a service, it is not always enough to simply know where to
contact a particular Web Service. For instance, to send a business partner's Web
Service a purchase order, the invoking service must not only know the
location/URL for the service, but what format the purchase order should be
sent in, what protocols are appropriate, what security required, and what form
of a response will result after sending the purchase order. Before invoking a
Web Service, it is useful to determine whether the specific service being invoked
complies with a particular behavior or programming interface. Each
bindingTemplate element, therefore, contains an element called a tModel that
contains information which enables a client to determine whether a specific
Web Service is a compliant implementation.

Oracle Enterprise Manager Features to Register Web Services

When a Web Service is deployed on Oracle Application Server, you can use Oracle
Enterprise Manager to register the specific Web Service and publish its WSDL to the
UDDI registry and to discover published Web Services.

See Also: Chapter 10, "Discovering and Publishing Web Services"

Oracle Application Server Web Services 2-15

About Universal Description, Discovery, and Integration Registry

2-16 Oracle Application Server Web Services Developer’s Guide

3

Developing and Deploying Java Class Web
Services

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as Java classes.

This chapter covers the following topics:

« Using Oracle Application Server Web Services With Java Classes
« Writing Java Class Based Web Services

« Preparing and Deploying Java Class Based Web Services

« Serializing and Encoding Parameters and Results for Web Services

Developing and Deploying Java Class Web Services 3-1

Using Oracle Application Server Web Services With Java Classes

Using Oracle Application Server Web Services With Java Classes

This chapter shows sample code for writing Web Services implemented with Java
classes and describes the difference between writing stateful and stateless Java Web
Services.

Oracle Application Server supplies Servlets to access the Java classes which
implement a Web Service. The Servlets handle requests generated by a Web Service
client, run the Java method that implements the Web Service and returns results
back to Web Services clients.

See Also:
« Chapter 2, "Oracle Application Server Web Services"

« Chapter 4, "Developing and Deploying EJB Web Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"”

« Chapter 8, "Building Clients that Use Web Services"

Writing Java Class Based Web Services

Writing Java class based Web Services involves building a Java class that includes
one or more methods. When a Web Services client makes a service request, Oracle
Application Server Web Services invokes a Web Services Servlet that runs the
method that implements the service request. There are very few restrictions on what
actions Web Services can perform. At a minimum, Web Services generate some data
that is sent to a client or perform an action as specified by a Web Service request.

This section shows how to write a stateful and a stateless Java Web Service that
returns a string, "Hello World". The stateful service also returns an integer running
count of the number of method calls to the service. This Java Web Service receives a
client request and generates a response that is returned to the Web Service client.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services deno. zi p file, the Java class based Web Service
is in the directory under webser vi ces/ deno/ basi ¢/ j ava_servi ces on UNIX
orin\ webservi ces\ deno\ basi c\j ava_servi ces on Windows.

3-2 Oracle Application Server Web Services Developer's Guide

Writing Java Class Based Web Services

Writing Stateless and Stateful Java Web Services

Oracle Application Server Web Services supports stateful and stateless
implementations for Java classes running as Web Services, as follows:

« For astateful Java implementation, Oracle Application Server Web Services
uses a single Java instance to serve the Web Service requests from an individual
client.

« For astateless Java implementation, Oracle Application Server Web Services
creates multiple instances of the Java class in a pool, any one of which may be
used to service a request. After servicing the request, the object is returned to
the pool for use by a subsequent request.

Note: Itis the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing and Deploying Java Class
Based Web Services" on page 3-9.

Building a Sample Java Class Implementation
Developing a Java Web Service consists of the following steps:

« Defining a Java Class Containing Methods for the Web Service
« Defining an Interface for Explicit Method Exposure
« Writing a WSDL File (Optional)

Defining a Java Class Containing Methods for the Web Service

Create a Java Web Service by writing or supplying a Java class with methods that
are deployed as a Web Service. In the sample supplied in the j ava_servi ces
sample directory, the .ear file, ws_exanpl e. ear contains the Web Service source,
class, and configuration files. In the expanded .ear file, the class

St at ef ul Exanpl el npl provides the stateful Java service and

St at el essExanpl el npl provides the stateless Java service.

When writing a Java Web Service, if you want to place the Java service in a package,
use the Java package specification to name the package. The first line of
St at ef ul Exanpl el npl . j ava specifies the package name, as follows:

package oracle.j2ee. ws_exanpl e;

Developing and Deploying Java Class Web Services 3-3

Writing Java Class Based Web Services

The stateless sample Web Service is implemented with St at el essExanpl el npl ,
a public class. The class defines a public method, hel | oWor | d() . In general, a Java
class for a Web Service defines one or more public methods.

Example 3-1 shows St at el essExanpl el npl .

The stateful sample Web Service is implemented with St at ef ul Exanpl el npl , a
public class. The class initializes the count and defines two public methods,
count () and hel I oWor |1 d().

Example 3-2 shows St at ef ul Exanpl el npl .

Example 3-1 Defining A Public Class with Java Methods for a Stateless Web Service

package oracle.|2ee.ws_exanpl e;

public class Statel essExanpl el npl {
public Statel essExanpl el npl () {

}
public String helloWrld(String param {
return "Hello Wrld, " + param
}
}

Example 3-2 Defining a Public Class with Java Methods for a Stateful Web Service
package oracle.j2ee. ws_exanpl e;

public class Stateful Exanpl el mpl {
int count = O;
public Stateful Exanpl el npl () {

}
public int count() {

return count ++,

}
public String helloWrld(String param {
return "Hello World, " + param

}
}

A Java class implementation for a Web Service must include a public constructor
that takes no arguments. Example 3-1 shows the public constructor
St at el essExanpl el npl () and Example 3-2 shows St at ef ul Exanpl el npl ().

3-4 Oracle Application Server Web Services Developer’'s Guide

Writing Java Class Based Web Services

When an error occurs while running a Web Service implemented as a Java class, the
Java class should throw an exception. When an exception is thrown, the Web
Services Servlet returns a Web Services (SOAP) fault. Use the standard J2EE and
OC4J administration facilities to view the logs of Servlet errors for a Web Service
that uses Java classes for its implementation.

When you create a Java class containing methods that implement a Web Service, the
method’s parameters and return values must use supported types, or you need to
use an interface class to limit the methods exposed to those methods using only
supported types. Table 3-1 lists the supported types for parameters and return
values for Java methods that implement Web Services.

Note: See Table 3-1 for the list of supported types for parameters
and return values.

There are several additional steps required to implement a Java Web Service if you
need to handle or process SOAP request header entries.

See Also: "SOAP Header Support” on page 12-4

Defining an Interface for Explicit Method Exposure

Oracle Application Server Web Services allows you to limit the methods you expose
as Web Services by supplying a public interface. To limit the methods exposed in a
Web Service, include a public interface that lists the method signatures for the
methods that you want to expose. Example 3-3 shows an interface to the method in
the class St at el essExanpl el npl . Example 3-4 shows an interface to the
methods in the class St at ef ul Exanpl el npl .

Example 3-3 Using a Public Interface to Expose Stateless Web Services Methods
package oracle.|2ee.ws_exanpl e;

public interface Statel essExanple {
String helloWrld(String paran;

}

Example 3-4 Using a Public Interface to Expose Stateful Web Services Methods

package oracle.|2ee.ws_exanpl e;

public interface Stateful Exanple {
int count();

Developing and Deploying Java Class Web Services 3-5

Writing Java Class Based Web Services

String hell oWrld(String param;
}

When an interface class is not included with a Web Service, the Web Services
deployment exposes all public methods defined in the Java class. Using an interface,
for example St at el essExanpl e shown in Example 3-3 or St at ef ul Exanpl e
shown in Example 3-4, exposes only the methods listed in the interface.

Note: Using an interface, only the methods with the specified
method signatures are exposed when the Java class is prepared and
deployed as a Web Service.

Use a Web Services interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a
class.

2. To expand the set of methods that are exposed as Web Services to include
methods within the superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a
class, where the subset contains only the methods that use supported types for
parameters or return values. Table 3-1 lists the supported types for parameters
and return values for Java methods that implement Web Services.

See Also: "Using Supported Data Types for Java Web Services" on
page 3-7

Writing a WSDL File (Optional)

The WebSer vi cesAssenbl er supports the <wsdl - gen> and <pr oxy- gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

3-6 Oracle Application Server Web Services Developer’'s Guide

Writing Java Class Based Web Services

Using Supported Data Types for Java Web Services

Table 3-1 lists the supported data types for parameters and return values for Oracle
Application Server Web Services.

Table 3-1 Web Services Supported Data Types

Primitive Type

Object Type

Bool ean
byt e
doubl e
f | oat
int

| ong
short

string

java. |l ang.
j ava. | ang.
java.l ang.
java. |l ang.
java.l ang.
java. |l ang.
java. |l ang.
j ava. | ang.
java.util.
java. util.

Bool ean
Byt e
Doubl e
Fl oat

I nt eger
Long
Short
String
Dat e
Map

org.w3c. dom El ement

org. w3c. dom Docunent

or g. w3c. dom Docunent Fr agnment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Document Style Web Service implementations under Oracle Application Server
Web Services restrict the signature of the Java methods that implement the Web
Service. Only or g. w3c. dom El enent can be passed to or sent from these Web

Services.

Note:

The preceding restriction means that

or g. w3c. dom El enent types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

Developing and Deploying Java Class Web Services 3-7

Writing Java Class Based Web Services

Note: Oracle Application Server Web Services does not support
El ement [], (arrays of or g. w3c. dom El enent).

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

« It must have a constructor taking no arguments.
« It must expose all interesting state through properties.

« It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle Application Server Web Services allows Beans to be returned or passed in as
arguments to J2EE Web Service methods, as long as the Bean only consists of
property types that are listed in Table 3—-1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates
SOAP structures to and from Java Beans by translating SOAP structure namespaces
to and from fully qualified Bean class names. If a Bean with the specified name does
not exist in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather
than the client-side proxy. The generated WSDL document describes SOAP
structures in a standard way. Application development environments, such as
Oracle JDeveloper, which work directly from WSDL documents can correctly call
Oracle Application Server Web Services with Java Beans as parameters.

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type i nt, the equivalent
parameter in the proxy is of type j ava. | ang. | nt eger . This
mapping occurs for all primitive types.

3-8 Oracle Application Server Web Services Developer’'s Guide

Preparing and Deploying Java Class Based Web Services

See Also: Chapter 8, "Building Clients that Use Web Services"

Preparing and Deploying Java Class Based Web Services

To deploy a Java class as a Web Service you need to assemble a J2EE .ear file that
includes the deployment descriptors for the Oracle Application Server Web Services
Servlet and includes the Java class that supplies the Java implementation. This
section describes how to use the Oracle Application Server Web Services tool,
WebSer vi cesAssenbl er . WebSer vi cesAssenbl er takes an XML configuration
file that describes the Java Class Web Service and produces a J2EE .ear file that can
be deployed under Oracle Application Server Web Services.

This section contains the following topics.
« Creating a Configuration File to Assemble Java Class Web Services

« Running WebServicesAssembler To Prepare Java Class Web Services

Creating a Configuration File to Assemble Java Class Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use with Java
Class Web Services.

Create a WebSer vi cesAssenbl er configuration file by adding the following:
« Adding Web Service Top Level Tags

« Adding Java Stateless Service Tags

« Adding Java Stateful Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 3-2 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a

<web- ser vi ce> tag in the configuration file.

Example 3-5 shows a complete conf i g. xm file, including the top level tags.

Developing and Deploying Java Class Web Services 3-9

Preparing and Deploying Java Class Based Web Services

Table 3-2 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nane>

</ dat asour ce- JNDI - nane>

<descri pti on>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ desti nati on- pat h>

<di spl ay- name>
disp_name
</ di spl ay- name>

<opti on nane="sour ce- pat h"
[cont extroot =" pathl"] >
path2

<opti on>

<st at el ess-j ava-servi ce>
sub-tags
</ statel ess-java-servi ce>

<stateful -java-servi ce>
sub-tags
</stateful -java-service>

<t enporary-directory>
temp_dir
</tenporary-directory>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to specify

java resources, or the name of an existing .war, .ear, or ejb-jar file that is
used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies
the root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option name="sour ce- pat h"
contextroot ="/test">/ nyTest Area/ ws/ src/stateful |.war</option>

Use this tag to add a Java Web Services that defines a stateless service. See
Table 3-3 for a description of valid sub-tags.

Use this tag to add a Java Web Services that defines a stateful service. See
Table 3-3 for a description of valid sub-tags.

Specifies a directory where the assembler can store temporary files.

This tag is optional.

3-10 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services

Adding Java Stateless Service Tags

Prepare Java Stateless Web Services using the WebSer vi cesAssenbl er

<st at el ess-j ava- servi ce> tag. This tag is included within a <web- ser vi ce>
tag in the configuration file. Add this tag to provide information required for
generating a Stateless Java Web Service.

Table 3-3 shows the <st at el ess-j ava- ser vi ce> sub-tags and the
<st at ef ul - j ava- servi ce> sub-tags. As noted in Table 3-3, some of the
sub-tags listed only apply when using a <st at ef ul -j ava- servi ce>.

Example 3-5 shows a complete confi g. xn file, including
<st at el ess-j ava-servi ce>.

Note: Itis the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently.

Adding Java Stateful Service Tags

Prepare Java Stateful Web Services using the WebSer vi cesAssenbl er

<st at ef ul - j ava- servi ce> tag. This tag is included within a <web- ser vi ce>
tag in the configuration file. Add this tag to provide information required for
generating a Stateful Java Web Service.

To support a clustered environment, for stateful Java Web Services with serializable
java classes, the WebSer vi cesAssenbl er adds a <di st ri but abl e> tag in the
web. xm of the Web Service’s generated J2EE.ear file.

Table 3-3 shows the <st at ef ul - j ava- ser vi ce> sub-tags.

Example 3-5 shows a complete confi g. xn file, including
<stateful -java-service>.

Developing and Deploying Java Class Web Services 3-11

Preparing and Deploying Java Class Based Web Services

Table 3-3 Stateless and Stateful Java Service Sub-Tags

Tag

Description

<accept - unt yped- r equest >

val ue

</ accept - unt yped- r equest >

<cl ass- nane>
class
</ cl ass- nane>

<i nterface-nane>
interface

</interface-nane>

<ej b-resource>
ejb-resource
</ ej b-resource>

<j ava-resource>
resource
</j ava-resource>

<message- styl e>
rpc
</ nessage- styl e>

<scope>
scope
</ scope>

Setting value to t r ue tells WebSer vi cesAssenbl er to allow the Web
Service to accept untyped requests. When the value is f al se, the Web
Service does not accept untyped-request.

Valid values: t r ue, f al se

(case is not significant; TRUE and FALSE are also valid)
This tag is optional.

Default value: f al se

Specifies the fully qualified class name for the class that supplies the Web
Service implementation.

This tag is required

Specifies the fully qualified name of the interface that tells the Web Service
Servlet generation code which methods should be exposed as Web
Services.

This tag is optional

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3-2.
This tag is optional

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3-2.
This tag is optional

Sets the message style. When defining a Java Web Service, if you include
the <nessage- st yl e>tag you must specify the value r pc.

Valid Values: doc, r pc

This tag is optional

Default value: r pc (when the <message- st yl e> tag is not supplied)
Sets the scope of the session for stateful services.

The <scope> tag only applies for stateful services. Use this tag only within
the <st at ef ul -j ava- servi ce> tag.

This tag is optional
Valid Values: appl i cati on, sessi on
Default Value: sessi on

3-12 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services

Table 3-3 (Cont.) Stateless and Stateful Java Service Sub-Tags

Tag

Description

<sessi on-ti neout >
value
</ sessi on-ti nmeout >

<uri>
URI
</uri>

Sets the session timeout for a stateful session.

The <sessi on-ti meout > tag only applies for stateful services. Use this
tag only within the <st at ef ul - j ava- servi ce> tag.

Specify value with an integer that defines the timeout for the session in
seconds. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <cont ext > to
specify the Web Service location.

This tag is required

Example 3-5 Sample WebServicesAssembler Configuration File

<web

-service>

<di spl ay- name>\Web Servi ces Exanpl e</ di spl ay- name>

<description>Java Wb Service Exanpl e</description>

<I-- Specifies the resulting web service archive will be stored in
.Iws_exanpl e. ear -->

<desti nation- pat h>./ws_exanpl e. ear </ desti nati on- pat h>

<I-- Specifies the tenporary directory that web service assenbly
tool can create tenporary files. -->

<tenporary-directory>./tnp</tenporary-directory>

<I-- Specifies the web service will be accessed in the servlet context
naned "/webservices". -->

<cont ext >/ webser vi ces</ cont ext >

<I-- Specifies the web service will be stateless -->
<st at el ess-j ava-servi ce>
<interface-nane>oracl e.j 2ee. ws_exanpl e. St at el essExanpl e</i nt er f ace- name>
<cl ass- name>or acl e. j 2ee. ws_exanpl e. St at el essExanpl el npl </ cl ass- nane>
<I'-- Specifies the web service will be accessed in the uri named
"statel essTest” within the servlet context. -->
<uri>/statel essTest</uri>
<I'-- Specifies the location of Java class files are under
.Isrc -->

Developing and Deploying Java Class Web Services 3-13

Preparing and Deploying Java Class Based Web Services

<j ava-resource>./src</java-resource>
</statel ess-java-service>

<stateful -java-service>
<interface-nane>oracl e.j 2ee. ws_exanpl e. St at ef ul Exanpl e</i nt er f ace- name>
<cl ass- name>or acl e. j 2ee. ws_exanpl e. St at ef ul Exanpl el npl </ ¢l ass- name>
<I-- Specifies the web service will be accessed in the uri named
"stateful | Test” within the servlet context. -->
<uri>/stateful Test</uri>
<I-- Specifies the location of Java class files are under
.Isrc -->
<j ava-resource>./src</java-resource>
</stateful -java-service>
</ web- servi ce>

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er supports the <wsdl| - gen> and <pr oxy- gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you supply is packaged with the Web Service J2EE .ear.

A client-side developer can use the WSDL file that is obtained from a deployed Web
Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Running WebServicesAssembler To Prepare Java Class Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate
a J2EE .ear file for the Web Service. The J2EE .ear file includes the Java Web Service
servlet configuration information, including the file web. xnl , and the Java classes
and interfaces that you supply.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config config_file

Where: config_file is the configuration file that contains the
<stat el ess-j ava-servi ce>or the <st at ef ul -j ava- servi ce> tags.

3-14 Oracle Application Server Web Services Developer’s Guide

Serializing and Encoding Parameters and Results for Web Services

See Also:

« "Creating a Configuration File to Assemble Java Class Web
Services" on page 3-9

« "Running the Web Services Assembly Tool" on page 9-2

Deploying Java Class Based Web Services

After creating the J2EE .ear file containing the Java classes and the Web Services
Servlet deployment descriptors you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Serializing and Encoding Parameters and Results for Web Services

Parameters and results sent between Web Service clients and a Web Service
implementation go through the following steps:

1. Parameters are serialized and encoded in XML when sent from the Web Service
client.

2. Parameters are deserialized and decoded from XML when the Web Service
receives a request on the server side.

3. Parameters or results are serialized and encoded in XML when a request is
returned from a Web Service to a Web Service client.

4. Parameters or results must be deserialized and decoded from XML when the
Web Service client receives a reply.

Oracle Application Server Web Services supports a prepackaged implementation
for handling these four steps for serialization and encoding, and deserialization and
decoding. The prepackaged mechanism makes the four serialization and encoding
steps transparent both for the Web Services client-side application, and for the Java
service writer that is implementing a Web Service. Using the prepackaged
mechanism, Oracle Application Server Web Services supports the following
encoding mechanisms:

« Standard SOAP v.1.1 encoding: Using standard SOAP v1.1 encoding, the server
side Web Services Servlet that calls the Java class implementation handles
serialization and encoding internally for the types supported by Oracle

Developing and Deploying Java Class Web Services 3-15

Serializing and Encoding Parameters and Results for Web Services

Application Server Web Services. Table 3-1 lists the supported Web Services
parameter and return value types when using standard SOAP v.1.1 encoding.

« Literal XML encoding. Using Literal XML encoding, a Web Service client can
pass as a parameter, or a Java service can return as a result, a value that is
encoded as a conforming W3C Document Object Model (DOM)
or g. w3c. dom El enent . When an El enent passes as a parameter to a Web
Service, the server side Java implementation processes the
or g. w3c. dom El enent . For return values sent from a Web Service, the Web
Services client parses or processes the or g. w3c. dom El enent .

Note: For parameters to a Web Service or results that the Web
Service generates and returns to Web Services clients, the Oracle
Application Server Web Services implementation supports either
the Standard SOAP encoding or Literal XML encoding but not
both, for any given Web Service (Java method).

See Also: Chapter 8, "Building Clients that Use Web Services"

3-16 Oracle Application Server Web Services Developer’'s Guide

A

Developing and Deploying EJB Web
Services

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as stateless session
Enterprise Java Beans (EJBS).

This chapter covers the following topics:
« Using Oracle Application Server Web Services With Stateless Session EJBs
« Writing Stateless Session EJB Web Services

« Preparing and Deploying Stateless Session EJB Based Web Services

Developing and Deploying EJB Web Services 4-1

Using Oracle Application Server Web Services With Stateless Session EJBs

Using Oracle Application Server Web Services With Stateless Session

EJBs

This chapter shows sample code for writing Web Services implemented with
stateless session EJBs.

Oracle Application Server supplies Servlets to access the EJBs which implement a
Web Service. A Servlets handle requests generated by a Web Service client, locates
the EJB home and remote interfaces, runs the EJB that implements the Web Service,
and returns results back to the Web Service client.

See Also:

« Chapter 2, "Oracle Application Server Web Services"

» Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

» Chapter 8, "Building Clients that Use Web Services"

Writing Stateless Session EJB Web Services

Writing EJB based Web Services involves obtaining or building an EJB that
implements a service. The EJB should contain one or more methods that a Web
Services Servlet running under Oracle Application Server invokes when a client
makes a Web Services request. There are very few restrictions on what actions Web
Services can perform. At a minimum, Web Services usually generate data that is
sent to a Web Services client or perform an action as specified by a Web Services
method request.

This section shows how to write a simple stateless session EJB Web Service,

Hel | oSer vi ce that returns a string, "Hello World", to a client. This EJB Web
Service receives a client request with a single St r i ng parameter and generates a
response that it returns to the Web Service client.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services deno. zi p file, the EJB based Web Service is in
the directory under / webservi ces/ deno/ basi c/ st at el ess_ej b on UNIX or
in\ webser vi ces\ deno\ basi c\ st at el ess_ej b on Windows.

4-2 Oracle Application Server Web Services Developer’'s Guide

Writing Stateless Session EJB Web Services

Create a stateless session EJB Web Service by writing a standard J2EE stateless
session EJB containing a remote interface, a home interface, and an enterprise bean
class. Oracle Application Server Web Services runs EJBs that are deployed as Oracle
Application Server Web Services in response to a request issued by a Web Service
client.

Developing a stateless session EJB consists of the following steps:

« Defining a Stateless Session Remote Interface

« Defining a Stateless Session Home Interface

« Defining a Stateless Session EJB Bean

« Returning Results From EJB Web Services

« Error Handling for EJB Web Services

« Serializing and Encoding Parameters and Results for EJB Web Services
« Using Supported Data Types for Stateless Session EJB Web Services

« Writing a WSDL File for EJB Web Services (Optional)

See Also: "Preparing and Deploying Stateless Session EJB Based
Web Services" on page 4-8

Defining a Stateless Session Remote Interface

When looking at the Hel | oSer vi ce EJB Web Service, note that the .ear file,

Hel | oSer vi ce. ear defines the Web Service and its configuration files. In the
sample directory, the file Hel | oSer vi ce. j ava provides the remote interface for
the Hel | oSer vi ce EJB.

Example 4-1 shows the Renot e interface for the sample stateless session EJB.
Example 4-1 Stateless Session EJB Remote Interface for Web Service
package deno;

public interface HelloService extends javax.ejb. EJBObject {
java.lang. String hello(java.lang.String phrase) throws java.rni.RenoteException;

}

Developing and Deploying EJB Web Services 4-3

Writing Stateless Session EJB Web Services

Defining a Stateless Session Home Interface

The sample file Hel | oSer vi ceHone. j ava provides the home interface for the
Hel | oSer vi ce EJB.

Example 4-2 shows the EJBHormre interface for the sample stateless session EJB.

Example 4-2 Stateless Session EJB Home Interface for Web Service
package deno;

/**

* This is a Home interface for the Session Bean

*/

public interface Hell oServiceHone extends javax.ejb. EJBHome {

Hel | oService create() throws javax.ejb. CreateException, java.rm .RenoteException

}

Defining a Stateless Session EJB Bean

The sample file Hel | oSer vi ceBean. j ava provides the Bean logic for the

Hel | oSer vi ce EJB. When you create a Bean to implement a Web Service, the
parameters and return values must be of supported types. Table 4-1 lists the
supported types for parameters and return values for stateless session EJBs that
implement Web Services.

Example 4-3 shows the source code for the Hel | oSer vi ce Bean.

Example 4-3 Stateless Session EJB Bean Class for Web Services
package deno;

i nport java.rni.RenoteException;
inport java.util.Properties;
inport javax.ejb.*;

/**

* This is a Session Bean O ass.

*/

public class HelloServiceBean inplements SessionBean {
private javax.ejb. SessionContext nySessionCtx = null;

public void ejbActivate() throws java.rm.RenmoteException {}
public void ejbCreate() throws javax.ejh. CreateException,

4-4 Oracle Application Server Web Services Developer’'s Guide

Writing Stateless Session EJB Web Services

java.rm . Renot eException {}

public void ejbPassivate() throws java.rm . RenmoteException {}
public void ej bRemove() throws java.rm .RenmoteException {}
public javax.ejb. Sessi onCont ext get SessionContext() {

return mySessionCtx;

}
public String hello(String phrase)
{
return "HELLO! You just said :" + phrase;
}

public void setSessionContext(javax.ejb. SessionContext ctx) throws
java.rm . Renot eException {
mySessi onCtx = ctx;

}
}

Returning Results From EJB Web Services

The hel | o() method shown in Example 4-3 returns a St ri ng. An Oracle
Application Server Web Services server-side Servlet runs the Bean that calls the

hel | o() method when the Servlet receives a Web Services request from a client.
After executing the hel | o() method, the Servlet returns a result to the Web Service
client.

Example 4-3 shows that the EJB Bean writer only needs to return values of
supported types to create Web Services implemented as stateless session EJBs.

See Also: "Using Supported Data Types for Stateless Session EJB
Web Services" on page 4-6

Error Handling for EJB Web Services

When an error occurs while running a Web Service implemented as an EJB, the EJB
should throw an exception. When an exception is thrown, the Web Services Servlet
returns a Web Services (SOAP) fault. Use the standard J2EE and OC4)
administration facilities for logging Servlet errors for a Web Service that uses
stateless session EJBs for its implementation.

Developing and Deploying EJB Web Services 4-5

Writing Stateless Session EJB Web Services

Serializing and Encoding Parameters and Results for EJB Web Services

Parameters and results sent between Web Service clients and a Web Service
implementation need to be encoded and serialized. This allows the call and return
values to be passed as XML documents using SOAP.

See Also: "Serializing and Encoding Parameters and Results for
Web Services" on page 3-15

Using Supported Data Types for Stateless Session EJB Web Services

Table 4-1 lists the supported data types for parameters and return values for Oracle
Application Server Web Services.

Table 4-1 Web Services Supported Data Types

Primitive Type Object Type

Bool ean j ava. | ang. Bool ean
byt e java.l ang. Byte
doubl e java. |l ang. Doubl e
fl oat j ava. | ang. Fl oat
int java. l ang. | nt eger
| ong java. |l ang. Long
short j ava. | ang. Short
string java.lang. String

java.util.Date

java.util. Mp

or g. w3c. dom El enment

or g. wdc. dom Docunent

org. w3c. dom Docunent Fr agnent

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

4-6 Oracle Application Server Web Services Developer’'s Guide

Writing Stateless Session EJB Web Services

Note: Oracle Application Server Web Services does not support
El ement [], (arrays of or g. w3c. dom El enent).

Document Style Web Service implementations under Oracle Application Server

Web Services restrict the signature of the Java methods that implement the Web

Service. Only or g. w3c. dom El enent can be passed to or sent from these Web
Services.

Note: The preceding restriction means that
or g. w3c. dom El enent types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

« It must have a constructor taking no arguments.
« It must expose all interesting state through properties.

« It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle Application Server Web Services allows Beans to be returned or passed in as
arguments to J2EE Web Service methods, as long as the Bean only consists of
property types that are listed in Table 4-1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates
SOAP structures to and from Java Beans by translating SOAP structure namespaces
to and from fully qualified Bean class names. If a Bean with the specified name does
not exist in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather
than the client-side proxy. The generated WSDL document describes SOAP
structures in a standard way. Application development environments, such as
Oracle JDeveloper, which work directly from WSDL documents can correctly call
Oracle Application Server Web Services with Java Beans as parameters.

Developing and Deploying EJB Web Services 4-7

Preparing and Deploying Stateless Session EJB Based Web Services

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type i nt , the equivalent
parameter in the proxy is of type j ava. | ang. | nt eger . This
mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"

Writing a WSDL File for EJB Web Services (Optional)

The WebSer vi cesAssenbl er supports the <wsdl| - gen> and <pr oxy- gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Preparing and Deploying Stateless Session EJB Based Web Services

To deploy a stateless session EJB as a Web Service you need to assemble a J2EE .ear
file that includes the deployment descriptors for the Oracle Application Server Web
Services Servlet and includes the ejb.jar that supplies the Java implementation. This
section describes how to use the Oracle Application Server Web Services tool,
WebSer vi cesAssenbl er. WebSer vi cesAssenbl er takes an XML configuration
file that describes the stateless session EJB Web Service and produces a J2EE .ear file
that can be deployed under Oracle Application Server Web Services.

This section contains the following topics.
« Creating a Configuration File to Assemble Stateless Session EJB Web Services
« Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

« Deploying Web Services Implemented as EJBs

4-8 Oracle Application Server Web Services Developer’'s Guide

Preparing and Deploying Stateless Session EJB Based Web Services

Creating a Configuration File to Assemble Stateless Session EJB Web Services

The Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use with
stateless session EJB Web Services.

Create WebSer vi cesAssenbl er configuration file by adding the following:

« Adding Web Service Top Level Tags

« Adding Stateless Session EJB Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 4-2 describes the top level WebSer vi cesAssenbl er configuration file tags.

Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a
<web- ser vi ce> tag in the configuration file.

Example 4-4 shows a complete conf i g. xm file, including the top level tags.

Table 4-2 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nanme>
datasource
</ dat asour ce- JNDI - nane>

<descri ption>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ desti nati on- pat h>

<di spl ay- name>
disp_name
</ di spl ay- nane>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The
dest_path specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Developing and Deploying EJB Web Services 4-9

Preparing and Deploying Stateless Session EJB Based Web Services

Table 4-2 (Cont.) Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description

<option name="sour ce-pat h"> Includes a specified file in the output .ear file. Use this option to

path specify java resources, or the name of an existing .war, .ear, or

<opti on> ejb-jar file that is used as a source file for the output J2EE .ear
file.

When a .war file is supplied as input, the optional contextroot
specifies the root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option name="sour ce- pat h"
contextroot="/test">/ nyTest Area/ ws/ src/statefull.war
</ option>

This tag is optional.

<st at el ess-sessi on-ej b-servi ce> Use this tag to add a stateless session EJB Web Service. See
sub-tags Table 4-3 for a description of the valid sub-tags.
</ st at el ess-sessi on-ej b-servi ce>

<t enmpor ary-directory> Specifies a directory where the assembler can store temporary
temp_dir files.

</temporary-directory> This tag is optional.

Adding Stateless Session EJB Service Tags

Prepare Stateless Session EJB Web Services using the WebSer vi cesAssenbl er
<st at el ess- sessi on- ej b- servi ce> tag. This tag is included within a

<web- ser vi ce> tag in the configuration file. Add this tag to provide information
required for generating a stateless session EJB Web Service.

Table 4-3 shows the <st at el ess- sessi on- ej b- servi ce> sub-tags.

Example 4-4 shows a complete confi g. xn file, including
<st at el ess- sessi on-ej b-service>.

4-10 Oracle Application Server Web Services Developer's Guide

Preparing and Deploying Stateless Session EJB Based Web Services

Table 4-3 Stateless Session EJB Web Service Sub-Tags

Tag

Description

<accept - unt yped-request > Setting value to t r ue tells WebSer vi cesAssenbl er to allow the Web

val ue

Service to accept untyped requests. When the value is f al se, the Web

</ accept - unt yped- r equest > Service does not accept untyped-request.

<ej b- nanme>
name
</ ej b- name>

<ej b-resource>
resource
</ ej b-resource>

<pat h>
path
</ pat h>

<uri>
URI
<luri>

Valid values: t rue, f al se

(case is not significant; TRUE and FALSE are also valid)
This tag is optional.

Default value: f al se

Specifies the name of the stateless session EJB.

This tag is required

This is a backward compatibility tag.

See Also: the top level <opt i on nane="sour ce- pat h">tagin
Table 4-2.

This tag is optional
This is a backward compatibility tag.

See Also: the top level <opt i on nanme="sour ce- pat h">tagin
Table 4-2.

This tag is optional

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <cont ext > to
specify the Web Service location.

This tag is required.

Example 4-4 Sample Stateless Session EJB WebServicesAssembler Configuration

File

<web- servi ce>

<di spl ay- name>EJB Wb Services Deno</di spl ay- name>

<desti nation-pat h>t np/ Hel | oSer vi ce. ear </ dest i nat i on- pat h>
<t enmpor ar y- di r ect or y>t np</ t enpor ary-di rect ory>

<cont ext >/ sej b_webservi ces</ cont ext >

<st at el ess-sessi on-ej b-servi ce>
<pat h>t np/ Hel | 0. j ar </ pat h>

Developing and Deploying EJB Web Services 4-11

Preparing and Deploying Stateless Session EJB Based Web Services

<uri>/ Hel | oService</uri>
<ej b- name>Hel | oSer vi ce</ ej b- nane>
</ stat el ess-sessi on-ej b-servi ce>
</ web- service>

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er supports the <wsdl| - gen> and <pr oxy- gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate
a J2EE .ear file for the Web Service. The J2EE .ear file includes the stateless session
EJB Web Service servlet configuration information.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config config_ file

Where: config_file is the configuration file that contains the
<st at el ess-sessi on-ej b- servi ce> tag.

See Also:

« "Creating a Configuration File to Assemble Stateless Session
EJB Web Services" on page 4-9

« "Running the Web Services Assembly Tool" on page 9-2

4-12 Oracle Application Server Web Services Developer's Guide

Preparing and Deploying Stateless Session EJB Based Web Services

Deploying Web Services Implemented as EJBs

After creating the .ear file containing a stateless session EJB, you can deploy the
Web Service as you would any standard J2EE application stored in an .ear file (to
run under OC4)).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server Documentation Library

Developing and Deploying EJB Web Services 4-13

Preparing and Deploying Stateless Session EJB Based Web Services

4-14 Oracle Application Server Web Services Developer's Guide

D

Developing and Deploying Stored
Procedure Webh Services

This chapter describes how to write and deploy Oracle Application Server Web
Services implemented as stateless PL/SQL Stored Procedures or Functions (Stored
Procedure Web Services). Stored Procedure Web Services enable you to export, as
services running under Oracle Application Server Web Services, PL/SQL
procedures and functions that run on an Oracle database server.

This chapter covers the following topics:

Using Oracle Application Server Web Services with Stored Procedures
Writing Stored Procedure Web Services

Preparing Stored Procedure Web Services

Deploying Stored Procedure Web Services

Limitations for Stored Procedures Running as Web Services

Developing and Deploying Stored Procedure Web Services 5-1

Using Oracle Application Server Web Services with Stored Procedures

Using Oracle Application Server Web Services with Stored Procedures

This chapter shows sample code for writing Web Services implemented with
stateless PL/SQL stored procedures or functions. The sample is based on a PL/SQL
package representing a company that manages employees.

Oracle Application Server Web Services supplies a Servlet to access Java classes that
support PL/SQL Stored Procedure Web Services. The Servlet handles requests
generated by a Web Service client, runs the Java method that accesses the stored
procedure that implements the Web Service, and returns results back to the Web
Service client.

The Oracle database server supports procedures implemented in languages other
than PL/SQL, including Java and C/C++. These stored procedures can be exposed
as Web Services using PL/SQL interfaces.

See Also:
« Chapter 2, "Oracle Application Server Web Services"

« Chapter 3, "Developing and Deploying Java Class Web
Services"”

« Chapter 6, "Developing and Deploying Document Style Web
Services"”

Writing Stored Procedure Web Services

Writing Stored Procedure Web Services involves creating and installing a PL/SQL
package on an Oracle database server that is available as a datasource to Oracle
Application Server and generating a Java class that includes one or more methods
to access the Stored Procedure.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services deno. zi p file, the sample Stored Procedure Web
Service is supplied in the directory under webser vi ces/ deno/ basi c/ st ored_
pr ocedur e on UNIX or in webser vi ces\ denp\ basi c\ st ored_procedure

on Windows.

Create a Stored Procedure Web Service by writing and installing a PL/SQL Stored
Procedure. To write and install a PL/SQL Stored Procedure, you heed to use
facilities independent of Oracle Application Server Web Services.

5-2 Oracle Application Server Web Services Developer's Guide

Preparing Stored Procedure Web Services

For example, to use the sample COVPANY package, first create and load the supplied
package on the database server using the cr eat e. sql script. This script, along
with several other required . sql scripts are in the st or ed_pr ocedur e directory.
These scripts create several database tables and the sample COMPANY package.

When the Oracle database server is running on the local system, use the following
command to create the sample PL/SQL package:

sql plus scott/tiger @reate

When the Oracle database server is not the local system, use the following
command and include a connect identifier to create the sample PL/SQL package:

sql plus scott/tiger@b_service _nane @reate
where db_service_name is the net service name for the Oracle database server.

See Also:

« "Limitations for Stored Procedures Running as Web Services"
on page 5-12

« PL/SQL User’s Guide and Reference in the Oracle Database
Documentation Library

« Oracle Net Services Administrator’s Guide in the Oracle Database
Documentation Library

Preparing Stored Procedure Web Services

This section describes how to use the Oracle Application Server Web Services tool
WebSer vi cesAssenbl er to prepare a J2EE .ear file that supports using a PL/SQL
procedure or function as a Stored Procedure Web Service.

This section contains the following topics:
« Creating a Configuration File to Assemble Stored Procedure Web Services
« Running WebServicesAssembler With Stored Procedure Web Services

« Setting Up Datasources in Oracle Application Server Web Services (OC4J)

Creating a Configuration File to Assemble Stored Procedure Web Services

The Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web

Developing and Deploying Stored Procedure Web Services 5-3

Preparing Stored Procedure Web Services

Services. This section describes how to create a configuration file to use to assemble
a Stored Procedure Web Service. The Web Services assembly tool uses an XML
configuration file that describes the Stored Procedure Web Service and produces a
J2EE .ear file that can be deployed under Oracle Application Server Web Services.

Create WebSer vi cesAssenbl er configuration file by adding the following:
« Adding Web Service Top Level Tags

« Adding Stateless Stored Procedure Java Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 5-1 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the PL/SQL Stored
Procedure Web Service.

Example 5-1 shows a complete conf i g. xm file, including the top level tags.

Table 5-1 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description

<cont ext > Specifies the context root of the Web Service.

context . . .

</ cont ext > This tag is required.

<dat asour ce- JNDI - nanme> Specifies the datasource associated with the Web Service.
datasource

</ dat asour ce- JNDI - nanme>

<descri ption> Provides a simple description of the Web Service.
description - . .

</ description> This tag is optional.

<desti nati on- pat h> Specifies the name of the generated J2EE .ear file output. The dest_path
dest_path specifies the complete path for the output file.

</ destination-pat h> This tag is required.
<di spl ay- nane> Specifies the Web Service display name.
disp_name

</ di spl ay- name> This tag is optional.

5-4 Oracle Application Server Web Services Developer’'s Guide

Preparing Stored Procedure Web Services

Table 5-1 (Cont.) Top Level WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<opti on name="sour ce-pat h"> Includes a specified file in the output .ear file. Use this option to

path
<opti on>

include Java resources.
The path specifies the path to the file to include.

<st at el ess-stored-procedure- Use thistag to add stateless stored procedure Web Services. See

j ava- servi ce>
sub-tags

Table 5-2 and Table 5-4 for a description of valid sub-tags.

</ st atel ess-stored-procedure

-j ava-service>

<t enmpor ary-directory> Specifies a directory where the assembler can store temporary files.

temp_dir

</tenporary-directory>

This tag is optional.

Adding Stateless Stored Procedure Java Service Tags

There are two ways to develop Stored Procedure Web Services using the
WebSer vi cesAssenbl er:

« Adding Stateless Stored Procedure Java Service Using Jar Generation

« Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Note: Most Stored Procedure Web Service developers use the Jar
generation technique for assembling the Web Service J2EE .ear file.
Only use the pre-generated Jar technique for creating a J2EE .ear
when you have a pre-generated Jar file containing Oracle
JPublisher generated classes.

Adding Stateless Stored Procedure Java Service Using Jar Generation

Using a configuration file that includes the <j ar - gener at i on> tag specifies
Oracle Database Server connection information that allows the

WebSer vi cesAssenbl er to run Oracle JPublisher to generate the classes to
support the Stored Procedure Web Service. The Oracle JPublisher generated classes
support accessing the PL/SQL procedure or function and also includes classes for
mapping Java types to PL/SQL types. The WebSer vi cesAssenbl er packages the
generated classes into a Jar file that is assembled with the Stored Procedure Web
Service.

Developing and Deploying Stored Procedure Web Services 5-5

Preparing Stored Procedure Web Services

Table 5-2 describes the <st at el ess- st or ed- procedur e-j ava- servi ce>
WebSer vi cesAssenbl er configuration file tags used when creating a
configuration file that uses Jar generation to create a Stored Procedure Web Service.
The <st at el ess- st or ed- procedur e-j ava- ser vi ce>tag is included within a
<web- ser vi ce> tag in the configuration file. Add this tag to provide information
required for generating the Stored Procedure Web Service J2EE .ear file.

Table 5-3 describes the sub-tags for <j ar - gener at i on> within the

<st at el ess- st ored- procedur e-j ava-servi ce>tag. The

<j ar - gener at i on> tags provide information to the WebSer vi cesAssenbl er so
that it can run Oracle JPublisher to generate the Java classes for the Stored
Procedure Web Service. The WebSer vi cesAssenbl er then uses these classes to
generate the Jar file that provides Java mappings for the stored procedure or
function.

Example 5-1 shows a complete conf i g. xm file, including the Stored Procedure
Web Service tags shown in Table 5-2 and Table 5-3.

Table 5-2 Stateless Stored Procedure Sub-Tags (Using Jar Generation)

Tag

Description

<dat abase- JNDI - nane> This tag specifies the JNDI name of the backend database.

source_JNDI_name

</ dat abase- JNDI - nane>

The data-sources.xml OC4J configuration file describes the database server
source associated with the specified source_JNDI_name.

<j ar-generation> Table 5-3 describes the supported sub-tags for <j ar - gener at i on>.

sub-tags

</jar-generation>

<uri>
URI
<luri>

Example:

<j ar-generation>
<schema>scott/ti ger</schema>
<db-ur| >j dbc: oracl e: t hi n: @yst eml: 1521: or cl </ db-ur| >
<pr ef i x>sp. conpany</ prefi x>
<db- pkg- name>Conmpany</ db- pkg- nane>
</jar-generation>
This tag specifies servlet mapping pattern for the Servlet that implements the

Web Service. The path specified as the URI is appended to the <cont ext > to
specify the Web Service location.

5-6 Oracle Application Server Web Services Developer’'s Guide

Preparing Stored Procedure Web Services

Table 5-3 Stateless Stored Procedure <jar-generation> Sub-Tags

Tag

Description

<db- pkg- nanme>
pkg_name
</ db- pkg- nane>

<db-url >
url_path
</db-url >

<net hod- nane>
method
</ met hod- nane>

<prefix>
prefix
</ prefix>

<schena>
user_name/password
</ schenma>

Where pkg_name is the name of the PL/SQL package to export.
This is required when <j ar - gener at i on> is included.

Where url_path is the database connect string for the Oracle database server with
the specified package to export. The <schema> and <db- ur | > are combined to
connect to the database which contains the stored procedures to be exported.

This is required when <j ar - gener at i on> is included.
Example:
<db-url >j dbc: oracl e: t hi n: @yst eml. us. oracl e. com 1521: t vi</ db-url >

Where method is the name of the PL/SQL method to export.

This tag is optional. Including multiple <met hod> tags is valid. In this case the
specified methods are exported.

Without this tag, all methods within the package are exported. If the specified
method is overloaded, then all variations of the method are exported.

Where prefix is the Java package prefix for generated classes.

By default, the PL/SQL package is generated into a Java class in the default Java
package.

This tag is optional.

Example:

<prefi x>sp. conpany</ prefi x>

This tag includes the Database Server user_name/password:
where:

user_name is the database user name.

password is the database password for the specified user name.
This tag is required when <j ar - gener at i on> is included.
Example:

<schema>scott/ti ger</schema>

Developing and Deploying Stored Procedure Web Services 5-7

Preparing Stored Procedure Web Services

Example 5-1 Sample WebServicesAssembler Configuration File For Stored
Procedure Using <jar-generation> Tag

<web- servi ce>
<di spl ay- nane>Web Servi ces Exanpl e</di spl ay- name>
<description>Java Wb Service Exanpl e</description>
<I-- Specifies the resulting web service archive will be stored in ./spexanple.ear -->
<destination-pat h>./spexanpl e. ear </ desti nati on- pat h>
<l-- Specifies the temporary directory that web service assenbly tool can create temporary files. -->
<t enpor ary-di rectory>/t np</tenporary-directory>
<l-- Specifies the web service will be accessed in the servlet context naned "/webservices". -->
<cont ext >/ webser vi ces</ cont ext >
<I-- Specifies the web service will be stateless -->

<st at el ess- st ored- procedure-java-servi ce>
<j ar-generation>
<schema>scott/tiger</schema>
<db-ur| >j dbc: oracl e: t hi n: @yst eml: 1521: or cl </ db-ur| >
<prefix>sp. conpany</ prefix>
<db- pkg- name>Conpany</ db- pkg- name>
</jar-generation>
<I-- Specifies the web service will be accessed in the uri named
"statel essSP" within the servlet context. -->
<uri>/statel essSP</uri>
<dat abase- JNDI - name>/ j dbc/ Or acl eDat aSour ce</ dat abase- JNDI - name>
</ st at el ess-stored-procedure-java-service>
<wsdl - gen>
<wsdl - di r>wsdl </ wsdl -dir>
<I--force "true' will wite over existing wsdl -->
<option name="force">true</ option>
<!I-- change this to point to your soap servers http listener -->
<option name="httpServer URL">http://1 ocal host: 8888</ opti on>
</ wsdl - gen>
<pr oxy- gen>
<proxy-di r >pr oxy</ pr oxy- di r >
<l-- include-source 'true’ wll create an additional jar with only the proxy source-->
<option name="i ncl ude- source" >t rue</ option>
</ proxy-gen>
</ web- servi ce>

Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Using a configuration file that specifies the stored procedure <cl ass- name> and
<i nt er f ace- nane> assembly options when a pre-generated Jar file that includes
the required classes to support the Web Service is available. The <cl ass- nane>
and <i nt er f ace- nane> tags specified in a configuration file support using a
previously generated Jar file that contains the Java classes that provide a mapping
between the PL/SQL procedure or function and the Web Service.

5-8 Oracle Application Server Web Services Developer’'s Guide

Preparing Stored Procedure Web Services

Table 5-4 describes the <st at el ess- st or ed- procedur e-j ava- servi ce>
WebSer vi cesAssenbl er configuration file tags used when creating a
configuration file that uses a pre-generated Jar file to create a Stored Procedure Web
Service. The <st at el ess- st or ed- pr ocedur e-j ava- ser vi ce> tag is included
within a <web- ser vi ce> tag in the configuration file. Add this tag to provide
information required for generating the Stored Procedure Web Service J2EE .ear file.

The <cl ass> and <i nt er f ace> tags that are added to the
<st at el ess- st ored- procedur e-j ava- servi ce> only when using a
pre-generated Jar file.

Table 5-4 Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description

<cl ass- nane> The Stored Procedure Web Services Servlet definition requires a

class <par am name> with the value class-name and a corresponding

</ cl ass- nanme> <par am val ue> set to the fully qualified name of the Java class that accesses

the PL/SQL Web Service implementation.

You need to use the configuration file <cl ass- name> tag to supply the class
name for this parameter; you can find the class name in the Jar file you provide
that is specified in the top level <opti on nanme="sour ce- pat h" > tag.

<dat abase- JNDI - nane> This tag specifies the INDI name of the backend database.
source_JNDI_name

</ daf abase- JNDI - name> | nedata- sources. xm OC4J configuration file describes the database server

source associated with the specified source_JNDI_name.

<i nterface-nane> A Stored Procedure Web Services Servlet definition requires a <par am nanme>
interface with the value interface-name, and a corresponding <par am val ue> set to
</interface-name> the fully qualified name of the Java interface that specifies the methods to

include in the stored procedure Web Service.

The <i nt er f ace- name> tag provides the name of the interface that tells the
Web Service Servlet generation code which methods should be exposed as Web
Services. You can find the interface name in the Jar file you provide that is
specified in the top level <opti on nane="sour ce- pat h" > tag.

Developing and Deploying Stored Procedure Web Services 5-9

Preparing Stored Procedure Web Services

Table 5-4 (Cont.) Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description

<j ava-resource> This is a backward compatibility tag.
resource . : —u i " : .
</j ava-r esour ce> See Also: the top level <option name="source-path"> tag in Table 5-1.

This tag is optional.

The Stored Procedure pre-generated Jar file should be specified using the

<j ava-r esour ce> tag. The class specified with the <cl ass- nane> tag and
the interface specified with the <i nt er f ace- nane> tag must exist in the
resource specified in the <j ava- r esour ce> tag(s).

<uri> This tag specifies servlet mapping pattern for the Servlet that implements the
URI Web Service. The path specified as the URI is appended to the <cont ext > to
</uri> specify the Web Service location.

See Also:

« "Adding Stateless Stored Procedure Java Service Using Jar
Generation" on page 5-5

« Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er configuration file supports the <wsdl - gen> and
<pr oxy- gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Stored Procedure Style Web Service J2EE
.ear. A client-side developer can then use the WSDL file that is obtained from the
deployed Web Service to build an application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Running WebServicesAssembler With Stored Procedure Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate
a J2EE .ear file for the Stored Procedure Web Service. The J2EE .ear file includes
Stored Procedure Web Service servlet configuration information, including the file
web. xm , and Oracle JPublisher generated classes (the WebSer vi cesAssenbl er

5-10 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services

collects the Oracle JPublisher generated classes into a single Jar file that it includes
in the generated J2EE .ear).

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbl er.jar -config ny_pl_service_config

Where: my_pl_service_config is the configuration file that contains the
<st at el ess- st ored- procedure-j ava- servi ce> tag.

See Also:

« "Creating a Configuration File to Assemble Stored Procedure
Web Services" on page 5-3

« "Running the Web Services Assembly Tool" on page 9-2

Setting Up Datasources in Oracle Application Server Web Services (0C4J)

To add Web Services based on PL/SQL Stored Procedures you need to set up data
sources in OC4J by configuring dat a- sour ces. xnl . Configuring the

dat a- sour ces. xm file points OC4J to a database. The database should contain
PL/SQL Stored Procedure packages that implement a Stored Procedure Web
Service.

A single database connection is created when OC4J initializes a Web Services
Servlet instance. The resulting database connection is destroyed when OC4J
removes the Web Services Servlet instance. Each Stored Procedure Web Services
Servlet implements a single threaded model. As a result, any Web Services Servlet
instance can only service a single client’s database connection requests at any given
time. OC4lJ pools the Web Services Servlet instances and assigns instances to Oracle
Application Server Web Services clients.

Every invocation of a PL/SQL Web Service is implicitly a separate database
transaction. It is not possible to have multiple service method invocations run
within a single database transaction. When such semantics are required, the user
must write a PL/SQL procedure that internally invokes other procedures and
functions, and then expose the new procedure as another method in a Stored
Procedure Web Service (but Oracle Application Server Web Services does not
provide explicit support or tools to do this).

Developing and Deploying Stored Procedure Web Services 5-11

Deploying Stored Procedure Web Services

When using an emulated data source with CLOB or BLOB types in the stored
procedure, the emulated data source must use the | ocat i on attribute to specify
the JINDI name. The name cannot be specified using the ej b- 1 ocat i on.

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Deploying Stored Procedure Web Services

After creating the J2EE .ear file containing the Stored Procedure Web Service
configuration, class, Jar, and support files you can deploy the Web Service as you
would any standard J2EE application stored in a J2EE .ear file (to run under OC4J).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Limitations for Stored Procedures Running as Web Services
This section covers the following topics:
« Supported Stored Procedure Features for Web Services
« Unsupported Stored Procedure Features for Web Services

« Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web
Services

« TIMESTAMP and DATE Granularity Limitation
« LOB (CLOB/BLOB) Emulated Data Source Limitation

Supported Stored Procedure Features for Web Services
Stored Procedure Web Services support the following PL/SQL features:
1. PL/SQL stored procedures, including both procedures and functions.

2. IN, OUT, IN, INOUT parameter modes. When a stored procedure contains OUT
or INOUT parameters, the INOUT and OUT data are passed back to the client
as attributes of the returned objects. The declared stored procedure return
value, if the stored procedure is a function, will also be included as an attribute
of the returned objects INOUT parameter modes.

3. Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported as a Web Service).

5-12 Oracle Application Server Web Services Developer’s Guide

Limitations for Stored Procedures Running as Web Services

10.

Overloaded procedures. Oracle JPublisher may map multiple PL/SQL types
into the same Java type. For example, different PL/SQL number types may all
map to Javai nt . This means that methods that were considered overloaded in
PL/SQL are no longer overloaded in Java. In this case the Java method names
will be renamed to avoid compilation errors for the generated code. However,
at runtime, the PL/SQL engine may report PLS- 00307 error (too many
declarations of <method name> match this call). The error is due to PL/SQL
limitation on overloading resolution.

Simple PL/SQL types

The following simple types are supported. NULL values are supported for all of
the simple types listed, except NATURALN and POSITIVEN.

The Oracle JPublisher documentation provides full details on the mappings for
these simple types.

VARCHAR2? (STRING, VARCHAR), LONG, CHAR (CHARACTER), NUMBER
(DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT, NUMERIC,
REAL, SMALLINT), PLS_INTEGER, BINARY_INTEGER (NATURAL,
NATURALN, POSITIVE, POSITIVEN), BOOLEAN

TIMESTAMP is supported, along with variations TIMESTAMP WITH LOCAL
TIME ZONE and TIMESTAMP WITH TIME ZONE.

DATE is supported.
User-defined Object Types.

Oracle JPublisher and Oracle Application Server Web Services provide support
for the following LOB types: BLOB, CLOB, and BFILE.

If your PL/SQL procedures use LOB types as input/output types, then the
WebServices Assembler will not publish those stored procedures that will cause
runtime errors. For instance, the WebServices Assembler will not publish a
method containing BFILE as an IN parameter.

SYS.XMLTYPE is supported. SYS.XMLTYPE is mapped into the type,
org.w3c.dom.DocumentFragment in Web Services.

See Also: Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Developing and Deploying Stored Procedure Web Services 5-13

Limitations for Stored Procedures Running as Web Services

Unsupported Stored Procedure Features for Web Services

Stored Procedure Web Services impose the following limitations on PL/SQL
functions and procedures:

1.

Only procedures and functions within a PL/SQL package are exported as Web
Services. Top-level stored procedures must be wrapped inside a package.
Methods must be wrapped into package-level methods with a default "this"
reference.

NCHAR and related types are not supported.

Oracle JPublisher translates almost all PL/SQL types to Java types. The
deployment tools for Stored Procedure Web Services generate "jdbc" style for
builtin and number types and "oracle" style for user types and lob types. The
lob types are converted to java types that can be serialized/deserialized by Web
Services. The user types that conform to java beans are also
serialized/deserialized by Web Services. Check the Oracle JPublisher
documentation for full details of these styles, and for the caveats associated
with them.

Fractional seconds in a TIMESTAMP value are not preserved when using
Stored Procedure Web Services.

TIMESTAMP as a field in a user defined ADT is not supported. However, DATE
as a field in a user defined ADT is supported.

See Also: Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services

Using a Oracle Database Server of Release 9.2.0.1 or earlier, or with a Database
Server that is not Java-enabled, then you must install the SYS.SQLJUTIL package
into the SYS schema to support PL/SQL BOOLEAN arguments.

The PL/SQL script that defines this package is located at the following location on
UNIX:

${ ORACLE_HOME} / sql j /11 b/ sql j util . sql

On Wndows systens, this script is located at the follow ng | ocation:

YORACLE_HOME% sl j\ 1 b\sql j util . sql

5-14 Oracle Application Server Web Services Developer’'s Guide

Limitations for Stored Procedures Running as Web Services

TIMESTAMP and DATE Granularity Limitation

Fractional seconds in a TIMESTAMP value are not preserved when using Stored
Procedure Web Services.

LOB (CLOB/BLOB) Emulated Data Source Limitation

When using an emulated data source with CLOB or BLOB types, the emulated data
source must use the | ocat i on attribute to specify the INDI name. The name
cannot be specified using the ej b- | ocat i on.

Developing and Deploying Stored Procedure Web Services 5-15

Limitations for Stored Procedures Running as Web Services

5-16 Oracle Application Server Web Services Developer’'s Guide

6

Developing and Deploying Document Style
Web Services

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that handle document style messages and are
implemented as Java classes.

This chapter covers the following topics:

« Using Document Style Web Services

« Writing Document Style Web Services

« Preparing Document Style Web Services

« Deploying Document Style Web Services

Developing and Deploying Document Style Web Services 6-1

Using Document Style Web Services

Using Document Style Web Services

This chapter describes Document Style Web Services that are implemented with
Java classes and describes the difference between writing stateful and stateless
Document Style Java Web Services.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services deno. zi p file, the Document Style Web Services
samples are in the st at el ess and st at ef ul directories under

webser vi ces/ deno/ basi c/j ava_doc__servi ces on UNIXorin

webser vi ces\ denp\ basi c\j ava_doc_servi ces on Windows.

Oracle Application Server supplies Servlets to access the Java classes which you
write to implement a Web Service. The Servlets handle messages generated by Web
Services clients and dispatch them to run the Java methods that implement
Document Style Web Services. After a Web Service is deployed, when a client makes
a service request (uses a service) the Oracle Application Server Web Services
runtime, using an automatically generated Web Services Servlet invokes the
methods that you implement to support the Document Style Web Service.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 4, "Developing and Deploying EJB Web Services"
« Chapter 7, "Developing and Deploying JMS Web Services"
« Chapter 8, "Building Clients that Use Web Services"

Writing Document Style Web Services

Writing Document Style Java Web Services involves building a Java class that
includes one or more methods using supported method signatures; the java class
includes methods that either handle an incoming message or return an outgoing
message.

This section covers the following topics:
« Supported Method Signatures for Document Style Web Services
« Writing Stateless and Stateful Document Style Web Services

6-2 Oracle Application Server Web Services Developer's Guide

Writing Document Style Web Services

« Writing Classes and Interfaces for Document Style Web Services

Supported Method Signatures for Document Style Web Services

Table 6-1 shows the supported method signatures for Document Style Web
Services. The Oracle Application Server Web Services runtime verifier rejects
Document Style Web Services that do not conform to the method signatures listed
in Table 6-1.

The El enent input parameter and El enent return value shown in the method
signatures in Table 6-1 must conform to the Document Object Model (DOM) as
specified by the W3C (or g. w3c. dom El enent) .

Table 6-1 Supported Method Signatures for Document Style Java Web Services

Method Signature Description

public El enent op_Name(El enent e_name) The method op_Name is a Document Style Web Service
operation implemented as a Java method that takes an
El enent e_name as an input parameter and returns an
El ement .

public El ement get Name() The method get_Name is a Document Style Web Service
operation implemented as a Java method that takes no
input parameters and returns an El enent .

public void set Name(El ement e_name) The method set_Name is a Document Style Web Service
operation implemented as a Java method that takes an
El enent e_name as an input parameter and returns
nothing.

Passing Null Values for Document Style Web Services

Anul | could be passed as an input El enent or as the El enent that the
Document Style Web Service returns.

Arrays of Elements

Oracle Application Server Web Services does not support El ement [] (arrays of
org. w3c. dom El enment).

Developing and Deploying Document Style Web Services 6-3

Writing Document Style Web Services

See Also:

« "Handling Messages for Document Style Web Services" on
page 6-8

« http://ww. w3. or g/ DOM for information on the W3C
Document Object Model (DOM)

Writing Stateless and Stateful Document Style Web Services

Oracle Application Server Web Services supports stateful and stateless
implementations for Document Style Java classes running as Web Services. For a
stateful Java implementation, Oracle Application Server Web Services allows a
single Java instance to serve the Web Service requests from an individual client.

For a stateless Java implementation, Oracle Application Server Web Services creates
multiple instances of the Java class in a pool, any one of which may be used to
service a request. After servicing the request, the object is returned to the pool for
use by a subsequent request.

Note: Itis the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing Document Style Web Services"
on page 6-9.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

Writing Classes and Interfaces for Document Style Web Services
Developing a Document Style Java Web Service consists of the following steps:

« Defining Methods in a Document Style Web Service
« Defining an Interface for Explicit Method Exposure

« Handling Messages for Document Style Web Services

6-4 Oracle Application Server Web Services Developer’'s Guide

Writing Document Style Web Services

Defining Methods in a Document Style Web Service

Create a Document Style Web Service by writing or supplying a Java class with
methods that are deployed as a Document Style Web Service. The st at ef ul and
st at el ess sample directories contain sample stateless and stateful Document
Style Web Services. In the sr ¢ directories, the file St at ef ul Docl npl . j ava
provides the implementation of the sample stateful Java service and

St at el essDocl npl . j ava provides the implementation of the stateless
Document Style Web Service. These examples use interface classes; the use of
interface classes is optional when implementing Document Style Web Services.

A Java class that implements a Document Style Web Service has the following
limitations:

« TheJava class should define public methods that conform to the method
signatures shown in Table 6-1. If you use an interface, then only the public
methods specified in the interface need to conform to the method signature
restrictions. If you do not include an interface, then all the public methods in
the class must conform to the method signature restrictions shown in Table 6-1.

« TheJava class implementation must include a public constructor that takes no
arguments.

There are very few restrictions on what actions a Document Style Java class based
web service can perform. At a minimum, the service performs some action to
handle an incoming message (El errent) or to generate an outgoing message

(El ement).

The St at el essDoc Web Service sample is implemented with

St at el essDocl npl , a public class and the interface St at el essDoc. The

St at el essDocl npl class defines two public methods: di spl ayEl enent (), that
displays the incoming message on the server where the web service runs, and

pr ocessEl enent (), that takes an incoming message and returns a transformed
message to the client. The private method appl yXSLt oXM_() is a helper method
that transforms the incoming message, as specified in the convert er. xsl file.

Example 6-1 shows the method signatures for the St at el essDocl npl class (see
the sr c directory to view the complete source code for St at el essDocl npl).

Example 6-1 Defining Java Methods for a Stateless Document Style Web Service

inport org.w3c.dom *;
inport oracle.xn . parser.v2. *;
inport java.io.*;

public class Statel essDoclnpl inplenments Statel essDoc

Developing and Deploying Document Style Web Services 6-5

Writing Document Style Web Services

public Statel essDocl npl ()
{}

/] Display the El ement that was sent
public void displayEl ement (El ement e)

{}

/I'method to process the input xml doc
public El ement processEl ement (El enent e)

{}

/**

* This Method Transfornms an XML Docunent into another using the provided
* Style Sheet: converter.xsl. Note : This Method nakes use of XSL

* Transformation capabilities of Oracle XML Parser Version 2.0

**/

private El ement appl yXSLt oXM_(El enent e)

throws Exception

{}

The St at f ul Doc Web Service sample is implemented with St at ef ul Docl npl , a
public class and the interface St at ef ul Doc. The St at ef ul Docl npl class defines
two public methods: st ar t Shoppi ng() that initializes the state of the customer
information and makePur chase() , that modifies the state of the customer
information and returns the updated information to the client. The private method
processEl enent () is a helper method that processes the customer’s XML
element representing a purchase and returns the updated XML element.

Example 6-2 shows the method signatures for the St at ef ul Doc class (see the src
directory to view the complete source code for St at ef ul Docl npl).

Example 6-2 Defining Java Methods for a Stateful Document Style Web Service

inport org.w3c.dom *;
inport oracle.xm . parser.v2. *;

public class Stateful Doclnpl inplements Stateful Doc
private Elenent e ;
public void start Shoppi ng(El ement e)
{
}

public El ement makePurchase()

{

6-6 Oracle Application Server Web Services Developer’'s Guide

Writing Document Style Web Services

}

private void processEl enent(El ement e) {

}

Defining an Interface for Explicit Method Exposure

Oracle Application Server Web Services allows you to limit the methods you expose
as Document Style Web Services by supplying a public interface. To limit the
methods exposed in a Web Service, include a public interface that lists the method
signatures for the methods that you want to expose. Example 6-3 shows an
interface for the methods in the class St at el essDocl mpl . Example 6-4 shows an
interface for the methods in the class St at el ef ul Docl npl .

When an interface is included with a Document Style Web Service, then only the
public methods specified in the interface need to conform to the method signature
restrictions shown in Table 6-1. If you do not include an interface, then all the
public methods in the class must conform to the method signature restrictions.
Using an interface, for example St at el essDoc shown in Example 6-3, only the
methods with the specified method signatures are exposed when the Java class is
prepared and deployed as a Document Style Web Service.

Use a Document Style Web Service interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a
class.

2. To expand the set of methods that are exposed to include methods within the
superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a
class, where the subset contains only the methods that use supported method
signatures. Table 6-1 lists the supported signatures for Java methods that
implement Document Style Web Services.

Example 6-3 Using a Public Interface to Expose Stateless Java Services
inport org.w3c.dom *;

public interface Statel essDoc

{
/Imethod to display the el enent

public void displayEl ement (El enent e) ;

/Imethod to process the input xm doc

Developing and Deploying Document Style Web Services 6-7

Writing Document Style Web Services

public El ement processEl ement (El enent e) ;

Example 64 Using a Public Interface to Expose Stateful Java Services
inport org.w3c.dom El ement;

Il Interface that inplements getEl enent and set El enent
public interface Stateful Doc {

/] Set the Elenent
public void start Shoppi ng(El ement e);

/1 Retrieve the el enment that was set
public El ement makePurchase();

Handling Messages for Document Style Web Services

It is entirely up to the Web Service developer to determine the processing that
occurs for messages associated with a Document Style Web Service.

The message associated with a Document Style Web Service is specified in the

El ement parameter or the El enent return value associated with the Document
Style Web Service. It is the Document Style Web Service developer’s job to process
or generate messages. The only limitation on Document Style Web Service messages
is that the El enent must conform to must conform to the Document Object Model
(DOM) as specified by the W3C (or g. w3c. dom El enent).

A Document Style Web Service implementation or the client that uses a service may
need to supports nul | values, since a nul | could be passed as an input El enent
or as the El enent that is returned.

For example, the following is valid for a Document Style Web Service
implementation:

El ement get_op () {
return null;

}

6-8 Oracle Application Server Web Services Developer’'s Guide

Preparing Document Style Web Services

Preparing Document Style Web Services

This section describes how to use the Oracle Application Server Web Services tool
WebSer vi cesAssenbl er to prepare a J2EE .ear file for a stateless and stateful
Document Style Web Service implemented as Java classes.

To deploy a Java class that implements a Document Style Web Service, you need to
assemble a J2EE .ear file that includes the deployment descriptors for the Oracle
Application Server Web Services Servlet and the Java classes that supply the Java
implementation. A Web Service implemented with Java classes includes a .war file
that provides configuration information for the Web Services Servlet running under
Oracle Application Server Containers for J2EE (OC4J). This section describes the
procedures you use to create a configuration file to use with the

WebSer vi cesAssenbl er.

This section contains the following topics:
« Creating a Configuration File to Assemble Document Style Web Services

« Running WebServicesAssembler With Document Style Web Services

Creating a Configuration File to Assemble Document Style Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use to assemble
a Document Style Web Service. The Web Services assembly tool uses an XML
configuration file that describes the Document Style Web Service. The

WebSer vi cesAssenbl er uses the configuration file to produce a J2EE .ear file
that can be deployed under Oracle Application Server Web Services.

Create WebSer vi cesAssenbl er configuration file by adding the following:
« Adding Web Service Top Level Tags

« Adding Java Service Tags with Document Message Style Specified

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 6-2 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the Document Style Web
Service.

Developing and Deploying Document Style Web Services 6-9

Preparing Document Style Web Services

Example 6-5 shows a complete stateless sample configuration file. Example 6-6
shows a complete stateful sample configuration file. The st at el ess and

st at ef ul directories inthe j ava_doc_ser vi ces deno directory contain the
sample confi g. xm files.

Table 6-2 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nanme>
name
</ dat asour ce- JNDI - nane>

<descri ption>
description
</ descri pti on>

<desti nati on- pat h>
dest_path
</ desti nati on- pat h>

<di spl ay- name>
disp_name
</ di spl ay- nanme>

<option

name=sour ce- pat h" >
path

<option>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to specify

java resources, or the name of an existing .war, .ear, or ejb-jar file that is
used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies the

root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option name="sour ce- pat h"
cont extroot ="/test">/ nyTest Area/ ws/ src/stateful |.war</option>

This tag is optional.

6-10 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

Table 6-2 (Cont.) Top Level

WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<statel ess-j ava-service> Use thistag to add a Document Style Web Services that defines a stateless

sub-tags

service. See Table 6-3 for a description of valid sub-tags.

</ statel ess-j ava-servi ce>

<stateful -java-service>
sub-tags

Use this tag to add a Document Style Web Services that defines a stateful
service. See Table 6-3 for a description of valid sub-tags.

</stateful -java-service>

<t enmpor ary-directory>
temp_dir
</tenporary-directory>

Specifies a directory where the assembler can store temporary files.
This tag is optional.

Adding Java Service Tags with Document Message Style Specified

The Document Style Web Service developer determines if the service is stateful or
stateless. The configuration file includes different tags depending on the type of the
service. This section covers the tags for both cases, including:

« Adding Stateful Document Style Java Service Tags

« Adding Stateless Document Style Java Service Tags

Table 6-3 Java Service WebServicesAssembler Configuration Tags - Document Style

Tag

Description

<cl ass- nane>
value
</ cl ass- nane>

<i nterface-nane>
interface
</i nterface-nane>

<j ava-resource>
resource
</j ava-resource>

The Document Style Web Service definition requires at least one
<cl ass- nane> tag. The value specifies the name of the Java class that provides
the Document Style Web Service implementation.

This tag is required.

A Document Style Web Service configuration file supports the optional

<i nt er f ace- nane> tag. The corresponding interface value supplied specifies
the name of the Java interface that lists the methods to include in the Document
Style Web Service.

This tag is optional.

This tag supports adding a Java resource. This specifies the location of the java
resources to include in the Document Style Web Service.

Include multiple <j ava- r esour ce> tags to include multiple Java resources.
This tag is optional

Developing and Deploying Document Style Web Services 6-11

Preparing Document Style Web Services

Table 6-3 (Cont.) Java Service WebServicesAssembler Configuration Tags - Document Style

Tag

Description

<message- styl e>
doc
</ nessage- styl e>

<scope>
value
</ scope>

<sessi on-ti neout >
value
</ session-ti nmeout >

<uri>
URI
<luri>

When defining a Document Style Web Service, you must include the
<message- st yl e> tag and specify the value doc.

Valid Values: doc, r pc
This tag is required for Document Style Web Services.
Default value: r pc (when the <message- st yl e> tag is not supplied)

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful -java-servi ce> tag.

This tag is optional.
Valid Values: appl i cati on, sessi on
Default Value: sessi on

This optional parameter only applies for stateful services. Use this tag only
within the <st at ef ul -j ava- servi ce> tag.

Specify value with an integer that defines the timeout for the session timeout.
session. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional.

This tag specifies servlet mapping pattern for the Servlet that implements the
Document Style Web Service. The path specified as the URI is appended to the
<cont ext > to specify the Document Style Web Service location.

This tag is optional.

Adding Stateful Document Style Java Service Tags

Table 6-3 describes the <st at ef ul - j ava- servi ce>WbSer vi cesAssenbl er
configuration file tags. Use these tags when creating a configuration file for a
stateful Document Style Web Service.

Example 6-5 shows a complete confi g. xnl file, including the stateful Document

Style Web Service tags.

Adding Stateless Document Style Java Service Tags

Table 6-3 describes the <st at el ess-j ava- servi ce>WebSer vi cesAssenbl er
configuration file tags to use when creating a stateful Document Style Web Service.
The <st at el ess-j ava- servi ce> tag is included within a <web- ser vi ce> tag

6-12 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

in the configuration file. Add this tag to provide information required for
generating a stateless Document Style Web Service J2EE .ear file.

Example 6-6 shows a complete confi g. xnl file, including the stateless Document
Style Web Service tags.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er configuration file supports the <wsdl - gen> and
<pr oxy- gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Document Style Web Service .ear. A
client-side developer can then obtain the WSDL file from the deployed Web Service
and use it to build an application.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Example 6-5 Sample Stateful Java WebServicesAssembler Configuration File for a Document Style
Web Service

<web- servi ce>
<di spl ay- nane>St at ef ul Java Docunment Wb Service</di spl ay- name>
<description>Stateful Java Docunent Web Service Exanpl e</description>
<l-- Specifies the resulting web service archive will be stored in ./docws.ear -->
<destination-path>./docws. ear </ dest i nati on- pat h>
<!-- Specifies the tenporary directory that web service assenbly tool can create temporary files. -->
<temporary-directory>./tenp</tenporary-directory>
<l-- Specifies the web service will be accessed in the servlet context naned "/docws". -->
<cont ext >/ st at ef ul docws</ cont ext >

<l-- Specifies the web service will be stateful -->

<stateful -java-servi ce>
<interface-name>St at ef ul Doc</ i nt er f ace- nane>
<cl ass- nane>$St at ef ul Docl npl </ cl ass- nane>
<l-- Specifies the web service will be accessed in the uri nanmed "/docService" within the servlet
context. -->
<uri >/ docservice</uri>

Developing and Deploying Document Style Web Services 6-13

Preparing Document Style Web Services

<I-- Specifies the location of Java class files ./classes -->
<j ava-resource>./cl asses</java-resour ce>
<l-- Specifies that it uses docunent style SOAP messaging -->
<nessage- st yl e>doc</ nessage- styl e>

</stateful -java-service>

<l-- generate the wsdl -->

<wsdl - gen>

<wsdl - di r>wsdl </ wsdl -di r>

<I-- over-wite a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
<option name="force">true</ option>

<option nanme="httpServer URL">http://| ocal host: 8888</ opti on>

</wsdl - gen>

<I-- generate the proxy -->

<proxy- gen>
<pr oxy-di r >pr oxy</ pr oxy- di r >
<option name="i ncl ude- source" >t rue</ option>
</ proxy-gen>
</ web- servi ce>

Example 6-6 Sample Stateless Java WebServicesAssembler Configuration File for a Document Style
Web Service

<web- servi ce>
<di spl ay- nane>St at el ess Java Document Web Servi ce</ di spl ay- name>
<description>Statel ess Java Docunent b Service Exanpl e</description>
<l-- Specifies the resulting web service archive will be stored in ./statel essdocws. ear -->
<destination-path>./statel essdocws. ear </ desti nati on- pat h>
<l-- Specifies the tenmporary directory that web service assenbly tool can create temporary files. -->
<t emporary-directory>./tenp</tenporary-directory>
<!I-- Specifies the web service will be accessed in the servlet context nanmed "/statel essdocws". -->
<cont ext >/ st at el essdocws</ cont ext >
<l-- to package the stylesheet to format input xm -->
<option nanme="source- pat h">converter. xsl </ option>

<l-- Specifies the web service will be stateless -->

<statel ess-j ava-service>
<interface-name>St at el essDoc</i nterf ace- nane>
<cl ass- nane>St at el essDocl npl </ cl ass- nane>
<l-- Specifies the web service will be accessed in the uri named "/docService" within the servlet
context. -->
<uri>/docservice</uri>
<I-- Specifies the location of Java class files ./classes -->
<j ava-resource>./cl asses</j ava-resour ce>
<l-- Specifies that it uses docunent style SOAP messaging -->

6-14 Oracle Application Server Web Services Developer’'s Guide

Preparing Document Style Web Services

<message- st yl e>doc</ message- styl e>
</ statel ess-j ava- servi ce>

<l-- generate the wsdl -->

<wsdl - gen>

<wsdl - di r>wsdl </ wsdl -dir>

<I-- over-wite a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
<option name="force">true</ option>

<option name="httpServer URL">http://| ocal host: 8888</ opti on>

</wsdl - gen>

<l-- generate the proxy -->

<proxy- gen>

<proxy-di r>proxy</ proxy-dir>

<option name="i ncl ude- source" >t rue</ option>
</ proxy- gen>

</ web- servi ce>

Running WebServicesAssembler With Document Style Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate
a J2EE .ear file for the Document Style Web Service. The J2EE EAR file includes
Document Style Web Service servlet configuration information, including the
generated file web. xni , and the implementation classes.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config ny_service_config

Where: my_service_config is the configuration file that contains the
<st at el ess-j ava-servi ce>orthe <st at ef ul -j ava- servi ce> tag.

See Also:

« "Creating a Configuration File to Assemble Document Style
Web Services" on page 6-9

« "Running the Web Services Assembly Tool" on page 9-2

Developing and Deploying Document Style Web Services 6-15

Deploying Document Style Web Services

Deploying Document Style Web Services

After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4)).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

6-16 Oracle Application Server Web Services Developer’s Guide

v

Developing and Deploying JMS Web

Services

This chapter describes the procedures you use to configure, deploy, and build
Oracle Application Server Web Services that expose JMS destinations, including
JMS Queues and JMS Topics as Web Services. This chapter also covers writing a
backend JMS message processor to consume incoming JMS messages and to
generate outgoing JMS messages.

Oracle Application Server Web Services supports asynchronous message facilities
with JMS Web Services.

This chapter covers the following topics:

JMS Web Services Overview

Writing JIMS Web Services and Handling Messages
Preparing and Configuring JMS Web Services
Deploying JMS Web Services

Limitations for IMS Web Services

Developing and Deploying JMS Web Services 7-1

JMS Web Services Overview

JMS Web Services Overview

This section covers the following topics:
« Using JMS Web Services

« JMS Web Services Backend Message Processing

Using JMS Web Services

The sample code for JMS Web Services is supplied on the Oracle Technology
Network Web site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services deno. zi p file, the samples are in the denol and
deno?2 directories under webser vi ces/ deno/ basi ¢/ j ns_servi ce on UNIX
and webser vi ces\ denp\ basi c\j ns_servi ce.

JMS Web Services examples show both OC4J/JMS and Oracle JMS. In the samples,
denopl uses OC4J/JMS and denp?2 uses Oracle JMS.

Using JMS Web Services, Oracle Application Server supplies a Servlet that supports
two operations on messages: a send operation and ar ecei ve operation. Using
these two operations, if the destination is a JMS Queue, send means enqueue, and
r ecei ve means dequeue. If the destination is a topic, send means publish and
recei ve means subscribe. An individual JMS Web Service can support just the
send operation, just the receive operation, or both operations, as determined by the
service developer.

The JMS Web Service determines how to handle incoming and outgoing messages
for JMS destinations based on the configuration of the JMS Web Service and on the
operation specified by the client-side program that uses the JMS Web Service. The
Oracle Application Server Web Services runtime verifier throws an exception if the
operation supplied by a JIMS Web Service client is invalid. For example, if the
deployment operation is send, and the request isr ecei ve, an exception is thrown.

The client-side message associated with a JIMS Web Service is an XML document
that conforms to the Document Object Model (DOM) as specified by the W3C
(org. w3c. dom El enment) . For a send operation, it is the client-side developer’s
job to deliver a message of the correct form to a JMS Web Service. And likewise, for
a receive operation, the client must handle the message it receives from a JIMS Web
Service.

7-2 Oracle Application Server Web Services Developer's Guide

JMS Web Services Overview

See Also: http://java.sun.com/products/jms/ for information
on JMS

JMS Web Services Backend Message Processing

A JMS Web Service consists of configuration information that defines the Web
Service, and, in addition the server-side developer provides code that consumes the
messages that a IMS Web Service client sends, or generates the messages that the
client receives.

This section describes the architecture for processing JMS messages associated with
a JMS Web Service and covers the following topics:

« Using an MDB for Message Processing

« Using a JMS Client for Message Processing

Using an MDB for Message Processing

A JMS Web Service either sends messages to a JMS destination or receives messages
from a JMS destination and can use an MDB on the backend for generating and
consuming messages. For example, Figure 7-1 shows an MDB based JMS Web
Service that, from the JMS Web Service client’s view, handles both the message
send and the message r ecei ve operations.

Developing and Deploying JMS Web Services 7-3

JMS Web Services Overview

Figure 7-1 MDB Based JMS Web Service

0C4J

EJB Container

JMS JMS
Destination 2 Destination 1

o &
m‘!_' HTTP
7 g HTTP [_!

JMS Servlet %
Client

Figure 7-1 includes an MDB that is configured to listen to a JMS destination. The
MDB based JMS Web Service works with the following steps:

1.

A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

The JMS Web Service processes the incoming message and directs it to a JIMS
destination, JMS Destination 1.

The EJB container invokes the MDB listening on JMS Destination 1.

After processing the message an MDB produces a new message on JMS
Destination 2. Producing and consuming messages could involve one or more
MDBs. For example, a single MDB could be listing on JMS Destination 1 and the
same MDB could also send the message to JMS Destination 2.

(Arrows 5 and 6) A JMS Web Service client performs ar ecei ve operation on
the JMS Web Service to receive a message. The JMS Web Service consumes a
message from the JMS destination, processes it, and passes the outgoing
message to the client.

7-4 Oracle Application Server Web Services Developer's Guide

JMS Web Services Overview

Using a JMS Client for Message Processing

Using a JMS client for message processing, the JMS Web Service does not assemble,
deploy, or run the JMS code on the backend. A separate JMS program that runs
outside of the JMS Web Service, as a standalone JMS client, is responsible for
generating and consuming the JMS messages that are associated with the JMS Web
Service.

For example, Figure 7-2 shows a JMS Web Service that use a server-side JMS client
for message processing.

Figure 7-2 JMS Client Based JMS Web Service

JMS
> Client

ol

| Send | Lﬁ
v o HTTP
| Receive : - 6 HTTP >

JMS Servlet |—_;\|O)
Client

The JMS Web service includes only configuration information that supports
handling messages and using JMS destinations. The JMS client based IMS Web
Service works with the following steps:

1. A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

2. The JMS Web Service then processes the incoming message and directs it to JMS
DEST 1.

Developing and Deploying JMS Web Services 7-5

Writing JMS Web Services and Handling Messages

3. The JMS client processes the incoming message on JMS DEST 1. The incoming
message could be identified using a message listener, or by other means.

4. After processing the incoming message the JMS client may produce a new
message on JMS DEST 2. The message on JMS DEST 2 could be produced by
another JMS client or by the same JMS client.

5. (Arrows 5 and 6) A JMS Web Service client performs ar ecei ve operation on
the JMS Web Service to receive a message. The JMS Web Service consumes an
outgoing message from the JMS destination and passes the message to the
client.

Writing JMS Web Services and Handling Messages
Writing a JMS Web Service presents a server-side developer with two tasks:
1. Building the backend message processing program for a JMS Web Service.
2. Preparing and configuring a JMS Web Service.
This section covers the following:
« Using an MDB for Backend Message Processing
« Using a JMS Standalone Program for Backend Message Processing

« Message Processing and Reply Messages

See Also:
« "Preparing and Configuring JMS Web Services" on page 7-11
« Chapter 4, "Developing and Deploying EJB Web Services"

Using an MDB for Backend Message Processing

When a JMS Web Service uses an MDB for generating or consuming messages, the
MDB must be assembled with the JMS Web Service. In this case, the MDB is
packaged as part of the J2EE .ear file that is deployed as a JMS Web Service.

Using an MDB with a JMS Web Service, the server-side developer is responsible for
performing the following steps:

« Developing the MDB that Processes Incoming Messages
« Developing the MDB that Generates Outgoing Messages
« Compiling and Preparing the MDB EJB.jar File

7-6 Oracle Application Server Web Services Developer’'s Guide

Writing JMS Web Services and Handling Messages

« Assembling the JMS Web Service With the MDB

« Defining the Server-Side Resource References

Note: A given JMS Web Service may process incoming messages,
generate outgoing messages, or do both.

Developing the MDB that Processes Incoming Messages

The MDB that processes incoming messages, generated from a JMS Web Service
send operation, must include an onMessage() method with the following
characteristics:

« TheonMessage() method should be declared as publ i ¢, but notfi nal or
static

« TheonMessage() method should have a return type of voi d

« TheonMessage() method should have one argument of type
j avax. j ms. Message. The JMS Web Service only supports messages of type
hj ect Message, so the MDB developer should cast the incoming JMS Web
Service message to an Obj ect Message.

« The message payload is available from the message using the get Qbj ect ()
method on the incoming JMS message and casting to the El erent type.

Example 7-1 shows an MDB method that handles an incoming JMS Message. Also
see MessageBean. j ava in the denol directory for the complete code.

Example 7-1 Sample Incoming onMessage() Method for JMS Web Service

public void onMessage(Message inMessage) {
bj ect Message nsg = nul | ;
El ement e;
try {
/'l Message shoul d be of type object Message
if (inMessage instanceof ObjectMessage) {
/] retrieve the object
msg = (Obj ect Message) inMessage;
e = (El enment)nsg. get bj ect();
processEl enent (e);
this. send2Queue(e);
} else {
Systemout. println("MessageBean: : onMessage() => Message of wong type:
+ inMessage. get O ass() . get Nane());

Developing and Deploying JMS Web Services 7-7

Writing JMS Web Services and Handling Messages

}
} catch (JMSException ex) {

ex. print StackTrace();

mdc. set Rol | backOnl y() ;
} catch (Throwable te) {

te.printStackTrace();

Developing the MDB that Generates Outgoing Messages
An MDB that generates an outgoing message, consumed by a JMS Web Service

recei ve operation, must include code that produces a message on a JMS
destination with the following characteristics:

« The message placed on the JMS destination should be of type:
j avax. j nms. Message.Qbj ect Message.

« Set the payload of the message using the set Qbj ect () method on the
outgoing JMS message and casting to the j ava. i 0. Seri al i zabl e type.

Example 7-2 shows a code fragment that creates an outgoing message of the correct
type. For the complete code for this example, see MessageBean2. j ava in the
deno?2 directory.

Example 7-2 Sample Outgoing Message for JMS Web Service

Il Create an Object Message

message = queueSessi on. creat eChj ect Message() ;

[l Stuff the result into the bjectMessage

((Ohj ect Message) nessage) . set Obj ect ((java.io. Serializable)ee);
/1 Send the Message

queueSender . send(message) ;

Compiling and Preparing the MDB EJB jar File

After compiling the MDB classes, create an EJB .jar file that includes the MDB and
its required deployment information.

Assembling the JMS Web Service With the MDB

Assemble the MDB’s EJB.jar file with the JMS Web Service .ear file using the
WebSer vi cesAssenbl er tool and a configuration file containing the top-level tag

7-8 Oracle Application Server Web Services Developer’'s Guide

Writing JMS Web Services and Handling Messages

<opti on name=sour ce- pat h" > that specifies the EJB .jar, and the
<j ns- doc- ser vi ce> that defines the JMS Web Service configuration.

See Also:
« "Preparing and Configuring JMS Web Services" on page 7-11
« "Deploying JMS Web Services" on page 7-18

Defining the Server-Side Resource References
Define the resource references associated with the JMS destinations that the IMS
Web Service uses:

« |If the MDB uses OC4J/JMS, define the resource references in the OC4J
j ms. xm configuration file.

« If the MDB uses Oracle JMS, then run the sql files that support access to the
Oracle JMS destinations.

See Also: Chapter 3, "AQ Programmatic Environments" in the
Application Developer’s Guide - Advanced Queuing in the Oracle9i
Database Documentation library

Using a JMS Standalone Program for Backend Message Processing

Using a JMS standalone program on the backend for the JMS Web Service, the
server-side developer is responsible for performing the following steps:

1. Developing the JMS client that defines the JMS destinations, handles incoming
messages, processes them, and produces the outgoing messages. The JMS client
can also perform processing that uses a JMS destination that triggers an MDB.

2. Assembling the JIMS Web Service .ear file using the WebSer vi cesAssenbl er
tool and a configuration file containing the top-level tag <j nms- doc- ser vi ce>.

3. Defining the resource references associated with JMS destinations in the
OC4J/IMS j ms. xm configuration file. If the JMS destinations are defined in
Oracle JMS, then the developer must run the sql files that initialize the access to
the Oracle JMS destinations.

Developing and Deploying JMS Web Services 7-9

Writing JMS Web Services and Handling Messages

See Also:
« "Using an MDB for Backend Message Processing” on page 7-6
« "Deploying JMS Web Services" on page 7-18

Note: When a JMS Web Service uses standalone a JMS client to
consume or generate messages, the standalone client cannot be
assembled with the JMS Web Service.

Message Processing and Reply Messages

The JMS Web Service processes an incoming message, a JMS Web Service send
operation message, and places the message on a JMS destination. This section
covers details that a developer needs to know to consume and process the JIMS
messages that originate from a JMS Web Service.

The client-side message associated with a JIMS Web Service is an XML document
that conforms to the Document Object Model (DOM) as specified by the W3C

(org. w3c. dom El enent) . When a JMS Web Service is sent an El enent from a
Web Service client, it creates a JMS Cbj ect Message that contains the El enent .
The JMS Web Service may set certain header values before it places the message on
a JMS destination. Depending on the values of optional configuration tags specified
when the JMS Web Service is assembled, the IMS Web Service sets the following
JMS Message Headers:

JMSType

JMVBRepl yTo
JVBExpiration
JMBPriority
JVBDel i ver yMbde

When the IMS Web Service sets the JMSRepl yTo header, it uses either the value
specified with the <r epl y-t o-t opi c-resour ce-r ef > or the

<repl y-t o- queue- r esour ce-r ef > (only one of these should be configured for
any given JMS Web Service). The value specified with the

<repl y-to-connection-factory-resource-ref>tagis set on the message
as a standard string property. The property name is OC4J_REPLY_TO FACTORY_
NAME.

Example 7-3 provides a code segment that shows where the onMessage() method
gets the Repl yTo information for message generated from a JMS Web Service send
operation:

7-10 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

Example 7-3

public void onMessage(Message i nMessage) {
/1 Do some processing
oj ect Message nmsg = nul | ;

String fact oryName;
Destination dest;

El enent el ;

try {

/'l Message shoul d be of type object Message
i f (inMessage instanceof ObjectMessage) {
Il retrieve the object
msg = (Obj ect Message) inMessage;
el = (El ement)nmsg. get Qbj ect();
Systemout. println("MssageBean2:: onMessage() => Message received: ");
((XMLEl enent) el). print(Systemout);
processEl enent (el);
factoryName = inMessage. get StringProperty("OC4J_REPLY_TO FACTORY_NAME");
dest = inMessage. get IMSRepl yTo();

See Also:

« "Developing the MDB that Processes Incoming Messages" on
page 7-7

« "Adding JMS Doc Service Tags" on page 7-13

Preparing and Configuring JMS Web Services

This section describes how to use the Oracle Application Server Web Services tool
WebSer vi cesAssenbl er to prepare a J2EE .ear file for a JMS Web Service.

To deploy a JIMS Web Service, you need to assemble a J2EE .ear file. The J2EE .ear
file can include the following:

« The deployment descriptors for the Oracle Application Server Web Services
Servlet.

« If the JIMS Web Service also includes an MDB, then the J2EE .ear also includes a
Jar file that supplies the MDB implementation. This component is optional. To
expose JMS Queues or Topics as JIMS Web Services, you are not required to
include an MDB Jar file with the JMS Web Service.

Developing and Deploying JMS Web Services 7-11

Preparing and Configuring JMS Web Services

This section describes the procedures you use to create a configuration file to use
with the WebSer vi cesAssenbl er .

This section contains the following topics:
« Creating a Configuration File to Assemble JIMS Web Services

« Running WebServicesAssembler With JIMS Web Services

Creating a Configuration File to Assemble JMS Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create an XML configuration file that
describes the JMS Web Service to be assembled.

Create WebSer vi cesAssenbl er configuration file by adding the following:
« Adding Web Service Top Level Tags

« Adding JMS Doc Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 7-1 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the JMS Web Service.

Example 7-4 shows a complete JMS Web Service sample configuration file. The
denpl and deno?2 directories in the j ms_ser vi ce directory contain complete
config. xm files for IMS Web Services.

Table 7-1 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

This tag is required.

<dat asour ce- JNDI - nanme> Specifies the datasource associated with the Web Service.

name

</ dat asour ce- JNDI - nane>

<descri ption>
description
</ descri pti on>

Provides a simple description of the Web Service.
This tag is optional.

7-12 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

Table 7-1 (Cont.) Top Level WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<desti nati on- pat h>
dest_path
</ desti nati on- pat h>

<di spl ay- nane>
disp_name
</ di spl ay- nane>

<opti on name="sour ce-path">
path
<option>

<j ms- doc- servi ce>
sub-tags
</j ms-doc-service>

<t enporary-directory>
temp_dir
</tenporary-directory>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to

specify java resources, or the name of an existing .war, .ear, or ejb-jar
file that is used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies
the root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option name="sour ce- pat h"
contextroot ="/test">/ nyTest Area/ ws/ src/stateful | .war</option
>

This tag is optional.

Use this tag to add a JMS Web Service. See Table 7-2 for a description
of the valid sub-tags.

Specifies a directory where the assembler can store temporary files.
This tag is optional.

Adding JMS Doc Service Tags

The <j ns- doc- ser vi ce> defines the configuration information for a JIMS Web
Service. The JMS Web Service developer determines if the service supports send
operations, receive operations, or both send and receive, based on the value of the
<oper at i on> sub-tag. Some of the configuration file tags are only valid,
depending on the operation selected for the Web Service. Table 7-2 lists all the
supported <j ns- doc- ser vi ce> sub-tags, and includes information on whether
each is valid, based on the operation specified.

Developing and Deploying JMS Web Services 7-13

Preparing and Configuring JMS Web Services

Table 7-2 JMS Service WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<connection-factory-reso

urce-ref>
resource-ref

</ connection-factory-res

ource-ref>

<j ns-del i very-node>
delivery-mode
</jms-delivery-node>

<j ms- expiration>
expiration
</jms-expiration>

<j ns- nessage-type>
message-type
</j ms- nessage-type>

<jnms-priority>
priority
</[jms-priority>

<recei ve-ti neout >
priority
</receive-tinmeout >

Specifies the Topic Connection Factory or Queue Connection Factory
resource reference resource-ref for the JMS destination associated with the
JMS Web Service.

This tag is required.

Sets the JMSDel i ver yMbde message header to the specified delivery-mode
value for the JMS message that is created with a send operation.

This tag is valid when the <oper at i on> value is: send or bot h
This tag is optional.

Sets the IMSExpi r at i on message header to the specified expiration value
for the IMS message that is created with a send operation.

This tag is valid when the <oper at i on> value is: send or bot h
This tag is optional.

Sets the JMSType for the message to the specified message-type for the IMS
message that is created with a send operation

This tag is valid when the <oper at i on> value is: send or bot h
This tag is optional.

Sets the IMSPr i or i t y message header to the specified priority value for the
JMS message that is created with a send operation.

This tag is valid when the <oper at i on> value is: send or bot h
This tag is optional.

Provides a configurable timeout value to specify the receive timeout in
milliseconds. This specifies the time in milliseconds that a receive operation
waits for a new message.

This tag is valid when the <oper at i on> value is: r ecei ve or bot h

When this tag is not specified or when the value is set to 0, a JMS receive
operation blocks indefinitely. Valid values are 0 and positive integers.

Default value: 0
This tag is optional.

7-14 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

Table 7-2 (Cont.) JMS Service WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<oper ati on>

op
</ operati on>

<queue-resource-ref>
queue-ref
</ queue-resource-ref>

<repl y-to-connection-fac
tory-resource-ref>
reply-to-conn-factory-res-ref
</reply-to-connection-fa
ctory-resource-ref>

Specifies the operation op that the JIMS Web Service supports.
Using the send and r ecei ve operation:

« If the destination is a JMS Queue, send means enqueue, and r ecei ve
means dequeue.

« If the destination is a topic, send means publish and r ecei ve means
subscribe.

The send operation uses the <connect i on-f act ory-resour ce-ref >
and the corresponding JMS destination <queue- r esour ce-r ef > or

<t opi c-r esour ce- r ef > to determine the JMS destination for a send
operation on the service.

With the receive operation, when the

<repl y-to-connection-factory-resource-ref>tagis not set, then
the r ecei ve operation uses the

<connection-factory-resource-ref >and the corresponding JMS
destination <queue- r esour ce-r ef > or <t opi c- r esour ce- r ef >. When
the <repl y-t o- connecti on-factory-resour ce-ref > tagis set, then
the <r epl y-t o- *> tags specify the JMS destination for r ecei ve
operations.

Valid values: send, r ecei ve, bot h

Default value: bot h

This tag is optional.

Specifies the resource reference queue-ref of the destination JMS queue.

Either a <t opi c- resour ce-r ef > or a<queue- r esour ce- r ef > must be
specified, but not both. When a <queue- r esour ce- r ef > is specified, the
<connecti on-factory-resour ce-ref > mustrefer to a corresponding
Queue connection factory.

If the <oper at i on> specified is bot h, then r ecei ve operations use the
<repl y-to-connection-factory-resource-ref> The specified
reply-to-conn-factory-res-ref value specifies the JIMS destination connection
factory for r ecei ve operations. Also, if the MDB, or any JMS consumer,
expects to send results back then the name of the destination connection
factory to which the reply message will be sent has to be specified in this
parameter.

See Also: "Message Processing and Reply Messages" on page 7-10.
This tag is optional.

Developing and Deploying JMS Web Services 7-15

Preparing and Configuring JMS Web Services

Table 7-2 (Cont.) JMS Service WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<repl y-t o- queue-resource
-ref>

reply-to-queue-res-ref
</reply-to-queue-resourc
e-ref>

<repl y-to-topic-resource
-ref>

reply-to-topic-res-ref
</reply-to-topic-resourc
e-ref>

<t opi c-resource-ref>
topic-ref
</topic-resource-ref>

<t opi c-subscri pti on- name
>

topic-name

</t opi c- subscri pti on-nam
e>

<uri>
URI
<luri>

Specifies the resource reference reply-to-queue-res-ref of the destination JMS
queue.

When a <r epl y-t 0- queue-r esour ce- r ef > is specified, the
<repl y-to-connection-factory-resource-ref>mustrefertoa
corresponding Queue connection factory.

If the <repl y-t 0- connecti on-fact ory-resource-ref >tagis set,
then eithera<repl y-t o-t opi c-resource-ref >ora
<repl y-t o- queue-r esour ce- r ef > must be specified, but not both.

This tag is optional.

Specifies the resource reference reply-to-topic-res-ref of the destination IMS
Topic.

When a<repl y-to-topi c-resour ce-r ef > is specified, the
<repl y-to-connection-factory-resource-ref>mustrefertoa
corresponding Topic connection factory.

If the <repl y-t o- connecti on-factory-resource-ref >tagis set,
then either a<repl y-t o-t opi c-resource-ref >ora
<repl y-t o- queue- r esour ce- r ef > must be specified, but not both.

This tag is optional.

Specifies the resource reference topic-ref of the destination JMS Topic.

Either a <t opi c-resour ce-ref > or a<queue-r esour ce-r ef >must be
specified, but not both. When a <t opi c-r esour ce- r ef > is specified, the
<connecti on-factory-resource-ref >must refer to a corresponding
Topic connection factory.

When a JMS provider supports durable JMS topics, the JIMS Doc service
supports using the durable topics. To specify a durable topic, use this tag to
specify the topic-name. This tag is only valid when a

<t opi c-r esour ce-r ef > is supplied.

This tag is optional.

This tag specifies servlet mapping pattern for the Servlet that implements
the JMS Web Service. The path specified as the URI is appended to the
<cont ext > to specify the JIMS Web Service location.

This tag is optional.

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er supports the <wsdl| - gen> and <pr oxy- gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy

7-16 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Example 7-4 Sample WebServicesAssembler Configuration File for IMS Web Service

<web- servi ce>
<di spl ay- name>JM5 Wb Servi ce Exanpl e</ di spl ay- nane>
<description>JVM5 Web Servi ce Exanpl e</ descri ption>
<!-- Nanme of the destination -->
<destination-path>./jmswsl. ear</destinati on-pat h>
<t enpor ary-directory>./tnp</tenporary-directory>
<!-- Context root of the application -->
<cont ext >/ j msws1</ cont ext >
<l-- Path of the jar file with MDBs definied/inplemented init -->
<option nanme="sour ce- pat h">NMDB/ ndb_servi cel. j ar </ option>

<I-- tags for jnms doc service -->

<j ms- doc- servi ce>
<uri>JmsSend</uri >
<connection-factory-resource-ref> ns/t heQueueConnecti onFact ory</ connecti on-factory-resource-ref>
<queue-resour ce- r ef > ns/ t heQueue</ queue-r esour ce-ref >
<oper at i on>send</ oper at i on>x

</ j ms- doc- servi ce>

<j ms- doc- servi ce>
<uri>JmsRecei ve</uri >
<connection-fact ory-resource-ref > ms/ | ogQueueConnect i onFact or y</ connecti on-f act ory-resource-ref >
<queue-resour ce-ref >j ms/ | ogQueue</ queue-resour ce-ref >
<oper ati on>r ecei ve</ operati on>
</j ms-doc- servi ce>
<l-- generate the wsdl -->
<wsdl - gen>
<wsdl - di r>wsdl </ wsdl -dir>
<I-- over-wite a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
<option name="force">true</ option>
<option nanme="httpServer URL">http://| ocal host: 8888</ opti on>
<l-- do not package the wsdl -generate it again on the server-->
<option name="packagelt">fal se</option>
</wsdl - gen>
<l-- generate the proxy -->
<proxy- gen>

Developing and Deploying JMS Web Services 7-17

Deploying JMS Web Services

<pr oxy-di r >pr oxy</ pr oxy- di r >
<option name="i ncl ude- sour ce" >t rue</ opti on>
</ proxy- gen>
</ web- servi ce>

Running WebServicesAssembler With IMS Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate
a J2EE .ear file for the JIMS Web Service. The J2EE EAR file includes Web Service
servlet configuration information, including the generated file web. xmi , and if the
service includes MDBs, the ejb.jar file containing the implementation classes.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config my_jns_service_config

Where: my_jms_service_config is the configuration file that contains the
<j ms- doc- ser vi ce> tag.
See Also:

« "Creating a Configuration File to Assemble JMS Web Services"
on page 7-12

= "Running the Web Services Assembly Tool" on page 9-2

Deploying JMS Web Services

After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Limitations for JMS Web Services

The JMS Web Service only supports messages of type Ohj ect Message
(j avax. j ms. Message.(bj ect Message) .

7-18 Oracle Application Server Web Services Developer’'s Guide

8

Building Clients that Use Web Services

This chapter describes the Oracle Application Server Web Services features that
allow you to easily create and run a client application that uses Oracle Application
Server Web Services.

This chapter contains the following topics:

« Locating Web Services

« Getting WSDL Files and Client-Side Proxy Jars for Web Services

« Working with Client-Side Proxy Jar to Use Web Services

« Working with WSDL Files and Oracle JDeveloper to Use Web Services

Building Clients that Use Web Services 8-1

Locating Web Services

Locating Web Services

When you want to use Web Services you need to develop a client application. There
are two types of Web Services clients: static web service clients and dynamic web
service clients. A static web service client knows where a Web Service is located
without looking up the service in a UDDI registry. A dynamic web service client
performs a lookup to find the Web Service’s location in a UDDI registry before
accessing the service. Chapter 10, "Discovering and Publishing Web Services"
provides detailed information on looking up Web Services in a UDDI registry.

Using a static client Oracle Application Server Web Services provides several
options for locating Oracle Application Server Web Services, including:

« Using a known Web Service located at a known URL.

« Using Oracle Application Server Web Services and a known service URL to
obtain a client-side proxy Jar, or by other means obtaining a client-side proxy
Jar for a Web Service. The client-side proxy Jar that Oracle Application Server
Web Services generates includes the URL to locate the associated Web Service.

« Using Oracle Application Server Web Services and a known service URL to
obtain a WSDL file, or by other means obtaining a WSDL file that describes a
Web Service. The WSDL files that Oracle Application Server Web Services
generates includes the URL to locate the associated Web Service.

After you locate a Web Service or after you obtain either the WSDL or client-side
proxy Jar, you can build a client-side application that uses the Web Service.

See Also: Chapter 10, "Discovering and Publishing Web Services"

Getting WSDL Files and Client-Side Proxy Jars for Web Services
This section covers the following:
« Using the Web Service Home Page to Save WSDL and Client Side Proxies
» Getting Web Service WSDL and Client-Side Proxies Directly

« Generating Client-Side Proxies With WebServicesAssembler

Using the Web Service Home Page to Save WSDL and Client Side Proxies

To use Oracle Application Server Web Services you need to create a client-side
application that accesses a Web Service. Oracle Application Server Web Services
supplies the following files for deployed Web Services:

8-2 Oracle Application Server Web Services Developer's Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

« WSDL service descriptions
« Client-side proxy Jar (class files)
« Client-side proxy source

Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web Service. To access a Home Page, enter a service endpoint of the form,

http://host:port/context-root/service
Figure 8-1 shows the Web Service Home Page for StatefulExample, at the following
endpoint,

http://systentl. us. oracl e. com webser vi ces/ st at ef ul Test

A Web Service Home Page provides the following:

« A Linkto the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

« Links to Web Service Test Pages for each supported operation-To test the
available Web Service operations enter the parameter values for the operation, if
any, and select the Invoke button.

« Links to the Web Service client-side proxy Jar and the client-side proxy source -
To obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

Building Clients that Use Web Services 8-3

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Figure 8-1 Web Service Home Page

StatefulExample endpoint

WWSDL for Service: StatefulExample, generated by Oracle WSDL toolkit (version: 1.1}

For a formal definition, please review the Service Description (rpe sfyie).

StatefulExample service

The following operations are supported.

« count
« hellovorld

ocdj client

The java proxy is packaged in a jar either as classes or sources files.

« Prowy Jar
+ Prody SoUrce

Limitations for Web Service Test Pages
Web Service Test Pages have the following limitations:

« There is no support for complex input parameters for RPC style Web Services.

Such pages do not support the Invoke button.

« There is no support for Document Style Web Services. Such pages do not

support the Invoke button.

8-4 Oracle Application Server Web Services Developer’'s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Getting Web Service WSDL and Client-Side Proxies Directly

If you do not use the Web Service Home Page to get the WSDL file or client-side
proxy for a Web Service, you can obtain these files directly.

This section covers the following:

« Getting WSDL Service Descriptions

« Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

« Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

Getting WSDL Service Descriptions

To obtain the WSDL service description for a Web Service, use the Web Service URL
and append a query string. The format for the URL to obtain the WSDL service
description is as follows (see Table 8-1 for a description of the URL components):

http://host: port/context-root/service?WDL
or

http://host:port/context-root/service?wsdl

This command returns a WSDL description in the form service. wsdl . The
service. wsdl description contains the WSDL for the Web Service named service,
located at the specified URL. Using the WSDL that you obtain, you can build a
client application to access the Web Service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

To obtain the client-side proxy Jar for a Web Service, use the Web Service URL and
append a query string. The client-side proxy Jar file contains the proxy stubs class

that supports building an application that communicates using SOAP to access the
Web Service. The proxy class does the following:

« Provides a static location for the Web Service (the service does not need to be
looked up in a UDDI registry).

« Provides proxy methods for each method exposed as part of the Web Service.

« Performs all of the work to construct the SOAP request, including marshalling
and unmarshalling parameters, and handling the response.

Building Clients that Use Web Services 8-5

Getting WSDL Files and Client-Side Proxy Jars for Web Services

The format for the URL to obtain the client-side proxy Jar is as follows (see
Table 8-1 for a description of the URL components):

http://host:port/context-root/service?PROXY_JAR
or

http://host:port/context-root/service?proxy_jar

This command returns the file service_pr oxy. j ar. The service_proxy.j ar isa
Jar file that contains the client-side proxy classes that you can use to build a
client-side application to access the Web Service.

To obtain the client-side proxy source Jar for a Web Service, use the Web Service
URL and append a query string. The format for the URL to obtain the client-side
proxy source Jar is as follows (see Table 8-1 for a description of the URL
components):

http://host:port/context-root/servi ce?PROXY_SOURCE
or

http://host:port/context-root/service?proxy_source

This command returns the file service_pr oxysr c. j ar. The file
service_proxysrc. j ar isalar file that contains the client-side proxy source files.
This file represents the source code for the file service_pr oxy. j ar associated with
the service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

When you obtain the client-side proxy Jar file or the client-side proxy source Jar,
you have the option of including a request parameter that specifies a package name
for the generated client-side proxy classes or source files. If the Web Service’s
client-side Java class is part of a particular package, then you should specify the
package name to match the client-side application’s package name.

The format for the URL to obtain the client-side proxy Jar and specify the package
name is as follows (see Table 8-1 for a description of the URL components):

http://host: port/context-root/servi ce?PROXY_JAR&packageName=nypackage
or

http://host:port/context-root/service?proxy_jar&ackageName=nypackage

This command returns the file service_pr oxy. j ar. The service_proxy.j ar isa
Jar file that contains the client-side proxy classes, using the specified package,
mypackage for the Java package statement.

8-6 Oracle Application Server Web Services Developer’'s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

The format for the URL to obtain the client-side proxy source Jar and specify the
package name is as follows (see Table 8-1 for a description of the URL components):

http://host:port/context-root/servi ce?PROXY_SCOURCE&packageNanme=nypackage

http://host:port/context-root/service?proxy_source&packageName=nypackage

This command returns the file service_pr oxysrc. j ar. As for the proxy_j ar, you
have the option of specifying a request parameter with a supplied package name by
include a packageNane=name option. The service_pr oxysrc. j ar is aJar file that
contains the client-side source files for the client-side proxy that accesses the Web

Table 8-1 URL for Accessing Client Side Proxy Stubs

URL Component

Description

context-root

host

mypackage

port

service

The context-root is the value specified in the <cont ext - r oot > tag for the web
module associated with the Web Service. See the META- | NF/ appl i cati on. xm
in the Web Service’s .ear file to determine this value.

This is the host of the Web Service’s server running Oracle Application Server Web
Services.

This specifies the value that you want to use for the package name in the
generated proxy Jar or proxy source.

This is the port of the Web Service’s server running Oracle Application Server Web
Services.

The service is the value specified in the <ur | - pat t er n> tag for the servlet
associated with the Web Service. This is the service name. See the
VEB- | NF/ web. xm in the Web Service’s .war file to determine this value.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 4, "Developing and Deploying EJB Web Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

Building Clients that Use Web Services 8-7

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Generating Client-Side Proxies With WebServicesAssembler

The Oracle Application Server Web Services WebSer vi cesAssenbl er tool allows
you to generate client-side proxies. A client-side proxy can access a Web Service that
is deployed either on an Oracle Application Server Web Services endpoint or on a
third party Web Service endpoint.

To generate a client-side proxy with WebSer vi cesAssenbl er, specify a
<pr oxy- gen> tag in the configuration file. Table 8-2 describes the <pr oxy- gen>
WebSer vi cesAssenbl er configuration file sub-tags.

Note: When you are generating client-side proxies and you are
accessing an external WSDL file from behind a firewall, make sure
to set the appropriate security properties shown in Table 8-4, such
ashttp. proxyHost and http. proxyPort.

Example 8-1 shows a sample WebSer vi cesAssenbl er that includes a
<pr oxy- gen> tag.

Example 8-1 WebServicesAssembler Proxy Gen Configuration File

<?xm version="1.0"?>
<web- servi ce>
<proxy- gen>
<proxy-dir>/ Test Area/ Hot el / pr oxy/ out si de</ proxy-dir>
<option name="incl ude- sour ce">true</ option>
<option name="wsdl -l ocation" package-name="nyPackage. proxy">
http://terraservice.net/ TerraService. asnx?WSDL</ opti on>
<option nane="wsdl -l ocation">
http://ws. serviceobj ects. net/sq/ Fast Quot e. asmx?WSDL</ opti on>
</ proxy- gen>
</ web- service>

8-8 Oracle Application Server Web Services Developer’'s Guide

Working with Client-Side Proxy Jar to Use Web Services

Table 8-2 Proxy Generation <proxy-gen> Sub-Tags

Tag

Description

<pr oxy-dir>
directory
</ proxy-dir>

<opti on nanme="i ncl ude- sour ce" >

value
</ opti on>

<option nane="wsdl -1 ocation">

URL
</ option>

or

<opti on nane="wsdl -1 ocati on"
package- name=" package" >

URL
</ option>

Specifies the directory for the generated client-side proxy stubs Jar
file that is included in the generated Web Service . ear file.

This tag is required.

Setting value to t r ue tells WebSer vi cesAssenbl er to include the
classes and the source in the generated client-side proxy. When the
value is false, the source is not included in the generated Jar.

This tag is optional.
Valid values: t rue, f al se
Default value: f al se

This tag sets the URL to use for the source WSDL to use to generate
the client-side proxy.

This option also supports the optional attribute package- namne. The
package- nane can specify the name package for the generated
client-side proxy.

This tag is optional.
Examples:

<option nanme="wsdl -1 ocation">
http://systemnl: 8888/ webservi ce3/ Test Ser vi ce?WsDL
</ option>

<opti on nane="wsdl -1 ocati on”

package- nanme="nyPackage. pr oxy" >

http://systeml: 8888/ webser vi ce3/ Test Ser vi ce?WsDL
</ opti on>

See Also:

Chapter 9, "Web Services Tools"

Working with Client-Side Proxy Jar to Use Web Services

This section describes how to use the client-side proxy Jar when you are building
the client-side application to access a Web Service. The client-side proxy Jar class
allows you to easily build an application that uses a Web Service.

The client side proxy Jar file contains a Java class to serve as a proxy to the Web
Service implementation. The client-side proxy code constructs a SOAP request and
marshalls and unmarshalls parameters for you. Using the proxy classes saves you

Building Clients that Use Web Services 8-9

Working with Client-Side Proxy Jar to Use Web Services

the work of creating SOAP requests for accessing a Web Service or processing Web
Service responses.

Example 8-2 shows a source code sample client-side proxy extracted from a Web
Service. For each operation available on the Web Service, there is a corresponding
method in the proxy class. The example shows the method hel | oWor 1 d(St ri ng)
that serves as a proxy to the hel | oWor | d(St ri ng) method in the associated Web
Service implementation.

Example 8-3 shows client-side application code that uses the hel | o\Wor | d()
method from the supplied client-side proxy shown in Example 8-2.

Note: When you are accessing an external Web Service from
behind a firewall, make sure to set the appropriate security
properties shown in Table 8-4, such as ht t p. pr oxyHost and
http. proxyPort.

Example 8-2 Sample Client-side Proxy Method for Web Services
public class Stateful Exanpl eProxy {

public java.lang.String hell oWorld(java.lang.String paranD) throws Exception
{

Example 8-3 Sample Client-side Application Using a Proxy Class for Web Services
inport oracle.j2ee.ws_exanpl e. proxy. *;

public class dient

{

public static void main(String[] argv) throws Exception

{

8-10 Oracle Application Server Web Services Developer’'s Guide

Working with Client-Side Proxy Jar to Use Web Services

St at ef ul Exanpl eProxy proxy = new Stat ef ul Exanpl eProxy();
Systemout. println(proxy.helloWrld("Scott"));

System out. println(proxy.count());

Systemout. println(proxy.count());

Systemout. println(proxy.count());

Setting the Web Services Proxy Client CLASSPATH

When you build a Web Services clients using a proxy, you need to use the correct
CLASSPATH o run the client. Table 8-3 lists jars that you need to include in the
CLASSPATH.

Table 8-3 Web Services CLASSPATH Components for a Client Using a Client-side Proxy

Component Jar Description

proxy.j ar The proxy jar file that provides access to the Web Service.
$ORACLE_HOVE/ | i b/ xm parserv2.jar The Oracle XML parser jar.

$ORACLE_HOME/ j 2ee/ home/ li b/ http_client.jar The Oracle HTTP client jar.

$ORACLE_HOVE/ soap/ | i b/ soap. j ar The Oracle SOAP jar.

$ORACLE_HOME/ j 2ee/ hore/ l'i b/ mai | . j ar Generally, this is available in the JRE. If this is not available in

the JRE, then include it in the CLASSPATH.

$ORACLE_HOME/ j 2ee/ hone/ | i b/ activation.jar Generally, this is available in the JRE. If this is not available in
the JRE, then include it in the CLASSPATH

$ORACLE_HOME/ j | i b/ j avax-ssl-1_1.jar Used when the client uses SSL to connect to a Web Service that
uses SSL. In this case, do not include $ORACLE_
HOVE/ | i b/ j see. j ar in the CLASSPATH.

$ORACLE HOVE/ jlib/jssl-1_1.jar Required when the client is using SSL to connect to a Web
Service that uses SSL. In this case, either $ORACLE_
HOVE/ j i b/javax-ssl-1_1.jar or $ORACLE
HOVE/ | i b/ j sse. j ar must be specified.

$ORACLE_HOVE/ | i b/ j sse. jar Used when the client uses SSL to connect to a Web Service that
uses SSL. In this case, do not include $ORACLE_
HOME/ j i b/ j avax-ssl-1_1.jar inthe CLASSPATH.

$ORACLE_HOME/ webser vi ces/ | i b/ wsdl . jar Required when the client is using a Dynamic Proxy.
$ORACLE_HOVE/ webservi ces/ | i b/ dsv2.jar Required when the client is using a Dynamic Proxy.

Building Clients that Use Web Services 8-11

Working with Client-Side Proxy Jar to Use Web Services

Using Java Beans as Parameters for Web Services

When Java Beans are used as parameters to Oracle Application Server \WWeb Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates
SOAP structures to and from Java Beans by translating SOAP structure namespaces
to and from fully qualified Bean class names. If a Bean with the specified name does
not exist in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather
than the client-side proxy. The generated WSDL document describes SOAP
structures in a standard way. Application development environments, such as
Oracle JDeveloper, which work directly from WSDL documents can correctly call
Oracle Application Server Web Services with Java Beans as parameters.

Using Web Services Security Features

When you run a client-side application that uses Oracle Application Server Web
Services, you can access secure Web Services by setting properties in the client
application. Table 8-4 shows the available properties that provide credentials and
other security information for Web Services clients. Table 8-3 lists jar file that need
to be included in the CLASSPATH, including those required to support SSL.

In a Web Services client application, you can set the security properties shown in
Table 8-4 as system properties by using the - Dflag at the Java command line, or
you can also set security properties in the Java program by adding these properties
to the system properties (use Syst em set Properti es() toadd properties). In
addition, the client side stubs include the _set Tr anport Pr operti es method that
is a public method in the client proxy stubs. This method enables you to set the
appropriate values for security properties by supplying a Pr oper ti es argument.

8-12 Oracle Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services

Table 8-4 Web Services HTTP Transport Security Properties

Property

Description

http. aut hReal m

http. aut hType

http. password
http. proxyAut hReal m

http. proxyAut hType

http. pr oxyHost
http. proxyPassword
htt p. proxyPort

http. proxyUser nanme

http. user nane

Specifies the realm for which the HTTP authentication
username/password is specified.

This property is mandatory when using basic authentication.

Specifies the HTTP authentication type. The case of the value specified is
ignored.

Valid values: basi ¢, di gest
The value basic specifies HTTP basic authentication.

Specifying any value other than basi ¢ or di gest is the same as not
setting the property.

Specifies the HTTP authentication password.

Specifies the realm for which the proxy authentication
username/password is specified.

Specifies the proxy authentication type. The case of the value specified is
ignored.

Valid values: basi ¢, di gest

Specifying any value other than basi ¢ or di gest is the same as not
setting the property.

Specifies the hostname or IP address of the proxy host.
Specifies the HTTP proxy authentication password.

Specifies the proxy port. The specified value must be an integer. This
property is only used when ht t p. pr oxyHost is defined; otherwise this
value is ignored.

Default value: 80
Specifies the HTTP proxy authentication username.

Specifies the HTTP authentication username.

Building Clients that Use Web Services 8-13

Working with Client-Side Proxy Jar to Use Web Services

Table 8-4 (Cont.) Web Services HTTP Transport Security Properties

Property Description

j ava. protocol . handl er. pkgs Specifies a list of package prefixes for
j ava. net . URLSt r eanHandl er Fact ory The prefixes should be
separated by "|" vertical bar characters.

This value should contain: HTTPCl i ent

This value is required by the Java protocol handler framework; it is not
defined by Oracle Application Server. This property must be set when
using HTTPS. If this property is not set using HTTPS, a

j ava. net . Mal f or mredURLExcept i on is thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

« java.protocol . handl er. pkgs=HTTPC i ent

« java.protocol . handl er. pkgs=sun. net. ww. pr ot ocol |

HTTPC i ent
oracl e. soap. transport. Specifies the allows user interaction parameter. The case of the value
al | omUser I nteraction specified is ignored. When this property is set tot r ue and either of the

following are true, the user is prompted for a username and password:

1. Ifany of properties htt p. aut hType, http. user nane, or
htt p. passwor d is not set, and a 401 HTTP status is returned by
the HTTP server.

2. If either of properties ht t p. pr oxyAut hType,
htt p. proxyUser nane, or ht t p. pr oxyPasswor d is not set and a
407 HTTP response is returned by the HTTP proxy.

Valid values: t rue, f al se
Specifying any value other than t r ue is considered as f al se.
oracl e. ssl . ciphers Specifies a list of: separated cipher suites that are enabled.
Default value: The list of all cipher suites supported with Oracle SSL.

8-14 Oracle Application Server Web Services Developer’s Guide

Working with WSDL Files and Oracle JDeveloper to Use Web Services

Table 8-4 (Cont.) Web Services HTTP Transport Security Properties

Property Description

oracle.wal l et. | ocation Specifies the location of an exported Oracle wallet or exported
trustpoints.

Note: The value used is not a URL but a file location, for example:
/et c/ ORACLE/ VIl | et s/ syst enll/ exported_wal | et (on UNIX)
d:\oracl e\ syst eml\ exported_wal | et (on Windows)

This property must be set when HTTPS is used with SSL authentication,
server or mutual, as the transport.

oracl e.wal | et. password Specifies the password of an exported wallet. Setting this property is
required when HTTPS is used with client, mutual authentication as the
transport.

Working with WSDL Files and Oracle JDeveloper to Use Web Services

The Web Services WSDL allows you to manually, or using Oracle JDeveloper or
another IDE, build client applications that use Web Services.

The Oracle JDeveloper IDE supports Oracle Application Server Web Services with
WSDL features and provides unparalleled productivity for building end-to-end
J2EE and integrated Web Services applications.

Oracle JDeveloper supports Oracle Application Server Web Services with the
following features:

« Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

« Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and
WSDL file for you.

« Provides schema-driven WSDL file editing.

« Offers significant J2EE deployment support for Web Services J2EE .ear files,
with automatic deployment to OC4J.

Non-Oracle Web Services IDEs or client development tools can use the supplied
WSDL file to generate Web Services requests for services running under Oracle
Application Server Web Services. Currently, many IDEs have the capability to create
SOAP requests, given a WSDL description for the service.

Building Clients that Use Web Services 8-15

Working with WSDL Files and Oracle JDeveloper to Use Web Services

8-16 Oracle Application Server Web Services Developer’s Guide

9

Web Services Tools

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. The Web Services assembly tool takes a configuration file which describes
a Web Service, including the location of the Java classes, PL/SQL stored procedures
or functions, or J2EE EAR, WAR, or JAR files and produces a J2EE EAR file that can
be deployed under Oracle Application Server Web Services.

This chapter contains the following topics:

« Running the Web Services Assembly Tool

« Web Services Assembly Tool Configuration File Sample

« Generating WSDL Files and Client Side Proxies

« Web Services Assembly Tool Configuration File Specification

« Web Services Assembly Tool Limitations

Web Services Tools 9-1

Running the Web Services Assembly Tool

Running the Web Services Assembly Tool
Run the Web Services assembly tool as follows:

java -jar WebServicesAssenmbl er.jar [-debug] -config [file]
or
java -jar WebServicesAssenbl er.jar [-debug]

Where file is a Web Services assembly tool configuration file. Without the - confi g
option, a file named conf i g. xm must be present in the same directory where
WebSer vi cesAssenbl er. j ar is invoked.

With the - debug option, WebSer vi cesAssenbl er displays verbose debugging
comments.

Note: When running WebSer vi cesAssenbl er. j ar from the
command line, the PATHenvironment variable should include the
JDK/ bi n directory (the directory with the j avac compiler).

Web Services Assembly Tool Configuration File Sample

The sample configuration file shown in Example 9-1 defines two services to be
wrapped in an Enterprise ARchive file (EAR). The sample includes configuration
information for services defined with <st at el ess-j ava- servi ce>and
<stat ef ul -j ava- servi ce> tags.

See Also:

« "Preparing and Deploying Java Class Based Web Services" on
page 3-9

« "Preparing and Deploying Stateless Session EJB Based Web
Services" on page 4-8

« "Preparing Stored Procedure Web Services" on page 5-3
« "Preparing Document Style Web Services" on page 6-9

« "Preparing and Configuring JMS Web Services" on page 7-11

9-2 Oracle Application Server Web Services Developer's Guide

Web Services Assembly Tool Configuration File Sample

Example 9-1 Sample Web Services Assembly Tool Configuration File

<web- service>

<di spl ay- name>Web Servi ces Exanpl e</di spl ay- name>
<description>Java Wb Service Exanpl e</descri ption>
<l-- Specifies the resulting web service archive will be stored in ./ws_exanple.ear -->
<desti nation-pat h>. / ws_exanpl e. ear </ desti nati on- pat h>
<!-- Specifies the tenporary directory that web service assenbly
tool can create temporary files. -->
<t enmpor ary-directory>./tnp</tenporary-directory>
<!I-- Specifies the web service will be accessed in the servlet context
naned "/webservices". -->
<cont ext >/ webser vi ces</ cont ext >

<l-- Specifies the web service will be stateless -->
<statel ess-j ava- service>
<i nterface-name>oracl e. j 2ee. ws_exanpl e. St at el essExanpl e</ i nt er f ace- name>
<cl ass- nane>or acl e. j 2ee. ws_exanpl e. St at el essExanpl el npl </ ¢l ass- name>
<I-- Specifies the web service will be accessed in the uri named
"statel essTest" within the servlet context. -->
<uri>/statel essTest</uri>
<I-- Specifies the location of Java class files are under ./src -->
<j ava-resource>./src</java-resource>
</ statel ess-java-servi ce>

<stateful -java-service>
<interface-nanme>oracl e. j 2ee. ws_exanpl e. St at ef ul Exanpl e</i nt er f ace- name>
<cl ass- nane>or acl e. j 2ee. ws_exanpl e. St at ef ul Exanpl el npl </ cl ass- nanme>
<l-- Specifies the web service will be accessed in the uri nanmed

"stateful Test" within the servliet context. -->

<uri>/stateful Test</uri>
<l-- Specifies the location of Java class files are under ./src -->
<j ava-resource>./src</java-resource>

</stateful -java-service>

</ web- servi ce>

Web Services Assembly Tool Configuration File Sample Output

After running the Web Services Assembly tool with the sample input file shown in
Example 9-1, the generated output is an EAR file (/ t np/ ws_exanpl e. ear) The
generated J2EE .ear file, ws_exanpl e. ear, has the structure shown in

Example 9-2.

Web Services Tools 9-3

Generating WSDL Files and Client Side Proxies

Example 9-2 Structure of Web Services Assembly Tool Sample Ear File

ws_exanpl e. ear

| --- META- I NF

| ‘---application.xm
‘---ws_exanpl e_web. war

| ---index. htm
‘---WEB- I NF
[------ web. xm
TR cl asses
IR oracle
IR] 2ee

| --- Stateful Exanpl e. j ava

| -- - Stateful Exanpl e. cl ass

| --- Stateful Exanpl el npl . j ava
‘---Stateful Exanpl el npl . cl ass
| ---Statel essExanpl e. j ava

| -- - Statel essExanpl e. cl ass

| ---Statel essExanpl el npl . j ava
‘---Statel essExanpl el npl . cl ass

Generating WSDL Files and Client Side Proxies

This section describes using the <wsdl - gen> and <pr oxy- gen>tagsin a

WebSer vi cesAssenbl er configuration file. These tags controls the options for
generating WSDL files and client-side proxies for Web Services. A client-side
developer can obtain and use the WSDL file or the client-side proxies to build an
application that uses a Web Service. A server-side developer that is assembling Web
Services can use these file for testing Web Services.

This section covers the following topics:
« Generating and Assembling WSDL Files
« Generating Client-Side Proxies with WSDL

9-4 Oracle Application Server Web Services Developer’'s Guide

Generating WSDL Files and Client Side Proxies

Generating and Assembling WSDL Files

Using Oracle Application Server Web Services, a Web Service developer has several
choices for deciding how the WSDL file that is associated with a Web Service is
generated:

1.

Using the <wsdl - gen> tag, you can specify that WebSer vi cesAssenbl er
create the WSDL file. At assembly time when the Web Service is prepared, the
WebSer vi cesAssenbl er generates and packages the WSDL file with the Web
Service.

Example 9-3 shows a configuration file that includes the <wsdl - gen> tag.

Allowing the Oracle Application Server Web Services runtime to generate the
WSDL file when the WSDL is requested by a Web Service client (after the WEB
Service is deployed). In this case, you do not specify the <wsdl| - gen> tag in the
configuration file.

Creating a WSDL file manually. In this case, use the <wsdl - gen> tag during
assembly of the J2EE .ear file to specify the path to the WSDL file. At assembly
time when the Web Service is prepared, the WebSer vi cesAssenbl er
packages the WSDL file with the Web Service.

Table 9-1 describes the <wsdl - gen> WebSer vi cesAssenbl er configuration file
sub-tags.

Note: Using the <wsdl - gen> tag, the default behavior is to
package the WSDL into the J2EE .ear file. To exclude the generated
WSDL from the J2EE .ear file, use <opt i on nane="packagelt">
tag and set the value to f al se.

Web Services Tools 9-5

Generating WSDL Files and Client Side Proxies

Table 9-1 WSDL Generation <wsdl-gen> Sub-Tags

Description

Tag

<option name="force">
value

</ option>

<opti on nane="httpServer URL" >
URL
</ opti on>

<option name="packagelt">
value
</ opti on>

<wsdl -di r>
directory
</wsdl -dir>

Setting value to t r ue forces WebSer vi cesAssenbl er to
overwrite any existing WSDL file in the WSDL directory specified
with the <wsdl - di r > tag.

Valid values: t rue, f al se
Default value: t r ue

This tag sets the value for the HTTP server listener endpoint in the
generated WSDL. Set the URL to point to the Web Service HTTP
listener.

Example:
<option name="httpServerURL">http://localhost:8888</option>

Setting value to t r ue tells WebSer vi cesAssenbl er to include the
generated WSDL in the assembled .ear file. When the value is

f al se, the generated WSDL file is not included in the assembled

. ear file.

Valid values: t rue, f al se
Default value: t r ue

Specifies the directory for the WSDL file source that is included in
the generated Web Service . ear file.

When you are manually supplying the WSDL file, place a copy of
the WSDL file in the specified directory and use the <opt i on
nane="f or ce" > tag with the value f al se.

Example 9-3 WebServicesAssembler Configuration File Including <wsdl-gen>

<web- servi ce>

<di spl ay- name>St at el ess Java Docunent Wb Servi ce</di spl ay- name>
<description>Statel ess Java Document Web Service Exanpl e</description>
<desti nation-path>./statel essdocws. ear </ destinati on- pat h>
<tenporary-directory>./tenp</tenporary-directory>

<cont ext >/ st at el essdocws</ cont ext >

<opti on name="sour ce-pat h">converter. xsl </ option>

<st at el ess-j ava-servi ce>
<i nterface-name>St at el essDoc</i nt erface- name>
<cl ass- name>St at el essDocl npl </ ¢l ass- nane>

9-6 Oracle Application Server Web Services Developer’'s Guide

Generating WSDL Files and Client Side Proxies

<uri >/ docservi ce</uri>
<j ava-resource>./cl asses</j ava-resour ce>
<message- styl e>doc</ nessage-styl e>

</ statel ess-java-service>

<lI-- generate the wsdl -->
<wsdl - gen>

<wsdl - di r>wsdl </ wsdl - di r>

<I-- over-wite a pregenerated wsdl , turnit 'false

to use the pregenerated wsdl-->

<option name="force">true</option>

<option name="httpServer URL">http://| ocal host: 8888</ opti on>
</ wsdl - gen>

</ web- servi ce>

Manually Producing a WSDL File

When you do not want to use either the WebSer vi cesAssenbl er tool generated
WSDL or the Oracle Application Server Web Services runtime generated WSDL file,
and you want to supply your own version of the Web Service WSDL file, perform
the following steps:

1.
2.

Manually create the WSDL file for your service.

Name the WSDL file with a name using the . wsdl extension placed after the
service name. For example, servi cel. wsdl for a service named ser vi cel.

Create a configuration file that includes the <wsdl - gen> tag, including
<option nane="force">settofal seand<option
nanme="packagelt"> settotrue.

Place the WSDL file that you create in the directory specified with the
<wsdl - di r > tag.

Run the WebSer vi cesAssenbl er with the specified configuration file.

Web Services Tools 9-7

Generating WSDL Files and Client Side Proxies

Generating Client-Side Proxies with WSDL

When the <pr oxy- gen> tag is included in a configuration file with the

<wsdl - gen>, the generated WSDL is used to generate the proxy that is placed in
the specified directory (this occurs when WebSer vi cesAssenbl er runs during
the Web Service assembly process).

Table 8-2 lists the <pr oxy- gen> sub-tags.

Note: Using <pr oxy- gen>, the generated proxy is not assembled
in the J2EE .ear file.

Example 9-4 shows a sample configuration file that includes both the <wsdl - gen>
and the <pr oxy- gen> tags.

Example 9-4 WebServicesAssembler Configuration File Including <wsdl-gen>

<web- servi ce>
<di spl ay- name>Test </ di spl ay- nane>
<description>Test progranx/description>
<destination- pat h>t est. ear</ desti nati on- pat h>
<t enporary-di rect ory>t enp/ </t enpor ary- di r ect or y><cont ext >/ Hot el Servi ce</ cont ext >
<option name="sour ce- pat h" >Wr kspacel/ common/ cl asses</ opti on>

<statel ess-j ava-servi ce>
<i nterface-nane>com nypackagel. | test </interface-name>
<uri>/ main</uri>
<cl ass- name>com nmypackagel. t est </ cl ass- name>

</ statel ess-java-service>

<wsdl - gen>
<wsdl - di r>wsdl </ wsdl -dir>
<option nanme="force">true</ option>
<option name="httpServer URL">http://| ocal host: 8888</ opti on>
<option name="packagelt">fal se</ opti on>
</wsdl - gen>

<pr oxy- gen>

<proxy- di r>proxy</ proxy-dir>

<option name="incl ude- sour ce">true</ option>
</ proxy-gen>

</ web- servi ce>

9-8 Oracle Application Server Web Services Developer’'s Guide

Web Services Assembly Tool Configuration File Specification

Web Services Assembly Tool Configuration File Specification

The input file for WebSer vi cesAssenbl er is an XML file conforming to the Web
Services Assembly Tool configuration file DTD.

Example 9-5 shows the Web Services Assembly Tool Configuration file DTD.

Example 9-5 Assembly Tool Input File DTD

<?xm version="1.0" encodi ng="UCS-2"?>

<l-- Specify the properties of the web services to be assenbled. -->

<! ELEMENT web- service

((display-nane)?, (description)?, destination-path,tenporary-directory, context, (datasource-JND -nane)?, (statefu
| -java-service)*, (statel ess-java-service)*, (statel ess-stored-procedure-java-service)*, (statel ess-session-ejb-
service)*, (j ms-doc-service)*, (option)*, (wsdl -gen)?, (proxy-gen)?)>

<l ELEMENT di spl ay- name (#PCDATA) *>

<! ELEMENT description (#PCDATA)*>

<I-- Specify the full path of the resulting EAR file. For exanple

"/ hone/ deno/ webservi ces. ear” -->

<! ELEMENT desti nati on-path (#PCDATA)*>

<l-- Specify a directory where the assenbly tool can create tenporary

directories and files. -->

<! ELEMENT tenporary-directory (#PCDATA)*>

<l-- Specify the context root of the web services. For exanple, "/webservices". -->

<l ELEMENT cont ext (#PCDATA)*>

<I-- for specifying database resource refs -->

<! ELEMENT dat asour ce- JNDI - nane (#PCDATA) *>

<l-- Specify the properties of a stateful Java service -->

<l ELEMENT st at ef ul -j ava-servi ce
((interface-name)?,class-nane, uri, (java-resource)*, (ejb-resource)*, (scope)*, (session-timeout)*, (message-style
)?)>

<l-- Specify the properties of a stateless Java service -->

<l ELEMENT st at el ess-j ava- servi ce
((interface-name)?,class-nane, uri, (java-resource)*, (ejb-resource)*, (message-style)?)>

<l-- Specify the properties of a stateless stored procedure Java service -->

<l ELEMENT st at el ess- st or ed- procedur e-j ava- servi ce

((interface-name)?, (class-nane)?, uri, dat abase- JNDI - nane, (j ava-resource)?, (j ar-generation)?)>
<l-- Specify the properties of a stateless session ejb service -->

<l ELEMENT st at el ess- sessi on-ej b-service (path,uri,ejb-nane, (ejb-resource)*)>

<lI-- Specify the java interface which defines the public nethods to be exposed

in the web service. For exanple, "comfoo.nyproject.helloWrld". -->

< ELEMENT i nterface-nane (#PCDATA)*>

<I-- Specify the java class to be exposed as a web service. |f interface-nane is

not specified, all the public methods in this class will be exposed. For exanple
"com foo. nyproj ect. hel l oWorl dlnpl". -->

<! ELEMENT cl ass- name (#PCDATA) *>

<I-- Specify the uri of this service. This uri is used in the URL to access the

Web Services Tools 9-9

Web Services Assembly Tool Configuration File Specification

WSDL and client jar, and invoke the web service. For exanple, "/nyService". -->
< ELEMENT uri (#PCDATA)*>
<l --

Specify the java resources used in this service.

The val ue can be a directory or a file that inplenments the web services. If it
is adirectory, all the files and subdirectories under the directory are copied
and packaged in the Enterprise ARchive. If the java resource should belong to a
java package, you should either package it as a jar file and specify it as a
java resource, or create the necessary directory and specify the directory which
contains this directory structure as java resource. For exanple, you want to
include "com myconpany. nmypackage.foo" class as a java resource of the web
services, you can either package this class file in foo.jar and specify
<java-resource>c:/nydir/foo.jar</java-resource> or place the class under

d: / nydi r/ conf myconpany/ mypackage/ f oo. cl ass and specify the java resource as

<j ava-resource>c:/nydir/</java-resource>.

>

<l ELEMENT j ava-resource (#PCDATA)*>

<I-- Specify the ejb resources used in this service. ejb-resource should be a
jar file that inplenments a enterprise java bean. -->

<! ELEMENT ej b-resource (#PCDATA)*>

<I-- Specify the database JNDI name for stateless PL/SQ web service. -->

<l ELEMENT dat abase-j ndi - nane (#PCDATA) * >

<I-- Specifies the path of the EJB jar file to exposed as web services. -->

<! ELEMENT path (#PCDATA)*>

<I-- Specify the ejb-name of the session bean to be exposed as web services.

ej b-name should match the <ejb-nanme> value in the META-INF/ ejb-jar.xm of the bean.
<! ELEMENT ej b- nane (#PCDATA)*>

<l-- Specify scope of Stateful Java service -->

<l ELEMENT scope (#PCDATA)*>

<I-- Specify session tineout of Stateful Java service -->

<! ELEMENT sessi on-ti meout (#PCDATA)*>

<I'-- Specify the directory location of the generated wsdl-->

<! ELEMENT wsdl - dir (#PCDATA)*>

<l-- Specify that wsdl generation is to happen 'force' 'httpServerURL' 'packagelt'-->

<l ELEMENT wsdl -gen (wsdl -dir, (option)*)>

<l-- Specifyg the directory location of the generated proxy-->
<I ELEMENT proxy-dir (#PCDATA)*>

<! ELEMENT option (#PCDATA)*>

<l ATTLI ST option name CDATA #REQU RED>

<I-- Specifying that proxy generation is asked for , it can have optional tags as
"include-source' 'wsdl-location' -->

<l ELEMENT proxy-gen (proxy-dir, (option)*)>

<l ELEMENT j ar-generation (db-package-name, db-schens, db-url, prefix, (nmethod- nane) *) >
<! ELEMENT dat abase- JNDI - name (#PCDATA) *>

<! ELEMENT db- package- nane (#PCDATA)*>

<! ELEMENT db-ur| (#PCDATA)*>

<! ELEMENT db- schenma (#PCDATA)*>

<! ELEMENT prefix (#PCDATA)*>

<! ELEMENT net hod- nanme (#PCDATA) *>

9-10 Oracle Application Server Web Services Developer’'s Guide

Web Services Assembly Tool Limitations

<l-- specify the nessage style ,if this tag is not present it is considered to have 'rpc' ..it can have
val ues of 'rpc' or 'doc' or 'docunent' -->
<! ELEMENT message-styl e (#PCDATA)*>

<l ELEMENT connecti on-factory-resource-ref (#PCDATA)*>

<! ELEMENT t opi c-resource-ref (#PCDATA)*>

<l ELEMENT queue-resource-ref (#PCDATA)*>

<I--Resource ref of the return destination factory-->

<! ELEMENT repl y-to-connection-factory-resource-ref (#PCDATA)*>

<!I--Resource ref of the return destination Topic. -->

<l ELEMENT repl y-to-topic-resource-ref (#PCDATA)*>

<!--Resource ref of the return destination Queue. -->

<l ELEMENT repl y-to-queue-resource-ref (#PCDATA)*>

<l--jms-priority ,jms-nessage-type,|jns-del very-node ,jnms-expiration The JMS properties are only set for
enqueui ng operations, i..e, for send operations only. -->

<l ELEMENT jms-priority (#PCDATA)*>

<l ELEMENT j ns- nessage-type (#PCDATA)*>

<! ELEMENT j ns-del i very-node (#PCDATA)*>

<l ELEMENT | ms- expiration (#PCDATA)*>

<l-- operation property is optional. Possible values for this paraneter are: send, receive, and both. If not
provi ded, the value defaults to both. -->

<! ELEMENT operation (#PCDATA)*>

<l ELEMENT j ns-doc- servi ce

(uri, connection-factory-resource-ref, (topic-resource-ref)?, (queue-resource-ref)?, (reply-to-connection-factory
-resource-ref)?, (reply-to-topic-resource-ref)?, (reply-to-queue-resource-ref)?, (jns-priority)?, (jnms-nmessage-ty
pe) ?, (j ms-del i very-node) ?, (j ms-expiration)?, (operation)?)>

Web Services Assembly Tool Limitations
The WebSer vi cesAssenbl er tool has the following limitations:

« No Upload/download capabilities: the Web Services Assembly tool does not
upload Java classes from a client system to a server or download a generated
EAR file back to a client system.

« Does not support advanced configuration tasks: for example, the Web Services
Assembly tool is not able to control the security options for a Web Services
Servlet, cannot secure an EJB, secure welcome files, or perform other
administrative tasks.

Web Services Tools 9-11

Web Services Assembly Tool Limitations

9-12 Oracle Application Server Web Services Developer’s Guide

10

Discovering and Publishing Web Services

Oracle Application Server Containers for J2EE (OC4J), provides a Universal
Discovery Description and Integration (UDDI) Web Services registry known as the
Oracle Application Server UDDI Registry, in which Web Services provider
administrators in an enterprise environment can publish their Web Services for use
by Web Services consumers (programmers). Web Services consumers can use the
UDDI inquiry interface to discover these published Web Services by browsing,
searching, and drilling down in the OracleAS UDDI Registry to select one or more
Web Services from among those registered, and use those services in their
applications for a particular enterprise process.

For example, a Web Services provider administrator working with programmers
who have completed a Web Services implementation using the J2EE stack (either
EJBs, JavaBeans, JSP, or servlets) and exposing the implementation as a Simple
Object Access Protocol (SOAP)-based Web Services, can publish the Web Services
by providing all the metadata and pointers to the interface specification in the
OracleAS UDDI Registry. In this way, the Web Services provider administrator
publishes the availability of these Web Services for the Web Services consumers to
discover and select for use in their own applications.

This chapter is organized into the following main sections:

« UDDI Registration

« Web Services Discovery

« Web Services Publishing

« OracleAS UDDI Registry Administration

« OracleAS UDDI Server Error Message Reference Information
« UDDI Open Database Support

« UDDI Subscription Service

Discovering and Publishing Web Services 10-1

UDDI Registration

As part of the OC4J OracleAS UDDI Registry, a SOAP API as defined by the UDDI
V2 specification is provided to be used primarily by Web Services application
developers (see the OracleAS SOAP API Reference Javadoc on the Oracle
Application Server 10g (9.0.4) Documentation CD-ROM). This API provides the
inquiry and publishing functions by implementing the inquiry and publishing API
defined by the UDDI v2 specification. The use of this API is described in Web
Services Discovery on page 10-7 and Web Services Publishing on page 10-11.

In addition, a set of management facilities and tools are provided for all
management and operational requirements of the registry as described in OracleAS
UDDI Registry Administration on page 10-25. Some of these tools are provided
through Oracle Enterprise Manager as described in Web Services Publishing on
page 10-11.

A Java-based client library is also provided to facilitate additional tool development
and application development (see the Oracle Application Server UDDI Client API
Reference Javadoc on the Oracle Application Server 10g (9.0.4) Documentation
CD-ROM).

UDDI open database support is provided for Microsoft SQL Server, IBM DB2, and
Oracle (non-infrastructure) databases as described in UDDI Open Database Support
on page 10-71.

Finally, OracleAS UDDI Registry leveraging OracleAS Syndication Services
provides a subscription service allowing publishers in the registry to monitor or
obtain changes in the registry (see UDDI Subscription Service on page 10-79). See
Subscribing to an Offer on page 10-83 for information about using the UDDI
Content Subscription Manager that allows publishers and administrators to
subscribe to offers from content providers through specialized content connectors
managed by OracleAS Syndication Services.

UDDI Registration on page 10-2 describes the types of searches that can be
performed in a UDDI registration, describes an overview of the data structure of a
UDDI registry as specified by the UDDI v2 specification, and finally describes a
subset of the Oracle implementation of the UDDI registry as support for Web
Services discovery and Web Services publishing.

UDDI Registration

The information provided in a UDDI registration can be used to perform three
types of searches:

10-2 Oracle Application Server Web Services Developer’'s Guide

UDDI Registration

White pages search -- containing address, contact, and known identifiers. For
example, search for a business that you already know something about, such as
its name or some unique ID.

Yellow pages topical search -- containing industrial categories based on
standard classifications, such as NAICS, I1SO-3166, and UNSPSC.

Green pages service search -- containing technical information about Web
Services that are exposed by a business, including references to specifications of
interfaces for Web Services, as well as support for pointers to various file and
URL-based discovery mechanisms.

UDDI uses standards-based technologies, such as common Internet protocols
(TCP/IP and HTTP), XML, and SOAP, which is a specification for using XML in
simple message-based exchanges. UDDI is a standard Web Services description
format and Web Services discovery protocol; a UDDI registry can contain metadata
for any type of service, with best practices already defined for those described by
Web Services Description Language (WSDL).

UDDI Registry Data Structure

The UDDI registry consists of the following five data structure types that group
information to facilitate rapid location and understanding of registration
information:

1.

businessEntity -- the top-level, logical parent data structure; contains
descriptive information about the business that publishes information about
Web Services, such as business services, categories, contacts, discovery URLS,
and identifier and category information that is useful for performing searches.

businessService -- the logical child of a single businessEntity data structure as
well as the logical parent of a bindingTemplate structure; contains descriptive
business service information about a particular family of technical services
including its name, brief description, technical service description, and category
information that is useful for performing searches.

bindingTemplate -- the logical child of a single businessService data structure;
contains technical information about a Web Services entry point and references
to interface specifications.

tModel -- description of specifications for Web Services, or a classification that
forms the basis for technical identification; represents the technical specification
of Web Services, in order to facilitate Web Services consumer searching for
registered Web Services that are compatible with a particular technical
specification. That is, based on the descriptions of the specifications for Web

Discovering and Publishing Web Services 10-3

UDDI Registration

Services in the tModel structure, Web Services consumers can easily identify
other compatible Web Services.

5. publisherAssertion -- information about a relationship between two parties,
asserted by one or both.

Figure 10-1 shows the UDDI information model and the relationships among its
five data structure types.

Figure 10-1 UDDI Information Model Showing the Relationship Among the Five Main
Data Structure Types

businessEntity

tModel

|
businessService

]
— bindingTemplate

publisherAssertion

Because UDDI makes use of XML and SOAP, each of these data structure types
contains a number of elements and attributes that further serve to describe a
business or to have a technical purpose. See UDDI Version 2.03, Data Structure
Reference Published Specification, Dated 19 July 2002 and UDDI Version 2.04 API,
Published Specification Dated 19 July 2002 for a complete description of the UDDI
service description framework, http://www.uddi.org/specification.html. This
description includes the XML schema, and the approximately 20 request messages
and 10 response messages that comprise the request/response XML SOAP message

10-4 Oracle Application Server Web Services Developer’s Guide

UDDI Registration

interface that is used to perform publishing and inquiry functions against the UDDI
business registry.

See Standard Classification Support on page 10-45 for more information about the
standard classifications that are supported in the OracleAS UDDI Registry.

OracleAS UDDI Registry for Enterprise Web Services

This section describes a subset of features that provide UDDI support for Web
Services.

The OracleAS UDDI Registry support for Web Services deployed in OC4J is
composed of the following parts:

Web Services discovery -- consumers can use the Inquiry API available for Java
programmers to implement their own Web Services discovery tool to search,
locate, and drill down to discover OC4J Web Services in the OracleAS UDDI
Registry, as well as in any other accessible UDDI v1.0 Web Services registry. See
Using the Inquiry API on page 10-7 for more information about using the
Inquiry API and locating the Javadoc documentation that describes the Inquiry
API.

Web Services publishing -- Web services provider administrators can deploy
OC4J Web Services using Oracle Enterprise Manager. As part of the
deployment process, the administrator can also publish the OC4J container, and
in this process, there is a step where you can publish Web Services to the Oracle
UDDI Registry.

Web Services provider administrators can also update published Web Services
by searching, locating, and drilling down to OC4J Web Services using the
Application Server: <Instance-name>: OC4J home: Administration: Related
Links: UDDI Registry link provided through Oracle Enterprise Manager.

Replication management -- allows administrators to create a logical registry that
comprises one or more Oracle UDDI implementations and UDDI
implementations from other vendors that also implement the UDDI v2.0
Replication Specification.

Subscription service -- allows publishers in the registry to monitor or obtain
changes in the registry through subscriptions created using OracleAS
Syndication Services.

Discovering and Publishing Web Services 10-5

UDDI Registration

Installation and First Use
The OracleAS UDDI Registry is preinstalled with Oracle Application Server and
available through the following URLSs:

« Getting started information:
http:// <O acl eAS- host >: <Or acl eAS- port >/ uddi /

« UDDI inquiry SOAP endpoint:
http:// <O acl eAS- host >: <Or acl eAS- port >/ uddi /i nquiry

« UDDI publishing SOAP endpoint:
http:// <O acl eAS- host >: <Or acl eAS- port >/ uddi / publ i shi ng

« UDDI administration endpoint:
http:// <O acl eAS- host >: <Or acl eAS- port >/ uddi / admi n

« UDDI replication SOAP endpoint:
http:// <O acl eAS- host >: <Oracl eAS- port >/ uddi repl /replication

« UDDI replication HTTPS Wallet Password Administration endpoint:
http:// <O acl eAS- host >: <Or acl eAS_
port >/ uddi repl /adm n/ wal | et

« Subscription management application:
http:// <O acl eAS- host >: <O acl eAS- port >/ uddi sub/ subscriptio
n/ ui

See User Management on page 10-26 for the set of UDDI users and groups available
to help you get started.

Automatic Postinstallation Configuration
A postinstallation configuration step is necessary to set up the following:

« UDDI core tModels
« A node businessEntity representing the registry node
« The businessEntity discoveryURL prefix and the operatorName

Postinstallation configuration is done automatically when you try to access (either
through the browser or SOAP invocation programmatically) the UDDI inquiry or
publishing SOAP endpoints.

As a result, if you have not accessed the inquiry or publishing SOAP endpoints and
try to access other UDDI features, such as subscription management, Oracle
Enterprise Manager integrated Web Services deployment and publishing, and so
forth, those features will not function.

10-6 Oracle Application Server Web Services Developer’'s Guide

Web Services Discovery

Web Services Discovery

Using Tools

Web Services are discovered in the OracleAS UDDI Registry by browsing the
registry using tools or using the Inquiry API.

Consumers can use Oracle9i JDeveloper release 9.0.3, create their own inquiry
browse tool, or use third-party tools to browse and drill down for information
about Web Services from theOracleAS UDDI Registry, as well as from any other
accessible UDDI v1.0 Web Services registry. Consumers can use the Inquiry API
available for Java programmers to implement their own Web Services discovery
interface.

Using the Inquiry API

The Inquiry API lets consumers search for the available registered Web Services by
providing find (browse and drill-down) calls and get calls for locating and getting
information in each of the five data structures shown in Figure 10-1.

The Inquiry API allows consumers to discover and use Web Services using the Java
language. Programs can be written in any language and can use SOAP to discover
Web Services. The Java API is provided as a convenience for Java programmers. The
URL for the OracleAS UDDI Registry is

http:// <O acl eAS- htt p-server-host - nane><Or acl eAS- port - nunber >
/uddi /i nqui ry, where <Or acl eAS- htt p- server - host - nane> is where the
Oracle HTTP Server powered by Apache is installed, and

<Or acl eAS- port - nunber > is the port number for the Oracle HTTP Server.

The Inquiry API is located in the Oracle Application Server installation directory,
<ORACLE_HOVE>/ uddi / for UNIX and <ORACLE_HOVE>\ uddi \ for Windowvs.
The API documentation that describes how to use this Inquiry API can be found on
the Oracle Application Server Documentation Library as UDDI Client API
Reference (Javadoc) under OracleAS Web Services, which is located under the J2EE
and Internet applications tab.

Discovering and Publishing Web Services 10-7

Web Services Discovery

A set of sample demonstration (uddi deno. zi p) files are located on the Oracle
technology Network (OTN) Web site
http://otn.oracle.com/tech/java/oc4j/demos/ .

Within the uddi deno. zi p file is a Java program file,

uddi | nqui r yExanpl e. j ava, that provides Java programmers with a starting
point that demonstrates the key constructs and the sequence in using the Oracle
Application Server UDDI client library.

The program example does the following:

Gets an instance of SoapTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server
using SOAP and some underlying transport protocol (in this case HTTP).

SoapTransportLiai son transport = new Oracl eSoapHtt pTransport Li ai son();

Calls a helper method to set up proxy information, if necessary. You can specify
HTTP proxy information for accessing the OracleAS UDDI Registry on the
command line, using parameters, such as - Dht t p. pr oxyHost =<host nane>
-Dht t p. proxyPor t =<por t nun®.

set Ht t pProxy((SoapHt t pTransport Li ai son)transport);
Uses SoapTransportLiaison and the URL of a UDDI inquiry registry to initialize
an instance of UddiClient, which connects to the specified OracleAS UDDI

Registry. The UddiClient instance is the primary interface by which clients send
requests to the OracleAS UDDI Registry.

Uddi Client uddi Cient = new Uddi Cient(szlnquiryUrl, null, transport);

Note: The UddiClient instance, by default, operates as a UDDI
v2.0 client (the latest version supported). If a specific version is
needed, the version can be specified either through another
constructor, or the JVM property

oracl e. uddi.client.defaultVersion.

For example:

-Doracl e.uddi.client.defaul tVersion=1

Uses the UddiClient instance to perform a find business request. Specifically, it
finds all business entities that start with the letter T and prints out the response.

10-8 Oracle Application Server Web Services Developer’'s Guide

Web Services Discovery

Note that input parameters and return values are objects that precisely mimic
the XML elements defined in the UDDI specification.

/I Find a business with a name that starts with "T"
String szBizToFind = "T";
Systemout. println("\nListing businesses starting with " + szBi zToFi nd);
/1 Actual find business operation:
[/ First null means no specialized FindQualifier.
/1 Second null means no max number of entries in response.
[l (For example, maxRows attribute is absent.)
Busi nessLi st bl = uddi dient.findBusiness(szBi zToFind, null, null);
[l Print the response.
Systemout. println("The response is: ");
Li st |istBusinessinfo = bl.getBusinesslnfos().getUddi El ementList();
for (int i =0; i < listBusinessinfo.size(); i++ {

Busi nessl nfo businesslinfo = (Businessinfo)listBusinessinfo.get(i);

System out. printl n(businesslnfo.getNane());

Systemout. println(businesslnfo.getFirstDescription());

Name name = busi nessl nfo. get Fi r st NameAsNane() ;

if (name !'= null) {

Systemout. println("name=" + nane. getContent() +
", xm:lang=" + name.getLlang());
}
Description description =
busi nessl nfo. get Fi rstDescri pti onAsDescription();
if (description !=null) {
Systemout. println("description=" + description.getContent()
+ " ; xnm:lang=" + description.getLang());

}

Uses the UddiClient instance to get a UddiElementFactory instance. This
factory should always be used to create any UDDI objects needed for inquiries.

Uddi El ement Factory uddi El t Factory = uddi Client. get Uddi El ement Factory();

Uses the UddiElementFactory instance to create a CategoryBag instance and its
KeyedReference, which will be used for searching.

Cat egoryBag cb = (Cat egoryBag) uddi El t Fact ory. creat eCat egor yBag() ;
KeyedRef erence kr =

(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();

kr. set TModel Key(szCat egor yThVodel Key) ;

kr. set KeyVal ue(szCat egor yKeyVal ue) ;

kr. set KeyNane("");

ch. addUddi El ement (kr);

Discovering and Publishing Web Services 10-9

Web Services Discovery

Uses the UddiClient instance to perform a find service request. Specifically, it
finds a maximum of 30 services, which are classified as application service
providers (code 81.11.21.06.00) under the UNSPSC classification in any business
entities (no businessKey is specified).

ServiceList serviceList =
uddi dient.findService("", cb, null, new Integer(30));

Uses the UddiElementFactory instance to retrieve an XmIWriter object. To view
the raw XML data represented by an object, which extends UddiElement,
marshall the element content to the writer and then flush and close the writer.

XmMWiter witerXm Witer = uddi EltFactory.createWiterXm Witer(
new PrintWiter(Systemout));

servicelist. marshal | (witerXm Witer);

witerXm Witer.flush();

Finds tModel operations with multiple arguments. This is a new UDDI v2.0
feature. A find_xx request now allows multiple arguments. For example, find
tModel operations that have a name pattern, such as "uddi%inquiry%" and are
classified as wsdlSpec or xmISpec in uddi-org:types taxonomy.

Systemout.println("\nListing tMdels with the nane pattern
\"uddi % nqui ry®a" ");
Systemout.printin("and classified as \"wsdl Spec\" or \"xm Spec\" ");
Systemout. println("under uddi-org:types taxonony.");
/1 Use the Uddi El ement factory to create UDDI -specific objects
/] that are needed in inquiries.
Cat egoryBag chbTM = (Cat egor yBag) uddi El t Fact ory. cr eat eCat egor yBag() ;
KeyedRef erence krTML =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
kr TML. set TMbdel Key(Cor eTMbdel Const ant s. TAXONOWY_KEY_UDDI _TYPE) ;
kr TML. set KeyVal ue(Cor eTModel Const ant s. UDDI _TYPE_VALUE WSDL_SPEC) ;
cbTM addUddi El enent (kr TML) ;

KeyedRef erence krTM =

(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
kr TM2. set TMbdel Key(Cor eTMbdel Const ant s. TAXONOWY_KEY_UDDI _TYPE) ;
kr TM2. set KeyVal ue(Cor eTModel Const ant's. UDDI _TYPE_VALUE_XM._SPEC) ;
cbTM addUddi El enent (kr TM2) ;

FindQualifiers fqTM =

(FindQualifiers)uddi El t Factory. creat eFi ndQualifiers();
List |istFQTM = uddi El t Factory. createList();
I'i st FQTM add(Fi ndQual i fiers. OR_ALL_KEYS);

10-10 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

fqTM set Fi ndQual i fierStringList(listFQTM;

/1 Actual find tMdel operation:
/'l Integer(10) means a maxi num of 10 tMdel operations are
/1 to be returned.
I
Thodel Li st t Model List =
uddi G ient.findTModel ("uddi % nquiry%,
nul I,
chT™
fqT™
new | nteger(10));

/I Print some response information.

Systemout. println("The response is: ");

List listThvdelInfo =

t Model Li st . get TMbdel | nf os(). get Uddi El ement Li st ();

for (int i =0; i < listT\delInfo.size(); i++) {
Thodel I nfo tMdel Info = (Thodel I nfo)list TModel I nfo. get(i);
Systemout. println(tMdellnfo.get TMdel Key());
Systemout. println("name=" + tMdel I nfo.getNane());
}

Closes the UddiClient instance when finished to release resources.

uddi i ent.close();

Provides URLSs (in comments) to the OracleAS UDDI Registry and four public
UDDI registries.

Web Services Publishing

Web Services are published in the OracleAS UDDI Registry by using Oracle
Enterprise Manager or using the Publishing API.

Using Oracle Enterprise Manager

Using Oracle Enterprise Manager, Web Services provider administrators can
publish Web Services in the OracleAS UDDI Registry in two ways:

Navigate to the Application Server: <lnstance-name>: OC4J home: Deployed
Applications: Deploy Application Wizard. The Deploy Application wizard
takes you through the process of deploying a J2EE application on the OC4)J

Discovering and Publishing Web Services 10-11

Web Services Publishing

container. In order to publish a J2EE Web Service, you must first assemble it as a
J2EE Enterprise Archive (EAR) file. See the chapter on using the Web Services
assembly tool for more information. See Oracle Application Server Containers for
J2EE User’s Guide for information about EAR file-based deployment of J2EE
Web applications.

The second-to-last step, the Publish Web Services step, of the Deploy
Application wizard lets Web Services provider administrators publish (OC4J)
Web Services (servlets) that are found in the EAR file. Any Web Services servlet
in an application that you want to access must be published to the OracleAS
UDDI Registry to one or more desired categories within one or more of the
classifications provided. Any unpublished Web Services servlet in an
application appears with the status of Not Publ i shed and when the Web
Services servlet is published, the status changes to Publ i shed.

Navigate to the Application Server: <lInstance-name>: OC4J home: UDDI
Registry: Web Services Details window. The Web Services Details window
lets Web Services provider administrators publish J2EE applications to the
OracleAS UDDI Registry after entering all required Service Details and tModel
Details information.

Web Services provider administrators can update the discovered published Web
Services. They find these published Web Services through the Oracle Enterprise
Manager Discovery tool using the UDDI Registry link in the Related Links column
within the Administration section of the OC4J: home window from the
Application Server: <lInstance-name>: window.

Publishing Web Services Using Deploy Applications Wizard

Web Services provider administrators can publish J2EE Web Services, which are
produced by the OracleAS Web Services assembly tool, using the Oracle Enterprise
Manager Deploy Applications wizard. They can do this as follows:

1.

Invoke Oracle Enterprise Manager and navigate to the Application Server:
<Instance-name> window and then to the OC4J: home window. Locate the
Deployed Applications section within the OC4J: home window and click
Deploy Application to invoke the Deploy Application wizard.

Perform the steps in each window of the Deploy Application wizard and
provide the essential information for each step.

At the Publish Web Services window, select the desired Web Services to
register from the list of Web Services known to the application whose status is
Not Publ i shed. Do this by clicking its corresponding radio button in the

10-12 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

Select column. Then click Publish to continue to the Web Services Details
window.

4. At the Web Services Details window, review, edit, or enter the information as
needed in each of the fields in the Services Details section and in the tModel
Details section.

a. To add categories for either the Services Details or the tModel Details
sections, click Browse UDDI Registry, browse to the desired classification,
and drill down as needed through each desired category, noting all desired
category names and values.

b. Click Add Category to add an empty row of category information.

c. Select the desired classification, then enter the value code and its
corresponding category name for the desired category.

d. Repeat this process (Steps b and c¢) as many times as it takes to add all the
categories to which to register this Web Services.

e. After entering all the required information on the Web Services Details
window, publish the Web Services to the OracleAS UDDI Registry by
clicking OK. You return to the Publish Web Services window.

5. Back at the Publish Web Services window, select another Web Service to
publish and repeat this entire process again as described in Steps 3 and 4.

6. After publishing all Web Services for this application, click Next to continue to
the Summary window where all the application deployment information can
be reviewed.

7. If there are no further changes, click Deploy to deploy the J2EE application on
the OC4lJ container. Doing this returns you to the Oracle Enterprise Manager
OC4J Home page. Then, to repeat the process of deploying another J2EE
application on the OC4J container, click Deploy Application.

After deployment, metadata describing the Web Services that you chose to publish
has been added to the OracleAS UDDI Registry.

Publishing Web Services Using Web Services Details Window

Web Services provider administrators can publish Web Services using the Oracle
Enterprise Manager Web Services Details window. They do this as follows:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server:
<Instance-name> window, and then, to the OC4J: home window. Locate the

Discovering and Publishing Web Services 10-13

Web Services Publishing

UDDI Registry link in the Related Links column within the Administration
section of the OC4J: home window.

Click the UDDI Registry link.

The UDDI Registry window lets the administrator select one of the three
standard classifications: NAICS, UNSPSC, or ISO-3166, by clicking its link, or
lets you publish Web Services by selecting the Administration link.

Click the Administration link.

At the Web Services Details window, enter the required information in each of
the fields in the Services Details section and in the tModel Details section.

a.

Enter the service name, service description, and service URL to the servlet
in the Services Details section.

Enter the tModel name, tModel description, and the URL to the WSDL
document in the tModel Details section.

To add categories for either the Services Details or the tModel Details
sections, click Browse UDDI Registry, browse to the desired classification,
and drill down as needed through each desired category, noting all desired
category names and values.

Click Add Category to add an empty row of category information.

Select the desired classification, then enter the value code and its
corresponding category name for the desired category.

Repeat this process (Steps d and e) as many times as needed to add all the
categories to which to register this Web Services.

After entering all required information on the Web Services Details
window, publish the Web Services to the OracleAS UDDI Registry by
clicking Apply. This returns you to the UDDI Registry window where you
can choose to publish another J2EE application to the OracleAS UDDI
Registry by following the same steps again, beginning at Step 2.

Updating Published Web Services in the OracleAS UDDI Registry

Oracle Enterprise Manager provides a user interface for Web Services provider
administrators to browse, drill down, and get information about Web Services
published for categories in the OracleAS UDDI Registry. Web Services provider
administrators can update the discovered published Web Services. They find these
published Web Services through the Oracle Enterprise Manager Discovery tool

10-14 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

using the UDDI Registry link within the Administration section of the OC4J: home
window from the Application Server: <Instance-name> window.

To update published Web Services using Oracle Enterprise Manager to discover
Web Services, do the following:

1.

Invoke Oracle Enterprise Manager and navigate to the Application Server:
<Instance-name> window and then to the OC4J: home window. Locate the
UDDI Registry link in the Related Links column within the Administration
section of the OC4J: home window.

Click the UDDI Registry link.

The UDDI Registry window lets the administrator select one of the three
standard classification: NAICS, UNSPSC, or ISO-3166 by clicking its link. The
UDDI Registry window lets the administrator browse any of the three
classifications and discover published Web Services associated with any
category or subcategory.

Click the desired classification link.

The UDDI Registry: <Classification Name> window lets the administrator
drill down from category to subcategory to discover published Web Services
associated with any category or subcategory. Each classification is organized in
a hierarchical tree. Navigate down a particular branch by clicking the category
name to determine all its subcategory names, and so forth. As you navigate
down a branch, also note the change in the category code value.

Navigate to the desired category or subcategory by successively clicking the
desired category links.

The Web Services: <Category Name> window lets the administrator continue
to drill down through the categories, or you can view all Web Services
published in a particular category by selecting the corresponding radio button
in the Select column for that category, and clicking View Services.

Select the corresponding radio button in the Select column for the desired
category and click View Services.

The Web Services window lists all Web Services published for that category
name. For Web Services listed for the selected category, the corresponding
service name, service key, and business key are also listed. If the selected
category or subcategory has no published Web services, none is listed.

To view the complete details of a particular published Web Services listed for a
category, either click its service name link or select its corresponding radio
button in the Select column and click View Details.

Discovering and Publishing Web Services 10-15

Web Services Publishing

Click the desired service name link.

6. The Web Services Details window displays detailed information for the
selected Web Services published in the OracleAS UDDI Registry. This
information includes:

« Service Details

Service details include information such as the Web Services name, Web
Services description, and the URL of the Web Services access point.

Category

Category information includes the classification and the corresponding
code value and its category name.

« tModel Details

tModel details include information that describes the interface that the Web
Services implements, such as the tModel name, tModel description, and
URL to the interface specification, typically a WSDL document.

Category

Category information includes the classification and the corresponding
code value and its category name.

Category information can be added or deleted for both the Service Details and
tModel Details sections. You can browse the OracleAS UDDI Registry (click
Browse UDDI Registry) looking for categories in which to register Web Services.
You can add categories (click Add Category) to which both the Web Services and
tModel are to be registered. You can remove categories (click Delete) to which the
Web Services and tModel are registered.

Service and tModel detail information can be modified by moving the cursor to the
appropriate field and making the necessary changes.

After making all selections or completing all changes for this Web Services, click
Apply to save your changes.

If you have made changes to any field and you decide you want to return to the
original set of values for all selections, click Revert. The window refreshes with the
original set of values for all selections as if you had just begun your current session.

Make your modifications and click Apply to save your changes.

To discover and update other published Web Services for the same category, at the
top of the Web Services Details window, select the desired Web
Services:<Classification Name> link to return to the desired Web

10-16 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

Services:<Classification Name> window. At this window, select another Web
Services to view in more detail, make any necessary changes, and finally click
Apply to save your changes.

Alternatively, you can select the UDDI Registry link at the top of the Web Services
Details window to return to the UDDI Registry window where you can navigate to
another classification to discover Web Services for other categories. At each desired
category, select the desired Web Services to view its details, make any necessary
changes, and finally click Apply to save your changes.

Using the Publishing API

The UDDI publishing API lets programmers, following authentication, publish Web
Services by providing save and delete calls for each of the five key UDDI data
structures (businessEntity, businessService, bindingTemplate, tModel, and
publisherAssertion).

The publishing API allows programmers to publish Web Services using the Java
language. Programs can be written in any language and use SOAP to publish Web
Services. The Java APl is provided as a convenience for Java programmers.

The publishing APl is located in the Oracle Application Server installation directory,
<ORACLE_ HOVE>/ uddi / for UNIX and <ORACLE HOVE>\ uddi \ for Windows.
The API documentation that describes how to use this publishing API can be found
on the Oracle Application Server Documentation Library CD-ROM as UDDI Client
API Reference (Javadoc) under OracleAS Web Services, which is located under the
J2EE and Internet Applications tab.

A set of sample demonstration (uddi deno. zi p) files are located on the Oracle
technology Network (OTN) Web site
http://otn.oracle.com/tech/java/oc4j/demos.

The UddiPublishingExample.java Example

Within the uddi deno. zi p file is a Java program file,

Uddi Publ i shi ngExanpl e. j ava, that provides Java programmers with a starting
point that demonstrates the key constructs and the sequence in using the Oracle
UDDI client library.

The program example does the following:

« Gets an instance of SoapTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server
using SOAP and some underlying transport protocol (in this case HTTP).

Discovering and Publishing Web Services 10-17

Web Services Publishing

SoapTransportLiai son transport =
new Oracl eSoapHtt pTransportLi ai son();

Sets the proxy information for the transport if the system properties
http.proxyHost and http.proxyPort are set. These properties can be set on the
command line. If these properties are not set, this command has no effect.

set Ht t pProxy((SoapHtt pTransportLi ai son)transport);

Uses SoapTransportLiaison and the URL of a UDDI publishing registry to
initialize an instance of UddiClient, which connects to the specified OracleAS
UDDI Registry. The UddiClient instance is the primary interface by which
clients send requests to the OracleAS UDDI Registry Authentication is done
using the UDDI get_authToken message in this example.

Si npl eAut hent i cati onLi ai son auth =

new Si npl eAut henti cati onLi ai son(szUser Name, szPassword);
Uddi Qi ent uddi dient = new Uddi Cient(null, szPublishingUl, transport,
auth);

Note: The UddiClient instance, by default, operates as a UDDI
v2.0 client (the latest release supported). If a specific release is
needed, the release can be specified, either through another
constructor, or by the JVM property
oracle.uddi.client.default\ersion.

Performs authentication. You should make this call before doing any
publishing.

Uddi Cli ent. aut henticate();

Uses UddiClient to get a UddiElementFactory instance. This factory should
always be used to create any UDDI objects needed.

Uddi El ement Factory uddi El t Factory =
uddi C i ent . get Uddi El ement Factory();

Performs various publishing operations that include creating and saving a
tModel, a businessEntity, a businessService, and a bindingTemplate data
structure for the purpose of creating a business that provides a
Google-interface-compatible service.

10-18 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

Creates a tModel data structure that represents a Google-compatible service by
using the UddiElementFactory instance.

Thodel tMbdel = (TMdel)uddi El t Fact ory. creat eThbdel ();
t Model . set Nanme("urn: googl e. com search-interface");

— Creates and includes the OverviewDoc data structure in the tModel data
structure by using the UddiElementFactory instance.

Overvi ewDoc overvi ewDocTm =
(Overvi ewDoc) uddi El t Fact ory. creat eOver vi ewDoc() ;
t Model . set Over vi ewDoc(over vi ewDocTn) ;
overvi ewDocTm set Over vi ewURL("htt p: // api . googl e. conf Googl eSear ch. wsdl ") ;

— Inthe tModel data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference, which will be
used for searching. Classify the tModel data structure as a
SOAP/WSDL-based interface and put it under the "applicable service
providers" category.

Cat egoryBag cat BagTm =
(Cat egor yBag) uddi El t Fact ory. creat eCat egor yBag() ;
t Model . set Cat egor yBag(cat BagTn) ;

KeyedRef erence krTnl =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();

cat BagTm addUddi El ement (kr Tnt) ;

kr Tml. set TModel Key(Cor eTMbdel Const ant s. TAXONOWY_KEY_UDDI _TYPE) ;
kr Tml. set KeyName(" wsdl Spec");

kr Tml. set KeyVal ue("wsdl Spec");

KeyedRef erence krTn2 =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagTm addUddi El ement (kr Tn2) ;
kr Tn2. set TMbdel Key(Cor eTMbdel Const ant s. TAXONOMY_KEY_UDDI _TYPE) ;
kr Tn2. set KeyName(" wsdl Spec");
kr Tn2. set KeyVal ue("wsdl Spec");

KeyedRef erence krTnB8 =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagTm addUddi El ement (kr TnB) ;
kr TnB. set TModel Key(Cor eTMbdel Const ant s. TAXONOMY_KEY_UNSPSC _7_3) ;
kr TnB. set KeyName("appl i cation service providers");
kr TnB. set KeyVal ue("81. 11. 21. 06. 00") ;

Discovering and Publishing Web Services 10-19

Web Services Publishing

Publishes the Google search interface tModel business operation.

Systemout. println("\nPublish the google search interface tMdel.");

Thodel tMsaved = uddi Cient.saveThbdel (t Mdel);

String szGoogl eThbdel Key = t MSaved. get TMbdel Key();

Systemout.println("The tMdel is saved with tMdel Key assigned to be " +
szCoogl eThbdel Key) ;

Creates a businessEntity data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

Busi nessEntity businessEntity =
(Busi nessEntity)uddi El t Factory. creat eBusi nessEntity();
busi nessEntity. set Name("ACME search Inc.", "en");

In the businessEntity data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference data structure,
which will be used for searching. Classify the businessEntity data structure
under the "information services and data processing services" category.

KeyedRef erence krBel =

(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagBe. addUddi El ement (kr Bel);
krBel. set TModel Key(Cor eTMbdel Const ant's. TAXONOWY_KEY_NAI CS_1997) ;
krBel. set KeyName("Information Services and Data Processing Services");
krBel. set KeyVal ue("514");

Creates a businessService data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

Busi nessServi ces businessServices =

(Busi nessServi ces) uddi El t Fact ory. creat eBusi nessServi ces();
busi nessEntity. set Busi nessServi ces(busi nessServices);

Busi nessServi ce businessService =

(Busi nessServi ce)uddi El t Fact ory. cr eat eBusi nessServi ce();
busi nessServi ces. addUddi El ement (busi nessServi ce);

busi nessServi ce. set Nane(" ACME Wb Search service", "en");

In the businessService data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference data structure,
which will be used for searching. Classify the businessService data structure
under the "application service providers" category.

Cat egoryBag cat BagBs =
(Cat egor yBag) uddi El t Fact ory. creat eCat egor yBag() ;

10-20 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

busi nessServi ce. set Cat egor yBag(cat BagBs) ;
KeyedRef erence krBsl =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagBs. addUddi El ement (krBs1);
krBs1. set TMbdel Key(Cor eTMbdel Const ant's. TAXONOMY_KEY_UNSPSC _7_3);
krBs1. set KeyNanme("application service
providers"); krBsl. set KeyVal ue("81.11. 21. 06. 00");

Creates the bindingTemplates data structure that represents a
Google-compatible service by using the UddiElementFactory instance.

Bi ndi ngTenpl at es bi ndi ngTenpl ates =

(Bi ndi ngTenpl at es) uddi El t Fact ory. creat eBi ndi ngTenpl ates();
busi nessServi ce. set Bi ndi ngTenpl at es(bi ndi ngTenpl at es);
Bi ndi ngTenpl ate bi ndi ngTenpl ate =

(Bi ndi ngTenpl at e) uddi El t Fact ory. cr eat eBi ndi ngTenpl ate();
bi ndi ngTenpl at es. addUddi El ement (bi ndi ngTenpl ate);

— Creates and includes the access point in the bindingTemplates data
structure by using the UddiElementFactory instance.

AccessPoi nt accessPoint =

(AccessPoi nt) uddi El t Fact ory. creat eAccessPoi nt ();

bi ndi ngTenpl at e. set AccessPoi nt (accessPoi nt);
accessPoint.set Ul Type("http");

accessPoint. set Content ("http://foobar.net/search-g");

— Creates and includes the tModel instance details in the bindingTemplates
data structure by using the UddiElementFactory instance.

Thodel I nstanceDetai | s t Model | nstanceDetails =
(TMbdel | nst anceDet ai | s) uddi El t Fact ory. creat eTWbdel | nst anceDet ai | s();
bi ndi ngTenpl at e. set TMddel | nst anceDet ai | s(t Mbdel | nst anceDet ail s);

— Declares that the bindingTemplate data structure implements the Google
search interface.

Thodel I nst ancel nfo t Model I nstancelnfo =

(TModel I nst ancel nf o) uddi El t Fact ory. creat eTModel | nst ancel nfo();
t Model | nst anceDet ai | s. addUddi El enent (t Model | nst ancel nfo);
t Model | nst ancel nf 0. set TMbdel Key(szGoogl eThbdel Key) ;

Publishes the businessEntity data structure and its containing businessService
and bindingTemplate data structures.

Systemout. println("Publish the ACME Search Inc. businessEntity...");

Discovering and Publishing Web Services 10-21

Web Services Publishing

Busi nessEntity bESaved = uddi O ient.saveBusi ness(busi nessEntity);
Systemout. println("The saved businessEntity (in XM) is:");

bESaved. set Nane("The ACME search Inc.", "en");
Busi nessEntity bEUpdated = uddi dient.saveBusi ness(bESaved);

« Uses the UddiElementFactory instance to retrieve an XmIWriter object. To view
the raw XML data represented by an object, which extends UddiElement,
marshall the element content to the writer and then flush and close the writer.

XmMWiter witerXm Witer =

uddi El t Factory. createWiterXm Witer(new PrintWiter(Systemout));
bESaved. marshal | (writerXm Witer);

witerXm Witer.flush();

witerXm Witer.close();

« Closes the UddiClient instance when finished to release resources and to log out
from the registry.

uddi i ent.close();

The UddiPublisherAssertionExample.java Example

Within the uddi deno. zi p file is a Java program file,

uddi Publ i sher Asserti onExanpl e. j ava. This file provides Java programmers
with a starting point that demonstrates the key constructs and the sequence in using
the Oracle UDDI client library for publisher assertion-related operations.

A publisher assertion, which is a UDDI v2.0 feature, is an assertion made by a
publisher who is expressing a particular fact about a business registration and its
relationships to other business data within the OracleAS UDDI Registry. Publisher
assertions are used to establish visible relationships between registered data. Once
completed, a set of assertions can be seen by the general inquiry message named
findRelatedBusinesses.

The program example does the following:
« Initializes instances of two UddiClients.

UddiClient uddiClientl =

createUddi dient(szlnquiryUl, szPublishingUl, szUserNamel, szPasswordl);
Uddi Client uddiCient2 =

createUddi dient(szlnquiryUl, szPublishingUl, szUserName2, szPassword2);
Di sposi ti onReport dispositionReport = null;

« Creates the business entities to be used.

10-22 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

String bEKeyl =
creat eBusi nessEntity(uddi dient1l,
"bEL - Uddi Publ i sher AssertionExanpl e");
String bEKey2 =
creat eBusi nessEntity(uddi Cient2,
"bE2 - Uddi Publ i sher Asserti onExanpl ") ;

Creates for uddiClientl a publisher assertion that represents a peer-to-peer
relationship from bE1 to bE2.

Systemout.printin("");
Systemout.printin("uddiCientl attenpts to create a peer-to-peer
relationship ");
Systemout.printin("frombEl to bE2...");
di sposi ti onReport =

uddi i ent 1. addPubl i sher Asserti on

(creat ePeer ToPeer Publ i sher Assertion(uddi Clientl, bEKeyl, bEKey2));
Systemout. println("Done.");

Makes a query for uddiClientl for relationships yet to be established; that is,
looking for those relationships that the toKey side has not yet acknowledged.

AssertionStatusReport assertionStatusReportl =
uddi Cient 1. get AssertionSt at usReport
(AssertionStatusltem COVMPLETI ON_STATUS_TOKEY_| NCOVPLETE) ;
printQut Xm (" pending relationships for uddi Cientl: case toKey inconplete",
assertionStat usReportl);

Makes a query for uddiClient2 for relationships yet to be established; that is,
looking for those relationships that the toKey side has not yet acknowledged.

AssertionStatusReport assertionStatusReport2 =
uddi G i ent 2. get Asserti onSt at usReport
(AssertionStatusltem COVMPLETI ON_STATUS_TOKEY_| NCOVPLETE) ;
printQut Xm (" pending relationships for uddi Cient2: case toKey inconplete",
assertionStat usReport?2);

Shows uddiClient2 agreeing to the peer-to-peer relationship requested by
creating a publisher assertion.

Systemout.printin("");
Systemout.printIn("uddiClient2 agrees to the peer-to-peer relationship ");
Systemout.printIn("frombEl to bE2");
di spositionReport =
uddi O i ent 2. addPubl i sher Asserti on
(creat ePeer ToPeer Publ i sher Assertion(uddi Client2, bEKeyl, bEKey2));

Discovering and Publishing Web Services 10-23

Web Services Publishing

Systemout. println("Done.");

Makes another query for uddiClient2 for relationships yet to be established to
see if there are other peer-to-peer relationships to be established. There are no
more pending relationships to be established.

AssertionStatusReport assertionStatusReport2After =
uddi O ient2. get AssertionStatusReport
(AssertionStatusltem COVWPLETI ON_STATUS_TOKEY_| NCOVPLETE) ;

printQut Xn ("pending relationships for client2: toKey inconplete (should be
none)", assertionStatusReport2After);

Finds related businesses that have established peer-to-peer relationships (that
have published assertions) by calling the general inquiry message
findRelatedBusinesses.

Rel at edBusi nessesLi st rbList =
uddi Cient1.findRel at edBusi nesses
(bEKey1,
creat ePeer ToPeer KeyedRef erence(uddi Cientl),
null);
printQut Xm ("find all businesses that are peers to " + bEKeyl, rbList);

Deletes a publisher assertion relationship between bE1 and bE2, owned by
uddiClientl.

Systemout.printin("");

Systemout.printlin("Delete a publisherAssertion...");

di spositionReport = uddi dientl.deletePublisherAssertion
(createldentityPublisherAssertion(uddi Cientl, bEKeyl, bEKey2));

System out. println("Done");

Shows another way of deleting all publisher assertion relationships owned by
uddiClientl by using the setPublisherAssertions call.

Systemout.printin("");
Systemout.printin("Delete all publisherAssertions of uddiCientl ");
Systemout. println("by using setPublisherAssertions...");
publ i sher Assertions =
uddi i ent 1. setPublisherAssertions(null);
printCQut Xnl ("Done. The current list:", publisherAssertions);

10-24 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

OracleAS UDDI Registry Administration

The following sections describe new OracleAS UDDI Registry administration
features.

Using the Command-Line Tool uddiadmin.jar

Many administrative operations are done using the command-line tool
uddi admi n. j ar described in the sections that follow.

The command-line tool uddi admi n. j ar is located in the

uddi / I'i b/ uddi adm n. j ar file for UNIX and in the

uddi \ I i b\ uddi adm n. j ar file for Windows. Administrators can use this tool for
various administrative activities. In general, the command-line tool takes the
command-line parameters of the following form:

java -jar uddiadnin.jar <registry adnmin URL> <username> <password>
[-verbose] <action to performand additional paraneters>

where the <usernane> bel ongs to the uddi adm n group

The default user name isi as_adm n and the default password isi as_adni n123.

Note that the - ver bose option will cause stack trace information to be printed out
when an exception is encountered.

Server Configuration

The following parameters are used for server configuration operations. See Server
Configuration Properties Reference Information on page 10-48 for more information
about these configuration parameters.

getProperties

Parameters: <regi stry adnmin URL> <user name> <password>
[-verbose] -getProperties

Description: Lists the current registry configuration parameters.
Example:

java -jar uddiadnmin.jar <registry admin URL> <username> <password> [-verbose]
-getProperties

Discovering and Publishing Web Services 10-25

OracleAS UDDI Registry Administration

setProperty

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -setProperty <nanme>=<val ue>

Description: Changes the value of the named configuration parameter. The
OracleAS UDDI Registry J2EE application needs to be restarted for the parameters
to take effect.

Warning: Be very careful when using the -setProperty option to

change server configuration property values. Making an incorrect
property setting could cause severe damage to the integrity of the
registry.

User Management

OracleAS UDDI Registry for 10g (9.0.4) uses the Oracle Internet Directory (OID) of
the Oracle Application Server infrastructure as the default user repository. This is
achieved through the use of LDAP-based provider of OC4J Java Authentication and
Authorization Service (JAAS).

UDDI-specific OID groups are located under the cn=uddi _gr oups subtree of the
group subtree of the OID default subscriber.

In other words, users are located under the user subtree of the OID default
subscriber.

The types of UDDI users are summarized in Table 10-1.

Table 10-1 Default UDDI Groups

Group Description

uddipublisher Can access the publishing end point and save, update, or delete
UDDI entities in the registry.

uddipublisher Can create UDDI subscriptions.

uddiadmin Can access the administration end points and perform

administrative activities.
Can perform all activities specified in uddipublisher group.

uddireplicator Can perform replication activities based on the replication schedule:
send replication requests such as get_changeRecords to other UDDI
nodes and apply the changeRecords received.

10-26 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Note: Do not remove any of these default UDDI Groups.

In addition to these groups, there are also a set of default groups for user quota
purposes. Those groups can be added, updated, or removed based on the specific
user quota policy administrators need to enforce.

By default, the following users are created in an installation. Administrators can
add or remove users to or from these corresponding groups as shown in Table 10-2.

Table 10-2 Default UDDI Users

Group User Names Comments

uddiadmin ias_admin Typically, Enterprise Manager
administrators also login as ias_admin to
publish to the UDDI registry through the
Enterprise Manager integrated J2EE Web
Services deployment and publishing

wizard.
uddipublisher uddi_publisher, These are sample users for demonstrating
uddi_publisherl publishing and different default quota
groups.
uddireplicator uddi_replicator The default user used for performing the

UDDI replication activities in the
background. This user should not be
removed. If you do need to remove this
user, make sure you add another user to the
uddireplicator group. The user to start the
Replication Client module must be updated
as well by modifying the
orion-application.xm fileinthe

or audr epl . ear archive file.

Generic user management, such as creation, deletion, suspension, and so forth, is
handled by Oracle Internet Directory and its Delegated Administration Service.
Refer to Oracle Internet Directory Administrator’s Guide for more information.

User management, including operations such as creation, deletion, suspension, role
management, and so forth, is handled by OC4J Java Authentication and
Authorization (JAAS) service. Refer to Oracle Application Server Containers for J2EE
Services Guide for more information.

Discovering and Publishing Web Services 10-27

OracleAS UDDI Registry Administration

In general, user management is handled by the OC4J JAAS service and OID.
However, to find out the authorized name of a user, use the - get User s option of
the uddi adm n. j ar command-line tool described as follows:

getUsers

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -getUsers

Description: Lists all existing users who have entities in the registry.
Example:

java -jar uddiadnmin.jar <registry admn URL> <username> <password> [-verbose]
-get Users

getUserDetail

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -getUserDetail <usernane_to retrieve>

Description: Retrieves the details of the named user, currently the authorizedName
of each user.

Quota Enforcement

OracleAS UDDI Registry provides a mechanism to enforce the number of entities a
publisher can own. A publisher can own at most a specific number of tModels,
publisherAssertions, businessEntities, businessServices per businessEnitity, and
bindingTemplates per businessService depending upon the quota group associated
with the publisher, which is guided by the user group to which the publisher is
assigned.

OracleAS UDDI Registry uses a group-based mechanism for assigning quota limits
to a publisher. When a new publisher is added, the OracleAS UDDI Registry
administrator must associate the publisher with a quota group. Table 10-3 shows
the predefined quota groups and quota limits for each entity that a publisher can
own.

10-28 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Table 10-3 Predefined Quota Groups

Quota Group Quota Limits per Entity
businessServices bindingTemplates

business per per

Entities businessEntity businessService tModels publisherAssertions
Default 1 4 2 100 10
uddi_ Unlimited Unlimited Unlimited Unlimited Unlimited
unlimited_
guota_group
uddi_lowlimits_ 2 2 1 3 3
quota_group
<Implicit>UDDI Unlimited Unlimited Unlimited Unlimited Unlimited

_Administrators

The explicit Def aul t quota group cannot be deleted. Users who are UDDI
administrators always get unlimited quota.

The OracleAS UDDI Registry administrator can also update a quota group, add a
new quota group, delete a quota group, view the lists of quota groups and their
guota limits, and associate a publisher with a quota group. The following sections
describe each of these administrator tasks.

Associating a Publisher with a Quota Group

When a user is added to the user store (OID or j azn- dat a. xni), the user should
be placed in a group so that it gets the appropriate quota group. For example, with
the pre-defined settings, administrators can assign a user to have the low quota
limits by assigning the user tothe uddi _| owl i mi ts_quot a_gr oup group.

If a user does not belong to a particular group, the user gets the quota limits from
the Def aul t group. A UDDI administrator always has unlimited quota.

Viewing the Lists of Quota Groups and Their Limits

Use the - get Rol eQuot aLi m t s option of the command-line tool
uddi admi n. j ar, described as follows:

getRoleQuotaLimits

Parameter: get Rol eQuotaLimts

Discovering and Publishing Web Services 10-29

OracleAS UDDI Registry Administration

Description: Displays all the J2EE-role-to-quota-limits mappings that are currently
set in the registry.

Parameter type/allowable values: long
Initial value: 0

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -getRoleQuotalLinits

Updating the Limits of a Quota Group
Use the - set Rol eQuot aLi m t s option of the command-line tool

uddi admi n. j ar, described as follows:
setRoleQuotalLimits
Parameter: set Rol eQuotaLinits

Description: Sets the quota limit value for the specified quota group. This option
can be used to create a new group-to-quota-limit mapping or to update an existing
mapping. The parameters are defined as follows:

« roleName -- name of the quota group to map to the specified limits
« maxBE -- maximum number of businessEntity data structures allowed

« maxBSperBE -- maximum number of businessService data structures per
businessEntity allowed

« maxBTperBS -- maximum number of bindingTemplate data structures per
businessEntity allowed

« maxTM -- maximum number of tModel data structures allowed

« maxPA -- maximum number of publisherAssertion data structures allowed
The value -1 means unlimited.

Parameter type/allowable values: N/A

Initial value: N/A

Typical value: N/A

10-30 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Guideline: NZA

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>

[-verbose] -setRol eQuotalimts <rol eName> <maxBE> <maxBSper BE> <nmaxBTper BS>

<maxTM> <maxPA>

Adding a New Quota Group (Advanced Operation)
To add a new quota group, perform the following steps:

1.
2.

Add the group to the user store, typically OID.

Define the corresponding J2EE security role partnerGroup for the new group
name you want to create in the or auddi application. The settings must be
added in both the appl i cati on. xm file of the or auddi . ear file and the
web. xm file of the or auddi . ear file.

Define the J2EE security role to the user store mapping in the
orion-application.xm file of the or auddi . ear file.

Define the actual limits of the quota group using the - set Rol eQuot aLi m ts
option of the command-line tool uddi addmni n. j ar . See the

- set Rol eQuot aLi mi t s option in Updating the Limits of a Quota Group on
page 10-28 for more information.

Deleting a Quota Group (Advanced Operation)
To remove a quota group, perform the following steps:

1.

Remove the J2EE security role for the partnerGroup you want to remove from
the or auddi application. The settings must be removed from both the
application.xm fileof the or auddi . ear file and the web. xm file of the
or auddi . ear file.

Remove the J2EE security role to the user store mapping in the
orion-application.xm file of the or auddi . ear file.

Remove the actual limits of the quota group using the

- del et eRol eQuot aLi mi t s option of the command-line tool

uddi admi n. j ar. See the - del et eRol eQuot aLi ni t s option described after
Step 4 for more information.

Remove the group from the user store, typically OID.

Discovering and Publishing Web Services 10-31

OracleAS UDDI Registry Administration

deleteRoleQuotaLimits
Parameter: del et eRol eQuotaLimts

Description: Deletes the group-to-quota-limits mappings for the specified quota
groups.

Parameter type/allowable values: N/A
Initial value: N/A

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -deleteRol eQuotaLinits <rol eName> [<rol eName>. . .]

Administrative Entity Management
The following parameters are used for administrative entity management:

deleteEntity

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -deleteEntity [-busi nessKey <busi nessKey> |

-servi ceKey <serviceKey> | -bindi ngKey <bi ndi ngKey> |

-t Model Key <t Model Key>]

Description: Deletes the named entity irrespective of the owner of the entity. Note

that this operation performs a nonpermanent delete (hide) operation in the case of a
tModel entity.

destroyTModel
Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -destroyThModel <tMdel Key>

Description: Permanently deletes the named tModel from the registry (as opposed
to the UDDI-defined delete_tModel call, which is just hiding the tModel entity).

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -changeOaner <new usernane> [-busi nessKey
<busi nessKey> | -t Model Key <t Model Key>]

10-32 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Description: Changes the ownership of the named entity to the new specified user.

Import Operation
The following parameter is used for importing entities;

import
Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] [-s|-n] -inport [-businesses <filenane> | -tnodels

<filenane> | -publisherAssertion <filenanme> -fronBusi nessCheck
[true|fal se] -toBusinessCheck [true|false]]

Description: Imports all businessEntity and tModel data structures, and a
publisherAssertion in the named file. For importing the businessEntity data
structure, the named file (<f i | ename>) for importing should contain a UDDI
businessDetail XML document. For importing tModel data structures, the named
file should contain a UDDI tModelDetail XML document. By importing them,
entityKeys (such as, businessKey, serviceKey, bindingKey, tModelKey) are
preserved. The operatorName and authorizedName fields, however, are not
preserved. The operatorName field will be replaced by the operatorName
configuration parameter of the registry. The owner of the imported entities is the
administrator; hence, the authorizedName field will be the authorizedName of the
administrator. Importing can be done in single mode (-s), which does not allow
partial success (some entities are imported and some are not due to some error
condition), or in multiple mode (-m), which does allow partial success.

The import parameter is particularly useful in importing the well-known service
interface specification tModel and classification tModel data structures from some
authoritative sources.

Because the entity keys are preserved, administrators should be careful in
evaluating the source of the entities to ensure there will not be a collision in entity
keys.

For importing a publisher assertion, two Boolean values are required. These
Boolean values are used to indicate from which side (or both sides when two
Boolean values are true) the publisher assertion is going to be inserted.

Set Operational Information

The - set Oper at i onal | nf o parameter is used for setting some operational
information of entities, such as the modified timestamp. Note there are two options.

Discovering and Publishing Web Services 10-33

OracleAS UDDI Registry Administration

setOperationallnfo

Parameters: Opti on 1: <registry adm n URL> <user nane> <password>
[-verbose] - setQperationallnfo [[-businessKey key |

-t Model Key key] [-newQperator Operator Nane]

[- newAut hori zednarme aut hNane] [-newTinme tinmestanp]]

Option 2: <registry adm n URL> <usernane> <passwor d>
[-verbose] - setQperationallnfo [[-serviceKey key |
- bi ndi ngKey key] -newTinme tinmestanp]

Description: Sets some operational information, such as the operator name,
authorized name, or timestamp of a businessEntity or tModel specified by a key, for
example, following an import operation. Any combination of these three options is
allowed to be set using the - set Oper at i onal | nf o option.

The syntax option [[- busi nessKey key | -t Mdel Key key]

[- newOper at or Oper at or Nane] [- newAut hori zedname aut hNane]
[-newTi ne tinmestanp]] letsyou change either the operator name, the
authorized name, or the timestamp, or all three options of a business entity or
tModel specified by a key.

The syntax option [[- servi ceKey key | -bindi ngKey key] -newTi ne
ti mestanp] lets you change only the timestamp of a business service or binding
template.

Note: The format of a timestamp is defined as 'yyyy-mm-dd
hh.mm:ss.fffffffff’ by java.sql. Timestamp. For example,

’2002-12- 01 00: 00: 00
Because there is a blank space in the timestamp value between

'yyyy-mm-dd and hh.mm:ss.fffffffff, the entire value must be placed inside
a pair of quotation marks on the command line.

Warning: This feature should not be invoked when replication is
set to on. In general, the - set Qper at i onal | nf o option should
not be used when replication is enabled.

10-34 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

UDDI Replication

The OracleAS UDDI Registry allows administrators to create a logical registry that
comprises one or more Oracle UDDI implementations and UDDI implementations
from other vendors that also implement the UDDI v2.0 Replication Specification.
See the UDDI v2.0 Replication Specification for more information.

This section briefly describes the data replication process and the program interface
required to achieve complete data replication among UDDI operator nodes that
form a UDDI service. UDDI replication ensures that all operator nodes see all the
changes that have originated at individual operator nodes. In addition, any
inquiries made at any operator node within the UDDI service yield results
consistent to those made at any other operator node within the UDDI service, hence
the logical OracleAS UDDI Registry.

For detailed technical descriptions of concepts and definitions involved with UDDI
replication, including replication processing, how to bring new UDDI operators
online, checking and validation of replicated data, see the UDDI v2.0 Replication
Specification. The sections that follow describe the Oracle implementation of UDDI
replication.

Enabling UDDI Replication
To enable UDDI replication, an administrator must perform the following steps:

1. Participate with and agree to the replication topology with UDDI
administrators of other operator nodes. This involves editing the replication
configuration (in the format specified in the UDDI v2.0 replication specification)
accordingly, and using the - downl oadRepl i cati onConfi gur ati on and
- upl oadRepl i cati onConfi gur at i on options of the command-line tool
uddi admi n. j ar.

2. Enable replication scheduling by setting the following server property,
oracl e. uddi . server. schedul er. st at us, to the value 1.

3. Enable update journal storage by setting the following property,
oracle.uddi.server.replication.startMaintainingUpdateJournal, to true.

After UDDI replication is started, the UDDI administrator can suspend or resume
replication operations by stopping or starting the or audr epl . ear application.

If HTTPS client-certification is used, UDDI administrators must do the following:

1. Obtain an exported Oracle wallet file using Oracle Wallet Manager and specify
the exported wallet location by setting the server property

Discovering and Publishing Web Services 10-35

OracleAS UDDI Registry Administration

oracl e. uddi . server.replication.wall etLocati on. This option only
needs to be set once.

2. Usethe - set Wl | et Passwor d option to supply the wallet password,
whenever the or audr epl . ear application is started or restarted. The
password is not persistent for security reasons.

See Replication Configuration Management on page 10-36 for a description of
useful parameter options that are provided to assist OracleAS UDDI Registry
administrators in the day-to-day operations during replication, using the
command-line tool uddi admi n. j ar.

In some cases, the administrator of the source of the error must correct an invalid
changeRecord operation that caused the error. The administrator can use the

- corr ect ChangeRecor d option of the command-line tool uddi admi n. j ar to
supply the correct changeRecord data. See Replication Exception Handling on
page 10-38 for more information.

Replication Configuration Management
The following parameters are used in replication configuration management:

uploadReplicationConfiguration

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -uploadReplicationConfiguration <xm file_
contai ning_replication_configuration>

Description: Uploads the specified replication configuration to a particular UDDI
node within an OracleAS UDDI Registry. The application must be restarted for the
new replication configuration to be used.

downloadReplicationConfiguration

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -downl oadRepli cati onConfiguration

Description: Downloads the currently used replication configuration from a
specified UDDI node within the OracleAS UDDI Registry.

Miscellaneous Operations
The following parameters are used in miscellaneous operations:

doPing

10-36 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -doPing replicationEndPoi nt SoapUrl [-password
wal | et Passwor d]

Description: Sends a UDDI replication do_ping message to the replication
end-point URL specified. This is similar to the ping command in TCP/IP that is
used to check if the other end point is alive. The optional walletPassword is useful
when the JVM, which receives the do_ping message, does not have a valid wallet
password set.

replicationEndPointSoapUrl

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -replicationEndPoi nt SoapUrl [-password
wal | et Passwor d]

Description: Gets the high-water marks vector from the specified UDDI node. The
optional walletPassword is useful when the JVM, which receives the do_ping
message, does not have a valid wallet password set.

getChangeRecord

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -getChangeRecord |ocal usn

Description: Gets the detail of a change record specified by local_usn (an integer).
This APl is used in conjunction with the - Cor r ect ChangeRecor d option to
correct wrong or inconsistent data across different UDDI nodes with the OracleAS
UDDI Registry.

HTTPS Setup
The following parameter is used in HTTPS setup operations:

setWalletPassword

Parameters: <regi stry replication wallet adm n URL> <username>
<password> [-verbose] -setWlletPassword wal | et Password

Description: Sets the wallet password to be used for HTTPS communication among
UDDI nodes for UDDI replication. Each time the application is restarted, this option
must be invoked because the wallet password is not stored persistently, for security
reasons. The registry replication wallet admin URL is

http:// <O acl eAS- host >: <Or acl eAS- port >/ uddi repl / adm n/ wal | et .

Discovering and Publishing Web Services 10-37

OracleAS UDDI Registry Administration

Custody Transfer
The following parameter is used in replication custody transfer operations:

transferCustody

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -transferCustody ol dOperat or Nane newQper at or Nane
newAut hori zedNane [-t Model Key t Model Key | -busi nessKey

busi nessKey]

Description: Transfers the custody of a tModel or a business entity to a new
operator and a new authorized name. This option is part of custody transfer as
defined by the UDDI specification.

Replication Exception Handling

If any errors occur during replication operations, the OracleAS UDDI Registry logs
the error in the appl i cat i on. | og file of the or audr epl . ear file. The
administrator should investigate the cause of the error and correct each problem
accordingly.

The following parameter is used in replication exception handling:

correctChangeRecords

Parameters: <regi stry adm n URL> <user nane> <passwor d>
[-verbose] -correct ChangeRecord <changeRecordCorrectionfil e>
<changeRecor dNewDat af i | e>

Description: Applies the changeRecordCorrectionfile file contents and
changeRecordNewDatafile file contents to the UDDI node. The content of these files
must conform to the UDDI replication XML schema. This option is part of UDDI
replication error recovery.

Advanced Configuration and Tuning

See UDDI Replication Properties on page 10-51 for a description of a set of server
properties provided for advanced tuning and configuration of the replication
operations.

Registry-Based Category Validation

OracleAS UDDI Registry for 10g (9.0.4) can perform a spell-check form of category
value validation. An administrator can add or remove the set of categories that will

10-38 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

be validated by the registry. Refer to the v2.0 UDDI specification for more
information.

Adding a New Category for Registry-Based Validation

To add a new category, you must load the category values into the database and
register the category with the registry. Perform the following steps:

1.

Publish the category to the registry by saving a new tModel data structure. For
example, look at the tModel data structure named nt i s- gov: nai cs: 1997.
You can use the included sample Web applications link

http:// <O acl eAS- host >: <O acl eAS- port >/ uddi / or a third-party
tool.

If the tModel data structure has been defined in some other registry, you can
also import it (instead of creating a new one, which results in different
tModelKeys entities) using the uddi admi n. j ar utility. See Import Operation
on page 10-33 for more information on the import operation.

The tModel data structure published should be classified as "unvalidatable™ in
uddi-org:types taxonomy. Specifically, the following keyedReference should
appear in the categoryBag element of the tModel data structure:

<keyedRef erence

t Mbdel Key="uui d: CLACF26D- 9672- 4404- 9D70- 39B756E62AB4"
keyNanme="" keyVal ue="unval i dat abl e" />

Load the category values into the database. To do this, all the category values
should be in a file using the following format:

« Each line of the file describes one category value in the category. It should
be in the following format:

<category val ue> | <description of category val ue>
| <category value of the parent>
« Ifacategory value is a root value, for example, it has no parent, the
category value of the parent should be set to itself.

« The line in the file for a category value should occur before the lines for all
of its descendants.

Examples can be found in the uddi / t axonorny directory for UNIX and in
the uddi \ t axonomy directory for Windows. Excerpts from the NAICS file
are as follows:

22| Uilities|22

Discovering and Publishing Web Services 10-39

OracleAS UDDI Registry Administration

221 Wilities|22
2211| El ectric Power Generation, Transm ssion|221

If your files use different characters from different languages, it is
recommended that you save the file with UTF-8 encoding to avoid any
problems that may arise, such as character corruption.

3. Create a SQL*Loader control file to load the category file. An example is
uddi / admi n/ nai cs-97. ct| for UNIX and uddi \ adm n\ nai cs- 97. ct |
for Windows. Copy the file and replace the category file name in the control file
with the one you create. Refer to the v2.0 UDDI specification for more
information about generating a unique 1D for the new category tModel.

4. Load the category file to the database using SQL*Loader. Refer to Oracle9i
Database Utilities for more information about using SQL*Loader.

5. Configure the registry so that it recognizes the category that must be validated
by using the command-line administrative tool, uddi adm n. j ar . For example,
to add a new tModel entity with key
UUl D: FFFFFFFF- FFFF- FFFF- FFFF- FFFFFFFFFFFO, issue the setProperty
command for the property
oracl e. uddi . server. cat egoryVal i dati onThMbdel Keys as follows:

java -jar uddiadnmin.jar <registry adnmin URL> <username>
<passwor d> -set Property

"oracl e. uddi . server. cat egoryVal i dat i onTWbdel Keys=

" UUl D. CLACF26D- 9672- 4404- 9D70- 39B756E62AB4" ,

" UUI D. 4E49A8D6- D5A2- 4FC2- 93A0- 0411D8D19ESS" ,

" UUI D: COB9FE13- 179F- 413D 8A5B- 5004DB8ESBB2' ,

" UUI D: CD153257- 086A- 4237- B336- 6BDCBDCC6634"

" W D. FFFFFFFF- FFFF- FFFF- FFFF- FFFFFFFFFFFO" "

Notice that because the setProperty command defines all categories that need to
be validated, to add a new category, you must set the property with all the
existing tModelKey values plus the new tModelKey value.

6. Allow the registry users to use the category tModel published by removing the
"unvalidatable™ categorization done in Step 1. Specifically, the following
keyedReference element should be removed from the categoryBag element of
the tModel data structure: <keyedRef er ence
t Model Key="uui d: CLACF26D- 9672- 4404- 9D70- 39B756E62AB4"
keyNanme="" keyVal ue="unval i dat abl e" />

10-40 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Removing a Category from Registry-Based Validation

To remove a category from registry-based validation, you should unregister the
category with the registry and remove the category values in the database. Perform
the following steps:

1. To unregister the category with the registry, you should remove it from the list
of validated categories using the uddi adm n. j ar set Property command
for the property
oracl e. uddi . server. cat egoryVal i dati onTMbodel Keys.

You do not have to (and in general should not) delete the tModel data structure
from the registry.

2. To remove the category values from the database, use the SQL*Plus script
wur ver m sgl inthe uddi / admi n directory for UNIX and in the uddi \ admi n
directory for Windows. For example:

sql pl us sys/ <sys-password> @wurvcrm sql

When running this script, you will be prompted for the tModelKey value of the
category to be removed. You should see that a set of rows has been deleted. If
the result shows that 0 rows were deleted, you entered an invalid tModelKey
value.

External Validation

Third parties can register new category and identifier schemes, and then control the
validation process used by the OracleAS UDDI Registry to perform external
validation or checking. This enables a third-party category provider to validate the
UDDI entities to be saved when the entity is categorized, or identified with the
category, by providing a validate_values SOAP Web service.

The operator that is calling the validate_values service will pass a businessEntity, a
businessService, or a tModel element as the sole argument to this callout. This is the
same data that is being passed within a save_business, save_service, or save_
tModel API call. External validation is performed for any third-party category
provider and identifier scheme that is classified as checked. A tModel element
marked as checked asserts that it represents a categorization, identifier, or
namespace tModel element that has a properly registered validation service.

If no error is found, the response is a dispositionReport message returning an
errorCode value of E_success and an errno value of 0. If any error is found, or the
called service needs to signal that the information being saved is not valid based on
the validation algorithm chosen by the external service provider, then the service

Discovering and Publishing Web Services 10-41

OracleAS UDDI Registry Administration

should raise a SOAP Fault and indicate either an errorCode value of E_invalidValue
or E_valueNotAllowed. In either case, the error text indicates the keyedReference
data that is being rejected, and the reason why.

Use the command-line tool uddi admi n. j ar with the - set Pr operty option to:
« Enable external validation
« Add an externally validated category to the registry

« Remove an externally validated category from the registry

Enabling External Category Validation

To enable external category validation, issue the - set Pr oper t y option for the
following property or acl e. uddi . server. ext er nal Val i dati on as follows:

java -jar uddiadnmin.jar <registry adnin URL> <username> <password> -setProperty
oracl e.uddi . server. external Val i dati on=true

Adding an Externally Validated Category to the Registry
To add an externally validated category to the registry, perform the following steps:

1. Publish the new category as a tModel data structure to the registry. This data
structure must be categorized as checked under uddi-org:types category.

2. Register the external validation service of the category with the registry by
updating the following server property:
oracl e. uddi . server. ext ernal Val i dati onTMbodel Li st using the
- set Property option as follows:

java -jar uddiadmn.jar <registry admn URL> <usernane> <password>

-set Property

oracl e. uddi . server. external Val i dati onTModel Li st =<key- val ue>, <URL-val i dati on-
servi ce>

For example, if the category tModel published has the key
"uuid:acme-taxonomy-key", and the URL of the validation service is
http://acme. con ext er nal Val i dat i on, the command with the entry is
as follows:

java -jar uddiadnmin.jar <registry adnin URL> <username> <password>

-set Property

oracl e.uddi . server. external Val i dati onTMbdel Li st =uui d: acne-t axonony- key, htt p:
[l acne. coni ext ernal Val i dation

10-42 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

In addition, the timeout limit (in milliseconds) can be tuned for calls to the
external validation service using the server property
oracl e. uddi . server. ext ernal Val i dati onTi neout as follows:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
-setProperty oracle.uddi.server.external ValidationTi meout =5000

Removing an Externally Validated Category from the Registry

To remove an externally validated category from the registry, perform the following
steps:

1. Update the following server property:
oracl e. uddi . server. ext ernal Val i dati onTMbdel Li st using the
- set Property option by supplying a null value for the
<URL-val i dati on-servi ce> as follows:

java -jar uddiadnmin.jar <registry admin URL> <username> <password>
-setProperty oracle.uddi.server.external Validati onThbdel Li st =<key-val ue>,""

For example, if the category tModel published has the key
"uuid:acme-taxonomy-key", and the URL of the validation service is
http://acme. com ext ernal Val i dat i on, the command with the null
entry will be as follows:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
-setProperty
oracl e. uddi . server. ext ernal Val i dat i onThbdel Li st =uui d: acne- t axonony- key, ""

2. Deprecate or update the corresponding tModel data structure. If the tModel is
not updated, the registry will reject any new UDDI entries that are categorized
or identified by the category that was removed in subsequent save calls to the
save_bhusiness, save_service, or save_tModel API.

Performance Monitoring and Tuning

On the back end of an Oracle database, UDDI servlets, and the associated JDBC
connection pools, can all be monitored using Oracle Enterprise Manager and other
standard database monitoring and tuning utilities.

In an OC4J standalone environment, performance information is typically available
at

http://<oc4j - host - name>: <port - nunber >/ dnsoc4j / Spy

Discovering and Publishing Web Services 10-43

OracleAS UDDI Registry Administration

Data Backup and Restore Operations

Registry data backup and restore operations can be done by using the standard
Oracle database backup and restore operations. See Oracle9i Backup and Recovery
Concepts.

Additional Information

The following sections are some additional OracleAS UDDI Registry administration
information.

UUID Generation

The UUID generation algorithm that is used generates version 4 UUID, which
creates UUIDs from random numbers.

All built-in tModel data structures as specified in the UDDI v2.0 specification are
included. An additional tModel data structure uddi - or g: oper at or s, defined in
the UDDI v2.0 specification, is also included to classify the bootstrap node
businessEntity that represents the OracleAS UDDI Registry itself.

Database Configuration
The following sections describe some database-specific configuration information.

Database Character Set Should Be UTF-8 The database character set should be UTF-8 to
accommodate all possible characters. However, if a customer is absolutely certain
that the data to be stored in the registry contains characters of a specific country or
region (such as western Europe), the customer may use the appropriate database
character set.

Functional Index Should Be Enabled The functional index must be enabled to support
index-based, case-insensitive search. The following i ni t . or a parameter is
involved: query_rewrite_enabl ed=true

In addition, the cost-based optimizer must be turned on for analyzing all tables or
indexes in the UDDISYS schema. For example:

execute dbns_stats. gat her_schena_st at s(ownname=>' UDDI SYS', cascade=>t rue);

Accuracy of Modified Timestamps of UDDI Entities The accuracy of modified timestamps
of UDDI entities is dependent on the version and compatibility of the database. If
the database compatibility is release 9.0.1 or higher, the modified timestamps are of

10-44 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

SQL type TIMESTAMP, with accuracy up to microseconds. If the database
compatibility is below release 9.0.1, the modified timestamps are of SQL type
DATE, with accuracy up to seconds.

Transport Security

The Inquiry API in general does not require authentication. However, if the inquiry
end point needs to be protected, transport-level authentication, such as HTTP
BASIC authentication and HTTPS SSL client authentication, can be enabled by
configuring the web. xm file. A security role, uddi guest , is reserved for accessing
the protected inquiry end point. Refer to Oracle Application Server Containers for J2EE
Services Guide and Oracle Application Server Containers for J2EE User’s Guide for more
information about security roles and related security configuration.

For the Publishing endpoint URL, you may want to allow HTTPS access only. To
disable HTTP access, edit the web. xm file of the or auddi application to enforce
data confidentiality and make adjustments to HTTP servers accordingly. Refer to
the chapter on security in Oracle Application Server Containers for J2EE User’s Guide
and to Oracle Application Server Containers for J2EE Services Guide for more
information. For example, to disable HTTP access in the web. xm file, use the
following code:

<user - dat a- constrai nt >
<transport - guar ant ee>CONFI DENTI AL</ t r ansport - guar ant ee>
</ user-dat a- constraint >

Similarly, you can set up HTTPS access for the Administrative endpoint and the
UDDI Replication endpoint in the same way.

Standard Classification Support
The OracleAS UDDI Registry uses the following three standard classifications:

« North American Industry Classification System (NAICS)

This is a classification system for each industry and corresponding code. For
more information about NAICS, see the Web site at

http:// ww. census. gov/ epcd/ ww nai ¢s. ht n

« Universal Standard Products and Services Codes (UNSPSC)

This is the first coding system to classify both products and services for use
throughout the global marketplace. For more information about UNSPSC, see
the Web site at

Discovering and Publishing Web Services 10-45

OracleAS UDDI Registry Administration

http://eccma. org/ unspsc/

« 1SO-3166 Geographic classification (1ISO-3166)

This a list of all country names and each corresponding two-character code
element. For more information about I1SO-3166, see the Web site at

http://wwmv iso.org/isolen/prods-services/iso3166ma/ 02i so- 3166- code- i sts/index. ht m

When Web Services provider administrators publish Web Services, they can select
the classification and the category to which they want to register the Web Services.
They have the option of publishing their Web Services to any or all three of these
classifications, and to as many categories and subcategories as they wish within
each classification.

See Also: "Database Character Set and Built-in 1ISO-3166
Classification" on page 10-46.

Database Character Set and Built-in 1SO-3166 Classification

The UDDI specification mandates that the registry support the full UTF-8 character
set. Oracle recommends, though does not require, using UTF-8 as the character set
for the Oracle Application Server infrastructure database if the OracleAS UDDI
Registry is used.

If the database is not configured with the UTF-8 character set or its equivalent or
superset, there could be data corruption and error due to loss in character set
conversion to or from UTF-8. Refer to Oracle9i Globalization Support Guide for details.

In particular, the descriptions in the UDDI built-in ISO-3166 classification contains
descriptions with non-ASCII characters, such as some Western European characters
and some Eastern European characters for the names of cities or regions. In order to
support the non-UTF-8 database, all non-ASCII characters in the descriptions are
replaced with ASCII characters as an approximation.

If you do have a UTF-8 database, you can upgrade the built-in ISO-3166
classification to the one with accurate descriptions using the following instructions:

« Delete the existing 1SO-3166 classification by running the SQL script,
clrl1 SO sql , for example:

cd <ORACLE_HOVE>/ uddi / adni n
sql pl us system nanager @l rlSQ sql

« Load the 1SO-3166 classification with accurate descriptions by using SQL*
Loader control filei s03166- 99. ct | , for example:

10-46 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

cd <ORACLE_HOVE>/ uddi / adni n
sql I dr userid=system manager control =i s03166-99. ctl

Considerations in a Production Environment

The following information describes some postinstallation configuration steps that
you should do immediately after the installation. These steps are not mandatory;,
but are highly recommended in a production environment.

Security for publishing the end point: By default, HTTP access is enabled.
However, HTTPS access is recommended for security concerns. See Transport
Security on page 10-45 for more information about disabling HTTP access.

Database connection pool sizing and statement caching: Database connection
pool parameters, such as maximum number of database connections and usage
of statement caching, should be configured to accommodate the actual database
server load.

If you are using an Oracle database of your choice as the backend storage, the
parameters can be configured by editing the data source j dbc/ Or acl eUddi .
Refer to the chapter on data sources in Oracle Application Server Containers for
J2EE Services Guide for more information.

If you are using the Oracle Application Server infrastructure database as the
backend storage, the parameters can be configured by modifying the following
UDDI server configuration parameters:

— oracle.uddi.server.db.minConnections
— oracle.uddi.server.db.maxConnections
— oracle.uddi.server.db.jdbcDriverType
— oracle.uddi.server.db.stmtCacheType
— oracle.uddi.server.db.stmtCacheSize

Refer to Server Configuration on page 10-25 and Server Configuration
Properties Reference Information on page 10-48 for more information.

Change of the operatorName and businessEntity discoveryURL prefix: In
some cases, administrators may want to change either the operatorName or
businessEntity discoveryURL prefixes, or both parameter values, when moving
a system from a staging environment to a production environment.

Discovering and Publishing Web Services 10-47

OracleAS UDDI Registry Administration

The SQL script ${ ORACLE_HOVE} / uddi / admi n/ uddi r pi c. sql on UNIX or
YEORACLE_HOVE% uddi \ admi n\ uddi r pi c. sql on Windows can be used to
change the these parameter values.

Server Configuration Properties Reference Information

This section describes reference information for some UDDI server configuration
properties. It is divided into the following sections;

« Installation or First-Use Properties

« External Classification Validation Properties
« UDDI Replication Properties

« UDDI Replication Scheduler Properties

« Registry-Based Validation Properties

« Database Connection Properties

These server configuration parameters are referenced in Server Configuration on
page 10-25. As each example shows, these configuration parameters can be changed
only by using the command-line administration tool, uddi adm n. j ar, which is
described in Using the Command-Line Tool uddiadmin.jar on page 10-25.

Installation or First-Use Properties

The following two properties oper at or Nanme and busi nessEnti t yURLPr ef i x
should be changed immediately after an installation, but should not be changed
afterward:

operatorName
Property name: oper at or Nane

Description: Provides the name of the operator of the OracleAS UDDI Registry.
This name appears in the operator attribute of responses. Setting this parameter
applies in a retroactive fashion to existing entities in the database. For example,
changing the operator name results in all business and tModel data structures that
currently have the old operator name to be changed to the new operator name.

Note: Be sure to set this parameter before enabling replication.

Property type/allowable values: A non-null string.

10-48 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Initial value: OracleUddiServer

Typical value: <domain of the UDDI registry>/uddi
Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.operatorName=Cr acl eUddi Server

businessEntityURLPrefix
Property name: busi nessEnti t yURLPr efi x

Description: Provides the prefix of the generated discoveryURL, which is
automatically generated for each businessEntity data structure saved in the registry.
The prefix should be customized for your deployment environment. Setting this
parameter applies in a retroactive fashion to existing entities in the database. For
example, changing the discoveryURL prefix results in all discoveryURLSs of usetype
"businessEntity" that begin with the old URL prefix to be changed to the new URL
prefix.

Note: Be sure to set this parameter before enabling replication.

Property type/allowable values: A valid URL.

Initial value: The OracleAS UDDI Registry will prompt an administrator for an
initial value upon server initialization.

Typical value: The host name and port should be the host name and port of the
Web server (which may or may not be the same as the servlet container).

Guideline: N/A
Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.businessEntityURLPrefix=

defaultLang

Property name: def aul t Lang

Discovering and Publishing Web Services 10-49

OracleAS UDDI Registry Administration

Description: Provides the default language of the registry for the purpose of filling
in UDDI v1.0 description elements, which lack a language qualification. Language
defaults are not done for UDDI v2.0 requests. Valid values are the values of the
xml:lang attribute.

Property type/allowable values: Values of xml:lang.

Initial value: en

Typical value: The location of the primary region the registry serves.
Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.defaul tLang=en

External Classification Validation Properties
The following UDDI server properties can be used with external classification

validation:

externalValidation

Property name: ext er nal Val i dati on
Description: Determines if external validation occurs.
Property type/allowable values: Boolean (true, false)
Initial value: false

Typical value: false

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry admin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.external Validation=true

externalValidationTModelList
Property name: ext er nal Val i dat i onThvbdel Li st

Description: Provides the list of tModel key-URL pairs that represents the
categorization and identifier tModel data structures that will be validated by an

10-50 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

external SOAP service. The tModelKey and URL values within a pair are separated
by a comma (,), and pairs of values are separated by a semicolon (;).

Property type/allowable values: N/A

Initial value: null value
Typical value: null value "™
Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty

oracl e. uddi . server. external Val i dati onTMbdel Li st =uui d: acne-t axonony- key,

http://acme. com external Val i dation

externalValidationTimeout
Property name: ext er nal Val i dat i onTi meout

Description: Defines the amount of time, in milliseconds, before timeout occurs for
external validation.

Property type/allowable values: long
Initial value: 5000

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.external ValidationTi meout =5000

UDDI Replication Properties
The following UDDI server properties can be used with replication:

taskExecutionPeriod
Property name: t askExecut i onPeri od

Description: Controls the period of time during which replication task should be
executed (in milliseconds).

Discovering and Publishing Web Services 10-51

OracleAS UDDI Registry Administration

Property type/allowable values: long
Initial value: 5000

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.replication.taskExecutionPeriod=5000

maxChangeRecordsSentEachTime
Property name: maxChangeRecor dsSent EachTi ne

Description: Controls the maximum number of change records sent out in response
to an incoming getChangeRecords request.

Property type/allowable values: integer
Initial value: 100

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry admin URL> <username> <password>
[-verbose] -setProperty
oracl e. uddi . server.replication. mxChangeRecor dsSent EachTi me=100

pushTaskExecutionPeriod

Property name: pushTaskExecut i onPeri od

Description: Controls the push task execution period (in milliseconds).
Property type/allowable values: long

Initial value: 45000

Typical value: N/A

Guideline: N/A

Example:

10-52 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty
oracl e.uddi.server.replication. pushTaskExecuti onPeri 0d=45000

pushEnabled
Property name: pushEnabl ed

Description: Controls whether or not push should be performed for UDDI
replication.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.replication. pushEnabl ed=true

soapRequestTimeout
Property name: soapRequest Ti neout

Description: Controls the timeout value for each SOAP replication request (in
milliseconds).

Property type/allowable values: long
Initial value: 180000

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry adnmin URL> <username> <password>
[-verbose] -setProperty
oracl e. uddi . server.replication. soapRequest Ti meout =180000

soapRequestAuthMethod

Discovering and Publishing Web Services 10-53

OracleAS UDDI Registry Administration

Property name: soapRequest Aut hMet hod (Authentication property)

Description: Controls the authentication method the registry node will try to use in
sending replication SOAP requests to other nodes. If CLIENT-CERT is used, the
administrator must set the wallet password each time the registry node gets started
or restarted.

Property type/allowable values: one of {NONE, CLIENT-CERT}
Initial value: NONE

Typical value: CLIENT-CERT

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty
oracl e. uddi . server.replication. soapRequest Aut hMet hod=NONE

walletLocation
Property name: wal | et Locat i on (Authentication property)

Description: Defines the wallet file name. The wallet file will be located in the same
place as uddiserver.config.

Property type/allowable values: N/A
Initial value: ewal | et . p12

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty
oracl e.uddi . server.replication.walletLocation=ewallet.pl2

startMaintainingUpdateJournal
Property name: st ar t Mai nt ai ni ngUpdat eJour nal (Advanced use property)

Description: Controls whether or not the update journal will be maintained for
UDDI replication. This property must be set to true for replication to occur.

10-54 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Note: Be sure to upload a correct replication configuration before
you set this property tot r ue.

Note: Once you set this property to t r ue, you should only set it
back to f al se if you no longer want to participate in UDDI
replication. Setting this property haphazardly from true to false will
result in fatal loss of change records.

Property type/allowable values: Boolean (true, false)
Initial value: false

Typical value: false

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty
oracl e.uddi . server.replication.startMintaini ngUpdat eJour nal =f al se

changeRecordWantsAck
Property name: changeRecor dWant sAck (Advanced use property)

Description: Controls whether or not ACK is required for the change records sent
out from the local node.

Property type/allowable values: Boolean (true, false)
Initial value: false

Typical value: false

Guideline: N/A

Example:

java -jar uddiadmn.jar <registry adm n URL> <usernane> <password>
[-verbose] -setProperty
oracl e. uddi . server.replication.changeRecor dWant sAck=f al se

Discovering and Publishing Web Services 10-55

OracleAS UDDI Registry Administration

UDDI Replication Scheduler Properties
The following UDDI server properties can be used to set UDDI replication

scheduler properties:
timer_pool_size
Property name: ti mer _pool _si ze

Description: Specifies the number of concurrently active threads used by the
scheduler.

Property type/allowable values: N/A
Initial value: 1

Typical value: 1

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry adnmin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.schedul er.timer_pool _size=1

status
Property name: st at us

Description: Indicates whether or not the scheduler is enabled to send out
replication requests.

Property type/allowable values: Boolean (0=off, 1=0n)
Initial value: 1

Typical value: 1

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.schedul er.status=1

Registry-Based Validation Properties

The following UDDI server properties can be used for registry-based validation and
guota limit checking:

10-56 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

categoryValidationTModelKeys
Property name: cat egor yVal i dat i onTWbdel Keys (Advanced use property)

Description: Represents the categorization and identifier tModel keys, which will
be validated by the registry during an attempted save operation.

Property type/allowable values: A list in the form of '<tModelKey1>',
'<tModelKey2>', '<tModelKey3>'".

Initial value: 'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4', which represents
(uddi-org:types classification). The preinstalled value, however, is the UDDI types
classification plus the three classifications defined in the UDDI v1.0 specification:
(uddi-org:types, uddi-org:iso-ch:3166-1999, ntis-gov:naics:1997, unspsc-org:unspsc).

Note: The uddi-org:types classification should not be removed
from the list.

Typical value: The preinstalled value.
Example:

java -jar uddiadnin.jar <registry adnmin URL> <username> <password>
[-verbose] -setProperty

“oracl e. uddi . server. cat egoryVal i dat i onTWbdel Keys=

" UUl D:. CLACF26D- 9672- 4404- 9D70- 39B756E62AB4" ,

" UUI D. 4E49A8D6- D5A2- 4FC2- 93A0- 0411D8D19ESS" ,

" UUI D: COB9FE13- 179F- 413D 8A5B- 5004DB8ESBB2' ,

" UUI D: CD153257- 086A- 4237- B336- 6BDCBDCC6634"

identifierValidation
Property name:i denti fi erVal i dati on (Advanced use property)

Description: Controls validation for all IdentifierBag entities. The following flag
settings are allowed:

« full -- all validation conditions will be checked

« tmodel_existence -- only tModelKey existence will be validated
« hone -- no condition will be checked

Property Type/allowable values: full, tmodel_existence, none

Initial value: full

Discovering and Publishing Web Services 10-57

OracleAS UDDI Registry Administration

Typical value: full
Guideline: N/A
Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.identifierValidation=full

operatorCategory
Property name: oper at or Cat egor y (Advanced use property)

Description: Determines whether or not additional entities may be categorized as
an operator node, if categoryValidation is true.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry adnmin URL> <username> <password> [-verbose]
-setProperty
oracl e. uddi . server. cat egoryVal i dati on. oper at or Cat egor y=t r ue

categoryValidation
Property name: cat egor yVal i dat i on (Advanced use property)

Description: Controls validation for all CategoryBag entities. The following flag
settings are allowed:

« full -- all validation conditions will be checked

« tmodel_existence -- only tModelKey existence will be checked
= none -- no condition will be checked

Property type/allowable values: full, tmodel_existence, none
Initial value: full

Typical value: full

Guideline: N/A

10-58 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.categoryValidation=full

assertionKeyedRefValidation
Property name: assert i onKeyedRef Val i dati on (Advanced use property)

Description: Controls validation for all publisher assertion KeyedReference entities.
The following flag settings are allowed:

« full -- all validation conditions will be checked

« tmodel_existence -- only tModelKey existence will be validated
= none -- no condition will be checked

Property type/allowable values: full, tmodel_existence, none
Initial value: full

Typical value: full

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password> [-verbose]
-setProperty
oracl e. uddi . server. asserti onKeyedRef Val i dati on=f ul |

tModellnstancelnfoKeyValidation
Property name: t Model | nst ancel nf oKeyVal i dat i on (Advanced use property)

Description: Determines if tModelKey existence validation occurs within
tModellnstancelnfo elements.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry adnmin URL> <username> <password>

Discovering and Publishing Web Services 10-59

OracleAS UDDI Registry Administration

[-verbose] -setProperty oracle.uddi.server.tMdellnstancel nfoKeyValidation=true

addressTModelKeyValidation
Property name: addr essTMbdel KeyVal i dat i on (Advanced use property)

Description: Determines if tModelKey existence validation occurs within address
elements.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmn.jar <registry admn URL> <usernane> <password>
[-verbose] -setProperty oracle.uddi.server.addressTMdel KeyVal i dation=true

hostingRedirectorValidation
Property name: host i ngRedi r ect or Val i dat i on (Advanced use property)

Description: Determines if hostingRedirector validation occurs within
bindingTemplate elements. Validation ensures that the referenced bindingTemplate
element exists and does not contain a hostingRedirector element.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.hostingRedirectorValidation=true

Miscellaneous Properties
The following UDDI server properties are miscellaneous.

10-60 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

quotaLimitChecking
Property name: quot aLi m t Checki ng

Description: Determines whether or not publishing quotas, the limits on the
number of entities that can be created in the registry per user, are enforced.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadnin.jar <registry adnin URL> <username> <password>
[-verbose] -setProperty oracle.uddi.server.quotalim tChecking=true

schemaValidationUponincomingRequests

Property name: schenmaVal i dat i onUponl ncom ngRequest s (Advanced use
property)

Description: Determines whether or not the server will validate incoming requests
against the UDDI XML schema.

Property type/allowable values: Boolean (true, false)
Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry adnin URL> <username> <password> [-verbose]
-setProperty
oracl e. uddi . server. schemaVal i dati onUponl nconi ngRequest s=tr ue

Database Connection Properties

The following UDDI server properties can be used for configuring database
connection properties:

minConnections

Discovering and Publishing Web Services 10-61

OracleAS UDDI Registry Administration

Property name: m nConnect i ons (Advanced use property)

Description: Determines the minimum number of database connections in the
connection pool. This property is applicable only if the Oracle Application Server
infrastructure database is used as the backend storage.

Note: In a cluster environment, this property must be set for each
OC4] instance.

Property type/allowable values: A nonnegative integer that is smaller than the
value for maxConnect i ons.

Initial value: 1
Typical value: 1
Guideline: N/A
Example:

java -jar uddiadnmin.jar <registry adnmin URL> <username> <password> [-verbose]
-set Property
oracl e. uddi . server. db. mi nConnecti ons=1

maxConnections
Property name: maxConnect i ons (Advanced use property)

Description: Determines the maximum number of database connections in the
connection pool. This property is applicable only if the Oracle Application Server
infrastructure database is used as the backend storage.

Note: In a cluster environment, this property must be set for each
OC4J instance.

Property type/allowable values: A positive integer.
Initial value: 8

Typical value: Depends on the maximum number of concurrent requests and the
desired performance.

Guideline: The estimated maximum number of concurrent requests plus a
percentage of the buffer.

10-62 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Example:

java -jar uddiadnmin.jar <registry admn URL> <usernanme> <password> [-verbose]
-setProperty
oracl e. uddi . server. db. maxConnect i ons=12

jdbcDriverType
Property name: j dbcDri ver Type (Advanced use property)

Description: Defines the type of JDBC driver to be used to access the Oracle
Application Server infrastructure database. This property is applicable only if the
Oracle Application Server infrastructure database is used as the backend storage.

Note: In a cluster environment, this property must be set for each
OC4J instance.

Property type/allowable values; {thin, oci}
Initial value: thin

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry admn URL> <usernanme> <password> [-verbose]
-set Property
oracl e. uddi . server. db.jdbcDriverType=thin

stmtCacheType
Property name: st nmt CacheType (Advanced use property)

Description: Defines the type of statement caching. This property is to be used with
the Oracle Application Server infrastructure database and JDBC driver only.

Note: In a cluster environment, this property must be set for each
OC4] instance.

Property type/allowable values: {NONE, IMPLICIT, EXPLICIT}

Discovering and Publishing Web Services 10-63

OracleAS UDDI Server Error Message Reference Information

Initial value: NONE
Typical value: EXPLICIT
Guideline: N/A
Example:

java -jar uddiadnmin.jar <registry admn URL> <usernanme> <password> [-verbose]
-setProperty
oracl e. uddi . server. db. st nt CacheType=NONE

stmtCacheSize
Property name: st nt CacheSi ze (Advanced use property)

Description: Defines the size (number of statements cached) of statement caching
per connection. This property is to be used with the Oracle Application Server
infrastructure database and JDBC driver only.

Note: In a cluster environment, this property must be set for each
OC4J instance.

Property type/allowable values: integer
Initial value: 50

Typical value: 50

Guideline: N/A

Example:

java -jar uddiadnmin.jar <registry admn URL> <username> <password> [-verbose]
-setProperty
oracl e. uddi . server. db. st nt CacheSi ze=50

OracleAS UDDI Server Error Message Reference Information

The error codes listed are used by UDDI administrators. In general, UDDI error
code E_fatalError can represent various server-side errors that an administrator has
to handle.

10-64 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Server Error Message Reference Information

The specific server-side error is captured in the J2EE application log file. The log file
is typically located at <J2EE

HOVE>/ appl i cat i on- depl oynent s/ or auddi / appl i cati on. | og. The
reference provides additional information for an administrator to diagnose and
resolve problems.

WUR-00010: An attempt was made to update a configuration parameter that does
not exist "{0}".
Cause: The named UDDI server configuration parameter does not exist.

Action: Correct the spelling of the name of the configuration parameter to be
updated. Refer to the configuration parameter reference information for details.

WUR-00011: An attempt was made to update a configuration parameter "{0}" in
uddiserver.config. That file cannot be found.

Cause: The UDDI server configuration file uddiserver.config could not be
found.

Action: Make sure that the JVM property oracle.home of the OC4J instance is
defined properly.

WUR-00012: The specified user name, "{0}", is not a name that is known to the
registry.
Cause: The named user does not exist in the registry.
Action: Correct the spelling of the named user.

WUR-00013: The 'Default’ role for publishing limits may not be deleted.
Cause: An attempt was made to remove the system-defined user quota role
'Default.

Action: Do not delete the user quota role 'Default.’ If the 'Default’' user quota
role is not desirable, set the quota limits to zero to disable it.

WUR-00050: Unable to retrieve subscription management configuration
parameter "{0}": Internal database schema configuration error encountered.

Cause: An internal database configuration error occurred while retrieving the
configuration parameter for the subscription management module.

Action: Identify the database error message embedded in the details of the
error. Correct the database configuration according to the database error
message.

WUR-00051: Unable to set subscription management configuration parameter
"{0}": Internal database schema configuration error encountered.

Discovering and Publishing Web Services 10-65

OracleAS UDDI Server Error Message Reference Information

Cause: An internal database configuration error occurred while setting the
configuration parameter for the subscription management module.

Action: ldentify the database error message embedded in the details of the
error. Correct the database configuration according to the database error
message.

WUR-00100: An internal error occurred while marshaling the response.
Cause: An unexpected internal error occurred in writing the response to a
client.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00101: An internal error occurred while unmarshaling the request.
Cause: An unexpected internal error occurred in parsing the request sent by a
client.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00104: The value of the configuration parameter named "{0}" is invalid.
Cause: The value of the named UDDI server configuration parameter was
invalid.

Action: Refer to the configuration parameter reference information for the
valid values. Use the UDDI administration tool to update the configuration
parameter.

WUR-00105: A database error with SQL code "{0}" occurred while trying to "{1}".
Cause: An unexpected database error occurred in carrying out the named
action.

Action: ldentify and correct the database error. The database error is embedded
in the details of the error.

WUR-00106: An internal error caused the request to fail to make the specified
updates. While rolling back the changes, another error occurred; this leaves
data in an unpredictable state.

Cause: An unexpected database error occurred in rollback phases of error
processing.

Action: ldentify and correct the database error. The database error is embedded
in the details of the error.

10-66 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Server Error Message Reference Information

WUR-00107: An internal error occurred while committing the requested changes

to the registry; this leaves data in an unpredictable state.
Cause: An unexpected database error occurred in committing the requested
changes.

Action: ldentify and correct the database error. The database error is embedded
in the details of the error.

WUR-00108: An internal error occurred while trying to get a connection to the

underlying database.
Cause: An unexpected database error occurred in obtaining a database
connection to serve the request.

Action: ldentify and correct the database error. The database error is embedded
in the details of the error.

WUR-00109: An internal error occurred while trying to close a connection to the

underlying database.
Cause: An unexpected database error occurred during the release of the
database connection after the request was served.

Action: ldentify and correct the database error. The database error is embedded
in the details of the error.

WUR-00110: An internal error occurred while trying to create and set up a data

source abstraction for the underlying database.
Cause: An unexpected internal error occurred while creating the database
connection pool.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00111: An internal error occurred while trying to perform a JNDI lookup

and locate of the object "{0}".

Cause: An internal error occurred in obtaining the named object from the JNDI
context. Examples of possible objects include database connection pools,
message queues, and so forth.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00113: An internal error occurred while trying to access the repository API

to set up a data source abstraction.

Discovering and Publishing Web Services 10-67

OracleAS UDDI Server Error Message Reference Information

Cause: An unexpected internal error occurred while creating the database
connection pool using Oracle Application Server metadata repository access
API.

Action: ldentify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00114: An internal error occurred while trying to generate a Universal
Unique Identifier (UUID).

Cause: An unexpected internal error occurred while generating a UUID.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00115: The registry was unable to retrieve OC4J-specific environment
settings from the J2EE container; the user "{0}" cannot be authenticated.

Cause: An unexpected internal error occurred while authenticating the user.
The error is usually due to incorrect settings in web.xml or using an
unsupported version of the OC4J container.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00116: An internal error occurred while performing the automatic
postinstallation configuration for the UDDI registry. Regular registry
operations cannot proceed if the registry is not properly configured.
Cause: An unexpected internal error occurred in performing the automatic
postinstallation configuration for the UDDI registry.

Action: ldentify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00117: Cannot close data source properly.
Cause: An unexpected internal error occurred while closing the database
connection pool during shutdown of the UDDI registry.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00200: An internal error occurred during external validation.

Cause: An unexpected internal error occurred while making a validation call to
an external validation service.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

10-68 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Server Error Message Reference Information

WUR-00201: An internal error occurred during external validation while

processing the in-memory request.
Cause: An unexpected internal error occurred while processing the UDDI
entities in the request before they were sent for external validation.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00202: An internal error occurred during external validation because the

tModel list property, "{0}", has the wrong format.
Cause: The value of the UDDI server configuration property,
oracle.uddi.server.externalValidationTModelList, was invalid.

Action: Correct the value. Refer to the configuration parameter reference
information for details.

WUR-00203: An internal error occurred during external validation because the

timeout property, "{0}", is not the right integer format.
Cause: The value of the UDDI server configuration property,
oracle.uddi.server.externalValidationTimeout, was invalid.

Action: Correct the value. Refer to the configuration parameter reference
information for details.

WUR-00204: An internal error occurred during external validation because the

response is not a correct DispositionReport.

Cause: DispositionReport returned by the external validation service was
invalid. For example, DispositionReport was empty.

Action: Contact the external validation service provider.

WUR-00205: An internal error occurred during external validation because the

response is not expected. The response is of code "{0}" with message "{1}".

Cause: DispositionReport returned by the external validation service contained
an unexpected DispositionReport error number.

Action: Contact the external validation service provider.

WUR-00300: DB schema version is missing. Please check DB for VERSION table.

Cause: The version of the database schema for persistent storage was missing.
Action: Contact Oracle Support Services.

WUR-00301: DB schema version "{0}" is incompatible with mid-tier version. DB

schema must be updated to make the UDDI registry function.

Discovering and Publishing Web Services 10-69

OracleAS UDDI Server Error Message Reference Information

Cause: The version of the database schema for persistent storage was not
supported by the version of the registry being used.

Action: Upgrade the database schema to the latest version. Refer to the UDDI
database schema upgrade documentation for details.

WUR-00302: An internal error occurred while trying to retrieve and load the
UDDI DELTA server property file.
Cause: An internal error occurred while initializing the UDDI registry in the
backward compatibility mode with an older version of the database schema.

Action: Contact Oracle Support Services.

WUR-00303: This operation is not allowed by DB schema version "{0}"". You must
upgrade DB schema to the latest version to carry out this operation.

Cause: The requested operation was not supported because the UDDI registry
was running in the backward compatibility mode with an older version of the
database schema.

Action: Upgrade the database schema to the latest version. Refer to the UDDI
database schema upgrade documentation for details.

WUR-05001: Cannot find the UDDI entity just saved.
Cause: An unexpected internal error occurred in updating the update journal.

Action: Contact Oracle Support Services.

WUR-05002: Cannot perform custody transfer for an entity that is not
businessEntity or tModel. The key of the offending entity is "{0}".
Cause: In the custody transfer change record, the specified UDDI entity is not
businessEntity or tModel.

Action: Contact the administrator of the UDDI node where the change record
originated.

WUR-05003: Warning: Received a duplicate change record originating from node
"{0}" with usn "{1}".
Cause: A duplicate change record sent from the named UDDI node was
detected.

Action: No action is needed. This is merely an informational message.

WUR-05004: Received an out-of-order change record originating from node "{0}"
with usn "{1}". The change record with usn "{2}"" has been processed.

10-70 Oracle Application Server Web Services Developer's Guide

UDDI Open Database Support

Cause: The named change record was received after a change record with a
larger update sequence number (USN) had been processed.

Action: Contact the administrator of the UDDI node where the change record
originated.

WUR-05005: The change record originating from node "{0}" with usn "{1}" is
invalid because the named node is not recognized.

Cause: The originating node of the named change record was not recognized.
In other words, the node was not recorded in the replication communication
graph.

Action: Contact the administrator of the UDDI node that provided the change
record.

OracleAS UDDI Content Syndication Ul Implementation Error Message

The following error message is associated with the UDDI content syndication Ul
implementation. This error is returned to the user, non administrator, as a message
within the GUI.

Error Code OSS-00301:
The requested action can be only done by an administrator.

Cause: The logged in user does not have enough privileges to perform the
requested action.

Action: Login as administrator and request the action again.

UDDI Open Database Support

In addition to the Oracle Application Server infrastructure database, the following
databases are supported:

« Microsoft SQL Server
« IBMDB2
« Oracle (non-Oracle Application Server infrastructure database)

For Microsoft SQL Server and IBM DB2, the Oracle Application Server DataDirect
Connect JDBC driver is needed.

The following installation steps for SQL Server, DB2, and Oracle assume that the
relevant database server has been installed. These instructions also assume that
Oracle Application Server Portal has been installed, which should copy the relevant

Discovering and Publishing Web Services 10-71

UDDI Open Database Support

UDDI files to ${ ORACLE_HOVE} / uddi / admi n on UNIX or %0RACLE_
HOVE% uddi \ admi n on Windows.

Microsoft SQL Server

The following sections describe installation and configuration information.

Script Source Directory

Installation must be performed from a Windows machine. If the %0RACLE _
HOVE% uddi \ adnmi n\ nssql directory is not accessible from the SQL Server
machine, then copy this directory to a location that is accessible. This directory (or
the original 0RACLE_HOVE% uddi \ adm n\ nssql if no copying is necessary)
will be referred to as %vB5SQL_ HOVE_DB%

Create the Database and User

The 9%0/6SQL_HOVE_DB% wur cr eat edb_nssql . sqgl script has been provided to
create the uddi sys database and uddi sys user for a SQL Server instance in

nm xed- aut hent i cati on mode. If you are using Windows authentication or wish
to alter some of the settings in this script, you may do so as long as all the following
requirements are met:

« The collation for the uddi sys database must be case-sensitive.
« Recursive triggers must be enabled on the uddi sys database.
« Theuddi sys user must have the uddi sys database as its default database.

« Theuddi sys user must be a member of the db_owner role for the uddi sys
database.

To run the script with the Microsoft osql utility, use the administrator login and
password (sa/ sa):

osql -S <server> -Usa -P sa -i wrcreatedb_nssql.sql

where <ser ver > is the server hosting the SQL Server instance.

Install the Schema

Go to the %vBSQL_HOVE DB%directory. Use the osql utility to execute the SQL
scriptwur i nst _nmssql . sgl using the uddi sys/ uddi sys account created in
Create the Database and User on page 10-72.

The syntax is as follows:

10-72 Oracle Application Server Web Services Developer's Guide

UDDI Open Database Support

osql -S <server> -U <user> -P <password> -d <dat abase> -i wurinst_nssql.sql

where <ser ver > is the server hosting the SQL Server instance.
For example:

osql -S server-nachine -U uddisys -P uddisys -d uddisys -i wurinst_nssql.sql

Import BUILTIN_CHECKED_CATEGORY Table Entries

Import thei so3166- 99 _t Model Key. t xt, nai cs-97_t Mbdel Key. t xt , and
unspsc- 73_t Model Key. t xt files into the BUILTIN_CHECKED_CATEGORY
table as follows:

1. Select the Import and Export Data option from the SQL Server Start menu
options. Click Next.

2. For the Data Source, select the last option, Text File. Then, provide the name
and location of the appropriate text file, Y/6SQL_HOVE_DB% i s03166- 99
t Model Key. t xt . Click Next.

3. The default file format should be Delimited. Accept this by clicking Next.
4. Set the delimiter to the ("| ") character. Click Next.

5. Select the uddisys database for the destination. Provide the appropriate
authentication mechanism and credentials, which are SQL Ser ver
Aut hent i cat i on with user uddi sys and password uddi sys, by default.
Make sure that the selected database is uddisys. Click Next.

6. Click the Destination and select the BUILTIN_CHECKED_ CATEGORY table.

7. Click Transform. Map TMODEL_KEY to Col001, KEY_NAME to Col003, KEY_
VALUE to Col002, and PARENT_VALUE to Col004. Click OK.

8. Click Next.
9. Click Next to run immediately and click Finish to start.

10. Repeat this process for the nai cs- 97_t Model Key. t xt and unspsc- 73_
t Mbdel Key. t xt files.

Discovering and Publishing Web Services 10-73

UDDI Open Database Support

IBM DB2

Note: If the character set of your database is not UTF-8, do not use
the scripti s03166- 99. t xt to load the 1SO3166 taxonomy
because the taxonomy contains characters from different languages.
Instead, use the script is03166-99-ascii.txt to load an ASCllI-only
version of the taxonomy.

Configure OracleAS OC4J to Use SQL Server

Define a data source with the name and location set to j dbc/ Or acl eUddi to
reflect that SQL Server is the desired database, like the following:

<dat a- sour ce
cl ass="com ever m nd. sql . Dri ver Manager Dat aSour ce"
name="j dbc/ Or acl eUddi "
[ocati on="j dbc/ Oracl eUddi "
connection-driver="com oracle.ias.jdbc.sql server.SQ.ServerDriver"
user nane="uddi sys"
passwor d="uddi sys"
url ="jdbc: oracl e: sql server://<servernane>: 1433; Sel ect Met hod=cur sor ; User =uddi sys;
Passwor d=uddi sys"
/>

Note that <ser ver nane> is the network name or IP address of the server hosting
the SQL Server instance used for UDDI.

The data source needs to be accessible by the or auddi . ear and or audr epl . ear
files.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Restart the UDDI server for these changes to take effect.

The following sections describe installation and configuration information.

Script Source Directory

If the ${ ORACLE_HOME} / uddi / adni n/ db2 directory is not accessible from the
machine with the relevant DB2 tools, then copy this directory to a location that is
accessible. This directory will be referred to as ${ DB2_HOVE_DB} on UNIX or
%OB2_HOVE_DB%on Windows.

10-74 Oracle Application Server Web Services Developer's Guide

UDDI Open Database Support

Create the Database and User

Go to the ${ DB2_HOVE_DB} directory on UNIX or the %DB2_HOVE_DB%directory
on Windows. The wur cr eat edb_db2. sqgl script is provided for creating the
uddi sys database. The user is responsible for creating a uddi sys user with
password uddi sys based on the authentication scheme that is being used for DB2.
By default, this requires creating a uddi sys user at the operating system level.

If you wish to alter some of the settings in this script, you may do so as long as both
the following requirements are met:

« The default tablespace for the uddi sys database must be at least 8 KB pages.
This also requires providing a buffer pool that will support a page size of at
least 8 KB.

« The appl heapsz parameter must be increased to approximately 12800 pages.

To run the script, start the DB2 Command Line Processor by entering db2 in UNIX
or db2cnd in Windows. Then, execute the script:

db2 -t +p < wurcreatdb_db2. sql

where - t allows the use of semicolons to terminate SQL statements and +p
suppresses prompting.

Install the Schema
Run thewur i nst _db2. sql script. This also triggers the wur cr eat . sql ,
wur dbsql . sql , and wur popul . sgl scripts. To run these scripts, do the following:

Launch the command-line processor as previously described, then enter the
following:

db2 -t +p < wrinst_db2.sql

Import BUILTIN_CHECKED_CATEGORY Table Entries

Import thei so3166- 99_t Model Key. t xt, nai cs- 97_t Mbdel Key. t xt , and
unspsc- 73_t Model Key. t xt files into the BUILTIN_CHECKED_CATEGORY
table as follows:

1. Rightclick the table BUILTIN_CHECKED_CATEGORY from the Control
Center and select IMPORT.

2. Specify the Import file as ${ DB2_HOVE_DB} /i s03166- 99_t Model Key. t xt
for UNIX or %DB2_HOVE_DB% i s03166- 99 t Mbdel Key. t xt for Windows.

Discovering and Publishing Web Services 10-75

UDDI Open Database Support

3. Select Delimited ASCII format (DEL). Click Options and select ('] ") as the
delimiter.

4. Use the INSERT import mode (the default).
5. Set the Commit records equal to 500.

6. For the Message file, enter ${ DB2_HOVE_
DB}/ uddi / admi n/ db2/i s03166-99_t Mbdel Key. | og for UNIX or %DB2_
HOVE_DB% uddi \ admi n\ db2\i s03166-99_t Model Key. | og for Windows.

7. Go to the Columns tab. Select Include Columns by Position. Map TMODEL _
KEY to 1, KEY_NAME to 3, KEY_VALUE to 2, and PARENT_VALUE to 4.

8. Click OK to run the import process.

9. Repeat this process for the nai cs- 97_t Mbdel Key. t xt and unspsc-73_
t Model Key. t xt files.

Note: If the character set of your database is not UTF-8, do not use
the scripti s03166- 99. t xt to load the 1SO3166 taxonomy
because the taxonomy contains characters from different languages.
Instead, use the script is03166-99-ascii.txt to load an ASClIl-only
version of the taxonomy.

Configure OracleAS OC4J to Use DB2

The following sections describe how to create the DB2 package and modify the URL
for regular use.

Create a DB2 Package Define a data source with the name and location set to
j dbc/ Oracl eUddi to reflect that DB2 is the desired database, like the following:

<dat a- sour ce
cl ass="com ever ni nd. sql . Dri ver Manager Dat aSour ce"
name="j dbc/ Or acl eUddi "
| ocati on="j dbc/ Oracl eUddi "
connection-driver="comoracle.ias.jdbc.db2. DB2Dri ver"
user name="uddi sys"
passwor d="uddi sys"
url ="jdbc: oracl e: db2: // <ser ver name>: 50000; dat abaseName=UDDI SYS; PackageName=JDBCP
KG Dynami cSect i ons=512; Cr eat eDef aul t Package=TRUE; Repl acePackage=t r ue"
/>

10-76 Oracle Application Server Web Services Developer's Guide

UDDI Open Database Support

Note that <ser ver nanme> is the network name or IP address of the server hosting
the DB2 instance used for UDDI.

The data source needs to be accessible by the or auddi . ear and or audr epl . ear
files.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Now, launch the UDDI server so that these initial URL connection strings will be
used to create the appropriate default package in DB2.

Modify the URL for Regular Use Now that the DB2 package has been created, update
the data source defined in the previous step (see Create a DB2 Package on
page 10-76) and change the URL attribute from:

url ="jdbc: oracl e: db2: // <ser ver name>: 50000; dat abaseName=uddi sys; PackageName=JDBCP
KG Dynami cSect i ons=512; Cr eat eDef aul t Package=TRUE; Repl acePackage=t r ue"

to:

url ="j dbc: oracl e: db2: // <ser ver name>: 50000; dat abaseName=uddi sys; PackageName=JDBCP
KG Dynami cSect i ons=512"

Note that the last two parameters, Cr eat eDef aul t Package and

Repl acePackage, have been removed from the final URL attribute.

Once these changes have been made to both dat a- sour ces. xmi files, restart the
UDDI server for the changes to take effect.

Oracle (Non-OracleAS Infrastructure Database)
The following sections describe installation and configuration information.

Script Source Directory

If the ${ ORACLE_HQOVE} / uddi / admi n directory is not accessible from the server
with the relevant Oracle tools, then copy this directory to a location that is
accessible. This directory will be referred to as ${ ORACLE_HOVE_ORACLE} on
UNIX or “ORACLE_HOVE_ORACLE%0n Windows.

Create the Database and User

The following steps describe how to create the uddi sys database and the uddi sys
user:

Discovering and Publishing Web Services 10-77

UDDI Open Database Support

1. Go to the ${ ORACLE_HOVE_ORACLE} directory on UNIX or the %ORACLE _
HOME_ORACLE%directory on Windows.

2. Use SQL*Plus to execute the SQL script wur i nst . sql using the sys user
account. For example:

sql pl us "sys/change_on_install as sysdba" @wrinst. sql

The schema uddi sys is created with the password uddi sys. A log file
wur i nst. | og is produced.

Populate the Validated Taxonomy Codes

Populate the validated taxonomy codes using SQL*Loader with the three control
scripts: nai cs-97. ctl,i s03166-99. ctl,and unspsc-73. ct| . For example:

sql I dr userid=uddi sys/ uddi sys control =nai cs-97. ctl
sql I dr userid=uddi sys/ uddi sys

control =unspsc-73. ct|
sql I dr userid=uddi sys/uddi sys control =i s03166-99. ct|

Note: If the character set of your database is not UTF-8, do not use
the scripti s03166- 99. ct | to load the 1ISO3166 taxonomy
because the taxonomy contains characters from different languages.
Instead, use the script to load an ASCII-only version of the
taxonomy:

sql I dr userid=uddi sys/uddi sys control =i s03166-99-ascii.ctl

Configure OracleAS OC4J to Use the Non-OracleAS Infrastructure Database

Define a data source with the name and location set to j dbc/ Or acl eUddi to
reflect that non-Oracle Application Server infrastructure database is the desired
database, like the following:

<dat a- sour ce
cl ass="oracl e. j dbc. pool . Oracl eConnect i onCachel npl "
name="j dbc/ Or acl eUddi "
[ocati on="j dbc/ Oracl eUddi "
connection-driver="oracle.jdbc.driver.CracleDriver"
user nane="uddi sys"
passwor d="uddi sys"

url ="j dbc: oracl e: t hi n: @servername>: 1521: <oracl e si d>"

10-78 Oracle Application Server Web Services Developer's Guide

UDDI Subscription Service

/>
Note that <ser ver nane> is the network name or IP address of the server hosting
the non-Oracle Application Server infrastructure database instance used for UDDI.

The data source needs to be accessible by the or auddi . ear and or audr epl . ear
files.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Restart the UDDI server for these changes to take effect.

UDDI Subscription Service

The OracleAS UDDI Registry, leveraging OracleAS Syndication Services, provides a
subscription service allowing publishers in the registry to monitor or obtain
changes in the registry. By specifying a specific query or a set of entities, an
administrator can define an offer that provides changes in the entities that are
interesting to some users or scenarios. For example:

« Anadministrator can define an offer that provides changes to any
businessService entities classified in the NAICS classification scheme, for
example, under the category named mi ni ng .

« Publishers in the registry are interested in these types of services and can
subscribe to the offer.

For example, if you want to find all changes to any businessServices entities that are
classified under the topic name mining in the NAICS classification scheme, as a user
of the registry, you can subscribe to such an offer and automatically receive periodic
updates to the content.

Defining Offers

An administrator defines an offer using the OracleAS Syndication Services
administrators tool.

1. Determine the content connector to be used based on the type of filtering
criteria.

2. Create a content provider resource defining the specific filtering criteria.
3. Create an offer.

a. Define the contract (such as licensing terms, delivery rules) of the offer.

Discovering and Publishing Web Services 10-79

UDDI Subscription Service

b. Grant the offer to uddi _syndi cat i on application user, so that regular
UDDI publishers can subscribe to the offer using the UDDI Content
Subscription Manager.

Note: The offer must be granted to uddi_syndication user. It is the
user used in UDDI Content Subscription Manager.

See Oracle Application Server Syndication Services Developer’s and Administrator’s Guide
for more information.

For example, to provide an offer of changes to businessService entities classified
under the mining category in the NAICS classification scheme, the administrator
would do the following:

1. Determine the content connector to be used. First, the administrator determines
the content connector to be used based on the type of filtering criteria. In this
example, the type of filtering criteria is a finding services by categoryBag.
Therefore, the content connector to be used is
UddiFindServiceByCategoryBagCPAdaptor.

2. Create a content provider resource. Secondly, the administrator creates a
content provider resource using the content connector selected. The content
provider resource defines the specific filtering criteria. In this example, the
UDDI Subscription Service specific filtering criteria is that mining category in
the NAICS classification scheme.

3. Create an offer. Finally, the administrator creates an offer (to which regular
UDDI publishers can subscribe) using the content provider resource. In
addition, to the filtering criteria, the administrator does the following:

a. Defines the contract (such as licensing terms, delivery rules) of the offer.

b. Grants the offer to uddi _syndi cat i on application user, so that regular
UDDI publishers can subscribe to the offer using the UDDI Content
Subscription Manager.

OracleAS Syndication Services comes configured with the following content UDDI
connectors. A description of each connector is provided along with the specified
input arguments or properties each contains.

« UddiFindBusinessByCategoryBagCPAdaptor -- find businesses by category
bag; the category bag contains only one keyed reference with the following
properties: tModel key, key nhame, and key value.

10-80 Oracle Application Server Web Services Developer's Guide

UDDI Subscription Service

« UddiFindServiceByCategoryBagCPAdaptor -- find services by category bag; the
category bag contains only one keyed reference with the following properties:
tModel key, key name, and key value.

« UddiFindServiceByTModelBagCPAdaptor -- find services by TModel bag; the
tModel bag contains only one keyed reference with the following properties:
tModel key, key name, and key value.

« UddiFindTModelByCategoryBagCPAdaptor -- find TModels by category bag;
the category bag contains only one keyed reference with the following
properties: tModel key, key name, and key value.

« UddiGetBusinessDetail CPAdaptor -- get the full businessEntity information for
one business identified by a BusinessKey.

« UddiGetServiceDetail CPAdaptor -- get full details for a registered
businessService identified by a ServiceKey.

« UddiGetBindingDetail CPAdaptor -- get full bindingTemplate information
suitable for making one or more service requests identified by a BindingKey.

« UddiGetTModelDetail CPAdaptor -- get full details for a registered tModel data
structure identified by a TModelKey.

« UddiFindBusinessByNameCPAdaptor -- find one business by name; the name
is the business name prefix.

The OracleAS Syndication Services administrator:

1. May register a content provider for any of these preconfigured connectors by
specifying its properties, selecting the desired UDDI content connector, and
specifying settings to access the content repository and its resources.

2. May create an offer for a content provider by selecting the content provider
resource, specifying its offer properties, and choosing users or groups to which
to grant access to this offer.

Once the offers are created, the UDDI Content Subscription Administrator uses the
Web-based UDDI Content Subscription Manager to:

1. Manage UDDI application subscription properties, such as configuring the
UDDI Content Subscription Manager with OracleAS Syndication Services.

2. Subscribe to available offers as well as cancel his own subscriptions and those
belonging to any user.

See Subscribing to an Offer on page 10-83 for more information about using this
administrative tool to create OracleAS UDDI Registry UDDI Registry-based

Discovering and Publishing Web Services 10-81

UDDI Subscription Service

subscriptions. See Oracle Application Server Syndication Services Developer’s and
Administrator’s Guide for more information about managing and registering content
providers and creating offers and associated offer contracts with content providers.

Advanced Topic: Creating New UDDI Content Connectors

OracleAS UDDI Registry provides a command-line tool to facilitate the automatic
generation of custom OracleAS Syndication Services content connectors for various
UDDI inquiry requests. The command-line tool can be described as follows:

gener at eCPA

Parameter: <regi stry adm n URL> <user nane> <passwor d> [- ver bose]
- gener at eCPA <j avaCl assNane> <uddi Request XM_Tenpl at e>

Description: Given the UDDI request template XML, generates an OracleAS
Syndication Services content connector, in the format of a Java class file. The
generated Java class file will have the name as specified by the j avaCl assNane
parameter and a fixed Java package of

oracl e. uddi . server. subscri pti on. cp. In order for OracleAS Syndication
Services to find it, the Java class file should be incorporated into the existing JAR file
located in the following directory:

For UNIX:

<ORACLE_HQME>/ syndi cati on/ i b/ cp/ uddi cpas. j ar
For W ndows:

<ORACLE_HOME>\ syndi cati on\ | i b\ cp\uddi cpas. | ar

For example, given the following XML file f i ndbi z. xm as a UDDI request
template, perform the following steps:

<find_busi ness xnl ns="urn:uddi-org:api _v2' generic='2.0">
<findQualifiers>
<findQualifier>sortByNaneDesc</findQualifier>
<findQualifier>sortByDateAsc</findQualifier>
<findQualifier>caseSensitiveMtch</findQualifier>
</findQualifiers>
<name>$(Busi nessName, " Test ") </ nanme>
</find_busi ness>

Note that parameter definitions are allowed in this XML template. The syntax is as
follows: $(par anet er Nane) or $(par anet er Nane, "def aul t _val ue"). For

10-82 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

the find_business request template, a parameter with a preset value is defined. An
Oracle Application Server UDDI Content Subscription Administrator can generate
offers by setting different values to the Busi nessNane parameter after loading the
content connector generated from this XML template. Note that this UDDI request
XML template must have a UDDI v2 namespace.

1. Execute the gener at eCPA command as follows:

java -jar uddiadnmin.jar <registry adnin URL> <username> <password>
[-verbose] -generateCPA Uddi Fi ndBi zCPAdapt or fi ndbi z. xm

A Uddi Fi ndBi zCPAdapt or . cl ass file will be generated and must be
incorporated into the uddi cpas. j ar file.

2. Navigate to the directory where the uddi cpas. j ar file is located.

a. Create under this current directory the subdirectory
oracl e/ uddi / server/ subscri pti on/ cp on UNIX or the subdirectory
oracl e\ uddi \ server\ subscri pti on\ cp on Windows.

b. Copy your class file, UddiFindBizCPAdaptor.class into the <ORACLE _
HOVE>/syndi cation/lib/cp/oracl e/uddi/server/subscriptio
n/ cp directory on UNIX or the <ORACLE _
HOVE>\ syndi cati on\ | i b\ cp\oracl e\uddi\server\subscriptio
n\ cp directory on Windows.

c. Execute the following JAR command:

On UNILX:
jar -uf uddicpas.jar
oracl e/ uddi / server/subscription/ cp/ Uddi Fi ndBusi nessByNaneCPAdapt or. cl ass

On W ndows:
jar -uf uddicpas.jar
oracl e\uddi \ server\subscription\cp\ Uddi Fi ndBusi nessByNaneCPAdapt or. cl ass

3. Register the connector. Refer to Oracle Application Server Syndication Services
Developer’s and Administrator’s Guide for more information.

Subscribing to an Offer

The UDDI Content Subscription Manager is a Web-based application that allows
users (publishers and administrators) to subscribe to offers from content providers
through specialized UDDI content connectors managed by OracleAS Syndication
Services. As subscribers to the OracleAS UDDI Registry syndicated by OracleAS

Discovering and Publishing Web Services 10-83

Subscribing to an Offer

Syndication Services, users can create subscriptions to obtain changes in UDDI
Registry content delivered to them through e-mail. Users can also cancel their own
subscriptions.

The UDDI Content Subscription Manager recognizes two types of users, the regular
user or publisher, who has the UDDI publisher privilege, and the administrator of
the UDDI Content Subscription Manager, who logs in as a UDDI administrator, for
examplei as_admi n.

The regular user can do the following (see Using the UDDI Content Subscription
Manager as a Publisher on page 10-84):

« Subscribe to offers (create subscriptions).
« Cancel only their own subscriptions.

The administrator (for example, i as_admi n) can do the following (see Using the
UDDI Content Subscription Manager as a UDDI Administrator on page 10-91):

« Subscribe to offers (create subscriptions).

« Cancel their own subscriptions as well as all subscriptions belonging to all
users.

« Enter or change UDDI subscription application properties, such as configuring
the UDDI Content Subscription Manager with OracleAS Syndication Services.
These configurable properties include specifying:

— The syndication services URL.

— The syndication subscriber user name and password for UDDI (the
syndication user name and password for the special UDDI application
subscriber).

— The syndication connection pool size. This is the pool size for syndication
connections held by the subscription application.

— The logging level or the level of detail to record in the log file.

Using the UDDI Content Subscription Manager as a Publisher

To use the UDDI Content Subscription Manager as a UDDI publisher, perform the
following steps:

1. Start the UDDI Content Subscription Manager by entering the following URL.:

http://<host >: <port >/ uddi sub/ subscri ption/ ui

10-84 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

where the <host > parameter indicates the system on which the UDDI Content
Subscription Manager is installed and the <por t > parameter specifies the port
number on which it is running.

Next, log in as a UDDI publisher (for example, uddi _

publ i sher /<publ i sher - passwor d>). The UDDI Content Subscription
Manager home page or Subscriptions page is displayed, as shown in
Figure 10-2.

Figure 10-2 Subscriptions Page

A
- 1 e == AN o)
—UDDI Content Subscription £5) 2) (&)
=_— s — - Home Help Logout
(Subscribe Wizard)
Manage Subscriptions
Existing subscriptions are shown below. Select one or more rows in the tahle to cancel subscriptions.
[Unsubscribe)
SelectAll | Select Mone
Offer
Select Description Expiration Policy Delivery Description Content Destination
[Generic Expiration Priority=First contentwill be automatically delivered baged on the mailto:izella@wombats.com
Find Query @Mang qugntlw and following policy: Start Tirmes=; Duration=0 Hours 0
Offer 93‘9”3“_0” time iaho Minutes; Daily Updates=1; Days of
determines expiration; wonth=1 10 20 28 Diays of
Expiration Date=Jul 11, wask=Maonday Tuesday Wednasday Thursday,Friday
2003 8:00:00 PM EDT,
GQuuantity Total=3
(Subseribe Wizard)
Home | Help | Logout
Copyright @ 1996, 2002, Oracle. Al rights reserved. 2
@ g Local intranet

As the UDDI publisher, you can do any of the following tasks:
a. Create a subscription.

Click Subscribe Wizard to launch a 5-step subscribe wizard that lets you
choose an offer, accept the business terms of the offer, select the delivery
rules for delivering content to you, specify the e-mail address to where

Discovering and Publishing Web Services 10-85

Subscribing to an Offer

3.

content is to be delivered, and review a summary of the specified
subscription information before you create the subscription.

Cancel a subscription.

Select an existing subscription by selecting its corresponding box in the
Select column, then click Unsubscribe.

To subscribe to an offer, click Subscribe Wizard. In the first of 5 steps of the
subscribe wizard, the Offers page is displayed, as shown in Figure 10-3.

Figure 10-3 Offers Page

ORACLE’

_

UDDI Content Subscription

&

T
5
3
i
|: N
T

.f"‘\ M M

Offers Business Terms Creliveny Rules Email Address Subscription Summany

-"En_cel] I"T\J_ext)
Select Offer

Select one of the available offers listed helow.

Find Queries
(3 Generic Find Query Offer

Find Queries > Find Business » By Category Bag
O Find Businesses in Software Category

Find Queries > Find Business > By Hame > Order By Date Ascending
@] Find Businesses Beginning with "Weh Senvices™

&€

'@ Local intranet

a.

b.

At the Offers page, select one of the available offers from the list, then click
Next to continue to the next step.

At the Business Terms page, as shown in Figure 10-4, review the business
terms of the offer. If the business terms are acceptable, click the radio button
| Have Read and Accept, then click Next to continue to the next step. If the
business terms are not acceptable, click Back to return to the previous
Offers page and find another offer whose business terms are acceptable.

10-86 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

Figure 10-4 Business Terms Page

ORACLE ” 1
- UDDI Content Subscription

Business Terms

Home Help

e e\ 1

Business Terms Crelivery Rulas Email Address Subseription Summan

(cancel) (Back) | Mext)
Accept Business Terms

Review the business terms below and indicate whether or not you accept them. You must accept the terms
of use in order to subscribe to the offer.

Terms Of Use - Oracle Corparation is willing to license the web service offerings

provided only upon the condition that licensee accepts all responsibility for usage
of the software.

Copyright @ 1996, 2003, Oracle. Al ights reserved.

@ | Have Read and Accept
Do Mot Accept

o) o) (o) |l

Horme | Help 3

%

&

g Local intranet

C.

At the Delivery Rules page, as shown in Figure 10-5 and Figure 10-6,
select the delivery rules to be used by the OracleAS Syndication Services to
deliver content to you by clicking its box, then, click Next to continue to the
next step. The expiration policy information is displayed. Only push
delivery rules are available for selection.

Discovering and Publishing Web Services 10-87

Subscribing to an Offer

Figure 10-5 Delivery Rules Page (Top Half of Page)

ORACLE’ .
UDDI Content Subscription

Delivery Rules
gy

Delivery Rules Email Address Subseription Summany

Select Delivery Rules

Delivery rules cantral how the offer content is delivered to you. The delivery rules available for vour selected
offer are listed below:. Select the delivery rules to bhe used by the sener.

Expiration Policy

Expiration Priarity First among quantity and expiration time determines expiration
Expiration Date Jul 11, 2003 8:00:00 PM EDT
Quantity Total 3

hr:
@ \B Local intranet
Figure 10-6 Delivery Rules Page (Bottom Half of Page)
[#push
Content will he automatically delivered based on the following policy:
Start Time
Duration 0 Hours 0 Minutes
Daily Updates
Days of Month 1,10,20,28
Davs of Week Monday TuesdayWednesday Thursday Friday
(Cancel) (Back) (Next)
Home | Help
Copyright @ 1996, 2002, Oracle. Al rights reserved.
v
@ ‘3 Local intranet

d. Atthe Email Address page as shown in Figure 10-7, enter the e-mail
address to whom this offer content is to be sent, then click Next to continue
to the next step.

10-88 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

Figure

10-7 Email Address Page

ORACLE' | .
UDDI Content Subscription

Email Address

Copyright & 1996, 2003, Oracle. Al rights resenved.

Em=il Address Subseription Summan

(cancel) (Back) (Mext)

Specify Email Address

Enterthe email address to which offer content should be sent.

= Email Address iizella@womhats. com|

(cancel) (Back) (Mext)

@ Done

% Laocal intranet

At the Subscription Summary page, as shown in Figure 10-8 and

Figure 10-9, review the subscription information. The following
information is displayed: offer description, expiration policy, push delivery
rules, and e-mail address to where the content is to be pushed. If the
information is correct, click Finish to complete the subscription process. A
confirmation message is shown at the top of the Subscriptions page,
indicating that your subscription was successfully created.

If the information is not correct, click Back to return to the appropriate
subscribe wizard page where you can make the necessary change, then
click Next to return to this Subscription Summary page to review a
summary of the subscription information again.

Discovering and Publishing Web Services 10-89

Subscribing to an Offer

Figure 10-8 Subscription Summary Page (Top Half of Page)

~
- 4 - . = N .
-UDDI Content Subscription) (2)
= Home Help
Subscription Summary 3
Subscription Surmmary
(Gancel) (Back) (Finish)
Confirm Subscription 3
You are ahoutto create a new subscription with the infarmation listed below. Please canfirm that the
subscription information is correct:
Offer Description Generic Find Query Offer
Expiration Policy Expiration Priority - First among quantity and expiration time determines expiration
Expiration Date Jul 11, 2003 8:00:00 PM EDT
Quantity Total 3 w
@ '@ Local intranet

Figure 10-9 Subscription Summary Page (Bottom Half of Page)

Push Delivery Start Time
Duration 0 Hours 0 Minutes

Daily Updates

Days of Month 1,10,20,28
Days ofWeek Monday TuesdayWednesday Thursday Friday

Email Address mailtozizella@wombats.com

(Cancel) (Back) (Finish)

Home | Help
Copyright @ 1996, 2003, Oracle. Al rights reserved.

% Local inkranet

€

This completes the tasks that a UDDI publisher can perform using the UDDI
Content Subscription Manager.

10-90 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

Canceling a Subscription

To cancel a subscription, at the Subscriptions page as shown in Figure 10-2, select
the subscriptions that you want to cancel by clicking their boxes in the Select
column, then click Unsubscribe. A Subscription Cancellation page is displayed, as

shown in Figure 10-10. Click OK to confirm the unsubscribe action.

Figure 10-10 Subscription Cancellation Page

ORACLE -
UDDI Content Subscription f) (;

Subscription Cancellation

{cancel) (oK)
Confirm Cancel Action
You are ahoutto cancel the subscriptions shown below. Click QK to confirm the unsubscribe action.
Offer
Description Expiration Policy Delivery Description Content Destination

Generic Expiration Priarity=First among Contentwill be automatically delivered based onthe mailtoiizella@wombats.com
Find Guery quantity and expiration time following palicy: Start Time=; Duration=0 Hours 0
Offer determines expiration; Minutes; Daily Updates=1; Days of

Expiration Date=Jul 11, 2003 Month=1,10,20,28; Days of

8:00:00 PM EDT; Quantity Week=tMonday TuesdayWednesday Thursday, Friday

Total=3

(cancel) (oK)
Home | Help | Logout
Copyright E 1996, 2003, Oracle. Al ights resenved. i
&) % Lacal intranet

Using the UDDI Content Subscription Manager as a UDDI Administrator

To use the UDDI Content Subscription Manager as a UDDI administrator, perform

the following steps:

1. Start the UDDI Content Subscription Manager by entering the following URL:
http: //<host >: <port >/ uddi sub/ subscri ption/ ui
where the <host > parameter indicates the system on which the UDDI Content

Subscription Manager is installed and the <por t > parameter specifies the port
number on which it is running.

Discovering and Publishing Web Services 10-91

Subscribing to an Offer

2. Next, log in as a UDDI administrator (for example, i as_adm n/<i as_
adm n- passwor d>). The UDDI Content Subscription Manager home page or
Subscriptions page is displayed, as shown in Figure 10-11.

Figure 10-11 Subscriptions Page

ORACLE _ A
UDDI Content Subscription &) () (&£
-y S

Home Help Logout

_

| -Subscribe Wizard) -"EditAppIication Properties) I.'Switch To Regular\-fiew)

\ .'?

Manage Subscriptions
Existing subscriptions are shown below:. Select one or more rows in the tahle to cancel subscriptions.

{ Unsubscribe)
SelectAll | Select Mone

Offer Expiration
Select Username Description Policy Delivery Description Content Destination

[ias_admin Generic EXpIration contantwill be automatically delivered hased on the mailto:sauran@mardor.arg
Find Query PHofity=First foj0wing policy: Start Time=; Duration=0 Hours 0
Offer amang Minutes; Daily Updates=1; Days of
guantity and month=1,10,20,28; Days of
;’j’{p'rat'on Week=Monday, Tuesday, Wednesday, Thursday,Friday
ime
determines
expiration;
Expiration
Date=Jul
11,2003
8:00:00 P
EDT,
Quantity
Total=3 v

@ ‘3 Local intranet

As the administrator, you can do any of the following tasks:
a. Create a subscription.

Click Subscribe Wizard to launch a 5-step subscribe wizard that lets you
select an offer, accept the business terms of the offer, select the delivery
rules for delivering content to you, specify the e-mail address to where
content is to be delivered, and review a summary of the specified
subscription information before you create the subscription.

b. Cancel a subscription.

10-92 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

3.

Select an existing subscription by selecting its corresponding box in the
Select column, then click Unsubscribe.

c. Edit application properties.

Click Edit Application Properties to edit the UDDI subscription
application properties, such as configuring the UDDI Content Subscription
Manager with OracleAS Syndication Services.

d. Switch to regular view.

Click Switch to Regular View if you have logged in as the administrator
and want to just view or manage your own subscriptions as a regular user
would.

Click Subscription Application Properties to view or edit the UDDI
subscription application properties, as shown in Figure 10-12. The UDDI
content subscription administrator may need to change the default properties
only if one or more settings need to be changed.

For example, if the instance of OracleAS Syndication Services is installed on the
same system as this UDDI Content Subscription Manager, then the syndication
URL should be correct; if OracleAS Syndication Services is not on the same
system, then the UDDI Content Subscription administrator must specify the
syndication URL. You can edit any properties that may need to be changed.
Usually, the default settings will be fine. If no changes are necessary, click
Cancel; if changes are necessary, make your changes, then click OK. Then,
restart the UDDI content subscription application in order for these changes to
take effect.

Note: You must enter values for all fields in order to make
changes.

Discovering and Publishing Web Services 10-93

Subscribing to an Offer

Figure 10-12 Subscription Application Properties Page

ORACLE . A
UDDI Content Subscription 5)

Subscription Application Properties

(cancel) (oK)
Edit Application Properties

Enter or madify the UDDI Subscription application properties helow and click QK to save your changes. Note that you
rmust restart the UDDI application in order for these changes to take effect.

* Syndication URL

= Byndication Subscriber Usernarne for LIDDI iS-}-J-M

+* Syndication Subscriber Password for LIDDI

= Syndication Connection Pool Size

Logging Level E-debug

Eebug is the most verbose; fatal is the least werbose

{ cancel) (oK)
Home | Help | Logout
Copyright @ 1996, 2003, Oracle. Al rights reserved. ™
[
&] Done & Local intranet

Note: If you change any subscription application properties, you
must restart the UDDI application in order for these changes to take
effect.

Having checked the subscription application properties, regular users and
administrators can now begin subscribing to offers and managing
subscriptions.

4. You can subscribe to an offer just like a regular publisher by following the
procedure described beginning at Step 3 in Using the UDDI Content
Subscription Manager as a Publisher on page 10-84.

10-94 Oracle Application Server Web Services Developer's Guide

Subscribing to an Offer

Canceling a Subscription

To cancel one of your own subscriptions or a subscription belonging to any user, at
the Subscriptions page as shown in Figure 10-11, select the subscriptions from that

you want to cancel by clicking their boxes in the Select column, then click
Unsubscribe. A Subscription Cancellation page is displayed, as shown in
Figure 10-13. Click OK to confirm the unsubscribe action.

Figure 10-13 Subscription Cancellation Page

7]
= z a4 = ¥ = AN oy
—UDDI Content Subscription B) () (&
= = Home Help Logout
Subscription Cancellation
{Cancel) (0K)
Confirm Cancel Action
You are ahoutto cancel the subscriptions shown below. Click QK to confirm the unsubscribe action.
Offer
Username Description Expiration Policy Delivery Description Content Destination
ias_admin Generic Expiration Content will be autamatically delivered based on the mailto:sauran@maordar.org
Find Guery Priarity=First among following policy: Start Times=; Duration=0 Hours 0
Offer gquantity and Minutes; Daily Updates=1; Days of
expiration time Month=1,10,20,28; Days of
determines Week=Monday, Tuesday Wednesday Thursday, Friday
expiration; Expiration
Date=Jul 11, 2003
8:00:00 FM EDT,
Quantity Total=3
(cancel) (oK)
Home | Help | Logout
Copyright @ 1996, 2003, Oracle. Al ights resenved. bl
@ h] Local inkranet

Discovering and Publishing Web Services 10-95

Subscribing to an Offer

10-96 Oracle Application Server Web Services Developer's Guide

11

Consuming Web Services in J2EE
Applications

This chapter describes how to consume Web Services in Java 2 Platform, Enterprise
Edition (J2EE) applications. Two types of Web-based information or services are
supported:

« HTML/XML streams accessed through HTTP, see Consuming XML or HTML
Streams in J2EE Applications.

« SOAP-based Web Services described using WSDL, see Consuming SOAP-Based
Web Services Using WSDL.

In addition, when a J2EE application acquires a WSDL document at runtime, the
dynamic invocation API is used to invoke any SOAP operation described in the
WSDL document. See Dynamic Invocation of Web Services for information about
how to use the dynamic invocation API.

Consuming Web Services in J2EE Applications 11-1

Consuming XML or HTML Streams in J2EE Applications

Consuming XML or HTML Streams in J2EE Applications

Oracle Application Server Containers for J2EE (OC4J), provides support for
processing XML or HTML streams accessible through the HTTP/S protocols for
consuming into J2EE applications. The Web Service HTML/XML Stream Processing
Wizard assists developers in creating an Enterprise JavaBean (EJB) whose methods
will access and process the desired XML or HTML streams.

In the simplest case, suppose a developer wants programmatic access to an XML
news feed accessible through a static URL. In another case, a developer wants
programmatic access to a dynamic stream accessed through the submission of an
HTML form. Now, suppose HTTP/S basic authentication is required to access
either of these two types of resources. In either case, developers must be able to
quickly and easily process XML or HTML streams, thus consuming these Web
Services in their own specific J2EE applications.

Web Service HTML/XML Stream Processing Wizard

Developers using the Web Service HTML/XML Stream Processing Wizard first
specify how the XML/HTML stream should be accessed and then define the
desired processing actions on the stream.

Developers can choose among the following options when specifying their
XML/HTML stream access:

1. Supply a static URL that has no parameters.
2. Define an HTML form to be submitted, its action URL, and its parameters.
3. Supply the URL of an HTML page where the form to be submitted is defined.

Additional HTTP-related settings can also be specified. They include HTTP proxy
settings, authentication, and HTTPS Oracle Wallet information.

To assist developers in defining the processing to be applied to the stream, the
wizard accesses the XML/HTML stream (prompting the developer for sample form
values if necessary). The resulting sample XML/HTML stream is shown in a
searchable XML tree. Through the wizard, the developer can perform the following
actions:

1. Leave the XML stream unprocessed and have the service response be the
original stream.

2. Select a node in the XML tree and have the service response be an XML Element
corresponding to that node.

11-2 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

3. Select a node in the XML tree and define through the wizard a simple
transformation for it. The service response will be the result of that
transformation. Optionally, the same transformation can be applied to all the
siblings of the selected node.

The wizard allows developers to create multi-operation services by repeating the
steps described previously for each operation.

Note: JavaScript code contained in HTML streams will be ignored
and not processed.

Upon completion of the steps described previously, the Web Service HTML/XML
Stream Processing Wizard generates a JavaBean and an EJB whose methods
perform the appropriate HTTP request and processing of the XML or HTML
response. If it is necessary to support multi-operation services, then the generated
stub keeps the HTTP session information in its state, and the generated stub is
modeled as a stateful session EJB user option. The resulting Java code is then
compiled and archived, creating the required .ear file that the developer can
immediately deploy in Oracle Application Server.

Sample Use Scenarios

This section describes two sample use cases for a better understanding of how to
use the Web Service HTML/XML Stream Processing Wizard.

Handling an XML or HTML Stream Accessed Through a Static URL

The following steps generate the Java stubs that consume a static XML or HTML
stream.

1. Invoke the Web Service HTML/XML Stream Processing Wizard using the
following command:

java -jar WebServicesH m Xm W zard. j ar

Note: The WebServi cesHt ml Xml W zar d. j ar file is located in
your $ORACLE_HOVE/ webser vi ces/ | i b installation directory
for UNIX or “ORACLE_HOVE% webser vi ces\ | i b installation
directory for Windows.

Consuming Web Services in J2EE Applications 11-3

Consuming XML or HTML Streams in J2EE Applications

2. In Step 1 of 5: HTML/XML Stream Type, select the first option Through a
static HTTP/S URL, then click Next to continue to the next step.

Eg’%‘#eh Service HTML/XML Stream Processing Wizard : Add Method - S5tep 1 of 5: HTMLA<ML 5t...

HTMLEML streams can be static or dynamically generated based an a
submitted form. Select the access type ofthe HTMLEML stream.

® Through a static HTTPIS LIRL
" Submitting a form defined in a HTML page

" Submitting & custom form

In Step 2 of 5: HTML/XML Stream URL, enter the URL of the HTML page in
which you want to access the resource. Accept the default stream content type,
HTML Format. If the stream content type is XML, then select the XML Format

content type.

11-4 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTML/XML Stream Processing Wizard - Add Method - Step 2 of 5: HTML/XML St... [E3

Enterthe LURL of the HTMLGML stream.

URL: Ihttpeitesweer.oracle.comi

Advanced Seﬁings...l

Selectthe stream content type.

TYPe: | HTML Format

If you must access the URL from outside a firewall, click Advanced Settings.
For this example, assume you must go through a firewall to access the desired
URL.

4. Atthe Advanced Settings pop-up window, select Use proxy server and place a
checkmark in the box, then enter the host address and port number for your
proxy server. Click OK to return to the HTML/XML Stream URL window.
Click Next to continue to the next step.

Consuming Web Services in J2EE Applications 11-5

Consuming XML or HTML Streams in J2EE Applications

Advanced Settings. ..

~iteb Promxy

I Lize proxy serer

Host: |mmw—prnw.us.nracle.cnm

|20

~Cradential

W Lize credential information in request

Lsernarne: |my—ntn-username

Passward: |1HHHHHHHr

~Cracle Wallet

Laocation: Browse. ..

Note: If the URL you are accessing requires basic HTTP
authentication, select Use credential information in request, then
enter the user name and password in the Credential section of the
Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,
use the Oracle Wallet section of the Advanced Settings pop-up
window to enter the Wallet location.

11-6 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

5. In Step 3 of 5: Result Node, the HTML/XML Stream tree is shown in the
HTML/XML Stream section. Ignore this HTML/XML stream tree for now.

Note: You may need to move your mouse to the bottom of the
wizard window, grab the edge (note the double-headed, vertically
oriented arrow), and pull the window down to expand it so you
can see the Service Response Tree pane.

Note: If the original HTML/XML stream was in HTML, the
wizard first converts it into XHTML (making it a valid XML
document), and then shows its structure in the tree.

Consuming Web Services in J2EE Applications 11-7

Consuming XML or HTML Streams in J2EE Applications

E‘E,%Weh Service HTMLAXML Stream Processing Wizard : Add Method - S5tep 3 of 5: Result Mode

The following tree shows the structure of the HTMLAML stream. Select

the node that containg a complete set of service results.

~ HTMLEML Stream

Find:

Mext| Previous

[DOCUMENT]

E—whitmlhtml

Made ¥Path: [

~'eb Service Response

® Raturn the entire HTRMLML stream as the Weh service response

" Define the Web service response from the selected node

I reludeallthe siblings ofthe selecied nodeil.. | Advanced.,

Then, for the Web Service Response section, select how you want to build the

Web Service response; you can select one of two options:

« Return the entire HTML/XML stream as the Web service response

« Define the Web service response from the selected node

For this sample use, you want to take the entire page content as the Web page
content, therefore, select the first option, Return the entire HTML/XML stream

as the Web service response.

11-8 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

Note: If you select the Define the Web service response from the
selected node option, a Service Response Fields window displays.
This option lets you finalize the output extracting process by letting
you select elements of interest to be outputs and assign names to
the output fields. See list item 8 for more information about the
Service Response Fields window.

Click Next to continue to the next step.
In Step 4 of 4: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then
you will see only the EJB method name. You need to enter only the EJB method
name and click Finish to complete the operation of creating your EJB method.

If this is the second or subsequent HTML or XML stream you are processing in
this session, then the suggested EJB method information is displayed for your
EJB method, describing the name for the J2EE application, the EJB name, the
name of the service package, and the name of the service class. By default, the
names are preselected based on the information that is already known.

If you want to retain this suggested EJB method information and display it in
the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (checkmarked). If not, deselect
this option and the EJB method information that appeared previously will be
displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;
however, in the final step (Console window), you can change these names.

Consuming Web Services in J2EE Applications 11-9

Consuming XML or HTML Streams in J2EE Applications

%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - Step 4 of 4: Summary E3

Specify the name ofthe EJB method used to access this Web service.

hethod name: |news

Enter an EJB method name, then click Finish to continue to the next step.

Note: Once you click Finish on the Summary window, you
cannot return to a previous step. You really are finished with the
process of creating an EJB method that will access and process the
specified XML or HTML stream.

7. In the final step, the Console window, you see the main window of the Web
Service HTML/XML Stream Processing Wizard that always remains in view
once you reach this step of creating an EJB method.

11-10 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

Wweb Service HTMLS XML Stream Processing Wizard Console

..
—
—

. emlstrearmite sty Onaform

The Console window is divided into three sections: EJB Definition, EJB
Methods, and Save Location.

Consuming Web Services in J2EE Applications 11-11

Consuming XML or HTML Streams in J2EE Applications

EJB Definition Section

The EJB Definition section contains the default EJB definition for your current EJB
consisting of the J2EE application name, the EJB name, the service package name,
and the service class name. You can change any of these definition names by placing
the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated EJB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by
selecting the Use current proxy and wallet settings for the generated EJB option.
By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 5: HTML/XML
Stream Type window where you can begin again the process of adding another EJB
method definition that accesses an HTML or XML stream through the HTTP/S
protocol.

If you select an EJB method and click Remove, the highlighted EJB method is
removed. Note that there is a confirmation window that pops up as part of this
operation.

If you select an EJB method name and click Rename, a Rename pop-up window
lets you rename the EJB method. You can click OK to complete the rename
operation and return to the Console window, or you can click Cancel to cancel this
rename operation and return to the Console window.

Save Location Section

The Save Location section lets you specify where you want the generated EJB
method to be saved. You can either enter a drive and directory name or browse to
the desired location by clicking Browse.

If you want, edit the EJB definition names in the EJB Definition section, then enter
the directory name where you want to save your generated EJB. You can optionally
browse to this directory location and select it, or browse to the desired directory and
create a new directory name.

Select the Make the generated EJB stateful option if you are creating a
multi-operational service. When you create a multi-operational service, which
needs to maintain a conversational state with the remote HTTP server across
method calls, you must access other site content and perform the defined

11-12 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

processing. In addition, keep the HTTP/S session information in its state so other
method calls can share the same session information. The generated Java stub will
then be modeled as a stateful session EJB.

An example of a multioperational service would be one operation that includes the
login methods for HTTP or HTTPS authentication. A second operation would
include the methods that scrape the Web site to which you were granted access
through login authentication. In this case, method calls for both operations share
the same session information.

For this sample use, leave the Make the generated EJB stateful box without a
checkmark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add the EJB Methods section, which
starts you again at Step 1 of the wizard, the HTML/XML Stream Type window.

The Web Service HTML/XML Stream Processing Wizard generates the following
sets of files located within the destination directory name you specified in the
Console window. The wizard will save the generated files using the following
directory layout:

Root /
+ app. ear
+ src/
+ ... generated java sources ...
+ cl asses/
+ META- | NF/
+ ej b-jar.xn
+ ... conpiled classes and xm resources
+ depl oy/
+ ejb.jar
+ META- | NF/
+ application.xm

« An .ear file (which is a JAR containing the J2EE application that can be
deployed in Oracle Application Server) is located within the parent directory
you specified in Step 7. The .ear file contains the generated EJB, JAR, and XML
files for your application, where the appl i cati on. xnl file located in the
/ depl oy/ META- | NF directory for UNIX or the \ depl oy\ META- | NF directory
for Windows serves as the EAR manifest file.

Consuming Web Services in J2EE Applications 11-13

Consuming XML or HTML Streams in J2EE Applications

« AJARfile, containing your EJB application class files is located within the
/ depl oy directory for UNIX or the \ depl oy directory for Windows. The JAR
file includes all EJB application class files and the deployment descriptor file.

« A standard J2EE EJB deployment descriptor (ej b-j ar . xmi), for all the beans
in the module, is located within the / cl asses/ META- | NF directory for UNIX
or the\ cl asses\ META- | NF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

« The source code of a set of Java classes that you can use in your Java
applications is located within the / sr ¢ directory for UNIX or the\ src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package names.

« The/ cl asses directory for UNIX or the \ cl asses directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

The following code is generated in the src/ com or acl e/ ww/ Cl assl. j ava file
on UNIX or the src\ com oracl e\ ww\ Cl assl. j ava file on Windows showing
the remote interface (Classl) of the generated EJB. In this case, a method (news)
with no parameters that return an org.wc3.dom.Element is generated because the
HTML stream was selected as a static HTML page.

public interface Cassl extends EIJBObj ect
{

public org.w3c.dom El ement news()
t hrows Renot eExcepti on;

Handling an XML or HTML Stream Accessed Through a Form

The following steps generate the Java stubs that consume a dynamic XML or HTML
stream requiring a form to be submitted.

1. Invoke the Web Service HTML/XML Stream Processing Wizard using the
following command:

java -jar \WebServicesH m Xm W zard. j ar

11-14 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

Note: The WebServicesHtmIXmIWizard.jar file is located in your
$ORACLE_HOVE/ webser vi ces/ | i b installation directory for
UNIX or ORACLE_HOVE\ webser vi ces\ | i b installation
directory for Windows.

2. In Step 1 of 5: HTML/XML Stream Type, select the second option, Submitting
a form defined in an HTML page, then click Next to continue to the next step.

E%Weh Service HTML/XML Stream Processing ‘Wizard : Add Method - Step 1 of 5: HTMLAXML 5t... B3

HTMLMML streams can he static or dynamically generated based on a
submitted form. Selectthe access twpe ofthe HTMLEML stream.

" Through a static HTTRIS LIRL

® Submitting a form defined in & HTML page

T Subrnitting a custorm form

Note that you can optionally select the Submitting a custom form option if you
must customize the form to allow for variables such as where the Web server
offers a certain action, but the corresponding form is not provided in the HTML
page.

3. In Step 2 of 7: HTML/XML Stream URL, enter the URL of the HTML page
from which you want to access the resource.

Consuming Web Services in J2EE Applications 11-15

Consuming XML or HTML Streams in J2EE Applications

%Weh Service HTML/XML Stream Processing Wizard : Add Method - Step 2 of 7: HTML/XML 5t B4

Enter the LIRL ofthe HTRML pade containing the form definition.

URL: Inttpeiirystockguote.com

Advanced Seﬁings...l

If you must access the URL from outside a firewall, click Advanced Settings.
For this example, assume you must go through a firewall to access the desired
URL.

4. Atthe Advanced Settings pop-up window, select Use proxy server and place a
checkmark in the box, then enter the host address and port number for you
proxy server. Click OK to return to the HTML/XML Stream URL window.
Click Next to continue to the next step.

11-16 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

Advanced Settings... E3

~ieb Proy

I Lise proxy sener

Host: |www—pro}w.us.oracle.cnm

|20

~Credential

[Use credential infarmatian in request

LIEErmame: [

=== [

~Oracle Yallet

Location: Browse. ..

Cancel

Note: If the URL you are accessing requires basic HTTP
authentication, select Use credential information in request, then
enter the user name and password in the Credential section of the
Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,
use the Oracle Wallet section of the Advanced Settings pop-up
window to enter the Wallet location.

Consuming Web Services in J2EE Applications 11-17

Consuming XML or HTML Streams in J2EE Applications

5. In Step 3 of 7: HTML Form, the Web Service HTML/XML Stream Processing
Wizard identifies all HTML forms on the Web page. For this sample use, the
Form field shows just one form, the default form name, Form1 and the Action
field shows the HTML form action. In the Content Type field, the default is
HTML Format. This specifies the content type of the page returned by the
remote server upon the submission of the form. If the content type is XML, then
select XML Format. Accept the default content type as HTML format.

E‘E,%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - S5tep 3 of 7 HTML Form E3

The wizard identifies all the HTML forms on the Wieb page. Select the
farm and enter the form information below

Form:

Action:

Content type: [HTMLFDrmat

Enter the form guery parameters. If @ query parameter is hidden, its

[Fnrm1

| et

default value cannot be empty.

mHarme

Descriptive Mame Hidden Default Walue

C

Stockoguote

O

h

Yalue

O

Note: If you are submitting a custom form, there is no need to

specify an action.

11-18 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

In the form query parameters section, checkmark the names of the query
parameters and add descriptive names as needed in the Descriptive Names
column for each query parameter. Descriptive names are used as the name of
the parameter in the signature of the method being defined. For query
parameters that should remain hidden, click the appropriate row and column to
change the default value from unchecked to checked. Note that for each hidden
guery parameter, you must also enter a default value. Hidden parameters are
not exposed as Java parameters in the signature of the method being defined.
When you have made all the necessary changes, click Next to continue to the
next step.

In Step 4 of 7: Sample Input, you must enter sample input to your service in
order to generate the response message syntax. The default values for all the
hidden query form parameters specified in the previous step, Step 3 of 7 HTML
Form, are used as sample input. Add or edit the sample input values for all
required query form parameters in the Value fields for each parameter.

Consuming Web Services in J2EE Applications 11-19

Consuming XML or HTML Streams in J2EE Applications

%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - Step 4 of 7: Sample Input E3

The wizard needs a set of sample input to your service to generate the
response messade syntax Far all the hidden input fields, the default

Sample Input

MHarme Walue
Stockguote |ORCLAAPL,IBM

Walue v

3

Advanced Seﬂings...l

If you want to check your Web proxy information, enter basic HTTP
authentication information, or enter basic HTTPS authentication information,
click Advanced Settings and enter or edit the desired information.

Click Next to continue to the next step.

7. In Step 5 of 7: Result Node, the HTML/XML stream tree is shown in the
HTML/XML Stream section.

Note: You may need to resize the window vertically so you can
see the HTML/XML Stream Tree pane.

11-20 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - S5tep 5 of 7: Rezult Mode [x|

The following tree shows the structure of the HTMLEML stream. Select
the node that contains a complete set of service results.

~ HTMLML Stream

Find: |ORCL Mext| Previous

et

rmilns xhtrnl="hitp e w3 orgf1 99900t

rmilns xhtml="http ases w3 orgil 999

o align="center" -
__
4] D

Mode ¥Patht bmlihitrl: bodyihtml:centershimi:table[d)html 1]

~Web Service Response
T Return the entire HTMLEML stream as the Web service response

@ Define the Web service response from the selected node

[v Include all the siblings ofthe selected node i.. Advanced...

The Result Node window shows the structure of the HTML or XML stream as
an HTML/XML stream tree and lets you define your Web Service response
based on the contents of the HTML/XML stream.

You have two options in defining your Web Service response;

« To select the entire HTML/XML stream to be part of your Web Service
response.

« To select just the node that contains the complete set of service results in the
HTML/XML stream and define this to be the Web Service response.
Optionally, you can also include in the Web Service response all siblings of
the selected node.

Consuming Web Services in J2EE Applications 11-21

Consuming XML or HTML Streams in J2EE Applications

The Web Service Response section lets you define the Web Service response as
either the entire HTML/XML stream or as the parent node you selected in the
HTML/XML Stream section. If the parent node contains siblings, you can
optionally select them all to be included in the Web Service response. If you
choose to include all the siblings, you can click Advanced Settings to display
the Advanced Settings pop-up window where you can enter a predicate that
filters the set of sibling nodes, view the resulting Xpath, and view or edit the
Response element name.

If you want to select the entire HTML/XML stream to be part of your Web
Service response, select the first option Return the entire HTML/XML Stream
as the Web service response, then click Next at the bottom of the window to
continue to the next step.

If you want to select just the node that contains the complete set of information
you are interested in, select the second option Define the Web service response
from the selected node. Then, navigate to the node you want by moving down
the HTML/XML stream tree.

You can quickly locate the desired element in the HTML/XML stream tree by
entering its name in the Find field and clicking Next at the end of this field. The
name of the element is highlighted in the HTML/XML stream tree. You can go
to the next or previous occurrence of this element by clicking Next or Previous
the end of the Find field.

From the highlighted element, navigate toward the root of the tree to the node
that contains the complete set of information in which you are interested. The
node of interest is usually the next lowest table row node (xht m : t r) that is
within a different table; it is usually located one level lower toward the root of
the tree.

Figure 11-1, Figure 11-2, and Figure 11-3 together show an excerpt of what the
xhtml tree would appear like when expanded. The selected node xht m : tr is
located in the next lower table node, which is one level lower than the

xht m : tr nodes for ORCL and its two siblings AAPL and IBM.

11-22 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

Figure 11-1 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part1)

Skt table

Exhlrrll.ld

align="cente"
rnlspan=""
Suhtmltakl
wriclth—"100%"
—rellspanng="11"
—hordor="1"
EFE—xtilrril. Ir
L (R T
J;HIIQH:"FIQH'I"
SHahilrnil A
align-"1=1"
nrwrap="ne
Suhitimlia
'—hrul'—".l'u?u—ORCL&h—l"
"R
> whbonlitd

Er—whtrnl e
E=—achtrmltd
& xhilrnl.ld
1123 wehtimalitd
Er—yhtrnltol
Er—xhilrnl.ld

Consuming Web Services in J2EE Applications 11-23

Consuming XML or HTML Streams in J2EE Applications

Figure 11-2 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part2)

kIJ whtraltr

Jj—_:augn:"rlghf'
=—uhtmiltd

Alinn—"lal"
raweraa="rull"

SZuhtmlia
"hrul""m?u—.&.ﬂ\P‘ L&h—1"
borAAPLY

Er—whtrmlti

E=—htrmlitd

Er mhilrnl.ld

Figure 11-3 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part 3)

kit
=ittty
»hilrrnl ld
12 et it
= —whtinl e
allgn="rlght"
W st
aligh="1~t"
naserap="rnull"
rhilrrila
| Fref=" e o —IB b &1
IR

iyl
pl

shitrrlld
123 bl
£ whtrml i
BT 1 g
E—shilrrl L
ER LRI A

g Ty . ru |

11-24 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

Note that the Node Location field contains the complete name of the node you
selected.

When you select the option Define the Web service response from the selected
node, another option is now available and that is whether or not to include all
the siblings of the selected node in the response.

If the node you selected has siblings that you want to include in the Web
Service response, select the option Include all the siblings of the selected node
in the response. When you make this selection, an Advanced Settings button
enables. Click Advanced Settings to display the Advanced Settings pop-up
window where you can enter a predicate that filters the set of sibling nodes,
view the resulting Xpath, and view or edit the Response element name.

The following predicate filters out the first position: position() != 1. Enter this
predicate expression in the Predicate that filters the set of sibling nodes field
of the Advanced Settings pop-up window to filter the first sibling from the Web
Service response.

For more information about predicates, filters, syntax, and composing a
predicate expression, see the Xpath section of the following Web site:
htt p: // ww. w3c. or g/ TR/ xpat h.

Then, click OK to return to the Result Node window.
Click Next to continue to the next step.

In Step 6 of 7: Service Response Fields, you are finalizing the output extracting
process. Based on the selected element from Step 5 of 7 Result Node, you can
select elements of interest to be outputs and assign names to the output fields.

Consuming Web Services in J2EE Applications 11-25

Consuming XML or HTML Streams in J2EE Applications

E‘-E%Weh Service HTML/ XML Stream Processing Wizard : Add Method - S5tep b of 7: Service Rezponse Fields

From the HTMLXML Stream Tree, select the node that contains the value of a serice
response field. Then add the field to the Service Response Fields list and specifiy a name
for it. Repeatthe process far each node thatyou weant to include in the Service Response.

HTMLML Stream Tree Semwice Responsze Fields

T T=—To T = MarTE copy-of
nowrap="null"

Stockoguote

htiml:a
Frice

mins xhtrml="http:x
hret="fg*c=1BME&h=t"

Stockoguote

Frice

BN
ﬂ Stockoguote
E—shitrnltal

Sahtmltd ﬂ 'Price|

mins:xhtrml="hitpoia. Sample Respanse Field Walue
104.490

nowrap="null"
hitrml:h

bmlns:}{htmlﬂhﬁpj
'109.90"

Service Response Field Names are mapped to XML Element names of the
service response. By default, the value of each node selected in the HTML/XML
stream is contained in an XML Element name as specified in the Service
Response Fields table. For example, if the <a>test node from the
HTML/XML stream tree is added to the Service Response Fields pane, the
service response then contains an XML Element such as <respA>test</respA>,
where respA is the corresponding service response field name. The value of the
node is extracted using the XSLT value-of operation.

If the copy-of column is selected for a result field, the corresponding
XML/HTML stream node is copied in the service response. For example, if the
<a>test node from the HTML/XML stream tree is added to the Service

11-26 Oracle Application Server Web Services Developer’'s Guide

Consuming XML or HTML Streams in J2EE Applications

Response Fields pane and the copy-of option is selected, the service response
then contains an XML Element, such as <respA><a>test</respA>, where
respA is the corresponding service response field name. The copy of a node is
built using the XSLT copy-of operation as shown in the following code example
taken from a generated XSL stylesheet. In this example, <r esp: St ockquot e>
and <r esp: Pri ce> are the corresponding service response field names
showing the copy of a node that was built using the XSLT copy-of operation
where the Copy-of column option was selected.

- <resp: Stockquot e>
<xsl : copy- of

select="./xhtnl:td/xhtm :table/xhtm:tr[2]/xhtm:td[1]/xhtn:a/text()" />
</resp: St ockquot e>

- <resp:Price>
<xsl : copy- of

select="./xhtm:td/xhtm :table/xhtm:tr[2]/xhtm:td[3]/xhtm:b/text()" />
</resp: Price>

- <resp: Stockquot e>
<xsl : copy- of

select="./xhtnl:td/xhtm :table/xhtm :tr[3]/xhtm:td[1]/xhtm:a/text()" />
</resp: St ockquot e>

- <resp: Price>
<xsl : copy- of

select="./xhtm :td/xhtm :table/xhtm:tr[3]/xhtm:td[3]/xhtm :b/text()" />
</resp: Price>

- <resp: Stockquot e>
<xsl : copy- of

select="./xhtm:td/xhtm :table/xhtm:tr[4]/xhtm:td[1]/xhtm:a/text()" />
</resp: St ockquot e>

- <resp:Price>
<xsl : copy- of

select="./xhtnl:td/xhtm :table/xhtm:tr[4]/xhtm :td[3]/xhtm:b/text()" />
</resp: Price>

In the HTML/XML Response Tree pane, navigate to the node that contains the
value of the service response field of interest and select the value to highlight it.
Then, click the double, right-arrow to the right of this HTML/XML Response
Tree pane to move the value of the response field to the lower right Sample
Response Field Value pane. This action also adds a row to the Service
Response Fields list in the upper right Service Response Fields pane. Select
the empty field in the Name column of the Service Response Fields pane and
enter a descriptive name for this field. Repeat this process for each element that
you want to include in the service response. As you follow this process, you

Consuming Web Services in J2EE Applications 11-27

Consuming XML or HTML Streams in J2EE Applications

will be building a list of response fields of interest in the Service Response
Fields list.

If you want to remove a service response field from the Service Response
Fields list, select the value of the name in the Service Response Fields pane
and click the double, left-arrow to the left side of this pane. This action removes
this service response field from the Service Response Fields list.

When you have made all your selections, click Next to continue to the next step.
9. In Step 7 of 7: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then
you will see only the EJB method name.

If this is the second or subsequent HTML or XML stream you are processing in
this session, then the suggested EJB method information is displayed for your
EJB method, describing the name for the J2EE Application, the EJB Name, the
name of the service package, and the name of the service class. By default, the
names are preselected based on the known information.

If you want to retain this suggested EJB method information and display it in
the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (with a check mark). If not,
deselect this option and the EJB method information that appeared previously
will be displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;
however, in the final step (Console window), you can change these values.

11-28 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

E%%Weh Service HTMLAXML Stream Proceszing Wizard : Add Method - Step 7 of 7- Summary [x|

Specify the name ofthe EJB method used to access this Web service.

Method name: Stockguotel

[Use the method information to define EJB as follows:

J2EE Application StockQuotespp

EJB Mame mystockguote comistockguote
Service Package com.myvstockguote

Senice Class stockguote

Enter an EJB method name, then click Finish to continue to the next step.

Note: Once you click Finish on the Summary window, you
cannot return to a previous step. You really are finished with the
process of creating an EJB method whose methods will access and
process the specified XML or HTML stream.

Consuming Web Services in J2EE Applications 11-29

Consuming XML or HTML Streams in J2EE Applications

10. In the final step, the Console window, you see the main window of the Web
Service HTML/XML Stream Processing Wizard that remains in view once you
reach this step of creating an EJB.

WwWeb Service HTMLSZML Stream Processing Wizard Console

~ EJB Definitian

Define the application, EJB name, package, and class far the
generated EJB.

JZEE Application: |8t0ck@unte|}_\pp

EJB Name: |mvstnckqunte.cnmrstnckqume

Senice Package: |cnm.mystnckqunte

Senice Class: |5t.3|;|<qume

[make the generated EJB stateful

W Ulse current proxy and wallet settings for the generated EJB

~ EJB Methods

Add, remave, or rename EJB methods.

Stockoguotel

Add.
Remove
Rename...

~ Save Location

Select the directory where you want the generated EJB to bhe saved.

e mlstrearmitest90form Browse. ..
ep

11-30 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

The Console window is divided into three sections: EJB Definition, EJB
Methods, and Save Location.

EJB Definition Section

The EJB Definition section contains the EJB definition for your current EJB
consisting of the J2EE application name, the EJB name, the service package name,
and the service class name. You can change any of these definition names by placing
the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated EJB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by
selecting the Use current proxy and wallet settings for the generated EJB option.
By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 7. HTML/XML
Stream Type window where you can begin again the process of adding another EJB
method definition that accesses an HTML or XML stream through the HTTP/S
protocol.

If you select an EJB method and click Remove, the highlighted EJB method is
removed. Note that there is a confirmation window that pops up as part of this
operation.

If you select an EJB method name and click Rename, a Rename pop-up window
lets you rename the EJB method. You can click OK to complete the rename
operation and return to the Console window, or you can click Cancel to cancel this
rename operation and return to the Console window.

Save Location Section

The Save Location section lets you specify where you want the generated EJB
method to be saved. You can either enter a drive and directory name or browse to
the location by clicking Browse.

If you want, edit the EJB definition names in the EJB Definition section, then enter
the directory name where you want to save your generated EJB. You can optionally
browse to this desired directory location and select it, or browse to the desired
directory and create a new directory name.

Consuming Web Services in J2EE Applications 11-31

Consuming XML or HTML Streams in J2EE Applications

Select the Make the generated EJB stateful option if you are creating a
multi-operational service. When you create a multi-operational service, which
needs to maintain a conversational state with the client across method calls, you
must access other site content and perform the defined processing. In addition, keep
the HTTP/S session information in its state so other method calls can share the
same session information. The generated Java stub will then be modeled as a
stateful session EJB.

For this sample use, leave the Make the generated EJB stateful box without a check
mark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add in the EJB Methods section,
which starts you again at Step 1 of the wizard, Step 1 of 7. HTML/XML Stream

Type.

The Web Service HTML/XML Stream Processing Wizard generates the following

sets of files located within the parent directory name you specified in the last step,
the Console window. The wizard will save the generated files using the following
directory layout:

Root /
+ app. ear
+ srcl/
+ ... generated java sources ...
+ cl asses/
+ META- | NF/
+ ej b-jar.xn
+ ... conpiled classes and xm resources
+ depl oy/
+ ejb.jar
+ META- | NF/
+ application.xm

« An .ear file (which is a JAR containing the J2EE application that can be
deployed in Oracle Application Server) is located within the parent directory
you specified in the last step, the Console window. The .ear file contains the
generated EJB, JAR, and XML files for your application, where the
appl i cation.xmn filelocated in the/ depl oy/ META- | NF directory for UNIX
or the \ depl oy\ META- | NF directory for Windows serves as the EAR manifest
file.

11-32 Oracle Application Server Web Services Developer's Guide

Consuming XML or HTML Streams in J2EE Applications

« AJARfile, containing your EJB application class files, is located within the
/ depl oy directory for UNIX or the \ depl oy directory for Windows. The JAR
file includes all EJB application class files and the deployment descriptor file.

« A standard J2EE EJB deployment descriptor (ej b-j ar . xml), for all the beans
in the module, is located within the / cl asses/ META- | NF directory for UNIX
or the\ cl asses\ META- | NF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

« The source code of a set of Java classes that you can use in your Java
applications is located within the / sr ¢ directory for UNIX or the\ src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package names.

« The/ cl asses directory for UNIX or the \ ¢l asses directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

The following code is generated in the <cl ass- nane>. | ava file showing the
remote interface (stockquote) of the generated EJB. In this case, a method
(stockquotel) with parameters (Stockquote and h) for each non-hidden form
parameter that returns an org.wc3.dom.Element is generated. This stockquotel
method is generated because the HTML stream was selected as being dynamically
generated based on a submitted form defined in the HTML page.

public interface stockquote extends EJBObject

{
public org.w3c.dom El enent stockquotel(java.lang.String Stockquote,
java.lang. String Val ue)
throws Renot eExcepti on;

Advanced Section -- Editing Changes You Can Make to Generated Files

The following sections describe some changes you can make by editing the content
of specific generated files. These changes can adapt your XSLT stylesheet to an
enhanced response definition or satisfy changing requirements for using your
generated EJB with another Web proxy server.

Consuming Web Services in J2EE Applications 11-33

Consuming XML or HTML Streams in J2EE Applications

Editing the Generated XSLT Stylesheet

The generated <cl ass- nanme>. j ar file, located in the last child <cl ass- name>
directory within the / cl asses directory on UNIX or\ cl asses on Windows,
contains three files:

« Sample output response XML file returned by the remote server
« Output response XSLT stylesheet file used for the scraping process

« XML response schema XSD file used for the returned response during the
wizard session

During runtime operations, the XML response returned by the remote server upon
access of the XML URL or the submission of a form, is filtered through the XSLT
transformation defined in this stylesheet.

You can edit the filtering stylesheet XSLT file to add logic or to change the behavior
of your application. You can make comparable edits to the output response XML
XSD file to custom adapt your response file for your J2EE application. You must
know how to modify stylesheets and response definition files to complete these
changes successfully.

When you have completed your changes to the response stylesheet and response
XML files and saved your changes, you must do the following:

= Rejar your <cl ass- nanme>. j ar file in the deploy directory.
« Rejar your EJB JAR file by jarring the content of the classes directory.

« Rejar the defined EAR file saved in the tool destination directory, by jarring the
content of the deploy directory.

Modifying Environment Options in the Generated ejb-jar.xml File

The generated ej b-j ar. xnl file is located in the / cl asses/ META- | NF directory
on UNIX or\ cl asses\ META- | NF directory on Windows directly below the root
directory where you saved your generated EJB. This file contains an environment
section denoted by <env- ent r y>and </ env- ent r y> tags where the Web proxy
information is stored. Once you generate your EJB, you can later edit this

ej b-j ar.xm file to modify your Web proxy settings (host address name and port
number) to satisfy any requirements you might have for using your generated EJB
with other Web proxy servers. You must jar your ejb jar and ear file again and
redeploy them in your J2EE application server.

11-34 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

Consuming SOAP-Based Web Services Using WSDL

The wsdl 2ej b utility can be used by J2EE developers to consume a Web Service
described in Web Services Description Language (WSDL) document into their
applications. This utility takes a WSDL document and some additional optional
parameters and produces an EJB EAR file that can be deployed into OC4J. The EJB
Remote Interface is generated based on the WSDL portType. Each WSDL operation
is mapped to an EJB method. The EJB method parameters are derived from the
WSDL operation input message parts, while the EJB method return value is
mapped from the parts of the WSDL operation output message. The Oracle SOAP
Mapping Registry is used to map XML types to the corresponding Java types.

Additional references regarding WSDL and SOAP can be found in the following
locations:

« The WSDL 1.1 specification is available at
http: // ww. w3. or g/ TR/ wsdl

« The SOAP 1.1 specification is available at
http:// ww. w3. or g/ TR/ SOAP/

The command-line options for running the wsdl 2ej b utility are described in
Table 11-1.

Table 11-1 wsdl2ejb Utility Command-Line Options

Option Description
-conf<config file> Allows the wsdl 2ej b utility to load a configuration file.
-d<destDir> Allows a destination directory to be specified where the

generated EJB EAR file is to be written.

-Dhttp.proxyHost Allows the proxy host name to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-Dhttp.proxyPort Allows the proxy port number to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-jar Allows you to specify the wsdl 2ej b utility as a JAR file.

To run the wsdl 2ej b utility, enter the following command where <dest Di r > is
the destination directory to where the generated EJB EAR file is to be written and
the file mydoc. wsdl is the location of the WSDL document:

Consuming Web Services in J2EE Applications 11-35

Consuming SOAP-Based Web Services Using WSDL

java -jar wsdl 2ejb.jar -d <destDir> nydoc. wsdl

Note: The wsdl 2ej b. j ar file is located in your $ORACLE _
HOVE/ webser vi ces/ | i b installation directory for UNIX or
Y%ORACLE_HOVE\ webser vi ces\ | i b installation directory for
Windows.

If an HTTP URL is used to supply the location of the WSDL document and an
HTTP proxy is required to access it, the following command and syntax must be
used to run the utility:

java -Dhttp. ProxyHost =myProxyHost -Dhttp. proxyPort=80 -jar wsdl 2ejb.jar -d
<destDir> http://nmyhost/mydoc. wsdl

In this example, the utility uses the supplied WSDL to generate the EJB EAR file in
the destination directory (<dest Di r >). The EJB class name, Java Naming and
Directory Interface (JNDI) binding key, and Java package hame are derived from the
location of the SOAP service described in the WSDL.

In this command syntax, the wsdl 2ej b utility maps the XML types, which are
supported by default by the Oracle SOAP Mapping Registry.

The wsdl 2ej b utility generates the following sets of files located within the
destination directory name (<dest Di r >) that you specify in the command line. The
utility saves the generated files using the following directory layout:

Root /
+ app. ear
+ src/
+ ... generated java sources ...
+ cl asses/
+ META- | NF/
+ ejb-jar.xn
+ ... conpiled classes and xnl resources
+ depl oy/
+ ejb.jar
+ META- | NF/
+ application.xm

« An .ear file (which is a JAR archive containing the J2EE application that can be
deployed in OC4)) is located within the destination directory (<dest Di r >) you
specified in the command line. The .ear file contains the generated EJB, JAR,

11-36 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

and XML files for your application, where the appl i cati on. xnl file located
in the / depl oy/ META- | NF directory for UNIX or the \ depl oy\ META- | NF
directory for Windows serves as the EAR manifest file.

An archive JAR file containing your EJB application class files is located within
the / depl oy directory for UNIX or the \ depl oy directory for Windows. The
JAR file includes all EJB application class files and the deployment descriptor
file.

A standard J2EE EJB deployment descriptor (ej b-j ar . xm) for the generated
bean in the module is located within the / cl asses/ META- | NF directory for
UNIX or the \ cl asses\ META- | NF directory for Windows. The XML
deployment descriptor describes the application components and provides
additional information to enable the container to manage the application.

The source code of a set of Java classes that you can use in your Java
applications is located within the / sr ¢ directory for UNIX or the\ src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package name. An EJB client
stub is also generated.

The/ cl asses directory for UNIX or the \ cl asses directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

Advanced Configuration

To have more controls on the EJB generated from a WSDL document, an XML
configuration file can be supplied to the wsdl 2ej b utility. Through the
configuration file, developers can control several options on the WSDL source, as
well as options on the generated EJB.

Developers can also use the configuration file to supply additional xml to Java type
maps, so that WSDL documents using complex types can be supported.

The syntax of the wsdl 2ej b configuration file is shown in its Document Type
Definition (DTD) as follows;

<?xm version="1.0" encodi ng="UTF-8"?>
<I'-- Specify the properties of the source WSDL docunent and of the target EJB. -->
<! ELEMENT wsdl 2ej b (useProxy?, useWllet?, wsdl, ejb?, mapTypes?)>

<I-- Specify if the generated EJB should use the supplied HTTP proxy when accessing HTTP URLs -->
<! ELEMENT useProxy (#PCDATA) >

<! ATTLI ST usePr oxy

proxyHost CDATA #REQUI RED

Consuming Web Services in J2EE Applications 11-37

Consuming SOAP-Based Web Services Using WSDL

proxyPort CDATA #REQUI RED>

<I-- Specify the location of the wallet credential file used by the generated EJB for opening HTTPS
connection -->
<I ELEMENT useV@l | et (#PCDATA) >
<I ATTLI ST useVal | et
| ocation CDATA #REQUI RED>

<l--
Speci fy how the wsdl 2ejb tools should process the source WSDL docunent.
In additional to the mandatory |ocation of the WSDL docunent, the name of the WSDL service and
its port can be specified. In this case, an EJB will be generated only for the supplied service and
port.
An alternative: the name of a WSDL service binding and the SOAP | ocation to be used can be supplied.
In the latter case, an EJB using the specified binding and the supplied SOAP |ocation will be used.
This is particularly useful when generating an EJB froma WSDL stored in a UDDl registry.
In fact, following a UDDI best practice, the WSDL SOAP | ocation will be managed separately fromthe
WBDL docunent .

-

< ELEMENT wsdl (location, ((service-name, service-port) | (service-binding, soap-location))?)>

<l-- Specify the location of the source WSDL docunent (for exanple, "/honme/nywsdl.wsdl",
“http://nyhost/nywsdl .wsdl ") -->
<! ELEMENT | ocati on (#PCDATA) >

<!I-- Specify the name of the WSDL service to be used for the generation.
It is the nanme of one of the services defined in the source WSDL. -->
<l ELEMENT servi ce-name (#PCDATA) >

<I-- Specify the service port of the WSDL service to be used for the generation.
It is the nane of one ports of the service nane defined above in the source WSDL. -->
<! ELEMENT servi ce-port (#PCDATA) >

<lI-- Specify the name of the WSDL binding to be used for the generation.
It is the name of one of the bindings defined in the source WSDL. -->
<! ELEMENT servi ce- bi ndi ng (#PCDATA) >

<lI'-- Specify the SOAP location service port of the WSDL service to be used for the generation.
It is the nane of one ports of the service nane defined above in the source WSDL. -->
<! ELEMENT soap-| ocation (#PCDATA)>

<I-- Specify the properties related to the generated EJB. -->
< ELEMENT ej b (application-nane?, ejb-nane?, package-nane?, renote-nane?, session-type?)>

<l-- Specify the name of the J2EE application for the generated EAR -->
<! ELEMENT appl i cation-nanme (#PCDATA)>

11-38 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<l-- Specify the JNDI binding key nane for the generated EJB. -->
<I ELEMENT ej b- nane (#PCDATA) >

<l-- Specify the name for Java package under which the generated EJB will belong. (for exanple, comoracle)
-->
<! ELEMENT package- name (#PCDATA) >

<I-- Specify the class nane for the EJB Remote Interface (for exanple, WWdIEb) -->
<! ELEMENT renot e- nane (#PCDATA) >

<I-- Specify the if the generated EJB should be stateless or stateful (for exanple, Stateless | Stateful)
-->
<l ELEMENT sessi on-type (#PCDATA) >

<l--
Specify the custom Java types and map themto XM types.
The JAR attribute value will point to a JARfile containing the definition of the custom
types or the serializer/deserializer to be used for the customtype.

-

< ELEMENT mapTypes (map*)>
<! ATTLI ST mapTypes
jar CDATA #| MPLED>

Specify a new XM to JAR type nap.
Encodi ngStyl e: name of the encodingStyle under which this map will bel ong
(for exanple, http://schemas.xnl soap. org/ soap/ encodi ng/)

nanespace- uri :uri of the namespace for the XM. type defined in this nap
| ocal - nane : localnane of the XML type defined in this map
java-type : Java class name to which this type is mapped to (for exanmple, com org. M/Bean)

java2xni - cl ass-nane: Java class nane of the type serializer

(for exanple, org.apache.soap. encodi ng. soapenc. BeanSeri al i zer)
xnl 2j ava- cl ass-name: Java class name of the type deserializer

(for exanple, org.apache.soap.encodi ng. soapenc. BeanSeri al i zer)

-->

<! ELEMENT map (#PCDATA) >

<I ATTLI ST map
encodi ngStyl e CDATA #REQUI RED
namespace- uri CDATA #REQUI RED
| ocal - nane CDATA #REQUI RED
java-type CDATA #REQUI RED

j ava2xnl - cl ass-nane CDATA #REQUI RED
xn 2j ava- cl ass- nanme CDATA #REQUI RED>

Table 11-2 describes the elements, subelements, and attributes of the wsdl 2ej b
XML configuration file as defined in the DTD. Required elements and attributes are
shown as bold text.

Consuming Web Services in J2EE Applications 11-39

Consuming SOAP-Based Web Services Using WSDL

Table 11-2 Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as Defined

in the DTD

Element

Subelement

Attribute

Description

useProxy

Optional element. Specifies the proxy server attributes.

proxyHost

Required attribute. Specifies the host name of the proxy
server.

proxyPort

Required attribute. Specifies the port number of the proxy
server.

useWallet

Optional element. Specifies the Oracle Wallet attribute.

location

Required attribute. Specifies the location of the Oracle
Wallet credential file used by the EJB for opening the
HTTPS connection.

wsdl

Required element. Specifies how the wsdl 2ej b utility
should process the source WSDL document. Requires the
location element be specified and optionally, either the
service-name and service-port pair of elements or the
service-binding and soap-location pair of elements be
specified.

location

Required element. Specifies the location of the source
WSDL document. Can be a file path or an URL.

service-name

Optional element. Specifies the name of the WSDL service
to be used for the generated EJB. If specified, must be
specified with the service-port element as a pair of
elements.

service-port

Optional element. Specifies the service port of the WSDL
service to be used for the generated EJB. If specified, must
be specified with the service-name element as a pair of
elements.

service-binding

Optional element. Specifies the name of the WSDL binding
to be used for the generated EJB. If specified, must be
specified with the soap-location element as a pair of
elements.

soap-location

Optional element. Specifies the SOAP location service port
of the WSDL service to be used for the generated EJB. If
specified, must be specified with the service-binding
element as a pair of elements.

ejb

Optional element. Specifies the properties related to the
generated EJB.

11-40 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

Table 11-2 (Cont.) Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as
Defined in the DTD

Element Subelement Attribute Description
application-name Optional element. Specifies the name of the J2EE
application for the generated EAR file.
ejb-name Optional element. Specifies the INDI binding key name for
the generated EJB.
package-name Optional element. Specifies the name for the Java package
under which the generated EJB belongs.
remote-name Optional element. Specifies the class name for the EJB
Remote Interface.
session-type Optional element. Specifies whether the generated EJB
should be stateless or stateful.
mapTypes Optional element. Specifies the custom Java types and

maps them to XML types.

map

Optional element. Specifies the XML to JAR type map.

encodingStyle

Required attribute. Specifies the name of the encoding
style under which this map belongs.

namespace-uri

Required attribute. Specifies the URI of the namespace for
the XML type defined in this map.

local-name Required attribute. Specified the local name of the XML
type defined in this map.
java-type Required attribute. Specifies the Java class name to which

this type is mapped.

java2xml-class-name

Required attribute. Specifies the Java class name of the
type serializer.

xml2java-class-name

Required attribute. Specifies the Java class name of the
type deserializer.

Developers can run the wsdl 2ej b utility with a configuration file using the
following command:

java -jar wsdl 2ejb.jar -conf wsdl conf.xmn

Consuming Web Services in J2EE Applications 11-41

Consuming SOAP-Based Web Services Using WSDL

Supported WSDL Documents

The wsdl 2ej b utility supports most WSDL documents using SOAP binding. This
support includes both Remote Procedure Call (RPC) and document style
documents as well as types that are encoded or literal. Table 11-3 shows how the
supported XML Schema types are mapped to the corresponding Java type by
default. Any other required type will have to be supported though the custom type
mapping described previously.

Table 11-3 Supported XML Schema Types and Corresponding Java Type

Supported XML Schema Type Corresponding Java Type

string java.lang.String
int int

decimal BigDecimal
float float

double double

Boolean Boolean

long long

short short

byte byte

date GregorianCalendar
timelnstant java.util.Date

Note: Arrays of supported types, shown in Table 11-3 are also
supported.

Known Limitations of the wsd| 2ej b Utility
The following information describes the known limitations of the wsdl 2ej b utility:

« Supports only types defined by the W3C recommendation XML schema version
whose namespace is: ht t p: / / www. w3. or g/ 2001/ XM_Schema

11-42 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

« Supports only the One-way and Request-Response transmission primitives
defined in the WSDL 1.1 specification.

« Does not support WSDL documents that use the <i npor t > tag to include other
WSDL documents.

« Does not support HTTP, MIME, or any other custom bindings.

Running the Demonstration

The wsdl 2ej b demo directory contains examples on how to use the wsdl 2ej b
utility. All the commands are assumed to be executed from the $ORACLE_
HOME/webservices/deno/ basi ¢/ wsdl 2ej b directory. The demonstration
(demo) will use some sample WSDL documents as sources and generate EJB that
can be used to invoke the Web Service operations.

The demos can be run using Jakarta ant. Review the bui | d. xm file to make sure
that the initial properties (RMI_HOST, RMI_PORT, RMI_ADMIN, RMI_PWD) are
set correctly according to your configuration. The bui | d. xml file will execute the
wsdl 2ej b utility on the demo WSDL documents, deploy the generated EJB, and
execute the EJB clients.

Note: |If you are executing the demos behind a firewall and need
to set proxy information to access external HTTP sites, make sure
this proxy information is specified in the wsdl 2ej b configuration
files (rpc_doc_conf.xml, base_conf.xml).

Note: The demos are based on WSDL/SOAP interoperability test
suites. They access live SOAP services available on the Internet as
SOAP interoperability test cases. The successful execution of these
demos depends on the availability of these services.

The directory structure of the demos is as follows:

deno/ web_ser vi ces/ wsdl 2ej b:
- README. t xt . Readme file
- build. xni . Jakarta ant build file to run all the denps

Consuming Web Services in J2EE Applications 11-43

Consuming SOAP-Based Web Services Using WSDL

- rpc_doc : directory for sinple RPC and docunment style operations
- rpc_doc_conf. xm : wsdl 2ej b configuration file for the rpc_doc demo
- TestRpcDocCient.java : client for the rpc_doc deno
- DocAndRpc. wsdl . sanple WSDL for the rpc_doc demo
- (generated) : directory where the EJB will be generated
- base
- base_conf. xn : wsdl 2ej b configuration file for the base interoperability denmo
- TestInteropBaseClient.java : client for the base interoperability deno
- InteropTest. wsdl : WBDL document for the base interoperability deno
- MySoapSt ruct Bean. j ava . bean utilized to map the customtype used
in the exanple defined in the WSDL docunent
- MySoapStruct Bean. j ar . packaged- conpi |l ed custom type bean
- (generat ed) : directory where the EJB will be generated

RPC and Document Style with Simple Types Example

This example uses a simple WSDL document that shows a couple of operations;
Add and Multiply. Add is using the document-style operation using literal parts,
while Multiply is RPC-style and uses encoded parts.

To generate the EJB stub, use the following command:

On UNIX
cd $ORACLE_HOVE/ webser vi ces/ deno/ basi ¢/ wsdl 2ej b
java -jar ../../../1ib/wsdl 2ejb.jar -conf rpc_doc/rpc_doc_conf.xn

On W ndows
cd %ORACLE_HOVE% webser vi ces\ deno\ basi c\ wsdl 2ej b
java -jar ..\..\..\lib\wsdl 2ejb.jar -conf rpc_doc\rpc_doc_conf.xn

The utility generates the Test App. ear file containing the definition of a stateless
EJB, which can be used as a proxy for the Web Service. The EAR file can be
deployed in OC4J as any standard EJB. Refer to Oracle Application Server Containers
for J2EE User’s Guide for information on how to deploy an EJB.

By looking at the generated EJB Remote Interface, you can see how the WSDL
portType DocAndRpc.wsdl file has been mapped to Java.

WSDL PortType:

<types>
<s:schema el ement For nDef aul t ="qual i fi ed" target Namespace="http://soapinterop.org">
<s:el ement name="Add">
<s: conpl exType>
<s: sequence>
<s:element ninCccurs="1" maxQccurs="1" name="a" type="s:int" />

11-44 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<s:element minCccurs="1" maxCccurs="1" name="b" type="s:int" />
</'s: sequence>
</'s: conpl exType>
</s:el enent >
<s: el ement name="AddResponse" >
<s: conpl exType>
<s:sequence>
<s:element nminCccurs="1" maxCccurs="1" name="AddResult" type="s:int" />
</'s: sequence>
</'s: conpl exType>
</s:el enent >
</'s:schema>
</types>
<nessage name="AddSoapl n">
<part nane="paraneters" el ement="s0: Add" />
</ message>
<nessage name="AddSoapQut ">
<part nane="paraneters" el enent="s0:; AddResponse" />
</ message>
<nessage name="Mil tipl ySoapl n">
<part name="a" type="xsd:int" />
<part name="b" type="xsd:int" />
</ message>
<nessage name="Mil ti pl ySoapQut">
<part name="MiltiplyResult" type="s:int" />
</ message>
<port Type nanme="Test Soap">
<operation name="Add">
<i nput message="s0: AddSoapl n" />
<out put nessage="s0: AddSoapQut" />
</ operation>
<operation name="Miltiply">
<i nput nmessage="s0: Mul tipl ySoapln" />
<out put nessage="sO0: Mul ti pl ySoapQut" />
</ operation>
</ port Type>

From the Test . j ava file, the EJB Remote Interface is:

public org.w3c.dom El ement add(org.w3c. dom El enent paraneters)
t hrows Renot eExcepti on;

public int multiply(int a, int b)
t hrows Renot eExcepti on;

When the WSDL operation is using RPC style and its parts are encoded, the parts
XML schema type is mapped to a corresponding Java native type. In this example,

Consuming Web Services in J2EE Applications 11-45

Consuming SOAP-Based Web Services Using WSDL

i mport
i mport
i mport

i mport
i mport

i mport
i mport

| **

xsd: i nt ismapped toJava i nt.Inadocument style using literal parts, each part
is simply mapped to an or g. w3c. dom El enent .

The following client code in the Test RpcDocC i ent . j ava file can be used to
invoke the Add and Multiply Web Service operations. The code has been produced
by modifying the client code stub generated by the wsdl 2ej b utility.

java.io.*;
java.util.*;
j avax. nam ng. *;

org. w3c. dom *;
oracle.xnl . parser.v2.*;

or g. mssoapi nt er op. asnx. Test ;
or g. mssoapi nt er op. asnx. Test Hone;

* This is a sinple client tenplate. To conpile it,
* please include the generated EJB jar file as well as
* EJB and JNDI libraries in classpath.

*|

public class TestRpcDocd ient

{

/'l replace the val ues

private static String RM_HOST = "local host";
private static String RM _PORT = "23791";
private static String RM_ADM N = "admin";
private static String RM_PW = "wel cone";

public TestRpcDocClient () {}

public static void main(String args[]) {

Test RocDocC i ent client = new Test RpcDocCient();

try {

RM
RM
RM
RM

Has
env
env
env
env

_HOST = args[0];
_PORT = args[1];
_ADMN = args[2];
_PW = args[3];
htabl e env = new Hashtabl e();

. put (Context. | NI TI AL_CONTEXT_FACTORY, "com evernind.server.rnm.RMInitial ContextFactory");
. put (Cont ext . SECURI TY_PRINCI PAL, RM _ADM N);

. put (Cont ext . SECURI TY_CREDENTI ALS, RM _PWD);

. put (Context. PROVIDER URL, "orm://" + RM_HOST + ":" + RM _PORT + "/Wdl 2Ej bTest Appl");

11-46 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

}

}

}

Context ctx = new Initial Context(env);

Test Home honme = (Test Horme) ctx. | ookup(" mssoapi nterop. or g/ asmx/ DocAndRpc. asnx") ;

Test service = hone.create();

/1 call any of the Renpte methods that follow to access the EJB

Il

/1 Add test

Il

Docunent = new XM.Docurment () ;

El enent el Add = doc. creat eEl ement NS("http://soapi nterop.org", "s:Add");
Element el A = doc. createEl ement NS("http://soapi nterop.org", "s:a");
Element el B = doc. creat eEl ement NS("http://soapi nterop.org", "s:b");

el A. appendChi | d(doc. creat eText Node("4"));
el B. appendChi | d(doc. creat eText Node("3"));
el Add. appendChi | d(el A);
el Add. appendChi | d(el B);
doc. appendChi | d(el Add) ;

El enent el AddResponse = service. add(el Add);
Node t Node = el AddResponse. getFirstChild().getFirstChild();
Systemout. println("AddResponse: "+t Node. get NodeVal ue());

1

Il Miltiply Test

Il
int a
int b

int iMiltiplyResponse = service.multiply(a, b);
Systemout. println("MiltiplyResponse: "+i MiltiplyResponse);

catch (Throwabl e ex) {
ex. printStackTrace();

}

The result of the execution of the client is the following:

AddResponse: 7
Mil ti pl yResponse: 12

Consuming Web Services in J2EE Applications

11-47

Consuming SOAP-Based Web Services Using WSDL

Round 2 Interop Services: Base Test Suite Example

This example starts from a subset of the WSDL document defined by the base test
suite of the second round of SOAP interoperability tests. The purpose of this demo
example is to show the usage of built-in types in the SOAP Mapping Registry as
well as how to add custom types mapping.

Start by looking at the WSDL portType in the | nt er opTest . wsdl file.

<types>
<schema xm ns="http:// ww. w3. or g/ 2001/ XM_Scherma"
t ar get Namespace="htt p: // soapi nt er op. or g/ xsd" >
<conpl exType name="ArrayCf string">
<conpl exCont ent >
<restriction base="SOAP- ENC: Array">
<attribute ref="SOAP-ENC. arrayType" wsdl:arrayType="string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="ArrayCfint">
<conpl exCont ent >
<restriction base="SOAP-ENC. Array">
<attribute ref="SOAP-ENC: arrayType" wsdl:arrayType="int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="ArrayCffloat">
<conpl exCont ent >
<restriction base="SOAP- ENC: Array">
<attribute ref="SOAP-ENC arrayType" wsdl:arrayType="float[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType nane="ArrayOf SOAPSt ruct " >
<conpl exCont ent >
<restriction base="SOAP- ENC: Array">
<attribute ref="S0OAP- ENC arrayType"
wsdl : arrayType="s: SOAPStruct[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="SOAPStruct" >
<all>
<el ement name="var String" type="string"/>
<el ement name="varlint" type="int"/>
<el ement nanme="varFl oat" type="float"/>

11-48 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<lall>
</ conpl exType>
</ schema>
</types>

<message name="echoStringRequest">
<part name="inputString" type="xsd:string"/>
</ message>
<nessage nane="echoStringResponse">
<part nanme="return" type="xsd:string"/>
</ message>
<message name="echoStringArrayRequest">
<part name="inputStringArray" type="s:ArrayCfstring"/>
</ message>
<nessage nane="echoStringArrayResponse">
<part name="return" type="s:ArrayCfstring"/>
</ message>
<message name="echol nt eger Request ">
<part name="inputlnteger" type="xsd:int"/>
</ message>
<message name="echol nt eger Response">
<part name="return" type="xsd:int"/>
</ message>
<message name="echol nt eger Arr ayRequest " >
<part name="input|ntegerArray" type="s:ArrayCfint"/>
</ message>
<message nanme="echol nt eger Arr ayResponse">
<part name="return" type="s:ArrayCfint"/>
</ message>
<message name="echoFl oat Request ">
<part name="inputFl oat" type="xsd:float"/>
</ message>
<nessage nane="echoFl oat Response" >
<part name="return" type="xsd:float"/>
</ message>
<message name="echoFl oat ArrayRequest ">
<part nanme="input Fl oat Array" type="s:ArrayOffloat"/>
</ message>
<nessage nane="echoFl oat ArrayResponse" >
<part name="return" type="s:ArrayCffloat"/>
</ message>
<message name="echoStruct Request">
<part name="inputStruct" type="s: SOAPStruct"/>
</ message>
<message nanme="echoStruct Response">

Consuming Web Services in J2EE Applications

11-49

Consuming SOAP-Based Web Services Using WSDL

<part name="return" type="s:SOAPStruct"/>
</ message>
<message name="echoStruct ArrayRequest">

<part name="inputStructArray" type="s:ArrayCf SOAPStruct"/>
</ message>
<nessage nane="echoStruct ArrayResponse">

<part name="return" type="s:ArrayCf SOAPSt ruct"/>
</ message>
<nmessage name="echoVoi dRequest"/>
<nessage nane="echoVoi dResponse"/ >
<nessage nane="echoBase64Request" >

<part nanme="input Base64" type="xsd: base64Bi nary"/>
</ message>
<nessage nane="echoBase64Response">

<part name="return" type="xsd: base64Bi nary"/>
</ message>
<nessage nane="echoDat eRequest">

<part name="inputDate" type="xsd:dateTime"/>
</ message>
<nessage nane="echoDat eResponse">

<part name="return" type="xsd: dateTine"/>
</ message>
<nessage nane="echoDeci mal Request ">

<part name="input Deci mal " type="xsd: decimal"/>
</ message>
<nessage nane="echoDeci mal Response" >

<part name="return" type="xsd: deci mal"/>
</ message>
<nessage nane="echoBool eanRequest ">

<part nanme="i nput Bool ean" type="xsd: bool ean"/>
</ message>
<nessage nane="echoBool eanResponse" >

<part name="return" type="xsd: bool ean"/>
</ message>

<port Type name="InteropTest Port Type">

<operation nanme="echoString" paraneterCOder="inputString">
<i nput message="tns: echoStringRequest"/>
<out put nessage="tns: echoStri ngResponse"/>

</ operation>

<operation nanme="echoStringArray" paraneterOder="inputStringArray">
<i nput message="tns:echoStringArrayRequest"/>
<out put message="tns: echoStringArrayResponse"/>

</ operati on>

<operation nane="echol nteger" paraneterOrder="inputlnteger">

11-50 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

<i nput message="tns: echol nt eger Request"/ >
<out put message="tns: echol nt eger Response"/ >

</ operation>

<operation nane="echol nteger Array" paraneter O der="inputlntegerArray">
<i nput message="tns: echol nt eger ArrayRequest "/ >

<out put nmessage="tns: echol nt eger Arr ayResponse"/ >

</ operati on>

<operation name="echoFl oat" parameter O der="i nput Fl oat" >
<i nput message="tns: echoFl oat Request "/ >

<out put nessage="tns: echoFl oat Response"/ >

</ operation>

<operation nanme="echoFl oat Array" parameterOrder="i nput Fl oat Array">
<i nput message="tns: echoFl oat ArrayRequest"/>
<out put message="tns: echoFl oat ArrayResponse"/ >

</ operation>

<operation nane="echoStruct" paraneterOrder="inputStruct">
<i nput message="tns: echoStruct Request"/>
<out put nmessage="tns: echoStruct Response"/>

</ operati on>

<operation name="echoStructArray" paraneterOder="inputStructArray">
<i nput message="tns: echoStruct ArrayRequest"/>
<out put nessage="tns: echoStruct ArrayResponse"/ >

</ operation>

<operation nanme="echoVoi d" >
<i nput message="tns: echoVoi dRequest"/>
<out put message="tns: echoVoi dResponse" />

</ operation>

<operation nane="echoBase64" paraneter Order="i nput Base64" >
<i nput message="tns: echoBase64Request"/>
<out put message="tns: echoBase64Response"/ >

</ operati on>

<oper ation name="echoDat e" paraneter Crder="i nput Dat e" >
<i nput message="tns: echoDat eRequest"/ >
<out put nessage="tns: echoDat eResponse" />

</ operation>

<operation nanme="echoDeci mal " paranet er O der ="i nput Deci mal ">
<i nput message="tns: echoDeci mal Request"/ >
<out put message="tns: echoDeci mal Response"/ >

</ operation>

<operation nane="echoBool ean" paranet er Or der ="i nput Bool ean" >
<i nput message="tns: echoBool eanRequest"/ >
<out put message="tns: echoBool eanResponse"/>

</ operati on>

</ port Type>

Consuming Web Services in J2EE Applications 11-51

Consuming SOAP-Based Web Services Using WSDL

Notice that the WSDL document contains more complex types than the previous
demo. Array of primitives types are now used as well as the struct primitive types.
With the exception of the SOAPStruct complex type, every other type is supported
as built-in type in the SOAP Mapping Registry. You then need to add a new
complex type definition to the SOAP Mapping Registry to handle the SOAPStruct
complex type.

The SOAPStruct schema definition is the following:

<conpl exType name="SCOAPSt ruct" >
<all>
<el ement name="var String" type="string"/>
<el ement nane="varlnt" type="int"/>
<el ement nane="varFl oat" type="float"/>
<lall>
</ conpl exType>

In the MySoapsSt r uct Bean. j ava file, this SOAPStruct complex type can be
mapped to a simple JavaBean class such as the following, and have the marshalling
and unmarshalling actions handled by the BeanSerializer.

public class MySoapStructBean inplenents java.io.Serializable
{

private String mvarString = null;

private int mvarlint = 0;

private float mvarFloat = 0;

public MySoapStructBean() {}

public MySoapStructBean(String s, int i, float f) {
mvarString = s;
m var | nt i;
m var Fl oat f:

}

public String getVarString () { return mvarString; }
public int getVarint() { return mvarint; }
public float getVarFloat() { return mvarFloat; }

public void setVarString (String s) { mvarString =s; }
public void setVarint(int i) { mvarlint =i; }
public void setVarFloat(float f) { mvarFloat = f; }

}

With the mapping JavaBean class ready, and having identified what serializer and
deserializer to use, you can now configure the wsdl 2ej b utility so that a new

11-52 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

schema to Java map is added. This can be achieved by adding the following to the
wsdl 2ej b configuration file, base_conf . xm :

<mapTypes jar="base/ MySoapSt ruct Bean.jar" >
<map encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
| ocal - name="SOAPSt r uct "
namespace- uri ="http://soapi nt erop. or g/ xsd"
j ava-t ype="M/SoapSt r uct Bean"
j ava2xm - cl ass- name="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
xm 2j ava- cl ass- name="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer" />
</ mapTypes>

The MySoapSt r uct Bean. j ar file contains the definition of the MySoapStructBean
class. With this map, the SOAPStruct complex type, belonging to the

htt p: // soapi nt erop. or g/ xsd nanespace, will be mapped to the
MySoapStructBean JavaBean class and the converse is true as well. For more
information about SOAP serializers and deserializers, see the Oracle SOAP
documentation.

With this additional configuration, you can now run the wsdl 2ej b utility with the
following command:

On UNI X

cd $ORACLE_HOVE/ webser vi ces/ deno/ basi ¢/ wsdl 2ej b

java -jar ../../../lib/wsdl2ejb.jar -conf base/base_conf.xn
On W ndows

cd %ORACLE _HOVEY webser vi ces/ deno/ basi ¢/ wsdl 2ej b

java -jar ..\..\..\lib\wsdl 2ejb.jar -conf base\base_conf.xn

The wsdl 2ej b utility generates the | nt er opLabApp. ear file that contains the
definition of a stateless EJB, which can be used as a proxy for the Web Service. The
EAR file can be deployed in OC4J as any standard EJB. See Oracle Application Server
Containers for J2EE User’s Guide for information on how to deploy an EJB.

The Test | nt eropBased i ent . j ava class file, saved in the base directory, can be
used to test the generated EJB after it has been deployed. The result of the execution
of the client is the following:

echoString: Hello Wrld!
echoStringArray[0]: Hello Wrld!
echoStringArray[1]: Seems to work!
echoStringArray[2]: Fine!
echoStringArray[3]: WOW

echol nteger: 7

echol ntegerArray[0]: 1

echol ntegerArray[1]: 2

Consuming Web Services in J2EE Applications 11-53

Dynamic Invocation of Web Services

echol ntegerArray[2]: 3
echol ntegerArray[3]: 4
echoFl oat: 1.7777
echoFl oat Array[0]: 1.
echoFl oat Array[1]: 1.
echoFl oat Array[2]: 1.
echoFl oat Array[3]: 1.4

echoStruct: varString=Hello World , varint=1, varFloat=1.777

echoStruct Array: varString[0]=Hello Wrld , varInt[0]=0 , varFloat=[0]=1.7771
echoStructArray: varString[1l]=Hello Wrld 1, varint[1]=1, varFloat=[1]=1.7772
echoStructArray: varString[2]=Hello Wrld 2 , varint[2]=2 , varFl oat=[2]=1.7773
echoStructArray: varString[3]=Hello Wrld 3, varint[3]=3, varFloat=[3]=1.7774
echoVoi d.

echoDeci mal : 1.77709999999999990194510246510617434978485107421875

echoBool ean: true

echoBase64[0]: 1

echoBase64[1]: 2

echoBase64[2]: 3

echoBase64[3]: 4

echoDate: Sat Nov 10 12:30:00 EST 2001

w N

Dynamic Invocation of Web Services

When a Java? Platform Enterprise Edition (J2EE) application acquires a WSDL
document at runtime, the dynamic invocation API is used to invoke any SOAP
operation described in the WSDL document. The dynamic invocation API describes
a WebServiceProxyFactory factory class that can be used to build instances of a
WebServiceProxy. Each created WebServiceProxy instance is based on the location
of the WSDL document, (and optionally on additional qualifiers), that identify
which service and port should be used. The WebServiceProxy class exposes
methods to determine the WSDL portType, including the syntax and signatures of
all operations exposed by the WSDL service and to invoke the defined operations.

This section briefly describes the dynamic invocation APl and how to use it.

For Java samples, refer to the code supplied with Oracle Application Server Web
Services in $ORACLE_HOVE/ webser vi ces/ denp/ basi ¢/ j ava_

servi ces/ dynam cpr oxy on UNIX or in %0RACLE _

HOVE% webser vi ces\ denp\ basi c\ j ava_ser vi ces\ dynani cpr oxy on
Windows. For EJB samples, refer to the code supplied in the directory
$ORACLE_HOVE/ webser vi ces/ denp/ basi c/ st at el ess_ej b on UNIX or
YORACLE_HOVE% webser vi ces\ denp\ basi c\ st at el ess_ej b on Windows.

11-54 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

Dynamic Invocation API

The dynamic invocation API contains two packages, oracle.j2ee.ws.client and
oracle.j2ee,ws.client.wsdl, which contain additional classes grouped by interface,
class, and exception, as shown in Table 11-4 and Table 11-5.

Table 11-4 The oracle.j2ee.ws.client Package

Classes

Description

Classes

WebServiceProxyFactory

Interfaces

WebServiceProxy

WebServiceMethod
Exceptions

WebServiceProxyException

This class creates a WebServiceProxy class given a WSDL
document.

This interface represents a service defined in a WSDL
document.

This interface invokes a Web Service method.

This class describes exceptions raised by the
WebServiceProxy API.

Table 11-5 The oracle.j2ee.ws.client.wsdl Package

Classes Description

Interfaces

PortType This interface represents a port type.

Operation This interface represents a WSDL operation.

Input This interface represents an input message, and contains the
name of the input and the message itself.

Output This interface represents an output message, and contains
the name of the output and the message itself.

Fault This interface represents a fault message, and contains the
name of the fault and the message itself.

Message This interface describes a message used for communication
with an operation.

Part This interface represents a message part and contains the

part's name, elementName, and typeName.

Consuming Web Services in J2EE Applications 11-55

Dynamic Invocation of Web Services

Table 11-5 (Cont.) The oracle.j2ee.ws.client.wsdl Package

Classes Description
Classes
OperationType This class represents an operation type which can be one of

request-response, solicit response, one way, or notification.

The oracle.j2ee.ws.client package is described in more detail in this section. The API
documentation describes to use this proxy API can be found in the Oracle
Application Server 10g Documentation Library as Proxy API Reference (Javadoc)
under Oracle Application Server Web Services, which is located under the J2EE and
Internet Applications tab.

The WebServiceProxyFactory class contains methods that can instantiate a
WebServiceProxy class given either the URL or the Java input stream of the WSDL
document. Four methods let you use either the first service and its first port in the
supplied WSDL document or use the name of one of services and the name of one
of the ports of the service to create a WebServiceProxy instance. Two methods also
let you create a WebServiceProxy instance for a WSDL document, which has been
authored following the UDDI best practices for WSDL. A method lets you supply
additional optional initialization parameters to the WebServiceProxy instance.

Table 11-6 briefly describes the WebServiceProxyFactory factory class methods and
the required parameters for each method. See the JavaDoc for more detailed
information about this factory class and its methods.

Table 11-6 WebServiceProxyFactory Factory Methods and Parameters

Methods Parameters

creat eWebSer vi ceProxy() java.io. |l nputStreamisWdl
java. net. URL baseURL

creat eWebSer vi ceProxy() java. net. URL wsdl URL

creat eWebSer vi cePr oxyFronmBi ndi ng() java.io.|lnputStreamwsdlis
java. net. URL baselrl
java.l ang. String szBi ndi ngNane
java.lang. String szSoaplLocation

creat eWebSer vi ceProxyFronServi ce() java.io.lnputStreamwsdlis
java. net. URL baselrl
java.lang. String szServi ceNane
java.lang. String szServicePort

11-56 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

Table 11-6 (Cont.) WebServiceProxyFactory Factory Methods and Parameters

Methods

Parameters

creat eWebSer vi ceProxyFronBi ndi ng() java.net.URL wsdl Url

java. lang. String szBi ndi ngNane
java.lang. String szSoapLocati on

creat eWebSer vi ceProxyFronServi ce() java.net.URL wsdl Url

set Properties()

java.lang. String szServi ceNane
java.lang. String szServicePort

java. util.Hashtabl e ht

Table 11-2 describes the WebServiceProxy interface. The WebServiceProxyFactory
factory methods optionally take additional parameters that are provided in the
WebServiceProxy interface that can be used to dynamically invoke an operation in a

WSDL document.

Table 11-7 WebServiceProxy Interface Methods and Parameters

Methods Parameters

Description

get XMLMappi ng Regi stry() None

get Port Type() None

get Met hod()

szOperationName
szlnputName
szOutputName

get Met hod()

szOperationName

Returns the SOAP mapping registry used by the
WebServiceProxy and contains information that lets
clients use this registry to query for XML to or from Java
type mapping as well as extend the mapping registry
with new map definitions.

Returns a structure describing the WSDL portType used
by this proxy and contains information about operations
associated with this port type.

Returns a WebServiceMethod method, which can be
used to invoke Web Service methods.

Name of the WSDL operation to be executed.
Name of the wsdl:input tag for the operation to be
executed.

Name of the wsdl:output tag for the operation to be
executed.

Returns a WebServiceMethod method, which can be
used to invoke Web service methods and provides a
signature that can be used for non-overloaded WSDL
operations.

Name of the WSDL operation to be executed.

Consuming Web Services in J2EE Applications 11-57

Dynamic Invocation of Web Services

Table 11-8 describes the WebServiceMethod interface, which is used to invoke a
Web Service method.

Table 11-8 WebServiceMethod Interface Methods and Parameters

Methods Parameters Description

get | nput Encodi ngStyl e() None Returns the encoding style to be used by the input
message parts, null if none has been specified in the
source WSDL.

get Qut put Encodi ngSt yl e() None Returns the encoding style to be used by the output
message parts, null if none has been specified in the
source WSDL.

i nvoke() Executes one of the service operations with the set of

supplied input parts and returns the object, if the
response message contains only one part, return the
response part, otherwise an array of the output
message parts. If the invoked WSDL operation has no
inMsgPartNames output parts, null will be returned.
inMsgPartValues
Name of the parts supplied in the input message.
Corresponding value of the parts whose name is
supplied in the inMsgPartNames parameter. If the
invoked WSDL operation has no input parts, null or
empty arrays parameters can be supplied

The oracle.j2ee.ws.client.wsdl package exposes methods to determine the WSDL
portType, including the syntax and signatures of all operations exposed by the
WSDL service.

WebServiceProxy Client

The following client code shows the use of the dynamic invocation API followed by
the output of the client execution. The client code shows the following:

« Initializes proxy parameters in the WebServiceProxyFactory.

« Creates an instance of the proxy given a URL of a WSDL document.
« Performs WSDL introspection.

= Shows the input message parts.

« Executes a Web Service operation with a set of supplied input parts and returns
the result.

The WSDL document is described as follows:

11-58 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

<?xm version="1.0" encodi ng="utf-8" ?>
- <definitions xm ns:soap="http://schemas. xm soap. or g/ wsdl / soap/" xm ns:tns="http://soapinterop.org"
xm ns:s="http:// ww.w3. org/ 2001/ XM.Schema" xni ns: http="http://schenas. xm soap. or g/ wsdl / http/"
xmns:tnmE"http://mcrosoft.confwsdl /m me/textMatching/" xmns:nime="http://schemas. xn soap. or g/ wsdl / m ne/"
xm ns: soapenc="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " target Nanmespace="http://soapi nterop. org"
xm ns="http://schemas. xn soap. or g/ wsdl /">
<types />
- <message nanme="AddSoapl n">
<part nane="a" type="s:int" />
<part nanme="b" type="s:int" />
</ message>
- <message nanme="AddSoapQut">
<part nane="AddResult" type="s:int" />
</ message>
- <portType name="Test Soap" >
- <operation nane="Add">
<input message="tns: AddSoapln" />
<out put nessage="tns: AddSoapQut" />
</ operation>
</ port Type>
- <bi ndi ng nane="Test Soap" type="tns: Test Soap" >
<soap: bi ndi ng transport="http://schemas. xn soap. org/ soap/ http" style="rpc" />
- <operation nanme="Add">
<soap: operation soapAction="http://soapinterop.org/Add" style="rpc" />
- <input>
<soap: body use="encoded" nanespace="http://soapi nterop.org"
encodi ngStyl e="htt p://schenas. xm soap. or g/ soap/ encodi ng/" />
</i nput >
- <out put >
<soap: body use="encoded" nanespace="http://soapi nterop.org"
encodi ngStyl e="htt p://schenas. xm soap. or g/ soap/ encodi ng/" />
</ out put >
</ operation>
</ bi ndi ng>
- <service name="Test">
- <port name="Test Soap" bi ndi ng="t ns: Test Soap" >
<soap: address | ocation="http://nssoapi nterop. org/ asmx/ Rpc. asnx" />
</ port>
</ service>
</ definitions>

package oracle.j2ee.ws.client.inpl;

inport java.util.*;

inport java.io.*;

inport java.net.*;

inport oracle.j2ee.ws.client.*;
inport oracle.j2ee.ws.client.wsdl.?*;
inport org.apache. soap. util.xm . QName

Consuming Web Services in J2EE Applications 11-59

Dynamic Invocation of Web Services

i nport org.apache. soap. util.xm . XM.JavaMappi ngRegi stry;
public class dient {
public static void main(String[] args) throws Exception {
String szWsdl Url = "http://mssoapi nt erop. org/ asmx/ Rpc. asmx?WSDL" ;

URL urlWsdl = new URL(szWdl Url);
Systemerr.printin("Wdl url =" + urlWdl);

VebSer vi ceProxyFact ory wsfact= new WWebServi ceProxyFactory();

I

/] Set sone initial paraneters

1

Hasht abl e ht = new Hashtabl e();

ht.put ("http. proxyHost", "ww proxy.us.oracle.cont);
ht.put ("http. proxyPort", "80");

wsfact. setProperties(ht);

I

Il Create an instance of the proxy

I

VebServi ceProxy wsp = wsfact.createWebServi ceProxy(urlWdl);

Il

/1 Optional: Wsdl Introspection

I

Port Type pt = wsp. get Port Type();

List opList = pt.getQOperations();

for (int i =0; i < opList.size(); i++) {

Qperation op = (Operation) opList.get(i);
String szOpNane = op. get Nane();

String szl nput op. get I nput (). get Name();
String szQutput = op.getCQutput().getNane();

Systemerr.printin("operation["+i+"] = [" + szCpName +

"," + szlnput +"," + szQutput + "]");
11
/'l show input nmessage parts
11

Message msgln = op. getlnput().get Message();

11-60 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

Map mapParts = nsgln.getParts();
Col l ection col Parts = mapParts.val ues();
Iterator itParts = col Parts.iterator();

\WebSer vi ceMet hod wsm = wsp. get Met hod(szOpNane) ;
String szlnEncStyle = wsm get | nput Encodi ngStyl e();
XM_JavaMappi ngRegi stry xnr = wsp. get XM_Mappi ngRegi stry();

while (itParts.hasNext()) {
Part part = (Part) itParts.next();
String szPartNane = part.get Nane();
QNane gnarme = part.get TypeNane();
String szJavaType = xnr.queryJavaType(gnane,
szl nEncStyl e). get Name() ;

Systemerr.println("part name =" + szPartNane +
", type =" + gname +
", java type = " + szJavaType);
}

}

Il

/'l invoke operation/nethod Add(2, 10)

I

String[] inMsgPartNames = new String[2];
i nMsgPart Nanes[0] = "a";

i nMsgPart Nanes[1] = "b";

oj ect[] inMgPartVal ues = new Chject[2];
i nMsgPart Val ues[0] = new I nteger(2);

i nMsgPart Val ues[1] = new I nteger(10);

VebServi ceMet hod wsm = wsp. get Met hod(" Add") ;
(hj ect obj Ret = wsm i nvoke(inMsgPart Nanes,
i nMsgPart Val ues) ;

Systemerr.printin("Calling mnethod Add(" +inMsgPartVal ues[0] + ","

i nMsgPart Val ues[1] +")");
Systemerr.printin("return =" + objRet);
}
}

The output of the client execution is as follows:

Wdl url = http://nssoapinterop. org/asmx/ Rpc. asmx?WsDL
operation[0] = [Add,,]

Consuming Web Services in J2EE Applications 11-61

Dynamic Invocation of Web Services

part name = b, type = http://ww. w3.org/ 2001/ XM.Schena: i nt, java type = int
part name = a, type = http://ww. w3. org/ 2001/ XM_Schenma: i nt, java type = int
Calling nethod Add(2,10)

return = 12

Known Limitations

The following information describes the known limitations of the dynamic
invocation API:

« Supports invoking operations defined in the WSDL document defined by the
W3C recommendation XML schema version whose namespace is:
http://ww. w3. or g/ 2001/ XM_.Schena

« Does not support WSDL documents that use the <i npor t > tag to include other
WSDL documents.

« Does not support HTTP, MIME, or any other custom bindings.

11-62 Oracle Application Server Web Services Developer's Guide

12

Advanced Topics for Web Services

This chapt er covers advanced Oracle Application Server Web Services topics,
including the following topics:

« Setting the Web Services Debugging Property ws.debug
« Untyped Request Handling Options

« SOAP Header Support

« Using the WSDL Analyzer Utility

Advanced Topics for Web Services 12-1

Setting the Web Services Debugging Property ws.debug

Setting the Web Services Debugging Property ws.debug

To obtain Oracle Application Server Web Services debugging information, use the
Java property ws. debug, and set its value to t r ue. To set the ws. debug value to

t r ue, use Oracle Enterprise Manager to specify OC4J startup options. Debugging
output is sent to the OC4J instance log file corresponding to the island where Oracle
Application Server Web Services is running.

Example 12-1 provides sample debugging output.

Example 12-1 Web Services Debug Output

WS Debug: initQnanmeMap(’' null’)

WS Debug: operation nane is: helloWrld

WS Debug: QueryString is: invoke=helloWrl d¶nD=t est

WS Debug: Operation Nane is: helloWrld

WS Debug: Port Type Local name is: Statel essExanpl ePort Type
WS Debug: Port Type Nanespace URl is: http://oracle.j2ee. ws_
exanpl e/ St at el essExanpl e. wsdl

WS Debug: Operation Local name is: helloWrld

WS Debug: Operation Namespace URl is: http://oracle.j2ee.ws_
exanpl e/ St at el essExanpl e. wsdl

WS Debug: Operation Get parameter order: null

See Also: Oracle Application Server Containers for J2EE User’s Guide
for information on setting debugging options and showing
debugging output.

Untyped Request Handling Options

Oracle Application Server Web Services supports requests for RPC style Web
Services in the following cases:

« Typed requests where an incoming RPC request with SOAP encoded
parameters includes type attributes that specify type information for every
incoming parameter. Example 12-2 shows a sample typed RPC request.

« Untyped requests where an incoming RPC request with SOAP encoded
parameters may not include a type attribute for every incoming parameter.
Example 12-3 shows a sample un-typed RPC request. This type of RPC request
provides improved interoperability with .NET clients.

Oracle Application Server Web Services client-side applications and tools do not
generate untyped requests, but some external tools or applications may generate

12-2 Oracle Application Server Web Services Developer’'s Guide

Untyped Request Handling Options

such requests. Due to the performance cost for supporting untyped requests, by
default such support is not enabled.

To support requests with untyped parameters, use the optional

<accept - unt yped- r equest > tag with the WebServicesAssembler. This tag
applies as a sub-tag with the <st at ef ul -j ava- servi ce>and

<st at el ess-j ava- ser vi ce> tags when the corresponding <nessage- st yl e>
tag is set to the value RPC. The <accept - unt yped- r equest > tag also applies as
a sub-tag for the <st at el ess- sessi on- ej b- servi ce> tag.

Table 12-1 shows <accept - unt yped- r equest > tag specification.

Example 12-2 Sample Typed RPC Request

<?xm version="1.0" encodi ng=" UTF- 8 ?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV="
http://schemas. xn soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xm ns: xsd="http://ww. w3. org/ 2001/ XM.Schema" >
<SOAP- ENV: Body>
<nsl:sayHel | o xm ns:ns1="urn: Hel | 0"

SOAP- ENV: encodi ngStyl e="ht t p: / / schemas. xnl soap. or g/ soap/ encodi ng/ ">
<paranD xsi:type="xsd:string">Scott</paranD>
<paraml xsi:type="xsd:int">27</paranl>

</ nsl:sayHel | 0>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 12-3 Sample Un-Typed RPC Request

<?xm version="1.0" encodi ng=" UTF-8 ?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV="
http://schenmas. xn soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schena- i nst ance"
xm ns: xsd="http://wm. w3. or g/ 2001/ XM_Schena" >
<SOAP- ENV: Body>
<nsl:sayHel | o xm ns:nsl="urn: Hel | 0"
SOAP- ENV: encodi ngSt yl e="ht t p: / / schemas. xm soap. or g/ soap/ encodi ng/ ">
<par anD>Scot t </ par anD>
<par aml>27</ par anl>
</ nsl:sayHel | 0>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Advanced Topics for Web Services 12-3

SOAP Header Support

Table 12-1 WebServicesAssembler <accept-untyped-request> Tag

Tag Description

<accept - unt yped-r equest > Setting value to t r ue tells WebSer vi cesAssenbl er to allow the Web
val ue Service to accept untyped requests. When the value is f al se, the Web
</ accept - unt yped- request > Service does not accept untyped-request.

Valid values: t r ue, f al se (case is not significant; TRUE and FALSE are
also valid)

Default value: f al se

SOAP Header Support

This section covers Oracle Application Server Web Services support for SOAP
request headers sent from a Web Services client to an endpoint. This section covers
the following topics:

« Client Side SOAP Request Header Support
« Server Side SOAP Request Header Support
« Limitations for SOAP Header Support

Client Side SOAP Request Header Support

Oracle Application Server Web Services generated client-side proxy code provides
methods to use SOAP request headers. A SOAP request message, including the
SOAP request headers is transmitted to a service endpoint when Web Services
proxy code is invoked.

When Oracle Application Server Web Services generates a proxy, either from WSDL
for a Web Services Document or RPC style service, the proxy code provides two
SOAP request header support methods:

voi d _set SOAPRequest Header s(or g. apache. soap. Header headers)
org. apache. soap. Header _get SOAPRequest Header s()

These methods provide access to an or g. apache. soap. Header object. By default
the org.apache.soap.Header object’s value is set to nul | which signifies there are no
headers in the SOAP request message. When a request header is needed, use the _
set SOAPRequest Header s() method to specify the Header object to be sent with
the SOAP request message.

12-4 Oracle Application Server Web Services Developer’'s Guide

SOAP Header Support

Note: When proxies are generated for Stored Procedure or JMS
Document Style Web Services the _set SOAPRequest Header s()
and _get SOAPRequest Header s() methods are not supplied.

The SOAP request header information is shared for all proxy operations. After the
headers are set using _set SOAPRequest Header s(), all subsequent operation
invocations using the proxy use the same header value. To set a new header value,
call _set SOAPRequest Header s() using a new Header object or with a nul |
value.

Note: After setting the SOAP request header, the same header
object is used for each subsequent operation invocation until the
object is reset using _set SOAPRequest Header s() .

To create and manipulate SOAP request headers you need to populate the header
object. The or g. apache. soap. Header object provides a method for specifying
the contents of one or more SOAP header blocks. It is defined as:

public void setHeaderEntries(java.util.Vector headerEntries)

The vector is populated with or g. w3c. dom El enent objects which specify
individual SOAP header blocks.

When a header entry includes the nust Under st and attribute set to the value 1, the
recipient must process the header entry. If the recipient cannot process the header
entry, then a SOAP fault is returned with the value FAULT_CODE_MJST _
UNDERSTAND.

See Also: Section 4.2, "SOAP Header", in for information on
header entries in SOAP 1.1 ht t p: / / www. W3. or g/ TR/ SOAP/ .

Setting SOAP Headers in a Client-Side Proxy

This section shows a sample that uses the proxy class Enpl oyeePr oxy. The
complete sample containing this code is available in the directory $ORACLE _
HOVE/ web_ser vi ces/ deno/ header _deno/ cl i ent. In the sample, a single
header block is added to the Header object. The Header object is then supplied as
an argument to the proxy's _set SOAPRequest Header s() method.

Advanced Topics for Web Services 12-5

SOAP Header Support

Example 12-4 Segment of Client Using Message with SOAP Request Header

Il Create an intance of the proxy

Enpl oyeeProxy proxy = new Enpl oyeeProxy();
Il Create a Header objecy

Vector v = new Vector();

v.add (e);

Header hdr = new Header();

hdr. set Header Entri es(v);

Il Set the Header

proxy. _set SOAPRequest Header s(hdr);

/'l Invoke the request

Systemout.printin("Salary of MLLER is: " + proxy.getEnpl oyeeSal ary("M LLER"));

Server Side SOAP Request Header Support

To process a SOAP request header on the server side, a Web Service needs to
implement the or acl e. j 2ee. ws. Header Cal | back interface that is part of the
Oracle Application Server Web Services supplied wsser ver . j ar. This interface
includes one method that takes a single or g. apache. soap. Header argument.

The Oracle Application Server Web Services infrastructure calls the
pr ocessHeader s() method before every associated service method.

When an incoming SOAP request header includes one or more header entries with
the must Under st and attribute set to either 1, t r ue, or TRUE values, then the Web
Service implementation must implement the

oracl e.j 2ee. ws. Header Cal | back interface. If this interface is not
implemented, Oracle Application Server Web Services throws a SOAP fault with the
fault code set to FAULT_CODE_MJST_UNDERSTAND.

If a Web Service implementation implements the Header Cal | back interface, the
implementation can throw a SOAP exception with the fault code set to FAULT _
CODE_MUST_UNDERSTAND if the service does not know how to process a header
entry with the mustUnderstand attribute set to 1, t r ue, or TRUE. Oracle
Application Server Web Services then translates the exception and Oracle
Application Server Web Services throws a SOAP fault with the fault code set to
FAULT_CODE_MUST_UNDERSTAND.

12-6 Oracle Application Server Web Services Developer's Guide

SOAP Header Support

This section shows server-side Web Services code that provides the implementation
for the Enpl oyee service. The complete sample containing this Web Service is
available in the directory $ORACLE_HOVE/ web_

servi ces/ deno/ basi c/ header _deno/ cl i ent (after unzipping $ORACLE _
HOVE/ webser vi ces/ deno/ deno. zi p).

Example 12-5 shows an interface that extends Header Cal | back.

Example 12-6 shows a section of the service implementation for the sample
get Enpl oyeeSal ery interface, including the pr ocessHeader s() method that
can handle incoming SOAP request headers of the form:

<SQAP- ENV: Header >
<credential s>
<user name>scot t </ user nane>
<passwor d>ti ger </ passwor d>
<dat asour ce>j dbc/ Or acl eCor eDS</ dat asour ce>
</credential s>
</ SOAP- ENV: Header >

Example 12-5 Employee Interface Extending HeaderCallback
inport oracle.j2ee.ws. Header Cal | back;

/**
* Enpl oyee java class being exposed as Wb Services
* This service al so extends HeaderCal | back so as to
* access Headers.
*/
public interface Enpl oyee
extends Header Cal | back
{
Il Get the salary for a given Enployee
int get Enpl oyeeSal ary(String enane);
}

Example 12-6 Including A HeaderCallback processHeaders() Implementation

public void processHeaders(Header header)
throws java.io. | OException,
oracl e.xn . parser.v2. XSLExcepti on

Il Get all the Elements

Vector entries = header. get HeaderEntries();
Element e = (Elenent) entries.firstEl enent();
Systemout.println("El enent received is: ");

Advanced Topics for Web Services 12-7

SOAP Header Support

((XMLEl enent)e).print(Systemout);

/1 Get independent nodes and retrieve node val ues.
Node user Node;

user Node = ((XM.Node) e) . sel ect Si ngl eNode(" user nane") ;
user Name = ((XMLEl ement) user Node) . get Text () ;

Node passwor dNode;
passwor dNode = ((XM_Node) e) . sel ect Si ngl eNode(" password");
password = ((XMLEI ement) passwor dNode) . get Text ();

Node dsNode;
dsNode = ((XM_Node)e) . sel ect Si ngl eNode(" dat asource");
dat asour ceName = ((XMLEIl enent) dsNode) . get Text ();

Systemout.println("User name is: " + userNane);
Systemout.println("Password is: " + password);
Systemout. println("Datasource is: " + datasourceNane);

Limitations for SOAP Header Support

The following list contains limitations related to SOAP header support:

1.

Oracle Application Server Web Services does not provide support for
processing or translating header information that is specified in a WSDL
definition.

Oracle Application Server Web Services does not provide validation, XML or
otherwise, for SOAP request header information provided in the

or g. apache. soap. Header object. The user is responsible for populating this
object with well-formed XML.

Oracle Application Server Web Services does not provide support for SOAP
response headers.

When proxies are generated for JIMS Document Style Web Services, the SOAP
request header _set SOAPRequest Header s() and _

get SOAPRequest Header s() methods are not supplied. Using IMS Web
Services there are no server-side facilities for processing SOAP request headers.

When proxies are generated for Stored Procedure Web Services, the SOAP
request header _set SOAPRequest Header s() and _
get SOAPRequest Header s() methods are not supplied. Using Stored

12-8 Oracle Application Server Web Services Developer’'s Guide

Using the WSDL Analyzer Utility

Procedure Web Services there are no server-side facilities for processing SOAP
request headers.

Using the WSDL Analyzer Utility

The wsdl Anal yzer is asample Oracle Application Server Web Services utility that
checks WSDL files and invokes Web Services. The utility enables you to analyze a
WSDL file from a given URL that you supply, or from a file.

The wsdl Anal yzer . ear file is supplied on the Oracle Technology Network Web
Site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

The README. t xt file in the directory describes how to deploy the utility. Add the
dsv2.j ar file as alibrary element in $ORACLE _
HOVE/ confi g/ appl i cati on. xm before running wsdl Anal yzer.

After deploying the wsdlAnalyzer open your browser and point to the URL:
http://host: port/wsdl Anal yzer
Figure 12-1 shows the wsdl Anal yzer page where you enter the WSDL location.

Figure 12-2 shows a result page after entering parameters and selecting the Invoke
button.

Advanced Topics for Web Services 12-9

Using the WSDL Analyzer Utility

Figure 12-1 wsdIlAnalyzer Web Service Result Page

Oracle Dynamic WSDL Analyzer

Description:

WSOL Analyzer consumes W3DOL and lists all the operations available.
You can select any available operation and supply the appropriate input.
Click the invoke button to invoke the operation.

WSsDL URL |h1'tp:,",.'\tv\w-f.xmethods.neUSdIEDmfTemperatureService.wsdl Next-> |
or

Upload a WSDL | Browse. | Next-> |

enter the prosxy-host and proxy-port if you are connected to the internet through a http proseye

host: | port:

12-10 Oracle Application Server Web Services Developer's Guide

Using the WSDL Analyzer Utility

Figure 12-2 wsdIlAnalyzer Test Page

Oracle Dynamic WSDL Analyzer
Analysis:

bttp:fhenened xanethods netsd/2001TemperatureService wadl start over

Service : TemperatureService

Returns current temperature in a given U.S. zipcode

Binding
Style
TemperatureFort RPC getTemp hitplfservices xmethods net 80/soap/servietrporouter

port name Operations Endpoint

operation : getTemp

Input Parameters Qutput Parameters
name type enter value name type
1zipcode string|9?2n4 return float

Invoke |

Service returned:

51.0 =]

Advanced Topics for Web Services 12-11

Using the WSDL Analyzer Utility

12-12 Oracle Application Server Web Services Developer's Guide

A

Using Oracle SOAP

This appendix covers the following topics:

« Understanding Oracle Application Server SOAP

« Apache SOAP Documentation

« Configuring the SOAP Request Handler Servlet

« Using OracleAS SOAP Management Ultilities and Scripts
« Deploying OracleAS SOAP Services

« Using OracleAS SOAP Handlers

« Using OracleAS SOAP Audit Logging

« Using OracleAS SOAP Pluggable Configuration Managers
« Working With OracleAS SOAP Transport Security

« Using OracleAS SOAP Sample Services

« Using the OracleAS SOAP EJB Provider

« Using PL/SQL Stored Procedures With the SP Provider
« SOAP Troubleshooting and Limitations

« OracleAS SOAP Differences From Apache SOAP

« Apache Software License, Version 1.1

Using Oracle SOAP A-1

Understanding Oracle Application Server SOAP

Understanding Oracle Application Server SOAP

In addition to the Oracle Application Server Web Services previously described in
this chapter, that use a unique Servlet interface and J2EE deployment for Web
Services, Oracle Application Server also provides Oracle Application Server SOAP
(OracleAS SOAP) that is derived from Apache 2.3.1 SOAP and includes a number
of enhancements.

The SOAP Message Processor, OracleAS SOAP, provides the following facilities:

SOAP Protocol Handling - It provides an implementation of the interoperable
SOAP specification. This includes support for Cookies and Sessions which is
particularly useful to pass state information for stateful Web Services
request/response.

Support for SOAP requests with Attachments (XML Payloads).

Parsing - OracleAS SOAP Processor integrates the Oracle XML Parser. For
RPC-style requests, the OracleAS SOAP Processor can efficiently parse the
incoming XML document, ensure the request is well-formed, and possibly
validate the request. Similarly, it can also encode/serialize a Java response into
a SOAP message.

Invoking Web Service Using Customized Web Services Servlet - The SOAP
Processor un-marshals the message contents and depending on the Servlet, calls
the Web Services implementation. Web Services can be implemented as Java
Classes, EJBs, or PL/SQL Stored Procedures.

Engaging a security manager to possibly authenticate the sender - Before
invoking the Web Services implementation, the OracleAS SOAP Processor
(Servlet) authenticates the user using a standard JAAS-based User Manager
plug-in. OracleAS SOAP Processor also supports Oracle's Single Sign-On Server
and third-party authentication services to provide single-sign on for Web
Services.

Exception Handling - When exceptions occur during processing, the Java
Exception is transformed to a SOAP fault and delivered to the service client.

Apache SOAP Documentation

OracleAS SOAP is a modified version of Apache SOAP 2.3.1. Most of the
documentation that applies to Apache SOAP 2.3.1 also applies to OracleAS SOAP.
The Apache SOAP 2.3.1 documentation can be found at the following site:

http://xml.apache.org/soap/docs/index.html

A-2 Oracle Application Server Web Services Developer’'s Guide

Configuring the SOAP Request Handler Servlet

Configuring

the SOAP Request Handler Servlet

The OracleAS SOAP Request Handler uses an XML configuration file to set
required servlet parameters. By default, this file is named soap. xm and is placed
in the soap. ear file in the directory $SOAP_HOVE/ | i b on UNIX or %SQAP_
HOVE% | i b on Windowvs.

The XML namespace for this file is:
http://xm ns. oracl e. conf soap/ 2001/ 04/ confi g

To use a different configuration file for SOAP installation, expand the soap. ear
file. In the directory webapps/ soap/ VEEB- | NF on UNIX or

webapps\ soap\ VEB- | NF on Windows, modify the path name specified for the
SoapConf i g parameter in the soap. properti es file. Then, redeploy the
updated soap. ear file.

For example, to change the configuration file from the default, soap. xni , to
newConfi g. xm , modify the value set for soapConf i g in soap. properti es.

servl et.soaprouter.initArgs=soapConfig=soap_home/ soap/ webapps/ soap/ VEB- | NF/ newConf i g. xm

Where soap_hone is the full path to the SOAP installation on your system.

The pat hAut h boolean attribute, if set to t r ue, enforces that clients must specify
the unique service URL in order to post a message to the deployed service. The
service URL is the SOAP servlet URL with the service URI appended on at the end.
The default value of this attribute (if unspecified) is f al se.

Table A-1 lists the SOAP Request Handler Servlet XML configuration file elements.

Table A-1 SOAP Request Handler Servlet Configuration File Parameters

Parameter

Description

error Handl ers

faul tLi steners

Specifies a list of handlers for the error handler chain.

This is an optional element that defines a list of faultListener elements. The
faultListener element specifies a class that is invoked when a fault occurs. To cause a
stack trace to be added to the SOAP fault that is returned to the user, specify a
faultListener of org.apache.soap.server. DOMFaultListener.

Using Oracle SOAP A-3

Configuring the SOAP Request Handler Servlet

Table A-1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description

handl er The handlers element is an optional element that defines a list of handler elements. The
handler element defines a global handler that can be configured to be invoked on every
SOAP request in one of three contexts: request, response, error. You can define any
number of handlers. The handler’s name attribute specifies the name of the handler;
each handler must have a unique name. The handler’s class attribute specifies the Java
class that implements the handler, and this class must implement the interface
oracle.soap.server.Handler. Each handler may have any number of options, which are
name-value pairs. The contexts are configured in the elements: requestHandlers,
responseHandlers, and errorHandlers. Each of these elements defines an ordered list of
handler names, or a chain of handlers.
Note that SOAP creates one instance of each uniquely identified handler. Every
appearance of a specific handler name in any chain refers to the same instance of the
handler. Handlers are destroyed when the SOAP servlet is destroyed.

| ogger Error and informational messages are logged using the class defined in the logger

element. The logger class must extend or acl e. soap. server. Logger.

OracleAS SOAP includes the class or acl e. soap. server. i npl. Servl et Logger
that collects the servlet log methods so that SOAP messages are logged to the servlet
log file. Ser vl et Logger is the default logger. For the default logger, the severity
option can be to any of the following values: st at us, err or, debug.

If you specify er r or , you will get both st at us and er r or messages. Similarly, if you
specify debug, you will get all three types of messages.

OracleAS SOAP includes two logger implementations. To log to the servlet log, use
oracle.soap.server.impl.ServletLogger. To log to stdout, use
oracle.soap.server.impl.StdOutLogger.

You may implement your own logger by implementing the oracle.soap.server.Logger
interface.

A-4 Oracle Application Server Web Services Developer’'s Guide

Configuring the SOAP Request Handler Servlet

Table A-1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter

Description

provi der Manager

request Handl er s
responseHandl ers

servi ceManager

The providerManager is an optional element that allows a configuration manager to be
defined. This defines how the server accesses provider deployment information.

The provi der Manager class attribute specifies a Java class that implements

oracl e. soap. server. Provi der Manager . The default configuration manager,
oracle.soap.server.impl. XMLProviderConfigManager, persists the deployed providers
to a file in XML format. It accepts a filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/providers.xml.

An alternative provider configuration manager,
oracle.soap.server.impl.BinaryProviderConfigManager, persists the deployed providers
in a file as a serialized object. The default file is WEB-INF/providers.dd.

To specify a different configuration manager add a class attribute to the configManager
element. For example:

<osc:configManager class="fully.qualified.classname">.
Specifies a list of handlers for the request handler chain
Specifies a list of handlers for the response handler chain

The serviceManager is an optional element that allows a configuration manager to be
defined and ServiceManager options to be set. This defines how the server accesses
service deployment information. The ser vi ceManager class attribute specifies a Java
class that implements or acl e. soap. server. Servi ceManager .

The default OracleAS SOAP configuration manager class is

oracl e. soap. server.inpl.XM.Servi ceConfi gManager which stores the
service deployment information in an XML file. Using XMLSer vi ceConf i gManager ,
the file name is specified with the f i | enane option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/services.xml.

To specify a different configuration manager add a class attribute to the
confi gManager element.

For example:
<osc:configManager class="fully.qualified.classname">.

An alternative service configuration manager,
oracle.soap.server.impl.BinaryServiceConfigManager, persists the deployed services in
a file as a serialized object. The default file is WEB-INF/services.dd.

The service manager can automatically deploy the provider manager and the service
manager as SOAP services. To allow these managers to be exposed as services, set the
autoDeploy option to true. By default autoDeploy value is false.

Using Oracle SOAP A-5

Using OracleAS SOAP Management Utilities and Scripts

Using OracleAS SOAP Management Utilities and Scripts

To use the OracleAS SOAP management utilities, you need to set up the execution
environment for executing SOAP management utilities using one of the supplied
client side scripts. The cl i ent env scripts set the CLASSPATH and add the $SOAP_
HOVE/ bi n directory to the path.

To set the client environment, on UNIX, use the following commands:

cd $SOAP_HOWE/ bi n
source clientenv.csh

On Windows, use the following commands:
cd ¥S0AP_HOMVE% bi n
clientenv. bat

The cl i ent env scripts sets environment variables that are used by the other
scripts and the samples. You can override these by setting the environment
variables yourself. The variable SOAP_URL is the URL of the SOAP server and JAXP
is set to use the Docunent Bui | der Fact or y for the Oracle XML parser.

Managing Providers

The provi der Myr script runs the SOAP client that manages providers. Run the
script without any parameters for usage information.

On UNIX, use the following command:

provi derrMr. sh options

On Windows, use the following command:

provi der Myr. bat options

Where the options for pr ovi der Myr are:
depl oy ProviderDescriptorFile

This deploys the provider described in the ProviderDescriptorFile and makes the
provider available.

undepl oy ProviderlD

This removes the provider with the supplied ProviderID. The ProviderID is the id
attribute specified in the provider descriptor file.

A-6 Oracle Application Server Web Services Developer’'s Guide

Using OracleAS SOAP Management Utilities and Scripts

The Java provider is deployed once at installation time with id=java-provider, but
any provider you create must be explicitly deployed. For example, on UNIX, to
deploy a provider using the provider deployment descriptor pr ovi der . xm , use
the following command:

provi der Myr. sh depl oy provider.xm

Using the Service Manager to Deploy and Undeploy Java Services

The Ser vi ceMyr is an administrative utility that deploys and undeploys SOAP
services. To deploy a service, first set the SOAP environment, then use the depl oy
command. On UNIX, the command is:

source clientenv.csh
Servi ceMyr. sh depl oy ServiceDescriptorFile

For Windows, the command is:

clientenv. bat
Servi ceManager . bat depl oy ServiceDescriptorFile

The deploy option makes the service specified in ServiceDescriptorFile available.

When you are ready to undeploy a service, use the undepl oy command with the
registered service name as an argument. On UNIX, the command is:

Servi ceManager . sh undepl oy ServicelD

For Windows, the command is:

Servi ceManager . bat undepl oy Servicel D

This makes the service with the given id unavailable. The ServicelD is the service id
attribute specified in the service descriptor file.

The Ser vi ceMgr supports listing and querying SOAP services. To list the available
services, first set the SOAP environment, then use the | i st command. On UNIX,
the command is:

source clientenv.csh
Servi ceMyr.sh |ist

On Windows, the command is:

Using Oracle SOAP A-7

Using OracleAS SOAP Management Utilities and Scripts

clientenv. bat
ServiceMyr.bat |ist

To query a service and obtain the descriptor parameters set in the service
deployment descriptor file, use the quer y command. On UNIX, the command is:

ServiceMyr. sh query ServicelD

On Windows, the command is:

Servi ceMyr. bat query Servicel D

Where ServicelD is the service id attribute set in the service descriptor file.

Generating Client Proxies from WSDL Documents

The wsdl 2j ava script takes as input a WSDL document and returns a Java class
which can be used to call the service. The Java class contains methods with the same
names as those described in the WSDL document. The generated code make calls to
the Apache client side libraries.

On UNIX, use the following command:

wsdl 2j ava. sh options

On Windows, use the following command:

wsdl 2j ava. bat options

Where the options for wsdl 2j ava are:

wsdl 2j ava. sh WsdIDocumentURL OutputDir [- k PackageName] [- s ServiceName]
[- p PortName]

Where:

WsdIDocumentURL is the URL of the WSDL document.

OutputDir is the output directory for generated proxy Java code.

-k PackageName is the package name for generated proxy Java code.

-s ServiceName is the service name for which proxy will be generated.

A-8 Oracle Application Server Web Services Developer’'s Guide

Using OracleAS SOAP Management Utilities and Scripts

-p PortName the port name of the service. The proxy is generated for the specified
port of the service.

The output directory structure is:

output root dir/service name/port name/package name/java proxy source code

By default, the PackageName will be the same as the WSDL service name.

If neither of - s and - p options is specified, proxies for all ports of all services are
generated. Without - p option specified, proxies for all ports of the specified service
are generated.

Generating WSDL Documents from Java Service Implementations

The j ava2wsdl script takes as input a Java class and creates as output a WSDL
document describing the class as an RPC service. When the Java class is used as a
Web Service, the associated WSDL document can be transmitted to developers who
might wish to call the service.

On UNIX, use the following command:

java2wsdl . sh options

On Windows, use the following command:

java2wsdl . bat options

Where the options for wsdl 2j ava are:
java2wsdl . sh O assName Qut putFile SoapURL C assURL1 ClassURL2 ...

Where:

ClassName is the fully qualified path name of a Java .class file that is to be a Web
Service.

OutputFile is the output WSDL document name.
SoapURL is the SOAP endpoint.

ClassURL list serves as a class path for searching referenced classes

Using Oracle SOAP A-9

Deploying OracleAS SOAP Services

Deploying OracleAS SOAP Services

This section covers the following topics related to deploying and undeploying
OracleAS SOAP Services:

« Creating Deployment Descriptors

» Installing a SOAP Web Service in OC4]

» Disabling an Installed SOAP Web Service

« Installing a SOAP Web Service in an OC4J Cluster

Creating Deployment Descriptors

Deployment descriptors include service deployment descriptors and provider
deployment descriptors. A provider deployment descriptor file is an XML file that
describes, to the SOAP servlet, the configuration information for a provider. A
service deployment descriptor file is an XML file that describes, to the SOAP
servlet, the configuration information for a service.

Services written in Java only require a service descriptor. All Java service
descriptors may point to the same Java provider descriptor supplied with the
OracleAS SOAP installation.

Each service written as a PL/SQL stored procedure requires one service descriptor
and one provider descriptor for each database user. The advantage of this is that
when a password or user is changed, only one descriptor needs to be updated, not
every service descriptor.

See the Stored Procedure section for more information.

Services written as an EJB require one service descriptor and one provider
descriptor for each EJB container user.

See the EJB section of this document for more information.

Note: For developers who wish to write their own providers, the
Apache style provider interface and descriptors are also supported.
Apache descriptors contain both service and provider properties in
a single file, so common provider information must be duplicated
for every service.

A-10 Oracle Application Server Web Services Developer's Guide

Deploying OracleAS SOAP Services

A service deployment descriptor file defines the following information:
« The service ID

« The service provider type (for example, Java)

= The available methods

The best way to write a descriptor is to start with a copy of an existing descriptor
from one of the sample directories.

Example A-1 shows the Java Si npl eCl ock service descriptor file

Si npl eCl ockDescri pt or. xm . This descriptor file is included in the

sanpl es/ si npl ecl ock directory. The service descriptor file must conform to the
service descriptor schema (the schema, ser vi ce. xsd, is located in the directory
$SOAP_HOVE/ schemas on UNIX or in %80AP_HOVE% schenmas on Windows).

The service descriptor file identifies methods associated with the service in the

i sd: provi der element that uses the net hods attribute. Thei sd: j ava cl ass
element identifies the Java class that implements the SOAP service, and provides an
indication of whether the class is static.

Example A-1 Java Service Descriptor File for Sample Simple Clock Service

<isd:service xmns:isd="http://xm ns. oracl e. com soap/ 2001/ 04/ depl oy/ ser vi ce"
i d="urn:jurassic-cl ock"
type="rpc" >
<i sd: provi der
i d="j ava- provi der"
met hods="get Dat e"
scope="Application" >
<isd:java cl ass="sanpl es. si npl ecl ock. Si npl eCl ockServi ce"/>
</isd: provi der>
<I-- includes stack trace in fault -->
<isd:faultListener class="org.apache.soap.server.DOWaul tListener"/>
</isd:service>

Note: The service descriptor file does not define the method
signature for service methods. SOAP uses reflection to determine
method signatures.

Using Oracle SOAP A-11

Deploying OracleAS SOAP Services

Installing a SOAP Web Service in OC4J

Install an OracleAS SOAP Web Service in Oracle Application Server Containers for
J2EE (OC4J) by performing the following steps:

1.
2.

Create service and provider deployment descriptors.

Expand the soap. ear file found in $SCAP_HOVE/ | i b on UNIX or %80AP_
HOVE\ | i b on Windows.

Copy Java classes and Jars implementing the service to the correct locations in
the expanded soap. ear directories.

Copy Java .class files to WEB- | NF/ cl asses.

Copy Java .jar files to WEB- | NF/ | i bs.

Redeploy the updated soap. ear file.

Deploy the provider descriptor by executing the command:

provi der Myr. sh depl oy Fil eNane

where FileName is the name of the provider descriptor xml file.
Deploy the service by executing the command:

serviceMyr.sh depl oy FileNane

Where FileName is the name of the service descriptor xml file.

Disabling an Installed SOAP Web Service

To disable an installed service, run the command:

servi ceMyr. sh undepl oy ServicelD

where ServicelD is the id attribute of the service element in the service descriptor.

Installing a SOAP Web Service in an OC4J Cluster

It is necessary to install an OracleAS SOAP service on every machine in a cluster. If
the service is not installed on all machines in a cluster, the cluster dispatcher might
dispatch a service request to a machine that does not have the service, resulting in
an error on the service invocation.

A-12

Oracle Application Server Web Services Developer's Guide

Using OracleAS SOAP Handlers

Using OracleAS SOAP Handlers

A handler is a class that implements the or acl e. soap. server. Handl er
interface. A handler can be configured as part of a chain in one of three contexts:
request, response, or error. Note that handlers in a chain are invoked in the order
they are specified in the configuration file.

Request Handlers

Handlers in the request chain are invoked on every request that arrives,
immediately after the SOAP Request Handler Servlet reads the SOAP Envelope. If
any handler in the request chain throws an exception, the processing of the chain is
immediately terminated and the service is not invoked.

The error chain is invoked if any exception occurs during request chain invocation.

Response Handlers

Handlers in the response chain are invoked on every request immediately after the
service completes. If any handler in the response chain throws an exception,
processing of the chain is immediately terminated. The error chain is invoked if any
exception occurs during response chain invocation.

Error Handlers

When an exception occurs during either request-chain invocation, service
invocation, or response-chain invocation, the SOAP Request Handler Servlet
invokes the handlers in the error chain. In contrast to the request and response
chains, an exception from an error handler is logged and processing of the error
chain continues. All handlers in the error chain are invoked, regardless of whether
one of the error handlers throws an exception.

Configuring Handlers

Configure handlers and handler chains in the SOAP configuration file. Handlers
can be invoked for each service request or response, or when an error occurs.
Handlers are global in the sense that they apply to every SOAP request and cannot
be configured on a subset of requests, such as all requests for a particular service.

Configure a handler by setting parameters in the SOAP configuration file,
soap. xm . Example A-2 shows a sample segment from a SOAP configuration file
showing the configuration for a handler.

Using Oracle SOAP A-13

Using OracleAS SOAP Audit Logging

Example A—2 Handler Configuration
<osc: handl er s>
<osc: handl er name="audi tor"
cl ass="oracl e. soap. handl ers. audi t . Audi t Logger " >
<osc: option name="auditLogDirectory"
val ue="/privat el/ oracl e/ app/ product/tv02/ soap/ webapps/ soap/ VEB- | NF"/ >
<osc:option name="filter" val ue="(!(host=local host))"/>
</ osc: handl er >
</ osc: handl er s>

<osc: request Handl ers nanmes="auditor"/>
<osc: responseHandl ers nanmes="auditor"/>
<osc:errorHandl ers names="auditor"/>

Using OracleAS SOAP Audit Logging

The OracleAS SOAP audit logging feature monitors and records SOAP usage. Audit
logging maintains records for postmortem analysis and accountability. The SOAP
audit logging feature complements the audit logging capabilities available with the
OC4)J server which hosts the SOAP Request Handler Servlet (SOAP server).

OracleAS SOAP stores audit trails as XML documents. Using XML documents,
OracleAS SOAP creates portable audit trails and enables the transformation of
complete audit trails or individual audit records to different formats.

By default, OracleAS SOAP audit logging uses an audit logger class that
implements the Handl er interface (part of the or acl e. soap. server package).
The audit logger class is invoked conditionally to monitor events including service
requests, service responses, and errors.

This section covers the following topics:
« Audit Logging Information

« Auditable Events

« Configuring the Audit Logger

Audit Logging Information

Table A-2 lists the audit logging elements available for each audit log record.
Individual audit log records may not contain all these elements. In the log file, each
audit log record is stored as a SoapAudi t Recor d element.

A-14 Oracle Application Server Web Services Developer's Guide

Using OracleAS SOAP Audit Logging

Table A—2 Auditable Audit Record Elements

Audit Record Element

Description

HostName

IpAddress

Method

Request Envelope
Request Envelope Method
Request Envelope URI
Response Envelope
ServiceURI
SoapAuditRecord

TimeStamp

User

Specifies the hostname of the client that sent the request.
Specifies the IP address of the client that sent the request.
Specifies the method name for the SOAP request.

Provides the complete SOAP request message.

Name of the Method in the SOAP request envelope

Specifies the URI of the service in the SOAP request envelope.
Provides the complete SOAP response message.

Specifies the service URI for the SOAP request.

Contains an individual record. The chai nType attribute indicates if the record
is generated as part of a request or a response.

Specifies the system time when the SOAP audit record was generated.

Specifies the username associated with the request. Note, this element is only
provided when a user context is associated with the service request or service
response.

Audit Logging Output

The XML schema for the generated audit log is provided in the file

SoapAudi t Trai | . xsd in the directory $SOAP_HOVE/ schermma on UNIX or
YSO0AP_HOVE% scherma on Windows. Refer to the schema file for complete details
on the format of a generated audit log record.

Auditable Events

The audit logger class is invoked when an auditable event occurs and the SOAP
Request Handler Servlet is configured to enable auditing for the event. Auditable
events include a service request or a service response.

Audit Logging Filters

An audit logging filter can be specified in the SOAP configuration file to limit the
set of auditable events that are recorded to the audit log. The SOAP server applies
event filters to request and response events. Table A-4 shows the filter attributes
available to select with an event filter specification. When applied, filters limit the
number of records generated in the audit log. For example, when a filter is specified

Using Oracle SOAP A-15

Using OracleAS SOAP Audit Logging

for a particular host, only the auditable events generated for the specified host are
saved to the audit log.

The syntax for defining auditable events with a filter is derived from RFC 2254.
Table A-3 shows the filter syntax, and Example A-3 provides several examples.

See Also:
« "Configuring the Audit Logger" on page A-18

« ftp://ftp.isi.edu/in-notes/rfc2254.txt onRFC
2254

Table A—3 Audit Trail Events Filter Attributes

Audit Event
Filter Attributes

Description

Host

urn

Specifies the hostname of the host for the service request or response. If this attribute is not
specified in a filter, the hostname of the client is not used in filtering audit log records.

Fully specify the hostname of the client or use wildcards ("*"). Wildcards embedded within
the specified hostname are not supported the examples show valid and invalid uses of
wildcards. If a wildcard is used then the wildcard must be the first character in the filter.
Case is ignored for hostnames. Care should be used in setting this attribute. Depending on
the DNS setup, the hostname returned could be fully qualified or nonqualified; for example,
expl osi ves. acne. comor expl osi ves. For some IP addresses, the DNS may not be
able to resolve the hostname.

Legal values for a Host filter attribute include the following examples:

expl osi ves. acne. com *.acne.com *.com

Illegal values for a Host filter attribute include the following examples:

*, expl osives.acne. *, explosives.*, ex*s.acne.com *ives.acme.com

Specifies the IP address of the client for the service request or response.

The IP address of the client has to be either fully specified, using all four bytes, in the dot
separate decimal form, or specified using wildcards ("*"). Embedded wildcards are not
supported. If a wildcard is used then the wildcard must be the last character in the filter.

If this attribute is not used in a filter then the IP address of the client is not used in filtering.
Legal values for an i p filter attribute include the following examples:
138.2.142.154, 138.2.142.*, 138.2.*, 138.*
Illegal values for an i p filter attribute include the following examples:
, 138.2..154, *.2, 138.*.152, 138.2.142, 138.2, 138

Specifies the service URN. Wildcards are not supported for this attribute.

A-16 Oracle Application Server Web Services Developer's Guide

Using OracleAS SOAP Audit Logging

Table A—3 (Cont.) Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description

username Specifies the transport level username associated with the client.

Wildcards are not supported in a username filter attribute.

Table A—4 Audit Log Filter Syntax

Filter Value Description

attr 1*(any US-ASCII char except ™", "(", ")", "&", "]","I", ™", "=")
equal ="

filter "("filtercomp")"

Whitespaces between "("filtercomp and ")" are not allowed.

filtercomp and] or | not | item
and ="&" filterlist
or ="]"filterlist
not ="I"filter

filterlist 2*2 filter

filtertype equal

item attr filtertype value

Whitespaces between attr, filtertype and value are not allowed.

value 1*(any octet except ASCII representation of ")" - 0x29).
The character "*" has a special meaning.

The "*" character is referred to as a wildcard and matches
anything.

Example A-3 Sample Audit Log Filters

i p=138. 2. 142. 154)

! (host =l ocal host))
I (host =*. acre. com
&(host =*. acne. con)
&(i p=138.2.142. %) (

sernane=daf fy))
ur n=ur n: www or acl e- com Addr essBook) (user nane=daffy)))

(
(
()
((u
(I (

Using Oracle SOAP A-17

Using OracleAS SOAP Audit Logging

Configuring the Audit Logger

Configure the default SOAP audit logger supplied with Oracle Application Server
by setting parameters in the SOAP configuration file, soap. xm . To enable the
default audit logger and turn on audit logging, do the following in the
configuration file.

« Define the name and options for the audit log handler. The default SOAP audit
logger is defined in the class
oracl e. soap. handl ers. audi t . Audi t Logger . The default audit logger
supports several options that you specify in the configuration file. Table A-5
shows the available audit logger options.

« Add the name for the audit logger handler to the r equest Handl er,
responseHandl er, or er r or Handl er chain (or to all of the handler chains).

Example A-4 shows a sample segment from a SOAP configuration file including the
audit logging configuration options. Example A-4 shows configuration options set
to use all options. However, this configuration would produce an extremely large
audit log, and is not recommended.

Note: When you audit errors using the audit logger, depending
on when the error occurs in the request-chain or the
response-chain, it is possible that the request or response message
may not be included in the audit log record, even with

i ncl udeRequest ori ncl udeResponse enabled.

Example A—4 Audit Logging Configuration

<osc: handl er s>
<osc: handl er name="auditor"
cl ass="oracl e. soap. handl ers. audi t . Audi t Logger ">
<osc: option name="auditLogDirectory"
val ue="/privatel/ oracl e/ app/ product/tv02/ soap/ webapps/ soap/ VEB- | NF"/ >
<osc:option name="filter" value="(!(host=local host))"/>
<osc: option name="incl udeRequest" val ue="true"/>
<osc: option name="incl udeResponse" val ue="true"/>
</ osc: handl er >
</ osc: handl er s>
<osc: request Handl ers nanes="auditor"/>
<osc: responseHandl ers names="auditor"/>
<osc: errorHandl ers nanes="auditor"/>

A-18 Oracle Application Server Web Services Developer's Guide

Using OracleAS SOAP Pluggable Configuration Managers

Table A-5 Audit Logger Configuration Options

Option Description

auditLogDirectory Specifies the directory where the audit log file is saved. The
audi t LogDi r ect ory option is required. The name of the
generated audit log file is
O acl eSoapAudi t Log.ti mest anp, wheret i nest anp is the
date and time the file is first generated.

Valid values: any string that is a valid directory

filter Specifies the audit event filter. This option is optional. If a
filter isnotspecified SOAP server logs every event.

Valid values: any valid filter.

includeRequest Specifies that the audit record include the request message for
the event that generated the audit log record.

Valid values: true, f al se
Any value other thant r ue or f al se is treated as an error.
Default Value: f al se

includeResponse Specifies that the audit record include the response message
for the event that generated the audit log record.

Valid values: true, f al se
Any value other thant r ue or f al se is treated as an error.
Default Value: f al se

See Also: "Using OracleAS SOAP Handlers" on page A-13

Using OracleAS SOAP Pluggable Configuration Managers

OracleAS SOAP supports pluggable configuration managers similar to those
supported in Apache SOAP 2.3.1. Since OracleAS SOAP supports provider
deployment descriptors separate from service deployment descriptors, the interface
details using OracleAS SOAP are slightly different from Apache SOAP 2.3.1. In
OracleAS SOAP, configuration managers are configured separately for the provider
manager and the service manager. All configuration managers must implement the
oracl e. soap. server. Confi gManager interface.

Using Oracle SOAP A-19

Working With OracleAS SOAP Transport Security

To simplify development, when you write a configuration manager
implementation, you may the abstract class that is provided with OracleAS SOAP
(oracl e. soap. server. i nmpl . BaseConf i gManager). This abstract class
provides a standard implementation for most of the Conf i gManager interface
with two abstract methods that read and write the persistent store.

Example A-5 shows a sample implementation of a provider configuration manager.

Example A-5 Sample Provider Configuration Manager Implementation.

public class MyProviderConfigManager extends BaseConfi gManager
{

public void setOptions(Properties options)
throws SOAPExcepti on
{

}

/1 handl e inplenentation specific options

public void readRegistry()
throws SOAPExcepti on
{

}

/'l read the depl oyed providers frompersistent store

public void witeRegistry()
t hrows SOAPExcepti on
{

}

Il wite the depl oyed providers to persistent store

The set Opt i ons method is passed the options specified in any <opt i on>
elements specified in the <conf i gManager > element. Synchronization of
reading/writing the registry is the responsibility of the specific configuration
manager implementation.

Working With OracleAS SOAP Transport Security

Oracle Application Server uses the security capabilities of the underlying transport
that sends SOAP messages. Oracle Application Server supports the HTTP and
HTTPS protocols for sending SOAP messages. HTTP and HTTPS support the
following security features:

A-20 Oracle Application Server Web Services Developer's Guide

Working With OracleAS SOAP Transport Security

« HTTP proxies
« HTTP authentication (basic RFC 2617)
« Proxy authentication (basic RFC 2617)

OracleAS SOAP Client transport uses the modified, to support Oracle Wallet
Manager, HTTPC i ent package. OracleAS SOAP transport defines several
properties to support these features. Table A-6 lists the client-side security
properties that Oracle Application Server supports.

In an OracleAS SOAP Client application, you can set the security properties shown
in Table A-6 as system properties by using the - Dflag at the Java command line.
You can also set security properties in the Java program by adding these properties
to the system properties (use Syst em set Properti es() to add properties).

Example A-6 shows how Oracle Application Server supports overriding the values
specified for system properties using Oracle Application Server transport specific
APIs. The set Properti es() method in the class Or acl eSOAPHTTPConnect i on
contains set properties specifically for the HTTP connection (this class is in the
package oracl e. soap. transport. http).

Example A—6 Setting Security Properties for OracleSOAPHHTTPConnection

org. apache. soap.rpc. Call call = new org.apache. soap.rpc.Call();

oracl e. soap. transport. http. Oracl eSOAPHTTPConnection conn =

(oracl e.soap.transport.http. Oracl eSOAPHTTPConnection) cal | . get SOAPTransport();
java.util.Properties prop = new java.util.Properties();

Il Use client code to set name-val ue pairs of properties in prop

conn. set Properties(prop);

Note: The property j ava. prot ocol . handl er. pkgs must be
set as a system property.

Using Oracle SOAP A-21

Working With OracleAS SOAP Transport Security

Table A—-6 SOAP HTTP Transport Security Properties

Property

Description

http.authRealm

http.authType

http.password
http.proxyAuthRealm

http.proxyAuthType

http.proxyHost
http.proxyPassword
http.proxyPort

http.proxyUsername

http.username

Specifies the realm for which the HTTP authentication username/password is
specified.

This property is mandatory when using basic authentication.

Specifies the HTTP authentication type. The case of the value specified is ignored.
Valid values: basi c, di gest

The value basic specifies HTTP basic authentication.

Specifying any value other than basi c or di gest is the same as not setting the
property.

Specifies the HTTP authentication password.

Specifies the realm for which the proxy authentication username/password is
specified.

Specifies the proxy authentication type. The case of the value specified is ignored.
Valid values: basi c, di gest

Specifying any value other than basi c or di gest is the same as not setting the
property.

Specifies the hostname or IP address of the proxy host.
Specifies the HTTP proxy authentication password.

Specifies the proxy port. The specified value must be an integer. This property is
only used when ht t p. pr oxyHost is defined; otherwise this value is ignored.

Default value: 80
Specifies the HTTP proxy authentication username.

Specifies the HTTP authentication username.

A-22 Oracle Application Server Web Services Developer's Guide

Working With OracleAS SOAP Transport Security

Table A—6 (Cont.) SOAP HTTP Transport Security Properties

Property

Description

java.protocol.
handler.pkgs

oracle.soap.
transport.
1022ContentType

Specifies a list of package prefixes for j ava. net. URLSt r eanHandl er Fact ory
The prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPC i ent

This value is required by the Java protocol handler framework; it is not defined by
Oracle Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, aj ava. net . Mal f or mredURLExcepti on is
thrown.

Note: This property must be set as a system property.
For example, set this property as shown in either of the following:
« java.protocol . handl er. pkgs=HTTPC i ent

« java.protocol. handl er. pkgs=sun. net.ww. pr ot ocol |
HTTPC i ent

Specifies the value for the Content-Type HTTP header in Oracle9iAS, and in Oracle
Application Server 10g. The value for this property supports Oracle SOAP servers
running either Oracle 9iAS Release 1.0.2.2 or Release 9.0.x or 10g (9.0.4). This
property provides interoperablity between Oracle9iAS Release 9.0.x Oracle SOAP
clients or Oracle Application Server 10g (9.0.4) and older server versions (as
distributed with Oracle9iAS Release 1.0.2.2).

Valid values: t r ue, f al se (case is ignored)

Setting the value to t r ue specifies to use the Oracle9 iAS Release 1.0.2.2
content-type HTTP header values when the SOAP message is sent. In this case, the
value is set to:

content-type: text/xm

Setting the value to f al se specifies to use the Oracle Application Server version
9.0.x content-type header value when the SOAP message is sent. In this case, the
value is set to:

content-type: text/xm; charset=utf-8

The value f al se is the default value.

Note: for SOAP messages with attachments, the content-type HTTP header is
always set to the value: nul ti part/rel at ed.

Using Oracle SOAP A-23

Working With OracleAS SOAP Transport Security

Table A—6 (Cont.) SOAP HTTP Transport Security Properties

Property

Description

oracle.soap.
transport.
allowUserInteraction

oracle.ssl.ciphers

oracle.
wallet.location

oracle.wallet.
password

Specifies the allows user interaction parameter. The case of the value specified is
ignored. When this property is set to t r ue and either of the following are true, the
user is prompted for a username and password:

1. Ifany of propertiesht t p. aut hType, http. usernane,orhttp. password
is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties ht t p. pr oxyAut hType, ht t p. pr oxyUser nang, or
htt p. pr oxyPasswor d is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: t rue, f al se

Specifying any value other than t r ue is considered as f al se.

Specifies a list of: separated cipher suites that are enabled.
Default value: The list of all cipher suites supported by Oracle SSL are supported.

Specifies the location of an exported Oracle wallet or exported trustpoints.
Note: The value used is not a URL but a file location, for example:

/et c/ ORACLE/ Vl | et s/ syst enll/ exported_wal | et (on UNIX)

d: \ oracl e\ syst eml\ export ed_wal | et (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

Specifies the password of an exported wallet. Setting this property is required
when HTTPS is used with client, mutual authentication as the transport.

Apache Listener and Servlet Engine Configuration for SSL

When using Apache listener and mod_ssl (or mod_ossl), the following directives
must be set for the soap servletlocation/directory:

SSLOption +StdEnvVars +Export Cert Dat a

This directive can be set conditionally, refer to mod_ssl/mod_ossl documentation
for details. By default this directive is disabled for performance reasons. If this
directive is not set then the servlet engine does not have a way to access the SSL
related data (such as the cipher suite, client cert etc).

A-24 Oracle Application Server Web Services Developer's Guide

Working With OracleAS SOAP Transport Security

Using JSSE with Oracle Application Server SOAP Client

This section describes how to use SSL with the OracleAS SOAP Client side when
the Oracle security infrastructure is not available. Availability of Oracle security
infrastructure means the availability of Oracle client side libraries (including
$ORACLE_HOVE/ | i b/ *, $ORACLE_HOWE/ j | i b/ j avax-ssl-1_2.jar,and
$ORACLE HOVE/jlib/jssl-1_2.jar).

OracleAS SOAP uses the following class as the default transport class:

oracl e. soap. transport. http. Oracl eSOAPHTTPConnecti on

This class uses a modified version of HTTPCl i ent package. For information on
HTTPC i ent, see the following site:

http://wwmv. i nnovation. ch/java/ HTTPO i ent/

This version of HTTPCO i ent package is integrated with Oracle Java SSL and
supports Oracle Wallet for HTTPS transport. If a SOAP client side does not have

OracleAS SOAP Client side available, it is still possible to use HTTPS as a transport
with OracleAS SOAP Client side libraries.

To do this, follow these steps:

1. Use the following transport class:
class org. apache. soap.transport.http. SOAPHTTPConnecti on
If using RPC then call the following method by passing an instance of
org.apache.soap.transport.http.SOAPHTTPConnection as an argument:

met hod org. apache. soap. rpc. Cal | #set SOAPTr ansport
(org. apache. soap. t ransport. SOAPTr ansport)

For example:

org. apache. soap.rpc. Call nyCall Chj = new

org. apache. soap.rpc. Call ();

myCal | Cbj . set SOAPTr ansport (new

org. apache. soap. transport. http. SOAPHTTPConnection());

If using messaging, then call the following method by passing an instance of
org.apache.soap.transport.http.SOAPHTTPConnection as an argument:

or g. apache. soap. messagi ng. Message#set SOAPTr anspor t
(org. apache. soap. transport. SOAPTr ansport)

Using Oracle SOAP A-25

Working With OracleAS SOAP Transport Security

For example:

org. apache. soap. messagi ng. Message myMsglbj = new
or g. apache. soap. messagi ng. Message() ;
myMsgQbj . set SOAPTr anspor t (new
org. apache. soap. transport. htt p. SOAPHTTPConnection());

2. Download Java Secure Socket Extension (JSSE) and configure JSSE according to
the supplied instructions. JSSE is available at the following site:
http://java.sun. conl products/jssel
« Makesurethefilesjnet.jar,jcert.jar andj sse. jar areinthe

classpath or in the installed extensions directory ($JRE_HOVE/ | i b/ ext).

« Make sure that SUnJSSE provider is correctly configured. This can be done
either statically by editing the $JRE_HOME/Ilib/security/java.security file
and adding the line;

security. provider. numrcom sun. net.ssl.internal.ssl.Provider
Where num is 1-based preference order or by dynamically by adding the
provider at run time by adding the following line of code:
Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());
Dynamic addition of security providers requires that appropriate permissions
are set.

« Make sure the system property j ava. pr ot ocol . handl er. pkgs is set to
com sun. net. ssl . internal.ww. protocol

« If using proxy server, make sure that the following system properties are set
is set to the correct proxy hostname and proxy port, respectively:

htt ps. pr oxyHost
htt ps. proxyPort

« If using SSL with server side authentication and the default
Tr ust Manager , ensure that the certificate signer of the server is one of the
following files:

$JRE_HOWE/ | i b/ security/jssecacerts

or ifj ssecacert s does not exist:

$JRE_HOWE/ | i b/ security/cacerts

A-26 Oracle Application Server Web Services Developer's Guide

Using OracleAS SOAP Sample Services

« To override the KeyManager/TrustManager keystore default locations, use
the system properties:

javax. net.ssl.keystore

j avax. net. ssl . keySt or eType

j avax. net. ssl . keySt or ePassword
javax.net.ssl.trustStore

javax. net.ssl.trustStoreType
javax. net.ssl.trust StorePassword

Please consult JSSE documentation for details. If using a specific third party
JSSE implementation, please consult the appropriate documentation.

See Also: HTTPC i ent information at the site:
http://ww. i nnovation. ch/java/ HTTPO i ent/

Using OracleAS SOAP Sample Services

The section lists the samples included with OracleAS SOAP. The class files for all of
the samples are in $SOAP_HOVE/ | i b/ sanpl es. j ar on UNIX or in %S0AP_
HOVE% | i b\ sanpl es. j ar on Windows.

To run any sample, you need to ensure that sanpl es. j ar is available on your
servlet’s CLASSPATH. Please refer to the README included with each sample for
more information.

The Xmethods Sample

The clients in the xmethods sample represent the easiest way to get started with
SOAP because they are clients that access existing services that are hosted on
systems on the internet. Information on these services can be found at the site:

http: //ww. xmet hods. org
This sample is in $SOAP_HOME/samples/xmethods.

The AddressBook Sample

This sample has a service implemented in Java and several clients. This sample
illustrates literal XML encoding. See $SOAP_HOVE/ sanpl es/ addr essbook for

Using Oracle SOAP A-27

Using OracleAS SOAP Sample Services

the sample source code. This directory also contains a script that illustrates how to
run the sample addressbook clients using HTTPS as transport.

The StockQuote Sample

This sample has a service implemented in Java and one client. It is located in
$SOAP_HOME/samples/stockquote

The Company Sample

This sample has a service that is comprised of PL/SQL stored procedures and
several clients. It is located in $SOAP_HOME/samples/sp/company. Check the
README file in this directory for details on how to setup, compile, and test this
sample service.

The Provider Sample

This includes a template provider that can be used as a starting point for creating
your own provider.

The AddressBook2 Sample

This sample demonstrates use of the Addressbook service with session scope. It
shows how to maintain the same HTTP session across SOAP Calls. It contains an
example of a SOAP client proxy generated from a WSDL service description file. It
is located in $SOAP_HOME/samples/addressbook?2

The Messaging Sample

This sample is an example of a message-based SOAP service. It is located in
$SOAP_HOME/samples/messaging

The Mime Sample

This sample does SOAP with attachments using both RPC and message based
services. It is located in $SOAP_HOME/samples/mime.

A-28 Oracle Application Server Web Services Developer's Guide

Using the OracleAS SOAP EJB Provider

Using the OracleAS SOAP EJB Provider

This section compares the OracleAS SOAP EJB providers with the Apache-SOAP
2.2 EJB providers.

Stateless Session EJB Provider

In Apache SOARP, the Stateless EJB provider, on receiving the SOAP request,
performs a JNDI lookup on the home interface of the EJB. The Stateless EJB
provider then invokes a create on the EJB’s Home Interface in order to get a
reference to a stateless EJB. Then it uses this EJB reference to invoke the requested
method.

OracleAS SOAP uses the same mechanism to support Stateless Session EJBs as
Apache SOAP.

Stateful Session EJB Provider in Apache SOAP

On receiving a first time SOAP request, the Apache SOAP Stateful Session EJB
provider first locates the Home Interface through a JNDI lookup and using a
subsequent create obtains an object reference to a Stateful Session EJB. The provider
then invokes the requested method on the object reference.

In the next step the provider serializes the EJBHandl e of the specified EJB reference
and appends it to the targetURI with an "@" delimiter. The Stateful Session EJB
provider then sends this modified target URI back to the requesting SOAP client. If
the client wants to reuse the same EJB instance, it must retrieve this "modified"
target URI for the service from the Response and set it in the next SOAP Call.

Upon receiving this request, the Stateful EJB provider extracts the stringified EJB
reference and deserializes it into an EJBHandle from which it can obtain the EJB
reference. It can then invoke the method on the specified EJB.

The drawback of the Apache SOAP implementation is that the client must be EJB
aware and that it could not operate with other SOAP servers.

OracleAS SOAP offers an alternative solution for Stateful Session EJBs that allows
for client interoperablity.

Stateful Session EJB Provider in OracleAS SOAP

The OracleAS SOAP Stateful Session EJB provider binds the EJB reference to the
current session, if none is bound, otherwise, it merely retrieves the EJB reference

Using Oracle SOAP A-29

Using the OracleAS SOAP EJB Provider

from the session. In order for the client to access the same Stateful Session EJB, the
client has to simply maintain it’s current session between successive Calls.

If at any point in a session, the SOAP client invokes a create on the EJB’s Home
Interface, the provider binds the EJB reference from the create to the session, to be
used for other call requests within the session.

Entity EJB Provider in OracleAS SOAP

In order for a SOAP client to run a business method on an entity EJB, it first needs
to either "create" a new EJB upon which to run the method or find an already
existing EJB which suit some criteria. Access to an entity EJB occurs within a
session. At the start of the session the SOAP client must invoke a "create” or "find"
(in order to specify the bean object interest). While maintaining the same session, all
other business methods are directed to that EJB. A subsequent "find" or “create”
within the same or different session directs business method execution requests to
the newly "created" (or "found") EJB.

Another issue is that EJB specification provides that some "find" methods can return
either a Collection of EJB refs or single EJB ref.

The Oracle solution for Entity EJBs embraces the following solution for this
problem:

It disallows find methods that return "Collections”. This allows for the provider to
uniquely specify an Entity EJB to target subsequent business method requests.

Deployment and Use of the OracleAS SOAP EJB Provider

A-30

To install an EJB provider and deploy Web Services to the provider under OC4J,
where the application server hosts both the SOAP servlet and the deployed EJB’s,
follow these steps:

1. Deploy an EJB provider to SOAP using a provider descriptor.
The provider descriptor specifies the following:
« EJB access credentials by the middle tier
« JNDI context factory class
« JNDI context factory URL
= Provider class name

« Providerid

Oracle Application Server Web Services Developer's Guide

Using PL/SQL Stored Procedures With the SP Provider

2. Create the EJB Web Service:

« Define the associated EJB classes and package the EJB into an EAR file as
defined by J2EE spec.

« Define the service descriptor which specifies following details of the EJB
Web Service:

* JNDI Location

* Home interface class name

* Application Deployment Name of this EJB Web Service in OC4J
* The provider id to which this service is to be associated

3. Deploy ear file in OC4J. Modify the OC4J specific EJB descriptor to correct the
JNDI location for the EJB (as described in sample README).

Current Known EJB Provider Limitations

All service methods can only take primitive Java types as arguments to the
methods. User-defined Java types are currently not supported.

Using PL/SQL Stored Procedures With the SP Provider

The OracleAS SOAP Stored Procedure (SP) Provider supports exposing PL/SQL
stored procedures or functions as SOAP services. The Oracle9i Database Server
allows procedures implemented in other languages, including Java and C/C++, to
be exposed using PL/SQL; these stored procedures are exposed as SOAP services
through PL/SQL interfaces.

The SP Provider framework works by translating PL/SQL procedures into Java
wrapper classes, and then exporting the generating Java classes as SOAP Java
services.

SP Provider Supported Functionality
The SP Provider supports the following:

« PL/SQL stored procedures. both procedures and functions (this document uses
procedure to refer to both)

Using Oracle SOAP A-31

Using PL/SQL Stored Procedures With the SP Provider

IN parameter modes

Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported)

Overloaded procedures (however, if two different PL/SQL types map to the
same Java type during translating, there may be errors during the export of the
PL/SQL package; these errors may be fixed by avoiding the overloading, or else
by writing a new dummy package which does not contain the offending
overloaded procedures)

Simple types
(user-defined) object types

SP Provider Unsupported Functionality
The SP provider does not support the following:

The SP Provider framework uses Oracle JPublisher to translate from PL/SQL to
Java; hence, it inherits all of the restrictions of Oracle JPublisher.

SP Provider Supported Simple PL/SQL Types

The SOAP SP provider supports the following simple types. NULL values are
supported for all of the simple types listed, except NATURALN and POSITIVEN.

The Oracle JPublisher documentation provides full details on the mappings of these
types.

VARCHAR? (STRING, VARCHAR)
LONG
CHAR (CHARACTER)

NUMBER (DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT,
NUMERIC, REAL, SMALLINT)

PLS_INTEGER
BINARY_INTEGER (NATURAL, NATURALN, POSITIVE, POSITIVEN)

A-32 Oracle Application Server Web Services Developer's Guide

Using PL/SQL Stored Procedures With the SP Provider

Using Object Types
Oracle JPublisher supports the use of user-defined object types. The SP Provider

framework generates or acl e. sql . Cust onDat umstyle classes since these allow
automatic serialization using the default BeanSeri al i zer in SOAP.

Refer to the company sample for an example of using object types.

Deploying a Stored Procedure Provider

Example A-7 shows a sample provider deployment descriptor for a stored
procedure. You may use any unique id for the provider name (the example uses
"company-provider").

The attributes user, password, and url are used to create the URL to connect to the
database, and they are all required. The number of connections for a service,
handled by this provider, is set using connect i ons_per _servi ce; thisis
optional and defaults to 10.

Deploy the sample provider descriptor shown in Example A-7, appropriately
edited for the local configuration, using the provider manager.

Example A—7 Sample SP Provider Deployment Descriptor

<isd:provider xmns:isd="http://xn ns.oracl e.conm soap/ 2001/ 04/ depl oy/ provi der"
i d="conpany- provi der"
cl ass="oracl e. soap. provi ders. sp. SpProvi der">
<I-- edit the follow ng option "val ues" as appropriate -->
<isd:option key="user" val ue="YOUR- USER- NAME" />
<isd:option key="password" val ue="YOUR- PASSWORD" />
<isd:option key="url" val ue="j dbc: oracl e: t hi n: @OUR- HOST: YOUR- PORT: YOUR- S| D"
/>
<isd:option key="connections_per_service" value="3" />
</isd: provider>

Translating PL/SQL Stored Procedures into Java

The shell script $SOAP_HOVWE/ bi n/ sp2j ar . sh translates a PL/SQL package and
all its contained procedures/functions into a Java class with equivalent methods. If
the package uses any user-defined types, these types are also translated into
equivalent Java classes.

The README file in the samples directory has an example of the usage of the
sp2j ar. sh command to translate the company example into a jar file of compiled

Using Oracle SOAP A-33

Using PL/SQL Stored Procedures With the SP Provider

Java classes. The READIVE also describes how to load the PL/SQL packages into the
database.

Let us assume for the rest of the document that a PL/SQL package company has
been installed on a database, and it has been exported into a set of compiled Java
classes available in the jar file conpany. j ar .

The generated conpany. j ar should be made available in the CLASSPATH of the
SOAP servlet, just as for other Java services.

Deploying a Stored Procedure Service

Example A-8 shows a sample service deployment descriptor for a stored procedure.
Notice that the id attribute in the provider element identifies the provider under
which this service is deployed.

The service descriptor looks exactly like that for a Java service, since the SP Provider
framework translated PL/SQL procedures into Java class methods. All of the
information specific to PL/SQL are part of the provider descriptor---the service
itself looks like a Java service.

If the procedures use object types, it is necessary to define a type mapping for each
object type. The XML type name must be identical to the SQL type name and must
be in UPPER CASE (see EMPLOYEE and ADDRESS below). The javaType attribute
identifies the oracle.sql.CustomDatum type that was generated by Oracle
JPublisher.

The default BeanSerializer can be used to serialize/deserialize the types.

The generated method names are in lower-case since this is the default setting of
Oracle JPublisher.

Deploy the sample service descriptor shown in Example A-8 using the service
manager.

Example A-8 Sample Stored Procedure Service Deployment Descriptor

<isd:service xmns:isd="http://xm ns. oracl e. com soap/ 2001/ 04/ depl oy/ servi ce"
i d="ur n: www or acl e- com conpany"”
type="rpc" >

<i sd: provi der
i d="conpany- provi der"
met hods="addenp getenp getaddress getenpinfo changesal ary renmoveenp”
scope="Application" >
<isd:java class="sanpl es. sp. conpany. Conpany"/ >

A-34 Oracle Application Server Web Services Developer's Guide

SOAP Troubleshooting and Limitations

</isd: provi der>

<i sd: mappi ngs>
<i sd: map encodi ngStyl e="http://schenmas. xnl soap. or g/ soap/ encodi ng/ "
xm ns: x="urn: conpany- sanpl " gname="x: EMPLOYEE"
j avaType="sanpl es. sp. conpany. Enpl oyee"
j ava2XMLC assName="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"

xm 2Javad assNane="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"/>
<i sd: map encodi ngStyl e="http://schenmas. xn soap. or g/ soap/ encodi ng/ "
xm ns: x="urn: conpany- sanpl e" gnane="x: ADDRESS"
j avaType="sanpl es. sp. conpany. Addr ess"
j ava2XMLC assName="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
xm 2Javad assNanme="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"/>
</i sd: mappi ngs>

<isd:faul tListener class="org.apache.soap.server.DOWaul tListener"/>

</isd:service>

Invoking a SOAP Service that is a Stored Procedure

SOAP services that are PL/SQL stored procedures are invoked in exactly the same
manner as any other SOAP service. The conpany. j ar file created during the
translating/deployment of a PL/SQL package is also needed on the client-side to
compile application programs that invoke the SOAP service (this jar file is needed
only if the stored procedures have input/output types that are user-defined types; if
the procedures use only builtin-types, the generated jar file is not needed on the
client).

The READVE file in the company samples directory has instructions on how to
compile and test the sample client.

SOAP Troubleshooting and Limitations

This section lists several techniques for troubleshooting Oracle Application Server
Web Services, including:

« Tunneling Using the TcpTunnelGui Command
« Setting Configuration Options for Debugging
« Using DMS to Display Runtime Information

Using Oracle SOAP A-35

SOAP Troubleshooting and Limitations

« SOAP Limitations for Java Type Precedence with Overloaded Methods

Tunneling Using the TcpTunnelGui Command

SOAP provides the TcpTunnel Gui command to display messages sent between a
SOAP client and a SOAP server. TcpTunnel Gui listens on a TCP port, which is
different than the SOAP server, and then forwards requests to the SOAP server.

Invoke TcpTunnel Gui as follows:
java org.apache. soap. util.net. TcpTunnel Gui TUNNEL- PORT SCAP- HOST SCAP- PORT

Table A-7 lists the command line options for TcpTunnel Cui .

Table A~7 TcpTunnelGui Command Arguments

Argument Description

TUNNEL-PORT The port that TcpTunnel Gui listens to on the same host as the
client

SOAP-HOST The host of the SOAP server

SOAP-PORT The port of the SOAP server

For example, suppose the SOAP server is running as follows,

http://systenl: 8080/ soap/ servl et/ soaprout er

You would then invoke TcpTunnel Gui on port 8082 with this command:

java org.apache. soap. util.net. TcpTunnel Gui 8082 systenl 8080

To test a client and view the SOAP traffic, you would use the following SOAP URL
in the client program:

http://systeml: 8082/ soap/ servl et/ soaprout er

Setting Configuration Options for Debugging

To add debugging information to the SOAP Request Handler Servlet log files,
change the value of the severi t y option for in the file soap. xnml . This file is
placed in soap. ear file in the directory $SOAP_HOVE/ | i b on UNIX or in %S0AP_
HOVE% | i b on Windows.

A-36 Oracle Application Server Web Services Developer's Guide

SOAP Troubleshooting and Limitations

To modify the debugging option, expand the soap. ear file and modify the file
soap. xm in the directory webapps/ soap/ VEEB- | NF on UNIX or in
webapps\ soap\ VEEB- | NF on Windows, then redeploy the updated soap. ear file.

For example, the following soap. xm segment shows the value to set for
severi ty to enable debugging:

<l-- severity can be: error, status, or debug -->

<osc: | ogger class="oracle.soap.server.inpl.ServletLogger">
<osc: option name="severity" val ue="debug" />

</ osc: | ogger>

After stopping and restarting the SOAP Request Handler Servlet, you can view
debug information in the file x. | og. The file is in the directory $ORACLE _
HOVE/ Apache/ | ogs on UNIXorin

YORACLE_HOVE% Apache\ x\ | ogs on Windows.

Using DMS to Display Runtime Information

Oracle Application Server Web Services is instrumented with DMS to gather
information on the execution of the SOAP Request Handler Servlet, the Java
Provider, and on individual services.

DMS information includes execution intervals from start to stop for the following:

« Total time spent in SOAP request and response (includes time in providers and
services)

« Total time spent in the Java Provider (includes time in services)
« Total time executing services (soap/ j ava- provi der/ servi ce- URl)
To view the DMS information, go to the following site:

http://host nane: port/soap/ servl et/ Spy

SOAP Limitations for Java Type Precedence with Overloaded Methods

OracleAS SOAP supports Java inbuilt (primitive) types, wrapper types, one
dimensional arrays of inbuilt types, and one dimensional arrays of wrapper types
as parameters for SOAP RPC.

An inbuilt type parameter always takes precedence to a wrapper type parameter
when the Java provider searches for an overloaded method. When there isn't a clear
winner, for an overloaded method, a fault with appropriate message is returned.

Using Oracle SOAP A-37

OracleAS SOAP Differences From Apache SOAP

For example:

A java class containing aMet hod(i nt) hides aMet hod(| nt eger) in the same
class.

A java class containing aMet hod(i nt[]) hidesaMet hod(I nteger[]) inthe
same class.

A java class, when deployed as a SOAP RPC service returns a fault when a client
invokes aMet hod() containing the signatures, aMet hod(i nt, Fl oat) and
aMet hod(I nt eger, fl oat). Inthis case, there is no clear winner for resolving
the precedence of the overloaded aMet hod() .

OracleAS SOAP Differences From Apache SOAP

This section covers differences between Apache Soap and OracleAS SOAP.

Service Installation Differences

Additional instructions are provided for installing services when OracleAS SOAP is
used in conjunction with OC4J.

Optional Provider Enhancements

OracleAS SOAP supports both the Apache Provider interface, defined in
or g. apache. soap. util . Provi der, and an enhanced provider interface,
defined in or acl e. soap. server. Provi der.

The native Apache provider includes only two methods, | ocat e() and

i nvoke() . The Oracle Provider interface combines the locate and invoke methods,
so that the provider does not have to store input parameters between the | ocat e()
andi nvoke() calls. Additionally, the Oracle Provider interface hasi nit () and
destroy() methods, which the SOAP servlet calls only once when the provider is
instantiated. This allows providers to perform one time initialization such as
opening a database or network connection, and to perform one time clean up
activities.

When using the Apache provider interface, a single deployment descriptor supplies
both service and provider properties. When using the Oracle Provider interface,
these properties are separated between a service descriptor file and a provider
descriptor file. This allows common provider properties to be shared among
services. When a provider property changes, only a single descriptor file must be
changed. Please see the Deployment section of this document for more information.

A-38 Oracle Application Server Web Services Developer's Guide

OracleAS SOAP Differences From Apache SOAP

Oracle Transport libraries

Oracle transport libraries are included for use with SOAP clients. Use of these
libraries enables use of the Oracle Wallet Manager for keeping certificates securely,
and use of the HttpClient libraries for HTTP connection management. The
HttpClient libraries fix a security problem in the native Apache code which
incorrectly returns cookies to servers other than the originating server.

Modifications to Apache EJB Provider

The Apache EJB provider has been modified to work with the OC4J EJB container.
In addition, the client interface to services provided by stateful and entity EJB’s has
been improved. The EJB handle is contained in the HttpSession association with the
connection rather than being concatenated to the returned URL. Since the
HTTPSession cookie is handled transparently by the SOAP client, no special coding
is required in the client.

Stored Procedure Provider

A special provider has been added which allows services to be written using
PL/SQL Stored Procedures or Functions.

Utility Enhancements

The wsdl 2j ava and j ava2wsdl| scripts simplify building client side code from
WSDL descriptions and for generating WSDL descriptions of Java services.

Modifications to Sample Code

The Apache samples have been modified to work with OracleAS SOAP and OC4J.
The comcal cul at or, webl ogi c_ej b samples have been omitted. New samples
illustrating use of Oracle Stored Procedures and OC4J EJB’s as Web Services have
been added.

Handling the mustUnderstand Attribute in the SOAP Header

This section describes the check that is performed for the nust Under st and
attribute within the header blocks of the SOAP envelope, and describes the
difference between the Apache SOAP and the OracleAS SOAP processing of this
attribute.

Using Oracle SOAP A-39

OracleAS SOAP Differences From Apache SOAP

Setting the mustUnderstand Check

The check for the must Under st and attribute is enabled in the deployment
descriptor of the service by setting the checkMust Under st ands flag. If this flag
settot r ue, the check for the must Under st and attribute within each header block
is performed. If the checkMust Under st ands flag is set to f al se, the check for
the nust Under st and attribute is not performed. The default value of

checkMust Under st ands flagistr ue.

How the mustUnderstand Check Works

If the checkMust Under st ands flag is settot r ue, then a check is made on all
header entries of the envelope after the global request handlers have finished
processing and before handing the envelope to the appropriate service. At this
point, if any header entries contain a nust Under st and attribute thatissettot r ue
or to "1", then an exception is thrown. Note, the global handler(s) can be used to
process one or more header blocks that have the must Under st and attribute set to
true.

If the checkMust Under st ands flag is set to f al se, then header entries of the
envelope are not checked to see if any entries contain a must Under st and attribute
thatissettotrue orto"1". Itis then understood that it is up to the service
implementation to make sure that this check is done before processing the body of
the envelope.

Differences Between Apache SOAP and Oracle SOAP for mustUnderstand

The differences between Apache SOAP and OracleAS SOAP with respect to the
handling of the nust Under st and attribute are the following:

1. Inthe Apache service deployment descriptor and the Oracle Service
deployment descriptor, you may include the checkMust Under st ands
attribute. In Apache, the default value of the checkMust Under st ands
attribute is f al se, in OracleAS SOAP the default value of this attribute is
true.

2. In Apache SOAP, if the service deployment descriptor contains
checkMust Under st ands="true' and a message with
nmust Under st and=" 1' or nust Under st and="t r ue" arrives at the server
then a fault is sent back with the fault code value of:

nmust Under st and

This fault code is not namespace qualified and is incorrect.

A-40 Oracle Application Server Web Services Developer's Guide

Apache Software License, Version 1.1

In OracleAS SOAP the fault code that is sent back is namespace qualified and is
defined by SOAP 1.1:

SOAP- ENV: Must Under st and

3. In Apache SOAP, the must Under st and attribute has to be handled by the
service implementation. In OracleAS SOAP, the must Under st and attribute
can be either handled in the SOAP handlers or in the service implementation.
This is very useful for processing headers (with must Under st and set to '1")
which have a 'global’ use. Examples of such headers/functionality are
encryption, digsig, authentication, logging etc.

Apache Software License, Version 1.1

This program contains third-party code from the Apache Software Foundation
(Apache). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those
rights. Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle AS IS and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:

"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Using Oracle SOAP A-41

Apache Software License, Version 1.1

Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear.

4. The names "Apache" and "Apache Software Foundation” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, nor may
"Apache" appear in their name, without prior written permission of the Apache
Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see http://www.apache.org/.

Portions of this software are based upon public domain software originally written
at the National Center for Supercomputing Applications, University of Illinois,
Urbana-Champaign.

A-42 Oracle Application Server Web Services Developer's Guide

B

Web Services Security

The ability to control user access to Web content and to protect your site against
people breaking into your system is critical. This appendix describes the
architecture and configuration of security for Oracle Application Server Web
Services, including the Oracle Application Server UDDI Registry.

This chapter covers the following topics:

« About Web Services Security

« Configuring Web Services Security

« About Oracle Application Server UDDI Registry Security
« Configuring UDDI Security

See Also:
« Oracle Application Server 10g Security Guide

« Oracle Identity Management Concepts and Deployment Planning
Guide

Web Services Security B-1

About Web Services Security

About Web Services Security

SOAP is the messaging protocol for Oracle Application Server Web Services. Oracle
Application Server Web Services only supports HTTP (S) for a transport protocol for
SOAP messages. Oracle Application Server security that applies for HTTP(S) can be
leveraged for Oracle Application Server Web Services.

Oracle Application Server Web Services supports the following security features:

« Secure Connection: By securing the connection using SSL (HTTPS), one can
invoke a Web Service securely.

= Authentication: Basic and Digest Access Authentication can be enforced using
HTTP (S) headers. This method is not secure unless the authentication is
specified in conjunction with SSL.

« Authorization: Authorization is supported by retrieving the Principal using a
User Manager such as the Oracle Application Server Java Authentication and
Authorization Service (JAZN) User Manager.

All the HTTP(S) transport security features are applicable to all types of Oracle
Application Server Web Services implementations (including stateless and stateful
java classes, stateless session bean and stateless stored procedures). In addition, if a
stateless session bean is exposed as a Web Service, ACL policies can be enforced on
the bean when the connection is authorized by a User Manager and a Principal
object is obtained.

If a stored procedure is exposed as a Web Service, then it is secure to encrypt the
password of the corresponding data source in the data-sources.xml file.

See Also:

« Oracle Application Server Containers for J2EE Security Guide

« Chapter 8, "Configuring EJB Application Security" in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

Configuring Web Services Security

When you run a client-side application that uses Oracle Application Server Web
Services, you can access secure Web Services by setting properties in the client
application. Table B-1 shows the available properties that provide credentials and
other security information for Web Services clients.

B-2 Oracle Application Server Web Services Developer’'s Guide

Configuring Web Services Security

In a Web Services client application, you can set the security properties shown in
Table B-1 as system properties by using the - D flag at the Java command line, or
you can also set security properties in the Java program by adding these properties
to the system properties (use Syst em set Properti es() toadd properties). In
addition, the client side stubs include the _set Tr anport Pr operti es method that
is a public method in the client proxy stubs. This method enables you to set the
appropriate values for security properties by supplying a Pr oper ti es argument.

Table B-1 Web Services HTTP Transport Security Properties

Property

Description

http. aut hReal m

http. aut hType

http. password
htt p. pr oxyAut hReal m

http. proxyAut hType

http. pr oxyHost
http. proxyPassword
http. proxyPort

ht t p. pr oxyUser nanme

http. user nane

Specifies the realm for which the HTTP authentication
username/password is specified.

This property is mandatory when using basic authentication.

Specifies the HTTP authentication type. The case of the value specified is
ignored.

Valid values: basi c, di gest
The value basic specifies HTTP basic authentication.

Specifying any value other than basi c or di gest is the same as not
setting the property.

Specifies the HTTP authentication password.

Specifies the realm for which the proxy authentication
username/password is specified.

Specifies the proxy authentication type. The case of the value specified is
ignored.

Valid values: basi c, di gest

Specifying any value other than basi ¢ or di gest is the same as not
setting the property.

Specifies the hostname or IP address of the proxy host.
Specifies the HTTP proxy authentication password.

Specifies the proxy port. The specified value must be an integer. This
property is only used when ht t p. pr oxyHost is defined; otherwise this
value is ignored.

Default value: 80
Specifies the HTTP proxy authentication username.

Specifies the HTTP authentication username.

Web Services Security B-3

Configuring Web Services Security

Table B—-1 (Cont.) Web Services HTTP Transport Security Properties

Property Description

j ava. protocol . handl er. pkgs Specifies a list of package prefixes for
j ava. net . URLSt r eanHandl er Fact ory The prefixes should be
separated by "|" vertical bar characters.

This value should contain: HTTPCl i ent

This value is required by the Java protocol handler framework; it is not
defined by Oracle Application Server. This property must be set when
using HTTPS. If this property is not set using HTTPS, a

j ava. net . Mal f or mredURLExcept i on is thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

« java.protocol . handl er. pkgs=HTTPC i ent

« java.protocol . handl er. pkgs=sun. net. ww. pr ot ocol |

HTTPC i ent
oracl e. soap. transport. Specifies the allows user interaction parameter. The case of the value
al | omUser I nteraction specified is ignored. When this property is set tot r ue and either of the

following are true, the user is prompted for a username and password:

1. Ifany of properties htt p. aut hType, http. user nane, or
htt p. passwor d is not set, and a 401 HTTP status is returned by
the HTTP server.

2. If either of properties ht t p. pr oxyAut hType,
htt p. proxyUser nane, or ht t p. pr oxyPasswor d is not set and a
407 HTTP response is returned by the HTTP proxy.

Valid values: t rue, f al se
Specifying any value other than t r ue is considered as f al se.
oracl e. ssl . ciphers Specifies a list of: separated cipher suites that are enabled.
Default value: The list of all cipher suites supported with Oracle SSL.

B-4 Oracle Application Server Web Services Developer’s Guide

About Oracle Application Server UDDI Registry Security

Table B—-1 (Cont.) Web Services HTTP Transport Security Properties

Property Description

oracle.wal l et. | ocation Specifies the location of an exported Oracle wallet or exported
trustpoints.

Note: The value used is not a URL but a file location, for example:
/et c/ ORACLE/ VIl | et s/ syst enll/ exported_wal | et (on UNIX)
d:\oracl e\ syst eml\ exported_wal | et (on Windows)

This property must be set when HTTPS is used with SSL authentication,
server or mutual, as the transport.

oracl e.wal | et. password Specifies the password of an exported wallet. Setting this property is
required when HTTPS is used with client, mutual authentication as the
transport.

About Oracle Application Server UDDI Registry Security
This section covers the following topics:
« Protecting Oracle Application Server UDDI Registry Resources
« Managing and Enforcing Protected UDDI Resources

« Using Oracle Application Server Security Services

See Also: "OracleAS UDDI Registry Administration” on
page 10-25

Protecting Oracle Application Server UDDI Registry Resources
Oracle Application Server UDDI resources are protected as follows.

Oracle Application Server UDDI Registry
For the OracleAS UDDI Registry, the following resources are protected:

« Data - Write access to the data stored in the OracleAS UDDI Registry is
protected,; this is typically metadata of Web Services.

« Functions — Administrative operations to the OracleAS UDDI Registry.

« Passwords — N/A. User passwords are protected by JAZN.

Web Services Security B-5

About Oracle Application Server UDDI Registry Security

Oracle Application Server Content Subscription Manager Application

For the Oracle Application Server UDDI Content Subscription Manager application,
the following resource is protected:

» Passwords — Password for the UDDI syndication subscriber are protected.

Managing and Enforcing Protected UDDI Resources

Protection for the following OracleAS UDDI Registry resources are managed and
enforced as follows.

Oracle Application Server UDDI Registry

Oracle Application Server Java Authentication and Authorization Service (JAZN)
and the UDDI application manages and enforces write access to the data stored in
the OracleAS UDDI Registry. JAZN determines the identity and the security role of
a user. Only the owner has rights to update data.

For administrative operations for the OracleAS UDDI Registry JAZN also manages
and enforces access; in addition, JAZN protects the servlets that provide
administrative operations.

Oracle Application Server Content Subscription Manager Application

The application manages the UDDI syndication subscription password used to
access Oracle Application Server Syndication Services. The password, which is
persistently stored in the database, is further protected by the database DBVS
OBFUSCATI ON PL/ SQL package.

Update of the UDDI syndication subscriber password is available through a UDDI
Web-based tool. The web-based tool uses JAZN to query the security role of the
authenticated user. The password update facility is available only if the
authenticated user has the uddi admi n security role.

See Also: "Using the UDDI Content Subscription Manager as a
UDDI Administrator” on page 10-91

Using Oracle Application Server Security Services

UDDI leverages the JAZN User level security features and uses SSL encryption,
both server side and client side, for accessing OracleAS Infrastructure 10g options.

B-6 Oracle Application Server Web Services Developer’'s Guide

Configuring UDDI Security

Configuring UDDI Security
To configure UDDI for security, consider the following areas:
« Configuring the Oracle Application Server UDDI Registry
« Configuring the UDDI Content Subscription Manager
« Configuring the UDDI Client

Configuring the Oracle Application Server UDDI Registry

To ensure the confidentiality of the communication between the OracleAS UDDI
Registry and clients, do the following:

1. Configure the Oracle HTTP Server/SSL listener to provide HTTPS access.
2. Configure OC4J to prohibit HTTP access.

3. To ensure the communication to a UDDI replication endpoint is authorized,
configure the Oracle HTTP Server/SSL listener to enable HTTPS
client-certificate based authentication.

Configure all security-sensitive UDDI endpoints, including: publishing,
administration, replication wallet administration, and subscription management
(typically, the inquiry endpoint does not need to be confidential).

Configuring the UDDI Content Subscription Manager

In order to make the Oracle Application Server Content Subscription Manager
functional, you must supply the proper password of the UDDI syndication
subscriber.

See Also: "Using the UDDI Content Subscription Manager as a
UDDI Administrator” on page 10-91

Configuring the UDDI Client

If you use the UDDI Client Library to develop applications to communicate with
the OracleAS UDDI Registry, you can use the Oracle Application Server Web
Services security features to configure the HTTP transport properties.

See Also: "Configuring Web Services Security” on page B-2

Web Services Security B-7

Configuring UDDI Security

B-8 Oracle Application Server Web Services Developer’s Guide

Glossary

Dynamic Web Service Client

When you want to use Web Services, you can develop a dynamic Web Service
client. With A dynamic client the client performs a lookup to find the Web Service’s
location in a OracleAS UDDI Registry before accessing the service.

SOAP

SOAP is the name of a lightweight, XML-based protocol for exchanging information
in a decentralized, distributed environment. SOAP supports different styles of
information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange.

See Also: http://ww. w3. or g/ TR/ SOAP/ for information on
SOAP 1.1 specification

Static Web Service Client

When you want to use Web Services, you can develop a static client. A static client
knows where a Web Service is located without looking up the service in a OracleAS
UDDI Registry.

Stored Procedure Web Service

Oracle Application Server Web Services implemented as stateless PL/SQL
Stored Procedures or Functions are called Stored Procedure Web Services. Stored
Procedure Web Services enable you to export, as services running under Oracle
Application Server Web Services, PL/SQL procedures and functions that run on an
Oracle database server.

Glossary-1

Glossary-2

uDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for an
online electronic registry that serves as electronic Yellow Pages, providing an
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

See Also: http://ww. uddi . or g for information on Universal
Description, Discovery and Integration specifications.

Web Service
A Web Service is a discrete business process that does the following:

» Exposes and describes itself — A Web Service defines its functionality and
attributes so that other applications can understand it. A Web Service makes
this functionality available to other applications.

= Allows other services to locate it on the web — A Web Service can be registered
in an electronic Yellow Pages, so that applications can easily locate it.

« Can be invoked — Once a Web Service has been located and examined, the
remote application can invoke the service using an Internet standard protocol.

« Returns a response — When a Web Service is invoked, the results are passed
back to the requesting application over the same Internet standard protocol that
is used to invoke the service.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet.

See Also: http://ww. w3. or g/ TR/ wsdl for information on
the Web Services Description Language (WSDL) format.

A

accept-untyped-request configuration tag, 12-4

C

class-name configuration tag, 3-12, 6-11
client-side proxies
generating for Web Services, 8-8
getting directly, 8-5
using, 8-9
client-side request header support, 12-4
connection-factory-resource-ref configuration
tag, 7-14
consuming Web Services
advanced section
editing generated XSLT stylesheet, 11-33
modifying environment options in generated
ejb-jar.xml file, 11-34
sample uses
handling an XML or HTML stream accessed
through a custom form, 11-15
handling an XML or HTML stream accessed
through a form, 11-14
handling an XML or HTML stream accessed
through static URL, 11-3
SOAP-based Web services using WSDL
document, 11-35
running the demonstration, 11-43
using configuration file, 11-37
using wsdl2ejb utility command-line
options, 11-35
using Web Service HTML/XML Stream
Processing Wizard, 11-2

Index

XML or HTML streams, 11-2
context configuration tag, 3-10

D

database-JNDI-name configuration tag, 5-6

data-sources.xml configuration file, 5-11

db-pkg-name configuration tag, 5-7

db-url configuration tag, 5-7

debugging using ws.debug property, 12-2

description configuration tag, 3-10

destination-path configuration tag, 3-10

discovering Web Services, 10-7

display-name configuration tag, 3-10

document style interface, 6-7

dynamic invocation of Web Services, 11-54
dynamic invocation API, 11-55
WebServiceProxy client, 11-58

E

ejb-name configuration tag, 4-11
ejb-resource configuration tag, 3-12, 4-11
EJBs sample code, 4-2
Element

arrays of, 3-8, 4-7, 6-3

null values, 6-3

G

generating client proxies, A-8

generating WSDL documents, A-9

getting client-side proxies for Web Services, 8-2
getting WSDL descriptions for Web Services, 8-2

Index-1

H

header support, 12-4
HTTP transport properties
http.authRealm property, 8-13, B-3
http.authType property, 8-13, B-3
http.password property, 8-13, B-3
http.proxyAuthRealm property, 8-13, B-3
http.proxyAuthType property, 8-13, B-3
http.proxyHost property, 8-13, B-3
http.proxyPassword property, 8-13, B-3
http.proxyPort property, 8-13, B-3
http.proxyUsername property, 8-13, B-3
http.username property, 8-13, B-3
java.protocol. handler.pkgs property, 8-14, B-4
oracle. wallet.location property, 8-15, B-5
oracle.soap. transport. allowUserlInteraction
property, 8-14,B-4
oracle.ssl.ciphers property, 8-14, B-4
oracle.wallet. password property, 8-15, B-5
http.authRealm property, 8-13, B-3
http.authType property, 8-13, B-3
http.password property, 8-13, B-3
http.proxyAuthRealm property, 8-13, B-3
http.proxyAuthType property, 8-13, B-3
http.proxyHost property, 8-13, B-3
http.proxyPassword property, 8-13, B-3
http.proxyPort property, 8-13, B-3
http.proxyUsername property, 8-13, B-3
http.username property, 8-13, B-3

interface-name configuration tag, 3-12, 6-11
interoperability with .NET, 12-2

J

jar-generation configuration tag, 5-6

Java Beans, 3-7,4-6

java class interface, 3-5

java2wsdl script, A-9

java.protocol. handler.pkgs property, 8-14, B-4
java-resource configuration tag, 3-12, 6-11
jms-delivery-mode configuration tag, 7-14
jms-doc-service configuration tag, 7-13

Index-2

jms-expiration configuration tag, 7-14
jms-message-type configuration tag, 7-14
jms-priority configuration tag, 7-14

L

locating Web Services, 8-2

M

message-style configuration tag, 3-12, 6-12
method-name configuration tag, 5-7

N

.NET interoperablity, 12-2

O

OC4] startup using ws.debug, 12-2
operation configuration tag, 7-15

option name="force" configuration tag, 9-6
option name="httpServerURL" configuration

tag, 9-6
option name="include-source" configuration
tag, 8-9

option name="packagelt" configuration tag, 9-6
option name="source-path" configuration tag, 3-10
option name="wsdIl-location" configuration
tag, 8-9
option package-name configuration tag, 8-9
Oracle SOAP, A-22
audit logger
configuring, A-18
filter, A-15
HostName, A-15
IpAddress, A-15
Method element, A-15
schema, A-15
ServiceURI element, A-15
TimeStamp element, A-15
User element, A-15
auditLogDirectory option, A-19
client API
security features, A-20

configuration
handlers, A-13
soap.xml, A-3
debugging
setting values in soap.xml, A-36
deploying services, A-7
deployment descriptor, A-10
error handlers, A-13
errorHandlers deployment parameter, A-3
faultListeners deployment parameter, A-3
filter option, A-19
handlers
deployment parameter, A-4
error, A-13
request, A-13
response, A-13
HostName element, A-15
HTTP transport properties
http.authRealm property, A-22
http.authType property, A-22
http.password property, A-22
http.proxyAuthRealm property, A-22
http.proxyAuthType property, A-22
http.proxyHost property, A-22
http.proxyPassword property, A-22
http.proxyPort property, A-22
http.proxyUsername property, A-22
http.username property, A-22
java.protocol. handler.pkgs property, A-23
oracle. wallet.location property, A-24
oracle.soap. transport. allowUserlInteraction
property, A-24
oracle.wallet. password property, A-24
http.authRealm property, A-22
http.authType property, A-22
http.password property, A-22
http.proxyAuthRealm property, A-22
http.proxyAuthType property, A-22
http.proxyHost property, A-22
http.proxyPassword property, A-22
http.proxyPort property, A-22
http.proxyUsername property, A-22
http.username property, A-22
includeRequest option, A-19
includeResponse option, A-19

IpAddress element, A-15
java.protocol. handler.pkgs property, A-23
listing services, A-7
logger
setting values in soap.xml, A-36
logger deployment parameter, A-4
Method element, A-15
oracle. wallet.location property, A-24
oracle.soap. transport. allowUserlInteraction
property, A-24
oracle.soap. transport.1022ContentType
property, A-23
oracle.ssl.ciphers property, A-24
oracle.wallet. password property, A-24
providerManager deployment parameter, A-5
querying services, A-7
request handlers, A-13
requestHandlers deployment parameter, A-5
response handlers, A-13
responseHandlers deployment parameter, A-5
security features, A-20
service manager
deploying services, A-7
listing services, A-7
querying services, A-7
undeploying services, A-7
verifying services, A-7
serviceManager deployment parameter, A-5
ServiceURI element, A-15
servlet.soaprouter.initArgs parameter, A-3
soap.properties
soapConfig, A-3
soap.xml, A-3
TcpTunnelGui command, A-36
TimeStamp element, A-15
troubleshooting, A-35
undeploying services, A-7
User element, A-15
oracle. wallet.location property, 8-15, B-5
oracle.soap. transport.allowUserInteraction
property, 8-14,B-4
oracle.ssl.ciphers property, 8-14, B-4
oracle.wallet. password property, 8-15, B-5

Index-3

P

packageName request parameter, 8-6
path configuration tag, 4-11
PL/SQL stored procedures
setting up datasources, 5-11
writing, 5-2
prefix configuration tag, 5-7
publishing API, 10-17
publishing Web services, 10-11

Q

gueue-resource-ref configuration tag, 7-15

R

receive-timeout configuration tag, 7-14
reply-to-connection-factory-resource-ref
configuration tag, 7-15

reply-to-queue-resource-ref configuration tag, 7-16
reply-to-topic-resource-ref configuration tag, 7-16
request header support

client-side, 12-4

server-side, 12-6
RPC typed request, 12-2
RPC untyped requests, 12-2

S

schema configuration tag, 5-7

scope configuration tag, 3-12, 6-12

security

HTTP transport properties

http.authRealm property, 8-13
http.authType property, 8-13
http.password property, 8-13
http.proxyAuthRealm property, 8-13
http.proxyAuthType property, 8-13
http.proxyHost property, 8-13
http.proxyPassword property, 8-13
http.proxyPort property, 8-13
http.proxyUsername property, 8-13
http.username property, 8-13
java.protocol.handler.pkgs property, 8-14
oracle.soap.transport.allowUserInteraction,

Index-4

8-14
oracle.ssl.ciphers property, 8-14
oracle.wallet.location property, 8-15
oracle.wallet.password property, 8-15
server-side request header support, 12-6
session-timeout configuration tag, 3-13, 6-12
SOAP
features, 1-6,1-7
web services, 1-6, 1-7
what is SOAP, 1-6, 1-7
SOAP header support, 12-4
SOAP request header support, 12-4,12-6
stateful document style, 6-4
stateful java class, 3-3
stateful-java-service configuration tag, 3-10, 6-11
stateless document style, 6-4
stateless java class, 3-3
stateless session EJBs
helloStatelessSession sample code, 4-2
writing, 4-2
stateless-java-service configuration tag, 3-10, 6-11
stateless-session-ejb-service configuration tag, 4-10

T

temporary-directory configuration tag, 3-10
topic-resource-ref configuration tag, 7-16
topic-subscription-name configuration tag, 7-16
typed RPC requests, 12-2

U

uUDDI
OracleAS UDDI registry, 10-45
production environment configuration, 10-47
publishing Web services
using OEM Deploy Applications
Wizard, 10-12
using OEM Web Services Details
window, 10-13
registration, 10-2
registry, 10-3
registry administration
administrative entity management, 10-32
built-in validated category

management, 10-38
command-line tool uddiadmin.jar, 10-25
database configuration, 10-44
import operation, 10-33
performance monitoring and tuning, 10-43
server configuration, 10-25
server configuration parameters reference
information, 10-48
transport security, 10-45
user account management, 10-26
standard taxonomies

1ISO3166, 10-3
NAICS, 10-3
UNSPSC, 10-3

updating published Web services
using OEM Web Services Details
window, 10-14
Web service discovery, 10-5
using inquiry API, 10-7
using tools, 10-7
Web service publishing, 10-5
using publishing API, 10-17
using tools, 10-11
uddiadmin.jar
registry administration command-line
tool, 10-25
untyped RPC requests, 12-2
uri configuration tag, 3-13, 4-11, 5-6, 6-12, 7-16

W

Web Services
Bean support, 3-7,4-6
client-side proxies, 8-2, 8-9
packageName request parameter, 8-6
discovering, 10-7
document style
deploying, 6-16
interface, 6-7
null value for Element, 6-3
stateful, 6-4
stateless, 6-4
encoding parameters, 3-15
encoding results, 3-15
generating client proxies, 8-8, A-8

generating WSDL documents, 9-4, A-9
home page, 8-2
Java Bean support, 3-7,4-6
java class
deploying, 3-9, 3-15
interface, 3-5
preparing, 3-9
stateful, 3-3
stateless, 3-3
supported parameter types, 3-7
supported return value types, 3-7
supported types, 3-5
JMS
deploying, 7-18
preparing an EAR file, 7-18
locating, 8-2
PL/SQL stored procedures, 5-2
deploying, 5-12
preparing an EAR file, 5-10
setting up datasources, 5-11
proxies, 8-9
publishing, 10-11
serializing parameters, 3-15
serializing results, 3-15
stateless session EJBs, 4-2
bean code, 4-4
deploying, 4-8, 4-13
developing web services, 4-3
error handling, 4-5
home interface, 4-4
preparing, 4-8
remote interface, 4-3
returning results, 4-5
sample code, 4-2
supported parameter types, 4-6
supported return value types, 4-6
test page, 8-2
utilities
wsdlAnalyzer, 12-9
WSDL descriptions, 8-2, 8-8
WebServicesAssembler
DTD, 9-9
running, 9-2
sample input file, 9-2
sample output, 9-3

Index-5

tag temporary-directory, 3-10

class-name, 3-12, 6-11 topic-resource-ref, 7-16
connection-factory-resource-ref, 7-14 topic-subscription-name, 7-16
context, 3-10 uri, 3-13,4-11, 5-6, 6-12, 7-16
db-pkg-name, 5-7 wsdl-dir, 9-6

db-url, 5-7 WSDL file, 9-7

description, 3-10 ws.debug property, 12-2
destination-path, 3-10 WSDL file

display-name, 3-10 getting directly, 8-5

ejb-name, 4-11 wsdl2java script, A-8
ejb-resource, 3-12,4-11 wsdlAnalyzer utility, 12-9

interface-name, 3-12, 6-11

jar-generation, 5-6

java-resource, 3-12,6-11

jms-delivery-mode, 7-14

jms-doc-service, 7-13

jms-expiration, 7-14

jms-message-type, 7-14

jms-priority, 7-14

message-style, 3-12, 6-12

method-name, 5-7

operation, 7-15

option name="force", 9-6

option name="httpServerURL", 9-6

option name="include-source", 8-9

option name="packagelt®, 9-6

option name="source-path”, 3-10

option name="wsdl-location", 8-9

option package-name, 8-9

path, 4-11

prefix, 5-7

proxy-dir, 8-9

gueue-resource-ref, 7-15

receive-timeout, 7-14

reply-to-connection-factory-resource-ref, 7-1
5

reply-to-queue-resource-ref, 7-16

reply-to-topic-resource-ref, 7-16

schema, 5-7

scope, 3-12,6-12

session-timeout, 3-13, 6-12

stateful-java-service, 3-10, 6-11

stateless-java-service, 3-10, 6-11

stateless-session-ejb-service, 4-10

stateless-stored-procedure-java-service, 5-5

Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Web Services Overview
	What Are Web Services?
	Understanding Web Services
	Benefits of Web Services
	About the Web Services e-Business Transformation

	Overview of Web Services Standards
	SOAP Standard
	Web Services Description Language (WSDL)
	Universal Description, Discovery, and Integration (UDDI)

	SOAP Message Exchange and SOAP Message Encoding
	SOAP Message Components
	Working With RPC Style SOAP Messages
	Working With Document Style SOAP Messages

	2 Oracle Application Server Web Services
	Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services
	Oracle Application Server Web Services Standards
	Oracle Application Server Web Services Features
	Developing End-to-End Web Services
	Deploying and Managing Web Services
	Using Oracle JDeveloper with Web Services
	Securing Web Services
	Aggregating Web Services

	Oracle Application Server Web Services Architecture
	About Servlet Entry Points for Web Services
	What Are the Packaging and Deployment Options for Web Services
	About Server Skeleton Code Generation for Web Services

	Understanding WSDL and Client Proxy Stubs for Web Services
	Overview of a WSDL Based Web Service Client
	Overview of a Client-Side Proxy Stubs Based Web Service Client

	Web Services Home Page
	About Universal Description, Discovery, and Integration Registry
	Oracle Enterprise Manager Features to Register Web Services

	3 Developing and Deploying Java Class Web Services
	Using Oracle Application Server Web Services With Java Classes
	Writing Java Class Based Web Services
	Writing Stateless and Stateful Java Web Services
	Building a Sample Java Class Implementation
	Using Supported Data Types for Java Web Services

	Preparing and Deploying Java Class Based Web Services
	Creating a Configuration File to Assemble Java Class Web Services
	Running WebServicesAssembler To Prepare Java Class Web Services
	Deploying Java Class Based Web Services

	Serializing and Encoding Parameters and Results for Web Services

	4 Developing and Deploying EJB Web Services
	Using Oracle Application Server Web Services With Stateless Session EJBs
	Writing Stateless Session EJB Web Services
	Defining a Stateless Session Remote Interface
	Defining a Stateless Session Home Interface
	Defining a Stateless Session EJB Bean
	Returning Results From EJB Web Services
	Error Handling for EJB Web Services
	Serializing and Encoding Parameters and Results for EJB Web Services
	Using Supported Data Types for Stateless Session EJB Web Services
	Writing a WSDL File for EJB Web Services (Optional)

	Preparing and Deploying Stateless Session EJB Based Web Services
	Creating a Configuration File to Assemble Stateless Session EJB Web Services
	Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
	Deploying Web Services Implemented as EJBs

	5 Developing and Deploying Stored Procedure Web Services
	Using Oracle Application Server Web Services with Stored Procedures
	Writing Stored Procedure Web Services
	Preparing Stored Procedure Web Services
	Creating a Configuration File to Assemble Stored Procedure Web Services
	Running WebServicesAssembler With Stored Procedure Web Services
	Setting Up Datasources in Oracle Application Server Web Services (OC4J)

	Deploying Stored Procedure Web Services
	Limitations for Stored Procedures Running as Web Services
	Supported Stored Procedure Features for Web Services
	Unsupported Stored Procedure Features for Web Services
	Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services
	TIMESTAMP and DATE Granularity Limitation
	LOB (CLOB/BLOB) Emulated Data Source Limitation

	6 Developing and Deploying Document Style Web Services
	Using Document Style Web Services
	Writing Document Style Web Services
	Supported Method Signatures for Document Style Web Services
	Writing Stateless and Stateful Document Style Web Services
	Writing Classes and Interfaces for Document Style Web Services

	Preparing Document Style Web Services
	Creating a Configuration File to Assemble Document Style Web Services
	Running WebServicesAssembler With Document Style Web Services

	Deploying Document Style Web Services

	7 Developing and Deploying JMS Web Services
	JMS Web Services Overview
	Using JMS Web Services
	JMS Web Services Backend Message Processing

	Writing JMS Web Services and Handling Messages
	Using an MDB for Backend Message Processing
	Using a JMS Standalone Program for Backend Message Processing
	Message Processing and Reply Messages

	Preparing and Configuring JMS Web Services
	Creating a Configuration File to Assemble JMS Web Services
	Running WebServicesAssembler With JMS Web Services

	Deploying JMS Web Services
	Limitations for JMS Web Services

	8 Building Clients that Use Web Services
	Locating Web Services
	Getting WSDL Files and Client-Side Proxy Jars for Web Services
	Using the Web Service Home Page to Save WSDL and Client Side Proxies
	Getting Web Service WSDL and Client-Side Proxies Directly
	Generating Client-Side Proxies With WebServicesAssembler

	Working with Client-Side Proxy Jar to Use Web Services
	Setting the Web Services Proxy Client CLASSPATH
	Using Java Beans as Parameters for Web Services
	Using Web Services Security Features

	Working with WSDL Files and Oracle JDeveloper to Use Web Services

	9 Web Services Tools
	Running the Web Services Assembly Tool
	Web Services Assembly Tool Configuration File Sample
	Web Services Assembly Tool Configuration File Sample Output

	Generating WSDL Files and Client Side Proxies
	Generating and Assembling WSDL Files
	Generating Client-Side Proxies with WSDL

	Web Services Assembly Tool Configuration File Specification
	Web Services Assembly Tool Limitations

	10 Discovering and Publishing Web Services
	UDDI Registration
	UDDI Registry Data Structure
	OracleAS UDDI Registry for Enterprise Web Services

	Web Services Discovery
	Using Tools
	Using the Inquiry API

	Web Services Publishing
	Using Oracle Enterprise Manager
	Publishing Web Services Using Deploy Applications Wizard
	Publishing Web Services Using Web Services Details Window
	Updating Published Web Services in the OracleAS UDDI Registry
	Using the Publishing API

	OracleAS UDDI Registry Administration
	Using the Command-Line Tool uddiadmin.jar
	Server Configuration
	User Management
	Quota Enforcement
	Administrative Entity Management
	Import Operation
	Set Operational Information
	UDDI Replication
	Registry-Based Category Validation
	External Validation
	Performance Monitoring and Tuning
	Data Backup and Restore Operations
	Additional Information
	Server Configuration Properties Reference Information

	OracleAS UDDI Server Error Message Reference Information
	OracleAS UDDI Content Syndication UI Implementation Error Message
	UDDI Open Database Support
	Microsoft SQL Server
	IBM DB2
	Oracle (Non-OracleAS Infrastructure Database)

	UDDI Subscription Service
	Defining Offers
	Advanced Topic: Creating New UDDI Content Connectors

	Subscribing to an Offer
	Using the UDDI Content Subscription Manager as a Publisher
	Canceling a Subscription
	Using the UDDI Content Subscription Manager as a UDDI Administrator
	Canceling a Subscription

	11 Consuming Web Services in J2EE Applications
	Consuming XML or HTML Streams in J2EE Applications
	Web Service HTML/XML Stream Processing Wizard
	Sample Use Scenarios
	Advanced Section -- Editing Changes You Can Make to Generated Files

	Consuming SOAP-Based Web Services Using WSDL
	Advanced Configuration
	Known Limitations of the wsdl2ejb Utility
	Running the Demonstration

	Dynamic Invocation of Web Services
	Dynamic Invocation API
	WebServiceProxy Client
	Known Limitations

	12 Advanced Topics for Web Services
	Setting the Web Services Debugging Property ws.debug
	Untyped Request Handling Options
	SOAP Header Support
	Client Side SOAP Request Header Support
	Server Side SOAP Request Header Support
	Limitations for SOAP Header Support

	Using the WSDL Analyzer Utility

	A Using Oracle SOAP
	Understanding Oracle Application Server SOAP
	Apache SOAP Documentation
	Configuring the SOAP Request Handler Servlet
	Using OracleAS SOAP Management Utilities and Scripts
	Managing Providers
	Using the Service Manager to Deploy and Undeploy Java Services
	Generating Client Proxies from WSDL Documents
	Generating WSDL Documents from Java Service Implementations

	Deploying OracleAS SOAP Services
	Creating Deployment Descriptors
	Installing a SOAP Web Service in OC4J
	Disabling an Installed SOAP Web Service
	Installing a SOAP Web Service in an OC4J Cluster

	Using OracleAS SOAP Handlers
	Request Handlers
	Response Handlers
	Error Handlers
	Configuring Handlers

	Using OracleAS SOAP Audit Logging
	Audit Logging Information
	Auditable Events
	Configuring the Audit Logger

	Using OracleAS SOAP Pluggable Configuration Managers
	Working With OracleAS SOAP Transport Security
	Apache Listener and Servlet Engine Configuration for SSL
	Using JSSE with Oracle Application Server SOAP Client

	Using OracleAS SOAP Sample Services
	The Xmethods Sample
	The AddressBook Sample
	The StockQuote Sample
	The Company Sample
	The Provider Sample
	The AddressBook2 Sample
	The Messaging Sample
	The Mime Sample

	Using the OracleAS SOAP EJB Provider
	Stateless Session EJB Provider
	Stateful Session EJB Provider in Apache SOAP
	Stateful Session EJB Provider in OracleAS SOAP
	Entity EJB Provider in OracleAS SOAP
	Deployment and Use of the OracleAS SOAP EJB Provider
	Current Known EJB Provider Limitations

	Using PL/SQL Stored Procedures With the SP Provider
	SP Provider Supported Functionality
	SP Provider Unsupported Functionality
	SP Provider Supported Simple PL/SQL Types
	Using Object Types
	Deploying a Stored Procedure Provider
	Translating PL/SQL Stored Procedures into Java
	Deploying a Stored Procedure Service
	Invoking a SOAP Service that is a Stored Procedure

	SOAP Troubleshooting and Limitations
	Tunneling Using the TcpTunnelGui Command
	Setting Configuration Options for Debugging
	Using DMS to Display Runtime Information
	SOAP Limitations for Java Type Precedence with Overloaded Methods

	OracleAS SOAP Differences From Apache SOAP
	Service Installation Differences
	Optional Provider Enhancements
	Oracle Transport libraries
	Modifications to Apache EJB Provider
	Stored Procedure Provider
	Utility Enhancements
	Modifications to Sample Code
	Handling the mustUnderstand Attribute in the SOAP Header

	Apache Software License, Version 1.1

	B Web Services Security
	About Web Services Security
	Configuring Web Services Security
	About Oracle Application Server UDDI Registry Security
	Protecting Oracle Application Server UDDI Registry Resources
	Managing and Enforcing Protected UDDI Resources
	Using Oracle Application Server Security Services

	Configuring UDDI Security
	Configuring the Oracle Application Server UDDI Registry
	Configuring the UDDI Content Subscription Manager
	Configuring the UDDI Client

	Glossary
	Index
	A
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

