
Oracle® Application Server Web Services
Developer’s Guide

10g (9.0.4)

Part No. B10447-01

September 2003

Oracle Application Server Web Services Developer’s Guide, 10g (9.0.4)

Part No. B10447-01

Copyright © 2001, 2003 Oracle Corporation. All rights reserved.

Primary Author: Thomas Van Raalte

Contributing Author: Rodney Ward

Contributors: Jeremy Blanchard, Marco Carrer, Anirban Chatterjee, Daxin Cheng, David Clay, Tony
D’Silva, Neil Evans, Bert Feldman, Kathryn Gruenefeldt, Steven Harris, Anish Karmarkar, Prabha
Krishna, Sunil Kunisetty, Wai-Kwong (Sam) Lee, Gary Moyer, Steve Muench, Giuseppe Panciera, Wei
Qian, Eric Rajkovic, Venkata Ravipati, Susan Shepard, Alok Srivastava, Rodney Ward, Zhe (Alan) Wu,
Joyce Yang, Chen Zhou

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, SQL*Plus, SQL*Net, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org.) Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Contents

Send Us Your Comments .. xiii

Preface... xv

Intended Audience .. xvi
Documentation Accessibility ... xvi
Organization.. xvii
Related Documentation .. xviii
Conventions.. xix

1 Web Services Overview

What Are Web Services? .. 1-2
Understanding Web Services.. 1-2
Benefits of Web Services .. 1-3
About the Web Services e-Business Transformation... 1-3

Overview of Web Services Standards ... 1-5
SOAP Standard ... 1-6
Web Services Description Language (WSDL) .. 1-6
Universal Description, Discovery, and Integration (UDDI)... 1-6

SOAP Message Exchange and SOAP Message Encoding... 1-7
SOAP Message Components .. 1-7
Working With RPC Style SOAP Messages ... 1-8
Working With Document Style SOAP Messages... 1-9
iii

2 Oracle Application Server Web Services

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services.................... 2-2
Oracle Application Server Web Services Standards .. 2-2
Oracle Application Server Web Services Features ... 2-3

Developing End-to-End Web Services... 2-3
Deploying and Managing Web Services ... 2-4
Using Oracle JDeveloper with Web Services.. 2-5
Securing Web Services ... 2-5
Aggregating Web Services .. 2-6

Oracle Application Server Web Services Architecture .. 2-6
About Servlet Entry Points for Web Services ... 2-8
What Are the Packaging and Deployment Options for Web Services 2-10
About Server Skeleton Code Generation for Web Services.. 2-11

Understanding WSDL and Client Proxy Stubs for Web Services ... 2-11
Overview of a WSDL Based Web Service Client.. 2-12
Overview of a Client-Side Proxy Stubs Based Web Service Client 2-12

Web Services Home Page .. 2-13
About Universal Description, Discovery, and Integration Registry 2-14

Oracle Enterprise Manager Features to Register Web Services ... 2-15

3 Developing and Deploying Java Class Web Services

Using Oracle Application Server Web Services With Java Classes... 3-2
Writing Java Class Based Web Services .. 3-2

Writing Stateless and Stateful Java Web Services .. 3-3
Building a Sample Java Class Implementation .. 3-3
Using Supported Data Types for Java Web Services... 3-7

Preparing and Deploying Java Class Based Web Services ... 3-9
Creating a Configuration File to Assemble Java Class Web Services 3-9
Running WebServicesAssembler To Prepare Java Class Web Services.............................. 3-14
Deploying Java Class Based Web Services.. 3-15

Serializing and Encoding Parameters and Results for Web Services 3-15

4 Developing and Deploying EJB Web Services

Using Oracle Application Server Web Services With Stateless Session EJBs 4-2
iv

Writing Stateless Session EJB Web Services ... 4-2
Defining a Stateless Session Remote Interface ... 4-3
Defining a Stateless Session Home Interface.. 4-4
Defining a Stateless Session EJB Bean ... 4-4
Returning Results From EJB Web Services ... 4-5
Error Handling for EJB Web Services.. 4-5
Serializing and Encoding Parameters and Results for EJB Web Services 4-6
Using Supported Data Types for Stateless Session EJB Web Services.................................. 4-6
Writing a WSDL File for EJB Web Services (Optional) ... 4-8

Preparing and Deploying Stateless Session EJB Based Web Services 4-8
Creating a Configuration File to Assemble Stateless Session EJB Web Services................. 4-9
Running WebServicesAssembler To Prepare Stateless Session EJB Web Services........... 4-12
Deploying Web Services Implemented as EJBs ... 4-13

5 Developing and Deploying Stored Procedure Web Services

Using Oracle Application Server Web Services with Stored Procedures 5-2
Writing Stored Procedure Web Services... 5-2
Preparing Stored Procedure Web Services... 5-3

Creating a Configuration File to Assemble Stored Procedure Web Services 5-3
Running WebServicesAssembler With Stored Procedure Web Services 5-10
Setting Up Datasources in Oracle Application Server Web Services (OC4J)..................... 5-11

Deploying Stored Procedure Web Services ... 5-12
Limitations for Stored Procedures Running as Web Services ... 5-12

Supported Stored Procedure Features for Web Services .. 5-12
Unsupported Stored Procedure Features for Web Services... 5-14
Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services . 5-14
TIMESTAMP and DATE Granularity Limitation.. 5-15
LOB (CLOB/BLOB) Emulated Data Source Limitation ... 5-15

6 Developing and Deploying Document Style Web Services

Using Document Style Web Services.. 6-2
Writing Document Style Web Services... 6-2

Supported Method Signatures for Document Style Web Services.. 6-3
Writing Stateless and Stateful Document Style Web Services ... 6-4
Writing Classes and Interfaces for Document Style Web Services 6-4
v

Preparing Document Style Web Services ... 6-9
Creating a Configuration File to Assemble Document Style Web Services 6-9
Running WebServicesAssembler With Document Style Web Services.............................. 6-15

Deploying Document Style Web Services ... 6-16

7 Developing and Deploying JMS Web Services

JMS Web Services Overview .. 7-2
Using JMS Web Services .. 7-2
JMS Web Services Backend Message Processing ... 7-3

Writing JMS Web Services and Handling Messages ... 7-6
Using an MDB for Backend Message Processing... 7-6
Using a JMS Standalone Program for Backend Message Processing.................................... 7-9
Message Processing and Reply Messages ... 7-10

Preparing and Configuring JMS Web Services ... 7-11
Creating a Configuration File to Assemble JMS Web Services .. 7-12
Running WebServicesAssembler With JMS Web Services ... 7-18

Deploying JMS Web Services... 7-18
Limitations for JMS Web Services ... 7-18

8 Building Clients that Use Web Services

Locating Web Services ... 8-2
Getting WSDL Files and Client-Side Proxy Jars for Web Services ... 8-2

Using the Web Service Home Page to Save WSDL and Client Side Proxies 8-2
Getting Web Service WSDL and Client-Side Proxies Directly... 8-5
Generating Client-Side Proxies With WebServicesAssembler... 8-8

Working with Client-Side Proxy Jar to Use Web Services .. 8-9
Setting the Web Services Proxy Client CLASSPATH.. 8-11
Using Java Beans as Parameters for Web Services... 8-12
Using Web Services Security Features... 8-12

Working with WSDL Files and Oracle JDeveloper to Use Web Services 8-15

9 Web Services Tools

Running the Web Services Assembly Tool .. 9-2
Web Services Assembly Tool Configuration File Sample... 9-2
vi

Web Services Assembly Tool Configuration File Sample Output .. 9-3
Generating WSDL Files and Client Side Proxies ... 9-4

Generating and Assembling WSDL Files.. 9-5
Generating Client-Side Proxies with WSDL... 9-8

Web Services Assembly Tool Configuration File Specification ... 9-9
Web Services Assembly Tool Limitations.. 9-11

10 Discovering and Publishing Web Services

UDDI Registration.. 10-2
UDDI Registry Data Structure.. 10-3
OracleAS UDDI Registry for Enterprise Web Services ... 10-5

Web Services Discovery... 10-7
Using Tools.. 10-7
Using the Inquiry API.. 10-7

Web Services Publishing ... 10-11
Using Oracle Enterprise Manager.. 10-11
Publishing Web Services Using Deploy Applications Wizard .. 10-12
Publishing Web Services Using Web Services Details Window.. 10-13
Updating Published Web Services in the OracleAS UDDI Registry................................. 10-14
Using the Publishing API .. 10-17

OracleAS UDDI Registry Administration ... 10-25
Using the Command-Line Tool uddiadmin.jar ... 10-25
Server Configuration ... 10-25
User Management .. 10-26
Quota Enforcement .. 10-28
Administrative Entity Management .. 10-32
Import Operation.. 10-33
Set Operational Information ... 10-33
UDDI Replication ... 10-35
Registry-Based Category Validation ... 10-38
External Validation... 10-41
Performance Monitoring and Tuning.. 10-43
Data Backup and Restore Operations.. 10-44
Additional Information.. 10-44
Server Configuration Properties Reference Information.. 10-48
vii

OracleAS UDDI Server Error Message Reference Information .. 10-64
OracleAS UDDI Content Syndication UI Implementation Error Message......................... 10-71
UDDI Open Database Support .. 10-71

Microsoft SQL Server ... 10-72
IBM DB2 ... 10-74
Oracle (Non-OracleAS Infrastructure Database) ... 10-77

UDDI Subscription Service .. 10-79
Defining Offers.. 10-79
Advanced Topic: Creating New UDDI Content Connectors ... 10-82

Subscribing to an Offer ... 10-83
Using the UDDI Content Subscription Manager as a Publisher.. 10-84
Canceling a Subscription ... 10-91
Using the UDDI Content Subscription Manager as a UDDI Administrator 10-91
Canceling a Subscription ... 10-95

11 Consuming Web Services in J2EE Applications

Consuming XML or HTML Streams in J2EE Applications .. 11-2
Web Service HTML/XML Stream Processing Wizard.. 11-2
Sample Use Scenarios... 11-3
Advanced Section -- Editing Changes You Can Make to Generated Files....................... 11-33

Consuming SOAP-Based Web Services Using WSDL .. 11-35
Advanced Configuration ... 11-37
Known Limitations of the wsdl2ejb Utility ... 11-42
Running the Demonstration.. 11-43

Dynamic Invocation of Web Services ... 11-54
Dynamic Invocation API ... 11-55
WebServiceProxy Client .. 11-58
Known Limitations ... 11-62

12 Advanced Topics for Web Services

Setting the Web Services Debugging Property ws.debug .. 12-2
Untyped Request Handling Options .. 12-2
SOAP Header Support ... 12-4

Client Side SOAP Request Header Support ... 12-4
Server Side SOAP Request Header Support... 12-6
viii

Limitations for SOAP Header Support .. 12-8
Using the WSDL Analyzer Utility... 12-9

A Using Oracle SOAP

Understanding Oracle Application Server SOAP .. A-2
Apache SOAP Documentation... A-2
Configuring the SOAP Request Handler Servlet ... A-3
Using OracleAS SOAP Management Utilities and Scripts .. A-6

Managing Providers... A-6
Using the Service Manager to Deploy and Undeploy Java Services A-7
Generating Client Proxies from WSDL Documents .. A-8
Generating WSDL Documents from Java Service Implementations A-9

Deploying OracleAS SOAP Services.. A-10
Creating Deployment Descriptors ... A-10
Installing a SOAP Web Service in OC4J .. A-12
Disabling an Installed SOAP Web Service.. A-12
Installing a SOAP Web Service in an OC4J Cluster... A-12

Using OracleAS SOAP Handlers... A-13
Request Handlers ... A-13
Response Handlers... A-13
Error Handlers .. A-13
Configuring Handlers.. A-13

Using OracleAS SOAP Audit Logging... A-14
Audit Logging Information... A-14
Auditable Events .. A-15
Configuring the Audit Logger.. A-18

Using OracleAS SOAP Pluggable Configuration Managers.. A-19
Working With OracleAS SOAP Transport Security ... A-20

Apache Listener and Servlet Engine Configuration for SSL .. A-24
Using JSSE with Oracle Application Server SOAP Client .. A-25

Using OracleAS SOAP Sample Services.. A-27
The Xmethods Sample ... A-27
The AddressBook Sample ... A-27
The StockQuote Sample... A-28
The Company Sample.. A-28
ix

The Provider Sample ... A-28
The AddressBook2 Sample... A-28
The Messaging Sample ... A-28
The Mime Sample .. A-28

Using the OracleAS SOAP EJB Provider... A-29
Stateless Session EJB Provider ... A-29
Stateful Session EJB Provider in Apache SOAP .. A-29
Stateful Session EJB Provider in OracleAS SOAP... A-29
Entity EJB Provider in OracleAS SOAP.. A-30
 Deployment and Use of the OracleAS SOAP EJB Provider ... A-30
Current Known EJB Provider Limitations ... A-31

Using PL/SQL Stored Procedures With the SP Provider.. A-31
SP Provider Supported Functionality ... A-31
SP Provider Unsupported Functionality.. A-32
SP Provider Supported Simple PL/SQL Types... A-32
Using Object Types.. A-33
Deploying a Stored Procedure Provider .. A-33
Translating PL/SQL Stored Procedures into Java .. A-33
Deploying a Stored Procedure Service ... A-34
Invoking a SOAP Service that is a Stored Procedure ... A-35

SOAP Troubleshooting and Limitations ... A-35
Tunneling Using the TcpTunnelGui Command ... A-36
Setting Configuration Options for Debugging.. A-36
Using DMS to Display Runtime Information.. A-37
SOAP Limitations for Java Type Precedence with Overloaded Methods......................... A-37

OracleAS SOAP Differences From Apache SOAP.. A-38
Service Installation Differences.. A-38
Optional Provider Enhancements ... A-38
Oracle Transport libraries... A-39
Modifications to Apache EJB Provider ... A-39
Stored Procedure Provider ... A-39
Utility Enhancements .. A-39
Modifications to Sample Code... A-39
Handling the mustUnderstand Attribute in the SOAP Header ... A-39

Apache Software License, Version 1.1.. A-41
x

B Web Services Security

About Web Services Security ... B-2
Configuring Web Services Security... B-2
About Oracle Application Server UDDI Registry Security ... B-5

Protecting Oracle Application Server UDDI Registry Resources.. B-5
Managing and Enforcing Protected UDDI Resources... B-6
Using Oracle Application Server Security Services... B-6

Configuring UDDI Security.. B-7
Configuring the Oracle Application Server UDDI Registry .. B-7
Configuring the UDDI Content Subscription Manager.. B-7
Configuring the UDDI Client ... B-7

Glossary

Index
xi

xii

Send Us Your Comments

Oracle Application Server Web Services Developer’s Guide, 10g (9.0.4)

Part No. B10447-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com
■ FAX:650-506-7365 Attn: Oracle Application Server Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Application Server Web Services Developer’s Guide
500 Oracle Parkway M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

This guide describes Oracle Application Server Web Services.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
xv

Intended Audience
Oracle Application Server Web Services Developer’s Guide is intended for application
programmers, system administrators, and other users who perform the following
tasks:

■ Configure software installed on the Oracle Application Server.

■ Create programs that implement Web Services

■ Create programs that run as Web Services clients

To use this document, you need a working knowledge of Java programming
language fundamentals.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
xvi

Organization
This document contains:

Chapter 1, "Web Services Overview"
This chapter provides an overview of Web Services.

Chapter 2, "Oracle Application Server Web Services"
This chapter describes the Oracle Application Server Web Services features,
architecture, and implementation.

Chapter 3, "Developing and Deploying Java Class Web Services"
This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as Java classes.

Chapter 4, "Developing and Deploying EJB Web Services"
This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as stateless session
Enterprise Java Beans (EJBs).

Chapter 5, "Developing and Deploying Stored Procedure Web Services"
This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as PL/SQL Stored
Procedures or Functions.

Chapter 6, "Developing and Deploying Document Style Web Services"
This chapter describes the procedures you use to write and deploy Document Style
Oracle Application Server Web Services implemented as Java classes.

Chapter 7, "Developing and Deploying JMS Web Services"
This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that expose JMS destinations as Web Services.

Chapter 8, "Building Clients that Use Web Services"
This chapter describes the steps required to build a client application that uses
Oracle Application Server Web Services.
xvii

Chapter 9, "Web Services Tools"
This chapter describes the Oracle Application Server Web Services assembly tool,
WebServicesAssembler, that assists in assembling Oracle Application Server
Web Services.

Chapter 10, "Discovering and Publishing Web Services"
This chapter provides a description of the Universal Discovery Description and
Integration (UDDI-compliant Web Services registry in which business Web Service
providers in an enterprise environment can publish and describe their Web
Services.

Chapter 11, "Consuming Web Services in J2EE Applications"
This chapter describes to consume Web Services in J2EE applications.

Chapter 12, "Advanced Topics for Web Services"
This chapter describes several advanced Oracle Application Server Web Services
topics, including untyped request handling options and SOAP header support.

Appendix A, "Using Oracle SOAP"
This appendix describes Oracle SOAP and covers the differences between Apache
SOAP and Oracle SOAP.

Appendix B, "Web Services Security"
This appendix describes the architecture and configuration of security for Oracle
Application Server Web Services, including the Oracle Application Server UDDI
Registry.

Glossary
The glossary contains the Web Services glossary terms and descriptions.

Related Documentation
For more information, see these Oracle resources:

■ Overview Guide in the Oracle Application Server 10g Documentation Library.

■ Oracle Application Server Containers for J2EE User’s Guide in the Oracle
Application Server 10g Documentation Library.

Printed documentation is available for sale in the Oracle Store at
xviii

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/content.html

Conventions
The following conventions are used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the Command Language prompt in
Windows and the Bourne shell prompt in UNIX
xix

xx

Web Services Ove
1

Web Services Overview

This chapter provides an overview of Web Services. Chapter 2, "Oracle Application
Server Web Services" describes the Oracle Application Server Web Services features,
architecture, and implementation.

This chapter covers the following topics:

■ What Are Web Services?

■ Overview of Web Services Standards

■ SOAP Message Exchange and SOAP Message Encoding
rview 1-1

What Are Web Services?
What Are Web Services?
Web Services consist of a set of messaging protocols, programming standards, and
network registration and discovery facilities that expose business functions to
authorized parties over the Internet from any web-connected device.

This section covers the following topics:

■ Understanding Web Services

■ Benefits of Web Services

■ About the Web Services e-Business Transformation

Understanding Web Services
A Web Service is a software application identified by a URI, whose interfaces and
binding are capable of being defined, described, and discovered by XML artifacts. A
Web Service supports direct interactions with other software applications using
XML based messages and internet-based products.

A Web Service does the following:

■ Exposes and describes itself – A Web Service defines its functionality and
attributes so that other applications can understand it. By providing a WSDL
file, a Web Service makes its functionality available to other applications.

■ Allows other services to locate it on the web – A Web Service can be registered
in a UDDI Registry so that applications can locate it.

■ Can be invoked – Once a Web Service has been located and examined, the
remote application can invoke the service using an Internet standard protocol.

■ Web Services are of either request and response or one-way style, and they can
use either synchronous or asynchronous communication. However, the
fundamental unit of exchange between Web Services clients and Web Services,
of either style or type of communication, is a message.

Web Services provide a standards based infrastructure through which any business
can do the following:

■ Offer appropriate internal business processes as value-added services that can
be used by other organizations.

■ Integrate its internal business processes and dynamically link them with those
of its business partners.
1-2 Oracle Application Server Web Services Developer’s Guide

What Are Web Services?
Benefits of Web Services
The benefits for enterprises seeking to develop and use Web Services to streamline
their business processes include the following:

■ Support for open Internet standards. Oracle supports SOAP, WSDL, and UDDI
as the primary standards to develop Web Services. Web Services developed
with Oracle's products can inter-operate with those developed to Microsoft's
.NET architecture.

■ Simple and productive development facilities. Oracle provides developers with
an easy-to-use and productive environment for developing Web Services using
a programming model that is identical to that for J2EE applications.

■ Mission critical deployment facilities. Oracle provides a mission-critical
platform to deploy Web Services by unifying the Web Services and J2EE
runtime infrastructure. Oracle Application Server Web Services provide
optimizations to speed up Web Services responses, to scale Web Services on
single CPUs or multiple CPUs, and to provide high availability through fault
tolerant design and clustering.

About the Web Services e-Business Transformation
The move to transform businesses to e-Businesses has driven organizations around
the world to begin to use the Internet to manage corporate business processes.
Despite this transformation, business on the Internet still functions as a set of local
nodes, or Web sites, with point-to-point communications between them. As more
business moves online, the Internet should no longer be used in such a static
manner, but rather should be used as a universal business network through which
services can flow freely, and over which applications can interact and negotiate
among themselves.

To enable this transformation, the Internet needs to support a standards-based
infrastructure that enables companies and their enterprise applications to
communicate with other companies and their applications more efficiently. These
standards should allow discrete business processes to expose and describe
themselves on the Internet, allow other services to locate them, to invoke them once
they have been located, and to provide a predictable response.

Web Services drive this transformation by promising a fundamental change in the
way businesses function and enterprise applications are developed and deployed.

 This e-Business transformation is occurring in the following two areas:

See Also: "Overview of Web Services Standards" on page 1-5
Web Services Overview 1-3

What Are Web Services?
■ Business Transformation with Web Services

■ Technology Transformation with Web Services

About Business Transformation with Web Services
Web Services enables the next-generation of e-business, a customer-centric, agile
enterprise that does the following:

■ Expands Markets - Offers business processes to existing and new customers as
services over the Internet, opening new global channels and capturing new
revenue opportunities.

■ Improves Efficiencies - Streamlines business processes across the entire
enterprise and with business partners, taking action in real-time with
up-to-date information.

■ Reaches Suppliers and Partners - Creates and maintains pre-defined,
systematic, contractually negotiated relationships and dynamic, spot
partnerships with business partners who are tightly linked within supply
chains.

About Technology Transformation with Web Services
Web Services enables enterprise applications with the following technology
transformations:

■ Development and Deployment – Web Services can be developed and deployed
quickly and productively.

■ Locating Services – Web Services allow applications to be aggregated and
discovered within Internet portals, enterprise portals, or service registries which
serve as Internet Yellow Pages.

■ Integrating Services – Web Services allow applications to locate and
electronically communicate with other applications within an enterprise and
outside the enterprise boundaries.

■ Inter-Operating Services – Web Services allow applications to inter-operate with
applications that are developed using different programming languages and
following different component paradigms.
1-4 Oracle Application Server Web Services Developer’s Guide

Overview of Web Services Standards
Overview of Web Services Standards
This section describes the Internet standards that comprise Web Services, including:

■ SOAP Standard

■ Web Services Description Language (WSDL)

■ Universal Description, Discovery, and Integration (UDDI)

Figure 1–1 shows a conceptual architecture for Web Services using these standards.

Figure 1–1 Web Services Standards

Client Application
(Web Service)

Interface (WSDL)

Web Service

J2EE, Java Class,
PL / SQL Stored
Procedure or
Function

Application Program
(Service Implementation)

Web
Services
Directory

(UDDI)

3

Internet

Invoke
(SOAP)

2 Find

1 Publish

Interface
WSDL

Application
Program
(Service

Implementation)
Web Services Overview 1-5

Overview of Web Services Standards
SOAP Standard
The SOAP is a lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP supports different styles of
information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange. RPC style information exchange allows for
request-response processing, where an endpoint receives a procedure oriented
message and replies with a correlated response message. Message-oriented
information exchange supports organizations and applications that need to
exchange business or other types of documents where a message is sent but the
sender may not expect or wait for an immediate response. Message-oriented
information exchange is also called Document style exchange.

SOAP has the following features:

■ Protocol independence

■ Language independence

■ Platform and operating system independence

■ Support for SOAP XML messages incorporating attachments (using the
multipart MIME structure)

Web Services Description Language (WSDL)
The Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet. Client-side
programmers and development tools can use published WSDL descriptions to
obtain information about available Web Services and to build and create proxies or
program templates that access available services.

Universal Description, Discovery, and Integration (UDDI)
The Universal Description, Discovery, and Integration (UDDI) specification is an
online electronic registry that serves as electronic Yellow Pages, providing an

See Also: http://www.w3.org/TR/SOAP/ for information on
the SOAP 1.1 specification

See Also: http://www.w3.org/TR/wsdl for information on
the Web Services Description Language (WSDL) format.
1-6 Oracle Application Server Web Services Developer’s Guide

SOAP Message Exchange and SOAP Message Encoding
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

There are two types of UDDI registries, public UDDI registries that serve as
aggregation points for a variety of businesses to publish their services, and private
UDDI registries that serve a similar role within organizations.

SOAP Message Exchange and SOAP Message Encoding
The SOAP standard defines a lightweight, XML-based protocol for exchanging
information in a decentralized, distributed environment. SOAP supports different
styles of information exchange, including: Remote Procedure Call, RPC Style, and
Message-oriented exchange, or Document Style. SOAP Messages, whether RPC
Style or Document Style use a certain encoding, as specified with the
encodingStyle attribute specified for SOAP message elements. This section
describes these SOAP message features, in the following sections:

■ SOAP Message Components

■ Working With RPC Style SOAP Messages

■ Working With Document Style SOAP Messages

SOAP Message Components
Each SOAP message is a transmission between a SOAP sender and a SOAP receiver.
Each SOAP message consists of a SOAP envelope containing two sub-elements, a
Header and a Body. The SOAP Header is optional. The children of the SOAP
header are called header blocks; each header block represents a logical grouping
of data. The SOAP Body is a mandatory element within a SOAP message. This is
where the end-to-end information conveyed in a SOAP message is carried. The
choice of what data is placed in a header block and what data goes in the SOAP
Body element are decisions that are taken at the time that an application is
designed.

Using Oracle Application Server Web Services, developers determine if an
implementation supports RPC Style or Document Style messages. Developers write
the appropriate application logic and the WebServicesAssembler configuration files
for the implementation.

See Also: http://www.uddi.org for information on Universal
Description, Discovery and Integration specifications.
Web Services Overview 1-7

SOAP Message Exchange and SOAP Message Encoding
Working With RPC Style SOAP Messages
Oracle Application Server Web Services supports two types of SOAP message
exchanges: RPC Style exchanges and Document-Style exchanges. RPC Style
exchanges represent exchanges that can be modeled as remote procedure calls
(RPC); these are used when there is a need to model a certain programatic behavior,
with the exchanged messages conforming to a well-defined signature for the remote
call and its return. Using RPC Style messages, SOAP specifies the form of the SOAP
message body.

RPC style information exchange allows for request-response processing, where an
endpoint receives a procedure oriented message and replies with a response
message. Using the RPC style SOAP message exchange, the contents of the SOAP
message body conform to a structure that specifies a procedure and includes set of
parameters, or a response, with a result and any additional parameters. The SOAP
message in the body is an XML document, but it is XML document that conforms
the limitations specified in the SOAP specification.

Example 1–1 shows a SOAP RPC Style request that includes the
ChargeReservation method with several parameters. Example 1–2 shows the
SOAP RPC Style response message that includes the
ChargeReservationResponse, with a "Response" string appended.

Example 1–1 SOAP RPC Style Request Message

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:helloWorld xmlns:ns1="urn:oracle-j2ee-ws_example-StatelessExample"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <param0 xsi:type="xsd:string">Wendy</param0>
 </ns1:helloWorld>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 1–2 SOAP RPC Style Response Message

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
1-8 Oracle Application Server Web Services Developer’s Guide

SOAP Message Exchange and SOAP Message Encoding
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:helloWorldResponse
 xmlns:ns1="urn:oracle-j2ee-ws_example-StatelessExample"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:string">Hello World, Wendy</return>
 </ns1:helloWorldResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Working With Document Style SOAP Messages
Oracle Application Server Web Services supports two types of SOAP message
exchanges: RPC Style exchanges and Document-Style exchanges. Document-style
exchanges, also called message-oriented exchanges, model exchanges where XML
documents are exchanged, where the exchange patterns are defined in the sending
and the receiving applications. For Document Style messages, SOAP places no
constraints on how the document sent in the SOAP message body is structured, the
application, or an externally specified XML schema determines the structure of the
XML document that is sent in the body of the SOAP message.

Message-oriented information exchange supports organizations and applications
that need to exchange business or other types of documents where a message is sent
but the sender may not expect or wait for an immediate response. Message-oriented
information exchange is also called Document style SOAP message exchange.
Document -style messages model exchanges where XML documents are exchanged,
where the semantics of the exchange patterns are defined in the sending and the
receiving applications.

Example 1–3 shows a sample Document Style SOAP message that is sent from a
client to an Oracle Application Server Web Services document style service. The
client sends an XML document that contains employee records with elements
including name, emp_id, department, and contact information. A web service that
processes this XML document to produce a phone listing may supply an XML
document that contains only the name and phone number elements.

Example 1–3 Document Style SOAP Message

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<organisation>
Web Services Overview 1-9

SOAP Message Exchange and SOAP Message Encoding
 <employee>
 <name>Bob</name>
 <emp_id>1234</emp_id>
 <department>hr</department>
 <contact>
 <phone>827 644 5674</phone>
 <email>bob@organisation.com</email>
 </contact>
 </employee>
 <employee>
 <name>Susan</name>
 <emp_id>2434</emp_id>
 <department>it</department>
 <contact>
 <phone>827 644 5674</phone>
 <email>Susan@organisation.com</email>
 </contact>
 </employee>
</organisation>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 1–4 Document Style SOAP Message Processed by a Web Service

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
 <employee>
 <name>Bob</name>
 <phone>827 644 5674</phone>
 <name>Susan</name>
 <phone>827 644 5674</phone>
 </employee>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
1-10 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Se
2

Oracle Application Server Web Services

This chapter describes the Oracle Application Server Web Services features,
architecture, and implementation.

This chapter covers the following topics:

■ Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services

■ Oracle Application Server Web Services Standards

■ Oracle Application Server Web Services Features

■ Oracle Application Server Web Services Architecture

■ Understanding WSDL and Client Proxy Stubs for Web Services

■ Web Services Home Page

■ About Universal Description, Discovery, and Integration Registry
rvices 2-1

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services
Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web
Services

Oracle Application Server supports two different Web Services options, a J2EE
based Web Services environment built into Oracle Application Server Containers
for J2EE (OC4J), and an Apache SOAP based Web Services environment called
Oracle Application Server SOAP.

The chapters in this manual describe the OC4J (J2EE) Web Services environment.
This environment makes it easy to develop and deploy services using J2EE artifacts,
and is moving the Oracle Application Server Web Services features toward the
evolving Web Services standards included in the next release of J2EE (J2EE 1.4). The
Oracle Application Server Web Services environment includes many development
and deployment features that are integrated with the advanced Oracle Application
Server features.

Appendix A, "Using Oracle SOAP" describes the Oracle Application Server support
for Apache SOAP (Oracle Application Server SOAP). Oracle Application Server
includes support for Apache SOAP because this implementation was one of the
earliest SOAP implementations and it supports existing Web Services applications.

Oracle Application Server Web Services Standards
Oracle Application Server Web Services supports the following Web Services
standards:

■ SOAP 1.1, including the following:

■ RPC/Encoded

■ Document/Literal

■ WSDL 1.1

■ UDDI 2.0

Note: Oracle recommends using the Oracle Application Server
OC4J (J2EE) Web Services environment for developing Web
Services. The Apache SOAP (Oracle Application Server SOAP)
implementation is currently in maintenance mode.

See Also: "Overview of Web Services Standards" on page 2-2
2-2 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Features
Oracle Application Server Web Services Features
Oracle Application Server provides advanced runtime features and comprehensive
support for developing and deploying Web Services. The Oracle Application Server
infrastructure includes support for the following:

■ Developing End-to-End Web Services

■ Deploying and Managing Web Services

■ Using Oracle JDeveloper with Web Services

■ Securing Web Services

■ Aggregating Web Services

Developing End-to-End Web Services
Oracle Application Server Web Services provides comprehensive support for
developing Web Services, including:

■ Development Environment – Oracle Application Server Web Services allows
application developers to implement Web Services using J2EE components. In
addition, you can use Java Classes or PL/SQL Stored Procedures to implement
Web Services. Web Services inherit all the runtime and lifecycle management
elements of J2EE Applications.

■ Development Tools and Wizards – Oracle Application Server Web Services
Developers can use the same set of command line utilities to create, package,
and deploy Web Services as other Oracle Application Server Containers for
J2EE (OC4J) applications. In addition Oracle Application Server Web Services
provides the Web Service HTML/XML Streams Processing Wizard that assists
developers in creating an EJB whose methods access and process XML or
HTML streams.

■ Automatically Generating WSDL – Oracle Application Server Web Services can
generate WSDL and client-side proxy stubs. This generation occurs when the
Web Service is assembled using the WebServices Assembly tool or alternatively,
for a deployed Web Service, the first time the WSDL or the client-side proxy
stubs are requested (after the first request, the previously generated WSDL or
client-side proxy stubs are sent when requested).

■ Registration, Publishing, and Discovery – Oracle Application Server Web
Services provides a standards-compliant UDDI registry where Web Services can
Oracle Application Server Web Services 2-3

Oracle Application Server Web Services Features
be published and discovered. The Oracle UDDI registry supports both a private
and public UDDI registry and can also synchronize information with other
UDDI nodes.

■ Developer Simplicity – Using Oracle Application Server Web Services,
developers do not need to learn a completely new set of concepts – Web
Services are developed, deployed and managed using the same programming
concepts and tools as with J2EE Applications.

■ Business Logic Reuse – Application developers can transparently publish their
J2EE Applications to new Web Services clients with no change in the
application itself. Their existing business logic developed in J2EE can be
transparently accessed from existing J2EE/EJB clients or from a new Web
Service client.

■ Common Runtime Services – Oracle Application Server has a common runtime
and brokering environment for J2EE Applications and Web Services. As a
result, Web Services transparently inherit various services available with the
J2EE Container including Transaction Management, Messaging, Naming,
Logging, and Security Services.

Deploying and Managing Web Services
Oracle Enterprise Manager and the Web Services Assembly Tool assist with
deploying and managing Oracle Application Server Web Services. These tools
provide the following support for Web Services:

■ Packaging and Assembly - The Web Services Assembly Tool assists with
assembling Web Services and producing a J2EE .ear file.

■ Deployment – Oracle Enterprise Manager provides a comprehensive set of
facilities to deploy Web Services to Oracle Application Server. Oracle
Enterprise Manager provides a single, consistent Deploy Applications wizard
for deploying Web Services to Oracle Application Server. It accepts a J2EE .ear
file, and walks you through a set of steps to get information about the
application to be deployed, and then deploys the application.

■ Register Web Service - The Deploy Applications wizard is only available when
deploying Web Services. This step provides access to facilities for registering
Web Services in the UDDI Registry.

■ Browse the UDDI Registry - Oracle's UDDI Registry provides the UDDI
standards compliant pre-defined, hierarchical categorization schemes. Oracle
Enterprise Manager can drill-down through these categories and look up
specific Web Services registered in any category.
2-4 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Features
■ Monitoring and Administration – Once deployed, Oracle Enterprise Manager
provides facilities to de-install a Web Service and also to monitor Web Service
performance, as measured by response-time and throughput, and status, as
measured by up-time, CPU, and memory consumption. Oracle Enterprise
Manager also provides facilities to identify and list all the Web Services
deployed to a specific Oracle Application Server instance.

Using Oracle JDeveloper with Web Services
The Oracle JDeveloper IDE supports Oracle Application Server Web Services.
Oracle JDeveloper is the industry’s most advanced Java and XML IDE and provides
unparalleled productivity and end-to-end J2EE and integrated Web Services
standards compliance.

Oracle JDeveloper supports Oracle Application Server Web Services with the
following features:

■ Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

■ Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and
WSDL file for you.

■ Provides schema-driven WSDL file editing.

■ Offers significant J2EE deployment support for Web Services J2EE .ear files,
with automatic deployment to OC4J.

Securing Web Services
Oracle Enterprise Manager secures Oracle Application Server Web Services in the
same way that it secures J2EE Servlets running under OC4J. This provides a
comprehensive set of security facilities, including:

■ Complete, standards-based security architecture for encryption, authentication,
and authorization of Web Services.

■ Single Sign-on to enable users to access several Web Services with a single
password.

■ Single Point of administration to enable users to centrally manage the security
for Web Services.
Oracle Application Server Web Services 2-5

Oracle Application Server Web Services Architecture
Aggregating Web Services
OracleAS Portal facility provides the ability to aggregate Oracle Application Server
Web Services within an organization into a Portal. Additionally, portlets in the
OracleAS Portal framework can be published as Web Services.

Oracle Application Server Web Services Architecture
Oracle Application Server Containers for J2EE (OC4J) provides the foundation for
building applications as components and supports Oracle Application Server Web
Services. Oracle Application Server Web Services supports both RPC Style and
Document Style web services.

Oracle Application Server Web Services supports the following RPC Web Services:

■ Java Classes

■ Stateless Session Enterprise Java Beans (EJBs)

■ Stateless PL/SQL Stored Procedures or Functions

Oracle Application Server Web Services supports the following Document Style
web services:

■ Java Class Document Style Web Services

■ JMS Document Style Web Services

For each implementation type, Oracle Application Server Web Services uses a
different Servlet that conforms to J2EE standards to provide an entry point to a Web
Service implementation. Figure 2–1 shows the Web Services runtime architecture,
including the Servlet entry points.

The Oracle Application Server Web Services runtime architecture discussion
includes the following:

■ About Servlet Entry Points for Web Services

■ What Are the Packaging and Deployment Options for Web Services

■ About Server Skeleton Code Generation for Web Services

See Also: "SOAP Standard" on page 1-6 for information on RPC
Style and Document Style Web Services.
2-6 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Architecture
Figure 2–1 Web Services Runtime Architecture (RPC and Document Style with Servlet Entry Points)

OracleAS

Client
Browser or
Fat Client

Encode / Decode

SOAP Binding

XML Document

OC4J

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateless
Java
Class

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateful
Java
Class

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateless
Session
EJB

Servlet Entry Point

Encode / Decode

SOAP Binding

Stateless
PL / SQL

Servlet Entry Point Stateless
Java
Class
(Document
Style)

Servlet Entry Point

Encode / Decode

Stateful
Java
Class
(Document
Style)

Servlet Entry Point

Encode / Decode

JMS Java
(Document
Style)

Apache

Encode / Decode

SOAP Binding

SOAP Binding

SOAP Binding
Oracle Application Server Web Services 2-7

Oracle Application Server Web Services Architecture
About Servlet Entry Points for Web Services
To use Oracle Application Server Web Services, you need to deploy a J2EE .ear file
to Oracle Application Server. The J2EE .ear file contains a Web Services Servlet
configuration and includes an implementation of the Web Service. Oracle
Application Server Web Services supplies the Servlet classes, one for each
supported implementation type. At runtime, Oracle Application Server uses the
Servlet classes to access the user supplied Web Service implementation.

The Oracle Application Server Web Services Servlet classes support the following
Web Services implementation types:

■ Java Class (Stateless) - The object implementing the Web Service is any arbitrary
Java class. The Web Service is stateless.

■ Java Class (Stateful) -The object implementing the Web Service is any arbitrary
Java class. The Web Service is considered stateful. A Servlet HttpSession
maintains the object state between requests from the same client.

■ Stateless Session EJBs - Stateless Session EJBs can be exposed as Web Services.
The Web Service is considered to be stateless.

■ PL/SQL Stored Procedure or Function - The object implementing the Web
Service is a Java class that accesses the PL/SQL stored procedure or function.
The Web Service is considered to be stateless. The Oracle JPublisher tool
generates the Java access class for the PL/SQL stored procedure or function.

■ Java Class Document Style Web Service (Stateless) - The object implementing
the Web Service is a Java class using a supported method signature. The Web
Service is stateless.

■ Java Class Document Style Web Service (Stateful) -The object implementing the
Web Service is a Java class using a supported method signature. The Web
Service is considered stateful. A Servlet HttpSession maintains the object
state between requests from the same client.

■ Java JMS Web Service - Supports sending and receiving messages to or from
JMS destinations. Using the JMS Web Service you can include an MDB to
handle or generate messages.

When a Web Service is deployed, a unique instance of the Servlet class manages the
Web Service. The Servlet class is implemented as part of Oracle Application Server
Web Services runtime support. To make Web Services accessible, you deploy the
Web Service implementation with the corresponding Web Services Servlet.
2-8 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Architecture
RPC Style Web Service implementations under Oracle Application Server Web
Services that take values as parameters or that return values to a client need to
restrict the types passed. This restriction allows the types passed to be converted
between XML and Java objects (and between Java objects and XML). Table 2–1 lists
the supported types for passing to or from Oracle Application Server Web Services.

Document Style Web Service implementations under Oracle Application Server
Web Services restrict the signature of the Java methods that implement the Web
Service. Only org.w3c.dom.Element can be passed to or sent from these Web
Services.

Note: Using Oracle Application Server SOAP, based on Apache
SOAP 2.3.1, there is only a single instance of a single Servlet entry
point for all the Web Services in the entire system. The Oracle
Application Server Web Services architecture differs; under Oracle
Application Server Web Services, a unique Servlet instance
supports each Web Service.

Note: The preceding restriction means that
org.w3c.dom.Element types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

Table 2–1 Web Services Supported Data Types (for RPC Parameters and Return
Values)

Primitive Type Object Type

Boolean java.lang.Boolean

byte java.lang.Byte

double java.lang.Double

float java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

string java.lang.String

java.util.Date
Oracle Application Server Web Services 2-9

Oracle Application Server Web Services Architecture
What Are the Packaging and Deployment Options for Web Services
Oracle Application Server Web Services are accessed as Servlets, thus, Web Services
need to be assembled. The WebServicesAssembler tool prepares J2EE .ear files
for Web Services by configuring a web.xml file that is a component of a J2EE .war
file, and including the required resources and the implementation and support
classes.

To build a Web Service with the assembly tool, you can supply a Jar file, .war file,
ebj.jar, or .ear file that includes your Web Service implementation. The assembly
tool then builds the Web Service using configuration information specified in its
XML configuration file.

java.util.Map

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table

See Also:

■ Chapter 3, "Developing and Deploying Java Class Web
Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

■ Chapter 6, "Developing and Deploying Document Style Web
Services"

Table 2–1 (Cont.) Web Services Supported Data Types (for RPC Parameters and
Return Values)

Primitive Type Object Type
2-10 Oracle Application Server Web Services Developer’s Guide

Understanding WSDL and Client Proxy Stubs for Web Services
About Server Skeleton Code Generation for Web Services
The first time Oracle Application Server Web Services receives a request for a
service, the Servlet entry point automatically does the following (this discussion
does not apply for JMS Web Services, which are handled differently):

■ Validates the class loading. All the classes that are required for the Web Service
implementation must conform to standard J2EE class loading norms.

■ Validates the data types. All the Java classes or EJBs must conform to the
restrictions on supported parameter and return types as shown in Table 2–1.

■ Generates server skeleton code. The server skeleton code is only generated the
first time the Web Service is accessed or when the ear file is redeployed (when
an application is redeployed, the server skeleton code and other Web Services
support files are regenerated). The generated code is stored in the temporary
directory associated with the Servlet context. The server skeleton code controls
the lifecycle of the EJB (for Stateless Session EJB implementations), handles the
marshaling of the parameters and return types (for SOAP RPC based Web
Services), and dispatches to the actual Java class or EJB methods that implement
the service.

After the server skeleton class is generated, when subsequent requests for a
service are received, the server skeleton directly handles marshalling and then
invokes the method that implements the service (for Web Services implemented
with PL/SQL stored procedures or functions, the server skeleton invokes the
Java class that accesses the Database containing the PL/SQL stored procedure
or function).

For document style Web Services, the server skeleton passes the DOM element
to the method that implements the service.

Understanding WSDL and Client Proxy Stubs for Web Services
Oracle Application Server Web Services provides a tool to generate a WSDL file that
can be packaged with a Web Service at assembly time, (if you do not package the
WSDL file, it can be generated at runtime). This tool also supports generating
client-side proxy stubs, given a WSDL file.

There are several elements to Oracle Application Server Web Services WSDL
support. First, RPC style Web Services are based on interoperable XML data
representations and arbitrary Java objects do not in general map to XML. Oracle
Application Server Web Services supports a set of XML types corresponding to a set
of Java types (see Table 2–1 for the list of supported Java types).
Oracle Application Server Web Services 2-11

Understanding WSDL and Client Proxy Stubs for Web Services
Second, using Oracle Application Server Web Services, an application developer can
either statically generate the WSDL interfaces for a Web Service or the Oracle
Application Server Web Services runtime can generate WSDL and client-side proxy
stubs if they are not provided when a Web Service is deployed. These files can be
generated by the runtime on the server-side and delivered when they are requested
by a Web Services client.

Oracle Application Server also provides a client-side tool to statically generate
WSDL given a Java class or a J2EE application. Likewise, the Web Services
Assembly tool can generate the client-side proxy given a generated WSDL file or a
known WSDL endpoint.

Overview of a WSDL Based Web Service Client
Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client
application development, the Oracle Application Server Web Services runtime can
generate WSDL to describe a Web Service. Using the WSDL, development tools can
assist developers in building applications that invoke Web Services.

Overview of a Client-Side Proxy Stubs Based Web Service Client
Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client-side
application development, Oracle Application Server Web Services can generate
client-side proxy stubs. The client-side proxy stubs hide the details of composing a
SOAP request and decomposing the SOAP response. The generated client-side
proxy stubs support a synchronous invocation model for requests and responses.
The generated stubs make it easier to write a Java client application to make a Web
Service (SOAP) request and handle the response.

See Also:

■ "Generating Client-Side Proxies With WebServicesAssembler"
on page 8-8

■ "Generating WSDL Files and Client Side Proxies" on page 9-4

See Also:

■ "Using Oracle JDeveloper with Web Services" on page 2-5

■ Chapter 8, "Building Clients that Use Web Services"
2-12 Oracle Application Server Web Services Developer’s Guide

Web Services Home Page
Web Services Home Page
Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web Service.

A Web Service Home Page provides the following:

■ A Link to the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

■ Links to Web Service Test Pages for each supported operation-To test the
available Web Service operations enter the parameter values for the operation, if
any, and select the Invoke button.

■ Links to the Web Service client-side proxy Jar and the client-side proxy source -
To obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

Figure 2–2 shows a sample Web Service Home Page.

See Also: Chapter 8, "Building Clients that Use Web Services"
Oracle Application Server Web Services 2-13

About Universal Description, Discovery, and Integration Registry
Figure 2–2 Web Service Home Page

About Universal Description, Discovery, and Integration Registry
The Universal Description, Discovery, and Integration (UDDI) specification consists
of a four-tier hierarchical XML schema that provides the base information model to
publish, validate, and invoke information about Web Services. The four types of
information that the UDDI XML schema defines are:

■ Business Entity - The top level XML element in a UDDI entry captures the
starting set of information required by partners seeking to locate information
about a business' services including its name, its industry or product category,
its geographic location, and optional categorization and contact information.
This includes support for Yellow Pages taxonomies to search for businesses by
industry, product, or geography.

■ Business Service - The businessService structure groups a series of related Web
Services together so that they can be related to either a business process or a
category of services. An example of a business process could be a
2-14 Oracle Application Server Web Services Developer’s Guide

About Universal Description, Discovery, and Integration Registry
logistics/delivery process which could include several Web Services including
shipping, routing, warehousing, and last-mile delivery services. By organizing
Web Services into groups associated with categories or business processes,
UDDI allows more efficient search and discovery of Web Services.

■ Binding Information - Each businessService has one or more technical Web
Service Descriptions captured in an XML element called a binding template.
The binding template contains the information that is relevant for application
programs that need to invoke or to bind to a specific Web Service. This
information includes the Web Service URL address, and other information
describing hosted services, routing and load balancing facilities.

■ Compliance Information - While the bindingTemplate contains the information
required to invoke a service, it is not always enough to simply know where to
contact a particular Web Service. For instance, to send a business partner's Web
Service a purchase order, the invoking service must not only know the
location/URL for the service, but what format the purchase order should be
sent in, what protocols are appropriate, what security required, and what form
of a response will result after sending the purchase order. Before invoking a
Web Service, it is useful to determine whether the specific service being invoked
complies with a particular behavior or programming interface. Each
bindingTemplate element, therefore, contains an element called a tModel that
contains information which enables a client to determine whether a specific
Web Service is a compliant implementation.

Oracle Enterprise Manager Features to Register Web Services
When a Web Service is deployed on Oracle Application Server, you can use Oracle
Enterprise Manager to register the specific Web Service and publish its WSDL to the
UDDI registry and to discover published Web Services.

See Also: Chapter 10, "Discovering and Publishing Web Services"
Oracle Application Server Web Services 2-15

About Universal Description, Discovery, and Integration Registry
2-16 Oracle Application Server Web Services Developer’s Guide

Developing and Deploying Java Class Web Se
3

Developing and Deploying Java Class Web

Services

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as Java classes.

This chapter covers the following topics:

■ Using Oracle Application Server Web Services With Java Classes

■ Writing Java Class Based Web Services

■ Preparing and Deploying Java Class Based Web Services

■ Serializing and Encoding Parameters and Results for Web Services
rvices 3-1

Using Oracle Application Server Web Services With Java Classes
Using Oracle Application Server Web Services With Java Classes
This chapter shows sample code for writing Web Services implemented with Java
classes and describes the difference between writing stateful and stateless Java Web
Services.

Oracle Application Server supplies Servlets to access the Java classes which
implement a Web Service. The Servlets handle requests generated by a Web Service
client, run the Java method that implements the Web Service and returns results
back to Web Services clients.

Writing Java Class Based Web Services
Writing Java class based Web Services involves building a Java class that includes
one or more methods. When a Web Services client makes a service request, Oracle
Application Server Web Services invokes a Web Services Servlet that runs the
method that implements the service request. There are very few restrictions on what
actions Web Services can perform. At a minimum, Web Services generate some data
that is sent to a client or perform an action as specified by a Web Service request.

This section shows how to write a stateful and a stateless Java Web Service that
returns a string, "Hello World". The stateful service also returns an integer running
count of the number of method calls to the service. This Java Web Service receives a
client request and generates a response that is returned to the Web Service client.

The sample code is supplied on the Oracle Technology Network Web site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services demo.zip file, the Java class based Web Service
is in the directory under webservices/demo/basic/java_services on UNIX
or in \webservices\demo\basic\java_services on Windows.

See Also:

■ Chapter 2, "Oracle Application Server Web Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

■ Chapter 8, "Building Clients that Use Web Services"
3-2 Oracle Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services
Writing Stateless and Stateful Java Web Services
Oracle Application Server Web Services supports stateful and stateless
implementations for Java classes running as Web Services, as follows:

■ For a stateful Java implementation, Oracle Application Server Web Services
uses a single Java instance to serve the Web Service requests from an individual
client.

■ For a stateless Java implementation, Oracle Application Server Web Services
creates multiple instances of the Java class in a pool, any one of which may be
used to service a request. After servicing the request, the object is returned to
the pool for use by a subsequent request.

Building a Sample Java Class Implementation
Developing a Java Web Service consists of the following steps:

■ Defining a Java Class Containing Methods for the Web Service

■ Defining an Interface for Explicit Method Exposure

■ Writing a WSDL File (Optional)

Defining a Java Class Containing Methods for the Web Service
Create a Java Web Service by writing or supplying a Java class with methods that
are deployed as a Web Service. In the sample supplied in the java_services
sample directory, the .ear file, ws_example.ear contains the Web Service source,
class, and configuration files. In the expanded .ear file, the class
StatefulExampleImpl provides the stateful Java service and
StatelessExampleImpl provides the stateless Java service.

When writing a Java Web Service, if you want to place the Java service in a package,
use the Java package specification to name the package. The first line of
StatefulExampleImpl.java specifies the package name, as follows:

package oracle.j2ee.ws_example;

Note: It is the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing and Deploying Java Class
Based Web Services" on page 3-9.
Developing and Deploying Java Class Web Services 3-3

Writing Java Class Based Web Services
The stateless sample Web Service is implemented with StatelessExampleImpl,
a public class. The class defines a public method, helloWorld(). In general, a Java
class for a Web Service defines one or more public methods.

Example 3–1 shows StatelessExampleImpl.

The stateful sample Web Service is implemented with StatefulExampleImpl, a
public class. The class initializes the count and defines two public methods,
count() and helloWorld().

Example 3–2 shows StatefulExampleImpl.

Example 3–1 Defining A Public Class with Java Methods for a Stateless Web Service

package oracle.j2ee.ws_example;

public class StatelessExampleImpl {
 public StatelessExampleImpl() {
 }
 public String helloWorld(String param) {
 return "Hello World, " + param;
 }
}

Example 3–2 Defining a Public Class with Java Methods for a Stateful Web Service

package oracle.j2ee.ws_example;

public class StatefulExampleImpl {
 int count = 0;
 public StatefulExampleImpl() {
 }
 public int count() {
 return count++;
 }
 public String helloWorld(String param) {
 return "Hello World, " + param;
 }
}

A Java class implementation for a Web Service must include a public constructor
that takes no arguments. Example 3–1 shows the public constructor
StatelessExampleImpl() and Example 3–2 shows StatefulExampleImpl().
3-4 Oracle Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services
When an error occurs while running a Web Service implemented as a Java class, the
Java class should throw an exception. When an exception is thrown, the Web
Services Servlet returns a Web Services (SOAP) fault. Use the standard J2EE and
OC4J administration facilities to view the logs of Servlet errors for a Web Service
that uses Java classes for its implementation.

When you create a Java class containing methods that implement a Web Service, the
method’s parameters and return values must use supported types, or you need to
use an interface class to limit the methods exposed to those methods using only
supported types. Table 3–1 lists the supported types for parameters and return
values for Java methods that implement Web Services.

There are several additional steps required to implement a Java Web Service if you
need to handle or process SOAP request header entries.

Defining an Interface for Explicit Method Exposure
Oracle Application Server Web Services allows you to limit the methods you expose
as Web Services by supplying a public interface. To limit the methods exposed in a
Web Service, include a public interface that lists the method signatures for the
methods that you want to expose. Example 3–3 shows an interface to the method in
the class StatelessExampleImpl. Example 3–4 shows an interface to the
methods in the class StatefulExampleImpl.

Example 3–3 Using a Public Interface to Expose Stateless Web Services Methods

package oracle.j2ee.ws_example;

public interface StatelessExample {
 String helloWorld(String param);
}

Example 3–4 Using a Public Interface to Expose Stateful Web Services Methods

package oracle.j2ee.ws_example;

public interface StatefulExample {
 int count();

Note: See Table 3–1 for the list of supported types for parameters
and return values.

See Also: "SOAP Header Support" on page 12-4
Developing and Deploying Java Class Web Services 3-5

Writing Java Class Based Web Services
 String helloWorld(String param);
}

When an interface class is not included with a Web Service, the Web Services
deployment exposes all public methods defined in the Java class. Using an interface,
for example StatelessExample shown in Example 3–3 or StatefulExample
shown in Example 3–4, exposes only the methods listed in the interface.

Use a Web Services interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a
class.

2. To expand the set of methods that are exposed as Web Services to include
methods within the superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a
class, where the subset contains only the methods that use supported types for
parameters or return values. Table 3–1 lists the supported types for parameters
and return values for Java methods that implement Web Services.

Writing a WSDL File (Optional)
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

Note: Using an interface, only the methods with the specified
method signatures are exposed when the Java class is prepared and
deployed as a Web Service.

See Also: "Using Supported Data Types for Java Web Services" on
page 3-7

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4
3-6 Oracle Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services
Using Supported Data Types for Java Web Services
Table 3–1 lists the supported data types for parameters and return values for Oracle
Application Server Web Services.

Document Style Web Service implementations under Oracle Application Server
Web Services restrict the signature of the Java methods that implement the Web
Service. Only org.w3c.dom.Element can be passed to or sent from these Web
Services.

Table 3–1 Web Services Supported Data Types

Primitive Type Object Type

Boolean java.lang.Boolean

byte java.lang.Byte

double java.lang.Double

float java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

string java.lang.String

java.util.Date

java.util.Map

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Note: The preceding restriction means that
org.w3c.dom.Element types cannot be mixed as a parameter
with other types in methods that implement a Web Service.
Developing and Deploying Java Class Web Services 3-7

Writing Java Class Based Web Services
A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

■ It must have a constructor taking no arguments.

■ It must expose all interesting state through properties.

■ It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle Application Server Web Services allows Beans to be returned or passed in as
arguments to J2EE Web Service methods, as long as the Bean only consists of
property types that are listed in Table 3–1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates
SOAP structures to and from Java Beans by translating SOAP structure namespaces
to and from fully qualified Bean class names. If a Bean with the specified name does
not exist in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather
than the client-side proxy. The generated WSDL document describes SOAP
structures in a standard way. Application development environments, such as
Oracle JDeveloper, which work directly from WSDL documents can correctly call
Oracle Application Server Web Services with Java Beans as parameters.

Note: Oracle Application Server Web Services does not support
Element[], (arrays of org.w3c.dom.Element).

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type int, the equivalent
parameter in the proxy is of type java.lang.Integer. This
mapping occurs for all primitive types.
3-8 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services
Preparing and Deploying Java Class Based Web Services
To deploy a Java class as a Web Service you need to assemble a J2EE .ear file that
includes the deployment descriptors for the Oracle Application Server Web Services
Servlet and includes the Java class that supplies the Java implementation. This
section describes how to use the Oracle Application Server Web Services tool,
WebServicesAssembler. WebServicesAssembler takes an XML configuration
file that describes the Java Class Web Service and produces a J2EE .ear file that can
be deployed under Oracle Application Server Web Services.

This section contains the following topics.

■ Creating a Configuration File to Assemble Java Class Web Services

■ Running WebServicesAssembler To Prepare Java Class Web Services

Creating a Configuration File to Assemble Java Class Web Services
The Oracle Application Server Web Services assembly tool,
WebServicesAssembler, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use with Java
Class Web Services.

Create a WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Java Stateless Service Tags

■ Adding Java Stateful Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 3–2 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a
<web-service> tag in the configuration file.

Example 3–5 shows a complete config.xml file, including the top level tags.

See Also: Chapter 8, "Building Clients that Use Web Services"
Developing and Deploying Java Class Web Services 3-9

Preparing and Deploying Java Class Based Web Services
Table 3–2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>

</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.

<option name="source-path"
[contextroot="path1"] >
path2
<option>

Includes a specified file in the output .ear file. Use this option to specify
java resources, or the name of an existing .war, .ear, or ejb-jar file that is
used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies
the root-context for the .war file.

path1 specifies the context-root for the .war.

path2 specifies the path to the file to include.

For example:

<option name="source-path"
contextroot="/test">/myTestArea/ws/src/statefull.war</option>

<stateless-java-service>
sub-tags
</stateless-java-service>

Use this tag to add a Java Web Services that defines a stateless service. See
Table 3–3 for a description of valid sub-tags.

<stateful-java-service>
sub-tags
</stateful-java-service>

Use this tag to add a Java Web Services that defines a stateful service. See
Table 3–3 for a description of valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.
3-10 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services
Adding Java Stateless Service Tags
Prepare Java Stateless Web Services using the WebServicesAssembler
<stateless-java-service> tag. This tag is included within a <web-service>
tag in the configuration file. Add this tag to provide information required for
generating a Stateless Java Web Service.

Table 3–3 shows the <stateless-java-service> sub-tags and the
<stateful-java-service> sub-tags. As noted in Table 3–3, some of the
sub-tags listed only apply when using a <stateful-java-service>.

Example 3–5 shows a complete config.xml file, including
<stateless-java-service>.

Adding Java Stateful Service Tags
Prepare Java Stateful Web Services using the WebServicesAssembler
<stateful-java-service> tag. This tag is included within a <web-service>
tag in the configuration file. Add this tag to provide information required for
generating a Stateful Java Web Service.

To support a clustered environment, for stateful Java Web Services with serializable
java classes, the WebServicesAssembler adds a <distributable> tag in the
web.xml of the Web Service’s generated J2EE.ear file.

Table 3–3 shows the <stateful-java-service> sub-tags.

Example 3–5 shows a complete config.xml file, including
<stateful-java-service>.

Note: It is the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently.
Developing and Deploying Java Class Web Services 3-11

Preparing and Deploying Java Class Based Web Services
Table 3–3 Stateless and Stateful Java Service Sub-Tags

Tag Description

<accept-untyped-request>
value
</accept-untyped-request>

Setting value to true tells WebServicesAssembler to allow the Web
Service to accept untyped requests. When the value is false, the Web
Service does not accept untyped-request.

Valid values: true, false

(case is not significant; TRUE and FALSE are also valid)

This tag is optional.

Default value: false

<class-name>
class
</class-name>

Specifies the fully qualified class name for the class that supplies the Web
Service implementation.

This tag is required

<interface-name>
interface
</interface-name>

Specifies the fully qualified name of the interface that tells the Web Service
Servlet generation code which methods should be exposed as Web
Services.

This tag is optional

<ejb-resource>
ejb-resource
</ejb-resource>

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3–2.

This tag is optional

<java-resource>
resource
</java-resource>

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3–2.

This tag is optional

<message-style>
rpc
</message-style>

Sets the message style. When defining a Java Web Service, if you include
the <message-style> tag you must specify the value rpc.

Valid Values: doc, rpc

This tag is optional

Default value: rpc (when the <message-style> tag is not supplied)

<scope>
scope
</scope>

Sets the scope of the session for stateful services.

The <scope> tag only applies for stateful services. Use this tag only within
the <stateful-java-service> tag.

This tag is optional

Valid Values: application, session

Default Value: session
3-12 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services
Example 3–5 Sample WebServicesAssembler Configuration File

<web-service>
 <display-name>Web Services Example</display-name>
 <description>Java Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in
 ./ws_example.ear -->
 <destination-path>./ws_example.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly
 tool can create temporary files. -->
 <temporary-directory>./tmp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context
 named "/webservices". -->
 <context>/webservices</context>

 <!-- Specifies the web service will be stateless -->
 <stateless-java-service>
 <interface-name>oracle.j2ee.ws_example.StatelessExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatelessExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statelessTest" within the servlet context. -->
 <uri>/statelessTest</uri>
 <!-- Specifies the location of Java class files are under
 ./src -->

<session-timeout>
value
</session-timeout>

Sets the session timeout for a stateful session.

The <session-timeout> tag only applies for stateful services. Use this
tag only within the <stateful-java-service> tag.

Specify value with an integer that defines the timeout for the session in
seconds. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional

<uri>
URI
</uri>

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.

This tag is required

Table 3–3 (Cont.) Stateless and Stateful Java Service Sub-Tags

Tag Description
Developing and Deploying Java Class Web Services 3-13

Preparing and Deploying Java Class Based Web Services
 <java-resource>./src</java-resource>
 </stateless-java-service>

 <stateful-java-service>
 <interface-name>oracle.j2ee.ws_example.StatefulExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatefulExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statefullTest" within the servlet context. -->
 <uri>/statefulTest</uri>
 <!-- Specifies the location of Java class files are under
 ./src -->
 <java-resource>./src</java-resource>
 </stateful-java-service>
</web-service>

Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you supply is packaged with the Web Service J2EE .ear.

A client-side developer can use the WSDL file that is obtained from a deployed Web
Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

Running WebServicesAssembler To Prepare Java Class Web Services
After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Web Service. The J2EE .ear file includes the Java Web Service
servlet configuration information, including the file web.xml, and the Java classes
and interfaces that you supply.

Run the Oracle Application Server Web Services assembly tool,
WebServicesAssembler as follows:

java -jar WebServicesAssembler.jar -config config_file

Where: config_file is the configuration file that contains the
<stateless-java-service> or the <stateful-java-service> tags.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4
3-14 Oracle Application Server Web Services Developer’s Guide

Serializing and Encoding Parameters and Results for Web Services
Deploying Java Class Based Web Services
After creating the J2EE .ear file containing the Java classes and the Web Services
Servlet deployment descriptors you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

Serializing and Encoding Parameters and Results for Web Services
Parameters and results sent between Web Service clients and a Web Service
implementation go through the following steps:

1. Parameters are serialized and encoded in XML when sent from the Web Service
client.

2. Parameters are deserialized and decoded from XML when the Web Service
receives a request on the server side.

3. Parameters or results are serialized and encoded in XML when a request is
returned from a Web Service to a Web Service client.

4. Parameters or results must be deserialized and decoded from XML when the
Web Service client receives a reply.

Oracle Application Server Web Services supports a prepackaged implementation
for handling these four steps for serialization and encoding, and deserialization and
decoding. The prepackaged mechanism makes the four serialization and encoding
steps transparent both for the Web Services client-side application, and for the Java
service writer that is implementing a Web Service. Using the prepackaged
mechanism, Oracle Application Server Web Services supports the following
encoding mechanisms:

■ Standard SOAP v.1.1 encoding: Using standard SOAP v1.1 encoding, the server
side Web Services Servlet that calls the Java class implementation handles
serialization and encoding internally for the types supported by Oracle

See Also:

■ "Creating a Configuration File to Assemble Java Class Web
Services" on page 3-9

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library
Developing and Deploying Java Class Web Services 3-15

Serializing and Encoding Parameters and Results for Web Services
Application Server Web Services. Table 3–1 lists the supported Web Services
parameter and return value types when using standard SOAP v.1.1 encoding.

■ Literal XML encoding. Using Literal XML encoding, a Web Service client can
pass as a parameter, or a Java service can return as a result, a value that is
encoded as a conforming W3C Document Object Model (DOM)
org.w3c.dom.Element. When an Element passes as a parameter to a Web
Service, the server side Java implementation processes the
org.w3c.dom.Element. For return values sent from a Web Service, the Web
Services client parses or processes the org.w3c.dom.Element.

Note: For parameters to a Web Service or results that the Web
Service generates and returns to Web Services clients, the Oracle
Application Server Web Services implementation supports either
the Standard SOAP encoding or Literal XML encoding but not
both, for any given Web Service (Java method).

See Also: Chapter 8, "Building Clients that Use Web Services"
3-16 Oracle Application Server Web Services Developer’s Guide

Developing and Deploying EJB Web Se
4

Developing and Deploying EJB Web

Services

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that are implemented as stateless session
Enterprise Java Beans (EJBs).

This chapter covers the following topics:

■ Using Oracle Application Server Web Services With Stateless Session EJBs

■ Writing Stateless Session EJB Web Services

■ Preparing and Deploying Stateless Session EJB Based Web Services
rvices 4-1

Using Oracle Application Server Web Services With Stateless Session EJBs
Using Oracle Application Server Web Services With Stateless Session
EJBs

This chapter shows sample code for writing Web Services implemented with
stateless session EJBs.

Oracle Application Server supplies Servlets to access the EJBs which implement a
Web Service. A Servlets handle requests generated by a Web Service client, locates
the EJB home and remote interfaces, runs the EJB that implements the Web Service,
and returns results back to the Web Service client.

Writing Stateless Session EJB Web Services
Writing EJB based Web Services involves obtaining or building an EJB that
implements a service. The EJB should contain one or more methods that a Web
Services Servlet running under Oracle Application Server invokes when a client
makes a Web Services request. There are very few restrictions on what actions Web
Services can perform. At a minimum, Web Services usually generate data that is
sent to a Web Services client or perform an action as specified by a Web Services
method request.

This section shows how to write a simple stateless session EJB Web Service,
HelloService that returns a string, "Hello World", to a client. This EJB Web
Service receives a client request with a single String parameter and generates a
response that it returns to the Web Service client.

The sample code is supplied on the Oracle Technology Network Web site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services demo.zip file, the EJB based Web Service is in
the directory under /webservices/demo/basic/stateless_ejb on UNIX or
in \webservices\demo\basic\stateless_ejb on Windows.

See Also:

■ Chapter 2, "Oracle Application Server Web Services"

■ Chapter 3, "Developing and Deploying Java Class Web
Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

■ Chapter 8, "Building Clients that Use Web Services"
4-2 Oracle Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services
Create a stateless session EJB Web Service by writing a standard J2EE stateless
session EJB containing a remote interface, a home interface, and an enterprise bean
class. Oracle Application Server Web Services runs EJBs that are deployed as Oracle
Application Server Web Services in response to a request issued by a Web Service
client.

Developing a stateless session EJB consists of the following steps:

■ Defining a Stateless Session Remote Interface

■ Defining a Stateless Session Home Interface

■ Defining a Stateless Session EJB Bean

■ Returning Results From EJB Web Services

■ Error Handling for EJB Web Services

■ Serializing and Encoding Parameters and Results for EJB Web Services

■ Using Supported Data Types for Stateless Session EJB Web Services

■ Writing a WSDL File for EJB Web Services (Optional)

Defining a Stateless Session Remote Interface
When looking at the HelloService EJB Web Service, note that the .ear file,
HelloService.ear defines the Web Service and its configuration files. In the
sample directory, the file HelloService.java provides the remote interface for
the HelloService EJB.

Example 4–1 shows the Remote interface for the sample stateless session EJB.

Example 4–1 Stateless Session EJB Remote Interface for Web Service

package demo;

public interface HelloService extends javax.ejb.EJBObject {
java.lang.String hello(java.lang.String phrase) throws java.rmi.RemoteException;
}

See Also: "Preparing and Deploying Stateless Session EJB Based
Web Services" on page 4-8
Developing and Deploying EJB Web Services 4-3

Writing Stateless Session EJB Web Services
Defining a Stateless Session Home Interface
The sample file HelloServiceHome.java provides the home interface for the
HelloService EJB.

Example 4–2 shows the EJBHome interface for the sample stateless session EJB.

Example 4–2 Stateless Session EJB Home Interface for Web Service

package demo;
/**
 * This is a Home interface for the Session Bean
 */
public interface HelloServiceHome extends javax.ejb.EJBHome {

HelloService create() throws javax.ejb.CreateException, java.rmi.RemoteException
;
}

Defining a Stateless Session EJB Bean
The sample file HelloServiceBean.java provides the Bean logic for the
HelloService EJB. When you create a Bean to implement a Web Service, the
parameters and return values must be of supported types. Table 4–1 lists the
supported types for parameters and return values for stateless session EJBs that
implement Web Services.

Example 4–3 shows the source code for the HelloService Bean.

Example 4–3 Stateless Session EJB Bean Class for Web Services

package demo;

import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;

/**
 * This is a Session Bean Class.
 */
public class HelloServiceBean implements SessionBean {
 private javax.ejb.SessionContext mySessionCtx = null;

public void ejbActivate() throws java.rmi.RemoteException {}
public void ejbCreate() throws javax.ejb.CreateException,
4-4 Oracle Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services
java.rmi.RemoteException {}

public void ejbPassivate() throws java.rmi.RemoteException {}
public void ejbRemove() throws java.rmi.RemoteException {}
public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
}
public String hello(String phrase)
{
 return "HELLO!! You just said :" + phrase;
}
public void setSessionContext(javax.ejb.SessionContext ctx) throws
java.rmi.RemoteException {
 mySessionCtx = ctx;
}
}

Returning Results From EJB Web Services
The hello() method shown in Example 4–3 returns a String. An Oracle
Application Server Web Services server-side Servlet runs the Bean that calls the
hello() method when the Servlet receives a Web Services request from a client.
After executing the hello() method, the Servlet returns a result to the Web Service
client.

Example 4–3 shows that the EJB Bean writer only needs to return values of
supported types to create Web Services implemented as stateless session EJBs.

Error Handling for EJB Web Services
When an error occurs while running a Web Service implemented as an EJB, the EJB
should throw an exception. When an exception is thrown, the Web Services Servlet
returns a Web Services (SOAP) fault. Use the standard J2EE and OC4J
administration facilities for logging Servlet errors for a Web Service that uses
stateless session EJBs for its implementation.

See Also: "Using Supported Data Types for Stateless Session EJB
Web Services" on page 4-6
Developing and Deploying EJB Web Services 4-5

Writing Stateless Session EJB Web Services
Serializing and Encoding Parameters and Results for EJB Web Services
Parameters and results sent between Web Service clients and a Web Service
implementation need to be encoded and serialized. This allows the call and return
values to be passed as XML documents using SOAP.

Using Supported Data Types for Stateless Session EJB Web Services
Table 4–1 lists the supported data types for parameters and return values for Oracle
Application Server Web Services.

See Also: "Serializing and Encoding Parameters and Results for
Web Services" on page 3-15

Table 4–1 Web Services Supported Data Types

Primitive Type Object Type

Boolean java.lang.Boolean

byte java.lang.Byte

double java.lang.Double

float java.lang.Float

int java.lang.Integer

long java.lang.Long

short java.lang.Short

string java.lang.String

java.util.Date

java.util.Map

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.DocumentFragment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.
4-6 Oracle Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services
Document Style Web Service implementations under Oracle Application Server
Web Services restrict the signature of the Java methods that implement the Web
Service. Only org.w3c.dom.Element can be passed to or sent from these Web
Services.

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

■ It must have a constructor taking no arguments.

■ It must expose all interesting state through properties.

■ It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle Application Server Web Services allows Beans to be returned or passed in as
arguments to J2EE Web Service methods, as long as the Bean only consists of
property types that are listed in Table 4–1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates
SOAP structures to and from Java Beans by translating SOAP structure namespaces
to and from fully qualified Bean class names. If a Bean with the specified name does
not exist in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather
than the client-side proxy. The generated WSDL document describes SOAP
structures in a standard way. Application development environments, such as
Oracle JDeveloper, which work directly from WSDL documents can correctly call
Oracle Application Server Web Services with Java Beans as parameters.

Note: Oracle Application Server Web Services does not support
Element[], (arrays of org.w3c.dom.Element).

Note: The preceding restriction means that
org.w3c.dom.Element types cannot be mixed as a parameter
with other types in methods that implement a Web Service.
Developing and Deploying EJB Web Services 4-7

Preparing and Deploying Stateless Session EJB Based Web Services
Writing a WSDL File for EJB Web Services (Optional)
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

Preparing and Deploying Stateless Session EJB Based Web Services
To deploy a stateless session EJB as a Web Service you need to assemble a J2EE .ear
file that includes the deployment descriptors for the Oracle Application Server Web
Services Servlet and includes the ejb.jar that supplies the Java implementation. This
section describes how to use the Oracle Application Server Web Services tool,
WebServicesAssembler. WebServicesAssembler takes an XML configuration
file that describes the stateless session EJB Web Service and produces a J2EE .ear file
that can be deployed under Oracle Application Server Web Services.

This section contains the following topics.

■ Creating a Configuration File to Assemble Stateless Session EJB Web Services

■ Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

■ Deploying Web Services Implemented as EJBs

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type int, the equivalent
parameter in the proxy is of type java.lang.Integer. This
mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4
4-8 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services
Creating a Configuration File to Assemble Stateless Session EJB Web Services
The Oracle Application Server Web Services assembly tool,
WebServicesAssembler, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use with
stateless session EJB Web Services.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Stateless Session EJB Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 4–2 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a
<web-service> tag in the configuration file.

Example 4–4 shows a complete config.xml file, including the top level tags.

Table 4–2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>
datasource
</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The
dest_path specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.
Developing and Deploying EJB Web Services 4-9

Preparing and Deploying Stateless Session EJB Based Web Services
Adding Stateless Session EJB Service Tags
Prepare Stateless Session EJB Web Services using the WebServicesAssembler
<stateless-session-ejb-service> tag. This tag is included within a
<web-service> tag in the configuration file. Add this tag to provide information
required for generating a stateless session EJB Web Service.

Table 4–3 shows the <stateless-session-ejb-service> sub-tags.

Example 4–4 shows a complete config.xml file, including
<stateless-session-ejb-service>.

<option name="source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to
specify java resources, or the name of an existing .war, .ear, or
ejb-jar file that is used as a source file for the output J2EE .ear
file.

When a .war file is supplied as input, the optional contextroot
specifies the root-context for the .war file.

path1 specifies the context-root for the .war.

path2 specifies the path to the file to include.

For example:

<option name="source-path"
contextroot="/test">/myTestArea/ws/src/statefull.war
</option>

This tag is optional.

<stateless-session-ejb-service>
sub-tags
</stateless-session-ejb-service>

Use this tag to add a stateless session EJB Web Service. See
Table 4–3 for a description of the valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary
files.

This tag is optional.

Table 4–2 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
4-10 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services
Example 4–4 Sample Stateless Session EJB WebServicesAssembler Configuration
File

<web-service>
 <display-name>EJB Web Services Demo</display-name>
 <destination-path>tmp/HelloService.ear</destination-path>
 <temporary-directory>tmp</temporary-directory>
 <context>/sejb_webservices</context>

 <stateless-session-ejb-service>
 <path>tmp/Hello.jar</path>

Table 4–3 Stateless Session EJB Web Service Sub-Tags

Tag Description

<accept-untyped-request>
value
</accept-untyped-request>

Setting value to true tells WebServicesAssembler to allow the Web
Service to accept untyped requests. When the value is false, the Web
Service does not accept untyped-request.

Valid values: true, false

(case is not significant; TRUE and FALSE are also valid)

This tag is optional.

Default value: false

<ejb-name>
name
</ejb-name>

Specifies the name of the stateless session EJB.

This tag is required

<ejb-resource>
resource
</ejb-resource>

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in
Table 4–2.

This tag is optional

<path>
path
</path>

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in
Table 4–2.

This tag is optional

<uri>
URI
</uri>

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.

This tag is required.
Developing and Deploying EJB Web Services 4-11

Preparing and Deploying Stateless Session EJB Based Web Services
 <uri>/HelloService</uri>
 <ejb-name>HelloService</ejb-name>
 </stateless-session-ejb-service>
</web-service>

Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Web Service. The J2EE .ear file includes the stateless session
EJB Web Service servlet configuration information.

Run the Oracle Application Server Web Services assembly tool,
WebServicesAssembler as follows:

java -jar WebServicesAssembler.jar -config config_file

Where: config_file is the configuration file that contains the
<stateless-session-ejb-service> tag.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

See Also:

■ "Creating a Configuration File to Assemble Stateless Session
EJB Web Services" on page 4-9

■ "Running the Web Services Assembly Tool" on page 9-2
4-12 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services
Deploying Web Services Implemented as EJBs
After creating the .ear file containing a stateless session EJB, you can deploy the
Web Service as you would any standard J2EE application stored in an .ear file (to
run under OC4J).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server Documentation Library
Developing and Deploying EJB Web Services 4-13

Preparing and Deploying Stateless Session EJB Based Web Services
4-14 Oracle Application Server Web Services Developer’s Guide

Developing and Deploying Stored Procedure Web Se
5

Developing and Deploying Stored

Procedure Web Services

This chapter describes how to write and deploy Oracle Application Server Web
Services implemented as stateless PL/SQL Stored Procedures or Functions (Stored
Procedure Web Services). Stored Procedure Web Services enable you to export, as
services running under Oracle Application Server Web Services, PL/SQL
procedures and functions that run on an Oracle database server.

This chapter covers the following topics:

■ Using Oracle Application Server Web Services with Stored Procedures

■ Writing Stored Procedure Web Services

■ Preparing Stored Procedure Web Services

■ Deploying Stored Procedure Web Services

■ Limitations for Stored Procedures Running as Web Services
rvices 5-1

Using Oracle Application Server Web Services with Stored Procedures
Using Oracle Application Server Web Services with Stored Procedures
This chapter shows sample code for writing Web Services implemented with
stateless PL/SQL stored procedures or functions. The sample is based on a PL/SQL
package representing a company that manages employees.

Oracle Application Server Web Services supplies a Servlet to access Java classes that
support PL/SQL Stored Procedure Web Services. The Servlet handles requests
generated by a Web Service client, runs the Java method that accesses the stored
procedure that implements the Web Service, and returns results back to the Web
Service client.

The Oracle database server supports procedures implemented in languages other
than PL/SQL, including Java and C/C++. These stored procedures can be exposed
as Web Services using PL/SQL interfaces.

Writing Stored Procedure Web Services
Writing Stored Procedure Web Services involves creating and installing a PL/SQL
package on an Oracle database server that is available as a datasource to Oracle
Application Server and generating a Java class that includes one or more methods
to access the Stored Procedure.

The sample code is supplied on the Oracle Technology Network Web site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services demo.zip file, the sample Stored Procedure Web
Service is supplied in the directory under webservices/demo/basic/stored_
procedure on UNIX or in webservices\demo\basic\stored_procedure
on Windows.

Create a Stored Procedure Web Service by writing and installing a PL/SQL Stored
Procedure. To write and install a PL/SQL Stored Procedure, you need to use
facilities independent of Oracle Application Server Web Services.

See Also:

■ Chapter 2, "Oracle Application Server Web Services"

■ Chapter 3, "Developing and Deploying Java Class Web
Services"

■ Chapter 6, "Developing and Deploying Document Style Web
Services"
5-2 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
For example, to use the sample COMPANY package, first create and load the supplied
package on the database server using the create.sql script. This script, along
with several other required .sql scripts are in the stored_procedure directory.
These scripts create several database tables and the sample COMPANY package.

When the Oracle database server is running on the local system, use the following
command to create the sample PL/SQL package:

sqlplus scott/tiger @create

When the Oracle database server is not the local system, use the following
command and include a connect identifier to create the sample PL/SQL package:

sqlplus scott/tiger@db_service_name @create

where db_service_name is the net service name for the Oracle database server.

Preparing Stored Procedure Web Services
This section describes how to use the Oracle Application Server Web Services tool
WebServicesAssembler to prepare a J2EE .ear file that supports using a PL/SQL
procedure or function as a Stored Procedure Web Service.

This section contains the following topics:

■ Creating a Configuration File to Assemble Stored Procedure Web Services

■ Running WebServicesAssembler With Stored Procedure Web Services

■ Setting Up Datasources in Oracle Application Server Web Services (OC4J)

Creating a Configuration File to Assemble Stored Procedure Web Services
The Oracle Application Server Web Services assembly tool,
WebServicesAssembler, assists in assembling Oracle Application Server Web

See Also:

■ "Limitations for Stored Procedures Running as Web Services"
on page 5-12

■ PL/SQL User’s Guide and Reference in the Oracle Database
Documentation Library

■ Oracle Net Services Administrator’s Guide in the Oracle Database
Documentation Library
Developing and Deploying Stored Procedure Web Services 5-3

Preparing Stored Procedure Web Services
Services. This section describes how to create a configuration file to use to assemble
a Stored Procedure Web Service. The Web Services assembly tool uses an XML
configuration file that describes the Stored Procedure Web Service and produces a
J2EE .ear file that can be deployed under Oracle Application Server Web Services.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Stateless Stored Procedure Java Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 5–1 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the PL/SQL Stored
Procedure Web Service.

Example 5–1 shows a complete config.xml file, including the top level tags.

Table 5–1 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>
datasource
</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.
5-4 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
Adding Stateless Stored Procedure Java Service Tags
There are two ways to develop Stored Procedure Web Services using the
WebServicesAssembler:

■ Adding Stateless Stored Procedure Java Service Using Jar Generation

■ Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Adding Stateless Stored Procedure Java Service Using Jar Generation

Using a configuration file that includes the <jar-generation> tag specifies
Oracle Database Server connection information that allows the
WebServicesAssembler to run Oracle JPublisher to generate the classes to
support the Stored Procedure Web Service. The Oracle JPublisher generated classes
support accessing the PL/SQL procedure or function and also includes classes for
mapping Java types to PL/SQL types. The WebServicesAssembler packages the
generated classes into a Jar file that is assembled with the Stored Procedure Web
Service.

<option name="source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to
include Java resources.

The path specifies the path to the file to include.

<stateless-stored-procedure-
java-service>
sub-tags
</stateless-stored-procedure
-java-service>

Use this tag to add stateless stored procedure Web Services. See
Table 5–2 and Table 5–4 for a description of valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Note: Most Stored Procedure Web Service developers use the Jar
generation technique for assembling the Web Service J2EE .ear file.
Only use the pre-generated Jar technique for creating a J2EE .ear
when you have a pre-generated Jar file containing Oracle
JPublisher generated classes.

Table 5–1 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying Stored Procedure Web Services 5-5

Preparing Stored Procedure Web Services
Table 5–2 describes the <stateless-stored-procedure-java-service>
WebServicesAssembler configuration file tags used when creating a
configuration file that uses Jar generation to create a Stored Procedure Web Service.
The <stateless-stored-procedure-java-service> tag is included within a
<web-service> tag in the configuration file. Add this tag to provide information
required for generating the Stored Procedure Web Service J2EE .ear file.

Table 5–3 describes the sub-tags for <jar-generation> within the
<stateless-stored-procedure-java-service> tag. The
<jar-generation> tags provide information to the WebServicesAssembler so
that it can run Oracle JPublisher to generate the Java classes for the Stored
Procedure Web Service. The WebServicesAssembler then uses these classes to
generate the Jar file that provides Java mappings for the stored procedure or
function.

Example 5–1 shows a complete config.xml file, including the Stored Procedure
Web Service tags shown in Table 5–2 and Table 5–3.

Table 5–2 Stateless Stored Procedure Sub-Tags (Using Jar Generation)

Tag Description

<database-JNDI-name>
source_JNDI_name
</database-JNDI-name>

This tag specifies the JNDI name of the backend database.

The data-sources.xml OC4J configuration file describes the database server
source associated with the specified source_JNDI_name.

<jar-generation>
sub-tags
</jar-generation>

Table 5–3 describes the supported sub-tags for <jar-generation>.

Example:

<jar-generation>
 <schema>scott/tiger</schema>
 <db-url>jdbc:oracle:thin:@system1:1521:orcl</db-url>
 <prefix>sp.company</prefix>
 <db-pkg-name>Company</db-pkg-name>
</jar-generation>

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the
Web Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.
5-6 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
Table 5–3 Stateless Stored Procedure <jar-generation> Sub-Tags

Tag Description

<db-pkg-name>
pkg_name
</db-pkg-name>

Where pkg_name is the name of the PL/SQL package to export.

This is required when <jar-generation> is included.

<db-url>
url_path
</db-url>

Where url_path is the database connect string for the Oracle database server with
the specified package to export. The <schema> and <db-url> are combined to
connect to the database which contains the stored procedures to be exported.

This is required when <jar-generation> is included.

Example:

<db-url>jdbc:oracle:thin:@system1.us.oracle.com:1521:tv1</db-url>

<method-name>
method
</method-name>

Where method is the name of the PL/SQL method to export.

This tag is optional. Including multiple <method> tags is valid. In this case the
specified methods are exported.

Without this tag, all methods within the package are exported. If the specified
method is overloaded, then all variations of the method are exported.

<prefix>
prefix
</prefix>

Where prefix is the Java package prefix for generated classes.

By default, the PL/SQL package is generated into a Java class in the default Java
package.

This tag is optional.

Example:

<prefix>sp.company</prefix>

<schema>
user_name/password
</schema>

This tag includes the Database Server user_name/password:

where:

user_name is the database user name.

password is the database password for the specified user name.

This tag is required when <jar-generation> is included.

Example:

<schema>scott/tiger</schema>
Developing and Deploying Stored Procedure Web Services 5-7

Preparing Stored Procedure Web Services
Example 5–1 Sample WebServicesAssembler Configuration File For Stored
Procedure Using <jar-generation> Tag

<web-service>
 <display-name>Web Services Example</display-name>
 <description>Java Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./spexample.ear -->
 <destination-path>./spexample.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly tool can create temporary files. -->
 <temporary-directory>/tmp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context named "/webservices". -->
 <context>/webservices</context>
 <!-- Specifies the web service will be stateless -->

 <stateless-stored-procedure-java-service>
 <jar-generation>
 <schema>scott/tiger</schema>
 <db-url>jdbc:oracle:thin:@system1:1521:orcl</db-url>
 <prefix>sp.company</prefix>
 <db-pkg-name>Company</db-pkg-name>
 </jar-generation>
 <!-- Specifies the web service will be accessed in the uri named
 "statelessSP" within the servlet context. -->
 <uri>/statelessSP</uri>
 <database-JNDI-name>/jdbc/OracleDataSource</database-JNDI-name>
 </stateless-stored-procedure-java-service>
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!--force 'true' will write over existing wsdl -->
 <option name="force">true</option>
 <!-- change this to point to your soap servers http listener -->
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>
 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <!-- include-source 'true' will create an additional jar with only the proxy source-->
 <option name="include-source">true</option>
 </proxy-gen>
</web-service>

Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Using a configuration file that specifies the stored procedure <class-name> and
<interface-name> assembly options when a pre-generated Jar file that includes
the required classes to support the Web Service is available. The <class-name>
and <interface-name> tags specified in a configuration file support using a
previously generated Jar file that contains the Java classes that provide a mapping
between the PL/SQL procedure or function and the Web Service.
5-8 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
Table 5–4 describes the <stateless-stored-procedure-java-service>
WebServicesAssembler configuration file tags used when creating a
configuration file that uses a pre-generated Jar file to create a Stored Procedure Web
Service. The <stateless-stored-procedure-java-service> tag is included
within a <web-service> tag in the configuration file. Add this tag to provide
information required for generating the Stored Procedure Web Service J2EE .ear file.

The <class> and <interface> tags that are added to the
<stateless-stored-procedure-java-service> only when using a
pre-generated Jar file.

Table 5–4 Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description

<class-name>
class
</class-name>

The Stored Procedure Web Services Servlet definition requires a
<param-name> with the value class-name and a corresponding
<param-value> set to the fully qualified name of the Java class that accesses
the PL/SQL Web Service implementation.

You need to use the configuration file <class-name> tag to supply the class
name for this parameter; you can find the class name in the Jar file you provide
that is specified in the top level <option name="source-path"> tag.

<database-JNDI-name>
source_JNDI_name
</database-JNDI-name>

This tag specifies the JNDI name of the backend database.

The data-sources.xml OC4J configuration file describes the database server
source associated with the specified source_JNDI_name.

<interface-name>
interface
</interface-name>

A Stored Procedure Web Services Servlet definition requires a <param-name>
with the value interface-name, and a corresponding <param-value> set to
the fully qualified name of the Java interface that specifies the methods to
include in the stored procedure Web Service.

The <interface-name> tag provides the name of the interface that tells the
Web Service Servlet generation code which methods should be exposed as Web
Services. You can find the interface name in the Jar file you provide that is
specified in the top level <option name="source-path"> tag.
Developing and Deploying Stored Procedure Web Services 5-9

Preparing Stored Procedure Web Services
Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler configuration file supports the <wsdl-gen> and
<proxy-gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Stored Procedure Style Web Service J2EE
.ear. A client-side developer can then use the WSDL file that is obtained from the
deployed Web Service to build an application that uses the Web Service.

Running WebServicesAssembler With Stored Procedure Web Services
After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Stored Procedure Web Service. The J2EE .ear file includes
Stored Procedure Web Service servlet configuration information, including the file
web.xml, and Oracle JPublisher generated classes (the WebServicesAssembler

<java-resource>
resource
</java-resource>

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 5–1.

This tag is optional.

The Stored Procedure pre-generated Jar file should be specified using the
<java-resource> tag. The class specified with the <class-name> tag and
the interface specified with the <interface-name> tag must exist in the
resource specified in the <java-resource> tag(s).

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the
Web Service. The path specified as the URI is appended to the <context> to
specify the Web Service location.

See Also:

■ "Adding Stateless Stored Procedure Java Service Using Jar
Generation" on page 5-5

■ Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4

Table 5–4 (Cont.) Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag Description
5-10 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services
collects the Oracle JPublisher generated classes into a single Jar file that it includes
in the generated J2EE .ear).

Run the Oracle Application Server Web Services assembly tool,
WebServicesAssembler as follows:

java -jar WebServicesAssembler.jar -config my_pl_service_config

Where: my_pl_service_config is the configuration file that contains the
<stateless-stored-procedure-java-service> tag.

Setting Up Datasources in Oracle Application Server Web Services (OC4J)
To add Web Services based on PL/SQL Stored Procedures you need to set up data
sources in OC4J by configuring data-sources.xml. Configuring the
data-sources.xml file points OC4J to a database. The database should contain
PL/SQL Stored Procedure packages that implement a Stored Procedure Web
Service.

A single database connection is created when OC4J initializes a Web Services
Servlet instance. The resulting database connection is destroyed when OC4J
removes the Web Services Servlet instance. Each Stored Procedure Web Services
Servlet implements a single threaded model. As a result, any Web Services Servlet
instance can only service a single client’s database connection requests at any given
time. OC4J pools the Web Services Servlet instances and assigns instances to Oracle
Application Server Web Services clients.

Every invocation of a PL/SQL Web Service is implicitly a separate database
transaction. It is not possible to have multiple service method invocations run
within a single database transaction. When such semantics are required, the user
must write a PL/SQL procedure that internally invokes other procedures and
functions, and then expose the new procedure as another method in a Stored
Procedure Web Service (but Oracle Application Server Web Services does not
provide explicit support or tools to do this).

See Also:

■ "Creating a Configuration File to Assemble Stored Procedure
Web Services" on page 5-3

■ "Running the Web Services Assembly Tool" on page 9-2
Developing and Deploying Stored Procedure Web Services 5-11

Deploying Stored Procedure Web Services
When using an emulated data source with CLOB or BLOB types in the stored
procedure, the emulated data source must use the location attribute to specify
the JNDI name. The name cannot be specified using the ejb-location.

Deploying Stored Procedure Web Services
After creating the J2EE .ear file containing the Stored Procedure Web Service
configuration, class, Jar, and support files you can deploy the Web Service as you
would any standard J2EE application stored in a J2EE .ear file (to run under OC4J).

Limitations for Stored Procedures Running as Web Services
This section covers the following topics:

■ Supported Stored Procedure Features for Web Services

■ Unsupported Stored Procedure Features for Web Services

■ Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web
Services

■ TIMESTAMP and DATE Granularity Limitation

■ LOB (CLOB/BLOB) Emulated Data Source Limitation

Supported Stored Procedure Features for Web Services
Stored Procedure Web Services support the following PL/SQL features:

1. PL/SQL stored procedures, including both procedures and functions.

2. IN, OUT, IN, INOUT parameter modes. When a stored procedure contains OUT
or INOUT parameters, the INOUT and OUT data are passed back to the client
as attributes of the returned objects. The declared stored procedure return
value, if the stored procedure is a function, will also be included as an attribute
of the returned objects INOUT parameter modes.

3. Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported as a Web Service).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library
5-12 Oracle Application Server Web Services Developer’s Guide

Limitations for Stored Procedures Running as Web Services
4. Overloaded procedures. Oracle JPublisher may map multiple PL/SQL types
into the same Java type. For example, different PL/SQL number types may all
map to Java int. This means that methods that were considered overloaded in
PL/SQL are no longer overloaded in Java. In this case the Java method names
will be renamed to avoid compilation errors for the generated code. However,
at runtime, the PL/SQL engine may report PLS-00307 error (too many
declarations of <method name> match this call). The error is due to PL/SQL
limitation on overloading resolution.

5. Simple PL/SQL types

The following simple types are supported. NULL values are supported for all of
the simple types listed, except NATURALN and POSITIVEN.

The Oracle JPublisher documentation provides full details on the mappings for
these simple types.

VARCHAR2 (STRING, VARCHAR), LONG, CHAR (CHARACTER), NUMBER
(DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT, NUMERIC,
REAL, SMALLINT), PLS_INTEGER, BINARY_INTEGER (NATURAL,
NATURALN, POSITIVE, POSITIVEN), BOOLEAN

6. TIMESTAMP is supported, along with variations TIMESTAMP WITH LOCAL
TIME ZONE and TIMESTAMP WITH TIME ZONE.

7. DATE is supported.

8. User-defined Object Types.

9. Oracle JPublisher and Oracle Application Server Web Services provide support
for the following LOB types: BLOB, CLOB, and BFILE.

If your PL/SQL procedures use LOB types as input/output types, then the
WebServices Assembler will not publish those stored procedures that will cause
runtime errors. For instance, the WebServices Assembler will not publish a
method containing BFILE as an IN parameter.

10. SYS.XMLTYPE is supported. SYS.XMLTYPE is mapped into the type,
org.w3c.dom.DocumentFragment in Web Services.

See Also: Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library
Developing and Deploying Stored Procedure Web Services 5-13

Limitations for Stored Procedures Running as Web Services
Unsupported Stored Procedure Features for Web Services
Stored Procedure Web Services impose the following limitations on PL/SQL
functions and procedures:

1. Only procedures and functions within a PL/SQL package are exported as Web
Services. Top-level stored procedures must be wrapped inside a package.
Methods must be wrapped into package-level methods with a default "this"
reference.

2. NCHAR and related types are not supported.

3. Oracle JPublisher translates almost all PL/SQL types to Java types. The
deployment tools for Stored Procedure Web Services generate "jdbc" style for
builtin and number types and "oracle" style for user types and lob types. The
lob types are converted to java types that can be serialized/deserialized by Web
Services. The user types that conform to java beans are also
serialized/deserialized by Web Services. Check the Oracle JPublisher
documentation for full details of these styles, and for the caveats associated
with them.

4. Fractional seconds in a TIMESTAMP value are not preserved when using
Stored Procedure Web Services.

5. TIMESTAMP as a field in a user defined ADT is not supported. However, DATE
as a field in a user defined ADT is supported.

Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services
Using a Oracle Database Server of Release 9.2.0.1 or earlier, or with a Database
Server that is not Java-enabled, then you must install the SYS.SQLJUTIL package
into the SYS schema to support PL/SQL BOOLEAN arguments.

The PL/SQL script that defines this package is located at the following location on
UNIX:

${ORACLE_HOME}/sqlj/lib/sqljutil.sql

On Windows systems, this script is located at the following location:

%ORACLE_HOME%\sqlj\lib\sqljutil.sql

See Also: Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library
5-14 Oracle Application Server Web Services Developer’s Guide

Limitations for Stored Procedures Running as Web Services
TIMESTAMP and DATE Granularity Limitation
Fractional seconds in a TIMESTAMP value are not preserved when using Stored
Procedure Web Services.

LOB (CLOB/BLOB) Emulated Data Source Limitation
When using an emulated data source with CLOB or BLOB types, the emulated data
source must use the location attribute to specify the JNDI name. The name
cannot be specified using the ejb-location.
Developing and Deploying Stored Procedure Web Services 5-15

Limitations for Stored Procedures Running as Web Services
5-16 Oracle Application Server Web Services Developer’s Guide

Developing and Deploying Document Style Web Se
6

Developing and Deploying Document Style

Web Services

This chapter describes the procedures you use to write and deploy Oracle
Application Server Web Services that handle document style messages and are
implemented as Java classes.

This chapter covers the following topics:

■ Using Document Style Web Services

■ Writing Document Style Web Services

■ Preparing Document Style Web Services

■ Deploying Document Style Web Services
rvices 6-1

Using Document Style Web Services
Using Document Style Web Services
This chapter describes Document Style Web Services that are implemented with
Java classes and describes the difference between writing stateful and stateless
Document Style Java Web Services.

The sample code is supplied on the Oracle Technology Network Web site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services demo.zip file, the Document Style Web Services
samples are in the stateless and stateful directories under
webservices/demo/basic/java_doc__services on UNIX or in
webservices\demo\basic\java_doc_services on Windows.

Oracle Application Server supplies Servlets to access the Java classes which you
write to implement a Web Service. The Servlets handle messages generated by Web
Services clients and dispatch them to run the Java methods that implement
Document Style Web Services. After a Web Service is deployed, when a client makes
a service request (uses a service) the Oracle Application Server Web Services
runtime, using an automatically generated Web Services Servlet invokes the
methods that you implement to support the Document Style Web Service.

Writing Document Style Web Services
Writing Document Style Java Web Services involves building a Java class that
includes one or more methods using supported method signatures; the java class
includes methods that either handle an incoming message or return an outgoing
message.

This section covers the following topics:

■ Supported Method Signatures for Document Style Web Services

■ Writing Stateless and Stateful Document Style Web Services

See Also:

■ Chapter 3, "Developing and Deploying Java Class Web
Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 7, "Developing and Deploying JMS Web Services"

■ Chapter 8, "Building Clients that Use Web Services"
6-2 Oracle Application Server Web Services Developer’s Guide

Writing Document Style Web Services
■ Writing Classes and Interfaces for Document Style Web Services

Supported Method Signatures for Document Style Web Services
Table 6–1 shows the supported method signatures for Document Style Web
Services. The Oracle Application Server Web Services runtime verifier rejects
Document Style Web Services that do not conform to the method signatures listed
in Table 6–1.

The Element input parameter and Element return value shown in the method
signatures in Table 6–1 must conform to the Document Object Model (DOM) as
specified by the W3C (org.w3c.dom.Element).

Passing Null Values for Document Style Web Services
A null could be passed as an input Element or as the Element that the
Document Style Web Service returns.

Arrays of Elements
Oracle Application Server Web Services does not support Element[] (arrays of
org.w3c.dom.Element).

Table 6–1 Supported Method Signatures for Document Style Java Web Services

Method Signature Description

public Element op_Name(Element e_name) The method op_Name is a Document Style Web Service
operation implemented as a Java method that takes an
Element e_name as an input parameter and returns an
Element.

public Element get_Name() The method get_Name is a Document Style Web Service
operation implemented as a Java method that takes no
input parameters and returns an Element.

public void set_Name(Element e_name) The method set_Name is a Document Style Web Service
operation implemented as a Java method that takes an
Element e_name as an input parameter and returns
nothing.
Developing and Deploying Document Style Web Services 6-3

Writing Document Style Web Services
Writing Stateless and Stateful Document Style Web Services
Oracle Application Server Web Services supports stateful and stateless
implementations for Document Style Java classes running as Web Services. For a
stateful Java implementation, Oracle Application Server Web Services allows a
single Java instance to serve the Web Service requests from an individual client.

For a stateless Java implementation, Oracle Application Server Web Services creates
multiple instances of the Java class in a pool, any one of which may be used to
service a request. After servicing the request, the object is returned to the pool for
use by a subsequent request.

Writing Classes and Interfaces for Document Style Web Services
Developing a Document Style Java Web Service consists of the following steps:

■ Defining Methods in a Document Style Web Service

■ Defining an Interface for Explicit Method Exposure

■ Handling Messages for Document Style Web Services

See Also:

■ "Handling Messages for Document Style Web Services" on
page 6-8

■ http://www.w3.org/DOM/ for information on the W3C
Document Object Model (DOM)

Note: It is the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing Document Style Web Services"
on page 6-9.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.
6-4 Oracle Application Server Web Services Developer’s Guide

Writing Document Style Web Services
Defining Methods in a Document Style Web Service
Create a Document Style Web Service by writing or supplying a Java class with
methods that are deployed as a Document Style Web Service. The stateful and
stateless sample directories contain sample stateless and stateful Document
Style Web Services. In the src directories, the file StatefulDocImpl.java
provides the implementation of the sample stateful Java service and
StatelessDocImpl.java provides the implementation of the stateless
Document Style Web Service. These examples use interface classes; the use of
interface classes is optional when implementing Document Style Web Services.

A Java class that implements a Document Style Web Service has the following
limitations:

■ The Java class should define public methods that conform to the method
signatures shown in Table 6–1. If you use an interface, then only the public
methods specified in the interface need to conform to the method signature
restrictions. If you do not include an interface, then all the public methods in
the class must conform to the method signature restrictions shown in Table 6–1.

■ The Java class implementation must include a public constructor that takes no
arguments.

There are very few restrictions on what actions a Document Style Java class based
web service can perform. At a minimum, the service performs some action to
handle an incoming message (Element) or to generate an outgoing message
(Element).

The StatelessDoc Web Service sample is implemented with
StatelessDocImpl, a public class and the interface StatelessDoc. The
StatelessDocImpl class defines two public methods: displayElement(), that
displays the incoming message on the server where the web service runs, and
processElement(), that takes an incoming message and returns a transformed
message to the client. The private method applyXSLtoXML() is a helper method
that transforms the incoming message, as specified in the converter.xsl file.

Example 6–1 shows the method signatures for the StatelessDocImpl class (see
the src directory to view the complete source code for StatelessDocImpl).

Example 6–1 Defining Java Methods for a Stateless Document Style Web Service

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.io.*;

public class StatelessDocImpl implements StatelessDoc
Developing and Deploying Document Style Web Services 6-5

Writing Document Style Web Services
{
 public StatelessDocImpl()
 { }

 // Display the Element that was sent
 public void displayElement(Element e)
 { }

 //method to process the input xml doc
 public Element processElement(Element e)
 { }

 /**
 * This Method Transforms an XML Document into another using the provided
 * Style Sheet: converter.xsl. Note : This Method makes use of XSL
 * Transformation capabilities of Oracle XML Parser Version 2.0
 **/
 private Element applyXSLtoXML(Element e)
 throws Exception
 {}

The StatfulDoc Web Service sample is implemented with StatefulDocImpl, a
public class and the interface StatefulDoc. The StatefulDocImpl class defines
two public methods: startShopping() that initializes the state of the customer
information and makePurchase(), that modifies the state of the customer
information and returns the updated information to the client. The private method
processElement() is a helper method that processes the customer’s XML
element representing a purchase and returns the updated XML element.

Example 6–2 shows the method signatures for the StatefulDoc class (see the src
directory to view the complete source code for StatefulDocImpl).

Example 6–2 Defining Java Methods for a Stateful Document Style Web Service

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;

public class StatefulDocImpl implements StatefulDoc
 private Element e ;
 public void startShopping(Element e)
 {
 }
 public Element makePurchase()
 {
6-6 Oracle Application Server Web Services Developer’s Guide

Writing Document Style Web Services
 }
 private void processElement(Element e) {
 }

Defining an Interface for Explicit Method Exposure
Oracle Application Server Web Services allows you to limit the methods you expose
as Document Style Web Services by supplying a public interface. To limit the
methods exposed in a Web Service, include a public interface that lists the method
signatures for the methods that you want to expose. Example 6–3 shows an
interface for the methods in the class StatelessDocImpl. Example 6–4 shows an
interface for the methods in the class StatelefulDocImpl.

When an interface is included with a Document Style Web Service, then only the
public methods specified in the interface need to conform to the method signature
restrictions shown in Table 6–1. If you do not include an interface, then all the
public methods in the class must conform to the method signature restrictions.
Using an interface, for example StatelessDoc shown in Example 6–3, only the
methods with the specified method signatures are exposed when the Java class is
prepared and deployed as a Document Style Web Service.

Use a Document Style Web Service interface for the following purposes:

1. To limit the exposure of methods to a subset of the public methods within a
class.

2. To expand the set of methods that are exposed to include methods within the
superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a
class, where the subset contains only the methods that use supported method
signatures. Table 6–1 lists the supported signatures for Java methods that
implement Document Style Web Services.

Example 6–3 Using a Public Interface to Expose Stateless Java Services

import org.w3c.dom.*;

public interface StatelessDoc
{
 //method to display the element
 public void displayElement(Element e) ;

 //method to process the input xml doc
Developing and Deploying Document Style Web Services 6-7

Writing Document Style Web Services
 public Element processElement(Element e) ;
}

Example 6–4 Using a Public Interface to Expose Stateful Java Services

import org.w3c.dom.Element;

// Interface that implements getElement and setElement
public interface StatefulDoc {

 // Set the Element
 public void startShopping(Element e);

 // Retrieve the element that was set
 public Element makePurchase();
}

Handling Messages for Document Style Web Services
It is entirely up to the Web Service developer to determine the processing that
occurs for messages associated with a Document Style Web Service.

The message associated with a Document Style Web Service is specified in the
Element parameter or the Element return value associated with the Document
Style Web Service. It is the Document Style Web Service developer’s job to process
or generate messages. The only limitation on Document Style Web Service messages
is that the Element must conform to must conform to the Document Object Model
(DOM) as specified by the W3C (org.w3c.dom.Element).

A Document Style Web Service implementation or the client that uses a service may
need to supports null values, since a null could be passed as an input Element
or as the Element that is returned.

For example, the following is valid for a Document Style Web Service
implementation:

Element get_op () {
 return null;
}

6-8 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
Preparing Document Style Web Services
This section describes how to use the Oracle Application Server Web Services tool
WebServicesAssembler to prepare a J2EE .ear file for a stateless and stateful
Document Style Web Service implemented as Java classes.

To deploy a Java class that implements a Document Style Web Service, you need to
assemble a J2EE .ear file that includes the deployment descriptors for the Oracle
Application Server Web Services Servlet and the Java classes that supply the Java
implementation. A Web Service implemented with Java classes includes a .war file
that provides configuration information for the Web Services Servlet running under
Oracle Application Server Containers for J2EE (OC4J). This section describes the
procedures you use to create a configuration file to use with the
WebServicesAssembler.

This section contains the following topics:

■ Creating a Configuration File to Assemble Document Style Web Services

■ Running WebServicesAssembler With Document Style Web Services

Creating a Configuration File to Assemble Document Style Web Services
The Oracle Application Server Web Services assembly tool,
WebServicesAssembler, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use to assemble
a Document Style Web Service. The Web Services assembly tool uses an XML
configuration file that describes the Document Style Web Service. The
WebServicesAssembler uses the configuration file to produce a J2EE .ear file
that can be deployed under Oracle Application Server Web Services.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding Java Service Tags with Document Message Style Specified

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 6–2 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the Document Style Web
Service.
Developing and Deploying Document Style Web Services 6-9

Preparing Document Style Web Services
Example 6–5 shows a complete stateless sample configuration file. Example 6–6
shows a complete stateful sample configuration file. The stateless and
stateful directories in the java_doc_services demo directory contain the
sample config.xml files.

Table 6–2 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>
name
</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.

<option
name=source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to specify
java resources, or the name of an existing .war, .ear, or ejb-jar file that is
used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies the
root-context for the .war file.

path1 specifies the context-root for the .war.

path2 specifies the path to the file to include.

For example:

<option name="source-path"
contextroot="/test">/myTestArea/ws/src/statefull.war</option>

This tag is optional.
6-10 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
Adding Java Service Tags with Document Message Style Specified
The Document Style Web Service developer determines if the service is stateful or
stateless. The configuration file includes different tags depending on the type of the
service. This section covers the tags for both cases, including:

■ Adding Stateful Document Style Java Service Tags

■ Adding Stateless Document Style Java Service Tags

<stateless-java-service>
sub-tags
</stateless-java-service>

Use this tag to add a Document Style Web Services that defines a stateless
service. See Table 6–3 for a description of valid sub-tags.

<stateful-java-service>
sub-tags
</stateful-java-service>

Use this tag to add a Document Style Web Services that defines a stateful
service. See Table 6–3 for a description of valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Table 6–3 Java Service WebServicesAssembler Configuration Tags - Document Style

Tag Description

<class-name>
value
</class-name>

The Document Style Web Service definition requires at least one
<class-name> tag. The value specifies the name of the Java class that provides
the Document Style Web Service implementation.

This tag is required.

<interface-name>
interface
</interface-name>

A Document Style Web Service configuration file supports the optional
<interface-name> tag. The corresponding interface value supplied specifies
the name of the Java interface that lists the methods to include in the Document
Style Web Service.

This tag is optional.

<java-resource>
resource
</java-resource>

This tag supports adding a Java resource. This specifies the location of the java
resources to include in the Document Style Web Service.

Include multiple <java-resource> tags to include multiple Java resources.

This tag is optional

Table 6–2 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying Document Style Web Services 6-11

Preparing Document Style Web Services
Adding Stateful Document Style Java Service Tags

Table 6–3 describes the <stateful-java-service> WebServicesAssembler
configuration file tags. Use these tags when creating a configuration file for a
stateful Document Style Web Service.

Example 6–5 shows a complete config.xml file, including the stateful Document
Style Web Service tags.

Adding Stateless Document Style Java Service Tags

Table 6–3 describes the <stateless-java-service> WebServicesAssembler
configuration file tags to use when creating a stateful Document Style Web Service.
The <stateless-java-service> tag is included within a <web-service> tag

<message-style>
doc
</message-style>

When defining a Document Style Web Service, you must include the
<message-style> tag and specify the value doc.

Valid Values: doc, rpc

This tag is required for Document Style Web Services.

Default value: rpc (when the <message-style> tag is not supplied)

<scope>
value
</scope>

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful-java-service> tag.

This tag is optional.

Valid Values: application, session

Default Value: session

<session-timeout>
value
</session-timeout>

This optional parameter only applies for stateful services. Use this tag only
within the <stateful-java-service> tag.

Specify value with an integer that defines the timeout for the session timeout.
session. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional.

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements the
Document Style Web Service. The path specified as the URI is appended to the
<context> to specify the Document Style Web Service location.

This tag is optional.

Table 6–3 (Cont.) Java Service WebServicesAssembler Configuration Tags - Document Style

Tag Description
6-12 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
in the configuration file. Add this tag to provide information required for
generating a stateless Document Style Web Service J2EE .ear file.

Example 6–6 shows a complete config.xml file, including the stateless Document
Style Web Service tags.

Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler configuration file supports the <wsdl-gen> and
<proxy-gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Document Style Web Service .ear. A
client-side developer can then obtain the WSDL file from the deployed Web Service
and use it to build an application.

Example 6–5 Sample Stateful Java WebServicesAssembler Configuration File for a Document Style
Web Service

<web-service>
 <display-name>Stateful Java Document Web Service</display-name>
 <description>Stateful Java Document Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./docws.ear -->
 <destination-path>./docws.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly tool can create temporary files. -->
 <temporary-directory>./temp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context named "/docws". -->
 <context>/statefuldocws</context>

 <!-- Specifies the web service will be stateful -->

 <stateful-java-service>
 <interface-name>StatefulDoc</interface-name>
 <class-name>StatefulDocImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named "/docService" within the servlet
context. -->
 <uri>/docservice</uri>

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4
Developing and Deploying Document Style Web Services 6-13

Preparing Document Style Web Services
 <!-- Specifies the location of Java class files ./classes -->
 <java-resource>./classes</java-resource>
 <!-- Specifies that it uses document style SOAP messaging -->
 <message-style>doc</message-style>
 </stateful-java-service>

 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>

 <!-- generate the proxy -->

 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>
</web-service>

Example 6–6 Sample Stateless Java WebServicesAssembler Configuration File for a Document Style
Web Service

<web-service>
 <display-name>Stateless Java Document Web Service</display-name>
 <description>Stateless Java Document Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./statelessdocws.ear -->
 <destination-path>./statelessdocws.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly tool can create temporary files. -->
 <temporary-directory>./temp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context named "/statelessdocws". -->
 <context>/statelessdocws</context>
 <!-- to package the stylesheet to format input xml -->
 <option name="source-path">converter.xsl</option>

 <!-- Specifies the web service will be stateless -->

 <stateless-java-service>
 <interface-name>StatelessDoc</interface-name>
 <class-name>StatelessDocImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named "/docService" within the servlet
context. -->
 <uri>/docservice</uri>
 <!-- Specifies the location of Java class files ./classes -->
 <java-resource>./classes</java-resource>
 <!-- Specifies that it uses document style SOAP messaging -->
6-14 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services
 <message-style>doc</message-style>
 </stateless-java-service>

 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>

 <!-- generate the proxy -->
 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>

</web-service>

Running WebServicesAssembler With Document Style Web Services
After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the Document Style Web Service. The J2EE EAR file includes
Document Style Web Service servlet configuration information, including the
generated file web.xml, and the implementation classes.

Run the Oracle Application Server Web Services assembly tool,
WebServicesAssembler as follows:

java -jar WebServicesAssembler.jar -config my_service_config

Where: my_service_config is the configuration file that contains the
<stateless-java-service> or the <stateful-java-service> tag.

See Also:

■ "Creating a Configuration File to Assemble Document Style
Web Services" on page 6-9

■ "Running the Web Services Assembly Tool" on page 9-2
Developing and Deploying Document Style Web Services 6-15

Deploying Document Style Web Services
Deploying Document Style Web Services
After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library
6-16 Oracle Application Server Web Services Developer’s Guide

Developing and Deploying JMS Web Se
7

Developing and Deploying JMS Web

Services

This chapter describes the procedures you use to configure, deploy, and build
Oracle Application Server Web Services that expose JMS destinations, including
JMS Queues and JMS Topics as Web Services. This chapter also covers writing a
backend JMS message processor to consume incoming JMS messages and to
generate outgoing JMS messages.

Oracle Application Server Web Services supports asynchronous message facilities
with JMS Web Services.

This chapter covers the following topics:

■ JMS Web Services Overview

■ Writing JMS Web Services and Handling Messages

■ Preparing and Configuring JMS Web Services

■ Deploying JMS Web Services

■ Limitations for JMS Web Services
rvices 7-1

JMS Web Services Overview
JMS Web Services Overview
This section covers the following topics:

■ Using JMS Web Services

■ JMS Web Services Backend Message Processing

Using JMS Web Services
The sample code for JMS Web Services is supplied on the Oracle Technology
Network Web site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

After expanding the Web Services demo.zip file, the samples are in the demo1 and
demo2 directories under webservices/demo/basic/jms_service on UNIX
and webservices\demo\basic\jms_service.

JMS Web Services examples show both OC4J/JMS and Oracle JMS. In the samples,
demo1 uses OC4J/JMS and demo2 uses Oracle JMS.

Using JMS Web Services, Oracle Application Server supplies a Servlet that supports
two operations on messages: a send operation and a receive operation. Using
these two operations, if the destination is a JMS Queue, send means enqueue, and
receive means dequeue. If the destination is a topic, send means publish and
receive means subscribe. An individual JMS Web Service can support just the
send operation, just the receive operation, or both operations, as determined by the
service developer.

The JMS Web Service determines how to handle incoming and outgoing messages
for JMS destinations based on the configuration of the JMS Web Service and on the
operation specified by the client-side program that uses the JMS Web Service. The
Oracle Application Server Web Services runtime verifier throws an exception if the
operation supplied by a JMS Web Service client is invalid. For example, if the
deployment operation is send, and the request is receive, an exception is thrown.

The client-side message associated with a JMS Web Service is an XML document
that conforms to the Document Object Model (DOM) as specified by the W3C
(org.w3c.dom.Element). For a send operation, it is the client-side developer’s
job to deliver a message of the correct form to a JMS Web Service. And likewise, for
a receive operation, the client must handle the message it receives from a JMS Web
Service.
7-2 Oracle Application Server Web Services Developer’s Guide

JMS Web Services Overview
JMS Web Services Backend Message Processing
A JMS Web Service consists of configuration information that defines the Web
Service, and, in addition the server-side developer provides code that consumes the
messages that a JMS Web Service client sends, or generates the messages that the
client receives.

This section describes the architecture for processing JMS messages associated with
a JMS Web Service and covers the following topics:

■ Using an MDB for Message Processing

■ Using a JMS Client for Message Processing

Using an MDB for Message Processing
A JMS Web Service either sends messages to a JMS destination or receives messages
from a JMS destination and can use an MDB on the backend for generating and
consuming messages. For example, Figure 7–1 shows an MDB based JMS Web
Service that, from the JMS Web Service client’s view, handles both the message
send and the message receive operations.

See Also: http://java.sun.com/products/jms/ for information
on JMS
Developing and Deploying JMS Web Services 7-3

JMS Web Services Overview
Figure 7–1 MDB Based JMS Web Service

Figure 7–1 includes an MDB that is configured to listen to a JMS destination. The
MDB based JMS Web Service works with the following steps:

1. A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

2. The JMS Web Service processes the incoming message and directs it to a JMS
destination, JMS Destination 1.

3. The EJB container invokes the MDB listening on JMS Destination 1.

4. After processing the message an MDB produces a new message on JMS
Destination 2. Producing and consuming messages could involve one or more
MDBs. For example, a single MDB could be listing on JMS Destination 1 and the
same MDB could also send the message to JMS Destination 2.

5. (Arrows 5 and 6) A JMS Web Service client performs a receive operation on
the JMS Web Service to receive a message. The JMS Web Service consumes a
message from the JMS destination, processes it, and passes the outgoing
message to the client.

OC4J

EJB Container

MDB

JMS Servlet

Send

JMS
Destination 1

JMS
Destination 2

25

34

1

6

Client

Receive HTTP

HTTP
7-4 Oracle Application Server Web Services Developer’s Guide

JMS Web Services Overview
Using a JMS Client for Message Processing
Using a JMS client for message processing, the JMS Web Service does not assemble,
deploy, or run the JMS code on the backend. A separate JMS program that runs
outside of the JMS Web Service, as a standalone JMS client, is responsible for
generating and consuming the JMS messages that are associated with the JMS Web
Service.

For example, Figure 7–2 shows a JMS Web Service that use a server-side JMS client
for message processing.

Figure 7–2 JMS Client Based JMS Web Service

The JMS Web service includes only configuration information that supports
handling messages and using JMS destinations. The JMS client based JMS Web
Service works with the following steps:

1. A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

2. The JMS Web Service then processes the incoming message and directs it to JMS
DEST 1.

OC4J

JMS Servlet

Send

25

3

4

1

6

Client

Receive HTTP

HTTP

AQ

JMS DEST 1

JMS DEST 2

Oracle

JMS
Client
Developing and Deploying JMS Web Services 7-5

Writing JMS Web Services and Handling Messages
3. The JMS client processes the incoming message on JMS DEST 1. The incoming
message could be identified using a message listener, or by other means.

4. After processing the incoming message the JMS client may produce a new
message on JMS DEST 2. The message on JMS DEST 2 could be produced by
another JMS client or by the same JMS client.

5. (Arrows 5 and 6) A JMS Web Service client performs a receive operation on
the JMS Web Service to receive a message. The JMS Web Service consumes an
outgoing message from the JMS destination and passes the message to the
client.

Writing JMS Web Services and Handling Messages
Writing a JMS Web Service presents a server-side developer with two tasks:

1. Building the backend message processing program for a JMS Web Service.

2. Preparing and configuring a JMS Web Service.

This section covers the following:

■ Using an MDB for Backend Message Processing

■ Using a JMS Standalone Program for Backend Message Processing

■ Message Processing and Reply Messages

Using an MDB for Backend Message Processing
When a JMS Web Service uses an MDB for generating or consuming messages, the
MDB must be assembled with the JMS Web Service. In this case, the MDB is
packaged as part of the J2EE .ear file that is deployed as a JMS Web Service.

Using an MDB with a JMS Web Service, the server-side developer is responsible for
performing the following steps:

■ Developing the MDB that Processes Incoming Messages

■ Developing the MDB that Generates Outgoing Messages

■ Compiling and Preparing the MDB EJB.jar File

See Also:

■ "Preparing and Configuring JMS Web Services" on page 7-11

■ Chapter 4, "Developing and Deploying EJB Web Services"
7-6 Oracle Application Server Web Services Developer’s Guide

Writing JMS Web Services and Handling Messages
■ Assembling the JMS Web Service With the MDB

■ Defining the Server-Side Resource References

Developing the MDB that Processes Incoming Messages
The MDB that processes incoming messages, generated from a JMS Web Service
send operation, must include an onMessage() method with the following
characteristics:

■ The onMessage() method should be declared as public, but not final or
static

■ The onMessage() method should have a return type of void

■ The onMessage() method should have one argument of type
javax.jms.Message. The JMS Web Service only supports messages of type
ObjectMessage, so the MDB developer should cast the incoming JMS Web
Service message to an ObjectMessage.

■ The message payload is available from the message using the getObject()
method on the incoming JMS message and casting to the Element type.

Example 7–1 shows an MDB method that handles an incoming JMS Message. Also
see MessageBean.java in the demo1 directory for the complete code.

Example 7–1 Sample Incoming onMessage() Method for JMS Web Service

 public void onMessage(Message inMessage) {
 ObjectMessage msg = null;
 Element e;
 try {
 // Message should be of type objectMessage
 if (inMessage instanceof ObjectMessage) {
 // retrieve the object
 msg = (ObjectMessage) inMessage;
 e = (Element)msg.getObject();
 processElement(e);
 this.send2Queue(e);
 } else {
 System.out.println("MessageBean::onMessage() => Message of wrong type: "
 + inMessage.getClass().getName());

Note: A given JMS Web Service may process incoming messages,
generate outgoing messages, or do both.
Developing and Deploying JMS Web Services 7-7

Writing JMS Web Services and Handling Messages
 }
 } catch (JMSException ex) {
 ex.printStackTrace();
 mdc.setRollbackOnly();
 } catch (Throwable te) {
 te.printStackTrace();
 }
 }

Developing the MDB that Generates Outgoing Messages
An MDB that generates an outgoing message, consumed by a JMS Web Service
receive operation, must include code that produces a message on a JMS
destination with the following characteristics:

■ The message placed on the JMS destination should be of type:
javax.jms.Message.ObjectMessage.

■ Set the payload of the message using the setObject() method on the
outgoing JMS message and casting to the java.io.Serializable type.

Example 7–2 shows a code fragment that creates an outgoing message of the correct
type. For the complete code for this example, see MessageBean2.java in the
demo2 directory.

Example 7–2 Sample Outgoing Message for JMS Web Service

// Create an Object Message
message = queueSession.createObjectMessage();
// Stuff the result into the ObjectMessage
((ObjectMessage)message).setObject ((java.io.Serializable)ee);
// Send the Message
queueSender.send(message);

Compiling and Preparing the MDB EJB.jar File
After compiling the MDB classes, create an EJB .jar file that includes the MDB and
its required deployment information.

Assembling the JMS Web Service With the MDB
Assemble the MDB’s EJB.jar file with the JMS Web Service .ear file using the
WebServicesAssembler tool and a configuration file containing the top-level tag
7-8 Oracle Application Server Web Services Developer’s Guide

Writing JMS Web Services and Handling Messages
<option name=source-path"> that specifies the EJB .jar, and the
<jms-doc-service> that defines the JMS Web Service configuration.

Defining the Server-Side Resource References
Define the resource references associated with the JMS destinations that the JMS
Web Service uses:

■ If the MDB uses OC4J/JMS, define the resource references in the OC4J
jms.xml configuration file.

■ If the MDB uses Oracle JMS, then run the sql files that support access to the
Oracle JMS destinations.

Using a JMS Standalone Program for Backend Message Processing
Using a JMS standalone program on the backend for the JMS Web Service, the
server-side developer is responsible for performing the following steps:

1. Developing the JMS client that defines the JMS destinations, handles incoming
messages, processes them, and produces the outgoing messages. The JMS client
can also perform processing that uses a JMS destination that triggers an MDB.

2. Assembling the JMS Web Service .ear file using the WebServicesAssembler
tool and a configuration file containing the top-level tag <jms-doc-service>.

3. Defining the resource references associated with JMS destinations in the
OC4J/JMS jms.xml configuration file. If the JMS destinations are defined in
Oracle JMS, then the developer must run the sql files that initialize the access to
the Oracle JMS destinations.

See Also:

■ "Preparing and Configuring JMS Web Services" on page 7-11

■ "Deploying JMS Web Services" on page 7-18

See Also: Chapter 3, "AQ Programmatic Environments" in the
Application Developer’s Guide - Advanced Queuing in the Oracle9i
Database Documentation library
Developing and Deploying JMS Web Services 7-9

Writing JMS Web Services and Handling Messages
Message Processing and Reply Messages
The JMS Web Service processes an incoming message, a JMS Web Service send
operation message, and places the message on a JMS destination. This section
covers details that a developer needs to know to consume and process the JMS
messages that originate from a JMS Web Service.

The client-side message associated with a JMS Web Service is an XML document
that conforms to the Document Object Model (DOM) as specified by the W3C
(org.w3c.dom.Element). When a JMS Web Service is sent an Element from a
Web Service client, it creates a JMS ObjectMessage that contains the Element.
The JMS Web Service may set certain header values before it places the message on
a JMS destination. Depending on the values of optional configuration tags specified
when the JMS Web Service is assembled, the JMS Web Service sets the following
JMS Message Headers:

JMSType
JMSReplyTo
JMSExpiration
JMSPriority
JMSDeliveryMode

When the JMS Web Service sets the JMSReplyTo header, it uses either the value
specified with the <reply-to-topic-resource-ref> or the
<reply-to-queue-resource-ref> (only one of these should be configured for
any given JMS Web Service). The value specified with the
<reply-to-connection-factory-resource-ref> tag is set on the message
as a standard string property. The property name is OC4J_REPLY_TO_FACTORY_
NAME.

Example 7–3 provides a code segment that shows where the onMessage() method
gets the ReplyTo information for message generated from a JMS Web Service send
operation:

See Also:

■ "Using an MDB for Backend Message Processing" on page 7-6

■ "Deploying JMS Web Services" on page 7-18

Note: When a JMS Web Service uses standalone a JMS client to
consume or generate messages, the standalone client cannot be
assembled with the JMS Web Service.
7-10 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
Example 7–3

 public void onMessage(Message inMessage) {
 // Do some processing
 ObjectMessage msg = null;
 String factoryName;
 Destination dest;
 Element el;
 try {
 // Message should be of type objectMessage
 if (inMessage instanceof ObjectMessage) {
 // retrieve the object
 msg = (ObjectMessage) inMessage;
 el = (Element)msg.getObject();
 System.out.println("MessageBean2::onMessage() => Message received: ");
 ((XMLElement)el).print(System.out);
 processElement(el);
 factoryName = inMessage.getStringProperty("OC4J_REPLY_TO_FACTORY_NAME");
 dest = inMessage.getJMSReplyTo();
.
.
.

Preparing and Configuring JMS Web Services
This section describes how to use the Oracle Application Server Web Services tool
WebServicesAssembler to prepare a J2EE .ear file for a JMS Web Service.

To deploy a JMS Web Service, you need to assemble a J2EE .ear file. The J2EE .ear
file can include the following:

■ The deployment descriptors for the Oracle Application Server Web Services
Servlet.

■ If the JMS Web Service also includes an MDB, then the J2EE .ear also includes a
Jar file that supplies the MDB implementation. This component is optional. To
expose JMS Queues or Topics as JMS Web Services, you are not required to
include an MDB Jar file with the JMS Web Service.

See Also:

■ "Developing the MDB that Processes Incoming Messages" on
page 7-7

■ "Adding JMS Doc Service Tags" on page 7-13
Developing and Deploying JMS Web Services 7-11

Preparing and Configuring JMS Web Services
This section describes the procedures you use to create a configuration file to use
with the WebServicesAssembler.

This section contains the following topics:

■ Creating a Configuration File to Assemble JMS Web Services

■ Running WebServicesAssembler With JMS Web Services

Creating a Configuration File to Assemble JMS Web Services
The Oracle Application Server Web Services assembly tool,
WebServicesAssembler, assists in assembling Oracle Application Server Web
Services. This section describes how to create an XML configuration file that
describes the JMS Web Service to be assembled.

Create WebServicesAssembler configuration file by adding the following:

■ Adding Web Service Top Level Tags

■ Adding JMS Doc Service Tags

■ Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags
Table 7–1 describes the top level WebServicesAssembler configuration file tags.
Add these tags to provide top level information describing the JMS Web Service.

Example 7–4 shows a complete JMS Web Service sample configuration file. The
demo1 and demo2 directories in the jms_service directory contain complete
config.xml files for JMS Web Services.

Table 7–1 Top Level WebServicesAssembler Configuration Tags

Tag Description

<context>
context
</context>

Specifies the context root of the Web Service.

This tag is required.

<datasource-JNDI-name>
name
</datasource-JNDI-name>

Specifies the datasource associated with the Web Service.

<description>
description
</description>

Provides a simple description of the Web Service.

This tag is optional.
7-12 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
Adding JMS Doc Service Tags
The <jms-doc-service> defines the configuration information for a JMS Web
Service. The JMS Web Service developer determines if the service supports send
operations, receive operations, or both send and receive, based on the value of the
<operation> sub-tag. Some of the configuration file tags are only valid,
depending on the operation selected for the Web Service. Table 7–2 lists all the
supported <jms-doc-service> sub-tags, and includes information on whether
each is valid, based on the operation specified.

<destination-path>
dest_path
</destination-path>

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

<display-name>
disp_name
</display-name>

Specifies the Web Service display name.

This tag is optional.

<option name="source-path">
path
<option>

Includes a specified file in the output .ear file. Use this option to
specify java resources, or the name of an existing .war, .ear, or ejb-jar
file that is used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies
the root-context for the .war file.

path1 specifies the context-root for the .war.

path2 specifies the path to the file to include.

For example:

<option name="source-path"
contextroot="/test">/myTestArea/ws/src/statefull.war</option
>

This tag is optional.

<jms-doc-service>
sub-tags
</jms-doc-service>

Use this tag to add a JMS Web Service. See Table 7–2 for a description
of the valid sub-tags.

<temporary-directory>
temp_dir
</temporary-directory>

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Table 7–1 (Cont.) Top Level WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying JMS Web Services 7-13

Preparing and Configuring JMS Web Services
Table 7–2 JMS Service WebServicesAssembler Configuration Tags

Tag Description

<connection-factory-reso
urce-ref>
resource-ref
</connection-factory-res
ource-ref>

Specifies the Topic Connection Factory or Queue Connection Factory
resource reference resource-ref for the JMS destination associated with the
JMS Web Service.

This tag is required.

<jms-delivery-mode>
delivery-mode
</jms-delivery-mode>

Sets the JMSDeliveryMode message header to the specified delivery-mode
value for the JMS message that is created with a send operation.

This tag is valid when the <operation> value is: send or both

This tag is optional.

<jms-expiration>
expiration
</jms-expiration>

Sets the JMSExpiration message header to the specified expiration value
for the JMS message that is created with a send operation.

This tag is valid when the <operation> value is: send or both

This tag is optional.

<jms-message-type>
message-type
</jms-message-type>

Sets the JMSType for the message to the specified message-type for the JMS
message that is created with a send operation

This tag is valid when the <operation> value is: send or both

This tag is optional.

<jms-priority>
priority
</jms-priority>

Sets the JMSPriority message header to the specified priority value for the
JMS message that is created with a send operation.

This tag is valid when the <operation> value is: send or both

This tag is optional.

<receive-timeout>
priority
</receive-timeout>

Provides a configurable timeout value to specify the receive timeout in
milliseconds. This specifies the time in milliseconds that a receive operation
waits for a new message.

This tag is valid when the <operation> value is: receive or both

When this tag is not specified or when the value is set to 0, a JMS receive
operation blocks indefinitely. Valid values are 0 and positive integers.

Default value: 0

This tag is optional.
7-14 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
<operation>
op
</operation>

Specifies the operation op that the JMS Web Service supports.

Using the send and receive operation:

■ If the destination is a JMS Queue, send means enqueue, and receive
means dequeue.

■ If the destination is a topic, send means publish and receive means
subscribe.

The send operation uses the <connection-factory-resource-ref>
and the corresponding JMS destination <queue-resource-ref> or
<topic-resource-ref> to determine the JMS destination for a send
operation on the service.

With the receive operation, when the
<reply-to-connection-factory-resource-ref> tag is not set, then
the receive operation uses the
<connection-factory-resource-ref> and the corresponding JMS
destination <queue-resource-ref> or <topic-resource-ref>. When
the <reply-to-connection-factory-resource-ref> tag is set, then
the <reply-to-*> tags specify the JMS destination for receive
operations.

Valid values: send, receive, both

Default value: both

This tag is optional.

<queue-resource-ref>
queue-ref
</queue-resource-ref>

Specifies the resource reference queue-ref of the destination JMS queue.

Either a <topic-resource-ref> or a <queue-resource-ref> must be
specified, but not both. When a <queue-resource-ref> is specified, the
<connection-factory-resource-ref> must refer to a corresponding
Queue connection factory.

<reply-to-connection-fac
tory-resource-ref>
reply-to-conn-factory-res-ref
</reply-to-connection-fa
ctory-resource-ref>

If the <operation> specified is both, then receive operations use the
<reply-to-connection-factory-resource-ref>. The specified
reply-to-conn-factory-res-ref value specifies the JMS destination connection
factory for receive operations. Also, if the MDB, or any JMS consumer,
expects to send results back then the name of the destination connection
factory to which the reply message will be sent has to be specified in this
parameter.

See Also: "Message Processing and Reply Messages" on page 7-10.

This tag is optional.

Table 7–2 (Cont.) JMS Service WebServicesAssembler Configuration Tags

Tag Description
Developing and Deploying JMS Web Services 7-15

Preparing and Configuring JMS Web Services
Adding WSDL and Client-Side Proxy Generation Tags
The WebServicesAssembler supports the <wsdl-gen> and <proxy-gen> tags
to allow a Web Service developer to generate WSDL files and client-side proxy files.
You can use these tags to control whether the WSDL file and the client-side proxy

<reply-to-queue-resource
-ref>
reply-to-queue-res-ref
</reply-to-queue-resourc
e-ref>

Specifies the resource reference reply-to-queue-res-ref of the destination JMS
queue.

When a <reply-to-queue-resource-ref> is specified, the
<reply-to-connection-factory-resource-ref> must refer to a
corresponding Queue connection factory.

If the <reply-to-connection-factory-resource-ref> tag is set,
then either a <reply-to-topic-resource-ref> or a
<reply-to-queue-resource-ref> must be specified, but not both.

This tag is optional.

<reply-to-topic-resource
-ref>
reply-to-topic-res-ref
</reply-to-topic-resourc
e-ref>

Specifies the resource reference reply-to-topic-res-ref of the destination JMS
Topic.

When a <reply-to-topic-resource-ref> is specified, the
<reply-to-connection-factory-resource-ref> must refer to a
corresponding Topic connection factory.

If the <reply-to-connection-factory-resource-ref> tag is set,
then either a <reply-to-topic-resource-ref> or a
<reply-to-queue-resource-ref> must be specified, but not both.

This tag is optional.

<topic-resource-ref>
topic-ref
</topic-resource-ref>

Specifies the resource reference topic-ref of the destination JMS Topic.

Either a <topic-resource-ref> or a <queue-resource-ref> must be
specified, but not both. When a <topic-resource-ref> is specified, the
<connection-factory-resource-ref> must refer to a corresponding
Topic connection factory.

<topic-subscription-name
>
topic-name
</topic-subscription-nam
e>

When a JMS provider supports durable JMS topics, the JMS Doc service
supports using the durable topics. To specify a durable topic, use this tag to
specify the topic-name. This tag is only valid when a
<topic-resource-ref> is supplied.

This tag is optional.

<uri>
URI
</uri>

This tag specifies servlet mapping pattern for the Servlet that implements
the JMS Web Service. The path specified as the URI is appended to the
<context> to specify the JMS Web Service location.

This tag is optional.

Table 7–2 (Cont.) JMS Service WebServicesAssembler Configuration Tags

Tag Description
7-16 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services
are generated. Using these tags you can also specify that the generated WSDL file or
a WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

Example 7–4 Sample WebServicesAssembler Configuration File for JMS Web Service

<web-service>
 <display-name>JMS Web Service Example</display-name>
 <description>JMS Web Service Example</description>
 <!-- Name of the destination -->
 <destination-path>./jmsws1.ear</destination-path>
 <temporary-directory>./tmp</temporary-directory>
 <!-- Context root of the application -->
 <context>/jmsws1</context>
 <!-- Path of the jar file with MDBs definied/implemented in it -->
 <option name="source-path">MDB/mdb_service1.jar</option>

 <!-- tags for jms doc service -->
 <jms-doc-service>
 <uri>JmsSend</uri>
 <connection-factory-resource-ref>jms/theQueueConnectionFactory</connection-factory-resource-ref>
 <queue-resource-ref>jms/theQueue</queue-resource-ref>
 <operation>send</operation>x
 </jms-doc-service>

 <jms-doc-service>
 <uri>JmsReceive</uri>
 <connection-factory-resource-ref>jms/logQueueConnectionFactory</connection-factory-resource-ref>
 <queue-resource-ref>jms/logQueue</queue-resource-ref>
 <operation>receive</operation>
 </jms-doc-service>
 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 <!-- do not package the wsdl -generate it again on the server-->
 <option name="packageIt">false</option>
 </wsdl-gen>
 <!-- generate the proxy -->
 <proxy-gen>

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-4
Developing and Deploying JMS Web Services 7-17

Deploying JMS Web Services
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>
</web-service>

Running WebServicesAssembler With JMS Web Services
After you create the WebServicesAssembler configuration file, you can generate
a J2EE .ear file for the JMS Web Service. The J2EE EAR file includes Web Service
servlet configuration information, including the generated file web.xml, and if the
service includes MDBs, the ejb.jar file containing the implementation classes.

Run the Oracle Application Server Web Services assembly tool,
WebServicesAssembler as follows:

java -jar WebServicesAssembler.jar -config my_jms_service_config

Where: my_jms_service_config is the configuration file that contains the
<jms-doc-service> tag.

Deploying JMS Web Services
After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4J).

Limitations for JMS Web Services
The JMS Web Service only supports messages of type ObjectMessage
(javax.jms.Message.ObjectMessage).

See Also:

■ "Creating a Configuration File to Assemble JMS Web Services"
on page 7-12

■ "Running the Web Services Assembly Tool" on page 9-2

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library
7-18 Oracle Application Server Web Services Developer’s Guide

Building Clients that Use Web Se
8

Building Clients that Use Web Services

This chapter describes the Oracle Application Server Web Services features that
allow you to easily create and run a client application that uses Oracle Application
Server Web Services.

This chapter contains the following topics:

■ Locating Web Services

■ Getting WSDL Files and Client-Side Proxy Jars for Web Services

■ Working with Client-Side Proxy Jar to Use Web Services

■ Working with WSDL Files and Oracle JDeveloper to Use Web Services
rvices 8-1

Locating Web Services
Locating Web Services
When you want to use Web Services you need to develop a client application. There
are two types of Web Services clients: static web service clients and dynamic web
service clients. A static web service client knows where a Web Service is located
without looking up the service in a UDDI registry. A dynamic web service client
performs a lookup to find the Web Service’s location in a UDDI registry before
accessing the service. Chapter 10, "Discovering and Publishing Web Services"
provides detailed information on looking up Web Services in a UDDI registry.

Using a static client Oracle Application Server Web Services provides several
options for locating Oracle Application Server Web Services, including:

■ Using a known Web Service located at a known URL.

■ Using Oracle Application Server Web Services and a known service URL to
obtain a client-side proxy Jar, or by other means obtaining a client-side proxy
Jar for a Web Service. The client-side proxy Jar that Oracle Application Server
Web Services generates includes the URL to locate the associated Web Service.

■ Using Oracle Application Server Web Services and a known service URL to
obtain a WSDL file, or by other means obtaining a WSDL file that describes a
Web Service. The WSDL files that Oracle Application Server Web Services
generates includes the URL to locate the associated Web Service.

After you locate a Web Service or after you obtain either the WSDL or client-side
proxy Jar, you can build a client-side application that uses the Web Service.

Getting WSDL Files and Client-Side Proxy Jars for Web Services
This section covers the following:

■ Using the Web Service Home Page to Save WSDL and Client Side Proxies

■ Getting Web Service WSDL and Client-Side Proxies Directly

■ Generating Client-Side Proxies With WebServicesAssembler

Using the Web Service Home Page to Save WSDL and Client Side Proxies
To use Oracle Application Server Web Services you need to create a client-side
application that accesses a Web Service. Oracle Application Server Web Services
supplies the following files for deployed Web Services:

See Also: Chapter 10, "Discovering and Publishing Web Services"
8-2 Oracle Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services
■ WSDL service descriptions

■ Client-side proxy Jar (class files)

■ Client-side proxy source

Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web Service. To access a Home Page, enter a service endpoint of the form,

http://host:port/context-root/service

Figure 8–1 shows the Web Service Home Page for StatefulExample, at the following
endpoint,

http://system1.us.oracle.com/webservices/statefulTest

A Web Service Home Page provides the following:

■ A Link to the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

■ Links to Web Service Test Pages for each supported operation-To test the
available Web Service operations enter the parameter values for the operation, if
any, and select the Invoke button.

■ Links to the Web Service client-side proxy Jar and the client-side proxy source -
To obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.
Building Clients that Use Web Services 8-3

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Figure 8–1 Web Service Home Page

Limitations for Web Service Test Pages
Web Service Test Pages have the following limitations:

■ There is no support for complex input parameters for RPC style Web Services.
Such pages do not support the Invoke button.

■ There is no support for Document Style Web Services. Such pages do not
support the Invoke button.
8-4 Oracle Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Getting Web Service WSDL and Client-Side Proxies Directly
If you do not use the Web Service Home Page to get the WSDL file or client-side
proxy for a Web Service, you can obtain these files directly.

This section covers the following:

■ Getting WSDL Service Descriptions

■ Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

■ Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

Getting WSDL Service Descriptions
To obtain the WSDL service description for a Web Service, use the Web Service URL
and append a query string. The format for the URL to obtain the WSDL service
description is as follows (see Table 8–1 for a description of the URL components):

http://host:port/context-root/service?WSDL
or

http://host:port/context-root/service?wsdl

This command returns a WSDL description in the form service.wsdl. The
service.wsdl description contains the WSDL for the Web Service named service,
located at the specified URL. Using the WSDL that you obtain, you can build a
client application to access the Web Service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar
To obtain the client-side proxy Jar for a Web Service, use the Web Service URL and
append a query string. The client-side proxy Jar file contains the proxy stubs class
that supports building an application that communicates using SOAP to access the
Web Service. The proxy class does the following:

■ Provides a static location for the Web Service (the service does not need to be
looked up in a UDDI registry).

■ Provides proxy methods for each method exposed as part of the Web Service.

■ Performs all of the work to construct the SOAP request, including marshalling
and unmarshalling parameters, and handling the response.
Building Clients that Use Web Services 8-5

Getting WSDL Files and Client-Side Proxy Jars for Web Services
The format for the URL to obtain the client-side proxy Jar is as follows (see
Table 8–1 for a description of the URL components):

http://host:port/context-root/service?PROXY_JAR
or

http://host:port/context-root/service?proxy_jar

This command returns the file service_proxy.jar. The service_proxy.jar is a
Jar file that contains the client-side proxy classes that you can use to build a
client-side application to access the Web Service.

To obtain the client-side proxy source Jar for a Web Service, use the Web Service
URL and append a query string. The format for the URL to obtain the client-side
proxy source Jar is as follows (see Table 8–1 for a description of the URL
components):

http://host:port/context-root/service?PROXY_SOURCE
or

http://host:port/context-root/service?proxy_source

This command returns the file service_proxysrc.jar. The file
service_proxysrc.jar is a Jar file that contains the client-side proxy source files.
This file represents the source code for the file service_proxy.jar associated with
the service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package
When you obtain the client-side proxy Jar file or the client-side proxy source Jar,
you have the option of including a request parameter that specifies a package name
for the generated client-side proxy classes or source files. If the Web Service’s
client-side Java class is part of a particular package, then you should specify the
package name to match the client-side application’s package name.

The format for the URL to obtain the client-side proxy Jar and specify the package
name is as follows (see Table 8–1 for a description of the URL components):

http://host:port/context-root/service?PROXY_JAR&packageName=mypackage
or

http://host:port/context-root/service?proxy_jar&packageName=mypackage

This command returns the file service_proxy.jar. The service_proxy.jar is a
Jar file that contains the client-side proxy classes, using the specified package,
mypackage for the Java package statement.
8-6 Oracle Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services
The format for the URL to obtain the client-side proxy source Jar and specify the
package name is as follows (see Table 8–1 for a description of the URL components):

http://host:port/context-root/service?PROXY_SOURCE&packageName=mypackage
or

http://host:port/context-root/service?proxy_source&packageName=mypackage

This command returns the file service_proxysrc.jar. As for the proxy_jar, you
have the option of specifying a request parameter with a supplied package name by
include a packageName=name option. The service_proxysrc.jar is a Jar file that
contains the client-side source files for the client-side proxy that accesses the Web
Service.

Table 8–1 URL for Accessing Client Side Proxy Stubs

URL Component Description

context-root The context-root is the value specified in the <context-root> tag for the web
module associated with the Web Service. See the META-INF/application.xml
in the Web Service’s .ear file to determine this value.

host This is the host of the Web Service’s server running Oracle Application Server Web
Services.

mypackage This specifies the value that you want to use for the package name in the
generated proxy Jar or proxy source.

port This is the port of the Web Service’s server running Oracle Application Server Web
Services.

service The service is the value specified in the <url-pattern> tag for the servlet
associated with the Web Service. This is the service name. See the
WEB-INF/web.xml in the Web Service’s .war file to determine this value.

See Also:

■ Chapter 3, "Developing and Deploying Java Class Web
Services"

■ Chapter 4, "Developing and Deploying EJB Web Services"

■ Chapter 5, "Developing and Deploying Stored Procedure Web
Services"
Building Clients that Use Web Services 8-7

Getting WSDL Files and Client-Side Proxy Jars for Web Services
Generating Client-Side Proxies With WebServicesAssembler
The Oracle Application Server Web Services WebServicesAssembler tool allows
you to generate client-side proxies. A client-side proxy can access a Web Service that
is deployed either on an Oracle Application Server Web Services endpoint or on a
third party Web Service endpoint.

To generate a client-side proxy with WebServicesAssembler, specify a
<proxy-gen> tag in the configuration file. Table 8–2 describes the <proxy-gen>
WebServicesAssembler configuration file sub-tags.

Example 8–1 shows a sample WebServicesAssembler that includes a
<proxy-gen> tag.

Example 8–1 WebServicesAssembler Proxy Gen Configuration File

<?xml version="1.0"?>
<web-service>
 <proxy-gen>
 <proxy-dir>/TestArea/Hotel/proxy/outside</proxy-dir>
 <option name="include-source">true</option>
 <option name="wsdl-location" package-name="myPackage.proxy">
 http://terraservice.net/TerraService.asmx?WSDL</option>
 <option name="wsdl-location">
 http://ws.serviceobjects.net/sq/FastQuote.asmx?WSDL</option>
 </proxy-gen>
</web-service>

Note: When you are generating client-side proxies and you are
accessing an external WSDL file from behind a firewall, make sure
to set the appropriate security properties shown in Table 8–4, such
as http.proxyHost and http.proxyPort.
8-8 Oracle Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services
Working with Client-Side Proxy Jar to Use Web Services
This section describes how to use the client-side proxy Jar when you are building
the client-side application to access a Web Service. The client-side proxy Jar class
allows you to easily build an application that uses a Web Service.

The client side proxy Jar file contains a Java class to serve as a proxy to the Web
Service implementation. The client-side proxy code constructs a SOAP request and
marshalls and unmarshalls parameters for you. Using the proxy classes saves you

Table 8–2 Proxy Generation <proxy-gen> Sub-Tags

Tag Description

<proxy-dir>
directory
</proxy-dir>

Specifies the directory for the generated client-side proxy stubs Jar
file that is included in the generated Web Service .ear file.

This tag is required.

<option name="include-source">
value
</option>

Setting value to true tells WebServicesAssembler to include the
classes and the source in the generated client-side proxy. When the
value is false, the source is not included in the generated Jar.

This tag is optional.

Valid values: true, false

Default value: false

<option name="wsdl-location">
URL
</option>

or

<option name="wsdl-location"
package-name="package">
URL
</option>

This tag sets the URL to use for the source WSDL to use to generate
the client-side proxy.

This option also supports the optional attribute package-name. The
package-name can specify the name package for the generated
client-side proxy.

This tag is optional.

Examples:

<option name="wsdl-location">
http://system1:8888/webservice3/TestService?WSDL
</option>

<option name="wsdl-location"
package-name="myPackage.proxy">
http://system1:8888/webservice3/TestService?WSDL
</option>

See Also: Chapter 9, "Web Services Tools"
Building Clients that Use Web Services 8-9

Working with Client-Side Proxy Jar to Use Web Services
the work of creating SOAP requests for accessing a Web Service or processing Web
Service responses.

Example 8–2 shows a source code sample client-side proxy extracted from a Web
Service. For each operation available on the Web Service, there is a corresponding
method in the proxy class. The example shows the method helloWorld(String)
that serves as a proxy to the helloWorld(String) method in the associated Web
Service implementation.

Example 8–3 shows client-side application code that uses the helloWorld()
method from the supplied client-side proxy shown in Example 8–2.

Example 8–2 Sample Client-side Proxy Method for Web Services

public class StatefulExampleProxy {

 public java.lang.String helloWorld(java.lang.String param0) throws Exception
 {
 .
 .
 .
 }
.
.
.
}

Example 8–3 Sample Client-side Application Using a Proxy Class for Web Services

import oracle.j2ee.ws_example.proxy.*;

public class Client
{
 public static void main(String[] argv) throws Exception
 {

Note: When you are accessing an external Web Service from
behind a firewall, make sure to set the appropriate security
properties shown in Table 8–4, such as http.proxyHost and
http.proxyPort.
8-10 Oracle Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services
 StatefulExampleProxy proxy = new StatefulExampleProxy();
 System.out.println(proxy.helloWorld("Scott"));
 System.out.println(proxy.count());
 System.out.println(proxy.count());
 System.out.println(proxy.count());
 }
}

Setting the Web Services Proxy Client CLASSPATH
When you build a Web Services clients using a proxy, you need to use the correct
CLASSPATH to run the client. Table 8–3 lists jars that you need to include in the
CLASSPATH.

Table 8–3 Web Services CLASSPATH Components for a Client Using a Client-side Proxy

Component Jar Description

proxy.jar The proxy jar file that provides access to the Web Service.

$ORACLE_HOME/lib/xmlparserv2.jar The Oracle XML parser jar.

$ORACLE_HOME/j2ee/home/lib/http_client.jar The Oracle HTTP client jar.

$ORACLE_HOME/soap/lib/soap.jar The Oracle SOAP jar.

$ORACLE_HOME/j2ee/home/lib/mail.jar Generally, this is available in the JRE. If this is not available in
the JRE, then include it in the CLASSPATH.

$ORACLE_HOME/j2ee/home/lib/activation.jar Generally, this is available in the JRE. If this is not available in
the JRE, then include it in the CLASSPATH

$ORACLE_HOME/jlib/javax-ssl-1_1.jar Used when the client uses SSL to connect to a Web Service that
uses SSL. In this case, do not include $ORACLE_
HOME/lib/jsee.jar in the CLASSPATH.

$ORACLE_HOME/jlib/jssl-1_1.jar Required when the client is using SSL to connect to a Web
Service that uses SSL. In this case, either $ORACLE_
HOME/jlib/javax-ssl-1_1.jar or $ORACLE_
HOME/lib/jsse.jar must be specified.

$ORACLE_HOME/lib/jsse.jar Used when the client uses SSL to connect to a Web Service that
uses SSL. In this case, do not include $ORACLE_
HOME/jlib/javax-ssl-1_1.jar in the CLASSPATH.

$ORACLE_HOME/webservices/lib/wsdl.jar Required when the client is using a Dynamic Proxy.

$ORACLE_HOME/webservices/lib/dsv2.jar Required when the client is using a Dynamic Proxy.
Building Clients that Use Web Services 8-11

Working with Client-Side Proxy Jar to Use Web Services
Using Java Beans as Parameters for Web Services
When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates
SOAP structures to and from Java Beans by translating SOAP structure namespaces
to and from fully qualified Bean class names. If a Bean with the specified name does
not exist in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather
than the client-side proxy. The generated WSDL document describes SOAP
structures in a standard way. Application development environments, such as
Oracle JDeveloper, which work directly from WSDL documents can correctly call
Oracle Application Server Web Services with Java Beans as parameters.

Using Web Services Security Features
When you run a client-side application that uses Oracle Application Server Web
Services, you can access secure Web Services by setting properties in the client
application. Table 8–4 shows the available properties that provide credentials and
other security information for Web Services clients. Table 8–3 lists jar file that need
to be included in the CLASSPATH, including those required to support SSL.

In a Web Services client application, you can set the security properties shown in
Table 8–4 as system properties by using the -D flag at the Java command line, or
you can also set security properties in the Java program by adding these properties
to the system properties (use System.setProperties() to add properties). In
addition, the client side stubs include the _setTranportProperties method that
is a public method in the client proxy stubs. This method enables you to set the
appropriate values for security properties by supplying a Properties argument.
8-12 Oracle Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services
Table 8–4 Web Services HTTP Transport Security Properties

Property Description

http.authRealm Specifies the realm for which the HTTP authentication
username/password is specified.

This property is mandatory when using basic authentication.

http.authType Specifies the HTTP authentication type. The case of the value specified is
ignored.

Valid values: basic, digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not
setting the property.

http.password Specifies the HTTP authentication password.

http.proxyAuthRealm Specifies the realm for which the proxy authentication
username/password is specified.

http.proxyAuthType Specifies the proxy authentication type. The case of the value specified is
ignored.

Valid values: basic, digest

Specifying any value other than basic or digest is the same as not
setting the property.

http.proxyHost Specifies the hostname or IP address of the proxy host.

http.proxyPassword Specifies the HTTP proxy authentication password.

http.proxyPort Specifies the proxy port. The specified value must be an integer. This
property is only used when http.proxyHost is defined; otherwise this
value is ignored.

Default value: 80

http.proxyUsername Specifies the HTTP proxy authentication username.

http.username Specifies the HTTP authentication username.
Building Clients that Use Web Services 8-13

Working with Client-Side Proxy Jar to Use Web Services
java.protocol.handler.pkgs Specifies a list of package prefixes for
java.net.URLStreamHandlerFactory The prefixes should be
separated by "|" vertical bar characters.

This value should contain: HTTPClient

This value is required by the Java protocol handler framework; it is not
defined by Oracle Application Server. This property must be set when
using HTTPS. If this property is not set using HTTPS, a
java.net.MalformedURLException is thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

■ java.protocol.handler.pkgs=HTTPClient

■ java.protocol.handler.pkgs=sun.net.www.protocol|
HTTPClient

oracle.soap.transport.
allowUserInteraction

Specifies the allows user interaction parameter. The case of the value
specified is ignored. When this property is set to true and either of the
following are true, the user is prompted for a username and password:

1. If any of properties http.authType, http.username, or
http.password is not set, and a 401 HTTP status is returned by
the HTTP server.

2. If either of properties http.proxyAuthType,
http.proxyUsername, or http.proxyPassword is not set and a
407 HTTP response is returned by the HTTP proxy.

Valid values: true, false

Specifying any value other than true is considered as false.

oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported with Oracle SSL.

Table 8–4 (Cont.) Web Services HTTP Transport Security Properties

Property Description
8-14 Oracle Application Server Web Services Developer’s Guide

Working with WSDL Files and Oracle JDeveloper to Use Web Services
Working with WSDL Files and Oracle JDeveloper to Use Web Services
The Web Services WSDL allows you to manually, or using Oracle JDeveloper or
another IDE, build client applications that use Web Services.

The Oracle JDeveloper IDE supports Oracle Application Server Web Services with
WSDL features and provides unparalleled productivity for building end-to-end
J2EE and integrated Web Services applications.

Oracle JDeveloper supports Oracle Application Server Web Services with the
following features:

■ Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

■ Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and
WSDL file for you.

■ Provides schema-driven WSDL file editing.

■ Offers significant J2EE deployment support for Web Services J2EE .ear files,
with automatic deployment to OC4J.

Non-Oracle Web Services IDEs or client development tools can use the supplied
WSDL file to generate Web Services requests for services running under Oracle
Application Server Web Services. Currently, many IDEs have the capability to create
SOAP requests, given a WSDL description for the service.

oracle.wallet.location Specifies the location of an exported Oracle wallet or exported
trustpoints.

Note: The value used is not a URL but a file location, for example:

/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)

d:\oracle\system1\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication,
server or mutual, as the transport.

oracle.wallet.password Specifies the password of an exported wallet. Setting this property is
required when HTTPS is used with client, mutual authentication as the
transport.

Table 8–4 (Cont.) Web Services HTTP Transport Security Properties

Property Description
Building Clients that Use Web Services 8-15

Working with WSDL Files and Oracle JDeveloper to Use Web Services
8-16 Oracle Application Server Web Services Developer’s Guide

Web Services
9

Web Services Tools

The Oracle Application Server Web Services assembly tool,
WebServicesAssembler, assists in assembling Oracle Application Server Web
Services. The Web Services assembly tool takes a configuration file which describes
a Web Service, including the location of the Java classes, PL/SQL stored procedures
or functions, or J2EE EAR, WAR, or JAR files and produces a J2EE EAR file that can
be deployed under Oracle Application Server Web Services.

This chapter contains the following topics:

■ Running the Web Services Assembly Tool

■ Web Services Assembly Tool Configuration File Sample

■ Generating WSDL Files and Client Side Proxies

■ Web Services Assembly Tool Configuration File Specification

■ Web Services Assembly Tool Limitations
 Tools 9-1

Running the Web Services Assembly Tool
Running the Web Services Assembly Tool
Run the Web Services assembly tool as follows:

java -jar WebServicesAssembler.jar [-debug] -config [file]
or
java -jar WebServicesAssembler.jar [-debug]

Where file is a Web Services assembly tool configuration file. Without the -config
option, a file named config.xml must be present in the same directory where
WebServicesAssembler.jar is invoked.

With the -debug option, WebServicesAssembler displays verbose debugging
comments.

Web Services Assembly Tool Configuration File Sample
The sample configuration file shown in Example 9–1 defines two services to be
wrapped in an Enterprise ARchive file (EAR). The sample includes configuration
information for services defined with <stateless-java-service> and
<stateful-java-service> tags.

Note: When running WebServicesAssembler.jar from the
command line, the PATH environment variable should include the
JDK/bin directory (the directory with the javac compiler).

See Also:

■ "Preparing and Deploying Java Class Based Web Services" on
page 3-9

■ "Preparing and Deploying Stateless Session EJB Based Web
Services" on page 4-8

■ "Preparing Stored Procedure Web Services" on page 5-3

■ "Preparing Document Style Web Services" on page 6-9

■ "Preparing and Configuring JMS Web Services" on page 7-11
9-2 Oracle Application Server Web Services Developer’s Guide

Web Services Assembly Tool Configuration File Sample
Example 9–1 Sample Web Services Assembly Tool Configuration File

<web-service>

 <display-name>Web Services Example</display-name>
 <description>Java Web Service Example</description>
 <!-- Specifies the resulting web service archive will be stored in ./ws_example.ear -->
 <destination-path>./ws_example.ear</destination-path>
 <!-- Specifies the temporary directory that web service assembly
 tool can create temporary files. -->
 <temporary-directory>./tmp</temporary-directory>
 <!-- Specifies the web service will be accessed in the servlet context
 named "/webservices". -->
 <context>/webservices</context>

 <!-- Specifies the web service will be stateless -->
 <stateless-java-service>
 <interface-name>oracle.j2ee.ws_example.StatelessExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatelessExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statelessTest" within the servlet context. -->
 <uri>/statelessTest</uri>
 <!-- Specifies the location of Java class files are under ./src -->
 <java-resource>./src</java-resource>
 </stateless-java-service>

 <stateful-java-service>
 <interface-name>oracle.j2ee.ws_example.StatefulExample</interface-name>
 <class-name>oracle.j2ee.ws_example.StatefulExampleImpl</class-name>
 <!-- Specifies the web service will be accessed in the uri named
 "statefulTest" within the servlet context. -->
 <uri>/statefulTest</uri>
 <!-- Specifies the location of Java class files are under ./src -->
 <java-resource>./src</java-resource>
 </stateful-java-service>

 </web-service>

Web Services Assembly Tool Configuration File Sample Output
After running the Web Services Assembly tool with the sample input file shown in
Example 9–1, the generated output is an EAR file (/tmp/ws_example.ear) The
generated J2EE .ear file, ws_example.ear, has the structure shown in
Example 9–2.
Web Services Tools 9-3

Generating WSDL Files and Client Side Proxies
Example 9–2 Structure of Web Services Assembly Tool Sample Ear File

ws_example.ear
|---META-INF
| ‘---application.xml
‘---ws_example_web.war
 |---index.html
 ‘---WEB-INF
 |------web.xml
 ‘------classes
 ‘------oracle
 ‘-----j2ee
 ‘---ws_example
 |---StatefulExample.java
 |---StatefulExample.class
 |---StatefulExampleImpl.java
 ‘---StatefulExampleImpl.class
 |---StatelessExample.java
 |---StatelessExample.class
 |---StatelessExampleImpl.java
 ‘---StatelessExampleImpl.class

Generating WSDL Files and Client Side Proxies
This section describes using the <wsdl-gen> and <proxy-gen> tags in a
WebServicesAssembler configuration file. These tags controls the options for
generating WSDL files and client-side proxies for Web Services. A client-side
developer can obtain and use the WSDL file or the client-side proxies to build an
application that uses a Web Service. A server-side developer that is assembling Web
Services can use these file for testing Web Services.

This section covers the following topics:

■ Generating and Assembling WSDL Files

■ Generating Client-Side Proxies with WSDL
9-4 Oracle Application Server Web Services Developer’s Guide

Generating WSDL Files and Client Side Proxies
Generating and Assembling WSDL Files
Using Oracle Application Server Web Services, a Web Service developer has several
choices for deciding how the WSDL file that is associated with a Web Service is
generated:

1. Using the <wsdl-gen> tag, you can specify that WebServicesAssembler
create the WSDL file. At assembly time when the Web Service is prepared, the
WebServicesAssembler generates and packages the WSDL file with the Web
Service.

Example 9–3 shows a configuration file that includes the <wsdl-gen> tag.

2. Allowing the Oracle Application Server Web Services runtime to generate the
WSDL file when the WSDL is requested by a Web Service client (after the WEB
Service is deployed). In this case, you do not specify the <wsdl-gen> tag in the
configuration file.

3. Creating a WSDL file manually. In this case, use the <wsdl-gen> tag during
assembly of the J2EE .ear file to specify the path to the WSDL file. At assembly
time when the Web Service is prepared, the WebServicesAssembler
packages the WSDL file with the Web Service.

Table 9–1 describes the <wsdl-gen> WebServicesAssembler configuration file
sub-tags.

Note: Using the <wsdl-gen> tag, the default behavior is to
package the WSDL into the J2EE .ear file. To exclude the generated
WSDL from the J2EE .ear file, use <option name="packageIt">
tag and set the value to false.
Web Services Tools 9-5

Generating WSDL Files and Client Side Proxies
Example 9–3 WebServicesAssembler Configuration File Including <wsdl-gen>

<web-service>

 <display-name>Stateless Java Document Web Service</display-name>
 <description>Stateless Java Document Web Service Example</description>
 <destination-path>./statelessdocws.ear</destination-path>
 <temporary-directory>./temp</temporary-directory>
 <context>/statelessdocws</context>
 <option name="source-path">converter.xsl</option>

 <stateless-java-service>
 <interface-name>StatelessDoc</interface-name>
 <class-name>StatelessDocImpl</class-name>

Table 9–1 WSDL Generation <wsdl-gen> Sub-Tags

Tag Description

<option name="force">
value
</option>

Setting value to true forces WebServicesAssembler to
overwrite any existing WSDL file in the WSDL directory specified
with the <wsdl-dir> tag.

Valid values: true, false

Default value: true

<option name="httpServerURL">
URL
</option>

This tag sets the value for the HTTP server listener endpoint in the
generated WSDL. Set the URL to point to the Web Service HTTP
listener.

Example:

<option name="httpServerURL">http://localhost:8888</option>

<option name="packageIt">
value
</option>

Setting value to true tells WebServicesAssembler to include the
generated WSDL in the assembled .ear file. When the value is
false, the generated WSDL file is not included in the assembled
.ear file.

Valid values: true, false

Default value: true

<wsdl-dir>
directory
</wsdl-dir>

Specifies the directory for the WSDL file source that is included in
the generated Web Service .ear file.

When you are manually supplying the WSDL file, place a copy of
the WSDL file in the specified directory and use the <option
name="force"> tag with the value false.
9-6 Oracle Application Server Web Services Developer’s Guide

Generating WSDL Files and Client Side Proxies
 <uri>/docservice</uri>
 <java-resource>./classes</java-resource>
 <message-style>doc</message-style>
 </stateless-java-service>

 <!-- generate the wsdl -->
 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <!-- over-write a pregenerated wsdl , turn it 'false'
 to use the pregenerated wsdl-->
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 </wsdl-gen>

</web-service>

Manually Producing a WSDL File
When you do not want to use either the WebServicesAssembler tool generated
WSDL or the Oracle Application Server Web Services runtime generated WSDL file,
and you want to supply your own version of the Web Service WSDL file, perform
the following steps:

1. Manually create the WSDL file for your service.

2. Name the WSDL file with a name using the .wsdl extension placed after the
service name. For example, service1.wsdl for a service named service1.

3. Create a configuration file that includes the <wsdl-gen> tag, including
<option name="force"> set to false and <option
name="packageIt"> set to true.

4. Place the WSDL file that you create in the directory specified with the
<wsdl-dir> tag.

5. Run the WebServicesAssembler with the specified configuration file.
Web Services Tools 9-7

Generating WSDL Files and Client Side Proxies
Generating Client-Side Proxies with WSDL
When the <proxy-gen> tag is included in a configuration file with the
<wsdl-gen>, the generated WSDL is used to generate the proxy that is placed in
the specified directory (this occurs when WebServicesAssembler runs during
the Web Service assembly process).

Table 8–2 lists the <proxy-gen> sub-tags.

Example 9–4 shows a sample configuration file that includes both the <wsdl-gen>
and the <proxy-gen> tags.

Example 9–4 WebServicesAssembler Configuration File Including <wsdl-gen>

<web-service>
 <display-name>Test</display-name>
 <description>Test program</description>
 <destination-path>test.ear</destination-path>
<temporary-directory>temp/</temporary-directory><context>/HotelService</context>
 <option name="source-path">Workspace1/common/classes</option>

 <stateless-java-service>
 <interface-name>com.mypackage1.Itest</interface-name>
 <uri>/main</uri>
 <class-name>com.mypackage1.test</class-name>
 </stateless-java-service>

 <wsdl-gen>
 <wsdl-dir>wsdl</wsdl-dir>
 <option name="force">true</option>
 <option name="httpServerURL">http://localhost:8888</option>
 <option name="packageIt">false</option>
 </wsdl-gen>

 <proxy-gen>
 <proxy-dir>proxy</proxy-dir>
 <option name="include-source">true</option>
 </proxy-gen>

 </web-service>

Note: Using <proxy-gen>, the generated proxy is not assembled
in the J2EE .ear file.
9-8 Oracle Application Server Web Services Developer’s Guide

Web Services Assembly Tool Configuration File Specification
Web Services Assembly Tool Configuration File Specification
The input file for WebServicesAssembler is an XML file conforming to the Web
Services Assembly Tool configuration file DTD.

Example 9–5 shows the Web Services Assembly Tool Configuration file DTD.

Example 9–5 Assembly Tool Input File DTD

<?xml version="1.0" encoding="UCS-2"?>
<!-- Specify the properties of the web services to be assembled. -->
<!ELEMENT web-service
((display-name)?,(description)?,destination-path,temporary-directory,context,(datasource-JNDI-name)?,(statefu
l-java-service)*,(stateless-java-service)*,(stateless-stored-procedure-java-service)*,(stateless-session-ejb-
service)*,(jms-doc-service)*,(option)*,(wsdl-gen)?,(proxy-gen)?)>
<!ELEMENT display-name (#PCDATA)*>
<!ELEMENT description (#PCDATA)*>
<!-- Specify the full path of the resulting EAR file. For example,
"/home/demo/webservices.ear" -->
<!ELEMENT destination-path (#PCDATA)*>
<!-- Specify a directory where the assembly tool can create temporary
directories and files. -->
<!ELEMENT temporary-directory (#PCDATA)*>
<!-- Specify the context root of the web services. For example, "/webservices". -->
<!ELEMENT context (#PCDATA)*>
<!-- for specifying database resource refs -->
<!ELEMENT datasource-JNDI-name (#PCDATA)*>

<!-- Specify the properties of a stateful Java service -->
<!ELEMENT stateful-java-service
((interface-name)?,class-name,uri,(java-resource)*,(ejb-resource)*,(scope)*,(session-timeout)*,(message-style
)?)>
<!-- Specify the properties of a stateless Java service -->
<!ELEMENT stateless-java-service
((interface-name)?,class-name,uri,(java-resource)*,(ejb-resource)*,(message-style)?)>
<!-- Specify the properties of a stateless stored procedure Java service -->
<!ELEMENT stateless-stored-procedure-java-service
((interface-name)?,(class-name)?,uri,database-JNDI-name,(java-resource)?,(jar-generation)?)>
<!-- Specify the properties of a stateless session ejb service -->
<!ELEMENT stateless-session-ejb-service (path,uri,ejb-name,(ejb-resource)*)>

<!-- Specify the java interface which defines the public methods to be exposed
in the web service. For example, "com.foo.myproject.helloWorld". -->
<!ELEMENT interface-name (#PCDATA)*>
<!-- Specify the java class to be exposed as a web service. If interface-name is
not specified, all the public methods in this class will be exposed. For example,
 "com.foo.myproject.helloWorldImpl". -->
<!ELEMENT class-name (#PCDATA)*>
<!-- Specify the uri of this service. This uri is used in the URL to access the
Web Services Tools 9-9

Web Services Assembly Tool Configuration File Specification
WSDL and client jar, and invoke the web service. For example, "/myService". -->
<!ELEMENT uri (#PCDATA)*>
<!--
Specify the java resources used in this service.
The value can be a directory or a file that implements the web services. If it
is a directory, all the files and subdirectories under the directory are copied
and packaged in the Enterprise ARchive. If the java resource should belong to a
java package, you should either package it as a jar file and specify it as a
java resource, or create the necessary directory and specify the directory which
contains this directory structure as java resource. For example, you want to
include "com.mycompany.mypackage.foo" class as a java resource of the web
services, you can either package this class file in foo.jar and specify
<java-resource>c:/mydir/foo.jar</java-resource>, or place the class under
d:/mydir/com/mycompany/mypackage/foo.class and specify the java resource as
<java-resource>c:/mydir/</java-resource>.
-->
<!ELEMENT java-resource (#PCDATA)*>
<!-- Specify the ejb resources used in this service. ejb-resource should be a
jar file that implements a enterprise java bean. -->
<!ELEMENT ejb-resource (#PCDATA)*>
<!-- Specify the database JNDI name for stateless PL/SQL web service. -->
<!ELEMENT database-jndi-name (#PCDATA)*>
<!-- Specifies the path of the EJB jar file to exposed as web services. -->
<!ELEMENT path (#PCDATA)*>
<!-- Specify the ejb-name of the session bean to be exposed as web services.
ejb-name should match the <ejb-name> value in the META-INF/ejb-jar.xml of the bean. -->
<!ELEMENT ejb-name (#PCDATA)*>
<!-- Specify scope of Stateful Java service -->
<!ELEMENT scope (#PCDATA)*>
<!-- Specify session timeout of Stateful Java service -->
<!ELEMENT session-timeout (#PCDATA)*>
<!-- Specify the directory location of the generated wsdl-->
<!ELEMENT wsdl-dir (#PCDATA)*>
<!-- Specify that wsdl generation is to happen 'force' 'httpServerURL' 'packageIt'-->
<!ELEMENT wsdl-gen (wsdl-dir,(option)*)>
<!-- Specifyg the directory location of the generated proxy-->
<!ELEMENT proxy-dir (#PCDATA)*>
<!ELEMENT option (#PCDATA)*>
<!ATTLIST option name CDATA #REQUIRED>

<!-- Specifying that proxy generation is asked for , it can have optional tags as
'include-source' 'wsdl-location' -->
<!ELEMENT proxy-gen (proxy-dir,(option)*)>
<!ELEMENT jar-generation (db-package-name,db-schema,db-url,prefix,(method-name)*)>
<!ELEMENT database-JNDI-name (#PCDATA)*>
<!ELEMENT db-package-name (#PCDATA)*>
<!ELEMENT db-url (#PCDATA)*>
<!ELEMENT db-schema (#PCDATA)*>
<!ELEMENT prefix (#PCDATA)*>
<!ELEMENT method-name (#PCDATA)*>
9-10 Oracle Application Server Web Services Developer’s Guide

Web Services Assembly Tool Limitations
 <!-- specify the message style ,if this tag is not present it is considered to have 'rpc' ..it can have
values of 'rpc' or 'doc' or 'document' -->
<!ELEMENT message-style (#PCDATA)*>

<!ELEMENT connection-factory-resource-ref (#PCDATA)*>
<!ELEMENT topic-resource-ref (#PCDATA)*>
<!ELEMENT queue-resource-ref (#PCDATA)*>
<!--Resource ref of the return destination factory-->
<!ELEMENT reply-to-connection-factory-resource-ref (#PCDATA)*>
<!--Resource ref of the return destination Topic. -->
<!ELEMENT reply-to-topic-resource-ref (#PCDATA)*>
<!--Resource ref of the return destination Queue. -->
<!ELEMENT reply-to-queue-resource-ref (#PCDATA)*>
<!--jms-priority ,jms-message-type,jms-delvery-mode ,jms-expiration The JMS properties are only set for
enqueuing operations, i..e, for send operations only. -->
<!ELEMENT jms-priority (#PCDATA)*>
<!ELEMENT jms-message-type (#PCDATA)*>
<!ELEMENT jms-delivery-mode (#PCDATA)*>
<!ELEMENT jms-expiration (#PCDATA)*>
<!-- operation property is optional. Possible values for this parameter are: send, receive, and both. If not
provided, the value defaults to both. -->
<!ELEMENT operation (#PCDATA)*>
<!ELEMENT jms-doc-service
(uri,connection-factory-resource-ref,(topic-resource-ref)?,(queue-resource-ref)?,(reply-to-connection-factory
-resource-ref)?,(reply-to-topic-resource-ref)?,(reply-to-queue-resource-ref)?,(jms-priority)?,(jms-message-ty
pe)?,(jms-delivery-mode)?,(jms-expiration)?,(operation)?)>

Web Services Assembly Tool Limitations
The WebServicesAssembler tool has the following limitations:

■ No Upload/download capabilities: the Web Services Assembly tool does not
upload Java classes from a client system to a server or download a generated
EAR file back to a client system.

■ Does not support advanced configuration tasks: for example, the Web Services
Assembly tool is not able to control the security options for a Web Services
Servlet, cannot secure an EJB, secure welcome files, or perform other
administrative tasks.
Web Services Tools 9-11

Web Services Assembly Tool Limitations
9-12 Oracle Application Server Web Services Developer’s Guide

Discovering and Publishing Web Serv
10

Discovering and Publishing Web Services

Oracle Application Server Containers for J2EE (OC4J), provides a Universal
Discovery Description and Integration (UDDI) Web Services registry known as the
Oracle Application Server UDDI Registry, in which Web Services provider
administrators in an enterprise environment can publish their Web Services for use
by Web Services consumers (programmers). Web Services consumers can use the
UDDI inquiry interface to discover these published Web Services by browsing,
searching, and drilling down in the OracleAS UDDI Registry to select one or more
Web Services from among those registered, and use those services in their
applications for a particular enterprise process.

For example, a Web Services provider administrator working with programmers
who have completed a Web Services implementation using the J2EE stack (either
EJBs, JavaBeans, JSP, or servlets) and exposing the implementation as a Simple
Object Access Protocol (SOAP)-based Web Services, can publish the Web Services
by providing all the metadata and pointers to the interface specification in the
OracleAS UDDI Registry. In this way, the Web Services provider administrator
publishes the availability of these Web Services for the Web Services consumers to
discover and select for use in their own applications.

This chapter is organized into the following main sections:

■ UDDI Registration

■ Web Services Discovery

■ Web Services Publishing

■ OracleAS UDDI Registry Administration

■ OracleAS UDDI Server Error Message Reference Information

■ UDDI Open Database Support

■ UDDI Subscription Service
ices 10-1

UDDI Registration
As part of the OC4J OracleAS UDDI Registry, a SOAP API as defined by the UDDI
v2 specification is provided to be used primarily by Web Services application
developers (see the OracleAS SOAP API Reference Javadoc on the Oracle
Application Server 10g (9.0.4) Documentation CD-ROM). This API provides the
inquiry and publishing functions by implementing the inquiry and publishing API
defined by the UDDI v2 specification. The use of this API is described in Web
Services Discovery on page 10-7 and Web Services Publishing on page 10-11.

In addition, a set of management facilities and tools are provided for all
management and operational requirements of the registry as described in OracleAS
UDDI Registry Administration on page 10-25. Some of these tools are provided
through Oracle Enterprise Manager as described in Web Services Publishing on
page 10-11.

A Java-based client library is also provided to facilitate additional tool development
and application development (see the Oracle Application Server UDDI Client API
Reference Javadoc on the Oracle Application Server 10g (9.0.4) Documentation
CD-ROM).

UDDI open database support is provided for Microsoft SQL Server, IBM DB2, and
Oracle (non-infrastructure) databases as described in UDDI Open Database Support
on page 10-71.

Finally, OracleAS UDDI Registry leveraging OracleAS Syndication Services
provides a subscription service allowing publishers in the registry to monitor or
obtain changes in the registry (see UDDI Subscription Service on page 10-79). See
Subscribing to an Offer on page 10-83 for information about using the UDDI
Content Subscription Manager that allows publishers and administrators to
subscribe to offers from content providers through specialized content connectors
managed by OracleAS Syndication Services.

UDDI Registration on page 10-2 describes the types of searches that can be
performed in a UDDI registration, describes an overview of the data structure of a
UDDI registry as specified by the UDDI v2 specification, and finally describes a
subset of the Oracle implementation of the UDDI registry as support for Web
Services discovery and Web Services publishing.

UDDI Registration
The information provided in a UDDI registration can be used to perform three
types of searches:
10-2 Oracle Application Server Web Services Developer’s Guide

UDDI Registration
1. White pages search -- containing address, contact, and known identifiers. For
example, search for a business that you already know something about, such as
its name or some unique ID.

2. Yellow pages topical search -- containing industrial categories based on
standard classifications, such as NAICS, ISO-3166, and UNSPSC.

3. Green pages service search -- containing technical information about Web
Services that are exposed by a business, including references to specifications of
interfaces for Web Services, as well as support for pointers to various file and
URL-based discovery mechanisms.

UDDI uses standards-based technologies, such as common Internet protocols
(TCP/IP and HTTP), XML, and SOAP, which is a specification for using XML in
simple message-based exchanges. UDDI is a standard Web Services description
format and Web Services discovery protocol; a UDDI registry can contain metadata
for any type of service, with best practices already defined for those described by
Web Services Description Language (WSDL).

UDDI Registry Data Structure
The UDDI registry consists of the following five data structure types that group
information to facilitate rapid location and understanding of registration
information:

1. businessEntity -- the top-level, logical parent data structure; contains
descriptive information about the business that publishes information about
Web Services, such as business services, categories, contacts, discovery URLs,
and identifier and category information that is useful for performing searches.

2. businessService -- the logical child of a single businessEntity data structure as
well as the logical parent of a bindingTemplate structure; contains descriptive
business service information about a particular family of technical services
including its name, brief description, technical service description, and category
information that is useful for performing searches.

3. bindingTemplate -- the logical child of a single businessService data structure;
contains technical information about a Web Services entry point and references
to interface specifications.

4. tModel -- description of specifications for Web Services, or a classification that
forms the basis for technical identification; represents the technical specification
of Web Services, in order to facilitate Web Services consumer searching for
registered Web Services that are compatible with a particular technical
specification. That is, based on the descriptions of the specifications for Web
Discovering and Publishing Web Services 10-3

UDDI Registration
Services in the tModel structure, Web Services consumers can easily identify
other compatible Web Services.

5. publisherAssertion -- information about a relationship between two parties,
asserted by one or both.

Figure 10–1 shows the UDDI information model and the relationships among its
five data structure types.

Figure 10–1 UDDI Information Model Showing the Relationship Among the Five Main
Data Structure Types

Because UDDI makes use of XML and SOAP, each of these data structure types
contains a number of elements and attributes that further serve to describe a
business or to have a technical purpose. See UDDI Version 2.03, Data Structure
Reference Published Specification, Dated 19 July 2002 and UDDI Version 2.04 API,
Published Specification Dated 19 July 2002 for a complete description of the UDDI
service description framework, http://www.uddi.org/specification.html. This
description includes the XML schema, and the approximately 20 request messages
and 10 response messages that comprise the request/response XML SOAP message
10-4 Oracle Application Server Web Services Developer’s Guide

UDDI Registration
interface that is used to perform publishing and inquiry functions against the UDDI
business registry.

See Standard Classification Support on page 10-45 for more information about the
standard classifications that are supported in the OracleAS UDDI Registry.

OracleAS UDDI Registry for Enterprise Web Services
This section describes a subset of features that provide UDDI support for Web
Services.

The OracleAS UDDI Registry support for Web Services deployed in OC4J is
composed of the following parts:

■ Web Services discovery -- consumers can use the Inquiry API available for Java
programmers to implement their own Web Services discovery tool to search,
locate, and drill down to discover OC4J Web Services in the OracleAS UDDI
Registry, as well as in any other accessible UDDI v1.0 Web Services registry. See
Using the Inquiry API on page 10-7 for more information about using the
Inquiry API and locating the Javadoc documentation that describes the Inquiry
API.

■ Web Services publishing -- Web services provider administrators can deploy
OC4J Web Services using Oracle Enterprise Manager. As part of the
deployment process, the administrator can also publish the OC4J container, and
in this process, there is a step where you can publish Web Services to the Oracle
UDDI Registry.

Web Services provider administrators can also update published Web Services
by searching, locating, and drilling down to OC4J Web Services using the
Application Server: <Instance-name>: OC4J home: Administration: Related
Links: UDDI Registry link provided through Oracle Enterprise Manager.

■ Replication management -- allows administrators to create a logical registry that
comprises one or more Oracle UDDI implementations and UDDI
implementations from other vendors that also implement the UDDI v2.0
Replication Specification.

■ Subscription service -- allows publishers in the registry to monitor or obtain
changes in the registry through subscriptions created using OracleAS
Syndication Services.
Discovering and Publishing Web Services 10-5

UDDI Registration
Installation and First Use
The OracleAS UDDI Registry is preinstalled with Oracle Application Server and
available through the following URLs:

■ Getting started information:
http://<OracleAS-host>:<OracleAS-port>/uddi/

■ UDDI inquiry SOAP endpoint:
http://<OracleAS-host>:<OracleAS-port>/uddi/inquiry

■ UDDI publishing SOAP endpoint:
http://<OracleAS-host>:<OracleAS-port>/uddi/publishing

■ UDDI administration endpoint:
http://<OracleAS-host>:<OracleAS-port>/uddi/admin

■ UDDI replication SOAP endpoint:
http://<OracleAS-host>:<OracleAS-port>/uddirepl/replication

■ UDDI replication HTTPS Wallet Password Administration endpoint:
http://<OracleAS-host>:<OracleAS_
port>/uddirepl/admin/wallet

■ Subscription management application:
http://<OracleAS-host>:<OracleAS-port>/uddisub/subscriptio
n/ui

See User Management on page 10-26 for the set of UDDI users and groups available
to help you get started.

Automatic Postinstallation Configuration
A postinstallation configuration step is necessary to set up the following:

■ UDDI core tModels

■ A node businessEntity representing the registry node

■ The businessEntity discoveryURL prefix and the operatorName

Postinstallation configuration is done automatically when you try to access (either
through the browser or SOAP invocation programmatically) the UDDI inquiry or
publishing SOAP endpoints.

As a result, if you have not accessed the inquiry or publishing SOAP endpoints and
try to access other UDDI features, such as subscription management, Oracle
Enterprise Manager integrated Web Services deployment and publishing, and so
forth, those features will not function.
10-6 Oracle Application Server Web Services Developer’s Guide

Web Services Discovery
Web Services Discovery
Web Services are discovered in the OracleAS UDDI Registry by browsing the
registry using tools or using the Inquiry API.

Using Tools
Consumers can use Oracle9i JDeveloper release 9.0.3, create their own inquiry
browse tool, or use third-party tools to browse and drill down for information
about Web Services from theOracleAS UDDI Registry, as well as from any other
accessible UDDI v1.0 Web Services registry. Consumers can use the Inquiry API
available for Java programmers to implement their own Web Services discovery
interface.

Using the Inquiry API
The Inquiry API lets consumers search for the available registered Web Services by
providing find (browse and drill-down) calls and get calls for locating and getting
information in each of the five data structures shown in Figure 10–1.

The Inquiry API allows consumers to discover and use Web Services using the Java
language. Programs can be written in any language and can use SOAP to discover
Web Services. The Java API is provided as a convenience for Java programmers. The
URL for the OracleAS UDDI Registry is
http://<OracleAS-http-server-host-name><OracleAS-port-number>
/uddi/inquiry, where <OracleAS-http-server-host-name> is where the
Oracle HTTP Server powered by Apache is installed, and
<OracleAS-port-number> is the port number for the Oracle HTTP Server.

The Inquiry API is located in the Oracle Application Server installation directory,
<ORACLE_HOME>/uddi/ for UNIX and <ORACLE_HOME>\uddi\ for Windows.
The API documentation that describes how to use this Inquiry API can be found on
the Oracle Application Server Documentation Library as UDDI Client API
Reference (Javadoc) under OracleAS Web Services, which is located under the J2EE
and Internet applications tab.
Discovering and Publishing Web Services 10-7

Web Services Discovery
A set of sample demonstration (uddidemo.zip) files are located on the Oracle
technology Network (OTN) Web site
http://otn.oracle.com/tech/java/oc4j/demos/ .

Within the uddidemo.zip file is a Java program file,
UddiInquiryExample.java, that provides Java programmers with a starting
point that demonstrates the key constructs and the sequence in using the Oracle
Application Server UDDI client library.

The program example does the following:

■ Gets an instance of SoapTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server
using SOAP and some underlying transport protocol (in this case HTTP).

SoapTransportLiaison transport = new OracleSoapHttpTransportLiaison();

■ Calls a helper method to set up proxy information, if necessary. You can specify
HTTP proxy information for accessing the OracleAS UDDI Registry on the
command line, using parameters, such as -Dhttp.proxyHost=<hostname>
-Dhttp.proxyPort=<portnum>.

setHttpProxy((SoapHttpTransportLiaison)transport);

■ Uses SoapTransportLiaison and the URL of a UDDI inquiry registry to initialize
an instance of UddiClient, which connects to the specified OracleAS UDDI
Registry. The UddiClient instance is the primary interface by which clients send
requests to the OracleAS UDDI Registry.

UddiClient uddiClient = new UddiClient(szInquiryUrl, null, transport);

■ Uses the UddiClient instance to perform a find business request. Specifically, it
finds all business entities that start with the letter T and prints out the response.

Note: The UddiClient instance, by default, operates as a UDDI
v2.0 client (the latest version supported). If a specific version is
needed, the version can be specified either through another
constructor, or the JVM property
oracle.uddi.client.defaultVersion.

For example:

-Doracle.uddi.client.defaultVersion=1
10-8 Oracle Application Server Web Services Developer’s Guide

Web Services Discovery
Note that input parameters and return values are objects that precisely mimic
the XML elements defined in the UDDI specification.

// Find a business with a name that starts with "T"
String szBizToFind = "T";
System.out.println("\nListing businesses starting with " + szBizToFind);
// Actual find business operation:
// First null means no specialized FindQualifier.
// Second null means no max number of entries in response.
// (For example, maxRows attribute is absent.)
BusinessList bl = uddiClient.findBusiness(szBizToFind, null, null);
// Print the response.
System.out.println("The response is: ");
List listBusinessInfo = bl.getBusinessInfos().getUddiElementList();
for (int i = 0; i < listBusinessInfo.size(); i++) {
 BusinessInfo businessInfo = (BusinessInfo)listBusinessInfo.get(i);
 System.out.println(businessInfo.getName());
 System.out.println(businessInfo.getFirstDescription());
 Name name = businessInfo.getFirstNameAsName();
 if (name != null) {
 System.out.println("name=" + name.getContent() +
 " ; xml:lang=" + name.getLang());
 }
 Description description =
 businessInfo.getFirstDescriptionAsDescription();
 if (description != null) {
 System.out.println("description=" + description.getContent()
 + " ; xml:lang=" + description.getLang());
 }

■ Uses the UddiClient instance to get a UddiElementFactory instance. This
factory should always be used to create any UDDI objects needed for inquiries.

UddiElementFactory uddiEltFactory = uddiClient.getUddiElementFactory();

■ Uses the UddiElementFactory instance to create a CategoryBag instance and its
KeyedReference, which will be used for searching.

CategoryBag cb = (CategoryBag)uddiEltFactory.createCategoryBag();
KeyedReference kr =
(KeyedReference)uddiEltFactory.createKeyedReference();
kr.setTModelKey(szCategoryTModelKey);
kr.setKeyValue(szCategoryKeyValue);
kr.setKeyName("");
cb.addUddiElement(kr);
Discovering and Publishing Web Services 10-9

Web Services Discovery
■ Uses the UddiClient instance to perform a find service request. Specifically, it
finds a maximum of 30 services, which are classified as application service
providers (code 81.11.21.06.00) under the UNSPSC classification in any business
entities (no businessKey is specified).

ServiceList serviceList =
 uddiClient.findService("", cb, null, new Integer(30));

■ Uses the UddiElementFactory instance to retrieve an XmlWriter object. To view
the raw XML data represented by an object, which extends UddiElement,
marshall the element content to the writer and then flush and close the writer.

XmlWriter writerXmlWriter = uddiEltFactory.createWriterXmlWriter(
 new PrintWriter(System.out));
serviceList.marshall(writerXmlWriter);
writerXmlWriter.flush();

■ Finds tModel operations with multiple arguments. This is a new UDDI v2.0
feature. A find_xx request now allows multiple arguments. For example, find
tModel operations that have a name pattern, such as "uddi%inquiry%" and are
classified as wsdlSpec or xmlSpec in uddi-org:types taxonomy.

System.out.println("\nListing tModels with the name pattern
\"uddi%inquiry%\" ");
System.out.println("and classified as \"wsdlSpec\" or \"xmlSpec\" ");
System.out.println("under uddi-org:types taxonomy.");
// Use the UddiElement factory to create UDDI-specific objects
// that are needed in inquiries.
CategoryBag cbTM = (CategoryBag)uddiEltFactory.createCategoryBag();
KeyedReference krTM1 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
krTM1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UDDI_TYPE);
krTM1.setKeyValue(CoreTModelConstants.UDDI_TYPE_VALUE_WSDL_SPEC);
cbTM.addUddiElement(krTM1);

KeyedReference krTM2 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
krTM2.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UDDI_TYPE);
krTM2.setKeyValue(CoreTModelConstants.UDDI_TYPE_VALUE_XML_SPEC);
cbTM.addUddiElement(krTM2);

FindQualifiers fqTM =
 (FindQualifiers)uddiEltFactory.createFindQualifiers();
List listFQTM = uddiEltFactory.createList();
listFQTM.add(FindQualifiers.OR_ALL_KEYS);
10-10 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
fqTM.setFindQualifierStringList(listFQTM);

// Actual find tModel operation:
// Integer(10) means a maximum of 10 tModel operations are
// to be returned.
//
TModelList tModelList =
 uddiClient.findTModel("uddi%inquiry%",
 null,
 cbTM,
 fqTM,
 new Integer(10));

// Print some response information.
System.out.println("The response is: ");
List listTModelInfo =
 tModelList.getTModelInfos().getUddiElementList();
for (int i = 0; i < listTModelInfo.size(); i++) {
 TModelInfo tModelInfo = (TModelInfo)listTModelInfo.get(i);
 System.out.println(tModelInfo.getTModelKey());
 System.out.println("name=" + tModelInfo.getName());
 }

■ Closes the UddiClient instance when finished to release resources.

uddiClient.close();

■ Provides URLs (in comments) to the OracleAS UDDI Registry and four public
UDDI registries.

Web Services Publishing
Web Services are published in the OracleAS UDDI Registry by using Oracle
Enterprise Manager or using the Publishing API.

Using Oracle Enterprise Manager
Using Oracle Enterprise Manager, Web Services provider administrators can
publish Web Services in the OracleAS UDDI Registry in two ways:

■ Navigate to the Application Server: <Instance-name>: OC4J home: Deployed
Applications: Deploy Application Wizard. The Deploy Application wizard
takes you through the process of deploying a J2EE application on the OC4J
Discovering and Publishing Web Services 10-11

Web Services Publishing
container. In order to publish a J2EE Web Service, you must first assemble it as a
J2EE Enterprise Archive (EAR) file. See the chapter on using the Web Services
assembly tool for more information. See Oracle Application Server Containers for
J2EE User’s Guide for information about EAR file-based deployment of J2EE
Web applications.

The second-to-last step, the Publish Web Services step, of the Deploy
Application wizard lets Web Services provider administrators publish (OC4J)
Web Services (servlets) that are found in the EAR file. Any Web Services servlet
in an application that you want to access must be published to the OracleAS
UDDI Registry to one or more desired categories within one or more of the
classifications provided. Any unpublished Web Services servlet in an
application appears with the status of Not Published and when the Web
Services servlet is published, the status changes to Published.

■ Navigate to the Application Server: <Instance-name>: OC4J home: UDDI
Registry: Web Services Details window. The Web Services Details window
lets Web Services provider administrators publish J2EE applications to the
OracleAS UDDI Registry after entering all required Service Details and tModel
Details information.

Web Services provider administrators can update the discovered published Web
Services. They find these published Web Services through the Oracle Enterprise
Manager Discovery tool using the UDDI Registry link in the Related Links column
within the Administration section of the OC4J: home window from the
Application Server: <Instance-name>: window.

Publishing Web Services Using Deploy Applications Wizard
Web Services provider administrators can publish J2EE Web Services, which are
produced by the OracleAS Web Services assembly tool, using the Oracle Enterprise
Manager Deploy Applications wizard. They can do this as follows:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server:
<Instance-name> window and then to the OC4J: home window. Locate the
Deployed Applications section within the OC4J: home window and click
Deploy Application to invoke the Deploy Application wizard.

2. Perform the steps in each window of the Deploy Application wizard and
provide the essential information for each step.

3. At the Publish Web Services window, select the desired Web Services to
register from the list of Web Services known to the application whose status is
Not Published. Do this by clicking its corresponding radio button in the
10-12 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
Select column. Then click Publish to continue to the Web Services Details
window.

4. At the Web Services Details window, review, edit, or enter the information as
needed in each of the fields in the Services Details section and in the tModel
Details section.

a. To add categories for either the Services Details or the tModel Details
sections, click Browse UDDI Registry, browse to the desired classification,
and drill down as needed through each desired category, noting all desired
category names and values.

b. Click Add Category to add an empty row of category information.

c. Select the desired classification, then enter the value code and its
corresponding category name for the desired category.

d. Repeat this process (Steps b and c) as many times as it takes to add all the
categories to which to register this Web Services.

e. After entering all the required information on the Web Services Details
window, publish the Web Services to the OracleAS UDDI Registry by
clicking OK. You return to the Publish Web Services window.

5. Back at the Publish Web Services window, select another Web Service to
publish and repeat this entire process again as described in Steps 3 and 4.

6. After publishing all Web Services for this application, click Next to continue to
the Summary window where all the application deployment information can
be reviewed.

7. If there are no further changes, click Deploy to deploy the J2EE application on
the OC4J container. Doing this returns you to the Oracle Enterprise Manager
OC4J Home page. Then, to repeat the process of deploying another J2EE
application on the OC4J container, click Deploy Application.

After deployment, metadata describing the Web Services that you chose to publish
has been added to the OracleAS UDDI Registry.

Publishing Web Services Using Web Services Details Window
Web Services provider administrators can publish Web Services using the Oracle
Enterprise Manager Web Services Details window. They do this as follows:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server:
<Instance-name> window, and then, to the OC4J: home window. Locate the
Discovering and Publishing Web Services 10-13

Web Services Publishing
UDDI Registry link in the Related Links column within the Administration
section of the OC4J: home window.

Click the UDDI Registry link.

2. The UDDI Registry window lets the administrator select one of the three
standard classifications: NAICS, UNSPSC, or ISO-3166, by clicking its link, or
lets you publish Web Services by selecting the Administration link.

Click the Administration link.

3. At the Web Services Details window, enter the required information in each of
the fields in the Services Details section and in the tModel Details section.

a. Enter the service name, service description, and service URL to the servlet
in the Services Details section.

b. Enter the tModel name, tModel description, and the URL to the WSDL
document in the tModel Details section.

c. To add categories for either the Services Details or the tModel Details
sections, click Browse UDDI Registry, browse to the desired classification,
and drill down as needed through each desired category, noting all desired
category names and values.

d. Click Add Category to add an empty row of category information.

e. Select the desired classification, then enter the value code and its
corresponding category name for the desired category.

f. Repeat this process (Steps d and e) as many times as needed to add all the
categories to which to register this Web Services.

g. After entering all required information on the Web Services Details
window, publish the Web Services to the OracleAS UDDI Registry by
clicking Apply. This returns you to the UDDI Registry window where you
can choose to publish another J2EE application to the OracleAS UDDI
Registry by following the same steps again, beginning at Step 2.

Updating Published Web Services in the OracleAS UDDI Registry
Oracle Enterprise Manager provides a user interface for Web Services provider
administrators to browse, drill down, and get information about Web Services
published for categories in the OracleAS UDDI Registry. Web Services provider
administrators can update the discovered published Web Services. They find these
published Web Services through the Oracle Enterprise Manager Discovery tool
10-14 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
using the UDDI Registry link within the Administration section of the OC4J: home
window from the Application Server: <Instance-name> window.

To update published Web Services using Oracle Enterprise Manager to discover
Web Services, do the following:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server:
<Instance-name> window and then to the OC4J: home window. Locate the
UDDI Registry link in the Related Links column within the Administration
section of the OC4J: home window.

Click the UDDI Registry link.

2. The UDDI Registry window lets the administrator select one of the three
standard classification: NAICS, UNSPSC, or ISO-3166 by clicking its link. The
UDDI Registry window lets the administrator browse any of the three
classifications and discover published Web Services associated with any
category or subcategory.

Click the desired classification link.

3. The UDDI Registry: <Classification Name> window lets the administrator
drill down from category to subcategory to discover published Web Services
associated with any category or subcategory. Each classification is organized in
a hierarchical tree. Navigate down a particular branch by clicking the category
name to determine all its subcategory names, and so forth. As you navigate
down a branch, also note the change in the category code value.

Navigate to the desired category or subcategory by successively clicking the
desired category links.

4. The Web Services: <Category Name> window lets the administrator continue
to drill down through the categories, or you can view all Web Services
published in a particular category by selecting the corresponding radio button
in the Select column for that category, and clicking View Services.

Select the corresponding radio button in the Select column for the desired
category and click View Services.

5. The Web Services window lists all Web Services published for that category
name. For Web Services listed for the selected category, the corresponding
service name, service key, and business key are also listed. If the selected
category or subcategory has no published Web services, none is listed.

To view the complete details of a particular published Web Services listed for a
category, either click its service name link or select its corresponding radio
button in the Select column and click View Details.
Discovering and Publishing Web Services 10-15

Web Services Publishing
Click the desired service name link.

6. The Web Services Details window displays detailed information for the
selected Web Services published in the OracleAS UDDI Registry. This
information includes:

■ Service Details

Service details include information such as the Web Services name, Web
Services description, and the URL of the Web Services access point.

Category

Category information includes the classification and the corresponding
code value and its category name.

■ tModel Details

tModel details include information that describes the interface that the Web
Services implements, such as the tModel name, tModel description, and
URL to the interface specification, typically a WSDL document.

Category

Category information includes the classification and the corresponding
code value and its category name.

Category information can be added or deleted for both the Service Details and
tModel Details sections. You can browse the OracleAS UDDI Registry (click
Browse UDDI Registry) looking for categories in which to register Web Services.
You can add categories (click Add Category) to which both the Web Services and
tModel are to be registered. You can remove categories (click Delete) to which the
Web Services and tModel are registered.

Service and tModel detail information can be modified by moving the cursor to the
appropriate field and making the necessary changes.

After making all selections or completing all changes for this Web Services, click
Apply to save your changes.

If you have made changes to any field and you decide you want to return to the
original set of values for all selections, click Revert. The window refreshes with the
original set of values for all selections as if you had just begun your current session.

Make your modifications and click Apply to save your changes.

To discover and update other published Web Services for the same category, at the
top of the Web Services Details window, select the desired Web
Services:<Classification Name> link to return to the desired Web
10-16 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
Services:<Classification Name> window. At this window, select another Web
Services to view in more detail, make any necessary changes, and finally click
Apply to save your changes.

Alternatively, you can select the UDDI Registry link at the top of the Web Services
Details window to return to the UDDI Registry window where you can navigate to
another classification to discover Web Services for other categories. At each desired
category, select the desired Web Services to view its details, make any necessary
changes, and finally click Apply to save your changes.

Using the Publishing API
The UDDI publishing API lets programmers, following authentication, publish Web
Services by providing save and delete calls for each of the five key UDDI data
structures (businessEntity, businessService, bindingTemplate, tModel, and
publisherAssertion).

The publishing API allows programmers to publish Web Services using the Java
language. Programs can be written in any language and use SOAP to publish Web
Services. The Java API is provided as a convenience for Java programmers.

The publishing API is located in the Oracle Application Server installation directory,
<ORACLE_ HOME>/uddi/ for UNIX and <ORACLE_HOME>\uddi\ for Windows.
The API documentation that describes how to use this publishing API can be found
on the Oracle Application Server Documentation Library CD-ROM as UDDI Client
API Reference (Javadoc) under OracleAS Web Services, which is located under the
J2EE and Internet Applications tab.

A set of sample demonstration (uddidemo.zip) files are located on the Oracle
technology Network (OTN) Web site
http://otn.oracle.com/tech/java/oc4j/demos.

The UddiPublishingExample.java Example
Within the uddidemo.zip file is a Java program file,
UddiPublishingExample.java, that provides Java programmers with a starting
point that demonstrates the key constructs and the sequence in using the Oracle
UDDI client library.

The program example does the following:

■ Gets an instance of SoapTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server
using SOAP and some underlying transport protocol (in this case HTTP).
Discovering and Publishing Web Services 10-17

Web Services Publishing
SoapTransportLiaison transport =
 new OracleSoapHttpTransportLiaison();

■ Sets the proxy information for the transport if the system properties
http.proxyHost and http.proxyPort are set. These properties can be set on the
command line. If these properties are not set, this command has no effect.

setHttpProxy((SoapHttpTransportLiaison)transport);

■ Uses SoapTransportLiaison and the URL of a UDDI publishing registry to
initialize an instance of UddiClient, which connects to the specified OracleAS
UDDI Registry. The UddiClient instance is the primary interface by which
clients send requests to the OracleAS UDDI Registry Authentication is done
using the UDDI get_authToken message in this example.

SimpleAuthenticationLiaison auth =
 new SimpleAuthenticationLiaison(szUserName, szPassword);
UddiClient uddiClient = new UddiClient(null, szPublishingUrl, transport,
auth);

■ Performs authentication. You should make this call before doing any
publishing.

UddiClient.authenticate();

■ Uses UddiClient to get a UddiElementFactory instance. This factory should
always be used to create any UDDI objects needed.

UddiElementFactory uddiEltFactory =
 uddiClient.getUddiElementFactory();

■ Performs various publishing operations that include creating and saving a
tModel, a businessEntity, a businessService, and a bindingTemplate data
structure for the purpose of creating a business that provides a
Google-interface-compatible service.

Note: The UddiClient instance, by default, operates as a UDDI
v2.0 client (the latest release supported). If a specific release is
needed, the release can be specified, either through another
constructor, or by the JVM property
oracle.uddi.client.defaultVersion.
10-18 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
■ Creates a tModel data structure that represents a Google-compatible service by
using the UddiElementFactory instance.

TModel tModel = (TModel)uddiEltFactory.createTModel();
tModel.setName("urn:google.com:search-interface");

– Creates and includes the OverviewDoc data structure in the tModel data
structure by using the UddiElementFactory instance.

OverviewDoc overviewDocTm =
 (OverviewDoc)uddiEltFactory.createOverviewDoc();
 tModel.setOverviewDoc(overviewDocTm);
overviewDocTm.setOverviewURL("http://api.google.com/GoogleSearch.wsdl");

– In the tModel data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference, which will be
used for searching. Classify the tModel data structure as a
SOAP/WSDL-based interface and put it under the "applicable service
providers" category.

CategoryBag catBagTm =
 (CategoryBag)uddiEltFactory.createCategoryBag();
tModel.setCategoryBag(catBagTm);

KeyedReference krTm1 =
(KeyedReference)uddiEltFactory.createKeyedReference();

catBagTm.addUddiElement(krTm1);
krTm1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UDDI_TYPE);
krTm1.setKeyName("wsdlSpec");
krTm1.setKeyValue("wsdlSpec");

KeyedReference krTm2 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagTm.addUddiElement(krTm2);
krTm2.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UDDI_TYPE);
krTm2.setKeyName("wsdlSpec");
krTm2.setKeyValue("wsdlSpec");

KeyedReference krTm3 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagTm.addUddiElement(krTm3);
krTm3.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UNSPSC_7_3);
krTm3.setKeyName("application service providers");
krTm3.setKeyValue("81.11.21.06.00");
Discovering and Publishing Web Services 10-19

Web Services Publishing
■ Publishes the Google search interface tModel business operation.

System.out.println("\nPublish the google search interface tModel.");
TModel tMSaved = uddiClient.saveTModel(tModel);
String szGoogleTModelKey = tMSaved.getTModelKey();
System.out.println("The tModel is saved with tModelKey assigned to be " +
 szGoogleTModelKey);

■ Creates a businessEntity data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

BusinessEntity businessEntity =
 (BusinessEntity)uddiEltFactory.createBusinessEntity();
businessEntity.setName("ACME search Inc.", "en");

In the businessEntity data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference data structure,
which will be used for searching. Classify the businessEntity data structure
under the "information services and data processing services" category.

KeyedReference krBe1 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagBe.addUddiElement(krBe1);
krBe1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_NAICS_1997);
krBe1.setKeyName("Information Services and Data Processing Services");
krBe1.setKeyValue("514");

■ Creates a businessService data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

BusinessServices businessServices =
(BusinessServices)uddiEltFactory.createBusinessServices();
businessEntity.setBusinessServices(businessServices);
BusinessService businessService =
(BusinessService)uddiEltFactory.createBusinessService();
businessServices.addUddiElement(businessService);
businessService.setName("ACME Web Search service", "en");

In the businessService data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its KeyedReference data structure,
which will be used for searching. Classify the businessService data structure
under the "application service providers" category.

CategoryBag catBagBs =
 (CategoryBag)uddiEltFactory.createCategoryBag();
10-20 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
businessService.setCategoryBag(catBagBs);
KeyedReference krBs1 =
 (KeyedReference)uddiEltFactory.createKeyedReference();
catBagBs.addUddiElement(krBs1);
krBs1.setTModelKey(CoreTModelConstants.TAXONOMY_KEY_UNSPSC_7_3);
krBs1.setKeyName("application service
providers");krBs1.setKeyValue("81.11.21.06.00");

■ Creates the bindingTemplates data structure that represents a
Google-compatible service by using the UddiElementFactory instance.

BindingTemplates bindingTemplates =
 (BindingTemplates)uddiEltFactory.createBindingTemplates();
businessService.setBindingTemplates(bindingTemplates);
BindingTemplate bindingTemplate =
 (BindingTemplate)uddiEltFactory.createBindingTemplate();
bindingTemplates.addUddiElement(bindingTemplate);

– Creates and includes the access point in the bindingTemplates data
structure by using the UddiElementFactory instance.

AccessPoint accessPoint =
(AccessPoint)uddiEltFactory.createAccessPoint();
bindingTemplate.setAccessPoint(accessPoint);
accessPoint.setUrlType("http");
accessPoint.setContent("http://foobar.net/search-g");

– Creates and includes the tModel instance details in the bindingTemplates
data structure by using the UddiElementFactory instance.

TModelInstanceDetails tModelInstanceDetails =
(TModelInstanceDetails)uddiEltFactory.createTModelInstanceDetails();
bindingTemplate.setTModelInstanceDetails(tModelInstanceDetails);

– Declares that the bindingTemplate data structure implements the Google
search interface.

TModelInstanceInfo tModelInstanceInfo =
 (TModelInstanceInfo)uddiEltFactory.createTModelInstanceInfo();
tModelInstanceDetails.addUddiElement(tModelInstanceInfo);
tModelInstanceInfo.setTModelKey(szGoogleTModelKey);

■ Publishes the businessEntity data structure and its containing businessService
and bindingTemplate data structures.

System.out.println("Publish the ACME Search Inc. businessEntity...");
Discovering and Publishing Web Services 10-21

Web Services Publishing
BusinessEntity bESaved = uddiClient.saveBusiness(businessEntity);
System.out.println("The saved businessEntity (in XML) is:");

bESaved.setName("The ACME search Inc.", "en");
BusinessEntity bEUpdated = uddiClient.saveBusiness(bESaved);

■ Uses the UddiElementFactory instance to retrieve an XmlWriter object. To view
the raw XML data represented by an object, which extends UddiElement,
marshall the element content to the writer and then flush and close the writer.

XmlWriter writerXmlWriter =
 uddiEltFactory.createWriterXmlWriter(new PrintWriter(System.out));
bESaved.marshall(writerXmlWriter);
writerXmlWriter.flush();
writerXmlWriter.close();

■ Closes the UddiClient instance when finished to release resources and to log out
from the registry.

uddiClient.close();

The UddiPublisherAssertionExample.java Example
Within the uddidemo.zip file is a Java program file,
UddiPublisherAssertionExample.java. This file provides Java programmers
with a starting point that demonstrates the key constructs and the sequence in using
the Oracle UDDI client library for publisher assertion-related operations.

A publisher assertion, which is a UDDI v2.0 feature, is an assertion made by a
publisher who is expressing a particular fact about a business registration and its
relationships to other business data within the OracleAS UDDI Registry. Publisher
assertions are used to establish visible relationships between registered data. Once
completed, a set of assertions can be seen by the general inquiry message named
findRelatedBusinesses.

The program example does the following:

■ Initializes instances of two UddiClients.

UddiClient uddiClient1 =
 createUddiClient(szInquiryUrl, szPublishingUrl, szUserName1, szPassword1);
UddiClient uddiClient2 =
 createUddiClient(szInquiryUrl, szPublishingUrl, szUserName2, szPassword2);
DispositionReport dispositionReport = null;

■ Creates the business entities to be used.
10-22 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing
String bEKey1 =
 createBusinessEntity(uddiClient1,
 "bE1 - UddiPublisherAssertionExample");
String bEKey2 =
 createBusinessEntity(uddiClient2,
 "bE2 - UddiPublisherAssertionExample");

■ Creates for uddiClient1 a publisher assertion that represents a peer-to-peer
relationship from bE1 to bE2.

System.out.println("");
System.out.println("uddiClient1 attempts to create a peer-to-peer
relationship ");
System.out.println("from bE1 to bE2...");
dispositionReport =
 uddiClient1.addPublisherAssertion
 (createPeerToPeerPublisherAssertion(uddiClient1, bEKey1, bEKey2));
System.out.println("Done.");

■ Makes a query for uddiClient1 for relationships yet to be established; that is,
looking for those relationships that the toKey side has not yet acknowledged.

AssertionStatusReport assertionStatusReport1 =
 uddiClient1.getAssertionStatusReport
 (AssertionStatusItem.COMPLETION_STATUS_TOKEY_INCOMPLETE);
printOutXml("pending relationships for uddiClient1: case toKey incomplete",
 assertionStatusReport1);

■ Makes a query for uddiClient2 for relationships yet to be established; that is,
looking for those relationships that the toKey side has not yet acknowledged.

AssertionStatusReport assertionStatusReport2 =
 uddiClient2.getAssertionStatusReport
 (AssertionStatusItem.COMPLETION_STATUS_TOKEY_INCOMPLETE);
printOutXml("pending relationships for uddiClient2: case toKey incomplete",
 assertionStatusReport2);

■ Shows uddiClient2 agreeing to the peer-to-peer relationship requested by
creating a publisher assertion.

System.out.println("");
System.out.println("uddiClient2 agrees to the peer-to-peer relationship ");
System.out.println("from bE1 to bE2");
dispositionReport =
 uddiClient2.addPublisherAssertion
 (createPeerToPeerPublisherAssertion(uddiClient2, bEKey1, bEKey2));
Discovering and Publishing Web Services 10-23

Web Services Publishing
System.out.println("Done.");

■ Makes another query for uddiClient2 for relationships yet to be established to
see if there are other peer-to-peer relationships to be established. There are no
more pending relationships to be established.

AssertionStatusReport assertionStatusReport2After =
 uddiClient2.getAssertionStatusReport
 (AssertionStatusItem.COMPLETION_STATUS_TOKEY_INCOMPLETE);
printOutXml("pending relationships for client2: toKey incomplete (should be
 none)", assertionStatusReport2After);

■ Finds related businesses that have established peer-to-peer relationships (that
have published assertions) by calling the general inquiry message
findRelatedBusinesses.

RelatedBusinessesList rbList =
 uddiClient1.findRelatedBusinesses
 (bEKey1,
 createPeerToPeerKeyedReference(uddiClient1),
 null);
printOutXml("find all businesses that are peers to " + bEKey1, rbList);

■ Deletes a publisher assertion relationship between bE1 and bE2, owned by
uddiClient1.

System.out.println("");
System.out.println("Delete a publisherAssertion...");
dispositionReport = uddiClient1.deletePublisherAssertion
 (createIdentityPublisherAssertion(uddiClient1, bEKey1, bEKey2));
System.out.println("Done");

■ Shows another way of deleting all publisher assertion relationships owned by
uddiClient1 by using the setPublisherAssertions call.

System.out.println("");
System.out.println("Delete all publisherAssertions of uddiClient1 ");
System.out.println("by using setPublisherAssertions...");
publisherAssertions =
 uddiClient1.setPublisherAssertions(null);
printOutXml("Done. The current list:", publisherAssertions);
10-24 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
OracleAS UDDI Registry Administration
The following sections describe new OracleAS UDDI Registry administration
features.

Using the Command-Line Tool uddiadmin.jar
Many administrative operations are done using the command-line tool
uddiadmin.jar described in the sections that follow.

The command-line tool uddiadmin.jar is located in the
uddi/lib/uddiadmin.jar file for UNIX and in the
uddi\lib\uddiadmin.jar file for Windows. Administrators can use this tool for
various administrative activities. In general, the command-line tool takes the
command-line parameters of the following form:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] <action to perform and additional parameters>

where the <username> belongs to the uddiadmin group

The default user name is ias_admin and the default password is ias_admin123.

Note that the -verbose option will cause stack trace information to be printed out
when an exception is encountered.

Server Configuration
The following parameters are used for server configuration operations. See Server
Configuration Properties Reference Information on page 10-48 for more information
about these configuration parameters.

getProperties
Parameters: <registry admin URL> <username> <password>
[-verbose] -getProperties

Description: Lists the current registry configuration parameters.

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-getProperties
Discovering and Publishing Web Services 10-25

OracleAS UDDI Registry Administration
setProperty
Parameters: <registry admin URL> <username> <password>
[-verbose] -setProperty <name>=<value>

Description: Changes the value of the named configuration parameter. The
OracleAS UDDI Registry J2EE application needs to be restarted for the parameters
to take effect.

User Management
OracleAS UDDI Registry for 10g (9.0.4) uses the Oracle Internet Directory (OID) of
the Oracle Application Server infrastructure as the default user repository. This is
achieved through the use of LDAP-based provider of OC4J Java Authentication and
Authorization Service (JAAS).

UDDI-specific OID groups are located under the cn=uddi_groups subtree of the
group subtree of the OID default subscriber.

In other words, users are located under the user subtree of the OID default
subscriber.

The types of UDDI users are summarized in Table 10–1.

Warning: Be very careful when using the -setProperty option to
change server configuration property values. Making an incorrect
property setting could cause severe damage to the integrity of the
registry.

Table 10–1 Default UDDI Groups

Group Description

uddipublisher Can access the publishing end point and save, update, or delete
UDDI entities in the registry.

uddipublisher Can create UDDI subscriptions.

uddiadmin Can access the administration end points and perform
administrative activities.

Can perform all activities specified in uddipublisher group.

uddireplicator Can perform replication activities based on the replication schedule:
send replication requests such as get_changeRecords to other UDDI
nodes and apply the changeRecords received.
10-26 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
In addition to these groups, there are also a set of default groups for user quota
purposes. Those groups can be added, updated, or removed based on the specific
user quota policy administrators need to enforce.

By default, the following users are created in an installation. Administrators can
add or remove users to or from these corresponding groups as shown in Table 10–2.

Generic user management, such as creation, deletion, suspension, and so forth, is
handled by Oracle Internet Directory and its Delegated Administration Service.
Refer to Oracle Internet Directory Administrator’s Guide for more information.

User management, including operations such as creation, deletion, suspension, role
management, and so forth, is handled by OC4J Java Authentication and
Authorization (JAAS) service. Refer to Oracle Application Server Containers for J2EE
Services Guide for more information.

Note: Do not remove any of these default UDDI Groups.

Table 10–2 Default UDDI Users

Group User Names Comments

uddiadmin ias_admin Typically, Enterprise Manager
administrators also login as ias_admin to
publish to the UDDI registry through the
Enterprise Manager integrated J2EE Web
Services deployment and publishing
wizard.

uddipublisher uddi_publisher,
uddi_publisher1

These are sample users for demonstrating
publishing and different default quota
groups.

uddireplicator uddi_replicator The default user used for performing the
UDDI replication activities in the
background. This user should not be
removed. If you do need to remove this
user, make sure you add another user to the
uddireplicator group. The user to start the
Replication Client module must be updated
as well by modifying the
orion-application.xml file in the
oraudrepl.ear archive file.
Discovering and Publishing Web Services 10-27

OracleAS UDDI Registry Administration
In general, user management is handled by the OC4J JAAS service and OID.
However, to find out the authorized name of a user, use the -getUsers option of
the uddiadmin.jar command-line tool described as follows:

getUsers
Parameters: <registry admin URL> <username> <password>
[-verbose] -getUsers

Description: Lists all existing users who have entities in the registry.

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-getUsers

getUserDetail
Parameters: <registry admin URL> <username> <password>
[-verbose] -getUserDetail <username_to_retrieve>

Description: Retrieves the details of the named user, currently the authorizedName
of each user.

Quota Enforcement
OracleAS UDDI Registry provides a mechanism to enforce the number of entities a
publisher can own. A publisher can own at most a specific number of tModels,
publisherAssertions, businessEntities, businessServices per businessEnitity, and
bindingTemplates per businessService depending upon the quota group associated
with the publisher, which is guided by the user group to which the publisher is
assigned.

OracleAS UDDI Registry uses a group-based mechanism for assigning quota limits
to a publisher. When a new publisher is added, the OracleAS UDDI Registry
administrator must associate the publisher with a quota group. Table 10–3 shows
the predefined quota groups and quota limits for each entity that a publisher can
own.
10-28 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
The explicit Default quota group cannot be deleted. Users who are UDDI
administrators always get unlimited quota.

The OracleAS UDDI Registry administrator can also update a quota group, add a
new quota group, delete a quota group, view the lists of quota groups and their
quota limits, and associate a publisher with a quota group. The following sections
describe each of these administrator tasks.

Associating a Publisher with a Quota Group
When a user is added to the user store (OID or jazn-data.xml), the user should
be placed in a group so that it gets the appropriate quota group. For example, with
the pre-defined settings, administrators can assign a user to have the low quota
limits by assigning the user to the uddi_lowlimits_quota_group group.

If a user does not belong to a particular group, the user gets the quota limits from
the Default group. A UDDI administrator always has unlimited quota.

Viewing the Lists of Quota Groups and Their Limits
Use the -getRoleQuotaLimits option of the command-line tool
uddiadmin.jar, described as follows:

getRoleQuotaLimits

Parameter: getRoleQuotaLimits

Table 10–3 Predefined Quota Groups

Quota Group Quota Limits per Entity

business
Entities

businessServices
per
businessEntity

bindingTemplates
per
businessService tModels publisherAssertions

Default 1 4 2 100 10

uddi_
unlimited_
quota_group

Unlimited Unlimited Unlimited Unlimited Unlimited

uddi_lowlimits_
quota_group

2 2 1 3 3

<Implicit>UDDI
_Administrators

Unlimited Unlimited Unlimited Unlimited Unlimited
Discovering and Publishing Web Services 10-29

OracleAS UDDI Registry Administration
Description: Displays all the J2EE-role-to-quota-limits mappings that are currently
set in the registry.

Parameter type/allowable values: long

Initial value: 0

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -getRoleQuotaLimits

Updating the Limits of a Quota Group
Use the -setRoleQuotaLimits option of the command-line tool
uddiadmin.jar, described as follows:

setRoleQuotaLimits

Parameter: setRoleQuotaLimits

Description: Sets the quota limit value for the specified quota group. This option
can be used to create a new group-to-quota-limit mapping or to update an existing
mapping. The parameters are defined as follows:

■ roleName -- name of the quota group to map to the specified limits

■ maxBE -- maximum number of businessEntity data structures allowed

■ maxBSperBE -- maximum number of businessService data structures per
businessEntity allowed

■ maxBTperBS -- maximum number of bindingTemplate data structures per
businessEntity allowed

■ maxTM -- maximum number of tModel data structures allowed

■ maxPA -- maximum number of publisherAssertion data structures allowed

The value -1 means unlimited.

Parameter type/allowable values: N/A

Initial value: N/A

Typical value: N/A
10-30 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setRoleQuotaLimits <roleName> <maxBE> <maxBSperBE> <maxBTperBS>
<maxTM> <maxPA>

Adding a New Quota Group (Advanced Operation)
To add a new quota group, perform the following steps:

1. Add the group to the user store, typically OID.

2. Define the corresponding J2EE security role partnerGroup for the new group
name you want to create in the orauddi application. The settings must be
added in both the application.xml file of the orauddi.ear file and the
web.xml file of the orauddi.ear file.

3. Define the J2EE security role to the user store mapping in the
orion-application.xml file of the orauddi.ear file.

4. Define the actual limits of the quota group using the -setRoleQuotaLimits
option of the command-line tool uddiaddmin.jar. See the
-setRoleQuotaLimits option in Updating the Limits of a Quota Group on
page 10-28 for more information.

Deleting a Quota Group (Advanced Operation)
To remove a quota group, perform the following steps:

1. Remove the J2EE security role for the partnerGroup you want to remove from
the orauddi application. The settings must be removed from both the
application.xml file of the orauddi.ear file and the web.xml file of the
orauddi.ear file.

2. Remove the J2EE security role to the user store mapping in the
orion-application.xml file of the orauddi.ear file.

3. Remove the actual limits of the quota group using the
-deleteRoleQuotaLimits option of the command-line tool
uddiadmin.jar. See the -deleteRoleQuotaLimits option described after
Step 4 for more information.

4. Remove the group from the user store, typically OID.
Discovering and Publishing Web Services 10-31

OracleAS UDDI Registry Administration
deleteRoleQuotaLimits

Parameter: deleteRoleQuotaLimits

Description: Deletes the group-to-quota-limits mappings for the specified quota
groups.

Parameter type/allowable values: N/A

Initial value: N/A

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -deleteRoleQuotaLimits <roleName> [<roleName>...]

Administrative Entity Management
The following parameters are used for administrative entity management:

deleteEntity
Parameters: <registry admin URL> <username> <password>
[-verbose] -deleteEntity [-businessKey <businessKey> |
-serviceKey <serviceKey> | -bindingKey <bindingKey> |
-tModelKey <tModelKey>]

Description: Deletes the named entity irrespective of the owner of the entity. Note
that this operation performs a nonpermanent delete (hide) operation in the case of a
tModel entity.

destroyTModel
Parameters: <registry admin URL> <username> <password>
[-verbose] -destroyTModel <tModelKey>

Description: Permanently deletes the named tModel from the registry (as opposed
to the UDDI-defined delete_tModel call, which is just hiding the tModel entity).

Parameters: <registry admin URL> <username> <password>
[-verbose] -changeOwner <new username> [-businessKey
<businessKey> | -tModelKey <tModelKey>]
10-32 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Description: Changes the ownership of the named entity to the new specified user.

Import Operation
The following parameter is used for importing entities:

import
Parameters: <registry admin URL> <username> <password>
[-verbose] [-s|-m] -import [-businesses <filename> | -tmodels
<filename> | -publisherAssertion <filename> -fromBusinessCheck
[true|false] -toBusinessCheck [true|false]]

Description: Imports all businessEntity and tModel data structures, and a
publisherAssertion in the named file. For importing the businessEntity data
structure, the named file (<filename>) for importing should contain a UDDI
businessDetail XML document. For importing tModel data structures, the named
file should contain a UDDI tModelDetail XML document. By importing them,
entityKeys (such as, businessKey, serviceKey, bindingKey, tModelKey) are
preserved. The operatorName and authorizedName fields, however, are not
preserved. The operatorName field will be replaced by the operatorName
configuration parameter of the registry. The owner of the imported entities is the
administrator; hence, the authorizedName field will be the authorizedName of the
administrator. Importing can be done in single mode (-s), which does not allow
partial success (some entities are imported and some are not due to some error
condition), or in multiple mode (-m), which does allow partial success.

The import parameter is particularly useful in importing the well-known service
interface specification tModel and classification tModel data structures from some
authoritative sources.

Because the entity keys are preserved, administrators should be careful in
evaluating the source of the entities to ensure there will not be a collision in entity
keys.

For importing a publisher assertion, two Boolean values are required. These
Boolean values are used to indicate from which side (or both sides when two
Boolean values are true) the publisher assertion is going to be inserted.

Set Operational Information
The -setOperationalInfo parameter is used for setting some operational
information of entities, such as the modified timestamp. Note there are two options.
Discovering and Publishing Web Services 10-33

OracleAS UDDI Registry Administration
setOperationalInfo
Parameters: Option 1: <registry admin URL> <username> <password>
[-verbose] - setOperationalInfo [[-businessKey key |
-tModelKey key] [-newOperator OperatorName]
[-newAuthorizedname authName] [-newTime timestamp]]

Option 2: <registry admin URL> <username> <password>
[-verbose] - setOperationalInfo [[-serviceKey key |
-bindingKey key] -newTime timestamp]

Description: Sets some operational information, such as the operator name,
authorized name, or timestamp of a businessEntity or tModel specified by a key, for
example, following an import operation. Any combination of these three options is
allowed to be set using the -setOperationalInfo option.

The syntax option [[-businessKey key | -tModelKey key]
[-newOperator OperatorName] [-newAuthorizedname authName]
[-newTime timestamp]] lets you change either the operator name, the
authorized name, or the timestamp, or all three options of a business entity or
tModel specified by a key.

The syntax option [[-serviceKey key | -bindingKey key] -newTime
timestamp] lets you change only the timestamp of a business service or binding
template.

Note: The format of a timestamp is defined as ’yyyy-mm-dd
hh.mm:ss.fffffffff’ by java.sql.Timestamp. For example,

’2002-12-01 00:00:00’

Because there is a blank space in the timestamp value between
’yyyy-mm-dd and hh.mm:ss.fffffffff, the entire value must be placed inside
a pair of quotation marks on the command line.

Warning: This feature should not be invoked when replication is
set to on. In general, the -setOperationalInfo option should
not be used when replication is enabled.
10-34 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
UDDI Replication
The OracleAS UDDI Registry allows administrators to create a logical registry that
comprises one or more Oracle UDDI implementations and UDDI implementations
from other vendors that also implement the UDDI v2.0 Replication Specification.
See the UDDI v2.0 Replication Specification for more information.

This section briefly describes the data replication process and the program interface
required to achieve complete data replication among UDDI operator nodes that
form a UDDI service. UDDI replication ensures that all operator nodes see all the
changes that have originated at individual operator nodes. In addition, any
inquiries made at any operator node within the UDDI service yield results
consistent to those made at any other operator node within the UDDI service, hence
the logical OracleAS UDDI Registry.

For detailed technical descriptions of concepts and definitions involved with UDDI
replication, including replication processing, how to bring new UDDI operators
online, checking and validation of replicated data, see the UDDI v2.0 Replication
Specification. The sections that follow describe the Oracle implementation of UDDI
replication.

Enabling UDDI Replication
To enable UDDI replication, an administrator must perform the following steps:

1. Participate with and agree to the replication topology with UDDI
administrators of other operator nodes. This involves editing the replication
configuration (in the format specified in the UDDI v2.0 replication specification)
accordingly, and using the -downloadReplicationConfiguration and
-uploadReplicationConfiguration options of the command-line tool
uddiadmin.jar.

2. Enable replication scheduling by setting the following server property,
oracle.uddi.server.scheduler.status, to the value 1.

3. Enable update journal storage by setting the following property,
oracle.uddi.server.replication.startMaintainingUpdateJournal, to true.

After UDDI replication is started, the UDDI administrator can suspend or resume
replication operations by stopping or starting the oraudrepl.ear application.

If HTTPS client-certification is used, UDDI administrators must do the following:

1. Obtain an exported Oracle wallet file using Oracle Wallet Manager and specify
the exported wallet location by setting the server property
Discovering and Publishing Web Services 10-35

OracleAS UDDI Registry Administration
oracle.uddi.server.replication.walletLocation. This option only
needs to be set once.

2. Use the -setWalletPassword option to supply the wallet password,
whenever the oraudrepl.ear application is started or restarted. The
password is not persistent for security reasons.

See Replication Configuration Management on page 10-36 for a description of
useful parameter options that are provided to assist OracleAS UDDI Registry
administrators in the day-to-day operations during replication, using the
command-line tool uddiadmin.jar.

In some cases, the administrator of the source of the error must correct an invalid
changeRecord operation that caused the error. The administrator can use the
-correctChangeRecord option of the command-line tool uddiadmin.jar to
supply the correct changeRecord data. See Replication Exception Handling on
page 10-38 for more information.

Replication Configuration Management
The following parameters are used in replication configuration management:

uploadReplicationConfiguration

Parameters: <registry admin URL> <username> <password>
[-verbose] -uploadReplicationConfiguration <xml_file_
containing_replication_configuration>

Description: Uploads the specified replication configuration to a particular UDDI
node within an OracleAS UDDI Registry. The application must be restarted for the
new replication configuration to be used.

downloadReplicationConfiguration

Parameters: <registry admin URL> <username> <password>
[-verbose] -downloadReplicationConfiguration

Description: Downloads the currently used replication configuration from a
specified UDDI node within the OracleAS UDDI Registry.

Miscellaneous Operations
The following parameters are used in miscellaneous operations:

doPing
10-36 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Parameters: <registry admin URL> <username> <password>
[-verbose] -doPing replicationEndPointSoapUrl [-password
walletPassword]

Description: Sends a UDDI replication do_ping message to the replication
end-point URL specified. This is similar to the ping command in TCP/IP that is
used to check if the other end point is alive. The optional walletPassword is useful
when the JVM, which receives the do_ping message, does not have a valid wallet
password set.

replicationEndPointSoapUrl

Parameters: <registry admin URL> <username> <password>
[-verbose] -replicationEndPointSoapUrl [-password
walletPassword]

Description: Gets the high-water marks vector from the specified UDDI node. The
optional walletPassword is useful when the JVM, which receives the do_ping
message, does not have a valid wallet password set.

getChangeRecord

Parameters: <registry admin URL> <username> <password>
[-verbose] -getChangeRecord local_usn

Description: Gets the detail of a change record specified by local_usn (an integer).
This API is used in conjunction with the -CorrectChangeRecord option to
correct wrong or inconsistent data across different UDDI nodes with the OracleAS
UDDI Registry.

HTTPS Setup
The following parameter is used in HTTPS setup operations:

setWalletPassword

Parameters: <registry replication wallet admin URL> <username>
<password> [-verbose] -setWalletPassword walletPassword

Description: Sets the wallet password to be used for HTTPS communication among
UDDI nodes for UDDI replication. Each time the application is restarted, this option
must be invoked because the wallet password is not stored persistently, for security
reasons. The registry replication wallet admin URL is
http://<OracleAS-host>:<OracleAS-port>/uddirepl/admin/wallet.
Discovering and Publishing Web Services 10-37

OracleAS UDDI Registry Administration
Custody Transfer
The following parameter is used in replication custody transfer operations:

transferCustody

Parameters: <registry admin URL> <username> <password>
[-verbose] -transferCustody oldOperatorName newOperatorName
newAuthorizedName [-tModelKey tModelKey | -businessKey
businessKey]

Description: Transfers the custody of a tModel or a business entity to a new
operator and a new authorized name. This option is part of custody transfer as
defined by the UDDI specification.

Replication Exception Handling
If any errors occur during replication operations, the OracleAS UDDI Registry logs
the error in the application.log file of the oraudrepl.ear file. The
administrator should investigate the cause of the error and correct each problem
accordingly.

The following parameter is used in replication exception handling:

correctChangeRecords

Parameters: <registry admin URL> <username> <password>
[-verbose] -correctChangeRecord <changeRecordCorrectionfile>
<changeRecordNewDatafile>

Description: Applies the changeRecordCorrectionfile file contents and
changeRecordNewDatafile file contents to the UDDI node. The content of these files
must conform to the UDDI replication XML schema. This option is part of UDDI
replication error recovery.

Advanced Configuration and Tuning
See UDDI Replication Properties on page 10-51 for a description of a set of server
properties provided for advanced tuning and configuration of the replication
operations.

Registry-Based Category Validation
OracleAS UDDI Registry for 10g (9.0.4) can perform a spell-check form of category
value validation. An administrator can add or remove the set of categories that will
10-38 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
be validated by the registry. Refer to the v2.0 UDDI specification for more
information.

Adding a New Category for Registry-Based Validation
To add a new category, you must load the category values into the database and
register the category with the registry. Perform the following steps:

1. Publish the category to the registry by saving a new tModel data structure. For
example, look at the tModel data structure named ntis-gov:naics:1997.
You can use the included sample Web applications link
http://<OracleAS-host>:<OracleAS-port>/uddi/ or a third-party
tool.

If the tModel data structure has been defined in some other registry, you can
also import it (instead of creating a new one, which results in different
tModelKeys entities) using the uddiadmin.jar utility. See Import Operation
on page 10-33 for more information on the import operation.

The tModel data structure published should be classified as "unvalidatable" in
uddi-org:types taxonomy. Specifically, the following keyedReference should
appear in the categoryBag element of the tModel data structure:
<keyedReference
tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"
keyName="" keyValue="unvalidatable" />

2. Load the category values into the database. To do this, all the category values
should be in a file using the following format:

■ Each line of the file describes one category value in the category. It should
be in the following format:

<category value> | <description of category value>
 | <category value of the parent>

■ If a category value is a root value, for example, it has no parent, the
category value of the parent should be set to itself.

■ The line in the file for a category value should occur before the lines for all
of its descendants.

Examples can be found in the uddi/taxonomy directory for UNIX and in
the uddi\taxonomy directory for Windows. Excerpts from the NAICS file
are as follows:

22|Utilities|22
Discovering and Publishing Web Services 10-39

OracleAS UDDI Registry Administration
221|Utilities|22
2211|Electric Power Generation, Transmission|221

If your files use different characters from different languages, it is
recommended that you save the file with UTF-8 encoding to avoid any
problems that may arise, such as character corruption.

3. Create a SQL*Loader control file to load the category file. An example is
uddi/admin/naics-97.ctl for UNIX and uddi\admin\naics-97.ctl
for Windows. Copy the file and replace the category file name in the control file
with the one you create. Refer to the v2.0 UDDI specification for more
information about generating a unique ID for the new category tModel.

4. Load the category file to the database using SQL*Loader. Refer to Oracle9i
Database Utilities for more information about using SQL*Loader.

5. Configure the registry so that it recognizes the category that must be validated
by using the command-line administrative tool, uddiadmin.jar. For example,
to add a new tModel entity with key
UUID:FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFF0, issue the setProperty
command for the property
oracle.uddi.server.categoryValidationTModelKeys as follows:

java -jar uddiadmin.jar <registry admin URL> <username>
 <password> -setProperty
"oracle.uddi.server.categoryValidationTModelKeys=
'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4',
'UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88',
'UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2',
'UUID:CD153257-086A-4237-B336-6BDCBDCC6634',
'UUID:FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFF0' "

Notice that because the setProperty command defines all categories that need to
be validated, to add a new category, you must set the property with all the
existing tModelKey values plus the new tModelKey value.

6. Allow the registry users to use the category tModel published by removing the
"unvalidatable" categorization done in Step 1. Specifically, the following
keyedReference element should be removed from the categoryBag element of
the tModel data structure: <keyedReference
tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"
keyName="" keyValue="unvalidatable" />
10-40 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Removing a Category from Registry-Based Validation
To remove a category from registry-based validation, you should unregister the
category with the registry and remove the category values in the database. Perform
the following steps:

1. To unregister the category with the registry, you should remove it from the list
of validated categories using the uddiadmin.jar setProperty command
for the property
oracle.uddi.server.categoryValidationTModelKeys.

You do not have to (and in general should not) delete the tModel data structure
from the registry.

2. To remove the category values from the database, use the SQL*Plus script
wurvcrm.sql in the uddi/admin directory for UNIX and in the uddi\admin
directory for Windows. For example:

sqlplus sys/<sys-password> @wurvcrm.sql

When running this script, you will be prompted for the tModelKey value of the
category to be removed. You should see that a set of rows has been deleted. If
the result shows that 0 rows were deleted, you entered an invalid tModelKey
value.

External Validation
Third parties can register new category and identifier schemes, and then control the
validation process used by the OracleAS UDDI Registry to perform external
validation or checking. This enables a third-party category provider to validate the
UDDI entities to be saved when the entity is categorized, or identified with the
category, by providing a validate_values SOAP Web service.

The operator that is calling the validate_values service will pass a businessEntity, a
businessService, or a tModel element as the sole argument to this callout. This is the
same data that is being passed within a save_business, save_service, or save_
tModel API call. External validation is performed for any third-party category
provider and identifier scheme that is classified as checked. A tModel element
marked as checked asserts that it represents a categorization, identifier, or
namespace tModel element that has a properly registered validation service.

If no error is found, the response is a dispositionReport message returning an
errorCode value of E_success and an errno value of 0. If any error is found, or the
called service needs to signal that the information being saved is not valid based on
the validation algorithm chosen by the external service provider, then the service
Discovering and Publishing Web Services 10-41

OracleAS UDDI Registry Administration
should raise a SOAP Fault and indicate either an errorCode value of E_invalidValue
or E_valueNotAllowed. In either case, the error text indicates the keyedReference
data that is being rejected, and the reason why.

Use the command-line tool uddiadmin.jar with the -setProperty option to:

■ Enable external validation

■ Add an externally validated category to the registry

■ Remove an externally validated category from the registry

Enabling External Category Validation
To enable external category validation, issue the -setProperty option for the
following property oracle.uddi.server.externalValidation as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password> -setProperty
oracle.uddi.server.externalValidation=true

Adding an Externally Validated Category to the Registry
To add an externally validated category to the registry, perform the following steps:

1. Publish the new category as a tModel data structure to the registry. This data
structure must be categorized as checked under uddi-org:types category.

2. Register the external validation service of the category with the registry by
updating the following server property:
oracle.uddi.server.externalValidationTModelList using the
-setProperty option as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
-setProperty
oracle.uddi.server.externalValidationTModelList=<key-value>,<URL-validation-
service>

For example, if the category tModel published has the key
"uuid:acme-taxonomy-key", and the URL of the validation service is
http://acme.com/externalValidation, the command with the entry is
as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
-setProperty
oracle.uddi.server.externalValidationTModelList=uuid:acme-taxonomy-key,http:
//acme.com/externalValidation
10-42 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
In addition, the timeout limit (in milliseconds) can be tuned for calls to the
external validation service using the server property
oracle.uddi.server.externalValidationTimeout as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
-setProperty oracle.uddi.server.externalValidationTimeout=5000

Removing an Externally Validated Category from the Registry
To remove an externally validated category from the registry, perform the following
steps:

1. Update the following server property:
oracle.uddi.server.externalValidationTModelList using the
-setProperty option by supplying a null value for the
<URL-validation-service> as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
-setProperty oracle.uddi.server.externalValidationTModelList=<key-value>,""

For example, if the category tModel published has the key
"uuid:acme-taxonomy-key", and the URL of the validation service is
http://acme.com/externalValidation, the command with the null
entry will be as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
-setProperty
oracle.uddi.server.externalValidationTModelList=uuid:acme-taxonomy-key,""

2. Deprecate or update the corresponding tModel data structure. If the tModel is
not updated, the registry will reject any new UDDI entries that are categorized
or identified by the category that was removed in subsequent save calls to the
save_business, save_service, or save_tModel API.

Performance Monitoring and Tuning
On the back end of an Oracle database, UDDI servlets, and the associated JDBC
connection pools, can all be monitored using Oracle Enterprise Manager and other
standard database monitoring and tuning utilities.

In an OC4J standalone environment, performance information is typically available
at

http://<oc4j-host-name>:<port-number>/dmsoc4j/Spy
Discovering and Publishing Web Services 10-43

OracleAS UDDI Registry Administration
Data Backup and Restore Operations
Registry data backup and restore operations can be done by using the standard
Oracle database backup and restore operations. See Oracle9i Backup and Recovery
Concepts.

Additional Information
The following sections are some additional OracleAS UDDI Registry administration
information.

UUID Generation
The UUID generation algorithm that is used generates version 4 UUID, which
creates UUIDs from random numbers.

All built-in tModel data structures as specified in the UDDI v2.0 specification are
included. An additional tModel data structure uddi-org:operators, defined in
the UDDI v2.0 specification, is also included to classify the bootstrap node
businessEntity that represents the OracleAS UDDI Registry itself.

Database Configuration
The following sections describe some database-specific configuration information.

Database Character Set Should Be UTF-8 The database character set should be UTF-8 to
accommodate all possible characters. However, if a customer is absolutely certain
that the data to be stored in the registry contains characters of a specific country or
region (such as western Europe), the customer may use the appropriate database
character set.

Functional Index Should Be Enabled The functional index must be enabled to support
index-based, case-insensitive search. The following init.ora parameter is
involved: query_rewrite_enabled=true

In addition, the cost-based optimizer must be turned on for analyzing all tables or
indexes in the UDDISYS schema. For example:

execute dbms_stats.gather_schema_stats(ownname=>'UDDISYS',cascade=>true);

Accuracy of Modified Timestamps of UDDI Entities The accuracy of modified timestamps
of UDDI entities is dependent on the version and compatibility of the database. If
the database compatibility is release 9.0.1 or higher, the modified timestamps are of
10-44 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
SQL type TIMESTAMP, with accuracy up to microseconds. If the database
compatibility is below release 9.0.1, the modified timestamps are of SQL type
DATE, with accuracy up to seconds.

Transport Security
The Inquiry API in general does not require authentication. However, if the inquiry
end point needs to be protected, transport-level authentication, such as HTTP
BASIC authentication and HTTPS SSL client authentication, can be enabled by
configuring the web.xml file. A security role, uddiguest, is reserved for accessing
the protected inquiry end point. Refer to Oracle Application Server Containers for J2EE
Services Guide and Oracle Application Server Containers for J2EE User’s Guide for more
information about security roles and related security configuration.

For the Publishing endpoint URL, you may want to allow HTTPS access only. To
disable HTTP access, edit the web.xml file of the orauddi application to enforce
data confidentiality and make adjustments to HTTP servers accordingly. Refer to
the chapter on security in Oracle Application Server Containers for J2EE User’s Guide
and to Oracle Application Server Containers for J2EE Services Guide for more
information. For example, to disable HTTP access in the web.xml file, use the
following code:

<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

Similarly, you can set up HTTPS access for the Administrative endpoint and the
UDDI Replication endpoint in the same way.

Standard Classification Support
The OracleAS UDDI Registry uses the following three standard classifications:

■ North American Industry Classification System (NAICS)

This is a classification system for each industry and corresponding code. For
more information about NAICS, see the Web site at

 http://www.census.gov/epcd/www/naics.html

■ Universal Standard Products and Services Codes (UNSPSC)

This is the first coding system to classify both products and services for use
throughout the global marketplace. For more information about UNSPSC, see
the Web site at
Discovering and Publishing Web Services 10-45

OracleAS UDDI Registry Administration
 http://eccma.org/unspsc/

■ ISO-3166 Geographic classification (ISO-3166)

This a list of all country names and each corresponding two-character code
element. For more information about ISO-3166, see the Web site at

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/index.html

When Web Services provider administrators publish Web Services, they can select
the classification and the category to which they want to register the Web Services.
They have the option of publishing their Web Services to any or all three of these
classifications, and to as many categories and subcategories as they wish within
each classification.

Database Character Set and Built-in ISO-3166 Classification
The UDDI specification mandates that the registry support the full UTF-8 character
set. Oracle recommends, though does not require, using UTF-8 as the character set
for the Oracle Application Server infrastructure database if the OracleAS UDDI
Registry is used.

If the database is not configured with the UTF-8 character set or its equivalent or
superset, there could be data corruption and error due to loss in character set
conversion to or from UTF-8. Refer to Oracle9i Globalization Support Guide for details.

In particular, the descriptions in the UDDI built-in ISO-3166 classification contains
descriptions with non-ASCII characters, such as some Western European characters
and some Eastern European characters for the names of cities or regions. In order to
support the non-UTF-8 database, all non-ASCII characters in the descriptions are
replaced with ASCII characters as an approximation.

If you do have a UTF-8 database, you can upgrade the built-in ISO-3166
classification to the one with accurate descriptions using the following instructions:

■ Delete the existing ISO-3166 classification by running the SQL script,
clrISO.sql, for example:

cd <ORACLE_HOME>/uddi/admin
sqlplus system/manager @clrISO.sql

■ Load the ISO-3166 classification with accurate descriptions by using SQL*
Loader control file iso3166-99.ctl, for example:

See Also: "Database Character Set and Built-in ISO-3166
Classification" on page 10-46.
10-46 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
cd <ORACLE_HOME>/uddi/admin
sqlldr userid=system/manager control=iso3166-99.ctl

Considerations in a Production Environment
The following information describes some postinstallation configuration steps that
you should do immediately after the installation. These steps are not mandatory,
but are highly recommended in a production environment.

■ Security for publishing the end point: By default, HTTP access is enabled.
However, HTTPS access is recommended for security concerns. See Transport
Security on page 10-45 for more information about disabling HTTP access.

■ Database connection pool sizing and statement caching: Database connection
pool parameters, such as maximum number of database connections and usage
of statement caching, should be configured to accommodate the actual database
server load.

If you are using an Oracle database of your choice as the backend storage, the
parameters can be configured by editing the data source jdbc/OracleUddi.
Refer to the chapter on data sources in Oracle Application Server Containers for
J2EE Services Guide for more information.

If you are using the Oracle Application Server infrastructure database as the
backend storage, the parameters can be configured by modifying the following
UDDI server configuration parameters:

– oracle.uddi.server.db.minConnections

– oracle.uddi.server.db.maxConnections

– oracle.uddi.server.db.jdbcDriverType

– oracle.uddi.server.db.stmtCacheType

– oracle.uddi.server.db.stmtCacheSize

Refer to Server Configuration on page 10-25 and Server Configuration
Properties Reference Information on page 10-48 for more information.

■ Change of the operatorName and businessEntity discoveryURL prefix: In
some cases, administrators may want to change either the operatorName or
businessEntity discoveryURL prefixes, or both parameter values, when moving
a system from a staging environment to a production environment.
Discovering and Publishing Web Services 10-47

OracleAS UDDI Registry Administration
The SQL script ${ORACLE_HOME}/uddi/admin/uddirpic.sql on UNIX or
%ORACLE_HOME%\uddi\admin\uddirpic.sql on Windows can be used to
change the these parameter values.

Server Configuration Properties Reference Information
This section describes reference information for some UDDI server configuration
properties. It is divided into the following sections:

■ Installation or First-Use Properties

■ External Classification Validation Properties

■ UDDI Replication Properties

■ UDDI Replication Scheduler Properties

■ Registry-Based Validation Properties

■ Database Connection Properties

These server configuration parameters are referenced in Server Configuration on
page 10-25. As each example shows, these configuration parameters can be changed
only by using the command-line administration tool, uddiadmin.jar, which is
described in Using the Command-Line Tool uddiadmin.jar on page 10-25.

Installation or First-Use Properties
The following two properties operatorName and businessEntityURLPrefix
should be changed immediately after an installation, but should not be changed
afterward:

operatorName

Property name: operatorName

Description: Provides the name of the operator of the OracleAS UDDI Registry.
This name appears in the operator attribute of responses. Setting this parameter
applies in a retroactive fashion to existing entities in the database. For example,
changing the operator name results in all business and tModel data structures that
currently have the old operator name to be changed to the new operator name.

Property type/allowable values: A non-null string.

Note: Be sure to set this parameter before enabling replication.
10-48 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Initial value: OracleUddiServer

Typical value: <domain of the UDDI registry>/uddi

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.operatorName=OracleUddiServer

businessEntityURLPrefix

Property name: businessEntityURLPrefix

Description: Provides the prefix of the generated discoveryURL, which is
automatically generated for each businessEntity data structure saved in the registry.
The prefix should be customized for your deployment environment. Setting this
parameter applies in a retroactive fashion to existing entities in the database. For
example, changing the discoveryURL prefix results in all discoveryURLs of usetype
"businessEntity" that begin with the old URL prefix to be changed to the new URL
prefix.

Property type/allowable values: A valid URL.

Initial value: The OracleAS UDDI Registry will prompt an administrator for an
initial value upon server initialization.

Typical value: The host name and port should be the host name and port of the
Web server (which may or may not be the same as the servlet container).

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.businessEntityURLPrefix=

defaultLang

Property name: defaultLang

Note: Be sure to set this parameter before enabling replication.
Discovering and Publishing Web Services 10-49

OracleAS UDDI Registry Administration
Description: Provides the default language of the registry for the purpose of filling
in UDDI v1.0 description elements, which lack a language qualification. Language
defaults are not done for UDDI v2.0 requests. Valid values are the values of the
xml:lang attribute.

Property type/allowable values: Values of xml:lang.

Initial value: en

Typical value: The location of the primary region the registry serves.

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.defaultLang=en

External Classification Validation Properties
The following UDDI server properties can be used with external classification
validation:

externalValidation

Property name: externalValidation

Description: Determines if external validation occurs.

Property type/allowable values: Boolean (true, false)

Initial value: false

Typical value: false

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.externalValidation=true

externalValidationTModelList

Property name: externalValidationTModelList

Description: Provides the list of tModel key-URL pairs that represents the
categorization and identifier tModel data structures that will be validated by an
10-50 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
external SOAP service. The tModelKey and URL values within a pair are separated
by a comma (,), and pairs of values are separated by a semicolon (;).

Property type/allowable values: N/A

Initial value: null value ""

Typical value: null value ""

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.externalValidationTModelList=uuid:acme-taxonomy-key,
http://acme.com/externalValidation

externalValidationTimeout

Property name: externalValidationTimeout

Description: Defines the amount of time, in milliseconds, before timeout occurs for
external validation.

Property type/allowable values: long

Initial value: 5000

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.externalValidationTimeout=5000

UDDI Replication Properties
The following UDDI server properties can be used with replication:

taskExecutionPeriod

Property name: taskExecutionPeriod

Description: Controls the period of time during which replication task should be
executed (in milliseconds).
Discovering and Publishing Web Services 10-51

OracleAS UDDI Registry Administration
Property type/allowable values: long

Initial value: 5000

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.replication.taskExecutionPeriod=5000

maxChangeRecordsSentEachTime

Property name: maxChangeRecordsSentEachTime

Description: Controls the maximum number of change records sent out in response
to an incoming getChangeRecords request.

Property type/allowable values: integer

Initial value: 100

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.replication.maxChangeRecordsSentEachTime=100

pushTaskExecutionPeriod

Property name: pushTaskExecutionPeriod

Description: Controls the push task execution period (in milliseconds).

Property type/allowable values: long

Initial value: 45000

Typical value: N/A

Guideline: N/A

Example:
10-52 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.replication.pushTaskExecutionPeriod=45000

pushEnabled

Property name: pushEnabled

Description: Controls whether or not push should be performed for UDDI
replication.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.replication.pushEnabled=true

soapRequestTimeout

Property name: soapRequestTimeout

Description: Controls the timeout value for each SOAP replication request (in
milliseconds).

Property type/allowable values: long

Initial value: 180000

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
 oracle.uddi.server.replication.soapRequestTimeout=180000

soapRequestAuthMethod
Discovering and Publishing Web Services 10-53

OracleAS UDDI Registry Administration
Property name: soapRequestAuthMethod (Authentication property)

Description: Controls the authentication method the registry node will try to use in
sending replication SOAP requests to other nodes. If CLIENT-CERT is used, the
administrator must set the wallet password each time the registry node gets started
or restarted.

Property type/allowable values: one of {NONE, CLIENT-CERT}

Initial value: NONE

Typical value: CLIENT-CERT

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.replication.soapRequestAuthMethod=NONE

walletLocation

Property name: walletLocation (Authentication property)

Description: Defines the wallet file name. The wallet file will be located in the same
place as uddiserver.config.

Property type/allowable values: N/A

Initial value: ewallet.p12

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.replication.walletLocation=ewallet.p12

startMaintainingUpdateJournal

Property name: startMaintainingUpdateJournal (Advanced use property)

Description: Controls whether or not the update journal will be maintained for
UDDI replication. This property must be set to true for replication to occur.
10-54 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Property type/allowable values: Boolean (true, false)

Initial value: false

Typical value: false

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.replication.startMaintainingUpdateJournal=false

changeRecordWantsAck

Property name: changeRecordWantsAck (Advanced use property)

Description: Controls whether or not ACK is required for the change records sent
out from the local node.

Property type/allowable values: Boolean (true, false)

Initial value: false

Typical value: false

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
oracle.uddi.server.replication.changeRecordWantsAck=false

Note: Be sure to upload a correct replication configuration before
you set this property to true.

Note: Once you set this property to true, you should only set it
back to false if you no longer want to participate in UDDI
replication. Setting this property haphazardly from true to false will
result in fatal loss of change records.
Discovering and Publishing Web Services 10-55

OracleAS UDDI Registry Administration
UDDI Replication Scheduler Properties
The following UDDI server properties can be used to set UDDI replication
scheduler properties:

timer_pool_size

Property name: timer_pool_size

Description: Specifies the number of concurrently active threads used by the
scheduler.

Property type/allowable values: N/A

Initial value: 1

Typical value: 1

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.scheduler.timer_pool_size=1

status

Property name: status

Description: Indicates whether or not the scheduler is enabled to send out
replication requests.

Property type/allowable values: Boolean (0=off, 1=on)

Initial value: 1

Typical value: 1

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.scheduler.status=1

Registry-Based Validation Properties
The following UDDI server properties can be used for registry-based validation and
quota limit checking:
10-56 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
categoryValidationTModelKeys

Property name: categoryValidationTModelKeys (Advanced use property)

Description: Represents the categorization and identifier tModel keys, which will
be validated by the registry during an attempted save operation.

Property type/allowable values: A list in the form of '<tModelKey1>',
'<tModelKey2>', '<tModelKey3>'.

Initial value: 'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4', which represents
(uddi-org:types classification). The preinstalled value, however, is the UDDI types
classification plus the three classifications defined in the UDDI v1.0 specification:
(uddi-org:types, uddi-org:iso-ch:3166-1999, ntis-gov:naics:1997, unspsc-org:unspsc).

Typical value: The preinstalled value.

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty
"oracle.uddi.server.categoryValidationTModelKeys=
'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4',
'UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88',
'UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2',
'UUID:CD153257-086A-4237-B336-6BDCBDCC6634' "

identifierValidation

Property name: identifierValidation (Advanced use property)

Description: Controls validation for all IdentifierBag entities. The following flag
settings are allowed:

■ full -- all validation conditions will be checked

■ tmodel_existence -- only tModelKey existence will be validated

■ none -- no condition will be checked

Property Type/allowable values: full, tmodel_existence, none

Initial value: full

Note: The uddi-org:types classification should not be removed
from the list.
Discovering and Publishing Web Services 10-57

OracleAS UDDI Registry Administration
Typical value: full

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.identifierValidation=full

operatorCategory

Property name: operatorCategory (Advanced use property)

Description: Determines whether or not additional entities may be categorized as
an operator node, if categoryValidation is true.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
 oracle.uddi.server.categoryValidation.operatorCategory=true

categoryValidation

Property name: categoryValidation (Advanced use property)

Description: Controls validation for all CategoryBag entities. The following flag
settings are allowed:

■ full -- all validation conditions will be checked

■ tmodel_existence -- only tModelKey existence will be checked

■ none -- no condition will be checked

Property type/allowable values: full, tmodel_existence, none

Initial value: full

Typical value: full

Guideline: N/A
10-58 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.categoryValidation=full

assertionKeyedRefValidation

Property name: assertionKeyedRefValidation (Advanced use property)

Description: Controls validation for all publisher assertion KeyedReference entities.
The following flag settings are allowed:

■ full -- all validation conditions will be checked

■ tmodel_existence -- only tModelKey existence will be validated

■ none -- no condition will be checked

Property type/allowable values: full, tmodel_existence, none

Initial value: full

Typical value: full

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
oracle.uddi.server.assertionKeyedRefValidation=full

tModelInstanceInfoKeyValidation

Property name: tModelInstanceInfoKeyValidation (Advanced use property)

Description: Determines if tModelKey existence validation occurs within
tModelInstanceInfo elements.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
Discovering and Publishing Web Services 10-59

OracleAS UDDI Registry Administration
 [-verbose] -setProperty oracle.uddi.server.tModelInstanceInfoKeyValidation=true

addressTModelKeyValidation

Property name: addressTModelKeyValidation (Advanced use property)

Description: Determines if tModelKey existence validation occurs within address
elements.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.addressTModelKeyValidation=true

hostingRedirectorValidation

Property name: hostingRedirectorValidation (Advanced use property)

Description: Determines if hostingRedirector validation occurs within
bindingTemplate elements. Validation ensures that the referenced bindingTemplate
element exists and does not contain a hostingRedirector element.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.hostingRedirectorValidation=true

Miscellaneous Properties
The following UDDI server properties are miscellaneous.
10-60 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
quotaLimitChecking

Property name: quotaLimitChecking

Description: Determines whether or not publishing quotas, the limits on the
number of entities that can be created in the registry per user, are enforced.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -setProperty oracle.uddi.server.quotaLimitChecking=true

schemaValidationUponIncomingRequests

Property name: schemaValidationUponIncomingRequests (Advanced use
property)

Description: Determines whether or not the server will validate incoming requests
against the UDDI XML schema.

Property type/allowable values: Boolean (true, false)

Initial value: true

Typical value: true

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
oracle.uddi.server.schemaValidationUponIncomingRequests=true

Database Connection Properties
The following UDDI server properties can be used for configuring database
connection properties:

minConnections
Discovering and Publishing Web Services 10-61

OracleAS UDDI Registry Administration
Property name: minConnections (Advanced use property)

Description: Determines the minimum number of database connections in the
connection pool. This property is applicable only if the Oracle Application Server
infrastructure database is used as the backend storage.

Property type/allowable values: A nonnegative integer that is smaller than the
value for maxConnections.

Initial value: 1

Typical value: 1

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
 oracle.uddi.server.db.minConnections=1

maxConnections

Property name: maxConnections (Advanced use property)

Description: Determines the maximum number of database connections in the
connection pool. This property is applicable only if the Oracle Application Server
infrastructure database is used as the backend storage.

Property type/allowable values: A positive integer.

Initial value: 8

Typical value: Depends on the maximum number of concurrent requests and the
desired performance.

Guideline: The estimated maximum number of concurrent requests plus a
percentage of the buffer.

Note: In a cluster environment, this property must be set for each
OC4J instance.

Note: In a cluster environment, this property must be set for each
OC4J instance.
10-62 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration
Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
 oracle.uddi.server.db.maxConnections=12

jdbcDriverType

Property name: jdbcDriverType (Advanced use property)

Description: Defines the type of JDBC driver to be used to access the Oracle
Application Server infrastructure database. This property is applicable only if the
Oracle Application Server infrastructure database is used as the backend storage.

Property type/allowable values: {thin, oci}

Initial value: thin

Typical value: N/A

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
 oracle.uddi.server.db.jdbcDriverType=thin

stmtCacheType

Property name: stmtCacheType (Advanced use property)

Description: Defines the type of statement caching. This property is to be used with
the Oracle Application Server infrastructure database and JDBC driver only.

Property type/allowable values: {NONE, IMPLICIT, EXPLICIT}

Note: In a cluster environment, this property must be set for each
OC4J instance.

Note: In a cluster environment, this property must be set for each
OC4J instance.
Discovering and Publishing Web Services 10-63

OracleAS UDDI Server Error Message Reference Information
Initial value: NONE

Typical value: EXPLICIT

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
 oracle.uddi.server.db.stmtCacheType=NONE

stmtCacheSize

Property name: stmtCacheSize (Advanced use property)

Description: Defines the size (number of statements cached) of statement caching
per connection. This property is to be used with the Oracle Application Server
infrastructure database and JDBC driver only.

Property type/allowable values: integer

Initial value: 50

Typical value: 50

Guideline: N/A

Example:

java -jar uddiadmin.jar <registry admin URL> <username> <password> [-verbose]
-setProperty
 oracle.uddi.server.db.stmtCacheSize=50

OracleAS UDDI Server Error Message Reference Information
The error codes listed are used by UDDI administrators. In general, UDDI error
code E_fatalError can represent various server-side errors that an administrator has
to handle.

Note: In a cluster environment, this property must be set for each
OC4J instance.
10-64 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Server Error Message Reference Information
The specific server-side error is captured in the J2EE application log file. The log file
is typically located at <J2EE_
HOME>/application-deployments/orauddi/application.log. The
reference provides additional information for an administrator to diagnose and
resolve problems.

WUR-00010: An attempt was made to update a configuration parameter that does
not exist ''{0}''.
Cause: The named UDDI server configuration parameter does not exist.

Action: Correct the spelling of the name of the configuration parameter to be
updated. Refer to the configuration parameter reference information for details.

WUR-00011: An attempt was made to update a configuration parameter ''{0}'' in
uddiserver.config. That file cannot be found.
Cause: The UDDI server configuration file uddiserver.config could not be
found.

Action: Make sure that the JVM property oracle.home of the OC4J instance is
defined properly.

WUR-00012: The specified user name, ''{0}'', is not a name that is known to the
registry.
Cause: The named user does not exist in the registry.

Action: Correct the spelling of the named user.

WUR-00013: The 'Default' role for publishing limits may not be deleted.
Cause: An attempt was made to remove the system-defined user quota role
'Default.'

Action: Do not delete the user quota role 'Default.' If the 'Default' user quota
role is not desirable, set the quota limits to zero to disable it.

WUR-00050: Unable to retrieve subscription management configuration
parameter ''{0}'': Internal database schema configuration error encountered.
Cause: An internal database configuration error occurred while retrieving the
configuration parameter for the subscription management module.

Action: Identify the database error message embedded in the details of the
error. Correct the database configuration according to the database error
message.

WUR-00051: Unable to set subscription management configuration parameter
''{0}'': Internal database schema configuration error encountered.
Discovering and Publishing Web Services 10-65

OracleAS UDDI Server Error Message Reference Information
Cause: An internal database configuration error occurred while setting the
configuration parameter for the subscription management module.

Action: Identify the database error message embedded in the details of the
error. Correct the database configuration according to the database error
message.

WUR-00100: An internal error occurred while marshaling the response.
Cause: An unexpected internal error occurred in writing the response to a
client.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00101: An internal error occurred while unmarshaling the request.
Cause: An unexpected internal error occurred in parsing the request sent by a
client.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00104: The value of the configuration parameter named ''{0}'' is invalid.
Cause: The value of the named UDDI server configuration parameter was
invalid.

Action: Refer to the configuration parameter reference information for the
valid values. Use the UDDI administration tool to update the configuration
parameter.

WUR-00105: A database error with SQL code ''{0}'' occurred while trying to ''{1}''.
Cause: An unexpected database error occurred in carrying out the named
action.

Action: Identify and correct the database error. The database error is embedded
in the details of the error.

WUR-00106: An internal error caused the request to fail to make the specified
updates. While rolling back the changes, another error occurred; this leaves
data in an unpredictable state.
Cause: An unexpected database error occurred in rollback phases of error
processing.

Action: Identify and correct the database error. The database error is embedded
in the details of the error.
10-66 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Server Error Message Reference Information
WUR-00107: An internal error occurred while committing the requested changes
to the registry; this leaves data in an unpredictable state.
Cause: An unexpected database error occurred in committing the requested
changes.

Action: Identify and correct the database error. The database error is embedded
in the details of the error.

WUR-00108: An internal error occurred while trying to get a connection to the
underlying database.
Cause: An unexpected database error occurred in obtaining a database
connection to serve the request.

Action: Identify and correct the database error. The database error is embedded
in the details of the error.

WUR-00109: An internal error occurred while trying to close a connection to the
underlying database.
Cause: An unexpected database error occurred during the release of the
database connection after the request was served.

Action: Identify and correct the database error. The database error is embedded
in the details of the error.

WUR-00110: An internal error occurred while trying to create and set up a data
source abstraction for the underlying database.
Cause: An unexpected internal error occurred while creating the database
connection pool.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00111: An internal error occurred while trying to perform a JNDI lookup
and locate of the object ''{0}''.
Cause: An internal error occurred in obtaining the named object from the JNDI
context. Examples of possible objects include database connection pools,
message queues, and so forth.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00113: An internal error occurred while trying to access the repository API
to set up a data source abstraction.
Discovering and Publishing Web Services 10-67

OracleAS UDDI Server Error Message Reference Information
Cause: An unexpected internal error occurred while creating the database
connection pool using Oracle Application Server metadata repository access
API.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00114: An internal error occurred while trying to generate a Universal
Unique Identifier (UUID).
Cause: An unexpected internal error occurred while generating a UUID.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00115: The registry was unable to retrieve OC4J-specific environment
settings from the J2EE container; the user ''{0}'' cannot be authenticated.
Cause: An unexpected internal error occurred while authenticating the user.
The error is usually due to incorrect settings in web.xml or using an
unsupported version of the OC4J container.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00116: An internal error occurred while performing the automatic
postinstallation configuration for the UDDI registry. Regular registry
operations cannot proceed if the registry is not properly configured.
Cause: An unexpected internal error occurred in performing the automatic
postinstallation configuration for the UDDI registry.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00117: Cannot close data source properly.
Cause: An unexpected internal error occurred while closing the database
connection pool during shutdown of the UDDI registry.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00200: An internal error occurred during external validation.
Cause: An unexpected internal error occurred while making a validation call to
an external validation service.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.
10-68 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Server Error Message Reference Information
WUR-00201: An internal error occurred during external validation while
processing the in-memory request.
Cause: An unexpected internal error occurred while processing the UDDI
entities in the request before they were sent for external validation.

Action: Identify and correct the internal error. The internal error is embedded
in the details of the error.

WUR-00202: An internal error occurred during external validation because the
tModel list property, ''{0}'', has the wrong format.
Cause: The value of the UDDI server configuration property,
oracle.uddi.server.externalValidationTModelList, was invalid.

Action: Correct the value. Refer to the configuration parameter reference
information for details.

WUR-00203: An internal error occurred during external validation because the
timeout property, ''{0}'', is not the right integer format.
Cause: The value of the UDDI server configuration property,
oracle.uddi.server.externalValidationTimeout, was invalid.

Action: Correct the value. Refer to the configuration parameter reference
information for details.

WUR-00204: An internal error occurred during external validation because the
response is not a correct DispositionReport.
Cause: DispositionReport returned by the external validation service was
invalid. For example, DispositionReport was empty.

Action: Contact the external validation service provider.

WUR-00205: An internal error occurred during external validation because the
response is not expected. The response is of code ''{0}'' with message ''{1}''.
Cause: DispositionReport returned by the external validation service contained
an unexpected DispositionReport error number.

Action: Contact the external validation service provider.

WUR-00300: DB schema version is missing. Please check DB for VERSION table.
Cause: The version of the database schema for persistent storage was missing.

Action: Contact Oracle Support Services.

WUR-00301: DB schema version ''{0}'' is incompatible with mid-tier version. DB
schema must be updated to make the UDDI registry function.
Discovering and Publishing Web Services 10-69

OracleAS UDDI Server Error Message Reference Information
Cause: The version of the database schema for persistent storage was not
supported by the version of the registry being used.

Action: Upgrade the database schema to the latest version. Refer to the UDDI
database schema upgrade documentation for details.

WUR-00302: An internal error occurred while trying to retrieve and load the
UDDI DELTA server property file.
Cause: An internal error occurred while initializing the UDDI registry in the
backward compatibility mode with an older version of the database schema.

Action: Contact Oracle Support Services.

WUR-00303: This operation is not allowed by DB schema version ''{0}''. You must
upgrade DB schema to the latest version to carry out this operation.
Cause: The requested operation was not supported because the UDDI registry
was running in the backward compatibility mode with an older version of the
database schema.

Action: Upgrade the database schema to the latest version. Refer to the UDDI
database schema upgrade documentation for details.

WUR-05001: Cannot find the UDDI entity just saved.
Cause: An unexpected internal error occurred in updating the update journal.

Action: Contact Oracle Support Services.

WUR-05002: Cannot perform custody transfer for an entity that is not
businessEntity or tModel. The key of the offending entity is ''{0}''.
Cause: In the custody transfer change record, the specified UDDI entity is not
businessEntity or tModel.

Action: Contact the administrator of the UDDI node where the change record
originated.

WUR-05003: Warning: Received a duplicate change record originating from node
''{0}'' with usn ''{1}''.
Cause: A duplicate change record sent from the named UDDI node was
detected.

Action: No action is needed. This is merely an informational message.

WUR-05004: Received an out-of-order change record originating from node ''{0}''
with usn ''{1}''. The change record with usn ''{2}'' has been processed.
10-70 Oracle Application Server Web Services Developer’s Guide

UDDI Open Database Support
Cause: The named change record was received after a change record with a
larger update sequence number (USN) had been processed.

Action: Contact the administrator of the UDDI node where the change record
originated.

WUR-05005: The change record originating from node ''{0}'' with usn ''{1}'' is
invalid because the named node is not recognized.
Cause: The originating node of the named change record was not recognized.
In other words, the node was not recorded in the replication communication
graph.

Action: Contact the administrator of the UDDI node that provided the change
record.

OracleAS UDDI Content Syndication UI Implementation Error Message
The following error message is associated with the UDDI content syndication UI
implementation. This error is returned to the user, non administrator, as a message
within the GUI.

Error Code OSS-00301:
The requested action can be only done by an administrator.
Cause: The logged in user does not have enough privileges to perform the
requested action.

Action: Login as administrator and request the action again.

UDDI Open Database Support
In addition to the Oracle Application Server infrastructure database, the following
databases are supported:

■ Microsoft SQL Server

■ IBM DB2

■ Oracle (non-Oracle Application Server infrastructure database)

For Microsoft SQL Server and IBM DB2, the Oracle Application Server DataDirect
Connect JDBC driver is needed.

The following installation steps for SQL Server, DB2, and Oracle assume that the
relevant database server has been installed. These instructions also assume that
Oracle Application Server Portal has been installed, which should copy the relevant
Discovering and Publishing Web Services 10-71

UDDI Open Database Support
UDDI files to ${ORACLE_HOME}/uddi/admin on UNIX or %ORACLE_
HOME%\uddi\admin on Windows.

Microsoft SQL Server
The following sections describe installation and configuration information.

Script Source Directory
Installation must be performed from a Windows machine. If the %ORACLE_
HOME%\uddi\admin\mssql directory is not accessible from the SQL Server
machine, then copy this directory to a location that is accessible. This directory (or
the original %ORACLE_HOME%\uddi\admin\mssql if no copying is necessary)
will be referred to as %MSSQL_HOME_DB%.

Create the Database and User
The %MSSQL_HOME_DB%\wurcreatedb_mssql.sql script has been provided to
create the uddisys database and uddisys user for a SQL Server instance in
mixed-authentication mode. If you are using Windows authentication or wish
to alter some of the settings in this script, you may do so as long as all the following
requirements are met:

■ The collation for the uddisys database must be case-sensitive.

■ Recursive triggers must be enabled on the uddisys database.

■ The uddisys user must have the uddisys database as its default database.

■ The uddisys user must be a member of the db_owner role for the uddisys
database.

To run the script with the Microsoft osql utility, use the administrator login and
password (sa/sa):

osql -S <server> -U sa -P sa -i wurcreatedb_mssql.sql

where <server> is the server hosting the SQL Server instance.

Install the Schema
Go to the %MSSQL_HOME_DB% directory. Use the osql utility to execute the SQL
script wurinst_mssql.sql using the uddisys/uddisys account created in
Create the Database and User on page 10-72.

The syntax is as follows:
10-72 Oracle Application Server Web Services Developer’s Guide

UDDI Open Database Support
osql -S <server> -U <user> -P <password> -d <database> -i wurinst_mssql.sql

where <server> is the server hosting the SQL Server instance.

For example:

osql -S server-machine -U uddisys -P uddisys -d uddisys -i wurinst_mssql.sql

Import BUILTIN_CHECKED_CATEGORY Table Entries
Import the iso3166-99_tModelKey.txt, naics-97_tModelKey.txt, and
unspsc-73_tModelKey.txt files into the BUILTIN_CHECKED_CATEGORY
table as follows:

1. Select the Import and Export Data option from the SQL Server Start menu
options. Click Next.

2. For the Data Source, select the last option, Text File. Then, provide the name
and location of the appropriate text file, %MSSQL_HOME_DB%\iso3166-99_
tModelKey.txt. Click Next.

3. The default file format should be Delimited. Accept this by clicking Next.

4. Set the delimiter to the ("|") character. Click Next.

5. Select the uddisys database for the destination. Provide the appropriate
authentication mechanism and credentials, which are SQL Server
Authentication with user uddisys and password uddisys, by default.
Make sure that the selected database is uddisys. Click Next.

6. Click the Destination and select the BUILTIN_CHECKED_CATEGORY table.

7. Click Transform. Map TMODEL_KEY to Col001, KEY_NAME to Col003, KEY_
VALUE to Col002, and PARENT_VALUE to Col004. Click OK.

8. Click Next.

9. Click Next to run immediately and click Finish to start.

10. Repeat this process for the naics-97_tModelKey.txt and unspsc-73_
tModelKey.txt files.
Discovering and Publishing Web Services 10-73

UDDI Open Database Support
Configure OracleAS OC4J to Use SQL Server
Define a data source with the name and location set to jdbc/OracleUddi to
reflect that SQL Server is the desired database, like the following:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="jdbc/OracleUddi"
 location="jdbc/OracleUddi"
 connection-driver="com.oracle.ias.jdbc.sqlserver.SQLServerDriver"
 username="uddisys"
 password="uddisys"
url="jdbc:oracle:sqlserver://<servername>:1433;SelectMethod=cursor;User=uddisys;
Password=uddisys"
/>

Note that <servername> is the network name or IP address of the server hosting
the SQL Server instance used for UDDI.

The data source needs to be accessible by the orauddi.ear and oraudrepl.ear
files.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Restart the UDDI server for these changes to take effect.

IBM DB2
The following sections describe installation and configuration information.

Script Source Directory
If the ${ORACLE_HOME}/uddi/admin/db2 directory is not accessible from the
machine with the relevant DB2 tools, then copy this directory to a location that is
accessible. This directory will be referred to as ${DB2_HOME_DB} on UNIX or
%DB2_HOME_DB% on Windows.

Note: If the character set of your database is not UTF-8, do not use
the script iso3166-99.txt to load the ISO3166 taxonomy
because the taxonomy contains characters from different languages.
Instead, use the script iso3166-99-ascii.txt to load an ASCII-only
version of the taxonomy.
10-74 Oracle Application Server Web Services Developer’s Guide

UDDI Open Database Support
Create the Database and User
Go to the ${DB2_HOME_DB} directory on UNIX or the %DB2_HOME_DB% directory
on Windows. The wurcreatedb_db2.sql script is provided for creating the
uddisys database. The user is responsible for creating a uddisys user with
password uddisys based on the authentication scheme that is being used for DB2.
By default, this requires creating a uddisys user at the operating system level.

If you wish to alter some of the settings in this script, you may do so as long as both
the following requirements are met:

■ The default tablespace for the uddisys database must be at least 8 KB pages.
This also requires providing a buffer pool that will support a page size of at
least 8 KB.

■ The applheapsz parameter must be increased to approximately 12800 pages.

To run the script, start the DB2 Command Line Processor by entering db2 in UNIX
or db2cmd in Windows. Then, execute the script:

db2 -t +p < wurcreatdb_db2.sql

where -t allows the use of semicolons to terminate SQL statements and +p
suppresses prompting.

Install the Schema
Run the wurinst_db2.sql script. This also triggers the wurcreat.sql,
wurdbsql.sql, and wurpopul.sql scripts. To run these scripts, do the following:

Launch the command-line processor as previously described, then enter the
following:

db2 -t +p < wurinst_db2.sql

Import BUILTIN_CHECKED_CATEGORY Table Entries
Import the iso3166-99_tModelKey.txt, naics-97_tModelKey.txt, and
unspsc-73_tModelKey.txt files into the BUILTIN_CHECKED_CATEGORY
table as follows:

1. Right click the table BUILTIN_CHECKED_CATEGORY from the Control
Center and select IMPORT.

2. Specify the Import file as ${DB2_HOME_DB}/iso3166-99_tModelKey.txt
for UNIX or %DB2_HOME_DB%\iso3166-99_tModelKey.txt for Windows.
Discovering and Publishing Web Services 10-75

UDDI Open Database Support
3. Select Delimited ASCII format (DEL). Click Options and select ('|') as the
delimiter.

4. Use the INSERT import mode (the default).

5. Set the Commit records equal to 500.

6. For the Message file, enter ${DB2_HOME_
DB}/uddi/admin/db2/iso3166-99_tModelKey.log for UNIX or %DB2_
HOME_DB%\uddi\admin\db2\iso3166-99_tModelKey.log for Windows.

7. Go to the Columns tab. Select Include Columns by Position. Map TMODEL_
KEY to 1, KEY_NAME to 3, KEY_VALUE to 2, and PARENT_VALUE to 4.

8. Click OK to run the import process.

9. Repeat this process for the naics-97_tModelKey.txt and unspsc-73_
tModelKey.txt files.

Configure OracleAS OC4J to Use DB2
The following sections describe how to create the DB2 package and modify the URL
for regular use.

Create a DB2 Package Define a data source with the name and location set to
jdbc/OracleUddi to reflect that DB2 is the desired database, like the following:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="jdbc/OracleUddi"
 location="jdbc/OracleUddi"
 connection-driver="com.oracle.ias.jdbc.db2.DB2Driver"
 username="uddisys"
 password="uddisys"
url="jdbc:oracle:db2://<servername>:50000;databaseName=UDDISYS;PackageName=JDBCP
KG;DynamicSections=512;CreateDefaultPackage=TRUE;ReplacePackage=true"
/>

Note: If the character set of your database is not UTF-8, do not use
the script iso3166-99.txt to load the ISO3166 taxonomy
because the taxonomy contains characters from different languages.
Instead, use the script iso3166-99-ascii.txt to load an ASCII-only
version of the taxonomy.
10-76 Oracle Application Server Web Services Developer’s Guide

UDDI Open Database Support
Note that <servername> is the network name or IP address of the server hosting
the DB2 instance used for UDDI.

The data source needs to be accessible by the orauddi.ear and oraudrepl.ear
files.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Now, launch the UDDI server so that these initial URL connection strings will be
used to create the appropriate default package in DB2.

Modify the URL for Regular Use Now that the DB2 package has been created, update
the data source defined in the previous step (see Create a DB2 Package on
page 10-76) and change the URL attribute from:

url="jdbc:oracle:db2://<servername>:50000;databaseName=uddisys;PackageName=JDBCP
KG;DynamicSections=512;CreateDefaultPackage=TRUE;ReplacePackage=true"

to:

url="jdbc:oracle:db2://<servername>:50000;databaseName=uddisys;PackageName=JDBCP
KG;DynamicSections=512"

Note that the last two parameters, CreateDefaultPackage and
ReplacePackage, have been removed from the final URL attribute.

Once these changes have been made to both data-sources.xml files, restart the
UDDI server for the changes to take effect.

Oracle (Non-OracleAS Infrastructure Database)
The following sections describe installation and configuration information.

Script Source Directory
If the ${ORACLE_HOME}/uddi/admin directory is not accessible from the server
with the relevant Oracle tools, then copy this directory to a location that is
accessible. This directory will be referred to as ${ORACLE_HOME_ORACLE} on
UNIX or %ORACLE_HOME_ORACLE% on Windows.

Create the Database and User
The following steps describe how to create the uddisys database and the uddisys
user:
Discovering and Publishing Web Services 10-77

UDDI Open Database Support
1. Go to the ${ORACLE_HOME_ORACLE} directory on UNIX or the %ORACLE_
HOME_ORACLE% directory on Windows.

2. Use SQL*Plus to execute the SQL script wurinst.sql using the sys user
account. For example:

sqlplus "sys/change_on_install as sysdba" @wurinst.sql

The schema uddisys is created with the password uddisys. A log file
wurinst.log is produced.

Populate the Validated Taxonomy Codes
Populate the validated taxonomy codes using SQL*Loader with the three control
scripts: naics-97.ctl, iso3166-99.ctl, and unspsc-73.ctl. For example:

sqlldr userid=uddisys/uddisys control=naics-97.ctl
sqlldr userid=uddisys/uddisys
 control=unspsc-73.ctl
sqlldr userid=uddisys/uddisys control=iso3166-99.ctl

Configure OracleAS OC4J to Use the Non-OracleAS Infrastructure Database
Define a data source with the name and location set to jdbc/OracleUddi to
reflect that non-Oracle Application Server infrastructure database is the desired
database, like the following:

<data-source
 class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 name="jdbc/OracleUddi"
 location="jdbc/OracleUddi"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="uddisys"
 password="uddisys"
url="jdbc:oracle:thin:@<servername>:1521:<oracle sid>"

Note: If the character set of your database is not UTF-8, do not use
the script iso3166-99.ctl to load the ISO3166 taxonomy
because the taxonomy contains characters from different languages.
Instead, use the script to load an ASCII-only version of the
taxonomy:

sqlldr userid=uddisys/uddisys control=iso3166-99-ascii.ctl
10-78 Oracle Application Server Web Services Developer’s Guide

UDDI Subscription Service
/>

Note that <servername> is the network name or IP address of the server hosting
the non-Oracle Application Server infrastructure database instance used for UDDI.

The data source needs to be accessible by the orauddi.ear and oraudrepl.ear
files.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Restart the UDDI server for these changes to take effect.

UDDI Subscription Service
The OracleAS UDDI Registry, leveraging OracleAS Syndication Services, provides a
subscription service allowing publishers in the registry to monitor or obtain
changes in the registry. By specifying a specific query or a set of entities, an
administrator can define an offer that provides changes in the entities that are
interesting to some users or scenarios. For example:

■ An administrator can define an offer that provides changes to any
businessService entities classified in the NAICS classification scheme, for
example, under the category named mining .

■ Publishers in the registry are interested in these types of services and can
subscribe to the offer.

For example, if you want to find all changes to any businessServices entities that are
classified under the topic name mining in the NAICS classification scheme, as a user
of the registry, you can subscribe to such an offer and automatically receive periodic
updates to the content.

Defining Offers
An administrator defines an offer using the OracleAS Syndication Services
administrators tool.

1. Determine the content connector to be used based on the type of filtering
criteria.

2. Create a content provider resource defining the specific filtering criteria.

3. Create an offer.

a. Define the contract (such as licensing terms, delivery rules) of the offer.
Discovering and Publishing Web Services 10-79

UDDI Subscription Service
b. Grant the offer to uddi_syndication application user, so that regular
UDDI publishers can subscribe to the offer using the UDDI Content
Subscription Manager.

See Oracle Application Server Syndication Services Developer’s and Administrator’s Guide
for more information.

For example, to provide an offer of changes to businessService entities classified
under the mining category in the NAICS classification scheme, the administrator
would do the following:

1. Determine the content connector to be used. First, the administrator determines
the content connector to be used based on the type of filtering criteria. In this
example, the type of filtering criteria is a finding services by categoryBag.
Therefore, the content connector to be used is
UddiFindServiceByCategoryBagCPAdaptor.

2. Create a content provider resource. Secondly, the administrator creates a
content provider resource using the content connector selected. The content
provider resource defines the specific filtering criteria. In this example, the
UDDI Subscription Service specific filtering criteria is that mining category in
the NAICS classification scheme.

3. Create an offer. Finally, the administrator creates an offer (to which regular
UDDI publishers can subscribe) using the content provider resource. In
addition, to the filtering criteria, the administrator does the following:

a. Defines the contract (such as licensing terms, delivery rules) of the offer.

b. Grants the offer to uddi_syndication application user, so that regular
UDDI publishers can subscribe to the offer using the UDDI Content
Subscription Manager.

OracleAS Syndication Services comes configured with the following content UDDI
connectors. A description of each connector is provided along with the specified
input arguments or properties each contains.

■ UddiFindBusinessByCategoryBagCPAdaptor -- find businesses by category
bag; the category bag contains only one keyed reference with the following
properties: tModel key, key name, and key value.

Note: The offer must be granted to uddi_syndication user. It is the
user used in UDDI Content Subscription Manager.
10-80 Oracle Application Server Web Services Developer’s Guide

UDDI Subscription Service
■ UddiFindServiceByCategoryBagCPAdaptor -- find services by category bag; the
category bag contains only one keyed reference with the following properties:
tModel key, key name, and key value.

■ UddiFindServiceByTModelBagCPAdaptor -- find services by TModel bag; the
tModel bag contains only one keyed reference with the following properties:
tModel key, key name, and key value.

■ UddiFindTModelByCategoryBagCPAdaptor -- find TModels by category bag;
the category bag contains only one keyed reference with the following
properties: tModel key, key name, and key value.

■ UddiGetBusinessDetailCPAdaptor -- get the full businessEntity information for
one business identified by a BusinessKey.

■ UddiGetServiceDetailCPAdaptor -- get full details for a registered
businessService identified by a ServiceKey.

■ UddiGetBindingDetailCPAdaptor -- get full bindingTemplate information
suitable for making one or more service requests identified by a BindingKey.

■ UddiGetTModelDetailCPAdaptor -- get full details for a registered tModel data
structure identified by a TModelKey.

■ UddiFindBusinessByNameCPAdaptor -- find one business by name; the name
is the business name prefix.

The OracleAS Syndication Services administrator:

1. May register a content provider for any of these preconfigured connectors by
specifying its properties, selecting the desired UDDI content connector, and
specifying settings to access the content repository and its resources.

2. May create an offer for a content provider by selecting the content provider
resource, specifying its offer properties, and choosing users or groups to which
to grant access to this offer.

Once the offers are created, the UDDI Content Subscription Administrator uses the
Web-based UDDI Content Subscription Manager to:

1. Manage UDDI application subscription properties, such as configuring the
UDDI Content Subscription Manager with OracleAS Syndication Services.

2. Subscribe to available offers as well as cancel his own subscriptions and those
belonging to any user.

See Subscribing to an Offer on page 10-83 for more information about using this
administrative tool to create OracleAS UDDI Registry UDDI Registry-based
Discovering and Publishing Web Services 10-81

UDDI Subscription Service
subscriptions. See Oracle Application Server Syndication Services Developer’s and
Administrator’s Guide for more information about managing and registering content
providers and creating offers and associated offer contracts with content providers.

Advanced Topic: Creating New UDDI Content Connectors
OracleAS UDDI Registry provides a command-line tool to facilitate the automatic
generation of custom OracleAS Syndication Services content connectors for various
UDDI inquiry requests. The command-line tool can be described as follows:

generateCPA

Parameter: <registry admin URL> <username> <password> [-verbose]
-generateCPA <javaClassName> <uddiRequestXMLTemplate>

Description: Given the UDDI request template XML, generates an OracleAS
Syndication Services content connector, in the format of a Java class file. The
generated Java class file will have the name as specified by the javaClassName
parameter and a fixed Java package of
oracle.uddi.server.subscription.cp. In order for OracleAS Syndication
Services to find it, the Java class file should be incorporated into the existing JAR file
located in the following directory:

For UNIX:

<ORACLE_HOME>/syndication/lib/cp/uddicpas.jar

For Windows:

<ORACLE_HOME>\syndication\lib\cp\uddicpas.jar

For example, given the following XML file findbiz.xml as a UDDI request
template, perform the following steps:

<find_business xmlns='urn:uddi-org:api_v2' generic='2.0'>
 <findQualifiers>
 <findQualifier>sortByNameDesc</findQualifier>
 <findQualifier>sortByDateAsc</findQualifier>
 <findQualifier>caseSensitiveMatch</findQualifier>
 </findQualifiers>
 <name>$(BusinessName,"Test")</name>
</find_business>

Note that parameter definitions are allowed in this XML template. The syntax is as
follows: $(parameterName) or $(parameterName,"default_value"). For
10-82 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
the find_business request template, a parameter with a preset value is defined. An
Oracle Application Server UDDI Content Subscription Administrator can generate
offers by setting different values to the BusinessName parameter after loading the
content connector generated from this XML template. Note that this UDDI request
XML template must have a UDDI v2 namespace.

1. Execute the generateCPA command as follows:

java -jar uddiadmin.jar <registry admin URL> <username> <password>
 [-verbose] -generateCPA UddiFindBizCPAdaptor findbiz.xml

A UddiFindBizCPAdaptor.class file will be generated and must be
incorporated into the uddicpas.jar file.

2. Navigate to the directory where the uddicpas.jar file is located.

a. Create under this current directory the subdirectory
oracle/uddi/server/subscription/cp on UNIX or the subdirectory
oracle\uddi\server\subscription\cp on Windows.

b. Copy your class file, UddiFindBizCPAdaptor.class into the <ORACLE_
HOME>/syndication/lib/cp/oracle/uddi/server/subscriptio
n/cp directory on UNIX or the <ORACLE_
HOME>\syndication\lib\cp\oracle\uddi\server\subscriptio
n\cp directory on Windows.

c. Execute the following JAR command:

On UNIX:
jar -uf uddicpas.jar
oracle/uddi/server/subscription/cp/UddiFindBusinessByNameCPAdaptor.class

On Windows:
jar -uf uddicpas.jar
oracle\uddi\server\subscription\cp\UddiFindBusinessByNameCPAdaptor.class

3. Register the connector. Refer to Oracle Application Server Syndication Services
Developer’s and Administrator’s Guide for more information.

Subscribing to an Offer
The UDDI Content Subscription Manager is a Web-based application that allows
users (publishers and administrators) to subscribe to offers from content providers
through specialized UDDI content connectors managed by OracleAS Syndication
Services. As subscribers to the OracleAS UDDI Registry syndicated by OracleAS
Discovering and Publishing Web Services 10-83

Subscribing to an Offer
Syndication Services, users can create subscriptions to obtain changes in UDDI
Registry content delivered to them through e-mail. Users can also cancel their own
subscriptions.

The UDDI Content Subscription Manager recognizes two types of users, the regular
user or publisher, who has the UDDI publisher privilege, and the administrator of
the UDDI Content Subscription Manager, who logs in as a UDDI administrator, for
example ias_admin.

The regular user can do the following (see Using the UDDI Content Subscription
Manager as a Publisher on page 10-84):

■ Subscribe to offers (create subscriptions).

■ Cancel only their own subscriptions.

The administrator (for example, ias_admin) can do the following (see Using the
UDDI Content Subscription Manager as a UDDI Administrator on page 10-91):

■ Subscribe to offers (create subscriptions).

■ Cancel their own subscriptions as well as all subscriptions belonging to all
users.

■ Enter or change UDDI subscription application properties, such as configuring
the UDDI Content Subscription Manager with OracleAS Syndication Services.
These configurable properties include specifying:

– The syndication services URL.

– The syndication subscriber user name and password for UDDI (the
syndication user name and password for the special UDDI application
subscriber).

– The syndication connection pool size. This is the pool size for syndication
connections held by the subscription application.

– The logging level or the level of detail to record in the log file.

Using the UDDI Content Subscription Manager as a Publisher
To use the UDDI Content Subscription Manager as a UDDI publisher, perform the
following steps:

1. Start the UDDI Content Subscription Manager by entering the following URL:

http://<host>:<port>/uddisub/subscription/ui
10-84 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
where the <host> parameter indicates the system on which the UDDI Content
Subscription Manager is installed and the <port> parameter specifies the port
number on which it is running.

2. Next, log in as a UDDI publisher (for example, uddi_
publisher/<publisher-password>). The UDDI Content Subscription
Manager home page or Subscriptions page is displayed, as shown in
Figure 10–2.

Figure 10–2 Subscriptions Page

As the UDDI publisher, you can do any of the following tasks:

a. Create a subscription.

Click Subscribe Wizard to launch a 5-step subscribe wizard that lets you
choose an offer, accept the business terms of the offer, select the delivery
rules for delivering content to you, specify the e-mail address to where
Discovering and Publishing Web Services 10-85

Subscribing to an Offer
content is to be delivered, and review a summary of the specified
subscription information before you create the subscription.

b. Cancel a subscription.

Select an existing subscription by selecting its corresponding box in the
Select column, then click Unsubscribe.

3. To subscribe to an offer, click Subscribe Wizard. In the first of 5 steps of the
subscribe wizard, the Offers page is displayed, as shown in Figure 10–3.

Figure 10–3 Offers Page

a. At the Offers page, select one of the available offers from the list, then click
Next to continue to the next step.

b. At the Business Terms page, as shown in Figure 10–4, review the business
terms of the offer. If the business terms are acceptable, click the radio button
I Have Read and Accept, then click Next to continue to the next step. If the
business terms are not acceptable, click Back to return to the previous
Offers page and find another offer whose business terms are acceptable.
10-86 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
Figure 10–4 Business Terms Page

c. At the Delivery Rules page, as shown in Figure 10–5 and Figure 10–6,
select the delivery rules to be used by the OracleAS Syndication Services to
deliver content to you by clicking its box, then, click Next to continue to the
next step. The expiration policy information is displayed. Only push
delivery rules are available for selection.
Discovering and Publishing Web Services 10-87

Subscribing to an Offer
Figure 10–5 Delivery Rules Page (Top Half of Page)

Figure 10–6 Delivery Rules Page (Bottom Half of Page)

d. At the Email Address page as shown in Figure 10–7, enter the e-mail
address to whom this offer content is to be sent, then click Next to continue
to the next step.
10-88 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
Figure 10–7 Email Address Page

e. At the Subscription Summary page, as shown in Figure 10–8 and
Figure 10–9, review the subscription information. The following
information is displayed: offer description, expiration policy, push delivery
rules, and e-mail address to where the content is to be pushed. If the
information is correct, click Finish to complete the subscription process. A
confirmation message is shown at the top of the Subscriptions page,
indicating that your subscription was successfully created.

If the information is not correct, click Back to return to the appropriate
subscribe wizard page where you can make the necessary change, then
click Next to return to this Subscription Summary page to review a
summary of the subscription information again.
Discovering and Publishing Web Services 10-89

Subscribing to an Offer
Figure 10–8 Subscription Summary Page (Top Half of Page)

Figure 10–9 Subscription Summary Page (Bottom Half of Page)

This completes the tasks that a UDDI publisher can perform using the UDDI
Content Subscription Manager.
10-90 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
Canceling a Subscription
To cancel a subscription, at the Subscriptions page as shown in Figure 10–2, select
the subscriptions that you want to cancel by clicking their boxes in the Select
column, then click Unsubscribe. A Subscription Cancellation page is displayed, as
shown in Figure 10–10. Click OK to confirm the unsubscribe action.

Figure 10–10 Subscription Cancellation Page

Using the UDDI Content Subscription Manager as a UDDI Administrator
To use the UDDI Content Subscription Manager as a UDDI administrator, perform
the following steps:

1. Start the UDDI Content Subscription Manager by entering the following URL:

http://<host>:<port>/uddisub/subscription/ui

where the <host> parameter indicates the system on which the UDDI Content
Subscription Manager is installed and the <port> parameter specifies the port
number on which it is running.
Discovering and Publishing Web Services 10-91

Subscribing to an Offer
2. Next, log in as a UDDI administrator (for example, ias_admin/<ias_
admin-password>). The UDDI Content Subscription Manager home page or
Subscriptions page is displayed, as shown in Figure 10–11.

Figure 10–11 Subscriptions Page

As the administrator, you can do any of the following tasks:

a. Create a subscription.

Click Subscribe Wizard to launch a 5-step subscribe wizard that lets you
select an offer, accept the business terms of the offer, select the delivery
rules for delivering content to you, specify the e-mail address to where
content is to be delivered, and review a summary of the specified
subscription information before you create the subscription.

b. Cancel a subscription.
10-92 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
Select an existing subscription by selecting its corresponding box in the
Select column, then click Unsubscribe.

c. Edit application properties.

Click Edit Application Properties to edit the UDDI subscription
application properties, such as configuring the UDDI Content Subscription
Manager with OracleAS Syndication Services.

d. Switch to regular view.

Click Switch to Regular View if you have logged in as the administrator
and want to just view or manage your own subscriptions as a regular user
would.

3. Click Subscription Application Properties to view or edit the UDDI
subscription application properties, as shown in Figure 10–12. The UDDI
content subscription administrator may need to change the default properties
only if one or more settings need to be changed.

For example, if the instance of OracleAS Syndication Services is installed on the
same system as this UDDI Content Subscription Manager, then the syndication
URL should be correct; if OracleAS Syndication Services is not on the same
system, then the UDDI Content Subscription administrator must specify the
syndication URL. You can edit any properties that may need to be changed.
Usually, the default settings will be fine. If no changes are necessary, click
Cancel; if changes are necessary, make your changes, then click OK. Then,
restart the UDDI content subscription application in order for these changes to
take effect.

Note: You must enter values for all fields in order to make
changes.
Discovering and Publishing Web Services 10-93

Subscribing to an Offer
Figure 10–12 Subscription Application Properties Page

Having checked the subscription application properties, regular users and
administrators can now begin subscribing to offers and managing
subscriptions.

4. You can subscribe to an offer just like a regular publisher by following the
procedure described beginning at Step 3 in Using the UDDI Content
Subscription Manager as a Publisher on page 10-84.

Note: If you change any subscription application properties, you
must restart the UDDI application in order for these changes to take
effect.
10-94 Oracle Application Server Web Services Developer’s Guide

Subscribing to an Offer
Canceling a Subscription
To cancel one of your own subscriptions or a subscription belonging to any user, at
the Subscriptions page as shown in Figure 10–11, select the subscriptions from that
you want to cancel by clicking their boxes in the Select column, then click
Unsubscribe. A Subscription Cancellation page is displayed, as shown in
Figure 10–13. Click OK to confirm the unsubscribe action.

Figure 10–13 Subscription Cancellation Page
Discovering and Publishing Web Services 10-95

Subscribing to an Offer
10-96 Oracle Application Server Web Services Developer’s Guide

Consuming Web Services in J2EE Applicat
11

Consuming Web Services in J2EE

Applications

This chapter describes how to consume Web Services in Java 2 Platform, Enterprise
Edition (J2EE) applications. Two types of Web-based information or services are
supported:

■ HTML/XML streams accessed through HTTP, see Consuming XML or HTML
Streams in J2EE Applications.

■ SOAP-based Web Services described using WSDL, see Consuming SOAP-Based
Web Services Using WSDL.

In addition, when a J2EE application acquires a WSDL document at runtime, the
dynamic invocation API is used to invoke any SOAP operation described in the
WSDL document. See Dynamic Invocation of Web Services for information about
how to use the dynamic invocation API.
ions 11-1

Consuming XML or HTML Streams in J2EE Applications
Consuming XML or HTML Streams in J2EE Applications
Oracle Application Server Containers for J2EE (OC4J), provides support for
processing XML or HTML streams accessible through the HTTP/S protocols for
consuming into J2EE applications. The Web Service HTML/XML Stream Processing
Wizard assists developers in creating an Enterprise JavaBean (EJB) whose methods
will access and process the desired XML or HTML streams.

In the simplest case, suppose a developer wants programmatic access to an XML
news feed accessible through a static URL. In another case, a developer wants
programmatic access to a dynamic stream accessed through the submission of an
HTML form. Now, suppose HTTP/S basic authentication is required to access
either of these two types of resources. In either case, developers must be able to
quickly and easily process XML or HTML streams, thus consuming these Web
Services in their own specific J2EE applications.

Web Service HTML/XML Stream Processing Wizard
Developers using the Web Service HTML/XML Stream Processing Wizard first
specify how the XML/HTML stream should be accessed and then define the
desired processing actions on the stream.

Developers can choose among the following options when specifying their
XML/HTML stream access:

1. Supply a static URL that has no parameters.

2. Define an HTML form to be submitted, its action URL, and its parameters.

3. Supply the URL of an HTML page where the form to be submitted is defined.

Additional HTTP-related settings can also be specified. They include HTTP proxy
settings, authentication, and HTTPS Oracle Wallet information.

To assist developers in defining the processing to be applied to the stream, the
wizard accesses the XML/HTML stream (prompting the developer for sample form
values if necessary). The resulting sample XML/HTML stream is shown in a
searchable XML tree. Through the wizard, the developer can perform the following
actions:

1. Leave the XML stream unprocessed and have the service response be the
original stream.

2. Select a node in the XML tree and have the service response be an XML Element
corresponding to that node.
11-2 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
3. Select a node in the XML tree and define through the wizard a simple
transformation for it. The service response will be the result of that
transformation. Optionally, the same transformation can be applied to all the
siblings of the selected node.

The wizard allows developers to create multi-operation services by repeating the
steps described previously for each operation.

Upon completion of the steps described previously, the Web Service HTML/XML
Stream Processing Wizard generates a JavaBean and an EJB whose methods
perform the appropriate HTTP request and processing of the XML or HTML
response. If it is necessary to support multi-operation services, then the generated
stub keeps the HTTP session information in its state, and the generated stub is
modeled as a stateful session EJB user option. The resulting Java code is then
compiled and archived, creating the required .ear file that the developer can
immediately deploy in Oracle Application Server.

Sample Use Scenarios
This section describes two sample use cases for a better understanding of how to
use the Web Service HTML/XML Stream Processing Wizard.

Handling an XML or HTML Stream Accessed Through a Static URL
The following steps generate the Java stubs that consume a static XML or HTML
stream.

1. Invoke the Web Service HTML/XML Stream Processing Wizard using the
following command:

java -jar WebServicesHtmlXmlWizard.jar

Note: JavaScript code contained in HTML streams will be ignored
and not processed.

Note: The WebServicesHtmlXmlWizard.jar file is located in
your $ORACLE_HOME/webservices/lib installation directory
for UNIX or %ORACLE_HOME%\webservices\lib installation
directory for Windows.
Consuming Web Services in J2EE Applications 11-3

Consuming XML or HTML Streams in J2EE Applications
2. In Step 1 of 5: HTML/XML Stream Type, select the first option Through a
static HTTP/S URL, then click Next to continue to the next step.

3. In Step 2 of 5: HTML/XML Stream URL, enter the URL of the HTML page in
which you want to access the resource. Accept the default stream content type,
HTML Format. If the stream content type is XML, then select the XML Format
content type.
11-4 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
If you must access the URL from outside a firewall, click Advanced Settings.
For this example, assume you must go through a firewall to access the desired
URL.

4. At the Advanced Settings pop-up window, select Use proxy server and place a
checkmark in the box, then enter the host address and port number for your
proxy server. Click OK to return to the HTML/XML Stream URL window.
Click Next to continue to the next step.
Consuming Web Services in J2EE Applications 11-5

Consuming XML or HTML Streams in J2EE Applications
Note: If the URL you are accessing requires basic HTTP
authentication, select Use credential information in request, then
enter the user name and password in the Credential section of the
Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,
use the Oracle Wallet section of the Advanced Settings pop-up
window to enter the Wallet location.
11-6 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
5. In Step 3 of 5: Result Node, the HTML/XML Stream tree is shown in the
HTML/XML Stream section. Ignore this HTML/XML stream tree for now.

Note: You may need to move your mouse to the bottom of the
wizard window, grab the edge (note the double-headed, vertically
oriented arrow), and pull the window down to expand it so you
can see the Service Response Tree pane.

Note: If the original HTML/XML stream was in HTML, the
wizard first converts it into XHTML (making it a valid XML
document), and then shows its structure in the tree.
Consuming Web Services in J2EE Applications 11-7

Consuming XML or HTML Streams in J2EE Applications
Then, for the Web Service Response section, select how you want to build the
Web Service response; you can select one of two options:

■ Return the entire HTML/XML stream as the Web service response

■ Define the Web service response from the selected node

For this sample use, you want to take the entire page content as the Web page
content, therefore, select the first option, Return the entire HTML/XML stream
as the Web service response.
11-8 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Click Next to continue to the next step.

6. In Step 4 of 4: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then
you will see only the EJB method name. You need to enter only the EJB method
name and click Finish to complete the operation of creating your EJB method.

If this is the second or subsequent HTML or XML stream you are processing in
this session, then the suggested EJB method information is displayed for your
EJB method, describing the name for the J2EE application, the EJB name, the
name of the service package, and the name of the service class. By default, the
names are preselected based on the information that is already known.

If you want to retain this suggested EJB method information and display it in
the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (checkmarked). If not, deselect
this option and the EJB method information that appeared previously will be
displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;
however, in the final step (Console window), you can change these names.

Note: If you select the Define the Web service response from the
selected node option, a Service Response Fields window displays.
This option lets you finalize the output extracting process by letting
you select elements of interest to be outputs and assign names to
the output fields. See list item 8 for more information about the
Service Response Fields window.
Consuming Web Services in J2EE Applications 11-9

Consuming XML or HTML Streams in J2EE Applications
Enter an EJB method name, then click Finish to continue to the next step.

7. In the final step, the Console window, you see the main window of the Web
Service HTML/XML Stream Processing Wizard that always remains in view
once you reach this step of creating an EJB method.

Note: Once you click Finish on the Summary window, you
cannot return to a previous step. You really are finished with the
process of creating an EJB method that will access and process the
specified XML or HTML stream.
11-10 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
The Console window is divided into three sections: EJB Definition, EJB
Methods, and Save Location.
Consuming Web Services in J2EE Applications 11-11

Consuming XML or HTML Streams in J2EE Applications
EJB Definition Section
The EJB Definition section contains the default EJB definition for your current EJB
consisting of the J2EE application name, the EJB name, the service package name,
and the service class name. You can change any of these definition names by placing
the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated EJB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by
selecting the Use current proxy and wallet settings for the generated EJB option.
By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 5: HTML/XML
Stream Type window where you can begin again the process of adding another EJB
method definition that accesses an HTML or XML stream through the HTTP/S
protocol.

If you select an EJB method and click Remove, the highlighted EJB method is
removed. Note that there is a confirmation window that pops up as part of this
operation.

If you select an EJB method name and click Rename, a Rename pop-up window
lets you rename the EJB method. You can click OK to complete the rename
operation and return to the Console window, or you can click Cancel to cancel this
rename operation and return to the Console window.

Save Location Section
The Save Location section lets you specify where you want the generated EJB
method to be saved. You can either enter a drive and directory name or browse to
the desired location by clicking Browse.

If you want, edit the EJB definition names in the EJB Definition section, then enter
the directory name where you want to save your generated EJB. You can optionally
browse to this directory location and select it, or browse to the desired directory and
create a new directory name.

Select the Make the generated EJB stateful option if you are creating a
multi-operational service. When you create a multi-operational service, which
needs to maintain a conversational state with the remote HTTP server across
method calls, you must access other site content and perform the defined
11-12 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
processing. In addition, keep the HTTP/S session information in its state so other
method calls can share the same session information. The generated Java stub will
then be modeled as a stateful session EJB.

An example of a multioperational service would be one operation that includes the
login methods for HTTP or HTTPS authentication. A second operation would
include the methods that scrape the Web site to which you were granted access
through login authentication. In this case, method calls for both operations share
the same session information.

For this sample use, leave the Make the generated EJB stateful box without a
checkmark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add the EJB Methods section, which
starts you again at Step 1 of the wizard, the HTML/XML Stream Type window.

The Web Service HTML/XML Stream Processing Wizard generates the following
sets of files located within the destination directory name you specified in the
Console window. The wizard will save the generated files using the following
directory layout:

 Root /
 + app.ear
 + src/
 + ... generated java sources ...
 + classes/
 + META-INF/
 + ejb-jar.xml
 + ... compiled classes and xml resources
 + deploy/
 + ejb.jar
 + META-INF/
 + application.xml

■ An .ear file (which is a JAR containing the J2EE application that can be
deployed in Oracle Application Server) is located within the parent directory
you specified in Step 7. The .ear file contains the generated EJB, JAR, and XML
files for your application, where the application.xml file located in the
/deploy/META-INF directory for UNIX or the \deploy\META-INF directory
for Windows serves as the EAR manifest file.
Consuming Web Services in J2EE Applications 11-13

Consuming XML or HTML Streams in J2EE Applications
■ A JAR file, containing your EJB application class files is located within the
/deploy directory for UNIX or the \deploy directory for Windows. The JAR
file includes all EJB application class files and the deployment descriptor file.

■ A standard J2EE EJB deployment descriptor (ejb-jar.xml), for all the beans
in the module, is located within the /classes/META-INF directory for UNIX
or the \classes\META-INF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

■ The source code of a set of Java classes that you can use in your Java
applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package names.

■ The /classes directory for UNIX or the \classes directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

The following code is generated in the src/com/oracle/www/Class1.java file
on UNIX or the src\com\oracle\www\Class1.java file on Windows showing
the remote interface (Class1) of the generated EJB. In this case, a method (news)
with no parameters that return an org.wc3.dom.Element is generated because the
HTML stream was selected as a static HTML page.

public interface Class1 extends EJBObject
{
 public org.w3c.dom.Element news()
 throws RemoteException;
}

Handling an XML or HTML Stream Accessed Through a Form
The following steps generate the Java stubs that consume a dynamic XML or HTML
stream requiring a form to be submitted.

1. Invoke the Web Service HTML/XML Stream Processing Wizard using the
following command:

java -jar WebServicesHtmlXmlWizard.jar
11-14 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
2. In Step 1 of 5: HTML/XML Stream Type, select the second option, Submitting
a form defined in an HTML page, then click Next to continue to the next step.

Note that you can optionally select the Submitting a custom form option if you
must customize the form to allow for variables such as where the Web server
offers a certain action, but the corresponding form is not provided in the HTML
page.

3. In Step 2 of 7: HTML/XML Stream URL, enter the URL of the HTML page
from which you want to access the resource.

Note: The WebServicesHtmlXmlWizard.jar file is located in your
$ORACLE_HOME/webservices/lib installation directory for
UNIX or %ORACLE_HOME\webservices\lib installation
directory for Windows.
Consuming Web Services in J2EE Applications 11-15

Consuming XML or HTML Streams in J2EE Applications
If you must access the URL from outside a firewall, click Advanced Settings.
For this example, assume you must go through a firewall to access the desired
URL.

4. At the Advanced Settings pop-up window, select Use proxy server and place a
checkmark in the box, then enter the host address and port number for you
proxy server. Click OK to return to the HTML/XML Stream URL window.
Click Next to continue to the next step.
11-16 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Note: If the URL you are accessing requires basic HTTP
authentication, select Use credential information in request, then
enter the user name and password in the Credential section of the
Advanced Settings pop-up window.

If the URL you are accessing requires basic HTTPS authentication,
use the Oracle Wallet section of the Advanced Settings pop-up
window to enter the Wallet location.
Consuming Web Services in J2EE Applications 11-17

Consuming XML or HTML Streams in J2EE Applications
5. In Step 3 of 7: HTML Form, the Web Service HTML/XML Stream Processing
Wizard identifies all HTML forms on the Web page. For this sample use, the
Form field shows just one form, the default form name, Form1 and the Action
field shows the HTML form action. In the Content Type field, the default is
HTML Format. This specifies the content type of the page returned by the
remote server upon the submission of the form. If the content type is XML, then
select XML Format. Accept the default content type as HTML format.

Note: If you are submitting a custom form, there is no need to
specify an action.
11-18 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
In the form query parameters section, checkmark the names of the query
parameters and add descriptive names as needed in the Descriptive Names
column for each query parameter. Descriptive names are used as the name of
the parameter in the signature of the method being defined. For query
parameters that should remain hidden, click the appropriate row and column to
change the default value from unchecked to checked. Note that for each hidden
query parameter, you must also enter a default value. Hidden parameters are
not exposed as Java parameters in the signature of the method being defined.
When you have made all the necessary changes, click Next to continue to the
next step.

6. In Step 4 of 7: Sample Input, you must enter sample input to your service in
order to generate the response message syntax. The default values for all the
hidden query form parameters specified in the previous step, Step 3 of 7 HTML
Form, are used as sample input. Add or edit the sample input values for all
required query form parameters in the Value fields for each parameter.
Consuming Web Services in J2EE Applications 11-19

Consuming XML or HTML Streams in J2EE Applications
If you want to check your Web proxy information, enter basic HTTP
authentication information, or enter basic HTTPS authentication information,
click Advanced Settings and enter or edit the desired information.

Click Next to continue to the next step.

7. In Step 5 of 7: Result Node, the HTML/XML stream tree is shown in the
HTML/XML Stream section.

Note: You may need to resize the window vertically so you can
see the HTML/XML Stream Tree pane.
11-20 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
The Result Node window shows the structure of the HTML or XML stream as
an HTML/XML stream tree and lets you define your Web Service response
based on the contents of the HTML/XML stream.

You have two options in defining your Web Service response:

■ To select the entire HTML/XML stream to be part of your Web Service
response.

■ To select just the node that contains the complete set of service results in the
HTML/XML stream and define this to be the Web Service response.
Optionally, you can also include in the Web Service response all siblings of
the selected node.
Consuming Web Services in J2EE Applications 11-21

Consuming XML or HTML Streams in J2EE Applications
The Web Service Response section lets you define the Web Service response as
either the entire HTML/XML stream or as the parent node you selected in the
HTML/XML Stream section. If the parent node contains siblings, you can
optionally select them all to be included in the Web Service response. If you
choose to include all the siblings, you can click Advanced Settings to display
the Advanced Settings pop-up window where you can enter a predicate that
filters the set of sibling nodes, view the resulting Xpath, and view or edit the
Response element name.

If you want to select the entire HTML/XML stream to be part of your Web
Service response, select the first option Return the entire HTML/XML Stream
as the Web service response, then click Next at the bottom of the window to
continue to the next step.

If you want to select just the node that contains the complete set of information
you are interested in, select the second option Define the Web service response
from the selected node. Then, navigate to the node you want by moving down
the HTML/XML stream tree.

You can quickly locate the desired element in the HTML/XML stream tree by
entering its name in the Find field and clicking Next at the end of this field. The
name of the element is highlighted in the HTML/XML stream tree. You can go
to the next or previous occurrence of this element by clicking Next or Previous
the end of the Find field.

From the highlighted element, navigate toward the root of the tree to the node
that contains the complete set of information in which you are interested. The
node of interest is usually the next lowest table row node (xhtml:tr) that is
within a different table; it is usually located one level lower toward the root of
the tree.

Figure 11–1, Figure 11–2, and Figure 11–3 together show an excerpt of what the
xhtml tree would appear like when expanded. The selected node xhtml:tr is
located in the next lower table node, which is one level lower than the
xhtml:tr nodes for ORCL and its two siblings AAPL and IBM.
11-22 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Figure 11–1 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part1)
Consuming Web Services in J2EE Applications 11-23

Consuming XML or HTML Streams in J2EE Applications
Figure 11–2 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part2)

Figure 11–3 Expanded xhtml Tree Showing the Selected Node of Interest Relative to
the Nodes for ORCL and Sibling Nodes AAPL and IBM (Part 3)
11-24 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Note that the Node Location field contains the complete name of the node you
selected.

When you select the option Define the Web service response from the selected
node, another option is now available and that is whether or not to include all
the siblings of the selected node in the response.

If the node you selected has siblings that you want to include in the Web
Service response, select the option Include all the siblings of the selected node
in the response. When you make this selection, an Advanced Settings button
enables. Click Advanced Settings to display the Advanced Settings pop-up
window where you can enter a predicate that filters the set of sibling nodes,
view the resulting Xpath, and view or edit the Response element name.

The following predicate filters out the first position: position() != 1. Enter this
predicate expression in the Predicate that filters the set of sibling nodes field
of the Advanced Settings pop-up window to filter the first sibling from the Web
Service response.

For more information about predicates, filters, syntax, and composing a
predicate expression, see the Xpath section of the following Web site:
http://www.w3c.org/TR/xpath.

Then, click OK to return to the Result Node window.

Click Next to continue to the next step.

8. In Step 6 of 7: Service Response Fields, you are finalizing the output extracting
process. Based on the selected element from Step 5 of 7 Result Node, you can
select elements of interest to be outputs and assign names to the output fields.
Consuming Web Services in J2EE Applications 11-25

Consuming XML or HTML Streams in J2EE Applications
Service Response Field Names are mapped to XML Element names of the
service response. By default, the value of each node selected in the HTML/XML
stream is contained in an XML Element name as specified in the Service
Response Fields table. For example, if the <a>test node from the
HTML/XML stream tree is added to the Service Response Fields pane, the
service response then contains an XML Element such as <respA>test</respA>,
where respA is the corresponding service response field name. The value of the
node is extracted using the XSLT value-of operation.

If the copy-of column is selected for a result field, the corresponding
XML/HTML stream node is copied in the service response. For example, if the
<a>test node from the HTML/XML stream tree is added to the Service
11-26 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Response Fields pane and the copy-of option is selected, the service response
then contains an XML Element, such as <respA><a>test</respA>, where
respA is the corresponding service response field name. The copy of a node is
built using the XSLT copy-of operation as shown in the following code example
taken from a generated XSL stylesheet. In this example, <resp:Stockquote>
and <resp:Price> are the corresponding service response field names
showing the copy of a node that was built using the XSLT copy-of operation
where the Copy-of column option was selected.

- <resp:Stockquote>
 <xsl:copy-of
select="./xhtml:td/xhtml:table/xhtml:tr[2]/xhtml:td[1]/xhtml:a/text()" />
 </resp:Stockquote>
- <resp:Price>
 <xsl:copy-of
select="./xhtml:td/xhtml:table/xhtml:tr[2]/xhtml:td[3]/xhtml:b/text()" />
 </resp:Price>
- <resp:Stockquote>
 <xsl:copy-of
select="./xhtml:td/xhtml:table/xhtml:tr[3]/xhtml:td[1]/xhtml:a/text()" />
 </resp:Stockquote>
- <resp:Price>
 <xsl:copy-of
select="./xhtml:td/xhtml:table/xhtml:tr[3]/xhtml:td[3]/xhtml:b/text()" />
 </resp:Price>
- <resp:Stockquote>
 <xsl:copy-of
select="./xhtml:td/xhtml:table/xhtml:tr[4]/xhtml:td[1]/xhtml:a/text()" />
 </resp:Stockquote>
- <resp:Price>
 <xsl:copy-of
select="./xhtml:td/xhtml:table/xhtml:tr[4]/xhtml:td[3]/xhtml:b/text()" />
 </resp:Price>

In the HTML/XML Response Tree pane, navigate to the node that contains the
value of the service response field of interest and select the value to highlight it.
Then, click the double, right-arrow to the right of this HTML/XML Response
Tree pane to move the value of the response field to the lower right Sample
Response Field Value pane. This action also adds a row to the Service
Response Fields list in the upper right Service Response Fields pane. Select
the empty field in the Name column of the Service Response Fields pane and
enter a descriptive name for this field. Repeat this process for each element that
you want to include in the service response. As you follow this process, you
Consuming Web Services in J2EE Applications 11-27

Consuming XML or HTML Streams in J2EE Applications
will be building a list of response fields of interest in the Service Response
Fields list.

If you want to remove a service response field from the Service Response
Fields list, select the value of the name in the Service Response Fields pane
and click the double, left-arrow to the left side of this pane. This action removes
this service response field from the Service Response Fields list.

When you have made all your selections, click Next to continue to the next step.

9. In Step 7 of 7: Summary, you must specify your EJB method name.

If this is the first HTML or XML stream you are processing in this session, then
you will see only the EJB method name.

If this is the second or subsequent HTML or XML stream you are processing in
this session, then the suggested EJB method information is displayed for your
EJB method, describing the name for the J2EE Application, the EJB Name, the
name of the service package, and the name of the service class. By default, the
names are preselected based on the known information.

If you want to retain this suggested EJB method information and display it in
the next step, the Console window, then leave the option Use the method
information to define EJB as follows selected (with a check mark). If not,
deselect this option and the EJB method information that appeared previously
will be displayed in the Console window.

You cannot change the values for any of these EJB definition fields in this step;
however, in the final step (Console window), you can change these values.
11-28 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
Enter an EJB method name, then click Finish to continue to the next step.

Note: Once you click Finish on the Summary window, you
cannot return to a previous step. You really are finished with the
process of creating an EJB method whose methods will access and
process the specified XML or HTML stream.
Consuming Web Services in J2EE Applications 11-29

Consuming XML or HTML Streams in J2EE Applications
10. In the final step, the Console window, you see the main window of the Web
Service HTML/XML Stream Processing Wizard that remains in view once you
reach this step of creating an EJB.
11-30 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
The Console window is divided into three sections: EJB Definition, EJB
Methods, and Save Location.

EJB Definition Section
The EJB Definition section contains the EJB definition for your current EJB
consisting of the J2EE application name, the EJB name, the service package name,
and the service class name. You can change any of these definition names by placing
the cursor in the field and editing the name.

You can make the generated EJB stateful by selecting the Make the generated EJB
stateful option. By default this option is not selected.

You can choose to use the current proxy and wallet settings for the generated EJB by
selecting the Use current proxy and wallet settings for the generated EJB option.
By default this option is already selected.

EJB Methods Section
The EJB Methods section lets you add, remove, or rename EJB methods.

If you click Add, you return to Step 1 of this wizard, the Step 1 of 7: HTML/XML
Stream Type window where you can begin again the process of adding another EJB
method definition that accesses an HTML or XML stream through the HTTP/S
protocol.

If you select an EJB method and click Remove, the highlighted EJB method is
removed. Note that there is a confirmation window that pops up as part of this
operation.

If you select an EJB method name and click Rename, a Rename pop-up window
lets you rename the EJB method. You can click OK to complete the rename
operation and return to the Console window, or you can click Cancel to cancel this
rename operation and return to the Console window.

Save Location Section
The Save Location section lets you specify where you want the generated EJB
method to be saved. You can either enter a drive and directory name or browse to
the location by clicking Browse.

If you want, edit the EJB definition names in the EJB Definition section, then enter
the directory name where you want to save your generated EJB. You can optionally
browse to this desired directory location and select it, or browse to the desired
directory and create a new directory name.
Consuming Web Services in J2EE Applications 11-31

Consuming XML or HTML Streams in J2EE Applications
Select the Make the generated EJB stateful option if you are creating a
multi-operational service. When you create a multi-operational service, which
needs to maintain a conversational state with the client across method calls, you
must access other site content and perform the defined processing. In addition, keep
the HTTP/S session information in its state so other method calls can share the
same session information. The generated Java stub will then be modeled as a
stateful session EJB.

For this sample use, leave the Make the generated EJB stateful box without a check
mark because this is a single operational service.

Click Generate to save your generated EJB.

At this point, you can quit from the wizard by clicking Cancel and at the Warning
confirmation pop-up window, click OK.

You can add another EJB method by clicking Add in the EJB Methods section,
which starts you again at Step 1 of the wizard, Step 1 of 7: HTML/XML Stream
Type.

The Web Service HTML/XML Stream Processing Wizard generates the following
sets of files located within the parent directory name you specified in the last step,
the Console window. The wizard will save the generated files using the following
directory layout:

 Root /
 + app.ear
 + src/
 + ... generated java sources ...
 + classes/
 + META-INF/
 + ejb-jar.xml
 + ... compiled classes and xml resources
 + deploy/
 + ejb.jar
 + META-INF/
 + application.xml

■ An .ear file (which is a JAR containing the J2EE application that can be
deployed in Oracle Application Server) is located within the parent directory
you specified in the last step, the Console window. The .ear file contains the
generated EJB, JAR, and XML files for your application, where the
application.xml file located in the /deploy/META-INF directory for UNIX
or the \deploy\META-INF directory for Windows serves as the EAR manifest
file.
11-32 Oracle Application Server Web Services Developer’s Guide

Consuming XML or HTML Streams in J2EE Applications
■ A JAR file, containing your EJB application class files, is located within the
/deploy directory for UNIX or the \deploy directory for Windows. The JAR
file includes all EJB application class files and the deployment descriptor file.

■ A standard J2EE EJB deployment descriptor (ejb-jar.xml), for all the beans
in the module, is located within the /classes/META-INF directory for UNIX
or the \classes\META-INF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

■ The source code of a set of Java classes that you can use in your Java
applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package names.

■ The /classes directory for UNIX or the \classes directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

The following code is generated in the <class-name>.java file showing the
remote interface (stockquote) of the generated EJB. In this case, a method
(stockquote1) with parameters (Stockquote and h) for each non-hidden form
parameter that returns an org.wc3.dom.Element is generated. This stockquote1
method is generated because the HTML stream was selected as being dynamically
generated based on a submitted form defined in the HTML page.

public interface stockquote extends EJBObject
{
 public org.w3c.dom.Element stockquote1(java.lang.String Stockquote,
 java.lang.String Value)
 throws RemoteException;
}

Advanced Section -- Editing Changes You Can Make to Generated Files
The following sections describe some changes you can make by editing the content
of specific generated files. These changes can adapt your XSLT stylesheet to an
enhanced response definition or satisfy changing requirements for using your
generated EJB with another Web proxy server.
Consuming Web Services in J2EE Applications 11-33

Consuming XML or HTML Streams in J2EE Applications
Editing the Generated XSLT Stylesheet
The generated <class-name>.jar file, located in the last child <class-name>
directory within the /classes directory on UNIX or \classes on Windows,
contains three files:

■ Sample output response XML file returned by the remote server

■ Output response XSLT stylesheet file used for the scraping process

■ XML response schema XSD file used for the returned response during the
wizard session

During runtime operations, the XML response returned by the remote server upon
access of the XML URL or the submission of a form, is filtered through the XSLT
transformation defined in this stylesheet.

You can edit the filtering stylesheet XSLT file to add logic or to change the behavior
of your application. You can make comparable edits to the output response XML
XSD file to custom adapt your response file for your J2EE application. You must
know how to modify stylesheets and response definition files to complete these
changes successfully.

When you have completed your changes to the response stylesheet and response
XML files and saved your changes, you must do the following:

■ Rejar your <class-name>.jar file in the deploy directory.

■ Rejar your EJB JAR file by jarring the content of the classes directory.

■ Rejar the defined EAR file saved in the tool destination directory, by jarring the
content of the deploy directory.

Modifying Environment Options in the Generated ejb-jar.xml File
The generated ejb-jar.xml file is located in the /classes/META-INF directory
on UNIX or \classes\META-INF directory on Windows directly below the root
directory where you saved your generated EJB. This file contains an environment
section denoted by <env-entry> and </env-entry> tags where the Web proxy
information is stored. Once you generate your EJB, you can later edit this
ejb-jar.xml file to modify your Web proxy settings (host address name and port
number) to satisfy any requirements you might have for using your generated EJB
with other Web proxy servers. You must jar your ejb jar and ear file again and
redeploy them in your J2EE application server.
11-34 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
Consuming SOAP-Based Web Services Using WSDL
The wsdl2ejb utility can be used by J2EE developers to consume a Web Service
described in Web Services Description Language (WSDL) document into their
applications. This utility takes a WSDL document and some additional optional
parameters and produces an EJB EAR file that can be deployed into OC4J. The EJB
Remote Interface is generated based on the WSDL portType. Each WSDL operation
is mapped to an EJB method. The EJB method parameters are derived from the
WSDL operation input message parts, while the EJB method return value is
mapped from the parts of the WSDL operation output message. The Oracle SOAP
Mapping Registry is used to map XML types to the corresponding Java types.

Additional references regarding WSDL and SOAP can be found in the following
locations:

■ The WSDL 1.1 specification is available at

http://www.w3.org/TR/wsdl

■ The SOAP 1.1 specification is available at

http://www.w3.org/TR/SOAP/

The command-line options for running the wsdl2ejb utility are described in
Table 11–1.

To run the wsdl2ejb utility, enter the following command where <destDir> is
the destination directory to where the generated EJB EAR file is to be written and
the file mydoc.wsdl is the location of the WSDL document:

Table 11–1 wsdl2ejb Utility Command-Line Options

Option Description

-conf <config file> Allows the wsdl2ejb utility to load a configuration file.

-d <destDir> Allows a destination directory to be specified where the
generated EJB EAR file is to be written.

-Dhttp.proxyHost Allows the proxy host name to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-Dhttp.proxyPort Allows the proxy port number to be specified when an HTTP
URL is used to supply the location of the WSDL document
and an HTTP proxy server is required to access it.

-jar Allows you to specify the wsdl2ejb utility as a JAR file.
Consuming Web Services in J2EE Applications 11-35

Consuming SOAP-Based Web Services Using WSDL
java -jar wsdl2ejb.jar -d <destDir> mydoc.wsdl

If an HTTP URL is used to supply the location of the WSDL document and an
HTTP proxy is required to access it, the following command and syntax must be
used to run the utility:

java -Dhttp.ProxyHost=myProxyHost -Dhttp.proxyPort=80 -jar wsdl2ejb.jar -d
<destDir> http://myhost/mydoc.wsdl

In this example, the utility uses the supplied WSDL to generate the EJB EAR file in
the destination directory (<destDir>). The EJB class name, Java Naming and
Directory Interface (JNDI) binding key, and Java package name are derived from the
location of the SOAP service described in the WSDL.

In this command syntax, the wsdl2ejb utility maps the XML types, which are
supported by default by the Oracle SOAP Mapping Registry.

The wsdl2ejb utility generates the following sets of files located within the
destination directory name (<destDir>) that you specify in the command line. The
utility saves the generated files using the following directory layout:

 Root /
 + app.ear
 + src/
 + ... generated java sources ...
 + classes/
 + META-INF/
 + ejb-jar.xml
 + ... compiled classes and xml resources
 + deploy/
 + ejb.jar
 + META-INF/
 + application.xml

■ An .ear file (which is a JAR archive containing the J2EE application that can be
deployed in OC4J) is located within the destination directory (<destDir>) you
specified in the command line. The .ear file contains the generated EJB, JAR,

Note: The wsdl2ejb.jar file is located in your $ORACLE_
HOME/webservices/lib installation directory for UNIX or
%ORACLE_HOME\webservices\lib installation directory for
Windows.
11-36 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
and XML files for your application, where the application.xml file located
in the /deploy/META-INF directory for UNIX or the \deploy\META-INF
directory for Windows serves as the EAR manifest file.

■ An archive JAR file containing your EJB application class files is located within
the /deploy directory for UNIX or the \deploy directory for Windows. The
JAR file includes all EJB application class files and the deployment descriptor
file.

■ A standard J2EE EJB deployment descriptor (ejb-jar.xml) for the generated
bean in the module is located within the /classes/META-INF directory for
UNIX or the \classes\META-INF directory for Windows. The XML
deployment descriptor describes the application components and provides
additional information to enable the container to manage the application.

■ The source code of a set of Java classes that you can use in your Java
applications is located within the /src directory for UNIX or the \src
directory for Windows. The generated JavaBean and EJB Java source code is
contained in subdirectories according to their Java package name. An EJB client
stub is also generated.

■ The /classes directory for UNIX or the \classes directory for Windows
contains the compiled generated classes and additional XML resources used by
the generated code.

Advanced Configuration
To have more controls on the EJB generated from a WSDL document, an XML
configuration file can be supplied to the wsdl2ejb utility. Through the
configuration file, developers can control several options on the WSDL source, as
well as options on the generated EJB.

Developers can also use the configuration file to supply additional xml to Java type
maps, so that WSDL documents using complex types can be supported.

The syntax of the wsdl2ejb configuration file is shown in its Document Type
Definition (DTD) as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Specify the properties of the source WSDL document and of the target EJB. -->
<!ELEMENT wsdl2ejb (useProxy?, useWallet?, wsdl, ejb?, mapTypes?)>

<!-- Specify if the generated EJB should use the supplied HTTP proxy when accessing HTTP URLs -->
<!ELEMENT useProxy (#PCDATA)>
<!ATTLIST useProxy
 proxyHost CDATA #REQUIRED
Consuming Web Services in J2EE Applications 11-37

Consuming SOAP-Based Web Services Using WSDL
 proxyPort CDATA #REQUIRED>

<!-- Specify the location of the wallet credential file used by the generated EJB for opening HTTPS
connection -->
<!ELEMENT useWallet (#PCDATA)>
<!ATTLIST useWallet
 location CDATA #REQUIRED>

<!--
 Specify how the wsdl2ejb tools should process the source WSDL document.
 In additional to the mandatory location of the WSDL document, the name of the WSDL service and
 its port can be specified. In this case, an EJB will be generated only for the supplied service and
 port.
 An alternative: the name of a WSDL service binding and the SOAP location to be used can be supplied.
 In the latter case, an EJB using the specified binding and the supplied SOAP location will be used.
 This is particularly useful when generating an EJB from a WSDL stored in a UDDI registry.
 In fact, following a UDDI best practice, the WSDL SOAP location will be managed separately from the
 WSDL document.
 -->
<!ELEMENT wsdl (location, ((service-name, service-port) | (service-binding, soap-location))?)>

<!-- Specify the location of the source WSDL document (for example, "/home/mywsdl.wsdl",
"http://myhost/mywsdl.wsdl") -->
<!ELEMENT location (#PCDATA)>

<!-- Specify the name of the WSDL service to be used for the generation.
 It is the name of one of the services defined in the source WSDL. -->
<!ELEMENT service-name (#PCDATA)>

<!-- Specify the service port of the WSDL service to be used for the generation.
 It is the name of one ports of the service name defined above in the source WSDL. -->
<!ELEMENT service-port (#PCDATA)>

<!-- Specify the name of the WSDL binding to be used for the generation.
 It is the name of one of the bindings defined in the source WSDL. -->
<!ELEMENT service-binding (#PCDATA)>

<!-- Specify the SOAP location service port of the WSDL service to be used for the generation.
 It is the name of one ports of the service name defined above in the source WSDL. -->
<!ELEMENT soap-location (#PCDATA)>

<!-- Specify the properties related to the generated EJB. -->
<!ELEMENT ejb (application-name?, ejb-name?, package-name?, remote-name?, session-type?)>

<!-- Specify the name of the J2EE application for the generated EAR. -->
<!ELEMENT application-name (#PCDATA)>
11-38 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
<!-- Specify the JNDI binding key name for the generated EJB. -->
<!ELEMENT ejb-name (#PCDATA)>

<!-- Specify the name for Java package under which the generated EJB will belong. (for example, com.oracle)
-->
<!ELEMENT package-name (#PCDATA)>

<!-- Specify the class name for the EJB Remote Interface (for example, MyWsdlEjb) -->
<!ELEMENT remote-name (#PCDATA)>

<!-- Specify the if the generated EJB should be stateless or stateful (for example, Stateless | Stateful)
-->
<!ELEMENT session-type (#PCDATA)>

<!--
 Specify the custom Java types and map them to XML types.
 The JAR attribute value will point to a JAR file containing the definition of the custom
 types or the serializer/deserializer to be used for the custom type.
-->
<!ELEMENT mapTypes (map*)>
<!ATTLIST mapTypes
 jar CDATA #IMPLED>

!--
 Specify a new XML to JAR type map.
 EncodingStyle: name of the encodingStyle under which this map will belong
 (for example, http://schemas.xmlsoap.org/soap/encoding/)
 namespace-uri : uri of the namespace for the XML type defined in this map
 local-name : localname of the XML type defined in this map
 java-type : Java class name to which this type is mapped to (for example, com.org.MyBean)
 java2xml-class-name: Java class name of the type serializer
 (for example, org.apache.soap.encoding.soapenc.BeanSerializer)
 xml2java-class-name: Java class name of the type deserializer
 (for example, org.apache.soap.encoding.soapenc.BeanSerializer)
-->
<!ELEMENT map (#PCDATA)>
<!ATTLIST map
 encodingStyle CDATA #REQUIRED
 namespace-uri CDATA #REQUIRED
 local-name CDATA #REQUIRED
 java-type CDATA #REQUIRED
 java2xml-class-name CDATA #REQUIRED
 xml2java-class-name CDATA #REQUIRED>

Table 11–2 describes the elements, subelements, and attributes of the wsdl2ejb
XML configuration file as defined in the DTD. Required elements and attributes are
shown as bold text.
Consuming Web Services in J2EE Applications 11-39

Consuming SOAP-Based Web Services Using WSDL
Table 11–2 Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as Defined
in the DTD

Element Subelement Attribute Description

useProxy Optional element. Specifies the proxy server attributes.

proxyHost Required attribute. Specifies the host name of the proxy
server.

proxyPort Required attribute. Specifies the port number of the proxy
server.

useWallet Optional element. Specifies the Oracle Wallet attribute.

location Required attribute. Specifies the location of the Oracle
Wallet credential file used by the EJB for opening the
HTTPS connection.

wsdl Required element. Specifies how the wsdl2ejb utility
should process the source WSDL document. Requires the
location element be specified and optionally, either the
service-name and service-port pair of elements or the
service-binding and soap-location pair of elements be
specified.

location Required element. Specifies the location of the source
WSDL document. Can be a file path or an URL.

service-name Optional element. Specifies the name of the WSDL service
to be used for the generated EJB. If specified, must be
specified with the service-port element as a pair of
elements.

service-port Optional element. Specifies the service port of the WSDL
service to be used for the generated EJB. If specified, must
be specified with the service-name element as a pair of
elements.

service-binding Optional element. Specifies the name of the WSDL binding
to be used for the generated EJB. If specified, must be
specified with the soap-location element as a pair of
elements.

soap-location Optional element. Specifies the SOAP location service port
of the WSDL service to be used for the generated EJB. If
specified, must be specified with the service-binding
element as a pair of elements.

ejb Optional element. Specifies the properties related to the
generated EJB.
11-40 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
Developers can run the wsdl2ejb utility with a configuration file using the
following command:

java -jar wsdl2ejb.jar -conf wsdlconf.xml

application-name Optional element. Specifies the name of the J2EE
application for the generated EAR file.

ejb-name Optional element. Specifies the JNDI binding key name for
the generated EJB.

package-name Optional element. Specifies the name for the Java package
under which the generated EJB belongs.

remote-name Optional element. Specifies the class name for the EJB
Remote Interface.

session-type Optional element. Specifies whether the generated EJB
should be stateless or stateful.

mapTypes Optional element. Specifies the custom Java types and
maps them to XML types.

map Optional element. Specifies the XML to JAR type map.

encodingStyle Required attribute. Specifies the name of the encoding
style under which this map belongs.

namespace-uri Required attribute. Specifies the URI of the namespace for
the XML type defined in this map.

local-name Required attribute. Specified the local name of the XML
type defined in this map.

java-type Required attribute. Specifies the Java class name to which
this type is mapped.

java2xml-class-name Required attribute. Specifies the Java class name of the
type serializer.

xml2java-class-name Required attribute. Specifies the Java class name of the
type deserializer.

Table 11–2 (Cont.) Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as
Defined in the DTD

Element Subelement Attribute Description
Consuming Web Services in J2EE Applications 11-41

Consuming SOAP-Based Web Services Using WSDL
Supported WSDL Documents
The wsdl2ejb utility supports most WSDL documents using SOAP binding. This
support includes both Remote Procedure Call (RPC) and document style
documents as well as types that are encoded or literal. Table 11–3 shows how the
supported XML Schema types are mapped to the corresponding Java type by
default. Any other required type will have to be supported though the custom type
mapping described previously.

Known Limitations of the wsdl2ejb Utility
The following information describes the known limitations of the wsdl2ejb utility:

■ Supports only types defined by the W3C recommendation XML schema version
whose namespace is: http://www.w3.org/2001/XMLSchema

Table 11–3 Supported XML Schema Types and Corresponding Java Type

Supported XML Schema Type Corresponding Java Type

string java.lang.String

int int

decimal BigDecimal

float float

double double

Boolean Boolean

long long

short short

byte byte

date GregorianCalendar

timeInstant java.util.Date

Note: Arrays of supported types, shown in Table 11–3 are also
supported.
11-42 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
■ Supports only the One-way and Request-Response transmission primitives
defined in the WSDL 1.1 specification.

■ Does not support WSDL documents that use the <import> tag to include other
WSDL documents.

■ Does not support HTTP, MIME, or any other custom bindings.

Running the Demonstration
The wsdl2ejb demo directory contains examples on how to use the wsdl2ejb
utility. All the commands are assumed to be executed from the $ORACLE_
HOME/webservices/demo/basic/wsdl2ejb directory. The demonstration
(demo) will use some sample WSDL documents as sources and generate EJB that
can be used to invoke the Web Service operations.

The demos can be run using Jakarta ant. Review the build.xml file to make sure
that the initial properties (RMI_HOST, RMI_PORT, RMI_ADMIN, RMI_PWD) are
set correctly according to your configuration. The build.xml file will execute the
wsdl2ejb utility on the demo WSDL documents, deploy the generated EJB, and
execute the EJB clients.

The directory structure of the demos is as follows:

demo/web_services/wsdl2ejb:
 - README.txt : Readme file
 - build.xml : Jakarta ant build file to run all the demos

Note: IIf you are executing the demos behind a firewall and need
to set proxy information to access external HTTP sites, make sure
this proxy information is specified in the wsdl2ejb configuration
files (rpc_doc_conf.xml, base_conf.xml).

Note: The demos are based on WSDL/SOAP interoperability test
suites. They access live SOAP services available on the Internet as
SOAP interoperability test cases. The successful execution of these
demos depends on the availability of these services.
Consuming Web Services in J2EE Applications 11-43

Consuming SOAP-Based Web Services Using WSDL
 - rpc_doc : directory for simple RPC and document style operations
 - rpc_doc_conf.xml : wsdl2ejb configuration file for the rpc_doc demo
 - TestRpcDocClient.java : client for the rpc_doc demo
 - DocAndRpc.wsdl : sample WSDL for the rpc_doc demo
 - (generated) : directory where the EJB will be generated
 - base
 - base_conf.xml : wsdl2ejb configuration file for the base interoperability demo
 - TestInteropBaseClient.java : client for the base interoperability demo
 - InteropTest.wsdl : WSDL document for the base interoperability demo
 - MySoapStructBean.java : bean utilized to map the custom type used
 in the example defined in the WSDL document
 - MySoapStructBean.jar : packaged-compiled custom type bean
 - (generated) : directory where the EJB will be generated

RPC and Document Style with Simple Types Example
This example uses a simple WSDL document that shows a couple of operations:
Add and Multiply. Add is using the document-style operation using literal parts,
while Multiply is RPC-style and uses encoded parts.

To generate the EJB stub, use the following command:

On UNIX
cd $ORACLE_HOME/webservices/demo/basic/wsdl2ejb
java -jar ../../../lib/wsdl2ejb.jar -conf rpc_doc/rpc_doc_conf.xml

On Windows
cd %ORACLE_HOME%\webservices\demo\basic\wsdl2ejb
java -jar ..\..\..\lib\wsdl2ejb.jar -conf rpc_doc\rpc_doc_conf.xml

The utility generates the TestApp.ear file containing the definition of a stateless
EJB, which can be used as a proxy for the Web Service. The EAR file can be
deployed in OC4J as any standard EJB. Refer to Oracle Application Server Containers
for J2EE User’s Guide for information on how to deploy an EJB.

By looking at the generated EJB Remote Interface, you can see how the WSDL
portType DocAndRpc.wsdl file has been mapped to Java.

WSDL PortType:

 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://soapinterop.org">
 <s:element name="Add">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="a" type="s:int" />
11-44 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 <s:element minOccurs="1" maxOccurs="1" name="b" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="AddResult" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </types>
 <message name="AddSoapIn">
 <part name="parameters" element="s0:Add" />
 </message>
 <message name="AddSoapOut">
 <part name="parameters" element="s0:AddResponse" />
 </message>
 <message name="MultiplySoapIn">
 <part name="a" type="xsd:int" />
 <part name="b" type="xsd:int" />
 </message>
 <message name="MultiplySoapOut">
 <part name="MultiplyResult" type="s:int" />
 </message>
 <portType name="TestSoap">
 <operation name="Add">
 <input message="s0:AddSoapIn" />
 <output message="s0:AddSoapOut" />
 </operation>
 <operation name="Multiply">
 <input message="s0:MultiplySoapIn" />
 <output message="s0:MultiplySoapOut" />
 </operation>
 </portType>

From the Test.java file, the EJB Remote Interface is:

 public org.w3c.dom.Element add(org.w3c.dom.Element parameters)
 throws RemoteException;

 public int multiply(int a, int b)
 throws RemoteException;

When the WSDL operation is using RPC style and its parts are encoded, the parts
XML schema type is mapped to a corresponding Java native type. In this example,
Consuming Web Services in J2EE Applications 11-45

Consuming SOAP-Based Web Services Using WSDL
xsd:int is mapped to Java int. In a document style using literal parts, each part
is simply mapped to an org.w3c.dom.Element.

The following client code in the TestRpcDocClient.java file can be used to
invoke the Add and Multiply Web Service operations. The code has been produced
by modifying the client code stub generated by the wsdl2ejb utility.

import java.io.*;
import java.util.*;
import javax.naming.*;

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;

import org.mssoapinterop.asmx.Test;
import org.mssoapinterop.asmx.TestHome;

/**
 * This is a simple client template. To compile it,
 * please include the generated EJB jar file as well as
 * EJB and JNDI libraries in classpath.
 */
public class TestRpcDocClient
{
 // replace the values
 private static String RMI_HOST = "localhost";
 private static String RMI_PORT = "23791";
 private static String RMI_ADMIN = "admin";
 private static String RMI_PWD = "welcome";

 public TestRpcDocClient () {}

 public static void main(String args[]) {

 TestRpcDocClient client = new TestRpcDocClient();

 try {

 RMI_HOST = args[0];
 RMI_PORT = args[1];
 RMI_ADMIN = args[2];
 RMI_PWD = args[3];

 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.evermind.server.rmi.RMIInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, RMI_ADMIN);
 env.put(Context.SECURITY_CREDENTIALS, RMI_PWD);
 env.put(Context.PROVIDER_URL, "ormi://" + RMI_HOST + ":" + RMI_PORT + "/Wsdl2EjbTestApp1");
11-46 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 Context ctx = new InitialContext(env);
 TestHome home = (TestHome) ctx.lookup("mssoapinterop.org/asmx/DocAndRpc.asmx");

 Test service = home.create();

 // call any of the Remote methods that follow to access the EJB

 //
 // Add test
 //
 Document doc = new XMLDocument();
 Element elAdd = doc.createElementNS("http://soapinterop.org", "s:Add");
 Element elA = doc.createElementNS("http://soapinterop.org", "s:a");
 Element elB = doc.createElementNS("http://soapinterop.org", "s:b");
 elA.appendChild(doc.createTextNode("4"));
 elB.appendChild(doc.createTextNode("3"));
 elAdd.appendChild(elA);
 elAdd.appendChild(elB);
 doc.appendChild(elAdd);

 Element elAddResponse = service.add(elAdd);
 Node tNode = elAddResponse.getFirstChild().getFirstChild();
 System.out.println("AddResponse: "+tNode.getNodeValue());

 //
 // Multiply Test
 //
 int a = 4;
 int b = 3;
 int iMultiplyResponse = service.multiply(a, b);
 System.out.println("MultiplyResponse: "+iMultiplyResponse);

 }
 catch (Throwable ex) {
 ex.printStackTrace();
 }
 }
}

The result of the execution of the client is the following:

AddResponse: 7
MultiplyResponse: 12
Consuming Web Services in J2EE Applications 11-47

Consuming SOAP-Based Web Services Using WSDL
Round 2 Interop Services: Base Test Suite Example
This example starts from a subset of the WSDL document defined by the base test
suite of the second round of SOAP interoperability tests. The purpose of this demo
example is to show the usage of built-in types in the SOAP Mapping Registry as
well as how to add custom types mapping.

Start by looking at the WSDL portType in the InteropTest.wsdl file.

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://soapinterop.org/xsd">
 <complexType name="ArrayOfstring">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfint">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="int[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOffloat">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="float[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfSOAPStruct">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="s:SOAPStruct[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="SOAPStruct">
 <all>
 <element name="varString" type="string"/>
 <element name="varInt" type="int"/>
 <element name="varFloat" type="float"/>
11-48 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 </all>
 </complexType>
 </schema>
</types>

<message name="echoStringRequest">
 <part name="inputString" type="xsd:string"/>
</message>
<message name="echoStringResponse">
 <part name="return" type="xsd:string"/>
</message>
<message name="echoStringArrayRequest">
 <part name="inputStringArray" type="s:ArrayOfstring"/>
</message>
<message name="echoStringArrayResponse">
 <part name="return" type="s:ArrayOfstring"/>
</message>
<message name="echoIntegerRequest">
 <part name="inputInteger" type="xsd:int"/>
</message>
<message name="echoIntegerResponse">
 <part name="return" type="xsd:int"/>
</message>
<message name="echoIntegerArrayRequest">
 <part name="inputIntegerArray" type="s:ArrayOfint"/>
</message>
<message name="echoIntegerArrayResponse">
 <part name="return" type="s:ArrayOfint"/>
</message>
<message name="echoFloatRequest">
 <part name="inputFloat" type="xsd:float"/>
</message>
<message name="echoFloatResponse">
 <part name="return" type="xsd:float"/>
</message>
<message name="echoFloatArrayRequest">
 <part name="inputFloatArray" type="s:ArrayOffloat"/>
</message>
<message name="echoFloatArrayResponse">
 <part name="return" type="s:ArrayOffloat"/>
</message>
<message name="echoStructRequest">
 <part name="inputStruct" type="s:SOAPStruct"/>
</message>
<message name="echoStructResponse">
Consuming Web Services in J2EE Applications 11-49

Consuming SOAP-Based Web Services Using WSDL
 <part name="return" type="s:SOAPStruct"/>
</message>
<message name="echoStructArrayRequest">
 <part name="inputStructArray" type="s:ArrayOfSOAPStruct"/>
</message>
<message name="echoStructArrayResponse">
 <part name="return" type="s:ArrayOfSOAPStruct"/>
</message>
<message name="echoVoidRequest"/>
<message name="echoVoidResponse"/>
<message name="echoBase64Request">
 <part name="inputBase64" type="xsd:base64Binary"/>
</message>
<message name="echoBase64Response">
 <part name="return" type="xsd:base64Binary"/>
</message>
<message name="echoDateRequest">
 <part name="inputDate" type="xsd:dateTime"/>
</message>
<message name="echoDateResponse">
 <part name="return" type="xsd:dateTime"/>
</message>
<message name="echoDecimalRequest">
 <part name="inputDecimal" type="xsd:decimal"/>
</message>
<message name="echoDecimalResponse">
 <part name="return" type="xsd:decimal"/>
</message>
<message name="echoBooleanRequest">
 <part name="inputBoolean" type="xsd:boolean"/>
</message>
<message name="echoBooleanResponse">
 <part name="return" type="xsd:boolean"/>
</message>

<portType name="InteropTestPortType">
 <operation name="echoString" parameterOrder="inputString">
 <input message="tns:echoStringRequest"/>
 <output message="tns:echoStringResponse"/>
 </operation>
 <operation name="echoStringArray" parameterOrder="inputStringArray">
 <input message="tns:echoStringArrayRequest"/>
 <output message="tns:echoStringArrayResponse"/>
 </operation>
 <operation name="echoInteger" parameterOrder="inputInteger">
11-50 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
 <input message="tns:echoIntegerRequest"/>
 <output message="tns:echoIntegerResponse"/>
 </operation>
 <operation name="echoIntegerArray" parameterOrder="inputIntegerArray">
 <input message="tns:echoIntegerArrayRequest"/>
 <output message="tns:echoIntegerArrayResponse"/>
 </operation>
 <operation name="echoFloat" parameterOrder="inputFloat">
 <input message="tns:echoFloatRequest"/>
 <output message="tns:echoFloatResponse"/>
 </operation>
 <operation name="echoFloatArray" parameterOrder="inputFloatArray">
 <input message="tns:echoFloatArrayRequest"/>
 <output message="tns:echoFloatArrayResponse"/>
 </operation>
 <operation name="echoStruct" parameterOrder="inputStruct">
 <input message="tns:echoStructRequest"/>
 <output message="tns:echoStructResponse"/>
 </operation>
 <operation name="echoStructArray" parameterOrder="inputStructArray">
 <input message="tns:echoStructArrayRequest"/>
 <output message="tns:echoStructArrayResponse"/>
 </operation>
 <operation name="echoVoid">
 <input message="tns:echoVoidRequest"/>
 <output message="tns:echoVoidResponse"/>
 </operation>
 <operation name="echoBase64" parameterOrder="inputBase64">
 <input message="tns:echoBase64Request"/>
 <output message="tns:echoBase64Response"/>
 </operation>
 <operation name="echoDate" parameterOrder="inputDate">
 <input message="tns:echoDateRequest"/>
 <output message="tns:echoDateResponse"/>
 </operation>
 <operation name="echoDecimal" parameterOrder="inputDecimal">
 <input message="tns:echoDecimalRequest"/>
 <output message="tns:echoDecimalResponse"/>
 </operation>
 <operation name="echoBoolean" parameterOrder="inputBoolean">
 <input message="tns:echoBooleanRequest"/>
 <output message="tns:echoBooleanResponse"/>
 </operation>
</portType>
Consuming Web Services in J2EE Applications 11-51

Consuming SOAP-Based Web Services Using WSDL
Notice that the WSDL document contains more complex types than the previous
demo. Array of primitives types are now used as well as the struct primitive types.
With the exception of the SOAPStruct complex type, every other type is supported
as built-in type in the SOAP Mapping Registry. You then need to add a new
complex type definition to the SOAP Mapping Registry to handle the SOAPStruct
complex type.

The SOAPStruct schema definition is the following:

<complexType name="SOAPStruct">
 <all>
 <element name="varString" type="string"/>
 <element name="varInt" type="int"/>
 <element name="varFloat" type="float"/>
 </all>
</complexType>

In the MySoapStructBean.java file, this SOAPStruct complex type can be
mapped to a simple JavaBean class such as the following, and have the marshalling
and unmarshalling actions handled by the BeanSerializer.

public class MySoapStructBean implements java.io.Serializable
{
 private String m_varString = null;
 private int m_varInt = 0;
 private float m_varFloat = 0;

 public MySoapStructBean() {}
 public MySoapStructBean(String s, int i, float f) {
 m_varString = s;
 m_varInt = i;
 m_varFloat = f;
 }

 public String getVarString () { return m_varString; }
 public int getVarInt() { return m_varInt; }
 public float getVarFloat() { return m_varFloat; }

 public void setVarString (String s) { m_varString = s; }
 public void setVarInt(int i) { m_varInt = i; }
 public void setVarFloat(float f) { m_varFloat = f; }
}

With the mapping JavaBean class ready, and having identified what serializer and
deserializer to use, you can now configure the wsdl2ejb utility so that a new
11-52 Oracle Application Server Web Services Developer’s Guide

Consuming SOAP-Based Web Services Using WSDL
schema to Java map is added. This can be achieved by adding the following to the
wsdl2ejb configuration file, base_conf.xml:

<mapTypes jar="base/MySoapStructBean.jar" >
 <map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 local-name="SOAPStruct"
 namespace-uri="http://soapinterop.org/xsd"
 java-type="MySoapStructBean"
 java2xml-class-name="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2java-class-name="org.apache.soap.encoding.soapenc.BeanSerializer" />
</mapTypes>

The MySoapStructBean.jar file contains the definition of the MySoapStructBean
class. With this map, the SOAPStruct complex type, belonging to the
http://soapinterop.org/xsd namespace, will be mapped to the
MySoapStructBean JavaBean class and the converse is true as well. For more
information about SOAP serializers and deserializers, see the Oracle SOAP
documentation.

With this additional configuration, you can now run the wsdl2ejb utility with the
following command:

On UNIX
cd $ORACLE_HOME/webservices/demo/basic/wsdl2ejb
java -jar ../../../lib/wsdl2ejb.jar -conf base/base_conf.xml
On Windows
cd %ORACLE_HOME%/webservices/demo/basic/wsdl2ejb
java -jar ..\..\..\lib\wsdl2ejb.jar -conf base\base_conf.xml

The wsdl2ejb utility generates the InteropLabApp.ear file that contains the
definition of a stateless EJB, which can be used as a proxy for the Web Service. The
EAR file can be deployed in OC4J as any standard EJB. See Oracle Application Server
Containers for J2EE User’s Guide for information on how to deploy an EJB.

The TestInteropBaseClient.java class file, saved in the base directory, can be
used to test the generated EJB after it has been deployed. The result of the execution
of the client is the following:

echoString: Hello World!
echoStringArray[0]: Hello World!
echoStringArray[1]: Seems to work!
echoStringArray[2]: Fine!
echoStringArray[3]: WOW
echoInteger: 7
echoIntegerArray[0]: 1
echoIntegerArray[1]: 2
Consuming Web Services in J2EE Applications 11-53

Dynamic Invocation of Web Services
echoIntegerArray[2]: 3
echoIntegerArray[3]: 4
echoFloat: 1.7777
echoFloatArray[0]: 1.1
echoFloatArray[1]: 1.2
echoFloatArray[2]: 1.3
echoFloatArray[3]: 1.4
echoStruct: varString=Hello World , varInt=1 , varFloat=1.777
echoStructArray: varString[0]=Hello World , varInt[0]=0 , varFloat=[0]=1.7771
echoStructArray: varString[1]=Hello World 1 , varInt[1]=1 , varFloat=[1]=1.7772
echoStructArray: varString[2]=Hello World 2 , varInt[2]=2 , varFloat=[2]=1.7773
echoStructArray: varString[3]=Hello World 3 , varInt[3]=3 , varFloat=[3]=1.7774
echoVoid.
echoDecimal: 1.77709999999999990194510246510617434978485107421875
echoBoolean: true
echoBase64[0]: 1
echoBase64[1]: 2
echoBase64[2]: 3
echoBase64[3]: 4
echoDate: Sat Nov 10 12:30:00 EST 2001

Dynamic Invocation of Web Services
When a Java2 Platform Enterprise Edition (J2EE) application acquires a WSDL
document at runtime, the dynamic invocation API is used to invoke any SOAP
operation described in the WSDL document. The dynamic invocation API describes
a WebServiceProxyFactory factory class that can be used to build instances of a
WebServiceProxy. Each created WebServiceProxy instance is based on the location
of the WSDL document, (and optionally on additional qualifiers), that identify
which service and port should be used. The WebServiceProxy class exposes
methods to determine the WSDL portType, including the syntax and signatures of
all operations exposed by the WSDL service and to invoke the defined operations.

This section briefly describes the dynamic invocation API and how to use it.

For Java samples, refer to the code supplied with Oracle Application Server Web
Services in $ORACLE_HOME/webservices/demo/basic/java_
services/dynamicproxy on UNIX or in %ORACLE_
HOME%\webservices\demo\basic\java_services\dynamicproxy on
Windows. For EJB samples, refer to the code supplied in the directory
$ORACLE_HOME/webservices/demo/basic/stateless_ejb on UNIX or
%ORACLE_HOME%\webservices\demo\basic\stateless_ejb on Windows.
11-54 Oracle Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
Dynamic Invocation API
The dynamic invocation API contains two packages, oracle.j2ee.ws.client and
oracle.j2ee,ws.client.wsdl, which contain additional classes grouped by interface,
class, and exception, as shown in Table 11–4 and Table 11–5.

Table 11–4 The oracle.j2ee.ws.client Package

Classes Description

Classes

WebServiceProxyFactory This class creates a WebServiceProxy class given a WSDL
document.

Interfaces

WebServiceProxy This interface represents a service defined in a WSDL
document.

WebServiceMethod This interface invokes a Web Service method.

Exceptions

WebServiceProxyException This class describes exceptions raised by the
WebServiceProxy API.

Table 11–5 The oracle.j2ee.ws.client.wsdl Package

Classes Description

Interfaces

PortType This interface represents a port type.

Operation This interface represents a WSDL operation.

Input This interface represents an input message, and contains the
name of the input and the message itself.

Output This interface represents an output message, and contains
the name of the output and the message itself.

Fault This interface represents a fault message, and contains the
name of the fault and the message itself.

Message This interface describes a message used for communication
with an operation.

Part This interface represents a message part and contains the
part's name, elementName, and typeName.
Consuming Web Services in J2EE Applications 11-55

Dynamic Invocation of Web Services
The oracle.j2ee.ws.client package is described in more detail in this section. The API
documentation describes to use this proxy API can be found in the Oracle
Application Server 10g Documentation Library as Proxy API Reference (Javadoc)
under Oracle Application Server Web Services, which is located under the J2EE and
Internet Applications tab.

The WebServiceProxyFactory class contains methods that can instantiate a
WebServiceProxy class given either the URL or the Java input stream of the WSDL
document. Four methods let you use either the first service and its first port in the
supplied WSDL document or use the name of one of services and the name of one
of the ports of the service to create a WebServiceProxy instance. Two methods also
let you create a WebServiceProxy instance for a WSDL document, which has been
authored following the UDDI best practices for WSDL. A method lets you supply
additional optional initialization parameters to the WebServiceProxy instance.

Table 11–6 briefly describes the WebServiceProxyFactory factory class methods and
the required parameters for each method. See the JavaDoc for more detailed
information about this factory class and its methods.

Classes

OperationType This class represents an operation type which can be one of
request-response, solicit response, one way, or notification.

Table 11–6 WebServiceProxyFactory Factory Methods and Parameters

Methods Parameters

createWebServiceProxy() java.io.InputStream isWsdl
java.net.URL baseURL

createWebServiceProxy() java.net.URL wsdlURL

createWebServiceProxyFromBinding() java.io.InputStream wsdlis
java.net.URL baseUrl
java.lang.String szBindingName
java.lang.String szSoapLocation

createWebServiceProxyFromService() java.io.InputStream wsdlis
java.net.URL baseUrl
java.lang.String szServiceName
java.lang.String szServicePort

Table 11–5 (Cont.) The oracle.j2ee.ws.client.wsdl Package

Classes Description
11-56 Oracle Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
Table 11–2 describes the WebServiceProxy interface. The WebServiceProxyFactory
factory methods optionally take additional parameters that are provided in the
WebServiceProxy interface that can be used to dynamically invoke an operation in a
WSDL document.

createWebServiceProxyFromBinding() java.net.URL wsdlUrl
java.lang.String szBindingName
java.lang.String szSoapLocation

createWebServiceProxyFromService() java.net.URL wsdlUrl
java.lang.String szServiceName
java.lang.String szServicePort

setProperties() java.util.Hashtable ht

Table 11–7 WebServiceProxy Interface Methods and Parameters

Methods Parameters Description

getXMLMapping Registry() None Returns the SOAP mapping registry used by the
WebServiceProxy and contains information that lets
clients use this registry to query for XML to or from Java
type mapping as well as extend the mapping registry
with new map definitions.

getPortType() None Returns a structure describing the WSDL portType used
by this proxy and contains information about operations
associated with this port type.

getMethod()

szOperationName
szInputName
szOutputName

Returns a WebServiceMethod method, which can be
used to invoke Web Service methods.

Name of the WSDL operation to be executed.
Name of the wsdl:input tag for the operation to be
executed.
Name of the wsdl:output tag for the operation to be
executed.

getMethod()

szOperationName

Returns a WebServiceMethod method, which can be
used to invoke Web service methods and provides a
signature that can be used for non-overloaded WSDL
operations.

Name of the WSDL operation to be executed.

Table 11–6 (Cont.) WebServiceProxyFactory Factory Methods and Parameters

Methods Parameters
Consuming Web Services in J2EE Applications 11-57

Dynamic Invocation of Web Services
Table 11–8 describes the WebServiceMethod interface, which is used to invoke a
Web Service method.

The oracle.j2ee.ws.client.wsdl package exposes methods to determine the WSDL
portType, including the syntax and signatures of all operations exposed by the
WSDL service.

WebServiceProxy Client
The following client code shows the use of the dynamic invocation API followed by
the output of the client execution. The client code shows the following:

■ Initializes proxy parameters in the WebServiceProxyFactory.

■ Creates an instance of the proxy given a URL of a WSDL document.

■ Performs WSDL introspection.

■ Shows the input message parts.

■ Executes a Web Service operation with a set of supplied input parts and returns
the result.

The WSDL document is described as follows:

Table 11–8 WebServiceMethod Interface Methods and Parameters

Methods Parameters Description

getInputEncodingStyle() None Returns the encoding style to be used by the input
message parts, null if none has been specified in the
source WSDL.

getOutputEncodingStyle() None Returns the encoding style to be used by the output
message parts, null if none has been specified in the
source WSDL.

invoke()

inMsgPartNames
inMsgPartValues

Executes one of the service operations with the set of
supplied input parts and returns the object, if the
response message contains only one part, return the
response part, otherwise an array of the output
message parts. If the invoked WSDL operation has no
output parts, null will be returned.

Name of the parts supplied in the input message.
Corresponding value of the parts whose name is
supplied in the inMsgPartNames parameter. If the
invoked WSDL operation has no input parts, null or
empty arrays parameters can be supplied
11-58 Oracle Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
 <?xml version="1.0" encoding="utf-8" ?>
- <definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://soapinterop.org"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" targetNamespace="http://soapinterop.org"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types />
 - <message name="AddSoapIn">
 <part name="a" type="s:int" />
 <part name="b" type="s:int" />
 </message>
 - <message name="AddSoapOut">
 <part name="AddResult" type="s:int" />
 </message>
 - <portType name="TestSoap">
 - <operation name="Add">
 <input message="tns:AddSoapIn" />
 <output message="tns:AddSoapOut" />
 </operation>
 </portType>
 - <binding name="TestSoap" type="tns:TestSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />
 - <operation name="Add">
 <soap:operation soapAction="http://soapinterop.org/Add" style="rpc" />
 - <input>
 <soap:body use="encoded" namespace="http://soapinterop.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 - <output>
 <soap:body use="encoded" namespace="http://soapinterop.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>
 - <service name="Test">
 - <port name="TestSoap" binding="tns:TestSoap">
 <soap:address location="http://mssoapinterop.org/asmx/Rpc.asmx" />
 </port>
 </service>
 </definitions>

package oracle.j2ee.ws.client.impl;

import java.util.*;
import java.io.*;
import java.net.*;
import oracle.j2ee.ws.client.*;
import oracle.j2ee.ws.client.wsdl.*;
import org.apache.soap.util.xml.QName;
Consuming Web Services in J2EE Applications 11-59

Dynamic Invocation of Web Services
import org.apache.soap.util.xml.XMLJavaMappingRegistry;

public class Client {

 public static void main(String[] args) throws Exception {

 String szWsdlUrl = "http://mssoapinterop.org/asmx/Rpc.asmx?WSDL";

 URL urlWsdl = new URL(szWsdlUrl);
 System.err.println("Wsdl url = " + urlWsdl);

 WebServiceProxyFactory wsfact= new WebServiceProxyFactory();

 //
 // Set some initial parameters
 //
 Hashtable ht = new Hashtable();
 ht.put("http.proxyHost", "www-proxy.us.oracle.com");
 ht.put("http.proxyPort", "80");
 wsfact.setProperties(ht);

 //
 // Create an instance of the proxy
 //
 WebServiceProxy wsp = wsfact.createWebServiceProxy(urlWsdl);

 //
 // Optional: Wsdl Introspection
 //
 PortType pt = wsp.getPortType();
 List opList = pt.getOperations();
 for (int i = 0; i < opList.size(); i++) {

 Operation op = (Operation) opList.get(i);
 String szOpName = op.getName();
 String szInput = op.getInput().getName();
 String szOutput = op.getOutput().getName();

 System.err.println("operation["+i+"] = [" + szOpName +
 "," + szInput + "," + szOutput + "]");

 //
 // show input message parts
 //
 Message msgIn = op.getInput().getMessage();
11-60 Oracle Application Server Web Services Developer’s Guide

Dynamic Invocation of Web Services
 Map mapParts = msgIn.getParts();
 Collection colParts = mapParts.values();
 Iterator itParts = colParts.iterator();

 WebServiceMethod wsm = wsp.getMethod(szOpName);
 String szInEncStyle = wsm.getInputEncodingStyle();
 XMLJavaMappingRegistry xmr = wsp.getXMLMappingRegistry();

 while (itParts.hasNext()) {
 Part part = (Part) itParts.next();
 String szPartName = part.getName();
 QName qname = part.getTypeName();
 String szJavaType = xmr.queryJavaType(qname,
szInEncStyle).getName();
 System.err.println("part name = " + szPartName +
 ", type = " + qname +
 ", java type = " + szJavaType);
 }
 }

 //
 // invoke operation/method Add(2,10)
 //
 String[] inMsgPartNames = new String[2];
 inMsgPartNames[0] = "a";
 inMsgPartNames[1] = "b";
 Object[] inMsgPartValues = new Object[2];
 inMsgPartValues[0] = new Integer(2);
 inMsgPartValues[1] = new Integer(10);

 WebServiceMethod wsm = wsp.getMethod("Add");
 Object objRet = wsm.invoke(inMsgPartNames,
 inMsgPartValues);

 System.err.println("Calling method Add(" +inMsgPartValues[0] + ","
+
 inMsgPartValues[1] +")");
 System.err.println("return = " + objRet);
 }
}

The output of the client execution is as follows:

Wsdl url = http://mssoapinterop.org/asmx/Rpc.asmx?WSDL
operation[0] = [Add,,]
Consuming Web Services in J2EE Applications 11-61

Dynamic Invocation of Web Services
part name = b, type = http://www.w3.org/2001/XMLSchema:int, java type = int
part name = a, type = http://www.w3.org/2001/XMLSchema:int, java type = int
Calling method Add(2,10)
return = 12

Known Limitations
The following information describes the known limitations of the dynamic
invocation API:

■ Supports invoking operations defined in the WSDL document defined by the
W3C recommendation XML schema version whose namespace is:
http://www.w3.org/2001/XMLSchema

■ Does not support WSDL documents that use the <import> tag to include other
WSDL documents.

■ Does not support HTTP, MIME, or any other custom bindings.
11-62 Oracle Application Server Web Services Developer’s Guide

Advanced Topics for Web Serv
12

Advanced Topics for Web Services

This chapter covers advanced Oracle Application Server Web Services topics,
including the following topics:

■ Setting the Web Services Debugging Property ws.debug

■ Untyped Request Handling Options

■ SOAP Header Support

■ Using the WSDL Analyzer Utility
ices 12-1

Setting the Web Services Debugging Property ws.debug
Setting the Web Services Debugging Property ws.debug
To obtain Oracle Application Server Web Services debugging information, use the
Java property ws.debug, and set its value to true. To set the ws.debug value to
true, use Oracle Enterprise Manager to specify OC4J startup options. Debugging
output is sent to the OC4J instance log file corresponding to the island where Oracle
Application Server Web Services is running.

Example 12–1 provides sample debugging output.

Example 12–1 Web Services Debug Output

WS Debug: initQnameMap(’null’)
WS Debug: operation name is: helloWorld
WS Debug: QueryString is: invoke=helloWorld¶m0=test
WS Debug: Operation Name is: helloWorld
WS Debug: Port Type Local name is: StatelessExamplePortType
WS Debug: Port Type Namespace URI is: http://oracle.j2ee.ws_
example/StatelessExample.wsdl
WS Debug: Operation Local name is: helloWorld
WS Debug: Operation Namespace URI is: http://oracle.j2ee.ws_
example/StatelessExample.wsdl
WS Debug: Operation Get parameter order: null

Untyped Request Handling Options
Oracle Application Server Web Services supports requests for RPC style Web
Services in the following cases:

■ Typed requests where an incoming RPC request with SOAP encoded
parameters includes type attributes that specify type information for every
incoming parameter. Example 12–2 shows a sample typed RPC request.

■ Untyped requests where an incoming RPC request with SOAP encoded
parameters may not include a type attribute for every incoming parameter.
Example 12–3 shows a sample un-typed RPC request. This type of RPC request
provides improved interoperability with .NET clients.

Oracle Application Server Web Services client-side applications and tools do not
generate untyped requests, but some external tools or applications may generate

See Also: Oracle Application Server Containers for J2EE User’s Guide
for information on setting debugging options and showing
debugging output.
12-2 Oracle Application Server Web Services Developer’s Guide

Untyped Request Handling Options
such requests. Due to the performance cost for supporting untyped requests, by
default such support is not enabled.

To support requests with untyped parameters, use the optional
<accept-untyped-request> tag with the WebServicesAssembler. This tag
applies as a sub-tag with the <stateful-java-service> and
<stateless-java-service> tags when the corresponding <message-style>
tag is set to the value RPC. The <accept-untyped-request> tag also applies as
a sub-tag for the <stateless-session-ejb-service> tag.

Table 12–1 shows <accept-untyped-request> tag specification.

Example 12–2 Sample Typed RPC Request

 <?xml version=’1.0’ encoding=’UTF-8’?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="
 http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:sayHello xmlns:ns1="urn:Hello"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <param0 xsi:type="xsd:string">Scott</param0>
 <param1 xsi:type="xsd:int">27</param1>
 </ns1:sayHello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 12–3 Sample Un-Typed RPC Request

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="
 http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:sayHello xmlns:ns1="urn:Hello"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <param0>Scott</param0>
 <param1>27</param1>
 </ns1:sayHello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Advanced Topics for Web Services 12-3

SOAP Header Support
SOAP Header Support
This section covers Oracle Application Server Web Services support for SOAP
request headers sent from a Web Services client to an endpoint. This section covers
the following topics:

■ Client Side SOAP Request Header Support

■ Server Side SOAP Request Header Support

■ Limitations for SOAP Header Support

Client Side SOAP Request Header Support
Oracle Application Server Web Services generated client-side proxy code provides
methods to use SOAP request headers. A SOAP request message, including the
SOAP request headers is transmitted to a service endpoint when Web Services
proxy code is invoked.

When Oracle Application Server Web Services generates a proxy, either from WSDL
for a Web Services Document or RPC style service, the proxy code provides two
SOAP request header support methods:

void _setSOAPRequestHeaders(org.apache.soap.Header headers)
org.apache.soap.Header _getSOAPRequestHeaders()

These methods provide access to an org.apache.soap.Header object. By default
the org.apache.soap.Header object’s value is set to null which signifies there are no
headers in the SOAP request message. When a request header is needed, use the _
setSOAPRequestHeaders() method to specify the Header object to be sent with
the SOAP request message.

Table 12–1 WebServicesAssembler <accept-untyped-request> Tag

Tag Description

<accept-untyped-request>
value
</accept-untyped-request>

Setting value to true tells WebServicesAssembler to allow the Web
Service to accept untyped requests. When the value is false, the Web
Service does not accept untyped-request.

Valid values: true, false (case is not significant; TRUE and FALSE are
also valid)

Default value: false
12-4 Oracle Application Server Web Services Developer’s Guide

SOAP Header Support
The SOAP request header information is shared for all proxy operations. After the
headers are set using _setSOAPRequestHeaders(), all subsequent operation
invocations using the proxy use the same header value. To set a new header value,
call _setSOAPRequestHeaders() using a new Header object or with a null
value.

To create and manipulate SOAP request headers you need to populate the header
object. The org.apache.soap.Header object provides a method for specifying
the contents of one or more SOAP header blocks. It is defined as:

public void setHeaderEntries(java.util.Vector headerEntries)

The vector is populated with org.w3c.dom.Element objects which specify
individual SOAP header blocks.

When a header entry includes the mustUnderstand attribute set to the value 1, the
recipient must process the header entry. If the recipient cannot process the header
entry, then a SOAP fault is returned with the value FAULT_CODE_MUST_
UNDERSTAND.

Setting SOAP Headers in a Client-Side Proxy
This section shows a sample that uses the proxy class EmployeeProxy. The
complete sample containing this code is available in the directory $ORACLE_
HOME/web_services/demo/header_demo/client. In the sample, a single
header block is added to the Header object. The Header object is then supplied as
an argument to the proxy's _setSOAPRequestHeaders() method.

Note: When proxies are generated for Stored Procedure or JMS
Document Style Web Services the _setSOAPRequestHeaders()
and _getSOAPRequestHeaders() methods are not supplied.

Note: After setting the SOAP request header, the same header
object is used for each subsequent operation invocation until the
object is reset using _setSOAPRequestHeaders().

See Also: Section 4.2, "SOAP Header", in for information on
header entries in SOAP 1.1 http://www.w3.org/TR/SOAP/.
Advanced Topics for Web Services 12-5

SOAP Header Support
Example 12–4 Segment of Client Using Message with SOAP Request Header

.

.

.
// Create an intance of the proxy
EmployeeProxy proxy = new EmployeeProxy();
// Create a Header objecy
Vector v = new Vector();
v.add (e);
Header hdr = new Header();
hdr.setHeaderEntries(v);

// Set the Header
proxy._setSOAPRequestHeaders(hdr);
// Invoke the request
System.out.println("Salary of MILLER is: " + proxy.getEmployeeSalary("MILLER"));

Server Side SOAP Request Header Support
To process a SOAP request header on the server side, a Web Service needs to
implement the oracle.j2ee.ws.HeaderCallback interface that is part of the
Oracle Application Server Web Services supplied wsserver.jar. This interface
includes one method that takes a single org.apache.soap.Header argument.

The Oracle Application Server Web Services infrastructure calls the
processHeaders() method before every associated service method.

When an incoming SOAP request header includes one or more header entries with
the mustUnderstand attribute set to either 1, true, or TRUE values, then the Web
Service implementation must implement the
oracle.j2ee.ws.HeaderCallback interface. If this interface is not
implemented, Oracle Application Server Web Services throws a SOAP fault with the
fault code set to FAULT_CODE_MUST_UNDERSTAND.

If a Web Service implementation implements the HeaderCallback interface, the
implementation can throw a SOAP exception with the fault code set to FAULT_
CODE_MUST_UNDERSTAND if the service does not know how to process a header
entry with the mustUnderstand attribute set to 1, true, or TRUE. Oracle
Application Server Web Services then translates the exception and Oracle
Application Server Web Services throws a SOAP fault with the fault code set to
FAULT_CODE_MUST_UNDERSTAND.
12-6 Oracle Application Server Web Services Developer’s Guide

SOAP Header Support
This section shows server-side Web Services code that provides the implementation
for the Employee service. The complete sample containing this Web Service is
available in the directory $ORACLE_HOME/web_
services/demo/basic/header_demo/client (after unzipping $ORACLE_
HOME/webservices/demo/demo.zip).

Example 12–5 shows an interface that extends HeaderCallback.

Example 12–6 shows a section of the service implementation for the sample
getEmployeeSalery interface, including the processHeaders() method that
can handle incoming SOAP request headers of the form:

<SOAP-ENV:Header>
 <credentials>
 <username>scott</username>
 <password>tiger</password>
 <datasource>jdbc/OracleCoreDS</datasource>
 </credentials>
</SOAP-ENV:Header>

Example 12–5 Employee Interface Extending HeaderCallback

import oracle.j2ee.ws.HeaderCallback;
/**
 * Employee java class being exposed as Web Services
 * This service also extends HeaderCallback so as to
 * access Headers.
 */
public interface Employee
 extends HeaderCallback
{
 // Get the salary for a given Employee
 int getEmployeeSalary(String ename);
}

Example 12–6 Including A HeaderCallback processHeaders() Implementation

 public void processHeaders(Header header)
 throws java.io.IOException,
 oracle.xml.parser.v2.XSLException
 {
 // Get all the Elements
 Vector entries = header.getHeaderEntries();
 Element e = (Element) entries.firstElement();
 System.out.println("Element received is: ");
Advanced Topics for Web Services 12-7

SOAP Header Support
 ((XMLElement)e).print(System.out);

 // Get independent nodes and retrieve node values.
 Node userNode;
 userNode = ((XMLNode)e).selectSingleNode("username");
 userName = ((XMLElement)userNode).getText();

 Node passwordNode;
 passwordNode = ((XMLNode)e).selectSingleNode("password");
 password = ((XMLElement)passwordNode).getText();

 Node dsNode;
 dsNode = ((XMLNode)e).selectSingleNode("datasource");
 datasourceName = ((XMLElement)dsNode).getText();

 System.out.println("User name is: " + userName);
 System.out.println("Password is: " + password);
 System.out.println("Datasource is: " + datasourceName);
 }

Limitations for SOAP Header Support
The following list contains limitations related to SOAP header support:

1. Oracle Application Server Web Services does not provide support for
processing or translating header information that is specified in a WSDL
definition.

2. Oracle Application Server Web Services does not provide validation, XML or
otherwise, for SOAP request header information provided in the
org.apache.soap.Header object. The user is responsible for populating this
object with well-formed XML.

3. Oracle Application Server Web Services does not provide support for SOAP
response headers.

4. When proxies are generated for JMS Document Style Web Services, the SOAP
request header _setSOAPRequestHeaders() and _
getSOAPRequestHeaders() methods are not supplied. Using JMS Web
Services there are no server-side facilities for processing SOAP request headers.

5. When proxies are generated for Stored Procedure Web Services, the SOAP
request header _setSOAPRequestHeaders() and _
getSOAPRequestHeaders() methods are not supplied. Using Stored
12-8 Oracle Application Server Web Services Developer’s Guide

Using the WSDL Analyzer Utility
Procedure Web Services there are no server-side facilities for processing SOAP
request headers.

Using the WSDL Analyzer Utility
The wsdlAnalyzer is a sample Oracle Application Server Web Services utility that
checks WSDL files and invokes Web Services. The utility enables you to analyze a
WSDL file from a given URL that you supply, or from a file.

The wsdlAnalyzer.ear file is supplied on the Oracle Technology Network Web
site,

http://otn.oracle.com/sample_code/tech/java/web_services/content.html

The README.txt file in the directory describes how to deploy the utility. Add the
dsv2.jar file as a library element in $ORACLE_
HOME/config/application.xml before running wsdlAnalyzer.

After deploying the wsdlAnalyzer open your browser and point to the URL:

http://host:port/wsdlAnalyzer

Figure 12–1 shows the wsdlAnalyzer page where you enter the WSDL location.
Figure 12–2 shows a result page after entering parameters and selecting the Invoke
button.
Advanced Topics for Web Services 12-9

Using the WSDL Analyzer Utility
Figure 12–1 wsdlAnalyzer Web Service Result Page
12-10 Oracle Application Server Web Services Developer’s Guide

Using the WSDL Analyzer Utility
Figure 12–2 wsdlAnalyzer Test Page
Advanced Topics for Web Services 12-11

Using the WSDL Analyzer Utility
12-12 Oracle Application Server Web Services Developer’s Guide

Using Oracle S
A

Using Oracle SOAP

This appendix covers the following topics:

■ Understanding Oracle Application Server SOAP

■ Apache SOAP Documentation

■ Configuring the SOAP Request Handler Servlet

■ Using OracleAS SOAP Management Utilities and Scripts

■ Deploying OracleAS SOAP Services

■ Using OracleAS SOAP Handlers

■ Using OracleAS SOAP Audit Logging

■ Using OracleAS SOAP Pluggable Configuration Managers

■ Working With OracleAS SOAP Transport Security

■ Using OracleAS SOAP Sample Services

■ Using the OracleAS SOAP EJB Provider

■ Using PL/SQL Stored Procedures With the SP Provider

■ SOAP Troubleshooting and Limitations

■ OracleAS SOAP Differences From Apache SOAP

■ Apache Software License, Version 1.1
OAP A-1

Understanding Oracle Application Server SOAP
Understanding Oracle Application Server SOAP
In addition to the Oracle Application Server Web Services previously described in
this chapter, that use a unique Servlet interface and J2EE deployment for Web
Services, Oracle Application Server also provides Oracle Application Server SOAP
(OracleAS SOAP) that is derived from Apache 2.3.1 SOAP and includes a number
of enhancements.

The SOAP Message Processor, OracleAS SOAP, provides the following facilities:

■ SOAP Protocol Handling - It provides an implementation of the interoperable
SOAP specification. This includes support for Cookies and Sessions which is
particularly useful to pass state information for stateful Web Services
request/response.

■ Support for SOAP requests with Attachments (XML Payloads).

■ Parsing - OracleAS SOAP Processor integrates the Oracle XML Parser. For
RPC-style requests, the OracleAS SOAP Processor can efficiently parse the
incoming XML document, ensure the request is well-formed, and possibly
validate the request. Similarly, it can also encode/serialize a Java response into
a SOAP message.

■ Invoking Web Service Using Customized Web Services Servlet - The SOAP
Processor un-marshals the message contents and depending on the Servlet, calls
the Web Services implementation. Web Services can be implemented as Java
Classes, EJBs, or PL/SQL Stored Procedures.

■ Engaging a security manager to possibly authenticate the sender - Before
invoking the Web Services implementation, the OracleAS SOAP Processor
(Servlet) authenticates the user using a standard JAAS-based User Manager
plug-in. OracleAS SOAP Processor also supports Oracle's Single Sign-On Server
and third-party authentication services to provide single-sign on for Web
Services.

■ Exception Handling - When exceptions occur during processing, the Java
Exception is transformed to a SOAP fault and delivered to the service client.

Apache SOAP Documentation
OracleAS SOAP is a modified version of Apache SOAP 2.3.1. Most of the
documentation that applies to Apache SOAP 2.3.1 also applies to OracleAS SOAP.
The Apache SOAP 2.3.1 documentation can be found at the following site:

http://xml.apache.org/soap/docs/index.html
A-2 Oracle Application Server Web Services Developer’s Guide

Configuring the SOAP Request Handler Servlet
Configuring the SOAP Request Handler Servlet
The OracleAS SOAP Request Handler uses an XML configuration file to set
required servlet parameters. By default, this file is named soap.xml and is placed
in the soap.ear file in the directory $SOAP_HOME/lib on UNIX or %SOAP_
HOME%\lib on Windows.

The XML namespace for this file is:

http://xmlns.oracle.com/soap/2001/04/config

To use a different configuration file for SOAP installation, expand the soap.ear
file. In the directory webapps/soap/WEB-INF on UNIX or
webapps\soap\WEB-INF on Windows, modify the path name specified for the
SoapConfig parameter in the soap.properties file. Then, redeploy the
updated soap.ear file.

For example, to change the configuration file from the default, soap.xml, to
newConfig.xml, modify the value set for soapConfig in soap.properties.

servlet.soaprouter.initArgs=soapConfig=soap_home/soap/webapps/soap/WEB-INF/newConfig.xml

Where soap_home is the full path to the SOAP installation on your system.

The pathAuth boolean attribute, if set to true, enforces that clients must specify
the unique service URL in order to post a message to the deployed service. The
service URL is the SOAP servlet URL with the service URI appended on at the end.
The default value of this attribute (if unspecified) is false.

Table A–1 lists the SOAP Request Handler Servlet XML configuration file elements.

Table A–1 SOAP Request Handler Servlet Configuration File Parameters

Parameter Description

errorHandlers Specifies a list of handlers for the error handler chain.

faultListeners This is an optional element that defines a list of faultListener elements. The
faultListener element specifies a class that is invoked when a fault occurs. To cause a
stack trace to be added to the SOAP fault that is returned to the user, specify a
faultListener of org.apache.soap.server.DOMFaultListener.
Using Oracle SOAP A-3

Configuring the SOAP Request Handler Servlet
handler The handlers element is an optional element that defines a list of handler elements. The
handler element defines a global handler that can be configured to be invoked on every
SOAP request in one of three contexts: request, response, error. You can define any
number of handlers. The handler’s name attribute specifies the name of the handler;
each handler must have a unique name. The handler’s class attribute specifies the Java
class that implements the handler, and this class must implement the interface
oracle.soap.server.Handler. Each handler may have any number of options, which are
name-value pairs. The contexts are configured in the elements: requestHandlers,
responseHandlers, and errorHandlers. Each of these elements defines an ordered list of
handler names, or a chain of handlers.

Note that SOAP creates one instance of each uniquely identified handler. Every
appearance of a specific handler name in any chain refers to the same instance of the
handler. Handlers are destroyed when the SOAP servlet is destroyed.

logger Error and informational messages are logged using the class defined in the logger
element. The logger class must extend oracle.soap.server.Logger.

OracleAS SOAP includes the class oracle.soap.server.impl.ServletLogger
that collects the servlet log methods so that SOAP messages are logged to the servlet
log file. ServletLogger is the default logger. For the default logger, the severity
option can be to any of the following values: status, error, debug.

If you specify error, you will get both status and error messages. Similarly, if you
specify debug, you will get all three types of messages.

OracleAS SOAP includes two logger implementations. To log to the servlet log, use
oracle.soap.server.impl.ServletLogger. To log to stdout, use
oracle.soap.server.impl.StdOutLogger.

You may implement your own logger by implementing the oracle.soap.server.Logger
interface.

Table A–1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description
A-4 Oracle Application Server Web Services Developer’s Guide

Configuring the SOAP Request Handler Servlet
providerManager The providerManager is an optional element that allows a configuration manager to be
defined. This defines how the server accesses provider deployment information.

The providerManager class attribute specifies a Java class that implements
oracle.soap.server.ProviderManager. The default configuration manager,
oracle.soap.server.impl.XMLProviderConfigManager, persists the deployed providers
to a file in XML format. It accepts a filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/providers.xml.

An alternative provider configuration manager,
oracle.soap.server.impl.BinaryProviderConfigManager, persists the deployed providers
in a file as a serialized object. The default file is WEB-INF/providers.dd.

To specify a different configuration manager add a class attribute to the configManager
element. For example:

<osc:configManager class="fully.qualified.classname">.

requestHandlers Specifies a list of handlers for the request handler chain

responseHandlers Specifies a list of handlers for the response handler chain

serviceManager The serviceManager is an optional element that allows a configuration manager to be
defined and ServiceManager options to be set. This defines how the server accesses
service deployment information. The serviceManager class attribute specifies a Java
class that implements oracle.soap.server.ServiceManager.

The default OracleAS SOAP configuration manager class is
oracle.soap.server.impl.XMLServiceConfigManager which stores the
service deployment information in an XML file. Using XMLServiceConfigManager,
the file name is specified with the filename option. The filename is the path to the
registry filename which may be a simple file name, relative path or an absolute path. If
it is not an absolute path, then the path is determined from the filename and the servlet
context. The default filename is WEB-INF/services.xml.

To specify a different configuration manager add a class attribute to the
configManager element.

For example:

<osc:configManager class="fully.qualified.classname">.

An alternative service configuration manager,
oracle.soap.server.impl.BinaryServiceConfigManager, persists the deployed services in
a file as a serialized object. The default file is WEB-INF/services.dd.

The service manager can automatically deploy the provider manager and the service
manager as SOAP services. To allow these managers to be exposed as services, set the
autoDeploy option to true. By default autoDeploy value is false.

Table A–1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description
Using Oracle SOAP A-5

Using OracleAS SOAP Management Utilities and Scripts
Using OracleAS SOAP Management Utilities and Scripts
To use the OracleAS SOAP management utilities, you need to set up the execution
environment for executing SOAP management utilities using one of the supplied
client side scripts. The clientenv scripts set the CLASSPATH and add the $SOAP_
HOME/bin directory to the path.

To set the client environment, on UNIX, use the following commands:

cd $SOAP_HOME/bin
source clientenv.csh

On Windows, use the following commands:

cd %SOAP_HOME%\bin
clientenv.bat

The clientenv scripts sets environment variables that are used by the other
scripts and the samples. You can override these by setting the environment
variables yourself. The variable SOAP_URL is the URL of the SOAP server and JAXP
is set to use the DocumentBuilderFactory for the Oracle XML parser.

Managing Providers
The providerMgr script runs the SOAP client that manages providers. Run the
script without any parameters for usage information.

On UNIX, use the following command:

providerrMgr.sh options

On Windows, use the following command:

providerMgr.bat options

Where the options for providerMgr are:

deploy ProviderDescriptorFile

This deploys the provider described in the ProviderDescriptorFile and makes the
provider available.

undeploy ProviderID

This removes the provider with the supplied ProviderID. The ProviderID is the id
attribute specified in the provider descriptor file.
A-6 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Management Utilities and Scripts
The Java provider is deployed once at installation time with id=java-provider, but
any provider you create must be explicitly deployed. For example, on UNIX, to
deploy a provider using the provider deployment descriptor provider.xml, use
the following command:

providerMgr.sh deploy provider.xml

Using the Service Manager to Deploy and Undeploy Java Services
The ServiceMgr is an administrative utility that deploys and undeploys SOAP
services. To deploy a service, first set the SOAP environment, then use the deploy
command. On UNIX, the command is:

source clientenv.csh
ServiceMgr.sh deploy ServiceDescriptorFile

For Windows, the command is:

clientenv.bat
ServiceManager.bat deploy ServiceDescriptorFile

The deploy option makes the service specified in ServiceDescriptorFile available.

When you are ready to undeploy a service, use the undeploy command with the
registered service name as an argument. On UNIX, the command is:

ServiceManager.sh undeploy ServiceID

For Windows, the command is:

ServiceManager.bat undeploy ServiceID

This makes the service with the given id unavailable. The ServiceID is the service id
attribute specified in the service descriptor file.

The ServiceMgr supports listing and querying SOAP services. To list the available
services, first set the SOAP environment, then use the list command. On UNIX,
the command is:

source clientenv.csh
ServiceMgr.sh list

On Windows, the command is:
Using Oracle SOAP A-7

Using OracleAS SOAP Management Utilities and Scripts
clientenv.bat
ServiceMgr.bat list

To query a service and obtain the descriptor parameters set in the service
deployment descriptor file, use the query command. On UNIX, the command is:

ServiceMgr.sh query ServiceID

On Windows, the command is:

ServiceMgr.bat query ServiceID

Where ServiceID is the service id attribute set in the service descriptor file.

Generating Client Proxies from WSDL Documents
The wsdl2java script takes as input a WSDL document and returns a Java class
which can be used to call the service. The Java class contains methods with the same
names as those described in the WSDL document. The generated code make calls to
the Apache client side libraries.

On UNIX, use the following command:

wsdl2java.sh options

On Windows, use the following command:

wsdl2java.bat options

Where the options for wsdl2java are:

wsdl2java.sh WsdlDocumentURL OutputDir [-k PackageName] [-s ServiceName]
[-p PortName]

Where:

WsdlDocumentURL is the URL of the WSDL document.

OutputDir is the output directory for generated proxy Java code.

-k PackageName is the package name for generated proxy Java code.

-s ServiceName is the service name for which proxy will be generated.
A-8 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Management Utilities and Scripts
-p PortName the port name of the service. The proxy is generated for the specified
port of the service.

The output directory structure is:

output root dir/service name/port name/package name/java proxy source code

By default, the PackageName will be the same as the WSDL service name.

If neither of -s and -p options is specified, proxies for all ports of all services are
generated. Without -p option specified, proxies for all ports of the specified service
are generated.

Generating WSDL Documents from Java Service Implementations
The java2wsdl script takes as input a Java class and creates as output a WSDL
document describing the class as an RPC service. When the Java class is used as a
Web Service, the associated WSDL document can be transmitted to developers who
might wish to call the service.

On UNIX, use the following command:

java2wsdl.sh options

On Windows, use the following command:

java2wsdl.bat options

Where the options for wsdl2java are:

java2wsdl.sh ClassName OutputFile SoapURL ClassURL1 ClassURL2 ...

Where:

ClassName is the fully qualified path name of a Java .class file that is to be a Web
Service.

OutputFile is the output WSDL document name.

SoapURL is the SOAP endpoint.

ClassURL list serves as a class path for searching referenced classes
Using Oracle SOAP A-9

Deploying OracleAS SOAP Services
Deploying OracleAS SOAP Services
This section covers the following topics related to deploying and undeploying
OracleAS SOAP Services:

■ Creating Deployment Descriptors

■ Installing a SOAP Web Service in OC4J

■ Disabling an Installed SOAP Web Service

■ Installing a SOAP Web Service in an OC4J Cluster

Creating Deployment Descriptors
Deployment descriptors include service deployment descriptors and provider
deployment descriptors. A provider deployment descriptor file is an XML file that
describes, to the SOAP servlet, the configuration information for a provider. A
service deployment descriptor file is an XML file that describes, to the SOAP
servlet, the configuration information for a service.

Services written in Java only require a service descriptor. All Java service
descriptors may point to the same Java provider descriptor supplied with the
OracleAS SOAP installation.

Each service written as a PL/SQL stored procedure requires one service descriptor
and one provider descriptor for each database user. The advantage of this is that
when a password or user is changed, only one descriptor needs to be updated, not
every service descriptor.

See the Stored Procedure section for more information.

Services written as an EJB require one service descriptor and one provider
descriptor for each EJB container user.

See the EJB section of this document for more information.

Note: For developers who wish to write their own providers, the
Apache style provider interface and descriptors are also supported.
Apache descriptors contain both service and provider properties in
a single file, so common provider information must be duplicated
for every service.
A-10 Oracle Application Server Web Services Developer’s Guide

Deploying OracleAS SOAP Services
A service deployment descriptor file defines the following information:

■ The service ID

■ The service provider type (for example, Java)

■ The available methods

The best way to write a descriptor is to start with a copy of an existing descriptor
from one of the sample directories.

Example A–1 shows the Java SimpleClock service descriptor file
SimpleClockDescriptor.xml. This descriptor file is included in the
samples/simpleclock directory. The service descriptor file must conform to the
service descriptor schema (the schema, service.xsd, is located in the directory
$SOAP_HOME/schemas on UNIX or in %SOAP_HOME%\schemas on Windows).

The service descriptor file identifies methods associated with the service in the
isd:provider element that uses the methods attribute. The isd:java class
element identifies the Java class that implements the SOAP service, and provides an
indication of whether the class is static.

Example A–1 Java Service Descriptor File for Sample Simple Clock Service

<isd:service xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/service"
 id="urn:jurassic-clock"
 type="rpc" >
 <isd:provider
 id="java-provider"
 methods="getDate"
 scope="Application" >
 <isd:java class="samples.simpleclock.SimpleClockService"/>
 </isd:provider>
 <!-- includes stack trace in fault -->
 <isd:faultListener class="org.apache.soap.server.DOMFaultListener"/>
</isd:service>

Note: The service descriptor file does not define the method
signature for service methods. SOAP uses reflection to determine
method signatures.
Using Oracle SOAP A-11

Deploying OracleAS SOAP Services
Installing a SOAP Web Service in OC4J
Install an OracleAS SOAP Web Service in Oracle Application Server Containers for
J2EE (OC4J) by performing the following steps:

1. Create service and provider deployment descriptors.

2. Expand the soap.ear file found in $SOAP_HOME/lib on UNIX or %SOAP_
HOME\lib on Windows.

3. Copy Java classes and Jars implementing the service to the correct locations in
the expanded soap.ear directories.

Copy Java .class files to WEB-INF/classes.

Copy Java .jar files to WEB-INF/libs.

4. Redeploy the updated soap.ear file.

5. Deploy the provider descriptor by executing the command:

providerMgr.sh deploy FileName

where FileName is the name of the provider descriptor xml file.

6. Deploy the service by executing the command:

serviceMgr.sh deploy FileName

 Where FileName is the name of the service descriptor xml file.

Disabling an Installed SOAP Web Service
To disable an installed service, run the command:

serviceMgr.sh undeploy ServiceID

where ServiceID is the id attribute of the service element in the service descriptor.

Installing a SOAP Web Service in an OC4J Cluster
It is necessary to install an OracleAS SOAP service on every machine in a cluster. If
the service is not installed on all machines in a cluster, the cluster dispatcher might
dispatch a service request to a machine that does not have the service, resulting in
an error on the service invocation.
A-12 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Handlers
Using OracleAS SOAP Handlers
A handler is a class that implements the oracle.soap.server.Handler
interface. A handler can be configured as part of a chain in one of three contexts:
request, response, or error. Note that handlers in a chain are invoked in the order
they are specified in the configuration file.

Request Handlers
Handlers in the request chain are invoked on every request that arrives,
immediately after the SOAP Request Handler Servlet reads the SOAP Envelope. If
any handler in the request chain throws an exception, the processing of the chain is
immediately terminated and the service is not invoked.

The error chain is invoked if any exception occurs during request chain invocation.

Response Handlers
Handlers in the response chain are invoked on every request immediately after the
service completes. If any handler in the response chain throws an exception,
processing of the chain is immediately terminated. The error chain is invoked if any
exception occurs during response chain invocation.

Error Handlers
When an exception occurs during either request-chain invocation, service
invocation, or response-chain invocation, the SOAP Request Handler Servlet
invokes the handlers in the error chain. In contrast to the request and response
chains, an exception from an error handler is logged and processing of the error
chain continues. All handlers in the error chain are invoked, regardless of whether
one of the error handlers throws an exception.

Configuring Handlers
Configure handlers and handler chains in the SOAP configuration file. Handlers
can be invoked for each service request or response, or when an error occurs.
Handlers are global in the sense that they apply to every SOAP request and cannot
be configured on a subset of requests, such as all requests for a particular service.

Configure a handler by setting parameters in the SOAP configuration file,
soap.xml. Example A–2 shows a sample segment from a SOAP configuration file
showing the configuration for a handler.
Using Oracle SOAP A-13

Using OracleAS SOAP Audit Logging
Example A–2 Handler Configuration

<osc:handlers>
 <osc:handler name="auditor"
 class="oracle.soap.handlers.audit.AuditLogger">
 <osc:option name="auditLogDirectory"
 value="/private1/oracle/app/product/tv02/soap/webapps/soap/WEB-INF"/>
 <osc:option name="filter" value="(!(host=localhost))"/>
 </osc:handler>
</osc:handlers>

<osc:requestHandlers names="auditor"/>
<osc:responseHandlers names="auditor"/>
<osc:errorHandlers names="auditor"/>

Using OracleAS SOAP Audit Logging
The OracleAS SOAP audit logging feature monitors and records SOAP usage. Audit
logging maintains records for postmortem analysis and accountability. The SOAP
audit logging feature complements the audit logging capabilities available with the
OC4J server which hosts the SOAP Request Handler Servlet (SOAP server).

OracleAS SOAP stores audit trails as XML documents. Using XML documents,
OracleAS SOAP creates portable audit trails and enables the transformation of
complete audit trails or individual audit records to different formats.

By default, OracleAS SOAP audit logging uses an audit logger class that
implements the Handler interface (part of the oracle.soap.server package).
The audit logger class is invoked conditionally to monitor events including service
requests, service responses, and errors.

This section covers the following topics:

■ Audit Logging Information

■ Auditable Events

■ Configuring the Audit Logger

Audit Logging Information
Table A–2 lists the audit logging elements available for each audit log record.
Individual audit log records may not contain all these elements. In the log file, each
audit log record is stored as a SoapAuditRecord element.
A-14 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Audit Logging
Audit Logging Output
The XML schema for the generated audit log is provided in the file
SoapAuditTrail.xsd in the directory $SOAP_HOME/schema on UNIX or
%SOAP_HOME%\schema on Windows. Refer to the schema file for complete details
on the format of a generated audit log record.

Auditable Events
The audit logger class is invoked when an auditable event occurs and the SOAP
Request Handler Servlet is configured to enable auditing for the event. Auditable
events include a service request or a service response.

Audit Logging Filters
An audit logging filter can be specified in the SOAP configuration file to limit the
set of auditable events that are recorded to the audit log. The SOAP server applies
event filters to request and response events. Table A–4 shows the filter attributes
available to select with an event filter specification. When applied, filters limit the
number of records generated in the audit log. For example, when a filter is specified

Table A–2 Auditable Audit Record Elements

Audit Record Element Description

HostName Specifies the hostname of the client that sent the request.

IpAddress Specifies the IP address of the client that sent the request.

Method Specifies the method name for the SOAP request.

Request Envelope Provides the complete SOAP request message.

Request Envelope Method Name of the Method in the SOAP request envelope

Request Envelope URI Specifies the URI of the service in the SOAP request envelope.

Response Envelope Provides the complete SOAP response message.

ServiceURI Specifies the service URI for the SOAP request.

SoapAuditRecord Contains an individual record. The chainType attribute indicates if the record
is generated as part of a request or a response.

TimeStamp Specifies the system time when the SOAP audit record was generated.

User Specifies the username associated with the request. Note, this element is only
provided when a user context is associated with the service request or service
response.
Using Oracle SOAP A-15

Using OracleAS SOAP Audit Logging
for a particular host, only the auditable events generated for the specified host are
saved to the audit log.

The syntax for defining auditable events with a filter is derived from RFC 2254.
Table A–3 shows the filter syntax, and Example A–3 provides several examples.

See Also:

■ "Configuring the Audit Logger" on page A-18

■ ftp://ftp.isi.edu/in-notes/rfc2254.txt on RFC
2254

Table A–3 Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description

Host Specifies the hostname of the host for the service request or response. If this attribute is not
specified in a filter, the hostname of the client is not used in filtering audit log records.

Fully specify the hostname of the client or use wildcards ("*"). Wildcards embedded within
the specified hostname are not supported the examples show valid and invalid uses of
wildcards. If a wildcard is used then the wildcard must be the first character in the filter.
Case is ignored for hostnames. Care should be used in setting this attribute. Depending on
the DNS setup, the hostname returned could be fully qualified or nonqualified; for example,
explosives.acme.com or explosives. For some IP addresses, the DNS may not be
able to resolve the hostname.

Legal values for a Host filter attribute include the following examples:

explosives.acme.com, *.acme.com, *.com

Illegal values for a Host filter attribute include the following examples:

, explosives.acme., explosives.*, ex*s.acme.com, *ives.acme.com

ip Specifies the IP address of the client for the service request or response.

The IP address of the client has to be either fully specified, using all four bytes, in the dot
separate decimal form, or specified using wildcards ("*"). Embedded wildcards are not
supported. If a wildcard is used then the wildcard must be the last character in the filter.

If this attribute is not used in a filter then the IP address of the client is not used in filtering.

Legal values for an ip filter attribute include the following examples:

 138.2.142.154, 138.2.142.*, 138.2.*, 138.*

Illegal values for an ip filter attribute include the following examples:

, 138.2..154, *.2, 138.*.152, 138.2.142, 138.2, 138

urn Specifies the service URN. Wildcards are not supported for this attribute.
A-16 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Audit Logging
Example A–3 Sample Audit Log Filters

(ip=138.2.142.154)
(!(host=localhost))
(!(host=*.acme.com))
(&(host=*.acme.com)(username=daffy))
(&(ip=138.2.142.*)(|(urn=urn:www-oracle-com:AddressBook)(username=daffy)))

username Specifies the transport level username associated with the client.

Wildcards are not supported in a username filter attribute.

Table A–4 Audit Log Filter Syntax

Filter Value Description

attr 1*(any US-ASCII char except "*", "(", ")", "&", "|", "!", "*", "=")

equal "="

filter "("filtercomp")"

Whitespaces between "("filtercomp and ")" are not allowed.

filtercomp and | or | not | item

and = "&" filterlist

or = "|" filterlist

not = "!" filter

filterlist 2*2 filter

filtertype equal

item attr filtertype value

Whitespaces between attr, filtertype and value are not allowed.

value 1*(any octet except ASCII representation of ")" - 0x29).

The character "*" has a special meaning.

The "*" character is referred to as a wildcard and matches
anything.

Table A–3 (Cont.) Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description
Using Oracle SOAP A-17

Using OracleAS SOAP Audit Logging
Configuring the Audit Logger
Configure the default SOAP audit logger supplied with Oracle Application Server
by setting parameters in the SOAP configuration file, soap.xml. To enable the
default audit logger and turn on audit logging, do the following in the
configuration file.

■ Define the name and options for the audit log handler. The default SOAP audit
logger is defined in the class
oracle.soap.handlers.audit.AuditLogger. The default audit logger
supports several options that you specify in the configuration file. Table A–5
shows the available audit logger options.

■ Add the name for the audit logger handler to the requestHandler,
responseHandler, or errorHandler chain (or to all of the handler chains).

Example A–4 shows a sample segment from a SOAP configuration file including the
audit logging configuration options. Example A–4 shows configuration options set
to use all options. However, this configuration would produce an extremely large
audit log, and is not recommended.

Example A–4 Audit Logging Configuration

<osc:handlers>
 <osc:handler name="auditor"
 class="oracle.soap.handlers.audit.AuditLogger">
 <osc:option name="auditLogDirectory"
 value="/private1/oracle/app/product/tv02/soap/webapps/soap/WEB-INF"/>
 <osc:option name="filter" value="(!(host=localhost))"/>
 <osc:option name="includeRequest" value="true"/>
 <osc:option name="includeResponse" value="true"/>
 </osc:handler>
</osc:handlers>
<osc:requestHandlers names="auditor"/>
<osc:responseHandlers names="auditor"/>
<osc:errorHandlers names="auditor"/>

Note: When you audit errors using the audit logger, depending
on when the error occurs in the request-chain or the
response-chain, it is possible that the request or response message
may not be included in the audit log record, even with
includeRequest or includeResponse enabled.
A-18 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Pluggable Configuration Managers
Using OracleAS SOAP Pluggable Configuration Managers
OracleAS SOAP supports pluggable configuration managers similar to those
supported in Apache SOAP 2.3.1. Since OracleAS SOAP supports provider
deployment descriptors separate from service deployment descriptors, the interface
details using OracleAS SOAP are slightly different from Apache SOAP 2.3.1. In
OracleAS SOAP, configuration managers are configured separately for the provider
manager and the service manager. All configuration managers must implement the
oracle.soap.server.ConfigManager interface.

Table A–5 Audit Logger Configuration Options

Option Description

auditLogDirectory Specifies the directory where the audit log file is saved. The
auditLogDirectory option is required. The name of the
generated audit log file is
OracleSoapAuditLog.timestamp, where timestamp is the
date and time the file is first generated.

Valid values: any string that is a valid directory

filter Specifies the audit event filter. This option is optional. If a
filter is not specified SOAP server logs every event.

Valid values: any valid filter.

includeRequest Specifies that the audit record include the request message for
the event that generated the audit log record.

Valid values: true, false

Any value other than true or false is treated as an error.

Default Value: false

includeResponse Specifies that the audit record include the response message
for the event that generated the audit log record.

Valid values: true, false

Any value other than true or false is treated as an error.

Default Value: false

See Also: "Using OracleAS SOAP Handlers" on page A-13
Using Oracle SOAP A-19

Working With OracleAS SOAP Transport Security
To simplify development, when you write a configuration manager
implementation, you may the abstract class that is provided with OracleAS SOAP
(oracle.soap.server.impl.BaseConfigManager). This abstract class
provides a standard implementation for most of the ConfigManager interface
with two abstract methods that read and write the persistent store.

Example A–5 shows a sample implementation of a provider configuration manager.

Example A–5 Sample Provider Configuration Manager Implementation.

public class MyProviderConfigManager extends BaseConfigManager
{
 public void setOptions(Properties options)
 throws SOAPException
 {
 // handle implementation specific options
 }

 public void readRegistry()
 throws SOAPException
 {
 // read the deployed providers from persistent store
 }

 public void writeRegistry()
 throws SOAPException
 {
 // write the deployed providers to persistent store
 }
}

The setOptions method is passed the options specified in any <option>
elements specified in the <configManager> element. Synchronization of
reading/writing the registry is the responsibility of the specific configuration
manager implementation.

Working With OracleAS SOAP Transport Security
Oracle Application Server uses the security capabilities of the underlying transport
that sends SOAP messages. Oracle Application Server supports the HTTP and
HTTPS protocols for sending SOAP messages. HTTP and HTTPS support the
following security features:
A-20 Oracle Application Server Web Services Developer’s Guide

Working With OracleAS SOAP Transport Security
■ HTTP proxies

■ HTTP authentication (basic RFC 2617)

■ Proxy authentication (basic RFC 2617)

OracleAS SOAP Client transport uses the modified, to support Oracle Wallet
Manager, HTTPClient package. OracleAS SOAP transport defines several
properties to support these features. Table A–6 lists the client-side security
properties that Oracle Application Server supports.

In an OracleAS SOAP Client application, you can set the security properties shown
in Table A–6 as system properties by using the -D flag at the Java command line.
You can also set security properties in the Java program by adding these properties
to the system properties (use System.setProperties() to add properties).

Example A–6 shows how Oracle Application Server supports overriding the values
specified for system properties using Oracle Application Server transport specific
APIs. The setProperties() method in the class OracleSOAPHTTPConnection
contains set properties specifically for the HTTP connection (this class is in the
package oracle.soap.transport.http).

Example A–6 Setting Security Properties for OracleSOAPHHTTPConnection

org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call();
oracle.soap.transport.http.OracleSOAPHTTPConnection conn =
(oracle.soap.transport.http.OracleSOAPHTTPConnection) call.getSOAPTransport();
java.util.Properties prop = new java.util.Properties();
// Use client code to set name-value pairs of properties in prop
.
.
.
conn.setProperties(prop);

Note: The property java.protocol.handler.pkgs must be
set as a system property.
Using Oracle SOAP A-21

Working With OracleAS SOAP Transport Security
Table A–6 SOAP HTTP Transport Security Properties

Property Description

http.authRealm Specifies the realm for which the HTTP authentication username/password is
specified.

This property is mandatory when using basic authentication.

http.authType Specifies the HTTP authentication type. The case of the value specified is ignored.

Valid values: basic, digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not setting the
property.

http.password Specifies the HTTP authentication password.

http.proxyAuthRealm Specifies the realm for which the proxy authentication username/password is
specified.

http.proxyAuthType Specifies the proxy authentication type. The case of the value specified is ignored.

Valid values: basic, digest

Specifying any value other than basic or digest is the same as not setting the
property.

http.proxyHost Specifies the hostname or IP address of the proxy host.

http.proxyPassword Specifies the HTTP proxy authentication password.

http.proxyPort Specifies the proxy port. The specified value must be an integer. This property is
only used when http.proxyHost is defined; otherwise this value is ignored.

Default value: 80

http.proxyUsername Specifies the HTTP proxy authentication username.

http.username Specifies the HTTP authentication username.
A-22 Oracle Application Server Web Services Developer’s Guide

Working With OracleAS SOAP Transport Security
java.protocol.
handler.pkgs

Specifies a list of package prefixes for java.net.URLStreamHandlerFactory
The prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPClient
This value is required by the Java protocol handler framework; it is not defined by
Oracle Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, a java.net.MalformedURLException is
thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

■ java.protocol.handler.pkgs=HTTPClient

■ java.protocol.handler.pkgs=sun.net.www.protocol|
HTTPClient

oracle.soap.
transport.
1022ContentType

Specifies the value for the Content-Type HTTP header in Oracle9iAS, and in Oracle
Application Server 10g. The value for this property supports Oracle SOAP servers
running either Oracle 9iAS Release 1.0.2.2 or Release 9.0.x or 10g (9.0.4). This
property provides interoperablity between Oracle9iAS Release 9.0.x Oracle SOAP
clients or Oracle Application Server 10g (9.0.4) and older server versions (as
distributed with Oracle9iAS Release 1.0.2.2).

Valid values: true, false (case is ignored)

Setting the value to true specifies to use the Oracle9 iAS Release 1.0.2.2
content-type HTTP header values when the SOAP message is sent. In this case, the
value is set to:
content-type: text/xml

Setting the value to false specifies to use the Oracle Application Server version
9.0.x content-type header value when the SOAP message is sent. In this case, the
value is set to:
content-type: text/xml; charset=utf-8

The value false is the default value.

Note: for SOAP messages with attachments, the content-type HTTP header is
always set to the value: multipart/related.

Table A–6 (Cont.) SOAP HTTP Transport Security Properties

Property Description
Using Oracle SOAP A-23

Working With OracleAS SOAP Transport Security
Apache Listener and Servlet Engine Configuration for SSL
When using Apache listener and mod_ssl (or mod_ossl), the following directives
must be set for the soap servletlocation/directory:

SSLOption +StdEnvVars +ExportCertData

This directive can be set conditionally, refer to mod_ssl/mod_ossl documentation
for details. By default this directive is disabled for performance reasons. If this
directive is not set then the servlet engine does not have a way to access the SSL
related data (such as the cipher suite, client cert etc).

oracle.soap.
transport.
allowUserInteraction

Specifies the allows user interaction parameter. The case of the value specified is
ignored. When this property is set to true and either of the following are true, the
user is prompted for a username and password:

1. If any of properties http.authType, http.username, or http.password
is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties http.proxyAuthType, http.proxyUsername, or
http.proxyPassword is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: true, false

Specifying any value other than true is considered as false.

oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported by Oracle SSL are supported.

oracle.
wallet.location

Specifies the location of an exported Oracle wallet or exported trustpoints.

Note: The value used is not a URL but a file location, for example:

/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)

d:\oracle\system1\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

oracle.wallet.
password

Specifies the password of an exported wallet. Setting this property is required
when HTTPS is used with client, mutual authentication as the transport.

Table A–6 (Cont.) SOAP HTTP Transport Security Properties

Property Description
A-24 Oracle Application Server Web Services Developer’s Guide

Working With OracleAS SOAP Transport Security
Using JSSE with Oracle Application Server SOAP Client
This section describes how to use SSL with the OracleAS SOAP Client side when
the Oracle security infrastructure is not available. Availability of Oracle security
infrastructure means the availability of Oracle client side libraries (including
$ORACLE_HOME/lib/*, $ORACLE_HOME/jlib/javax-ssl-1_2.jar, and
$ORACLE_HOME/jlib/jssl-1_2.jar).

OracleAS SOAP uses the following class as the default transport class:

oracle.soap.transport.http.OracleSOAPHTTPConnection

This class uses a modified version of HTTPClient package. For information on
HTTPClient, see the following site:

http://www.innovation.ch/java/HTTPClient/

This version of HTTPClient package is integrated with Oracle Java SSL and
supports Oracle Wallet for HTTPS transport. If a SOAP client side does not have
OracleAS SOAP Client side available, it is still possible to use HTTPS as a transport
with OracleAS SOAP Client side libraries.

To do this, follow these steps:

1. Use the following transport class:

class org.apache.soap.transport.http.SOAPHTTPConnection

If using RPC then call the following method by passing an instance of
org.apache.soap.transport.http.SOAPHTTPConnection as an argument:

method org.apache.soap.rpc.Call#setSOAPTransport
(org.apache.soap.transport.SOAPTransport)

For example:

org.apache.soap.rpc.Call myCallObj = new
org.apache.soap.rpc.Call();
myCallObj.setSOAPTransport(new
org.apache.soap.transport.http.SOAPHTTPConnection());

If using messaging, then call the following method by passing an instance of
org.apache.soap.transport.http.SOAPHTTPConnection as an argument:

org.apache.soap.messaging.Message#setSOAPTransport
(org.apache.soap.transport.SOAPTransport)
Using Oracle SOAP A-25

Working With OracleAS SOAP Transport Security
For example:

org.apache.soap.messaging.Message myMsgObj = new
org.apache.soap.messaging.Message();
myMsgObj.setSOAPTransport(new
 org.apache.soap.transport.http.SOAPHTTPConnection());

2. Download Java Secure Socket Extension (JSSE) and configure JSSE according to
the supplied instructions. JSSE is available at the following site:

http://java.sun.com/products/jsse/

■ Make sure the files jnet.jar, jcert.jar and jsse.jar are in the
classpath or in the installed extensions directory ($JRE_HOME/lib/ext).

■ Make sure that SunJSSE provider is correctly configured. This can be done
either statically by editing the $JRE_HOME/lib/security/java.security file
and adding the line:

 security.provider.num=com.sun.net.ssl.internal.ssl.Provider

Where num is 1-based preference order or by dynamically by adding the
provider at run time by adding the following line of code:

Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

Dynamic addition of security providers requires that appropriate permissions
are set.

■ Make sure the system property java.protocol.handler.pkgs is set to
com.sun.net.ssl.internal.www.protocol

■ If using proxy server, make sure that the following system properties are set
is set to the correct proxy hostname and proxy port, respectively:

https.proxyHost
https.proxyPort

■ If using SSL with server side authentication and the default
TrustManager, ensure that the certificate signer of the server is one of the
following files:

$JRE_HOME/lib/security/jssecacerts

or if jssecacerts does not exist:

$JRE_HOME/lib/security/cacerts
A-26 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Sample Services
■ To override the KeyManager/TrustManager keystore default locations, use
the system properties:

javax.net.ssl.keystore
javax.net.ssl.keyStoreType
javax.net.ssl.keyStorePassword
javax.net.ssl.trustStore
javax.net.ssl.trustStoreType
javax.net.ssl.trustStorePassword

Please consult JSSE documentation for details. If using a specific third party
JSSE implementation, please consult the appropriate documentation.

Using OracleAS SOAP Sample Services
The section lists the samples included with OracleAS SOAP. The class files for all of
the samples are in $SOAP_HOME/lib/samples.jar on UNIX or in %SOAP_
HOME%\lib\samples.jar on Windows.

To run any sample, you need to ensure that samples.jar is available on your
servlet’s CLASSPATH. Please refer to the README included with each sample for
more information.

The Xmethods Sample
The clients in the xmethods sample represent the easiest way to get started with
SOAP because they are clients that access existing services that are hosted on
systems on the internet. Information on these services can be found at the site:

http://www.xmethods.org

This sample is in $SOAP_HOME/samples/xmethods.

The AddressBook Sample
This sample has a service implemented in Java and several clients. This sample
illustrates literal XML encoding. See $SOAP_HOME/samples/addressbook for

See Also: HTTPClient information at the site:

http://www.innovation.ch/java/HTTPClient/
Using Oracle SOAP A-27

Using OracleAS SOAP Sample Services
the sample source code. This directory also contains a script that illustrates how to
run the sample addressbook clients using HTTPS as transport.

The StockQuote Sample
This sample has a service implemented in Java and one client. It is located in
$SOAP_HOME/samples/stockquote

The Company Sample
This sample has a service that is comprised of PL/SQL stored procedures and
several clients. It is located in $SOAP_HOME/samples/sp/company. Check the
README file in this directory for details on how to setup, compile, and test this
sample service.

The Provider Sample
This includes a template provider that can be used as a starting point for creating
your own provider.

The AddressBook2 Sample
This sample demonstrates use of the Addressbook service with session scope. It
shows how to maintain the same HTTP session across SOAP Calls. It contains an
example of a SOAP client proxy generated from a WSDL service description file. It
is located in $SOAP_HOME/samples/addressbook2

The Messaging Sample
This sample is an example of a message-based SOAP service. It is located in
$SOAP_HOME/samples/messaging

The Mime Sample
This sample does SOAP with attachments using both RPC and message based
services. It is located in $SOAP_HOME/samples/mime.
A-28 Oracle Application Server Web Services Developer’s Guide

Using the OracleAS SOAP EJB Provider
Using the OracleAS SOAP EJB Provider
This section compares the OracleAS SOAP EJB providers with the Apache-SOAP
2.2 EJB providers.

Stateless Session EJB Provider
In Apache SOAP, the Stateless EJB provider, on receiving the SOAP request,
performs a JNDI lookup on the home interface of the EJB. The Stateless EJB
provider then invokes a create on the EJB’s Home Interface in order to get a
reference to a stateless EJB. Then it uses this EJB reference to invoke the requested
method.

OracleAS SOAP uses the same mechanism to support Stateless Session EJBs as
Apache SOAP.

Stateful Session EJB Provider in Apache SOAP
On receiving a first time SOAP request, the Apache SOAP Stateful Session EJB
provider first locates the Home Interface through a JNDI lookup and using a
subsequent create obtains an object reference to a Stateful Session EJB. The provider
then invokes the requested method on the object reference.

In the next step the provider serializes the EJBHandle of the specified EJB reference
and appends it to the targetURI with an "@" delimiter. The Stateful Session EJB
provider then sends this modified target URI back to the requesting SOAP client. If
the client wants to reuse the same EJB instance, it must retrieve this "modified"
target URI for the service from the Response and set it in the next SOAP Call.

Upon receiving this request, the Stateful EJB provider extracts the stringified EJB
reference and deserializes it into an EJBHandle from which it can obtain the EJB
reference. It can then invoke the method on the specified EJB.

The drawback of the Apache SOAP implementation is that the client must be EJB
aware and that it could not operate with other SOAP servers.

OracleAS SOAP offers an alternative solution for Stateful Session EJBs that allows
for client interoperablity.

Stateful Session EJB Provider in OracleAS SOAP
The OracleAS SOAP Stateful Session EJB provider binds the EJB reference to the
current session, if none is bound, otherwise, it merely retrieves the EJB reference
Using Oracle SOAP A-29

Using the OracleAS SOAP EJB Provider
from the session. In order for the client to access the same Stateful Session EJB, the
client has to simply maintain it’s current session between successive Calls.

If at any point in a session, the SOAP client invokes a create on the EJB’s Home
Interface, the provider binds the EJB reference from the create to the session, to be
used for other call requests within the session.

Entity EJB Provider in OracleAS SOAP
In order for a SOAP client to run a business method on an entity EJB, it first needs
to either "create" a new EJB upon which to run the method or find an already
existing EJB which suit some criteria. Access to an entity EJB occurs within a
session. At the start of the session the SOAP client must invoke a "create" or "find"
(in order to specify the bean object interest). While maintaining the same session, all
other business methods are directed to that EJB. A subsequent "find" or "create"
within the same or different session directs business method execution requests to
the newly "created" (or "found") EJB.

Another issue is that EJB specification provides that some "find" methods can return
either a Collection of EJB refs or single EJB ref.

The Oracle solution for Entity EJBs embraces the following solution for this
problem:

It disallows find methods that return "Collections". This allows for the provider to
uniquely specify an Entity EJB to target subsequent business method requests.

 Deployment and Use of the OracleAS SOAP EJB Provider
To install an EJB provider and deploy Web Services to the provider under OC4J,
where the application server hosts both the SOAP servlet and the deployed EJB’s,
follow these steps:

1. Deploy an EJB provider to SOAP using a provider descriptor.

The provider descriptor specifies the following:

■ EJB access credentials by the middle tier

■ JNDI context factory class

■ JNDI context factory URL

■ Provider class name

■ Provider id
A-30 Oracle Application Server Web Services Developer’s Guide

Using PL/SQL Stored Procedures With the SP Provider
2. Create the EJB Web Service:

■ Define the associated EJB classes and package the EJB into an EAR file as
defined by J2EE spec.

■ Define the service descriptor which specifies following details of the EJB
Web Service:

* JNDI Location

* Home interface class name

* Application Deployment Name of this EJB Web Service in OC4J

* The provider id to which this service is to be associated

3. Deploy ear file in OC4J. Modify the OC4J specific EJB descriptor to correct the
JNDI location for the EJB (as described in sample README).

Current Known EJB Provider Limitations
All service methods can only take primitive Java types as arguments to the
methods. User-defined Java types are currently not supported.

Using PL/SQL Stored Procedures With the SP Provider
The OracleAS SOAP Stored Procedure (SP) Provider supports exposing PL/SQL
stored procedures or functions as SOAP services. The Oracle9i Database Server
allows procedures implemented in other languages, including Java and C/C++, to
be exposed using PL/SQL; these stored procedures are exposed as SOAP services
through PL/SQL interfaces.

The SP Provider framework works by translating PL/SQL procedures into Java
wrapper classes, and then exporting the generating Java classes as SOAP Java
services.

SP Provider Supported Functionality
The SP Provider supports the following:

■ PL/SQL stored procedures. both procedures and functions (this document uses
procedure to refer to both)
Using Oracle SOAP A-31

Using PL/SQL Stored Procedures With the SP Provider
■ IN parameter modes

■ Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported)

■ Overloaded procedures (however, if two different PL/SQL types map to the
same Java type during translating, there may be errors during the export of the
PL/SQL package; these errors may be fixed by avoiding the overloading, or else
by writing a new dummy package which does not contain the offending
overloaded procedures)

■ Simple types

■ (user-defined) object types

SP Provider Unsupported Functionality
The SP provider does not support the following:

■ The SP Provider framework uses Oracle JPublisher to translate from PL/SQL to
Java; hence, it inherits all of the restrictions of Oracle JPublisher.

SP Provider Supported Simple PL/SQL Types
The SOAP SP provider supports the following simple types. NULL values are
supported for all of the simple types listed, except NATURALN and POSITIVEN.

The Oracle JPublisher documentation provides full details on the mappings of these
types.

■ VARCHAR2 (STRING, VARCHAR)

■ LONG

■ CHAR (CHARACTER)

■ NUMBER (DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT,
NUMERIC, REAL, SMALLINT)

■ PLS_INTEGER

■ BINARY_INTEGER (NATURAL, NATURALN, POSITIVE, POSITIVEN)
A-32 Oracle Application Server Web Services Developer’s Guide

Using PL/SQL Stored Procedures With the SP Provider
Using Object Types
Oracle JPublisher supports the use of user-defined object types. The SP Provider
framework generates oracle.sql.CustomDatum style classes since these allow
automatic serialization using the default BeanSerializer in SOAP.

Refer to the company sample for an example of using object types.

Deploying a Stored Procedure Provider
Example A–7 shows a sample provider deployment descriptor for a stored
procedure. You may use any unique id for the provider name (the example uses
"company-provider").

The attributes user, password, and url are used to create the URL to connect to the
database, and they are all required. The number of connections for a service,
handled by this provider, is set using connections_per_service; this is
optional and defaults to 10.

Deploy the sample provider descriptor shown in Example A–7, appropriately
edited for the local configuration, using the provider manager.

Example A–7 Sample SP Provider Deployment Descriptor

<isd:provider xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/provider"
 id="company-provider"
 class="oracle.soap.providers.sp.SpProvider">
 <!-- edit the following option "values" as appropriate -->
 <isd:option key="user" value="YOUR-USER-NAME" />
 <isd:option key="password" value="YOUR-PASSWORD" />
 <isd:option key="url" value="jdbc:oracle:thin:@YOUR-HOST:YOUR-PORT:YOUR-SID"
/>
 <isd:option key="connections_per_service" value="3" />
</isd:provider>

Translating PL/SQL Stored Procedures into Java
The shell script $SOAP_HOME/bin/sp2jar.sh translates a PL/SQL package and
all its contained procedures/functions into a Java class with equivalent methods. If
the package uses any user-defined types, these types are also translated into
equivalent Java classes.

The README file in the samples directory has an example of the usage of the
sp2jar.sh command to translate the company example into a jar file of compiled
Using Oracle SOAP A-33

Using PL/SQL Stored Procedures With the SP Provider
Java classes. The README also describes how to load the PL/SQL packages into the
database.

Let us assume for the rest of the document that a PL/SQL package company has
been installed on a database, and it has been exported into a set of compiled Java
classes available in the jar file company.jar.

The generated company.jar should be made available in the CLASSPATH of the
SOAP servlet, just as for other Java services.

Deploying a Stored Procedure Service
Example A–8 shows a sample service deployment descriptor for a stored procedure.
Notice that the id attribute in the provider element identifies the provider under
which this service is deployed.

The service descriptor looks exactly like that for a Java service, since the SP Provider
framework translated PL/SQL procedures into Java class methods. All of the
information specific to PL/SQL are part of the provider descriptor---the service
itself looks like a Java service.

If the procedures use object types, it is necessary to define a type mapping for each
object type. The XML type name must be identical to the SQL type name and must
be in UPPER CASE (see EMPLOYEE and ADDRESS below). The javaType attribute
identifies the oracle.sql.CustomDatum type that was generated by Oracle
JPublisher.

The default BeanSerializer can be used to serialize/deserialize the types.

The generated method names are in lower-case since this is the default setting of
Oracle JPublisher.

Deploy the sample service descriptor shown in Example A–8 using the service
manager.

Example A–8 Sample Stored Procedure Service Deployment Descriptor

<isd:service xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/service"
 id="urn:www-oracle-com:company"
 type="rpc" >

 <isd:provider
 id="company-provider"
 methods="addemp getemp getaddress getempinfo changesalary removeemp"
 scope="Application" >
 <isd:java class="samples.sp.company.Company"/>
A-34 Oracle Application Server Web Services Developer’s Guide

SOAP Troubleshooting and Limitations
 </isd:provider>

 <isd:mappings>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:company-sample" qname="x:EMPLOYEE"
 javaType="samples.sp.company.Employee"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"

xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:company-sample" qname="x:ADDRESS"
 javaType="samples.sp.company.Address"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 </isd:mappings>

 <isd:faultListener class="org.apache.soap.server.DOMFaultListener"/>

</isd:service>

Invoking a SOAP Service that is a Stored Procedure
SOAP services that are PL/SQL stored procedures are invoked in exactly the same
manner as any other SOAP service. The company.jar file created during the
translating/deployment of a PL/SQL package is also needed on the client-side to
compile application programs that invoke the SOAP service (this jar file is needed
only if the stored procedures have input/output types that are user-defined types; if
the procedures use only builtin-types, the generated jar file is not needed on the
client).

The README file in the company samples directory has instructions on how to
compile and test the sample client.

SOAP Troubleshooting and Limitations
This section lists several techniques for troubleshooting Oracle Application Server
Web Services, including:

■ Tunneling Using the TcpTunnelGui Command

■ Setting Configuration Options for Debugging

■ Using DMS to Display Runtime Information
Using Oracle SOAP A-35

SOAP Troubleshooting and Limitations
■ SOAP Limitations for Java Type Precedence with Overloaded Methods

Tunneling Using the TcpTunnelGui Command
SOAP provides the TcpTunnelGui command to display messages sent between a
SOAP client and a SOAP server. TcpTunnelGui listens on a TCP port, which is
different than the SOAP server, and then forwards requests to the SOAP server.

Invoke TcpTunnelGui as follows:

java org.apache.soap.util.net.TcpTunnelGui TUNNEL-PORT SOAP-HOST SOAP-PORT

Table A–7 lists the command line options for TcpTunnelGui.

For example, suppose the SOAP server is running as follows,

http://system1:8080/soap/servlet/soaprouter

You would then invoke TcpTunnelGui on port 8082 with this command:

java org.apache.soap.util.net.TcpTunnelGui 8082 system1 8080

To test a client and view the SOAP traffic, you would use the following SOAP URL
in the client program:

http://system1:8082/soap/servlet/soaprouter

Setting Configuration Options for Debugging
To add debugging information to the SOAP Request Handler Servlet log files,
change the value of the severity option for in the file soap.xml. This file is
placed in soap.ear file in the directory $SOAP_HOME/lib on UNIX or in %SOAP_
HOME%\lib on Windows.

Table A–7 TcpTunnelGui Command Arguments

Argument Description

TUNNEL-PORT The port that TcpTunnelGui listens to on the same host as the
client

SOAP-HOST The host of the SOAP server

SOAP-PORT The port of the SOAP server
A-36 Oracle Application Server Web Services Developer’s Guide

SOAP Troubleshooting and Limitations
To modify the debugging option, expand the soap.ear file and modify the file
soap.xml in the directory webapps/soap/WEB-INF on UNIX or in
webapps\soap\WEB-INF on Windows, then redeploy the updated soap.ear file.

For example, the following soap.xml segment shows the value to set for
severity to enable debugging:

<!-- severity can be: error, status, or debug -->
<osc:logger class="oracle.soap.server.impl.ServletLogger">
 <osc:option name="severity" value="debug" />
</osc:logger>

After stopping and restarting the SOAP Request Handler Servlet, you can view
debug information in the file x.log. The file is in the directory $ORACLE_
HOME/Apache/logs on UNIX or in
%ORACLE_HOME%\Apache\x\logs on Windows.

Using DMS to Display Runtime Information
Oracle Application Server Web Services is instrumented with DMS to gather
information on the execution of the SOAP Request Handler Servlet, the Java
Provider, and on individual services.

DMS information includes execution intervals from start to stop for the following:

■ Total time spent in SOAP request and response (includes time in providers and
services)

■ Total time spent in the Java Provider (includes time in services)

■ Total time executing services (soap/java-provider/service-URI)

To view the DMS information, go to the following site:

http://hostname:port/soap/servlet/Spy

SOAP Limitations for Java Type Precedence with Overloaded Methods
OracleAS SOAP supports Java inbuilt (primitive) types, wrapper types, one
dimensional arrays of inbuilt types, and one dimensional arrays of wrapper types
as parameters for SOAP RPC.

An inbuilt type parameter always takes precedence to a wrapper type parameter
when the Java provider searches for an overloaded method. When there isn't a clear
winner, for an overloaded method, a fault with appropriate message is returned.
Using Oracle SOAP A-37

OracleAS SOAP Differences From Apache SOAP
For example:

A java class containing aMethod(int) hides aMethod(Integer) in the same
class.

A java class containing aMethod(int[]) hides aMethod(Integer[]) in the
same class.

A java class, when deployed as a SOAP RPC service returns a fault when a client
invokes aMethod() containing the signatures, aMethod(int, Float) and
aMethod(Integer, float). In this case, there is no clear winner for resolving
the precedence of the overloaded aMethod().

OracleAS SOAP Differences From Apache SOAP
This section covers differences between Apache Soap and OracleAS SOAP.

Service Installation Differences
Additional instructions are provided for installing services when OracleAS SOAP is
used in conjunction with OC4J.

Optional Provider Enhancements
OracleAS SOAP supports both the Apache Provider interface, defined in
org.apache.soap.util.Provider, and an enhanced provider interface,
defined in oracle.soap.server.Provider.

The native Apache provider includes only two methods, locate() and
invoke(). The Oracle Provider interface combines the locate and invoke methods,
so that the provider does not have to store input parameters between the locate()
and invoke() calls. Additionally, the Oracle Provider interface has init() and
destroy() methods, which the SOAP servlet calls only once when the provider is
instantiated. This allows providers to perform one time initialization such as
opening a database or network connection, and to perform one time clean up
activities.

When using the Apache provider interface, a single deployment descriptor supplies
both service and provider properties. When using the Oracle Provider interface,
these properties are separated between a service descriptor file and a provider
descriptor file. This allows common provider properties to be shared among
services. When a provider property changes, only a single descriptor file must be
changed. Please see the Deployment section of this document for more information.
A-38 Oracle Application Server Web Services Developer’s Guide

OracleAS SOAP Differences From Apache SOAP
Oracle Transport libraries
Oracle transport libraries are included for use with SOAP clients. Use of these
libraries enables use of the Oracle Wallet Manager for keeping certificates securely,
and use of the HttpClient libraries for HTTP connection management. The
HttpClient libraries fix a security problem in the native Apache code which
incorrectly returns cookies to servers other than the originating server.

Modifications to Apache EJB Provider
The Apache EJB provider has been modified to work with the OC4J EJB container.
In addition, the client interface to services provided by stateful and entity EJB’s has
been improved. The EJB handle is contained in the HttpSession association with the
connection rather than being concatenated to the returned URL. Since the
HTTPSession cookie is handled transparently by the SOAP client, no special coding
is required in the client.

Stored Procedure Provider
A special provider has been added which allows services to be written using
PL/SQL Stored Procedures or Functions.

Utility Enhancements
The wsdl2java and java2wsdl scripts simplify building client side code from
WSDL descriptions and for generating WSDL descriptions of Java services.

Modifications to Sample Code
The Apache samples have been modified to work with OracleAS SOAP and OC4J.
The com, calculator, weblogic_ejb samples have been omitted. New samples
illustrating use of Oracle Stored Procedures and OC4J EJB’s as Web Services have
been added.

Handling the mustUnderstand Attribute in the SOAP Header
This section describes the check that is performed for the mustUnderstand
attribute within the header blocks of the SOAP envelope, and describes the
difference between the Apache SOAP and the OracleAS SOAP processing of this
attribute.
Using Oracle SOAP A-39

OracleAS SOAP Differences From Apache SOAP
Setting the mustUnderstand Check
The check for the mustUnderstand attribute is enabled in the deployment
descriptor of the service by setting the checkMustUnderstands flag. If this flag
set to true, the check for the mustUnderstand attribute within each header block
is performed. If the checkMustUnderstands flag is set to false, the check for
the mustUnderstand attribute is not performed. The default value of
checkMustUnderstands flag is true.

How the mustUnderstand Check Works
If the checkMustUnderstands flag is set to true, then a check is made on all
header entries of the envelope after the global request handlers have finished
processing and before handing the envelope to the appropriate service. At this
point, if any header entries contain a mustUnderstand attribute that is set to true
or to "1", then an exception is thrown. Note, the global handler(s) can be used to
process one or more header blocks that have the mustUnderstand attribute set to
true.

If the checkMustUnderstands flag is set to false, then header entries of the
envelope are not checked to see if any entries contain a mustUnderstand attribute
that is set to true or to "1". It is then understood that it is up to the service
implementation to make sure that this check is done before processing the body of
the envelope.

Differences Between Apache SOAP and Oracle SOAP for mustUnderstand
The differences between Apache SOAP and OracleAS SOAP with respect to the
handling of the mustUnderstand attribute are the following:

1. In the Apache service deployment descriptor and the Oracle Service
deployment descriptor, you may include the checkMustUnderstands
attribute. In Apache, the default value of the checkMustUnderstands
attribute is false, in OracleAS SOAP the default value of this attribute is
true.

2. In Apache SOAP, if the service deployment descriptor contains
checkMustUnderstands='true' and a message with
mustUnderstand='1' or mustUnderstand="true" arrives at the server
then a fault is sent back with the fault code value of:

mustUnderstand

This fault code is not namespace qualified and is incorrect.
A-40 Oracle Application Server Web Services Developer’s Guide

Apache Software License, Version 1.1
In OracleAS SOAP the fault code that is sent back is namespace qualified and is
defined by SOAP 1.1:

SOAP-ENV:MustUnderstand

3. In Apache SOAP, the mustUnderstand attribute has to be handled by the
service implementation. In OracleAS SOAP, the mustUnderstand attribute
can be either handled in the SOAP handlers or in the service implementation.
This is very useful for processing headers (with mustUnderstand set to '1')
which have a 'global' use. Examples of such headers/functionality are
encryption, digsig, authentication, logging etc.

Apache Software License, Version 1.1
This program contains third-party code from the Apache Software Foundation
(Apache). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those
rights. Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle AS IS and without warranty or support of
any kind from Oracle or Apache.

======================================

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:

 "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."
Using Oracle SOAP A-41

Apache Software License, Version 1.1
Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear.

4. The names "Apache" and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission of the Apache
Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see http://www.apache.org/.

Portions of this software are based upon public domain software originally written
at the National Center for Supercomputing Applications, University of Illinois,
Urbana-Champaign.
A-42 Oracle Application Server Web Services Developer’s Guide

Web Services Se
B

Web Services Security

The ability to control user access to Web content and to protect your site against
people breaking into your system is critical. This appendix describes the
architecture and configuration of security for Oracle Application Server Web
Services, including the Oracle Application Server UDDI Registry.

This chapter covers the following topics:

■ About Web Services Security

■ Configuring Web Services Security

■ About Oracle Application Server UDDI Registry Security

■ Configuring UDDI Security

See Also:

■ Oracle Application Server 10g Security Guide

■ Oracle Identity Management Concepts and Deployment Planning
Guide
curity B-1

About Web Services Security
About Web Services Security
SOAP is the messaging protocol for Oracle Application Server Web Services. Oracle
Application Server Web Services only supports HTTP (S) for a transport protocol for
SOAP messages. Oracle Application Server security that applies for HTTP(S) can be
leveraged for Oracle Application Server Web Services.

Oracle Application Server Web Services supports the following security features:

■ Secure Connection: By securing the connection using SSL (HTTPS), one can
invoke a Web Service securely.

■ Authentication: Basic and Digest Access Authentication can be enforced using
HTTP (S) headers. This method is not secure unless the authentication is
specified in conjunction with SSL.

■ Authorization: Authorization is supported by retrieving the Principal using a
User Manager such as the Oracle Application Server Java Authentication and
Authorization Service (JAZN) User Manager.

All the HTTP(S) transport security features are applicable to all types of Oracle
Application Server Web Services implementations (including stateless and stateful
java classes, stateless session bean and stateless stored procedures). In addition, if a
stateless session bean is exposed as a Web Service, ACL policies can be enforced on
the bean when the connection is authorized by a User Manager and a Principal
object is obtained.

If a stored procedure is exposed as a Web Service, then it is secure to encrypt the
password of the corresponding data source in the data-sources.xml file.

Configuring Web Services Security
When you run a client-side application that uses Oracle Application Server Web
Services, you can access secure Web Services by setting properties in the client
application. Table B–1 shows the available properties that provide credentials and
other security information for Web Services clients.

See Also:

■ Oracle Application Server Containers for J2EE Security Guide

■ Chapter 8, "Configuring EJB Application Security" in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide
B-2 Oracle Application Server Web Services Developer’s Guide

Configuring Web Services Security
In a Web Services client application, you can set the security properties shown in
Table B–1 as system properties by using the -D flag at the Java command line, or
you can also set security properties in the Java program by adding these properties
to the system properties (use System.setProperties() to add properties). In
addition, the client side stubs include the _setTranportProperties method that
is a public method in the client proxy stubs. This method enables you to set the
appropriate values for security properties by supplying a Properties argument.

Table B–1 Web Services HTTP Transport Security Properties

Property Description

http.authRealm Specifies the realm for which the HTTP authentication
username/password is specified.

This property is mandatory when using basic authentication.

http.authType Specifies the HTTP authentication type. The case of the value specified is
ignored.

Valid values: basic, digest

The value basic specifies HTTP basic authentication.

Specifying any value other than basic or digest is the same as not
setting the property.

http.password Specifies the HTTP authentication password.

http.proxyAuthRealm Specifies the realm for which the proxy authentication
username/password is specified.

http.proxyAuthType Specifies the proxy authentication type. The case of the value specified is
ignored.

Valid values: basic, digest

Specifying any value other than basic or digest is the same as not
setting the property.

http.proxyHost Specifies the hostname or IP address of the proxy host.

http.proxyPassword Specifies the HTTP proxy authentication password.

http.proxyPort Specifies the proxy port. The specified value must be an integer. This
property is only used when http.proxyHost is defined; otherwise this
value is ignored.

Default value: 80

http.proxyUsername Specifies the HTTP proxy authentication username.

http.username Specifies the HTTP authentication username.
Web Services Security B-3

Configuring Web Services Security
java.protocol.handler.pkgs Specifies a list of package prefixes for
java.net.URLStreamHandlerFactory The prefixes should be
separated by "|" vertical bar characters.

This value should contain: HTTPClient

This value is required by the Java protocol handler framework; it is not
defined by Oracle Application Server. This property must be set when
using HTTPS. If this property is not set using HTTPS, a
java.net.MalformedURLException is thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

■ java.protocol.handler.pkgs=HTTPClient

■ java.protocol.handler.pkgs=sun.net.www.protocol|
HTTPClient

oracle.soap.transport.
allowUserInteraction

Specifies the allows user interaction parameter. The case of the value
specified is ignored. When this property is set to true and either of the
following are true, the user is prompted for a username and password:

1. If any of properties http.authType, http.username, or
http.password is not set, and a 401 HTTP status is returned by
the HTTP server.

2. If either of properties http.proxyAuthType,
http.proxyUsername, or http.proxyPassword is not set and a
407 HTTP response is returned by the HTTP proxy.

Valid values: true, false

Specifying any value other than true is considered as false.

oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported with Oracle SSL.

Table B–1 (Cont.) Web Services HTTP Transport Security Properties

Property Description
B-4 Oracle Application Server Web Services Developer’s Guide

About Oracle Application Server UDDI Registry Security
About Oracle Application Server UDDI Registry Security
This section covers the following topics:

■ Protecting Oracle Application Server UDDI Registry Resources

■ Managing and Enforcing Protected UDDI Resources

■ Using Oracle Application Server Security Services

Protecting Oracle Application Server UDDI Registry Resources
Oracle Application Server UDDI resources are protected as follows.

Oracle Application Server UDDI Registry
For the OracleAS UDDI Registry, the following resources are protected:

■ Data – Write access to the data stored in the OracleAS UDDI Registry is
protected; this is typically metadata of Web Services.

■ Functions – Administrative operations to the OracleAS UDDI Registry.

■ Passwords – N/A. User passwords are protected by JAZN.

oracle.wallet.location Specifies the location of an exported Oracle wallet or exported
trustpoints.

Note: The value used is not a URL but a file location, for example:

/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)

d:\oracle\system1\exported_wallet (on Windows)

This property must be set when HTTPS is used with SSL authentication,
server or mutual, as the transport.

oracle.wallet.password Specifies the password of an exported wallet. Setting this property is
required when HTTPS is used with client, mutual authentication as the
transport.

See Also: "OracleAS UDDI Registry Administration" on
page 10-25

Table B–1 (Cont.) Web Services HTTP Transport Security Properties

Property Description
Web Services Security B-5

About Oracle Application Server UDDI Registry Security
Oracle Application Server Content Subscription Manager Application
For the Oracle Application Server UDDI Content Subscription Manager application,
the following resource is protected:

■ Passwords – Password for the UDDI syndication subscriber are protected.

Managing and Enforcing Protected UDDI Resources
Protection for the following OracleAS UDDI Registry resources are managed and
enforced as follows.

Oracle Application Server UDDI Registry
Oracle Application Server Java Authentication and Authorization Service (JAZN)
and the UDDI application manages and enforces write access to the data stored in
the OracleAS UDDI Registry. JAZN determines the identity and the security role of
a user. Only the owner has rights to update data.

For administrative operations for the OracleAS UDDI Registry JAZN also manages
and enforces access; in addition, JAZN protects the servlets that provide
administrative operations.

Oracle Application Server Content Subscription Manager Application
The application manages the UDDI syndication subscription password used to
access Oracle Application Server Syndication Services. The password, which is
persistently stored in the database, is further protected by the database DBMS_
OBFUSCATION PL/SQL package.

Update of the UDDI syndication subscriber password is available through a UDDI
Web-based tool. The web-based tool uses JAZN to query the security role of the
authenticated user. The password update facility is available only if the
authenticated user has the uddiadmin security role.

Using Oracle Application Server Security Services
UDDI leverages the JAZN User level security features and uses SSL encryption,
both server side and client side, for accessing OracleAS Infrastructure 10g options.

See Also: "Using the UDDI Content Subscription Manager as a
UDDI Administrator" on page 10-91
B-6 Oracle Application Server Web Services Developer’s Guide

Configuring UDDI Security
Configuring UDDI Security
To configure UDDI for security, consider the following areas:

■ Configuring the Oracle Application Server UDDI Registry

■ Configuring the UDDI Content Subscription Manager

■ Configuring the UDDI Client

Configuring the Oracle Application Server UDDI Registry
To ensure the confidentiality of the communication between the OracleAS UDDI
Registry and clients, do the following:

1. Configure the Oracle HTTP Server/SSL listener to provide HTTPS access.

2. Configure OC4J to prohibit HTTP access.

3. To ensure the communication to a UDDI replication endpoint is authorized,
configure the Oracle HTTP Server/SSL listener to enable HTTPS
client-certificate based authentication.

Configure all security-sensitive UDDI endpoints, including: publishing,
administration, replication wallet administration, and subscription management
(typically, the inquiry endpoint does not need to be confidential).

Configuring the UDDI Content Subscription Manager
In order to make the Oracle Application Server Content Subscription Manager
functional, you must supply the proper password of the UDDI syndication
subscriber.

Configuring the UDDI Client
If you use the UDDI Client Library to develop applications to communicate with
the OracleAS UDDI Registry, you can use the Oracle Application Server Web
Services security features to configure the HTTP transport properties.

See Also: "Using the UDDI Content Subscription Manager as a
UDDI Administrator" on page 10-91

See Also: "Configuring Web Services Security" on page B-2
Web Services Security B-7

Configuring UDDI Security
B-8 Oracle Application Server Web Services Developer’s Guide

Glossary

Dynamic Web Service Client

When you want to use Web Services, you can develop a dynamic Web Service
client. With A dynamic client the client performs a lookup to find the Web Service’s
location in a OracleAS UDDI Registry before accessing the service.

SOAP

SOAP is the name of a lightweight, XML-based protocol for exchanging information
in a decentralized, distributed environment. SOAP supports different styles of
information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange.

Static Web Service Client

When you want to use Web Services, you can develop a static client. A static client
knows where a Web Service is located without looking up the service in a OracleAS
UDDI Registry.

Stored Procedure Web Service

Oracle Application Server Web Services implemented as stateless PL/SQL
Stored Procedures or Functions are called Stored Procedure Web Services. Stored
Procedure Web Services enable you to export, as services running under Oracle
Application Server Web Services, PL/SQL procedures and functions that run on an
Oracle database server.

See Also: http://www.w3.org/TR/SOAP/ for information on
SOAP 1.1 specification
Glossary-1

UDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for an
online electronic registry that serves as electronic Yellow Pages, providing an
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

Web Service

A Web Service is a discrete business process that does the following:

■ Exposes and describes itself – A Web Service defines its functionality and
attributes so that other applications can understand it. A Web Service makes
this functionality available to other applications.

■ Allows other services to locate it on the web – A Web Service can be registered
in an electronic Yellow Pages, so that applications can easily locate it.

■ Can be invoked – Once a Web Service has been located and examined, the
remote application can invoke the service using an Internet standard protocol.

■ Returns a response – When a Web Service is invoked, the results are passed
back to the requesting application over the same Internet standard protocol that
is used to invoke the service.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet.

See Also: http://www.uddi.org for information on Universal
Description, Discovery and Integration specifications.

See Also: http://www.w3.org/TR/wsdl for information on
the Web Services Description Language (WSDL) format.
Glossary-2

Index

A
accept-untyped-request configuration tag, 12-4

C
class-name configuration tag, 3-12, 6-11
client-side proxies

generating for Web Services, 8-8
getting directly, 8-5
using, 8-9

client-side request header support, 12-4
connection-factory-resource-ref configuration

tag, 7-14
consuming Web Services

advanced section
editing generated XSLT stylesheet, 11-33
modifying environment options in generated

ejb-jar.xml file, 11-34
sample uses

handling an XML or HTML stream accessed
through a custom form, 11-15

handling an XML or HTML stream accessed
through a form, 11-14

handling an XML or HTML stream accessed
through static URL, 11-3

SOAP-based Web services using WSDL
document, 11-35

running the demonstration, 11-43
using configuration file, 11-37
using wsdl2ejb utility command-line

options, 11-35
using Web Service HTML/XML Stream

Processing Wizard, 11-2

XML or HTML streams, 11-2
context configuration tag, 3-10

D
database-JNDI-name configuration tag, 5-6
data-sources.xml configuration file, 5-11
db-pkg-name configuration tag, 5-7
db-url configuration tag, 5-7
debugging using ws.debug property, 12-2
description configuration tag, 3-10
destination-path configuration tag, 3-10
discovering Web Services, 10-7
display-name configuration tag, 3-10
document style interface, 6-7
dynamic invocation of Web Services, 11-54

dynamic invocation API, 11-55
WebServiceProxy client, 11-58

E
ejb-name configuration tag, 4-11
ejb-resource configuration tag, 3-12, 4-11
EJBs sample code, 4-2
Element

arrays of, 3-8, 4-7, 6-3
null values, 6-3

G
generating client proxies, A-8
generating WSDL documents, A-9
getting client-side proxies for Web Services, 8-2
getting WSDL descriptions for Web Services, 8-2
Index-1

H
header support, 12-4
HTTP transport properties

http.authRealm property, 8-13, B-3
http.authType property, 8-13, B-3
http.password property, 8-13, B-3
http.proxyAuthRealm property, 8-13, B-3
http.proxyAuthType property, 8-13, B-3
http.proxyHost property, 8-13, B-3
http.proxyPassword property, 8-13, B-3
http.proxyPort property, 8-13, B-3
http.proxyUsername property, 8-13, B-3
http.username property, 8-13, B-3
java.protocol. handler.pkgs property, 8-14, B-4
oracle. wallet.location property, 8-15, B-5
oracle.soap. transport. allowUserInteraction

property, 8-14, B-4
oracle.ssl.ciphers property, 8-14, B-4
oracle.wallet. password property, 8-15, B-5

http.authRealm property, 8-13, B-3
http.authType property, 8-13, B-3
http.password property, 8-13, B-3
http.proxyAuthRealm property, 8-13, B-3
http.proxyAuthType property, 8-13, B-3
http.proxyHost property, 8-13, B-3
http.proxyPassword property, 8-13, B-3
http.proxyPort property, 8-13, B-3
http.proxyUsername property, 8-13, B-3
http.username property, 8-13, B-3

I
interface-name configuration tag, 3-12, 6-11
interoperability with .NET, 12-2

J
jar-generation configuration tag, 5-6
Java Beans, 3-7, 4-6
java class interface, 3-5
java2wsdl script, A-9
java.protocol. handler.pkgs property, 8-14, B-4
java-resource configuration tag, 3-12, 6-11
jms-delivery-mode configuration tag, 7-14
jms-doc-service configuration tag, 7-13

jms-expiration configuration tag, 7-14
jms-message-type configuration tag, 7-14
jms-priority configuration tag, 7-14

L
locating Web Services, 8-2

M
message-style configuration tag, 3-12, 6-12
method-name configuration tag, 5-7

N
.NET interoperablity, 12-2

O
OC4J startup using ws.debug, 12-2
operation configuration tag, 7-15
option name="force" configuration tag, 9-6
option name="httpServerURL" configuration

tag, 9-6
option name="include-source" configuration

tag, 8-9
option name="packageIt" configuration tag, 9-6
option name="source-path" configuration tag, 3-10
option name="wsdl-location" configuration

tag, 8-9
option package-name configuration tag, 8-9
Oracle SOAP, A-22

audit logger
configuring, A-18
filter, A-15
HostName, A-15
IpAddress, A-15
Method element, A-15
schema, A-15
ServiceURI element, A-15
TimeStamp element, A-15
User element, A-15

auditLogDirectory option, A-19
client API

security features, A-20
Index-2

configuration
handlers, A-13
soap.xml, A-3

debugging
setting values in soap.xml, A-36

deploying services, A-7
deployment descriptor, A-10
error handlers, A-13
errorHandlers deployment parameter, A-3
faultListeners deployment parameter, A-3
filter option, A-19
handlers

deployment parameter, A-4
error, A-13
request, A-13
response, A-13

HostName element, A-15
HTTP transport properties

http.authRealm property, A-22
http.authType property, A-22
http.password property, A-22
http.proxyAuthRealm property, A-22
http.proxyAuthType property, A-22
http.proxyHost property, A-22
http.proxyPassword property, A-22
http.proxyPort property, A-22
http.proxyUsername property, A-22
http.username property, A-22
java.protocol. handler.pkgs property, A-23
oracle. wallet.location property, A-24
oracle.soap. transport. allowUserInteraction

property, A-24
oracle.wallet. password property, A-24

http.authRealm property, A-22
http.authType property, A-22
http.password property, A-22
http.proxyAuthRealm property, A-22
http.proxyAuthType property, A-22
http.proxyHost property, A-22
http.proxyPassword property, A-22
http.proxyPort property, A-22
http.proxyUsername property, A-22
http.username property, A-22
includeRequest option, A-19
includeResponse option, A-19

IpAddress element, A-15
java.protocol. handler.pkgs property, A-23
listing services, A-7
logger

setting values in soap.xml, A-36
logger deployment parameter, A-4
Method element, A-15
oracle. wallet.location property, A-24
oracle.soap. transport. allowUserInteraction

property, A-24
oracle.soap. transport.1022ContentType

property, A-23
oracle.ssl.ciphers property, A-24
oracle.wallet. password property, A-24
providerManager deployment parameter, A-5
querying services, A-7
request handlers, A-13
requestHandlers deployment parameter, A-5
response handlers, A-13
responseHandlers deployment parameter, A-5
security features, A-20
service manager

deploying services, A-7
listing services, A-7
querying services, A-7
undeploying services, A-7
verifying services, A-7

serviceManager deployment parameter, A-5
ServiceURI element, A-15
servlet.soaprouter.initArgs parameter, A-3
soap.properties

soapConfig, A-3
soap.xml, A-3
TcpTunnelGui command, A-36
TimeStamp element, A-15
troubleshooting, A-35
undeploying services, A-7
User element, A-15

oracle. wallet.location property, 8-15, B-5
oracle.soap. transport.allowUserInteraction

property, 8-14, B-4
oracle.ssl.ciphers property, 8-14, B-4
oracle.wallet. password property, 8-15, B-5
Index-3

P
packageName request parameter, 8-6
path configuration tag, 4-11
PL/SQL stored procedures

setting up datasources, 5-11
writing, 5-2

prefix configuration tag, 5-7
publishing API, 10-17
publishing Web services, 10-11

Q
queue-resource-ref configuration tag, 7-15

R
receive-timeout configuration tag, 7-14
reply-to-connection-factory-resource-ref

configuration tag, 7-15
reply-to-queue-resource-ref configuration tag, 7-16
reply-to-topic-resource-ref configuration tag, 7-16
request header support

client-side, 12-4
server-side, 12-6

RPC typed request, 12-2
RPC untyped requests, 12-2

S
schema configuration tag, 5-7
scope configuration tag, 3-12, 6-12
security

HTTP transport properties
http.authRealm property, 8-13
http.authType property, 8-13
http.password property, 8-13
http.proxyAuthRealm property, 8-13
http.proxyAuthType property, 8-13
http.proxyHost property, 8-13
http.proxyPassword property, 8-13
http.proxyPort property, 8-13
http.proxyUsername property, 8-13
http.username property, 8-13
java.protocol.handler.pkgs property, 8-14
oracle.soap.transport.allowUserInteraction,

8-14
oracle.ssl.ciphers property, 8-14
oracle.wallet.location property, 8-15
oracle.wallet.password property, 8-15

server-side request header support, 12-6
session-timeout configuration tag, 3-13, 6-12
SOAP

features, 1-6, 1-7
web services, 1-6, 1-7
what is SOAP, 1-6, 1-7

SOAP header support, 12-4
SOAP request header support, 12-4, 12-6
stateful document style, 6-4
stateful java class, 3-3
stateful-java-service configuration tag, 3-10, 6-11
stateless document style, 6-4
stateless java class, 3-3
stateless session EJBs

helloStatelessSession sample code, 4-2
writing, 4-2

stateless-java-service configuration tag, 3-10, 6-11
stateless-session-ejb-service configuration tag, 4-10

T
temporary-directory configuration tag, 3-10
topic-resource-ref configuration tag, 7-16
topic-subscription-name configuration tag, 7-16
typed RPC requests, 12-2

U
UDDI

OracleAS UDDI registry, 10-45
production environment configuration, 10-47
publishing Web services

using OEM Deploy Applications
Wizard, 10-12

using OEM Web Services Details
window, 10-13

registration, 10-2
registry, 10-3
registry administration

administrative entity management, 10-32
built-in validated category
Index-4

management, 10-38
command-line tool uddiadmin.jar, 10-25
database configuration, 10-44
import operation, 10-33
performance monitoring and tuning, 10-43
server configuration, 10-25
server configuration parameters reference

information, 10-48
transport security, 10-45
user account management, 10-26

standard taxonomies
ISO3166, 10-3
NAICS, 10-3
UNSPSC, 10-3

updating published Web services
using OEM Web Services Details

window, 10-14
Web service discovery, 10-5

using inquiry API, 10-7
using tools, 10-7

Web service publishing, 10-5
using publishing API, 10-17
using tools, 10-11

uddiadmin.jar
registry administration command-line

tool, 10-25
untyped RPC requests, 12-2
uri configuration tag, 3-13, 4-11, 5-6, 6-12, 7-16

W
Web Services

Bean support, 3-7, 4-6
client-side proxies, 8-2, 8-9

packageName request parameter, 8-6
discovering, 10-7
document style

deploying, 6-16
interface, 6-7
null value for Element, 6-3
stateful, 6-4
stateless, 6-4

encoding parameters, 3-15
encoding results, 3-15
generating client proxies, 8-8, A-8

generating WSDL documents, 9-4, A-9
home page, 8-2
Java Bean support, 3-7, 4-6
java class

deploying, 3-9, 3-15
interface, 3-5
preparing, 3-9
stateful, 3-3
stateless, 3-3
supported parameter types, 3-7
supported return value types, 3-7
supported types, 3-5

JMS
deploying, 7-18
preparing an EAR file, 7-18

locating, 8-2
PL/SQL stored procedures, 5-2

deploying, 5-12
preparing an EAR file, 5-10
setting up datasources, 5-11

proxies, 8-9
publishing, 10-11
serializing parameters, 3-15
serializing results, 3-15
stateless session EJBs, 4-2

bean code, 4-4
deploying, 4-8, 4-13
developing web services, 4-3
error handling, 4-5
home interface, 4-4
preparing, 4-8
remote interface, 4-3
returning results, 4-5
sample code, 4-2
supported parameter types, 4-6
supported return value types, 4-6

test page, 8-2
utilities

wsdlAnalyzer, 12-9
WSDL descriptions, 8-2, 8-8

WebServicesAssembler
DTD, 9-9
running, 9-2
sample input file, 9-2
sample output, 9-3
Index-5

tag
class-name, 3-12, 6-11
connection-factory-resource-ref, 7-14
context, 3-10
db-pkg-name, 5-7
db-url, 5-7
description, 3-10
destination-path, 3-10
display-name, 3-10
ejb-name, 4-11
ejb-resource, 3-12, 4-11
interface-name, 3-12, 6-11
jar-generation, 5-6
java-resource, 3-12, 6-11
jms-delivery-mode, 7-14
jms-doc-service, 7-13
jms-expiration, 7-14
jms-message-type, 7-14
jms-priority, 7-14
message-style, 3-12, 6-12
method-name, 5-7
operation, 7-15
option name="force", 9-6
option name="httpServerURL", 9-6
option name="include-source", 8-9
option name="packageIt", 9-6
option name="source-path", 3-10
option name="wsdl-location", 8-9
option package-name, 8-9
path, 4-11
prefix, 5-7
proxy-dir, 8-9
queue-resource-ref, 7-15
receive-timeout, 7-14
reply-to-connection-factory-resource-ref, 7-1

5
reply-to-queue-resource-ref, 7-16
reply-to-topic-resource-ref, 7-16
schema, 5-7
scope, 3-12, 6-12
session-timeout, 3-13, 6-12
stateful-java-service, 3-10, 6-11
stateless-java-service, 3-10, 6-11
stateless-session-ejb-service, 4-10
stateless-stored-procedure-java-service, 5-5

temporary-directory, 3-10
topic-resource-ref, 7-16
topic-subscription-name, 7-16
uri, 3-13, 4-11, 5-6, 6-12, 7-16
wsdl-dir, 9-6

WSDL file, 9-7
ws.debug property, 12-2
WSDL file

getting directly, 8-5
wsdl2java script, A-8
wsdlAnalyzer utility, 12-9
Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Web Services Overview
	What Are Web Services?
	Understanding Web Services
	Benefits of Web Services
	About the Web Services e-Business Transformation

	Overview of Web Services Standards
	SOAP Standard
	Web Services Description Language (WSDL)
	Universal Description, Discovery, and Integration (UDDI)

	SOAP Message Exchange and SOAP Message Encoding
	SOAP Message Components
	Working With RPC Style SOAP Messages
	Working With Document Style SOAP Messages

	2 Oracle Application Server Web Services
	Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services
	Oracle Application Server Web Services Standards
	Oracle Application Server Web Services Features
	Developing End-to-End Web Services
	Deploying and Managing Web Services
	Using Oracle JDeveloper with Web Services
	Securing Web Services
	Aggregating Web Services

	Oracle Application Server Web Services Architecture
	About Servlet Entry Points for Web Services
	What Are the Packaging and Deployment Options for Web Services
	About Server Skeleton Code Generation for Web Services

	Understanding WSDL and Client Proxy Stubs for Web Services
	Overview of a WSDL Based Web Service Client
	Overview of a Client-Side Proxy Stubs Based Web Service Client

	Web Services Home Page
	About Universal Description, Discovery, and Integration Registry
	Oracle Enterprise Manager Features to Register Web Services

	3 Developing and Deploying Java Class Web Services
	Using Oracle Application Server Web Services With Java Classes
	Writing Java Class Based Web Services
	Writing Stateless and Stateful Java Web Services
	Building a Sample Java Class Implementation
	Using Supported Data Types for Java Web Services

	Preparing and Deploying Java Class Based Web Services
	Creating a Configuration File to Assemble Java Class Web Services
	Running WebServicesAssembler To Prepare Java Class Web Services
	Deploying Java Class Based Web Services

	Serializing and Encoding Parameters and Results for Web Services

	4 Developing and Deploying EJB Web Services
	Using Oracle Application Server Web Services With Stateless Session EJBs
	Writing Stateless Session EJB Web Services
	Defining a Stateless Session Remote Interface
	Defining a Stateless Session Home Interface
	Defining a Stateless Session EJB Bean
	Returning Results From EJB Web Services
	Error Handling for EJB Web Services
	Serializing and Encoding Parameters and Results for EJB Web Services
	Using Supported Data Types for Stateless Session EJB Web Services
	Writing a WSDL File for EJB Web Services (Optional)

	Preparing and Deploying Stateless Session EJB Based Web Services
	Creating a Configuration File to Assemble Stateless Session EJB Web Services
	Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
	Deploying Web Services Implemented as EJBs

	5 Developing and Deploying Stored Procedure Web Services
	Using Oracle Application Server Web Services with Stored Procedures
	Writing Stored Procedure Web Services
	Preparing Stored Procedure Web Services
	Creating a Configuration File to Assemble Stored Procedure Web Services
	Running WebServicesAssembler With Stored Procedure Web Services
	Setting Up Datasources in Oracle Application Server Web Services (OC4J)

	Deploying Stored Procedure Web Services
	Limitations for Stored Procedures Running as Web Services
	Supported Stored Procedure Features for Web Services
	Unsupported Stored Procedure Features for Web Services
	Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services
	TIMESTAMP and DATE Granularity Limitation
	LOB (CLOB/BLOB) Emulated Data Source Limitation

	6 Developing and Deploying Document Style Web Services
	Using Document Style Web Services
	Writing Document Style Web Services
	Supported Method Signatures for Document Style Web Services
	Writing Stateless and Stateful Document Style Web Services
	Writing Classes and Interfaces for Document Style Web Services

	Preparing Document Style Web Services
	Creating a Configuration File to Assemble Document Style Web Services
	Running WebServicesAssembler With Document Style Web Services

	Deploying Document Style Web Services

	7 Developing and Deploying JMS Web Services
	JMS Web Services Overview
	Using JMS Web Services
	JMS Web Services Backend Message Processing

	Writing JMS Web Services and Handling Messages
	Using an MDB for Backend Message Processing
	Using a JMS Standalone Program for Backend Message Processing
	Message Processing and Reply Messages

	Preparing and Configuring JMS Web Services
	Creating a Configuration File to Assemble JMS Web Services
	Running WebServicesAssembler With JMS Web Services

	Deploying JMS Web Services
	Limitations for JMS Web Services

	8 Building Clients that Use Web Services
	Locating Web Services
	Getting WSDL Files and Client-Side Proxy Jars for Web Services
	Using the Web Service Home Page to Save WSDL and Client Side Proxies
	Getting Web Service WSDL and Client-Side Proxies Directly
	Generating Client-Side Proxies With WebServicesAssembler

	Working with Client-Side Proxy Jar to Use Web Services
	Setting the Web Services Proxy Client CLASSPATH
	Using Java Beans as Parameters for Web Services
	Using Web Services Security Features

	Working with WSDL Files and Oracle JDeveloper to Use Web Services

	9 Web Services Tools
	Running the Web Services Assembly Tool
	Web Services Assembly Tool Configuration File Sample
	Web Services Assembly Tool Configuration File Sample Output

	Generating WSDL Files and Client Side Proxies
	Generating and Assembling WSDL Files
	Generating Client-Side Proxies with WSDL

	Web Services Assembly Tool Configuration File Specification
	Web Services Assembly Tool Limitations

	10 Discovering and Publishing Web Services
	UDDI Registration
	UDDI Registry Data Structure
	OracleAS UDDI Registry for Enterprise Web Services

	Web Services Discovery
	Using Tools
	Using the Inquiry API

	Web Services Publishing
	Using Oracle Enterprise Manager
	Publishing Web Services Using Deploy Applications Wizard
	Publishing Web Services Using Web Services Details Window
	Updating Published Web Services in the OracleAS UDDI Registry
	Using the Publishing API

	OracleAS UDDI Registry Administration
	Using the Command-Line Tool uddiadmin.jar
	Server Configuration
	User Management
	Quota Enforcement
	Administrative Entity Management
	Import Operation
	Set Operational Information
	UDDI Replication
	Registry-Based Category Validation
	External Validation
	Performance Monitoring and Tuning
	Data Backup and Restore Operations
	Additional Information
	Server Configuration Properties Reference Information

	OracleAS UDDI Server Error Message Reference Information
	OracleAS UDDI Content Syndication UI Implementation Error Message
	UDDI Open Database Support
	Microsoft SQL Server
	IBM DB2
	Oracle (Non-OracleAS Infrastructure Database)

	UDDI Subscription Service
	Defining Offers
	Advanced Topic: Creating New UDDI Content Connectors

	Subscribing to an Offer
	Using the UDDI Content Subscription Manager as a Publisher
	Canceling a Subscription
	Using the UDDI Content Subscription Manager as a UDDI Administrator
	Canceling a Subscription

	11 Consuming Web Services in J2EE Applications
	Consuming XML or HTML Streams in J2EE Applications
	Web Service HTML/XML Stream Processing Wizard
	Sample Use Scenarios
	Advanced Section -- Editing Changes You Can Make to Generated Files

	Consuming SOAP-Based Web Services Using WSDL
	Advanced Configuration
	Known Limitations of the wsdl2ejb Utility
	Running the Demonstration

	Dynamic Invocation of Web Services
	Dynamic Invocation API
	WebServiceProxy Client
	Known Limitations

	12 Advanced Topics for Web Services
	Setting the Web Services Debugging Property ws.debug
	Untyped Request Handling Options
	SOAP Header Support
	Client Side SOAP Request Header Support
	Server Side SOAP Request Header Support
	Limitations for SOAP Header Support

	Using the WSDL Analyzer Utility

	A Using Oracle SOAP
	Understanding Oracle Application Server SOAP
	Apache SOAP Documentation
	Configuring the SOAP Request Handler Servlet
	Using OracleAS SOAP Management Utilities and Scripts
	Managing Providers
	Using the Service Manager to Deploy and Undeploy Java Services
	Generating Client Proxies from WSDL Documents
	Generating WSDL Documents from Java Service Implementations

	Deploying OracleAS SOAP Services
	Creating Deployment Descriptors
	Installing a SOAP Web Service in OC4J
	Disabling an Installed SOAP Web Service
	Installing a SOAP Web Service in an OC4J Cluster

	Using OracleAS SOAP Handlers
	Request Handlers
	Response Handlers
	Error Handlers
	Configuring Handlers

	Using OracleAS SOAP Audit Logging
	Audit Logging Information
	Auditable Events
	Configuring the Audit Logger

	Using OracleAS SOAP Pluggable Configuration Managers
	Working With OracleAS SOAP Transport Security
	Apache Listener and Servlet Engine Configuration for SSL
	Using JSSE with Oracle Application Server SOAP Client

	Using OracleAS SOAP Sample Services
	The Xmethods Sample
	The AddressBook Sample
	The StockQuote Sample
	The Company Sample
	The Provider Sample
	The AddressBook2 Sample
	The Messaging Sample
	The Mime Sample

	Using the OracleAS SOAP EJB Provider
	Stateless Session EJB Provider
	Stateful Session EJB Provider in Apache SOAP
	Stateful Session EJB Provider in OracleAS SOAP
	Entity EJB Provider in OracleAS SOAP
	Deployment and Use of the OracleAS SOAP EJB Provider
	Current Known EJB Provider Limitations

	Using PL/SQL Stored Procedures With the SP Provider
	SP Provider Supported Functionality
	SP Provider Unsupported Functionality
	SP Provider Supported Simple PL/SQL Types
	Using Object Types
	Deploying a Stored Procedure Provider
	Translating PL/SQL Stored Procedures into Java
	Deploying a Stored Procedure Service
	Invoking a SOAP Service that is a Stored Procedure

	SOAP Troubleshooting and Limitations
	Tunneling Using the TcpTunnelGui Command
	Setting Configuration Options for Debugging
	Using DMS to Display Runtime Information
	SOAP Limitations for Java Type Precedence with Overloaded Methods

	OracleAS SOAP Differences From Apache SOAP
	Service Installation Differences
	Optional Provider Enhancements
	Oracle Transport libraries
	Modifications to Apache EJB Provider
	Stored Procedure Provider
	Utility Enhancements
	Modifications to Sample Code
	Handling the mustUnderstand Attribute in the SOAP Header

	Apache Software License, Version 1.1

	B Web Services Security
	About Web Services Security
	Configuring Web Services Security
	About Oracle Application Server UDDI Registry Security
	Protecting Oracle Application Server UDDI Registry Resources
	Managing and Enforcing Protected UDDI Resources
	Using Oracle Application Server Security Services

	Configuring UDDI Security
	Configuring the Oracle Application Server UDDI Registry
	Configuring the UDDI Content Subscription Manager
	Configuring the UDDI Client

	Glossary
	Index
	A
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

