
Oracle® Application Server Wireless
Developer’s Guide

10g (9.0.4)

Part No. B10948-01

September 2003

Oracle Application Server Wireless Developer’s Guide, 10g (9.0.4)

Part No. B10948-01

Copyright © 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, OracleMobile, Oracle JDeveloper, PL/SQL and SQL*Plus
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

 iii

Contents

Send Us Your Comments ... xxix

Audience and Roadmap .. xxxi

Target Audience... xxxi
Roadmap ... xxxi
Documentation Accessibility .. xxxiii
Related Documents... xxxiii

Part I Introduction

1 Introduction to Oracle Application Server Wireless

1.1 Overview of OracleAS Wireless.. 1-1
1.2 New in OracleAS Wireless... 1-3
1.2.1 Multi-Channel Server .. 1-3
1.2.2 J2ME Support.. 1-3
1.2.3 Notifications and Multi-media Messaging... 1-4
1.2.4 Wireless Development Kit .. 1-5
1.2.5 Web Clipping.. 1-5
1.2.6 Location Services.. 1-6
1.3 OracleAS Wireless Deployed in a Network .. 1-7

Part II Oracle Application Server Wireless Developer’s Tools

iv

2 Introducing Oracle Application Server Wireless Developer’s Tools

2.1 OracleAS Wireless Development Path ... 2-1
2.1.1 Leverage Web Services and Reuse Business Logic.. 2-2
2.1.2 Building and Testing Your Applications .. 2-3
2.1.3 Deploying your Applications ... 2-4
2.2 Delivering Your Applications.. 2-4

3 OracleAS Wireless Developer Kit

3.1 Wireless Developer Kit Overview... 3-1
3.2 WDK Installation and Configuration ... 3-2
3.2.1 Oracle Application Server Wireless Developer Kit Structure.................................. 3-2
3.2.2 Multi-Channel Server Lite (MCSLite) ... 3-3
3.2.2.1 Key Features... 3-4
3.2.2.2 How to Use MCSLite .. 3-5
3.2.2.3 Sending Parameters to a Back-end Application ... 3-6
3.2.2.4 MCSLite URL Rewriting and Caching... 3-7
3.2.2.5 National Language Support (NLS)... 3-7
3.2.2.6 MCSLite Log File... 3-7
3.2.2.7 MCSLite Advanced Configuration... 3-8
3.2.2.8 Device Description.. 3-9
3.2.2.9 Device Detection.. 3-10
3.2.2.10 Multimedia Adaptation.. 3-10
3.2.2.11 Location Services... 3-10
3.3 WDK Log File... 3-21
3.3.1 WDK Log Sample... 3-22
3.3.2 Common Mistakes Encountered.. 3-27
3.4 Running a Wireless Application with the WDK Tutorial.. 3-29
3.4.1 What you Need... 3-29
3.4.2 Tutorial Overview .. 3-30
3.4.3 Environment Set Up... 3-30
3.4.3.1 Set up your WDK Environment.. 3-30
3.4.3.2 Configure the WDK .. 3-30
3.4.3.3 Start the WDK.. 3-31
3.4.4 Multi-media Adaptation Demonstration.. 3-32

v

4 JDeveloper Wireless Extension

4.1 Overview .. 4-1
4.2 Developing Multi-Channel Applications .. 4-2
4.3 Creating a Wireless-Enabled J2EE Application .. 4-3
4.4 Creating J2ME Applications .. 4-3
4.4.1 Creating a Default MIDlet .. 4-3
4.4.2 Deploying the MIDlet Application.. 4-3
4.4.3 Creating a MIDlet that Calls a Web Service ... 4-4

5 Developing Services

5.1 Overview of the Service Manager... 5-1
5.2 Logging into the Service Manager .. 5-3
5.3 Managing Applications .. 5-4
5.3.1 Searching for a Master Application... 5-5
5.3.2 Creating a Folder.. 5-6
5.3.3 Creating an Application .. 5-7
5.3.4 Selecting the Application Type .. 5-7
5.3.5 Creating a Multi-Channel Application ... 5-8
5.3.5.1 Entering the Basic Information for the Application... 5-9
5.3.5.2 Entering the Notification-Related Information .. 5-9
5.3.5.3 Entering the Input Parameters for the Application ... 5-11
5.3.5.4 Entering the Async Information ... 5-14
5.3.5.5 Setting the Built-In Parameters ... 5-16
5.3.5.6 Setting the Caching Information... 5-18
5.3.5.7 Setting Additional Information... 5-19
5.3.6 Creating a J2ME Application.. 5-21
5.3.6.1 Entering the Basic Information for the MIDlet ... 5-22
5.3.6.2 Specifying the Deliverable Content.. 5-22
5.3.6.3 Setting the Device Requirements.. 5-24
5.3.6.4 Setting Additional Information... 5-25
5.3.7 Creating a Multi-Channel Application (Based on Any Adapter) 5-27
5.3.7.1 Step 1: Entering the Basic Information for the Application............................ 5-27
5.3.7.2 Step 2: Entering Caching Information.. 5-29
5.3.7.3 Step 3: Entering the Initialization Parameters of the Application 5-30
5.3.7.4 Step 4: Selecting the Input Parameters for the Application............................ 5-31

vi

5.3.7.5 Step 5: Selecting the Output Parameters for the Application 5-34
5.3.7.6 Step 6: Creating an Async Agent Service—Optional....................................... 5-35
5.3.7.7 Step 7: Selecting the Result Transformer—Optional 5-36
5.3.8 Creating a Web Clipping Application... 5-37
5.3.9 Editing an Application .. 5-38
5.3.10 Deleting an Application .. 5-39
5.3.11 Debugging an Application.. 5-39
5.3.12 Quick Publishing an Application... 5-40
5.3.13 Moving Folders and Applications ... 5-40
5.4 Managing Notifications .. 5-40
5.4.1 Creating a Master Notification ... 5-41
5.4.1.1 Step 1: Entering the Basic Configuration Parameters for the Notification ... 5-42
5.4.1.2 Step 2: Setting the Trigger Conditions for the Notification 5-43
5.4.1.3 Step 3: Creating the Message Template ... 5-46
5.4.2 Editing a Notification... 5-47
5.5 Managing Master Alerts (Deprecated) ... 5-48
5.5.1 Creating a Master Alert ... 5-49
5.5.1.1 Step 1: Entering the Basic Configuration Parameters for the Master Alert .. 5-49
5.5.1.2 Step 2: Setting the Trigger Conditions for the Master Alert 5-50
5.5.1.3 Step 3: Creating the Message Template for the Master Alert 5-52
5.5.2 Editing a Master Alert ... 5-54
5.6 Managing Data Feeders .. 5-54
5.6.1 Creating a Data Feeder .. 5-55
5.6.1.1 Step 1: Entering the Basic Information for the Data Feeder............................ 5-56
5.6.1.2 Step 2: Entering the Initialization Parameters for the Data Feeder................ 5-58
5.6.1.3 Entering the Init Parameters for the HTTP Protocol.. 5-59
5.6.1.4 Entering the Init Parameters for the File Protocol.. 5-60
5.6.1.5 Entering the Init Parameters for the FTP Protocol ... 5-60
5.6.1.6 Entering the Init Parameters for the SQL Protocol... 5-61
5.6.1.7 Entering the Init Parameters for the Application Protocol 5-62
5.6.1.8 Step 3: Entering the Input Parameters for the Data Feeder 5-63
5.6.1.9 Step 4: Entering the Output Parameters for the Data Feeder 5-64
5.6.2 Editing a Data Feeder .. 5-65
5.6.2.1 Editing the Basic Configuration of a Data Feeder .. 5-65
5.6.2.2 Editing the Init Parameters of a Data Feeder .. 5-66

vii

5.6.2.3 Editing the Input Parameters of a Data Feeder .. 5-66
5.6.2.4 Editing the Output Parameters of a Data Feeder ... 5-66
5.7 Managing Preset Definitions ... 5-67
5.7.1 Creating a Preset Definition.. 5-68
5.7.1.1 Adding Preset Attributes ... 5-68
5.7.2 Editing a Preset Definition.. 5-70
5.7.2.1 Adding, Editing, and Deleting Preset Attribute Enumeration Options 5-70
5.8 Managing J2ME Web Services... 5-71
5.8.1 Registering a J2ME Web Service .. 5-71
5.8.2 Generating Stub Classes.. 5-73
5.8.2.1 Viewing the Class Method Details ... 5-74

6 Mobile Studio

6.1 Overview .. 6-1
6.1.1 Mobile Studio Key Features.. 6-2
6.1.2 Mobile Studio on the Oracle Technology Network .. 6-2
6.2 Getting Started with Mobile Studio.. 6-2
6.2.1 Login and Registration .. 6-3
6.2.2 Building an Application Using Mobile Studio .. 6-3
6.2.3 Testing an Application .. 6-4
6.2.4 Deploying an Application... 6-5
6.3 Customizing Mobile Studio ... 6-5
6.3.1 Creating Sample Services.. 6-6
6.3.2 Branding .. 6-6
6.3.3 Supporting Multiple Locales .. 6-7
6.3.4 JSP Pages.. 6-8
6.3.4.1 JSP page: login.jsp ... 6-9
6.3.4.2 JSP page: registraton.jsp... 6-10
6.3.4.3 JSP Page: loginPortlet.jsp ... 6-13
6.3.4.4 JSP page: pageHeader.jsp .. 6-13
6.3.4.5 JSP page: pageFooter.jsp .. 6-14
6.3.4.6 JSP page: pageMenu.jsp ... 6-15
6.3.4.7 JSP page: pagePortlets.jsp .. 6-15
6.3.4.8 JSP page: profile.jsp .. 6-16
6.3.4.9 JSP page: home.jsp .. 6-18

viii

6.3.4.10 Java Beans... 6-21
6.3.4.11 JSP page: testAppInfoBox.jsp .. 6-21

7 Wireless Customization Portal

7.1 Overview of OracleAS Wireless Customization ... 7-1
7.2 Logging into Wireless Customization .. 7-2
7.2.1 Accessing Wireless Customization as a New User ... 7-3
7.2.2 Accessing Wireless Customization as a Registered User ... 7-4
7.3 Managing User Profiles .. 7-4
7.4 Customizing Applications.. 7-5
7.4.1 Managing Folders... 7-7
7.4.1.1 Creating a Subfolder ... 7-7
7.4.1.2 Editing a Folder ... 7-8
7.4.1.3 Reordering the Display Sequence for Folder .. 7-9
7.4.1.4 Deleting a Folder ... 7-10
7.4.2 Managing Bookmarks.. 7-10
7.4.2.1 Creating a Bookmark .. 7-10
7.4.2.2 Editing a Bookmark .. 7-11
7.4.2.3 Deleting a Bookmark .. 7-12
7.4.3 Managing Short Names... 7-12
7.4.4 Creating Short Names.. 7-13
7.4.4.1 Editing a Short Name ... 7-14
7.4.4.2 Deleting a Short Name ... 7-14
7.4.5 Managing a Notification Subscription .. 7-14
7.4.5.1 Adding a New Notification Subscription.. 7-16
7.4.5.2 Editing Notification Subscriptions ... 7-18
7.4.5.3 Deleting Notification Subscriptions ... 7-18
7.5 Managing Devices ... 7-18
7.5.1 Creating a New Phone... 7-19
7.5.1.1 Validating a Phone.. 7-20
7.5.1.2 Editing a Phone ... 7-21
7.5.1.3 Deleting a Phone ... 7-21
7.5.2 Creating a New Fax.. 7-21
7.5.2.1 Validating a Fax... 7-22
7.5.2.2 Editing a Fax .. 7-23

ix

7.5.2.3 Deleting a Fax .. 7-23
7.5.3 Creating an Email Device.. 7-23
7.5.3.1 Validating the Email Device.. 7-24
7.5.3.2 Editing an Email Device... 7-24
7.5.3.3 Deleting an Email Device... 7-25
7.5.4 Creating a New Mobile Device .. 7-25
7.5.4.1 Validating the Mobile Device.. 7-26
7.5.4.2 Editing a Mobile Device... 7-27
7.5.4.3 Deleting an Mobile Device .. 7-27
7.5.5 Setting a Default Device ... 7-27
7.6 Managing Location Marks ... 7-27
7.6.1 Creating Location Marks... 7-29
7.6.2 Editing a Location Mark.. 7-31
7.6.3 Changing the Default Status of a Location Mark .. 7-32
7.6.4 Deleting a Location Mark.. 7-32
7.6.5 Setting the Location Privacy Preferences.. 7-32
7.6.6 Managing the Location Awareness Authorization ... 7-33
7.6.7 Assigning Location Awareness Authorization.. 7-33
7.6.8 Changing Location Awareness Authorization .. 7-34
7.6.9 Managing the User Groups for Location Authorization.. 7-34
7.6.10 Creating User Group ... 7-35
7.6.11 Editing a User Group... 7-35
7.6.11.1 Deleting User Group .. 7-35
7.7 Managing Contact Rules .. 7-35
7.7.1 Contact Rules in the Customization Portal .. 7-36
7.7.1.1 Adding a Contact Rule... 7-37
7.7.1.2 Editing a Contact Rule ... 7-38
7.7.1.3 Deleting a Contact Rule ... 7-39
7.7.1.4 Selecting an Active Contact Rule.. 7-39
7.7.1.5 Selecting a Contact Rule from a Web-Based User Interface 7-40
7.7.2 Selecting a Contact Rule from a Device .. 7-40
7.7.2.1 Selecting a Contact Rule from a Web-Based User Interface 7-40
7.7.2.2 Selecting a Contact Rule from a Device ... 7-40
7.7.2.3 Selecting a Contact Rule from a Device ... 7-41
7.7.2.4 Selecting a Contact Rule from an SMS- or Email-Based Device 7-42

x

7.7.2.5 Selecting a Contact Rule Using a Voice Application 7-44
7.8 Viewing UTF-8 Pages in Localized Languages with Netscape 4.7 or Lower 7-44
7.9 Rebranding the Customization Portal .. 7-44
7.9.1 Page Naming Conventions ... 7-45
7.9.2 UIX Pages Structure ... 7-45
7.9.3 Directory Structure... 7-46
7.9.4 Customizing the Look of the Customization Portal.. 7-47
7.9.4.1 Colors and Fonts.. 7-47
7.9.4.2 UIX Modification... 7-47
7.9.5 Application Customization Page Plugin Framework... 7-49
7.9.5.1 Customizing an Application in a Plugin Page.. 7-50
7.9.6 Setting the Multi-Byte Encoding for the Customization Portal............................. 7-51

Part III Developing Wireless Applications

8 Authoring Mobile Browser and Voice Applications

8.1 Overview... 8-1
8.1.1 MobileXML or XHTML/XForms; Which to Use? ... 8-2
8.1.2 Multi-Channel Overview .. 8-4
8.2 XHTML+XForms ... 8-4
8.2.1 Overview ... 8-5
8.2.2 Technology Background ... 8-5
8.2.2.1 XHTML ... 8-5
8.2.2.2 Cascading Style Sheets (CSS)... 8-6
8.2.2.3 XForms.. 8-8
8.2.2.4 Overview of XML Namespaces .. 8-8
8.2.2.5 Overview of XPath.. 8-9
8.2.2.6 Overview of XForms... 8-11
8.2.2.7 XForms Processing Logic ... 8-13
8.2.2.8 XForms User Interface Components .. 8-15
8.2.2.9 XForms and XPath .. 8-16
8.2.2.10 XHTML as Host Language for XForms ... 8-17
8.2.2.11 Setting Document Content Type and Profile Attributes 8-17
8.2.3 Hello World Application Using XHTML and XForms ... 8-18
8.2.3.1 About Hello World and Basic Requirements .. 8-18

xi

8.2.3.2 Writing the Hello World Application .. 8-19
8.2.3.3 Deploy the Hello World Page and Provide a CGI Program 8-23
8.2.4 OracleAS Wireless and XHTML+XForms+CSS... 8-23
8.2.4.1 OracleAS Wireless XHTML, XForms and CSS Support.................................. 8-25
8.2.4.2 OracleAS Wireless and XML Events Support... 8-26
8.2.4.3 Visual Applications and XHTML+XForms... 8-26
8.2.4.4 Voice Applications and XHTML+XForms .. 8-34
8.2.5 Styling and Embedding Content Based on Media .. 8-47
8.2.5.1 CSS Media Queries ... 8-47
8.2.5.2 MXML Media Attribute ... 8-49
8.2.6 Advanced Sample Using XHTML and XForms .. 8-50
8.2.6.1 About the Example ... 8-50
8.2.6.2 Shopping Cart Data and XForms Model ... 8-52
8.2.6.3 Showing the Data to a User ... 8-53
8.2.6.4 Adding Repeating Structures.. 8-54
8.2.6.5 Adding Calculated Fields: Sub-Totals and Totals.. 8-55
8.2.6.6 Adding Styles .. 8-57
8.2.6.7 Adding Update Buttons and Using Events... 8-58
8.2.6.8 Adding Type Validations .. 8-59
8.2.6.9 Complete Sample .. 8-60
8.2.7 Advanced Voice Sample Using XHTML and XForms ... 8-63
8.3 OracleAS Wireless Client ... 8-72
8.3.1 Using the Wireless Client.. 8-73
8.3.1.1 User Interactions ... 8-73
8.3.1.2 Logging... 8-73
8.3.1.3 Server Side Considerations.. 8-73
8.3.2 Using OracleAS Wireless with XClient... 8-73
8.3.2.1 Mime Types ... 8-74
8.3.3 Installing OracleAS Wireless Client .. 8-74
8.3.3.1 Requirements... 8-74
8.3.3.2 Installing the Wireless Client .. 8-74
8.3.3.3 Deploying to Users ... 8-75
8.3.3.4 XClient.CAB File ... 8-76
8.3.3.5 Registry Keys ... 8-76
8.4 XHTML Mobile Profile ... 8-76

xii

8.4.1 Overview ... 8-76
8.4.2 OracleAS Wireless and XHTML MP + CSS Mobile Profile.................................... 8-77
8.4.3 XHTML Mobile Profile Modules Supported.. 8-78
8.4.4 XHTML MP HelloWorld Example .. 8-79
8.5 OracleAS Wireless XML .. 8-80
8.5.1 OracleAS Wireless XML Overview ... 8-81
8.5.2 OracleAS Wireless XML and OracleAS Wireless .. 8-81
8.5.3 Displaying and Formatting Content.. 8-81
8.5.3.1 Hello World Example ... 8-82
8.5.3.2 DOCTYPE Declaration ... 8-83
8.5.3.3 SimpleResult .. 8-84
8.5.3.4 Formatting the Display... 8-86
8.5.3.5 Tables and Basic Formatting Example ... 8-87
8.5.3.6 Image Adaptation Support in OracleAS Wireless XML.................................. 8-89
8.5.4 Enhancing with Audio for Voice Access... 8-91
8.5.4.1 SimpleAudio and SimpleSpeech... 8-91
8.5.4.2 Recommendation for Voice Navigation .. 8-92
8.5.5 Application Navigation... 8-93
8.5.5.1 Introduction ... 8-93
8.5.5.2 Basic Navigation.. 8-94
8.5.5.3 SimpleMenu, SimpleMenuItem .. 8-94
8.5.5.4 Navigating by Voice ... 8-95
8.5.6 Document Linking ... 8-98
8.5.6.1 SimpleHref, SimpleTimer .. 8-98
8.5.6.2 Enhancing with Voice... 8-103
8.5.7 Filling Out Forms for Data Entry and Navigation .. 8-108
8.5.7.1 Introduction ... 8-108
8.5.7.2 Basic User Interaction ... 8-109
8.5.7.3 Complete User Forms... 8-111
8.5.7.4 Enhancing Voice.. 8-113
8.5.7.5 Working with Signature Capture Form Control .. 8-116
8.5.8 Advanced User Interactions and Channel Optimization 8-118
8.5.8.1 Introduction ... 8-118
8.5.8.2 Events and Tasks Using SimpleBind.. 8-119
8.6 Device Headers and Device Class... 8-121

xiii

8.6.1 Article.jsp... 8-122
8.6.2 PageNavigation.Java.. 8-124
8.6.3 Async-enabling OracleAS Wireless XML Applications 8-128
8.6.3.1 Overview.. 8-128

9 Using Multi-Channel Server

9.1 Overview .. 9-1
9.1.1 Benefits of Multi-Channel ... 9-2
9.1.2 Features of Multi-Channel Server.. 9-4
9.2 Multimedia Adaptation.. 9-6
9.2.1 Overview .. 9-6
9.2.2 Image Adaptation Features .. 9-7
9.2.2.1 Authoring Multichannel Applications with Images.. 9-8
9.2.3 Command Line Tool .. 9-8
9.2.4 Extensibility Using ImageProcessor API .. 9-10
9.2.4.1 Description... 9-10
9.2.4.2 Interface oracle.panama.multimedia.ImageProcessor 9-10
9.2.4.3 Implementation ... 9-10
9.2.4.4 Configuration .. 9-10
9.2.5 Ringtone Adaptation ... 9-11
9.2.5.1 Features .. 9-11
9.2.5.2 RingtoneProcessor Java API.. 9-11
9.2.5.3 Implementation ... 9-14
9.2.5.4 Configuration .. 9-14
9.2.5.5 Sample Usage .. 9-15
9.2.6 Ringtone Converter Java API ... 9-16
9.2.6.1 Description... 9-16
9.2.6.2 Interface oracle.panama.multimedia.RingtoneConverter 9-16
9.2.6.3 Implementation ... 9-16
9.2.6.4 Configuration .. 9-16
9.3 Device Adaptation... 9-17
9.3.1 Device Repository .. 9-18
9.3.2 Device Repository Access ... 9-19
9.3.3 Device Detection... 9-19
9.3.4 Dynamic HTTP Header Composition and UAProf .. 9-20

xiv

9.3.5 Device Transformers.. 9-20
9.3.6 Device Repository API... 9-23
9.3.7 Device Information and Classification.. 9-27
9.4 Modifying Multi-Channel Server Runtime ... 9-28
9.4.1 MCS Runtime Session Management ... 9-28
9.4.2 MCS Runtime API .. 9-30
9.4.2.1 Runtime Objects .. 9-30
9.4.2.2 Event Listeners .. 9-32
9.4.3 MCS Reverse Proxy, URL Rewrite, Caching, and Compression........................... 9-39
9.4.4 MCS Virtual Browser Model .. 9-39
9.4.5 Wireless and Voice Portal ... 9-41
9.4.5.1 Device Identification... 9-42
9.4.5.2 Virtual User Concept .. 9-42
9.4.5.3 Authentication and Authorization ... 9-43
9.4.6 Globalization (NLS) Support .. 9-44
9.5 Modifying the Data Models ... 9-45
9.5.1 OracleAS Wireless Services Overview.. 9-45
9.5.2 MasterService.. 9-46
9.5.2.1 Link.. 9-46
9.5.2.2 Module.. 9-46
9.5.2.3 Folder .. 9-47
9.5.2.4 ExternalLink... 9-47
9.5.3 Access Control .. 9-47
9.5.4 Folder Renderer .. 9-48
9.5.4.1 Overview .. 9-48
9.5.4.2 Structure of JSP pages... 9-49
9.5.4.3 Execution Flow .. 9-49
9.5.5 Bookmark... 9-50
9.5.5.1 Creating and Editing Bookmarks Using OracleAS Wireless Tools 9-51
9.5.6 Model API: General Usage.. 9-51
9.5.6.1 Data Model Cache and Synchronization ... 9-52
9.5.6.2 Interfaces and Interface Hierarchy ... 9-53
9.5.6.3 Model API Inheritance Hierarchy .. 9-53
9.5.6.4 Sample Code that Uses the Data Model API... 9-55

xv

10 Creating Messaging Applications

10.1 Messaging Overview and Architecture ... 10-1
10.1.1 General Overview .. 10-1
10.1.2 Key Messaging Features.. 10-2
10.1.3 Multi-Channel, Adaptive Messaging .. 10-3
10.1.4 Multimedia Messaging.. 10-3
10.1.5 Transport Framework.. 10-3
10.1.6 MMS Center .. 10-4
10.1.6.1 Actionable Messaging Framework... 10-4
10.2 Sending and Receiving Messages ... 10-4
10.2.1 One-way Message Application API Overview.. 10-4
10.2.1.1 XMSSimpleSender .. 10-5
10.2.1.2 XMSSender... 10-7
10.2.1.3 Text-based Messages .. 10-8
10.2.1.4 Multimedia Messages... 10-8
10.2.1.5 Other Content .. 10-9
10.2.2 Two Way Messaging, Transport API .. 10-9
10.2.2.1 Destination Analysis... 10-10
10.2.2.2 Message Routing ... 10-10
10.2.2.3 Providing Hints to Facilitate Transport Internal Processing........................ 10-11
10.2.3 Actionable Messages.. 10-12
10.2.3.1 Components Overview .. 10-12
10.2.3.2 Actionable Message Flow .. 10-13
10.2.3.3 Enabling Actionable Messages.. 10-15
10.2.3.4 Configuration Parameters ... 10-16
10.3 Building Async Applications... 10-16
10.3.1 Asynchronous Listener ... 10-16
10.3.1.1 Asynchronous Listener Architecture ... 10-16
10.3.2 Key Challenges ... 10-17
10.3.2.1 Multiple messaging transport protocol support .. 10-17
10.3.2.2 The asynchronous nature of messaging protocols... 10-17
10.3.2.3 Supporting Sessions.. 10-18
10.3.2.4 User Navigation .. 10-18
10.3.2.5 Naming/Addressing an Application... 10-18
10.3.3 Key Solutions .. 10-18

xvi

10.3.3.1 Multiple Transport Protocol Support... 10-18
10.3.3.2 The asynchronous nature of messaging protocols ... 10-19
10.3.3.3 Supporting Sessions.. 10-19
10.3.3.4 User Navigation .. 10-19
10.3.3.5 Naming/Addressing an Application... 10-19
10.3.4 Async Request Authorization... 10-20
10.3.5 User Interface and Navigation Commands.. 10-20
10.3.6 Configuration and Customization ... 10-22
10.3.6.1 System Configuration Parameters .. 10-22
10.3.6.2 User Customization Parameter ... 10-24
10.3.7 Application Invocation Examples.. 10-24
10.3.7.1 Invoking the Application by the Application Short Name........................... 10-24
10.3.7.2 Invocation through Application-Associated Access Point 10-24
10.3.7.3 Menu Capability.. 10-25
10.3.7.4 Form Capability... 10-26
10.3.7.5 Form Field with Select Options... 10-27
10.3.7.6 Current Menu State... 10-27
10.3.7.7 Current Form State.. 10-28
10.3.7.8 Multiple Commands in One Message.. 10-29
10.3.7.9 Parameter Separator ... 10-29
10.3.8 Writing Async Applications ... 10-30
10.4 XMS Message Center .. 10-31
10.4.1 Configuration.. 10-31
10.4.1.1 Server-Side ... 10-31
10.4.1.2 Client (Handset) Side.. 10-32
10.5 Device Channel Selection ... 10-32
10.5.1 Automatic Device Selection .. 10-32
10.5.2 Presence Integration... 10-33
10.6 Transport Component... 10-33
10.6.1 Pre-built Drivers ... 10-33
10.6.1.1 Nokia MMS Driver.. 10-33
10.6.1.2 CMG MMS Driver... 10-34
10.6.1.3 MM7 Driver.. 10-37
10.6.1.4 CIMD Driver .. 10-38
10.6.1.5 VVSP Driver... 10-39

xvii

10.6.1.6 WCTP Driver ... 10-42
10.6.1.7 Data Communication Driver... 10-43
10.6.1.8 WAP Push PAP Driver... 10-46
10.6.1.9 Instant Messaging (IM) Driver.. 10-47
10.6.1.10 XMS Driver .. 10-60
10.6.1.11 Email Driver... 10-61
10.6.1.12 Voice Driver ... 10-63
10.6.1.13 UCP Driver... 10-64
10.6.1.14 SMPP Driver .. 10-67
10.6.1.15 Fax Driver (RightFax) ... 10-71
10.6.2 How to Develop New Drivers.. 10-72
10.6.2.1 Class oracle.panama.messaging.transport.TransportLocator 10-73
10.6.2.2 Interface oracle.panama.messaging.transport.Driver 10-74
10.6.2.3 Interface oracle.panama.messaging.transport.DriverController 10-76
10.6.2.4 Interface oracle.panama.messaging.transport.GSMSmartMSGEncoder.... 10-76
10.6.2.5 Interface oracle.panama.messaging.transport.MessageListener and

StatusListener ..10-77
10.6.2.6 Class oracle.panama.messaging.common.Message....................................... 10-77
10.6.2.7 Class oracle.panama.messaging.common.ContentTypes 10-78
10.6.2.8 Properties of the driver .. 10-78
10.6.2.9 Custom properties for a driver ... 10-78
10.6.2.10 Example: A Sample Driver .. 10-79
10.6.3 Upgrading OracleAS Wireless 9.0.2x Drivers .. 10-87
10.6.3.1 New and Changed Methods ... 10-88
10.6.4 Extend the Transport Server, Hooks ... 10-88
10.6.4.1 Named Hooks.. 10-89
10.6.4.2 General Hooks... 10-90
10.7 Supporting Premium SMS and Reverse Charge SMS.. 10-90
10.7.1 Premium SMS and Reverse Charge New Features ... 10-91
10.7.2 Enabling Premium SMS Services... 10-92

11 Notification Engine

11.1 Overview and Architecture ... 11-1
11.1.1 Architecture... 11-3
11.1.2 Key Features.. 11-5

xviii

11.1.3 Backward Compatibility ... 11-7
11.2 Creating a Notification ... 11-7
11.2.1 Defining a Master Notification Application... 11-8
11.2.1.1 Predicates ... 11-8
11.2.1.2 Subscriber Filtering Hook .. 11-9
11.2.1.3 Triggering Conditions .. 11-10
11.2.1.4 Message Template... 11-11
11.2.1.5 API Sample: Creating Master Notification Application................................ 11-11
11.2.2 Mapping Master Notification Application to a Master Application 11-13
11.2.2.1 Sample Code: Notification Mapping.. 11-14
11.2.2.2 Sample Code: Template-based Notification Mapping 11-15
11.2.3 Subscription... 11-15
11.2.3.1 Sample Code: Creating a Subscription .. 11-17
11.2.4 Notification Administration ... 11-19
11.2.5 Notification Migration ... 11-19
11.2.5.1 Sample Usage... 11-20
11.3 Data Feeders ... 11-21
11.3.1 Building a Data Feeder .. 11-22
11.3.2 Creating a Passthrough DataFeeder .. 11-23
11.3.3 Sample Applications ... 11-23
11.3.3.1 Sample Application: Downloading Stock Quotes in XML 11-23
11.3.3.2 Sample Application: Downloading Stock Quotes in CSV Format............... 11-24
11.3.3.3 Adding Input Parameter Values to the Feed .. 11-25
11.3.3.4 Retrieving Downloaded Values .. 11-26
11.3.3.5 Starting the Data Feeder Process .. 11-26
11.3.3.6 Feed Parameter External Names... 11-26
11.3.3.7 Feed Scheduling .. 11-27
11.3.3.8 XML Data Feeds .. 11-27
11.4 Integrated Notification Solutions .. 11-28
11.4.1 Notification Engine Integration.. 11-29
11.4.2 Workflow Integration .. 11-30
11.4.2.1 Notification Application .. 11-31
11.4.2.2 Worklist Application .. 11-31
11.4.3 Microsoft Exchange Notification Integration... 11-32
11.5 Migrating the Notification System.. 11-33

xix

11.5.1 Notification Migration Scenario... 11-33
11.5.2 Structural Changes... 11-34
11.5.2.1 Event Generation .. 11-34
11.5.2.2 Message Content Generation .. 11-35
11.5.2.3 Authorization .. 11-35
11.5.3 Migration Limitations.. 11-36
11.5.4 Running the Migration Script... 11-36
11.5.4.1 Sample code for subscription handling in both versions.............................. 11-38
11.5.4.2 Sample Code for Adding a 9.0.2.x Subscription... 11-39

12 J2ME Development and Provisioning

12.1 J2ME Overview.. 12-1
12.1.1 Overview of Features... 12-2
12.1.1.1 Minimum Memory Requirement in the MIDlet Suite..................................... 12-3
12.1.1.2 Simple Registration and Invocation of Web Services 12-3
12.1.1.3 Access to Both SOAP Web Services and Enterprise Applications................. 12-3
12.1.1.4 Result Caching and Call Queuing .. 12-4
12.1.1.5 Request and Response Packetization and Compression................................. 12-4
12.1.1.6 Session Support ... 12-4
12.1.1.7 Deployment to OracleAS Wireless ... 12-4
12.1.2 Getting Started with the Wireless Development Kit... 12-5
12.1.2.1 Setup ... 12-5
12.1.2.2 J2ME Directory Structure in the WDK... 12-5
12.1.3 Walkthrough: Developing a J2ME MIDlet ... 12-6
12.1.3.1 Step 1: Register a Web Service with the J2ME Proxy Server 12-6
12.1.3.2 Step 2: Generate J2ME Client Stub Class for the Registered Web Service.... 12-9
12.1.3.3 Step 3: Calling the Methods in the J2ME Stub Class from the MIDlet........ 12-10
12.1.3.4 Using TestStubMidlet to Access Simple Services... 12-12
12.1.4 Advanced Features .. 12-14
12.1.4.1 Response Caching ... 12-15
12.1.4.2 HTTP Authentication ... 12-15
12.1.4.3 Session Support ... 12-15
12.1.4.4 Request and Response Packetization ... 12-16
12.1.4.5 Client Library API... 12-16
12.1.4.6 Deploying MIDLets to OracleAS Wireless.. 12-21

xx

12.1.4.7 Deploying through scripts ... 12-22
12.1.4.8 Migration from One OracleAS Wireless Installation to Another................. 12-23
12.2 Digital Rights Management Support.. 12-25
12.2.1 OracleAS Wireless Built-in DRM Polices.. 12-25
12.2.2 Custom-built Digital Rights Policy and Content Enhancement.......................... 12-26
12.2.2.1 Use Case Study .. 12-26
12.2.3 Deployment of Custom-built Digital Rights Policies.. 12-30
12.3 The J2ME Provisioning Server... 12-33
12.3.1 The Application Model.. 12-33
12.3.2 Hooks ... 12-35
12.3.3 Upload J2ME Application ... 12-37
12.3.4 Publishing the J2ME Application... 12-40
12.3.5 Downloading a J2ME Application... 12-41

13 Web Scraping

13.1 Web Scraping Overview... 13-1
13.2 Web Clipping ... 13-1
13.2.1 Introduction... 13-2
13.2.2 Getting Started.. 13-7
13.2.3 Creating a Web Clipping Application... 13-7
13.3 Creating a Wireless Application.. 13-19
13.3.1 Creating a Default Application .. 13-19
13.3.2 Building a Custom Application.. 13-25
13.4 Migrating from Existing Transcoding Technologies.. 13-28
13.5 Customizing the Web Clipping Service ... 13-32
13.6 Administrative Tasks for OracleAS Wireless Administrators 13-32
13.6.1 Configuring Security.. 13-33
13.6.2 Rendering Events to Be Logged and Generating Useful Reports 13-34
13.7 WML Translator... 13-39
13.7.1 Deploying and Configuring WML Translator ... 13-43
13.7.2 Using the WML Translator ... 13-45

14 Using Location Services

14.1 Introduction to Location Services ... 14-1
14.1.1 Getting Started.. 14-3

xxi

14.1.2 Using the System Manager Interface for Location-Related Information 14-4
14.1.3 Location Services Architecture... 14-6
14.1.4 Location Service Categories.. 14-7
14.1.5 Service Providers.. 14-7
14.1.5.1 Provider Selection ... 14-8
14.1.5.2 Logging of Provider Selection Information .. 14-14
14.1.5.3 Logging of Provider Performance Information.. 14-14
14.1.6 Geocoding Services .. 14-14
14.1.6.1 Geocoding API .. 14-15
14.1.6.2 Geocoder Interface.. 14-16
14.1.7 Location Marks ... 14-16
14.1.8 LOCATIONMARK Table.. 14-17
14.1.9 Mapping Services ... 14-18
14.1.10 Routing Services ... 14-18
14.1.10.1 Routing Settings .. 14-18
14.1.10.2 Routing Results ... 14-19
14.1.10.3 Support for Multiple Languages .. 14-20
14.1.10.4 Routing API ... 14-20
14.1.11 Business Directory (Yellow Pages) Services... 14-21
14.1.11.1 Different Approaches Among Yellow Pages Providers................................ 14-21
14.1.11.2 Business Directory Category Configuration ... 14-22
14.1.11.3 Business Directories (Yellow Pages) API... 14-23
14.1.12 Traffic Services.. 14-24
14.1.12.1 Traffic Report Caching ... 14-25
14.1.12.2 Traffic XML Requests and Responses.. 14-26
14.1.12.3 Traffic Java API ... 14-27
14.1.12.4 Traffic Service Configuration .. 14-29
14.2 Developing Location-Based Applications ... 14-30
14.2.1 Creating JavaServer Pages (JSP) Files ... 14-31
14.2.1.1 JSP Examples for Location Services.. 14-34
14.2.1.2 addMembers .. 14-39
14.2.1.3 address.. 14-40
14.2.1.4 businesses... 14-42
14.2.1.5 category .. 14-43
14.2.1.6 createPrivateCommunity... 14-44

xxii

14.2.1.7 createSharedCommunity ... 14-45
14.2.1.8 createSystemCommunity... 14-46
14.2.1.9 defaultLocationMark .. 14-47
14.2.1.10 deleteCommunity ... 14-48
14.2.1.11 drivingDistance ... 14-49
14.2.1.12 drivingTime ... 14-50
14.2.1.13 geocode ... 14-51
14.2.1.14 geometry... 14-52
14.2.1.15 getCommunity... 14-53
14.2.1.16 iterateBusinesses.. 14-54
14.2.1.17 iterateBusinessesInCity .. 14-56
14.2.1.18 iterateBusinessesInCorridor .. 14-57
14.2.1.19 iterateBusinessesInPostalCode.. 14-58
14.2.1.20 iterateBusinessesInRadius ... 14-59
14.2.1.21 iterateBusinessesInState ... 14-60
14.2.1.22 iterateBusinessesNearestTo ... 14-61
14.2.1.23 iterateByDistance... 14-63
14.2.1.24 iterateByDrivingDistance... 14-64
14.2.1.25 iterateByName ... 14-65
14.2.1.26 iterateByRegionName... 14-66
14.2.1.27 iterateCategoriesMatchingKeyword .. 14-66
14.2.1.28 iterateChildCategories.. 14-67
14.2.1.29 iterateGeocodes ... 14-68
14.2.1.30 iterateLocationMarks.. 14-69
14.2.1.31 iterateManeuvers... 14-70
14.2.1.32 iterateReverseGeocodes ... 14-71
14.2.1.33 listAllMembers .. 14-72
14.2.1.34 listBusinessesInCity .. 14-73
14.2.1.35 listBusinessesInCorridor .. 14-74
14.2.1.36 listBusinessesInPostalCode.. 14-76
14.2.1.37 listBusinessesInRadius ... 14-77
14.2.1.38 listBusinessesInState ... 14-78
14.2.1.39 listBusinessesNearestTo ... 14-79
14.2.1.40 listByDistance .. 14-80
14.2.1.41 listByDrivingDistance... 14-81

xxiii

14.2.1.42 listByName... 14-82
14.2.1.43 listByRegionName .. 14-83
14.2.1.44 listCategoriesMatchingKeyword.. 14-83
14.2.1.45 listChildCategories ... 14-84
14.2.1.46 listCreatedCommunities .. 14-85
14.2.1.47 listCreatedPrivateCommunities ... 14-85
14.2.1.48 listCreatedSharedCommunities.. 14-86
14.2.1.49 listCreatedSystemCommunities ... 14-87
14.2.1.50 listGeocodes ... 14-87
14.2.1.51 listLocationMarks ... 14-88
14.2.1.52 listManeuvers .. 14-89
14.2.1.53 listReverseGeocodes ... 14-90
14.2.1.54 map.. 14-91
14.2.1.55 mobilePos ... 14-92
14.2.1.56 point .. 14-93
14.2.1.57 removeAllMembers .. 14-94
14.2.1.58 removeMembers ... 14-95
14.2.1.59 route .. 14-96
14.2.1.60 setCommunityName .. 14-98
14.2.2 Using the Location Java API... 14-99
14.2.2.1 Geocoding .. 14-99
14.2.2.2 Location Marks.. 14-102
14.2.2.3 Routing ... 14-103
14.2.2.4 Mapping ... 14-104
14.2.2.5 Business Directory (YP).. 14-105
14.2.2.6 Traffic.. 14-106
14.2.3 Using Web Services.. 14-109
14.2.3.1 WSDL Files... 14-109
14.2.3.2 XML Files ... 14-110
14.2.3.3 XSD Files .. 14-110
14.3 Enabling Mobile Positioning ... 14-111
14.3.1 Manual Positioning.. 14-112
14.3.1.1 Enabling Manual Positioning.. 14-112
14.3.2 Automatic Positioning... 14-113
14.3.2.1 Providing Location Using a GPS Device ... 14-114

xxiv

14.3.2.2 Location Cache .. 14-116
14.3.2.3 Positioning Quality of Service... 14-116
14.3.2.4 Specifying Positioning Providers.. 14-117
14.3.2.5 Granting and Revoking Positioning Rights .. 14-120
14.3.2.6 Mobile Communities .. 14-120
14.3.2.7 Privacy Directives and Enabling/Disabling Automatic Positioning 14-122
14.3.2.8 Mobile Positioning API .. 14-123
14.3.2.9 Privacy API .. 14-123
14.4 Location Event Server ... 14-126
14.4.1 Location Event Server Concepts .. 14-127
14.4.2 Location Event Agent Example.. 14-128
14.4.3 Location-Based Condition Object (LBCondition) .. 14-129
14.4.4 Location Event Agent Object (LBEventAgent) .. 14-129
14.4.5 Location Event Handler Object (LBEventHandler)... 14-130
14.4.6 Location Event Server Configuration Options... 14-130
14.5 Using the Region Modeling Tool .. 14-132
14.5.1 Service and Folder Visibility Using Region Modeling.. 14-132
14.5.2 Folders and Hierarchies of Regions... 14-133
14.5.3 Associating a Region with an Application ... 14-134
14.5.4 Loading and Updating Region Data ... 14-136
14.5.4.1 Tables for Region Data ... 14-137
14.5.4.2 Inserting Data into Region Tables .. 14-139
14.5.5 Region Modeling API .. 14-140
14.6 Integrating an External Content Provider ... 14-141
14.6.1 Accessing External URLs from Inside a Firewall .. 14-142
14.6.2 Functions to Implement... 14-142
14.6.2.1 Geocoding Services: Available Functions.. 14-143
14.6.2.2 Mapping Services: Available Functions... 14-143
14.6.2.3 Routing Services: Available Functions... 14-144
14.6.2.4 Traffic Services: Available Functions ... 14-144
14.6.2.5 Business Directory (YP) Services: Available Functions 14-144
14.7 Integrating a Mobile Positioning Provider .. 14-146
14.7.1 Implementing a Mobile Positioning Proxy... 14-147
14.7.2 Handling Exceptions and Errors with Mobile Positioning 14-148

xxv

15 Enabling User Customization

15.1 Overview of User Preferences ... 15-1
15.2 Multiple Customization Profiles ... 15-4
15.2.1 Concepts .. 15-4
15.2.2 Sample Applications.. 15-6
15.3 Presets ... 15-8
15.3.1 Presets Concept and Architecture ... 15-9
15.3.2 Sample Applications.. 15-10
15.3.2.1 Example 1: Adding Attributes to the User Schema 15-10
15.3.2.2 Example 2: Adding a Unique Presets Relation for a User 15-12
15.3.2.3 Example 3: Adding a Unique Presets Relation for Users’ Profiles 15-13
15.3.2.4 Example 4: Selecting the Presets Relation Under the Current Profile......... 15-15
15.3.2.5 Example 5: Creating Presets without Given Name.. 15-17
15.3.3 Regular Expressions Syntax for the Presets Attribute Formats........................... 15-20
15.4 Location Marks .. 15-23
15.5 User Device Management .. 15-24
15.6 User and Group Management... 15-25
15.7 Service Management... 15-25

16 Billing

16.1 Overview .. 16-1
16.1.1 Concepts .. 16-2
16.2 Using the Billing Integration Framework.. 16-3
16.2.1 Billable Actions and Billing System Interaction .. 16-3
16.2.1.1 Default Billable Actions ... 16-3
16.2.1.2 Custom Billable Actions... 16-4
16.3 BillingLoader Utility ... 16-6
16.4 Billing Collector and Service Detail Record .. 16-6
16.4.1 Default Billing Collector Implementation .. 16-7
16.4.2 Service Detail Record ID Versus Billing Reference ID.. 16-9
16.4.3 Extend Default Billing Collector .. 16-9
16.4.4 Maintaining Transaction Context on Multi-part Requests 16-10
16.4.4.1 Creating and Assigning Billing Transactions ... 16-11
16.4.4.2 Logging Rules for Service Detail Records ... 16-11
16.4.4.3 Maintaining Transaction State in a Single-Thread Multi-part Request 16-12

xxvi

16.5 Billing Driver.. 16-12
16.6 Billing Integration Scenario.. 16-13
16.6.1 Handling Prebilling.. 16-13
16.6.2 Handling Postbilling.. 16-13

A XHTML Modules Supported

A.1 Structure Module... A-2
A.2 Text Module ... A-2
A.3 HyperText Module .. A-2
A.3.1 Example Using the Rel Attribute ... A-4
A.4 List Module... A-4
A.4.1 Example of a Nested Navigation List.. A-5
A.5 Presentation Module ... A-5
A.6 Object Module.. A-5
A.7 Embedding Images.. A-6
A.8 Embedding Audio ... A-7
A.9 Embedding Voice and DTMF Grammar.. A-8
A.10 Using <param> .. A-9
A.11 Basic Tables Module.. A-9
A.12 Meta Information Module.. A-10
A.13 Style Sheet Module.. A-10
A.14 Style Attribute Module ... A-10
A.15 Link Module ... A-10
A.16 OracleAS Wireless MXML Media Attribute Module ... A-11
A.17 Speech Recognition Grammar Module .. A-11

B Media Types, Features and Capabilities

B.1 OracleAS Wireless CSS Media Query and MXML Media Attribute Syntax B-1
B.2 OracleAS Wireless Supported Media Types ... B-2
B.3 OracleAS Wireless Supported Media Features ... B-2
B.3.1 Media Features Specified in CSS3 Media Queries Specification B-2
B.3.2 Extended Media Feature Set ... B-4
B.4 OracleAS Wireless-defined Capabilities .. B-4
B.4.1 Device/Software UA Capabilities ... B-4
B.4.2 Network Capabilities and Characteristics .. B-6

xxvii

B.5 Sample Media Queries.. B-7

C XForms Specification Support

C.1 XForms Document Structure ... C-1
C.2 XForms Processing Model.. C-3
C.3 DataTypes... C-5
C.4 Model Item Properties And Schema Constraints ... C-7
C.5 XPath Expression in XForms ... C-8
C.6 XForms UI Controls ... C-11
C.7 XForms Actions ... C-16

D OracleAS Wireless CSS Support

D.1 OracleAS Wireless CSS Support.. D-1

E Using CSS Layout Properties

E.1 OracleAS Wireless CSS Layout Extensions—New Properties and Values................... E-1
E.2 Grid Layout Model.. E-2
E.2.1 Grid Cell Layout and Cell Spans ... E-3
E.2.2 Grid Cell and Grid Cell Label... E-3
E.2.3 In-lining Content within a Grid Cell ... E-5
E.2.4 Label Side of a Grid Cell Label... E-5
E.3 Default Styles for XForms Group.. E-6

F Oracle XML Grammar Subset

F.1 Oracle XML Grammar Subset ... F-1

G JSP Tag Library

Index

xxviii

xxix

Send Us Your Comments

Oracle Application Server Wireless Developer’s Guide, 10g (9.0.4)

Part No. B10948-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com
■ Postal service:

Oracle Corporation
Oracle Mobile and Wireless Products
500 Oracle Parkway, Mailstop 4OP6
Redwood Shores, California 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xxx

xxxi

Audience and Roadmap

This guide discusses how you can use OracleAS Wireless to develop and deliver
mobile services to any mobile device.

Target Audience
This Guide is designed to drive developers quickly through major technology and
product features, and to assist in evaluation of this product for development
groups.

Roadmap
 This Guide includes the following sections:

Section Content

Chapter 1, "Introduction to Oracle
Application Server Wireless"

Overview of OracleAS Wireless.

Chapter 2, "Introducing Oracle
Application Server Wireless Developer’s
Tools"

Introduction to building applications using OracleAS Wireless.

Chapter 3, "OracleAS Wireless Developer
Kit"

How to develop and test OracleAS Wireless applications
without the full installation of OracleAS.

Chapter 4, "JDeveloper Wireless
Extension"

Information about using and extending JDeveloper.

Chapter 5, "Developing Services" Using Service Manager to create and manage the
service-related objects of the Oracle Application Server Wireless
repository.

xxxii

Chapter 6, "Mobile Studio" Oracle Mobile Studio is an online, hosted environment for
developing, testing and deploying mobile applications for
the OracleAS Wireless platform.

Chapter 7, "Wireless Customization
Portal"

Directions on customizing portals from a browser.

Chapter 8, "Authoring Mobile Browser
and Voice Applications"

Device-independent authoring using XHTML and XFORMS.

Chapter 9, "Using Multi-Channel Server" Developing Multichannel applications

Chapter 10, "Creating Messaging
Applications"

Messaging applications support sending/receiving message
to/from mobile users.

Chapter 11, "Notification Engine" Notifications and data feeds match interested users with relevant
content.

Chapter 12, "J2ME Development and
Provisioning"

Develop J2ME applications to access enterprise back-end
applications.

Chapter 13, "Web Scraping" Reformatting device/markup language for use on any
web-enabled device.

Chapter 14, "Using Location Services" Specialized services for developing location-based
applications.

Chapter 15, "Enabling User
Customization"

Adapting applications to increase mobile application
efficiency.

Chapter 16, "Billing" OracleAS Wireless Billing Integration Framework provides
an extensible and flexible framework to model billable
services, capture billable actions, and integrate with any
billing engine.

Appendix A, "XHTML Modules
Supported"

Reference materials supporting XHTML documentation.

Appendix B, "Media Types, Features and
Capabilities"

Reference materials regarding media types, their features
and capabilities.

Appendix C, "XForms Specification
Support"

Lists XForms properties supported.

Appendix D, "OracleAS Wireless CSS
Support"

Lists CSS properties supported.

Appendix E, "Using CSS Layout
Properties"

Reference material about using CSS capabilities.

Section Content

xxxiii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Related Documents
Here is a partial list of related documents that will provide you with important
information concerning OracleAS Wireless and related products/components:

■ OracleAS Wireless Administrator’s Guide—all the information you need to be up
and running in the shortest possible time.

Appendix F, "Oracle XML Grammar
Subset"

Describes the Oracle XML Grammar subset.

Appendix G, "JSP Tag Library" Listing of jsp tags.

"Index" Index.

Section Content

xxxiv

■ OracleAS Wireless Release Notes—final notes about the products, since the
Documentation and Help were produced.

■ OracleAS Wireless online Help (included in the product)

■ Javadoc with sample code included in product directory structure

■ OracleAS documentation (HTML and PDF library)

■ Oracle Technology Network

http://www.otn.oracle.com

Oracle Technology Network is your main resource for information, samples,
updates, and other downloads for your products. Stylesheets, drivers,
documentation updates, sample code, demonstration software, and other
valuable resources are available to you on OTN. Sign-up (if you haven’t already
done so; it’s free!) with OTN to gain access and receive up-to-the-minute
information about Oracle products and practices.

Part I
 Introduction

Part I contains introductory information about Oracle Application Server Wireless.

■ Chapter 1, "Introduction to Oracle Application Server Wireless"

Introduction to Oracle Application Server Wireless 1-1

1
Introduction to Oracle Application Server

Wireless

Each section of this document presents a different topic. These sections include:

■ Section 1.1, "Overview of OracleAS Wireless"

■ Section 1.2, "New in OracleAS Wireless"

■ Section 1.3, "OracleAS Wireless Deployed in a Network"

1.1 Overview of OracleAS Wireless
OracleAS Wireless is the wireless and voice component of the Oracle Application
Server. It enables enterprises and service providers to efficiently build, deploy and
manage the following types of applications:

■ Browser-based applications

■ Voice applications

■ Async applications

■ Notifications

■ J2ME applications

For Service Providers, OracleAS Wireless is a Service Delivery Platform for rapidly
building and deploying wireless services. It opens up the mobile network to
third-party developers using standard interfaces. This helps to improve the Average
Revenue Per User (ARPU). OracleAS Wireless is a unified platform for developing
all kinds of mobile services such as: WAP, SMS, MMS, Location and Voice. This
leads to lower total-cost-of-ownership (TCO).

Overview of OracleAS Wireless

1-2 Oracle Application Server Wireless Developer’s Guide

OracleAS Wireless can be used by Service Providers to run Mobile Portals, SMS
Services, J2ME Provisioning Servers, Content Delivery Platforms, Third-party
Integration Platform, Messaging and Location Gateways.

OracleAS Wireless components can be split into five groups. Each of these groups
either help you quickly build compelling wireless applications, or manage and
deploy existing applications.

■ Device Portal—the end-user wireless portal to access the developed
applications and content.

■ Mobile Applications—out-of-the-box applications to quickly get an enterprise
mobile-enabled.

■ Multi-Channel Server—detects devices and transforms content and applications
to the device.

■ Foundation Services—enhance applications and speed development. These are
in the form of Java APIs or Web services.

■ Development Tools—help developers code, test and debug wireless and voice
applications.

As you build wireless applications, you can leverage the Wireless Development Kit
(WDK) to create and test your applications with JDeveloper or any other Integrated
Development Environment (IDE). You can run wireless applications on your
development PC or laptop simulating the full installation of OracleAS Wireless. As
you create mobile applications, they can be further enhanced with the Foundation
Services of OracleAS Wireless. The Foundation Services allow you to easily add
compelling features to your wireless applications such as location-awareness,
alerting, personalization and more. These services are available through simple,
open-standard Web services or Java APIs. Other tools such as Web Clipping allow
you to take an existing PC browser application and turn it into a wireless
application.

OracleAS Wireless also simplifies the deployment of your wireless and voice
applications. From Oracle JDeveloper, you are able to automatically deploy your
wireless applications to the Oracle Application Server environment. Once your
application is in the Oracle Application Server environment, the Web-based
Application Developer tool allows you to register your application for deployment.
Even if your application is residing on another Web server, you are able to register
your application with OracleAS Wireless (with its URL) giving mobile access to all
your users. Your application can be delivered to your end users with several flexible
methods, such as Over-the-Air (OTA) delivery, browser access, or download.

New in OracleAS Wireless

Introduction to Oracle Application Server Wireless 1-3

After your application has been created and deployed, you may need to manage
access privileges, users and groups, or your complete system. OracleAS Wireless
offers complete tools for each of these tasks in an intuitive set of web-based tools.

1.2 New in OracleAS Wireless
OracleAS Wireless includes many new features and enhancements.

1.2.1 Multi-Channel Server
At the core of OracleAS Wireless is the Multi-Channel Server, enabling applications
to be accessed through multiple delivery methods such as SMS, voice access, WAP,
Pocket PCs, and others. Multi-Channel Server greatly simplifies and reduces the
time and cost of development by acting as an intelligent wireless proxy for mobile
applications. Developers need not be concerned with the vast array of mobile
devices and networks; they can now focus on creating mobile applications for any
channel in one, future-proof, open-standards language. The new Multi-Channel
Server extends the existing multi-channel capabilities of previous OracleAS Wireless
releases.

Applications written in XHTML are passed through the Multi-Channel Server and
translated for any device and network. For example, an XHTML application passed
through the Multi-Channel Server is translated to VoiceXML if a phone is calling the
application using a voice dialog, or it is translated to WML if a WAP phone is
accessing the application.

1.2.2 J2ME Support
Oracle J2ME Developer’s Kit offers the ability to extend web services to J2ME
devices in an optimized manner for mobile devices.

Java 2 Micro Edition (J2ME), provides a lightweight operating system for mobile
devices enabling open standards, client-side development. With the large amount of
J2ME-enabled phones on the market, vendors need a method to efficiently build,
manage and deliver J2ME applications to the right mobile devices. OracleAS
Wireless includes complete, end-to-end support for building J2ME applications and
delivering them to mobile devices. J2ME support includes the J2ME Developer’s Kit
and the J2ME Provisioning system.

However, there is a restriction on the complexity of J2ME applications because of
the limited computing power of mobile devices. The more complicated the J2ME
application is, the less usable the application will be on a device. One way to create

New in OracleAS Wireless

1-4 Oracle Application Server Wireless Developer’s Guide

compelling J2ME applications is to use Web services. Applications are able to push
some of the CPU-intensive logic to the Web services residing on the server side.
Even the call to Web services from J2ME devices is too CPU-intensive. Using the
J2ME Developer’s Kit, J2ME application developers can make web services calls
through the Oracle Application Server J2ME proxy server using a client stub.
Additionally, MIDlet developers can utilize built-in features optimizing
communication, such as request and response caching, if the network is
unavailable. The calls then can automatically resume when network connectivity is
restored.

In order to deploy a J2ME application, OracleAS Wireless streamlines the
deployment, management and delivery of J2ME applications with its provisioning
system. Web-based application management allows users to upload J2ME
applications for management and secure storage. A byte-code inspector verifies the
application for any malicious content. OracleAS Wireless supports over-the-air
(OTA), and efficiently delivers applications to target users or devices. Digital Rights
Management (DRM) adds a digital layer around J2ME applications to support
business logic that provides full control over the application. The digital wrapper
supports billing strategies and application life span control.

1.2.3 Notifications and Multi-media Messaging
OracleAS Wireless further enhances messaging with new functionality for
actionable alerts, message adaptation, and failover delivery control. Also new are
MMS features that allow for richer messaging experiences. Existing messaging
capabilities have been enhanced to include more flexible message templates,
security to prevent message spoofing, support for message prioritization, and a
greater ability to handle volume notifications.

OracleAS Wireless supports Multi-media Messaging (MMS) for rich mobile
messages including graphics, videos and audio. MMS messages can be authored
natively in SMIL or in open-standards XHTML. Messages authored in XHTML are
automatically adapted for MMS-compatible devices by OracleAS Wireless. The
power of adaptation allows a message to be written once and automatically
optimized for any target device.

Actionable alerts are notifications you can respond to from your mobile device. For
example, a stock alert can prompt a user to take an action and sell when a target
price is hit.

Location can also trigger an alert. Location-based alerts generate and deliver alert
messages based on a mobile user’s current location. For example, a field service

New in OracleAS Wireless

Introduction to Oracle Application Server Wireless 1-5

coordinator receives an alert when a service engineer is within two miles of a
customer with an urgent service request.

Also new to the Multi-Channel Server are Multimedia Adaptation Services.
OracleAS Wireless Multimedia Adaptation Services provide device-specific
adaptation of images, ringtones, voice grammars and audio/video streams. Devices
support different image formats and have different screen sizes and color depths.
As part of the content adaptation performed by OracleAS Wireless in responding to
a request, images are dynamically adapted to suit the device. Ringtone adaptation
allows for conversion of ringtone data to formats supported by the most popular
phones such as RTTTL, iMelody and MIDI. The flexible framework for ringtone
adaptation allows developers to easily add support for new ringtone formats.

1.2.4 Wireless Development Kit
The Oracle Wireless Development Kit is a small-footprint OracleAS Wireless
development environment for developing wireless and voice applications. This
speeds the development process by giving extra flexibility to use any IDE,
development tool, Web service and/or device simulator. The Wireless Development
Kit can be used on any PC or laptop, connected or disconnected, to build and test
wireless and voice applications. It is no longer necessary to have a full installation
of Oracle Application Server on which to build and test wireless applications. The
Wireless Development Kit supports development for voice, mobile browser, J2ME
and messaging applications.

Oracle offers a version of the Wireless Development Kit specifically for JDeveloper
called the JDeveloper Wireless Extension. JDeveloper users can utilize the
JDeveloper Wireless Extension for complete wireless development with code
templates, wizards, code insight and automatic deployment to Oracle Application
Server.

1.2.5 Web Clipping
The Wireless Web Clipping Server allows clipping and scraping of existing Web
content to create wireless applications that reuse your existing PC browser-based
applications. The Wireless Web Clipping Server is used to create many applications,
each of which represents Web content that has been clipped and scraped from one
or more Web sites scattered throughout a large organization.

New in OracleAS Wireless

1-6 Oracle Application Server Wireless Developer’s Guide

Wireless Web Clipping Server includes:

■ Navigation through various styles of login mechanisms, including form and
JavaScript-based submission and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will be identified correctly
by the Wireless Web Clipping Server and delivered as the Wireless Web
Clipping application content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1, JavaScript, applets, and plug-in enabled content, retrieved
through HTTP GET and POST (form submission).

All Wireless Web Clipping application definitions are stored persistently in the
Oracle Application Server infrastructure database. Any secure information, such as
passwords, is stored in encrypted form, according to the Data Encryption Standard
(DES), using Oracle encryption technology.

1.2.6 Location Services
OracleAS Wireless Location Services give access to the full Location-Based Service
(LBS) functionality, such as user positioning, geocoding, mapping, driving
directions, and business directory lookup in an open-standards manner. Any
application or generic client can use the included WSDLs to invoke the LBS web
services. In addition, OracleAS Wireless instances can use LBS features more
conveniently by using the service provider proxy. This allows you to switch LBS
providers without having to make modifications to the applications using LBS
features.

LBS features have been made available through the OracleAS Wireless tools in
addition to being available through APIs. The LBS features allow mobile
positioning (to provide the user’s current location, and privacy management) to
control when and to whom a mobile user’s location is available. Both mobile
positioning and the caching of the location information can be enabled or disabled
by the system or by individual users. Users can grant mobile positioning access to
other users or groups of users (communities) for a certain date range and for
specified time windows.

OracleAS Wireless Location Services also allows a mobile user/device to send the
current location, which is usually provided by a GPS receiver, to OracleAS Wireless.
The current location can be subsequently queried through the existing mobile
positioning and privacy management framework. Users can also choose to position

OracleAS Wireless Deployed in a Network

Introduction to Oracle Application Server Wireless 1-7

themselves manually using the Location Mark feature. A Location Mark can be
either a point location specified by an address or a region specified by a city, state,
or country.

In the previous release, users could configure multiple content providers for
geocoding, mapping, driving directions, and business directory services, and a
provider was selected based on static ordering or its availability region. This release
adds the ability to monitor the performance and reliability of providers and
dynamically adjust the selection criteria. It also logs performance statistics that will
help administrators manage their systems.

1.3 OracleAS Wireless Deployed in a Network
OracleAS Wireless easily fits into an enterprises network allowing easy integration
with existing backend data and legacy systems. Applications can run on any server
using OracleAS Wireless as a mobile enabler. The following scenario describes how
OracleAS Wireless can be deployed. It describes the network components as a
mobile device requests content from an application.

Figure 1–1 Request for Process

The diagram shows a wireless network using WAP. WAP is only one of the wireless
standards. Depending on the desired target device, the WAP gateway can be
switched with other gateways; different gateways may be need to support different
protocols. OracleAS Wireless processes a request for a wireless service as follows:

1. User sends a request for a wireless application.

A user requests an application from a mobile device with the device’s
microbrowser, and the device sends the request to the wireless network base
station. The request can be sent over a variety of different protocols, depending
on the kind of device being used. These protocols have been optimized to
function over a wireless network with limited bandwidth and intermittent

OracleAS Wireless Deployed in a Network

1-8 Oracle Application Server Wireless Developer’s Guide

connectivity. This ability makes these protocols more efficient over existing
wireless networks than the standard Internet HTTP protocol.

2. Wireless request is translated to an internet request.

A gateway converts the request from the network protocol into the standard
Internet HTTP protocol before the request is passed from the Wireless network
to the traditional Internet. For WAP- enabled devices, a WAP gateway converts
WTP to HTTP. There are a number of gateways on the market; typically a
gateway for each device type. The gateway not only maps the request from one
protocol to another, but also can pass the message from the wireless network to
the traditional Internet infrastructure: HTTP.

3. OracleAS Wireless establishes a wireless session.

After the Gateway converts the wireless request to an HTTP URL, the message
is sent as a standard Internet request to OracleAS Wireless. OracleAS Wireless
and the gateway then authenticate with each other and establish a session.
Depending on the deployment preference, the application asks for a username
and password for user authentication (depending on your security preferences).

4. The wireless application is optimized and sent to the user.

When OracleAS Wireless receives the request, it processes it in three steps:

a. The application content is retrieved from its source. The application may
reside on any Web server, so OracleAS Wireless makes HTTP requests for
the application content.

b. After the application content is retrieved by OracleAS Wireless, the
application is customized based on user preferences; the user may have
localized information, display options, etc.

c. The content is transformed for the specific protocol being used. The user
may have used any of a number of WAP devices, so OracleAS Wireless
detects the device type, screen size and color options, and optimizes the
content, providing it in the most efficient format.

Part II
Oracle Application Server Wireless

Developer’s Tools

Part II contains information about Oracle Application Server Wireless Developer
Tools.

■ Chapter 2, "Introducing Oracle Application Server Wireless Developer’s Tools"

■ Chapter 3, "OracleAS Wireless Developer Kit"

■ Chapter 4, "JDeveloper Wireless Extension"

■ Chapter 5, "Developing Services"

■ Chapter 6, "Mobile Studio"

■ Chapter 7, "Wireless Customization Portal"

Introducing Oracle Application Server Wireless Developer’s Tools 2-1

2
Introducing Oracle Application Server

Wireless Developer’s Tools

Each section of this document presents a different topic. These sections include:

■ Section 2.1, "OracleAS Wireless Development Path"

■ Section 2.2, "Delivering Your Applications"

2.1 OracleAS Wireless Development Path
This chapter takes you through the high level steps of the wireless development
path and describes some of the tools used to build a mobile application. There are
many possible paths to create applications; this chapter is designed to compliment
your current method for building PC-based applications by adding wireless-specific
concepts. The first step in building a mobile application is to design it. The design
phase outlines what you are mobile-enabling, whether it is a business process, a
productivity tool, or an entertainment application.

Figure 2–1 Wireless Development Path

OracleAS Wireless Development Path

2-2 Oracle Application Server Wireless Developer’s Guide

The most productive way to approach the mobile application design process is to
divide it into four steps. First, create the business case for making an application or
business process mobile. This includes determining the tangible benefits of a mobile
solution. If you want more information on the business case of a mobile application,
see the Mobile Center on OTN: http://www.otn.oracle.com/mobile.

Secondly, decide on the application scope, determining the usage situation, desired
business flows and most the appropriate access channels: mobile browsers, voice
access, messaging, or an application without network access (offline). The third step
is to choose the actual development model (XHTML/J2EE or J2ME) to enable that
channel. The fourth important step consists of considerations regarding the
deployment of the application. Deployment encapsulates the process an application
is delivered to the end users and the method used to manage the applications’
lifecycle. Going through this process, developers can ensure they are:

■ Mobilizing the right business processes

■ Extending the business process through the right access channels

■ Developing the right amount of functionality

■ Deciding on the right deployment model

■ Ensuring the solution has a tangible return on investment (ROI)

2.1.1 Leverage Web Services and Reuse Business Logic
Oracle Application Server Wireless includes Web services that greatly enhance your
mobile applications including location based services, messaging services and
personalization services. For example, corporate Web services can be combined
with the Messaging Web Service of Oracle Application Server Wireless to
automatically alert a manager when an inventory level is reaching a critical low. The
Oracle Application Server Wireless messaging Web service accepts an address,
message text and a delivery channel (voice, fax, SMS, or Email) as input. Then, the
Web service takes the message content and sends it to that address, SMS, email or
even phone number - using text to speech. The developer’s job becomes greatly
simplified because they do not need to worry about the underlying infrastructure
and business relationships it takes to send that message. See Chapter 10, "Creating
Messaging Applications" or the Mobile Center on OTN for more information on the
Messaging Web Service.

When writing your wireless application, there is no need to duplicate business logic
that already exists. You can expose your different back-end systems and
applications as Web Services and then use Oracle Application Server Wireless to
deliver them to any device. For example, you may want to reuse a legacy field

OracleAS Wireless Development Path

Introducing Oracle Application Server Wireless Developer’s Tools 2-3

service system, traditionally only for PCs. You should use the existing field service
system and just create a mobile view of it using XHTML or J2ME.

2.1.2 Building and Testing Your Applications
Oracle Application Server Wireless provides two tools to help build and test mobile
applications whether you are using the J2EE/XHTML or J2ME model. The
J2EE/XHTML development model allows you to build real-time, server-side
wireless and voice applications. This includes channels such as messaging, voice
interfaces, PDA and mobile phone browsers. You are able to build for all these
channels in the single, open standards development model. J2ME is most
appropriate for small-screen devices with limited or intermittent network
connection. J2ME allow you to process business logic and UI logic on the device and
make Web service calls to the server for CPU intensive processing – calls will be
buffered when network connectivity is unavailable.

Oracle Application Server Wireless tools allow you to utilize mobile device
simulators provided by device manufacturers (such as Nokia or Openwave). The
device simulators allow you to view your application on a phone with your
development PC or laptop. Although you will be able to test your mobile
applications using a regular Web Browser on your personal computer, it is
recommended that you perform testing using various device emulators with
different form factors. This will allow you to understand the constructs on Oracle
Application Server Wireless XML with respect to rendition on varying device form
factors. The Mobile Center lists simulators for some of the most popular devices.

The JDeveloper Wireless Extension (JWE) enables you to code, debug and test your
XHTML or J2ME mobile application in JDeveloper. Throughout the development
cycle the JWE provides support at every stage:

■ Authoring applications through wizards and templates

■ Editing applications through GUI-based tools

■ Testing applications on integrated emulators or real devices

■ Debugging applications using advanced debugging systems and log files

■ Deploying applications through intuitive UIs

The JWE is available for download on the Mobile Center on OTN:
http://www.otn.oracle.com/mobile.

The Wireless Developer’s Kit (WDK) is a small-footprint development environment
for Oracle Application Server Wireless. The WDK allows you to use any
development IDE and device simulator to develop wireless application for Oracle

Delivering Your Applications

2-4 Oracle Application Server Wireless Developer’s Guide

Application Server Wireless. The WDK is packed with XHTML and J2ME samples,
device detection, error logging, and Web services. It allows a developer to simulate
a full installation of Oracle Application Server Wireless on a development PC or
laptop. The WDK is also available on the Mobile Center on
http://www.otn.oracle.com/mobile.

2.1.3 Deploying your Applications
Before deploying your applications, you must test them on real devices. Once you
have built your application with the JWE or WDK and tested it with your target
device simulator, you are ready to test them on real devices.

Oracle Application Server Wireless provides several web-based tools so you can
register your application for deployment and manage the deployed applications.
The two tools for registering applications are the Services Manager and the Mobile
Studio.

The Mobile Studio is a developer testing environment for testing your applications
on real devices. The Mobile Studio is installed with Oracle Application Server
Wireless; however there is also a hosted version available on the Mobile Center on
OTN: http://www.otn.oracle.com/mobile. You can register your application with
the Mobile Studio and then see your application on a real mobile device, or call a
phone number to access it using voice, or even SMS your applications to test it on
an SMS device.

The Services Manager allows you to register your XHTML or J2ME application and
give access privileges to the desired users. The Service Manager is used to deploy
your application to a production environment. An installation of Oracle Application
Server Wireless is required to use the Service Manager.

2.2 Delivering Your Applications
OracleAS Wireless provides Web-based, role-specific tools to create, manage, and
deliver mobile services. OracleAS Wireless Tools include wizards for managing
repository objects, managing the server and delivering your applications.

For more information on these web-based tools, see OracleAS Wireless
Administrator’s Guide.

OracleAS Wireless Developer Kit 3-1

3
OracleAS Wireless Developer Kit

Each section of this document presents a different topic. These sections include:

Section 3.1, "Wireless Developer Kit Overview"

Section 3.2, "WDK Installation and Configuration"

Section 3.3, "WDK Log File"

Section 3.4, "Running a Wireless Application with the WDK Tutorial"

3.1 Wireless Developer Kit Overview
OracleAS Wireless includes a developer’s kit to enable development and testing of
wireless applications without the full installation of Oracle Application Server. The
kit provides support for developing applications in the following areas:

■ J2ME—OracleAS Wireless Development Kit (WDK) contains J2ME Web
Services Software Development Kit (J2ME SDK) and the J2ME Web Services
Proxy Server (J2ME Proxy Server). The J2ME SDK should be installed on the
device before testing the MIDlets.

■ Messaging—the WDK includes implementation of the OracleAS Wireless Java
messaging APIs to enable developers to create applications that use those APIs,
and then deploy them without making changes on the OracleAS Wireless
server. There are also examples that help developers quickly start their
development activities.

■ Location Services—there are several Web Services WSDL files that can be used
to create Location Services.

■ Wireless Client—the WDK contains the installer of the OracleAS Wireless Client
as well as documentation and examples about how to create client applications.

WDK Installation and Configuration

3-2 Oracle Application Server Wireless Developer’s Guide

■ Multi-Channel Server—The WDK contains a light version of Multi-Channel
Server: MCSLite. It provides the same adaptation features as the full
Multi-Channel Server product. Wireless and voice application developers can
benefit from this small memory-footprint server to test their applications before
deploying them on OracleAS Wireless.

OracleAS Wireless Developer Kit is tightly integrated with Oracle JDeveloper
Wireless Edition, offering such features as wizards, code templates, and device
simulators. Because OracleAS Wireless Developer Kit is offered in a standalone
mode, any IDE or development tool can leverage the development functionality of
OracleAS Wireless.

3.2 WDK Installation and Configuration
Oracle Application Server WDK is a part of the Oracle Application Server
Developer CD. Also, it is embedded in Oracle JDeveloper Wireless Edition. The
WDK is very easy to install and use and in normal situations does not require any
post-installation configuration. For advanced configuration, see the WDK
component-specific configuration in the corresponding sections of this document.

3.2.1 Oracle Application Server Wireless Developer Kit Structure
After installing the WDK, you will have the following directory structure:

■ [ORACLE_HOME]

■ wireless

* bin

* dtd
- simpleresult
- xhtml+xforms

* examples
- messaging
- wclient

■ j2ee

* applications/wdk/wdk-web
- logs
- repository
- webservice

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-3

■ j2me

■ lib

■ server

* classes

* messages

■ wclient

■ wsdl

3.2.2 Multi-Channel Server Lite (MCSLite)
This section describes how developers can take advantage of the MCSLite
component of the WDK to develop and test their Multi-Channel applications.

MCSLite is a J2EE web application containing servlets and a servlet filter. It has a
small memory footprint, yet provides all the content adaptation functionality of a
full-fledged MCS Server. Its purpose is to help developers to completely test their
applications before deploying on OracleAS Wireless Server.

The main goal of the MCSLite is testing; it provides information to developers to
help them better understand the execution of their application. The MCSLite log file
contains the following important information:

■ HTTP headers and request parameters received from a device/simulator

■ HTTP headers and request parameters sent to back-end applications

■ HTTP headers and content received from back-end applications

■ HTTP headers and content sent to a device/simulator

■ any errors during request processing

MCSLite can be deployed in two ways:

■ local—MCSLite deployed as a servlet filter in front of a web application to be
adapted. The advantage of this deployment is that MCSLite and the
content-producing web application run in the same Java VM. This increases the
overall performance of the application. The disadvantage of this deployment is
that MCSLite must be deployed together with every application.

■ remote—MCSLite acts as an HTTP proxy between the device and the web
application. The advantage of this deployment is that you can develop and
deploy your web application independent of MCSLite, and still test it on any

WDK Installation and Configuration

3-4 Oracle Application Server Wireless Developer’s Guide

device. The disadvantage is that there are two HTTP hops from the device to
the content; one from the device to the MCSLite server, and one from the
MCSLite server to the web application. This affects performance, but it is a
small price to pay compared to the ease-of-use. This is the recommended
deployment for developers.

3.2.2.1 Key Features
The key features of MCSLite are:

■ Full adaptation functionality (the same as Multi-Channel Server)

This is the process that occurs during a single cycle of adaptation:

1. Device detection—see below for more details.

2. Content retrieval—connecting to the data source and fetching the content
produced by a back-end application.

3. Content type detection—content and HTTP headers returned by the
back-end application are examined to obtain the correct content type. This
is necessary for choosing the correct transformer based on the current
device and content type.

4. Transformation—transformation from device-neutral markup language to
device-specific markup language.

■ Small memory footprint—Advanced techniques (such as lazy object
instantiation) result in a smaller memory footprint. This is helpful because
developers can use less powerful machines to write and test applications in
WDK.

■ Flexible log file system—A log file for the content adaptation process is
generated. The amount of information in the log file is based on the log-level,
which is configurable from the WDK web.xml. When debugging a wireless
application, the log level should be set to debug as this will produce the most
information. See the next section on how to change the default MCSLite
configuration.

■ Transformers and Device descriptions auto reload—With the auto reload
feature, changes to device and transformer metadata will be picked up
automatically without a server restart. This is particularly useful when you are
adding a new device or transformer to Multi-Channel Server. Since MCSLite
uses the same XML representation of device metadata, it is very easy to create
and test the new device description in MCSLite, and then upload it to MCS
using the MCS XML provisioning tools.

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-5

3.2.2.2 How to Use MCSLite
MCSLite was designed to be extremely easy to use. To use it, you must first create
and deploy your web application. You can use any web technology to develop your
application. You can use either static or dynamic pages. Also, you can use either
MobileXML or XHTML+XForms or XHTML MP markup languages. The only
requirement is that the application is accessible through HTTP protocol.

3.2.2.2.1 Accessing your application through MCSLite The usage depends on the current
deployment, either local or remote.

■ Local Deployment—Deploy your application along with the MCSLite web
application. The easiest way to do that is to copy your JSP/Servlets into:
[ORACLE_HOME]/wireless/wdk/server/applications/wdk/wdk-web
directory. Use this method if you have a simple application that you want to test
and do not want to go through the trouble of creating and deploying your own
web application. Here is an example of how to use MCSLite in this deployment
scenario:

MCSLite and the user application's URL is:
http://apphost:port/myApp.jsp.

Start your device browser (simulator) and enter the application URL (that
is, type http://apphost:port/myApp.jsp in the address field).

■ Remote Deployment (recommended)—This is the recommended usage of
MCSLite because the application to be tested is a separate web application
which can be deployed onto a running OracleAS Wireless server without any
modification (after successful testing with MCSLite). Here is how to use
MCSLite in this deployment scenario:

The application to be tested is deployed, and the URL to it is:
http://apphost:port/myApp.jsp.

If MCSLite is deployed on a machine with hostname MCSLitehost, the URL
to the MCSLite content retriever servlet is
http://MCSLitehost:port/wdk/MCSLite.

The two web applications may or may not be deployed on the same
machine. Using this deployment scenario, developers can share a single
MCSLite instance. Then accessing the application from a device or
simulator is a matter of entering a special URL in the browser. That special
URL is:
http://MCSLitehost:port/wdk/MCSLite/http/apphost/port/my
App.jsp (using the above examples).

WDK Installation and Configuration

3-6 Oracle Application Server Wireless Developer’s Guide

Here are the steps to create that special URL:

* Start with the URL of the MCSLite:
http://MCSLitehost:port/wdk/MCSLite

* Append to it slash (/), and the URL of the back-end application
(http://apphost:port/myApp.jsp). The result of that is:
http://MCSLitehost:port/wdk/MCSLite/http://apphost:po
rt/myApp.jsp

* The new URL is invalid. To fix it, change colon, slash, slash (://) and
colon (:) in the application URL to a slash (/). The result of that is the
special URL:
http://MCSLitehost:port/wdk/MCSLite/http/apphost/port
/myApp.jsp

3.2.2.3 Sending Parameters to a Back-end Application
Regardless of the MCSLite deployment scenario, sending parameters to a back-end
application is the same; it is no different than sending such parameters from a
regular browser. Just add those parameters in the query part of the URL. For
example, to send two parameters to your application:

fname=John and lname=Doe

then you add to the URL as follows:

http:// ... /myApp.jsp?fname=John&lname=Doe

Note: There is a short form of the special URL. If the HTTP port
on which the application is deployed is port 80 (the default HTTP
port), then the port part of the back-end application URL can be
skipped. The protocol part (http) can also be skipped. The short
URL is:
http://MCSLitehost:port/wdk/MCSLite/apphost/myApp.
jsp

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-7

3.2.2.4 MCSLite URL Rewriting and Caching
MCSLite uses the same URL rewriting and caching mechanism as MCS except that
it uses a configuration parameter indicating whether the long or the short form of
URL rewriting should be used.

3.2.2.5 National Language Support (NLS)

3.2.2.6 MCSLite Log File
The log file contains information crucial for developers; it is a good source for
debug information when testing applications. There are four types of messages that
can be found in the log file:

■ ERROR—Severe (non-recoverable) problem during request processing in
MCSLite. The most common problems are invalid URLs to a back-end
application, or invalid content returned by a back-end application. In those and
all other error cases, the log file contains all necessary information to identify
the problem.

■ WARNING—A problem occurred during request processing, but MCSLite
recovered from it and served the request. Developers should remove all causes
for such warning.

■ INFO—Informational message about the request processing flow.

Notes:

■ Remember to URL-encode the names and values of the
parameters.

■ There is a list of OracleAS Wireless reserved parameter names.
Choose different names for your parameters; MCSLite will
filter out any parameters that are reserved.

See Also: For more information on URL rewriting and caching,
see Chapter 9, "Using Multi-Channel Server".

See: For information on National Language Support, see
Section 9.4.6, "Globalization (NLS) Support".

WDK Installation and Configuration

3-8 Oracle Application Server Wireless Developer’s Guide

■ DEBUG—Low-level messages related to a problem in the MCSLite itself, rather
than in a back-end application. Use the information in the log file when
reporting bugs and problems with MCSLite.

You can view the log file in one of two ways:

■ Directly open the file in the [ORACLE_
HOME]/wireless/wdk/server/applications/wdk/wdk-web/logs
directory. This requires direct access to the machine on which MCSLite is
running (usually the developer's own machine).

■ Use your PC HTML web browser to access the web log viewer. The URL for the
MCSLite log viewer (a servlet) is: http://MCSLitehost:port/wdk/log.
The web-based log viewer is useful when a group of developers share a single
MCSLite server (such as in a remote MCSLite deployment).

For each message in the log file, the IP address and session information for the
device request is provided. This is useful when you want to find requests coming
from your device versus requests from someone else's device.

3.2.2.7 MCSLite Advanced Configuration
One of the advantages of MCSLite is that it works out of the box without any
configuration. You can optionally perform advanced configuration actions. MCSLite
allows configuration of: log file location and name, logging level, XML validation
mode, enabling or disabling auto-reload of devices and transformers, and more. To
perform these configuration actions, edit the MCSLite web.xml file. web.xml is
located in [ORACLE_
HOME]/wireless/wdk/server/applications/wdk/wdk-web/WEB-INF

Here are the configuration properties in MCSLite web.xml:

■ wdk.log.file—Absolute path to the log file (directory and file name). For
example: D:\wdk\logs\wdk.log. You can also specify System.out or
System.err to use the standard output or standard error. If no value is
specified, then the default log file location is used: [ORACLE_
HOME]/wireless/wdk/server/applications/wdk/wdk-web/logs/wdk
.log

Note: Error messages in the log.xml file, of the format XFM-xxxx,
are generated by the XForms processor.

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-9

■ wdk.log.level—Specifies how much information is written to the log file.
The permissible values are debug, info, warning, and error. Debug yields the most
information, info second, and so on. The default value of this property is info.

■ xml.validation.mode—Sets the validation mode of the XML parser.
Permissible values are true or false. Default value is false.

■ autoreload.transformers—Specifies whether changes to the transformer
should be detected and reloaded automatically. Permissible values are true or
false. Default value is true.

■ autoreload.devices—Specifies whether changes to the devices should be
detected and reloaded automatically. Permissible values are true or false. Default
value is true.

■ long.url.format—Specifies whether long or short URL format should be
used to rewrite embedded URLs. Permissible values are true or false. Default
value is true.

3.2.2.8 Device Description
In OracleAS Wireless server, all device descriptions are stored in the database.
However, to simplify MCSLite, database connections are not necessary; each device
description is stored in an XML file. The device XML files are located in [ORACLE_
HOME]/wireless/wdk/server/applications/wdk/wdk-web/repository.
Each XML file contains the metadata that describes attributes and characteristics of
a single device.

Some of the important device properties required by the MCSLite are:

■ Name—Unique name of the device.

■ UserAgents—Device metadata may contain multiple user agent values, which
means that the device metadata can match multiple physical devices. User
agents are used for device detection.

■ Transformers—Contains the name of the transformer that should be used for a
specific device. There are multiple transformer values; one for each markup
language.

See Also: For explanation and comparison between long and
short URL formats, see Section 3.2.2.4, "MCSLite URL Rewriting
and Caching".

WDK Installation and Configuration

3-10 Oracle Application Server Wireless Developer’s Guide

■ DefaultMarkupLanguage—MIME type of the device. Together with
Accept-Charset, constitute the content type of responses sent to a device.

■ Accept-Charset—Encoding of the device. Together with
DefaultMarkupLanguage, constitute the content type of responses sent to a
device.

■ DeviceClass—Class of the device (for example: microbrowser, pdabrowser,
pcbrowser, voice, or micromessenger).

■ DeviceHeight and DeviceWidth—Height and width of the device screen

3.2.2.9 Device Detection
MCSLite uses the same sophisticated device detection algorithm as OracleAS
Wireless server.

3.2.2.10 Multimedia Adaptation
The multimedia adaptation supported by MCSLite is the same as in OracleAS
Wireless server, except that MCSLite multimedia adaptation does not provide the
extensible framework for plugging-in your own implementation of the multimedia
adaptation interfaces.

3.2.2.11 Location Services
Application developers can build exciting new location services, or enhance their
existing applications with location information. To do that they need specialized
services:

■ Mobile Positioning—Applications can acquire and set the current location of
users.

See Also: For more information on device properties, see
Chapter 9, "Using Multi-Channel Server".

See Also: For more information on device properties, see
Chapter 9, "Using Multi-Channel Server".

See Also: For more information on multimedia adaptation, see
Chapter 9, "Using Multi-Channel Server".

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-11

■ Location Services:

■ Geocoding—Find the geographical location of an address or fixed-line
telephone number. Also, the inverse function of relating geographical
locations to addresses or phone numbers.

■ Mapping—Get a map image of an area around a location, a map covering a
set of locations, a map of a route, and more.

■ Driving Directions—Get driving directions between two addresses or
locations.

■ Business Directory—Find businesses around an address or location,
businesses in a city or state or country, and more.

OracleAS Wireless WDK provides an application programming interface (API) to
access these location services components. Developers can access OracleAS Wireless
Web Services from these APIs to develop, debug and test their applications without
setting up the complete OracleAS Wireless environment together with the relevant
content service providers.

The following sections briefly describe some of the important API calls along with
some examples. API details can be found in the Javadoc provided with the WDK.

3.2.2.11.1 Mobile Positioning

The mobile positioning service allows you to get and set a mobile user's current
location. This service is implemented as a web service in OracleAS Wireless WDK. It
enables applications to get and set a mobile user's current location from anywhere
on the Internet using any programming model.

The oracle.panama.mp.soap.MPSoapClient class wraps the client SOAP calls
and exposes the services in the Java programming interface. A client Java program
must first construct an object of this class using the web service URL and the service
ID before getting and setting a mobile user's location. The web service URL is the
SOAP router of the location web service on an OracleAS Wireless server; for
example, http://myaswserver.oracle.com:7777/location/web
services. The service ID is the SOAP service ID, for example:
urn:MobilePositionServer.

■ Getting Location

Two methods can be used to get a mobile user's location:

■ getPositionSimple(String username, String password,
String msid)

WDK Installation and Configuration

3-12 Oracle Application Server Wireless Developer’s Guide

■ getPosition(String username, String password, String
msid, boolean getLatestLocationOnly)

In method getPositionSimple, parameters username and password are used for
authentication purposes. The third parameter MSID is the mobile station ID of
the user whose location is being requested. An MSID is usually a user’s mobile
phone number. If the request succeeds, this function returns an array of two
double precision numbers representing the longitude and the latitude.

In method getPosition, the first three parameters are the same as in method
getPositionSimple. The last parameter is a Boolean value indicating
whether the caller wants to get the last known location of the mobile station. If
this is set to true, OracleAS Wireless server will return the latest known location
of the mobile station without performing any positioning operation. If there is
no location cached in the OracleAS Wireless server, an exception is raised. If it is
set to false, then OracleAS Wireless server returns the cached location (if its age
has not exceeded the default quality of service of the system). Otherwise
OracleAS Wireless server performs a mobile positioning operation to get this
mobile station’s current location. The return value of method getPosition is
a string containing the user’s location (in XML format) with the following
schema:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified">
<xsd:element name="RESPONSE ">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="TIMESTAMP"/>
<xsd:element ref="POS"/>
<xsd:element ref="VELOCITY" minOccurs="0"/>
<xsd:element ref="BEARING" minOccurs="0"/>
<xsd:element ref="ALTITUDE" minOccurs="0"/>
<xsd:element ref="ALT_UNCERTAINTY" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ALTITUDE" type="xsd:string"/>
<xsd:element name="ALT_UNCERTAINTY" type="xsd:string"/>
<xsd:element name="BEARING" type="xsd:string"/>
<xsd:element name="LAT" type="xsd:string"/>
<xsd:element name="LONG" type="xsd:string"/>
<xsd:element name="POS">
<xsd:complexType>
<xsd:sequence>

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-13

<xsd:element ref="LONG"/>
<xsd:element ref="LAT"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="TIMESTAMP" type="xsd:string"/>
<xsd:element name="VELOCITY" type="xsd:string"/>
</xsd:schema>

■ The <POS> element contains the longitude and latitude of the location.

■ The <TIMESTAMP> element contains the time stamp when the location was
acquired. The time always uses Greenwich Mean Time. For example
2003-03-12 20:01:06 GMT.

■ The optional <VELOCITY> element specifies the velocity of the mobile
device, in meters per second.

■ The optional <BEARING> element specifies the bearing angle, in degrees,
clockwise from North.

■ The optional <ALTITUDE> element specifies the altitude of the mobile
device, in meters, above sea level.

The caller, identified by the username and the password parameters, must be a
valid OracleAS Wireless user, and must have been granted the location
authorization to access the location of the user associated with the MSID. An
exception will be raised if the username and password cannot authenticate the
caller, or the caller is not authorized to access the location information.

■ Setting Location

A mobile device can send its current location, usually provided through a
global positioning system (GPS), to OracleAS Wireless server. The current
location can then be cached in the server and queried using mobile positioning
and privacy APIs. You must create a client application program that posts the
device’s current location to OracleAS Wireless server. A Java client can call
method setPosition(String xmlReq) in class
oracle.panama.mp.soap.MPSoapClient. This function takes one String
parameter representing the position data. The data must be in XML format, and
it must conform to the following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified">
<xsd:element name="MP_GPS">

WDK Installation and Configuration

3-14 Oracle Application Server Wireless Developer’s Guide

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="USERNAME"/>
<xsd:element ref="PASSWORD"/>
<xsd:element ref="MSID"/>
<xsd:element ref="TIME" minOccurs="0"/>
<xsd:element ref="GMT" minOccurs="0"/>
<xsd:element ref="POS"/>
<xsd:element ref="ALTITUDE" minOccurs="0"/>
<xsd:element ref="ALT_UNCERTAINTY" minOccurs="0"/>
<xsd:element ref="VELOCITY" minOccurs="0"/>
<xsd:element ref="BEARING" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ALTITUDE" type="xsd:string"/>
<xsd:element name="ALT_UNCERTAINTY" type="xsd:string"/>
<xsd:element name="BEARING" type="xsd:string"/>
<xsd:element name="GMT" type="xsd:string"/>
<xsd:element name="LAT" type="xsd:string"/>
<xsd:element name="LONG" type="xsd:string"/>
<xsd:element name="MSID" type="xsd:string"/>
<xsd:element name="PASSWORD" type="xsd:string"/>
<xsd:element name="POS">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="LAT"/>
<xsd:element ref="LONG"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="TIME" type="xsd:string"/>
<xsd:element name="USERNAME" type="xsd:string"/>
<xsd:element name="VELOCITY" type="xsd:string"/>
</xsd:schema>

■ The <USERNAME> and <PASSWORD> elements are used by OracleAS
Wireless server to authorize the request.

■ The <MSID> element is the mobile station ID of the mobile device or user.

■ The optional <TIME> element indicates the time when this location is
generated by a GPS. If this value is missing, the time when the data arrives
at the OracleAS Wireless server is used.

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-15

■ The optional <VELOCITY> element specifies the velocity of the mobile
device, in meters per second.

■ The optional <BEARING> element specifies the bearing angle, in degrees,
clockwise from North.

■ The optional <ALTITUDE> element specifies the altitude of the mobile
device, in meters, above sea level.

■ Mobile Positioning Example

Here is an example showing how to set and get a position to OracleAS Wireless
server using the SOAP client:

MPSoapClient mpsc = new
MPSoapClient("http://usunnab16.us.oracle.com:5555/location/webservices",
"urn:MobilePositionServer");

String xmlReq = "<?xml version= ’1.0’ encoding=’ISO-8859-1’
standalone=’yes’?>\n" +
 "<MP_GPS>\n" +
 "<MSID>6038973096</MSID>\n" +
 "<POS>\n" +
 "<LAT>42.1576</LAT>\n" +
 "<LONG>-122.34</LONG>\n" +
 "</POS>\n"+
 "</MP_GPS>";
 System.out.println(mpsc.setPosition(xmlReq));

// NOTE: Need to change getPosition call//
 double[] ret = mpsc.getPositionSimple("", "", "6038973096");
 System.out.println(ret[0] + "," + ret[1]);

3.2.2.11.2 Location Services The LBS web services API on the client side is virtually
identical to the API within OracleAS Wireless server. The following examples
demonstrate this. The most relevant difference is that a set() function must
specify the server. Within OracleAS Wireless server, an application would not be
required to specify such a target server.

Geocoding
Geocoding supports these functions:

■ Geocoding—Assigning geographical coordinates (latitude and longitude) to an
address.

■ Bulk geocoding—Geocoding for a larger set of addresses in one operation.

WDK Installation and Configuration

3-16 Oracle Application Server Wireless Developer’s Guide

■ Reverse geocoding – Assigning an address to a geographical coordinate
(latitude and longitude).

■ Bulk reverse geocoding—Assigning an array of addresses to a geographical
coordinate (latitude and longitude).

■ Telephone geocoding—assigning an address to a land line telephone number

■ Bulk telephone geocoding

■ Reverse telephone geocoding—assigning an array of telephone numbers to an
address

■ Bulk reverse telephone geocoding

The following example shows the geocoding operation:

...
 public static void main(String args[])
 {
 SpatialManager.set(
 "http://mhorhamm-us.us.oracle.com:9000/studio/soap/servlet/soaprouter",
 "your username",
 "your password");

 Location locs[] =
 SpatialManager.getGeocoder().geocodeAddress(
 new LocationImpl(
 new PointImpl(0, 0),
 "Oracle",
 "1",
 new String[] { "Oracle Dr" },
 "",
 "Nashua",
 "NH",
 "03062",
 "",
 "US"),
 "");
 if(locs != null)
 {
 for(int i = 0; i < locs.length; i++)
 System.out.println(i + ": " + locs[i]);
 }
 else
 System.out.println("null");

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-17

 }

Mapping
Mapping supports these functions:

■ Display a map with or without labeled and marked points.

■ Display a map of a complete driving direction or a single maneuver (the same
functionality in Driving Directions).

The following example shows the mapping with one marked point:

...
 public static void main(String args[])
 {
 SpatialManager.set(
 "http://mhorhamm-us.us.oracle.com:9000/studio/soap/servlet/soaprouter",
 "your username",
 "your password");

 Location
 adr1[] =
 SpatialManager.getGeocoder().geocodeAddress(
 new LocationImpl(
 new PointImpl(0, 0),
 "NEDC",
 "1",
 new String[] { "Oracle Dr" },
 "",
 "Nashua",
 "NH",
 "03062",
 "",
 "US"),
 ""),
 adr2[] =
 SpatialManager.getGeocoder().geocodeAddress(
 new LocationImpl(
 new PointImpl(0, 0),
 "HQ",
 "500",
 new String[] { "Oracle Parkway" },
 "",

WDK Installation and Configuration

3-18 Oracle Application Server Wireless Developer’s Guide

 "Redwood City",
 "CA",
 "94065",
 "",
 "US"),
 "");

 System.out.println(
 SpatialManager.getMapper().getMapURL(
 adr1[0],
 ImageFormats.GIF,
 800,
 600,
 false));

 ...
 }
...

Driving Directions
The Driving Directions component supports these functions:

■ Determine driving directions between addresses or geographical point
coordinates.

■ Display maps of complete directions or single maneuvers.

■ Provide a simple geometry of a driving direction.

■ Provide text directions, distance and time of a route requested.

The following example shows the driving direction between two addresses:

...
 public static void main(String args[])
 {
 SpatialManager.set(
 "http://mhorhamm-us.us.oracle.com:9000/studio/soap/servlet/soaprouter",
 "your username",
 "your password");

 Location
 adr1[] =
 SpatialManager.getGeocoder().geocodeAddress(
 new LocationImpl(

WDK Installation and Configuration

OracleAS Wireless Developer Kit 3-19

 new PointImpl(0, 0),
 "NEDC",
 "1",
 new String[] { "Oracle Dr" },
 "",
 "Nashua",
 "NH",
 "03062",
 "",
 "US"),
 ""),
 adr2[] =
 SpatialManager.getGeocoder().geocodeAddress(
 new LocationImpl(
 new PointImpl(0, 0),
 "HQ",
 "500",
 new String[] { "Oracle Parkway" },
 "",
 "Redwood City",
 "CA",
 "94065",
 "",
 "US"),
 "");

 //

 RoutingSettings settings = new RoutingSettings(true, false);
 settings.setSecondaryOption(RoutingOption.maneuverMapWidth, "800");
 settings.setSecondaryOption(RoutingOption.maneuverMapHeight, "600");
 settings.setSecondaryOption(RoutingOption.overviewMapWidth, "800");
 settings.setSecondaryOption(RoutingOption.overviewMapHeight, "600");

 System.out.println(
 SpatialManager.getRouter().computeRoute(
 adr1[0],
 adr2[0],
 null,
 settings,
 Locale.US));

 }

WDK Installation and Configuration

3-20 Oracle Application Server Wireless Developer’s Guide

Business Directory
The Business Directory component supports these functions:

■ Finding businesses within: Cities, States, Postal codes, Distance from an address
or geographical location, Distance from a driving directions route, the set of
closest n businesses around an address or geographical location.

■ Finding businesses: With a given name, in a given category, matching a given
keyword (in name or category), matching a given name and category.

■ Searching and navigating the category hierarchy.

The following example shows several categories and businesses with a given name:

 public static void main(String args[])
 {
 SpatialManager.set(
 "http://mhorhamm-us.us.oracle.com:9000/studio/soap/servlet/soaprouter",
 "your username",
 "your password");

 //

 System.out.println(SpatialManager.getYPFinder().getCategoryAtRoot());
 System.out.println(SpatialManager.getYPFinder().getCategoryAtPath(new
String[0]));
 YPCategory cats[] =
 SpatialManager.getYPFinder().getCategoryAtRoot().getSubCategories();
 if(cats != null)
 for(int i = 0; i < cats.length; i++)
 System.out.println(i + ": " + cats[i]);

 //

 YPBusiness b[] =
 SpatialManager.getYPFinder().getBusinessesAnywhere(
 "Border",
 Locale.US);
 for(int i = 0; i < b.length; i++)
 System.out.println(i + ": " + b[i]);

 }

WDK Log File

OracleAS Wireless Developer Kit 3-21

3.3 WDK Log File
OracleAS Wireless WDK provides a log file to help you develop wireless
applications. This section provides a detailed explanation of the information logged
in the WDK log file.

The amount of information that is logged in the log file can be configured by
changing the wdk.log.level parameter in WEB-INF/web.xml. The possible values for
this parameter, with the amount of information being most to least, are: debug, info,
warning, and error. The default value of this parameter is info. At this level, the
kinds of information that are logged to the log file are:

■ The request URL—This is the URL string and the query parameters that are
associated with the current request being served. For example,
http://myhost:80/myapp/foo.jsp?param1=value1

■ Request HTTP headers received from client—This lists all the request HTTP
headers that are received from the client (device). One important header from
this list is the user-agent header whose value is used for device detection.

■ Detected device—Informs the user that this is the device that is detected based
on the user-agent header. This information should be checked when something
goes wrong.

■ Request HTTP headers sent to back-end application—Lists all the request HTTP
headers that are sent to the back-end application. As a virtual browser, the
WDK modifies some of the original headers and adds additional headers.

■ Response HTTP headers received from back-end application—Lists all the
response HTTP headers that are received from the back-end application. Note
that these headers are used by the WDK for processing the response and they
will not be sent back to the client (device).

■ XML from back-end application—Shows the exact XML string response from
the back-end application.

■ XML type and version—The WDK will try to detect the type of the XML
(whether it is a Simple Result, XHTML+XFORMS, or XHTML-MP) and the
version. The result of the detection is shown in this section of the log. Based on
this, WDK chooses the correct transformer to use.

■ WDK Response—Shows the final markup language and HTTP headers that are
sent to the client (device). This final result is obtained by applying a transformer
(XSLT or Java transformer) to the XML response received from the back-end
application.

WDK Log File

3-22 Oracle Application Server Wireless Developer’s Guide

When debug log level is used, more log messages are produced. The debug
messages are:

■ Transformer loading—Shows a successful loading of a transformer.

■ Device loading—Shows a successful loading of a device.

■ Device-to-transformer mapping—Every device has multiple transformers that
are associated with it (one for every markup type). This debug message shows
such mapping between a device and a transformer.

■ Back end URL—Shows the back end URL for this request.

■ Back-end response code and response message—Shows the back-end response
code and response message for this request.

■ The XML passed to the transformer—Shows the XML string passed to the
transformer. This XML string differs from the original XML string received from
the back-end application. It is an intermediate form that results from annotation
and is used as input to the transformer.

3.3.1 WDK Log Sample
The following excerpt from the WDK log file in debug log level is for a single
successful request-response cycle using UP Simulator 4.1.1.

The header includes:

■ Client IP Address: 127.0.0.1

■ Session ID: fe88712959d4470794599b62102e61df

■ Log Level: INFO

■ Timestamp: [Fri, 23 May 2003 10:41:11 PDT]

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
**************** Start of serving request ***************

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
Request URL:
http://localhost:9010/wdk/mcslite/

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
Request HTTP headers received from client:
user-agent: OWG1 UP/4.1.20a UP.Browser/4.1.20a-XXXX UP.Link/4.1.HTTP-DIRECT
x-upfax-accepts: none
x-up-devcap-max-pdu: 2984
x-up-devcap-iscolor: 0
x-up-devcap-numsoftkeys: 2

WDK Log File

OracleAS Wireless Developer Kit 3-23

accept: application/x-hdmlc, application/x-up-alert, application/x-up-cacheop, application/x-up-device,
application/x-up-digestentry, application/vnd.wap.wml, text/x-wap.wml, text/vnd.wap.wml,
application/vnd.wap.wmlscript, text/vnd.wap.wmlscript, application/vnd.uplanet.channel,
application/vnd.uplanet.list, text/x-hdml, text/plain, image/vnd.wap.wbmp, image/bmp,
application/remote-printing text/x-hdml;version=3.1, text/x-hdml;version=3.0, text/x-hdml;version=2.0,
image/bmp, text/html
x-up-devcap-smartdialing: 1
x-up-devcap-msize: 8,18
accept-charset: ISO-8859-1, UTF-8, *
x-up-devcap-screenpixels: 171,108
host: localhost:9010
accept-language: en
x-up-devcap-screendepth: 1
content-type: application/x-www-form-urlencoded
x-up-devcap-charset: ISO-8859-1
x-up-subno: rhalimma_st3010pc
cookie: JSESSIONID=fe88712959d4470794599b62102e61df
x-up-devcap-immed-alert: 1

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
Request HTTP headers sent to back end application:
x-oracle-user.location.addresslastline: Room 200
x-oracle-service.home.url: http://localhost:9000/omsdk/rm
x-up-devcap-screendepth: 1
host: localhost:9010
x-up-devcap-numsoftkeys: 2
x-oracle-user.deviceid: 1234
x-oracle-orig-user-agent: OWG1 UP/4.1.20a UP.Browser/4.1.20a-XXXX UP.Link/4.1.HTTP-DIRECT
accept: application/vnd.oracle.xhtml+xforms, text/vnd.oracle.mobilexml, application/vnd.wap.xhtml+xml,
application/xhtml+xml;profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms",
application/xhtml+xml;profile="http://www.wapforum.org/xhtml", application/xhtml+xml, application/xml,
text/xml, application/vnd.oracle.xad, */*, */*
x-oracle-service.parent.url: http://localhost:9000/omsdk/rm
x-oracle-user.location.addressline2: Apt# 1004
x-oracle-user.location.addressline1: 1007 Broadway St
x-oracle-user.location.block: Block A
x-oracle-user.locale: US
x-oracle-user.authkind: unauthenticated
x-oracle-user.displayname: Jon Smith
x-oracle-user.location.type: profile
x-up-devcap-max-pdu: 2984
x-oracle-user.userkind: registered
x-up-devcap-iscolor: 0
x-up-devcap-screenpixels: 171,108
x-oracle-mcs.character.encoding: UTF-8
x-oracle-user.location.postalcodeext: 3158
accept-charset: ISO-8859-1, UTF-8, *
accept-charset: UTF-8, *

WDK Log File

3-24 Oracle Application Server Wireless Developer’s Guide

x-oracle-user.location.companyname: Company XYZ
x-oracle-home.url: http://localhost:9000/omsdk/rm
cookie: JSESSIONID=fe88712959d4470794599b62102e61df
x-up-devcap-immed-alert: 1
x-oracle-module.callback.url: http://localhost:9000/omsdk/rm
x-upfax-accepts: none
x-up-devcap-smartdialing: 1
user-agent: PTG/2.0 (Oracle9iAS Wireless 9.0.4.0; media="handheld"; paged="1")
x-oracle-user.location.postalcode: 94104
x-up-devcap-msize: 8,18
x-oracle-user.location.city: San Francisco
x-oracle-user.location.country: USA
content-type: application/x-www-form-urlencoded
x-oracle-user.name: jsmith
x-oracle-user.location.y: 200.8
x-oracle-user.location.x: 135.9
x-oracle-user.location.county: San Francisco
x-oracle-orig-accept: application/x-hdmlc, application/x-up-alert, application/x-up-cacheop,
application/x-up-device, application/x-up-digestentry, application/vnd.wap.wml, text/x-wap.wml,
text/vnd.wap.wml, application/vnd.wap.wmlscript, text/vnd.wap.wmlscript, application/vnd.uplanet.channel,
application/vnd.uplanet.list, text/x-hdml, text/plain, image/vnd.wap.wbmp, image/bmp,
application/remote-printing text/x-hdml;version=3.1, text/x-hdml;version=3.0, text/x-hdml;version=2.0,
image/bmp, text/html
x-up-subno: rhalimma_st3010pc
accept-language: en
x-up-devcap-charset: ISO-8859-1
x-oracle-module.callback.label: Home
x-oracle-user.location.state: CA

127.0.0.1 - - fe88712959d4470794599b62102e61df - - DEBUG : [Fri, 23 May 2003 10:41:11 PDT]
Back end URL: http://localhost:9010/mcs/examples/index.jsp

127.0.0.1 - - fe88712959d4470794599b62102e61df - - DEBUG : [Fri, 23 May 2003 10:41:11 PDT]
Back end response code: 200 ; response message: OK

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
Response HTTP headers received from back end application:
x-oracle-wireless.referer.url: http://localhost:9010/mcs/examples/index.jsp
content-type: application/vnd.oracle.xhtml+xforms; charset=UTF-8
x-oracle-wireless.base.url: http://localhost:9010/mcs/examples/index.jsp
connection: Close
date: Fri, 23 May 2003 17:41:10 GMT
server: Oracle9iAS (9.0.3.0.0) Containers for J2EE
content-length: 994

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
XML Result from backend:
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>

WDK Log File

OracleAS Wireless Developer Kit 3-25

<html profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0"
 xmlns="http://www.w3.org/1999/xhtml"
 xmlns:style="urn:oracle:iasw-internal:style.1.0"
 xmlns:extra="urn:oracle:iasw-internal:mxml.1.0">
 <head>
 <title>Oracle9iAS Wireless Examples</title>
 <style type="text/css">
 .title {font-style: italic; color: blue; font-size: xx-large}
 .menu {font-style: italic; color: blue; font-size: x-large}
 li {font-weight: bold; color: blue}
 </style>
 </head>
 <body>
 <nl style="list-style-type: decimal">
 <label class="title">Oracle9iAS Wireless Examples</label>
 <li class="menu" href="xhtml%2Bxforms/index.jsp">XHTML+XFroms Examples
 <li class="menu" href="xhtml%2Bmp/index.jsp">XHTML MP Examples
 <li class="menu" href="mobile-xml/index.jsp">MobileXML Examples
 </nl>
 </body>
</html>

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
XML content info - Type: XHTML, version: 0.9.0

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
Transformer that will be used: xforms-wml11-openwave

127.0.0.1 - - fe88712959d4470794599b62102e61df - - DEBUG : [Fri, 23 May 2003 10:41:11 PDT]
The XML passed to transformer:
<html profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0" xmlns="http://www.w3.org/1999/xhtml"
xmlns:style="urn:oracle:iasw-internal:style.1.0" xmlns:extra="urn:oracle:iasw-internal:mxml.1.0"
xmlns:mxml="http://xmlns.oracle.com/2002/MobileXML" style:mheight="0mm" style:mwidth="0mm"
style:word-spacing="normal" style:padding-top="0" style:text-align="justify" style:border-top-color="#000000"
style:border-right-style="none" style:font-size="medium" style:padding-bottom="0" style:margin-right="0"
style:list-style-type="disc" style:vertical-align="baseline" style:border-bottom-color="#000000"
style:pause-after="none" style:width="0px" style:speech-rate="default" style:border-left-width="medium"
style:speak="normal" style:float="none" style:text-decoration="none" style:padding-right="0"
style:border-right-color="#000000" style:list-style-image="none" style:background-attachment="scroll"
style:clear="none" style:stress="none" style:font-family="serif,san-serif" style:margin-top="0"
style:letter-spacing="normal" style:font-variant="normal" style:border-top-width="medium"
style:margin-bottom="0" style:border-left-style="none" style:speak-numeral="none"
style:background-image="none" style:pause-before="none" style:volume="default"
style:border-bottom-width="medium" style:pitch="default" style:text-transform="none"
style:list-style-position="outside" style:padding-left="0" style:margin-left="0"
style:border-right-width="medium" style:color="#000000" style:text-indent="0" style:border-top-style="none"
style:border-left-color="#000000" style:height="0px" style:font-weight="400" style:background-repeat="repeat"
style:font-style="normal" style:pitch-range="default" style:border-bottom-style="none"

WDK Log File

3-26 Oracle Application Server Wireless Developer’s Guide

style:voice-family="neutral" style:speak-header="once" style:display="inline"
extra:iaswhref="http://localhost:9010/wdk/mcslite/?PAckey=4!" extra:newdoc="true"><extra:param
extra:name="PAckey" extra:value="4!" extra:hidden="true"/>
 <head style:border-left-width="medium" style:border-left-style="none" style:border-left-color="#000000"
style:display="inline"><extra:messages/><extra:patparams/>
 <title style:border-left-width="medium" style:border-left-style="none" style:border-left-color="#000000"
style:display="inline">Oracle9iAS Wireless Examples</title>
 <style type="text/css" style:border-left-width="medium" style:border-left-style="none"
style:border-left-color="#000000" style:display="inline">
 .title {font-style: italic; color: blue; font-size: xx-large}
 .menu {font-style: italic; color: blue; font-size: x-large}
 li {font-weight: bold; color: blue}
 </style>
 <extra:displaypage page="1" deck="1"/></head>
 <body __length__="13" style:border-left-width="medium" style:border-left-style="none"
style:border-left-color="#000000" style:display="block" extra:emwidth="0" extra:pxwidth="0"
extra:emheight="0" extra:pxheight="0" extra:random="30274" extra:softkeys="2" extra:paged="true"><extra:page
page="1" pagelength="342" deck="1" extra:expand="true">
 <nl style="list-style-type: decimal" __length__="70" style:white-space="nowrap"
style:list-style-type="decimal" style:border-left-width="medium" style:margin-top="0.5em"
style:margin-bottom="0.5em" style:border-left-style="none" style:border-left-color="#000000"
style:display="block" extra:uid="XF1" extra:expand="true">
 <label class="title" __length__="53" style:border-top-color="#0000ff" style:font-size="xx-large"
style:border-bottom-color="#0000ff" style:border-left-width="medium" style:border-right-color="#0000ff"
style:margin-top="0" style:margin-bottom="0" style:border-left-style="none" style:color="#0000ff"
style:border-left-color="#0000ff" style:font-style="italic" style:display="inline">Oracle9iAS Wireless
Examples</label>
 <li class="menu" href="xhtml%2Bxforms/index.jsp" __length__="78"
extra:abshref="http://localhost:9010/mcs/examples/xhtml%2Bxforms/index.jsp"
extra:iaswhref="/wdk/mcslite?PAckey=5!" extra:iaswphref="/wdk/mcslite?PAckey=%PAckey!" extra:iaswpkhref="5"
style:border-top-color="#0000ff" style:font-size="x-large" style:border-bottom-color="#0000ff"
style:border-left-width="medium" style:text-decoration="underline" style:border-right-color="#0000ff"
style:margin-top="0" style:margin-bottom="0" style:border-left-style="none" style:color="#0000ff"
style:border-left-color="#0000ff" style:font-weight="700" style:font-style="italic"
style:display="list-item">XHTML+XFroms Examples
 <li class="menu" href="xhtml%2Bmp/index.jsp" __length__="70"
extra:abshref="http://localhost:9010/mcs/examples/xhtml%2Bmp/index.jsp"
extra:iaswhref="/wdk/mcslite?PAckey=6!" extra:iaswphref="/wdk/mcslite?PAckey=%PAckey!" extra:iaswpkhref="6"
style:border-top-color="#0000ff" style:font-size="x-large" style:border-bottom-color="#0000ff"
style:border-left-width="medium" style:text-decoration="underline" style:border-right-color="#0000ff"
style:margin-top="0" style:margin-bottom="0" style:border-left-style="none" style:color="#0000ff"
style:border-left-color="#0000ff" style:font-weight="700" style:font-style="italic"
style:display="list-item">XHTML MP Examples
 <li class="menu" href="mobile-xml/index.jsp" __length__="71"
extra:abshref="http://localhost:9010/mcs/examples/mobile-xml/index.jsp"
extra:iaswhref="/wdk/mcslite?PAckey=7!" extra:iaswphref="/wdk/mcslite?PAckey=%PAckey!" extra:iaswpkhref="7"
style:border-top-color="#0000ff" style:font-size="x-large" style:border-bottom-color="#0000ff"
style:border-left-width="medium" style:text-decoration="underline" style:border-right-color="#0000ff"
style:margin-top="0" style:margin-bottom="0" style:border-left-style="none" style:color="#0000ff"
style:border-left-color="#0000ff" style:font-weight="700" style:font-style="italic"

WDK Log File

OracleAS Wireless Developer Kit 3-27

style:display="list-item">MobileXML Examples
 </nl>
 </extra:page></body>
</html>

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
Mobile WDK Response:
Content-Type: text/vnd.wap.wml; charset=UTF-8
Content-Length: 1384

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"
"http://www.phone.com/dtd/wml11.dtd">
<wml><head><meta http-equiv="Cache-Control" forua="true" content="max-age=10"/></head><template><do
type="accept" name="do_accept" label="Ok"><refresh/></do></template><card><onevent type="onenterforward"><go
href="#ID117"/></onevent><onevent type="onenterbackward"><prev/></onevent></card><card id="ID117"
title="Oracle9iAS Wireless Examples"><p mode="nowrap"><big><i>Oracle9iAS Wireless Examples</i></big><select
name="mID117"><option value="5">XHTML+XFroms Examples</option><option value="6">XHTML MP
Examples</option><option value="7">MobileXML Examples</option><option title="Ok">[Back]<onevent
type="onpick"><prev/></onevent></option></select><do type="accept" name="do_accept" label="Ok"><go href="#_
nav"><setvar name="_h" value="$(mID117)"/></go></do></p></card><card id="_nav"
onenterforward="/wdk/mcslite?PAckey=$(_h)!"><onevent type="onenterbackward"><prev/></onevent></card><card
id="_form"><onevent type="onenterforward"><go method="post"
href="http://localhost:9010/wdk/mcslite/?r=30274"><postfield name="PAckey" value="4!"/><postfield name="$(_
sb)" value="$(_sv)"/><postfield name="PATpage" value="$(PATpage)"/><postfield name="PATdeck"
value="$(PATdeck)"/></go></onevent><onevent type="onenterbackward"><prev/></onevent></card></wml>

127.0.0.1 - - fe88712959d4470794599b62102e61df - - INFO : [Fri, 23 May 2003 10:41:11 PDT]
**************** End of serving request ***************

3.3.2 Common Mistakes Encountered
This section explains some of the common mistakes encountered in the WDK:

■ Incorrect URL to the back-end application. For example, here are examples of
correct and incorrect URL based on the back end URL
http://somehost:8080/myapp/first.jsp:

Correct:
http://localhost:9010/wdk/mcslite/http/somehost/9090/myapp/first.jsp

Incorrect:
http://localhost:9010/wdk/mcslite/http/somehost/9090/myap/first.jsp

When an incorrect URL is used, the user will get an error page with a detailed
explanation of the cause (in this case, 404 Not Found).

WDK Log File

3-28 Oracle Application Server Wireless Developer’s Guide

The value of back-end URL can be checked in the log file under Back end URL.

Sample log entries:

127.0.0.1 - - 3b34912b68474bc1b1defa87e74dbd1e - - DEBUG : [Fri, 23 May 2003 11:06:45 PDT]
Back end URL: http://localhost:9010/mcs/examples/mobile-xmll/index.jsp

127.0.0.1 - - 3b34912b68474bc1b1defa87e74dbd1e - - DEBUG : [Fri, 23 May 2003 11:06:45 PDT]
Back end response code: 404 ; response message: Not Found

127.0.0.1 - - 3b34912b68474bc1b1defa87e74dbd1e - - ERROR : [Fri, 23 May 2003 11:06:45 PDT]
javax.servlet.ServletException:
HTTP(S) Error: 404 : Not Found

■ Incorrect content-type response header from back-end application. For example,
when developing an XForms page, the content type should be set to
application/vnd.oracle.xhtml+xforms. Without setting this value, the content
detection logic in WDK might fail and result in an incorrect final markup
language.

The value of content type that is received from the back-end application can be
checked from the log file under Response HTTP headers received from back-end
application.

Sample log entries:

127.0.0.1 - - 3b34912b68474bc1b1defa87e74dbd1e - - INFO : [Fri, 23 May 2003 10:59:27 PDT]
Response HTTP headers received from back end application:
x-oracle-wireless.referer.url: http://localhost:9010/mcs/examples/index.jsp
content-type: application/vnd.oracle.xhtml+xforms; charset=UTF-8
x-oracle-wireless.base.url: http://localhost:9010/mcs/examples/index.jsp
connection: Close
date: Fri, 23 May 2003 17:59:27 GMT
server: Oracle9iAS (9.0.3.0.0) Containers for J2EE
content-length: 994

■ Incorrect XML content from back-end application. The XML content from
back-end applications should be a well-formed XML document. A spelling
error or a missing closing tag will result in an error code 500 from WDK. When
this happens, an error message will be displayed in the client device (The xml
could not be parsed. It contains invalid xml.).

The XML content from back-end applications can be checked from the log file
under XML Result from backend.

Sample log entries:

127.0.0.1 - - 3b34912b68474bc1b1defa87e74dbd1e - - INFO : [Fri, 23 May 2003 11:00:50 PDT]
XML Result from backend:

Running a Wireless Application with the WDK Tutorial

OracleAS Wireless Developer Kit 3-29

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>

<html profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0"
 xmlns="http://www.w3.org/1999/xhtml"
 xmlns:style="urn:oracle:iasw-internal:style.1.0"
 xmlns:extra="urn:oracle:iasw-internal:mxml.1.0">
 <head>
 <title>Oracle9iAS Wireless Examples</title>
 <style type="text/css">
 .title {font-style: italic; color: blue; font-size: xx-large}
 .menu {font-style: italic; color: blue; font-size: x-large}
 li {font-weight: bold; color: blue}
 </style>
 </head>
 <body>
 <nl style="list-style-type: decimal">
 <label class="title">Oracle9iAS Wireless Examples</label>
 <li class="menu" href="xhtml%2Bxforms/index.jsp">XHTML+XFroms Examples
 <li class="menu" href="xhtml%2Bmp/index.jsp">XHTML MP Examples
 <li class="menu" href="mobile-xml/index.jsp">MobileXML Examples
 </nl>
 <body>
</html>

127.0.0.1 - - 3b34912b68474bc1b1defa87e74dbd1e - - ERROR : [Fri, 23 May 2003 11:00:50 PDT]
oracle.wireless.sdk.SdkException: The xml could not be parsed. It contains invalid xml.

3.4 Running a Wireless Application with the WDK Tutorial
This tutorial takes you through the process of setting up a OracleAS Wireless
development environment on your laptop or desktop using the Wireless
Developer’s Kit (WDK). You will take a few existing applications and run them in
your environment.

3.4.1 What you Need
■ Mobile device simulator

■ Wireless Developer’s Kit (approximately 50MB)

■ JDK

Note: The WDK and simulators can be downloaded from
http://otn.oracle.com/tech/wireless/tools/content.html.

Running a Wireless Application with the WDK Tutorial

3-30 Oracle Application Server Wireless Developer’s Guide

3.4.2 Tutorial Overview
The WDK is a small runtime environment of OracleAS Wireless. It includes the
Multi-Channel Server of OracleAS Wireless for device adaptation and multi-media
adaptation allowing you to build and test wireless applications.

3.4.3 Environment Set Up
The following steps take you through the WDK environment setup.

3.4.3.1 Set up your WDK Environment
1. Download and install JDK 1.4.1 onto your computer (to, for example,

D:\j2sdk1.4.1_01). If you do not have JDK 1.4.1, you can download it from
http://java.sun.com. This tutorial assumes you installed the JDK at
D:\j2sdk1.4.1_01.

2. Download and install the Wireless Developer’s Kit (WDK) onto your machine:

a. Unzip the WDK anywhere on your computer. Make sure the path to the
WDK does not include spaces.

b. Set two environment variables on your computer:

* IAS_HOME to D:\wdk9041 (to where you unzipped the WDK); and

* JAVA_HOME to D:\j2sdk1.4.1_01 (to where you installed JDK 1.4.1)

3. Download and install a device simulator (if you do not already have one). If
you have Internet access, you can get a device simulator at the Mobile Tech
Center on OTN: http://otn.oracle.com/tech/wireless/tools/content.html.

3.4.3.2 Configure the WDK
You must modify the following WDK files:

■ WDK_INSTALL_DIR/wireless/j2ee/config/oc4j.properties

■ WDK_INSTALL_
DIR/wireless/j2ee/config/global-web-application.xml

The entries: __REPLACE_WITH_IASW_HOME_PATH__, must be replaced with the
absolute path to the WDK_INSTALL_DIR. Use the slash (/) for the directory
separator, even in Microsoft Windows. For example, if the WDK is installed in
d:\wdk, then replace __REPLACE_WITH_IASW_HOME_PATH__ with d:/wdk.

Running a Wireless Application with the WDK Tutorial

OracleAS Wireless Developer Kit 3-31

3.4.3.3 Start the WDK
1. Run wdk.bat (in wdk9041/j2ee/home/wdk.bat) to start the Wireless

environment. At first startup, some files will be unpacked. After starting, a
messaging appears stating the Containers for J2EE have initialized.

2. To stop the environment, type ctrl-C, and answer Yes. Restart the
environment as in Step 1 above.

There are two main URLs that you need to know for the Wireless Development Kit:
the URL to access your application and the URL to view the logs.

■ Access your application

http://<host_name>:9010/wdk/mcslite/http/<host_
name>/9010/examples/<app_name>

For example,
http://localhost:9010/wdk/mcslite/http/localhost/9010/examples/mobile-xml/
Hello.jsp. Use this URL to access the Hello World example with your PC browser or
your mobile device simulator. This is a simple demo to test your WDK.

The code for the Hello World application is in the following directory of the WDK:
D:\wdk9041\wireless\j2ee\applications\wdk\examples-web\mobile-xml. You
will not be able to see the examples code until you start the WDK for the first time
and the WDK unpackages the examples.

Explanation of the URL: the WDK enables Wireless access to your application even
if the application is not running in the WDK environment. The first part of the URL
(http://localhost:9010/wdk/mcslite/http/), means that you want to access a
wireless application with the WDK. The second part the URL
(localhost/9010/examples/mobile-xml/Hello.jsp), is the URL of your application.

If your application was located on Geocities, the full URL would be
http://localhost:9010/wdk/mcslite/http/www.geocities.com/myaccount/Hello.js
p.

■ URL to access the logs

http://<host_name>:9010/wdk/log. For example, http://localhost:9010/wdk/log.
This provides the full error logs on requests to the WDK. Try this URL in your PC
browser to view the log of your Hello World application; scroll down to the bottom
to view the newest log output.

Running a Wireless Application with the WDK Tutorial

3-32 Oracle Application Server Wireless Developer’s Guide

3.4.4 Multi-media Adaptation Demonstration
OracleAS Wireless includes multi-media adaptation capabilities. If an application
includes a GIF image, the server will automatically resize and convert the image to
the appropriate format. For example, a GIF will be converted to WBMP format for a
WAP phone. The following example will show an Oracle logo image on multiple
devices. Copy and paste this URL into your PC browser, color phone, or black and
white phone to see the images.

http://localhost:9010/wdk/mcslite/http/localhost/9010/examples/mobile-xml/I
mageExample.jsp

JDeveloper Wireless Extension 4-1

4
JDeveloper Wireless Extension

Each section of this document presents a different topic. These sections include:

■ Section 4.1, "Overview"

■ Section 4.2, "Developing Multi-Channel Applications"

■ Section 4.3, "Creating a Wireless-Enabled J2EE Application"

■ Section 4.4, "Creating J2ME Applications"

4.1 Overview
JDeveloper Wireless Extension (JWE), which is built on the Oracle Extension
Framework, integrates OracleAS Wireless functionality with Oracle JDeveloper,
enabling you to create wireless applications using JDeveloper. This chapter includes
an overview of JWE, and some examples of JWE’s functionality. For all of the
documentation, tutorials, and downloads, see
http://otn.oracle.com/tech/wireless/tools/content.html.

The JWE enables you to develop, debug, deploy, and run Multi-Channel
applications which can be accessed through different delivery methods, such as
WAP, messaging or voice, and both regular J2ME (Java 2 Micro Edition) MIDlet
applications as well as those which communicate with Web services through
method calls.

You can test applications using emulators or real devices, debug MIDlets using
breakpoints, and protect MIDlets using obfuscation. The JWE also enables you to
use the development toolkits and emulators from a variety of manufacturers.

The installation of JWE in JDeveloper results in a new category node in the
Category pane of JDeveloper’s gallery called Wireless Applications. Selecting this
node invokes the JWE options (which are described in Table 4–1).

Developing Multi-Channel Applications

4-2 Oracle Application Server Wireless Developer’s Guide

Table 4–1 JWE Options

4.2 Developing Multi-Channel Applications
The JWE enables you to mobile-enable an application from the JDeveloper IDE
using the five-step Multi-Channel application wizard. This wizard enables you to
generate templates for the selected application. To this end, the wizard provides
you with two options, Basic Features and Messaging Support through Pushlite API.
Specific templates are associated with each of these options. For example, selecting
Basic Features enables you to select from among the following templates:

■ Hello World! (MXML)

■ Hello World! (XHTML JSP)

■ Hello World! (MXML JSP)

■ Hello World! (XHTML JSP)

■ Hello <Name>! (MXML JSP) - 2 pages

■ Hello <Name>! (XHTML JSP) - 2 pages

After you select the appropriate template (or templates) for the application and
complete the wizard, JDeveloper generates the templates. You then use
JDeveloper’s Component Palette to insert tags into the application and then test the
application using the device emulators.

Option Description

J2ME Default MIDlet Enables you to create a MIDlet.

J2ME MIDlet Deployment Enables you to create the deployment profile needed for the
MIDlet to run.

J2ME Proxy Connection Enables you to create a connection the J2ME Proxy server, From
this connection, you register Web services with the WSDL (Web
Service Definition Language) document URL, and generate
J2ME stub classes.

Multi-Channel Application Creation Wizard Enables you to mobile-enable an application using the
Multi-Channel Creation Wizard.

Multi-Channel Messenger Creation Wizard Enables you to add unified messaging to a J2EE application.

Creating J2ME Applications

JDeveloper Wireless Extension 4-3

4.3 Creating a Wireless-Enabled J2EE Application
The JWE enables you to add OracleAS Wireless Messaging to any J2EE application
in the JDeveloper IDE with the Multi-Channel Messenger Creation Wizard. This
wizard generates a file called MultiChannelMessenger.java to the selected J2EE’s
project file along with the required OracleAS Wireless SDK libraries. The
MultiChannelMessenger.java file includes examples for using this utility class. In the
J2EE application, you add an import statement for the
MultiChannelMessenger utility. You then call the APIs of
MultiChannelMessenger in the J2EE application by specifying the sender,
recipient, and send information.

4.4 Creating J2ME Applications
The JWE enables you to create a regular MIDlet and also a MIDlet that calls a Web
service.

Creating a MIDlet is a two-step process: creating the default MIDlet and then
packaging it into the a MIDlet Suite for deployment.

4.4.1 Creating a Default MIDlet
To create the default MIDlet, the JWE provides a three-page wizard in which you
select the package name and class name for the MIDlet. You can optionally add a
specific library to the project where the MIDlet is created, or chain the default
MIDlet to the Deployment Wizard immediately after the MIDlet’s classes have been
generated. You can further extend the MIDlet by adding application-specific code.

4.4.2 Deploying the MIDlet Application
The Deployment Wizard enables you to create a MIDlet suite in which you specify
the packaging and deployment profile information needed to run the MIDlet. To
create the MIDlet suite, you select the Java classes, images (.png files), or other
resources included in the selected project. You then select from among the classes
from the project that extends the javax.microedition.midlet.MIDlet class
and serves as the entry point to the MIDlet. You then enter the MIDlet name to the
selected class and then opt to publish the MIDlet to the MIDlet suite. You can also
associate an icon with the MIDlet. In addition, you name the MIDlet suite, set the
network proxy (if needed), manage the MIDlet’s manifest entries, and select the
library (or libraries) to deploy with the MIDlet. You can deploy the MIDlet
immediately upon completion of the MIDlet suite. Once the MIDlet has deployed,
you can run and test it on an emulator.

Creating J2ME Applications

4-4 Oracle Application Server Wireless Developer’s Guide

4.4.3 Creating a MIDlet that Calls a Web Service
The JWE enables you to create a MIDlet that calls a Web service. A MIDlet calls a
Web service using the OracleAS Wireless J2ME Proxy Server, which optimizes
communication between the MIDlet and the Web service.

JWE enables you to register a Web service with the J2ME Proxy Server through a
WSDL (Web Services Definition Language) document and generate a J2ME stub
class for the service.The MIDlet calls the methods of the stub class; each of these
methods in turn represents an operation of the Web service. Using JWE, you can
quickly create a MIDlet to test the method calls to the Web service. You can then
create a MIDlet suite to deploy and run the MIDlet.

Developing Services 5-1

5
Developing Services

This chapter describes how Application Developers use the Service Manager to
create and manage the service-related objects of the Oracle Application Server
Wireless repository. Each section of this document presents a different topic. These
sections include:

■ Section 5.1, "Overview of the Service Manager"

■ Section 5.2, "Logging into the Service Manager"

■ Section 5.3, "Managing Applications"

■ Section 5.4, "Managing Notifications"

■ Section 5.5, "Managing Master Alerts (Deprecated)"

■ Section 5.6, "Managing Data Feeders"

■ Section 5.7, "Managing Preset Definitions"

■ Section 5.8, "Managing J2ME Web Services"

5.1 Overview of the Service Manager
The Service Manager provides a set of wizards for the creation of such
service-related objects as applications, notifications, data feeders, preset definitions
and J2ME web services. The Service Manager’s wizards enable you to create these
objects quickly by presenting the creation of each of these objects as a discrete task,
broken down into a series of steps. Completing these steps requires only a
minimum of information. The Service Manager guides you through each of these
steps to ensure that you enter information correctly.

Overview of the Service Manager

5-2 Oracle Application Server Wireless Developer’s Guide

In addition to these wizards, the Service Manager enables you to edit the OracleAS
Wireless repository objects. You can also use the Service Manager to test and debug
applications.

Table 5–1 describes the service-related objects which you can create, modify, test
and delete using the Service Manager.

Table 5–1 Service-Related Objects in the Wireless Repository

Object Type Description

Application Folder Application folders organize applications.

Application An application can either invoked by the end-user from the device or invoked by
the notification engine to deliver messages to the end customer. The Service
Manager enables you to create the following types of applications:

■ multi-channel applications

■ notification applications (alerts)

■ J2ME applications

■ Web-clipping applications.

A notification application is based on a notification, which in turn, is based on a
data feeder.

Notification A notification can be invoked by the notification engine. During execution, the
application, the event data are pushed to the notification from either a data feeder,
a timer, or a location event server. The event data are then compared with the user
subscription conditions. If the event data matches the subscription criteria, then
the notification application is invoked to either generate a notification message or
perform certain actions (or both). The default delivery mechanism of the
notification message is through the XMS (XML Messaging Server).

Data Feeder A data feeder can be executed by the data feeder process. During execution, the
data feeder retrieves event data from external content sources and pushes them to
the notifications.

Preset Definitions A preset definition defines the attributes (and the attribute types) of a preset.
Normally, a preset definition can be associated with an application. By entering the
values for the preset attributes, the end-user can provide the personalization
information for the application. The application code can then query the
personalization information from the preset and deliver personalized wireless
applications.

J2ME Web Services A J2ME Web service is hosted by the J2ME proxy server and can be invoked from a
J2ME MIDlet application running on a device. A J2ME Web service can be
registered by specifying the Web service WSDL URL, by specifying the URL of a
JAR file, or by specifying the file path of the JAR on the client machine.

Logging into the Service Manager

Developing Services 5-3

5.2 Logging into the Service Manager
To access the Service Manager:

1. You first log into the OracleAS Wireless Tools using the following URL:

http://hostname:port/webtool/login.uix

For example, you access the login page through the following URL:

http://hostname:7777/webtool/login.uix

2. Enter your user name and then enter your password. If you are an
administrator, enter orcladmin as your user name. (The password is set during
installation, but can be changed with the User Manager.)

After you log into the OracleAS Wireless Tools, you access the Service Manager by
clicking the Services tab (Figure 5–1). The Service Manager includes the following
subtabs:

■ Applications

■ Notifications

■ Data Feeders

■ Preset Definitions

■ J2ME Web Services

Clicking any of these subtabs invokes a browsing screen specific to the object. From
these browsing screens, you can manage objects using functions for creating, editing
and deleting, and testing.

Note: 7777 is the default port number for Oracle Application
Server Wireless. The port number range is 7777 to 7877. To ensure
that you are using the correct port number, check the port number
for Oracle Application Server Wireless stored in [Oracle
home]/install/portlist.ini. For more information on port usage, see
your Oracle Application Server installation documentation, and the
Oracle Application Server Administrator’s Guide.

Managing Applications

5-4 Oracle Application Server Wireless Developer’s Guide

Figure 5–1 The Service Manager (Partial View)

5.3 Managing Applications
Selecting the Applications tab displays the Application browsing page, which
enables you to create, edit, delete, search for, and move applications and folders.
The page also enables you to test and debug applications and view them on a phone
simulator.

After you create and test an application, you can publish the application to your
home folder by clicking Quick Publish button on the browsing page. After you
publish this application, you can run it from the Device Portal.

The Applications screen enables you to view the top-level folders in the hierarchy,
which the Service Manager displays as hyperlinks. These hyperlinks (depicted in
Figure 5–2) allow you to "drill down" or traverse deeper into the hierarchy with
each successive click. The trace path displays the structure of the hierarchy, enabling
you to see the level that you currently access.

Figure 5–2 The Navigation Path

When you first access the Service Manager, the tool defaults to the browsing screen
for the applications folders. This browsing screen includes a table listing the current

Managing Applications

Developing Services 5-5

folders and applications in the repository. Table 5–2 describes the heading rows of
the table.

5.3.1 Searching for a Master Application
The browsing screen the Service Manager enables you to search for an application
or folder using a search field in conjunction with drop-down lists of search options,
which you can use to either narrow or broaden your searches. The search results
display as a list on the Search Result screen.

To find an object, perform one or more of the following and then click Go.

Table 5–2 Elements of the Browse Folder Screen of the Service Manager

Element Description

Type The type of object

Name The display name of the folder or application. The Service Manager displays
folders as hyperlinks, enabling you to view a folder’s contents.

Object ID The Object ID (OID) of the object.

Adapter The adapter used by the application.

Test Clicking the phone icon enables you to view the selected application on a phone
simulator.

Valid If the column displays Yes, then the object is enabled. If No, then the object is not
enabled.

Sequence The order in which applications and folders appear on output devices. By default,
these appear in order by sequence number, then by name.

Modulable Whether this application can be deployed as a modulable application.

Async-Enabled The Service Manager enables you to augment applications by making them
accessible by protocols other than HTTP. For example, you can assign an Async
agent for applications accessed by users whose devices do not have a Web browser,
but support two-way messaging or email.

Users can access Web content through Async-enabled applications. For
example, end users subscribing to the OracleMobile service to retrieve such
Web content as stock quotes, traffic reports, or horoscopes, send a message
to Async@OracleMobile.com. The Async Listener running on the OracleAS
Wireless Server intercepts this message, which can be either an email or a
short message, routes the request to the correct service or application, and
then sends the requested information back to the user.

Last Modified The last time that the object was modified.

Managing Applications

5-6 Oracle Application Server Wireless Developer’s Guide

1. From the drop-down list, select one of the following options to narrow or
broaden your search:

■ All Applications

■ Async-Agent-Enabled Applications

■ Modulable Applications

■ Folders

2. Enter a keyword.

3. From the drop-down list, select one of the following sorting options for the
search results:

■ Name. Select this option to sort results by the name of the application or
folder.

■ Last Modified Date. Select this option to sort results by the last time the
object was modified.

4. Click Go. The Search Result screen appears, displaying the retrieved objects.

5.3.2 Creating a Folder
You can organize your applications by creating subfolders. These subfolders, which
can represent topic areas, can be nested into other subfolders. When you create a
subfolder, the Service Manager displays it as a hyperlink in the application
browsing screen. Clicking this hyperlink enables you to see the folder’s contents.

You create a folder by first clicking Add Folder in the application browsing screen.
The Create Folder screen appears, in which you define the folder properties
(described in Table 5–3). After you complete the screen, click Create. The browsing
screen reappears and displays the new folder.

Table 5–3 Parameters of the Create Folder Screen

Parameter Value

Folder Name The name of the folder. This is a required field.

Description A description of the folder.

Valid Selecting this option enables the folder.

Title Icon URI The URI of an image used as the icon that appears on top of the screen when this
folder becomes the current folder. You do not need to specify the format type in this
URI, as OracleAS Wireless selects the image format appropriate to the user’s device.

Managing Applications

Developing Services 5-7

5.3.3 Creating an Application
You create applications using the Service Manager’s Application Creation Wizard.
The creation process is divided into multiple steps, each of which is presented as a
screen. You need only define the parameters which are required and applicable to
your application; you can skip any unneeded screens (or parameters) and click
Finish to complete your application.

To access the Application Creation Wizard, click Create Application on the
browsing page.

5.3.4 Selecting the Application Type
After you click Create Application, the Application Type screen appears
(Figure 5–3). Using this screen, you select the type of application that you want to
create. There are four types:

■ Multi-Channel Application

For multi-channel applications, the application content is retrieved from the
HTTP adapter. The application result can be transformed and rendered on
multiple device channels, including voice, messaging, and browsers.

■ J2ME Midlet

A MIDlet is an application that runs on a device that supports Java's MIDP
(Mobile Information Device Profile) specification. This application is invoked
when users download a J2ME application, and can be run online and offline
from smart devices.

Menu Icon URI The URI of an image used as the icon that appears next to the folder in a menu
listing. You do not need to specify the format type in this URI, as OracleAS Wireless
selects the image format appropriate to the user’s device.

Title Audio URI The URI of the audio file (for example, a .wav file) read by a voice xml gateway
when users access a folder. You do not need to specify the format type in this URI,
as OracleAS Wireless selects the audio file format appropriate to the gateway.

Menu Audio URI The URI of the audio file (for example, a .wav file) read by a voice xml gateway
along with a folder in a menu listing. You do not need to specify the format type in
this URI, as OracleAS Wireless selects the audio file format appropriate to the
gateway.

Table 5–3 Parameters of the Create Folder Screen

Parameter Value

Managing Applications

5-8 Oracle Application Server Wireless Developer’s Guide

■ Multi-Channel Application

For these applications, the application content can be retrieved from any
adapter, such as the HTTP adapter, or the SQL adapter. The application result
can be transformed and rendered on multiple device channels, including voice,
messaging, and browsers.

■ Web Clipping Application

A Web Clipping application’s content is retrieved from the Web clipping studio,
which can mobile-enable a Web-based application. The application result can be
transformed and rendered on multiple device channels, including voice,
messaging, and browsers

After you select the application type, click Create to launch the application creation
wizard.

Figure 5–3 The Application Type Screen

5.3.5 Creating a Multi-Channel Application
After you select Multi-Channel Application and then click Create, the first page of the
wizard appears, in which you enter the basic information of the application
(Figure 5–4).

Managing Applications

Developing Services 5-9

5.3.5.1 Entering the Basic Information for the Application
Enter a unique name of the application (no two applications residing in the same
folder can have the same name) and optionally, enter the URL pointing to the
remote application which generates OracleAS Wireless XML or XHTML. You do not
have to define the URL if this application is a message template used by a
notification application.

You can complete the application at this point and exit the wizard by clicking
Finish, or you can click Next to further define the application. Clicking Cancel at
any point in an OracleAS Wireless wizard clears any of the values that you have
entered.

Figure 5–4 Entering the Basic Information

5.3.5.2 Entering the Notification-Related Information
Complete the second step of the wizard (Figure 5–5) if this application is based on a
notification (an alert).

Managing Applications

5-10 Oracle Application Server Wireless Developer’s Guide

Select the Notification Enabled option if this application can be invoked by the
notification engine to generate content for the notification message.

After you select the Notification Enabled option:

■ Select a notification from the Notification drop-down list. If none of the listed
notifications suit your needs, then click Create to construct a notification
application using the notification creation wizard. For more information on
notifications, see Section 5.4, "Managing Notifications".

■ Select Use the default messaging URL for the notifications with message template to
use the default messaging generation mechanism. OracleAS Wireless provides a
default application JSP to generate the notification message based on the
notification template. If you select this option along with a notification that
includes a message template, then the default JSP handles the message
generation. You do not need to provide the URL to the mobile application. For
more information, see Section 5.4.1.3, "Step 3: Creating the Message Template".

■ Select Generate Non-Personalized Shared Content so that the mobile application is
invoked only once for each incoming event. In this case, the user information
passed to the mobile application is the system user, and generated content is
shared by the users who are qualified for this event The mobile application can
not perform any special processing for each user and can not generate
personalized message for each user. However, selecting this option improves
performance, since the mobile application is invoked only once for multiple
notifications. For more information on notifications, see Chapter 11,
"Notification Engine".

Click Next or Finish.

Note: While generating content for the notification message, these
applications can invoke business logic which is dictated by the
mobile application (written as a JSP, or in XMXL or XHTML). The
input and output parameters of the notification application can be
mapped to the input parameters of the application and passed to
the Web application so that it can execute the appropriate actions.

Managing Applications

Developing Services 5-11

Figure 5–5 Entering the Notification Information for an Application

5.3.5.3 Entering the Input Parameters for the Application
The Input Parameters screen (Figure 5–6) displays parameters which are passed to
the mobile application (JSP, XHTML, MXML). The parameters for this application
can either be defined in this screen, or by the Content Manager when publishing
this application as an application link. For more information on publishing content,
refer to the OracleAS Wireless Administrator’s Guide.

Managing Applications

5-12 Oracle Application Server Wireless Developer’s Guide

Figure 5–6 The Input Parameters Screen

Creating Parameters that Require Input from the End Users
If you create a parameter that requires a value by leaving the Empty OK check box
clear, and then do not enter a value for this parameter, then OracleAS Wireless
prompts the user for this value at runtime.

Creating Parameters that Can be Modified by the Content Manager
If you select the Modifiable option, then the Content Manager can change this
parameter when creating an application link from this application. If you do not
select this option, then the Content Manager cannot change this parameter.

Managing Applications

Developing Services 5-13

5.3.5.3.1 Adding a New Input Parameter to the Application

To add a new parameter to the application, you first click Add Another Row. You
then define the parameters listed in Table 5–4 and then click Next or Finish.

Figure 5–7 depicts the Input Parameters screen, where you enter the values for the
new input parameter.

Table 5–4 Adding an Input Parameter

Parameter Description

Name The name for the input parameter.

Caption The display label describing the input parameter, which prompts an action or
input from the user.

Type Select an input parameter type, which can be SingleLine, MultiLine, Enum,
Password.

Comment A description for the input parameter.

Modifiable Select this option to enable the Content Manager to change the parameter.

Empty OK Select this option if the input parameter does not require a value.

Value Enter, if needed, a default value for the parameter. If you do not enter a default
value, then Wireless prompts the user for a value (That is, if the parameter is not
also flagged as Empty-OK.)

Mapped Notification
Parameter

Select a parameter from the drop-down list. These parameters are specific to the
master notification you selected in the Notification-Related Information screen.

Managing Applications

5-14 Oracle Application Server Wireless Developer’s Guide

Figure 5–7 Adding an Input Parameter

5.3.5.3.2 Deleting an Input Parameter To delete an input parameter, select the
parameter you want to remove from the input parameter values and then click
Delete.

5.3.5.3.3 Editing an Input Parameter To edit an input parameter, select the parameter
you want to edit from the input parameter values and then click Apply.

5.3.5.4 Entering the Async Information
If you select the Async Enabled option, then this application, when published, can be
accessed through messaging on asynchronous devices. Users invoke the application
by sending a request message to the OracleAS Wireless Server. The Async Listener
then retrieves the message, routes it to the appropriate Async application and then
replies, sending the user a message with the results of the executed request the user
as a message. A complicated Async application can require several round trips for
the message. OracleAS Wireless preserves the session for messages sent from the
same device.

Managing Applications

Developing Services 5-15

You set the Async information by selecting the Async Enabled check box and then by
defining the values described in Table 5–5. Figure 5–8 depicts the Async Info.
screen, where you defined the Async information.

Table 5–5 Defining the Async Information

Parameter Value

Async Command Line
Syntax

Enter the help text that is returned when a user issues an application help
command to the Async Listener. Generally, this help text describes how to invoke
the application by providing the short name of the application or the application’s
command arguments.

Delimiter Enter the delimiter that separates the arguments of this application. The space (" ")
is the default delimiter.

Variable Arg Support Select this option if the number of the arguments passed to the Async application
varies, or exceeds the number of arguments defined in the Async application.

Silent Select this option if the Async application is not required to return the
application result message.

Managing Applications

5-16 Oracle Application Server Wireless Developer’s Guide

Figure 5–8 The Async Information Screen

5.3.5.4.1 Adding the Async Input Parameters You add an input parameter by clicking
Add and then by entering a name for the argument in the Name field. In the Value
field, enter a default value for the argument. Leaving this field blank creates an
application that requests a value from the user.

Click Next or Finish.

5.3.5.5 Setting the Built-In Parameters
The built-in parameters are the predefined HTTP adapter parameters. Because these
parameters default to the correct values, you do not have to configure them.
Figure 5–9 depicts the wizard’s Built-In Parameters screen.

If, however, you need to overwrite these default values:

Managing Applications

Developing Services 5-17

■ Enter the URI to the CatSpeech Server, where the grammars are defined.

■ Enter the base URI to the Audio Library, where the audio library classes are
defined.

■ Enter the full classname for Adapter Invocation Listener, which can be invoked
at the runtime to examine aspects of the runtime status, such as the HTTP
request parameters, before the application is executed.

■ Select true for Do XML Validate, if you want the HTTP adapter to validate the
XML generated by the mobile application. Validation can slow down the
runtime performance.

■ Select true for Send HTTP headers if you would like the HTTP adapter send
information through HTTP headers to the mobile application.

■ Select true for Rewrite Relative URLs if you want the HTTP adapter to rewrite the
URL occurrences in the mobile application JSP, XHTML or MXML files. The
URLs are rewritten to refer to the multi-channel server URL rather than to the
mobile application server itself.

■ Select the HTTP method, (POST or GET). This is the method used by the HTTP
adapter to make the HTTP connection to the mobile application pages.

■ Set the input encoding for the mobile application server. This encoding is used
when HTTP adapter makes the HTTP connection with the mobile application
server. Use IANA character set names.

Click Next or Finish.

Managing Applications

5-18 Oracle Application Server Wireless Developer’s Guide

Figure 5–9 The Built-In Parameters Screen

5.3.5.6 Setting the Caching Information
The Cacheable option enables you to create a cacheable application. For these
applications, the HTTP adapter only retrieves the content from the mobile
application for first time that the application is invoked. For subsequent
invocations, the HTTP adapter retrieves the content from WebCache, not from the
mobile application. As a result, cacheable applications reduce the application
invocation time.

Specify the invalidation frequency (refresh frequency) for application content that is
time-sensitive and becomes obsolete after a certain period of time. For example, if
you specify the invalidation frequency for the Monday of each week at 6:00 am,
then the cached content is invalidated at the time every week. The fresh content is
stored in WebCache the next time that the HTTP adapter retrieves the content from
the application. If you do not wish to store the mobile application content in
WebCache, then do not select the Cacheable option and click Next.

To create an application of which the content can be stored in Web Cache, select the
Cacheable check box (depicted in Figure 5–10) and then enter the frequency of the
caching as a number value, of the unit selected from the Unit drop-down list.

Using the Unit drop-down list, select from among the following time units:

■ Second

Managing Applications

Developing Services 5-19

■ Minute

■ Hour

■ Day

■ Week

■ Month

Using the drop-down lists, select the day and time (if applicable) for the
invalidation frequency.

Click Next or Finish.

Figure 5–10 Setting the Caching Information

5.3.5.7 Setting Additional Information
The final screen of the wizard (Figure 5–11) enables you to set the display module
configuration attributes for the application. Table 5–6 describes the additional
parameters. After you have defined the values, select Finish to complete the master
application.

Managing Applications

5-20 Oracle Application Server Wireless Developer’s Guide

Table 5–6 Additional Parameters for a Multi-Channel Application

Parameter Value

Valid Select this option so that the enable this application, allowing it to be invoked.

Location-Dependent Select the Location-Based check box to create an application with content specific to
a location. If you select this option, you must also select the appropriate region ID
from the list invoked by clicking the flashlight icon.

Modulable Select the Modulable option if you wish to create an application that can be
deployed as a modulable application, one that can be called from other
applications. If you select this option, you must specify the Configuration
URL used to plug in the application link configuration page and the
Customization URL for plugging in the customization page. For more
information, refer to the chapter discussing the Content Manager in the
OracleAS Wireless Administrator’s Guide.

OMP URL Enter the OMP (Oracle Mobile Protocol) URL, which is the unique URL
identifier for locating and invoking this application.

Menu Icon URI Enter the URI of an image used as the icon that appears next to an application
when it becomes the current application.

Title Icon URI Enter the URI of an image used as the icon that appears next to the application in a
menu listing.

Menu Audio URI Enter the URI of the audio file read when users select this application from a
menu.

Title Audio URI Enter the URI of the audio file read in a menu listing.

Sequence Enter a sequence number.

Managing Applications

Developing Services 5-21

Figure 5–11 The Additional Info. Page of the Application Creation Wizard

5.3.6 Creating a J2ME Application
A OracleAS Wireless J2ME (Java 2 Micro Edition) application is a J2ME MIDlet
programmed on top of the J2ME runtime and library. Using the J2ME MIDlet
creation wizard, you can upload a MIDlet to the OracleAS Wireless J2ME
Provisioning Server. The MIDlet can then be downloaded to a PC or to a device
which supports J2ME MIDlets.

The J2ME Midlet creation wizard presents four steps:

■ Entering the Basic Information for the MIDlet

■ Specifying the Deliverable Content

■ Specifying the Device Requirement

Managing Applications

5-22 Oracle Application Server Wireless Developer’s Guide

■ Setting the Additional Information for the MIDlet

You need only enter information that is relevant to your MIDlet. You can skip any
irrelevant information by clicking the Finish button on any wizard page.

5.3.6.1 Entering the Basic Information for the MIDlet
In this first step of the wizard (depicted in Figure 5–12), you define two required
parameters: the a name for the J2ME application, and the URL to the mobile
application which generates the J2ME application download page. By default, the
OracleAS Wireless server provides a default J2ME download page.

Click Next.

Figure 5–12 Entering the Basic Information for a J2ME MIDlet

5.3.6.2 Specifying the Deliverable Content
For a OracleAS Wireless J2ME MIDlet application, the delivery content is the J2ME
MIDlet binary, the core of the application. The delivery content includes a JAD (Java
Archive Descriptor) and a JAR (Java Archive file). Each version of the content is
specific to different device requirements.

Managing Applications

Developing Services 5-23

Entering the Version of the Content
In Step 2 (depicted in Figure 5–13), you enter the version of the content. After you
complete this application, you can create another version of the content for another
device. The application’s name and the version uniquely identify a J2ME MIDlet

You can also optionally enter a display name and description for this version of the
contents.

Importing the JAD and JAR Files
The Import buttons enable you to browse for and select a JAD and JAR file for this
application. To import these files, click the Import button. The Import File window
appears. Click the Browse button, select the file and then click Import.

You can complete the application at this point by clicking Finish. Clicking Next
takes invokes the Device Requirement screen (Figure 5–14).

Figure 5–13 Specifying the Deliverable Contents

Managing Applications

5-24 Oracle Application Server Wireless Developer’s Guide

5.3.6.3 Setting the Device Requirements
The device requirement criteria are evaluated when the J2ME is downloaded to a
device at runtime. Each version of the deliverable content has a different device
requirement.When a device requests the download, the J2ME Provisioning Server
selects the version number with the requirements that match the profile of the
device requesting the application.

The Devices Excluded section enables you to prevent the download of the MIDlet to a
selected device. To exclude devices, use the right arrow buttons (> and >>) to move
devices from the Available Devices pane to the Devices Excluded pane. The devices
listed in Devices Excluded display an error message if users try to download this
MIDlet to these devices. Use the left arrow keys (< and <<) to move devices from
the Devices Excluded pane to the Available Devices pane. Similarly, use the arrow keys
in the Supported Physical Devices section to select the devices or devices that support
downloading this version of content.

Specify heap size requirement for JVM (Java Virtual Machine) running this J2ME
application.

Click Next or Finish.

Note: You cannot select the same device to both be excluded and
supported; OracleAS Wireless automatically excludes a devices
with such contradictory designations.

Managing Applications

Developing Services 5-25

Figure 5–14 Selecting Devices for the Deliverable Contents

5.3.6.4 Setting Additional Information
Defining the parameters of the Additional Information screen (Figure 5–15) enables
you to set the display information for the MIDlet application. Click Finish to
complete the J2ME MIDlet application. Table 5–7 describes these parameters.

Table 5–7 Additional Values for the MIDlet Application

Parameter Value

Description Enter a description for the J2ME application, which appears on the device.

Valid Select this option so that the application can be invoked.

Menu Icon URI Enter the URI of an image used as the icon that appears next to an application
when it becomes the current application.

Title Icon URI Enter the URI of an image used as the icon that appears next to the application in a
menu listing.

Managing Applications

5-26 Oracle Application Server Wireless Developer’s Guide

Figure 5–15 Entering Additional Information for the MIDlet Application

For more information on creating J2ME MIDlet applications, see Chapter 12, "J2ME
Development and Provisioning"

Menu Audio URI Enter the URI of the audio file read when users select this application from a
menu.

Title Audio URI Enter the URI of the audio file read in a menu listing.

Sequence Enter a sequence number.

Table 5–7 Additional Values for the MIDlet Application

Parameter Value

Managing Applications

Developing Services 5-27

5.3.7 Creating a Multi-Channel Application (Based on Any Adapter)
You create a multi-channel application by first selecting Multi-Channel application
(based on any adapter) option from the Application Type screen (Figure 5–3).

5.3.7.1 Step 1: Entering the Basic Information for the Application
From the Browse Folder Screen, click Create Application. The Basic Information
screen of the Application Creation Wizard appears (Figure 5–16). You use this
screen to define the configuration parameters for the application, which are
described in Table 5–8.

Table 5–8 Basic Configuration Parameters for the Application

Note: You must follow the sequence to its end to create an
application; if you exit the wizard at any point by clicking Cancel,
then you lose all of the values that you have entered.

Parameter Value

Name The name of the application.

Description An optional description of the application.

Adapter A drop-down list of available adapters. Note: The SQL adapter and the Web
Integration adapter are deprecated in this release. See OracleAS Wireless
Administrator’s Guide for more information on adapters.

Valid Select the Valid check box to enable the application.

Moduable Clicking this check box creates an application that can be deployed as a module
component within another application. A modulable application can be reused
across applications and provide a consistent user interface for applications requiring
input from end users.

Location-Dependent Select this check box to make the application specific to a designated region. Use
this option to enable location-acquisition at runtime.

Region Name If you select the Location-Dependent option, then you must select a region by clicking
this button.

Language A drop-down list of display languages.

Title Icon URI The URI of an image used as the icon that appears on top of the screen when this
application becomes the current application. You do not need to specify the format
type in this URI, as OracleAS Wireless selects the image format appropriate to the
user’s device.

Managing Applications

5-28 Oracle Application Server Wireless Developer’s Guide

Menu Icon URI The URI of an image used as the icon that appears next to the service in a menu
listing. You do not need to specify the format type in this URI, as OracleAS Wireless
selects the image format appropriate to the user’s device.

Title Audio URI The URI of the audio file (for example, a .WAV file) read by a voice xml gateway
when users access an application. You do not need to specify the format type in this
URI, as OracleAS Wireless selects the audio file format appropriate to the device.

Menu Audio URI The URI of the audio file (for example, a .WAV file) read by a voice XML gateway
along with the application in a menu listing. You do not need to specify the format
type in this URI, as OracleAS Wireless selects the audio file format appropriate to
the device.

Title Icon URI The URI of an image used as the icon that appears on top of the screen when this
application becomes the current application. You do not need to specify the format
type in this URI, as OracleAS Wireless selects the image format appropriate to the
user’s device.

Sequence The integer value that you enter in this field lets you alter the order in which
services and folders appear on output devices. By default, these appear in order by
sequence number, then by name. You can enter values in the sequence fields to
rearrange the order in which the services and folders appear.

Parameter Value

Managing Applications

Developing Services 5-29

Figure 5–16 The Basic Info. Screen of the Application Creation Wizard

5.3.7.2 Step 2: Entering Caching Information
Select the Cacheable check box (depicted in Figure 5–17) for an application with
changing content. When selected, this option saves the adapter invocation and
transformation. If you create a cacheable application, then you must also specify the
frequency at which the OracleAS Wireless server notifies the cache that a Web page
has changed by issuing an invalidation report. To define the invalidation frequency,
enter an integer value in the Cardinal field and use the screen’s drop-down lists to
further define the time interval. If you do not wish to create applications that can be
cached, then leave the Cacheable check box clear, and click Next.

Click Next. The Initialization (Init) Parameters screen appears.

Managing Applications

5-30 Oracle Application Server Wireless Developer’s Guide

Figure 5–17 The Caching Information Screen of the Application Creation Wizard

5.3.7.3 Step 3: Entering the Initialization Parameters of the Application
The Init Parameters screen contains the initialization (init) parameters for the
adapter that you selected in Step 2. Not all adapters have init parameters. Enter the
values for the init parameters and then click Next. If the selected adapter does not
contain init adapters, click Next.

If you want to plug in a listener for such purposes as debugging, specify the listener
class in the HttpAdapterInvokerListener field. These listener methods are called at
the following times:

■ When the HTTP adapter invocation starts.

■ Before the connection to a remote JSP.

Note: The SQL adapter and the Web Integration adapter are
deprecated in this release.

Managing Applications

Developing Services 5-31

■ After the connection to the remote JSP.

■ At the end of the HttpAdapter invocation.

■ When errors occur.

5.3.7.4 Step 4: Selecting the Input Parameters for the Application
The Input Parameters screen (Figure 5–18) displays the input parameters for the
adapter that you selected in Step 1. The Application Creation Wizard queries the
adapter definition to determine the parameters that appear in this screen. Table 5–9
describes the input parameters for applications using the HTTP Adapter and the
OC4J Adapter.

Note: You must specify the classpath in the OC4J
config/application XML file or you must copy the JAR file to
wireless/lib.

Table 5–9 Input Parameters for the HTTP Adapter and the OC4J Adapter

Parameter Value

Name The name of the input parameter. The OracleAS Wireless Service Creation
Wizard sets the name of the input parameter by querying the adapter definition.

Comment For applications based on the Web Integration adapter, OracleAS Wireless
automatically populates this field with the name of the WIDL service that uses
the parameter.

For applications based on other adapters, you can use this field to document the
parameter. The comment is only used internally.

Mandatory Select this check box if this parameter must have a value. Do not select this
option for that do not require a value (such as an optional parameter).

Default Value For most parameters, this value represents the default value for the parameter. If
you specify a default value, OracleAS Wireless does not prompt the user for a
value. Default values can be overridden by a value specified by an application
link created by the Content Manager, if the parameter is visible to the user, by
the user with OracleAS Wireless Customization.

The PAsection parameter is used by the Web Integration adapter. For
PAsection, this value is the name of the WIDL service that the Web service
should use. You can select the names from a drop-down selection list. If you do
not specify a value for PAsection, OracleAS Wireless service includes all WIDL
services in the WIDL interface.

Managing Applications

5-32 Oracle Application Server Wireless Developer’s Guide

The Input Parameters screen enables you to select an input parameter as well as
add and delete input parameters to the adapter implementation for this application.

Selecting an Input Parameter
To select an input parameter for the application, click the Select radio button next to
the input parameter you want to use and then click Next.

Adding a New Input Parameter to the Adapter
To add a new parameter to the adapter you selected in Step 1, click Add Another
Row. Enter the values for the parameters described in Table 5–9, "Input Parameters
for the HTTP Adapter and the OC4J Adapter" and then click Next.

See OracleAS Wireless Administrator’s Guide for information on the parameters for
the SQL Adapter and WebIntegration Adapter.

Deleting an Input Parameter
To delete an input parameter, select the parameter you want to remove from the
adapter implementation of this application and then click Delete. Click Next.

Managing Applications

Developing Services 5-33

Figure 5–18 The Input Parameters Screen of the Application Creation Wizard

Setting the Input Parameters for the HTTP Adapter
The HTTP adapter retrieves remote content and delivers it as mobile
XML.Table 5–10 describes the input parameters for the HTTP adapter.

Managing Applications

5-34 Oracle Application Server Wireless Developer’s Guide

5.3.7.5 Step 5: Selecting the Output Parameters for the Application
The Output Parameters screen enables you to select the output parameters for the
adapter that you selected in Step 1, or to add output parameters to the application.
The Application Creation Wizard queries the adapter definition to determine the
parameters that appear in this screen.

Table 5–10 Input Parameters for the HTTP Adapter

Parameter Description

URL The URL to the data source. If there is a query in the URL, then its characters and
URL must be encoded as follows:
http://my.host.com:80/Hello.jsp?fn=First+Name&ln=Last+Name

This is a mandatory parameter.

REPLACE_URL Whether the adapter should replace the relative URLs inside the result with
absolute ones. You should set this parameter to false only if you are sure that there
will be no relative URLs inside the result. The default value is true.

FORM_METHOD The HTTP method used by the adapter to retrieve the content of the URL.The
supported methods are GET and POST. The default method is GET.

INPUT_ENCODING The encoding scheme of the remote Web server. Use IANA character set names (for
example: ISO-8859-1, UTF-8) to define this value.

Note: You do not need to define output parameters for
applications using the HTTP adapter and the OC4J adapter.

Managing Applications

Developing Services 5-35

Table 5–11 describes the output parameters for adapters.

To select an output parameter, use the radio buttons to select the appropriate output
parameter and then click Apply. To delete an output parameter, select the output
parameter and click the Delete button.

Adding a New Output Parameter to the Adapter
After you have finished adding or deleting the output parameters for the adapter,
click Next. The Confirmation screen appears if OracleAS Wireless has not found a
PASection in the application you have created. Review the values listed on the
Confirmation screen. If they are correct, click the Finish button to complete the
master application.

If the master application contains a PASection, the Create Result Transformer
screen appears.

5.3.7.6 Step 6: Creating an Async Agent Service—Optional
By assigning Async Agent to an application, you create an application that can be
accessed by protocols other than HTTP.

To set the values for an Async Agent application, you first select the Async Agent
check box. In the Async Command Line Syntax field, enter the text that is returned

Table 5–11 Output Parameters for Adapters

Parameter Value

Name The name of the output parameter. The Application Creation Wizard sets the
name of the output parameter by querying the adapter definition.

Caption A label describing the parameter which OracleAS Wireless uses to prompt user
input.

Comment For applications based on the Web Integration adapter, OracleAS Wireless
automatically populates this field with the name of the WIDL service that uses
the parameter.

For applications based on other adapters, you can use this field to document the
parameter. The comment is only used internally.

User Customizable Specifies whether the end user can set a value for this parameter. You can make
most input parameters customizable by the user.

Managing Applications

5-36 Oracle Application Server Wireless Developer’s Guide

when a user issues an application help command to the Async Server. In the
Delimiter field, enter the delimiter parameters for the Async Agent service.

Complete the Async Application Argument List section as follows:

1. Click Add Another Row.

2. In the Name field, enter a name for the argument.

3. Enter a number to represent the sequence in which the argument appears on the
command line.

4. Enter a default value for the argument. Leaving this field blank creates an
application that requests a value from the user.

5. Click Next.

5.3.7.7 Step 7: Selecting the Result Transformer—Optional
After you have set the output parameters for the adapter, OracleAS Wireless checks
if the input parameters include PASection, the value used by the WIDL adapter to
identify the service that is the entry point in the chained service sequence. If the
Application Creation Wizard finds a PASection input adapter, it invokes the
Result Transformer screen.

The transformer screen enables you to select a transformer for the adapter or add a
new one by importing the XSLT stylesheet from your local file system.

To select a transformer for the adapter you selected in Step 1, use the radio buttons
and then click Apply. To delete a transformer from the adapter, select the
transformer using the Select radio button and click Delete.

Importing an XSLT Style Sheet
1. Click the tab that represents the PASection that you want to edit. Each panel

contains a text editor for entering the XSLT style sheet. You can also import an
XSLT style sheet by clicking the import button.

Note: The space (" ") is the default delimiter.

Note: You can skip this step if you selected an adapter that returns
Mobile XML.

Managing Applications

Developing Services 5-37

2. Click Next after you have completed editing the XSLT style sheet. The Device
Transformer Screen appears. Leave this screen blank if you do not wish to create
a result transformer and click Next until you reach the Confirmation screen.

3. If the values appear correct, click Finish to complete the creation of the
application.

Adding a New Result Transformer
To add a new result transformer:

1. Enter a name for the transformer in the Name field.

2. Click the Import button to retrieve the XSLT stye sheet from your local file
system. The style sheet then appears in the Content window.

3. Make any needed changes to the style sheet.

4. Click Add.

5. Click Finish to complete the creation of the master service.

You have created an application. This master service is not visible to users until the
Content Manager publishes an application based upon it to user groups.

5.3.8 Creating a Web Clipping Application
The Wireless Web Clipping server enables Wireless Service Administrators to clip
and scrape Web content and create Wireless Web Clipping applications that are
stored persistently in the Wireless Web Clipping server repository. When a mobile
device user requests Wireless Web Clipping application, the HTTP Adapter
retrieves the application and delivers it to OracleAS Wireless for processing and
delivery to the mobile device.

From the Service Manager, you access the Web Clipping Manager, which enables
you to create, edit, delete web clippings, or download the mobile application for the
clipping as a Java application or a JSP. You can create a default application based on
an existing web clipping. After the mobile application is created, the clipped portion
of the web application can be invoked from multiple mobile devices. For more
information, see Chapter 13, "Web Scraping".

On the first page of application wizard, you can select Web Clipping Application
type. The Web clipping manager page displays after you click Create. Select an
existing Web clipping and then click Create Default Application. A new
application is created based on the Web clipping.

Managing Applications

5-38 Oracle Application Server Wireless Developer’s Guide

5.3.9 Editing an Application
The Edit button in the application browsing screen enables you to edit all the all of
the information for an application, from the basic information to the additional
information. To edit an application, select an application in the browsing screen and
then click Edit. The Basic Info. editing page appears (Figure 5–19), with its fields
populated with the values set for the select application. From the left panel of the
left panel of the editing screen, you can select the values that you want to edit, such
as those for the basic configuration, initialization parameters, input parameters,
output parameters, and the Async properties. After you modify a value, click Apply
to save your changes. Clicking Cancel sets the values back to their original state.
For more information on the parameters that you edit, see Section 5.3.3, "Creating
an Application".

Figure 5–19 The Basic Info. Screen for Editing Applications

When you edit a J2ME application, you can edit the values for the JVM, the profile,
and the maximum download size for the device requirement. Figure 5–20 depicts
the Basic Info. screen for editing a J2ME application.

Managing Applications

Developing Services 5-39

Figure 5–20 Editing a J2ME Application

5.3.10 Deleting an Application
To delete an application, select the application from the application browsing screen
and then click Delete.

5.3.11 Debugging an Application
The Service Manager enables you to simultaneously view an application on a phone
simulator and in OracleAS Wireless XML or device.

Transformers, in the form of XSLT stylesheets or Java classes, convert the content
returned by OracleAS Wireless adapters into the format best suited to a particular
platform.

To test an application:

1. From the applications browsing screen, select an application.

2. Click Debug. The Debug Service screen appears.

3. Select from among the following output formats:

■ Adapter XML Result

Selecting this result type enables you to see OracleAS Wireless source
content in the AdapterResult format, the intermediary format between the
source and the target output device. Source content in the AdapterResult

Managing Notifications

5-40 Oracle Application Server Wireless Developer’s Guide

format must be converted into SimpleResult format before it can be
delivered to a target device. If no text displays in the The Result panel, then
no AdapterResult has been produced.

■ OracleAS Wireless XML Result

Selecting OracleAS Wireless XML Result displays the source content in
OracleAS Wireless’ SimpleResult format of the output that is returned by an
adapter.

■ Device Result

The DeviceTransformer drop-down menu lists the devices in the repository.
Selecting a logical device enables you to see the final markup language for
that device.

4. Click Set Parameters.

5. Click Run Application. The application appears on a phone simulator. The
selected result appears in the Application Result window.

5.3.12 Quick Publishing an Application
After testing and debugging an application, you can publish the application to your
home folder as an application link rather than having the application published
through the Content Manager. After you publish the application to your home
folder, you can view it through the Device portal.

To publish an application to your home folder, you first select the application from
the browsing screen and then click Quick Publish. Enter the name of the
application link and then click Create.

5.3.13 Moving Folders and Applications
The Service Manager’s Move function enables you to organize your applications
and folders.

To move an application, you first select the folder or application and then click
Move. The Move screen appears.Select a new location from the list in the Move
screen. Click Move Here.

5.4 Managing Notifications
The Notifications tab of the Service Manager enables you to create, edit and delete
notifications (alerts). When you select the Notifications tab, the Browse

Managing Notifications

Developing Services 5-41

Notifications screen appears (Figure 5–21), displaying a list of the current
notifications. The Browse screen organizes the notifications by name, OID,
datafeeder and time values. Table 5–12 describes the elements of the browsing
screen.

Figure 5–21 The Browse Notifications Screen

The Basic Info. screen includes the following parameters:

5.4.1 Creating a Master Notification
The Notification Creation Wizard steps you through the creation of a master
notification. This wizard, invoked by clicking the Create Notification button in the
browsing screen, provides a separate screen for each step of the process.

Table 5–12 Elements of the Browse Notifications Screen

Element Description

Name The name of the notification.

Object ID The ID of the notification in the database.

Data Feeder The data feeder, or content source, used for the notification.

Time-Based Enabled Denotes a notification that displays at predetermined times.

Managing Notifications

5-42 Oracle Application Server Wireless Developer’s Guide

5.4.1.1 Step 1: Entering the Basic Configuration Parameters for the Notification
You define the following configuration parameters for the notification in the Basic
Info. screen (Figure 5–21), the first screen in the notification creation wizard.
Table 5–13 describes the parameters of the Basic Info. screen.

Note: Once you create a notification, you then map it to an
application to enable the System Manager to attach this notification
to a notification engine process. The notification becomes active
once the System Manager starts both the notification engine process
and the data feeder engine process.

Table 5–13 Basic Configuration Parameters for a Notification

Parameter Value

Name The name of the notification. This is a required parameter.

Description A description of the notification.

Subscriber Filtering
Hook

A Java class name. This hook enables you to filter out subscribers to the qualified
notifications before these notifications are sent to the messaging server.

Value-Based Specifies whether this notification triggers upon the receipt of an event.

Data Feeder A drop-down list of data feed sources. If this notification is value-based, then the
value entered in this field must point to a data feeder.

Location-Based Enabled Specifies whether this notification triggers upon verification of location conditions.

Time-Enabled Specifies whether this notification triggers at predetermined times. The frequency
options are daily, week day, and weekend. The user profile provides the time zone
information.

Managing Notifications

Developing Services 5-43

Figure 5–22 The Basic Information Screen of the Master Notification Creation Wizard

Click Next. The Trigger Conditions screen appears (Figure 5–23).

5.4.1.2 Step 2: Setting the Trigger Conditions for the Notification
The Trigger Condition screen enables you to set the conditions that invoke a
notification on end users’ devices. For example, if you create a notification that
alerts users of a stock price, you set the conditions that allow an end user to request
a notification when the stock has risen above, or fallen below, a certain price.

Table 5–14 describes the parameters of the Trigger Conditions screen.

Managing Notifications

5-44 Oracle Application Server Wireless Developer’s Guide

Setting the Relationship Between Trigger Conditions
Select an AND relationship (both conditions must be met) or an OR relationship
(any of the conditions must be met).

Selecting a Trigger Condition
To select a trigger condition:

1. From the list of trigger conditions, select the trigger condition.

2. Edit the Condition Type, Trigger Parameter, or Default Value fields as needed.

3. Click Apply.

Adding a New Trigger Condition
To add a new Trigger Condition

1. Enter the name for the trigger condition in the Condition field.

2. Enter text used for prompting input from end users in the Caption field.

3. Select a trigger parameter from the drop-down list in the Trigger Parameter
field.

Table 5–14 Trigger Conditions for Notifications

Parameter Value

Condition Name The name of the alert trigger for the notification. The Trigger name, which is limited
to 30 characters, must contain only alphanumeric characters and an underscore. In
addition, the trigger name cannot start with a numeric character and cannot use
SQL reserved words. End users see this label when they subscribe to a notification
application.

Trigger Parameter The trigger parameter is an element in a data feeder that you define a trigger
condition against. For example, if a data feeder for a stock alert service includes an
output parameter of stock price, you could select stock price as the trigger parameters
for a condition name. For information on setting the output parameters of a data
feeder, see Section 5.6.2.4, "Editing the Output Parameters of a Data Feeder".

Condition Type The condition, in relation to the value set by the end user, which triggers the
notification.

Default Value The default value for the parameter. If you specify a default value, OracleAS
Wireless does not prompt the user for a value. Default values can be overridden by
a value specified by an application created by the Content Manager or, if the
parameter is visible to the user, by the user through OracleAS Wireless
Customization.

Managing Notifications

Developing Services 5-45

4. Select a Condition Type from the drop-down list in the Condition Type field.
Condition types depend on the data type of the trigger parameter.

 If the data type is a number, then the conditions include:

■ Less Than

■ Greater Than

■ Equal

■ Less Than and Equal

■ Greater Than and Equal

■ Less Than Absolute Value

■ Greater Than Absolute Value

■ Equal Absolute Value

■ Less Than and Equal Absolute Value

■ Greater Than and Equal Absolute Value

■ Value Change (The condition value for this type can only be 0 or 1, where 0
means no trigger and 1 means trigger when value changes. The default value is
0.)

If the data type is text, then the condition types include:

■ Exact Match

■ Not Match

■ Contain

■ Not Contain

■ Begin With

■ End With

■ Value Change (The condition value for this type can only be 0 or 1, where 0
means no trigger and 1 means trigger when value changes. The default value is
0.)

5. Enter a default value for the trigger condition in the Default Value field.

6. Click Add.

7. Click Next. The Message Template screen appears.

Managing Notifications

5-46 Oracle Application Server Wireless Developer’s Guide

Figure 5–23 Setting the Trigger Conditions

5.4.1.3 Step 3: Creating the Message Template
The Message Template screen (Figure 5–24) enables you to create a message
template by entering SimpleText stylesheet. In this stylesheet, the data feeder
output values are the dynamic values. The following stylesheet represents these
values as sym, price and change.

<SimpleResult>
 <SimpleContainer>
 <SimpleText>
 <SimpleTitle>OracleAS Wireless</SimpleTitle>
 <SimpleTextItem>Notification with price: $price; and change: $change: for
stock: &sym;</SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

Managing Notifications

Developing Services 5-47

Figure 5–24 The Message Template Screen

5.4.2 Editing a Notification
The Edit button in the Browse Notifications screen enables you to edit the basic
configuration parameters, trigger conditions, and message template for a
notification. To edit a notification, you first select one from the browsing screen and
then click Edit. The Basic Info. screen for editing a notification appears, with its
fields populated by the values set for the selected notification (Figure 5–25). Click
Apply to save your changes. Clicking Cancel sets the values back to their original
state. See Section 5.4.1, "Creating a Master Notification" for information on defining
the parameters for the notification.

Note: OracleAS Wireless will not commit any of the values that
you have entered until you complete the entire wizard.

Managing Master Alerts (Deprecated)

5-48 Oracle Application Server Wireless Developer’s Guide

Figure 5–25 The Basic Info. Screen for Editing a Notification

5.5 Managing Master Alerts (Deprecated)
The Alerts tab of the Service Manager enables you to create, edit and delete master
alerts. When you select the Alerts tab, the Browse Alerts screen appears, displaying
a list of the current master alerts, organized by name, OID, data feeder and time
values (Figure 5–26). Table 5–15 describes the elements of the browsing list for the
master alerts.

Table 5–15 Elements of the Browse Master Alerts Screen

Element Description

Name The name of the master alert.

Object ID The ID of the alert in the database.

Data Feeder The data feeder, or content source, used for the master alert.

Time-Based Enabled Denotes an alert that displays at predetermined times.

Managing Master Alerts (Deprecated)

Developing Services 5-49

Figure 5–26 The Browse Master Alerts Screen

5.5.1 Creating a Master Alert
The Master Alert Creation Wizard steps you through the creation of a master alert.
This wizard, invoked by clicking the Create Master Alert button in the Browse
Master Alerts screen, provides a separate screen for each step of the process. The
master alert becomes active once the System manager starts the both alert engine
process and the data feeder engine process.

5.5.1.1 Step 1: Entering the Basic Configuration Parameters for the Master Alert
You enter the basic configuration parameters for the master alert in the Basic Info.
screen, the first in the master alert creation sequence (Figure 5–27).

Figure 5–27 The Basic Info Screen of the Master Alert Creation Wizard

Managing Master Alerts (Deprecated)

5-50 Oracle Application Server Wireless Developer’s Guide

Table 5–16 describes the parameters of the The Basic Info. screen.

Click Next. The Trigger Conditions screen appears (Figure 5–28).

Figure 5–28 The Trigger Conditions Screen of the Master Alert Creation Wizard

5.5.1.2 Step 2: Setting the Trigger Conditions for the Master Alert
The Trigger Condition screen enables you to allow end users to set the conditions
that invoke an alert on end users’ devices. For example, if you create an alert
notifying users of a stock price, you can to set the alert conditions that allow an end
user to request a notification when the stock has risen above, or fallen below, a
certain price. Table 5–17 describes the parameters of the Trigger Condition screen

Table 5–16 Basic Configuration Parameters for a Master Alert

Parameter Value

Name The name of the alert. This is a required parameter.

Description A description of the alert.

Subscriber Filtering Hook A Java class name. This hook enables you to filter out subscribers to the
qualified alerts before these alerts are sent to the messaging server.

Data Feeder A drop-down list of data feed sources. This is a required parameter.

Time-Enabled Specifies whether this alert triggers at predetermined times. The frequency
options are daily, week day, and weekend. The time zone information is taken
from the user profile.

Managing Master Alerts (Deprecated)

Developing Services 5-51

Selecting a Trigger Condition
To select a trigger condition:

1. From the list of trigger conditions, select the trigger condition.

2. Edit the Condition Type, Trigger Parameter, or Default Value fields as needed.

3. Click Apply.

Adding a New Trigger Condition
To add a new Trigger Condition

1. Enter the name for the trigger condition in the Condition field.

2. Enter text used for prompting input from end users in the Caption field.

3. Select a trigger parameter from the drop-down list in the Trigger Parameter
field.

4. Select a Condition Type from the drop-down list in the Condition Type field.
Condition types depend on the data type of the trigger parameter.

 If the data type is a number, then the conditions include:

■ Less Than

Table 5–17 Trigger Conditions for Master Alerts

Parameter Value

Condition Name The name of the alert trigger for the master alert. The Trigger name must contain
only alphanumeric characters and underscore and must be within 30 characters. In
addition, the trigger name cannot start with a numeric character and cannot use
SQL reserved words. End users see this label when they subscribe to an alert
service.

Trigger Parameter The trigger parameter is an element in a data feeder that you define a trigger
condition against. For example, if a data feeder for a stock alert service includes an
output parameter of stock price, you could select stock price as the trigger parameters
for a condition name. For information on setting the output parameters of a data
feeder, see Section 5.6.2.4, "Editing the Output Parameters of a Data Feeder".

Condition Type The condition, in relation to the value set by the end user, which triggers the alert.

Default Value The default value for the parameter. If you specify a default value, OracleAS
Wireless does not prompt the user for a value. Default values can be overridden by
a value specified by an application created by the Content Manager or, if the
parameter is visible to the user, by the user through OracleAS Wireless
Customizing.

Managing Master Alerts (Deprecated)

5-52 Oracle Application Server Wireless Developer’s Guide

■ Greater Than

■ Equal

■ Less Than and Equal

■ Greater Than and Equal

■ Less Than Absolute Value

■ Greater Than Absolute Value

■ Equal Absolute Value

■ Less Than and Equal Absolute Value

■ Greater Than and Equal Absolute Value

■ Value Change (The condition value for this type can only be 0 or 1, where 0
means no trigger and 1 means trigger when value changes. The default value is
0.)

If the data type is text, then the condition types include:

■ Exact Match

■ Not Match

■ Contain

■ Not Contain

■ Begin With

■ End With

■ Value Change (The condition value for this type can only be 0 or 1, where 0
means no trigger and 1 means trigger when value changes. The default value is
0.)

5. Enter a default value for the trigger condition in the Default Value field.

6. Click Add.

7. Click Next. The Message Template screen appears.

5.5.1.3 Step 3: Creating the Message Template for the Master Alert
The Message Template screen (Figure 5–29) enables you to either import a message
template or provide a hook. The data feeder output values are the dynamic values
in the SimpleText stylesheet. The following stylesheet represents these values as
&price and &change.

Managing Master Alerts (Deprecated)

Developing Services 5-53

<SimpleText> Stock Alert for [&sym;]: Price: &price; Change:
&change;</SimpleText>

Figure 5–29 The Message Template Screen of the Master Alert Creation Wizard

Importing a Message Template
To import a message template:

1. Select the Message Template radio button.

2. Click Import to retrieve a message template from your local file system.

3. Click Next to complete the creation of the master alert.

Providing a Hook
To create a message template by providing a programming hook:

1. Select Java Template Class Name.

2. Enter the name of the hook.

Note: OracleAS Wireless will not commit any of the values that
you have entered until you complete the entire wizard.

Managing Data Feeders

5-54 Oracle Application Server Wireless Developer’s Guide

3. Click Next to complete the creation of the master alert.

5.5.2 Editing a Master Alert
The Edit button in the Browse Master Alerts screen enables you to edit the basic
configuration parameters, trigger conditions, and message template for a master
alert.

To edit the basic configuration parameters of a master alert, select a master alert
from the browsing screen and then click Edit. The Basic Info. screen for editing a
master alert appears, with its fields populated by the values set for the selected
master alert (Figure 5–30). Edit the basic configuration values as needed. See
Section 5.5.1.1, "Step 1: Entering the Basic Configuration Parameters for the Master
Alert" for more information on the basic configuration parameters of a master alert.
Click OK to save your changes. Clicking Cancel sets the values back to their
original state and returns you to the Browse Master Alerts screen.

Figure 5–30 The Basic Info. Screen for Editing a Master Alert

5.6 Managing Data Feeders
The Service Manager’s Data Feeder tab (Figure 5–31) enables you to create, edit,
and delete data feeders, OracleAS Wireless objects that download data from an
internal or external content source and converts that data into a common format for
OracleAS Wireless mobile alerts.

Managing Data Feeders

Developing Services 5-55

Figure 5–31 The Browse Data Feeders Screen

Clicking the Data Feeders tab displays the browse data feeders screen, which lists
the current data feeders. Table 5–18 describes the elements of the data feeder list.

5.6.1 Creating a Data Feeder
The Data Feeder Creation Wizard enables you to create a data feeder. This wizard,
invoked by clicking the Create Data Feeder button in the Browse Data Feeders
screen, steps you through the creation of a data feeder by providing a separate
screen for each phase of the process. Once you create a data feeder, you can assign it
to a master alert. A data feeder (and consequently the alert that derives its content
using the data feeder) cannot become active until a user with the System Manager
starts the data feeder process.

Table 5–18 Elements of the Browse Data Feeders Screen

Element Description

Name The Name of the data feeder.

Object ID The Object ID (OID) of the data feeder in the repository.

Protocol Type The protocol used by the data feeder to access the content provider and
retrieve data.

Format Type The data format type for the retrieved content. Format include delimited text
(such as comma-separated values), XML, and fixed-column text.

Data Filter Hook The Java class name that implements the DataFeedFilterHook, which
enables post-processing before storing the data.

Download Hook A Java class name that implements the FeedDownloadHook.Implementing
this Java interface implemented enables you to construct the download URL
or POST page during download.

Managing Data Feeders

5-56 Oracle Application Server Wireless Developer’s Guide

5.6.1.1 Step 1: Entering the Basic Information for the Data Feeder
The Basic Info screen of the Data Feeder Creation Wizard (Figure 5–32) enables you
enter the basic properties for the data feeder.

Figure 5–32 The Basic Info. Screen of the Data Feeder Creation Wizard

Table 5–19 describes the parameters of the The Basic Info. screen of the Data Feeder
Creation Wizard.

Managing Data Feeders

Developing Services 5-57

Table 5–19 Parameters of the Basic Info. Screen of the Data Feeder Creation Wizard

Parameter Value

Name The name of the content provider. This is a required parameter.

Type Select Regular if you use the built-in data retrieval framework to pull the data. Select
Pass-Through for a push application using a Java class to retrieve the data. If you
select Pass-Through, then you must specify a Java class. This is a required parameter.

Protocol Type The protocol used by the data feeder to access the content provider and retrieve
data. The drop-down menu includes the following options:

■ sql—SQL Database. Runs a SQL query against the specified data feed and reads
the output.

■ app—Local Application. Runs an application as a subprocess and then reads
the .stdout file.

■ http—HTTP. Construct the URL, performs the GET/POST on the remote Web
site and authenticates if necessary

■ ftp—FTP. Connects to the remote Web server, and then authenticates and
downloads files. Requires a username and password.

■ file—Local File. Reads from an arbitrary file in the file system.

Format Type The data format type for the retrieved content. The drop-down menu includes the
following options:

■ delimited—Parses delimited text. The default delimiter is the comma (,).

■ fixed—Fixed Column Text. Parses text delimited by fixed column positions.

■ xml—The preferred input format.

Data Filter Hook A Java class name. This option enables you to customize a data feeder for additional
logic, such as splitting a single column from a provider into two columns or filtering
out content data before feeding the data to the content cache table.

Download Hook A Java class name. This option enables you to customize a data feeder by generating
a new URL to download data.

Null Value A string used to mark non-applicable data, such as N/A. Different providers use
different strings.

Start Time The time to start downloading data.

End Time The time to stop downloading data.

Managing Data Feeders

5-58 Oracle Application Server Wireless Developer’s Guide

Click Next. The Init Parameters screen appears, displaying init parameters for the
protocol type you selected.

5.6.1.2 Step 2: Entering the Initialization Parameters for the Data Feeder
The Initialization (Init) Parameters screen displays the initialization parameters
specific to the protocol and format type you selected in Section 5.6.1.1. Table 5–20
describes these init parameters.

Update Interval The interval (in seconds) between downloads. Set this value to 0 if you want only
one download interval per day.

Batch Size The batch size for the download. If you set the size to one (1), OracleAS Wireless
downloads one parameter at a time; if you set the size to ten (10), then OracleAS
Wireless downloads ten parameters at one time.

Update Days The days designated for updating data.

Table 5–20 Initialization Parameters for Data Feeder Protocols

Parameters Description

The http protocol includes the following init parameters:

HTTP URI The full path for the HTTP address of the content source.

Username The user name. Enter this value if you retrieve data from a protected site.

Password The password. Enter this value if you retrieve data from a protected site.

HTTP Method Select either the GET or POST methods.

The file protocol includes the following init parameters:

File Path A file path, such as c:\temp\file.txt

The FTP protocol includes the following init parameters:

FTP URI The path for the FTP request.

Username The user name

Password The password.

FTP Mode Select either the Text or Binary mode.

The SQL protocol has the following init parameters:

Connect String The database connect string.

Table 5–19 Parameters of the Basic Info. Screen of the Data Feeder Creation Wizard

Parameter Value

Managing Data Feeders

Developing Services 5-59

5.6.1.3 Entering the Init Parameters for the HTTP Protocol
To enter the init parameters for a data feeder using the HTTP protocol and the XML
format type:

1. Enter the HTTP URI of the content source.

2. Enter a user name.

3. Enter a password.

4. Select either the GET or POST HTTP methods.

5. If the feed ingests XML, then you must import an XSL stylesheet that converts
the XML to standard feed XML format.

6. Click Next. The Input Parameters screen appears.

To enter init parameters for a data feeder using the HTTP Protocol and the
delimited format:

1. Enter the HTTP URI of the content source.

2. Enter a user name.

3. Enter a password.

4. Enter the delimiter for the format type. For example, enter a comma (,).

5. Enter a quote character for the format type you selected. For example, enter
quotation marks (").

6. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the HTTP protocol and the fixed
column format:

1. Enter the HTTP URI of the content source.

2. Enter a user name.

3. Enter a password.

Query The SQL query.

The File protocol has the following init parameters:

File Path The file path of a content source.

Table 5–20 Initialization Parameters for Data Feeder Protocols

Parameters Description

Managing Data Feeders

5-60 Oracle Application Server Wireless Developer’s Guide

4. Select either the GET or POST HTTP methods.

5. Click Next. The Input Parameters screen appears.

5.6.1.4 Entering the Init Parameters for the File Protocol
To enter the init parameters for a data feeder using the file protocol and the XML
format:

1. Enter the file path. For example, enter c:\temp\file.txt.

2. If the feed ingests XML, then you must import an XSL stylesheet that converts
the XML to standard XML.

3. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the file protocol with the
delimited format:

1. Enter the file path.

2. Enter the delimiter for the format type. For example, enter a comma (,).

3. Enter a quote character for the format type you selected. For example, enter
quotation marks (").

4. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the file protocol and the fixed
column format:

1. Enter the file path.

2. Click Next. The Input Parameters screen appears.

5.6.1.5 Entering the Init Parameters for the FTP Protocol
To enter the init parameters for a data feeder using the FTP protocol and the XML
format:

1. Enter the FTP URI.

2. Enter the user name.

3. Enter the password.

4. Select either the Text or Binary FTP mode.

5. If the feed ingests XML, then you must import an XSL stylesheet that converts
the XML to standard XML.

Managing Data Feeders

Developing Services 5-61

6. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the FTP protocol and the
delimited format:

1. Enter the FTP URI.

2. Enter the user name.

3. Enter the password.

4. Select either the Text or Binary mode.

5. Enter the delimiter for the format type. For example, enter a comma (,).

6. Enter a quote character for the format type you selected. For example, enter
quotation marks (").

7. Click Next. The Input Parameters screen appears.

To enter init parameters for a data feeder using the FTP protocol and the fixed
column format:

1. Enter the FTP URI.

2. Enter the user name.

3. Enter the password.

4. Select either the Text or Binary FTP mode.

5. Click Next. The Input Parameters screen appears.

5.6.1.6 Entering the Init Parameters for the SQL Protocol
To enter the init parameters for a data feeder using the SQL protocol and the XML
format:

1. Enter the connect string.

2. Enter a SQL query.

3. If the feed ingests XML, then you must import an XSL stylesheet that converts
the XML to standard XML.

4. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the SQL protocol and the
delimited format:

1. Enter the connect string.

Managing Data Feeders

5-62 Oracle Application Server Wireless Developer’s Guide

2. Enter a query.

3. Enter the delimiter for the format type. For example, enter a comma (,).

4. Enter a quote character for the format type you selected. For example, enter
quotation marks (").

5. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the SQL protocol and the fixed
column format:

1. Enter the connect string.

2. Enter a query.

3. Click Next. The Input Parameters screen appears.

5.6.1.7 Entering the Init Parameters for the Application Protocol
To enter the init parameters for a data feeder using the application protocol and the
XML format:

1. Enter the command line.

2. If the feed ingests XML, then you must import an XSL stylesheet that converts
the XML to standard XML.

3. Click Next. The Input Parameters screen appears.

To enter the init parameters for a data feeder using the application protocol and the
delimited format:

1. Enter the command line.

2. Enter the delimiter for the format type. For example, enter a comma (,).

3. Enter a quote character for the format type you selected. For example, enter
quotation marks (").

4. Click Next. The Input Parameters screen appears.

To enter init parameters for a data feeder using the application protocol with the
fixed column format:

1. Enter the command line.

2. Click Next. The Input Parameters screen appears.

Managing Data Feeders

Developing Services 5-63

5.6.1.8 Step 3: Entering the Input Parameters for the Data Feeder
The Input Parameters enables you to enter the input parameters for the data feeder.
The input parameters screen displays the input parameters specific to the format
type you selected in Section 5.6.1.1. Table 5–21 describes the input parameters of the
data feeder.

To enter the input parameters:

1. Click Add Another Row. A row appears.

2. Complete the row as follows:

a. Enter the internal name.

b. Enter the data type.

Table 5–21 Data Feeder Input Parameters

Input Parameter Description

Internal Name The name used for this parameter internally for the column the caching table and
also for setting conditions in the alert framework.

Data Type A drop down list that includes the following:

■ Number: For numeric input.

■ TEXT_30: Text with a maximum of 30 characters.

■ TEXT_80: Text with a maximum of 80 characters.

■ TEXT_150: Text with a maximum of 150 characters.

■ TEXT_800: Text with a maximum of 800 characters.

■ TEXT_1200: Text with a maximum of 1200 characters.

External Name A mapping to the external provider.

Column Number The column number for a delimited value. This input parameter is specific to the
delimited format.

Starting Position The starting column for a value. This input parameter is specific to the fixed-column
parameter.

Ending Position The ending column for a value. This input parameter is specific to the fixed-column
parameter.

Caption A caption seen by end-users when they subscribe to alerts. For example, Stock
Symbol.

Default Value The default value for the parameter.

Managing Data Feeders

5-64 Oracle Application Server Wireless Developer’s Guide

c. Enter the external name.

d. Enter the column number. This parameter is specific to the delimited
format.

e. Enter the starting position. This parameter is specific to the fixed-column
format.

f. Enter the ending position. This parameter is specific to the fixed-column
format.

g. Enter a caption.

h. Enter a default value.

3. Click Next. The Output Parameters screen appears.

5.6.1.9 Step 4: Entering the Output Parameters for the Data Feeder
The Output Parameters screen enables you to enter the output parameters for the
data feeder. The output parameters screen displays parameters specific to the
format type you selected in Section 5.6.1.1. The output parameters (described in
Table 5–22) are the retrieved data from the content provider; you set alerts on the
output parameters of a data feeder.

Table 5–22 Data Feeder Output Parameters

Output Parameter Description

Internal Name The name used for this parameter internally for the column in the caching table and
also for setting conditions in the alert framework.

Data Type A drop down list that includes the following:

■ Number: For numeric input.

■ TEXT_30: Text with a maximum of 30 characters.

■ TEXT_80: Text with a maximum of 80 characters.

■ TEXT_150: Text with a maximum of 150 characters.

■ TEXT_800: Text with a maximum of 800 characters.

■ TEXT_1200: Text with a maximum of 1200 characters.

External Name A mapping to the external provider.

Column Number The column number for a delimited value. This output parameter is specific to the
delimited format.

Managing Data Feeders

Developing Services 5-65

To enter the input parameters:

1. Click Add Another Row. A row appears.

2. Complete the row as follows:

a. Enter the internal name.

b. Select the data type.

c. Enter the external name.

d. Enter the column number. This parameter is specific to the delimited
format.

e. Enter the starting position. This parameter is specific to the fixed-column
format.

f. Enter the ending position. This parameter is specific to the fixed-column
format.

g. Enter a caption.

3. Click Finish to complete the data feeder. The Browse Data Feeder screen
reappears, displaying the new data feeder.

5.6.2 Editing a Data Feeder
The Edit button in the Browse Data Feeder screen enables you to edit the basic
configuration, init parameters, input parameters, and output parameters of a data
feeder.

5.6.2.1 Editing the Basic Configuration of a Data Feeder
To edit the basic configuration of a data feeder:

Starting Position The starting column for a value. This output parameter is specific to the
fixed-column parameter.

Ending Position The ending column for a value. This output parameter is specific to the
fixed-column parameter.

Caption The label that OracleAS Wireless uses for the parameter. End users see this label
when they subscribe to an alert service.

Table 5–22 Data Feeder Output Parameters

Output Parameter Description

Managing Data Feeders

5-66 Oracle Application Server Wireless Developer’s Guide

1. From the Browse Data Feeders screen, select the data feeder that you wish to
edit.

2. Click Edit.

3. The screen for editing the basic configuration of the data feeder appears, with
its fields populated by the values set for the selected data feeder.

4. Edit the values as needed. See Section 5.6.1.1, "Step 1: Entering the Basic
Information for the Data Feeder".for more information on the basic
configuration parameters of a data feeder.

5. Click OK to save your changes. Clicking Cancel resets the basic configuration
values back to their original state and returns you to the Browse Data Feeders
screen.

5.6.2.2 Editing the Init Parameters of a Data Feeder
To edit the init parameters of a data feeder:

1. From the menu, select Init Parameters. The screen for editing init parameters
appears, populated with the init parameters set for the selected data feeder.

2. Edit the init parameters as needed. See Section 5.6.1.2, "Step 2: Entering the
Initialization Parameters for the Data Feeder" for more information on the init
parameters of a data feeder.

3. Click OK to save your changes. Clicking Cancel resets the values for the init
parameters back to their original state and returns you to the Browse Data
Feeders screen

5.6.2.3 Editing the Input Parameters of a Data Feeder
To edit the output parameters of a data feeder:

1. From the menu, select Input Parameters. The screen for editing the input
parameters appears, populated with the values set for the selected data feeder.

2. Edit the values as needed. See Section 5.6.1.8, "Step 3: Entering the Input
Parameters for the Data Feeder" for more information on the input parameters
of a data feeder.

3. Click OK to save your changes. Clicking Cancel sets the input parameters to
their original state and returns you to the Browse Data Feeders screen.

5.6.2.4 Editing the Output Parameters of a Data Feeder
To edit the output parameters of a data feeder:

Managing Preset Definitions

Developing Services 5-67

1. From the menu, select Output parameters. The screen for editing the output
parameters appears, populated with the values set for the selected data feeder.

2. Edit the values as needed. See Section 5.6.1.9, "Step 4: Entering the Output
Parameters for the Data Feeder" for more information on the output parameters
of a data feeder.

3. Click OK to save your changes. Clicking Cancel sets the output parameters
back to their original state and returns you to the Browse Data Feeder screen.

5.7 Managing Preset Definitions
Preset definitions enable users to personalize applications by entering their own
input parameters. When a user requests an application, the application loads the
user-defined input parameters, (or presets). Typically, the application may list these
presets for the user, who must select an item to execute the application.

.

Figure 5–33 The Browse Preset Definitions Screen

When selected, the Preset Definitions tab defaults to the Browse Preset Definitions
Screen, which displays a list of the current preset definitions (Figure 5–33). From
this screen, you can create, edit, and delete a preset definition. The Browse Preset
Definitions screen includes the following parameters.

Note: Preset definitions are accessible to all users in a user group.

Managing Preset Definitions

5-68 Oracle Application Server Wireless Developer’s Guide

5.7.1 Creating a Preset Definition
The Service Manager enables you to create a preset definition, a template which
enables users to add values to each pre-defined preset definition. When users
invoke an application, they select a value from any of the preset definitions as an
input parameter.

To create a new preset definition, click the Create Preset Definition button in the
browsing screen. The Create Preset Definition screen appears (Figure 5–34). In this
screen, you enter a unique name for the preset definition. In addition, you select Is
System Object if this preset definition is not intended for users of the Wireless
Customization Portal. Typically, preset definitions display in the Customization
Portal to enable users to create their own preset values. You can complete the preset
definition at this point by clicking Finish, or you can add preset attributes, as
described in Section 5.7.1.1.

5.7.1.1 Adding Preset Attributes
Preset attributes enable you to define the relation of input parameters that an end
user can enter and save on the OracleAS Wireless server. You click the ADD button
in the Create Preset Screen to add an attribute to the table. In the blank row that
appears, you define the following parameters, described in Table 5–24.

Table 5–23 Parameters of the Browse Preset Definitions Screen

Parameter Description

Preset Definition Name The name of the Preset Definition.

Object ID The Object ID stored in the database.

Table 5–24 Preset Description Parameters

Parameters Value

Attribute Name A name for the preset attribute.

Description An optional description of the preset attribute.

Managing Preset Definitions

Developing Services 5-69

Click Finish after you have added the preset. Clicking Cancel clears all values and
returns you to the Browse Preset Definitions screen.

You can add several rows of preset attributes to define relationships, such as Name,
Street Address, Phone Number.

Value Format For text, enter anything that meets the regular expression
org.apache.regexp.RE. For example, enter [:digit:] for numeric
values.

For numbers, enter anything that meets the formats for
Java.text.DecimalFormat. For example, enter #,##0.0 for currency.

Column Type A drop down list that includes the following:

■ Number: For numeric input.

■ TEXT_30: Text with a maximum of 30 characters.

■ TEXT_80: Text with a maximum of 80 characters.

■ TEXT_150: Text with a maximum of 150 characters.

■ TEXT_250: Text with a maximum of 250 characters.

■ TEXT_500: Text with a maximum of 500 characters.

■ TEXT_800: Text with a maximum of 800 characters.

■ TEXT_1200: Text with a maximum of 1200 characters.

Input Field Type Select from among the following preset types:

■ Single Line—Select for a single line entry, such as name.

■ Multiline—Select for a multiple line entry, such as a street address.

■ Enum—Select to assign conditions for an entry, such as show and hide.
See Section 5.7.2.1, "Adding, Editing, and Deleting Preset
Attribute Enumeration Options". for information on enumeration
options.

Table 5–24 Preset Description Parameters

Parameters Value

Managing Preset Definitions

5-70 Oracle Application Server Wireless Developer’s Guide

Figure 5–34 The Create Preset Definition Screen

5.7.2 Editing a Preset Definition
To edit a preset definition, select a the preset definition from the browsing screen
and then click Edit. The Edit Preset Definition screen appears. Edit the preset
definition as needed. See Section 5.7.1.1, "Adding Preset Attributes" for information
on Preset Descriptors. Click OK to commit your changes. The Browse Preset
Definitions screen reappears.

5.7.2.1 Adding, Editing, and Deleting Preset Attribute Enumeration Options
You can edit, add, or delete a preset attribute enumeration option by using the Edit
Preset Descriptor Enumeration Options screen.

To edit a preset descriptor enumeration option:

1. In the Preset Descriptors section of either the Create Preset Definitions screen or
the Edit Preset Definitions screen, select Enum.

2. Click Edit. The Edit Preset Descriptor Enumeration Options screen appears.

3. In the Description Enumeration Options screen, perform the following
operations as needed:

■ From the drop-down list, select the option you wish to edit or delete.

■ Click Add to add a new enumeration option.

Managing J2ME Web Services

Developing Services 5-71

4. Click Done. The Create Preset Definition screen or the Edit Preset Definition
screen reappears.

5.8 Managing J2ME Web Services
A J2ME Web Service is a service hosted by the J2ME proxy server, one that is
invoked from a J2ME MIDlet running on a J2ME device.

Figure 5–35 The Browsing Screen for J2ME Web Services

5.8.1 Registering a J2ME Web Service
You can register a J2ME web service by either specifying the WSDL (Web Service
Definition Language) URL, the URL to the JAR file, or the local JAR file. After you
register the J2ME Web Service, you download the J2ME stub class and use it with
your J2ME MIDlet. From the J2ME Web Services browsing screen of the Service
Manager (Figure 5–35), you can view the details of the Web service methods.

Registering the J2ME Web Service by WSDL
You can register a J2ME Web service based on a normal Web service. To do this, you
first click Register in the browsing screen. The Register a J2ME Web Service screen
appears (Figure 5–36) in which you select the By WSDL option and enter the URL
for the normal Web service's WSDL.

Managing J2ME Web Services

5-72 Oracle Application Server Wireless Developer’s Guide

Registering the J2ME Web Service by JAR File URL
You can also base a J2ME Web service on a normal Java class, which is packaged in
a JAR file. This Java class can be situated on a Web site for downloading or located
on the OracleAS Wireless Web server. To register a J2ME Web service, select the By
Jar File URL option (depicted in Figure 5–36) and then enter either the URL of the
Web site where the JAR can be downloaded, the Web site URL, or URL to the JAR
file on the OracleAS Wireless Web server. You must also identify the class name of
the Java class which is packaged in the JAR file.

Registering the J2ME Web Service by a Local JAR File
The By Local JAR File option enables you to register a J2ME Web Service using a JAR
file located on your client machine, which you then upload to the OracleAS Wireless
server. To do this, select the By Local JAR File option and then click the Import
button. From the Import window, use the Browse function to find and then select the
JAR file. Click Import to upload the local JAR file.When using this option, you must
also specify the class name of the Java class which is packaged in the local JAR file.

Specifying the Namespace for the J2ME Web Service
The J2ME proxy server stores J2ME web services by namespace to avoid naming
conflicts. So when you register a J2ME Web service, you can either select an existing
namespace or enter a new namespace. After you select the registration option and
enter the namespace, click Finish to register the J2ME Web service.

Managing J2ME Web Services

Developing Services 5-73

Figure 5–36 Registering a J2ME Web Service

5.8.2 Generating Stub Classes
You must include the J2ME stub class in your MIDlet so that you can use the J2ME
Web service within that MIDlet.

To include the stub class, you select a J2ME Web service from the browsing page
then click Generate Stub. In the Generate Stub Class screen (Figure 5–37), you enter
the stub class name. OracleAS Wireless bases the generated the stub class on this
name. After you download the stub class, you compile it with your MIDlet.

Managing J2ME Web Services

5-74 Oracle Application Server Wireless Developer’s Guide

Figure 5–37 Generating Stub Classes

5.8.2.1 Viewing the Class Method Details
You can view the Web service method details of a Web service after you register the
J2ME Web Service with the J2ME proxy server. To view the method details, select a
J2ME web service from the browsing page and then click the Method Details
button. The J2ME Web Service Details screen appears (Figure 5–38), displaying
method details by name, return type and parameter types.

Figure 5–38 Viewing the Method Details of the J2ME Web Service

Refer Section 12.2 in Chapter 12, "J2ME Development and Provisioning" for
information on coding a J2ME Web service.

Mobile Studio 6-1

6
Mobile Studio

Each section of this document presents a different topic. These sections include:

■ Section 6.1, "Overview"

■ Section 6.2, "Getting Started with Mobile Studio"

■ Section 6.3, "Customizing Mobile Studio"

6.1 Overview
This chapter introduces OracleAS Wireless Mobile Studio. Mobile Studio is a
completely online, hosted environment for developing, testing and deploying
mobile applications for the OracleAS Wireless platform. It also serves as a Web
portal, supporting the wireless developer community in the enterprise and on the
Internet.

Mobile Studio offers developers a simple, intuitive and easy-to-use Web-based user
interface to facilitate rapid configuration, testing and deployment of wireless
applications. Developers do not need to download or install anything on their
workstations; all they need is a Web browser and access to Mobile Studio. Once an
application is registered with Mobile Studio, developers can test it using any mobile
device or simulator (including voice). They can instantly access real-time logs to
troubleshoot any issues. Once the application is tested, developers can deploy it to a
production server with the click of a button.

Service providers can easily brand Mobile Studio (customizing its look-and-feel and
content), and integrate it with their existing website. Mobile Studio can serve as an
interactive development tool, a one-stop shop for up-to-date information and
collateral on the OracleAS Wireless server platform, and service deployment portal
for third-party content providers. This makes it easy for service providers to
support their developer community and attract new developers.

Getting Started with Mobile Studio

6-2 Oracle Application Server Wireless Developer’s Guide

6.1.1 Mobile Studio Key Features
Mobile Studio includes the following major features:

■ A hosted environment that is completely online. There is nothing to download.

■ A simple, Web-based user interface targeted at application developers. The
OracleAS Wireless Tools, on the other hand, are targeted at system
administrators and advanced developers.

■ Instant access to developed applications from any mobile device or simulator
(including voice).

■ Instant debug log access for interactive testing.

■ An optional feature enabling one-click deployment to production servers.

For application providers:

■ Mobile Studio serves as a developer portal, supporting the existing developer
community as well as attracting new developers.

■ Mobile Studio supports multiple languages and character sets out of the box.

■ Mobile Studio is targeted at Web masters, not engineers; no coding is needed
for simple application customization.

6.1.2 Mobile Studio on the Oracle Technology Network
Visit Mobile Studio hosted on the Oracle Technology Network
(http://www.otn.oracle.com/wireless) for an example of how Mobile Studio can be
branded and integrated into an existing website. Any developer, systems integrator
or independent software vendor with access to the Internet can use this instance to
quickly build and test mobile applications that are immediately accessible from any
device. This unique environment allows companies to benefit from faster time to
market, increased productivity and a dramatically simplified testing cycles.

6.2 Getting Started with Mobile Studio
Access the Mobile Studio main page at the following URL:

http://<studio_server>:<studio_port>/studio

Getting Started with Mobile Studio

Mobile Studio 6-3

where <studio_server> and <studio_port> are the name of the host and port number
running the Mobile Studio instance. These are configured in the Oracle Installer
during the installation process.

6.2.1 Login and Registration
Mobile Studio is deployed configured for Single Sign-on (SSO). The user profile
information (including user ID and password) is stored in an Oracle Internet
Directory (OID) repository and is shared by all SSO-enabled applications.

All user accounts are created and managed in a central repository backed by the
Oracle Internet Directory (OID) server. Once Mobile Studio has been configured for
SSO; any user in the shared repository can log in with their single sign-on user ID
and password and use Mobile Studio. New users must have their accounts created
before they can enter Mobile Studio.

6.2.2 Building an Application Using Mobile Studio
The first step in building an application for the OracleAS Wireless platform is to
develop an application using your own tools in your own environment. The
mechanism used to generate the presentation layer of your application is
transparent to Mobile Studio; all of the dynamic page generation technologies (such
as CGI, JSP, and ASP) are supported. The only requirements are:

■ The pages that you generate must be written in a markup language recognized
by OracleAS Wireless, such as XHTML.

■ The entry point to your application must be an HTTP URL accessible from the
Mobile Studio server.

Below is a simple “Hello World” application written in XHTML:

Note: Mobile Studio has been optimized for the latest versions of
the popular Netscape and Internet Explorer browsers. Mobile
Studio is not certified for Netscape 4.x or Internet Explorer 4.x.

Getting Started with Mobile Studio

6-4 Oracle Application Server Wireless Developer’s Guide

Figure 6–1 Simple Hello World Example

1. Upload these two files to a Web server accessible from Mobile Studio.

2. Log in to Mobile Studio.

3. On the My Studio page, click New Application.

4. Enter a short name (such as Hello) for your application, its URL, an optional
description, and comments for your own reference.

5. Click Create to register your new application with Mobile Studio.

6.2.3 Testing an Application
Once you have registered your application with Mobile Studio, you can test it using
either an actual mobile device or device emulation software. Not only can Mobile
Studio applications be accessed from any mobile device, but they can be accessed
through multiple channels such as HTTP, Voice, and Messaging. Contact your
Mobile Studio administrator for a list of valid access points (for example: URL for
HTTP access, or a phone number for Voice access).

If you encounter errors (or if you are just curious), you can click the Log icon next to
your application to see the real-time debug logs.

Customizing Mobile Studio

Mobile Studio 6-5

Figure 6–2 Samples Window

When you click the Log icon, log information appears in a new window.

Figure 6–3 View Log Messages Window

6.2.4 Deploying an Application
After testing your application, you can deploy it on a production instance of
OracleAS Wireless. In the My Studio home page, select the application you want to
deploy and click Deploy. If the Deploy button is not available, contact your Mobile
Studio administrator for details.

6.3 Customizing Mobile Studio
Mobile Studio can be customized in a variety of ways, allowing powerful
integration with existing customer Web sites.

See Also: For more information on logs, see Mobile Studio online
Help.

See Also: For more information, see Mobile Studio online Help.

Customizing Mobile Studio

6-6 Oracle Application Server Wireless Developer’s Guide

6.3.1 Creating Sample Services
Mobile Studio ships with four sample services. Registered users of Mobile Studio
may access these services and view their source code. These services were created to
demonstrate how to develop mobile applications using various OracleAS Wireless
features. To delete or edit existing sample services, see OracleAS Wireless
Administrator’s Guide. This following section details how to create a new sample
service.

To create a sample service, you must first develop the application using XHTML or
OracleAS Wireless XML. Be sure to host the sample service at a location that is
accessible by Mobile Studio. You must also host a document that contains the source
code of your application. The contents of this file are retrieved and embedded
inside the body tag of an HTML document when users’ choose to view the source
code (that is, you may use HTML syntax to format this document).

6.3.2 Branding
In Mobile Studio, branding refers to the particular look and feel of a site. For
example, the images (logos, borders, icons) used, and the textual content (font size,
colors) of a page constitute the look and feel of a site. This section details how to
perform such look-and-feel customizations by creating new brandings. If you
require more advanced customizations (such as modifying the layout and flow of
pages) see Section 6.3.4, "JSP Pages" and Appendix G, "JSP Tag Library".

Creating a new branding does not require coding in Java; brandings are defined
using a declarative approach. Only knowledge of HTML is required to create a new
branding.

To create a new branding:

1. Navigate to the root directory of your installation of OracleAS Wireless and
locate the directory where the J2EE applications are deployed (for example,
$IASW_ROOT/wireless/j2ee/applications). The branding definitions are
stored in the sub-directory studio/studio-web/sites (referred to hereinafter as
the branding directory). In a fresh installation, the branding directory contains a
folder called default, which stores the default branding shipped with Mobile
Studio.

Note: You must use the Mobile Studio Administrator’s Tool to
register the sample service you have created before it will be
displayed in Mobile Studio. See OracleAS Wireless Administrator’s
Guide for instructions.

Customizing Mobile Studio

Mobile Studio 6-7

2. Create a new branding by creating a new folder in the branding directory.

Each branding must contain a file called site.properties. This file contains
declarations for the textual and image resources used. For example,
common.css.filename is a key inside this file that controls which the cascading
style sheet (CSS) file used by Mobile Studio. The branding which ships with
Mobile Studio includes property files for each supported locale. For example,
the properties file site_fr.properties is used for the French (fr) locale.

The valid keys that may be declared in the site.properties file is controlled by the
master file SiteResources.properties. If you require additional keys (usually for more
advanced customizations), you can locate this file at $IASW_
ROOT/wireless/server/classes/messages/oracle/panama/studio. You must
restart the OracleAS Wireless Server for changes in this file to take effect.

6.3.3 Supporting Multiple Locales
The default branding included with Mobile Studio has bundled support for 28
locales. However, only the English locale (en) is enabled upon a fresh installation. To
enable support for other locales, see OracleAS Wireless Administrator’s Guide for
detailed instructions.

If you want to support locales in a branding that you have created or want to
support additional locales in the default branding, you must create resource files

Note: The name of the folder is the name of your branding.

Hint: An easy way to create new brandings is to copy the default
branding included with Mobile Studio, and edit the files as
necessary. You may also perform look-and-feel customizations by
directly modifying the default branding included with Mobile
Studio.

Note: You must use the Mobile Studio Administrator’s Tool to
declare the branding that Mobile Studio should display (by default,
Mobile Studio will display the branding included with Mobile
Studio). See OracleAS Wireless Administrator’s Guide for more
information.

Customizing Mobile Studio

6-8 Oracle Application Server Wireless Developer’s Guide

containing the relevant translations (see Section 6.3.2, "Branding" for information
about branding directories).

For example, to create the locale for Hindi (hi):

1. Create a resource bundle file in your branding directory. Navigate to the Mobile
Studio brandings directory that you are using. The easiest approach is to copy
an existing resource bundle for a supported locale, translate the appropriate
keys, and save it as a new file called site_hi.properties.

2. Create a resource bundle file for server-side error messages. Navigate to the
directory $IASW_
ROOT/wireless/server/classes/messages/oracle/panama/studio. The easiest
approach is to copy an existing resource bundle for a supported locale, translate
the appropriate keys, and save it as a new file called messages_hi.properties.

3. Create translated client-side error messages. Navigate to the directory $IASW_
ROOT/wireless/j2ee/applications/studio/studio-web/Javascript. The easiest
approach is to copy an existing file in this folder, translate the appropriate keys
and save it as a new file called ommsg_hi.js.

Mobile Studio determines which locale to display by examining the list of preferred
locales originating from a request. The algorithm is similar to how Java loads
Resource Bundles. English (en) is the default locale in a fresh installation.

6.3.4 JSP Pages
This section lists the customization details of the major JSPs used in Mobile Studio:

■ JSP page: login.jsp

■ JSP page: registraton.jsp

■ JSP Page: loginPortlet.jsp

■ JSP page: pageHeader.jsp

■ JSP page: pageFooter.jsp

■ JSP page: pageMenu.jsp

■ JSP page: pagePortlets.jsp

Note: You must use the Mobile Studio Administrator’s Tool to
enable the locales that you want supported. See OracleAS Wireless
Administrator’s Guide for instructions.

Customizing Mobile Studio

Mobile Studio 6-9

■ JSP page: profile.jsp

■ JSP page: home.jsp

■ Java Beans

■ JSP page: testAppInfoBox.jsp

6.3.4.1 JSP page: login.jsp
Users trying to access other pages without logging in are redirected to this page,
with an appropriate error message.

A User performs the following actions from this page:

■ Log in to Mobile Studio.

■ Register as a new user.

■ Browse through the information pages using the menu.

Note: In integrated mode, users log in (or self-register) with their
OID username and password on a separate page. login.jsp is used
only when Mobile Studio is running in standalone mode.

Customizing Mobile Studio

6-10 Oracle Application Server Wireless Developer’s Guide

Figure 6–4 Mobile Studio Log In Page (partial view)

6.3.4.2 JSP page: registraton.jsp
User can register to Mobile Studio by filling in the registration form.

Table 6–1 Mobile Studio Log In Page Resources

Name Description Example

login.text.info Informational text. The OracleAS Wireless Studio is an online
environment for quickly building testing and
deploying wireless applications.

login.text.title The page title. Welcome To The OracleAS Wireless Studio

login.image.frontpage A 340 x 340 splash image on the
login page

/images/frontpage.gif

common.label.register A label for the Register button. Register

Note: In integrated mode, users log in (or self-register) with their
OID username and password on a separate page. login.jsp is used
only when Mobile Studio is running in standalone mode.

Customizing Mobile Studio

Mobile Studio 6-11

Figure 6–5 Registration Page (partial view)

Table 6–2 Registration Page Resources

Name Description Example

common.href.register The URL for registration page. Registration.jsp

common.label.register The label for Register button. Register

register.text.title The body title text for the page. New User Registration

register.text.info The informational message for
registration.

By registering, you indicate that you agree to
our Terms of Use and Privacy policy. Fields
marked with an asterisk (*) are required.

common.label.userid The label for user id field. User ID

register.hint.userid The hint for user id field. Choose an alphanumeric userid.

common.label.password The label for password field. Password

Customizing Mobile Studio

6-12 Oracle Application Server Wireless Developer’s Guide

register.hint.password The hint for password field. Choose an alphanumeric password.

common.label.password2 The label for password field,
entered again.

Password (again)

register.hint.password2 The hint for password again field. Re-enter your password for verification.

register.label.accountnumber The label for account number field Voice account number

register.hint.accountnumber The hint for account number Choose an account number required for
voice login.

register.label.voicepin The label for voice PIN. Voice PIN

register.hint.voicepin The hint for voice PIN. Choose a numeric PIN, required for voice
login.

register.label.voicepinagain The label for voice PIN again. PIN (again)

register.hint.voicepin2 The hint for voice again PIN. Re-enter your PIN for verification.

common.label.name The label for name field. Name

register.hint.name The hint for name field. Enter your first and last name, for example:
John Smith.

common.label.email The label for Email field. Email Address

register.hint.email The hint for email. Enter your email address, e.g.
jsmith@company.com

common.label.phone The label for phone field. Phone Number

register.hint.phone The hint for phone field. Enter your phone number, including country
and area code. For example: 16505555000

common.label.workaddr The label for work address. Work Address

common.label.company The label for company. Company Name

common.label.addr The label for address line 1. Address Line 1

common.label.addr2 The label for address line 2. Address Line 2

common.label.city The label for city. City

common.label.state The label for state State

common.label.zip The label for the ZIP code. Zip

common.label.country The label for the country. Country

register.label.setdefault The label for set as default. Set as Default

Table 6–2 Registration Page Resources

Name Description Example

Customizing Mobile Studio

Mobile Studio 6-13

6.3.4.3 JSP Page: loginPortlet.jsp
This page is included to provide a form for the user to login.

6.3.4.4 JSP page: pageHeader.jsp
This page is included as a header for all the customer-facing JSPs.

register.hint.workaddr The hint for work address. Enter your work address.

common.label.homeaddr The label for home address. Home Address

register.hint.homeaddr The hint for home address. Enter your home address.

common.label.register The label for register button. Register

common.label.cancel The label for cancel button. Cancel

Note: In integrated mode, users log in (or self-register) with their
OID username and password on a separate page. login.jsp is used
only when Mobile Studio is running in standalone mode.

Table 6–3 Log In Portlet Resources

Name Description Example

common.label.login The label for the login button. Log In

common.label.password The label for the password text input field. Password

common.label.userid The label for user ID text input field. User ID

forgot.password.label The label for the forgot password? field. Forgot password?

Table 6–4 Page Header Resources

Name Description Example

page.title The window title. Home

site.name The site (branding) name.

common.css.filename The cascading style sheets
(CSS) file.

sites/default/om.css

global.head Additional customizations to
be included in HTML header.

sites/default/samplepagehead.html

Table 6–2 Registration Page Resources

Name Description Example

Customizing Mobile Studio

6-14 Oracle Application Server Wireless Developer’s Guide

6.3.4.5 JSP page: pageFooter.jsp
This page is included as a footer for all customer-facing JSPs.

page.body The body tag customizations.

global.header Additional customizations to
the header region.

sites/default/samplepageheader.html

common.image.button.help The Help button image name. sites/default/images/button_help.gif

common.image.button.logout The Logout button image
name.

sites/default/images/button_logout.gif

common.image.window.left The left window border
image name.

sites/default/images/window_left.gif

common.image.window.top The top window border
image name.

sites/default /images/window_top.gif

common.image.window.topleft The top left window corner
image name.

sites/default/images/window_topleft.gif

common.image.window.topright The top right window corner
image name.

sites/default/images/window_topright.gif

common.href.help The URL of the Help page.

common.href.logout The URL of the Logout action. logout.jsp

common.tooltip.help The tool tip text for the Help
button.

Help

common.tooltip.logout The tool tip text for the Logout
button.

Log out

Table 6–5 Page Footer Resources

Name Description Example

global.footer Additional customizations to
the footer region

sites/default/samplepagefooter.html

common.image.window.bot The bottom window border
image name.

sites/default/images/window_bot.gif

common.image.window.botleft The bottom left window
corner image name.

sites/default/images/window_botleft.gif

Table 6–4 Page Header Resources

Name Description Example

Customizing Mobile Studio

Mobile Studio 6-15

6.3.4.6 JSP page: pageMenu.jsp
This page is included inside most pages to provide a common side bar for the user
to browse.

6.3.4.7 JSP page: pagePortlets.jsp
This page is included in most of the JSPs. The default branding displays the
following page portlets:

■ Send Messaging

■ Discussion Forum

common.image.window.botright The bottom right window
corner image name.

sites/default/images/window_botright.gif

common.image.window.left The left window border
image name.

sites/default /images/window_left.gif

common.image.window.line The window separator line
image name.

sites/default /images/window_line.gif

common.image.window.lineleft The window separator left
joint image name.

sites/default /images/window_lineleft.gif

common.image.window.lineright The window separator right
joint image name.

sites/default/images/window_lineright.gif

common.image.window.right The right window border
image name.

sites/default /images/window_right.gif

Table 6–6 Page Menu Resources

Name Description Example

common.label.home The label for home button. My Studio

common.label.profile The label for profile button. My Profile

common.label.doc The label for documentation button. Documentation

common.label.logout The label for logout button. Log Out

page.menu Additional customizations to the menu
region.

sites/default/samplepagemenu.html

Table 6–5 Page Footer Resources

Name Description Example

Customizing Mobile Studio

6-16 Oracle Application Server Wireless Developer’s Guide

Figure 6–6 Page Portlets

6.3.4.8 JSP page: profile.jsp
Users can view and edit their profile in this page.

Table 6–7 Page Portlets Resources

Name Description Example

page.portlets HTML included for page
portlets

Sites/default/samplepageportlets.html

Customizing Mobile Studio

Mobile Studio 6-17

Figure 6–7 Page Profile

Table 6–8 Page Profile Resources

Name Description Example

profile.body.title The body title text for the page. My Profile

common.labels.User.ID The label for user’s ID. User ID

register.label.accountnumber The label for the Account Number Account Number

common.labels.Name The label for the Name field Name

common.labels.email.address The label for the E-Mail field. Email

common.labels.Phone.Number The label for the Phone field. Phone

common.labels.Landmark The label for the Landmark field Landmark

common.labels.HOME The label for the Home field. HOME

common.labels.home.address The label for the Home Address field. Home Address

common.labels.city The label for the City field. City

Customizing Mobile Studio

6-18 Oracle Application Server Wireless Developer’s Guide

6.3.4.9 JSP page: home.jsp
This is the main page for users; it is the first page that users see after logging in.

common.labels.stateZip The label for the State/Zip field. State/Zip

common.labels.country The label for the Country field. Country

common.labels.setDefault The label for the Set Default field. Set as Default

common.labels.WORK The label for the Work field. WORK

common.labels.Company The label for the Company field. Company

common.labels.work.address The label for the Work Address field. Work Address

common.labels.changePin The label for the Change Password field. Change Password

common.labels.NewPassword The label for the New Password field. New Password

common.labels.NewPasswordAgain The label for the New Password Again field. New Password (again)

profile.text.changepin The label for the Change PIN field. Change PIN

register.label.voicepin The label for the Voice PIN field. Voice PIN

register.label.voicepinagain The label for the Voice PIN Again field. PIN (again)

common.buttons.label.Save The label for the Save button. Save

common.buttons.label.Cancel The label for the Cancel button Cancel

Table 6–8 Page Profile Resources

Name Description Example

Customizing Mobile Studio

Mobile Studio 6-19

Figure 6–8 Home Page

Users can perform the following actions from this page:

■ Manage (create, edit, delete, rename, deploy, copy, move) applications.

■ Manage (create, rename, delete, copy, move) their device portal folders.

■ Manage (create, edit, delete, rename, copy, move) bookmarks.

■ Explore the folders and its contents.

■ Navigate to other portions of the site: sample applications, deployments and
registered Web services.

Table 6–9 Home Page Resources

Name Description Example

home.text.greeting The welcome message for the user. Welcome

common.href.home The URL of the home page. home.jsp

home.image.currfold The image for the current folder (the
image for the open folder).

sites/default/images/folderopen.gif

Customizing Mobile Studio

6-20 Oracle Application Server Wireless Developer’s Guide

home.tooltip.upfolder The informational message to the user for
the upper level folder.

Up One Level

common.href.createfolder The URL for creating a new folder page. newFolder.jsp

home.tooltip.newfolder The message to the user for creating a new
folder.

Create New Folder.

home.label.newfolder The label that appears on new Folder
button.

New Folder

home.tooltip.newapp The informational message to the user for
new application.

Create New Application.

home.label.newapp The label that appears on the New
Application button.

New Application

home.label.appname The name of the application. Name

home.label.appdesc The description for the application. Description.

home.label.appstatus The status of the application. Status

home.image.application The icon for the application. sites/default /images/app.gif

home.label.view The label on View button. View

home.label.rename The label on Rename button. Rename

home.label.move The label on Move button. Move

home.label.copy The label on Copy button. Copy

home.label.delete The label on Delete button. Delete

home.label.deploy The label on Deploy button. Deploy

home.label.viewlog The label on View Log button. View Log

Table 6–9 Home Page Resources

Name Description Example

Customizing Mobile Studio

Mobile Studio 6-21

6.3.4.10 Java Beans

6.3.4.11 JSP page: testAppInfoBox.jsp
This page is included where there are instructions for testing user applications. It is
included in the home.jsp and samples.jsp pages.

Table 6–10 Java Beans

Name Type Description

foldersList Java.util.ArrayList This list of all the sub-folders for the user in the current folder.

servicesList Java.util.ArrayList This list of all of the services of the user for the given folder.

Table 6–11 Test App Info Box Resources

Name Description Example

home.text.test.boxtitle The title for the testing
instructions box.

Test Your Applications

home.text.test.begin Instructions text

home.text.test.accessinfo Instructions text Connect using voice: 1-800-000-000

home.text.test.end Instructions text Click the View Log button for real time debug
information

Customizing Mobile Studio

6-22 Oracle Application Server Wireless Developer’s Guide

Wireless Customization Portal 7-1

7
Wireless Customization Portal

This chapter describes how users customize their portals from a browser using the
Wireless Customization Portal. Each section of this document presents a different
topic. These sections include:

■ Section 7.1, "Overview of OracleAS Wireless Customization"

■ Section 7.2, "Logging into Wireless Customization"

■ Section 7.3, "Managing User Profiles"

■ Section 7.4, "Customizing Applications"

■ Section 7.5, "Managing Devices"

■ Section 7.6, "Managing Location Marks"

■ Section 7.7, "Managing Contact Rules"

■ Section 7.8, "Viewing UTF-8 Pages in Localized Languages with Netscape 4.7 or
Lower"

■ Section 7.9, "Rebranding the Customization Portal"

7.1 Overview of OracleAS Wireless Customization
Oracle Application Server Wireless Customization enables you to both customize
the Wireless portal and access Wireless mobile services. You can also create such
repository objects as folders, bookmarks, short names, devices, location marks, and
contact rules, as well as view and create user views, subscribe to
notification-enabled applications, and download J2ME media contents.

Logging into Wireless Customization

7-2 Oracle Application Server Wireless Developer’s Guide

7.2 Logging into Wireless Customization
Before using Wireless Customization, you must first log in as follows:

You Access the login page through the following URLs:

http://hostname:port/mobile/login.uix

or

http://hostname:port/mobile/

For example, enter the following:

http://hostname:7777/mobile/login.uix

or

http://hostname:7777/mobile/

After you enter the URL, the login page for OracleAS Wireless Customization
appears. This page includes the Login and Help buttons, which are described in
Table 7–1.

Enter your user name and then enter your password. If you are an administrator,
enter orcladmin as your user name and then click Login.(The password is set during
installation, but can be changed with the User Manager.)

You cannot log in if you enter an incorrect user name or password.

Note: 7777 is the default port number for OracleAS Wireless. The
port number range is 7777 to 7877. To ensure that you are using the
correct port number, check the port number for OracleAS Wireless
stored in [Oracle home]/install/portlist.ini. For more information
on port usage, see your Oracle installation documentation and the
OracleAS Administrator’s Guide.

Table 7–1 Login Screen Buttons

Button Description

Login Clicking this button logs you in after you have entered the correct user name and
password.

Help This button is disabled in this page

Logging into Wireless Customization

Wireless Customization Portal 7-3

After you successfully log in, the Welcome page appears, which includes the user’s
account number as well as the addresses used to access the Oracle Application
Server Wireless applications.

Table 7–2 describes the elements of Wireless Customization’s Welcome page.

After users log into Wireless Customization, they have access to the following
buttons, desribed in Table 7–3.

7.2.1 Accessing Wireless Customization as a New User
If you have not registered a primary phone and PIN, then OracleAS Wireless
prompts you to the mobile device registration page, where you register a wireless
and voice access account number by providing a primary phone number and a PIN.
After you complete this registration, OracleAS Wireless prompts you through the

Table 7–2 Elements of the Welcome Page

Element Contents

Home A screen displaying the access information for voice, Web browser, and two-way
messaging

User Profile A screen where users set up or edit their basic user information.

Applications Displays the application tree screen. You can manage folders, bookmarks,
notification subscriptions and short names. You also can reorder applications
within a folder, and download media application contents.

Devices Displays the Devicesscreen,which lists the devices currently associated with the
user. From this page, you can create, delete, edit, or change the default status of the
devices listed on this page.

Location Marks Displays the Location Mark screen, which lists the current locations belonging to a
user. From this screen, you can create, delete, edit, or change the default status of a
Location Mark. You also can set the location privacy by configuring the
authorization in the location awareness policies.

Contact Rules Displays the Contact Rule screen, which lists the current contact rules. Using this
page, you can create, delete, edit, or set the current contact rules.

Table 7–3 OracleAS Wireless Customization Buttons

Button Description

Logout Clicking this button logs out of Wireless Customization.

Help Clicking this button displays a list of help topics.

Managing User Profiles

7-4 Oracle Application Server Wireless Developer’s Guide

detail setup page, which has side navigation tabs called Home, User Profile,
Applications, Devices, Location Marks, Devices, and Contact Rules.

7.2.2 Accessing Wireless Customization as a Registered User
If you have already initialized your account and become a registered user, OracleAS
Wireless prompts you to a detail setup page the next time you log into Wireless
Customization. The detail page defaults to the Home Tab.

7.3 Managing User Profiles
OracleAS Wireless Customization enables you to edit a user profile.

To edit a profile, you first select the User Profile tab. The User Profile screen appears
(Figure 7–1) and displays the configuration information for the selected user.
Table 7–4 describes the elements in the User Profile screen.

Change the user configuration parameters as needed and then click Apply.

Table 7–4 Elements of the User Profile Screen

Parameter Description

Primary Phone Number This value entered for this parameter is also used as the voice access account
number.

Display Name The display name of the user. Wireless uses the user name as the display name if
the user does not enter a display name.

Click here to change your
password

The link to the change password and PIN page.

Language A drop-down list of display languages. This is a required field. See Section 7.8 for
information on viewing UTF-8 pages in localized languages with Netscape 4.7 (or
lower).

Time Zone A drop-down of time zones for the user’s locale. Wireless generates and delivers
notifications to the time zone selected by the user rather than by the time zone of
the Wireless server itself. This is a required field.

Disclose Identity to
External Application.

This check box enables the user identity to be disclosed to a third-party
application.

Customizing Applications

Wireless Customization Portal 7-5

Figure 7–1 The User Profile Screen

7.4 Customizing Applications
The Wireless Customization Portal includes the following application types: Folder,
Bookmark, Async Application, J2ME Application, and Notification Application.

The default view of the Applications screen (Figure 7–2) displays the top-level
folders. All of the applications displayed in this table those that you (and the groups
to which you belong) can access. Table 7–5 describes the elements of the
Applications Screen.

Customizing Applications

7-6 Oracle Application Server Wireless Developer’s Guide

By default, the top-level folders are collapsed. To view the contents of the folders,
click Expand All. To collapse the folders to the top-level view, select Collapse All.

While an administrator can alter any application in Wireless Customization, users
not granted the administrator role, such as end users, can only alter the applications
that they own. (That is, the applications belonging to the user groups to which a
user belongs.) The Content Manager, when publishing applications, assigns the
applications to a user group. For more information on publishing applications to
user groups using the Content Manager, see Oracle Application Server Wireless
Administrator’s Guide.

By default, Wireless has the following user groups: Administrator, Guest, and Users.
You use the ProvisioningHook to configure these user groups. A new user is
automatically assigned to the Users group and has default privileges to all the
applications that the Content Manager has assigned to the Users group. The
Applications page does not reveal group membership to users, nor does it display
other users belonging to the user’s group.

Table 7–5 Elements of the Applications Screen

Element Description

Focus Selecting this option enables you to display a selected folder as a root folder. If you
have several folders at multiple levels, then this option isolates the view to a single
folder.

Name The name of the folder.

Type The object type. In addition to folders, applications in Wireless Customization
include bookmarks, Async applications, J2ME applications, and
Notification-enabled services. The list of icons will be displayed to identify the
different types of applications

Visible Select this check box to make the folder visible for a selected view profile.

Actions A list of action links. The actions are specific to the application type and include
Reorder, Delete, Edit, Subscribe, Customize, and Download.

Customizing Applications

Wireless Customization Portal 7-7

Figure 7–2 The Applications Screen (Partial View)

7.4.1 Managing Folders
Wireless Customization enables you to create, edit, and delete the subfolders that
you own.

7.4.1.1 Creating a Subfolder
You can organize the folders in the Application page by creating subfolders.

Create a subfolder by first clicking the Create Folder button on the top of the
Application Tree table. The Create Folder Screen appears (Figure 7–3).

Note: The phone simulator displays applications as they would
appear on a real mobile device. The folders are rendered as
working links so that you can navigate into the next page to the
child nodes of that folder

Customizing Applications

7-8 Oracle Application Server Wireless Developer’s Guide

Figure 7–3 The Create Folder Screen

In this screen, enter the name for the subfolder (this is a required field) and then
select the location for the folder from the drop-down list in the Parent Folder field.
(The location is either the user’s home folder, or a subfolder of the user’s home
folder.). Click Finish. The Application page reappears, displaying the folder in the
appropriate location of the current folder. Clicking Cancel clears all the values you
have entered and returns you to the Applications page.

7.4.1.2 Editing a Folder
The Edit Folder screen (Figure 7–5) enables you to change the name of a folder.

To edit a folder, you first select a folder from the Application screen and then click
Edit (which, as depicted in Figure 7–4, appears as a hyperlink adjacent to the folder,
along with the actions Reorder and Delete).

Figure 7–4 Editing a Folder

The Edit page appears and displays the values set for the selected folder.

After you change the needed values (refer to Section 7.4.1.1 for more information on
folder parameters) click Finish. The Application page reappears, displaying the
folder in the appropriate location of the current. Clicking Cancel sets the values for
a folder back to their previous state and returns you to the Applications page.

Customizing Applications

Wireless Customization Portal 7-9

Figure 7–5 The Edit Folder Screen

7.4.1.3 Reordering the Display Sequence for Folder
To reorder the display sequence of a folder, select the folder in the Application
screen and then click the Reorder option (depicted in Figure 7–6). The Reorder
screen appears.

Figure 7–6 The Reorder Screen

Customizing Applications

7-10 Oracle Application Server Wireless Developer’s Guide

The arrows enable you to reposition a folder, or move it to the top or bottom. Click
Finish to apply the sequence settings and return to the Applications page. Clicking
Cancel to returns the folder to its previous placement.

7.4.1.4 Deleting a Folder
You delete a folder by selecting it in the Applications page and then by clicking
Delete. A confirmation page appears (Figure 7–7). Clicking Yes confirms the
deletion; clicking No cancels the deletion.

Figure 7–7 The Confirmation Page

7.4.2 Managing Bookmarks
Bookmarks are links to external URL that enable you to quickly visit a site.

Wireless Customization enables you to create, edit, and delete bookmarks.

7.4.2.1 Creating a Bookmark
To create a bookmark, you first click Add Bookmarks in the Applications screen.
The Create Bookmark screen appears (Figure 7–8).

Customizing Applications

Wireless Customization Portal 7-11

Figure 7–8 The Create Bookmark Screen

In the Create Bookmark screen, you enter the bookmark name (a required value)
and then enter the URL of the new bookmark (for example, www.oracle.com). Use the
drop-down list box in the Move to Folder field to assign the location of the new
bookmark. The location is either the user home folder or a subfolder of the user
home folder. Click Create. The Applications screen reappears, displaying the new
bookmark under the appropriate folder. Clicking Cancel clears all values and
returns you to the Applications screen.

7.4.2.2 Editing a Bookmark
You can change a bookmark by selecting a different URL, by renaming it, or by
placing it in another folder.

To edit a bookmark, you select a bookmark from the Applications screen (or select a
folder and drill down to the bookmark) and then click Edit. The Edit Bookmark
screen appears (Figure 7–9) with its fields populated with the values of the selected
bookmark.

Customizing Applications

7-12 Oracle Application Server Wireless Developer’s Guide

Figure 7–9 The Edit Bookmark Screen

Modify the bookmark’s values as needed. For more information on the bookmark
parameters, see Section 7.4.2.1, "Creating a Bookmark". Click Finish to commit your
changes. Clicking Cancel sets the parameters back to their previous state.

7.4.2.3 Deleting a Bookmark
To delete a bookmark, select a bookmark from the Applications screen (or select a
folder and drill down to the bookmark) and then click Delete. The delete
confirmation page displays. Clicking Yes confirms the deletion; clicking No
abandons the deletion.

7.4.3 Managing Short Names
A short name enables users to specify a command to access Async applications. One
or more commands and system short names for applications can be grouped
together and represented by a single short name. For example, you can assign a
stock application with the system short name stk to the customized short name s.
You can also assign a system short name and list of values to a short name. For
example, you can assign the short name, s to the system short name stk followed by
the value orcl (stk orcl). Further, you can create a short name that combines a list of
system short names and their appropriate values, such as stk orcl; weather sj,sf.

Short names are used by two-way messaging devices such as SMS, Email, Instant
Messaging or a two-way pager. You can send a message to a two-way messaging
server access address (which usually is a Email address) by entering your
customized short name in the message subject or in the message body. The server
then replies to you with the messages responding to the requests issued by your
short name command string.

Customizing Applications

Wireless Customization Portal 7-13

In Wireless Customization, you can create, edit, and delete short names by clicking
the Manage Short Names button.

7.4.4 Creating Short Names
To create a short name, you first click the Manage Short Names button in the
Application page. The Short Names screen appears (Figure 7–10), listing a table of
short names.

Figure 7–10 The Short Names Screen

Clicking Add invokes the Create Short Name screen (Figure 7–11). This screen
includes a quick-reference table for all of the accessible Async applications.

Customizing Applications

7-14 Oracle Application Server Wireless Developer’s Guide

Figure 7–11 The Add Short Names Screen

Using this screen, you enter short name and then the command string. Click Finish
to complete the short name. Clicking Cancel clears all values entered in this screen.

7.4.4.1 Editing a Short Name
You can edit a short name by renaming it and changing its command string.

To edit a short name, click the Manage Short Names button in the Applications
screen. From the short names in the following screen, select a short name and then
click Edit. The Edit Short Name screen then appears, populated with the values set
for the selected short name. Edit the value and then click Finish to commit the
changes. Clicking Cancel sets the values for the short name back to their original
state.

7.4.4.2 Deleting a Short Name
To delete a short name, click the Manage Short Names button. Select a short name
from the table in the following screen and then click Delete. In the confirmation
screen that then appears, select Yes to confirm the deletion and No to cancel the
deletion.

7.4.5 Managing a Notification Subscription
A notification application uses predefined conditions to deliver a notification (an
alert message). These conditions, or predicates, can be based on a value, time, or on

Customizing Applications

Wireless Customization Portal 7-15

a location condition. For example, a value condition for triggering a notification
might be condition can be send me a stock quote if the Oracle stock price reaches a certain
value. You also can specify the time condition, such as sending the stock index at
3:00PM every weekday. In addition to value and time conditions, you can define a
location-based notification, such as notify me if the truck driver arrives at the customer
site. For more information on location-based topics, refer to Chapter 11,
"Notification Engine".

In the Application Table, the Subscribe action link appears in the Actions column for
notification-enabled applications. In Figure 7–12, this link appears for the
application called NotificationEventFormatService.

Figure 7–12 A Notification-Enabled Application

Clicking the Subscribe action link invokes the detail page (Figure 7–13), which
includes a subscription table that lists all of the subscriptions for this application.

Customizing Applications

7-16 Oracle Application Server Wireless Developer’s Guide

Figure 7–13 The Detail Page for a Notification Application

From this page, you can create, delete or enable and disable the subscriptions. The
table also lists the status of the subscriptions such as Enabled, Time-based, or
Location-based.

7.4.5.1 Adding a New Notification Subscription
To add a new subscription:

1. To add a subscription, click the Subscribe link in the application table. In the
detail screen, click Add. The Add Notification subscription screen for the
selected notification appears (Figure 7–14).

2. Enter the subscription name. This is a required field.

3. Set the notification device preference for message delivery. The options for
setting this value include:

■ You can specify the delivery of the notification based on the definition of
the currently active contact rule.

■ You can specify the primary notification device and the maximum number
of notifications that you want to receive per day on that device.

■ You also can specify an alternative means of handling the additional
messages if the maximum number of notifications is reached for the
primary notification device. You can discard all the excess messages or send
them to an alternative device.

4. Enter the values for all the conditions. If the notification application is
value-based, then the value condition list displays in the Value Condition section.

Customizing Applications

Wireless Customization Portal 7-17

5. If the notification application is time-based, then the time conditions display in
the Time Condition section. The time conditions include a blackout period or
options for setting the notification to trigger for a period of time or at a specific
time. For more information on setting trigger conditions, refer to Chapter 11,
"Notification Engine".

6. If the notification application is location-based, the location awareness
conditions display in the Location Awareness Condition section. You can specify
which target you want to monitor as well as the movement of that target. For
example, you can set the condition as send me a notification when John is at Oracle
Headquarters (where Oracle Headquarters is a region object defined in the
Location management tool).

7. Click Finish to save your inputs. Clicking Cancel clears your entries.

Figure 7–14 The Add Notification Subscription Screen

Managing Devices

7-18 Oracle Application Server Wireless Developer’s Guide

7.4.5.2 Editing Notification Subscriptions
The notification subscription screen enables you to edit a subscription by changing
the trigger conditions of a selected subscription or by changing the notification
delivery rules.

To edit a subscription, click the Subscribe action link in the application table to
access the detail page. From the subscription table, select the subscription that you
want to modify and then click the Edit button. The Edit screen appears, with its
fields populated with the values for the selected notification subscription. (For
information on these fields, refer to Section 7.4.5.1.) Edit the values as needed and
then click Finish to save your changes. Clicking Cancel sets the parameters back to
their previous values.

7.4.5.3 Deleting Notification Subscriptions
To delete a notification subscription, select the notification subscription from the
detail page and then click Delete. A confirmation page appears, asking you to
confirm the deletion by clicking Yes, or cancel it by clicking No. Select Yes.

7.5 Managing Devices
In OracleAS Wireless, the device object enables you to group multiple device
addresses under a single entity. For example, you can group a number of device
addresses for the same device, which may contain multiple user agents or may use
multiple protocols. Each of these protocols (or channels) can have a different
address or identification, but all of them emanate from the same physical entity.

Devices are used for both notification subscription and for managing contact rules.
Only the validated devices receive notifications and set contact rules.

The Device screen (Figure 7–15), invoked by clicking the Devices tab, enables you
to create, edit and delete a device. The devices are categorized into four different
types: Phone, Fax, Email, and Mobile Device. Phone is for the devices that support
only voice; Fax is for the devices that can only receive fax messages; Email is mainly
for email accounts, and Mobile Device is for the multi-channel mobile devices.

The device table displays different device icons for each of these device types.

Managing Devices

Wireless Customization Portal 7-19

Figure 7–15 Browsing Devices

You can create devices by selecting the device type in the drop-down selection list
next to the device table’s Add button.

7.5.1 Creating a New Phone
To create a phone, you first select Phone from the drop-down list and then click the
Add button. The Add Phone Number screen appears (Figure 7–16).

Figure 7–16 Adding a New Phone

Managing Devices

7-20 Oracle Application Server Wireless Developer’s Guide

To complete a phone, define the parameters described in Table 7–6 and then click
Finish. Clicking Cancel clears any values entered and returns you to the browsing
page.

7.5.1.1 Validating a Phone
After you create a phone,OracleAS Wireless prompts you to validate the device
(Figure 7–17).

Figure 7–17 Validating a Phone

Table 7–6 Parameters of the Create Phone Page

Parameter Value

Name The name of the phone. For example, enter My Home Phone

Number Enter the phone number for the phone. For example, enter
1-555-555-5555.

Maximum Number of Notifications Enter the maximum number of notification that you want to
receive on this phone per day. If you do not set a limits on the
number of notification received on this device, then do not
enter any values in this field.

Managing Devices

Wireless Customization Portal 7-21

To validate a phone, you first click Send to send the validation code to your phone.
After you receive this code, enter it in the screen and then click Validate. If the
device is successfully validated, the Status column displays Valid.

7.5.1.2 Editing a Phone
You can update a phone device by changing the name, number for the device, or the
number of notifications received. To update a phone, you first select a phone and
then click Edit. The editing page appears, with its fields populated by the values set
for the selected device. For information on these values, see Section 7.5.1, "Creating
a New Phone". After you change any values, you must once again validate the
device. For information on validating the device, see Section 7.5.1.1, "Validating a
Phone". Click Finish to save your changes. Clicking Cancel sets the parameters for
the phone back to their previous values.

7.5.1.3 Deleting a Phone
To delete a phone, select a phone from the Device List and then click Delete. In the
confirmation screen that follows, click Yes to confirm the deletion and No to cancel
the deletion.

7.5.2 Creating a New Fax
To create a fax, you first select Fax from the drop-down list and then click the Add
button. The Add Fax Number screen appears (Figure 7–18).

Note: Be sure that your phone is turned on before you begin the
validation process.

Managing Devices

7-22 Oracle Application Server Wireless Developer’s Guide

Figure 7–18 Creating a Fax

To complete a fax, define the parameters described in Table 7–7 and then click
Finish. Clicking Cancel clears any values entered and returns you to the browsing
page.

7.5.2.1 Validating a Fax
After you create a fax, OracleAS Wireless prompts you to validate the device.

Table 7–7 Parameters of the Create Fax Screen

Parameter Value

Name The name of the fax. For example, enter My Home fax

Number Enter the number for the fax. For example, enter
1-555-555-5555.

Maximum Number of Notifications Enter the maximum number of notification that you want to
receive on this fax per day. If you do not want set a limit on the
number of notification received on this device, then do not
enter any values in this field.

Managing Devices

Wireless Customization Portal 7-23

To validate a fax, you first click Send to send the validation code to your fax. After
you receive this code, enter it in the screen and then click Validate. If the device is
successfully validated, the Status column displays Valid.

7.5.2.2 Editing a Fax
You can update a fax device by changing the name, number or the number of
notifications received. To update a fax, you first select a fax and then click Edit. The
editing page appears, with its fields populated by values specific to the selected
device. For information on these values, see Section 7.5.2, "Creating a New Fax".
After you make any needed changes, you then validate the device. For information
on validating the device, see Section 7.5.2.1, "Validating a Fax". Click Finish to save
your changes. Clicking Cancel sets the parameters for the fax back to their previous
values.

7.5.2.3 Deleting a Fax
To delete a fax, select a fax from the Device List and then click Delete. In the
confirmation screen that follows, click Yes to confirm the deletion and No to cancel
the deletion.

7.5.3 Creating an Email Device
To create an email, select Email from the drop-down list and then click Add. The
Add Email screen appears (Figure 7–19). To complete an email device, you must
define the values described in Table 7–8.

Note: Be sure that your fax is turned on before you begin the
validation process.

Table 7–8 Parameters of the Create Email Screen

Parameter Value

Name Enter the name of the email. For example, enter My Home Email.

Address Enter the email address. For example, enter myAccount@somewhere.com.

Maximum Number of
Notifications Received Per
Day

Enter the maximum number of notification that you want to be received by this
email per day. Leave this field blank if you do not want to limit the number of
email messages received.

Managing Devices

7-24 Oracle Application Server Wireless Developer’s Guide

Figure 7–19 Creating an Email Device

7.5.3.1 Validating the Email Device
After you create a email, OracleAS Wireless prompts you to validate the device.

To validate a email, you first click Send to send the validation code to your email.
After you receive this code, enter it in the screen and then click Validate. If the
device is successfully validated, the Status column displays Valid.

7.5.3.2 Editing an Email Device
You can update a email device by changing the name, number or the number of
notifications received. To update a email, you first select a email and then click Edit.
The editing page appears, with its fields populated by values specific to the selected
device. For information on these values, see Section 7.5.3, "Creating an Email
Device". After you make any needed changes, you then validate the device. For
information on validating the device, see Section 7.5.3.1, "Validating the Email
Device". Click Finish to save your changes. Clicking Cancel sets the parameters for
the email back to their previous values.

Note: Be sure that your email is turned on before you begin the
validation process.

Managing Devices

Wireless Customization Portal 7-25

7.5.3.3 Deleting an Email Device
To delete a email, select a email from the Device List and then click Delete. In the
confirmation screen that follows, click Yes to confirm the deletion and No to cancel
the deletion.

7.5.4 Creating a New Mobile Device
To create a new mobile device select Mobile Device from the drop-down list and then
click Add. The Add Mobile Device screen appears (Figure 7–20). To complete an
email device, you must define the values described in (Figure 7–9). Click Finish
after you define the parameters. Clicking Cancel clears any values entered and
returns you to the browsing page.

Table 7–9 Parameters of the Create Mobile Device Page

Parameter Value

Name Enter the name of the mobile device. For example, enter My Home Email.

Address Enter the mobile device address. For example, enter myAccount@somewhere.com.

Maximum Number of
Notifications Received Per
Day

Enter the maximum number of notification that you want to be received by this
mobile device per day. Leave this field blank if you do not want to limit the
number of messages received by this device.

Manufacturer Select a manufacturer from the drop-down list. The default setting is Unknown.

Model Select the device model from the list. The default selection is Unknown.

Preferred Channel Select the preferred channel for the device.

Enter the addresses in the format appropriate to the channel. For example, the
address for Voice channel is a phone number, while the address for the Email
channel is an email account. The address for the IM channel varies according to the
messenger network that you selected from the list. Consult your ISP if you do not
know the specific address format.

Managing Devices

7-26 Oracle Application Server Wireless Developer’s Guide

Figure 7–20 Creating a Mobile Device (Partial View)

7.5.4.1 Validating the Mobile Device
After you create a mobile device, OracleAS Wireless prompts you to validate the
device.

To validate a mobile device, you first click Send to send the validation code to your
mobile device. After you receive this code, enter it in the screen and then click
Validate. If the device is successfully validated, the Status column displays Valid.

Note: Be sure that your mobile device is turned on before you
begin the validation process.

Managing Location Marks

Wireless Customization Portal 7-27

7.5.4.2 Editing a Mobile Device
You can update a email device by changing the name, number or the number of
notifications received. To update a email, you first select a email and then click Edit.
The editing page appears, with its fields populated by values specific to the selected
device. For information on these values, see Section 7.5.4, "Creating a New Mobile
Device". After you make any needed changes, you then validate the device. For
information on validating the device, see Section 7.5.4.1, "Validating the Mobile
Device". Click Finish to save your changes. Clicking Cancel sets the parameters for
the email back to their previous values.

7.5.4.3 Deleting an Mobile Device
To delete a mobile device, select a mobile device from the Device List and then click
Delete. In the confirmation screen that follows, click Yes to confirm the deletion and
No to cancel the deletion.

7.5.5 Setting a Default Device
To set a default device, select the device from the Device List Section and then click
Set Default.

7.6 Managing Location Marks
Location Marks are user-defined locations, such as a user’s home, office, or
work-related addresses. End users can enter these locations into their
location-aware applications. When using a location-aware application, such as a
restaurant search application, the application can use an end-user’s current location,
such as the user’s home address, to provide a reference point for driving directions
to the target destination. To ensure security and privacy, users can control which
applications can access their locations.

To create a Location Mark, you do not have to enter lengthy alphanumeric strings
into a mobile device. Instead, Wireless Customization enables you enter and
manage the underlying spatial information for the Location Marks, which are
stored in the Wireless repository. You access the spatial information by selecting the
Location Mark on your mobile device.

You can use a Region-typed Location Mark in a location-based notification
subscription. For example, you can create a region-typed Location Mark for your
work address that includes a radius of three miles around your office address. If
you want to arrange transportation for clients from your office to the airport, for
example, then you would subscribe to a notification such as notify me when the

Managing Location Marks

7-28 Oracle Application Server Wireless Developer’s Guide

airport limousine is within three miles of my office. You will then receive a notification
message whenever the limousine comes within three miles of your office.

The geocoding feature cannot function unless the server has access to geocoded
data from a vendor. You can still create a Location Mark even without the longitude
and latitude geometry values. This type of Location Mark can be used for location
information only and cannot be used by applications which require geometry
information.

You access the functions to create, edit and delete Location Marks by clicking the
the Location Marks tab. A browsing screen appears (Figure 7–21), which includes a
table listing the current Location Marks.

Note: Location Marks can be created as a point-typed location or a
region-typed location. Region-typed locations can be presented as a
"circle" region, which is defined with a point and a radius. It can
also be a system-defined map region, such as Redwood City,
California or the entire state of California.

Managing Location Marks

Wireless Customization Portal 7-29

Figure 7–21 The Location Mark Screen (Partial View)

7.6.1 Creating Location Marks
To create a location mark, you first click the Add button. The Create Location Mark
screen appears (Figure 7–22). To create a Location Mark, you must define the
following parameters:

1. Enter a name that is meaningful to you in the Location Mark Name field. This is
a required field.

2. Enter a description for the Location Mark that is meaningful to you (for
example, Work or Home).

3. Enter a label for the Location Mark.

4. Enter the name of the company in the Company Name field.

Managing Location Marks

7-30 Oracle Application Server Wireless Developer’s Guide

5. Enter the address information in Address Line 1. For example, enter 123.

6. Enter the street name in Address Line 2. For example, enter Main Street.

7. Enter the county and state information (if applicable) in the County and State
fields.

8. Enter the postal code in the Postal Code field. This can be a five-digit United
States zip code or other postal code.

9. Enter the postal code extension (if applicable) in the Postal Code Ext. field.

10. Enter the country name in the Country name field.

11. Enter the radius value and the unit (kilometers or miles) of the distance if you
want to create a region-typed Location Mark.

12. Click Apply to trigger the geocoding process.

Figure 7–22 Creating a Location Mark

If the geocoding process fails, a warning page displays, asking you if you want to
save a Location Mark with no geocoding information.Click Save to save the
location, or click Back to return to the creation page to enter more other values.

If the geocoder found more than result that matches the criteria for the Location
Mark, then a selection page displays for you to select the closest match
(Figure 7–23). The results can include the region-typed location marks such as those
that match the corresponding city or state.

Managing Location Marks

Wireless Customization Portal 7-31

Figure 7–23 Selecting the Location Mark

Select the Location Mark you want to save, and click Save to save the selected
Location Mark.

Clicking Cancel destroys the Location Mark.

7.6.2 Editing a Location Mark
To edit a Location Mark:

From the Location Mark List screen, select the desired location mark and then click
the Edit button. The Edit Location Mark screen appears, with its fields populated by
the values set for the selected Location Mark (Figure 7–24). Edit the fields as
needed. See Section 7.6.1, "Creating Location Marks" for information on entering
locationmark values. Click Apply to trigger the geocoding process.

Managing Location Marks

7-32 Oracle Application Server Wireless Developer’s Guide

Figure 7–24 Editing a Location Mark

7.6.3 Changing the Default Status of a Location Mark
To change the default status of a Location Mark, select the new default Location
Mark from the Location Mark List screen. Click Set Default. The status in the
Default column of the Location Mark List changes to true. Only one Location Mark
can be the default.

7.6.4 Deleting a Location Mark
To delete a Location Mark, select the Location Mark and then click Delete. In the
confirmation screen, select Yes to confirm the deletion. Click No to cancel the
deletion.

7.6.5 Setting the Location Privacy Preferences
To set the location privacy, select from among the following options listed in the
Location Mark List screen:

■ If needed, cache your location mark by checking Remember my last location mark.

■ Check Allow other applications to access my location to disclose your location.

■ You also can set your Mobile ID, which is used as your positioning ID, so that
Mobile Positioning Server can detect your current position. Set this value if you
want to expose your current position to location-aware applications.

Managing Location Marks

Wireless Customization Portal 7-33

Click Apply in the Location Privacy section to save the Location Privacy preference
settings

7.6.6 Managing the Location Awareness Authorization
Location Awareness Authorization enables other users to detect your current
location position for specified periods of time.

Location Awareness Authorization is used when other users subscribe to a
location-based notification to monitor your location position or movement. For
example, if you want to authorize your boss to monitor your position from 8:00 AM
to 5:00 PM today, then you can create a authorization rule based on the time criteria
and then enable it. Your boss can then subscribe a notification on your position,
such as notify me whenever my employee moves three miles from the office.

The Location Mark screen includes a table listing users authorized to monitor your
location. The Location Privacy and Authorization Rules are used by location-based
applications. The location rules enable users to control if (and when) their locations
can be revealed to the location-based applications. You can create, edit, delete,
enable or disable an authorization rule. You can also manage the location awareness
user groups used for the authorization rule

7.6.7 Assigning Location Awareness Authorization
To create location awareness authorization:

From the Location Awareness Authorization List screen (Figure 7–25), click the Add
button. Select the Grantee type, which can be a User or a Group and then specify the
value of grantee: enter the user name if you select User as the grantee type, or select
the group from the group selection list if you select the Group as the grantee type.
Specify the authorization period and then click Finish to save your changes. Click
Cancel to clear all values.

Managing Location Marks

7-34 Oracle Application Server Wireless Developer’s Guide

Figure 7–25 Adding Location Awarness

7.6.8 Changing Location Awareness Authorization
From the Location Awareness Authorization List screen (Figure 7–26), select an
authorization object and then click the Edit button. The editing page appears, with
the fields populated with the values set for the selected authorization object.

Edit the values as needed. See Section 7.6.7, "Assigning Location Awareness
Authorization" for information on these values.

Figure 7–26 The Location Awareness Authorization List

7.6.9 Managing the User Groups for Location Authorization
User Group, as used in location awareness authorization, is a collection of user
objects and is distinct from the user group concept used for the application access
control list (ACL) as described in the Oracle Application Server Wireless
Administrator’s Guide. The User Group for location awareness is a target type in the
location awareness authorization, which enables you to assign the authorization to

Managing Contact Rules

Wireless Customization Portal 7-35

a group which contains multiple users rather than having to assign authorization to
users singly. It is a type of grantee object in location awareness authorization
management which enables you to easily manage authorization policies. For
example, you can create just one authorization policy for a User Group which
contains 10 users rather than creating individual authorization policies for each of
these same users. In Figure 7–26, the user group, My Family, is comprised of the
individual users jackguest and janeguest, who have both been assigned the User
grantee type.

Clicking the Manage User Group button in the location awareness authorization
section invokes the User Group list page. From this screen, you can create, edit, or
delete the user groups

7.6.10 Creating User Group
To create a User Group, click the Add button in the User Groups List screen. The
Add Location Awareness Authorization screen appears (Figure 7–25). Enter the
name for the user group (This is a required field.) and then enter the list of users
that you want to include in this group. The user must be a valid Wireless
Customization user. Otherwise, you cannot create the user group.Click Finish to
create the user group. Click Cancel to clear all values.

7.6.11 Editing a User Group
To edit a user group, select the user group from the table that you want to update.
The Edit screen appears, with its fields populated by the values set for the selected
user group. Edit the values as needed. For more information, see Section 7.6.10,
"Creating User Group". Click Apply to save your change. Clicking Cancel sets the
values back to their previous state.

7.6.11.1 Deleting User Group
Select one user group and then click the Delete button. The confirmation page then
displays. Click Yes to delete the selected User Group object. Click No to stop the
deletion.

7.7 Managing Contact Rules
A contact rule describes how you wish to receive calls and messages. For example,
you can set a contact rule for meetings, wherein you receive all notifications on a
cell phone. Oracle Application Server Wireless keeps track of your current

Managing Contact Rules

7-36 Oracle Application Server Wireless Developer’s Guide

circumstances, such as in a meeting or out of the office, the devices available to you
at any time, and the way in which you wish to be notified.

Using the contact rule setting screens (accessed through the Oracle Application
Server Wireless Customization portal), you create a contact rule by first naming it
(for example, At Field Office) and then by adding the communication devices that
are appropriate to that contact rule. When creating a communication device, you
enter the number or address for the device, along with a nickname for the device,
such as My MobilePhone (see Section 7.7.1.5, "Selecting a Contact Rule from a
Web-Based User Interface" for creating and managing devices using Oracle
Application Server Wireless Customization portal). You can choose devices from the
following communication methods in the contact rule:

■ Voice

■ Fax

■ Email

■ Messaging

For example, when creating the At Field Office contact rule, you may want to
receive calls at a device called Field Office Phone, email at Corporate Office Email,
and faxes at Field Office Fax. When creating a contact rule, you specify the preferred
method for receiving notifications. For the At Field Office contact rule, you could
choose to receive notifications as email messages, which are sent to Corporate Office
Email.

The Oracle Application Server Wireless provides you with two pre-defined contact
rules, Available and Unavailable. You can edit these contact rules and rename them.
However, each contact rule name must be unique; you cannot have two contact
rules with the same name. In addition, you cannot share a contact rule with another
user.

You access functions to create and manage contact rules by selecting Contact Rules
menu on the Home page of the Oracle Application Server Wireless Customization
portal.

7.7.1 Contact Rules in the Customization Portal
The Contact Rules page in the Oracle Application Server Wireless Customization
portal enables you to manage your contact rules.

■ Set Active: Click the Set Active button to set the selected contact rule as your
currently active contact rule.

Managing Contact Rules

Wireless Customization Portal 7-37

■ Edit: Edit a contact rule by selecting the radio button of the contact rule you
want to change, then click the Edit button.

■ Delete: Delete a contact rule by selecting the radio button of the contact rule
you want to delete, then click the Delete button.

■ Add: Add a new contact rule by clicking the Add button.

7.7.1.1 Adding a Contact Rule
To add a Contact Rule, click the Add button in the Contact Rules page. Complete
the fields as detailed below.

■ Contact Rule: Enter a name for your contact rule (for example, At My Desk).

Under the Device Settings,

■ Phone: Enter the communication device on which you want to be telephoned
(for example, My Mobile Phone). You can select Do not call me if you do not
want to be notified through a phone call. Only communication devices that
have a voice feature will be listed for selection.

■ Email: Enter the communication device on which you want to be emailed (for
example, My Email). You can select Do not email me if you do not want to be
notified through email. Only communication devices that have an email feature
will be listed for selection.

■ Fax: Enter the communication device on which you want to receive faxes (for
example, My Fax). You can select Do not fax me if you do not want to be
notified through a fax. Only communication devices that have a fax feature will
be listed for selection.

■ Messaging: Enter the communication device on which you want to receive
messaging data such as short messages or instant messages (for example, My
SMS). You can select Do not send me messages if you do not want to be notified
through this delivery method. Only communication devices that have such
messaging feature will be listed for selection.

Under the Notification Settings:

■ Delivery Method: Enter the delivery method for receiving notifications.

■ Start Active Time: Enter the time for which notifications can start being
delivered.

■ End Active Time: Enter the time for which notifications should no longer be
delivered.

Managing Contact Rules

7-38 Oracle Application Server Wireless Developer’s Guide

■ Frequency: Enter which days of the week the active time is in effect (daily,
weekdays, or weekend).

■ During Inactive Time: Set to either discard all the messages or delay the
delivery of the messages, when messages are generated during the inactive
time.

Ensure that the appropriate communication device is selected for the way you want
to be notified. Otherwise you will not be able to receive notification. For example, if
you want to be notified through a telephone call, make sure that Phone delivery
method has a communication device selected.

Click Finish after entering your information.

7.7.1.2 Editing a Contact Rule
To edit a Contact Rule, click the radio button of the contact rule you want to modify.
Complete the fields as detailed below.

Contact Rule: Enter or change a name for your contact rule (for example, At My
Desk).

Under the Device Settings,

■ Phone: Enter or change the communication device on which you want to be
telephoned (for example, My Mobile Phone). You can select Do not call me if you
do not want to be notified through a phone call. Only communication devices
that have a voice feature will be listed for selection.

■ Email: Enter or change the communication device on which you want to be
emailed (for example, My Email). You can select Do not email me if you do not
want to be notified through email. Only communication devices that have an
email feature will be listed for selection.

■ Fax: Enter or change the communication device on which you want to receive
faxes (for example, My Fax). You can select Do not fax me if you do not want to
be notified through a fax. Only communication devices that have a fax feature
will be listed for selection.

Note: Communication devices must be created before they can be
selected.

Managing Contact Rules

Wireless Customization Portal 7-39

■ Messaging: Enter or change the communication device on which you want to
receive messaging data such as short messages or instant messages (for
example, My SMS). You can select Do not send me messages if you do not want to
be notified through this delivery method. Only communication devices that
have such messaging feature will be listed for selection.

Under the Notification Settings,

■ Delivery Method: Change the delivery method for receiving notifications, if
necessary.

■ Start Active Time: Change the time for which notifications can start being
delivered.

■ End Active Time: Change the time for which notifications should no longer be
delivered.

■ Frequency: Change which days of the week the active time is in effect (daily,
weekdays, or weekend).

■ During Inactive Time: Set to either discard all the messages or delay the
delivery of the messages, when messages are generated during the inactive
time.

Ensure that the appropriate communication device is selected for the way that you
want to be notified, otherwise, you will not be able to receive notification. For
example, if you want to be notified through a telephone call, make sure that the
Phone delivery method has a communication device selected.

7.7.1.3 Deleting a Contact Rule
To delete a contact rule, select the contact rule radio button in the Contact Rule
table, then click Delete.

7.7.1.4 Selecting an Active Contact Rule
You can select a contact rule to be your currently active contact rule. For example, if
you are at the field office, you may set your At Field Office contact rule active, and
thus, settings in this contact rule will be in effect for communication and all
notifications.

Note: Communication devices must be created before they can be
selected.

Managing Contact Rules

7-40 Oracle Application Server Wireless Developer’s Guide

7.7.1.5 Selecting a Contact Rule from a Web-Based User Interface
You can change your active contact rule setting from the Contact Rules page in the
Oracle Application Server Wireless Customization portal by selecting the radio
button of the contact rule you want to set as active, then clicking the Set Active
button.

7.7.2 Selecting a Contact Rule from a Device
You can select a contact rule from a Web-based interface, such as the home page of
the Oracle Collaboration Suite or from a registered communications device.

7.7.2.1 Selecting a Contact Rule from a Web-Based User Interface
You can change your contact rules from the Home page of the Oracle Collaboration
Suite by selecting a contact rule from the Contact me drop-down list (Figure 7–27)
and then by clicking Change, or from the Advanced page by selecting a contact rule
followed by clicking Set Current.

Figure 7–27 Selecting a Contact Rule from the Oracle Collaboration Suite

7.7.2.2 Selecting a Contact Rule from a Device
You can also select contact rules from a variety of devices, because OracleAS
Wireless XML enables the conversion of XML from any Oracle Application Server
Wireless application into several device-specific markup languages. As a result, you
can select contact rules from a WAP-enabled device or from a regular phone. In
addition, async-enabled applications enable you to select contact rules from devices
having such asynchronous messaging applications as SMS or email, but lacking
Internet access. To change contact rules from these devices, you send a message to
the Async SMS or email address set by the system administrator.

From a device, such as a WAP-enabled mobile phone, you select a contact rule from
a displayed list. When you change a contact rule, OracleAS Wireless switches from
one rule’s settings (which controls how you are contacted) to those of another
contact rule.

The following section describe the following:

■ Section 7.7.2.3, "Selecting a Contact Rule from a Device"

Managing Contact Rules

Wireless Customization Portal 7-41

■ Section 7.7.2.4, "Selecting a Contact Rule from an SMS- or Email-Based Device"

■ Section 7.7.2.5, "Selecting a Contact Rule Using a Voice Application"

7.7.2.3 Selecting a Contact Rule from a Device
A mobile device, such as a mobile phone, displays your contact rules as a list and
notes your current contact rule with an asterisk (*). Figure 7–28 for example, notes
On The Go as the current contact rule. You select a new contact rule by using the
device’s navigation keys and then by selecting OK.

Figure 7–28 Selecting a Contact Rule from a Device

The confirmation screen appears (Figure 7–29), noting the new contact rule.
Clicking OK returns you to the main menu.

Managing Contact Rules

7-42 Oracle Application Server Wireless Developer’s Guide

Figure 7–29 The Confirmation Page (from a Device)

7.7.2.4 Selecting a Contact Rule from an SMS- or Email-Based Device
From devices using async applications, you can set your contact rules by sending
commands as messages to the Async SMS or email address. You can use messages
to set your contact rules as follows:

7.7.2.4.1 Method 1 For this method, you change your contact rules by sending three
separate messages as follows:

7.7.2.4.2 Message 1: Enter cr in the message subject line or body of the message. You
then receive a message which prompts you for your mobile phone number and PIN
number (For more information, see Section 7.7.1, "Contact Rules in the
Customization Portal".)

7.7.2.4.3 Message 2: Enter your mobile phone number and PIN number in the
subject line or body of the message. If you send this information in the body of an
email, then you must enter it on the same line. You then receive a message with a
numbered list of contact rules.

Managing Contact Rules

Wireless Customization Portal 7-43

7.7.2.4.4 Message 3: Enter the number of the new contact rule in the subject line or
body of the message. For example, enter 2 if you wish to select 2. At My Desk from
the numbered list. You then receive a message confirming the contact rule change.
You can then return to the main menu.

7.7.2.4.5 Method 2 Using this method, you can change your contact rule by sending
two separate messages by combining the cr command with the exact name of the
contact rule as follows:

7.7.2.4.6 Message 1: Enter cr followed by the name of the contact rule in the subject
line or body of the message. For example, enter cr "At My Desk". If there are spaces
in the name of the contact rule, then you must enclose the entire name in quotation
marks ("). The contact rule name is also case-sensitive. After you send this message,
you then receive a message that prompts you to reply with your username and
password.

7.7.2.4.7 Message 2: Enter your mobile phone number and PIN number in the
subject line or body of the message. If you send this information in the body of an
email, then you must enter it on the same line. After you send this message, you
receive a reply confirming the contact rule change. You can then return to the main
menu.

7.7.2.4.8 Method 3 You can also change your contact rule by sending a single
message that combines the cr command, the name of the contact rule, and your
username and password together in the subject line or body of your message. For
example, you can select a new contact rule by entering all of the information in the
subject line or body of a message as follows:

cr "At My Desk"; 16505555000 12345

After you send this message, you receive a reply confirming the contact rule change.
You can then return to the main menu.

Note: Use a semi-colon (;) to separate the cr and contact rule name
command from the username and password.

Viewing UTF-8 Pages in Localized Languages with Netscape 4.7 or Lower

7-44 Oracle Application Server Wireless Developer’s Guide

7.7.2.5 Selecting a Contact Rule Using a Voice Application
After you dial in, do the following:

1. Enter your mobile phone number. See(Section 7.7.1, "Contact Rules in the
Customization Portal" for more information).

2. Enter your PIN. Confirm your PIN number when prompted.

3. Say Contact Rules to launch the Contact Rules application. The system first
announces your current contact rule and then a list of the available contact
rules.

4. Say the name of the new contact rule. For example, say At My Desk. The system
then replies, confirming the change and returns to the main menu.

7.8 Viewing UTF-8 Pages in Localized Languages with Netscape 4.7 or
Lower

Some languages may not display properly if you use Netscape 4.7 or a lower
version. In some cases, characters may display as boxes. To fix this problem,
configure the Netscape preferences as follows:

1. From the Netscape tool bar, select Edit.

2. Select Preferences from the drop-down menu. The Preferences dialog appears.

3. From the Category tree, select Fonts to display the Fonts dialog.

4. In the Fonts dialog, select Unicode from the For the Encoding drop-down list.

5. From the Variable Width Font and Fixed Width Font drop-down lists, select the
font that supports the preferred language. For example, if you select Chinese as
your preferred language, you can select MS Song to view the page in Chinese.

7.9 Rebranding the Customization Portal
The OracleAS Wireless Customization Portal is both a framework for the
Customization interface and a sample implementation of that framework. The
framework consists of UI-based XML Pages (UIX) files, JavaBean modules,

Note: If the name of your contact rule contains spaces, then you
must use enclose the entire name of the contact rule in quotation
marks ("). The contact rule name is also case-sensitive.

Rebranding the Customization Portal

Wireless Customization Portal 7-45

JavaScript, and such static elements as images, XSL stylesheets, and HTML files.
Another element of the framework is the customized page plugin. You can rebrand
the Customization Portal based on the existing framework or restructure the
framework itself by plugging in your own service customization or replacing the
static images.

The following sections describe the elements that compose the Customization
Portal, the framework for plugin pages, as well as the file naming conventions and
the directory structure used.

7.9.1 Page Naming Conventions
UIX is an extensible, J2EE-based framework for building web applications. It is
based on the Model-View-Controller (MVC) design pattern. The UIX page defines
View layer such as user interfaces including page layouts, and styles. There is no
programming involved in the UIX file and the changes can be deployed without
any compilation. The Model and Controller layers are all in the JavaBean files.

Each UIX file has one controller Java file which handles the page event and the
dynamic data retrieving. Each model object has one corresponding Java file
interface directly to the Model API layer and another wrapper Java file to handle
the UIX page caching. For example, the each device management page has one
controller file, DeviceHandler.java, and one data model file, DeviceDataObject.java,
and a wrapper file, UIXDevice.java, to handle the object caching in the device
management UIX pages.

■ The main UIX page for the summary list of objects uses a plural name for the
page name. For example, Devices.uix.

■ The detail UIX page for editing begins with Edit. For example EditMobile.uix

■ The detail UIX page for creation begins with Add. For example, AddMobile.uix

■ The controller Java file uses …Handler.java as the name. For example,
DeviceHandler.java.

■ The model Java file uses …DataObject.java as the file name. For example,
DeviceDataObject.java.

7.9.2 UIX Pages Structure
Each Customization Portal UIX page is composed of a series of UIX components:

■ Branding

■ Navigation

Rebranding the Customization Portal

7-46 Oracle Application Server Wireless Developer’s Guide

■ Global Buttons

■ Page Content Area

■ Footer

Table 7–10 describes the UIX components.

7.9.3 Directory Structure
To rebrand the Customization Portal, you modify the UIX files that generate the
Customization Portal. After installing OracleAS Wireless, these files are located in
the $ORACLE_HOME/OC4J_Wireless/j2ee/applications/mobile/mobile-web
directory, which has the following structure:

Table 7–11 describes the contents of the Portal directory.

Table 7–10 UIX Components

UIX Components Description

Form and Page Layout Establishes the Header and Footer and reserves the remainder of the page for other
content. This component contains the Tab Bar, Navigation Trace, Row Layout, and
Button elements.

Header Company branding and global buttons.

Navigation Trace Displays navigation cue and display name elements.

Footer Global button links and Copyright information.

Page Content Contains the main content, form items and page buttons.

Table 7–11 Portal Directory Contents

Directory Contents

customization Container UIX files. Container files are accessed directly by browsers.

images Images used throughout the Customization Portal.

customization/templates UIX template files. These files are included by either container UIX files or other
template files.

cabo JavaBean stylesheet, image, and JavaScript.

cabo/images/cache JavaBean generated images.

cabo/jsps Java server pages that are used by UIX.

cabo/styles/cache Generated stylesheets.

Rebranding the Customization Portal

Wireless Customization Portal 7-47

7.9.4 Customizing the Look of the Customization Portal
You can customize the Portal pages in several different ways; you can alter the
appearance of logos, banners, and icons. Alternatively, you may want to create your
own UIX or JSP to achieve the desired look and feel.

You can customize the appearance of the Customization Portal by replacing the
static strings in the base.uit, basicFlow.uit and advancedFlow.uit files located in the
$ORACLE_HOME/OC4J_
Wireless/j2ee/applications/mobile/mobile-web/customization/templates
directory. By changing the file names called in by these static strings, you can alter
the banner art, logo art, and tool tip text. The labels are in the resource file
customization.properties, which is located in the following directory:

$ORACLE_HOME/wireless/server/classes/messages/oracle/panama/webtool/

 common/resources.

You can change the UI labels by replacing the corresponding string values in the
resource file.

In UIX, a logical page consists of a hierarchical set of components known as user
interface nodes. Some nodes define visible components, such as buttons, images,
tables, and text fields, while others organize the layout and appearance of other
nodes and may also manage their behavior.

7.9.4.1 Colors and Fonts
The colors and fonts can be customized by modifying the XML Style Sheet file:

$ORACLE_HOME/uix/cabo/styles/blaf.xss.

After the modification, remove:

$ORACLE_HOME/j2ee/OC4J_Wireless/applications/mobile/mobile-web/

cabo/styles/cache directory, and restart the server.

The new Colors and Fonts will take effect on the Web page.

7.9.4.2 UIX Modification
The UIX template files base.uit, basicFlow.uit and advancedFlow.uit generate the
Customization Portal page template. The file base.uit is included in basicFlow.uit and
advancedFlow.uit. Either basicFlow.uit or advancedFlow.uit is included in other UIX
files. If any changes are made in the template file, then all of the pages that use that
template file will automatically inherit the changes.

Rebranding the Customization Portal

7-48 Oracle Application Server Wireless Developer’s Guide

base.uit (described in Table 7–12) generates the logo

basicFlow.uit (described in Table 7–13) generates the global buttons basicFlow.uit
includes the template page base.uit.

advancedFlow.uit generates (described in Table 7–14) the global buttons and
side-navigation tab bar. advancedFlow.uit includes the template page base.uit.
services.uix presents a hierarchical view of the applications accessible to the user.
services.uix includes the template page advancedFlow.uit.

Table 7–12 base.uit String Usage

UIX Component Attribute Value Page Element

productBranding image source="images/wireless_logo.gif" Page logo image

productBranding data:shortDesc="comm on.brand.desc@labelBundle" Page logo tool tip
text

Table 7–13 basicFlow.uitString Usage

UIX Component Attribute Value Page Element

globalButton Source="images/logout_ena.gif" Global button image

globalButton destination="/mobile/login.uix?event=logout" Global button event
handling

Table 7–14 advancedFlow.uit String Usage

UIX Component Attribute Value Page Element

globalButton Source="images/logout_ena.gif" Global button image

globalButton destination="/mobile/login.uix?event=logout" Global button event handling

sideNav link data:text="common.tab.home@labelBundle" Side navigation tab text

sideNav destination="advancedSetup.uix" Side navigation destination page

Rebranding the Customization Portal

Wireless Customization Portal 7-49

7.9.5 Application Customization Page Plugin Framework
Customization Portal provides a framework to plug in the application (service)
customization page. The initial application customization link must be defined in
the OracleAS Wireless tools.

■ When a customization link is defined for the application node, a "Customize"
action link will be rendered to invoke the customization page

■ The content of the application customization link will only be rendered inside
the page content area where the header, navigation, and the footer of the page
will still be controlled and rendered by the pageFlow engine.

■ The PageFlowManager manages the page flow values in the HTTP request by
appending the keys and values in the URL and passing around the pages

■ All the links inside the customization page should call
generateNextActionLink to fetch the generated URL for the action link.

■ All the redirected pages should call generateNextDisplayLink to fetch the
generated URL for the next page link.

■ Because the plugin pages may be rendered by a server that is different from the
server that renders the main Customization Portal pages, all of the image
sources must use a fully qualified URL path such as
http://server:port/component/images/file.gif.

■ The session level caching is not supported in the current implementation of
PageFlowManager framework. Therefore, the intermediate cache object may
need to use an alternative way to cache the object, such as temporarily storing it
in the repository.

Figure 7–30 illustrates the customization process.

Rebranding the Customization Portal

7-50 Oracle Application Server Wireless Developer’s Guide

Figure 7–30 The Application Customization Flow

7.9.5.1 Customizing an Application in a Plugin Page
The pluginService.uix is the main page that includes the plugin customization page.
The value of plugin URL is retrieved from the application (service) object and
constructed using the generatePluginLink API to concatenate the necessary
page flow parameters in the URL. The concatenated parameters include the
application object ID, User object ID, GUID, and the page flow information of the
main page.

Rebranding the Customization Portal

Wireless Customization Portal 7-51

7.9.6 Setting the Multi-Byte Encoding for the Customization Portal
The Customization Portal gets the encoding for the text of the site from the setting
in the PAPZ device, which is in the repository. The default encoding is UTF-8, which
can handle Western European languages as well as some Asian languages. The
portal sets the content for each page with the encoding specified by the logical
device. To change the default encoding, click PAPZ, which is listed in Devices
browsing screen in the Foundation Manager and change the encoding to the IANA
standards for your particular language.

The UI labels are loaded from customization_LANGUAGE (_COUNTRY if any).
For example, customization_fr_CA.properties in the directory:

$ORACLE_HOME/OC4J_
Wireless/j2ee/server/classes/messages/oracle/panama/webtool/customization.

Before login, the locale is determined by the OracleAS Wireless locale setting. After
login, the locale setting is determined by the user’s locale preference.

Rebranding the Customization Portal

7-52 Oracle Application Server Wireless Developer’s Guide

Part III
 Developing Wireless Applications

Part III contains information about developing wireless applications using Oracle
Application Server Wireless.

■ Chapter 8, "Authoring Mobile Browser and Voice Applications"

■ Chapter 9, "Using Multi-Channel Server"

■ Chapter 10, "Creating Messaging Applications"

■ Chapter 11, "Notification Engine"

■ Chapter 12, "J2ME Development and Provisioning"

■ Chapter 13, "Web Scraping"

■ Chapter 14, "Using Location Services"

■ Chapter 15, "Enabling User Customization"

■ Chapter 16, "Billing"

Authoring Mobile Browser and Voice Applications 8-1

8
Authoring Mobile Browser and Voice

Applications

Each section of this document presents a different topic. These sections include:

Section 8.1, "Overview"

Section 8.2, "XHTML+XForms"

Section 8.3, "OracleAS Wireless Client"

Section 8.4, "XHTML Mobile Profile"

Section 8.5, "OracleAS Wireless XML"

Section 8.6, "Device Headers and Device Class"

8.1 Overview
The wireless revolution has produced many mobile devices, each with different
feature sets and varying form factors. Along with this variety of devices has come a
variety of markup languages for authoring mobile applications such as HTML,
WML, cHTML, XHTML and more. OracleAS Wireless abstracts the developer from
device specific markup languages and by providing a single development model
and environment for building browser-based, voice and messaging applications.
This multi-channel solution lowers the learning curve for developers and ensures
that applications developed on OracleAS Wireless are future proof, and will work
on upcoming devices as markup languages are changed or enhanced.

OracleAS Wireless provides developers with three development options:

■ XHTML+XForms

■ XHTML MP

Overview

8-2 Oracle Application Server Wireless Developer’s Guide

■ OracleAS Wireless XML

The following table shows the types of applications that can be developed using
each development model.

This chapter describes the following multi-channel authoring models supported in
OracleAS Wireless and the features supported by each:

■ XHTML with XForms and CSS for Voice and Visual media including SMS and
Instant messaging Interface

■ XHTML Mobile Profile for Visual media using mobile browsers

■ Wireless XML: OracleAS Wireless-defined abstract presentation oriented XML
language for Voice and Visual media including SMS and Instant messaging
Interface.

8.1.1 MobileXML or XHTML/XForms; Which to Use?
Developers must provide wireless content for different channels and devices.
Access channels and devices are the choice of end users, so applications or
document content must be universally accessible. In the PC browser channel, the
document content is usually presented using markup languages such as Hyper Text
Markup Language (HTML), and is delivered to end users through an HTML
browser. HTML tags are difficult to support on mobile devices due to hardware
restrictions and narrow bandwidth. Also, most markup languages mix the content
and the style in a document; making it difficult for a browser to distinguish the

Table 8–1 Types of Applications Created Using Different Models

Application Type/Development
Language

XHTML+
XForms XHTML MP

OracleAS
Wireless XML

Browser-based X X X

Voice X X

Notifications (SMS, Email, MMS, IM) X X

Async X X

Note: XHTML MP is not supported for Voice or SMS/Instant
Messaging access channels.

Overview

Authoring Mobile Browser and Voice Applications 8-3

presentation or the style from the content. For example, you can use the tag
to mark up sections that are important in a document. This is appropriate in a visual
medium that supports color, but fails on devices that do not support color.

You must have a multi-channel authoring model to code and display documents in
a device-independent manner. Oracle Application Server Wireless solved this
problem by offering an XML markup, MobileXML, which can be used for many
channels and devices: messaging, voice, micro-browsers, PDA browsers, and others.
As companies recognized the importance of a device-independent XML, a
standards-based effort began. As result of efforts in this direction by the World
Wide Web Consortium (W3C), there is eXtensible Hypertext Markup Language
(XHTML). XHTML is a standards-based solution replacing MobileXML.

The XHTML 1.0 standard is an extension of HTML represented as an XML 1.0
application. Using XHTML, you can share basic content across desktops, PDAs,
voice and mobile phones. In addition, you can group XHTML elements into a
collection of abstract modules, with each module providing a specific functionality.
Cascading Style Sheets (CSS) and XForms are used with XHTML.

Cascading Style Sheets (CSS) separate the rendering style from the structure of an
XML document. In other words, CSS shows you how to display the document using
fonts, spacing and so on. Using CSS, you associate presentation style to markup
fragments or elements (in XML or XHTML documents), without modifying the
content document. There are two levels of CSS: CSS1 and CSS2. CSS2 is the second
generation of CSS that adds on to CSS1 to support media specific styles. CSS2
includes support for media such as print, screen, voice, and handheld. CSS mobile
profile is a subset of CSS2 suited for mobile devices and aural CSS properties
control speech or voice rendering.

In HTML, you used forms to display a user interface to accept input from users.
HTML forms did not separate the data from the presentation. Even for basic tasks
such as input validation, you had to use scripting technologies. XForms is a W3C
technology that addresses the problems in HTML forms. XForms is written in XML,
and can be integrated with XHTML or any other markup language. Using XForms,
you can:

■ Build device-independent user interface controls

■ Differentiate the data from the data definition

■ Use declarative syntax to support commonly-performed actions

■ Provide knowledge about the data and user interface style to the browser

■ Validate the data collected

XHTML+XForms

8-4 Oracle Application Server Wireless Developer’s Guide

You should use XHTML/XFORMS/CSS instead of MobileXML because it is more
powerful and standards-based. The following architectural changes were
implemented to accommodate XHTML, XForms, and CSS development in this
release:

■ HTTP adapters handle XHTML, XForms, and CSS documents in addition to
MobileXML documents

■ XForms processor implement XForms

■ XForms cache stores XForms documents during runtime

■ A new set of transformers, based on CSS annotated XHTML documents is used
for XHTML+XForms model support. In this release, when you work with
XForms using XHTML as the containing document, the new document model is
called the XHTML+XForms model.

■ The XForms request broker interprets and feeds data or events to the XForms
processor. The data or the events are based on the form data that you submit to
OracleAS Wireless.

8.1.2 Multi-Channel Overview
An application typically represents some content (or information), which needs to
be presented to users. Users may access this information from multiple modes or
devices that are capable of presenting the content. The characteristics of access
modes and the devices are choices of the user community. Authors can save time by
ensuring that applications are universally accessible. Universal accessibility implies
the content must available over various channels of access and users must be
allowed to interact with applications using multiple modes of interaction.

8.2 XHTML+XForms
This section describes the features supported by the XHTML+XForms+CSS
supported by OracleAS Wireless. This section is organized into the following
subsections:

■ Section 8.2.1, "Overview"

■ Section 8.2.2, "Technology Background"

■ Section 8.2.3, "Hello World Application Using XHTML and XForms"

■ Section 8.2.4, "OracleAS Wireless and XHTML+XForms+CSS"

■ Section 8.2.5, "Styling and Embedding Content Based on Media"

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-5

■ Section 8.2.6, "Advanced Sample Using XHTML and XForms"

■ Section 8.2.7, "Advanced Voice Sample Using XHTML and XForms"

8.2.1 Overview
XHTML (eXtensible Hyper Text Markup Language, CSS [Cascading Style Sheets])
and XForms. CSS abstracts the presentation style of a document, XForms provides
an abstract forms model, while XHTML provides the structure and semantics of a
document. Each of these technologies provide specific features. In combination,
they allow a document to be authored in a device-independent fashion.

Authors typically use markup languages to encode content in documents. The content
in documents is typically presented to a user agent (browser). Most markup
languages today mix the content and style in a single document, making it difficult
for a user agent to distinguish presentation (or styling) from the content
(information) that is contained in a document. A common example of this, in
HTML3.2, is the usage of the tag. HTML authors typically use color codes
to mark up (using font tag) sections that are important in a document. While this
may work as intended when presented using visual medium that supports color, it
fails on devices that do not support color or when content is rendered aurally (text
is spoken through a speech interface).

To enable documents to be authored in a device or access mode independent
fashion, a Multi-Channel authoring model is required. A multi-channel authoring
model must separate content (information) in a document from the presentation
style.

Due to memory and processor constraints, presentation styles supported by mobile
devices vary significantly. Further diversity in access methods means the mode of
interface has an impact on the presentation styles.

8.2.2 Technology Background

8.2.2.1 XHTML
HTML4 has been widely accepted as the publishing language of choice for the
world wide web. HTML4 and CSS provide the right separation of content from
presentation. HTML4 supports rich semantics that is difficult to support on mobile
devices due to both hardware restrictions and narrow bandwidth, though a subset
of HTML4 with extensions can be supported on mobile devices.

XHTML+XForms

8-6 Oracle Application Server Wireless Developer’s Guide

To enable extensibility in HTML4, the World Wide Web Consortium (W3C)
published XHTML (http://www.w3.org/TR/xhtml1/). XHTML is a reformulation
of HTML in XML. The XML reformulation has also enabled identification of
abstract modules in HTML that provide a specific functionality.

To further extensibility of XHTML, World Wide Web Consortium (W3C) published
XHTML modularization (http://www.w3.org/TR/xhtml-modularization/) that
decomposes XHTML into a collection of abstract modules that provide specific
types of functionality. Modularization of XHTML supports a framework that
defines XHTML as a group of well-defined modules. Each individual module
defines a functionality and a document structure. XHTML modularization allows
these modules of XHTML to be combined with each other in creation of subsets or
supersets of XHTML.

XHTML Modularization has enabled vendors to define subsets of XHTML that can
be supported on resource-constrained devices. This has led to adoption of XHTML
for mobile devices. XHTML Modularization has resulted in two important
specifications: XHTML Basic (W3C), and XHTML Mobile Profile (OMA). These
specifications enable XHTML support on mobile devices

8.2.2.2 Cascading Style Sheets (CSS)
Cascading Style Sheets (CSS) technology allows authors to separate rendering style
from the structure of an XML document. CSS uses style sheets to associate
presentation style to markup fragments (elements in XML documents) without
requiring changes to the content document. This allows a document author to
construct a document that does not mix presentation styles with the content model
of the document.

Two compelling features of CSS technology for Multi-Channel are the @media rules
and CSS Media Queries. @media rules in CSS allow styles to be specified based on
the device media, while CSS Media queries allow control presentation styles based
on media features supported by the device media.

■ CSS @media Rules

CSS @media rules (CSS2) allow authors to associate media-dependent style
sheets to XHTML documents. To facilitate this, the CSS specification defines
various abstract media types such as handheld, aural, tty, print, projection, tv
and others. For example, emphasized text can be rendered as italics on a
desktop, or as underlined text in handheld devices. In an aural (voice) interface,
emphasized text can be read with greater stress. Here is an example:

@media screen {
 em {font-style: italic}

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-7

}

@media handheld {
 em {text-decoration: underline}
}

@media aural {
 em {speech-rate: slow; pitch: high}
}

For more information on CSS syntax for @media rules and media types, see the
CSS2 Specification at http://www.w3.org/TR/REC-CSS2

■ CSS3 Media Queries

CSS @media rules, though powerful, still cannot render or present content
based on device features. For example using just CSS @media rules, it is not
possible to differentiate the presentation style between a handheld that
supports color versus a handheld that does not support color.

CSS3 Media Queries extends the @media rule defined in CSS2 to select style
based on media type (screen, handheld, print, tv, and others) as well as the
features and properties of a particular device. For example:

@media screen, handheld and {color) {
 em {color: red}
}

@media handheld and (color: 0) {
 em {text-decoration: underline}
}

For more information on the syntax of Media queries refer to CSS3 Media
Query Specification at http://www.w3.org/TR/css3-mediaqueries/.

OracleAS Wireless supports CSS3 media queries and borrows the syntax for its
media attribute (defined in the MXML namespace). The OracleAS Wireless-defined
media attribute provides a shorthand notation to control the display:none
property based on media. For more details on using the media attribute see
Section 8.2.5, "Styling and Embedding Content Based on Media".

W3C has defined subsets of the CSS2 technology that are suitable for various
resource-constrained devices. CSS Mobile Profile and CSS TV Profile are two
subsets of the CSS2 specification. CSS Mobile Profile defines ac subset of CSS2
technology that is suitable for mobile devices. OracleAS Wireless supports CSS
Mobile Profile.

XHTML+XForms

8-8 Oracle Application Server Wireless Developer’s Guide

8.2.2.3 XForms
XHTML and CSS provide a good separation of content from the presentation of the
content. HTML defines a forms model that is not abstract enough in nature; HTML
forms do not separate purpose from the display properties of form controls. Also,
the lack of a document interaction model has driven authors to use scripting
technologies even for very basic tasks such as input validation. All these factors
have contributed to HTML applications being very browser-specific, even in the
desktop world.

XForms is a new W3C technology that addresses the current problems in the HTML
forms. XForms provides a way to define a rich form interface and interaction model
without the need for auxiliary technologies such as scripting. The primary design
goals of XForms are:

■ Device Independence through support of abstract UI controls

■ Declarative Syntax to support most commonly performed actions

■ Separation of Purpose (data and processing logic) from presentation

■ Structured Form Data (using XML)

It is important to understand that XForms does not define a complete document
model, but merely defines the user interface components required for form
processing. XForms is an additive technology to other document content
information models, hence must be contained within other Markup Languages
(such as XHTML). Even though XForms is viewed as a replacement to the current
forms in HTML, the XForms design itself does not prohibit use of XForms with
other user interface standards such as WML (or even the current HTML Forms).

8.2.2.4 Overview of XML Namespaces
The wide adoption of XML has led to a plethora of XML documents (DTDs) being
defined by various industry groups and Independent Software Vendors (ISVs). This
can result in conflicts in element and attribute names among these various XML
technologies which would prevent a software module from identifying its elements.
This has resulted in a requirement for uniquely identifying an element or attribute
in an XML document. XML Namespaces addresses this requirement.

XML Namespaces is a mechanism that allows elements and attributes to be
identified universally. XML Namespaces allow elements and attribute names to be
identified with URI references. Element and attribute names, with XML
Namespaces, are called qualified names. Qualified names of elements and attributes
contain a namespace prefix, followed by a colon (:), followed by the local element
name. The prefix is a short notation for the URI of the namespace.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-9

The following Namespaces must be understood by authors in order to write an
XHTML plus XForms document:

■ XHTML Namespace: Namespace URI: http://www.w3.org/1999/xhtml

HTML Namespace identifies elements and attributes defined in HTML
specifications. Sections in this document use html as the namespace prefix for
HTML elements. Example: <html:div>

■ XForms Namespace: Namespace URI: http://www.w3.org/2002/xforms/cr

XForms Namespace identifies elements and attributes defined in XForms
specifications. Sections in this document use XForms or xf as the namespace
prefix for XForms elements. Example: <xforms:input> or <xf:input>

■ XML Events: Namespace URI: http://www.w3.org/2001/xml-events

XML Events Namespace identifies attributes defined in XML Events
specifications. Sections in this document use ev as namespace prefix for XML
Events attributes. Example: <xforms:action
ev:event="DOMActivate"/>

■ XML Schema: Namespace URI: http://www.w3.org/2001/XMLSchema

XML Schema Namespace identifies elements and attributes defined in XML
Schema specifications.

Sections in this document use xsd or xs as namespace prefix for XML Schema
datatypes. Example: <xforms:bind type="xsd:positiveInteger"/>

■ MXML: Namespace URI: http://xmlns.oracle.com/2002/MobileXML

OracleAS Wireless defines extension elements that can be used in an
XHTML+XForms document. These extensions elements enhance the
functionality of XHTML and XForms for Multi-Channel delivery. Sections in
this document use mxml as namespace prefix for MXML elements. Example:
<mxml:uiobject>

8.2.2.5 Overview of XPath
XPath is a standard expression language defined by World Wide Web Consortium
(W3C) that provides syntax to address and manipulate fragments of an XML

Note: The XML schema identifies all data types defined in XML
schema.

XHTML+XForms

8-10 Oracle Application Server Wireless Developer’s Guide

document. XPath also provides support for other functions and expressions using
string, number, and boolean datatypes.

8.2.2.5.1 XPath Expressions and Functions One type of XPath expression that is used
widely when authoring XForms documents is a path expression. A path expression
identifies nodes (elements, attributes, text, comment, content fragments) within an
XML document. XPath path expression syntax is similar to directory and file
navigation syntax in file systems supported by operating systems such as UNIX. As
the file and directory navigation in a file system are relative to the current directory,
a Path expression in XPath is relative to the current selected node in the XML
document, called context node. XPath also supports an absolute path expression (a
path expression that begins with a slash [/]).

Here is an example:

 <orders>
 <order>
 <partid item="1">123</partid>
 <quantity>2</quantity>
 </order>
 <order>
 <partid item="2">456</partid>
 <quantity>3</quantity>
 </order>
 </orders>

An XPath expression /orders selects the document root element.

An XPath expression /orders/order selects all order elements (called
nodeset).

In the above example the nodeset contains 2 order elements (nodes).

An XPath expression /orders/order[position() = 2] selects the second
order element.

An XPath expression /orders/order/partid/@item selects all item
attributes (a nodeset).

In the above example 2 item attribute nodes are selected.

An XPath expression /orders/order/partid[@item = 1] selects all
partid node which has an attribute equal to 1.

XPath also defines a core function library that can operate on the XML nodes. XPath
functions return or accept one of the following types: node-set, number (decimal),
string and boolean.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-11

8.2.2.6 Overview of XForms
XForms separates forms processing into distinct logical modules. These modules
are:

■ XForms Model

■ XForms Processing Logic

■ XForms User Interface Components

8.2.2.6.1 XForms Model The XForms Model contains both the structure of the Form
data and properties associated with the Form data. The structure of the form data is
represented as an XML document called the instance document. Each data node
(XML element) in the instance document is called an instance data node (node as
defined by XPath specification; these can be elements, attributes, or text data node
in an XML document).

The following example shows an XForms instance document. The instance
document is contained in the XForms <instance> element and must be a valid
XML document. Also the instance document must be a singly rooted document
(that is, the XForms instance element has only one child node and in this case it is
the <example> element in http://my.org namespace with my as the namespace
prefix). Elements datanode1, datanode2 and attributes nodeattr are called
instance data nodes or instance items.

<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms/cr">
 <xforms:instance>

 <!-- Data instance -->

 <my:example xmlns:my="http://my.org">
 <my:datanode1 nodeattr="2">120</my:datanode1>
 <my:datanode2>200</my:datanode2>
 </my:example>

 <!-- End Data Instance -->

 </xforms:instance>
</xforms:model>

XForms allows authors to define additional properties for the data in these instance
items. These properties are called model item properties. The model item properties
restrict and/or control the values of instance items and also defines when instance

XHTML+XForms

8-12 Oracle Application Server Wireless Developer’s Guide

items are required or relevant. The properties that can be defined for an instance
item are:

■ type—the type property constrains the basic data type of an instance item. As an
example, instance items could be a string, decimal, integer, date, time, and
others. XForms uses XML Schema datatypes to define the data type of an
instance item.

■ calculate—the calculate property allows a value for a instance item to be
calculated based on other instance items. As an example, a currency converter
application can convert currency amounts based on a conversion rates. The
calculate property takes an XPath Expression as its value.

■ constraint—the constraint property defines validity constraints on a instance
item that can be based on values in other instance items. As an example, a
shopping cart application could enforce rules of free shipping as a valid
selection only when the shopping cart contains two or more items. The
constraint property takes an XPath Expression (that evaluates to a boolean
expression) as its value.

■ readonly—the readonly property associates read-only constraints to an instance
item. The readonly constraint can be based on values in other instance items.
The readonly property takes an XPath Expression (that evaluates to a boolean
expression) as its value.

■ required—the required property associates required constraints to an instance
item. The required constraint can be based on values in other instance items.
The required property takes an XPath Expression (that evaluates to a boolean
expression) as its value.

■ relevant—the relevant property enables an instance item to be relevant based on
the context. The relevancy of a instance item can be based on values in other
instance items. The relevant property takes an XPath Expression (that evaluates
to a boolean expression) as its value.

The model item properties are not directly declared on the instance items or nodes
(within an XForms instance element), but rather are declared outside the XForms
instance (but within the XForms model element). The model item properties are
defined and associated to an instance item using an XForms <bind> element. Each
<bind> element in an XForms model associates an instance item to its
corresponding model item properties. The <bind> element has seven attributes,
one for each of the model item properties, and one attribute for the binding
expression that identifies the instance item with which the model item properties
are associated.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-13

The following example shows an XForms <bind> element. The <bind> elements
in this example associate two model item properties, type and required, to instance
item my:datanode2 and only the type property to the nodeattr (which is an
attribute of datanode1).

<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms/cr">
 <xforms:instance>

 <!-- Data Instance document here --->

 </xforms:instance>
 <!-- Bind Elements begin -->
 <xforms:bind id="b1" nodeset="/my:example/my:datanode2"
 type="xsd:positiveInteger"
 required="/my:example/my:datanode1 > 1"/>
 <xforms:bind id="b2" nodeset="/my:example/my:datanode1/@nodeattr"
 type="xsd:positiveInteger" />
 <!--Bind Elements end -->

</xforms:model>

8.2.2.7 XForms Processing Logic
The XForms document attains various intermediate states when a user is in the
process of interaction with the Forms. XForms processing logic defines the when and
what of the document state transitions. All XForms processing and state transitions
are defined in terms of events and events handlers (actions). XForms processing

Note: The xsd:positiveInterger denotes an XML Schema
type positive integer where xsd: is the namespace prefix for XML
Schema datatypes.

Note: The XForms model element DOES NOT contain any UI
controls (such as input, select, textarea). The XForms model element
merely contains the data needed for a form (as an XML document)
and model item properties for each of the instance items in the
XML instance document. Other elements that can occur in an
XForms model are XForms submission element (<submission>),
XML Schema element (<xsd:schema>), and XForms Action
elements.

XHTML+XForms

8-14 Oracle Application Server Wireless Developer’s Guide

logic describes when the XForms processor must throw an event and the default
behavior associated with the event.

The events mechanism in XForms follows the DOM Level 2 (DOM2) Events
specification. In DOM2 Events, all events dispatched have a defined target node
(node in the document tree). The events dispatched reach the target node (from the
document root node) after an event capture phase. After reaching the target node,
the event may (optionally) go through a bubbling phase. Additionally each event
has a defined default action that is performed by the XForms processor after the
capture and bubble phase. The default action may be cancelled by the document
author if desired. The document author may register event handlers (also called
actions), to a node in the document, using event listeners. The event handlers can be
registered (to be executed) either during the event capture phase or during the
event bubble phase. For more information on DOM2 Events, see DOM Level 2
Events specification (http://www.w3.org/TR/DOM-Level-2-Events/).

A document author can register event listeners using a declarative syntax defined
by XML Events. XML Events, an events syntax for XML, defines attributes that
enable an element to register itself as an event observer and attributes that enable an
element to be an action handler. For more information on XML Events, see XML
Events specification (http://www.w3.org/TR/xml-events/).

As stated in the beginning of the section, XForms processing logic defines a default
set of events and actions that allow a document author to declaratively specify a
document interaction model. This declarative model eliminates the need for
scripting technologies user interaction support. XForms processing logic defines
events that fall into categories of Form Initialization, Form Interaction, Processor
Notifications and Form/Processor Errors.

The following example shows how an event handler (the xforms:send action) is
registered to a DOMActivate event. In this example, the send element uses the
ev:observer attribute to declare the trigger element as an observer (listener) of
the DOMActivate event. When DOMActivate reaches the "trigger" element, the
processor detects that the trigger element is listening for the particular event and
the processor also detects the send element is the handler defined by the trigger
as an event handler. The processor performs the actions defined in response to a
given event; in this case a send (submit) action

<xforms:trigger id="SubmitButton"
xmlns:xforms="http://www.w3.org/2002/xforms/cr">
 <xforms:label>Submit</xforms:label>

 <!-- Event observer is the trigger and event action is the submit -->

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-15

 <xforms:send ev:observer="SubmitButton" ev:event="DOMActivate"
 submission="ExpenseSave"/>

</xforms:trigger>

8.2.2.8 XForms User Interface Components
In addition to model and processing logic, XForms defines an abstract set of User
Interface Controls. User interface components define the intent of a UI widget and
do not dictate how the widget should be presented. An example is the select1
defined by XForms. select1 describes the intent of the control: only one item can
be selected rather than presenting it as a list or a radio button control. Since these
user interface controls only define the intent of a UI widget, the right presentation
can be decided based on the constraints of the target device.

The user interface components in XForms do not contain the data that is captured or
to be captured. The user interface components merely reflect the data in the instance
data node (instance item) that the component is bound to. The user interface
controls bind to the instance item using binding attributes defined in a control. The
binding attributes defined by these components are bind, model, ref, and
nodeset. A user interface control can directly bind to an instance item using the
model and ref or nodeset attributes, or alternatively use the bind attribute that
indirectly binds the control to the instance item (The bind attribute takes the id of
an XForms bind element, which is bound to an instance item).

The following example shows a user interface control (input) that binds to an
instance item. This example uses the model and ref attributes to bind the input
control to the instance item.

<xforms:input model="first_model" ref="/my:example/my:datanode1">
 <xforms:label>Input Label</xforms:label>
</xforms:input>

The following example shows a user interface control (input) that binds to an
instance item. This example uses the bind attribute to bind the input control to the
instance item.

Note: In both the XForms model and XForms processing logic, no
specific user interface controls have been declared. This clear
separation allows the XForms Model and Processing logic to be
used with user interface components provided by a host language
(such as WML or HTML Forms).

XHTML+XForms

8-16 Oracle Application Server Wireless Developer’s Guide

<xforms:input bind="b1">
 <xforms:label>Input Label</xforms:label>
</xforms:input>

8.2.2.9 XForms and XPath
XForms uses XPath for all binding expression and model item properties.

■ Model Binding Expressions

Model Binding expressions are expressions that connect Model Item Properties
to an instance item. Model Item Expressions are XPath Expressions, used in
nodeset attribute of the XForms <bind> element.

■ UI Binding Expressions

UI Binding Expressions are expressions that connect a UI Form Control to an
Instance Item. UI Binding expressions are XPath expressions used in ref or
nodeset attributes of a UI Control.

■ Calculated Expressions

Calculated Expressions are expressions that can be evaluated at runtime to
provide values for Model Item Properties. Calculated Expressions are used in
calculate, constraint, relevant, required, readonly attributes of
XForms <bind> element.

An instance document in XForms may or may not be identified by a namespace.
When the instance document does belong to a namespace, then all Bind Expressions
(XPath expressions) must use the namespace prefix in the XPath expressions.

In the following example, the instance document belongs to the namespace
http://my.org. Any XPath expression (in <bind> or UI controls) should prefix
the path expression with the namespace prefix.

<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms/cr">
 <xforms:instance>

 <my:example xmlns:my="http://my.org">
 <!-- Child Nodes -->

 </my:example>

 </xforms:instance>

 <!--

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-17

 The nodeset attribute use the "my:" prefix to address the

 <example> element in the instance. Also the "my:" prefix must

 be defined in the bind element or in one of the ancestors nodes

 of the bind element
 -->
 <bind nodeset="/my:example" ...>

</xforms:model>

8.2.2.10 XHTML as Host Language for XForms
As stated in the previous sections, XForms only provides components required for
form processing. XForms does not define a complete document model. The World
Wide Web Consortium (W3C) is working on the next generation of XHTML,
XHTML 2.0, which will make XForms an integral part of XHTML. XHTML2.0
currently is a working draft that does not, yet, clearly specify how XForms will be
integrated into XHTML 2.0.

OracleAS Wireless supports XForms processing using XHTML as the containing
document for XForms. In this new document model, called XHTML+XForms, the
XForms <model> element belongs to the <head> section of an XHTML document,
Form controls and Forms User Interface components belong in the <body> of an
XHTML document. OracleAS Wireless supports XHTML modules (elements) based
on XHTML Basic with some additional modules, but replaces Forms Module in
XHTML Basic with XForms.

XForms Forms Controls (such as inputs, selects, and textareas) are treated as
XHTML inline content, that is, they can occur where any inline element (such as
span or strong) can occur with certain restrictions. See Appendix A, "XHTML
Modules Supported" for more details on the content model.

XForms User Interface components (such as groups, switch/cases, and repeats) are
treated as an XHTML block content model, that is, they can occur where any block
elements (such as div) can occur with certain restrictions. See Appendix A,
"XHTML Modules Supported" for more details on the content model.

8.2.2.11 Setting Document Content Type and Profile Attributes
To enable OracleAS Wireless to identify a remote document as XHTML+XForms,
the MIME media-type (content type) of the response document must be set to
application/vnd.oracle.xhtml+xforms.

XHTML+XForms

8-18 Oracle Application Server Wireless Developer’s Guide

To enable OracleAS Wireless Server to determine if a document conforms to the
XHTML+XForms content model as defined by OracleAS Wireless, all conformant
documents must set the profile parameter in <html> element to
http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0.

The following example shows a JSP page that sets the correct content type and also
sets the correct profile attribute:

<?xml version = "1.0"?>

<%@ page contentType="application/vnd.oracle.xhtml+xforms"%>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:my="abc"

 xmlns:ev="http://www.w3.org/2001/xml-events"

 xmlns:xforms="http://www.w3.org/2002/xforms/cr"

 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 <head>

 </head>
 <body>

 </body>
</html>

8.2.3 Hello World Application Using XHTML and XForms

8.2.3.1 About Hello World and Basic Requirements
■ About the Hello World Application

The Hello World application displays an input control to the user. The users may
enter any text (string) data as value for the input control. Upon submission of
the page, a Hello World message appears in a response page with the user’s
entered value.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-19

■ Server Requirements

The Hello World application requires an application server that can host and
serve its JSP pages.

Application or document authors must be familiar with XML, XHTML and CSS in
order to understand these materials. You should also have read the previous
sections of the document and have a basic knowledge of XForms and XPath
technologies.

8.2.3.2 Writing the Hello World Application
1. The XHTML document must first contain <xml> declaration. Add the

following as the first set characters to your document:

 <?xml version = "1.0"?>

2. Add <html> element as the document root (immediately following the <xml>
declaration). Include both the start tag and the end of <html> element. Ensure
that you include the default namespace declaration (xmlns attribute on the
<html> element sets the default namespace to HTML). Also add the profile
attribute to the <html> element:

 <?xml version = "1.0"?>
 <html xmlns="http://www.w3.org/1999/xhtml"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 </html>

3. Add the <head> and <body> sections of an XHTML document:

 <?xml version = "1.0"?>
 <html xmlns="http://www.w3.org/1999/xhtml"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 <head>
 <title>My First Hello World Application</title>
 </head>
 <body>
 <h1>My First XForms Page</h1>
 <div>
 <p>Welcome to my first XForms Page.</p>

Note: This tutorial uses JSP as a CGI programming environment;
authors can use any CGI programming environment with which
they are familiar.

XHTML+XForms

8-20 Oracle Application Server Wireless Developer’s Guide

 </div>
 </body>
 </html>

4. Now add some styles to the XHTML document. (The <style> element must
have type attribute set to text/css)

 <?xml version = "1.0"?>
 <html xmlns="http://www.w3.org/1999/xhtml"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 <head>
 <title>My First Hello World Application</title>
 <style type="text/css">
 body {color : #000000}
 h1 {font-family : sans-serif;
 color : blue}
 </style>
 </head>
 <body>
 <h1>My First XForms Page</h1>
 <div>
 <p>Welcome to my first XForms Page.</p>
 </div>
 </body>
 </html>

5. Add XForms to the above XHTML document. First, add some namespace
declarations for XForms and XML events in the <html> element. Also add a
namespace for your XML data (instance) document. In this example it is
assumed that instance data is in the http://example.org namespace (uses a
namespace prefix mydata).

 <?xml version = "1.0"?>

 <html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xforms="http://www.w3.org/2002/xforms/cr"
 xmlns:mydata="http://example.org"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">

6. Add the XForms model element in the head section. The <model> contains an
<instance> that defines the form data.

<head>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-21

 <title>My First Hello World Application</title>

 <style type="text/css">

 </style>
 <xforms:model id="m1">
 <xforms:instance>
 <mydata:example>
 <mydata:name/>
 </mydata:example>
 </xforms:instance>
</xforms:model>
 </head>

7. Add the UI Control that accepts the visitor’s name. To do this, use an
xforms:input control to the contents of <body>. The input control binds to
the instance item (name), defined in the xforms:instance, using the model
and ref attributes.

 <body>

 <h1>My First XForms Page</h1>

 <div>

 <p>Welcome to my first XForms Page.</p>
 <p>
 <xforms:input model="m1" ref="/mydata:example/mydata:name">
 <xforms:label>Hello Visitor, Please Enter your name</xforms:label>
 <xforms:help>Enter you name</xforms:help>
 <xforms:hint>Please Enter you name</xforms:hint>
 </xforms:input>
 </p>

 </div>
 </body>

8. Finally to submit the data entered by the user, define a submission page to
where the date will be submitted. To activate the submit, you must define a

Note: The ref attribute uses an XPath Expression that contains
the path expression for the name element from the instance
document (ref="mydata:example/mydata:name).

XHTML+XForms

8-22 Oracle Application Server Wireless Developer’s Guide

submit trigger. As you may notice, the submission page is defined using the
<submission> element in the XForms model. The <submit> element is a UI
control with an associated DOMActivate event that will trigger the
submission.

By default, submissions in XForms submit the instance document as an XML
document. To receive the submit data as regular URL parameters, you must set
the value of method attribute to get, and also set the value separator attribute
to &. The following example shows a complete XHTML+XForms
document:

 <?xml version = "1.0"?>

 <html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xforms="http://www.w3.org/2002/xforms/cr"
 xmlns:mydata="http://example.org"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 <head>

 <title>My First Hello World Application</title>
 <style type="text/css">
 body {color : #000000}
 h1 {font-family : sans-serif;
 color : blue}
 </style>
 <xforms:model id="m1">
 <mydata:example>
 <mydata:name/>
 </mydata:example>
 <!-- Submission element -->
 <xforms:submission id="nextpage"
 method="get" action="submit.jsp" separator="&"/>
 </xforms:model>

 </head>
 <body>
 <h1>My First XForms Page</h1>

 <div>

 <p>Welcome to my first XForms Page.</p>

 <p>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-23

 <xforms:input model="m1" ref="/mydata:example/mydata:name">

 <xforms:label>Hello Visitor, Please Enter your name</xforms:label>

 <xforms:help>Enter you name</xforms:help>

 <xforms:hint>Please Enter you name</xforms:hint>

 </xforms:input>

 </p>
 <p>
 To submit please select the submit trigger
 <xforms:trigger>

 <xforms:label>Submit</xforms:label>
 <xforms:send submission="nextpage" ev:event="DOMActivate"/>

 </xforms:trigger>
 </p>

 </div>
 </body>
 </html>

8.2.3.3 Deploy the Hello World Page and Provide a CGI Program
Now the XHTML+XForms document is ready to be deployed and tested. Authors
may deploy the document on their web servers, making sure, at deployment time,
to set the MIME media type (content-type) of the document to
application/vnd.oracle.xhtml+xforms. The setting of the MIME media
type can be done either programmatically or using web server configuration files.
Authors must also provide a page that acts as the submit page for the example. This
page will receive the form data (from the Hello World page) as query parameters.

8.2.4 OracleAS Wireless and XHTML+XForms+CSS
OracleAS Wireless supports XHTML+XForms+CSS as the next generation of
publishing language supporting device-independent authoring. This section
provides more details on the authoring XHTML+XForms+CSS for specific channels
using OracleAS Wireless.

XHTML+XForms

8-24 Oracle Application Server Wireless Developer’s Guide

OracleAS Wireless supports three different modes of rendering XHTML+XForms
documents for supporting this breadth of devices. The three different modes are:

■ Devices that support no client code

These are devices that support a built-in user agent (browser) supporting only a
limited set of functionality and providing no way for extending user agent
behavior.

To support these devices, OracleAS Wireless behaves like a server-side virtual
browser. The XHTML+XForms page is cached on the server, and only a view of
the XHTML XForms is rendered to the device. All XForms events are handled
on the server side; the device simply renders the contents of the updated state
of the XHTML XForms document.

This is an example of a model in which the page processing (XForms Processor)
and rendered view are distributed over the network. In this model the XForms
application is not as interactive (in comparison to XForms-based browsers on
the client), but allows the application to gracefully degrade on devices having
limited processing power.

OracleAS Wireless supports this model processing and rendering for all Phone
(WAP) and PDA (PocketPC, Palm) devices.

■ Devices that support a scripting environment

These are devices that support a built-in user agent (browser) supporting a
scriptable environment. In this model, the XForms processor, on the server side,
generates scripts (at runtime) to offload some of the processing logic to the
client side, thereby bringing greater interactivity to the environment.

To support these devices, OracleAS Wireless behaves like a server-side virtual
browser, on which the XHTML XForms pages are cached on the server, and
only a view of the XHTML+XForms is rendered to the device. While generating
the view for the client to render, the server also generates script code, allowing
certain basic actions to be performed on the client (using scripts). The XForms
processor on the server side still handles most of the events and actions
(especially the non-trivial actions such as insert and delete).

This is also an example of a model in which the parts of page processing
(XForms Processor) and rendered view are distributed over the network. This
model utilizes the fact that the client side scripting brings greater interactivity,
while being cognizant of the fact that the complete XForms processing model
cannot be supported by these scripting environments.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-25

OracleAS Wireless supports this model for aural (voice) rendering that uses a
Voice Gateway. Typically the Voice Gateway and the OracleAS Wireless Server
are connected on a high speed network; this allows OracleAS Wireless Server to
send a large amount of scripting data.

■ Devices that can support a native Client

These are devices that allow implementation of native code and enable them to
be a plug-in to the browser, while using the browser as the rendering container.
In this model, the XForms processor resides on the client device as a plug-in,
while the server performs pre-processing steps.

This model affords the most interactivity and allows OracleAS Wireless to
better support XForms pages. In this model, both the page processing (XForms
processing) and view rendering occur in a single process context, hence support
for more of the XForms-specified features.

OracleAS Wireless provides a plug-in for the Microsoft Internet Explorer
browser for Win32 environments (Laptop devices). Future releases of the
software will support more devices (such as, WinCE and Pocket PC devices).

OracleAS Wireless dynamically selects the preferred mode for a request based on
the device making a request. This dynamic discovery of the correct rendering mode
allows OracleAS Wireless to support XHTML+XForms on a wide variety of devices.
Developers of XForms pages should be aware of such varied rendering model and
author XForms pages in a fashion that will retain the main functionality in all
modes.

8.2.4.1 OracleAS Wireless XHTML, XForms and CSS Support
OracleAS Wireless combines XHTML, XForms and CSS technologies to provide a
multi-channel authoring model. It supports a subset of all these technologies
suitable for mobile applications.

OracleAS Wireless supports XHTML Basic (with some additional modules). The
Forms module in XHTML Basic is replaced by XForms. OracleAS Wireless
additionally adds some extra modules, namely: Navigation List (from XHTML2.0),
MXML Media Attribute Module and Speech Grammar Module. For a list of
XHTML modules supported, see Appendix A, "XHTML Modules Supported".

OracleAS Wireless also supports CSS Mobile Profile defined by W3C. OracleAS
Wireless additionally adds some extra CSS Properties, namely: CSS aural (styling
for voice rendering), CSS Media Queries (for media feature based styling) and
Oracle CSS Layout Extensions (for styling XForms). Since OracleAS Wireless
renders using the browser on the client device, not all properties are supported on

XHTML+XForms

8-26 Oracle Application Server Wireless Developer’s Guide

all devices; OracleAS Wireless attempts to find a reasonable representation of the
style in such cases. For a list of CSS properties supported, see Section D, "OracleAS
Wireless CSS Support" and Section 8.2.5, "Styling and Embedding Content Based on
Media".

Oracle Application Server Wireless also supports a subset of features specified in
W3C XForms 1.0 Candidate Recommendation at
(http://www.w3.org/TR/2002/CR-xforms-20021112/). For a list of features
supported, see Section C, "XForms Specification Support".

OracleAS Wireless defines a schema that combines the XHTML Modules (with
additional modules) and XForms modules as supported. All XHTML+XForms
documents, to be rendered and supported by OracleAS Wireless must:

■ conform to the XHTML+XForms schema defined by OracleAS Wireless,

■ be served to OracleAS Wireless with a MIME media type (Content-type)
application/vnd.oracle.xhtml+xforms,

■ indicate the profile conformance by setting the profile attribute (in html
element) to http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0.

8.2.4.2 OracleAS Wireless and XML Events Support
XForms uses DOM2 Events for supporting processing logic and uses XML Events
syntax to represent them in an XML document. Even though XML Events allows
developers to attach event listeners (or observers) to any XML element (XForms and
XHTML elements), OracleAS Wireless restricts the list of nodes to which events
may be attached. With OracleAS Wireless, events listeners may be attached only to
XForms forms control (input, secret, textarea, trigger, select1, select,
submit) elements. OracleAS Wireless also supports attaching event listeners to the
html body element and html navigation list (html:nl) elements. OracleAS Wireless
DOES NOT support attaching events to any other XForms (such as xforms:group,
xforms:item, xforms:itemset) and HTML elements (such as p, div).

8.2.4.3 Visual Applications and XHTML+XForms

8.2.4.3.1 Overview OracleAS Wireless enables web applications to be accessible from
a variety of mobile devices, such as phones and PDAs. Access to these applications
can also be accomplished using a browser interface or using a text-based interface
such as SMS or Instant Messaging Interface. OracleAS Wireless supports most of the
popular WML/HDML/HTML browsers, SMS protocols and popular IM protocols
(Yahoo, AOL, MSN and Jabber). The following sections include best practices for

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-27

authoring applications which will be viewed on a variety of visual devices that not
only differ in device form factor, but also in network interfaces supported.

8.2.4.3.2 Visual Applications for PDA/Laptop Devices Even though most PDA/laptop
devices have HTML Browsers, there are significant differences in the HTML
versions of HTML supported by these browsers. For instance, a primary difference
between laptop and PDA devices is in their support for CSS Properties; most PDA
devices support HTML 3.2 browsers, while most laptops support HTML 4.0
browsers with CSS support.

OracleAS Wireless treats PDAs and laptops as different media types (as defined by
the CSS Specifications); a laptop device can be considered of media type screen
while a PDA is considered media type handheld. Developers may use the media type
and media properties (such as width, height, color) to lay out content of a page
differently on these devices. For example, using a three column layout on a screen
(laptop) media and a two column layout on a handheld (PDA) media.

Another important difference is that on some laptop environments, form processing
and rendering can be supported using a OracleAS Wireless Client plugin to the
browser. This rendering mode requires installation of additional software on the
laptop device.

For laptop devices, OracleAS Wireless supports two modes of rendering:

■ Server-side transformation that renders to the browser on the laptop. In this
mode, the server still behaves like a virtual browser, maintaining the state of the
XForms page on the server. The server uses the browser on the laptop to render
the transformed HTML Markup from the server.

■ Wireless Client plugin that supports XForms on the local client device. Using
this plugin, OracleAS Wireless delegates most of the processing to the client
side, while doing some pre-processing steps on the server. This plugin enables
the browser to support an XHTML+XForms page on the device, hence most of
the forms processing is performed on the device leading to fewer round trips to
the OracleAS Wireless server. OracleAS Wireless Client can be invoked using an
omc:// protocol scheme in the URL. For example:
omc://wireless-host.com/ptg/rm.

For PDA devices, OracleAS Wireless supports only server-side based
transformation, and all form processing happens on the server side. OracleAS

Note: This plugin is available for Internet Explorer browser on
Windows platforms only.

XHTML+XForms

8-28 Oracle Application Server Wireless Developer’s Guide

Wireless uses HTML 3.2 tags for controlling style properties on PDA devices. This
implies the all the CSS Properties (Mobile Profile) may not be supported on a PDA
device, especially the box and background properties (Refer to CSS Properties
Supported section).

8.2.4.3.3 Visual Applications for Phone Devices OracleAS Wireless supports a variety
of phone device browsers available, including HDML, WML, XHTML MP, CHTML
browsers. There are two varieties of phone browsers available:

■ Traditional WML/HDML-based browsers that hold multiple views (cards) in a
single document. Users can navigate between the stack of views (cards) on the
client (without a server round trip). These media can be considered as a paged
media, which shows a single document in multiple page layouts where only
one page is visible to a user at a time.

■ XHTML MP and CHTML browsers are just like HTML browsers where all the
document content is displayed in a single view.

OracleAS Wireless treats all phones as media type handheld. Additionally, devices
that support multiple card views are considered to have a special media feature
called paged. For devices that support the paged media feature, developers can use
CSS Page Break properties to control how to split documents into multiple cards.
The following example shows each div in a separate card (See Section 8.2.5,
"Styling and Embedding Content Based on Media" for more details CSS media
queries and mxml:media attribute).

 <html xmlns="http...">

 <style type="text/css">
 @media handheld and (paged) {
 body > div {page-break-after: always}
 }
 </style>

 <body>
 <div>
 Content on Card 1 on paged media
 </div>
 <div>
 Content on Card 2 on paged media
 </div>
 </body>
 </html>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-29

It is important to realize that all phones and PDAs are considered handheld;
developers must use media features such as paged, grid or min/max-device-width in
the query expression for styling and laying out content in a document.

8.2.4.3.4 Visual Applications Using Asynchronous Browsing OracleAS Wireless supports
access to applications using devices that support a standard paging interface (SMS),
Email Interface or an Instant Messaging interface. This mode of access to an
application can be considered special as the request and response cycle is
asynchronous in nature (that is, a response to a request does not occur in a single
connection to the server). Devices that support an asynchronous mode of
interaction with the application are said to have an async media property. This
property can be used in media query expression. The following example uses the
async media property in the mxml:media attribute (See Section 8.2.5, "Styling and
Embedding Content Based on Media" for more details).

 <html xmlns="http...">

 <body>
 <div mxml:media="all and (async)">
 Content to be displayed on an
 SMS/IM/Email Interface
 </div>
 <div mxml:media="all and (async: 0)">
 Content to be displayed on a regular
 browser interface
 </div>
 </body>
 </html>

Note: Media feature paged takes an integer value. The query
expression (paged) is synonymous to (paged:1). The query expression
(paged:0) matches devices that do not support the paged media
feature.

Note: Media feature async takes an integer value. The query
expression (async) is synonymous to (async:1). The query expression
(async:0) matches devices that use a regular browser (synchronous
online browsing) interface.

XHTML+XForms

8-30 Oracle Application Server Wireless Developer’s Guide

Because the Async channel has no client browsing capability, some application
result representation can differ from other channels. Table 8–2 lists the tags with
Async-specific semantics which are interpreted differently by browsing devices.

Table 8–2 XHTML/XFORMS Tags

XHTML/XFORMS Tag Semantics

xhtml:a The value of the anchor is printed on the returned page with a number prefix to
identify the hyperlink. The target URL and the number prefix are stored in the
server so that the URL can be retrieved after the user makes the selection.

xhtml:abbr Output text

xhtml:acronum Output text

xhtml:address Output text with line break

xhtml:blockquote Output text

xhtml:br Output line break

xhtml:caption Output text

xhtml:cite Output text

xhtml:code Output text

xhtml:dd Output text

xhtml:dfn Output text.

xhtml:div Output text with line break.

xhtml:dt Output text.

xhtml:em Output text.

xhtml:h1 Output text with line break.

xhtml:h2 Output text with line break.

xhtml:h3 Output text with line break.

xhtml:h4 Output text with line break

xhtml:h5 Output text with line break

xhtml:h6 Output text with line break.

xhtml:hr Output linefeed

xhtml:kdb Output text.

xhtml:label Output text.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-31

xhtml:li Output indented text. A number prefix is added in front of the text as the
hyperlink selector if its parent element is nl.

xhtml:object Output text.

xhtml:p Output text with line break.

xhtml:param Ignored (not applicable to Async-enabled devices).

xhtml:pre Output pre-formatted text with line breaks.

xhtml:q Output text

xhtml:samp Output text.

xhtml:span Output text.

xhtml:strong Output text.

xhtml:td Output text with each entry separated by a delimiter. The default delimiter is the
comma (,).

xhtml:tr Output text with line break.

xhtml:var Output text.

xforms:alert Output text.

xforms:filename Ignored (not applicable to Async-enabled devices).

xforms:help Output text.

xforms:hint Ignored (not applicable to Async-enabled devices).

xforms:input Output label with the input marker [] at the end.

xforms:item Out the indented item label with a number prefix to identify the item selection.

xforms:itemset Output the indented item label with a number prefix

xforms:label Output text.

xforms:mediatype Ignored (not applicable to Async-enabled devices).

xforms:message Output text.

xforms:output Output text.

xforms:range Output label with input marker [] at the end.

xforms:secret Output label with the input maker [] at the end.

Table 8–2 XHTML/XFORMS Tags

XHTML/XFORMS Tag Semantics

XHTML+XForms

8-32 Oracle Application Server Wireless Developer’s Guide

xforms:select Output label with the input marker [..] at the end. The user of the device can make
multiple selections by assigning multiple item prefixes to this form control. For
example, in the following document:

<xforms:select ref="my:warehouse" selectUI="listbox">
 <xforms:label>Select your favorite sports</xforms:label>
 <xforms:item>
 <xforms:label>Basketball</forms:label>
 <xforms:value>basketball</xforms:value>
 </xforms:item>
 <xforms:item>
 <xforms:label>Football</forms:label>
 <xforms:value>football</xforms:value>
 </xforms:item>
 <xforms:label>Basketball</forms:label>
 <xforms:value>basketball</xforms:value>
 </xforms:item>
 <xforms:item>
 <xforms:label>Football</forms:label>
 <xforms:value>football</xforms:value>
 </xforms:item>
 </xforms:select>
 ...

Should be transformed to

 Select your favorite sport [...]
 1 Basketball
 2 Baseball
 3 Football

The user responds by selecting 1 2 for both basketball and baseball.

xforms:select1 Output label with the input marker [] at the end.

Table 8–2 XHTML/XFORMS Tags

XHTML/XFORMS Tag Semantics

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-33

xforms:submit The element can be presented as either of the following options:

■ No input text for the element if the sum of the number of submit and trigger
elements in the document is less than 2. Otherwise:

■ A select1 construct is created as the first form control with labels of the submit
and trigger elements in the document to be item options. The label of the
submit element should be output in the relative document context position.

For example, in the document:

...
<xforms:input ref="my:name">
 <xforms:label>Name:</xforms:label>
<x/forms:input>

<xforms:submit submission="form1">
 <xforms:label2">Submit</xforms:label>
<x/forms:submit>

<xforms:submit Submission="form2">
 <xforms:label>Reset</xforms:label>
<x/forms:submit>
...

should be converted to

Actions []
1 #Submit
2 #Reset
Name: []

#Submit
#Reset

Table 8–2 XHTML/XFORMS Tags

XHTML/XFORMS Tag Semantics

XHTML+XForms

8-34 Oracle Application Server Wireless Developer’s Guide

8.2.4.4 Voice Applications and XHTML+XForms
OracleAS Wireless supports voice access to XForms applications. Because OracleAS
Wireless transforms XForms pages to VoiceXML and ECMAScript, voice access
using OracleAS Wireless requires a conformant voice gateway that supports
VoiceXML 1.0 or 2.0 and ECMAScript. OracleAS Wireless transforms XForms pages
to VoiceXML. The OracleAS Wireless transformation process generates VoiceXML
(VoiceXML executable content) for aural presentation, and also dynamically
generates ECMAScript functions that implement a limited XForms processing
model that executes on the voice gateway.

The primary execution required for XForms documents is the processing of XForms
actions. Depending on its type, an XForms action will either be performed by
VoiceXML executable content and dynamically generated ECMAScript, or handled
on the server depending on the processing requirements of the actions and the
capabilities of the VoiceXML and ECMAScript. For example, actions such as
<message> and <setvalue> are executed on the client browser using executable
content and ECMAScript, whereas actions such as <insert> or <delete> use
server-side support, as they need a resource-intensive XML/XPath processor.

The following XForms actions are performed on the server:

■ insert and delete

■ setindex

■ send (submit)

■ reset

■ load

xforms:textarea Output label with input marker [] at the end.

xforms:trigger The element could be presented in one of the two ways shown below.

■ No output text for the element if the sum of the number of submit and trigger
element in the document is less than 2. Otherwise,

■ A select1 construct will be created as the first form control with labels of the
submit and trigger elements in the document to be the item options. The label
of the submit element should be output in the relative document context
position.

xforms:upload Ignored; not applicable to Async devices.

Table 8–2 XHTML/XFORMS Tags

XHTML/XFORMS Tag Semantics

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-35

When the above XForms actions are to be performed, the voice gateway (client)
initiates a round trip to the server and the server executes these actions. The
resulting view/state of the XForms page is then re-rendered on the voice gateway
(client). In some instances, multiple actions are performed as a result of the firing of
a single event. In this case, if any of those actions would require server support,
none of the actions are performed on the client. Instead, they are all executed on the
server. For example, when an <insert> action is followed by a <message> action,
both actions are performed on the server; the actions are grouped and executed on
the server side. This enables the server to achieve consistency and efficiency in the
processing model.

The process of distributing certain actions to the gateway and other actions to the
server entails certain restrictions. The following are some restrictions on XForms
documents when rendering in aural mode:

■ Dynamic Binding of UI Control and actions are not supported in Aural mode.
UI Controls in an XForms document should remain bound to a single instance
item throughout the various state transitions of an XForms document. This
restriction arises from the fact that there is no XML processor in ECMAScript.

■ XPath Functions that depend on XML Node context must be used with care in
aural mode as it is not always possible to evaluate functions on the voice
gateway (the client). This restriction also arises from the fact that there is no
XML processor in ECMAScript. For a list of XPath functions that require the
node context see Appendix A, "XHTML Modules Supported". Again, actions
that use such XPath functions may be combined with actions that require
server-side support so the function computation is done by the server.

8.2.4.4.1 XForms Model Item Properties, Default Values and Voice Rendering Model item
properties such as relevant, readonly and default values affect how form
controls are rendered in aural mode. If a form control is marked
relevant="false()" or readonly="true()", or has a valid default value, the
voice gateway will not prompt and collect a value for that form control in aural
mode. Otherwise, the voice gateway will prompt and collect a value for the control
(including the case in which the control is marked relevant="true()",
readonly="false()", but has an invalid default value).

Note: There is a way around this restriction by always specifying
an action that needs server support. This allows the server to
handle the dynamic binding.

XHTML+XForms

8-36 Oracle Application Server Wireless Developer’s Guide

8.2.4.4.2 Extension Events for Voice Applications To support voice applications,
OracleAS Wireless has defined a list of voice events that can be activated in aural
mode. The events defined for voice applications are:

■ vxml-nomatch

This event is dispatched when the voice grammar recognition cannot match a
user utterance with any of the utterances it is listening for in the current scope.

Bubbles: Yes

Cancelable: Yes

Context Info: none

Default processing for this event is to read a list of possible options available for
the user. If the event’s target is <nl>, <select>, or <select1>, the items or
options under the target are read. Otherwise, the default processing is for the
gateway to say a localized message asking the user to repeat his utterance or
say help.

■ vxml-cancel

This is event is dispatched when the user says cancel.

Bubbles: Yes

Cancelable: Yes

Context Info: none

This is a notification event; default processing for this event is to do nothing.

■ vxml-exit

This is event is dispatched when the user says exit.

Bubbles: Yes

Cancelable: Yes

Context Info: none

Default processing for this event is to say a localized version of Goodbye, and
then exit from the voice session.

■ vxml-error

This event is dispatched when an error occurs on the voice gateway. Voice
gateway errors include syntactic or semantic errors in a document, or
attempting to use telephony features that are not supported by the gateway.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-37

Bubbles: Yes

Cancelable: Yes

Context Info: none

Default processing for this event is to say a localized message that an error
occurred and then exit from the voice session.

■ vxml-error-badfetch

This event is dispatched when a fetch request of a resource fails.

Bubbles: Yes

Cancelable: Yes

Context Info: none

Default processing for this event is to say a localized message that a bad fetch
has occurred and then exit from the voice session

■ vxml-main-menu

This event is dispatched when the user says main menu (Its intended use is to
allow a service to handle the event by returning to a service-specific main menu
document.

Bubbles: Yes

Cancelable: Yes

Context Info: none

This is a notification event; default processing for this event is to do nothing.

8.2.4.4.3 Extension Actions for Voice Applications OracleAS Wireless extends the list of
XForms actions by defining custom actions in the MXML namespace.

■ mxml:handler

In visual applications, the screen provides a persistent view of the documents,
to which the user can constantly refer for information. In voice applications, the
view is transient; the user must remember what the system said in order to
provide the correct response. Since voice applications depend on the user’s
memory, the user may need an extended help and hint mechanism. However,
this extended help or hint mechanism may be a source of annoyance for a more
experienced user. To satisfy this need while accommodating a broad spectrum
of users, voice applications typically provide messages based on the number of
occurrences of an event. For example, it would be quite reasonable to assume

XHTML+XForms

8-38 Oracle Application Server Wireless Developer’s Guide

that when a user requests help twice, the user is looking for a more detailed help
message.

To enable support actions based on the occurrence count of an event, OracleAS
Wireless has extended the list of actions with a <handler> action defined in
the MXML namespace. The <handler> action allows different handling based
on the number of times the action has occurred, defined using the count
attribute of the <catch> element. The following example uses the
<mxml:handler> action that provides different help messages for the first and
second occurrences of the xforms-help event.

 <xforms:input>
 <mxml:handler ev:event="xforms-help">
 <mxml:catch count="1">
 <xforms:message>Brief Help Message</xforms:message>
 </mxml:catch>
 <mxml:catch count="3">
 <xforms:message>Expanded Help Message</xforms:message>
 </mxml:catch>
 </mxml:handler>
</xforms:input>

■ mxml:disconnect

OracleAS Wireless supports voice access using a voice gateway that works over
a telephony system. Users must dial in to the voice gateway to access the voice
application. In such environments, it is sometimes useful for the author to be
able to disconnect the call and end the user session. To support this, OracleAS
Wireless defines an extension action <mxml:disconnect> in the MXML
namespace.

8.2.4.4.4 Providing Help, Hint and No-Match Messages for Voice applications Voice
applications typically provide messages to play for UI controls and navigation
menus when the user says help, says something the gateway does not recognize

Note: The above example shows how to provide different help
messages when a user invokes help the first time (count="1") and
the third time (count="3"). If the user invokes help for the fourth
time (count="4") the message defined for count="3" is used (as there
is nothing defined for count="3"). Similarly when help is invoked
for the second time (count="2"), the message defined in count="1" is
used.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-39

(no-match), or is silent for an extended period (no-input). In addition, most voice
applications also declare default help, no-match, and no-input messages at the
document (<html:body>) level.

UI Controls in XForms provide <help> and <hint> elements. By default the
<help> element is played when the user says help, and the <hint> element is
played when there is no user input (no-input).

If developers handle the xforms-help or xforms-hint events and do not want the
default actions for help or hint to be executed, developers should use the
defaultAction attribute of XML Events to prevent the default. The following example
prevents the default action for the xforms-help event from occurring.

<xforms:input>
 <xforms:label>Input Control</xforms:label>
 <xforms:help>Default Help Message, not played.</xforms:help>
 <xforms:message ev:event="xforms-help" ev:defaultAction="cancel">
 This help message is played.
 </xforms:message>
</xforms:input>

Voice applications are driven by user utterances, and it is not always possible to
recognize what a user has said. In cases where a user’s utterance is not recognized, a
vxml-nomatch event is thrown. The default response to this event is to say a list of
options (if any) applicable for the context, but authors can provide their own
handlers for vxml-nomatch, as in the following example:

<xforms:select1>
 <xforms:label>Select Control</xforms:label>
 <xforms:message ev:event="vxml-nomatch" ev:defaultAction="cancel">
 Sorry, I didn’t understand what you said.
 </xforms:message>
 ...
</xforms:select1>

Note: To provide help/hint/no-match at the document level
(<html:body>) or for a navigation menu (<html:nl>), developers
must declare these actions in the <xforms:model> section, and use
the XML Events attribute observer to declare the <nl> and <body>
elements as the observer. This is because XForms elements allow
actions to be defined as child elements, but XHTML does not. The
next version of XHTML is expected to resolve this issue.

XHTML+XForms

8-40 Oracle Application Server Wireless Developer’s Guide

The following example declares actions for the xforms-help event with the <body>
element being the observer.

<html>
 <head>

 <xforms:model>
 <xforms:message ev:event="xforms-help" ev:observer="ID_of_BODY">
 Document level help.
 </xforms:message>
 </xforms:model>

 </head>
 <body id="ID_of_BODY">

 </body>
</html>

8.2.4.4.5 Embedding Voice Grammars In aural mode the content of a page is read to
the user, and data is collected from the user through speech recognition or
touchtone input. To enable data collection and command selection in aural mode,
developers can provide grammars that specify a set of utterances or touchtone
(using keypad) sequences that the voice gateway listens for using a speech
recognition engine.

Multiple grammar formats have been defined by the various speech recognizer
vendors, but they are not typically interoperable. Some vendor-specific grammar
formats are enumerated in the table below. W3C has been working on a standard
format, using an XML syntax, called the Speech Recognition Grammar
Specification.

An author can embed grammars in an XForms document using the <grammar>
element, which is contained in the <head> element. This grammar can then be
associated with a UI control, link (anchor), or navigation list item (in <nl>)
using the html <object> element (see Section A, "XHTML Modules Supported" for
examples). The type attribute of the <object> element specifies the format of
grammar being used. This allows authors to use any available grammar format. The
following table shows the grammar formats supported by OracleAS Wireless, with
corresponding values for the type attribute.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-41

The Built-in Grammars and Oracle Grammar Subset (OGS) are two grammar
formats developers can use for all supported Voice Gateways. Other grammar types
are not guaranteed to be transportable across different voice gateways (and are
supported only for legacy applications), and these grammars may not be embedded
into a document directly; they may be referenced by external URL only. Developers
defining new grammars should use the Oracle Grammar Subset format for
maximum portability.

Built-in grammars are grammars for certain common types of data collected by
voice services. The types of data for which there are built-in grammars are: boolean,
date, digits (which recognizes a string of numbers said individually, such as one one
zero), currency, number (which recognizes a string of digits said as a single number,
such as one hundred ten), phone, and time. In order to specify that a form control will
be filled in with one of these types, the objects corresponding to the built-in speech
and DTMF grammars for the type must be put in the extension element of the form
control. In the following example, the input will be filled with a string of digits:

<xforms:input>
 <xforms:label>Digit String</xforms:label>
 <xforms:extension>
 <object type="application/vnd.oracle.builtin+grammar"
data="builtin:grammar/digits"/>
 <object type="application/vnd.oracle.builtin+grammar"
data="builtin:dtmf/digits"/>
 </xforms:extension>
</xforms:input>

Table 8–3 Grammar Formats Supported by OracleAS Wireless

Format Type (MimeT-ype)

GSL application/x-gsl

ABNF application/x-abnf

JSGF application/x-jsgf

XML Form of the W3C Speech Recognition
Grammar Specification (SRGS)

application/srgs+xml

Built-in grammars application/vnd.oracle.builtin+grammar

Oracle Grammar Subset (OGS) application/vnd.oracle.srgs+xml

XHTML+XForms

8-42 Oracle Application Server Wireless Developer’s Guide

For other types, digits would be replaced by the name of the type in the data
attribute of the <object>s. If no grammars are associated with a form control, the
voice gateway will pause at the form control; no user utterance will fill the form
control.

The Oracle Grammar Subset (OGS) is a subset of the XML Form of the SRGS
(http://www.w3.org/TR/2002/CR-speech-grammar-20020626) defined by the
W3C. A description of the subset can be found in Section F, "Oracle XML Grammar
Subset". Grammars written in the OGS may be embedded in the document, or
fetched from an external URI. In all cases, the OGS grammar is transformed to
voice-gateway-specific formats that recognize the specified class of utterances. OGS
grammars provide speech and DTMF grammars that are portable between voice
gateways.

Grammars need not be used with anchors or navigation list items. If no grammar is
used with an anchor or navigation list item, the voice interface will listen for the
contents of the element. If the user says the contents, the anchor or navigation list
item will be followed. In the following example, the voice interface will fetch
nextPage.xhtml if the user says continue.

<p>
 Say continue to go to the next page.
</p>

In the next example, the voice interface would fetch "top.xhtml" if the user said
"top", and "next.xhtml" if the user said "next":

<nl>
 <label>Navigation Menu</label>
 <li href="top.xhtml">Top
 <li href="next.xhtml">Next
</nl>

Grammars need not be associated with <trigger> or <submit> elements. If no
grammar is associated with these elements, the voice gateway will listen for the
contents of their <label>s. In the following example, the <trigger> would be
activated by saying add, and the <submit> by saying submit.

<p>
 ...
 <xforms:trigger ...>
 <xforms:label>Add</xforms:label>
 ...
 </xforms:trigger>
 <xforms:submit ...>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-43

 <xforms:label>Submit</xforms:label>
 </xforms:submit>
</p>

A document can have multiple form controls and links. To interpret user input
unambiguously, anchors, navigation list items, <trigger>s and <submit>s are
given scopes. The scope of any of these elements is the smallest enclosing block
element (<div>, <p>, <nl>, <xforms:group>, and so on). In the following
example, saying go on while in the first <p> activates the <trigger>, whereas
saying go on while in the second <p> activates the <submit>

<p>
 ...
 <xforms:trigger>
 <xforms:label>Go on</xforms:label>
 </xforms:trigger>
</p>
<p>
 ...
 <xforms:submit ...>
 <xforms:label>Go on</xforms:label>
 </xforms:submit>
</p>

It is important for authors to note the scopes of the anchors, <trigger>s, and so on
in their document so that the commands or navigation options are available at the
point where they should be listened for, and only at those points.

When listening for user input at a form control, developers can cause the voice
gateway to stop listening for anything other than the grammars associated with the
form control by setting modal="true" on the form control.

8.2.4.4.6 Using Aural CSS for Voice Style OracleAS Wireless supports aural CSS
properties that allow control of presentation (speech synthesis) such as speech-rate,
volume and others. In addition, OracleAS Wireless has extended the aural CSS
properties to support behaviors such as bargein (_orcl-bargein), say-as formats
(_orcl-sayas-format) and others. For a list of aural CSS Properties supported
and aural extension properties supported see Section D, "OracleAS Wireless CSS
Support".

8.2.4.4.7 Invoking VoiceXML Subdialogs through UI Objects When accessing
XHTML+XForms through a VoiceXML gateway, subdialogs written in VoiceXML

XHTML+XForms

8-44 Oracle Application Server Wireless Developer’s Guide

can be accessed from XHTML+XForms using the <uiobject> element in the
MXML namespace. The <uiobject> element is an extension UI control.

Suppose the author of an XHTML+XForms document wants to use the VoiceXML
<record> element to record some audio and send it to a server to be stored. To
make the VoiceXML document invoked a reusable component, the author wishes to
pass in several messages that will be spoken, rather than having them statically
embedded in the VoiceXML document, as well as passing in the URL to which the
audio data should be submitted.

The author wishes the VoiceXML document to return the name of the file on the
server in which the audio has been stored. Further, if the caller hangs up in the
middle of recording, the author wants the VoiceXML document to throw an event
indicating this, which the XHTML+XForms document will then handle.

This invocation can be performed in XHTML+XForms by the following markup:

 <mxml:uiobject data="record.jsp" type="text/x-vxml">
 <f:label>Invoking record function.</f:label>

 <mxml:uiparam
 valuetype="in"
 name="prompt"
 value="’Please record your message.’"
 />

 <mxml:uiparam
 valuetype="in"
 name="noinputMessage"
 value="’I did not hear anything. Please try again.’"
 />

 <mxml:uiparam
 valuetype="submit"
 name="storageURL"
 ref="/data/urls/recordingSubmit"
 />

 <mxml:uiparam
 valuetype="out"
 name="location"
 ref="/data/urls/recordingStorage"
 />

 <mxml:uieventmap in="hangup" out="vxml-cancel"/>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-45

 <xforms:action ev:event="vxml-cancel">
 <xforms:setvalue ref="/data/status">Hung up in recording.</xforms:setvalue>
 <xforms:send submission="exit"/>
 </xforms:action>
 </mxml:uiobject>

The <mxml:uiobject> invokes the subdialog at record.jsp. The type attribute, and
its value, are required to indicate that the <mxml:uiobject> is invoking a
VoiceXML subdialog. The <xforms:label> contents are spoken just before the
subdialog is invoked. The XHTML+XForms document is suspended until the
VoiceXML subdialog returns.

The two <mxml:uiparam> elements with valuetype=in pass in messages that the
author wishes to be spoken by the VoiceXML subdialog. The <mxml:uiparam>
with name=prompt passes in the prompt that will be spoken just before recording
starts. The <mxml:uiparam> with name=noinputMessage passes in the message
that will be spoken if the caller does not respond within a certain time after
recording begins.

The <mxml:uiparam> element with valuetype=submit passes in the URL that the
audio should be submitted to, taken from the instance data. The difference between
valuetype=in and valuetype=submit is that the former type of input is made
available to the subdialog as a VoiceXML <var>, whereas the latter is submitted to
the subdialog through HTTP.

The <mxml:uiparam> element with valuetype=out receives the server file name
returned by the subdialog, and stores it in the references instance data node.

The <mxml:uieventmap> element specifies a mapping from VoiceXML events to
XForms events. The subdialog is assumed to throw a VoiceXML event named
hangup if the caller hangs up in the middle of recording. If this event is thrown, it is
converted into the dispatch of a vxml-cancel event. This is then handled by the
<xforms:action> element, which records what happened in an instance node
and then submits back to the server.

Below is a JSP to produce VoiceXML to implement the subdialog. Note that the
prompt and noinputMessage inputs are available as VoiceXML <var> variables, with
values given by the <uiparam>s with the same names. The storageURL input is
available as an HTTP request parameter.

 <?xml version="1.0"?>
 <vxml version="1.0">
 <form>
 <var name="prompt"/>
 <var name="noinputMessage"/>

XHTML+XForms

8-46 Oracle Application Server Wireless Developer’s Guide

 <record name="audio">
 <prompt>
 <value expr="prompt"/>
 </prompt>

 <noinput>
 <value expr="noinputMessage"/>
 </noinput>

 <catch event="telephone.disconnect.hangup">
 <return event="hangup"/>
 </catch>
 </record>

 <block>
 <submit
 next="<%= request.getParameter("storageURL") %>"
 method="post"
 namelist="audio"
 />
 </block>
 </form>
 </vxml>

If the caller hangs up during recording, a telephone.disconnect.hangup event is
thrown in the subdialog. The subdialog catches this event, and returns to the
XHTML+XForms document, throwing a VoiceXML hangup event. Otherwise, the
recorded audio is submitted to the URL supplied by the XHTML+XForms
document. The server stores the audio in a file and returns a VoiceXML document
like the following, with the file name in the location variable, which returns this
value to the XHTML+XForms document.

 <?xml version="1.0"?>
 <vxml version="1.0">
 <form>
 <var name="location" expr="’recording529.wav’"/>
 <block>
 <return namelist="location"/>
 </block>
 </form>
 </vxml>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-47

8.2.5 Styling and Embedding Content Based on Media
Styling is a very important aspect for the presentation of a document. Styling can be
visual or auditory in nature. As an example, developers may want to present an
error message in red for visual devices that support color, as bold text for visual
devices without color support and play the message in a loud volume on aural
devices. It is important to note here the message text is the same on all devices, but
how it is presented to the user is different and is based on the characteristics of a
device. To support such requirements OracleAS Wireless supports and recommends
CSS Media Queries.

Another type of styling is customizing the actual content based on the devices. For
example it is common to use shorthand notation such as Enter Amt. in visual
devices, but the same content make more sense if presented as Please say the Amount
when the application is accessed aurally. The conceptual content of the application
has not changed, but rather the content is changed slightly for better presentation
effect. To support such an model, OracleAS Wireless introduces an extension
attribute media that is supported on all elements of the document.

8.2.5.1 CSS Media Queries
CSS Media Queries is a specification defined by W3C
(http://www.w3.org/TR/css3-mediaqueries/). CSS Media Queries allows
developers to style the same piece of content based on device (media) and features
(media features) the device supports.

Note: By the semantics of VoiceXML subdialogs, the
XHTML+XForms document (more specifically, its VoiceXML
rendering) is not discarded when the first VoiceXML document
above submits the audio to the server. The XHTML+XForms
document remains loaded in the voice gateway in its own
suspended execution context during the submission and fetching of
the second VoiceXML document above. Returning from this second
document returns to the execution context of the XHTML+XForms
document.

Note: In this release of OracleAS Wireless, @media statements are
not supported on style attribute.

XHTML+XForms

8-48 Oracle Application Server Wireless Developer’s Guide

The following example uses the @media statement to styles the content based on
media type (device).

<html>
 <head>
 <style type="text/css">
 @media handheld, screen, tty {
 .error {color: red}
 }
 @media aural {
 .error {volume: loud}
 }
 </style>
 </head>
 <body>
 <div>

 This is an error message

 </div>
 </body>
</html>

Here is a more sophisticated example that contains the @media statement using the
query syntax defined in CSS media queries. In this example, color devices display
the error message in red, monochrome devices display the error message as
underlined text, and in voice mode the error message is played out loud.

<html xmlns="http://www.w3.org/1999/xhtml"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 <head>
 <style type="text/css">
 @media handheld and (color), screen and (color), tty and (color) {
 .error {color: red}
 }
 @media handheld and (monochrome), screen and (monochrome), tty and
(monochrome) {
 .error {text-decoration: underline}
 }
 @media aural {
 .error {volume: loud}
 }
 </style>
 </head>
 <body>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-49

 <div>

 This is an error message

 </div>
 </body>
</html>

8.2.5.2 MXML Media Attribute
OracleAS Wireless introduces an extension attribute media that is supported on all
elements of an XHTML+XForms document. The media attribute is defined in
OracleAS Wireless Namespace (MXML); the media must be prefixed with the
namespace prefix (mxml:media).

mxml:media supports the conditional display of the content model based on the
media and media features (device and device features) supported. The
mxml:media attribute only affects the rendering (similar to the style attribute in
HTML namespace) and does not affect any processing logic (such as XForms Events
and Actions). mxml:media can be thought of as a shortcut that specifies the
’style="display: none"’ CSS property for media not listed in the
mxml:media value space.

8.2.5.2.1 MXML Media Attribute Syntax Developers who use mxml:media must
specify the media (device and device features) for which any particular content is
targeted. OracleAS Wireless supports using CSS3 Media Queries syntax to support
the mxml:media attribute. As discussed above, the media query syntax supports a
query-like expression that can combine media and media features.

Here is a simple example that uses only the media type to control the rendered
content. In this example the aural device will render a sentence while the visual
devices will render a short string.

<div>
 <p mxml:media="handheld, screen, tty">

Note: mxml:media does not remove the element from the
document. Specifying mxml:media on action elements has no
effect. mxml:media is used only to control the rendering of
elements. Also, mxml:media on elements that are event observers
(with associated action handlers) still get the events, and the
associated action handlers are executed.

XHTML+XForms

8-50 Oracle Application Server Wireless Developer’s Guide

 Currency Conv. Tbl.
 </p>
 <p mxml:media="aural">
 Here is the currency conversion table
 </p>
</div>

Here is a more sophisticated example that uses the use media features (such as form
factor of the device) to control the content rendered. In this example, if the device
width is at least 20em (can accommodate 20 characters of m or equivalent of m
character) then display Currency Conversion Table, otherwise display a short string
Currency Conv. Tbl.

 <div>
 <p mxml:media="screen, handheld and (min-device-width: 20em), tty and
(min-device-width: 15em)">
 Currency Conversion Table
 </p>
 <p mxml:media="screen, handheld and (max-device-width: 15em), tty and
(max-device-width: 15em)">
 Currency Conv. Tbl.
 </p>
 </div>

For a list of media and media features supported, see Section B, "Media Types,
Features and Capabilities".

8.2.6 Advanced Sample Using XHTML and XForms
In this section, building an advanced example is described, explaining the various
aspects of XForms such as model, constraint and events. It also demonstrates how
to style the resulting document using CSS properties.

8.2.6.1 About the Example
This example shows the user the name, price and quantities of an item in their
shopping cart, and allows the user to change the item quantity in his/her shopping
cart. The shopping cart shows the user the final (updated) subtotal for an item (item
price * quantity) and final (updated) total price.

8.2.6.1.1 Structure of the Document And Content Type First, create the structure of the
XHTML+XForms document. All XHTML document must have the <html>,
<head> and <body> sections with appropriate attributes. The <html> elements
must declare the appropriate namespace definitions and prefix.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-51

 <?xml version = "1.0"?>

 <html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:xf="http://www.w3.org/2002/xforms/cr"

 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mydata="http://example.org"

 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">

 <head>

 <title>Shopping Care Example</title>

 </head>

 <body>

 </body>

 </html>

The above example declares the following namespace definitions and prefixes.

■ HTML Namespace using the prefix html:

■ XForms Namepace using the prefix xf:

■ XML Events namespace using the prefix ev:

■ A namespace definition for the data in the shopping cart with prefix mydata:

The head also contains a profile attribute that must be set for all documents.

Having created the document it is important to be sure that you set the correct
content type so that OracleAS Wireless can recognize the document as an
XHTML+XForms document. The content type must be set to
application/vnd.oracle.xhtml+xforms. If you are using a JSP to construct your example
you can use the <@page> declaration or use the response.setContentType()
method to set the content type.

XHTML+XForms

8-52 Oracle Application Server Wireless Developer’s Guide

8.2.6.2 Shopping Cart Data and XForms Model
The data for this example primarily concerns a shopping cart which can contain
multiple items. For each item, there are three pieces of data:

■ item name

■ item price

■ quantity

This data can be modeled in XML format. In the following example data, three
items have been added to the cart:

<cart xmlns="http://example.org">
 <item>
 <name>A Book</name>
 <price>10</price>
 <quantity>2</quantity>
 <subtotal/>
 </item>
 <item>
 <name>A Game</name>
 <price>15</price>
 <quantity>3</quantity>
 <subtotal/>
 </item>
 <item>
 <name>A Movie</name>
 <price>20</price>
 <quantity>4</quantity>
 <subtotal/>
 </item>
</cart>

This XML data can be added to the XForms document in the instance, which is a
component of the xforms:model element (in the xhtml:head section).

To put the shopping cart data in the <head> section:

1. Declare an XForms model in the <head> section (xf: model element in the
example).

2. Declare an Instance data in the XForms model section (xf:instance in the
example).

3. Put the XML data of the shopping cart in the Instance section of XForms.

<head>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-53

 <title>Shopping Care Example</title>
 <!-- Declare an XForms Model -->
 <xf:model id="model_1">
 <!-- Declare an XForms Instance -->
 <xf:instance>
 <!-- Embed the above XML Data Document -->
 <cart xmlns="http://example.org">

 </cart>
 </xf:instance>
 </xf:model>
</head>

8.2.6.3 Showing the Data to a User
The base document structure and shopping cart data are complete. Now to display
the data to the user, display the first row (item) in the shopping cart to the user.

To display the first row (item) of the shopping cart:

1. Create three fields that can display the name of the item, the price of the item
and the quantity of the item.

2. In this example, the modifiers name or price are not used; the user can modify
the quantity only. Use the XForms Output controls to show the name and price,
while using an XForms Input control to show the quantity.

3. Having created these three fields, make sure the value for these fields comes
from the XML Data (instance) in the head section. To do that, create a mapping
(binding) between the UI Controls and the XML data using XPath.This
mapping, called UI Binding Expression, is done through the ref attribute of the
UI Control.

For example, to bind to the name element first row of a shopping cart, use the
following XPath Expression. (mydata: is the namespace prefix for the shopping
cart XML data).

ref="/mydata:cart/mydata:item[1]/my:data:name"

Similarly for binding to "price" and "quantity" values of XML data from an UI
control we will have to use the following XPath Expression

ref="/mydata:cart/mydata:item[1]/mydata:price"
ref="/mydata:cart/mydata:item[1]/mydata:quantity"

XHTML+XForms

8-54 Oracle Application Server Wireless Developer’s Guide

Here is the <body> section with the XForms UI Controls and their mapping
(Binding) XPath Expressions:

<body>
 <div>
 <!-- Display "Item name"
 <xf:output ref="/mydata:cart/mydata:item[1]/mydata:name">
 <xf:label>Item Name</xf:label>
 </xf:output>

 <xf:output ref="/mydata:cart/mydata:item[1]/mydata:price">
 <xf:label>Item Price</xf:label>
 </xf:output>

 <xf:input ref="/mydata:cart/mydata:item[1]/mydata:quantity">
 <xf:label>Quantity</xf:label>
 </xf:input>

 </div>
</body>

If the above document is used with OracleAS Wireless Server, one would see that all
of the UI controls are cluttered, and do not provide an elegant display. You will
learn about adding styles in later sections.

8.2.6.4 Adding Repeating Structures
So far we have just displayed the first row of the shopping cart. One method to
display the other rows of the shopping cart is to add more UI controls which
statically map to the second and third rows of the data. If someone adds a fourth
and a fifth item, XForms uses the repeat construct. Repeat allows for repeating
structures based on the instance data.

To add a repeating structure to the Shopping Cart example:

1. Define a <repeat> element with a nodeset attribute. The nodeset attribute is an
XPath expression that selects the collection of instance (XML) data sets.

In the shopping cart example, nodeset="/mydata:cart/mydata:item"
selects all the items (rows) from the instance (XML) data.

Note: To use the above document, merge <body> with the
<head> section, and ensure that the content type of the document
is set correctly on the web server.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-55

2. Also add UI Controls inside the repeats that select and display details of each of
the items selected by the repeat.

Here is <body> with repeat, displaying all items of the shopping cart.

<body>
 <xf:repeat nodeset="/mydata:cart/mydata:item">
 <!-- Display "Item name" -->
 <xf:output ref="mydata:name">
 <xf:label>Item Name </xf:label>
 </xf:output>

 <!-- Display "Item Price" -->
 <xf:output ref="mydata:price">
 <xf:label>Item Price </xf:label>
 </xf:output>

 <!-- Display "Item Quantity" -->
 <xf:input ref="mydata:quantity" size="5">
 <xf:label>Quantity </xf:label>
 </xf:input>

 </xf:repeat>
</body>

8.2.6.5 Adding Calculated Fields: Sub-Totals and Totals
Having displayed all the rows in the shopping cart instance (XML) data, now add
additional fields for sub-totals and totals. Sub Totals and Totals are calculated based
on the price and quantity the user has selected, and one would naturally expect the
totals to be updated when the user updates the number of quantities of the items in
the shopping cart. Rather than doing the calculation on the backend after the data
are submitted, the application can use the Forms processor to calculate these values
as they are changed.

Each <item/> node in the instance data has a <subtotal/> child node. This node
is used to store the Sub-Total for a particular item. The <subtotal/> node has an
empty value in the initial data, but the XForms processor will fill it in based on the

Note: The XPath expression in the ref of the UI controls must have
a path expression that is relative to the context established by the
repeat (nodeset attribute).

XHTML+XForms

8-56 Oracle Application Server Wireless Developer’s Guide

values in the price and quantity for that item. To do this, the document must
indicate to the XForms processor how the calculation of sub total is done.

XForms supports attaching conditions to the instance data. These conditions are
called Model Item properties

A model item property (bind condition) can be attached using a <xf:bind>
element in the model section of the XHTML+XForms Document. The XForms bind
element supports a nodeset attribute that identifies, using an XPath expression, the
instance node the condition is associated with. For the sub total, you must also
attach a calculation rule using the calculate attribute.

Here is the XForms bind element that adds a calculation model item property
(condition) to the subtotal instance item (data node):

<xf:bind nodeset="/mydata:cart/mydata:item/mydata:subtotal"

 calculate="../mydata:price * ../mydata:quantity"/>

The above bind element must occur in the XForms model section of the
XHTML+XForms document.

<head>

 <title>Shopping Care Example</title>
 <!-- Declare an XForms Model -->
 <xf:model id="model_1">
 <!-- Declare an XForms Instance -->
 <xf:instance>
 <!-- Embed the above XML Data Document -->
 <cart xmlns="http://example.org">

 </cart>
 </xf:instance>

 <!-- Bind Conditions -->
 <xf:bind nodeset="/mydata:cart/mydata:item/mydata:subtotal"
 calculate="../mydata:price * ../mydata:quantity"/>

Note: This is very similar to a database table in which one can not
only declare a column name, but also add additional conditions
such as not null and foreign key constraints. The model item
properties (conditions) supported by the XForms processor are type
(data type), relevant, calculate, readonly, required and constraint.

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-57

 </xf:model>
</head>

Now, use an output control to show the sub total to the user:

<xf:repeat ...>
 <!-- Item Name -->

 <!-- Item Price -->

 <!-- Item Quantity -->

 <!-- Sub Total -->
 <xf:output ref="mydata:subtotal">
 <xf:label>Sub Total </xf:label>
 </xf:output>
</xf:repeat>

Now, to show the Total of all items. To show the total use an aggregate function sum
that sums up the subtotal (of each item). To show the total use an output control
with a value attribute. (This output control occurs outside the repeating structure).

<xf:repeat ...>
 <!-- Item Name -->

 <!-- Item Price -->

 <!-- Item Quantity -->

 <!-- Sub Total -->
</xf:repeat>
<div>
 <xf:output value="sum(/mydata:cart/mydata:item/mydata:subtotal)">
 <xf:label>Total </xf:label>
 </xf:output>
</div>

8.2.6.6 Adding Styles
Add simple styles so that the repeat appears in the tabular structure (typically seen
in shopping cart applications). To do so, add the <style> element in the <head>
section as shown in the following example.

<head>
 <style type="text/css">

XHTML+XForms

8-58 Oracle Application Server Wireless Developer’s Guide

 /*... Style Declarations */
 /*
 Display repeat as tabular
 layout with 4 columns,
 but show the labels of UI
 Control only once
 */
 repeat {_orcl-repeat-labels: once;
 display: grid;
 _orcl-grid-cells: 4}

 /*
 Display input and output
 within a repeat as a cell in
 in the tabular layout
 */
 repeat > input, repeat > output
 {display: grid-cell}

 /*
 Display input and output
 labels as a cells in the
 tabular structure
 */
 repeat > input > label,
 repeat > output > label
 {display: grid-cell;
 _orcl-label-side: top}

 /*
 Display all labels as
 bold and underlined
 */
 label {text-decoration: underline;
 font-weight: bold}
 </style>
</head>

8.2.6.7 Adding Update Buttons and Using Events
So far in the Shopping Cart example, you have added data, UI Controls and styling.
Another important aspect of the application is to provide a mechanism that updates
the screen with subtotals and totals, as the user makes changes to the shopping cart.
On smart devices (a native client stack or device with scripting support), the

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-59

updates to the screen (or display) occur automatically on the client side. For user
agents (browsers) that do not support dynamic update of screens, the application
must provide a button that allows users to manually request an update of the screen
(or display). The button (or trigger) initiates a round trip to the OracleAS Wireless
middle tier that re-renders the page with updated values.

To add button in XForms, the XForms Trigger control should be used. The trigger
control by itself does not do anything unless an action is associated with the trigger
control. Also, the action must be associated with an event that can cause the action
to be executed. The following example shows an XForms Trigger that has a refresh
action associated with it and is performed on activation (DOMActivate event) of the
trigger control.

<div>
 <xf:trigger>
 <xf:label>Update</xf:label>
 <xf:refresh model="model_1" ev:event="DOMActivate"/>
 </xf:trigger>
</div>

8.2.6.8 Adding Type Validations
To complete the sample application, add type validation. The Quantity field in the
shopping cart is a number, but nothing prevents the user from entering a negative
number or other character data. To prevent application errors, warn the user when
he or she enters invalid values in the Quantity field. The validation of the Quantity
field will be done through the XForms bind element, which can declare the schema
datatype for the Quantity field. In this case, the XML Schema type
nonNegativeInteger is used.

<xforms:model>
 <xf:bind nodeset="/mydata:cart/mydata:item/mydata:quantity"
type="xsd:nonNegativeInteger"/>
</xforms:model>
Also we have to provide an alert message that is displayed when user enters an
invalid value.
<xf:input ref="mydata:quantity" size="5">
 <xf:label>Quantity </xf:label>
 <xf:alert>Quantity must be greater than or equal to zero</xf:alert>
</xf:input>

XHTML+XForms

8-60 Oracle Application Server Wireless Developer’s Guide

8.2.6.9 Complete Sample
The shopping cart example highlighted various aspects of building XForms
applications which include the XForms data model, XForms UI Controls and
Interfaces, events and actions, model item properties and style. Here is the complete
XForms document for the shopping cart example:

<?xml version = "1.0"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:xf="http://www.w3.org/2002/xforms/cr"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:mydata="http://example.org"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0">
 <head>
 <title>Shopping Care Example</title>
 <!--
 <style type="text/css">
 repeat {_orcl-repeat-labels: once;
 _orcl-grid-cells: 4;
 display: grid}
 input, output {display: grid-cell}
 input > label, output > label
 {display: grid-cell;
 _orcl-label-side: top;
 text-decoration: underline;
 font-weight: bold}
 </style>
 -->
 <style type="text/css">
 /*... Style Declarations */
 /*
 Display repeat as tabular
 layout with 4 columns,
 but show the labels of UI
 Control only once
 */
 repeat {_orcl-repeat-labels: once;
 display: grid;
 _orcl-grid-cells: 4;
 border-left-style: solid;
 border-left-width: 1px;
 border-top-style: solid;
 border-top-width: 1px;
 border-right-style: solid;

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-61

 border-right-width: 1px;
 border-bottom-style: solid;
 border-bottom-width: 1px}

 /*
 Display input and output
 within a repeat as a cell in
 in the tabular layout
 */
 repeat > input, repeat > output
 {display: grid-cell}

 /*
 Display input and output
 labels as a cells in the
 tabular structure
 */
 repeat > input > label,
 repeat > output > label
 {display: grid-cell;
 _orcl-label-side: top}

 /*
 Display all labels as
 bold and underlined
 */
 label {text-decoration: underline;
 font-weight: bold}
 </style>

 <xf:model id="model_1">
 <!-- Declare an XForms Instance -->
 <xf:instance>
 <!-- Embed the above XML Data Document -->
 <cart xmlns="http://example.org">
 <item>
 <name>A Book</name>
 <price>10</price>
 <quantity>2</quantity>
 <subtotal/>
 </item>
 <item>
 <name>A Game</name>
 <price>15</price>

XHTML+XForms

8-62 Oracle Application Server Wireless Developer’s Guide

 <quantity>3</quantity>
 <subtotal/>
 </item>
 <item>
 <name>A Movie</name>
 <price>20</price>
 <quantity>4</quantity>
 <subtotal/>
 </item>
 </cart>
 </xf:instance>
 <xf:bind nodeset="/mydata:cart/mydata:item/mydata:subtotal"
 calculate="../mydata:price * ../mydata:quantity"/>
 <xf:bind nodeset="/mydata:cart/mydata:item/mydata:quantity"
type="xsd:nonNegativeInteger"/>
 </xf:model>
 </head>
 <body>
 <xf:repeat nodeset="/mydata:cart/mydata:item">
 <!-- Display "Item name"-->
 <xf:output ref="mydata:name">
 <xf:label>Item Name </xf:label>
 </xf:output>

 <xf:output ref="mydata:price">
 <xf:label>Item Price </xf:label>
 </xf:output>

 <xf:input ref="mydata:quantity" size="4">
 <xf:label>Quantity </xf:label>
 <xf:alert>Quantity must be greater than or equal to zero</xf:alert>
 </xf:input>

 <xf:output ref="mydata:subtotal">
 <xf:label>Sub Total </xf:label>
 </xf:output>

 </xf:repeat>
 <div>
 <xf:output value="sum(/mydata:cart/mydata:item/mydata:subtotal)">
 <xf:label>Total </xf:label>
 </xf:output>
 </div>
 <div>
 <xf:trigger>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-63

 <xf:label>Update</xf:label>
 <xf:refresh model="model_1" ev:event="DOMActivate"/>
 </xf:trigger>
 </div>
 </body>
 </html>

8.2.7 Advanced Voice Sample Using XHTML and XForms
In this section, we describe an advanced example of using XHTML+XForms to
develop a voice service. We will not reiterate all of the details of the advanced
example of the previous section, but will focus on the aspects of the service relevant
to voice.

The example is a service to compute the tip on a bill and divide the resulting total
bill between a number of people. The instance data for this service will consist of:

■ the amount of the bill before tax

■ the number of people the bill will be split between

■ the percentage tip

This will be represented in XML by the following instance data structure:

<tip>
 <amt/>
 <num/>
 <pct/>
</tip>

Initially, the amt, num, and pct nodes contain no data. The first step in the service is
to collect this data. The amount of the bill, before tax, is collected by the following
form control:

 <xforms:input id="amt" ref="/tip/amt">
 <xforms:label>
 <object data="/audio/howMuch.wav" type="audio/wav">
 How much is the bill?
 </object>
 </xforms:label>

 <xforms:extension>
 <object
 data="builtin:grammar/currency"
 type="application/vnd.oracle.builtin+grammar"

XHTML+XForms

8-64 Oracle Application Server Wireless Developer’s Guide

 />

 <object
 data="builtin:dtmf/currency"
 type="application/vnd.oracle.builtin+grammar"
 />
 </xforms:extension>

 <xforms:help>
 Help. Say the amount of the bill in dollars and cents.
 For example, twenty-five dollars and ten cents.
 </xforms:help>

 <mxml:handler ev:defaultAction="cancel" ev:event="xforms-hint">
 <mxml:catch count="1">
 <xforms:message>How much is the bill?</xforms:message>
 </mxml:catch>

 <mxml:catch count="5">
 <xforms:load resource="main.jsp"/>
 </mxml:catch>
 </mxml:handler>

 <mxml:handler ev:defaultAction="cancel" ev:event="vxml-nomatch">
 <mxml:catch count="1">
 <xforms:message>
 Please say that again. How much is the bill?
 </xforms:message>
 </mxml:catch>

 <mxml:catch count="2">
 <xforms:message>
 Say the amount of the bill in dollars and cents. For
 example, twenty-five dollars and ten cents.
 </xforms:message>
 </mxml:catch>

 <mxml:catch count="5">
 <xforms:load resource="main.jsp"/>
 </mxml:catch>
 </mxml:handler>
 </xforms:input>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-65

The <xforms:extension> element contains <object>s that refer to the built-in
VoiceXML speech and DTMF grammars that recognize currency designations. To
use such built-in grammars, the "data" attribute must use the VoiceXML built-in:
URI scheme, and the "type" attribute must use that Oracle-specific MIME type for
built-in grammars. When the voice gateway reaches this form control, it will listen
for the caller to say an amount of money or to enter such an amount via touchtones.
The value returned will be an amount of currency, preceded by a three-character
code indicates the type of currency. We will assume for this example that this code
is "USD" for US dollars, so if the caller responds "Twenty-three dollars and
fifty-eight cents", the value "USD23.58" will be put in the "amt" instance node.

The help and event handler children of the <xforms:input> define messages and
actions that take place when the caller asks for help, does not respond to the
prompt, or responds with something the voice gateway does not recognize. If the
caller says "help", the voice gateway will speak the content of the <xforms:help>
element.

If the caller does not respond to the prompt within a certain period of time, an
xforms-hint event will be dispatched. This event will be handled with the extension
actions <mxml:handler> and <mxml:catch>. The first, second, third, and fourth
time the gateway times out waiting for user input, the content of the <catch> with
count="1" will be executed, and the message spoken. The fifth time the gateway
times out, the service will return to a "main menu" document.

If the caller says something or inputs a sequence of touchtones that is not
recognized as an amount of money, a vxml-nomatch event will be dispatched, and
handled by the last <mxml:handler> element. The first unrecognized input will
cause the first message to be spoken. The second, third, and fourth unrecognized
inputs will cause the second message to be spoken. The fifth unrecognized input
will cause the service to return to the main menu.

Both of the <mxml:handler> elements have an ev:defaultAction="cancel" attribute
to cancel the default response to the xforms-hint and vxml-nomatch events (which
is to play a generic message).

Note: The <label> content uses an audio <object> for the prompt.
If the document is interpreted on a voice gateway that does not
support the audio/wav MIME type, or if the attempted fetch of the
audio file by the voice gateway fails, the contained text will be
spoken by a TTS engine.

XHTML+XForms

8-66 Oracle Application Server Wireless Developer’s Guide

The next step is to collect the number of people the bill will be split between, which
is done by the following form control:

 <xforms:input ref="/tip/num">
 <xforms:label>
 <object data="/audio/howMany.wav" type="audio/wav">
 How many are in your party?
 </object>
 </xforms:label>

 <xforms:extension>
 <object
 data="builtin:grammar/number"
 type="application/vnd.oracle.builtin+grammar"
 />

 <object
 data="builtin:dtmf/number"
 type="application/vnd.oracle.builtin+grammar"
 />
 </xforms:extension>
 </xforms:input>

This form control will listen for a spoken or touchtone-input number, and fill the
"num" instance node with the number spoken. (In a real version of the service, help,
no response, and unrecognized response handlers would be provided.)

Next, the tip percentage is collected. This is done by the following form control:

 <xforms:select ref="/tip/pct">
 <xforms:label>
 <object data="/audio/howBig.wav" type="audio/wav">
 How big a tip would you like to leave?
 </object>
 </xforms:label>

 <xforms:item>
 <xforms:label>small</xforms:label>
 <xforms:value>10</xforms:value>
 </xforms:item>

 <xforms:item>
 <xforms:label>medium</xforms:label>
 <xforms:value>15</xforms:value>
 </xforms:item>

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-67

 <xforms:item>
 <xforms:label>large</xforms:label>
 <xforms:value>20</xforms:value>
 </xforms:item>

 <xforms:help>
 Help. Say small for a ten percent tip, medium for a
 fifteen percent tip, and large for a twenty percent tip.
 </xforms:help>
 </xforms:select>

This form control does not use an <xforms:extension> element containing grammar
<object>s to specify what to listen to. The voice gateway listens for the contents of
any of the <xforms:label> children of the <xforms:item> elements. If a
<xforms:label> is spoken, the content of the corresponding <xforms:value> is put
into the "pct" instance node. The <xforms:input> element gives instructions that are
spoken if the user says "help".

After collecting the input, the service calculates the tip, the total amount to be paid
including tip, and how much each person must pay, and reads out the result. The
computation and output is done by the following markup:

 On a bill of <xforms:output style="speak: currency" ref="/tip/amt"/>, a
 <xforms:output style="speak-numeral: continuous" ref="/tip/pct"/>
 percent tip is
 <xforms:output
 style="speak: currency"
 value="concat(’USD’,round(/tip/pct * substring(/tip/amt,4)) div 100)"
 />, for a total of
 <xforms:output
 style="speak: currency"
 value="concat(’USD’,round((100 * substring(/tip/amt,4)) +
 (/tip/pct * substring(/tip/amt,4))) div 100)"
 />. If divided evenly by
 <xforms:output style="speak-numeral: continuous" ref="/tip/num"/>,
 each person would owe
 <xforms:output
 style="speak: currency"
 value="concat(’USD’,round(((100 * substring(/tip/amt,4)) +
 (/tip/pct * substring(/tip/amt,4))) div /tip/num) div 100)"
 />.

The computations are done using XPath expressions in the value attributes of
<xforms:output> form controls. When using the value of the "amt" instance node,

XHTML+XForms

8-68 Oracle Application Server Wireless Developer’s Guide

the substring function is used to remove the initial "USD" currency indicator. The
"USD" prefix is added to the computed currency amounts using the concat function.

If a currency value like "USD23.58" is spoken by a TTS engine without indicating to
the engine that the value is currency, it will be pronounced something like "You ess
dee twenty-three point fifty-eight". The style="speak: currency" attributes in the
markup above indicate to the TTS engine that the values being output should be
spoken as currency. The style="speak-numeral: continuous" attribute ensures that
the number of people the tip is being split between is spoken as a number rather
than a digit string (e.g. "15" will be pronounced "fifteen" rather than "one five").

Finally, after the tip calculations are reported, the service gives the user the
opportunity to return to the main menu or calculate another tip. This is done by the
following markup:

 To compute another tip, say another tip.
 To return to the main menu, say main menu.
 <xforms:trigger>
 <xforms:label>Another tip</xforms:label>
 <xforms:action ev:event="DOMActivate">
 <xforms:setvalue ref="/tip/amt"/>
 <xforms:setvalue ref="/tip/num"/>
 <xforms:setvalue ref="/tip/pct"/>
 <xforms:setfocus control="amt"/>
 </xforms:action>
 </xforms:trigger>

The text, including the content of the anchor, is spoken by the TTS engine; the label
of the <xforms:trigger> is not spoken. The contents of the anchor and the
<xforms:label> of the <xforms:trigger> are listened for by the voice gateway.
Speaking the contents of the anchor causes the anchor’s href attribute to be fetched.
Speaking the contents of the <xforms:label> will activate the <xforms:trigger>,
which will clear the previously entered data and set the focus to the first form
control. Note that clearing the instance nodes is necessary to input new data. If a
form control with valid contents is visited in aural mode, the form control is
skipped.

The complete advanced voice sample is given below. Note that the <div> elements
control the scope of the anchor and <xforms:trigger> at the end of the document.
When in the first <div>, the anchor and trigger are not in scope, so their contents
are not being listened for. In the second <div>, both are in scope.

 <?xml version="1.0"?>
 <html
 xmlns="http://www.w3.org/1999/xhtml"

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-69

 xmlns:xforms="http://www.w3.org/2002/xforms/cr"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:mxml="http://xmlns.oracle.com/2002/MobileXML"
 profile="http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0"
 >
 <head>
 <xforms:model>
 <xforms:instance>
 <tip>
 <amt/>
 <num/>
 <pct/>
 </tip>
 </xforms:instance>
 </xforms:model>
 </head>

 <body>
 <div>
 <xforms:input id="amt" ref="/tip/amt">
 <xforms:label>
 <object data="/audio/howMuch.wav" type="audio/wav">
 How much is the bill?
 </object>
 </xforms:label>

 <xforms:extension>
 <object
 data="builtin:grammar/currency"
 type="application/vnd.oracle.builtin+grammar"
 />

 <object
 data="builtin:dtmf/currency"
 type="application/vnd.oracle.builtin+grammar"
 />
 </xforms:extension>

 <xforms:help>
 Help. Say the amount of the bill in dollars and cents.
 For example, twenty-five dollars and ten cents.
 </xforms:help>

 <mxml:handler ev:defaultAction="cancel" ev:event="xforms-hint">
 <mxml:catch count="1">

XHTML+XForms

8-70 Oracle Application Server Wireless Developer’s Guide

 <xforms:message>How much is the bill?</xforms:message>
 </mxml:catch>

 <mxml:catch count="5">
 <xforms:load resource="main.jsp"/>
 </mxml:catch>
 </mxml:handler>

 <mxml:handler ev:defaultAction="cancel" ev:event="vxml-nomatch">
 <mxml:catch count="1">
 <xforms:message>
 Please say that again. How much is the bill?
 </xforms:message>
 </mxml:catch>

 <mxml:catch count="2">
 <xforms:message>
 Say the amount of the bill in dollars and cents. For
 example, twenty-five dollars and ten cents.
 </xforms:message>
 </mxml:catch>

 <mxml:catch count="5">
 <xforms:load resource="main.jsp"/>
 </mxml:catch>
 </mxml:handler>
 </xforms:input>

 <xforms:input ref="/tip/num">
 <xforms:label>
 <object data="/audio/howMany.wav" type="audio/wav">
 How many are in your party?
 </object>
 </xforms:label>

 <xforms:extension>
 <object
 data="builtin:grammar/number"
 type="application/vnd.oracle.builtin+grammar"
 />

 <object
 data="builtin:dtmf/number"
 type="application/vnd.oracle.builtin+grammar"
 />

XHTML+XForms

Authoring Mobile Browser and Voice Applications 8-71

 </xforms:extension>
 </xforms:input>

 <xforms:select ref="/tip/pct">
 <xforms:label>
 <object data="/audio/howBig.wav" type="audio/wav">
 How big a tip would you like to leave?
 </object>
 </xforms:label>

 <xforms:item>
 <xforms:label>small</xforms:label>
 <xforms:value>10</xforms:value>
 </xforms:item>

 <xforms:item>
 <xforms:label>medium</xforms:label>
 <xforms:value>15</xforms:value>
 </xforms:item>

 <xforms:item>
 <xforms:label>large</xforms:label>
 <xforms:value>20</xforms:value>
 </xforms:item>

 <xforms:help>
 Help. Say small for a ten percent tip, medium for a
 fifteen percent tip, and large for a twenty percent tip.
 </xforms:help>
 </xforms:select>

 On a bill of <xforms:output style="speak: currency" ref="/tip/amt"/>, a
 <xforms:output style="speak-numeral: continuous" ref="/tip/pct"/>
 percent tip is
 <xforms:output
 style="speak: currency"
 value="concat(’USD’,round(/tip/pct * substring(/tip/amt,4)) div 100)"
 />, for a total of
 <xforms:output
 style="speak: currency"
 value="concat(’USD’,round((100 * substring(/tip/amt,4)) +
 (/tip/pct * substring(/tip/amt,4))) div 100)"
 />. If divided evenly by
 <xforms:output style="speak-numeral: continuous" ref="/tip/num"/>,
 each person would owe

OracleAS Wireless Client

8-72 Oracle Application Server Wireless Developer’s Guide

 <xforms:output
 style="speak: currency"
 value="concat(’USD’,round(((100 * substring(/tip/amt,4)) +
 (/tip/pct * substring(/tip/amt,4))) div /tip/num) div 100)"
 />.
 </div>

 <div>

 To compute another tip, say new tip.
 To return to the main menu, say main menu.
 <xforms:trigger>
 <xforms:label>New tip</xforms:label>
 <xforms:action ev:event="DOMActivate">
 <xforms:setvalue ref="/tip/amt"/>
 <xforms:setvalue ref="/tip/num"/>
 <xforms:setvalue ref="/tip/pct"/>
 <xforms:setfocus control="amt"/>
 </xforms:action>
 </xforms:trigger>
 </div>
 </body>
 </html>

8.3 OracleAS Wireless Client
The OracleAS Wireless Client is a client-side plug-in to the web browser, extending
it to support XHTML/XForms client side processing and rendering.

Figure 8–1 Wireless Client Architecture

Since all rendering and processing is done as part of the browser, the round trip to
the server is only needed when the user submits or downloads another document.
This relieves your server from all the necessary XHTML/XForms processing and

OracleAS Wireless Client

Authoring Mobile Browser and Voice Applications 8-73

also requires the least bandwidth, working faster on even slow or unreliable
networks.

The OracleAS Wireless Client plug-in manipulates the DHTML browser’s internal
DOM structure to generate necessary user interface and captures all the events
directly to provide the most responsive and feature-rich experience.

8.3.1 Using the Wireless Client
Once installed, the Client may be used immediately. Start Internet Explorer and
enter a valid xclient URI in the location bar. All xclient URIs begin with the omc
protocol. Examples of valid URIs are:

omc://chalk.us.oracle.com/testexpense/expenser.xad
omc://chalk.us.oracle.com/testexpense/expense.xforms

8.3.1.1 User Interactions
Once an XHTML/XForms document is loaded, the plugin will take over and
capture all events from the user. If any relevant action was taken, it will feed the
events back to the local XForms processor and process them locally.

8.3.1.2 Logging
The xclient logfile provides useful information when you are debugging your own
XForms application. The logfile is an HTML file and can be found (by default)
under the log directory of your xclient application folder. You have control over
how much information is logged. The logLevel can be set from 0 (no logging) to 9
(max logging). Use the Offline Manager to set the log level.

8.3.1.3 Server Side Considerations
The xclient retrieves XForms and other documents from a server machine. The
server must set the proper content type and a suitable expiration time for each
document.

8.3.2 Using OracleAS Wireless with XClient
If you use OracleAS Wireless as your middle tier, the XClient will take advantage of
its added features.

OracleAS Wireless Client

8-74 Oracle Application Server Wireless Developer’s Guide

8.3.2.1 Mime Types
The content type for XForms documents should be set by the server to
application/vnd.oracle.xhtml+xforms. If the server does not set these content types
properly, then the xclient will not handle them as intended.

OracleAS Wireless predefines these settings during installation; they are ready for
use out of the box.

8.3.3 Installing OracleAS Wireless Client

8.3.3.1 Requirements
Before installing ensure you have the following components installed on your
desktop machine:

■ Internet Explorer (6.0 or above)

■ Java Development Kit (1.3.x or 1.4.x)

Ensure that your default browser is set to Internet Explorer. If you are not sure, you
can make the browser to set itself as the default browser by following these steps:

1. Start Internet Explorer.

2. From the menu, select Tools->Internet Options.

3. From the Options dialog, select the tab Programs.

4. At the bottom of the dialog, check Internet Explorer should check to see whether it is
the default browser. Next time when you start Internet Explorer, it will prompt
you if it is not already the default browser.

8.3.3.2 Installing the Wireless Client
To install the Wireless Client from the WDK, please go to the following directory:

$WDK_HOME/wclient

Open the HTML file install.html. This file contains javascript that checks to see if
you have the necessary components installed. If not, it will add the necessary files
and install the plugin for you.

Installation begins with an informational dialog followed by a dialog that asks for
the application folder name. You may either enter your own folder name or proceed
with the default folder. After you close the next dialog, the actual installation takes
place, the application files are copied to the application folder and several
environment variables are added/modified.

OracleAS Wireless Client

Authoring Mobile Browser and Voice Applications 8-75

At this point the install page shows that the installation was successful.

8.3.3.3 Deploying to Users
Deploying the OracleAS Wireless Client to your end users is as simple as deploying
any other browsers plugins. You must first copy the OracleAS Wireless Client CAB
file to an accessible location on your web server, then point your users to that URL.
To get the Wireless Client CAB file, you must install the WDK on a machine, then
copy the CAB file over. For more information, see Section 8.3.3, "Installing OracleAS
Wireless Client".

A more seamless way to deploy the OracleAS Wireless Client for the user is to
embed the URL to the CAB file in an <OBJECT> tag inside an XHTML/XForms
document, which will cause your browser to automatically download the
component if it is not already instead. You can include it in one (or all) of your
application HTML documents using the following tags:

<OBJECT
classid=CLSID:098f2470-bae0-11cd-b579-08002b30bfeb
id=WClient
codebase="xclient.CAB" >
</OBJECT>

If you have this tag in the body of your document, the browser will automatically
check to see if you have the plugin installed. If you do, no action is required. If the
user does not have OracleAS Wireless Client installed, the browser will prompt the
user to install it. The browser downloads the CAB file, extracts the necessary files
from it, and installs the OracleAS Wireless Client. See Section 8.3.3.4, "XClient.CAB
File" for details about this deployment file.

Notes:

■ You may need to reboot before attempting to use the OracleAS
Wireless Client.

■ Your browser may have security settings that restrict the use of
active and plug-ins. Before installing the Wireless Client, start
the browser, select the menu item Tools->Internet Options.
Select the Security Tab, and click Custom Level. Under the
ActiveX Controls and Plug-ins group, set the following options to
enable: 1) Download signed ActiveX controls, 2) Run ActiveX
Controls and Plug-ins, 3) Script ActiveX controls and plug-ins
marked safe for scripting.

XHTML Mobile Profile

8-76 Oracle Application Server Wireless Developer’s Guide

The classid tells the browser which COM object you are looking for. This must be
set to the main interface CLSID for the Wireless Client.
(098f2470-bae0-11cd-b579-08002b30bfeb).

8.3.3.4 XClient.CAB File
XCLIENT.CAB is an installable compressed file containing all the binaries for the
OracleAS Wireless Client plugin, and instructions for configuring it to work with
your browser (such as registering the COM components, or setting up the required
registry keys).

8.3.3.5 Registry Keys
The OracleAS Wireless Client uses the registry for storing configuration and
runtime parameters. All the keys are stored in:

HKEY_LOCAL_MACHINE/Software/Oracle/XForms

8.4 XHTML Mobile Profile
XHMTL Mobile Profile (XHTML MP) is a standard defined by Open Mobile
Alliance (OMA, previously called WapForum) supported by all compliant mobile
browsers. XHTML MP is a subset of XHTML 1.1, defined by W3C and based on
XHTML Basic defined by W3C. This section explains the usage and features
supported by OracleAS Wireless when using XHTML MP as the application
authoring language. This section is organized into the following subsections:

■ Section 8.4.1, "Overview"

■ Section 8.4.2, "OracleAS Wireless and XHTML MP + CSS Mobile Profile"

■ Section 8.4.3, "XHTML Mobile Profile Modules Supported"

■ Section 8.4.4, "XHTML MP HelloWorld Example"

8.4.1 Overview
The XHTML1.1 specifications defined by W3C (based on HTML4.1), is difficult to
support on mobile and embedded devices. W3C defined XHTML Basic with a
minimum set of HTML Modules (HTML elements) that can be supported on all
devices (mobile and embedded). XHTML MP adds more modules (more HTML
elements) to XHTML Basic that can be supported by mobile devices.

XHTML MP supports Forms Modules as defined in HTML specifications (advanced
controls not included). HTML Forms is UI-oriented in nature and does not define

XHTML Mobile Profile

Authoring Mobile Browser and Voice Applications 8-77

interaction behaviors or any processing logic. The lack of such semantics in HTML
Forms makes the application unusable over other channels such as Voice interface.
OracleAS Wireless supports XHTML MP as an authoring language only for Visual
mobile browser environments and does not support access channels/modes such as
Voice, SMS or Instant Messaging Interface.

8.4.2 OracleAS Wireless and XHTML MP + CSS Mobile Profile
OracleAS Wireless combines XHTML MP and CSS Mobile Profile to provide a
multi-channel authoring model for all visual medium of presentation.

OracleAS Wireless supports XHTML Mobile Profile (see Section A, "XHTML
Modules Supported") with some additional modules. OracleAS Wireless
additionally adds extra modules (namely Navigation List from XHTML2.0, and
MXML Media Attribute Module). For a list of XHTML MP modules supported see
Section 8.4.3, "XHTML Mobile Profile Modules Supported".

OracleAS Wireless supports CSS Mobile Profile defined by W3C. OracleAS Wireless
additionally supports CSS3 Module - CSS Media Queries (for media feature-based
styling). Since OracleAS Wireless renders using a browser on the client device, not
all properties are supported on all devices. OracleAS Wireless attempts to find a
reasonable representation of the style in such cases. For a list of CSS properties
supported, see Section D, "OracleAS Wireless CSS Support" and Section C, "XForms
Specification Support".

As defined in the OMA (WAP Forum) XHTML MP specification, all XHTML MP
documents to be rendered and supported by OracleAS Wireless:

■ must conform to the XHTML MP DTD defined by OMA,

■ XHTML MP documents must be served to OracleAS Wireless with a MIME
media type (Content-type) application/vnd.wap.xhtml+xml,

■ XHTML MP documents must have a DOCTYPE declaration:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

Note: The Open Mobile Alliance also defines a subset of CSS
which closely maps to the CSS Mobile Profile defined by W3C. The
OMA CSS Subset defines additional extension properties, but these
additional properties are not supported by OracleAS Wireless.

XHTML Mobile Profile

8-78 Oracle Application Server Wireless Developer’s Guide

8.4.3 XHTML Mobile Profile Modules Supported
OracleAS Wireless supports the following modules of XHTML MP.

Table 8–4 XHTML MP Modules Supported

Module Description

Structure Module Elements html, head, title and body

Text Module Elements abbr, acronym, address, blockquote, br, cite, code, dfn, div,
em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span, strong, var

Hypertext Module Element a

List Module Elements dl, dt, dd, ol, ul, li

Extension elements nl, label (see Section A.4, "List Module" for
details)

Basic Forms and
Partial Full Forms
Module

Elements form, input, label, select, option, textarea, fieldset,
optgroup (Note: It is recommended the label element be used for all
form control labels, as this will allow proper rendering on all
devices)

Basic Tables Module Elements caption, table, td, th, tr

Basic Tables do not allow nested tables

OracleAS Wireless does not support rowspan or colspan on tables

Image Module Element img

Object Module Elements object, param

When Object are used for images the server supports image
adaptation (see Section A.6, "Object Module" for details).

Meta Information
Module

Element meta

Link Module Element link

Base Module Element base

Presentation Module Element hr, b, big, i, small

Style Sheet Module Element style

Style Attribute
Module

Attribute style

Media Attribute
Module

Attribute media (see Section A.16, "OracleAS Wireless MXML Media
Attribute Module" for details)

XHTML Mobile Profile

Authoring Mobile Browser and Voice Applications 8-79

8.4.4 XHTML MP HelloWorld Example
1. The XHTML MP document must first contain <xml> declaration. Add the

following as the first characters of your document.

<?xml version="1.0" standalone="yes"?>

2. Add a DOCTYPE decl. to the XHTML MP Document (immediately following
the <xml> declaration:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"

 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

3. Add <html> element to as the document root (immediately following the
<DOCTYLE> declaration). Include both the start tag and the end of html
element. Also add the head section. The head section contains title and style
elements:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

<html>
 <head>
 <title>Hello World</title>
 <style type="text/css">
 body {color : #000000}
 h1 {font-family : sans-serif; color : blue}
 </style>
 </head>
</html>

4. Now add the body section. The body in this example contains a form with an
input control:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>My XHTML MP Page</h1>

OracleAS Wireless XML

8-80 Oracle Application Server Wireless Developer’s Guide

 <form action="printForm.jsp" method="get">
 <div>
 <label for="text">
 Hello Visitor, Please Enter your name
 </label>
 <input id="text" name="text" type="text" size="5"/>
 </div>
 <div>
 <input name="submit" type="submit" value="Submit"/>
 </div>
 </form>
 </body>
</html>

Now the XHTML MP document is ready to be deployed and tested. Authors may
deploy the document on their web server and at deployment authors must make
sure to set the MIME media type (content-type) of the document is set to
application/vnd.wap.xhtml+xml. The setting of the MIME media type can be
done either programmatically or by using web server configuration files. Authors
should also make sure to provide a page that acts as the submit page for the
example. This page will receive the form data (from the Hello World page) as query
parameters.

8.5 OracleAS Wireless XML
Topics in this section include:

■ Section 8.5.1, "OracleAS Wireless XML Overview"

■ Section 8.5.2, "OracleAS Wireless XML and OracleAS Wireless"

■ Section 8.5.3, "Displaying and Formatting Content"

■ Section 8.5.4, "Enhancing with Audio for Voice Access"

■ Section 8.5.5, "Application Navigation"

■ Section 8.5.6, "Document Linking"

■ Section 8.5.7, "Filling Out Forms for Data Entry and Navigation"

■ Section 8.5.8, "Advanced User Interactions and Channel Optimization"

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-81

8.5.1 OracleAS Wireless XML Overview
OracleAS Wireless XML is based on previous releases. Going forward, you should
use XHTML+XForms and XHTML MP.

Consider the following XML document:

<address>
<first-name>Chandra</first-name>
<last-name>Patni</last-name>
<street>400 Oracle Parkway</street>
<zip>94065</zip>
</address>

In this example, the element names describe the data they encapsulate. This XML
document can be transformed into HTML using another XML document called an
XSL stylesheet. This same XML document can be transformed into WML using
another XSL stylesheet. The document can then be displayed on a WAP device. This
ability of XML makes it suitable for representing and delivering portable data to
various devices. XML content are also future-proof; another stylesheet can be used to
deliver the content to any future device. Therefore, XML transformation can be
done programmatically on-the-fly. Oracle Application Server Wireless provides a
framework to do exactly the same thing. It allows content represented by XML
format defined by an Oracle Application Server Wireless schema to deliver content
to any device at any time.

8.5.2 OracleAS Wireless XML and OracleAS Wireless
At the core of Oracle Application Server Wireless, XML from an application is
transformed to device-specific markup languages using XSL transformation. Oracle
Application Server Wireless provides a framework for interacting with applications
and transforming XML to device-specific markup languages. Oracle Application
Server Wireless provides an XML schema, elements of which can be used to build
user interfaces to render application content to any device.

8.5.3 Displaying and Formatting Content
Each section of this document presents a different topic. These sections include:

■ Section 8.5.3.1, "Hello World Example"

■ Section 8.5.3.2, "DOCTYPE Declaration"

■ Section 8.5.3.3, "SimpleResult"

OracleAS Wireless XML

8-82 Oracle Application Server Wireless Developer’s Guide

■ Section 8.5.3.4, "Formatting the Display"

■ Section 8.5.3.5, "Tables and Basic Formatting Example"

■ Section 8.5.3.6, "Image Adaptation Support in OracleAS Wireless XML"

8.5.3.1 Hello World Example
The first example shows how to display the traditional "Hello World" content on a
mobile device.

8.5.3.1.1 HelloWorld.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleText>
 <SimpleTextItem>Hello World</SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-83

Figure 8–2 Hello World Content on Mobile Devices

In this example, XML is transformed into the device-specific markup language to
render on the displays of a pocket PC and a telephone. This example demonstrates
the power of XML; application proGrammar need not have any knowledge of the
target device. Oracle Application Server Wireless renders XML into the various
device screens. The following section explains the XML elements, tags and
attributes used in the above example. Additionally, other tags will be discussed
which can be used to display and format content on device screens or voice
browsers.

8.5.3.2 DOCTYPE Declaration
XML documents authored for Oracle Application Server Wireless should have
DOCTYPE declaration specifying the schema version. For backward compatibility
(in the absence of DOCTYPE declaration), the stylesheet for Oracle Application
Server Wireless Edition 1.0 will be applied. However, if 1.0 stylesheets are not
available to the Oracle Application Server Wireless runtime, then Oracle

OracleAS Wireless XML

8-84 Oracle Application Server Wireless Developer’s Guide

Application Server Wireless 1.x stylesheets will be used regardless of DOCTYPE
declaration. If no 1.x stylesheets are found, an error will result.

8.5.3.3 SimpleResult
SimpleResult is the root element of the Oracle Application Server Wireless XML
schema. Every valid Oracle Application Server Wireless XML document must have
SimpleResult as its root element. SimpleResult can contain multiple SimpleContainer
blocks to allow for multi-card decks.

8.5.3.3.1 SimpleContainer SimpleContainer is the root of all major block constructs
such as Form, Menu and Text. Elements such as menu, text and form items can act
as cards in the deck. DeckExample.xml demonstrates the usage of SimpleText as a
placeholder for cards. Considering the limitations of target devices and deck size
restrictions on devices, judgment should be exercised in the number of cards per
deck and the total content size in a single request.

8.5.3.3.2 DeckExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleText id="card1">
 <SimpleTextItem>This is Card 1
 <SimpleBreak/>
 <SimpleHref target="#card2">Go to Card2</SimpleHref>
 </SimpleTextItem>
 </SimpleText>
 <SimpleText id="card2">
 <SimpleTextItem>Welcome to Card2</SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-85

Figure 8–3 Cards Displayed on Mobile Telephones

8.5.3.3.3 SimpleText, SimpleTextItem Content of SimpleTextItem are usually translated
into paragraphs. SimpleTextItem can be grouped using the SimpleText element.
SimpleText element contains one or more SimpleTextItem. The id attribute of
SimpleText tag can be used to refer to SimpleText elements as a deck. SimpleText is
rendered on a separate card on WML and HDML devices. SimpleHref can be used
as a child of SimpleTextItem similar to HTML anchor. See Section 8.5.6.1,
"SimpleHref, SimpleTimer" for more information on SimpleHref. The deviceclass
attribute of SimpleText and SimpleTextItem take values “pdabrowser", "pcbrowser",
"voice", "microbrowser", "micromessenger", and "messenger" which directs
processing for either small screen clients or voice clients. In the absence of the
deviceclass attribute, the content will be rendered to both small screen devices and
voice enabled devices. By default, text-to-speech (TTS) synthesis is used to represent
the text enclosed in these tags. SimpleAudio tag in conjunction with deviceclass
attribute can be specified to override the default behavior. For a better user
experience, do not use TTS whenever recorded audio is available. For voice
interfaces SimpleAudio may be used. Refer to the following snippet of code for
usage.

<SimpleText>
 <SimpleTextItem>
 <SimpleAudio src="http://www.domain.com/filename.wav" deviceclass="voice">Alt
text for TTS if the wave file is not found.
 </SimpleAudio>
 </SimpleTextItem>

OracleAS Wireless XML

8-86 Oracle Application Server Wireless Developer’s Guide

 <SimpleTextItem deviceclass="microbrowser"> Text for small screen devices
 </SimpleTextItem>
</SimpleText>

8.5.3.4 Formatting the Display

8.5.3.4.1 SimpleBreak, SimpleStrong and SimpleEm These elements are used for
fine-tuning the display of text content on a screen. SimpleStrong displays enclosed
text in a stronger representation, usually bold. SimpleEm displays the enclosed text
with emphasis, usually displayed as italicized text. For voice-enabled applications,
level attribute can be used to specify the level of emphasis. Permissible values for
level attribute are: strong, moderate, none and reduced.

SimpleBreak creates a new line on the page on which the tag is placed. The rule
attribute can be used to display a line <hr>, for HTML output. Deviceclass can be
used for directive processing of small screen or voice enabled devices, or both. For
voice-enabled applications, SimpleBreak inserts a pause; the msecs or size attribute
enables you to control the length of the pause. See the following example for details.

8.5.3.4.2 FormattingExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult bgcolor="99ff99">
 <SimpleContainer>
 <SimpleText>
 <SimpleTitle>Seach Result</SimpleTitle>
 <SimpleTextItem>
 <SimpleEm level="strong">1 Entry found</SimpleEm>
 <SimpleBreak msecs="500"/>
 <SimpleStrong>Chandra Patni</SimpleStrong>
 <SimpleBreak/>400 Oracle Pkwy
 <SimpleBreak/>Redwood Shores
 <SimpleBreak/>CA, 94065
 </SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

Note: The .wav file specified must be in CCITT mu-law, 8 bit,
8kHz.

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-87

Figure 8–4 Results of Formatting Example

8.5.3.5 Tables and Basic Formatting Example

8.5.3.5.1 SimpleTable, SimpleTableHeader, SimpleTableBody, SimpleRow and SimpleCol
SimpleTable displays a table. A table consists of a header and body which are
abstracted by SimpleTableHeader and SimpleTableBody, respectively. The body of a
table consists of SimpleRow and SimpleCol elements. Images can be used in tables
cells. TableExample.xml provides an example of the table elements.

8.5.3.5.2 TableExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleTable >
 <SimpleTitle> My Portfolio </SimpleTitle>
 <SimpleTableHeader>
 <SimpleCol>Symbol</SimpleCol>
 <SimpleCol>Price</SimpleCol>
 <SimpleCol>Delta</SimpleCol>
 </SimpleTableHeader>
 <SimpleTableBody>

OracleAS Wireless XML

8-88 Oracle Application Server Wireless Developer’s Guide

 <SimpleRow>
 <SimpleCol>ORCL</SimpleCol>
 <SimpleCol>18.32</SimpleCol>
 <SimpleCol>+0.24</SimpleCol>
 </SimpleRow>
 <SimpleRow>
 <SimpleCol>SUNW</SimpleCol>
 <SimpleCol>17.35</SimpleCol>
 <SimpleCol>+1.06</SimpleCol>
 </SimpleRow>
 <SimpleRow>
 <SimpleCol>CSCO</SimpleCol>
 <SimpleCol>20.30</SimpleCol>
 <SimpleCol>+0.24</SimpleCol>
 </SimpleRow>
 <SimpleRow>
 <SimpleCol>MSFT</SimpleCol>
 <SimpleCol>6647</SimpleCol>
 <SimpleCol>+0.28</SimpleCol>
 </SimpleRow>
 </SimpleTableBody>
 </SimpleTable>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-89

Figure 8–5 Results of Tables and Basic Formatting Example

8.5.3.6 Image Adaptation Support in OracleAS Wireless XML
Application developers embed images in their OracleAS Wireless XML applications
using the SimpleImage tag. Image adaptation support is provided through the
addImageExtension attribute of the SimpleImage tag. The semantics of the
values taken by addImageExtension and available attributes are listed below.

Table 8–5 Semantics of Values

Case addImageExtension Available Semantics

1 not set, true not set Since available is not set, use default device
extension.

2 not set, true list of
extensions

Use the available extensions if they match.

3 false not set Do not add any extension. src is an image
URL.

4 false list of
extensions

Ignore available list; do not add extension.

5 auto not set Adapt the image for all devices using the src
URL input for adaptation.

OracleAS Wireless XML

8-90 Oracle Application Server Wireless Developer’s Guide

Example 1: The simplest case is one in which a single image is provided by the
application and is adapted for all devices that support images based on the device
profile.

<SimpleImage src="http://www.oracle.com/admin/images/oralogo.gif" alt="Oracle
logo" addImageExtension="auto" />

Example 2: Multiple images are provided and the most suitable image is selected. If
the size or content format needs to be adapted, the most suitable image is adapted.
In this case, if the device supports GIF images, the GIF image is used for any
adaptation to the size or content format if required. If the device supports WBMP,
the WBMP image is used in the nested object for any adaptation to the size. If the
device does not support either, the first listed image format is used.

<SimpleImage src="http://../images/oralogo" alt="Oracle logo" available="gif
wbmp" addImageExtension="auto"/>

Example 3: Multiple images are provided with image adaptation turned off. The
two lines below have the same meaning:

<SimpleImage src="http://../images/oralogo" alt="Oracle logo" available="gif
wbmp" addImageExtension="true"/>

<SimpleImage src="http://../images/oralogo" alt="Oracle logo" available="gif
wbmp" />

Example 4: Turn image adaptation off and only use the provided image, ignoring
devices that do not support this format.

<SimpleImage src="http://www.oracle.com/admin/images/oralogo.gif" alt="Oracle
logo" addImageExtension="false" />

6 auto list of
extensions

Adapt the image for all devices using the
supported extension as the input for
adaptation.

Table 8–5 Semantics of Values

Case addImageExtension Available Semantics

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-91

8.5.4 Enhancing with Audio for Voice Access

8.5.4.1 SimpleAudio and SimpleSpeech
The SimpleAudio element can be used for playing audio. The file specified by the
src attribute must be in 8-bit mulaw format. The SimpleSpeech element may be used
to control prosody, pitch and other VoiceXML text-to-speech engine parameters. For
example, the class attribute can be used to specify that the contents of SimpleSpeech
should be interpreted as the say-as type phone, date, digits, literal, currency, number
or time. See the following example for usage.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleText>
 <SimpleTextItem>
 <SimpleAudio src="welcome1.wav">Welcome to Oracle Mobile, India Development
Center</SimpleAudio>
 <SimpleBreak/>
 <SimpleAudio src="welcome2.wav">You can contact us at phone number
</SimpleAudio>
 <SimpleBreak/>
 <SimpleAudio src="phone.wav">
 <SimpleSpeech class="phone">91 080 552 8335</SimpleSpeech>
 </SimpleAudio>
 </SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

8-92 Oracle Application Server Wireless Developer’s Guide

Figure 8–6 Results of SimpleAudio and SimpleSpeech Example

8.5.4.2 Recommendation for Voice Navigation
While writing applications for Oracle Application Server Wireless, developers
should consider voice navigation at design time. Well-designed voice applications
tend to have different semantics than small screen devices and desktop
applications. Although Oracle Application Server Wireless automatically provides
an audio interface for service, the system is not intended to be a speech-controlled
small-screen device browser, where speech is added as an afterthought. Application
developers should develop services that have appropriate small-screen and speech
interfaces in their own right, and the respective strengths of these different devices
can be used to advantage.

The development path for beginners should follow this model:

1. Write a basic version of the service using exactly the same flow and markup for
small-screen devices and audio interfaces.

2. Test on small-screen devices and voice telephones. If it is acceptable, you are
done.

For a large class of services, particularly menu-driven services that provide
information, the method works surprisingly well. If one or another interface seems
clumsy, there are several things that can be done to improve it.

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-93

1. There are a number of attribute values that can be adjusted to enhance the
interface for one of the device classes.

2. If that is insufficient, one can selectively include or exclude certain elements
from the user interface depending on the deviceclass.

3. You can alter the user interface flow by selectively following different paths
through a service, again, depending on the deviceclass.

8.5.5 Application Navigation
Before examining the properties of writing mobile XML to handle text formatting
from a small device and voice perspective, this section will help you gain the skills
to write effective user interfaces to capture the required business logic with the least
amount of effort by mobile users.

■ Section 8.5.5.1, "Introduction"

■ Section 8.5.5.2, "Basic Navigation"

■ Section 8.5.5.3, "SimpleMenu, SimpleMenuItem"

■ Section 8.5.5.4, "Navigating by Voice"

8.5.5.1 Introduction
This section contains the details of creating Oracle Application Server Wireless XML
pages containing navigation elements such as menus, hyperlinks, email, help, and
cover forms. The elements necessary to build a form are different from a menu as
these will be the core elements needed for a wireless developer to build an effective
mobile application that simplifies user input without compromising a rich feature
set across different devices.

Because voice navigation is inherently more complicated than in small screen
devices, this section focuses on the fundamentals of Oracle Application Server
Wireless XML for small devices, and highlights the required voice additions.

Menus allow consumers of services to simply navigate to a predefined choice and
enable different URLs to be invoked for a given choice. Forms, on the other hand,
typically differ from Menus in that there is one target which dictates the user’s next
page based on user input.

OracleAS Wireless XML

8-94 Oracle Application Server Wireless Developer’s Guide

8.5.5.2 Basic Navigation

8.5.5.3 SimpleMenu, SimpleMenuItem
The SimpleMenu element represents a single menu with selectable menu items
defined by SimpleMenuItem elements. It is possible to add images to the top of each
Menu, but avoid using large titles and images. See SimpleMenuExample.xml for
an example.

8.5.5.3.1 SimpleMenuExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC " = //ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleMenu>
 <SimpleTitle>OracleMobile Services
 <SimpleImage src="
http://portal.oraclemobile.com/other/oow/oramobile"alt="Oracle Software
Powers the Internet"/>
 </SimpleTitle>
 <SimpleMenuItem target="mission.xml">OracleMobile
MissionStatement</SimpleMenuItem>
 <SimpleMenuItem target="timer.xml">Oracle Server</SimpleMenuItem>
 <SimpleMenuItem target="email.xml">Email the authors</SimpleMenuItem>
 </SimpleMenu>
 </SimpleContainer>
 </SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-95

Figure 8–7 Results of Simple Navigation Example

8.5.5.4 Navigating by Voice
The system reads the items of menu elements and concurrently listens for the
values of the SimpleMenuItem element. If one of these values is recognized, then the
target URL is fetched. If the user says nothing, the system will prompt the user with
a system default noinput message. If the user says something that the system is
unable to recognize, the system default nomatch message is played. However,
application programmer may control such messages. Such fail-over logic is critical
for making robust voice applications. Application developers should make
extensive use of such features. For menus with a large number of items, voice
interfaces should not read the entire list of menu items to the user. The default can
be disabled by setting the autoprompt attribute of SimpleMenu to false. Instead,
applications should wait for user input and should only present an options list as
help if requested by user. See EnhancedSimpleMenuExample.xml for an
example. Some of the tags and elements used in the application are covered later in
this chapter.

OracleAS Wireless XML

8-96 Oracle Application Server Wireless Developer’s Guide

8.5.5.4.1 EnhancedSimpleMenuExample.xml

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC " = //ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
 <SimpleResult>
 <SimpleContainer>
 <SimpleMenu deviceclass="microbrowser pdabrowser pcbrowser micromessager
messenger">
 <SimpleTitle>Oracle Mobile Services
 <SimpleImage src="http://portal.oraclemobile.com/other/oow/oramobile"
alt="Oracle Software Powers the Internet"/></SimpleTitle>
 <SimpleTitle>Oracle Mobile Services</SimpleTitle>
 <SimpleMenuItem target="mission.xml">Oracle Mobile Mission
Statement</SimpleMenuItem>
 <SimpleMenuItem target="timer.xml">Oracle Server</SimpleMenuItem>
 <SimpleMenuItem target="email.xml">Email the authors</SimpleMenuItem>
 </SimpleMenu>
 <SimpleMenu deviceclass="voice" autoprompt="false">
 <SimpleTitle>
 <SimpleAudio src="title.wav">oracle mobile services
 </SimpleAudio>
 </SimpleTitle>
 <SimpleMenuItem target="mission.xml">Oracle Mobile Mission Statement
 <SimpleGrammar><grammar root="ms">
 <rule id="ms">
 <item repeat="0-1">Oracle</item> mission statement
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 <SimpleMenuItem target="timer.xml">Oracle Server
 <SimpleGrammar><grammar root="server">
 <rule id="server">
 <item repeat="0-1">Oracle</item> server
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 <SimpleMenuItem target="email.xml">Email the authors
 <SimpleGrammar><grammar root="email">
 <ruleid="email">
 <one-of>
 <item>email the authors</item>
 <item>email</item>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-97

 <item>email authors</item>
 </one-of>
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 <SimpleCatch type="noinput">
 <SimpleAudio src="menuOptions.wav">Please speak up. You may also say help.
 </SimpleAudio>
 </SimpleCatch>
 <SimpleCatch type="nomatch">
 <SimpleAudio src="nomatch.wav">I’m sorry, I did not understand you. Please
say that again or say help.</SimpleAudio>
 </SimpleCatch type="help">
 <SimpleAudio src="menuHelp.wav"> Help. Oracle Mobile. You may say mission
statement, oracle server or email the authors.
 </SimpleAudio>
 </SimpleMenu>
 </SimpleContainer>
</SimpleResult>

The output of this application on small screen devices is the same as shown above,
while a typical voice session may be as follows:

System: "Oracle Mobile Services."

User: "Help."

System: "Help. Oracle Mobile. You may say mission statement, oracle server or email
the authors."

User: "I am going to trick you."

System: "I’m sorry, I did not understand you. Please say that again or say help."

User: "Email authors."

Voice gateways provide a text-to-speech (TTS) engine that reads out SimpleTitles,
SimpleTextItems, and others. For the TTS to sound intelligible, proper spacing and
punctuation are required.

SimpleFormOptions and SimpleMenuItems should not have text punctuation
unless the deviceclass has been set to a value other than voice. This is because the
text in these tags is used to produce speech recognition grammars, and many voice
gateways cannot process such characters in speech grammars. If a developer wishes
to avoid using the synthesized message, he may specify a prerecorded audio file to
be played. The location of the audio file can be specified through the

OracleAS Wireless XML

8-98 Oracle Application Server Wireless Developer’s Guide

<SimpleAudio> tag. End user experience of TTS is often considered unpleasant, so
as much as possible, prerecorded human sounds should be used instead of TTS.

8.5.6 Document Linking

8.5.6.1 SimpleHref, SimpleTimer
For linking documents, SimpleHref can be used as a hyperlink. It can also be used to
send email using the mailto:handler as shown in the following two examples.
Similarly, the callto:handler can be used for devices that are capable of making
phone calls. Application developers should specify deviceclass attributes which
support the call or mail feature. Use of SimpleHref on voice devices is discouraged,
as it is problematic to indicate in voice that a piece of inline text that is read by a
text-to-speech engine is also a phrase that can be spoken to traverse the link.
SimpleMenuItem should be used instead of SimpleHref.

SimpleTimer can be used to fetch a document after a specified delay. It can be used
for navigation to display a showcase promotion, sponsor information, or
system-wide critical messages.

8.5.6.1.1 ContactAuthors.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleText deviceclass="pdabrowser pcbrowser micromessenger
messenger microbrowser">
 <SimpleTextItem deviceclass="pdabrowser pcbrowser micromessenger
messenger">Email the Authors only on clients with default mail clients like
PocketPC and desktops
 <SimpleBreak/>
 <SimpleHref target="mailto:chandra.patni@oracle.com">Chandra "duke" Patni
 </SimpleHref>
 <SimpleBreak/>
 <SimpleHref target="mailto:peter.feng@oracle.com">Peter "ptg" Feng
 </SimpleHref>
 </SimpleTextItem>
 <SimpleTextItem deviceclass="microbrowser">Call the Authors on clients with
phone facility
 <SimpleBreak/>
 <SimpleHref target="callto:1234567890">Chandra "duke" Patni
 </SimpleHref>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-99

 <SimpleBreak/>
 <SimpleHref target="callto:1234567890">Peter "ptg" Feng
 </SimpleHref>
 </SimpleTextItem>
 </SimpleText>
 <SimpleMenu deviceclass="voice">
 <SimpleTitle>Call the Authors on voice clients</SimpleTitle>
 <SimpleMenuItem target="callto:1234567890">Chandra Patni</SimpleMenuItem>
 <SimpleMenuItem target="callto:1234567890">Peter Feng</SimpleMenuItem>
 </SimpleMenu>
 </SimpleContainer>
</SimpleResult>

Figure 8–8 Results of the Email Demo Example

8.5.6.1.2 PhoneCallDemo.xml

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">

OracleAS Wireless XML

8-100 Oracle Application Server Wireless Developer’s Guide

<SimpleResult>
 <SimpleContainer>
 <SimpleText deviceclass="microbrowser">
 <SimpleTextItem><SimpleEm>Oracle</SimpleEm> Support </SimpleTextItem>
 <SimpleTextItem>Phone Book<SimpleBreak/>
 <SimpleHref target="callto:14155551212">Bob</SimpleHref>
 <SimpleHref target="callto:16505551212">Chris</SimpleHref>
 <SimpleHref target="callto:14085551212">Dina</SimpleHref>
 <SimpleHref target="callto:17075551212">Jere</SimpleHref>
 </SimpleTextItem>
 </SimpleText>
<SimpleMenu deviceclass="voice">
 <SimpleTitle><SimpleEm>Oracle</SimpleEm> Support <SimpleBreak/> Phone
Book</SimpleTitle>
 <SimpleMenuItem target="callto:14155551212">Bob</SimpleMenuItem>
 <SimpleMenuItem target="callto:16505551212">Chris</SimpleMenuItem>
 <SimpleMenuItem target="callto:14085551212">Dina</SimpleMenuItem>
 <SimpleMenuItem target="callto:17075551212">Jere</SimpleMenuItem>
 </SimpleMenu>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-101

Figure 8–9 Results of the Phone Call Demo Example

8.5.6.1.3 SimpleAction SimpleAction provides the ability to define a submit action
that navigates users to a new context. Mobile devices can associate a submit action
to a number of input methods of the device, such as pressing a key on a WAP
device or speaking a command on a voice-enabled device. SimpleAction can also be
used for navigation to different pages and different cards within a deck, and
overriding default behavior on voice browsers. For mobile phones, the main usage
would be to override the buttons (left and right) on a wireless phone and PDAs to
provide a similar navigation functionality as SimpleHref.

Like many programming languages, SimpleAction, for a given type, conforms to
scoping rules. For example, if SimpleAction is defined as a child of SimpleMenu
and also as a child of the enclosing SimpleContainer for a given type, the
SimpleAction tag within the SimpleMenu overrides the SimpleAction of the
SimpleContainer. If the value for type attribute is different, then the two
SimpleActions will be active within the context. The behavior of SimpleAction is
unspecified if two elements are defined with the same type and same deviceclass
values in the same context. See the following example for usage.

OracleAS Wireless XML

8-102 Oracle Application Server Wireless Developer’s Guide

8.5.6.1.4 SimpleCache SimpleCache enables you to specify caching policy of content
either by the WAP gateway, by client browser, or both.

■ Caching policy is said to be public if the WAP gateway is allowed to cache the
content of a URL.

■ Caching policy is said to be private if the content is only allowed to cache by the
device.

SimpleCache can be specified as the child of SimpleHref, SimpleGo,
SimpleMenuItem, SimpleAction, and others. SimpleCache also allows users to
specify the prefetch policy (if supported by the browser), where a URL must be
prefetched while still showing the current content. Time to live for the cached data
is specified by the ttl attribute, which takes milliseconds as an argument.

SimpleCache should be used when the data is sensitive or becomes stale after a
specified amount of time.

8.5.6.1.5 SimpleMeta SimpleMeta allows applications to specify meta information
through a device browser, and pass that information to the transformers.

8.5.6.1.6 DocumentLinkingDemo.xml Here is an example of document linking:

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer id=”message”>
 <SimpleTimer target="#employeePortal" timer="30"/>
 <SimpleText>
 <SimpleTextItem> There will be ice cream bars in every lobby at Headquarters
to promote the use of the new employee wireless portal.
 </SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
 <SimpleContainer>
 <SimpleText id=”employeePortal”>
 <SimpleTitle>
 <SimpleImage valign=”top” src=
http://portal.oraclemobile.com/other/oow/oraclemobile alt=”oraclemobile icon”/>
 </SimpleTitle>
 <SimpleTextItem>Welcome to <SimpleEm>OracleMobile</SimpleEm> Employee Portal
<SimpleBreak/>
 </SimpleTextItem>
 <SimpleAction type=”secondary” label=”Support” target=”phone.xml”/>
 <SimpleHref label=”PORTAL” id=”portal” target=”form.xml”> enterPortal

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-103

 </SimpleHref>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

Figure 8–10 Results of the Document Linking Demo Example

8.5.6.2 Enhancing with Voice

8.5.6.2.1 SimpleDTMF SimpleDTMF specifies a VoiceXML DTMF grammar (that is, a
grammar of touchtone sequences). In the voice application example, a user may
select menu item withdraw either by saying "withdraw" or by selecting 2 on the
device.

8.5.6.2.2 SimpleDTMF.xml

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleCache ttl="0"/>
 <SimpleContainer>
 <SimpleMenu wrapmode="nowrap" autoprompt="false">
 <SimpleTitle>Voice demo</SimpleTitle>
 <SimpleMenuItem target="deposit.jsp">Deposit

OracleAS Wireless XML

8-104 Oracle Application Server Wireless Developer’s Guide

 <SimpleDTMF> <grammar root="one">
 <rule id="one">1</rule>
 </grammar>
 </SimpleDTMF>
 </SimpleMenuItem>
 <SimpleMenuItem target="HelloWorld.jsp">Withdraw
 <SimpleDTMF> <grammar root="two">
 <rule id="two">2</rule>
 </grammar>
 </SimpleDTMF>
 </SimpleMenuItem>
 <SimpleCatch type="cancel">
 <SimpleGo target="cancel.jsp/>
 </SimpleCatch>
 <SimpleCatch type="help">
 <SimpleAudio src="help2.wav">Help. For deposit, you may say deposit or press
1. For withdraw, you
 may say withdraw or press 2.</SimpleAudio>
 </SimpleCatch>
 <SimpleCatch type="help" count="2">
 <SimpleAudio src="help.wav">Help. For deposit, you may say deposit or press
1. For withdraw, you
 may say withdraw or press 2. You may also say cancel to return to account
menu.</SimpleAudio>
 </SimpleCatch>
 </SimpleMenu>
 </SimpleContainer>
</SimpleResult>

8.5.6.2.3 SimpleCatch SimpleCatch catches an event; it is a voice-only tag. This can be
used to capture predefined voice events or error conditions such as noinput,
nomatch, exit, cancel, error, help, telephone.disconnect, and others, and perform actions
on them. For example, on a noinput event, a user can be given some help
instructions and be reprompted for their input. The event types are specified by
type attribute which is mandatory for SimpleCatch. Also, count attribute may be
used for occurrences of the event. The default value is 1. It allows handling of
multiple occurrences of an event in multiple ways. For example the nth occurrence
of an event can be handled in a different manner than the previous occurrence. In a
frequently occurring scenario, it may be used for increasing details of help as count
increases. See SimpleDTMF.xml for usage.

8.5.6.2.4 SimpleGrammar SimpleGrammar provides a customized speech recognition
grammar. Using this grammar, developers can not only provide the vocabulary to
listen for, but also the mapping from, utterances to data values. If the rules for such

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-105

mappings are in a remote location, then the src attribute may be used to specify the
name of the file. The following example illustrates the use of SimpleGrammar.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleMenu deviceclass="voice">
 <SimpleTitle src="title.wav">Please select a freeway</SimpleTitle>
 <SimpleMenuItem target="./traffic.jsp?index=5">I 5
 <SimpleGrammar> <grammar route="i5">
 <rule id="i5">
 <one-of>
 <item>i five</item>
 <item>interstate five</item>
 <item>five</item>
 <item>route five</item>
 <item>san diego</item>
 </one-of>
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 <SimpleMenuItem target="./traffic.jsp?index=8 ">I 8
 <SimpleGrammar><grammar root="i8">
 <rule id="i8">
 <one-of>
 <item>i eight</item>
 <item>interstate eight</item>
 <item>eight</item>
 <item>route eight</item>
 <item>alvarado freeway</item>
 <item>mission valley freeway</item>
 <item>ocean beach freeway</item>
 </one-of>
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 <SimpleMenuItem target="./traffic.jsp?index=15 ">I 15
 <SimpleGrammar> <grammar root="i15">
 <rule id="i15">
 <one-of>

OracleAS Wireless XML

8-106 Oracle Application Server Wireless Developer’s Guide

 <item>i fifteen</item>
 <item>fifteen</item>
 <item>nterstate fifteen</item>
 <item>escondido freeway</item>
 <item>escondido</item>
 </one-of>
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 <SimpleMenuItem target="./traffic.jsp?index=805 ">I 805
 <SimpleGrammar> <grammar root="i805">
 <rule id="i805">
 <one-of>
 <item>i eight zero five</item>
 <item>i eight hundred five</item>
 <item>eight zero five</item>
 <item>eight hundred five</item>
 <item>interstate eight zero five</item>
 <item>interstate eight hundred five</item>
 <item>route eight zero five</item>
 <item>route eight hundred five</item>
 </one-of>
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleMenuItem>
 </SimpleMenu>
 </SimpleContainer>
</SimpleResult>

In the above example, even though the last menu option is i eight hundred five, the
user may say any one of the commands as specified by the <item>s in the <one-of>
element. SimpleGrammar is a very useful construct for building user-friendly and
smart voice applications. It also allows application developers to incorporate some
of their localization issues. For example, “sure”, “ok”, “yes”, “please” and “yes
please” all are used to refer to “yes” (in the America region) in different parts of
world. Such speech diversity can be incorporated into an application using
SimpleGrammar.

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-107

8.5.6.2.5 Reply to Email Example This is a code that used to implement reply to Email.

For example, if a user listening to their Email on a phone says, "reply", a message
instructs the user to speak their reply and then press the pound key (#). This
recorded reply is sent as an attachment to the original Email sender.

To implement this, the spoken utterance is recorded on the VoiceXML gateway, and
then passed back to the Multi-channel Server and the application to be attached to a
reply Email.

MXML:

<SimpleResult>
 <SimpleContainer>
 <SimpleForm method="post"
 enctype="application/x-www-form-urlencoded" target="recordaudio.jsp">
 <SimpleFormItem type="audio" enctype="audio/wav"
> name="recorded_audio_msg" beep="true" dtmfterm="true">
 Say something to record after the beep.
 </SimpleFormItem>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

Here is recordaudio.jsp (partial):

// WRITE THE AUDIO CONTENT TO A FILE
// AND PLAY BACK THE CONTENTS
String myrecording = request.getParameter("record_audio_msg");
String wavdirectory = "path/testharness/audio/"; // ABSOLUTE PATH OF WHERE TO
STORE THE AUDIO
String myWaveFile = wavdirectory + "test.wav";
File myWFile = new File(myWaveFile);
String result = "";
try {
 byte[] myWaveBytes = myrecording.getBytes();
 FileOutputStream myFileOutput = new FileOutputStream(myWaveFile);
 myFileOutput.write(myWaveBytes);
 myFileOutput.close();
 result = "<SimpleAudio
src=\"http://iaswvoice.oracle.com/testharness/audio/" + fileName +
"test.wav\"/>"; // THIS IS TO CHECK TO MAKE SURE THE FILE WAS RECORDED
} catch (IOException e) {
 result = "Error No Audio File Created";
}
 %>

OracleAS Wireless XML

8-108 Oracle Application Server Wireless Developer’s Guide

Value: <%=result%> <!-- PLAY THE AUDIO FILE FOR THE USER, SEE ABOVE RESULT
STRING -->

8.5.6.2.6 Mobile XML Voice Navigation Elements The following basic voice commands
are available to users at all times. The response of the system to help and cancel
will generally need to be tailored to each individual service.

■ Main menu—can be uttered at any time, and by default takes the user to
the OracleAS Wireless main menu.

■ Goodbye—to end the session with one OracleAS Wireless instance, or user
may just hang up the telephone.

■ Exit—same as Goodbye.

■ Help—for context-sensitive help.

■ Cancel—for aborting or restarting a dialog, as when the system has
misrecognized a command or input.

8.5.6.2.7 Help Help is used by voice applications to provide context-sensitive help
when users invoke help commands. Voice interfaces should make use of Help as
much possible. Unlike small screen application help, voice help is vital to the
navigation of voice interfaces and therefore should be incorporated at development
time. See EnhancedSimpleMenuExample.xml for usage.

8.5.7 Filling Out Forms for Data Entry and Navigation
Each section presents a different topic. These sections include:

■ Section 8.5.7.1, "Introduction"

■ Section 8.5.7.2, "Basic User Interaction"

■ Section 8.5.7.3, "Complete User Forms"

■ Section 8.5.7.4, "Enhancing Voice"

8.5.7.1 Introduction
Forms provide the basic building blocks for user interactions. Forms for phones and
PDAs are fairly similar, except in form factor. Like HTML forms, forms in mobile
devices are used for passing name-value parameters to the server. Multiple form
items can be laid out on the device screen, if supported. Therefore, a user may
populate a form item in an arbitrary order. Certain format restrictions can be
specified on a form item to ensure the type, safety and validity of form fields. For

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-109

example, it is possible to specify a restriction of five digits for US postal codes.
However, most of the validation should occur on the server side. This constraint is
due to the limited resources on the devices. On a voice browser, every thing must be
processed by the voice gateway, which enables rich validation and exception
handling at the markup language level.

8.5.7.2 Basic User Interaction

8.5.7.2.1 SimpleForm SimpleForm is similar to HTML form, which provides an
arbitrary collection of SimpleFormItem and SimpleFormSelect as a single entity.
SimpleFormSelect may be used to display list, radio buttons or checkbox controls.
Form has SimpleTitle as its child, and if specified, will appear as the Title of the
form. SimpleForm along with SimpleBind can trigger form processing in several
ways; multiple tasks can be executed upon form submission.

8.5.7.2.2 SimpleFormItem SimpleFormItem is the equivalent of a text field, text area,
password field and hidden field for desktop browsers. The type of item may be
specified using the display mode attribute. It may take text field, text area, noecho
or hidden. SimpleFormItem can be used to obtain input from a user. This element
presents a prompt and waits for input from the user. The content of this element,
which is in parsable character format, specifies default values for the form item. For
example, a login screen and guest book screen may appear as in the following
example.

8.5.7.2.3 FormExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm target="login.jsp" method="post">
 <SimpleFormItem name="userName">User Name:</SimpleFormItem>
 <SimpleFormItem name="password"
displaymode="noecho">Password:</SimpleFormItem>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

8-110 Oracle Application Server Wireless Developer’s Guide

Figure 8–11 Results of FormExample.xml Example

8.5.7.2.4 GuestBook.xml

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm target="sendMail.jsp" method="post">
 <SimpleTitle>Thanks for signing my guestbook.</SimpleTitle>
 <SimpleFormItem name="Name">Name:</SimpleFormItem>
 <SimpleFormItem name="message"
displaymode="textarea">Message:</SimpleFormItem>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-111

Figure 8–12 Results of GuestBook.xml Example

8.5.7.3 Complete User Forms

8.5.7.3.1 SimpleFormSelect, SimpleFormOption, and SimpleOptGroup These elements
display a selected option list. It can display drop down list, checkbox and radio
button, using the display mode attribute. Checkboxes or option lists may allow
single selection or multiple selections using the multiple attribute. The items to be
displayed are abstracted by the SimpleFormOption element. SimpleOptGroup groups
SimpleFormOption elements into a hierarchy. It is useful for small screen devices,
where long list of options cannot be esthetically presented. The content of
SimpleFormOption element is parsable character data, which specifies default
values for the form item. See the following example for usage.

8.5.7.3.2 Profile.xml

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm name="employeeinfo" target="process.jsp">
 <SimpleTitle>Your Profile</SimpleTitle>
 <SimpleFormItem name="homepage" default="http://">Homepage</SimpleFormItem>
 <SimpleFormSelect name="skills" displaymode="checkbox" multiple="true">

OracleAS Wireless XML

8-112 Oracle Application Server Wireless Developer’s Guide

 <SimpleTitle>Skills</SimpleTitle>
 <SimpleFormOption value="Java">Java</SimpleFormOption>
 <SimpleFormOption value="xml">XML</SimpleFormOption>
 <SimpleFormOption value="sql">SQL</SimpleFormOption>
 </SimpleFormSelect>
 <SimpleFormSelect name="nerd" displaymode="checkbox">
 <SimpleTitle>Addicted to Java?</SimpleTitle>
 <SimpleFormOption value="yes">Yes</SimpleFormOption>
 <SimpleFormOption value="no">No</SimpleFormOption>
 </SimpleFormSelect>
 <SimpleFormSelect name="location" displaymode="list">
 <SimpleTitle>Location</SimpleTitle>
 <SimpleFormOption value="Redwood Shores_CA">HQ Redwood
Shores,CA</SimpleFormOption>
 <SimpleFormOption value="Nashua_NH">NEDC Nashua, NH</SimpleFormOption>
 <SimpleFormOption value="SanFrancisco_CA">SanFrancisco,
CA</SimpleFormOption>
 <SimpleFormOption value="NewYork,NY">NewYork, NY</SimpleFormOption>
 </SimpleFormSelect>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

Figure 8–13 Results of Profile.xml Example

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-113

8.5.7.4 Enhancing Voice

8.5.7.4.1 SimpleGrammar, SimpleValue and SimpleDTMF

SimpleGrammar— SimpleGrammar provides a customized speech recognition
grammar. For further details on the use of SimpleGrammar see Section 8.5.6.2.4,
"SimpleGrammar".

SimpleValue—SimpleValue is a placeholder for dynamic information that is not
known until runtime. This element is valuable for processing multiple cards within
one deck and capturing client-side data validation.

SimpleDTMF—This is a keyboard binding used to process input. In the example
below, the formItem ZipInput would pass only 232 to the target and nothing else.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm id="Starting" target="test2a.jsp">
 <SimpleFormItem name="addrInput" slot="value">
 simple grammar test, please say oracle or san mateo
 <SimpleGrammar> <grammar root="addr">
 <rule id="addr">
 <one-of>
 <item>Oracle <tag>value = "bridge"</tag></item>
 <item>San Mateo <tag>value = "foster city"</tag></item>
 </one-of>
 </rule>
 </grammar>
 </SimpleGrammar>
 </SimpleFormItem>
 <SimpleFormItem name="zipInput" slot="zip">
 <SimpleDTMF> <grammar root="n5">
 <rule id="n5"> 95 <tag>zip = "232"</tag> </rule>
 </grammar>
 </SimpleDTMF>
 Simple DTMF test, please press 95
 </SimpleFormItem>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

8-114 Oracle Application Server Wireless Developer’s Guide

8.5.7.4.2 Recommendation for Voice Forms So far we have written the form for the
small screen devices which are similar to the following form.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm target="guess.jsp">
 <SimpleFormItem name="guess">
 <SimpleTitle>
 I am thinking of a number between 1 and 100.
 What is your first guess?
 </SimpleTitle>
 </SimpleFormItem>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

This example would work well for a small screen device. However, this is not
sufficient for spoken input. Speech recognition works only when there is a very
narrowly-prescribed vocabulary for which to listen. Descriptions of such
vocabularies are called speech-recognition grammars. <SimpleMenu>s and
<SimpleFormSelect>s provide such grammars with their lists of
<SimpleMenuItem>s and <SimpleFormOption>s. However, in examples such
as the one above, the system should be listening for an arbitrary number. This is
indicated by the type attribute of <SimpleFormItem>, as follows:

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm target="guess.jsp">
 <SimpleFormItem name="guess" type="number">
 <SimpleTitle>
 I am thinking of a number between 1 and 100.
 What is your first guess?
 </SimpleTitle>
 </SimpleFormItem>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-115

Setting type="number" tells the system to listen for any utterance that
corresponds to a spoken number, if such an utterance is heard, the corresponding
number is assigned to the identifier guess. In addition to number, the values
boolean, digits, date, time, currency, and phone also specify vocabularies for which
to listen. Besides specifying the type attribute, the developer can enhance the voice
features by observing the following guidelines:

■ The voice experience can be enhanced with prerecorded audio using the
<SimpleAudio> element.

■ As confirmation, echo the recognized utterance using <SimpleValue> and allow
the user to cancel if an input has been misrecognized.

■ Always provide context-sensitive help.

■ As necessary, use the deviceclass attribute to tailor audio and text messages
to voice (but use this attribute sparingly, as it tends to obfuscate the markup).

■ Always provide users the option of continuing in a service by moving
forward—providing an appropriate command leading to the place the user
wants to go—rather than forcing them to back out using Cancel.

■ Provide special event handlers for recognition failures (noinput, nomatch) and
Internet fetch failures (error.badfetch) where appropriate.

The following example improves the user experience through the implementation
of these guidelines.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm target="tipcalc.jsp">
 <SimpleFormItem name="howmuch" type="currency">How much is the bill?
 </SimpleFormItem>
 <SimpleFormItem name="howmany" format="N*" type="number">
 How many are in your party?
 <SimpleCatch type="cancel">Canceling.

<SimpleClear>
 <SimpleName name="howmuch"/>
</SimpleClear>
</SimpleCatch>

 </SimpleFormItem>
 <SimpleFormSelect name="howbig" deviceclass="microbrowser pdabrowser
pcbrowser micromessenger messenger">
 <SimpleTitle>How big do you want your tip to be?</SimpleTitle>

OracleAS Wireless XML

8-116 Oracle Application Server Wireless Developer’s Guide

 <SimpleFormOption value="10">small (10%)</SimpleFormOption>
 <SimpleFormOption value="15">medium (15%)</SimpleFormOption>
 <SimpleFormOption value="20">large (20%)</SimpleFormOption>
 </SimpleFormSelect>
 <SimpleFormSelect name="howbig" deviceclass="voice" autoprompt="false">
 <SimpleTitle>
 How big do you want your tip to be?
 For ’ten percent’ say ’small’,
 for ’fifteen percent’ say ’medium’,
 for ’twenty percent’ say ’large’.
 </SimpleTitle>
 <SimpleFormOption value="10">small</SimpleFormOption>
 <SimpleFormOption value="15">medium</SimpleFormOption>
 <SimpleFormOption value="20">large</SimpleFormOption>
 <SimpleCatch type="nomatch">Please say that again</SimpleCatch>
 <SimpleCatch type="cancel">Canceling.

<SimpleClear>
 <SimpleName name="howmuch"/>
 <SimpleName name="howmany"/>
</SimpleClear>

 </SimpleCatch>
 </SimpleFormSelect>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

8.5.7.5 Working with Signature Capture Form Control
Some browsers (such as the Spectrum24® WebClient for Palm Computing Platform)
support the ability to capture signatures. Applications developed using OracleAS
Wireless XML can generate the target markup required to support signature
capture. In this release, the following browsers are supported for signature capture:

■ Symbol Spectrum24® WebClient for Palm Computing PlatformVersion 2.8-10
for Palm OS 4.1

■ Microsoft Pocket Internet Explorer 4.1 on Microsoft Pocket PC

■ Microsoft Pocket Internet Explorer on Microsoft CE3 or later

On supported Microsoft Pocket PC and Windows Mobile platforms, the Oracle
Signature Capture Plug-in for Pocket Internet Explorer must be installed. The
Oracle Signature Capture Plug-in is available for download from Oracle MetaLink
at http://metalink.oracle.com or contact Oracle Support.

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-117

8.5.7.5.1 SimpleFormItem type=signature The OracleAS Wireless XML tag
<SimpleFormItem> has an additional type signature to support signature capture
on target browsers which have this capability. The following sample code segment
illustrates how to use signature capture form control in an an application developed
using OracleAS Wireless XML:

<SimpleResult>
<SimpleContainer>

 <SimpleForm method="post" target="processForm.jsp" layout="linear">
 <SimpleTitle>Signature</SimpleTitle>

 <SimpleFormItem name="Text" size="6" type="text">
 <SimpleTitle>Description:<SimpleBreak/></SimpleTitle>
 </SimpleFormItem>

 <SimpleFormItem name="capture" type="signature">
 <SimpleTitle>Signature: :<SimpleBreak/></SimpleTitle>
 </SimpleFormItem>
 <SimpleAction name="submit" type="submit" value="submit"/>
 </SimpleForm>

 </SimpleContainer>
</SimpleResult>

OracleAS Wireless XML

8-118 Oracle Application Server Wireless Developer’s Guide

Figure 8–14 Signature Capture Code Rendered on a Pocket PC 2000 Emulator

8.5.7.5.2 Signature Capture Component Support If the target browser does not have
signature capture support, OracleAS Wireless XML page(s) that use the signature
capture control tag <SimpleFormItem type=signature>, will still work; the
signature capture control tag is ignored and is not rendered.

8.5.8 Advanced User Interactions and Channel Optimization

8.5.8.1 Introduction
In this section, we will discuss some of the advanced user interaction techniques
provided by Oracle Application Server Wireless. So far, we have seen how Oracle
Application Server Wireless allows users to specify a task when a user performs an
action (for example, pressing a soft key on the phone or uttering a command on a
voice-enabled device). Advanced User Interactions provide the ability to perform
many tasks in response to an action triggered by a user (when supported by the

OracleAS Wireless XML

Authoring Mobile Browser and Voice Applications 8-119

device). And, the ability to perform tasks based on the value input by users is
highly desirable.

Oracle Application Server Wireless provides an elaborate scheme to facilitate very
sophisticated binding of tasks and actions. This is performed by the SimpleBind
element which may appear in the context of SimpleText, SimpleForm,
SimpleFormItem, SimpleFormSelect, SimpleMenu, SimpleResult or
SimpleContainer.

8.5.8.2 Events and Tasks Using SimpleBind
SimpleBind lets you specify a task which is performed in response to conditions
specified by the children of the SimpleMatch element. SimpleMatch may specify
primary, secondary, or continue keys, noinput or other events, a speech or DTMF
grammar, the condition of filling in a form or form item (SimpleFinish), or menu
item, and others. Only one task may be specified in SimpleTask, and when any of
the conditions specified in the SimpleMatch occur, the task in the SimpleTask is
executed. SimpleTask may also perform tasks selectively by using SimpleSwitch
and SimpleCase elements which are analogous to the switch and case constructs of
many programming languages.

In SimpleSwitch, a value of a particular user input is compared to the values
enumerated by SimpleCase elements. SimpleTask may specify to:

■ go to a remote location using SimpleGo

■ display (or speak) a text item using SimpleTextItem

■ refresh the device screen (if supported) using SimpleRefresh

■ clear the specified device form fields using SimpleClear and SimpleName

■ allow voice users to reprompt input using SimpleReprompt

■ exit the application using SimpleExit

■ disconnect the device from connected state (for example, hang up the phone if
the service is being accessed through a voice gateway) using SimpleDisconnect

■ go back using SimplePrev

■ submit form items using SimpleSubmit and SimpleName

The rendering characteristics of the SimpleBind element are specified by the
SimpleDisplay element. SimpleDisplay supports SimpleTextItem as child elements
that contain the actual render-and-display content. This allows you to play an audio
or render the text for a MenuItem. See the example in SimpleBindExample.xml.

OracleAS Wireless XML

8-120 Oracle Application Server Wireless Developer’s Guide

8.5.8.2.1 SimpleBind.xml

<SimpleBind deviceclass="voice microbrowser">
 <SimpleMatch>
 <SimpleFinish/>
 <SimpleGrammar>
 <grammar root="affirmative">
 <rule id="affirmative">
 <one-of>
 <item>yes</item>
 <item>correct</item>
 <item>true</item>
 <item>one</item>
 </one-of>
 </rule>
 </grammar>

 </SimpleGrammar>
 <SimpleDTMF> <grammar root="one">
 <rule id="one">1</rule>
 </grammar>
 </SimpleDTMF>
 <SimpleKey type="primary"/>
 </SimpleMatch>

 <SimpleTask>
 <SimpleSubmit
 target="changepin.jsp"
 name="Submit"
 method="post">
 <SimpleName name="p_old_pin" />
 <SimpleName name="p_new_pin" />
 </SimpleSubmit>
 </SimpleTask>

 <SimpleDisplay>
 <SimpleTextItem deviceclass="voice">
 <SimpleAudio src="sayYesOrPressOne.wav">
 say yes, or press one, to submit
 </SimpleAudio>
 </SimpleTextItem>

 <SimpleTextItem deviceclass="microbrowser">
 Submit
 </SimpleTextItem>

Device Headers and Device Class

Authoring Mobile Browser and Voice Applications 8-121

 </SimpleDisplay>
 </SimpleBind>

Figure 8–15 Results of SimpleBind, SimpleMatch and SimpleDisplay

8.5.8.2.2 Device Specific SimpleBind SimpleBind is primarily useful while writing
voice applications. However, an application may use SimpleBind based on a
particular device by the use of the deviceclass attribute. This attribute can take
the values pdabrowser, pcbrowser, voice, microbrowser, micromessenger and messenger.

8.6 Device Headers and Device Class
Topics in this section include:

■ Section 8.6.1, "Article.jsp"

■ Section 8.6.2, "PageNavigation.Java"

■ Section 8.6.3, "Async-enabling OracleAS Wireless XML Applications"

Devices are classified based on two criteria in Oracle Application Server Wireless:

■ form factor of the device

■ communication channel of the device (synchronous request/response or async
mode)

Device Headers and Device Class

8-122 Oracle Application Server Wireless Developer’s Guide

Developers may develop value-added services which make use of device-specific
properties. For example, Oracle Application Server Wireless does not support server
side management of large response. A service may use the maximum size of
response for a device to provide navigation dynamically. The following headers are
supported:

■ X-Oracle-Device.Class—indicates the channel mode and form factor of a
device. Each value of the Device.Class indicates a unique communication
channel mode and the unique form factor. The value set for the attribute
deviceclass is same as the header X-Oracle-Device.class. Note that
device.class does not represent target device markup language.

■ X-Oracle-Device.Orientation—indicates the orientation of a device. It
may be used by an application to change the rendering style for certain devices.
Possible values are landscape and portrait. The default value is portrait.

■ X-Oracle-Device.MaxDocSize—approximate value of maximum number
of bytes of content that can be handled by the device in question. The
approximation arises due to fact that Oracle Application Server Wireless XML
size may not be the same as transformed device-specific markup language. If
the service returns a Oracle Application Server Wireless XML document greater
than the MaxDocSize, the response for such a request is unspecified. It is not
guaranteed that a document size bounded by MaxDocSize will result in the
content size, which can be pushed to the device. The value of the parameter is
set by the administration tool of Oracle Application Server Wireless for the
deviceclass. The default value is 0.

■ X-Oracle.Device.Secure—indicates if the connection between the Oracle
Application Server Wireless Server and the device was secure when the current
request for the resource was made. Possible values are true or false.

8.6.1 Article.jsp
The following JSP uses a PageNavigation bean to deliver news content in multiple
trips.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page import="oracle.wireless.xmldevguide.PageNavigation"%>
<%
boolean loopback = Boolean.valueOf(request.getParameter("loopback")).booleanValue();
int pageIndex = 0;
try {
 pageIndex = Integer.parseInt(request.getParameter("pageIndex"));

Device Headers and Device Class

Authoring Mobile Browser and Voice Applications 8-123

}
catch(Exception ex){}
%>
<SimpleResult>
<SimpleContainer>
 <jsp:useBean id="contentHandler" class="oracle.wireless.xmldevguide.PageNavigation"
scope="session"/>
 <%
 if(!loopback) {
 String size = request.getHeader("X-Oracle-Device.MaxDocSize");
 if(size != null && !("0".equals(size))) {
 contentHandler.setDeckSize(Integer.parseInt(size));
 }
 pageIndex = 0;
 // get the article content from a source.
 String articleContent = "OracleMobile Online Studio is an online "+
 "developer portal for quickly building, testing and deploying "+
 "wireless applications. It lets any developer, systems integrator "+
 "or independent software vendor quickly develop a mobile application "+
 "that is immediately accessible from all devices. This unique, next "+
 "generation environment allows companies to benefit from faster time "+
 "to market, increased productivity, and a dramatically simplified "+
 "testing cycle, while providing access to the latest mobile applications "+
 "and tools. It enables you to focus on your business logic which is your "+
 "core competency, while we focus on the device complexity, our core "+
 "competency. <SimpleBreak/><SimpleBreak/>"+
 "OracleMobile Online Studio’s build, test, and deploy model is new and "+
 "unique to software development. It presents a hosted approach to developing "+
 "dynamic content. You do not need to download any software or tools to start "+
 "using it. All you need to do is access the OracleMobile Online Studio, "+
 "register, and login. Once authenticated, you will have access to "+
 "reusable modules, examples, documentation, runtime information, and other "+
 "useful resources. <SimpleBreak/><SimpleBreak/>"+
 "Now you can even use OracleMobile Online Studio to write a single application "+
 "that can be accessed via both wireless and voice interfaces. Listen to your "+
 "OracleMobile Online Studio applications by calling: "+
 "888-226-4854. <SimpleBreak/><SimpleBreak/>"+
 "Simplify the development of your OracleMobile Online Studio application "+
 "with Where2Net’s daVinci Studio.";

 contentHandler.setContent(articleContent);
 }
 String nextURL = null;
 String previousURL = null;
 int numPages = contentHandler.getAvailablePages();
 if(numPages > 1) {
 nextURL = (pageIndex < numPages - 1) ?
"article.jsp?loopback=true&pageIndex="+(pageIndex + 1) : null;
 previousURL = (pageIndex > 0) ? "article.jsp?loopback=true&pageIndex="+

Device Headers and Device Class

8-124 Oracle Application Server Wireless Developer’s Guide

(pageIndex - 1) : null;
 }
 String articleTitle = (pageIndex == 0) ? "OracleMobile online studio" : "contd...";
 %>
 <SimpleText>
 <SimpleTitle><%=articleTitle%></SimpleTitle>
 <%
 String s = (nextURL == null) ? "articleIndex.jsp" : nextURL;
 if(pageIndex != numPages - 1) {
 %>
 <SimpleAction type="primary2" label="Close" target="articleIndex.jsp"/>
 <SimpleAction type="primary1" label="Next" target="<%=s%>"/>
 <%
 }
 else {
 %>
 <SimpleAction type="primary1" label="Close" target="<%=s%>"/>
 <%
 }
 %>
 <SimpleTextItem><%=contentHandler.getPage(pageIndex)%></SimpleTextItem>
 <%
 if(previousURL != null) {
 %>
 <SimpleTextItem><SimpleHref
target="<%=previousURL%>">Previous</SimpleHref></SimpleTextItem>
 <%
 }
 if(nextURL != null){
 %>
 <SimpleTextItem><SimpleHref
target="<%=nextURL%>">Next</SimpleHref></SimpleTextItem>
 <%
 }
 %>
 </SimpleText>
 </SimpleContainer>
 </SimpleResult>

8.6.2 PageNavigation.Java
package oracle.wireless.xmldevguide;

import Java.io.StringReader;
import Java.io.StringWriter;
import Java.io.Serializable;
import Java.io.IOException;

Device Headers and Device Class

Authoring Mobile Browser and Voice Applications 8-125

import Java.util.ArrayList;

/**
 * The bean breaks a text content into mutiple deck of a defined size. Content
 * deck do not include any formatting information of the content which should
 * be provided by the content view.
 *
 * @author Chandra Patni
 * @version 1.0
 */
public class PageNavigation implements Serializable {

 /**
 * To keep the location of a page
 */
 private class Page {
 /**
 * starting index of the page, inclusive of start
 */
 public int start;
 /**
 * end index of the page, exclusive
 */
 public int end;
 /**
 * returns the length of the page
 */
 public int length() {
 return end - start;
 }

 /**
 * retruns the content of the page
 */
 public String toString() {
 return content.substring(start, end);
 }
 }

 /**
 * Default size of a deck in characters. The actual deck size will be
adjusted
 * so that a word is not split. However, an orphan, end of paragraph etc
 * conditions are not checked for.
 */

Device Headers and Device Class

8-126 Oracle Application Server Wireless Developer’s Guide

 public static final int DECK_SIZE = 900;

 /**
 * size of a deck. default value is 900 chars
 */
 private int deckSize = DECK_SIZE;

 /**
 * Sets the size of one deck. Should be called before setContent()
 */
 public void setDeckSize(int value) {
 deckSize = value;
 }

 /**
 * Returns the size of one deck.
 */
 public int getDeckSize() {
 return deckSize;
 }

 /**
 * Conent to be decked
 */
 private String content;

 /**
 * Pages in the content
 */
 private Page pages[];

 /**
 * The total number of pages by the content
 */
 private int totalPages;

 /**
 * Default constructor
 */
 public PageNavigation() {
 }

 /**
 * Default constructor
 */

Device Headers and Device Class

Authoring Mobile Browser and Voice Applications 8-127

 public PageNavigation(String content) {
 setContent(content);
 }

 /**
 * get the page content at the given index
 */
 public String getPage(int index) {
 return pages[index].toString();
 }

 /**
 * Returns the total number of pages
 */
 public int getAvailablePages() {
 if(pages == null) return 0;
 return pages.length;
 }

 /**
 * initializes the bean
 */
 private void init() {
 // get the rough estimate of pages
 totalPages = content.length() / deckSize + 1;
 // initialize the array
 int lastIndex = 0;
 ArrayList list = new ArrayList(totalPages);
 Page p = null;
 while((p = getNextPage(lastIndex)) != null) {
 list.add(p);
 lastIndex = p.end;
 }
 pages = (Page []) list.toArray(new Page[list.size()]);
 }

 private Page getNextPage(int lastIndex) {
 if(lastIndex >= content.length()) return null;
 char c = content.charAt(lastIndex);
 while(Character. isWhitespace(c)) {
 if(++lastIndex >= content.length()) return null;
 c = content.charAt(lastIndex);
 }
 Page p = new Page();
 p.start = lastIndex;

Device Headers and Device Class

8-128 Oracle Application Server Wireless Developer’s Guide

 // again look for whitespaces while trimming the content.
 p.end = p.start + deckSize;
 if(p.end >= content.length()) {
 p.end = content.length();
 return p;
 }
 // if not then we need to figure out the previous white space
 do {
 c = content.charAt(p.end);
 if(Character. isWhitespace(c)) {
 return p;
 }
 p.end--;
 if(p.end == 0) {
 p.end = p.start + deckSize;
 return p;
 }
 }while(true);
 }

 /**
 * sets the content to the specified value. default MIME type is text/plain
 */
 public void setContent(String s) {
 content = s;
 init();
 }
}

8.6.3 Async-enabling OracleAS Wireless XML Applications

8.6.3.1 Overview
Developers may choose to have a different logic flow (for example, rendering the
results differently) for Async devices. In this case, they would need to be able to
recognize if the request was coming from an Async device class. This is
accomplished by checking the device class attribute of the user request. See
Chapter 10, "Creating Messaging Applications" for more information.

The request from Async has the deviceclass attribute value of either messenger,
or micromessenger. The information can be acquired from the input arguments for a
service written in adapter form, or the HTTP header for services based on
HTTP/OC4J adapter. The input argument _DeviceCategory defined in the

Device Headers and Device Class

Authoring Mobile Browser and Voice Applications 8-129

ServiceContext specifies the device class value for adapter-formed services. For
HTTP/OC4J based services, the value can be picked up through the HTTP header
x-oracle-device.class.

Similarly, any section of the Async-specific OracleAS Wireless XML result, created
by the application, binds the value of messenger or micromessenger to the element
attribute deviceclass. Async processes elements common to all devices (with no
deviceclass attribute), or elements with the attributes containing the value of
messenger or micromessenger.

All OracleAS Wireless XML services can be made Async-enabled from a technical
standpoint. The user experience while using Async is worth considering when
deciding how to build an application or Async-enabling an existing application.
This is the same practice you might have been applying to decide how you want to
render you application to different types of devices (screen size, form factor and
such). Async assumes a client with plain text input, so it is even more appropriate to
consider user experience. Services that expect many user interactions or have a
complicated UI may not work well.

In addition, some of the OracleAS Wireless XML tags are not appropriate for Async,
and one should be aware of the specific semantics Async has for the set of XML
tags. Since Async does not assume any sort of client-side browsing capability, it is
common that tags which assume certain keys or actions on the device are not
appropriate for Async. The following table lists tags that have specific Async
semantics. Those tags which share common interpretation with other device
channels are not listed.

Table 8–6 Summary of semantics for OracleAS Wireless XML tags

OracleAS
WirelessXML Tag Semantics

SimpleAction Treated the same as the SimpleMenuItem and SimpleHref. Each
SimpleMenuItem, SimpleHref or SimpleAction will be prefixed
with a number in the device result for async user to make selection.

SimpleAudio Ignored - not applicable to async devices.

SimpleBind Ignored - not applicable to async devices.

SimpleBreak Output line break.

SimpleCache Ignored - not applicable to async devices.

SimpleCase Ignored - not applicable to async devices.

SimpleCatch Ignored - not applicable to async devices.

SimpleCol Output text.

Device Headers and Device Class

8-130 Oracle Application Server Wireless Developer’s Guide

SimpleDisconnect Ignored - not applicable to async devices.

SimpleDisplay Ignored - not applicable to async devices.

SimpleDTMF Ignored - not applicable to async devices.

SimpleEM Output text.

SimpleEvent Ignored - not applicable to async devices.

SimpleExit Ignored - not applicable to async devices.

SimpleFinish Ignored - not applicable to async devices.

SimpleFooter Ignored - not applicable to async devices.

SimpleForm The form state is maintained in the server so the parameters issued
by the user can be paired with their corresponding keys.

SimpleFormItem The item text is printed on the returned page. User fills the
corresponding item values in the same sequence as the item
presented on the page.

SimpleFormOption A list of form options is printed on the returned message with a
number prefixed each form option. The user can fill the select item
by giving either the prefix number or the option text. For example,
a select item of ’State’ may contain the option, ’1 AL, 2 CA, 3 UT...’.
The user can supply the value of ’2’ or ’CA’ to select the option
’CA’.

SimpleFormSelect Output text.

SimpleGo Ignored - not applicable to async devices.

SimpleGrammar Ignored - not applicable to async devices.

SimpleHeader Output text

SimpleHelp Output text

SimpleHref This is treated the same as SimpleMenuItem. All the
SimpleMenuItem is prefixed with a number so the user is able to
select the item by responding with the corresponding number.

SimpleImage Ignored - not applicable to async devices.

SimpleKey Ignored - not applicable to async devices.

SimpleMatch Ignored - not applicable to async devices.

Table 8–6 Summary of semantics for OracleAS Wireless XML tags

OracleAS
WirelessXML Tag Semantics

Device Headers and Device Class

Authoring Mobile Browser and Voice Applications 8-131

SimpleMenu A new line is created on the page. The menu state is maintained in
the server.

SimpleMenuItem The value of the menu item is printed on the returned page with a
number prefix to identify the menu item. The target url and the
number prefix is stored in the server so the url can be retrieved
after the user makes the selection.

SimpleMenuItemField Output the text.

SimpleMItem Ignored - not applicable to async devices.

SimpleName Ignored - not applicable to async devices.

SimpleOptGroup Ignored - not applicable to async devices.

SimplePrev Ignored - not applicable to async devices.

SimpleProperty Ignored - not applicable to async devices.

SimpleRefresh Ignored - not applicable to async devices.

SimpleReprompt Ignored - not applicable to async devices.

SimpleRow Output line break.

SimpleSpeech Ignored - not applicable to async devices.

SimpleStrong Output text.

SimpleTableBody Output line break.

SimpleTableHeader Output line break.

SimpleTask Ignored - not applicable to async devices.

SimpleText Output line break.

SimpleTextItem Output text.

SimpleTimer Ignored - not applicable to async devices.

SimpleTitle Output text.

SimpleValue Ignored - not applicable to async devices.

Table 8–6 Summary of semantics for OracleAS Wireless XML tags

OracleAS
WirelessXML Tag Semantics

Device Headers and Device Class

8-132 Oracle Application Server Wireless Developer’s Guide

Using Multi-Channel Server 9-1

9
Using Multi-Channel Server

Each section of this document presents a different topic. These sections include:

Section 9.1, "Overview"

Section 9.2, "Multimedia Adaptation"

Section 9.3, "Device Adaptation"

Section 9.4, "Modifying Multi-Channel Server Runtime"

Section 9.5, "Modifying the Data Models"

9.1 Overview
The Internet has reinvented itself in the last few years. Previously, users typically
accessed the Internet only from their desktop personal computers using one of the
two popular browsers. That has drastically changed. Today, the Internet is
accessible from smart phones, personal data assistants (PDAs), pagers, regular
phones, cars, even refrigerators and other home appliances. This presents great
opportunities for enterprises to provide new services. But, it is also a huge challenge
for developers. Previously, they used only one markup language, HTML, to develop
their applications; they only needed to provide for two browsers accessing their
applications. Now, almost every channel has its own markup language; browsers
have different capabilities and support different varieties of the same markup
language. For example, most of the smart phones support WML. But there are
different versions of WML supported by different phones. Even those claiming to
support the same version of WML may still have some (minor) deviations from the
standard. Phones typically use VoiceXML. Again, there are different varieties of
VoiceXML that the different Voice Gateways support. How can developers create
web applications for these varieties of channels? One option is to create separate

Overview

9-2 Oracle Application Server Wireless Developer’s Guide

applications for every channel that use the channel specific markup language. That
option is prohibitively time-consuming and expensive.

Figure 9–1 The Multi-Channel Challenge

9.1.1 Benefits of Multi-Channel
Oracle took the Multi-Channel challenge very seriously and decided to do
something to help developers and enterprises to easily develop their applications
only once for all channels. OracleAS Wireless Multi-Channel Server (MCS) hides the
complexity that all channels present to developers. It acts as a single browser that
accesses web applications.

Overview

Using Multi-Channel Server 9-3

Figure 9–2 The Multi-Channel Solution

The Multi-Channel Server supports three device-independent markup languages
for developing applications:

■ XHTML+XForms—XHTML 1.0 (http://www.w3.org/TR/xhtml1/) standard
markup language with XForms (http://www.w3.org/TR/xforms/) support

■ XHTML Mobile Profile (XHTML MP)—standard markup language
(http://www1.wapforum.org/tech/documents/WAP-277-XHTMLMP-2001102
9-a.pdf) defined by Open Mobile Alliance Ltd.
(http://www.openmobilealliance.org/)

■ OracleAS Wireless XML—markup language defined by OracleAS Wireless

Some developers may not be concerned with multi-channel, and may only want to
expose their applications to, say, the voice channel. Why use MCS in such a case?.
There are at least two reasons why even in that case you should consider the MCS:

■ You can develop your application using XHTML instead of VoiceXML. Most
web developers already know XHTML and they will not need to learn
VoiceXML. This obviously will save you time and money.

Overview

9-4 Oracle Application Server Wireless Developer’s Guide

■ There are a variety of Voice Gateways that support different varieties of
VoiceXML. So, if you develop your application in native VoiceXML, then you
must certify your application against all the different voice gateways. MCS
guarantees that your application will work with many voice gateways without
any changes.

Even if you are planning to expose your application through only one channel now,
you may reconsider this in the future and decide that it will be beneficial to provide
additional access to that application. In that case, you will not need to make changes
in the application because MCS will already support the new channel.

9.1.2 Features of Multi-Channel Server
Here are some of the key features of Multi-Channel Server:

■ Multi-Channel Content Adaptation—the same device-independent content is
delivered to different channels on different devices. Multi-Channel Server
adapts application content based on current user device capabilities. It
considers the device-specific markup language, screen size, network speed, etc.

■ Support for Standard Markup Languages—applications are developed using
standard markup languages. That saves development time and money since
developers are not required to learn new markup languages. Even if the
application is to be delivered to a single channel (for example, voice),
developers do not need to learn a new channel-specific markup language. They
can use the very popular XHTML and still deliver their content to VoiceXML or
WML or other devices.

■ Devices and Gateways Certification—with so many emerging devices and
gateways on the market, it is difficult for application developers to certify that
their application will run on all of them. There are only two major browsers for
the PC, but still most web applications must be tailored to work best on either
one of them. When you consider the new mobile devices, it becomes impossible
for the developers to guarantee that their applications will work on all of them.
Multi-Channel Server ensures compatibility with all those devices.

■ Device Detection—Multi-Channel Server uses a sophisticated algorithm to
detect devices making requests. It takes into account User-Agent, Accept, and
other HTTP headers. Some device capabilities (for newer devices) are also
submitted with the request by the device and used for best content adaptation.

■ Multimedia Adaptation—along with text adaptation, Multi-Channel Server
does device-specific adaptation of images, ringtones, voice grammars and
audio/video streams.

Overview

Using Multi-Channel Server 9-5

■ Single Browser—Multi-Channel Server is the only browser that the applications
interact with. It shields application developers from any deficiencies that the
end user device may have. For example, most mobile devices do not support
HTTP cookies. But cookies are the easiest way to keep user sessions.
Multi-Channel Server handles session and other cookies on behalf of the end
user device.

■ XForms Engine—Multi-Channel Server adds the power of XForms
(http://www.w3.org/TR/xforms/) support to any user device.

■ Work with Existing Portals—access any device through your existing Portal by
deploying Multi-Channel Server in front of your Portal server.

■ URL Caching—some devices have very limited memory, thus they limit the
content that they can receive. Multi-Channel Server caches long URLs that are
sent to a device, reducing the content size.

In addition to Multi-Channel Server, Oracle Application Server also includes
Wireless and Voice Portal built on top of MCS. Here are some of the additional
features that are provided by the Wireless and Voice Portal:

■ Portal—the Wireless and Voice Portal provides full portal capabilities, including
users and services managements, ACL, etc. The portal provides users with their
own customizable home page which is a launch pad for individual services.
The available services have a wide variety of forms, including database
information, personalization, alerts, and location services. The large number of
content sources adds to the complexity of having a manageable way to deliver
each application to every type of device in the most optimized fashion.

■ Network Adaptation—in addition to the HTTP(S) protocol, the Wireless and
Voice Portal also supports various other protocols to allow access from
non-HTTP devices. Network adaptation is based on an extensible framework
that allows customers to plug in their own drivers for adapting to any network
protocol.

■ J2ME WebServices—the Wireless and Voice Portal provides a WebServices
proxy to let J2ME-enabled devices access WebServices. This enables MIDlets
developers to enhance their applications by accessing any external applications
exposed as WebServices.

The following figure shows the main components of the Multi-Channel Server.

Multimedia Adaptation

9-6 Oracle Application Server Wireless Developer’s Guide

Figure 9–3 Multi-Channel Server Components

Multi-Channel Server is an extensible mobile applications platform. It is built from
pluggable modules. Modules implementation can be replaced to alter the default
behavior. All modules and their default implementation are described below.

9.2 Multimedia Adaptation

9.2.1 Overview
OracleAS Wireless Multimedia Adaptation Services provide device-specific
adaptation of images, ringtones, voice grammars and audio/video streams. These
services are an integral part of the core Multi-Channel Server.

Devices and the browsers on them support different image formats, and have
different screen sizes and color depths. As part of the content adaptation performed
by OracleAS Wireless in responding to a request, images are dynamically adapted
to suit client devices. Additionally, the new Intelligent Messaging component uses
Image Adaptation Services to convert images for EMS and MMS.

Multimedia Adaptation

Using Multi-Channel Server 9-7

Ringtone adaptation is provided as a Java API and allows for conversion of
ringtone data to formats supported by the most popular phones. The supported
formats include RTTL, iMelody and MIDI. The framework for ringtone adaptation
allows developers to easily add support for new ringtone formats. The Intelligent
Messaging component uses Ringtone Adaptation Services to convert ringtones for
delivery through SMS, EMS and MMS.

Multimedia Adaptation Services further enhance the voice support of OracleAS
Wireless by allowing voice gateway vendors to extend the OracleAS Wireless
platform to support new or vendor-specific grammar formats. These formats are
transformed (through the SimpleGrammar tag) into the format supported by the
voice browser. Grammars that are defined in OracleAS Wireless XML are
considered inline, whereas those provided by a URL reference are considered
external. Voice gateway vendors wanting to support a new grammar format can
easily provide XSL stylesheets to transform OracleAS Wireless XML grammars to
their grammar format. Support for inline grammar transformation is provided
directly in the voice transformer, and Oracle Corporation also provides a
framework for external voice grammar transformations using the relevant XSL
stylesheet.

9.2.2 Image Adaptation Features
The most important features of image adaptation are:

■ Support for multiple input image formats.

■ File Formats: BMP, GIF, JFIF, PNG, TIFF, WBMP

■ Content Formats: MONOCHROME, 1BIT, 2BIT, 4BIT, 8BIT, 12BIT, 16BIT,
24BIT, 32BIT, 48BIT, LUT, DRCT, RGB, GRAY

■ Compression Formats: JPEG, BMPRLE, LZW, LZWHDIFF, FAX3, FAX4,
HUFFMAN3, PACKBITS, GIFLZW, DEFLATE

■ Support for multiple output image content formats including support for
different color depths, compression formats, color schemes and file formats.

■ File Formats: JFIF (JPEG), GIF, BMP, WBMP, PNG

■ Compression: JPEG, GIFLZW, BMPRLE, DEFLATE

■ Content Formats: MONOCHROME, 2BITLUTGRAY, 4BITLUTGRAY,
8BITLUTGRAY, 8BITLUTRGB, 24BITRGB, 8BITGRAY

■ Support for scaling and resizing images.

■ Scale to fixed dimensions.

Multimedia Adaptation

9-8 Oracle Application Server Wireless Developer’s Guide

■ Maintaining aspect ratio, scale to fit in a bounding box. (If original image
dimensions are smaller than desired image dimensions, the original image
dimension is used to define a bounding box.)

■ Reduce size of image data in bytes to honor limits on size placed by
device/network.

■ Provides the above image processing functionality as a J2EE-compliant
component of OracleAS Wireless.

■ Supports limitation on URL length.

■ Supports inbound and outbound image caching. Inbound caching means that
the original images are cached in the middle tier (using webcache) so that the
requests from different device types for the same image would result in one
fetch of the original image. Outbound caching means that the adapted images
are cached (using webcache) so that different users on similar devices can share
the same adapted image.

9.2.2.1 Authoring Multichannel Applications with Images
See Chapter 3, "OracleAS Wireless Developer Kit" for details on application
development in XHTML and Wireless XML respectively with regards to using
image adaptation.

9.2.3 Command Line Tool
A command line tool is provided to convert images in batch mode before
deployment to the web/wireless application.

■ Name: ImageGenerate.{bat|sh}

■ Description: A shell or unix shell script that invokes a Java application to
generate images in all the formats supported by the different devices from a
specified input image. The batch or script file can be found in {IAS_
HOME}\wireless\bin\ImageGenerate.bat for Windows and in {IAS_
HOME}/wireless/bin/ImageGenerate.sh for Unix.

Note: Image caching policy is determined by the owner of the
original image. MCS passes on cache headers to the web cache so
that if certain images are not cacheable, web cache will not cache
them.

Multimedia Adaptation

Using Multi-Channel Server 9-9

■ Usage:

ImageGenerate.{bat|sh} -inFile filename -outFile filename [-outW width]
[-outH height] -outFormat format [-outContent contentType] [-dataSizeLimit
limit] [-maintainRatio {true|false}]

■ Parameters

■ inFile filename - The filename of the input file to process. Required
argument.

■ outFile filename - The resulting file after processing. Required argument.

■ outW width - The width in pixels of the resulting image. Optional
argument.

■ outFormat format - The output file format of the resulting image.

For examples, see interMedia User’s Guide
(http://www.otn.oracle.com/docs/products/oracle9i/doc_library/901_
doc/nav/docindex.htm) for full specification.

Examples include: GIFF - Gif format, JFIF - jpg format, WBMP - wbmp
format. PNGF - png format. Required argument.

■ outContent contentType - The content format of the resulting image.

For example, MONOCHROME to change the image to a black and white
representation, or for GIF images 4BITLUT to change to 4 bit (16 color)
representation. See interMedia User’s Guide for full specification. Optional
argument.

■ dataLimitSize datalimitsize - For GIF images only. Make the image fit in the
specified size by reducing the pixel depth, eventually to monochrome, and
then reducing the image size if necessary. Optional argument.

■ maintainRatio {true | false} - Maintain the aspect ratio of the image. Make it
fit within box bounded by outW and outH. Default true. Optional
argument.

Example:

ImageGenerate -inFile stock_600_450.jpg -outFile stock_240_180.gif -outW
240 -outH 180 -outContent monochrome -outFormat giff

Note: Ensure that either Java_HOME or ORACLE_HOME is
defined as an environmental variable.

Multimedia Adaptation

9-10 Oracle Application Server Wireless Developer’s Guide

9.2.4 Extensibility Using ImageProcessor API

9.2.4.1 Description
The ImageProcessor Interface consists of a method named process that rewrites a
given image URL into another URL that links to an image better suited for display
on the calling device. The device information is provided by passing in a handle to
the oracle.panama.model.Device instance corresponding to the calling device.
Typically, the rewritten URL points to a server that can dynamically generate an
adapted image based on the input image URL and device characteristics.

9.2.4.2 Interface oracle.panama.multimedia.ImageProcessor
package oracle.panama.multimedia;

import oracle.panama.model.Device;

/** Use this interface to replace the existing Image processing
 * implementation for all formats with your own implementation
 */
public interface ImageProcessor {

ImageResponse process(ImageRequest request, Device) throws
MultimediaException;

}

The classes oracle.panama.multimedia.ImageRequest and
ImageResponse capture the input image and desired output image information.
For more details, see the Javadoc for oracle.panama.multimedia.

9.2.4.3 Implementation
The default implementation of this interface
oracle.panama.multimedia.impl.ImageProcessorImpl rewrites URLs to
point at the Multimedia Adaptation Services image adaptation servlet. The servlet
fetches the original image and dynamically processes it to return an adapted image
to the requesting device.

9.2.4.4 Configuration
If you intend to replace the default implementation of the ImageProcessor interface,
you must use the OracleAS Wireless Tools to give the name of the implementation
class.

1. Log in to the OracleAS Wireless Tools as an administrator.

Multimedia Adaptation

Using Multi-Channel Server 9-11

2. Under the System folder, click Site Administration.

3. Under Component Configuration click Multimedia Adaptation Services.

4. Replace the Image Provider Class Name field value with your class name and click
OK.

5. Additionally, ensure that the class is part of the OracleAS Wireless classpath.

9.2.5 Ringtone Adaptation

9.2.5.1 Features
Ringtone Adaptation is used to convert ringtones specified in certain input formats
to the device supported formats. This happens automatically for XMS messaging
applications. However for developers who want greater control over the ringtone
adaptation, a Java API is provided.

Here are the supported conversions:

■ From RTTTL to Nokia binary, IMelody, MIDI

■ From IMelody to Nokia binary, RTTTL, MIDI

9.2.5.2 RingtoneProcessor Java API
The RingtoneProcessor Interface consists of a method-named process that rewrites a
given ringtone into the format required by the output device. The process method
accepts a RingtoneRequest instance, and returns the converted ringtone as output as
a RingtoneResponse instance. This interface is invoked by the messaging
framework and can be used directly as well.

9.2.5.2.1 Interface oracle.panama.multimedia.RingtoneProcessor

package oracle.panama.multimedia;

/** Use this interface to replace the existing Ringtone processing
 * implementation for all formats with your own implementation
 */
public interface RingtoneProcessor {

RingtoneResponse process(RingtoneRequest request) throws
MultimediaException;

}

Multimedia Adaptation

9-12 Oracle Application Server Wireless Developer’s Guide

9.2.5.2.2 Class oracle.panama.multimedia.RingtoneRequest

package oracle.panama.multimedia;
import Java.io.InputStream;
public class RingtoneRequest {

 /** Ringtone input data types */
 public static int RINGTONE_DATA_STRING = 0;
 public static int RINGTONE_DATA_STREAM = 1;
 public static int RINGTONE_DATA_BYTES = 2;
 public static int RINGTONE_DATA_NULL = -1;
 public String inputFormat = null;
 public String outputFormat = null;

 public String inputMimeType = null;
 public String outputMimeType = null;
 private String dataString = null;

 private InputStream dataStream = null;
 private byte[] dataBytes = null;
 private int dataType = RINGTONE_DATA_NULL;
 public RingtoneRequest() {
 }

 public void setData (String ringtone) {
 this.dataString = ringtone;
 this.dataType = RINGTONE_DATA_STRING;
 }

 public void setData (InputStream ringtone) {
 this.dataStream = ringtone;
 this.dataType = RINGTONE_DATA_STREAM;
 }

 public void setData (byte[] ringtone) {
 this.dataBytes = ringtone;
 this.dataType = RINGTONE_DATA_BYTES;
 }

 public String getDataAsString () {
 return this.dataString;
 }

 public InputStream getDataAsStream() {
 return this.dataStream;
 }

 public byte[] getDataAsBytes() {

Multimedia Adaptation

Using Multi-Channel Server 9-13

 return this.dataBytes;
 }

 /** note, no setDataType method is provided to prevent
 * inconsistency. The dataType attribute is set when
 * setting data.
 */
 public int getDataType() {
 return this.dataType;
 }

}

9.2.5.2.3 Class oracle.panama.multimedia.RingtoneResponse

package oracle.panama.multimedia;

import Java.io.OutputStream;

public class RingtoneResponse {
 public String inputFormat = null;
 public String outputFormat = null;
 public String inputMimeType = null;
 public String outputMimeType = null;
 private String dataString = null;
 private OutputStream dataStream = null;
 private byte[] dataBytes = null;
 private int dataType = RingtoneRequest.RINGTONE_DATA_NULL;
 public RingtoneResponse() {
 }

 public void setData (String ringtone) {
 this.dataString = ringtone;
 this.dataType = RingtoneRequest.RINGTONE_DATA_STRING;
 }

 public void setData (OutputStream ringtone) {
 this.dataStream = ringtone;
 this.dataType = RingtoneRequest.RINGTONE_DATA_STREAM;
 }

 public void setData (byte[] ringtone) {
 this.dataBytes = ringtone;
 this.dataType = RingtoneRequest.RINGTONE_DATA_BYTES;
 }

Multimedia Adaptation

9-14 Oracle Application Server Wireless Developer’s Guide

 public String getDataAsString () {
 return this.dataString;
 }

 public OutputStream getDataAsStream() {
 return this.dataStream;
 }

 public byte[] getDataAsBytes() {
 return this.dataBytes;
 }

 /** note, no setDataType method is provided to prevent
 * inconsistency. The dataType attribute is set when
 * setting data.
 */
 public int getDataType() {
 return this.dataType;
 }

}

9.2.5.3 Implementation
The class oracle.panama.multimedia.RingtoneProcessorImpl
implements the above interface. This implementation looks up configuration
parameters to load the matrix of ringtone conversion implementations. A ringtone
converter converts from one format to another and implements the interface
defined in the Ringtone Converter Java API section. To add support for a new
ringtone format (such as RTTTL2, which is similar to an existing format [RTTTL]),
you only need to provide Java code for converting from RTTTL to RTTTL2 and vice
versa. You need not convert from the new format to all the other supported formats.
If there are multiple ways to convert from one format to another, the shortest
sequence of converters will be selected (for example, converting from IMelody to
RTTTL2: If you provide only a new RTTTL to RTTTL2 converter, MCS will convert
from IMelody to RTTTL to RTTTL2. If you provide your own IMelody to RTTTL2
converter, it is chosen since the sequence of converters is shorter.).

9.2.5.4 Configuration
If you intend to replace the default implementation of the RingtoneProcessor
interface, you must use the OracleAS Wireless Tools to give the name of the
implementation class.

Multimedia Adaptation

Using Multi-Channel Server 9-15

1. Log in to OracleAS Wireless Tools as an administrator.

2. Under the System folder, click Site Administration.

3. Under Component Configuration click Multimedia Adaptation Services.

4. Replace the Ringtone Provider Class Name field value with your class name and
click OK.

5. Additionally, ensure that the class is part of the OracleAS Wireless
CLASSPATH.

9.2.5.5 Sample Usage
Here is a sample program that illustrates the use of RingtoneProcessor.

import Java.io.FileOutputStream;
import Java.io.ByteArrayOutputStream;
import oracle.panama.multimedia.RingtoneProcessor;
import oracle.panama.multimedia.RingtoneRequest;
import oracle.panama.multimedia.RingtoneResponse;
import oracle.panama.multimedia.MultimediaException;

public class RingtoneUserTest {

public static void main(String[] args) {
try {

RingtoneProcessor processor =
RingtoneProcessorProvider.getProvider();
if (processor != null) {
 RingtoneRequest request = new RingtoneRequest();
 request.inputFormat = "IMELODY";
request.setData("BEGIN:IMELODY\nVERSION:1.2\nFORMAT:CLASS1.0\nMELODY
:r1a1a2a3e3lmnop2a2a2a2g2a2r3a3a3e3g2a3a3a2a2g2\nEND:IMELODY\r\n");
request.outputFormat = "RTTTL";
 RingtoneResponse response = processor.process(request);
 int dType = response.getDataType();
 if (dType == RingtoneRequest.RINGTONE_DATA_STRING) {
 System.out.println(response.getDataAsString());
 } else if (dType == RingtoneRequest.RINGTONE_DATA_STREAM) {
 FileOutputStream outFile =
 new FileOutputStream("ringtone.txt");
 ((ByteArrayOutputStream)
 response.getDataAsStream()).writeTo(outFile);
 } else if (dType == RingtoneRequest.RINGTONE_DATA_BYTES) {
 // process the byte array response
 } else {

Multimedia Adaptation

9-16 Oracle Application Server Wireless Developer’s Guide

 // process failed to set the response data
 }

} else {
// Processor is null!! No ringtone converter available
System.out.println("No ringtone converter available");

}
} catch (Exception ex) {

ex.printStackTrace();
} catch (Error e) {

e.printStackTrace();
System.out.println("Error parsing ringtone");

}
 }

}

9.2.6 Ringtone Converter Java API

9.2.6.1 Description
The Ringtone Conversion Interface consists of an overloaded method (convert)
that rewrites a given ringtone from one format to another. The convert method
accepts an instance of RingtoneRequest and returns the converted ringtone in a
RingtoneResponse instance. This interface is used by the RingtoneProcessorImpl to
call the different converters for the supported formats. By implementing this
interface (along with adding some configuration information), support for new
ringtone formats can be added incrementally.

9.2.6.2 Interface oracle.panama.multimedia.RingtoneConverter
public RingtoneResponse convert (RingtoneRequest request);

9.2.6.3 Implementation
The class oracle.panama.multimedia.RingtoneConverterImpl
implements the above interface. This implementation supports all the specified
ringtone conversions.

9.2.6.4 Configuration
If you want to extend the default RingtoneProcessor implementation by providing
additional RingtoneConverter implementations for new formats you must specify
the RingtoneConverter implementation classes using the configuration file
config.properties in:

Device Adaptation

Using Multi-Channel Server 9-17

[ORACLE_HOME]/wireless/server/classes/oracle/panama/multimedia. You
must add the new format name to the property ringtone.formats and the
implementation class to the property ringtone.converters.

#Formats

ringtone.formats=RTTTL NOKIA IMELODY MIDI

#Converters in one string:triplets of "from format","to format","impln class"

ringtone.converters=RTTTL NOKIA oracle.panama.multimedia.RingtoneConverterImpl\
 RTTTL IMELODY oracle.panama.multimedia.RingtoneConverterImpl \
 IMELODY RTTTL oracle.panama.multimedia.RingtoneConverterImpl \
 IMELODY MIDI oracle.panama.multimedia.RingtoneConverterImpl

For example, to add RTTTL2, the property file would look like:

#Formats

ringtone.formats=RTTTL NOKIA IMELODY MIDI RTTTL2

#Converters in one string:triplets of "from format","to format","impln class"

ringtone.converters=RTTTL NOKIA oracle.panama.multimedia.RingtoneConverterImpl\
 RTTTL IMELODY oracle.panama.multimedia.RingtoneConverterImpl \
 IMELODY RTTTL oracle.panama.multimedia.RingtoneConverterImpl \
 IMELODY MIDI oracle.panama.multimedia.RingtoneConverterImpl \
 RTTTL RTTTL2 my.package.RTTTLToRTTTL2Converter \

If you added a RTTTL2 to RTTTL converter as well, you will need to add another
triplet to ringtone.converters like "RTTTL2 RTTTL
another.package.RTTTL2Converter"

9.3 Device Adaptation
Device adaptation is the process of transforming the source content to a target
device taking into account and optimizing for various factors such as:

Device Adaptation

9-18 Oracle Application Server Wireless Developer’s Guide

■ Environment (for example: carrier, connection speed)

■ Device form factor (for example: width, height, color)

■ User preferences

OracleAS Wireless adapts input source document written in XHTML/XForms,
XHTML MP, and OracleAS Wireless Markup Language to various mobile devices:

■ HTML

■ XHTML

■ cHTML

■ WAP/WML

■ HDML

■ MML

■ VoiceXML

■ SMS

■ MMS

■ Instant Messaging clients

OracleAS Wireless Device Adaptation provides the following key benefits for
developers:

■ Automatic device form factor recognition

■ Optimized rendering across all devices

■ Optimized rendering based on form factor

■ Vast device knowledge base

9.3.1 Device Repository
OracleAS Wireless Device Repository contains a wealth of device knowledge that is
at the heart of the system. Administrators and developers can add new device
information using the OracleAS Wireless Tools.

All information in the Device Repository is used for source content adaptation to
the target device. It is important the information in the repository be kept
up-to-date.

Device Adaptation

Using Multi-Channel Server 9-19

9.3.2 Device Repository Access
Developers can access information in the Device Repository in these ways:

■ Oracle Application Server Device Repository API

■ W3C CSS Media Queries Standard

Oracle Application Server Device Repository API is a set of Java APIs available to
Java and JSP developers for programmable API access to the Device Repository. CSS
Media Queries can be used by OracleAS Wireless Markup authors to access Device
Repository information directly from the source document. CSS Media Queries is
W3C Standard with Candidate Recommendation status. For further information on
CSS Media Queries, see Section D, "OracleAS Wireless CSS Support".

9.3.3 Device Detection
OracleAS Wireless automatically detects the type of device making a service
request. The device detection component uses the User Agent, if available, to
determine which device from the Device Repository to associate with the service
request.

Here is how the device detection rule works:

1. If the UserAgent is not available in the HTTP Header, then proceed to Step 4.

2. Select a device from the Device Repository, where the useragent match string
matches the UserAgent from the HTTP Header.

3. If more than one device is returned, then choose the one with the longest
useragent match string. If this result in exactly one device matched, then return
the device. Done.

4. Use the Accept HTTP Header to determine the preferred content types as per
the IETF RFC-2616 specification.

5. Return the first device that matches the preferred mime-type.

6. If the request contains x-up-devcap-screenpixels and x-up-devcap-screenchars HTTP
headers, then find the closest matching logical device using ScreenWidth,
ScreenHeight, ScreenRows, ScreenColumns attributes of the device.

7. If there are no devices selected, then log an error in the log file.

Device Detection in OracleAS Wireless can be customized by specifying a hook class
that implements the interface:

oracle.panama.rt.hook.DeviceIdentificationHook

Device Adaptation

9-20 Oracle Application Server Wireless Developer’s Guide

The default implementation of the hook is provided in:

oracle.panma.rt.hook.DeviceIdentificationPolicy class

9.3.4 Dynamic HTTP Header Composition and UAProf
The Device Repository APIs perform Dynamic HTTP Header form factor
composition when such information is in the HTTP Request. Dynamic HTTP
Header composition is accomplished as follows:

1. Retrieve the device information from the repository and create an instance of
oracle.panama.model.DeviceV2 object.

2. Search for known device form factor information in the HTTP Header and
update the appropriate attributes in oracle.panama.model.DeviceV2.

9.3.5 Device Transformers
The final phase in Oracle Application Server Device Adaptation is the selection and
invocation of the device transformers to generate the markup language suitable for
rendering on the target device from a supported source input document. Every
device in the Device Repository has a list of appropriate transformers for that
device.

The device transformers are grouped by the OracleAS Wireless Markup Language it
accepts as an input source document as follows:

Here is a list of transformers, accepted by OracleAS Wireless Markup Language and
the generated markup by the transformer

Table 9–1 Device Transformer Input Markup

Transformer prefix
OracleAS Wireless
Markup

OracleAS Wireless Markup Mime
Type

mxml- mobile-xml text/vnd.oracle.mobilexml

xforms- xhtml+xforms application/vnd.oracle.xhtml+xforms

xhtml- xhtml+mp application/vnd.wap.xhtml+xml

Table 9–2 Device Transformers for mobile-xml

Transformer Target Markup Description

mxml-ASYNC_Java text/plain SMS devices, Text

Device Adaptation

Using Multi-Channel Server 9-21

Here are the device transformers for XHTML+XForms:

mxml-Adomo text/vxml Adomo Voice Gateway

mxml-Verascape text/vxml Verascape Voice Gateway

mxml-VoiceGenie text/vxml VoiceGenie Voice Gateway

mxml-avantgo text/html AvantGo Browser

mxml-blazer text/html Handspring Blazer Browser

mxml-chtml text/html cHTML browsers

mxml-ciscoip text/xml Cisco IP Phone

mxml-goweb text/html GoWeb browser

mxml-hdml text/x-hdml HDML browser

mxml-hdml-kddi text/x-hdml EZweb HDML browser

mxml-html32 text/html W3C HTML 3.2 compliant browsers

mxml-html40 text/html W3C HTML 4.0 compliant browsers

mxml-mml text/html J-PHONE Type C3 or later

mxml-mml-t04 text/html J-PHONE Type C2

mxml-palm-family text/html Palm browsers

mxml-pocketpc text/html PocketPC PDA browsers

mxml-smil application/smil MMS SMIL

mxml-wml11 text/vnd.wap.wml WML11 compliant browsers

mxml-wml11-ericsson text/vnd.wap.wml Ericsson WML11 browsers

mxml-wml11-openwave text/vnd.wap.wml Openwave WML11 browsers

mxml-wml11-wig text/vnd.wap.wml WIG browsers

mxml-xmp text/html XHTML MP Browsers

Table 9–3 Device Transformers for XHTML+XForms

Transformer Target Markup Description

xforms-Verascape text/vxml Verascape Voice Gateway

Table 9–2 Device Transformers for mobile-xml

Transformer Target Markup Description

Device Adaptation

9-22 Oracle Application Server Wireless Developer’s Guide

Here are the device transformers for XHTML + MP:

xforms-VoiceGenie text/vxml VoiceGenie Voice Gateway

xforms-async_xhtml text/plain SMS, Text

xforms-chtml text/html cHTML Browsers

xforms-hdml text/x-hdml HDML browser

xforms-html32 text/html W3C HTML 3.2 compliant browsers

xforms-html32-handheld text/html HTML 3.2 HandHeld Friendly browsers

xforms-html40 text/html W3C HTML 4.0 compliant browsers

xforms-mml text/html J-PHONEType C3 or later

xforms-mms-smil application/smil MMS SMIL

xforms-palm-family text/html Palm browsers

xforms-wml11 text/vnd.wap.wml WML11 compliant browsers

xforms-wml11-ericsson text/vnd.wap.wml Ericsson WML11 browsers

xforms-wml11-openwave text/vnd.wap.wml Openwave WML11 browsers

xforms-xmp text/html XHTML MP Browsers

Table 9–4 Device Transformers for XHTML+MP

Transformer Target Markup Description

xhtml-chtml text/html cHTML browser

xhtml-hdml text/x-hdml HDML browser

xhtml-html32 text/html W3C HTML 3.2 compliant browsers

xhtml-html32-handheld text/html HTML 3.2 HandHeld Friendly browsers

xhtml-html40 text/html W3C HTML 4.0 compliant browsers

xhtml-mml text/html Type 3 J-Phone

xhtml-mms-smil application/smil MMS SMIL

xhtml-palm-family text/html Palm browsers

xhtml-wml11 text/vnd.wap.wml WML11 compliant browsers

Table 9–3 Device Transformers for XHTML+XForms

Transformer Target Markup Description

Device Adaptation

Using Multi-Channel Server 9-23

9.3.6 Device Repository API
oracle.panama.model.Device API is deprecated. There is a new API
available, oracle.panama.model.DeviceV2. DeviceV2 interface should be used
to access the Device Repository from Java and JSP applications.

DeviceV2 interface can be accessed from the old Device API as follows:

Device device = RequestFactory.lookupRequest();
DeviceV2 devicev2 = device.getDeviceV2();

The above code segment retrieves the target device from the Device Repository for
the current HTTP Request context. That is, devicev2 is a handle to the actual device
information.

Once a handle is obtained for a DeviceV2 interface, retrieving device attributes or
capability is straight-forward. There are three methods provided to retrieve the
capability value as a Java boolean, String, or int as in the following example:

boolean bool =
devicev2.getDeliveryContextAttributeBoolean(DeviceAttr.COLORCAPABLE);
String model = devicev2.getDeliveryContextAttributeString(DeviceAttr.MODEL);
int width = devicev2.getDeliveryContextAttributeString(DeviceAttr.DEVICEWIDTH);

All device attributes or capabilities are listed in the
oracle.panama.model.DeviceAttr interface. The following table lists all
device attributes or capabilities.

xhtml-wml11-ericsson text/vnd.wap.wml Ericsson WML11 browsers

xhtml-wml11-openwave text/vnd.wap.wml Openwave WML11 browsers

xhtml-xmp text/html XHTML MP Browsers

Table 9–5 General Device Features

Device Attribute Description

VENDOR Device Manufacturer

MODEL model number

DEVICECLASS deviceclass (deprecated)

MEDIA CSS Media Type used for CSS Media Queries

Table 9–4 Device Transformers for XHTML+MP

Transformer Target Markup Description

Device Adaptation

9-24 Oracle Application Server Wireless Developer’s Guide

DEVICETAG Tag to identify and group related devices in the repository

DEVICEWIDTH width of viewable area in pixels

DEVICEHEIGHT height of viewable area in pixels

PIXELPITCH size of pixel in mm (only for bitmap devices)

DEFAULTFONTSIZE default font size on the device

GRID Grid device (not a bitmap device)

COLORCAPABLE If true, then device can render color

PAGEDMEDIA If true, then it’s a paged device like WAP/WML

BITSPERPIXEL Bits per pixel for a monochrome device, or bits per color
component for a color device.

MAXDOCSIZE Maximum document size

TEXTINPUTCAPABLE If true, device supports text input

NUMBEROFSOFTKEYS Number of softkeys on the device

KEYBOARD Keyboard type. One of (qwerty, phone keypad,
disambiguating)

Table 9–6 Browser Capabilities

MARKUP LANGUAGE List of markup supported on the device

PROLOG XML prolog for the document

SUPPORTSAMPERSANDENTITY If true, device supports XML ampersand entity.
(deprecated)

SUPPORTSRELATIVEURL If true, relative URL is supported

SUPPORTSCOOKIE If true, supports cookies

MESSAGINGBASED If true, supports asynchronous messaging

TABLESCAPABLE If true, supports tables

AUDIOCONTENT List of supported audio mime types

EMAILCAPABLE If true, capable of sending/receiving email

TEXTTOSPEECH If true, supports TTS engine

Table 9–5 General Device Features

Device Attribute Description

Device Adaptation

Using Multi-Channel Server 9-25

SPEECHGRAMMAR If true, supports grammar

RECORDSPEECH If true, can record speech

VOICECALLCAPABLE If true, can make voice calls

CALLCONTROLCAPABLE If true, can control calls

DEFAULTMARKUPLANGUAGE Default mime type sent to device

ACCEPT List of accepted mime types

ACCEPT_CHARSET List of accepted character encodings

IMAGECAPABLE If true, can display images (deprecated)

IMAGECONTENTTYPES List of supported image mime types

VICEOCAPABLE If true, supports video (deprecated)

VIDEOCONTENTTYPES List of supported video mime types (deprecated)

VIDEOMODE Supported video mode (deprecated)

AUDIOCONTENTTYPES List of supported audio mime types

REVERSEENTITYMAP List of XML Entity conversion rules

Table 9–7 Messaging Capabilities

DELIVERYTYPES
List of supported messaging delivery types or
channels

BANDWIDTH Network speed

URLCAPABLE Can follow URL hyperlinks directly

NOKIASMARTMESSAGING
CAPABLE

If true, supports Nokia Smart Messaging

RINGTONECAPABLE If true, supports downloadable ringtones

OPERATORLOGOCAPABLE If true, can download operator logo

VCARDCAPABLE If true, can support vcard

VCALENDARCAPABLE If true, supports vcalendar

SYNCMLCAPABLE If true, supports SYNCML

Table 9–6 Browser Capabilities

MARKUP LANGUAGE List of markup supported on the device

Device Adaptation

9-26 Oracle Application Server Wireless Developer’s Guide

MESSAGESIZELIMIT Maximum number of characters per message

MULTIMEDIAAUDIOFORMATS Multi-media audio types

MULTIMEDIAIMAGEFORMATS Multi-media image types

MULTIMEDIAVIDEOFORMATS Multi-media video formats

SMILLAYOUTCAPABLE If true, MMS browser supports SMIL layout tag

Table 9–8 VoiceXML Gateway Capabilities

GRAMMARCONTENTTYPES List of supported speech grammar mime types

MIMETYPE_TEXTTOVOICEGRAMMAR Gateway specific mimetype of Voice Grammars generated from text

MIMETYPE_OGSTOVOICEGRAMMAR Gateway specific mimetype of Voice Grammars generated from
OGS Grammars

MIMETYPE_TEXTTODTMFGRAMMAR Gateway specific mimetype of DTMF Grammar’s generated from
text

MIMETYPE_OGSTODTMFGRAMMAR Gateway specific mimetype of DTMF Grammars generated from
OGS Grammars

MIMEMAP_APPLICATION_SRGS_XML Enter gateway specific mimetype for application/srgs+xml

MIMEMAP_APPLICATION_X_ABNF Enter gateway specific mimetype for application/x-abnf

MIMEMAP_APPLICATION_X_GSL Enter gateway specific mimetype for application/x-gsl

MIMEMAP_APPLICATION_X_JSGF Enter gateway specific mimetype for application/x-jsgf

MIMEMAP_APPLICATION_X_DTMF Enter gateway specific mimetype for application/x-dtmf

MIMEMAP_APPLICATION_X_WATSON Enter gateway specific mimetype for application/x-watson

MIMEMAP_APPLICATION_X_SWI Enter gateway specific mimetype for application/x-swi

Table 9–9 Java (J2ME) Capabilities

JavaCAPABLE If true, supports J2ME

JavaPLATFORM Java configuration installed on the device such as CDC

Table 9–7 Messaging Capabilities

DELIVERYTYPES
List of supported messaging delivery types or
channels

Device Adaptation

Using Multi-Channel Server 9-27

9.3.7 Device Information and Classification
OracleAS Wireless Server sends information about the user device to the back end
applications using HTTP headers. This information may be used by the application
to optimize the content that it generates. Here is a list of headers that an application
will receive:

JVMVERSION JavaVM Version

JavaPROFILE Java profile installed on the device such as MIDP

JavaPROVISIONPROTOCOL Provisioning protocol, such as SUN-OTA

JavaMAXDOWNLOADSIZE The maximum download size allowed for the JVM
installed

JVMHEAPSIZE JVM heap size

Table 9–10 Device Information and Classification

HTTP Header Name Description

X-Oracle-Device.Class Indicates the Channel mode and the form factor of a device.
Each value of the Device.class indicates a unique
communication channel mode and the unique form factor.
(For possible values, explanation and representative devices
see below)

X-Oracle-Device.Orientation Along with the form factor, the orientation of a device will
help applications to change the rendering style for certain
devices. Possible values are “landscape”/”portrait”, with
default being portrait. (if nothing is specified by the System
or if Width=height).

X-Oracle-Device.MaxDocSize The Maximum size (in bytes) of XML document (service
response) that handled by the device making the current
request. This is an approximation, as the Byte size of the
document and target device digest byte size cannot be
mapped. Also embedded content like Audio and Image need
to be considered towards this size. If the service returns XML
document greater than the MaxDocSize, the response for
such a request is undefined.

X-Oracle.Device.Secure Possible values "true" or "false". Indicates if the connection
between OracleAS Wireless server and the device was secure
when the current request for the resource was made.

Table 9–9 Java (J2ME) Capabilities

JavaCAPABLE If true, supports J2ME

Modifying Multi-Channel Server Runtime

9-28 Oracle Application Server Wireless Developer’s Guide

9.4 Modifying Multi-Channel Server Runtime
OracleAS Wireless Multi-Channel Server (MCS) Runtime is invoked directly
through OC4J Servlets, Async Servers, Voice Servers, or indirectly through the OC4J
Servlet Filters. The MCS runtime processes requests from any devices, user agents,
and autonomous mobile agents that use diverse communication channels, such as
Voice, Hypertext Transaction Protocol (HTTP), Instance Messaging, SMS, e-Mail, or
two-way paging. The MCS runtime adapts the service requests from any of these
channels and transcodes the service responses to take advantage of the unique
device capabilities, freeing developers from the encumbrance of device
idiosyncrasies. By adapting the requests from different communication channels to
the standard J2EE Servlet 2.3 service requests, OracleAS Wireless MCS lets
developers develop generic mobile applications using industry-standard Servlet
API, JSP, XHTML, XForms, and CSS in addition to Oracle’s own OracleAS Wireless
XML. The MCS can effectively utilize an extensible repertoire of device models in a
centrally managed device knowledge repository to take advantage of specific
device capabilities.

This section describes the functions of MCS runtime. It describes the MCS runtime
session management, session persistency, runtime API and extensibility, content
adaptation, and URL rewrite mechanisms. The MCS runtime performs automatic
session tracking and terminates the sessions when they expire after the maximum
interval of inactivity or when the devices disconnect.

9.4.1 MCS Runtime Session Management
OracleAS Wireless MCS runtime tracks runtime sessions independently of the OC4J
Servlet sessions by rewriting every URL with an added parameter, PAsid, which
specifies the MCS session ids. The session tracking identifies that a sequence of
requests are submitted by the same user. The MCS runtime session contains the

X-Oracle-Orig-User-Agent If the request to the OracleAS Wireless server was made
through HTTP protocol and the device sent “User-Agent”
HTTP header then that header will be resend to the
application using the header name.

X-Oracle-Orig-Accept If the request to the OracleAS Wireless server was made
through HTTP protocol and the device sent “Accept” HTTP
header then that header will be resend to the application
using the header name.

Table 9–10 Device Information and Classification

HTTP Header Name Description

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-29

device credentials, user preferences, runtime contexts, cookies, URL caches, and
other states essential for context-sensitive services. Furthermore, these MCS session
states can be persistent. The MCS session id is used to restore the persistent MCS
session states any time the MCS session id is referenced in the request, for example
by putting the PAsid parameter in the URL. The MCS runtime maintains the
runtime session so that users connecting through transient sessions under the
alternative channels can share long-lived MCS runtime sessions. The persistent
MCS sessions increase the life time of sessions and make the multi-modal
interaction more enduring.

MCS runtime sessions can be bound to OC4J Servlet sessions. WAP 2.0 devices that
implement the WAP HTTP State Management Specification
(http://www.wapforum.org/) can support cookies for session management. Most
of the commercial WAP gateways manage cookies on behalf of WAP devices. If the
device or gateway does not support cookies, the OC4J Servlet container can revert
to URL rewriting to track sessions. Since the MCS runtime also tracks the session, it
is possible for more than one MCS runtime session to be bound to the same OC4J
Servlet session. For example, two browser windows on the same device can open
two independent MCS runtime sessions although the browsers may share the same
servlet session because of the shared cookie repository.

The MCS runtime session states can be replicated to other OC4J instances in the
island (An island replicates session state between two or more OC4J instances.) so
that device requests can be redirected to another OC4J instance in the island when
the first instance fails. By default, the binding to the OC4J Servlet session is enabled
and is necessary to configure the OC4J session replication and failover. When the
servlet sessions expire, the MCS runtime sessions that are bound to the servlet
sessions are invalidated, provided the MCS runtime session is not bound to active
sessions for other channels such as voice, instance messaging, or SMS. The
invalidation of the MCS runtime session only releases the in-memory resources, but
does not destroy the persistent MCS session states that can be restored when the
runtime session is reactivated.

MCS runtime sessions are expired when the sessions remain idle for more than
what is specified by a site-wide configuration parameter value for the Runtime
Session Life Time (seconds) under System > Wireless Server:
Administration > Runtime Configuration Console. The default session
life time is 10 minutes. This parameter is overridden by the OC4J Servlet session
expiration time, which is 30 minutes by default, when the MCS runtime session is
bound to the OC4J Servlet session. The session binding from the runtime sessions to
Servlet sessions can be disabled by the parameter setting
enable.http.session.binding=false in the System.properties file. The
MCS session persistency is enabled through the Enable Runtime Session Persistency”

Modifying Multi-Channel Server Runtime

9-30 Oracle Application Server Wireless Developer’s Guide

option under System > Wireless Server: Administration > Runtime
Configuration Console. The runtime session persistency is disabled by
default. The Persistent Session Life Time (days) under the same console specifies when
the persistent MCS sessions are purged from persistent storage after they remain
idle for the specified number of days. The MCS persistent session life time can be
many orders longer than the OC4J Servlet session life time or the MCS runtime
session life time; the default setting is two days.

9.4.2 MCS Runtime API
OracleAS Wireless MCS Runtime API provides the Java interfaces to examine the
runtime execution states, trace the runtime execution flow, and augment the default
execution semantics. The Runtime API consists of the following Java packages:

■ oracle.panama.rt provides the interfaces to the essential runtime objects for
state management.

■ oracle.panama.rt.event provides the interfaces to monitor the runtime
execution sequence based on the Java event model.

■ oracle.panama.rt.hook provides the interfaces for the essential runtime
customizable components and the default implementation policies for these
interfaces.

These packages are included in the wireless.jar file. Make sure you have
included wireless.jar in your Java classpath when you compile your Java
application or plug-in components that depend on the MCS Runtime API.

9.4.2.1 Runtime Objects
The oracle.panama.rt package defines the core of the Runtime API. The
runtime custom plug in components, such as Event Listeners, can use the Request,
Response, and Session interfaces in the oracle.panama.rt package.

The following subsections describe the interfaces in this package. The interfaces are:

■ Section 9.4.2.1.1, "Request"

■ Section 9.4.2.1.2, "Response"

■ Section 9.4.2.1.3, "Session"

9.4.2.1.1 Request A request object is used to define the URL parameters and HTTP
header attributes for a service request. It also defines the user agent type, device
model, and other runtime contexts. A listener can subscribe to events from a
request.

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-31

The following methods in the Request interface allow you to access, replace, add, or
remove the parameters that are associated with the request object:

■ Object getAttribute(AttributeCategory category, String
name)

■ Object setAttribute(AttributeCategory category, String
name, Object attribute)

The methods access the name and value of the attributes, which can be user
parameters, system parameters, or application contexts. There are three categories
of attributes:

■ PARAMETERS

■ RUNTIME

■ CONTEXTS

The most important attribute category for Request is PARAMETERS, which
contains the query and form parameters submitted by a user. The MCS runtime
parses the URL query strings to retrieve the parameters. Other runtime components
can set these parameters programmatically. Since MCS runtime rewrites and caches
the URLs, some of the parameters are retrieved from the URL cache in the runtime
session. MCS runtime may need to parse both the query strings from the HTTP
request and the URL cache in the session to build a complete list of query
parameters.

9.4.2.1.2 Response This interface represents the Response objects in MCS runtime.
A listener can subscribe to events from a Response. The Response object is the
execution result of the Request object.

9.4.2.1.3 Session This interface represents the session objects in MCS runtime. Any
request can only be executed in a valid session context. A session can expire after
the session exceeds the maximum interval of inactivity. Developers can store the
session-long information in the corresponding session object. A listener can
subscribe to events from a session. See Section 9.4.1, "MCS Runtime Session
Management" for how MCS runtime sessions are established.

The session caches the device credentials, personalization preferences,
uncompressed URLs, Cookies, and XForms Documents among other runtime
contexts. The SMS and Instant Messaging servers use the runtime sessions
extensively to manage dynamically generated short names, for example, single digit
menu numbers to identify the URLs. Sessions states include Cookies that represent
various states of authentication against content providers’ applications. The MCS

Modifying Multi-Channel Server Runtime

9-32 Oracle Application Server Wireless Developer’s Guide

runtime caches the XForms documents in the runtime session. The session owner
can interact with XForms documents over several request/response messages
before submitting the instance data to applications.

The following methods in the Session interface allow you to access, replace, add, or
remove the parameters that are associated with the session object:

■ Object getAttribute(AttributeCategory category, String
name)

■ Object setAttribute(AttributeCategory category, String
name, Object attribute)

The methods access the name and value of the attributes. There are three categories
of attributes:

■ PARAMETERS

■ RUNTIME

■ CONTEXTS

9.4.2.2 Event Listeners
The MCS runtime is invoked from the OC4J Servlets, Servlet Filters, Voice Servers,
or Async Servers. Similar to the Servlet 3.2 Filters, the MCS runtime controllers are
extensible through pluggable MCS runtime Request, Response, and Session
Listeners.

During the establishing of an MCS session, the expiration of an MCS session, or the
processing of a request and response, MCS runtime can generate a sequence of
events to signal the execution progress if any interested listener is registered with
these objects. The listeners can monitor the runtime progress and modify the
request and response data without changing the execution flow of the controllers in
the MCS runtime. The possible applications for the event listeners include data
logging, performance monitoring, and more advanced context-aware
customizations. The oracle.panama.rt.event package defines the API based
on the JDK Event models.

Listener and Event form an important Observer design pattern in which the Listener
represents an observer. Three types of listeners are defined:

■ RequestListener Interface

■ ResponseListener Interface

■ SessionListener Interface

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-33

The ListenerRegistrationHook subscribes listeners to receive events from the
subject, such as Request, Response, or Session.

9.4.2.2.1 RequestListener Interface The implementor of
oracle.panama.rt.event.RequestListener can receive any of the following
events:

■ before request

■ request begin

■ service begin

■ service end

■ transform begin

■ transform end

■ request end

■ after request

■ request error

Which specific Request-related event will be generated is controlled by the event
mask in System Manager > Site > Wireless Web Server > Event and
Listeners in OracleAS Wireless Tools. For example, if you want to have your
RequestListener receive the request begin event, you should set the Enable request
begin Event to true in System Manager > Site > Wireless Web Server >
Event and Listeners control panel in OracleAS Wireless Tools. The site
configuration property names are:

■ wireless.http.event.beforeRequest

■ wireless.http.event.requestBegin

■ wireless.http.event.requestEnd

■ wireless.http.event.serviceBegin

■ wireless.http.event.serviceEnd

■ wireless.http.event.transformBegin

■ wireless.http.event.transformEnd

■ wireless.http.event.requestError

■ wireless.http.event.afterRequest

Modifying Multi-Channel Server Runtime

9-34 Oracle Application Server Wireless Developer’s Guide

The RequestListener can intercept the input parameters during the
requestBegin(RequestEvent) and apply additional business rules on the request
parameters before service invocation.

9.4.2.2.2 ResponseListener Interface The implementor of
oracle.panama.rt.event.ResponseListener can receive the
Response-related event. The only possible Response-related event is response error.
If you want MCS runtime to have your ResponseListener receive the response error
event, you should set the Enable response error Event option to true in System
Manager > Site > Wireless Web Server > Event and Listeners
control panel in OracleAS Wireless Tools. The site configuration property name is:
wireless.http.event.responseError

9.4.2.2.3 SessionListener Interface The implementor of
oracle.panama.rt.event.SessionListener can receive Session life cycle
events. The possible Session events include:

■ before session

■ session begin

■ session authenticated

■ session end

■ after session

Which specific Session event will be generated is controlled by the event masks in
the System Manager > Site > Wireless Web Server > Event and
Listeners control panel in OracleAS Wireless Tools. For example, if you want to
have your SessionListener receive the session begin event, set the Enable session
begin Event option to true in the System Manager > Site > Wireless Web
Server > Event and Listeners control panel in OracleAS Wireless Tools. The
site configuration property names are:

■ wireless.http.event.beforeSession

■ wireless.http.event.sessionBegin

■ wireless.http.event.sessionAuthenticated

■ wireless.http.event.sessionEnd

■ wireless.http.event.afterSession

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-35

9.4.2.2.4 MCS Runtime Listeners Implementation Guidelines

The following steps describe how to set up the customized Event Listener.

1. Implement the RequestListener, ResponseListener, or SessionListener interfaces.

2. Compile the new Java source files from Step 1 with the wireless.jar file in
the classpath.

3. Modify the event mask entries in the System Manager > Site >
Wireless Web Server > Event and Listeners control panel to enable
the generation of specific events.

4. Specify the class names for the RequestListener, ResponseListener, and
SessionListener in the System Manager > Site > Wireless Web
Server > Event and Listeners control panel of OracleAS Wireless Tools.
The site configuration property names are:

■ wireless.http.locator.combined.listener.classes

■ wireless.http.locator.session.listener.classes

■ wireless.http.locator.response.listener.classes

■ wireless.http.locator.request.listener.classes

5. Restart the OracleAS Wireless instance.

Any of the event listeners may throw the AbortServiceException to signal the
MCS runtime controller to reject the request, but this veto signal is effective only if it
is raised during one of the following events when the service is yet to be invoked:

■ beforeRequest(RequestEvent)

■ beforeSession(SessionEvent)

■ sessionAuthenticated(SessionEvent)

Note: Ensure that you set your CLASSPATH properly; include all
relevant files. View your log.xml file to see the files that must be
included.

Note: Each Listener must provide this method:

public static <ClassName> getInstance();

Modifying Multi-Channel Server Runtime

9-36 Oracle Application Server Wireless Developer’s Guide

■ requestBegin(RequestEvent)

■ sessionBegin(SessionEvent)

■ serviceBegin(RequestEvent)

The listeners may throw the AbortServiceException during the
serviceEnd(), transformBegin(), and transformEnd() events to refuse the
service’s content to the user, although any durable effect of the service invocation
cannot be rolled back. The sessionEnd(), afterSession(), requestEnd(),
and afterRequest() methods should not throw the AbortServiceException.

A listener that implements the Request, Response, and Session listener interfaces is
described in the code example below. The listener in this example listens to all
Request, Response, and Session events. The sample listener logs the response time
of the requests.

An Implementation of the Event Listeners
package oracle.panama.rt.event;

import oracle.panama.rt.Request;
import oracle.panama.rt.Response;
import oracle.panama.rt.Session;
import oracle.panama.rt.AttributeCategory;
import oracle.panama.rt.event.RequestEvent;
import oracle.panama.rt.event.ResponseEvent;
import oracle.panama.rt.event.SessionEvent;
import oracle.panama.rt.event.RequestListener;
import oracle.panama.rt.event.ResponseListener;
import oracle.panama.rt.event.SessionListener;
import oracle.panama.rt.event.AbortServiceException;

public class Listener implements RequestListener, ResponseListener, SessionListener {

 private final static String BEFORE_REQUEST = "L__L1";
 private final static String REQUEST_BEGIN = "L__L2";
 private final static String SERVICE_BEGIN = "L__L3";
 private final static String SERVICE_END = "L__L4";
 private final static String TRANSFORM_BEGIN = "L__L5";
 private final static String TRANSFORM_END = "L__L6";
 private final static String REQUEST_END = "L__L7";
 private final static String AFTER_REQUEST = "L__L8";
 private final static String BEFORE_SESSION = "L__L9";
 private final static String SESSION_BEGIN = "L__LA";
 private final static String SESSION_END = "L__LB";
 private final static String AFTER_SESSION = "L__LC";

 public void beforeSession(SessionEvent event) throws AbortServiceException {

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-37

 System.out.println(event.toString());
 }

 public void sessionBegin(SessionEvent event) throws AbortServiceException { //[29]
 StringBuffer buf = new StringBuffer(1000000);
 event.getSession().setAttribute(AttributeCategory.RUNTIME, this.SESSION_BEGIN, buf);
 }

 public void beforeRequest(RequestEvent event) throws AbortServiceException {
 event.put(BEFORE_REQUEST, new Long(event.getTimeStamp()));
 }

 public void requestBegin(RequestEvent event) throws AbortServiceException {
 event.put(REQUEST_BEGIN, new Long(event.getTimeStamp()));
 }

 public void serviceBegin(RequestEvent event) throws AbortServiceException {
 event.put(SERVICE_BEGIN, new Long(event.getTimeStamp()));
 }

 public void serviceEnd(RequestEvent event) throws AbortServiceException {
 event.put(SERVICE_END, new Long(event.getTimeStamp()));
 }

 public void transformBegin(RequestEvent event) throws AbortServiceException {
 event.put(TRANSFORM_BEGIN, new Long(event.getTimeStamp()));
 }

 public void transformEnd(RequestEvent event) throws AbortServiceException {
 event.put(TRANSFORM_END, new Long(event.getTimeStamp()));
 }

 public void requestEnd(RequestEvent event) throws AbortServiceException {
 event.put(REQUEST_END, new Long(event.getTimeStamp()));
 }

 public void afterRequest(RequestEvent event) throws AbortServiceException { //[54]
 Long val;
 long t1, t2, t3, t4, t5, t6;

 StringBuffer buf = (StringBuffer) event.getRequest().getSession().getAttribute(
AttributeCategory.RUNTIME, this.SESSION_BEGIN);

 /* compute total response time */
 t6 = event.getTimeStamp();
 val = (Long) event.get(this.BEFORE_REQUEST);
 t1 = val.longValue();
 buf.append("Request time = ");
 buf.append(t6 - t1);

Modifying Multi-Channel Server Runtime

9-38 Oracle Application Server Wireless Developer’s Guide

 buf.append("\r\n");

 /* compute service time */
 val = (Long) event.get(this.SERVICE_END);
 t3 = val.longValue();
 val = (Long) event.get(this.SERVICE_BEGIN);
 t2 = val.longValue();
 buf.append("Service time = ");
 buf.append(t3 - t2);
 buf.append("\r\n");

 /* compute transform time */
 val = (Long) event.get(this.TRANSFORM_END);
 t5 = val.longValue();
 val = (Long) event.get(this.TRANSFORM_BEGIN);
 t4 = val.longValue();
 buf.append("Transform time = ");
 buf.append(t5 - t4);
 buf.append("\r\n");
 }

 public void sessionEnd(SessionEvent event) throws AbortServiceException { // [84]
 StringBuffer buf = (StringBuffer) event.getSession().getAttribute(AttributeCategory.RUNTIME,
this.SESSION_BEGIN);
 System.out.println(buf.toString());
 System.out.println(event.toString());
 }

 public void afterSession(SessionEvent event) throws AbortServiceException {
 System.out.println (event.toString());
 }

 public void requestError(RequestEvent event) throws AbortServiceException {
 System.out.println(event.toString());
 }

 public void responseError(ResponseEvent event) throws AbortServiceException {
 System.out.println(event.toString());
 }

}

The above example describes a sample listener that listens to all session, request,
and response events. The example illustrates the use of the session for grouping all
requests under the same session. The method sessionBegin() in line 29 creates a
large string buffer for logging all events under the session. At the end of the session,
in the sessionEnd() method in line 84, the string buffer containing the logs for
the session is then printed. The values placed in the event object persist through the

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-39

life cycle of the event source and can be retrieved during subsequent events.
Alternatively, the listener may place the values in the RUNTIME attribute category
of the Request or Session objects. Both techniques allow the listeners to correlate
and trace the events from individual event sources. In the above example, the
listener puts the timestamp of each event in the event object. These timestamps are
retrieved at the end of the request as shown in the afterRequest() method in
line 54, where the timestamps are used to compute the total response time, service
time, and transform time for the request.

9.4.2.2.5 Deploy the Listener In order to deploy your Listener, copy all of the .class
files into the classes directory. By default:
$ORACLE_HOME/wireless/server/classes.

9.4.3 MCS Reverse Proxy, URL Rewrite, Caching, and Compression
The MCS runtime parses the documents and rewrites the URLs in the response
documents before transforming and delivering the documents to the devices. The
MCS replaces all URLs in the response document, including the channel protocol,
target host names, and port numbers, so that the MCS can intercept all subsequent
requests that follow from the links in the document. In this way, the MCS acts as a
reverse proxy server to the devices.

The MCS runtime caches each of the original URLs in the MCS session and replaces
the URL with a much shorter URL consisting only the PAsid and PAckey parameters.
The PAsid parameter specifies the MCS runtime session id. The PAckey parameter
specifies the key to look up the URL in the MCS session. The MCS session id, the
URL caches, cache keys, and cookies are part of the persistent states of the MCS
session. The MCS runtime amends the requests that it intercepts with the
parameters from the original URLs in the MCS session caches.

Acting as a virtual browser in the reverse proxy, the MCS generates the HTTP
requests to the target host and port number that are accompanied by the cookies
from the MCS session caches. The MCS URL cache-and-rewrite scheme affords a
high compression ratio if the URLs contain many hidden fields.

9.4.4 MCS Virtual Browser Model
The MCS, acting as a reverse proxy server, rewrites all URLs including the channel
protocol, target host, port number, and the form or query parameters so that it can
proxy all requests from the devices. The MCS can thus translate the multi-channel
proxy requests to the HTTP content provider requests. When generating the HTTP
requests to the content providers, the MCS acts as a virtual browser to the content

Modifying Multi-Channel Server Runtime

9-40 Oracle Application Server Wireless Developer’s Guide

provider, thereby presenting a generic user agent type. The content providers need
to write the application only for the generic user agent type of the MCS virtual
browser. This simplifies the multi-channel application delivery model and at the
same time provides a powerful development model based on industry-standard
markup languages such as XHTML, XForms, and CSS.

Acting as a virtual browser, the MCS can follow the URL redirects from the content
provider applications. MCS also supports HTTP Header Referrer for external
applications to trace the context of the requests. MCS can use both HTTP and
HTTPS protocols and support session cookies as well as other persistent cookies,
which can be part of the persistent MCS sessions. The MCS chooses to use the GET
or POST methods depending on the methods the devices use to access MCS
runtime. Only when the device does not use HTTP channel does the MCS runtime
default to the GET method.

The MCS runtime can detect the redirect response codes, such as the HTTP
response code 301 to 305, and follow the redirected URLs specified by HTTP
Location header. The MCS can also support post-based redirects. To send a
post-based redirect, the content provider should send HTTP header
x-oracle-mobile-redirect with value true, and the OracleAS Wireless XML
form as shown in the following jsp file as the response content. The line [3] sends a
Post redirect to the URL http://OracleAS Wireless.oracle.com. The
param1=value1 is passed as post data to the URL.

<%
response.setHeader("x-oracle-mobile-redirect", "true");
response.setHeader("Content-Type", "tex/vnd.oracle.mobilexml"); // [3]
%>
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
 <SimpleContainer>
 <SimpleForm name="ProcessSignOnForm" mimetype="text/vnd.oracle.mobilexml"
target="http://OracleAS Wireless.oracle.com/MyApp" method="post">
 <SimpleFormItem name="param1" value="value1" type="hidden"/>
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

The MCS sends the referring URLs in the HTTP Header Referrer. This mechanism is
used by content providers to trace the context of the current request. The Referrer
header is not sent by default but the OracleAS Wireless XML attribute sendreferer
described below is used to indicate that the Referrer header should be sent:

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-41

<?xml version="1.0" encoding="UTF-8"?>
<SimpleResult>
 <SimpleContainer>
 <SimpleHref target="HelloWorld.xml" sendreferer="true">Send
Referer</SimpleHref>
 <SimpleHref target="HelloWorld.xml" sendreferer="false">Don’t Send
Referer </SimpleHref>
 </SimpleContainer>
</SimpleResult>

The MCS can access HTTPS protocol based URLs. Before using HTTPS, the client
certificates should be configured using the Site Configuration Tool. The MCS can
access external URLs through a HTTP proxy server. The proxy settings can be
specified using the Site Configuration Tool.

The MCS runtime implements the version 0 of the Cookie Specification by Netscape
(http://www.netscape.com/newsref/std/cookie_spec.html). It stores the Cookies
sent by the external URLs in the MCS runtime session and sends the relevant
cookies from the session with the HTTP URL request to content providers. The
cookies are valid as long as the MCS sessions are valid. The persistent MCS sessions
must be enabled to support persistent cookies.

The MCS performs the content adaptation, and adapts web content written in
standard XHTML, XForms, and CSS markups languages to the device-specific
markup languages. The MCS uses a sophisticated algorithm to determine the device
and network capability by looking at the User-Agent, Accept, HTTP headers
attributes, and the optional device identifications and physical device models
specified by the user when they register their devices. The MCS also examines the
device capabilities that some of the newer devices submit with the request. It uses a
repertoire of device models in the device knowledge base to render the optimal
content adaptation.

9.4.5 Wireless and Voice Portal
OracleAS Wireless also includes the facilities (such as User and Device Provisioning,
User Management, Content and Service Management, Single-Sign-On
Authentication, Authorization, Device Registration, User Preferences Management,
End-User Personalized Portals, Billing Systems Integration, etc.), that are necessary
components to build a self-contained Portal. The Wireless and Voice Portal shares
the User Repositories, Oracle Internet Directory, and Single-Sign-On credentials
with the Oracle Application Server Portal Product and can interoperate with the
main Portal. In the Wireless and Voice Portal Runtime, every request from the
device is serviced within the context of a valid runtime session. The requests from

Modifying Multi-Channel Server Runtime

9-42 Oracle Application Server Wireless Developer’s Guide

anonymous devices are also tracked and assigned to individual runtime sessions
although the owners of the sessions may be the Guest user, which is an anonymous
user.

9.4.5.1 Device Identification
The OracleAS Wireless and Voice Portal runtime automatically provisions a virtual
user in the Oracle Application Server OID User Repository for each device that can
be consistently identified, using the identifiers available in the devices. Runtime
sessions for virtual users are opened whenever the device identifiers are present in
the requests. The device identifiers may be based on native device identifiers such
as the Mobile Identification Number (MIN), Mobile Subscriber ISDN (MSISDN),
Ipv6 Address, Electronic Serial Number (ESN), etc. The device identifiers may also
be provisioned into the device by the WAP gateway. The WAP Client ID
Specification (http://www.wapforum.org/) defines a standard scheme for
supporting the device identifiers. If no device identifiers are supplied in the request,
the OracleAS Wireless runtime provisions the device identifiers into the devices
using the persistent cookies whenever possible.

The Wireless and Voice Portal runtime uses the device identifiers only to facilitate
personalization under the virtual user. The runtime sessions opened under the
virtual users have access to the information such as personalized presets and
preference profiles in the repository. The device identifier also enables the device to
reconnect to the same runtime session for the user, as long as the session has not
expired. The device identifiers add robustness to the session management for
Wireless and Voice devices, enabling continuity of the service in the face of
intermittent connection losses. The users may also make telephone calls in between
connections to the portal without losing their contexts.

Device identifiers are not a means of authentication. Although the runtime sessions
for the virtual users are not authenticated, it does not prevent the users from
accessing their personalized portals. The users may establish authenticated sessions
only if they register with the Wireless and Voice Portal. The user can supply the user
name and password during the registration. The user’s personalization profiles and
presets are still available to the user after the user becomes registered. The
advantages of the registration include the authentication process that gives access to
the secured services, such as e-Wallets and financial transaction services.

9.4.5.2 Virtual User Concept
The Wireless and Voice Portal runtime automatically provisions virtual users in the
Wireless repository for devices that can be consistently identified, using the
identifiers available in the devices. The virtual user option gives the device owners

Modifying Multi-Channel Server Runtime

Using Multi-Channel Server 9-43

immediate access to the personalization features of the portal, which enhance the
user experience. It automates the provisioning process for the carrier and enterprise
portal administrators using the emerging WAP Client ID standards.

Device owners can register with Wireless and Voice Portal to gain access to secured
services through authentication. The registration can be done from the setup menus
by the device owner. This self-provisioning registration feature further simplifies
the administration tasks. The devices with virtual user support let the registered
users connect to Wireless and Voice Portal and access the personalized services
without signing on to the system until they are requested by the secured services to
authenticate. The virtual user feature not only improves the accessibility of the
portal but also enhances the data mining capability of portal operators since the
activities of the devices can be identified with virtual identities.

The virtual user feature can be disabled by the site wide configuration parameter
setting wireless.virtualuser.enabled=false. This property can be
modified by the Enable Virtual User option in the System Manager>Site>User
Provisioning control panel. If the virtual user feature is disabled or if the device
does not support device identifier, then the session is opened under the Guest user,
which must be provisioned in the repository. The Wireless and Voice Portal
bootstrap repository includes the anonymous user Guest.

Applications that have direct access to the Wireless and Voice Portal runtime objects
can check the value of oracle.panama.model.UserType returned by the
getUserType() method in oracle.panama.model.User. The User of the
runtime session can be retrieved from the getUser() method in
oracle.panama.rt.Session. The external content providers can get the user
type information from the HTTP header attribute x-oracle-user.userkind. The possible
values of this attribute are anonymous, virtual, or registered.

9.4.5.3 Authentication and Authorization
The application programs for services that require authenticated sessions must add
the PAlogin=true parameter in the URLs. When the Wireless and Voice Portal
runtime detects the PAlogin=true parameter among the URL parameters in the
request for a service, the runtime tries to authenticate the user if the runtime session
is not already authenticated. The authentication process, which typically involves
the user supplying the user name and password to the Oracle Application Server
Single Sign On (SSO) Server, is performed before the runtime invokes the service
being requested. After the PAlogin parameter invokes the authentication process, the
application programs for secured services still must verify that the session is
authenticated. The applications that have direct access to the Wireless and Voice
Portal runtime objects can use isUserAuthenticated() method in

Modifying Multi-Channel Server Runtime

9-44 Oracle Application Server Wireless Developer’s Guide

oracle.panama.rt.Session interface. The external content providers can get
the information from the HTTP header attribute x-oracle-user.authkind which has the
values authenticated or unauthenticated.

In addition, the applications can also check if the session is secured by the SSL, TLS,
or WTLS channels. The application that has direct access to the Wireless and Voice
Portal runtime objects can use the isSecure() method in the
oracle.panama.rt.Request interface. External content providers can get the
isSecure() condition through the HTTP header attribute x-oracle-device.secure,
which has the values true or false.

The authorization for access to a service is performed for each request for all
authenticated or unauthenticated sessions. The authorization makes sure that the
session user has the privilege to access the service. The default authorization policy
does not differentiate whether the session is authenticated or unauthenticated. The
unauthenticated sessions of a virtual or registered user has as much visibility as the
authenticated sessions. It is therefore critical for the applications to apply the
PAlogin parameter to enforce the authentication.

9.4.6 Globalization (NLS) Support
The Multi-Channel Server is a middle-tier server that is deployed between the
device browser and the back-end web application. It communicates to the device
and to the application through the HTTP(S) protocol.

In order to correctly do the character encoding/decoding for the
requests/responses. the Multi-Channel Server must know the character encoding
that both sides—device and application—use. These are the assumptions that the
Multi-Channel Server makes when handling character encoding for each HTTP
hop:

1. First Request from the Device—MCS uses the Accepted Character Encodings
attribute of the device browser to decode the request parameters sent by the
browser.

2. First Request from MCS to the Application—MCS does not know the character
encoding that the Application expects. In this case, MCS UTF-8 character
encoding for the very first request to the Application.

3. First Response from the Application—MCS follows the Hypertext Transfer
Protocol—HTTP/1.1 specification to detect the media type of the entity-body
sent to the recipient. According to that specification, the sender should include
Content-Type HTTP header and add a charset value indicating the content
character set. For example:

Modifying the Data Models

Using Multi-Channel Server 9-45

Content-Type: application/vnd.oracle.xhtml+xforms; charset=ISO-8859-4
If the Content-Type header or the charset value are missing, then the MCS
assumes ISO-8859-1 character encoding.

4. First Response from MCS—The MCS uses the Accepted Character Encodings
attribute of the device browser to decode the request parameters sent by the
browser.

5. Subsequent Request from the Device—The MCS uses the Accepted Character
Encodings attribute of the device browser to decode the request parameters sent
by the browser.

6. Subsequent Request from MCS to the Application—The MCS uses the same
character encoding sent by the Application in the previous response.

7. Subsequent Response from the Application—The MCS uses the same logic as
explained in step 3. The Application must specify the character encoding again.
The Application can use a different encoding (though this is not common).

8. Subsequent Response from MCS—The MCS uses the Accepted Character
Encodings attribute of the device browser to decode the request parameters sent
by the browser.

Steps 5-8 repeat for all requests/responses after the first request/response.

In short, MCS always uses the Accepted Character Encodings device attribute to do
the character encoding/decoding when communicating with a device. It always
uses the charset value in the Content-Type HTTP header when communicating with
the application. An exception from this rule is only the very first request from the
MCS to the application when the MCS uses UTF-8 character encoding.

9.5 Modifying the Data Models

9.5.1 OracleAS Wireless Services Overview
Services enable end users to access the functionality of OracleAS Wireless. They represent
a link between the content source and the delivery target. Services tie a specific data source
(through an adapter) to the different devices.

There are different types of services:

Note: MCS remembers this character encoding value and will use
it in subsequent requests to the Application.

Modifying the Data Models

9-46 Oracle Application Server Wireless Developer’s Guide

■ MasterService—provides the actual implementation of the service.
MasterServices specify the adapter used for the service and any service-specific
parameters.

■ Link—a pointer to a service. In most cases Links are used to publish
MasterServices to end users and to customize the MasterService parameters.

■ Module--a pointer to a MasterService with a known URL.

■ Folder--container for other services, including other Folders. Used to build
service trees.

■ ExternalLink--a service that points to an external resource.

9.5.2 MasterService
MasterServices provide the basic wireless functionality. They are the actual
implementation of the service. Each MasterService is based on one adapter. A
MasterService sets values for the adapter init, input and output parameters. Each
MasterService creates its own instance of the adapter it uses. Therefore, several
services can use the same type of adapter, and each can pass its own service-specific
argument values.

It is recommended that you build all MasterServices using the HTTPAdapter. That
gives you the flexibility to implement the service business logic using JSPs or other
web technologies.

9.5.2.1 Link
Links are used to further customize existing services by overriding the values of
their parameters.

When a Link service is invoked the OracleAS Wireless server merges the parameters
with the parameters of the service the Link points to, and invokes that service.

Links are also used to better organize services into user service trees. They give you
the flexibility to publish the same service under different names and in different
folders (different levels in the service tree). If you do not override any parameter
values, then invoking the link is the same as invoking the service it points to.

9.5.2.2 Module
Modules are wireless services with well-known virtual URLs (OMP URL, that is,
omp://my.module).

Modifying the Data Models

Using Multi-Channel Server 9-47

Modules can be called from any application or module and may be instructed to
return control to another application or module. Calls may be nested to any level.
This mechanism of bi-directional linking allows quick applications assembly.

An important difference between a module and a regular service is that the module
receives information about the service it needs to return to after it is done. This is
not always the caller of the module (the module caller may want the module to
return to a different service).

9.5.2.3 Folder
Folders are containers for other services. They are used to better organize
user-accessible services into a service tree. The content of a folder is displayed by
invoking its rendering service; a special service associated with each folder.

The system rendering service displays the folder child services ordered by the
specified sort rule.

Optionally, you can specify icons and audio files to be displayed or played when a
service link is displayed in the folder content or when the service is invoked.

9.5.2.4 ExternalLink
An ExternalLink is a wireless service that points to an external resource. The
external resource is typically a Web page that serves content in a format supported
by the target device.

OracleAS Wireless does not process the content of the ExternalLink target. As a
result, ExternalLink services are not available to all targeted devices, as are other
wireless services. In most cases, ExternalLinks are set in the Customization portal
by the end user, not in the Service Designer.

9.5.3 Access Control
There are two type of services in terms of access:

■ User Private Services—accessible by a single user.

■ Shared Services—accessible by multiple users.

There are different rules that apply to those two type of services.

■ The user private services are services that reside in the user home service tree.
Users can access all of those services. No other user can access those services.

Modifying the Data Models

9-48 Oracle Application Server Wireless Developer’s Guide

■ Shared services, in contrast, are accessed by multiple users. The access is
controlled by the User - Group - Service relationship. When you assign a service
to a group, all users from that group can access the service.

9.5.4 Folder Renderer

9.5.4.1 Overview
Folder Renderer is a runtime component of OracleAS Wireless that is responsible
for rendering the content of a folder. In order to provide customization possibilities
to end users, the logic of the Folder Renderer component is externalized in the form
of Folder Renderer Hook.

See the oracle.panama.rt.hook.FolderRendererHook Java interface for
more details.

Out of the box, OracleAS Wireless provides a default implementation of the Folder
Renderer Hook. The default implementation consists of multiple parts:

■ A system master service based on OC4J Adapter, which has a virtual URL of
omp://oracle.iasw.folder.renderer.

■ A Java class that is responsible for looking up the master service and invoking
it. The name of this Java class is
oracle.panama.rt.hook.FolderRendererPolicy and it implements the
interface FolderRendererHook.

■ A set of JSP pages. The master service points to a single JSP, with the relative
URL of iaswfr/FolderRenderer.jsp, which acts as the point-of-entry to a
set of JSP pages that is capable of rendering the content of a folder.

■ A utility Java class that contains a library of methods invoked by the JSP pages.
The name of this Java class is
oracle.panama.rt.hook.FolderRendererUtil.

The motivation of using a JSP-based folder renderer framework is to provide
maximum customization possibilities to end users. With the logic of folder renderer
written in JSP, end users can change the JSP pages easily without recompiling any
Java code. The use of JSP-based Folder Renderer allows several possible levels of
customization, which are listed below.

■ User can modify the JSP that is part of the default implementation.

■ User can create a new set of JSP pages and change the relative URL of the
system master service to point to the new JSP pages.

Modifying the Data Models

Using Multi-Channel Server 9-49

■ User can create a new master service and a new set of JSP pages. In this
approach, user replaces the default master service that is pointed by the virtual
URL omp://oracle.iasw.folder.renderer with the new one.

■ Users can write their own implementation of the interface
FolderRendererHook. The default implementation of this interface is
oracle.panama.rt.hook.FolderRendererPolicy.

To be able to customize the Folder Renderer, users must understand the structure of
the JSP pages and the execution flow.

9.5.4.2 Structure of JSP pages
The logical structure of the JSP pages is as follows:

■ The top level JSP page that acts as the entry point is FolderRenderer.jsp.
From FolderRenderer.jsp, we check the device category of the connecting device
and include the second level of appropriate JSP page.

■ This second level of JSP is named XXXRenderer.jsp, where XXX is the device
category of the connecting device. XXXRenderer.jsp itself includes three JSP
pages, which are XXXHeader.jsp, XXXBody.jsp, and XXXFooter.jsp.

For example, if the request is from WAP phone, FolderRenderer.jsp will include
MicroBrowserRenderer.jsp, which then includes MicroBrowserHeader.jsp,
MicroBrowserBody.jsp, and MicroBrowserFooter.jsp.

9.5.4.3 Execution Flow
The default implementation of Folder Renderer has the following execution flow:

1. When the OracleAS Wireless runtime is ready to render a folder, it calls
oracle.panama.rt.hook.FolderRendererPolicy invoke() method.

2. The invoke() method uses the hard-coded value of virtual URL.
omp://oracle.iasw.folder.renderer, looks up the master service, and
invoke the master service. The master service is implemented as a JSP, which
has a relative URL of iaswfr/FolderRenderer.jsp.

3. The FolderRenderer.jsp is called and does the following:

■ Gets all the necessary information (such as ServiceContext, Session, User,
Device) from the request and stores it. This information will be used by
other JSP pages that are included from FolderRenderer.jsp.

■ Checks which device category the connecting device belong to and includes
the appropriate JSP page (explained above).

Modifying the Data Models

9-50 Oracle Application Server Wireless Developer’s Guide

4. The included JSP pages will render the content of the current folder.

9.5.5 Bookmark
OracleAS Wireless Server can be used to manage user bookmarks on the server side.
Each bookmark refers to a Data Source (URL) whose returned content can be in any
device-specific markup language. In OracleAS Wireless Server, users and
administrators can place bookmarks anywhere in the user service tree.

Each Bookmark is a logical entry and can contain multiple URLs corresponding to
different markup languages. For example, a Yahoo bookmark can contain a URL
http://www.yahoo.com for HTML markup language and URL
http://wap.yahoo.com for WML markup language. If a user accesses the Yahoo
bookmark from a device supporting WML markup language, then the content from
the http://wap.yahoo.com URL is returned to the device. If the Yahoo
bookmark is accessed from a device supporting HTML language then the content
from the http://www.yahoo.com URL is returned.

Each markup language can be uniquely identified by its MIME-type. Internally
OracleAS Wireless Server stores bookmarks <URL, markup language>
combinations as <URL, MIME-type> combinations.

Bookmarks are integrated with the wireless transcoding API that allows WML
content (text/vnd.wap.wml MIME-type) to be converted to MobileXML, and
then converted to any device-specific markup language supported by the OracleAS
Wireless Server.

Depending on the MIME-type associated with the URL, some URLs are accessed
directly from the user’s device and some URLs are accessed through OracleAS
Wireless. Currently only URLs associated with the text/vnd.wap.wml MIME
type are accessed through OracleAS Wireless Server. This list will be extended when
the transcoding API supports more input markup languages.

Additionally, any URL of a bookmark can be marked as a default URL. If a device
accesses a bookmark which does not have a URL corresponding to the markup
language supported by the device, then OracleAS Wireless Server invokes the
default URL, transcodes the content to MobileXML, which is again transformed to
the markup language supported by the device.

The markup language of the content returned by the default URL must be
supported by the wireless transcoding API (that is, only WML
text/vnd.wap.wml MIME-type content can be used in the default URL).

Modifying the Data Models

Using Multi-Channel Server 9-51

There are several ways to access a URL stored in a bookmark, depending on the
user device and the MIME-types that are supported by that Bookmark (that is, the
MIME-types for which there are associated URLs):

■ The user’s device supports WML content type and there is a URL associated
with text/vnd.wap.wml MIME type. In this case the user’s device accesses
the URL through the OracleAS Wireless Server. The WML content is not
modified, except that all relative URLs are rewritten to point back to the
OracleAS Wireless Server. All subsequent requests go through OracleAS
Wireless Server.

■ The user’s device supports a markup language other than WML and there is a
corresponding URL for that MIME type in the bookmark. In this case, the URL
is accessed directly from the user’s device without coming to OracleAS Wireless
Server (that is, the user leaves the wireless portal).

■ The user’s device supports a markup language other than WML, there is no
URL in the Bookmark associated with that markup language, but there is a
default URL (with text/vnd.wap.wml MIME type). In this case the user’s
device sends a request to OracleAS Wireless Server. The server fetches the WML
content, transcodes the WML to MobileXML, and then converts the MobileXML
to the device-specific markup language and sends the response back to the
device. This is repeated for all subsequent requests.

■ The user’s device supports a markup language for which there is no
corresponding URL in the bookmark and there is no default URL. In this case
the default FolderRenderer will not display a link for invoking that bookmark
and the user will not see it.

9.5.5.1 Creating and Editing Bookmarks Using OracleAS Wireless Tools
Users can use OracleAS Wireless Tools (or Customization Portal) to create, edit and
delete bookmarks.

9.5.6 Model API: General Usage
OracleAS Wireless Repository comprises the models for the Model-View-Control
(MVC) architecture, while the OracleAS Wireless Runtime layer comprises the
controllers for the MVC. The repository Model API in oracle.panama.model
package lets you develop applications that create, delete, modify, and query the
persistent objects in the OracleAS Wireless Repository.

OracleAS Wireless Repository imposes the organizational structure among the
objects. For example, a user can belong to multiple Groups. Each user is assigned

Modifying the Data Models

9-52 Oracle Application Server Wireless Developer’s Guide

one or more Roles. A user can access the services that are accessible to the groups to
which the user belongs. However, the implementations of the user interface can
access external provisioning systems or repositories, such as the Oracle Internet
Directory (OID) and the Oracle Applications User Repository (AOL), to manage the
information for enterprise users and specify the user’s roles, the user's group
membership, and the particular services that are accessible to that user.

A Folder is a special kind of Service used as a container of the services to build the
service trees. A Service or Folder can be assigned to one or more groups. A user can
own a collection of DeviceAddresses, a collection of LocationMarks, a collection of
Customization Profiles, and one or more collections of Presets which are used in
advanced customization. A default LocationMark and a default Profile can be
assigned for each user. The Device interface in the Model API defines the target
device protocol (such as: WAP, SMS, or EMAIL), as well as specifies the physical
characteristics of target devices that can be used by the adapters and the
transformers (for example, screen width and height, screen columns and rows, and
number of softkeys).

The intended users of the Model API are developers of customization portals,
portlets, custom hooks, listeners, and applications such as JSPs, servlets, modules,
and other (URL addressable) resources that are invoked through the HTTP Adapter.
Developers can also develop standalone applications which manipulate persistent
objects using the Model API. Although these interfaces preserve the data integrity
in the repository, they do not enforce access control security. The applications that
access the repository through the Model API are not authenticated or authorized by
the same Authentication and Authorization mechanisms in the OracleAS Wireless
runtime layer. In fact, the Model APIs are used by trusted components to develop
and customize authentication and authorization policies. OracleAS Wireless Tools
provide authentication and authorized access control to the repository. Developers
should apply extreme caution when developing services using the interfaces in the
Model API, and should take appropriate measures to prevent any undesired
side-effects when these services are invoked by the end users.

9.5.6.1 Data Model Cache and Synchronization
Repository objects are cached in the Java instances main memory when they are
accessed from the Data Model API. These objects are removed from the main
memory cache only after they are not accessed through the API for a time-to-live
interval. This interval can be configured from Cache Object Life Time property in
System Manager > Site > Runtime Configuration control panel in the OracleAS
Wireless Tools. If the repository object is modified and committed into the
repository from one of the Java instances; all other Java instances will automatically
reload the modified object from the repository. You can specify the number of cache

Modifying the Data Models

Using Multi-Channel Server 9-53

synchronization threads from System Manager > Site > Object Cache
Synchronization control panel in the OracleAS Wireless Tools.

9.5.6.2 Interfaces and Interface Hierarchy
The ModelObject is the root interface that represents the common behavior and
properties of all repository objects. It is included in the oracle.panama.model
package.

9.5.6.3 Model API Inheritance Hierarchy
The oracle.panama.model package also provides the following three locator and
factory objects to access the model objects:

■ MetaLocator—the starting point for using the Model API. From this call you
can get references to the ModelFactory and ModelServices interface
implementations.

■ ModelFactory—a factory to create model objects.

■ ModelServices—the locator to access model objects.

Here is a brief description of the different model interfaces. For more details about
the interfaces please refer to the model API Specification.

■ Adapter—the repository container for the RuntimeAdapter, which is the
interface that is to be implemented by all custom adapters. The Adapter
incorporates the RuntimeAdapter classes into the repository and supports the
loading and initialization of the RuntimeAdapter.

■ DeviceV2—the definition of the target logical device protocol. It can, for
example, be WML11 for WML specific devices, but also WML_Nokia7110 for
Nokia specific WML. Other examples are SMS and EMAIL. DeviceV2 contains
the Transformer objects.

■ User—represents the identity of the user and facilitates personalization in the
OracleAS Wireless portals.

■ Profile—users can have one or more Profiles that encompass customizations of
the service trees. The Profile for a user can specify a preferred ordering of
services in a folder.

■ Group—a collection of users. It is used to publish specific services to group
members. A user can access services that are accessible to the group to which
the user belongs.

Modifying the Data Models

9-54 Oracle Application Server Wireless Developer’s Guide

■ Role—like a Group, a role is a collection of users. But while groups are used for
the access control at run-time, Roles are used to control the access to different
webtools.

■ Service—an abstract interface and handles all generic aspects of a service. It
contains the following subinterfaces:

■ MasterService—the final Service. It is the template for all other Services. It
always uses an adapter to communicate with an external source.

■ Folder—similar to a directory in a file system; it contains other services
including other sub-folders.

■ ExternalLink—a logical reference to an external URL. One ExternalLink can
refer to one URL per channel, or multiple channels can shared a single URL.

■ LocalModule—a pointer to a modulable MasterService.

■ Link—a pointer to any other service including another Link. The Link is
used to customize MasterServices or to create private tree structures of
accessible MasterServices. It can override any accessible parameter kept by
the service chain down to the final master service.

■ LocationMark— a persistent object that represents the named a geocoded
physical address.

■ Transformer—the base interface for all transformation sub-classes. It is the
repository container for the real transformation implementation (Java or XSL). It
performs loading and initialization of the custom transformer classes that
implements the oracle.panama.rt.xform.RtTransformer interface. It also
provides the XSLT transformers for the XSLT stylesheets.

It has the following subinterfaces:

■ JavaTransformer—a class that implements the Transformer interface and is
expected to handle the transformation from the device independent
markup language to the device-specific markup language. It incorporates
the oracle.panama.xform.RtTransformer classes into the repository. It
performs loading and initialization of the custom transformer classes that
implements the oracle.panama.rt.xform.RtTransformer interface.

■ XSLTransformer—uses XSLT stylesheet which is expected to handle the
transformation from the device independent markup language to the
device-specific markup language. It incorporates the custom XSLT
stylesheets into the repository. It also provides the XSLT processors for the
XSLT stylesheets.

Modifying the Data Models

Using Multi-Channel Server 9-55

9.5.6.4 Sample Code that Uses the Data Model API
The following sample code illustrates how you can provision new objects into the
OracleAS Wireless repository using the interfaces in the Model API. The example
includes the standalone class to introduce the sample codes, although other type of
components, such as adapters, hooks, listeners, and servlets can be used to illustrate
the Model API. The example only shows the search, create, delete, and commit
operations in the Model API but does not include the necessary business logics.

The numbers that appear in brackets next to a line of code in the listing are
referenced in the discussion to correlate the explanation with the corresponding
lines in the code itself.

Use MetaLocator to get the ModelFactory and ModelServices (line [1]).
Use ModelFactory to create a new object.
Use ModelServices to search for an object.
MetaLocator metaLocator = MetaLocator.getInstance();
modelFactory = metaLocator.getModelFactory();
modelServices = metaLocator.getModelServices();

The MetaLocator interface is used to lookup the ModelFactory and ModelServices.
The getInstance() method in this interface gets the singleton instance of this
MetaLocator. The methods getModelFactory and getModelServices look up
the ModelFactory and the ModelServices.

Typically, to create a new object, one should check first if the object already exists.
To look up any object, use the ModelServices interface and the method
lookupX(Java.lang.String name), where X is the interface name of the object. In this
sample code, to create a new user (the code section for creating a new user starts in
line [2]), you first look up the user by using the lookupUser(userName) method in
the ModelServices interface (line [3]), as the following line of code shows:

modelServices.lookupUser(userName);

Lookup operation should be the first step before creating any new persistent object
in the Repository. The lookupUser(userName) method searches for the user by
name and, if the User by that name is found, returns the User object. If the user with
that name cannot be found, the method throws the PanamaRuntimeException.

Next, check if the group to which the user belongs (or should belong) already exists
(line [4]). Following the convention for looking up any object, you use the
ModelServices interface and the lookupGroup(groupName) method to look up a
group by name. If the group is found, the method returns the Group object. If the
group is not found, the method throws the PanamaRuntimeException.

Modifying the Data Models

9-56 Oracle Application Server Wireless Developer’s Guide

After checking if the user and the group already exist, you create the new user
object (line [5] to line [6]):

{
 user = modelFactory.createUser(userName, groups);
} else {
 user = modelFactory.createUser(userName);
}
user.setPassword(userPassword);
user.setEnabled(true);

You must save the newly created user. Each newly created object must be saved
after it is created (line [7]):

modelFactory.save();

Save applies to all created or modified objects in the current thread. The objects are
saved to the persistent storage and the transaction is committed. The method
throws PanamaException if it is unable to save the work.

The searchUser() method in the sample code (line [8]) illustrates how to search a
User object. To enumerate over a set of users (for example, all the users whose
names start with the letter B), you use the ResultSetEnumeration (line [9]) returned
by the method findUsers (line [10]). The method findUsers uses the pattern
matching on the names. See also lines [11] and [12] in the listing of the complete
sample code.

Close the ResultSetEnumeration (line [13]) to release the database cursor, which
otherwise will remain open.

To delete a user, use the deleteUser method following the sample code section in
line [14]. The user name must be exact in line [15].
ModelServices.lookupUser() method rejects the pattern matching templates
by throwing exceptions. The user object is deleted in line [16].

import Java.util.Vector;

import oracle.panama.PanamaException;
import oracle.panama.PanamaRuntimeException;

import oracle.panama.model.MetaLocator;
import oracle.panama.model.ModelFactory;
import oracle.panama.model.ModelServices;
import oracle.panama.model.ResultSetEnumeration;
import oracle.panama.model.User;
import oracle.panama.model.Group;

Modifying the Data Models

Using Multi-Channel Server 9-57

/**
 * This is a sample program demonstrates the usage of the model API.
 */
public class SampleModelClient {

 private ModelFactory modelFactory;
 private ModelServices modelServices;

 public SampleModelClient() {
 MetaLocator metaLocator = MetaLocator.getInstance(); [1]
 modelFactory = metaLocator.getModelFactory();
 modelServices = metaLocator.getModelServices();
 }

 /**
 * Get all group names
 */
 private String[] getGroupNames() throws PanamaException,
PanamaRuntimeException {
 String[] names;
 ResultSetEnumeration result = null;
 try {
 // Find all user groups - use a wildcard for the name expression
 result = modelServices.findGroups("*");
 Vector buffer = new Vector();
 while (result.hasMoreElements()) {
 Group group = (Group)result.next();
 String name = group.getName();
 buffer.addElement(name);
 }
 names = new String[buffer.size()];
 buffer.copyInto(names);
 } catch (PanamaRuntimeException ex) {
 throw ex;
 } finally {
 if (result != null) {
 result.close();
 result = null;
 }
 }
 return names;
 }

Modifying the Data Models

9-58 Oracle Application Server Wireless Developer’s Guide

 /**
 * Create a new user.
 */
 private void createUser(String userName, String userPassword, String
groupName) [2]
 throws PanamaException, PanamaRuntimeException {
 try {
 // First check if the user does not already exists
 modelServices.lookupUser(userName); [3]
 // If we are here the user must already exists
 return;
 } catch (PanamaRuntimeException ignore) {}
 Group group = null;
 try {
 // Get the group to add the user
 group = modelServices.lookupGroup(groupName); [4]
 } catch (PanamaRuntimeException ex) {
 // A PanamaRuntimeException is thrown if the group is not found
 group = null;
 }
 User user;
 // modelFactory.createUser() will automatically create a
 // home folder for the new user.
 if (group != null) {
 Group[] groups = new Group[1];
 groups[0] = group;
 user = modelFactory.createUser(userName, groups); [5]
 } else {
 user = modelFactory.createUser(userName);
 }
 user.setPassword(userPassword);
 user.setEnabled(true); [6]

 // save the newly created object
 modelFactory.save(); [7]
 }

 /**
 * Search for users.
 */
 private User[] searchUser(String userNamePattern) [8]
 throws PanamaException, PanamaRuntimeException {
 User[] users;
 ResultSetEnumeration result = null; [9]
 try {

Modifying the Data Models

Using Multi-Channel Server 9-59

 result = modelServices.findUsers(userNamePattern); [10]
 Vector buffer = new Vector();
 while (result.hasMoreElements()) { [11]
 User user = (User) result.next(); [12]
 buffer.addElement(user);
 }
 users = new User[buffer.size()];
 buffer.copyInto(users);
 } catch (PanamaRuntimeException ex) {
 throw ex;
 } finally {
 if (result != null) {
 result.close(); [13]
 result = null;
 }
 }
 return users;
 }

 /**
 * Delete a user.
 */
 private void deleteUser(String userName) [14]
 throws PanamaException, PanamaRuntimeException {
 try {
 if (userName != null && userName.length() > 0) {
 User user = modelServices.lookupUser(userName); [15]
 user.delete(); [16]

 // Save the changes
 modelFactory.save();
 }
 } catch (PanamaRuntimeException ex) {
 throw ex;
 }
 }

}

Modifying the Data Models

9-60 Oracle Application Server Wireless Developer’s Guide

Creating Messaging Applications 10-1

10
 Creating Messaging Applications

This chapter describes Messaging Application architecture, and explains how to use
these Applications to create and deploy mobile applications. Each section of this
document presents a different topic. These sections include:

■ Section 10.1, "Messaging Overview and Architecture"

■ Section 10.2, "Sending and Receiving Messages"

■ Section 10.3, "Building Async Applications"

■ Section 10.4, "XMS Message Center"

■ Section 10.5, "Device Channel Selection"

■ Section 10.6, "Transport Component"

■ Section 10.7, "Supporting Premium SMS and Reverse Charge SMS"

10.1 Messaging Overview and Architecture

10.1.1 General Overview
Messaging services are a key component that enhance your mobile applications by
supporting sending and receiving messages among mobile users. OracleAS Wireless
Messaging services provide a highly scalable mechanism to deliver messages to all
mobile devices. Messages are delivered to mobile devices using native device
protocols, for example through SMS to a mobile phone, as an email to a 2-way
pager, as an audio message to regular telephone, as an Instant Messaging (IM)
message to an IM client or as a fax to a fax machine.

Messaging services in OracleAS Wireless also offer a Web Service Interface
(specified using WSDL) that uses SOAP over HTTP. The SOAP service enables

Messaging Overview and Architecture

10-2 Oracle Application Server Wireless Developer’s Guide

applications to invoke remote object methods over HTTP protocol. This enables
applications to invoke Messaging services from anywhere on the Internet, using any
programming model. OracleAS Wireless Messaging services enable applications to
specify both the message and the recipient(s) of the message. The application
communicates to the Messaging service in OracleAS Wireless using SOAP and
HTTP. OracleAS Wireless receives the message and delivers it to mobile devices
using appropriate protocols such as SMS, Email, Voice, and others.

Figure 10–1 OracleAS Wireless Messaging Architecture

Messaging Services in OracleAS Wireless are scalable, and can handle large
volumes of messages to many devices. The Messaging Service is based on extensible
architecture and design; it can support a variety of devices and push protocols.
Push protocols are handled by the XMS messaging API. The Messaging subsystem
supports a driver-based architecture; the drivers are components in the wireless
messaging system that handle all device-specific or communication
protocol-specific routines.

10.1.2 Key Messaging Features
OracleAS Wireless provide intelligent messaging with functionality for:

■ Automatic device selection

Messaging Overview and Architecture

Creating Messaging Applications 10-3

■ Message content adaptation

■ Failover delivery control

■ MMS (multi-media messaging) features that allow for richer messaging
experiences

■ Actionable notification messages

■ Contact Rule Integration

10.1.3 Multi-Channel, Adaptive Messaging
Messages that are authored generically in XHTML or OracleAS Wireless XML are
automatically adapted for devices by OracleAS Wireless. The power of adaptation
allows a message to be written once and automatically optimized for receiving
device capabilities. For example, multi-media content can be optimized for a device
by using image conversion allowing images to be altered from full-color to black
and white.

10.1.4 Multimedia Messaging
OracleAS Wireless supports Multi-Media Messaging (MMS) for rich mobile
messages including graphics, video and audio. MMS messages can be authored
natively in SMIL, XHTML or OracleAS Wireless XML.

10.1.5 Transport Framework
The Messaging subsystem (based on the device address and transport type such as
SMS, MMS, IM, Voice, Email), dispatches a message to the appropriate transport
protocol driver. The driver interface delivers the message to a device in the native
device protocol. The Messaging subsystem can support multiple drivers in a single
instance.

Message drivers in OracleAS Wireless are plugable modules that implement
device-specific or communication protocol-specific handling routines. OracleAS
Wireless includes pre-built drivers that support communication protocols such as
SMS (SMPP and UCP), MMS, IM, Voice, Email and Fax.

OracleAS Wireless includes a special driver implementation that enables your
wireless instance to act as a client to another OracleAS Wireless installation or any
service that respects the Web Service Interface defined by OracleAS Wireless. This
special driver uses the SOAP interface (as the XMS APIs) to send messages. By
default, this driver is configured to act as an XMS Client to an OracleAS Wireless

Sending and Receiving Messages

10-4 Oracle Application Server Wireless Developer’s Guide

instance hosted, on the Internet, by Oracle. Instance administrators can change this
default setting to point to any server that respects the XMS WSDL interface defined
by OracleAS Wireless. As a result, any OracleAS Wireless installation is capable of
sending SMS, MMS, Email, Voice, Fax messages out-of-the-box without
configuration.

There is a quota preconfigured. If you need to raise the quota after exceeding the
pre-allotted limit, see your Oracle administrator.

10.1.6 MMS Center
The XMS component includes MMS Center (MMSC) functionality out-of-the-box,
supporting the MM1 message notification protocol. If the recipient device has an
MMS browser, a notification message is sent to the browser, and the message is
retrieved using HTTP. The content is stored and served out by OracleAS Wireless,
the only external component needed is a regular SMSC for transmitting the
notification message. Coupled with the fact that OracleAS Wireless can send SMS
out-of-the-box using a hosted server, the product can send MMS out-of-the-box
without configuration.

10.1.6.1 Actionable Messaging Framework
The notification framework includes flexible message templates, security to prevent
message spoofing, support for message prioritization, and more flexibility in
handling volume notifications.

10.2 Sending and Receiving Messages

10.2.1 One-way Message Application API Overview
The OracleAS Wireless Messaging Service is deployed as a web service using SOAP
with HTTP as the transport layer. WSDL (Web Services Definition Language) is a
standard XML interface that defines a Web Service application. With clearly defined
WSDL, developers can build applications in any programming language (such as
Java and VB) that can communicate with the OracleAS Wireless messaging interface
over the Internet. Developers can use any WSDL toolkit to quickly implement a
one-way (Push) application and send messages to mobile devices using any
OracleAS Wireless instance on the Internet.

Parallel to the Web Service interface, OracleAS Wireless also supports a simple Java
API (the XMS API) for building one-way message (Push) applications. The XMS
API uses SOAP over HTTP to communicate with the OracleAS Wireless server

Sending and Receiving Messages

Creating Messaging Applications 10-5

instance, however the XMS API abstracts any protocol-specific (SOAP)
implementation details from the application’s Java code. XMS is the preferred API
for application developers who need a clear and simple interface to deliver
messages.

The XMS API supports a uniform interface for the delivery of messages to any kind
of device (such as SMS, MMS, IM, Voice, Email and Fax). The API allows
applications to specify multiple recipients for a single message using only one
delivery request.

Furthermore, message destination addresses can have devices using different
communications channels; for example, a single message delivery request
application can send messages to Email as well as fax machines. Applications can
make one delivery request and send the messages to a list of users with SMS or
MMS devices, Email or IM clients and Voice devices.

OracleAS Wireless supports different types of contents for delivery. A message can
consist of only text characters, or can be as complex as a multipart message.
Message types are identified based on the MIME, hence delivering documents such
as Microsoft Word or Adobe PDF is possible if the target device supports the
message MIME type. OracleAS Wireless provides two variants of the XMS API: the
XMSSimpleSender API supports text-only messages, while the XMSSender
advanced XMS API supports messages of any MIME type.

The following is an abridged overview of the XMS API functionality; for a complete
overview see the XMS JavaDoc.

10.2.1.1 XMSSimpleSender
oracle.panama.messaging.xms.XMSSimpleSender

XMSSimpleSender corresponds to the PushLite API from earlier OracleAS Wireless
releases. It is a simple API that works on String parameters only. It is lightweight
and very easy to use.

10.2.1.1.1 Send

public String[] sendMsg(String[] recipients, String message)

Sends out a text message (without subject) to multiple recipients of multiple
transport types. Encoding and content of the message depends on the content of the
message and the receiving device. This method provides the easiest way to send out
text messages. Other overloaded send() methods can be used to set subject, reply
to, content type encoding (MIME type) and associated key parameters.

Sending and Receiving Messages

10-6 Oracle Application Server Wireless Developer’s Guide

recipients—an array of recipients addresses. A sender's address consists of either an
OracleAS Wireless user name or a transport type and address, separated by a colon
(:).

Example 1: Email:myemail@company.com

Example 2: SMS:16505551234

Example 3: username

Valid transport types are defined in:

oracle.panama.messaging.common.TransportType

recipients—recipients' addresses (such as: email address, phone number or user
name)

Format of address:

<address string ><:transport type > [;<address string>:<transport type >]*
<address string> = <email address>|<phone number> |< subscriber ID > |< user
address >
<user address> = < brand name > ~ < user name >
<phone number> = < country code > - < area code > - < local phone number >

One line per recipient. A recipient may have multiple failover addresses and each
address must have at least one transport type. Use a colon(:) to separate address
and transport types. Use a comma(,) to separate transport types within the same
address. Use a semicolon(;) to separate addresses.

Example 1:
SMS:1-650-5551234,Voice:1-650-5551234;Fax:1-408-3456789

Example 2:
Email:myemail@foo.com;Voice:mary,Email:mary,Fax:mary;Email:bob

[transport] is one of the types defined in
oracle.panama.messaging.common.TransportType

message—body of the message. The message text can be either plain or rich text
(XHTML or OracleAS Wireless XML). XMS examines the content of the message to
detect whether rich text is used. Rich text will be transformed to the appropriate
markup for the target device.

10.2.1.1.2 getStatus

public String[] getStatus(String[] messageIDs)

Sending and Receiving Messages

Creating Messaging Applications 10-7

Gets the current status of a set of message IDs.

Returns: an array of text status strings.

10.2.1.2 XMSSender
oracle.panama.messaging.xms.XMSSender

XMSSender corresponds to the Push API from earlier OracleAS Wireless releases. It
is an API that allows users to send out more complex (multipart) messages.

10.2.1.2.1 Send

public WorkOrder[] sendMsg(Packet pkt)

Sends out a message packet.

pkt—The message packet to be delivered. Packet class will be discussed below.

Returns: a set of WorkOrders will be returned after the XMS server accepts the
request. One WorkOrder will be returned for each instance of a recipient's address.

10.2.1.2.2 getStatus

public Status getStatus(WorkOrder workOrder)

Gets the current status of a work order. A work order has one address and the
message ID of that address.

public Status[] getStatus(WorkOrder[] workOrders)

Gets the current status of a set of work orders.

oracle.panama.messaging.push.Packet

Packet class represents a generic message in the real world (For example: email). It
may have a subject, a body or a set of message bodies (multipart). The same
message may be delivered to multiple recipients of multiple transport types
(delivery types). For example: the same message can be delivered to 2 Email
recipients, 3 SMS recipients and 4 fax machines in the same packet.

Every transport type may have a sender, an alternate reply to address and a group of
recipients. The packet could have a set of optional delivery instructions, such as
priority or registered.

Sending and Receiving Messages

10-8 Oracle Application Server Wireless Developer’s Guide

To accomplish this, first construct an empty Packet instance. Then set message,
message info, sender, reply to and recipients of the packet. See the sample code
below for more details.

The XMS API provides methods to set the properties of a message and dispatch it to
a OracleAS Wireless instance. For a detailed description of the API interfaces, see
the OracleAS Wireless XMS Javadoc (oracle.panama.messaging.xms). To send
a push message, you must provide the following:

■ OracleAS Wireless server on which the Push Web Service is running. Include
the username and password, and the HTTP proxy required to access the remote
OracleAS Wireless Web Service (unless the application will be running in an
OracleAS Wireless VM).

■ Actual message to be sent and the content (MIME) type of the message.

10.2.1.3 Text-based Messages
The simplest way to use the XMS API is to send text-only messages. When used in
this manner, the XMS API behaves like the Push API from earlier OracleAS Wireless
releases, with one important difference: when sending messages to devices that
cannot display plain text (such as WAP Push), the input text is embedded in the
correct markup for the chosen device.

10.2.1.4 Multimedia Messages
XMS accepts rich text (that is, text marked-up in OracleAS Wireless XML or XHTML
markup languages supported by OracleAS Wireless). The content of the input
message is converted to fit the target device chosen. This includes both the structure
and layout of the document itself, as well as any embedded images or sound files.
In addition, XMS also processes URLs to be appropriate for the target device.
Specifically, if the target device cannot display HTTP hyperlinks, the message is
rewritten to use the Reverse Async (RevAsync) format instead, which allows the
end user to invoke links by using a request-reply messaging exchange.

In addition to transcoding the input markup, XMS also converts images and audio
as appropriate. For images, the conversion includes changing the image format, as
well as resizing and resampling the image if necessary for the target device. If a
single image is sent through a channel that supports handset provisioning (such as
SMS) it will be sent as an installable operator logo. Similarly, if a single audio clip is
sent, it is converted to a ringtone in the format appropriate to the target device.

By providing transparent support for Reverse Async, XMS allows other
applications (such as the Notification framework) to send rich content that a user
can interact with (so-called actionable notifications). These are notifications that

Sending and Receiving Messages

Creating Messaging Applications 10-9

contain the output of a OracleAS Wireless service; the user can interact with the
service by replying to the message. Actionable notifications can be thought of as
RevAsync sessions that are started by the server rather than by the user.

XMS accepts regular OracleAS Wireless XML markup, as well as the mapping of the
markup language elements (depending on the target device of the message). A rich
target device such as an MMS browser receives all multimedia elements, and will
also use any timing information present in the markup to control the duration of
multimedia content. Images can be supplied in JPEG, GIF or BMP format; if the
target device does not support the image format at hand, the image will be
converted to another format suitable for the target device. XMS also supports the
available attribute of the OracleAS Wireless XML SimpleImage tag; this means an
image can be stored in multiple formats and the best format of those available will
be chosen if possible. This is in fact the recommended approach, since automatic
conversion both introduces some computational overhead and can lead to
undesirable conversion artifacts in the final image. By pre-generating multiple
versions of a given image, one can create simpler versions of the image for devices
that support low-resolution images of limited colordepth.

10.2.1.5 Other Content
In addition to plain and rich text, XMS can send any arbitrary content. In this case,
no transcoding is performed, and it is up to the client programmer to format and
package the message correctly.

An explicit MIME-type should be specified in this case, which means the
XMSSender API is the correct API to use for this class of messages.

10.2.2 Two Way Messaging, Transport API
Transport API is a rich set of APIs that can be used for both sending and receiving.

Transport API is the client side messaging interface. This section details the
Transport API, explaining the major constructs and functionality available to
customize the Transport System.

XMS API is built over Transport API. XMS API handles sending only. In terms of
sending, transport API does not provide message transformation. However,
Transport API provides some extra features which XMS API does not have, such as
status tracking, hints and fine-tuned message routing.

When a message delivery request is submitted, the transport system performs
analysis of the recipients and routes the message to the appropriate protocol drivers
for delivery.

Sending and Receiving Messages

10-10 Oracle Application Server Wireless Developer’s Guide

To receive messages, an application must register listening end points and a
message callback listener to the transport system. An end point is in the form of an
address, such as a phone number. It identifies (to the transport system) how
messages should be dispatched. When a message is received for a targeted address,
it is dispatched to the listener associated with an end point with a matching
address.

The key interface is oracle.panama.messaging.transport.Messenger. An
instance of this interface will be returned through the Get method of
oracle.panama.messaging.transport.MessengerController which in
turn can be obtained through the TransportLocator class. This gives you access
to the rest of the package to build your messaging applications. See the Javadoc for
a complete reference of the APIs.

10.2.2.1 Destination Analysis
A single message can be delivered to multiple recipients of different communication
protocols. For example, one can send a meeting reminder to a few people using
SMS, and some other people to their email addresses. Before routing messages to
drivers, the transport analyzes and groups recipients by their delivery category.
Typically, the transport system starts its internal processing by analyzing all
destinations and groups them accordingly.

10.2.2.2 Message Routing
To send a message, the transport system must locate a proper driver to do so. The
process of finding a proper driver is called message routing. The transport system at
a particular time may have many messaging servers and protocol drivers
configured. Different driver instances may handle different categories of messages.

For example, a driver may be able to send SMS messages only. Another one may be
able to send email and fax messages only. Therefore, the transport system must use
a driver with SMS capability to send SMS messages, a driver with email capability
to send email messages. Sometimes, there may be more than one driver that can
handle the same category of messages. For example, there could be more than two
SMS drivers. One communicates with ATT’s SMSC, the other with Cingular’s SMSC.
The transport system must use ATT’s SMS driver to send SMS messages to ATT’s
devices, and use Cingular’s SMS driver to send SMS messages to Cingular’s devices.

All these decisions are made by the transport based on two sets of information. The
first set is the sending criteria specified by the application (such as delivery type,
speed, cost and encoding). Of these, the delivery type is required and can be
specified in the class destination. The other information is provided by the set of

Sending and Receiving Messages

Creating Messaging Applications 10-11

available drivers. The properties of the drivers are configured by the administrator,
such as driver speed, driver cost, encoding and delivery category.

As mentioned earlier, routing finds the best-matching driver. Some properties must
match, for example, the delivery category; some of them just find the closest match,
for example, cost and speed.

 The transport uses the following information to do the routing:

■ delivery category

■ protocol

■ carrier

■ speed

■ cost

Attribute encoding is not used in routing.

The transport will route a message to a driver with best match:

1. The delivery category, such as SMS or EMAIL.

2. The protocol, such as UCP or SMPP.

3. The carrier, such as Cingular or Telia.

4. If (speed_requested >= 0 and cost_requested >= 0), the
minimum (driver_speed -speed_requested)**2 + (driver_cost -
cost_requested)**2

or

if cost_requested < 0 the minimum abs(driver_speed - speed_
requested)

or

if speed_requested < 0, the minimum abs(driver_cost - cost_
requested)

If more than one driver meet the above criteria, the transport chooses randomly one
of them.

10.2.2.3 Providing Hints to Facilitate Transport Internal Processing
Applications can provide hints that help speed up routing and destination analysis.
For example, if you specify Email as the delivery category of all recipients, the

Sending and Receiving Messages

10-12 Oracle Application Server Wireless Developer’s Guide

transport will not have to look into each of the recipients to determine what they
are.

In principal, the required parameter to deliver a message (the Messenger.send()
methods) is Destination and Message. All others (SenderInfo, MessageInfo and
DeviceInfo) are optional. When they are specified, they will be interpreted as hints
that describe properties common to all recipients. For example, if DeviceInfo is
specified and the getDeliveryType() of this DeviceInfo instance returns
DeliveryType.EMAIL.getName() then the transport will take it as a hint that all
recipients are email addresses and no destination analysis will be performed.

10.2.3 Actionable Messages
Before OracleAS Wireless, messaging devices could not respond to Push messages
initiated from a server. For example, the notification messages sent by the OracleAS
Wireless instance were considered in their final result once they were received on a
user’s device; there was no more interaction. The inability to respond to such
messages limited the information and options provided to device users through
Push messaging.

10.2.3.1 Components Overview
Integrating XMS and Async exposes an API that enables content providers to create
Push messages which can be acted on for messaging channels such as: SMS, Email
and Instant Messaging. Figure 10–2, "Actionable Messages" the relevant
components and their relationship.

Figure 10–2 Actionable Messages

Sending and Receiving Messages

Creating Messaging Applications 10-13

10.2.3.1.1 XMS Client

XMS Client is a component which calls the XMS API to deliver messages and
content. There are several requirements on the kind of document it can generate in
order to make a Push message actionable:

■ The document must be in OracleAS Wireless-supported content markup
format. For this release, only OracleAS Wireless XML is supported for
actionable messages.

■ The URL link used in the document could be in HTTP or OMP protocol. The
OMP is a virtual URL to identify a service in an OracleAS Wireless instance. The
benefit of using OMP URL is that it uniquely identifies a service created in
OracleAS Wireless. Thus, any change of a service OID does not affect the user
program.

10.2.3.1.2 XMS

The role of XMS for actionable messages is to determine if a document being sent
must be in persistent state. One example is to push a document with an embedded
URL to an SMS device. Since the device does not have a browser to process the URL
link, the state must be cached in the server. The XML achieves this by calling the
underlying component, RevAsync. The document is subsequently transformed to
the device result and sent out.

10.2.3.1.3 RevAsync

RevAsync is a newly created entity under the XMS component. Its main function is
to receive an OracleAS Wireless-supported markup document as input and analyze
the document to locate all the elements and attributes which need to be cached. The
cached objects are persisted into the database and are used by Async to reconstruct
the session state once the device user replies.

10.2.3.2 Actionable Message Flow
To enable an actionable message, the content provided to XMS must be in a
OracleAS Wireless-supported markup document. For this release, only OracleAS
Wireless XML is supported.

There are two ways to trigger an actionable message:

■ Create a Notification service so that the service is invoked whenever a
user-specified condition is fulfilled. The service returns an OracleAS Wireless
XML result, possibly with some hyperlinks embedded within the document.

Sending and Receiving Messages

10-14 Oracle Application Server Wireless Developer’s Guide

■ Directly push an OracleAS Wireless XML document through XMS API. The
document should contain some menu or form construct so user interaction can
be applied. To address the service to be invoked on user reply, it’s use the OMP
protocol for the URL values in the document, then the developer does not need
to be concerned with the OID change of a service.

Receiving an OracleAS Wireless XML input, XMS traverses the document for any
element that could trigger further user interaction. A typical example is the
SimpleMenu element which presents a hyperlink for a device user to select. A
persistent state and its corresponding transaction ID are generated once such a
situation is detected. RevAsync adds an extra instruction line to the result message
indicating the format and the transaction ID to be used for user reply. The ID must
be part of the reply parameters if the user decides to respond. This way, Async is
able to restore the session state by the transaction ID once it receives an actionable
message reply.

To retrieve the persisted user state, Async uses the following methods to
differentiate between the user reply of an actionable message and the typical Async
requests:

1. A user replies with a site-wide unique Actionable Message (AM) Short Name.
The AM short name is a site-wide unique system parameter. Async
differentiates the request being a reply to an actionable message if the command
line starts with an AM short name. With this option, the user reply should
conform to the following format:

<AM short name> <transaction ID> <parameters>

For example, a user may receive the following message for stock notifications:

To respond, type ’am 2 <link selector>’
[orcl] L 15.25 B 15.20 A 15.30 O 15.10
1 News
2 Detail Quote

A user would reply to this message with the content am 2 2 to get the Detail
Quote option. Since am is the site-wide unique short name, Async will interpret
the parameter right after the short name as the transaction ID and use it to
retrieve all the persisted state.

2. Set the From address of the push message as a Dedicated Actionable Message
Access Point. An Async access point can be configured as AM-dedicated,
thereby causing all of the requests to the access point to be interpreted as the
Actionable Message Reply. The user does not need to specify an Actionable

Sending and Receiving Messages

Creating Messaging Applications 10-15

Message Short Name (as in the example above, replying 2 2 to get the Detail
Quote).

10.2.3.3 Enabling Actionable Messages
To enable actionable messages, follow these steps:

1. Prepare an OracleAS Wireless document to be sent out.

As discussed earlier, the document can be either generated as the output of a
notification service, or a document being pushed out by an XMS client. The
document should contain action elements (such as SimpleMenu or
SimpleForm, on which device users can act). A sample document is shown
below.

<SimpleResult>
 <SimpleContainer>
 <SimpleText>
 <SimpleTextItem>Approve/Disapprove John Doe’s expense report #1234</SimpleTextItem>
 <SimpleTextItem>Upgrade 256 MB memory on desktop pc -
$30<SimpleBreak/></SimpleTextItem>
 </SimpleText>
 <SimpleMenu name="" title="">
 <SimpleMenuItem
target="omp://expensereply?answer=approved&reportNo=1234">Approve</SimpleMenuItem>
 <SimpleMenuItem
target="omp://expensereply?answer=disapproved&reportNo=1234">Disapprove</SimpleMenuItem>
 </SimpleMenu>
 </SimpleContainer>
</SimpleResult>

omp://expensereply identifies the service to be invoked once such an action
item is triggered on a user reply message.

2. Create Application Links addressed in pushed document.

Application Links addressed in the pushed document must be created with the
OMP value set. For the example above, the OMP value should is
omp://expensereply

3. Create Access Points

At least one access point must be created for each supported delivery channel.
The access point can be set as actionable-message-dedicated if it is only reserved as
the entry point of the user reply of actionable message. Or, it can also be an
access point, which allows messages from both Async requests and replies of an

Building Async Applications

10-16 Oracle Application Server Wireless Developer’s Guide

actionable message. The from address of the push message is set to the access
point configured so it can be routed to the Async entry point when a user
replies. If there are multiple access points set for the same channels, the one
with a dedicated flag set has precedence.

10.2.3.4 Configuration Parameters
Below are the supported configuration parameters for Actionable Messages. See
OracleAS Wireless Administrator’s Guide for detailed configuration steps.

10.3 Building Async Applications

10.3.1 Asynchronous Listener

10.3.1.1 Asynchronous Listener Architecture
OracleAS Wireless presents a framework and a runtime environment for
developing wireless and voice applications accessed through a browser-based
device, such as a device with a WAP or XHTML browser, or through
messaging-protocol-based devices such as mobile phones with SMS. Async is the

Table 10–1 Configuration Parameters of Actionable Message

Parameter Name Description

Short Name for Replying
an Actionable Message

This is the site-wide unique short name to identify a reply of an
Actionable Message if both Async requests and replies of
Actionable Message share the same access point as the entry
point.

Maximum Active
Transaction Number per
Device

This parameter defines the maximum number of active
persistent transactions per device. Once a user replies to an
actionable message, the persistent transaction addressed by the
message gets deleted.

Expiration Time for
Non-Active Transaction

This parameter specifies the expiration time (in number of
days) for a non-active transaction. Once expired, the
transaction will be removed from persistent store.

Access Point Dedicated for
Actionable Message Reply

A flag to indicate if an Access Point is dedicated for Actionable
Message Reply. Once set, all actionable Push messages will
have the From address set to the access point. The instruction,
added to the Push message, on how to reply to an actionable
message, will have the short name omitted. Users only need to
reply with the transaction ID and the application parameters.

Building Async Applications

Creating Messaging Applications 10-17

Wireless component that enables the messaging protocol-based devices to access
these wireless applications.

Conventionally, the entry point into an application server is through the HTTP
protocol. This limits applications built on an application server to only clients with
Web capability. This server restriction is a problem for mobile market users, because
the vast majority of mobile users does not have, or are not enabled, with Web
access. These users, however, are almost certain to have some kind of message
capabilities (such as e-mail or SMS). Consequently, developers are faced with the
dilemma of building applications specifically for users depending on their
capability, or ignoring them because the application server cannot deal with the
mobile market.

OracleAS Wireless solves this dilemma for developers without them having to do
anything at all. With the introduction of Async, mobile applications cannot only be
accessed through the usual HTTP protocol, but through any other messaging
protocol (such as e-mail or SMS) as well. Rather than worry about writing an
application to fit a certain protocol, developers can instead focus on building their
application logic. OracleAS Wireless establishes the proper connection and
performs session management, and the interpretation of user requests. A mobile
application is invoked the same way regardless of which protocol handles the
incoming requests, offering complete transparency to application developers to
allow access to their services.

10.3.2 Key Challenges

10.3.2.1 Multiple messaging transport protocol support
One of the most obvious challenges is supporting multiple protocols. It is not
desirable to build the same functionality to work with e-mail, then SMS, then some
other protocols. OracleAS Wireless offers access to the same application regardless
of the protocol used by clients. Hence the immediate challenge is to be able to
support multiple protocols uniformly.

10.3.2.2 The asynchronous nature of messaging protocols
In contrast to the HTTP protocol, (commonly referred to as the synchronous
protocol) messaging protocols such as SMS or e-mail are asynchronous. It is
asynchronous because unlike HTTP, they are not based on a "request and response"
model. A single atomic operation is typically one way. For example, when you use a
Web browser, you enter a URL and make the request, then you wait for the result to
come back. In messaging protocols (such as SMS) sending a message itself

Building Async Applications

10-18 Oracle Application Server Wireless Developer’s Guide

completes one operation. Most applications respond to user requests so HTTP is
usually adequate. To enable the same application be accessed through
asynchronous protocols presents a challenge on how such behavior can be
mimicked with protocols such as SMS or e-mail.

10.3.2.3 Supporting Sessions
Another big challenge is that most applications are session based; multiple requests
and responses are typically required to complete a task. Applications are able to
maintain sessions in the Web world because the client, a Web browser, has built in
capabilities such as cookies to facilitate session semantics. This is not the case for an
e-mail or SMS client. They do not have any such ability built in to support
conversational applications.

10.3.2.4 User Navigation
A Web browser offers a User Interface for navigating through applications
(examples include clicking on a hyperlink and traversing through a menu or a
series of steps to complete certain functionality). Clients that work with other
protocols such as SMS or e-mail typically do not have similar navigation power. The
challenge here is to offer similar navigating capability to such clients so that
applications can be independent of the protocols.

10.3.2.5 Naming/Addressing an Application
In the Web world, applications are typically assigned a URL. The URL is how the
application can be identified and requested. Clients for messaging are typically
plain text devices; although there is no convention on how to name an application,
consistency across protocols is needed.

10.3.3 Key Solutions
Async combines functionality of a HTTP server and portions of a Web browser to
provide its functionality.

10.3.3.1 Multiple Transport Protocol Support
This challenge is a relatively easy one. Built on top of the OracleAS Wireless
transport system, support for multiple transport protocols is achieved by the nature
of the transport system itself. Async registers as an application to the transport
system to send and receive messages. It further registers one or more addresses for
each of the protocols it is serving in order to interact with users on those protocols.
For example, it can register async@yourcomany.com for e-mail and 1234567 for

Building Async Applications

Creating Messaging Applications 10-19

SMS. Then async@yourcompany.com and 1234567 become the URIs for their
respective protocols similar to http://yourcompany.com in the Web world.

Async itself does not consider the incoming protocols; it is designed to send and
receive messages by the means that it is registered to use. The payload (content) of
the messages are what Async interprets and acts upon.

10.3.3.2 The asynchronous nature of messaging protocols
Async builds logic similar to an HTTP listener to present synchronous semantics
over asynchronous protocols. It achieves this by acting as a client to the application
that the device requested. Async makes a request to the application on behalf of the
user, waits and processes the response from the application, then formats the
response and presents it back to the users. To users, it appears as if it is the response
from an earlier request.

10.3.3.3 Supporting Sessions
Upon receiving requests from a user, Async creates a session for the user to enable
conversational applications to function. Unlike in HTTP, where session information
is kept by the browser (or cookie), all session states are kept in the backend by
Async.

10.3.3.4 User Navigation
Async transforms elements such as forms or menus, and presents a navigation
command for end users. When elements such as forms are returned by an
application, Async retains the format of the form in the backend, and determines
what action to take when the form is submitted with all of the other necessary
information. When this user (using the set of Async-specified commands)
completes and submits the command, Async makes a request (based on the current
user information stored in Async) and processes the result again on behalf of the
user. This is akin to hyperlinks stored in the backend when a user clicks on the face
of the link.

10.3.3.5 Naming/Addressing an Application
Just as in assigning a URL to an application in the Web world, using Async requires
that a short name be assigned to an application so that it can be Async-enabled. For
example, assume the stock quote application has been assigned the path:
/finance/quote and can be accessed as http://mycompany.com/finance/stock.
Through the Content Manager, one or more short names can be assigned to the
application (for example, st.). Now any messages received by Async that begin with

Building Async Applications

10-20 Oracle Application Server Wireless Developer’s Guide

st signals a request for the stock quote application. A user can send st orcl (orcl is
the stock ticker symbol for Oracle Corporation) to an Async access point to which
Async is configured to listen, such as async@mycompany.com for e-mail or 1234567
for SMS, and get back the stock quote for Oracle Corporation.

Optionally, service access points can be created to identify an Async application.
Through Content Manager, you can also associate an e-mail access point
(stock@mycompany.com) and an SMS access point (123FINANCE) to the stock
quote application. Once this is done, sending just orcl as an email to
stock@mycompany.com or as SMS message to 123FINANCE results in receiving the
stock quote of Oracle Corporation.

10.3.4 Async Request Authorization
Async differentiates the user issuing a request into two categories: guest or
registered. Upon receipt of a user request by Async, the source address of the
request message is used to reverse-lookup an OracleAS Wireless user for
authentication. A user object can be located if a user has a device address registered
under his or her profile. This address is the same as the source address of the
request message. The located user object is then bound to a newly authenticated
session created by the request. Otherwise, a guest user object is bound to the
session. Any applications which are authorized to the user are accessible to requests
issued from the device.

Only those applications belonging to the guest group are accessible to a guest user.
Accessing a non-guest application triggers a returned form challenging the user for
name and password. A valid OracleAS Wireless username/password supplied by
the user enables the previous session to be upgraded to an authenticated one with
the user object identified by the name to be bound. Alternately, a guest user can log
in explicitly through a login command,!L (followed by a user name and password)
to avoid being challenged.

10.3.5 User Interface and Navigation Commands
As discussed earlier, messaging clients typically only present plain text and do not
offer conversational navigation capabilities. Async transforms and formats
responses from applications to a certain presentation to enable such capabilities.
Async includes a set of presentation formats and navigational commands similar to
what a Web browser has done for the Web world. Hence when a user invokes
applications using Async, he or she sees the response in the format transformed by
Async. Further interactions with Async would have to comply with the format
expected by Async.

Building Async Applications

Creating Messaging Applications 10-21

This section discusses the commands that users can issue to Async. Issuing a
command is simply sending a message with the correct format. The command text
can be put into a subject line or message body.

System Commands
■ !H: (Help command) provides general help on the command usage

■ !E: (Escape command) clears current form state.

■ !S: marks the end of command sequence. A message may contain a sequence of
commands, each separated by a line feed or command delimiter.!S marks the
end of a command sequence. No interpretation will be done on text past the !S
mark.

■ help: the application level help. If no parameter is provided, the all of the Async
application help displays. Users can also provide an application short name as
the parameters to acquire the help on a particular Async-enabled application.

■ !L <username> <password>- to sign on to the system with the user name and
password.

■ !O - to terminate a session.

Application Invocation Commands
These commands invoke an application, perform menu selection and fill
parameters. There are no reserved command symbols for the application invocation
and form commands. Certain commands, such as form command and menu item
selection, can be invoked only when there is a current form/menu state maintained
in the user’s session. More details on form/menu state will be discussed later in this
chapter.

■ [<shortname>|<menuitem>] <parm1><parm2> . . . to invoke an application.
The first field provided could be a application short name or a menu item
number. A menu item can be provided only when the user previously received
a menu message from an application result. The menu state is maintained in the
user session of Async. A user can make a selection based on the menu to trigger
further actions. More detail on current menu state is explained later in this
chapter.

■ <parm1><parm2> . . . to fill the parameter of a form. When a user invokes an
application without providing a required parameter, a form may be returned
requesting the user to fill in the parameter values. This creates a current form
state in the user session, which expects the user to send the parameter
sequences in the subsequent command. The parameter values should be

Building Async Applications

10-22 Oracle Application Server Wireless Developer’s Guide

supplied on the command line in the same sequence as the parameters listed on
the previously returned form.

10.3.6 Configuration and Customization

10.3.6.1 System Configuration Parameters
A list of site and application configuration parameters enable the system
administrator or application developer to customize Async site- and application-
level behavior through the Oracle Enterprise Manager (OEM) console and the
OracleAS Wireless Tools. For more information, see Section 5.3.5.4 in Chapter 5,
"Developing Services".

Table 10–2 Service Configuration Parameters

Name Default Semantics

Async
Command Line
Syntax

Help message sent to users to describe the application, and
how to use it.

Delimiter ’ ’ (blank
space)

The delimiter separating each parameter value. For example, a
horoscope service with the short name ho, and the delimiter ’,’
(comma). A user would supply the command ho gemini, aries
to get the horoscope result for both Gemini and Aries.

Silent Flag False Select this flag for applications that should not send the
response message back to the device. This is a static way to
mark an application as silent. Another option to dynamically
disable the application result is to set a flag in the result
document with a meta element having the name attribute of
'ASYNC_NO_RESPONSE' and content attribute of 'true'. An
example of silent meta element for OracleAS Wireless XML is
<SimpleMeta name="ASYNC_NO_RESPONSE"
content="true" />

Variable
Argument
Support

False This flag is useful when a user request may contain more
parameter values than the corresponding Async application
parameter. All of the additional values will be appended as the
value to the last parameter.

Sessionless False This flag can be optionally selected for applications which do
not provide conversational user interaction. Such applications
always return the final result on application invocation,
meaning that the result document does not contain any
hyperlink or form control. The session will not be maintained
for the device which requests to access such an application,
therefore introducing some resource saving.

Building Async Applications

Creating Messaging Applications 10-23

Table 10–3 Site Configuration Parameters

Name Default Semantics

Working
Threads

10 The number of working threads.

Filtered
Subject Line
Prefix

re:,fw:,
[fwd:,
fwd:

Specify a list of prefixes in the email subject line to indicated that
the message subject lines which start with these prefixes should be
ignored and not be interpreted as user commands. For example,
specify the prefixes Re and Fwd.

System help
command

!H Provides general help on command usage.

Escape
command

!E Clears current form state.

Stop
command

!S Marks the end of a command sequence.

Apps help Help Provides service-level help.

Login
command

!L Enables user to sign on to the system with the user name and
password.

Logoff
command

!O To sign off a user session.

Command
Line
Delimiter

; Command separator for a request with multiple commands.

Command
Prefix

. A symbol indicating that the text immediately after the symbol is
an Async short name instead of a parameter value. This is useful
when a user wants to escape out of a form state without having to
use ’Escape command’. For example, the command .stk orcl with
the period (.) as the command prefix.

Help
Header

Usage - The header of the applications help result.

Help Footer The footer of the applications help result.

Short Name
for Default
Application

Specify the short name of the application this is invoked if the user
request is empty. If the value is not specified, then the application
service help page will be returned.

Building Async Applications

10-24 Oracle Application Server Wireless Developer’s Guide

10.3.6.2 User Customization Parameter
Through the Wireless Customization Portal, users create their own aliases as the
short names to invoke Async applications. A user short name can be an alias that
points to an application, or it could be an alias representing a sequence of Async
short names.

For example, a user may define an alias (s) to represent the string, stk, which is the
short name for a stock application. When the user issues an Async message with
content, s orcl, to invoke the stock application, they receive a stock quote for Oracle
Corporation (orcl is the stock ticker symbol for Oracle Corporation). A string (tw),
can be created as the alias for a string value, traffic ny;weather ny, so two
applications, traffic and weather, can be invoked by inputting two characters.

10.3.7 Application Invocation Examples

10.3.7.1 Invoking the Application by the Application Short Name
All Async-enabled applications should be assigned short names to enable end user
access. The short name should uniquely identify an application on the entire site. To
invoke an application, a message is sent to a site access point, such as
info@oraclemobile.com, to which the Async Listener is configured to listen. The
command line has the format:

<Svc Short Name> <parm1> <parm2> . . .

In the following example, a message is sent to the site access point:
info@oraclemobile.com, to invoke a stock quote application with the short name, st.
The application requires a stock symbol as its parameter (for this example, it is
ORCL).

Figure 10–3 Invoking by Service Short Name

10.3.7.2 Invocation through Application-Associated Access Point
Each application may have application access points associated with it. For
example, an Email address, stock@oraclemobile.com, can be used to identify a stock
application. Since the application has been identified in the destination address of
the request message, there is no need to specify the application short name in the

Building Async Applications

Creating Messaging Applications 10-25

command line. Only the application parameters, such as the stock symbol, are
required in the command line.

All of the system commands (for example, help) can still be issued to the
application-associated access point. The Async Listener interprets them in the same
way they are sent to the site access point.

Figure 10–4 Invoking by Service-Associated Access Point

10.3.7.3 Menu Capability
Features are presented similar to the HTTP model. An application invocation may
trigger the return of a message with the menu. Each menu item is prefixed with a
number. Users are able to make selections by issuing another message whose
content contains the menu item number. This extends the application capability and
enables improved user interaction. A yellow pages application having a short name
of yp expects two user parameters: category and area. Users invoke applications by
providing the values, for example, burger and home (a landmark for the user). The
application searches for all the hamburger restaurants in the home area. A returned
message from the application result contains a name list of burger restaurants. The
user then issues another message to get detailed information on selected
restaurants.

Figure 10–5 Menu Capability

Building Async Applications

10-26 Oracle Application Server Wireless Developer’s Guide

10.3.7.4 Form Capability
A form is the result of a application invocation requesting user input. The ideal user
interaction for Async is when the user enters the input parameters on the command
line instead of having to fill in the form, which requires more message round trips.

Figure 10–6, "Form Capability" demonstrates the possible interaction of a phone
book application. The phonedit command, which enables users to search and edit
the phone number for a particular user, expects a name as its parameter. (For the
following example, jdoe is this parameter) The information of jdoe is returned with a
menu, enabling the device user to edit the phone number or remove the user. There
are two options for editing the phone number:

■ Make a selection without entering any parameter—this is represented in box 2a.
A form is returned prompting the user to enter the new phone number. The
device user creates a new message with the message body containing the new
phone number.

Or

■ Enter the selection with the required parameters. Box 2b demonstrates the
scenario. The device user is aware that a form should be returned in response to
their selection 1 (Change phone). Therefore, the parameter value (phone
number) is supplied together with the selection. This saves a message round
trip.

Figure 10–6 Form Capability

Building Async Applications

Creating Messaging Applications 10-27

10.3.7.5 Form Field with Select Options
A form may present fields, which allow users to make either single or multiple
selections, similar to the check box or pull-down menu construct for HTML. To
simplify selection for the device user, each selection option is prefixed with a
number. The user fills in those fields by responding with the number prefix for the
items he or she chooses. The field which allows multiple selections is presented
with a input marker, [..]. This differentiates this field from a single selection field,
which is represented by the single selection marker, []. The values for the user
responses should be surrounded with quotation mark if multiple selections are
made.

The following figure demonstrates the Select Form fields: Gender, a single selection
field and Sports, a multiple selection field.

Figure 10–7 Form Field with Select Options

10.3.7.6 Current Menu State
Menu navigation is possible since a session is maintained for each user. The term
current menu identifies the latest menu that a user received from Async. The state of
the current menu is kept in the user session on Async.

A user’s menu selection always applies to the current menu. If a menu has not yet
been received for the user, then Async attempts to locate an application whose short
name is the same as the number provided by the user. An error is returned when no
such application is found.

An application invocation through short name or access point automatically cancels
the menu state created by the previous application invocation. As illustrated in
Figure 10–8, a menu returns as a response to invoking the phonedit application. A

Building Async Applications

10-28 Oracle Application Server Wireless Developer’s Guide

message for requesting the stk service is subsequently issued. It clears the menu
state created by the invocation of the phonedit application. An attempt to make a
menu selection triggers an error message from Async.

Figure 10–8 Current Menu State

10.3.7.7 Current Form State
A current form state is created in the user session whenever the user receives a form
message. Form parameter values can be supplied by subsequent user requests to fill
the parameter requested from the previous form message. If the user decides not to
fill the form but instead to invoke another application, then the Escape command
can be issued to cancel the current form state. Once the form state is clear, any form
parameter values issued by the user are considered invalid. An error message
should be returned in response to a form parameter value without a current form
state. Alternatively, a user can issue a command prefix with a short name as a
shortcut to clear the form state followed by the invocation of the service identified
by the short name.

Figure 10–9, "Current Form State" illustrates a form state example. The device user
invokes the phonedit application without providing any parameters. A form
message is returned to the user expecting the user to fill in the search name. If the
device user decides to invoke another application (for example stk), the first step is
to clear the form state so that Async will not treat the command stk as the name
value expected from the phonedit application. Then, a new stk command can be
issued. These two steps are combined into one message by separating the two
commands with the default command separator (;).

The short name, stk, when issued with the command prefix, such as a period (.),
clears out the form state with fewer keystrokes.

Building Async Applications

Creating Messaging Applications 10-29

Figure 10–9 Current Form State

10.3.7.8 Multiple Commands in One Message
Multiple commands can be issued from one message. They can be issued from the
same line, each command separated by the configurable command separator
(default [;]). Or, commands can be on different lines. The first blank line or stop
command (!s) encountered marks the end of the command sequence. No command
interpretation will be done on text after the mark.

Figure 10–10 Multiple Commands in One Message

10.3.7.9 Parameter Separator
Async applications can require multiple parameters. The default parameter
separator is a blank space. If a parameter value contains space within it, then it can
be enclosed by double quotes to represent a single parameter value. The parameter
separator is configurable at the application level.

Figure 10–11 illustrates an application that provides directions. This application
expects both the from and to (destination) addresses. The from address is provided

Building Async Applications

10-30 Oracle Application Server Wireless Developer’s Guide

with double quotes to enclose the whole value. The to is supplied as a landmark,
home, from the user profile. The second message sent from the user is to request
traffic information application. The application is configured to use a comma (,) as
the parameter delimiter; users provide the parameter values with (,) to separate
them.

Figure 10–11 Parameter Separator

10.3.8 Writing Async Applications
Async applications are developed in the same manner as browser-based
applications. An application provider receives user parameters from the device
through HTTP protocol, and responds with the result in OracleAS Wireless XML or
XHTML/XForms format. The requirement on the Async client is low; only the
ability to send and receive text messages is needed. Because of this, Async does not
support all tags. For details on those Async-specific interpretations of the supported
tags, and the ways to author documents for this channel, see Chapter 8, "Authoring
Mobile Browser and Voice Applications". See also: Chapter 3, "OracleAS Wireless
Developer Kit".

Developers may, at times, need to acquire the device information of a service
request for accounting or logging purposes. This information can be located
through the HTTP header (if the service is created based on an HTTP adapter). The
two relevant user device headers are:

■ x-oracle-user.deviceaddress

■ x-oracle-user.deviceaddresstype

XMS Message Center

Creating Messaging Applications 10-31

10.4 XMS Message Center
The XMS component includes the MMS Center (MMSC) functionality
out-of-the-box, supporting the MM1 message notification protocol. If the recipient
device has an MMS browser, a notification message is sent to the browser, and the
message is retrieved using HTTP. The content is stored and served out by OracleAS
Wireless. To support MMS, the only external component needed is a regular SMSC
for transmitting the notification message.

When the MMS browser receives the notification message, it contacts the XMSC
using HTTP, as per the MM1 spec. The message is served out in encoded MMS
format.

XMSC also supports MO (Mobile Originated) messages to another phone. In that
case, the message will be stored in the XMSC and a notification message is sent to
the target device as above.

XMSC also supports message storage and notification for other messaging channels.
For example, if a user has a device that only has MMS capability. If a message is sent
that contains multimedia content, XMS will send a text-only SMS message
containing a URL, which the user can input into a regular Web browser in order to
view the message.

10.4.1 Configuration
In order to use the XMSC functionality, complete the following steps.

10.4.1.1 Server-Side
■ An SMS driver must be set up. See Section 10.6, "Transport Component" for

information on how to set up drivers in general. This section also describes the
details of configuring the drivers bundled with OracleAS Wireless.

■ Set up the site hostname and port (if not already configured):

Go to System > Wireless Server > Site Administration > HTTP,
HTTPS Configuration.

Under the URL Section, add the host name and port.

■ If necessary, enable the XMSC (enabled by default):

Go to System > Wireless Server > Site Administration, and
expand Component Configuration. Click XMS Configuration.

Under the XMS Center Section, mark the Enable XMSC checkbox.

Device Channel Selection

10-32 Oracle Application Server Wireless Developer’s Guide

10.4.1.2 Client (Handset) Side
For Mobile Terminated (MT) messages (messages sent to a device), the above
configuration is sufficient. As XMSC is a full MMSC, it also supports MO (Mobile
Originated) messages, that is, messages sent from one phone to another using
OracleAS Wireless as the intermediary. In this case the phone must be configured as
follows:

The MMS browser must be configured to use the OracleAS Wireless instance as the
outgoing message server. The exact steps to follow depend on the specific phone.
The following are the steps to follow for the Sony Ericsson T68i:

1. Select Messages

2. Select MMS (2)

3. Select Options (5)

4. Select Message Server (6)

5. Enter the URL of the MM1 listener servlet. This will be of the form:

http://<hostname>:<port>/xms/mm1

10.5 Device Channel Selection
When the recipient is specified as a user name, the XMS runtime will determine
what device and channel to use, depending on the user’s available devices, as well
as the user’s current contact rules.

10.5.1 Automatic Device Selection
If the user has a number of different devices, the XMS runtime will select the best
device and channel to use. The channel chosen will depend upon the user
preference order as well as the content of the message. For example, imagine a user
that has a cell phone with both SMS and MMS messaging capability. If a plain text
message is sent to the user, the SMS channel will be chosen, as it is sufficient for that
message, and since sending messages over SMS is usually cheaper and faster than
through MMS. On the other hand, if the message has multimedia content, XMS will
try to send the message through MMS.

Note: You must be able to connect to the hostname from the
phone using the dial-up or WAP settings provided in the phone.

Transport Component

Creating Messaging Applications 10-33

10.5.2 Presence Integration
In OracleAS Wireless, each user can have a Presence setting, which specifies the
user’s location and associated contact rule.The contact rule states the user's
preferred delivery channel at that point in time. For more information about
Contact Rules, see Chapter 15, "Enabling User Customization".

If a user has set a contact rule, that rule will be given preference over the automatic
channel selection outlined above. Additionally, a contact rule may specify blackout
periods where the user does not wish to receive messages. If the blackout period is
set in the contact rule, XMS will delay delivery of the message until after the
blackout period.

10.6 Transport Component
The Transport Layer is the foundation of the OracleAS Wireless messaging system.
It contains the Transport API, Transport Server and Driver API. This section
discusses the pre-built transport drivers, how to develop new drivers and how to
extend the Transport Server.

The current Transport API is compatible with previous releases (new features
created in this release are not, of course, available if you are using previous
versions); the current, enhanced Driver API is incompatible with previous releases.
However, all the pre-built drivers for previous releases are enhanced accordingly in
this release. Previous releases of the pre-built driver cannot be used with this release
of the Transport Server; only use current pre-built drivers. In addition to interface
enhancements, the pre-built drivers include many new features.

Your own custom-built drivers from previous releases can be upgraded to work
with the current Transport Server, provided the driver implements the new driver
interface. The driver logic is not significantly changed; the change are confined
mainly to the interface.

10.6.1 Pre-built Drivers

10.6.1.1 Nokia MMS Driver
This driver provides the ability to send and receive MMS messages to and from a
Nokia MMSC (Multimedia Messaging Service Center). It requires the Nokia MMS
Java Library v1.1. The driver opens two TCP connections to the MMSC, one
connection for sending and the other for receiving messages.

Transport Component

10-34 Oracle Application Server Wireless Developer’s Guide

10.6.1.1.1 Required Third-Party Software This driver requires the Nokia MMS Java
Library v1.1 (MMSLibrary.jar) that is available from Forum Nokia
(http://www.forum.nokia.com). You must add this library to the CLASSPATH in
$ORACLE_HOME/opmn/conf/opmn.xml (UNIX) or
$ORACLE_HOME\opmn\conf\opmn.xml (Windows).

10.6.1.1.2 Class Name

oracle.panama.messaging.transport.driver.mms.NokiaMMSDriver

10.6.1.1.3 Configuration

mms.nokia.account.id—The Nokia Account ID or Phone Number. This is
required.

mms.nokia.mmsc.url—The Nokia MMSC URL. This is required.

mms.nokia.debug—Enable logging extra debug information to a file. Options:
true (debug enabled), false OR leave blank (debug disabled).

mms.nokia.log.filename—Log filename for extra debug information. The
default filename is NokiaMMSDriver.log.

mms.nokia.receive.host—The logical local hostname or IP address. If not
present, it is derived from the local host.

mms.nokia.receive.port—Port for receiving MMS messages from MMSC. The
default is 7000.

mms.nokia.receive.mode.async—Set Asynchronous Mode for receiving MMS
messages from MMSC. Options: true (enable), false OR leave blank (disable). For
further information about asynchronous mode, see the documentation that came
with the Nokia MMS Java Library v1.1.

10.6.1.2 CMG MMS Driver
This driver provides the ability to send and receive MMS messages to and from a
CMG MMSC (Multimedia Messaging Service Center). The driver uses the CMG
MMSC API for VAS v1.01.

10.6.1.2.1 Required Third-Party Software

This driver requires the CMG MMSC API for VAS v1.01 (mmscapi.jar and
mmscapi.war) available from CMG (http://www.cmgwds.com). You must add
the mmscapi.jar library to the CLASSPATH in

Transport Component

Creating Messaging Applications 10-35

$ORACLE_HOME/opmn/conf/opmn.xml (UNIX) or
$ORACLE_HOME\opmn\conf\opmn.xml (Windows).

10.6.1.2.2 Class Name

oracle.panama.messaging.transport.driver.mms.CMGMMSDriver

10.6.1.2.3 Configuration

■ mms.cmg.account.id

The CMG MMSC Account ID or Phone Number. This is required.

■ mms.cmg.account.password

The CMG MMSC Account Password. This is required.

■ mms.cmg.config.file

The path to the core configuration file for the CMG MMSC API. This is
required. For details regarding the contents of this file, see the User Manual that
is packaged with the CMG MMSC API distribution. We have included a sample
configuration file ($ORACLE_
HOME\wireless\messaging\drivers\cmg\CMGMMSDriver.cfg) with this
driver.

■ mms.cmg.debug

Enable logging extra debug information to file. Options: true (debug enabled),
false OR leave blank (debug disabled).

■ mms.cmg.billing.category

MMSC Billing Category (optional). This value is used to send custom billing
category information to the MMSC. For details and examples of the billing
category, see the User Manual that is packaged with the CMG MMSC API
distribution.

■ mms.cmg.billing.price

MMSC Billing Price Value (optional). This value is used to send custom billing
price information to the MMSC. For details and examples of the billing price,
refer to the User Manual that is packaged with the CMG MMSC API
distribution.

10.6.1.2.4 Additional Configuration

Transport Component

10-36 Oracle Application Server Wireless Developer’s Guide

To configure the driver to receive MMS messages, you must perform these
additional steps:

1. Package the mmscapi.war file into a cmgmmsc.ear file as follows:

■ Unzip $ORACLE_
HOME\wireless\messaging\drivers\cmg\cmgmmsc.ear.zip into an
empty directory. This creates the following directory structure:

* \META-INF\application.xml

* \META-INF\MANIFEST.MF

2. Copy mmscapi.war into this directory and rename this file cmgmmsc.war.
This creates the final directory structure:

■ \META-INF\application.xml

■ \META-INF\MANIFEST.MF

■ \cmgmmsc.war

3. Zip this directory structure and rename the zip file cmgmmsc.ear.

4. Copy cmgmmsc.ear to $ORACLE_HOME\wireless\j2ee\applications\

5. In $ORACLE_HOME\wireless\j2ee\config\wireless-web-site.xml, add:

<web-app application="cmgmmsc" name="cmgmmsc" root="/cmgmmsc"
load-on-startup="true"/>

6. In $ORACLE_HOME\wireless\j2ee\config\wireless-server.xml, add:

<application name="cmgmmsc" path="../applications/cmgmmsc.ear"
auto-start="true" />

7. Start the OracleAS Wireless instance, which auto-deploys the cmgmmsc.ear
file.

8. After the auto-deploying is done, in $ORACLE_
HOME\wireless\j2ee\applications\cmgmmsc\cmgmmsc\WEB-INF\web.xml
edit the trace directory and filename by adding the following section:

<servlet-mapping>
<servlet-name>
 HttpReceive
</servlet-name>
<url-pattern>
 /HR
</url-pattern>

Transport Component

Creating Messaging Applications 10-37

</servlet-mapping>

9. Backup (rename the file’s extension to anything except .jar)
$ORACLE_HOME\wireless\lib\log4j-core.jar and $ORACLE_
HOME\wireless\lib\log4j.jar.

Copy
$ORACLE_
HOME\wireless\j2ee\applications\cmgmmsc\cmgmmsc\WEB-INF\lib\log4j
-1.2.5.jar
to
$ORACLE_HOME\wireless\lib\log4j-core.jar.

10. Restart the OracleAS Wireless instance.

10.6.1.3 MM7 Driver
This driver provides the ability to send MMS messages to a MMSC (Multimedia
Messaging Service Center) using the MM7 protocol based on the specification of
3GPP TS 23.140 V5.3.0.

10.6.1.3.1 Class Name

oracle.panama.messaging.transport.driver.mms.MM7Driver

10.6.1.3.2 Configuration

mms.mm7.url—The URL to access the MMSC/MM7. This is required.

mms.vaspid—(Optional) Identifier of this application (VASP) for the MMSC.

mms.vasid—(Optional) Identifier of the originating application. Example: News.

mms.local.hostname—The logical local hostname or IP address. If not present, it
is derived from the local host.

mms.local.port—The local listening port. The default value is 80.

Note: The servlet HttpReceive runs within the OracleAS
Wireless instance, and requires RMI to communicate with the
CMGMMSDriver. For more information, see the User Manual that
is packaged with the CMG MMSC API distribution.

Transport Component

10-38 Oracle Application Server Wireless Developer’s Guide

mms.default.encoding—The default MM7/HTTP encoding format. The default
encoding is UTF-8.

debug—Enable logging extra debug information to a file. Options: true (debug
enabled), false OR leave blank (debug disabled).

10.6.1.4 CIMD Driver
CIMD (Computer Interface to Message Distribution) is an SMS protocol specified by
Nokia. The OracleAS Wireless Server product includes a pre-built implementation
of the CIMD driver that is capable of both sending and receiving messages. The
driver opens one TCP/IP connection to the SMSC, for sending and receiving
messages. This driver can handle sending of text and binary messages (such as
vCard, vCalendar.). The driver can receive only text messages.

10.6.1.4.1 Class Name

oracle.panama.messaging.transport.driver.sms.CIMDDriver

10.6.1.4.2 Configuration

The following parameters must be specified while creating the Driver:

■ sms.account.id

This is the account ID for the SMSC. Generally, it is the short number assigned
by the operator. This is required.

■ sms.cimd.system.userid and sms.cimd.system.password

Along with the short number, the operator provides a User ID and password for
you to login to the SMSC. These are required.

■ sms.server.host and sms.server.port

This information is used by the driver to open a TCP/IP connection to the
SMSC.

■ sms.message.maxchunks

This is the maximum number of chunks allowed for any single message.
Chunks after this number are ignored. The default is -1. A negative value means
there is no limitation.

■ sms.message.chunksize

This is the maximum size for each chunk, in bytes. The default is 140.

■ sms.server.default.encoding

Transport Component

Creating Messaging Applications 10-39

Specify the encoding scheme for text messages. The default is IA-5.

■ sms.window.size

Specify the window size. If windowing is not supported then set window size =
1.

■ sms.send.alive.packet.interval

The time interval (in milliseconds) after which alive packet should be sent.
Negative value means no alive packets will be sent. This parameter is required
to keep the connection to the SMSC alive, because normally the user will be
logged out automatically from the SMSC after a specified time interval. Specify
a value which is less than that interval.

10.6.1.5 VVSP Driver
This driver provides the ability to send and retrieve SMS and MMS messages to and
from the Via Vodafone Services Platform (VVSP). In order to use this driver, you
must register it as an application with Vodafone Mobile Office. For details on how
to register an application and obtain the necessary credentials to run this driver,
contact Vodafone Mobile Office at http://www.mobileoffice.vodafone.com.

10.6.1.5.1 Class Name

oracle.panama.messaging.transport.driver.vvsp.VVSPDriver

10.6.1.5.2 Configuration

vvsp.sms.address—Comma-separated list of the SMS network IDs (MSISDN or
short code).

For example: 8205, 8206

vvsp.sms.country—Corresponding comma-separated list of 2-letter country
codes that the SMS network IDs above are registered for with the VVSP. ISO
3166-1-alpha-2 code element conventions apply.

For example: uk, de.

vvsp.sms.url—The URL to the VVSP SMS gateway. The default value is
https://vvsp.vodafone.net/gns/sms.

vvsp.sms.id—The SMS Application Instance ID registered with VVSP.

vvsp.sms.password—The SMS Application Instance Password.

Transport Component

10-40 Oracle Application Server Wireless Developer’s Guide

vvsp.sms.onetimepassword—The SMS one-time password for password
renewal. Use this field only if you are in the testing phase with VVSP, and want to
use a fixed OTP. For example, 69696969.

vvsp.mms.address—Comma-separated list of the MMS network IDs (MSISDN
or short code).

For example: 8005, 8006

vvsp.mms.country—Corresponding comma-separated list of 2-letter country
codes that the MMS network IDs above are registered for with the VVSP. ISO
3166-1-alpha-2 code element conventions apply.

For example: uk, de.

vvsp.mms.url—The URL to the VVSP MMS gateway. The default value is
https://vvsp.vodafone.net/gns/mms.

vvsp.mms.id—The MMS Application Instance ID registered with the VVSP.

vvsp.mms.password—The MMS Application Instance Password.

vvsp.mms.onetimepassword—The MMS one-time password for password
renewal. Use this field only if you are in the testing phase with VVSP, and want to
use a fixed OTP. For example, 69696969.

vvsp.admin.url—The URL to the VVSP Administration gateway. The default
value is https://vvsp.vodafone.net/gns/admin.

vvsp.admin.log—The log file to store new passwords issued by the
Administration gateway. The default value is VVSPAdmin.log.

vvsp.admin.url—The URL to the VVSP Administration gateway.

vvsp.local.hostname—The logical local hostname/IP to bind to, for receiving
notifications from the VVSP. If not present, it is derived from the local host. The
complete URL used to receive notifications will be
http://vvsp.local.hostname:vvsp.local.port/.

vvsp.local.port—The local listening port. The default value is 80.

vvsp.ssl.trustStore—The path to the SSL trustStore file (in jks format). If left
blank, the built-in VVSP-provided certificate file is automatically loaded. In most
cases, you will not need to modify this parameter.

vvsp.ssl.trustPassword—The pass phrase of the trustStore file. Leave blank if
none (default).

Transport Component

Creating Messaging Applications 10-41

vvsp.ssl.keyStore—The complete path to the SSL keyStore file (in pkcs12
format). You must provide this path if you have an SSL class 3 client certificate from
VVSP.

vvsp.ssl.keyPassword—The pass phrase of the keyStore file. Leave blank if
none.

vvsp.default.encoding—The default HTTP encoding format. The default
value is UTF-8.

vvsp.sms.maxchunks—The maximum chunks for an SMS message if it exceeds
the maximum SMS length. (Note that the per chunk maximum length is 160 chars
for text SMS, and 140 chars for binary SMS.). Enter -1 for unlimited chunks. The
default value is -1.

vvsp.retrieve.flush.freq—Frequency (in seconds) of periodic polling to
retrieve and flush any unretrieved messages waiting at the VVSP due to missed or
lost notifications. Enter 0 to disable polling. The default value is 600 seconds.

vvsp.debug—Enable logging extra debug information. Options: true (debug
enabled), false OR leave blank (debug disabled).

10.6.1.5.3 Additional Configuration—Password Renewal

If you do not have an SSL class 3 client certificate from the VVSP, your application
instance password will be periodically expired by the platform. When the password
expires, the VVSP will send an SMS containing a one-time password (OTP) to the
registered application operator’s handset. The application operator must enter this
OTP so that the VVSPDriver can complete the password renewal procedure and
receive the new application instance password from the VVSP. A utility has been
provided to allow the operator to enter the OTP. It can be found on OTN at
http://otn.oracle.com/tech/wireless/integration/. You can download and install it
on your OracleAS Wireless instance using the instructions provided. Once installed
on your instance, the utility can be accessed at http://<instance_
hostname>:<instance_port>/vvsp/vvspdriverotp.jsp.

After the operator enters the OTP using this utility, the VVSPDriver renews the
password and continues normal operation.

If the operator is unable to enter the OTP within a short time (approximately 4
minutes), the VVSP considers that OTP stale, and the driver reinitiates the password

Transport Component

10-42 Oracle Application Server Wireless Developer’s Guide

renewal process; the VVSP sends a new and valid OTP to the operator’s handset.
The operator is then expected to enter this new OTP using the provided utility.

Oracle Corporation recommends that you get SSL class 3 certificates from VVSP so
that you are not required to do periodic password renewal. For more information,
refer to the guides available fromVodafone Mobile Office at
http://www.mobileoffice.vodafone.com.

10.6.1.6 WCTP Driver
WCTP (Wireless Communication Transfer Protocol) is specifically aimed at creating
a simple means of passing alphanumeric and binary messages between wire line
systems and mobile devices. HTTP 1.1 is the recommended transport protocol for
WCTP. The built-in driver acts as an Enterprise Host and connects to the WCTP
Gateway to send and receive messages. The driver can handle sending and
receiving of text messages. The driver implements an HTTP listener to listen to
incoming messages. The driver also supports status reporting for the sent messages.

10.6.1.6.1 Class Name

oracle.panama.messaging.transport.driver.sms.WCTPDriver

Note: The VVSPDriver cannot automatically update the new
application instance password in the driver instance configuration
in OracleAS Wireless Tools. As a result, the new password is lost
when the messaging server is restarted. Thus, to ensure normal
operation, the VVSPDriver instance configuration must be updated
before you restart the OracleAS Wireless instance (or just the
messaging server process). The new password along with the
corresponding application instance ID is available on the utility you
use to enter the OTP, and is also logged to the VVSPAdmin.log file
(or the file name you specified in the vvsp.admin.log
parameter). The administrator or operator is expected to copy the
new password from this file and manually update the password in
the VVSPDriver instance configuration. This process will be
automated in a future release.

You must get an SSL Class 3 certificate from the VVSP so that you
do not have to perform the manual steps involved in periodic
password renewal. For more information, refer to the VVSP
Gateway Overview Guide available from the Via Vodafone Developer
Site at http://www.via.vodafone.com.

Transport Component

Creating Messaging Applications 10-43

10.6.1.6.2 Configuration

The following parameters must be specified while creating the Driver:

■ send-host, send-port and send-page

This is the host, port and page of the WCTP Gateway.

■ receive-host, receive-port and receive-page

This is the host, port and page at which the HTTP server implemented by the
WCTP driver, listens for incoming messages.

■ receive-proxy-host and receive-proxy-port

This information is required if there is a proxy server. It is required while
parsing the WCTP XML messages. These are optional.

■ maxchunks

This is the maximum number of chunks allowed for any single message.
Chunks after this number are ignored. The default is -1. A negative value means
there is no limitation.

■ chunksize

This is the maximum size for each chunk in bytes. The default is 160.

■ notify-when-queued

Specify true if notification is required when the message has been queued.

■ notify-when-delivered

Specify true if notification is required when the message has been delivered.

■ notify-when-read

Specify true if notification is required when the message has been read.

■ multi-recipient-message-support

Specify true if multiple recipients are sent in a single message. Otherwise a
separate message will be sent for each of the recipients in the list.

10.6.1.7 Data Communication Driver
The data communication driver enables OracleAS Wireless to send and receive SMS
messages through a Nokia phone. The driver code is capable of sending text and
binary messages. Receiving is enabled only for text messages (the driver has been
tested for 5110) when connected to a PC through a data cable.

Transport Component

10-44 Oracle Application Server Wireless Developer’s Guide

10.6.1.7.1 Setup Details

Follow the procedure below to set up the data communication driver in the
Windows platform.

Before you start the setup make sure you have the following:

■ Java communication package—can be downloaded from
http://Java.sun.com/products/Javacomm/

■ Nokia cell phone (the driver has been tested for 5100 and 6100 series of phone).

■ Data cable for the Nokia phone (the cable 9-pin RS-232C serial cable DAU-9P is
required for 5100/6100 series of phone)

■ Data suite installation CD (if the phone does not have a built-in modem).

The setup procedure is divided into three categories:

■ Installing Java communication package.

■ Installing Data suite.(This step is required only if your phone does not have a
built-in modem, such as the Nokia 5110).

■ Configuring OracleAS Wireless messaging server.

The details on each of the above categories are below.

■ Installing Java communication package

Download Javacomm20-win32.zip from the location
http://Java.sun.com/products/Javacomm/

Follow all the steps given in the file PlatformSpecific.html (which you will get
after unzipping the file Javacomm20-win32.zip).

Try running a sample, which is included in the zip file to confirm that the
configuration is complete, and working fine.

■ Installing Data suite

Note: In case the sample programs are not listing the serial ports,
try copying the file Javax.comm.properties in the directory <Java_
HOME>\jre\lib. Where <Java_HOME> is the place where jdk is
installed and the Java installed at <Java_HOME>\bin\Java is the
one, which will be used to run the OracleAS Wireless components.

Transport Component

Creating Messaging Applications 10-45

(This step is required only if the Nokia phone used for the data communication
doesn’t have in-built modem.)

Before installing Nokia data suite, go to control-panel -> ports. Note the ports
present in your system.

1. Connect your Nokia cell phone using the appropriate data cable to any of
the PC’s COM ports.

2. Install Nokia data suite (typical installation).

3. After the software is installed successfully, reboot the machine.

4. Go to control-panel -> ports; an extra port will be listed. For example if the
ports listed before installation were COM1 and COM2 then after
installation the ports may get listed as COM1, COM2 and COM3. In this
case, COM3 is the virtual port, which the data suite has configured for data
transfer between the phone and the pc.

10.6.1.7.2 Driver Configuration

Class Name

oracle.panama.messaging.transport.driver.datacommunication.DataCommunicationDriv
er

10.6.1.7.3 Configuration ·

■ sms.datacommunication.port

This is the port, which the driver will use to communicate with the phone
connected through the cable. Type the name of the port is used to connect the
phone to pc using the data cable. In case your phone doesn't have an in-built
mode, you will have to type here name of the virtual port, which got created
when you installed Data suite. (such as: COM3)

■ sms.datacommunication.phone-no

This is the phone number of the cell phone, which is connected using the data
cable to the computer on which the messaging server is running (for example:
1-650-576-8055).

■ sms.message.maxchunks

This is the maximum number of message chunks to be sent, if the message size
is greater than the chunk size. By default all the chunks will be sent.

■ sms.message.chunksize

Transport Component

10-46 Oracle Application Server Wireless Developer’s Guide

Maximum size of a chunk. Default is 150.

Before you run the messaging server, make sure you have included the path of
comm.jar to the CLASSPATH in the file opmn.xml.

10.6.1.8 WAP Push PAP Driver
PAP (Push Access Protocol) is a protocol to access a WAP Push gateway. OracleAS
Wireless includes a pre-built implementation of the PAP driver as a driver that is
capable of sending WAP pushes.

This driver can handle these content types:

■ ContentTypes.WAP_PUSH—All supported content types by the WAP push
gateway.

■ ContentTypes.URL (only if the content type of the related resource is one of
the above)—The driver accepts all content types and posts the message to the
push gateway.

If the WAP push gateway does not understand the messages posted by the PAP
driver, the PAP driver will throw a non-fatal exception to indicate the failure.

10.6.1.8.1 Class Name

oracle.panama.messaging.transport.driver.wap.PAPDriver

10.6.1.8.2 Configuration

■ pap.ppg.url

The URL of the WAP push gateway. This is required.

■ pap.notifyto.url

The URL to which notifications can be sent by the WAP push gateway. This is
optional.

■ pap.listento.notify

Value is set to true of false. This flag indicates if this driver listens for
notifications.

■ pap.source.reference

The source reference of this driver to the WAP push gateway.

■ pap.ppg.hostname

Transport Component

Creating Messaging Applications 10-47

The logical hostname of the PPG gateway; used as the PPG’s carrier
identification. If not present, it is derived from the PPG URL.

■ pap.local.hostname

The logical local hostname or IP address. If not present, it is derived from the
local notification URL if any, or the local machine.

■ pap.default.encoding

The default content encoding format; if not set, UTF-8 is used.

■ pap.version

The PAP version supported by the PPG, must be either 1.0 or 2.0.

10.6.1.9 Instant Messaging (IM) Driver
The Instant Messaging driver provides unidirectional as well as bidirectional access
to end-users for accessing OracleAS Wireless applications through real-time instant
messaging (IM). The IM driver uses Jabber, an open, XML-based instant messaging
platform, which also integrates with proprietary IM networks such as Yahoo, MSN,
AOL and ICQ. This driver allows end-users to receive alert notifications and
interactively use applications through their IM client of choice.

10.6.1.9.1 About Jabber Jabber is an open, XML-based protocol for Instant
Messaging and presence. Jabber-based software is deployed on thousands of
servers across the Internet and is used by over a million people worldwide. Jabber
consists of a client-server architecture, which resembles the ubiquitous e-mail
network. Jabber servers are completely decentralized, allowing anyone to set up
their own server. Messaging is achieved as in the email network, where recipients
are addressed by a username and a hostname (for example: username@hostname). In
the Jabber network, users are identified by a Jabber ID, which consists of a
username and the hostname of the particular Jabber server to which the user
connects. An end-user of Jabber connects to a Jabber server using a Jabber client in
order to send instant messages to other Jabber users. This, however, is not the only
way to achieve instant messaging. Jabber has an extensible and modular
architecture. It integrates with proprietary IM networks such as Yahoo, MSN, AOL
and ICQ using transport gateways that can connect to these networks. This allows
Jabber users to communicate with those on Yahoo, MSN, AOL or ICQ.

In order to use the IM driver in OracleAS Wireless, you must access a Jabber server
and a Jabber account for the OracleAS Wireless instance (using the ID that the IM
driver will log in to Jabber with, to send to and receive messages from end-users). In
addition, the IM driver includes configuration parameters that enable the OracleAS

Transport Component

10-48 Oracle Application Server Wireless Developer’s Guide

Wireless instance to communicate with users on Yahoo, MSN, AOL or ICQ IM
networks. This requires that you additionally have accounts on these proprietary
IM networks to which you are connecting using OracleAS Wireless, and thus, allow
end-users of those particular networks to communicate with OracleAS Wireless.

The following figure depicts a scenario in which an OracleAS Wireless instance is
connected to Jabber and MSN (through Jabber’s MSN transport gateway). This
enables end-users on MSN and Alice to communicate with the OracleAS Wireless
instance using MSN Messenger.

10.6.1.9.2 Third-party Jabber Software The Instant Messaging driver uses the
JabberBeans Java library to connect to a Jabber Instant Messaging Server. It requires
the following third-party software:

Table 10–4 Third-Party Software for the Instant Messaging Driver

Name Instructions Version(s)

JabberBeans OracleAS Wireless includes a copy of
JabberBeans (version 0.9.1). If you wish to upgrade
to a newer version of JabberBeans, follow these
instructions:

Download and copy the latest
jabberbeans.jar from
http://jabberbeans.jabberstudio.org to $ORACLE_
HOME/wireless/lib on UNIX, to %ORACLE_
HOME%\wireless\lib on Windows. Examples of
ORACLE_HOME values: Solaris: ORACLE_
HOME=/u01/iaswv904NT: ORACLE_
HOME=d:\oracle\iaswv904.

0.9.1

Jabber Server
(jabberd)

Optional. To download and install your own
Jabber server, follow the Jabber server’s installation
guide on http://www.jabber.org.

1.4.2

Yahoo
TransportGateway

Optional. Follow the transport installation guide.
Refer to http://yahoo-transport.jabberstudio.org.

2.0.0

MSN Transport
Gateway

Optional. Follow the transport installation guide.
Refer to http://msn-transport.jabberstudio.org.

1.1.0 or greater

AOL & ICQ
Transport Gateway

Optional. Follow the transport installation guide.
Refer to http://aim-transport.jabberstudio.org.

0.9.25

Transport Component

Creating Messaging Applications 10-49

10.6.1.9.3 Configuring the Messaging Server with the Instant Messaging Driver

Use the OracleAS Wireless Tools to configure the messaging server with the instant
messaging driver.

To add/enable the instant messaging driver:

1. Click the Administration tab.

2. Expand the Messaging Server section under Special Configuration for Wireless
Site. Click Messaging Server Drivers. The Messaging Server Drivers screen
appears.

3. In the Configuration section, click Messaging Server Drivers. The Messaging
Server Drivers screen appears.

4. If you do not see an entry for IMDriver, go to Step 5. If you see an entry for
IMDriver, enable the driver as follows:

a. Select the IMDriver entry and click Edit. This will open the IMDriver
Properties screen.

b. Check the Enabled box and click Apply.

c. Go to the next section Configuring the Driver Instance.

5. Click Add Driver. The Add Driver screen appears. Enter only the values noted
here; other values are not required.

a. In the Driver Name field, enter IMDriver.

b. Select IM from Delivery Category.

c. From the Speed Level drop-down list, select 8.

d. From the Cost Level drop-down list, select 1.

e. From the Capability drop-down list, select BOTH (or only SEND or
RECEIVE, if you want unidirectional messaging).

f. Enter 1 in the Number of Message Queues field.

g. Check the Enabled box.

Note: You do not need to install your own Jabber server if you
have access to an existing Jabber server. For a list of public Jabber
servers, see http://www.jabberview.com.

Transport Component

10-50 Oracle Application Server Wireless Developer’s Guide

h. In the Driver Class Name field, enter
oracle.panama.messaging.transport.driver.instantmessaging.InstantMessagingDri
ver

i. Click Add Another Row to add a row for each of the following parameters:

* For the Jabber server: im.server.host, im.server.port,
im.server.username, im.server.password

To support users of proprietary, IM networks (for example: Yahoo,
MSN, AOL or ICQ), add the parameters for each network as follows
(Though you must add these parameters, entering values for these is
optional when you configure the Driver Instance.):

* For Yahoo: im.yahoo.enable, im.yahoo.username,
im.yahoo.password

* For MSN: im.msn.enable, im.msn.username, im.msn.password

* For AOL: im.aol.enable, im.aol.username, im.aol.password

* For ICQ: im.icq.enable, im.icq.username, im.icq.password

* To print verbose debug output: im.debug

* To adjust retry parameters which are used when the driver is
disconnected from the Jabber server: im.retry.limit,
im.retry.interval

j. Click OK to create the driver.

10.6.1.9.4 Configuring the Driver Instance

To configure the instant messaging driver instance:

1. Click the Wireless Server tab. The Server screen appears.

2. Click messagingserver1 in the process table. The messagingserver1 process
screen appears.

3. Click Add Driver Instance. The Add Driver Instance screen appears.

4. Complete the Add Driver Instance screen as follows:

a. Enter IMDriver Instance in the Driver Instance Name field.

Note: Detailed explanations of these parameters are provided in
the Table below.

Transport Component

Creating Messaging Applications 10-51

b. From the Driver Name drop-down list, select IMDriver.

c. Click Go.

d. In the Number of Sending Threads field, enter 2.

e. In the Number of Receiving Threads field, enter 1.

f. In the Driver Specific Parameter fields, enter the following values:

Table 10–5 Values for Driver Specific Parameters

For This Parameter
Name... Enter this Value

Parameters for Jabber IM Enter these values for Jabber IM.

im.server.host localhost (Replace this value with the hostname of your Jabber server. For multiple
servers, use a comma-separated list. If only one hostname is specified, it will be
used for all accounts. Example: my1.host.com, my2.host.com.). If the Jabber server is
outside your firewall, the IM driver will connect to it using the site-wide HTTP
proxy settings configured in your OracleAS Wireless instance.

im.server.port 5222(default Jabber port. For multiple servers, provide a corresponding
comma-separated list of ports. Example: 5222, 5222.)

im.server.username oracleagent (Replace this value with the Jabber username of the OracleAS
Wireless instance). The IM Driver will connect to Jabber with this username. A
Jabber ID is of the form username@hostname, and this parameter only requires the
username part. For multiple accounts, enter a comma-separated list of Jabber
usernames to login as. If you have multiple servers listed above, there must be an
equal number of usernames (one username per server). If you have only one server
listed above, all usernames listed here will use that server. Example: oracleagent1,
oracleagent2). If an account does not exist on the Jabber server, the IM driver will
attempt to register it as a new account.

im.server.password test (Replace this value with a corresponding comma-separated list of passwords
for each username listed above.)

Optional Parameters for
Yahoo IM

Enter these values only if you want to connect to Yahoo’s IM network

im.yahoo.enable Set im.yahoo.enable to true to enable the Yahoo transport. To disable using
Yahoo, leave this field blank, and ignore the username and password fields. If you
have multiple accounts specified above, provide a corresponding
comma-separated list of values.

im.yahoo.username Enter a comma-separated list of Yahoo account IDs (requires that you already have
these IDs registered on Yahoo), for each user account above (leave entries blank for
accounts without Yahoo). Entering valid Yahoo account information enables Yahoo
users to access OracleAS Wireless applications through Yahoo Messenger.

im.yahoo.password Enter corresponding comma-separated list of Yahoo account passwords.

Transport Component

10-52 Oracle Application Server Wireless Developer’s Guide

Optional Parameters for
MSN IM

Enter these values only if you want to connect to MSN’s IM network

im.msn.enable Set im.msn.enable to true to enable the MSN transport. To disable using MSN,
leave this field blank, and ignore the username and password fields. If you have
multiple accounts specified above, provide a corresponding comma-separated list
of values.

im.msn.username Enter comma-separated list of MSN account IDs (requires that you already have
these IDs registered on MSN), for each user account above (leave entries blank for
accounts without MSN). Entering valid MSN account information allows MSN
users to access OracleAS Wireless applications through MSN Messenger.

im.msn.password Enter corresponding comma-separated list of MSN account passwords.

Optional Parameters for
AOL IM

Enter these values only if you want to connect to AOL’s IM network.

im.aol.enable Set im.aol.enable to true to enable the AOL IM (AIM) transport. To disable
using AOL, simply leave this field blank, and ignore the username and password
fields. If you have multiple accounts specified above, provide a corresponding
comma-separated list of values.

im.aol.username Enter comma-separated list of AOL account IDs (requires that you already have
these IDs registered on AOL), for each user account above (leave entries blank for
accounts without AOL). Entering valid AOL account information enables AOL
users to access OracleAS Wireless applications through AOL Instant Messenger.

im.aol.password Enter corresponding comma-separated list of AOL account passwords.

Optional Parameters for ICQ Enter these values only if you want to connect to ICQ’s IM network

im.icq.enable Set im.icq.enable to true to enable the ICQ transport. To disable using ICQ,
leave this field blank, and ignore the username and password fields. If you have
multiple accounts specified above, provide a corresponding comma-separated list
of values.

im.icq.username Enter comma-separated list of ICQ account IDs (requires that you already have
these IDs registered on ICQ), for each user account above (leave entries blank for
accounts without ICQ). Entering valid ICQ account information enables ICQ users
to access OracleAS Wireless applications through ICQ Instant Messenger.

im.icq.password Enter corresponding comma-separated list of ICQ account passwords.

Additional Parameters Enter these values for additional configuration

Table 10–5 Values for Driver Specific Parameters

For This Parameter
Name... Enter this Value

Transport Component

Creating Messaging Applications 10-53

g. Click OK to create the driver instance.

10.6.1.9.5 Using the IM Driver with the Async Server The IM driver can be used in
conjunction with the Async Server to provide access to async-enabled applications
on OracleAS Wireless through Instant Messaging. To enable, configure access points
in the Async Server.

To configure the Async Server:

1. Click the Wireless Server tab.

2. Click the Administration tab.

3. Expand the Async Server section under Special Configuration for Wireless Site.
Click Access Points. The Access Points screen appears.

4. Click Add Access Point.

5. Enter IM entry point in the Name field.

6. Select IM from Delivery Type.

7. In the Address field, enter jabber|<Jabber ID> where <Jabber ID> is the ID
used by your IM driver (for example, oracleagent@localhost). In other words, the
entire address will take the form:
<im.server.username>@<im.server.host>).

8. Check the Allowed to Access All Services box.

im.debug Set this value to true to enable verbose debug output. This triggers the driver to
output additional notification messages, which also requires that you have the
Notify log level enabled in your system logging configuration for the OracleAS
Wireless instance.

im.retry.limit 20 (Number of times the driver should attempt to reconnect when disconnected
from a Jabber server. (the default limit is 20.)

im.retry.interval 20 Time interval, in seconds, between reconnect attempts. (the default interval is 20
seconds.)

Note: You must restart the messaging server each time you
change the driver-specific attributes.

Table 10–5 Values for Driver Specific Parameters

For This Parameter
Name... Enter this Value

Transport Component

10-54 Oracle Application Server Wireless Developer’s Guide

9. Click OK to add the access point.

10. If you have configured the IM driver for other IM networks such as Yahoo or
MSN, you must specifically add an access point for each such network. The
address must be of the form <network-name>|<userid>, where
<network-name> is yahoo, msn, aim, or icq. For example, if you have
configured the IM driver for MSN, you must add an access point with the
address msn|<im.msn.username>, where <im.msn.username> is the value of
the parameter you configured in the IM driver instance. Likewise, if you have
configured the IM driver for AOL IM (AIM), add an access point with the
address aim|<im.aol.username>.

This completes the Async Server configuration. To invoke an Async-enabled
Application:

■ Depending on which IM systems (such as Jabber, Yahoo, MSN, AOL and ICQ)
you have configured the IM driver for, you must add the corresponding user to
your IM client’s roster or contact list. We refer to this user as the IM Agent.

Example: You have configured the MSN transport in the IM driver, using
msnimdemo@oracle.com as the value of im.msn.username. Now, launch your
MSN Messenger client, login as yourself (with your own MSN account) and
add the MSN IM Agent msnimdemo@oracle.com to your contact list.

■ Send an instant message to the IM Agent with help as the body of the message.
After you send this message, you receive an instant message with the list of
applications you can invoke.

Example: Invoke the hello application by sending a message with the text hello to
the IM Agent. The agent will return a simple Hello World response:

■ For applications that require user input, chat with the agent and enter the
necessary values.

Example: Invoke the Short Messaging application by typing sm. You will receive
a menu of options such as 0 Menu, 1 [] Type. Enter 1 to select Type. A list of types
to choose from is returned. Type 3 to select Voice. You can enter other fields such
as Recipients, Subject and Body in a similar manner, and finally send the message.

10.6.1.9.6 Using the XMS Service In order to send instant messages using the XMS
service, you have two API options, namely XMSSimpleSender and XMSSender:

Note: The above example assumed that the hello application is
async-enabled.

Transport Component

Creating Messaging Applications 10-55

■ Using XMSSimpleSender:

To address recipients, prepend the IM: tag to the IM address. In other words,
use the following format:

IM:<address>

where <address> is the IM address of the recipient.

<address> further takes the form:

<network-name>|<userid>,

where <network-name> is the name of the IM network. For example:
jabber, yahoo, msn, aim, icq.

<userid> is the ID of user on that network

Here are some examples:

■ Using XMSSender

To address recipients, use the address format specified above without the IM:
tag (example shown below). Create the addresses as instances of the class
IMAddressData, and use the IM transport type. Apart from this, use the XMS
client as you would normally. Refer to the XMS examples in Section 10.6.1.10,
"XMS Driver".

To create an instance of IMAddressData, you may use one of two constructors:

Note: The field separator used is the pipe (|) character.

Table 10–6 Address Formats for Different IM Addresses

IM Address XMSSimpleSender Address format

Jabber user with ID:
foo@jabber.org

IM:jabber|foo@jabber.org

MSN user with ID:
foo@msn.com

IM:msn|foo@msn.com

Yahoo user with ID: foo IM:yahoo|foo

AOL IM user with ID: foo IM:aim|foo

ICQ IM user with ID:
12345

IM:icq|12345

Transport Component

10-56 Oracle Application Server Wireless Developer’s Guide

IMAddressData(String address)

where address has the XMSSimpleSender Address format <address> as shown
above.

For example:

IMAddressData("msn|foo@msn.com")
IMAddressData("aim|foo")

IMAddressData(String userid, String network)

where userid is <userid>

network is <network-name>

For example:

IMAddressData("foo@msn.com", "msn")
IMAddressData("foo", "aim")
IMAddressData("foo@jabber.org", "jabber")

 Here is some sample XMS client code to show IM addressing using both the
constructors:

// IM recipients
AddressData imRecipients[] = new AddressData[4];

/* using the first constructor */
// specify a regular Jabber user
imRecipients[0] = new IMAddressData("jabber|foo@jabber.org");
// specify a Yahoo user (by prepending the "yahoo|" tag)
imRecipients[1] = new IMAddressData("yahoo|foo");

/* using the second constructor */
// specify an MSN user
imRecipients[2] = new IMAddressData("foo@msn.com", "msn");
// specify an AOL IM user
imRecipients[3] = new IMAddressData("foo", "aim");

// Packet object
Packet pkt = new Packet();
AddressData imSender = new IMAddressData("jabber|oracle@jabber.org");
pkt.setFrom(TransportType.IM, imSender);
pkt.addRecipients(TransportType.IM, imRecipients);

Transport Component

Creating Messaging Applications 10-57

10.6.1.9.7 Standalone test of the IM Driver To test the IM driver on your local machine,
you must perform a few more additional steps, specifically, installing a Jabber
server and a Jabber client.

To install Jabber Server on Windows:

1. Download JabberD from
http://jabberd.jabberstudio.org/downloads/JabberD-1.4.2.exe

2. Open the file to start the installation process. Proceed in the installation with the
default values and finish the installation.

3. Start the Jabber server from Windows Start > Programs > JabberD > JabberD
This opens a DOS Command Prompt window, and you will see log output that
says [notice] (-internal): initializing server. If you see this
message, you have successfully started the Jabber server.

To install Jabber Server on UNIX:

1. Download the Jabber server:

Solaris 2.6:
http://jabberd.jabberstudio.org/downloads/jabber-1.4.2a-spa
rc-solaris-2.6.tar.gz

Solaris 7:
http://jabberd.jabberstudio.org/downloads/jabber-1.4.2a-spa
rc-solaris-7.tar.gz

2. Extract the tar file.

mkdir jabber
cd jabber
gtar xzvf jabber-1.4.2a-sparc-solaris-<ver>.tar.gz

3. Execute jabberd:

jabberd/jabberd

Note: The following instructions are only meant for testing from a
Jabber client. If you wish to test from proprietary networks such as
Yahoo or AOL, you must add the appropriate transports to the
Jabber server, and install the appropriate IM client (such as Yahoo
Messenger or AOL Instant Messenger).

Transport Component

10-58 Oracle Application Server Wireless Developer’s Guide

4. This starts the Jabber server and begins printing log messages such as:
[notice] (-internal): initializing server. If you see this message,
you have successfully started the Jabber server.

To install Jabber Client on Windows:

1. Download and install a Jabber client of your choice from
http://www.jabber.org/user/clientlist.php. Oracle Corporation
recommends Rival (http://rival.chote.net/) for first-time Jabber users.

2. After installation, configure your client to connect to the Jabber server on
localhost. Create a new Jabber account for yourself. Now add to your contact list
the Jabber ID of the OracleAS Wireless instance that you configured in the IM
driver. For example, if you use the pre-configured default settings in the IM
driver, you would add the ID oracleagent@localhost to your contact list.

To install Jabber Client on UNIX:

1. Download, compile and install a Jabber client of your choice from
http://www.jabber.org/user/clientlist.php?Platform=Linux.
Not all clients may compile on UNIX; try at your own risk. There are
pre-compiled UNIX binaries of Gabber (a popular Linux Jabber client) at:
http://prdownloads.sourceforge.net/gabber/gabber0.8.7_
solaris.tar.gz.

2. Once you have a client up and running, follow Step 2 from the Windows section
above.

To send a test message to OracleAS Wireless:

1. From your Jabber client, double-click on the contact you just added
(oracleagent@localhost) to send an instant message.

2. Type help in the body, and send the message. If your IM driver and Async access
point are configured correctly, you will receive an instant response from
OracleAS Wireless listing the async applications you can invoke.

10.6.1.9.8 Quick-configuring the IM Driver for AOL Instant Messenger To quick-configure
the IM driver for AOL Instant Messenger:

1. Create AOL screennames.

You must have two AOL screennames (accounts), one for yourself (referred to
here as <my_screenname>), and one for the IM driver (referred to here as

Transport Component

Creating Messaging Applications 10-59

<imdriver_screenname>). If you do not already have two screennames, create
them at http://www.aim.com.

2. Configure IM Driver and Async Access Point.

a. Add an IMDriver Instance in the messagingserver1 process. Enter the
following values:

im.server.host = myjabber.net (or any Jabber host that has an AOL IM
(AIM) transport)
im.server.username = <imdriver_screenname>
im.server.password = <password of imdriver_screenname> (or whatever you
want)
im.aol.enable = true
im.aol.username = <imdriver_screenname>
im.aol.password = <password of imdriver_screenname>

b. Add an IM access point from Wireless Tools > Site Administration >
Component Configuration > Access Point:

* Enter IM entry for Name.

* Select IM for Delivery Type.

* Enter aim|<imdriver_screenname> for Address.

* Check Allowed to Access All Applications.

* Restart the messagingserver1 process.

3. Install AOL Instant Messenger (AIM).

a. Download and install AIM from
http://aim.aol.com/aimnew/NS/congratsd2.adp.

b. Launch AIM and click Setup. Click Connection to configure HTTP proxy
settings (host = www-proxy.us.oracle.com, port = 80,
protocol = HTTP).

c. Sign on to AIM with your screenname <my_screenname>.

d. Add <imdriver_screenname> to your buddy list and start chatting.

Note: The AOL website limits the number of accounts you can
create for a given email address or IP address. If you receive an
error while trying to create an account, use an alternate email
address, or a different machine.

Transport Component

10-60 Oracle Application Server Wireless Developer’s Guide

10.6.1.10 XMS Driver
This driver uses a hosted XMS service and by default uses the demonstration
service hosted by Oracle Corporation. This driver acts as an XMS client to an
OracleAS Wireless server hosted on the Internet, and can be configured to point to
any service that supports the OracleAS Wireless XMS Web Service. The XMS driver
uses a special protocol, SOAP over HTTP (the OracleAS Wireless XMS Web Service).
The Oracle-hosted XMS server does not require any account for access. The XMS
uses SOAP over HTTP. For trial purposes, you may use the hosted demonstration
OracleAS Wireless instance and use "" (a pair of double quotes) as username and ""
as password. This grants you limited usage for sending messages. The URL for it is:
http://messenger.us.oracle.com/xms/webservices.

10.6.1.10.1 Class Name
oracle.panama.messaging.transport.driver.push.PushDriver

10.6.1.10.2 Configuration

■ messaginggatewayURL

URL to the Hosted XMS Web Service. This parameter is required. For example:
http://messenger.oracle.com/xms/webservices

■ username

Name to use to authenticate against the XMS Service. XMS Web Services can
determine whether username and password are required. If username is not
required by XMS Web Services, leave blank (empty string). Bad username or
password is returned from XMS Web Services if the user name does not exist,
or if the password of that username is incorrect.

Example: messaginguser

■ password

Password of the user specified in the username field, used to authenticate
against the XMS Service. XMS Web Services can determine whether username
and password are required. If username and password are not required, leave
password blank (empty string). Bad username or password is returned
from XMS Web Services if either the user name does not exist, or if the
password of that user name is not correct.

Example: 8Uh42g

The XMS driver can handle all content types. The hosted XMS Web Services
determine how to handle them. The driver runs on an HTTP connection; no explicit

Transport Component

Creating Messaging Applications 10-61

HTTP proxy setting is needed because the XMS driver inherits the proxy settings of
OracleAS Wireless.

This driver sends only. It supports as many transport types as the Hosted XMS
Service; the actual types supported are dependent on which Hosted (OracleAS
Wireless Instance) service is running. The OracleAS Wireless Service supports an
API that describes the exact transports supported by an Instance.

10.6.1.11 Email Driver
The email driver supports SMTP in delivering messages, and either IMAP or POP3
in receiving messages. This driver can handle sending and receiving messages. Both
IMAP or POP3 protocols are supported for receiving messages.

10.6.1.11.1 Class Name
oracle.panama.messaging.transport.driver.email.EmailDriver

10.6.1.11.2 Configuration

■ server.incoming.protocol

This is the value for the e-mail receiving protocol. The possible values are IMAP
and POP3. Required only if email receiving is supported on the driver instance.

■ server.incoming.host

The host name of the incoming mail server. Required only if email receiving is
supported on the driver instance.

■ server.incoming.receivefolder

The name of the folder the driver is polling messages from. The default value is
INBOX.

■ server.incoming.usernames

The list of user names of the mail accounts the driver instance is polling from.
Each name must be separated by a comma, for example, foo,bar. Required only if
email receiving is supported on the driver instance.

■ server.incoming.passwords

The list of passwords corresponding to the user names above. Each password is
separated by a comma and must reside in the same position in the list as their
corresponding user name appears on the usernames list. Required only if email
receiving is supported on the driver instance.

Transport Component

10-62 Oracle Application Server Wireless Developer’s Guide

Example: foopwd,barpwd

■ server.incoming.emails

The email addresses corresponding to the user names above. Each email
address is separated by a comma and must reside in the same position in the list
as their corresponding user name appears on the usernames list. Required only if
email receiving is supported on the driver instance.

Example: foo@oracle.com,bar@oracle.com

■ server.incoming.checkmailfreq

The frequency with which to retrieve messages from the mail server. The unit is
in seconds and the default value is 5 seconds.

■ server.incoming.deletefreq

The frequency to permanently remove deleted messages. The unit is in seconds
and the default value is 300 seconds. A negative value indicates the messages
should not be expunged. For the POP3 protocol, the message is expunged after
it is processed.

■ server.incoming.autodelete

This value indicates if the driver should mark the messages deleted after they
have been processed. The value can be true or false and the default value is false.
For the POP3 protocol, the messages are always deleted right after they are
processed.

■ server.outgoing.host

The name of the SMTP server. Mandatory only if email sending is required.

Example: smtp05.oracle.com

■ default.outgoing.from.address

The default FROM address (if one is not provided in the outgoing message).

The email driver supports SMTP in delivering messages, and either IMAP4 or POP3
in receiving messages. This driver can handle sending and receiving messages. Both
IMAP4 or POP3 protocols are supported for receiving messages.

Note: Only server.outgoing.host must be configured if the
driver is going to be sending only.

Transport Component

Creating Messaging Applications 10-63

10.6.1.12 Voice Driver
The voice driver supports the Out Bound Call protocol supported by VoiceGenie.
Currently, it has been tested only to work with a Voice gateway. This driver handles
sending messages only. Although the driver can only send messages, it must be
configured to have both sending and receiving capabilities for the driver to work.

This driver can handle:

■ text/plain

■ ContentTypes.MOBILE_XML_URL

■ ContentTypes.MOBILE_XML_URL_REMOTE

■ ContentTypes.MOBILE_XML

■ ContentTypes.URL (only if the content type of the URL resource is one of
above)

For other content types, the driver will throw a non-fatal driver exception.

10.6.1.12.1 Class Name
oracle.panama.messaging.transport.driver.voice.Voice
GenieDriver

10.6.1.12.2 Configuration

■ voicegenie.outbound.servlet.uri

URL for the VoiceGenie Outbound Call Servlet. This is required with no default
value. Here is a sample:

http://rossini.us.oracle.com/servlet/com.voicegenie.outboundcallservlet.Outb
oundCallServlet

The driver uses the site level proxy configuration in accessing this URL.

■ voicegenie.outbound.servlet.username

Username for the VoiceGenie Outbound Call.

■ voicegenie.outbound.servlet.password

 Password for the VoiceGenie Outbound Call.

■ voicegenie.outbound.servlet.dnis

 The phone number to be set as the caller. This is optional. The default value is
12345678.

Transport Component

10-64 Oracle Application Server Wireless Developer’s Guide

■ voicegenie.urlservice.path

Servicepath to the prebuilt VoiceGenie service. This driver depends on an
OracleAS Wireless service based on the HTTP adapter. By default the OracleAS
Wireless installation has an HTTP Adapter service named VoiceGenieURLService
to support this voice driver. This is a required parameter. There is no default
value and one must look at a particular OracleAS Wireless installation to obtain
a value for it. Here is an sample:

foo.oracle.com:9000/ptg/rm?PAservicepath=/VoiceGenieURLService&PAsubmit=
Submit

■ voicegenie.driver.receive.host and
voicegenie.driver.receive.port

These are the IP host and port for the HTTP adapter to get sending content in
Mobile XML format. The port should be used by this driver only. These are
required.

10.6.1.13 UCP Driver
UCP (Universal Communication Protocol) is one of the most popular GSM SMS
protocols. OracleAS Wireless includes a pre-built implementation of the UCP driver
as a driver that is capable of both sending and receiving.

The UCP driver implements EMI/UCP 4.0. It supports both listening mode and
non-listening mode. In the non-listening mode, the driver opens one connection to
the SMSC. This connection is shared in sending and receiving. UCP driver works
with most SMSC in the non-listening mode. In the listening mode, the driver listens
to a port. The SMSC opens a connection to the driver to deliver received messages
from devices to the driver. The driver opens a HTTP connection on demand to
deliver a message to the SMSC for sending to the target device. The HTTP
connection is reused if possible.

Note: This driver opens a port (as specified in
voicegenie.driver.receive.port) and listens to HTTP
traffic. It uses voicegenie.driver.receive.host and
voicegeneie.driver.receive.port to compose a URL for
OracleAS Wireless HTTP adapter to contact the driver. This is
required if you want to send a message that contains OracleAS
Wireless XML. Ensure that you provide the correct hostname and
unique port number in order for the driver to function.

Transport Component

Creating Messaging Applications 10-65

This driver can handle:

■ text/plain

■ ContentTypes.RING_TONE

■ ContentTypes.GRAPHICS

■ ContentTypes.WAP_SETTINGS

■ ContentTypes.WAP_PUSH

■ ContentTypes.VCARD

■ ContentTypes.EMAIL_SETTING

■ ContentTypes.VCALENDAR

■ ContentTypes.MM1_NOTIFICATION

■ ContentTypes.EMS

■ ContentTypes.ENCODED_SMS

■ ContentTypes.URL (only if the content type of the related resource is one of
above)

For other content types, the driver will throw a non-fatal driver exception.

10.6.1.13.1 Class Name
oracle.panama.messaging.transport.driver.sms.UCPDriver

10.6.1.13.2 Configuration

■ sms.account.id

This is the account ID for the SMSSC. Generally, it should be the assigned short
number by the operator. This is required.

■ sms.account.password

This is a password assigned by the operator. It is used to open a session to the
SMSC with UCP command 60.

■ sms.ucptype

Specifies which command to use in sending a message. The possible values are
01 and 51. The default value is 51, which means UCP command 51 is used to
send a message.

■ sms.server.host and sms.server.port

Transport Component

10-66 Oracle Application Server Wireless Developer’s Guide

SMSC server information the driver uses to open a TCP/IP connection.

■ sms.server.default.encoding

The default encoding of the text message. The default value is IA5.

■ sms.local.port

The local port the driver should use to make the outgoing connection,
applicable to the non-listening mode driver.

■ sms.local.address

The logical hostname or IP address where the driver runs, applicable to the
non-listening mode driver.

■ sms.window.size

The windowing size, applicable to the non-listening mode driver only.

■ sms.receiver.listener.port

If the driver is in listening mode, this port is used by the SMSC to initialize the
TCP/IP connection to pass received messages to the driver. If the sms.server.url
is specified, this one will be used. Otherwise, it will be ignored.

■ sms.server.url

This is the URL for the driver to access the SMSC to send messages through an
HTTP connection. If specified, sms.server.host and sms.server.port
will be ignored. If it is not specified, then sms.server.host and
sms.server.port are required.

■ sms.bulk.sending

Determines whether to use command 02 to do bulk sending (if it is possible).
The default value is true.

■ sms.message.maxchunks

This is the maximum chunks for any single message allowed. Chunks after this
number are ignored. The default is -1, which means no limit.

Transport Component

Creating Messaging Applications 10-67

■ sms.message.chunksize

This is the maximum size for each chunk in byte. The default is 160.

■ sms.alert.interval

The interval (in seconds) at which command 31 is invoked. If it is set to a
negative value, command 31 will not be invoked. This command is mainly used
as a signal to the SMSC to keep the connection alive when the driver is in
non-listening mode.

10.6.1.14 SMPP Driver
SMPP (Short Message Peer-to-Peer) is one of the most popular GSM SMS protocols.
OracleAS Wireless includes a pre-built implementation of the SMPP driver as a
driver that is capable of both sending and receiving. The driver opens one TCP
connection to the SMSC as a transmitter for sending if the sending feature is
enabled, another connection to the SMSC as a receiver for receiving if the receiving
feature is enabled. Hence two connections (initiated by the driver) are needed for all
communication between the driver and the SMSC if both sending and receiving

Note:

■ If you have a direct TCP connection to the SMSC, the driver
uses Command 60 to start a session with the SMSC. This allows
the driver and the SMSC to communicate with one socket
connection for sending, receiving and status. In this case
sms.server.url is not used.

■ If the connection you have to an SMSC is HTTP-based, then
you must provide the value for sms.server.url; this is the
URL the driver instance uses to send messages. Also
sms.receiver.listener.port must be provided so that
the driver instance opens binds to this port for incoming
messages. In the HTTP connection case, sms.server.host
and sms.server.port are not used.

■ sms.message.chunksize controls the size of each message
in case the message total size is bigger than one SMS message.
sms.message.maxchunks controls the maximum number of
chunks allowed for each message. Those beyond that will be
discarded.

Transport Component

10-68 Oracle Application Server Wireless Developer’s Guide

features are enabled. This driver implements SMPP 3.4. It supports only SMSC
which supports SMPP 3.4.

This driver can handle:

■ text/plain

■ ContentTypes.RING_TONE

■ ContentTypes.GRAPHICS

■ ContentTypes.WAP_SETTINGS

■ ContentTypes.WAP_PUSH

■ ContentTypes.VCARD

■ ContentTypes.EMAIL_SETTING

■ ContentTypes.VCALENDAR

■ ContentTypes.MM1_NOTIFICATION

■ ContentTypes.EMS

■ ContentTypes.ENCODED_SMS

■ ContentTypes.URL (only if the content type of the related resource is one of
above)

For other content types, the driver will throw a non-fatal driver exception.

10.6.1.14.1 Class Name
oracle.panama.messaging.transport.driver.sms.SMPPDriver

10.6.1.14.2 SMPP DRIVER--Configuration

■ sms.account.id

This is the account ID for the SMSSC. Generally, it should be the assigned short
number by the operator. This is required.

■ sms.server.host

SMSC server information the driver uses to open a TCP/IP connection

■ sms.smpp.transmitter.system.id
sms.smpp.transmitter.system.type
sms.smpp.transmitter.system.password
sms.server.transmitter.port

Transport Component

Creating Messaging Applications 10-69

These attributes depend on your SMSC. Along with the short number assigned
to you, the operator may also give you a system ID, type, password and port for
you to log in to the SMSC as transmitter (that is, to send SMS).

■ sms.smpp.receiver.system.id
sms.smpp.receiver.system.type
sms.smpp.receiver.system.password
sms.server.receiver.port

These attributes depend on your SMSC. The operator may also give you a
system ID, type, password and port for you to log in to the SMSC as receiver
(that is, to receive SMS).

■ sms.server.default.encoding

The default encoding of the text message. The default value is IA5.

■ sms.local-sending.port

The local port the driver should use to make the outgoing sending connection.

■ sms.local-receiving.port

The local port the driver should use to make the outgoing receiving connection.

■ sms.local.address

The logical hostname or IP address where the driver runs.

■ sms.server.source.ton

The TON of the from-address (account id).

■ sms.server.source.npi

The NPI of the from-address (account id).

■ sms.server.destination.ton

The TON of the destination address.

■ sms.server.destination.npi

The NPI of the destination address.

■ sms.window.size

The windowing size. The default value is 1.

Transport Component

10-70 Oracle Application Server Wireless Developer’s Guide

■ sms.bulk.sending

Whether to use command submit_multi to do bulk sending (if it is possible).
The default value is true.

■ sms.payload.sending

Whether to use message_payload field for sending when short_message
field is operational. The default value is false.

■ sms.message.maxchunks

The maximum chunks a long message can be split into. Chunks after this
number are ignored. A negative value means there is no limitation. The default
is -1.

■ sms.message.chunksize

The maximum size for each chunk in bytes. The default is 160.

■ sms.enquire-link.interval

The interval in seconds that the enquire link is called. This feature is disabled if
the interval is less than 0. The default value is -1.

■ sms.throttling.delay

The delay in seconds that sending re-starts after a throttling error is received
from SMSC. This feature is disabled if the delay is less than 0. The default value
is 15.

■ sms.extra.error-code

The list of comma-separated error codes that can be sent by the SMSC that
require re-sending of the messages.(for example: 0x45, 0x50). By default if any
error code is received as status, the message is discarded.

■ sms.bind.retry.delay

The delay in seconds, after which the driver will wait for an enquiry link
response before trying to rebind with the SMSC. This feature is disabled if the
value of this parameter or sms.enquire-link.interval is less than 0. The
default value of this parameter is -1.

■ sms.registered.delivery.mark

The driver may set the registered-delivery flag when sending a message to the
SMSC based on the requirement of the application. However, the SMSC may
not support all valid flags. In this case, this mark can be used to disable certain
flag bits so that the sending request is not rejected by the SMSC.

Transport Component

Creating Messaging Applications 10-71

10.6.1.15 Fax Driver (RightFax)
This driver supports Fax messages and supports the RightFax (by Captaris) FAX
protocol. The driver depends on the RightFax software package and the availability
of a RightFax Fax server to deliver fax messages. This driver is capable of only
sending messages.

This driver can handle any content type. It recognizes the following MIME types:

■ text/plain

■ application/msword

■ application/msexcel

■ application/msppt

■ application/postscript

■ application/octet-stream

In the case of the ContentTypes.URL, the driver retrieves the content from the
specified URL. The content and MIME type returned by this operation become
content and MIME type sent to the fax server.

10.6.1.15.1 Class Name
oracle.panama.messaging.transport.driver.fax.RightFAXDriver

10.6.1.15.2 Configuration

■ server.url

URL to the RightFax server. This is required.

■ server.account

Account name to the RightFax server. This is required.

All the default attributes below are optional. They are used to customize the cover
sheet only.

■ server.coverpage

The cover page to be used by this driver. If not specified, then the default cover
page of the fax gateway will be used.

■ default.sender.name

The default sender name to be shown on the cover page.

Transport Component

10-72 Oracle Application Server Wireless Developer’s Guide

■ default.sender.corporation

The default sender corporation to be shown on the cover page.

■ default.sender.fax

The default sender’s fax number to be shown on the cover page.

■ default.sender.phone

The default sender’s phone number to be shown on the cover page.

■ default.sender.address

The default sender’s address to be shown on the cover page.

■ default.sender.notes

The default sender’s notes to be shown on the cover page.

■ server.coverpage

The RightFAX driver requires a coverpage setting to render the coverpage. The
coverpage is under a coverpage directory of the RightFAX server. This
parameter should be set to the filename of the coverpage you want. If this
parameter is not set, the default coverpage of the fax server is used.

10.6.2 How to Develop New Drivers
The driver interfaces are intended for the implementation of drivers for particular
protocols. As explained above, drivers can be plugged into the transport system
rather easily, extending network protocol support to the base product. A driver is
expected to be a very thin layer and handles only the protocol-specific details. It is
not designed to handle life cycle, load balancing or scalability issues. The transport
system handles these issues.

The transport system initializes and destroys driver instances by respectively
calling the init() and destroy() methods as specified in the Interface Driver.
The transport system also handles load balancing and concurrence. A driver should
just focus on interpreting the semantics of a particular protocol, leaving all others to
the transport system.

Transport Component

Creating Messaging Applications 10-73

Figure 10–12 Driver Lifecycle

A driver can be capable of only sending, or receiving, or both. To implement the
sending semantics, a driver only implements the send() methods as specified in the
interface Driver. Receiving is a bit more complex in that the action to receive is
driven by the transport. To implement receiving, a driver fills in the logic to receive
in the receive() method specified by the Driver interface. The transport will
continuously invoke the receive() method throughout the life cycle of the driver
instance.

Drivers should be designed to be instance thread safe, or their usage must be clearly
conveyed to system administrators so that proper configurations can be set to not
thread the driver instance.

The key classes and interfaces required for developing the SMS driver interface to
work with OracleAS Wireless are listed below.

10.6.2.1 Class oracle.panama.messaging.transport.TransportLocator
The class TransportLocator defines interfaces that provide initial access to both
the messaging interface and the driver interface. Two key methods defined for this
class are:

■ getDriverController() returns an instance for the use of the driver
interface

■ getMessagingController() returns a Controller instance for the use of the
messaging interface

Transport Component

10-74 Oracle Application Server Wireless Developer’s Guide

10.6.2.2 Interface oracle.panama.messaging.transport.Driver
This is the main interface for developing drivers for a particular protocol. You
develop a driver by implementing the Driver interface. Your component is a
qualified OracleAS Wireless driver if it implements this interface.

10.6.2.2.1 The init() and destroy() methods These methods control the life cycle of the
driver instance. The initialization properties passed to the init method are those
specified through the OracleAS Wireless Tools configuration framework.

The init() method returns an initialization status, which can be one of:

Driver.FAILED, Driver.SEND, Driver.RECEIVE
Driver.SEND_RECEIVE.

Ensure that the status returned is consistent with those configured through
OracleAS Wireless Tools. If different, then the value of the status returned here and
that configured through the webtool will be used.

10.6.2.2.2 The send() method Drivers implement this method to perform whatever is
appropriate for their particular protocols to send out messages. The content to be
delivered is stored in the Message object passed onto the send() method, while
the address parameter specifies one or more recipients to deliver the message to.

Further, the driver is expected to return a unique ID for each message, or identifies
one for each of the recipients. These IDs are used by the transport to query the
status of the delivery when necessary.

The driver must return a null message ID to make the transport retry. Exceptions
thrown out of the send method are caught, and logged as sending statuses. If the
send () method throws any exception, the transport will not retry. If the send ()
method throws an exception of the type DriverException, the exception code is
checked. If the code of the exception is marked fatal, the sending capability of this
driver instance is revoked.

■ If the exception is not marked fatal, the driver will still be used to send other
messages.

■ If the exception is not of the type DriverException, the driver will be used to send
other messages as well.

Note: All classes mentioned below assume that you are using the
oracle.panama.messaging.transport package, unless
otherwise specified.

Transport Component

Creating Messaging Applications 10-75

Before a driver throws a non-fatal DriverException, the driver will try to recover.
For example, if a TCP/IP connection is dropped, the driver tries to reconnect it
without throwing an exception. If the driver does throw a non-fatal exception
without trying to recover, the transport will keep sending messages, which will fail
since the error is not recovered. This will decrease performance of the system,
especially when the load is heavy.

10.6.2.2.3 The receive() method Drivers implement this method to perform whatever
is appropriate for their particular protocols to receive messages and/or status
reports.

As mentioned above, the transport drives the operation. Normally the driver is
expected to return from this method once a message is received. Controlled is
yielded back to the transport regularly so that the transport can evaluate the next
best step.

The receive() method is called continuously by the transport. Hence it is
preferable the receive() method blocks if it does not receive any messages.
However it should not block indefinitely otherwise it will be considered a runaway
operation and the thread that calls the receive will be terminated. The elapsed time
for runaway threads can be configured by setting Maximum Execution Time per
Request under runtime configuration (default is 60 second). When a message is
received, it should call the onMessage method of the Message Listener to submit
the message (or, the onStatus callback on the Status Listener if the message was a
status report). The method can throw an exception of type DriverException and mark
it as fatal to request that the transport stop calling the receive () method. The
reason for this design is to simplify the logic and thread control of the driver.

10.6.2.2.4 The getStatus() method The transport calls this method in an attempt to
retrieve delivery status for a particular message when necessary.

10.6.2.2.5 The queryTracking() and queryNotifying() methods With some protocols, an
active poll to the external service must be performed to check the status of messages
previously sent. These methods are called by the Transport to determine whether a
getStatus() must be issued to retrieve status, or the driver would pass status
back to Transport without such call (typically the driver calls onStatus() inside
receive()).

Transport Component

10-76 Oracle Application Server Wireless Developer’s Guide

10.6.2.3 Interface oracle.panama.messaging.transport.DriverController
Provides an entry point into other driver-related utilities and interfaces such as
Message Listener. You can get an instance of the DriverController by calling the
getDriverController() method of the Locator.

Figure 10–13 Flow of Message and Status

10.6.2.3.1 The getMessageListener() and getStatusListener() methods These methods
return the Transport callback instances for the receiving messages or status. You
typically call the onMessage() or onStatus() methods within your
implementation of the receive() method in the Driver interface to pass on
messages and status to the Transport system respectively.

10.6.2.4 Interface oracle.panama.messaging.transport.GSMSmartMSGEncoder
If your implementation must process GSM smart message delivery (such as OTA
WAP provisioning, ring-tone, graphics), you will find this interface useful.
OracleAS Wireless includes a default implementation of this interface, which can be
located by getting the value for the property
wireless.messaging.gsmsms.encoder.class. The default implementation
handles OTA WAP provisioning, ringtone, and graphics for Nokia and Ericsson
handsets.

If you would want to extend the base capability, you can do so by developing your
own implementation by extending this interface. Once done, you should configure
the transport property wireless.messaging.gsmsms.encoder.class to include the value of
the class of your implementation.

10.6.2.4.1 The encode() method This is the only method needed for the interface. The
parameters indicate the type (ringtone, graphics), model (Nokia, Ericsson) and all
the attributes relevant to the requested type.

Transport Component

Creating Messaging Applications 10-77

You process the information and return encoded messages in a form of
GSMSmartMsg, which is the fragments for the message and some specific smart
message information.

It might happen that either the type, model or other item are not supported by your
implementation. In this case, you have two choices:

■ Throw a Transport exception when you know how to handle it and are sure that
user data are corrupted or improper. In this case, the smart messaging process
(not the physical Java process) terminates.

■ Do not throw an exception, just return null when you do not know how to
handle it.

In this case, the pre-built SMS drivers (such as UCP driver, SMPP driver) will fall
back to the default implementation of the GSMSmartMsgEncoder to see if it can
handle the situation. This depends on whether a driver is developed with the
correct semantics. If you are focused on extending the capabilities of the
GSMSmartMsgEncoder, follow this convention to allow maximum utilization of
your development.

10.6.2.5 Interface oracle.panama.messaging.transport.MessageListener and
StatusListener
You obtain instances of these interfaces by calling the appropriate methods in the
DriverController interface.

They are typically used within your implementation of the receive() method in
the Driver interface to inform the availability of messages or status to the Transport
system.

10.6.2.6 Class oracle.panama.messaging.common.Message
The message class is used to capture the content to be delivered or received. It is
comprehensive, and has an expressive power similar to email. It supports
multi-part messages and allows mime types to be associated with the content.

However, how to deal with the particular parts or MIME types is left for the
implementation of the drivers.

You will find the header of the message a good place to pass information from your
application to the driver if such information is not passed to the driver through the
driver interface.

Transport Component

10-78 Oracle Application Server Wireless Developer’s Guide

10.6.2.7 Class oracle.panama.messaging.common.ContentTypes
This class is not a class only for drivers. It specifies a few content types (MIME
types) in addition to the standard MIME types. As driver implementers, you might
encounter these MIME types. How to deal with these MIME types is left to the
individual driver, but it is critical that you are aware of them.

10.6.2.8 Properties of the driver
While adding a driver to the OracleAS Wireless using OracleAS Wireless Tools, a set
of properties must be specified, as listed in the table below.

10.6.2.9 Custom properties for a driver
When installing a driver, custom properties can be specified for the driver to
function. For example, for an email driver to work, it might need to have a property
for the imap hostname. The driver can be coded to expect a property of, say, name
imap.hostname. When adding a driver through OracleAS Wireless Tools, one can

Table 10–7 Driver properties

Name Description

NameRequired property A discretionary name for the driver.

ClassRequired property The class that implements the driver.

Delivery
CategoryRequired
properties

The supported categories of transport it supports, such as SMS,
email.

Protocol The particular protocol the driver transmits, such as SMPP or
UCP. This is optional. Default is "*", meaning all of the
possibilities.

Carrier The carrier the driver can support, such as Cingular, Telia. This
makes sense particularly in the SMS area and is optional.
Default is "*", meaning all the possible carriers.

Speed Speed of the driver. This can be used to improve load
balancing. This is optional, with possible value ranging from
0-10. Default is 0 (slowest).

Cost Cost to use this driver. This can be used to improve load
balancing. This is optional, with possible value ranging from
0-10. Default is 0 (most inexpensive).

Capabilities Whether the driver can send, receive or both. This is optional
defaulted to send only.

Encoding, locale Not used.

Transport Component

Creating Messaging Applications 10-79

specify any number of property names. When creating the driver instances, the
specific values of such a property can be provided. For example, out of the same
driver code, one can install two email driver instances, each provided with imap
hostnames to two distinct IMAP servers.

These custom properties are passed into the driver instance when init() is called.
In addition to the set of custom properties, some OracleAS Wireless site-level
properties are also passed implicitly, they are:

■ wireless.log.directory

■ wireless.firewall.http.use.proxy

■ wireless.firewall.http.proxy.host

■ wireless.firewall.http.proxy.port

■ wireless.firewall.http.non.proxy.hosts

■ wireless.firewall.ftp.use.proxy

■ wireless.firewall.ftp.proxy.host

■ wireless.firewall.ftp.proxy.port

■ wireless.firewall.authentication.set

■ wireless.firewall.authentication.username

■ wireless.firewall.authentication.password

10.6.2.10 Example: A Sample Driver
// Copyright (c) 2001 Oracle Corporation. All rights reserved.
package oracle.panama.messaging.transport.driver.sample;
/**
* A SimpleDriver class.
* <P>
* @author Oracle Corporation
*/
import Java.util.Properties;
import Java.net.ServerSocket;
import Java.net.Socket;
import Java.io.BufferedReader;
import Java.io.PrintStream;
import Java.io.InputStreamReader;
import Java.io.IOException;
import Java.io.PrintWriter;
import Java.io.FileOutputStream;

Transport Component

10-80 Oracle Application Server Wireless Developer’s Guide

import Java.text.SimpleDateFormat;
import oracle.panama.messaging.transport.*;
import oracle.panama.messaging.common.*;
import oracle.panama.model.DeliveryType;
import oracle.panama.util.MessageCatalog;
import oracle.panama.core.admin.L;

/**
* A Simple driver
*
* @author ashah, jxiang
*/
public class SimpleDriver implements Driver {
private String mCompanyName;
private String mDeliveryType;
private String mVersion;
private PrintWriter log = null;

/**
* Initialize the driver.
*
* @param properties the driver’s properties.
* @return the initialization status.
*/
public int init(Properties properties) {
// get the locator instance and various listeners
TransportLocator locator = TransportLocator.getInstance();
DriverController manager = locator.getDriverController();
mMessageListener = manager.getMessageListener();
mStatusListener = manager.getStatusListener();
// read pr operties
mCompanyName = properties.getProperty("company-name");
// delivery type is needed. Use SMS
mDeliveryType = DeliveryType.SMS.getName();
mVersion = "1.0";
int status = Driver.FAILED;
try {
String logName = properties.getProperty("logfile");
if (logName == null)
logName = new String("SimpleDriver.log");
log = new PrintWriter(new FileOutputStream(logName, true));
} catch(Exception e) {
e.printStackTrace();
return status;
}

Transport Component

Creating Messaging Applications 10-81

log ("initialized: " + new Java.util.Date());
mPort = Integer.parseInt(properties.getProperty("port"));
mDelay = 20000; // 20 seconds
mMessage = new Message();
mSemaphore = new Object();
status = Driver.SEND_RECEIVE; // TODO - verify the return code
mStatus = new Status();
log ("init complete");
return status;
}

/**
* Destroy the driver.
*/
public void destroy() {
try {
log ("destroy");
mServerSocket.close();
mReader.close();
mWriter.close();
log ("destroy comp lete");
}
catch (Exception e) {
}
}

/**
* Get the accepted attributes of the driver.
*
* @return the accepted attributes of the driver.
*/
public Parameter[] getParameters() {
Parameter[] parameters = new Parameter[3];
parameters[0] = new Parameter("company-name", "a company name", true, null);
parameters[1] = new Parameter("logfile", "the log file name", false,
"SimpleDriver.log");
parameters[2] = new Parameter("port", "the listening port of the driver", true,
null);
return parameters;
}

/**
* Get the version of the driver.
*
* @return the version of the driver.

Transport Component

10-82 Oracle Application Server Wireless Developer’s Guide

*/
public String getVersion() {
return mVersion;
}

/**
* Get additional information of the listener.
*
* @return the information of the listener.
*/
public String getInfo() {
return "Simple Driver";
}

/**
* Send a message to a single address with this driver.
*
* @param address the address to send to.
* @param encoding the encoding of the device.
* @param tracking the tracking level.
* @param expiration the expiration time.
* @param reliability the reliability level.
* @param priority the priority level.
* @param fromAddr the from-address.
* @param replyToAddr the reply-to-address.
* @param mid a unique message id can be used to generate return message id.
* @param message the message to send.
* @return a unique message id, null if failed.
*/
public String send(String dtype, String address, int mode, String encoding,
int tracking, int expiration, int reliability, int priority, String fromAddr,
String replyToAddr, String mid, Message message) {
log ("send: " + address + " => " + message.getContent());
String id = null;
try {
id = mid + ’:’ + address;
mWriter.println(id);
mWriter.println(message.getContent());
mWriter.flush();
}
catch (Exception e) {
// no t synchronized, it works for this toy.
mWriter = null;
mReader = null;
id = null;

Transport Component

Creating Messaging Applications 10-83

}
log ("sent id: " + id);
return id;
}
/**
* Send a message to a list of addresses with this driver.
*
* @param addresses the addresses to send to.
* @param encoding the encoding of the device.
* @param tracking the tracking level.
* @param expiration the expiration time.
* @param reliability the reliability level.
* @param priority the priority level.
* @param fromAddr the from-address.
* @param replyToAddr the reply-to-address.
* @param mid a unique message id can be used to generate return message id.
* @param message the message to send.
* @return a list of unique message ids, null if failed.
*/
public String[] send(String dtype, String[] addresses, int[] modes,
String encoding, int tracking, int expiration, int reliability,
int priority, String fromAddr, String replyToAddr,
String mid, Message message) {
String[] ids = null;
log ("send: mult iple => " + message.getContent());
try {
int count = addresses.length;
ids = new String[count];
String id = mid + ’:’ + addresses[0];
ids[0] = id;
mWriter.print(id);
for (int i=1; i<count; i++) {
id = mid + ’:’ + addresses[i];
ids[i] = id;
mWriter.print(’,’ + id);
}
mWriter.println();
mWriter.println(message.getContent());
mWriter.flush();
}
catch (Exception e) {
// no t synchronized, it works for this toy.
mWriter = null;
mReader = null;
ids = null;

Transport Component

10-84 Oracle Application Server Wireless Developer’s Guide

}
log ("sent multiple");
return ids;
}

/**
* Send a message to a list of addresses with this driver.
*
* @param dtypes the delivery types for all destinations
* @param addresses the addresses to send to.
* @param modes the delivery modes
* @param encoding the encoding of the device.
* @param tracking the tracking level.
* @param expiration the expiration time.
* @param reliability the reliability level.
* @param priority the priority level.
* @param fromAddr the from-address.
* @param replyToAddr the reply-to-address.
* @param mid a unique message id can be used to generate return message id.
* @param message the message to send.
* @return a list of unique message ids, null if failed.
*/
public String[] send(String[] dtypes, String[] addresses, int[] modes,
String encoding, int tracking, int expiration, int reliability,
int priority, String fromAddr,String replyToAddr, String mid,
Message message) throws DriverException {
String[] ids = null;
int count = addresses.length;
log (" send: " + count + " recipients : " + message.getContent());
ids = new String[count];
for (int i=0; i<count; i++) {
ids[i] = send(dtypes[i], addresses[i], modes[i], encoding, tracking,
expiration, reliability, priority, fromAddr,
replyToAddr, mid, message);
}
return ids;
}

/**
* Get the sending status of a message. The
* status got by this call should be reported
* the transport system via the driver listener
* onStatus callback.
*
* @param mid the id of the message.

Transport Component

Creating Messaging Applications 10-85

*/
public void getStatus(String mid) {
}

/**
* Get the sending statuses of a list of messages.
* The statuses got by this call should be reported
* the transport system via the driver listener
* onStatus callback.
*
* @param mids the ids of these messages.
*/
public void getStatus(String[] mids) {
}

/**
* Check if query is required to get the notification.
*
* @return true if required, false otherwise.
*/
public boolean queryNotifying() {
return false;
}

/**
* Check if query is required to track the
* sending status.
*
* @return true if required, false otherwise.
*/
public boolean queryTracking() {
return false;
}

/**
* Receive a message/status. If any message/status
* is received, the driver should use the onMessage/
* onStatus callbacks of the driver listener (got
* via the controller) to report it to the transport
* system. This method should do something if the
* initization status has the RECEIVE ability.
*/
public void receive() {
log ("receive started");
synchronized (mSemaphore) {

Transport Component

10-86 Oracle Application Server Wireless Developer’s Guide

try {
if (mServerSocket == null) {
try {
mServerSocket = new ServerSocket(mPort);
mServerSocket.setSoTimeout(mDelay);
}
catch (IOException ioe) {
mServerSocket = null;
mSocket = null;
throw ioe;
}
}
if (mSocket == null) {
try {
mSocket = mServerSocket.accept();
mSocket.setSoTimeout(mDelay);
}
catch (IOException ioe) {
mSocket = null;
throw ioe;
}
}
if (mReader == null) {
mReader = new BufferedReader(
new InputStreamReader(mSocket.getInputStream()));
mWriter = new PrintStream(mSocket.getOutputStream());
}
String buf = mReader.readLine();
log ("receive read: " + buf);
if (buf.charAt(0) == ’*’) {
String address = buf.substring(1);
mMessage.setContent(mReader.readLine());
DeviceInfo info = new DeviceInfo();
info.setDeliveryType(mDeliveryType);
info.setEncoding("7b");
String from = "FROM-ME-TODO";
mMessageListener.onMessage(from, info, address, mMessage);
log ("message sent to message listener");
}
else {
mStatus.setContent("received");
mStatusListener.onStatus(buf.substring(1), mStatus);
log ("status sent to status listener");
}
}

Transport Component

Creating Messaging Applications 10-87

catch (IOException ioe) {
mReader = null;
mWriter = null;
}
}
}

/**
* write to message log
*
* @param message string
*/
void log(String message) {
if(log != null) {
synchronized(log) {
String currentTime = new SimpleDateFormat(
"yyyy-MM-dd HH:mm:ss").format(new Java.util.Date());
log.println(currentTime + " " + message);
log.flush();
}
}
}

private Socket mSocket;
private Object mSemaphore;
private ServerSocket mServerSocket;
private MessageListener mMessageListener;
private StatusListener mStatusListener;
private BufferedReader mReader;
private PrintStream mWriter;
private Message mMessage;
private Status mStatus;
private int mDelay;
private int mPort;
}

10.6.3 Upgrading OracleAS Wireless 9.0.2x Drivers
Since the OracleAS Wireless 9.0.2x driver interface is not compatible with the 9.0.4
driver interface, 9.0.2x drivers must be upgraded to work with the 9.0.4 Transport
Server (9.0.4 drivers must be downgraded to work with the 9.0.2x Transport Server.).
The included pre-built drivers have been upgraded and work with the current
release. Only customer-developed, 9.0.2x drivers are affected. This section shows
you how to upgrade your 9.0.2x drivers.

Transport Component

10-88 Oracle Application Server Wireless Developer’s Guide

The main differences between the 9.0.2x driver interface and 9.0.4 driver interface
are:

■ one method getParameter() was added

■ all three send() methods are changed

■ several new attributes were added to the parameter list

10.6.3.1 New and Changed Methods
■ The getParameter() method

This method lists the attributes the driver accepts. It can be called to get the
accepted attributes information dynamically.

■ The send() methods

These methods are enhanced to pass more parameters from the Transport to the
driver; none of the original parameters have been removed, making it very easy
to upgrade the 9.0.2x drivers. The newly-added parameters are useful, but they
are not required. The newly added parameters include priority, message ID
(mid), and expiration. The priority is the priority level of the message. Its
possible values are defined in MessageInfo as constants. The message ID is a
unique message ID that can be used as a seed by the driver to generate unique
return message IDs. Generally, the driver can use this message ID (appended
with the destination address) as the return message ID. The expiration is the
time in seconds when the message will expire. If the value is less than or equal
to zero (0), the message will not expire. See the Java doc of the new driver
interface more information on the newly added parameters.

To upgrade your 9.0.2x driver, you just must:

1. Add the new getParameter() method.

2. Modify all three of your send() methods to use the latest signatures.

10.6.4 Extend the Transport Server, Hooks
Applications can install hooks that are invoked during message sending and
receiving depending on the type of hook. All hooks are optional. Typically the
hooks are passed all of the information the application specifies and can do what
ever is appropriate. Hooks are useful in providing routing information, and
perform other custom logic in some cases.

There are two main categories of hooks:

Transport Component

Creating Messaging Applications 10-89

■ Named hooks--only at most one hook for each kind, and can be added only
through OracleAS Wireless Tools configuration.

■ General hook--There are four kinds of general hook. They are: pre-send,
post-send, pre-receive, post-receive. There can be none or multiple hooks for
each kind and they can be added and removed either through the OracleAS
Wireless Tools or programmatically through methods available on the
Messenger interface.

No default hook is provided for the product.

10.6.4.1 Named Hooks
■ DriverFinder--(interface

oracle.panama.messaging.transport.DriverFinder). The expected
semantics of this hook is to fill in the driver name for a delivery request.

■ CarrierFinder--(interface
oracle.panama.messaging.transport.CarrierFinder). This hook is a
named hook that can be configured through OracleAS Wireless Tools. The
expected semantics of this hook is to locate a carrier for a given device address.
The carrier information is then used by the DriverFinder or the transport
system to perform routing. It is generally called once per message. There can be
only one hook of this kind.

■ SmartMsgEncoder (interface
oracle.panama.messaging.transport.SmartMsgEncoder). This hook
is used to encode GSM and/or CDMA smart messages. In 9.0.2.x releases, this
hook is called GSMSmartMsgEncoder. It supports GSM smart message
encoding only. This interface is extended in this release to support both GSM
and CDMA smart messages; however, the semantics are unchanged. If a hook
can not encode a message, it should return null to indicate this fact so that other
encoders will be invoked until a proper encoder is found. The
previously-shipped encoder will be upgraded to the new interface. To upgrade
your implementation from 9.0.2.x to this release, change the class definition
from implements
oracle.panama.messaging.transport.GSMSmartMsgEncoder to
extends oracle.panama.messaging.transport.SmartMsgEncoder,
and change the method name encodeSmartMsg to encodeGSMSmartMsg.

Supporting Premium SMS and Reverse Charge SMS

10-90 Oracle Application Server Wireless Developer’s Guide

10.6.4.1.1 OracleAS Wireless Messaging System

■ FailOverHook--(interface
oracle.panama.messaging.transport.FailOverHook). This hook is for
future use.

10.6.4.2 General Hooks
■ PreSendingHook

(interface oracle.panama.messaging.transport.GeneralHook). This
hook is called before sending any message.

■ PostSendingHook
(interface oracle.panama.messaging.transport.GeneralHook). This
hook is called after sending any message.

■ PreReceivingHook
(interface oracle.panama.messaging.transport.GeneralHook). This
hook is called before passing any received message to the listener.

■ PostReceivingHook
(interface oracle.panama.messaging.transport.GeneralHook). This
hook is called after passing any received message to the listener.

10.7 Supporting Premium SMS and Reverse Charge SMS
SMS phones are one of the major devices Async is targeted to serve. Within the SMS
segment, a popular billing model is Premium SMS. It is similar to the 900 model of
voice phone translated into SMS. SMS phones send a message (with all the
service-required information) to a short number (termed as Large Account). The
message is routed to the content provider, which has their system set up to listen to
the SMS message sent to the number. The user request is processed and the result is
sent back to the device. The end-user is charged a service premium rate on top of
the typical SMS transport rate for the request message issued from the mobile
device. The premium varies depending on the types of service to be invoked. The
request charge is reflected on the subscriber’s existing SMS phone bill. At the end of
the billing cycle, the premium will be split between the Carrier (Premium SMS
operator), and the content provider. Figure 10–14, "Premium SMS Process"
illustrates the process.

Supporting Premium SMS and Reverse Charge SMS

Creating Messaging Applications 10-91

Figure 10–14 Premium SMS Process

To access a Premium SMS service, a mobile user sends a message to a Large
Account (Async address in OracleAS Wireless terminology) with a keyword (Async
short name in OracleAS Wireless terminology) to identify the service. A predefined
service premium (associated with the Large Account) is charged to the mobile
subscriber when the request message is sent from the device to the network of the
Premium SMS operator. The content provider invokes the corresponding service
identified by the service keyword once it receives the message. The service result is
sent back to the mobile subscriber through another SMS message.

Figure 10–15 Reverse Charge SMS

Reverse Charge SMS is a billing model which charges the service premium to the
mobile subscriber on the Result SMS message. The service premium of the request
depends on which service a mobile user accesses. Each service has a tariff class
associated with it. Once the Service Provider generates the service result, it also
supplies the Reverse Charge SMS operator with the required information so the
operator is able to record the billing transaction correctly.

10.7.1 Premium SMS and Reverse Charge New Features
To properly support the Premium SMS and Reverse Charge model on OracleAS
Wireless, the following new features have been added:

■ A grouping object, named Service Category, has been created to classify services.
This group represents a set of services which share some logical similarities. For

Supporting Premium SMS and Reverse Charge SMS

10-92 Oracle Application Server Wireless Developer’s Guide

example, Premium SMS services having the same premium level can be put
into a Service Category.

■ Each Access Point (for example: Async address) can be optionally associated with
one or more Service Categories. This binds an OracleAS Wireless access point to
the set of services it allows access to. Any attempt to invoke a service outside
the access point associated with the service set introduces a service invocation
failure. In the case of Premium SMS, an Async address representing a Large
Account can be mapped to a set of Service Categories which reflect the
premium level of the Large Account. This association provides the model for
request authorization based on premium levels between the services and the
access point. A request sent to a Large Account having a premium level of 10
cents, will not be allowed to access a service that has a higher premium. The
creation of a Service Category, and the association of services and access points
can be done through OracleAS Wireless Tools.

■ A set of Routing Information Parameters have been added as part of Async
application attributes. Billing information (such as Large Account) can be
associated with the service so the value is sent back (as the message header)
with the result message. The information is carried over to the Messaging
driver, and eventually to a Premium SMS or Reverse Charge SMS operator so
the message will be charged through the correct account.

■ The Routing Information is implemented as a Preset. A pre-seeded Preset
Definition, called _MESSAGE_ROUTE_, is included with a standard installation.
The administrator is able to edit the Preset Definition to add, modify or remove
fields to custom fit their own requirements. This gives users added flexibility to
define result message attributes.

10.7.2 Enabling Premium SMS Services
To make an OracleAS Wireless service Premium SMS-enabled, follow the steps
below. For a more detailed step-by-step walk-through, see OracleAS Wireless
Administrator’s Guide.

1. Create an Access Point using Enterprise Manager with the flag Allowed to Access
All Applications unchecked. The address value of the Access Point should be the
Large Account provided by the Premium SMS operator.

2. Create a Service Category using OracleAS Wireless Tools, and associate it with
the Access Point created above. This object groups all the services that are
accessible to the Access Point.

Supporting Premium SMS and Reverse Charge SMS

Creating Messaging Applications 10-93

3. Assign all Async applications (accessible to the access point) to the newly
created Service Category.

4. Optionally, edit the pre-seeded _MESSAGE_ROUTE_ Preset Definition so that
each portal is able to customize the message headers to be sent to the SMS
driver as the billing information for the result message. For instance, the
description of ROUTE_COST_LEVEL can be changed from Cost level to Tariff
class. Those meta fields can also be added or deleted.

By default, the values of the two fields, ROUTE_CHANNEL and ROUTE_REV_
CHANNEL, are set to From and ReplyTo fields of the result message. This allows
the information to be passed to the Premium SMS operator without requiring a
custom-built driver. If the administrator needs to change the mapping, he
should modify the two attributes, wireless.async.routeinfo.to and
wireless.async.routeinfo.replyto.

5. Using Content Manager, add SMS routing information to all Premium
SMS-enabled applications. A typical example is to assign the value of the Large
Account, which the reply message should be charged on, to the Channel field.

Supporting Premium SMS and Reverse Charge SMS

10-94 Oracle Application Server Wireless Developer’s Guide

Notification Engine 11-1

11
Notification Engine

Each section of this document presents a different topic. These sections include:

■ Section 11.1, "Overview and Architecture"

■ Section 11.2, "Creating a Notification"

■ Section 11.3, "Data Feeders"

■ Section 11.4, "Integrated Notification Solutions"

■ Section 11.5, "Migrating the Notification System"

11.1 Overview and Architecture
OracleAS Wireless notification system provides a scalable and flexible mechanism
for delivering mobile notification messages based on predefined predicates. The
message content is generated by invoking a regular OracleAS Wireless application
upon verification of user-defined predicates, and end-user messages are delivered
using OracleAS Wireless messaging application. See Chapter 10, "Creating
Messaging Applications" for more information.

The notification engine evaluates predicates every time an event is received from
time, data or location providers. The engine is triggered whenever there is a change
in the underlying feed.

Overview and Architecture

11-2 Oracle Application Server Wireless Developer’s Guide

Figure 11–1 Notification Flow

There are three major types of notification triggering:

■ Data Triggering—a data feeder is used to generate data events. Upon receipt of
this event, the notification system evaluates user-defined predicates and
delivers a message to those whose predicates are met. It is possible to define
multiple predicates for data events, and these predicates can be combined by
AND or OR; it is not possible to define a mixed AND/OR operation between
these predicates. A typical example for this type of notification applications is
sending stock quote information to users if the requested stock has reached a
certain value.

■ Time Triggering—time-based triggers can be used with or without a data
condition. For example, a user can request notification messages for the stock
index every day at 3:00PM. For time-based notifications, in addition to the time
predicates, users can provide data conditions for receiving a message, such as if
the index has reached a certain value at the specified time.

■ Location Triggering—location events are generated by another component
(location event server). Some use cases for location-based conditions are:

■ Evaluation of another user’s locations: Let me know if a specific truck arrives at
the customer site.

■ Evaluation of a group of users’ location: When all team members are at the
office, send me a message (so that I can arrange a group meeting).

Overview and Architecture

Notification Engine 11-3

■ Querying another user’s location at the specified time (Location and time):
Let me know if my child is not at school between 9:00AM and 3:00PM.

■ Promotions and traffic report type of applications for which validation of a
location condition is an input for further processing: Send me a notification
message about promotions when I am in front of a specific store, or send me the
traffic report if I am not at work or home at 9:00AM.

A notification need not be strictly based on only one of the above. The same
notification can have multiple entry points, and can be triggered by a combination
of these (that is, it can be time and data based, and can be triggered by both data
feeder and timers).

11.1.1 Architecture
Notification Engine is an event server which performs the following tasks:

■ Evaluates incoming events to find the set of users interested in a specific event

■ Invokes an application to generate the relevant content for the event

■ Delivers messages to users with the generated content.

Events are triggered when there are changes in the underlying data source; the data
sources provide certain data for evaluation of this event.

See: For more information on Location capabilities, see
Chapter 14, "Using Location Services"

Overview and Architecture

11-4 Oracle Application Server Wireless Developer’s Guide

Figure 11–2 Notification Architecture

The notification mechanism consists of four layers:

■ Event Generator Layer, of which OracleAS Wireless has 3 types:

■ Data Feeder—generate value events by providing a stream of data to the
notification engine at specified intervals from a content source. The data
feeder takes an input parameter (provided by the user), and returns a row
of data for the specified input parameter. Each column in this row is
considered as an output parameter by the notification engine. For example,
a stock feed can retrieve stock price, P/E and price change for a given stock
symbol.

■ Timer—generates time events at user-specified intervals.

■ Location Event Agent—generates location events when user-specified
conditions are validated.

■ Event Handler Layer—each time an event is received from the corresponding
event generator, this component finds a set of users who are interested in this
specific event; it derives a set of users whose conditions are met by the
incoming data. For example, when a data feeder generates an event by pushing
stock prices for the stock ORCL, a value event handler finds users who are
interested in ORCL, and whose value conditions are met with the current stock
price.

Overview and Architecture

Notification Engine 11-5

■ Service Invoker Layer—for users whose conditions are met, the appropriate
application is invoked by OracleAS Wireless Tools to retrieve content that will
be pushed to the end-user as a notification message. This process involves
passing available data (which is provided by the data feeder) to the application,
creating a user session, authentication and finally retrieving the content.

■ Message Dispatcher delivers the generated content to an end-user through the
XMS layer.

11.1.2 Key Features
The key features of the Notification System are:

■ Actionable Notifications—OracleAS Wireless enhances notifications by
enabling user interaction. Not only can users can receive notification messages,
but they can also reply to these messages to perform further processing. For
example, users can reply to a stock notification with an order to sell their stocks.
For more information about actionable notifications, see Chapter 10, "Creating
Messaging Applications".

■ Flexible Message Content—Since notification message content is generated
through application invocation, the notification engine provides the flexibility
to generate any type of notification. This also enables executing specific
application logic while generating content. Actionable notifications can be used
to provide further processing for this application logic (that is, sending a
message with a confirmation request to sell the stocks when Oracle stock
reaches a certain value).

■ Location Support—You can specify a location condition with a set of location
criteria, expiration time and evaluation mode. Location criteria is defined by
region (system region, custom region or user-defined region), target (OracleAS
Wireless user, community or mobile device) and type (IN or OUT). The relation
between specified criteria is defaulted to AND by the location server, meaning
this condition will be satisfied only when all criteria are met. Evaluation mode
for a location condition can be evaluate once, for which the location condition
will not be evaluated after the first time it is satisfied, or evaluate until the
expiration time.

■ Time Based Notifications—Use in conjunction with value based predicates. For
this case, notification messages can be sent when either both time-based and
data-based predicates are met, or when at least one of them is met.

■ Personalized Content versus Generic Content—By invoking a master
application, the notification engine can provide more customizable content.

Overview and Architecture

11-6 Oracle Application Server Wireless Developer’s Guide

However, due to the fact that application invocation is a relatively expensive
operation (compared to processing a message template), this feature may slow
down the notification processing, and degrade engine performance. To
overcome this challenge, the notification engine can invoke the target
application once for a specific event for content that is not user-specific, and
share the content between all users who are interested in this event and content.

■ Message Templates—Instead of creating a master application for content
generation, you provide a message template with variables, which will be
substituted with existing data at runtime. Since the notification engine
generates messages by invoking an application, a default master application
can be generated by the notification engine, and parameter-mapping will also
be handled by the notification engine.

■ Comprehensive Time Predicates:

■ Activation and expiration dates—users can specify when to activate a
specific notification, and provide a date for expiration.

■ Suspend start and end dates—users can choose to suspend a specific
notification for a given period (for example: when the user is on vacation).

■ Specific date notifications—users can pick a specific date to deliver a one
time notification (that is, sending flight information on user’s departure
date/time).

■ Repetitive notifications—users can request repetitive notifications in a
specific time period. For example, a user can subscribe to a stock
notification to receive stock quotes every 30 minutes between 1:00PM and
4:00PM.

■ Notification times can be specified in <Hour:Minute> granularity with
frequencies as Daily, Weekdays and Weekends.

■ User time zones (provided by the user profile) play an important role in
time predicates. Every user-specified notification time is considered to be in
that user’s time zone. For example, if two users subscribe to a notification to
receive stock quotes at 9:00AM with one having GMT and other PST as
their time zones in their profiles, the user who has GMT in his profile will
get the notification 8 hours before the second user.

■ Device Support—users can pick a device for delivering notification messages.
Since it is possible to set a maximum for the number of notifications that can be
sent to a device on a daily basis, users can also specify what to do in case this
maximum is reached. The alternatives are: send rest of the notifications to an
alternate device, or ignore them.

Creating a Notification

Notification Engine 11-7

■ Presence-aware device selection—If users do not specify a device for
notification delivery, OracleAS Wireless will pick a device using contact rules
defined by the user and the optimum channel. For more information about
Contact Rules, see Chapter 7, "Wireless Customization Portal".

■ Data Based Condition relation—Notifications can be defined to contain more
than one condition, for example: price is greater than 20 and/or change is less than
10%. For multiple conditions, it is possible to specify a relation type between
these conditions. Relation can be either AND or OR; mixed relations are not
supported.

11.1.3 Backward Compatibility
There have been significant changes in the notification engine since the previous
release. The most important architectural difference is the way content is generated;
now, content is retrieved from an application instead of processing a message
template. Due to this paradigm shift, it is not possible for the new engine to process
old type of notifications (referred to as alerts, alert services, and master alert
services in previous Wireless releases).

To overcome this backward compatibility problem, administrators can create
separate notification processes. Notifications created by the two different versions
will be intact. The new engine will only handle the new type of notifications; new
features will not be available for notifications created using the older version.

Since OracleAS Wireless Notification Engine supports message template
specification (as explained in Section 11.1.2, "Key Features"), it is easy to migrate
alert services (that is, notication applications) created with the old version into the
new version; tools to automate this process are provided. After migration, migrated
alerts will be handled by the new engine, then you can use new features included in
this version.

11.2 Creating a Notification
With OracleAS Wireless, creating notifications is straightforward. You simply build
an application and notification-enable it. Based on the condition specified while
notification enabling an application, end users subscribe to that application with
their own criteria. That completes the process. The notification engine does the rest.
At runtime, condition matching, subscription collecting, messaging generating and
dispatching are fully automated and managed by the notification engine with no
intervention necessary. The creation process can be summarized as follows:

Creating a Notification

11-8 Oracle Application Server Wireless Developer’s Guide

■ Using OracleAS Wireless Tools:

■ Create Data Feeder (if notification is data-based)

■ Create Notification Master Application

* Assign Data Feeder (if data based)

* Create triggering conditions (if data based)

* Define message template (optional)

■ Create Application Link

* Notification-Enable it

■ Publish Application

■ Using OracleAS Wireless Customization Portal or a custom-built end-user
portal:

■ Locate Notification-Enabled application from the application tree.

■ Provide subscription criteria

* For time-based, provide activate start/end dates, frequency and
interval

* For data-based, provide input parameters and triggering condition
parameters

* For location-based, provide target, region and movement type.

The whole process can be performed using the OracleAS Wireless Tools and
Customization Portal. These tools provide you with wizards that guide you through
each step. For more information, see OracleAS Wireless Administrator’s Guide.
Developers can also use provided public APIs to accomplish these tasks.

11.2.1 Defining a Master Notification Application

11.2.1.1 Predicates
The most crucial information for creating a master alert application is to define the
type of predicate(s) that can be used. Predicate types can be data, time or
location-based. Furthermore, master notification applications can consist of a
combination of these three types. Possible predicate types can be listed as follows:

■ Purely Time Based—Notification Engine will invoke an application at the
specified time or time period. For example, sending the daily appointment

Creating a Notification

Notification Engine 11-9

schedule at 0900 hours. In this case, notification engine will invoke the
designated application which retrieves the user calendar at 0900hrs every
morning.

■ Purely Data Based—Notification Engine invokes an application only when the
value condition(s) is/are satisfied. For example, sending the stock quote
information when the stock price exceeds the specified value. If value-based
predicates are involved, you must describe the data content on which this
master notification application is built. OracleAS Wireless enables you to define
the data content using a data feeder. The data feeder defines given content in
two forms: input and output parameters. For example, stock quote content can
be defined as having a stock ticker as its input parameter and having price,
volume, change and change percentage as its output parameters. Data feeders
use the input parameter(s) to uniquely identify output parameters.

■ Purely Location Based—Notification Engine invokes an application when the
location condition is satisfied. For example, send a notification message when a
specific truck arrives at the customer site.

■ Time and Data Based—In this case, notification will be delivered at the specified
time if the data condition is met. For example, sending the stock quotes at
9:00AM if ORCL exceeds a user-specified value.

■ Time and Location based—Notification is delivered at the specified time, if the
location condition is satisfied at that time. For example, send a notification
message to the transportation manager if a specific truck is at the customer site
at 9:00AM.

■ Data and Location based—Notification is delivered when both data and
location conditions are satisfied. For example, send a notification message when
I am not at work and ORCL stock exceeds a user-specified value.

■ Time + Data + Location-based—Notification is delivered at the specified time, if
value and location conditions are satisfied. For example, send a notification
message at 9:00AM, if ORCL stock value exceeds the specified value and if the
user is not at the office.

11.2.1.2 Subscriber Filtering Hook
For every event generated, the notification engine derives a list of users who are
interested in this event. In some cases, a notification designer may need to apply
some additional logic to manipulate this list. OracleAS Wireless Notification Engine
allows developers to supply a Java class which implements the Java interface
MobileAlertSubscriberFilter for additional filtering logic.

Creating a Notification

11-10 Oracle Application Server Wireless Developer’s Guide

11.2.1.3 Triggering Conditions
Designers can provide a set of triggering conditions for data-based master
notifications. These conditions must be based on output parameters of the selected
data feeder. For each condition, a designer must specify which output parameter to
check, the condition type, and default value for the user input. For example, for a
stock feed which provides price and change, the condition can be defined as output
parameter price is greater than <user specified value>.

For output parameters that are of type number, condition types can be:

■ Value Change

■ Equal

■ Equal Absolute Value

■ Greater Equal

■ Greater Equal Absolute Value

■ Greater Than

■ Greater Than Absolute Value

■ Less Equal

■ Less Equal Absolute Value

■ Less Than

■ Less Than Absolute Value

■ Not Equal

For output parameters that are variants of type string, condition type can be:

■ Begin With

■ Change

■ Contains

■ End With

■ Match

■ Not Contains

■ Not Match

Creating a Notification

Notification Engine 11-11

11.2.1.4 Message Template
This parameter is optional. If designers specify a message template, it can be used to
generate notification content. The Messages Provided template should be a valid
Mobile XML document. If this master notification application is based on a data
feeder, any data feeder input or output parameter can be used in the template using
the notation of &<parameter name>;, which is similar to the XML entity notation. The
following sample shows a template for a notification with input parameter sym, and
output parameters price and change:

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<SimpleResult>
 <SimpleContainer>
 <SimpleText>
 <SimpleTitle>OracleAS Wireless</SimpleTitle>
 <SimpleTextItem>Sample Notification: price: &price; and change: &change;
for stock: &sym;</SimpleTextItem>
 </SimpleText>
 </SimpleContainer>
</SimpleResult>

If a message template is specified, the notification engine can generate required
application parameters (such as URL and parameter-mapping) automatically to
process this message template and generate notification messages. A generic jsp is
included with OracleAS Wireless, and application designers should create a basic
application and notification-enable it by specifying that this application is based on
a message template.

11.2.1.5 API Sample: Creating Master Notification Application
The following code fragment shows how to create a time + data + location-based
master notification application named StockNotification. StockFeed is specified as the
data feed for this notification application, and it has two triggering conditions: price
> user_input (with default value 23) and change > user_input (with default value 10). The
relation type between these two conditions is AND. Additionally, a message
template is provided.

Note: The triggering condition is optional. If there is no triggering
condition, notification engine will generate notification messages
for every incoming data event, that is, every time the underlying
data feeder retrieves data and pushes it into the notification engine.

Creating a Notification

11-12 Oracle Application Server Wireless Developer’s Guide

MetaLocator m = MetaLocator.getInstance();
ModelFactory f = m.getModelFactory();
ModelServices s = m.getModelServices();

//Locate the data feed that will be used by this notification
DataFeeder df = s.lookupDataFeeder("StockFeed")

//Create a master notification with timebase enabled.
//Note that, new master notification interface is
oracle.panama.mobilealert.MasterAlertService
MasterAlertService mAS = null;
mAS = f.createMobileMasterAlertService("StockNotification", true, "Stock
Master Notification", df);

//Set the condition relation type to "AND"
mAS.setConditionRelationType(MasterAlertService.RELATION_AND);

//Set time based typed to strictly time based
mAS.setTimeBasedType(true);

//Enable Location based support
mAS.enableLocationBaseAlert(true);

StringBuffer msgTemplate = new StringBuffer("<?xml version = \"1.0\"
encoding = \"UTF-8\" standalone=\"yes\" ?>");
msgTemplate.append("<SimpleResult><SimpleContainer>");
msgTemplate.append("<SimpleText>Stock alert for [&symbol;] price is
[&price;]");
msgTemplate.append("</SimpleText>”);
msgTemplate.append("</SimpleContainer></SimpleResult>");

//Provide the default message template
//that can be used with default notification master service
mAS.setFormattedXMLTemplate(msgTemplate.toString());

//add conditions with default valuesto this notifications, i.e. if "price >
10 "

AlertConditionType cType1 = s.getMobileAlertConditionTypeByName("GT");
FeedMetaData fmdPrice = df.getOutputParameter("price");
mAS.addConditionDefinition("PriceMax", fmdPrice, cType1, "23");

AlertConditionType cType2 = s.getMobileAlertConditionTypeByName("GT");
FeedMetaData fmdChange = df.getOutputParameter("Change");
mAS.addConditionDefinition("ChangeMax", fmdChange, cType2, "10");

Creating a Notification

Notification Engine 11-13

//Notification object does not use the persistent store/wireless caching
//Any create/update operation has to be committed with the save
mAS.save();

11.2.2 Mapping Master Notification Application to a Master Application
Application invocation is the recommended way for generating notification content.
Designers should map master notification applications to master applications that
will be used for generating notification content. In some cases, applications may
need to have access to some or all of the input or output parameters of the master
notification application, in order to perform further processing. For example, a stock
price watch notification can trigger a stock selling application to sell the stocks in
case of a significant price drop. In this case, the stock selling application must access
the stock ticker so that it will know what to sell. To provide this information,
application developers would map master notification application input and output
parameter(s) to the master application input parameter(s).

Since the Notification Engine is a generic event server that can handle various event
generators and invoke multiple applications, it is possible to create many-to-many
mappings between master notification applications and master applications. Simply
put, a particular master notification application can be mapped to many master
applications such as: stock trade master application, or stock news master application. For
example, a stock notification engine can invoke a master application that will sell
the stocks for user A, and this engine can also be used to invoke a master
application that sends the latest news about that particular stock for user B. The
same engine can be used to deliver a simple message template for user C. Likewise,
a stock trade master application can be invoked by a master notification application
that checks if the stock has reached a certain value at some time (time and
value-based) and/or another master notification application that is fired upon a
significant price change (value-based); for example, a 10% price drop.

OracleAS Wireless Tools can only manage 1-to-n mappings due to user interface
constraints (same master notification application can be mapped to many master
applications). However, it is possible to accomplish m-to-n mapping using
notification APIs.

As mentioned in Section 11.1.2, "Key Features", the notification engine can generate
personalized content by invoking the target application separately for each user, or
invoke it once per event and share the content between all users who are interested
in that event. When application designers create a mapping, they must choose the
proper content generation type depending on user requirements.

Creating a Notification

11-14 Oracle Application Server Wireless Developer’s Guide

11.2.2.1 Sample Code: Notification Mapping
The following code fragment displays how to create a mapping between an existing
master notification application (which was created in Section 11.2.1.5, "API Sample:
Creating Master Notification Application") and a master application. In this
example, the mapping will map the parameters symbol and price, and content
generation type is specified as personalized content.

Notification mapping
//Locate the existing master notification service
MasterAlertService mAS = s.lookupMobileMasterAlertService("StockNotification");

//Locate the existing stock trade master service
MasterService masterService =
s.lookupMasterService("/master/examples/StockTradeMasterService");

//Create the mapping definition between the notification service and master
service
MAlertServiceMapping map = mAS.createMapping(masterService,
"StockNotificationMapping");

//Retrieve input arguments for the master service
Arguments args = masterService.getInputArguments();
InputArgument inpArgTicker = args.getInput("symbol");
InputArgument inpArgPrice = args.getInput("price");

//Retrieve notification parameters (including input and output)
AlertParameterMeta[] alertParams = mAS.getParameters(); //returns symbol, price

//Map notification master service parameter "symbol" to stock trade input
argument "ticker”
map.addChainParameter(alertParams[0], inpArgTicker);

//Map notification master service parameter "price" to stock trade input
argument "price"
map.addChainParameter(alertParams[1], inpArgPrice);

//This invocation has to be performed in “personalized content mode”, for each
user separately
map.setInvocationType(false);

//Commit changes
mAS.save();

Creating a Notification

Notification Engine 11-15

11.2.2.2 Sample Code: Template-based Notification Mapping
The following code fragment displays creating a mapping using the existing
message template for the StockNotification master notification application. In this
example, we must create a master application for template-based mapping with the
least amount of information. Parameter mapping and target URL settings will be
performed by the createTemplateMapping method.

Template-based Notification Mapping
//Locate the existing master notification service
MasterAlertService mAS = s.lookupMobileMasterAlertService("StockNotification");

//Create a simple master service
MasterService templateMasterService = f.createMasterService("StockInfo",
s.lookupUser("orcladmin"), s.lookupAdapter("HttpAdapter"),
s.lookupFolder("/master/examples"));

//Parameter mappings will be handled by the createTemplateMapping method
//this method will also modify the provided master service to use default
template processor
mAS.createTemplateMapping(templateMasterService);

//Commit changes
mAS.save();

11.2.3 Subscription

After notification creation, mapping the notification to a application and publishing
it as an application, users can start subscribing to this notification-enabled application
by using OracleAS Wireless Portal. The reason for subscribing to a application
instead of notification is that end-users care about the content that is generated, but
not how it is generated. Since the content is generated by an application that can be
invoked by any notification, they do not and should not care about the underlying
infrastructure.

As the notification creation process defines the structure and metadata by
specifying predicate information, users must provide the required parameter values
for each predicate in the subscription step. For each predicate type, users should set
the following information:

Note: This is the only step that is visible to end-users.

Creating a Notification

11-16 Oracle Application Server Wireless Developer’s Guide

■ Data Based—Input Parameter(s) required by the data feeder, and triggering
condition parameters.

■ Time Based:

■ Notification Frequency—Possible values are daily, weekday, weekend and once.

■ When to receive notifications—This can be a specific time (with hour and
minute information), or a time period in a day. Time periods require a start
time (hour and minute), end time (hour/minute) and interval. For example,
between 3:00PM and 5:00PM every 15 minutes.

■ Blackout Period—During the specified blackout period (which is between
two dates), users will not receive any notifications. This can be useful for
cases in which the user is on holiday.

■ Expiration Date—After the specified date, users will not receive any
notification. Due to UI complexity issues, OracleAS Wireless Portal does not
provide support for the expiration date.

■ Location Based—Location predicates are based on location conditions objects.
Location condition consists of one or more location criteria, each of which are
defined by a target, region and criteria (movement) type. Target is what the
location server will track, which can be a user, user group or mobile phone
number. Criteria type is the type of movement the location server should
monitor, such as when the user moves into a region, or moves out of a region.
Due to UI complexity issues, OracleAS Wireless Customization Portal does not
support multiple criteria creation for a single location condition, and only one
criteria can be created using this tool for a specific subscription. However, it is
possible to include multiple criteria by using the provided Java API.

Along with this information, users can pick a device to use for receiving
notifications, and an alternative device to send notifications to when the maximum
number of notifications is reached for the primary device. Device selection is an
optional step.

When the notification engine validates user subscription predicates and generates
message content for a user, it hands over this message to the XMS layer for delivery.
If the user has selected a device for notification retrieval, XMS will use the selected
device (or the specified alternative device, if the daily maximum is reached) to
deliver end-user messages with the appropriate protocol. However, if the user
prefers not to specify a device, XMS will pick the best device to use depending on
contact rules, user profile and message content type. For more information about
device selection, see Section 11.4, "Integrated Notification Solutions".

Creating a Notification

Notification Engine 11-17

11.2.3.1 Sample Code: Creating a Subscription
The following code fragment shows subscribing to a notification-enabled
application. The link in this example is based on the StockTradeMasterService master
application which was used in Section 11.2.2.1, "Sample Code: Notification
Mapping". Remember that this master application was mapped to the StockFeed
master notification application in that example.

Creating a Subscription
 //Locate the master notification service
 MasterAlertService mAS =
s.lookupMobileMasterAlertService("StockNotification");
 //Locate the stock trade master service
 MasterService masterService =
 s.lookupMasterService("/master/examples/StockTradeMasterService");
 //Locate the stock trade link
 Link link = s.lookupLink("/Examples/StockTradeLink");
 //Locate the user
 User user = s.lookupUser("orcladmin");

 //Locate primary and alternative device addresses
 DeviceAddress addr1 = s.lookupDeviceAddress(DeliveryType.SMS, "1234567890");
 DeviceAddress addr2 = s.lookupDeviceAddress(DeliveryType.EMAIL,
 "Okan.Alper@oracle.com");

 //Create a subscription for orcladmin on the stock trade link
 ServiceAlertSubscription sub = mAS.addUserAlertSubscription(user, link);

 //Set the data feed input parameter (ticker) to ORCL
 AlertInputParamValue[] paramVals = sub.getInputParameters();
 paramVals[0].setValue("ORCL");

 //Set triggering condition values: price:30 and change: 12
 AlertConditionValue[] conVals = sub.getConditions();
 conVals[0].setValue("30"); //price
 conVals[1].setValue("12"); //change

 //Set frequency to daily, receive notifications on weekdays
 AlertTimeFrequency freq =
AlertTimeFrequencyImpl.getAlertTimeFrequencys()[0];

 //Activate the notification tomorrow
 Calendar startDate = Calendar.getInstance();
 startDate.add(Calendar.DATE, 1);

Creating a Notification

11-18 Oracle Application Server Wireless Developer’s Guide

 //User will be subscribed for 365 days
 Calendar expirationDate = Calendar.getInstance();
 expirationDate.add(Calendar.DATE, 366);

 //User will be going on vacation 30 days from now,
 //so deactivate them temporarily in that period for 10 days
 Calendar blackoutStartDate = Calendar.getInstance();
 blackoutStartDate.add(Calendar.DATE, 30);
 Calendar blackoutEndDate = Calendar.getInstance();
 blackoutEndDate.add(Calendar.DATE, 40);

 //Create location condition for monitoring myself for getting into a region
with id 18191.
 LocationPrivacyDomain lbDomain = new LocationPrivacyDomain(masterService);
 LBCondition lbCondition = f.createLBCondition(LBCondition.MODE_REPEAT,
 expirationDate, user, lbDomain);
 lbCondition.addCriteria("orcladmin", "user", "IN", 18191);

 //Set data and time predicates for this subscription.
 //This notification will evaluate the conditions starting at 8:00 a.m. till
1:30pm
 //every 45 minutes, on every weekday (Monday-Friday).
 sub.setCondition(paramVals, conVals, 8, 0, 13, 30, 45, freq,
 expirationDate, startDate);
 //Set the location condition
 sub.setLocationCondition(lbCondition);

 //Set the primary device that notifications will be send to
 sub.setSubscriptionDevice(addr1);
 //When the max. number of notifications is reached,
 //send the notifications to the alternative device
 sub.setAlternativeType(ServiceAlertSubscription.AFTERMAX_DEVICE);
 //Set the secondary device as alternative device
 sub.setAlternativeDevice(addr2);

 //Set blackout periods, activation/deactivation information
 sub.setSuspendStartDate(blackoutStartDate);
 sub.setSuspendEndDate(blackoutStartDate);
 sub.setStartDate(startDate);
 sub.setExpirationDate(expirationDate);

 //save the subscription
 sub.save();

Creating a Notification

Notification Engine 11-19

11.2.4 Notification Administration
Notification Engine must run in continuos mode by managing its own resources
(such as threads), so that it can process incoming events to determine which
subscriptions are eligible for notification delivery. Upon successful notification
creation, application developers should create a separate process for the notification
engine, and attach appropriate notifications that are designed ahead of time.

Since Notification Engine is designed as a scalable system, OracleAS Wireless Tools,
as part of Oracle Enterprise Manager, can create multiple processes to manage a
single notification. In this case, load (incoming events) is distributed among these
processes; each of these processes handle incoming events independently, meaning
each process will perform the filtering for a specific event that they receive.

For notifications that do not consume much resource, it is also possible to share the
resources among various notifications in a single process. In this case, application
designers should create a process, and add multiple notifications to this process.

As explained earlier, data-based notifications rely on incoming data events, which
are provided by the data feeders. Therefore, a separate data feeder process should
also be created and started for the Data Feeder instance that will be providing data
events for the notification engine.

11.2.5 Notification Migration
It is possible to migrate 9.0.2.x notifications (referred to as alerts hereinafter) to the
current release by running the provided migrateNotifications.sh[.bat]
script. For migrating:

1. Navigate to $ORACLE_HOME/wireless/bin/

2. Do one of the following:

a. Run migrateNotifications.sh[.bat] name <deprecated
master alert name(s)> -owner <owner username>

The name parameter is used to locate the alerts (that will be migrated) by
name.

You can use wildcards, such as % in <deprecated master alert name(s)>. All
9.0.4.x notification-related objects (such as master notification application,
master application, application link) will be owned by the given username.

b. You can also run the same script with the -oid option as:

migrateNotifications.sh[.bat] -oid <deprecated master alert oid> -owner
<owner use name>

Creating a Notification

11-20 Oracle Application Server Wireless Developer’s Guide

Using the OID option locates a specific notification by object ID.

Running (a) or (b) above performs the following operations:

■ Create a new master notification application; name will be <old master alert
name>_New. This process involves converting the message template to a valid
mobile xml if necessary.

■ Create a new folder as /master/notifications for the master application if this
folder does not exist.

■ Create a new master application with the name <old master alert name>_MS.

■ Create a mapping for the new master notification and new master application
based on the old master alert’s message template.

■ Create a new folder for the link as /Users Home/<username>/notifications if this
folder does not exist.

■ Detect all associated 9.0.2.X AlertService (notification application) objects and
convert them to link objects. Topic-level authorization will be flattened into link
level authorization during this process.

■ Transform all subscriptions for alert applications converted in the previous
section.

11.2.5.1 Sample Usage
Sample usage of Notification Migration is provided below.

UNIX:

migrateNotifications.sh -name StockAlert% -owner orcladmin

Migrate all 9.0.2.X master alert applications whose names start with StockAlert (such
as, StockAlertNews, StockAlertWarning). All new objects will be owned by orcladmin
user.

migrateNotification.sh -name StockAlert -owner systemadmin

Migrate 9.0.2.X master alert application that have the name StockAlert. Assign all
new objects to systemadmin user.

WINDOWS:

migrateNotification.sh -oid 1973 -owner systemadmin

Data Feeders

Notification Engine 11-21

Migrate 9.0.2.X master alert application whose ID is 1973. Assign all new objects to
systemadmin user.

11.3 Data Feeders
The Data Feeder is the agent that downloads content. The data feeder runs
periodically, independent of application invocations. The feed framework is
designed to download content for a OracleAS Wireless process. The downloaded
content can be used both for asynchronous notifications as well as cached data for
synchronous applications.

The download schedule for a data feeder is maintained in the update policy for that
data feeder. The update policy determines the update interval, or how often the
data feeder runs. The update policy tracks the time of day, and which days of the
week to run the data feeder.

Each data feeder has a content provider, which is the source of the content. The
content provider maintains information about the URI of the content, the protocol
to use for downloading the content, and the format of the data to be downloaded.

When specifying a feed, a user sets up a metadata definition of the content to be
downloaded using feed parameters. These parameters are instances of the data
type, FeedMetaData. Feed parameters have an underlying SQL data type chosen
from a predefined set of types, defined in oracle.panama.feed.FeedUtil.

Feed Input Parameters are input parameters particular to a content provider. They
specify the data used when requesting data from the content provider. For example,
when downloading data from a content provider using HTTP, the input parameters
will be used either to construct a GET URL or as POST parameters in the HTTP
request.

Feed Output Parameters define the data type of the output from the content
provider.

The runtime behavior of a data feeder can be customized with the
FeedDownloadHook and the FeedDataFilterHook.

The FeedDownloadHook is used to customize the URI used when downloading
content. For example, in an HTTP download, the input parameters are, by default,
used to construct a GET URL, with the input parameters used as GET HTTP
parameters. In some cases, however, the base URL depends on the input
parameters. In such a case, the URL would be http://www.ahost.com/input_
param_1/input_param2/index.html. The behavior for constructing the URL can be
overridden with a custom FeedDownloadHook to achieve the desired result.

Data Feeders

11-22 Oracle Application Server Wireless Developer’s Guide

The FeedDataFilterHook is used to do additional processing on the downloaded
content. As each row of data is downloaded, the data filter hook is invoked on each
row. This allows the feed implementer to perform special processing, such as
splitting a single output parameter into several output parameters.

The pass-through data feeder is a datafeeder that accesses local content through
user-defined Java code. Consequently, a pass-through data feeder has neither a
content Provider nor an update policy. Similarly, the FeedDownloadHook and the
FeedDataFilterHook are not relevant for a pass-through data feeder. The feed
metadata must still be set up for a pass-through data feeder.

11.3.1 Building a Data Feeder
You can create a data feeder using OracleAS Wireless Tools, or programatically.
OracleAS Wireless Tools provides you with a wizard to guide you through each
step of the creation process. For more information, see OracleAS Wireless
Administrator’s Guide.

Creating a data feeder includes these steps:

1. Create a named data feeder—all data feeders must have a name; the name may
be changed. The data feeder also has an object ID which is permanent and
unique, and is generated by the system when created.

2. Set Content Provider parameters—set the protocol and format for the current
Content Provider. There are constants for the built-in protocols and formats.

3. Create Data Feeder Input parameters—a data feeder must have at least one
input parameter. For each input parameter you specify, you must give an
internal name and data type. Parameters may have options that depend on the
chosen format. If the format chosen is delimited text, you have the option of
specifying the column number in which the input parameter appears. This is
useful if the input parameter is also included in the output from the content
provider. The index for the columns starts at 1, as SQL. If 0 is specified, then the
input parameter is assumed to not be in the output.

4. Create Data Feeder Output parameters: A data feeder must have at least one
output parameter. The output parameter can be customized in the same manner
as an input parameter.

Note: Previously, data feeders were designed to perform
request-reply (data pull feeds). Although the architecture has been
designed to also accommodate push data feeds, this functionality is
not included in this version.

Data Feeders

Notification Engine 11-23

5. Finalize the Feed—finally, you must call the DataFeeder method
createFeedDefinition. This method creates the feed metadata definition in
the repository, which is required to use the feed and the feed cache table. Once
the feed definition has been created, feed parameters cannot be deleted, only
renamed.

11.3.2 Creating a Passthrough DataFeeder
A pass-through datafeeder requires that you specify the classname of the
pass-through datafeeder to use. It does not require all the information that a regular
datafeeder needs; in particular, the protocol and format to use is irrelevant.

The following code creates a pass-through datafeeder:

ModelFactory mf = MetaLocator.getInstance().getModelFactory();
// Create a named datafeeder
PassthroughDataFeeder df = mf. createPassThroughDataFeeder ("stock_passthrough")
// Set the class name to use for implementation
df.setClassName("fully.qualified.package.and.Class");
// Create input parameters
FeedMetaData fmi = df.createMetaData("sym", "TEXT_30");
df.addInputParameter(fmi):
// Create output parameters
FeedMetaData fmo1 = df.createMetaData("price", "NUMBER");
df.addOutputParameter(fmo1);

FeedMetaData fmo2 = df.createMetaData("change", "NUMBER");
df.addOutputParameter(fmo2);

// Finalize the feed -- create feed definition
// in repository
df.createFeedDefinition();

11.3.3 Sample Applications

11.3.3.1 Sample Application: Downloading Stock Quotes in XML
OracleAS Wireless includes sample200.xml. This sample file contains a
datafeeder for retrieving stock quotes over HTTP. The stock quotes are in XML
format; the sample datafeeder includes a stylesheet for extracting the relevant
values from the XML input feed.

Data Feeders

11-24 Oracle Application Server Wireless Developer’s Guide

In order to create this data feeder programmatically, you would use the following
code:

ModelFactory mf = MetaLocator.getInstance().getModelFactory();
// Create a named datafeeder
DataFeeder df = mf.createDataFeeder("stock_screamingmedia");
// Set content provider parameters
ContentProviderInfo cpi = df.getContentProviderInfo();
cpi.setProtoolType(ContentProviderInfo.PROTOCOL_HTTP);
cpi.setPrimarySource("http://www.screamingmedia.com/");
cpi.setFormatType(ContentProviderInfo.FORMAT_XML);
// Create input parameters
FeedMetaData fmi = df.createMetaData("sym", "TEXT_30");
df.addInputParameter(fmi):
// Set the parameters for this parameter and content provider
Map paramOptions = new Hashtable();
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 1);
cpi.setParamArguments(fmi, paramOptions);

// Create output parameters
FeedMetaData fmo1 = df.createMetaData("price", "NUMBER");
df.addOutputParameter(fmo1);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 2);
cpi.setParamArguments(fmo1, paramOptions);

FeedMetaData fmo2 = df.createMetaData("change", "NUMBER");
df.addOutputParameter(fmo2);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 3);
cpi.setParamArguments(fmo2, paramOptions);
// Finalize the feed -- create feed definition in repository
// create cache table as needed
df.createFeedDefinition();

11.3.3.2 Sample Application: Downloading Stock Quotes in CSV Format
sample200.xml also includes a datafeeder for retrieving stock quotes over HTTP
that downloads the stocks in a comma-separated variable (CSV) format.

The following code illustrates how to create this data feeder programmatically.

ModelFactory mf = MetaLocator.getInstance().getModelFactory();
// Create a named datafeeder
DataFeeder df = mf.createDataFeeder("stock_yahoo")
// Set content provider parameters

Data Feeders

Notification Engine 11-25

ContentProviderInfo cpi = df.getContentProviderInfo();
cpi.setProtocolType(ContentProviderInfo.PROTOCOL_HTTP);
cpi.setPrimarySource("http://quotes.yahoo.com/quote");
cpi.setFormatType(ContentProviderInfo.FORMAT_DELIMITED);
// Create input parameters
FeedMetaData fmi = df.createMetaData("sym", "TEXT_30");
df.addInputParameter(fmi):
// Set the parameters for this parameter and
// content provider
Map paramOptions = new Hashtable();
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 1);
cpi.setParamArguments(fmi, paramOptions);

// Create output parameters
FeedMetaData fmo1 = df.createMetaData("price", "NUMBER");
df.addOutputParameter(fmo1);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 2);
cpi.setParamArguments(fmo1, paramOptions);

FeedMetaData fmo2 = df.createMetaData("change", "NUMBER");
df.addOutputParameter(fmo2);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 3);
cpi.setParamArguments(fmo2, paramOptions);

// Finalize the feed -- create feed definition
// in repository, create cache table as needed
df.createFeedDefinition();

11.3.3.3 Adding Input Parameter Values to the Feed
The data feeder only downloads content which has a specified input parameter.
Input parameter values can be set either implicitly or programmatically. Input
values can be added implicitly by adding a notification topic subscription. The
following code illustrates how to add a notification programmatically:

// Look up existing data feeder
DataFeeder df = ModelServices.getInstance().lookupDataFeeder("stock_yahoo");
// Want to add input params for ORCL
Map params = new Hashtable();
params.put("sym", "ORCL");
df.setData(params);

Data Feeders

11-26 Oracle Application Server Wireless Developer’s Guide

11.3.3.4 Retrieving Downloaded Values
One primary use of the data feeder is to download cached data for use with regular
synchronous applications. Downloaded data can be accessed using the datafeeder
method getData(). This method takes an argument as a map, which is a
name-value mapping of the parameters which get values. The following code
example illustrates how you can retrieve current price and change given a stock
symbol:

ModelServices ms = MetaLocator.getInstance().getModelServices();
DataFeeder df = ms.lookupDataFeeder("stock_yahoo");
Map params = new Hashtable();
params.put("sym", "ORCL");
Map values = df.getData(params);
Iterator i = values.keys();
while(i.hasMore()) {
String key = (String)i.next();
String val = (String)values.get(key);
System.out.println(key + " = " + val);
}
Running this code we while get the following output:
sym = ORCL
price = 18.75
change = 0.5

11.3.3.5 Starting the Data Feeder Process
System managers start a data feeder process. Like other processes, the system
manager must set up a process of the datafeeder in order to run it. For more
information, see OracleAS Wireless Administrator’s Guide.

11.3.3.6 Feed Parameter External Names
The external name is the name used when retrieving content from a content
provider. This mechanism is intended for cases in which the external representation
of the parameter name changes after the feed has been built, such as when one
changes to another content provider. The external name is optional; if it is not
specified, then the internal name is used.

Note: The data feeder only downloads content where it has an
input parameter value specified, when there is an notification
application created, and when there is a subscription for that
notification.

Data Feeders

Notification Engine 11-27

You specify a caption to use for the input parameter. This is for documentation
purposes only.

There are cases in which an input parameter has been defined, but is not relevant
when retrieving content. If the special constant __NONE__ is used for the external
parameter name, that input parameter will be ignored when constructing the
download URL or POST request.

11.3.3.7 Feed Scheduling
By default, feeds run continuously when started. Each feed has an associated
update policy, which can be used to fine-tune the running of the feed (such as the
time of day to start and stop the feed, the days on which to run and the interval
between feed runs).

The following code sets the update policy of the example data feeder to run on
weekdays between 9:00 AM and 5:00 PM.

ModelServices ms = MetaLocator.getInstance().getModelServices();
DataFeeder df = ms.lookupDataFeeder("stock_yahoo");
UpdatePolicy up = df.getUpdatePolicy();
up.setStartTime(9,0,0);
up.setEndTime(17,0,0);
up.setUpdateDays(UPDATE_WORKDAYS);
// Set update interval to 300 seconds, i.e. update every
// 5 minutes
up.setUpdateInterval(300);

11.3.3.8 XML Data Feeds
When accessing datafeeds with XML content, you must specify an XSLT stylesheet
that will transform the input XML to a common XML format.

The common XML format consists of a feed result (<omfeed_result>), which has
a number (zero or more) of datarows (<omfeed_datarow>), each one consists of
one or more named datacolumns (<omfeed_datacolumn>). The name of the data
column is matched with the parameters defined for the feed. Each output parameter
should have a corresponding data column. This code sample illustrates the output
of a stock feed:

<?xml version="1.0"?>
<market-data>
<quote-set>
<quote symbol="ORCL" name="ORACLE CORPORATION" type="stock"
exchange-code="NASDAQ" last="32.000000" close="28.562500" close-flag="closed"
change="3.4375" percent-change="12.04%" volume="56362800" open="30.0"

Integrated Notification Solutions

11-28 Oracle Application Server Wireless Developer’s Guide

high="32.4375" low="29.9375" bid="32.0" ask="32.0625" bid-size="36"
ask-size="90" high-52-week="46.468998" low-52-week="15.438"
shares-outstanding="5629833" pe-ratio="29.299999" volatlity="16.150000"
yield="0.000000" earnings-per-share="1.092000" status="ok"/>
</quote-set>
</market-data>
The stylesheet for transforming this result would then look like this:
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="quote-set">
 <omfeed_result>
 <xsl:for-each select="quote">
 <omfeed_datarow>
 <omfeed_datacolumn>
 <xsl:attribute name="name">sym</xsl:attribute>
 <xsl:value-of select="@symbol"/>
 </omfeed_datacolumn>
 <omfeed_datacolumn>
 <xsl:attribute name="name">price</xsl:attribute>
 <xsl:value-of select="@last"/>
 </omfeed_datacolumn>
 <omfeed_datacolumn>
 <xsl:attribute name="name">change</xsl:attribute>
 <xsl:value-of select="@change"/>
 </omfeed_datacolumn>
 </omfeed_datarow>
 </xsl:for-each>
 </omfeed_result>
 </xsl:template>

11.4 Integrated Notification Solutions
Many software applications offer the ability to notify users of certain events that are
occurring in an application. For example, a calendar system may notify users that
they have been invited to a meeting, or that the location of a previously scheduled
meeting has changed. In most cases the application allows users to indicate the
types of events they are interested in. This allows users to limit notifications to only
those events they consider urgent. These event notifications are typically sent as
emails.

Based on the Notification Engine, OracleAS Wireless includes out-of-the-box
multi-channel notification solutions for a number of applications, including Oracle
Calendar, Oracle Unified Messaging, Oracle Workflow, and Microsoft Exchange
Email. It provides an infrastructure to deliver application notifications to users’
preferred wireless devices, with content customized for the specific device type. For

Integrated Notification Solutions

Notification Engine 11-29

the same event, users can receive different notifications, depending on the type of
device they are using. Voice-based notifications will use proper sentences and
dialog, while SMS-based notifications take into consideration the size limitations of
SMS messages.

This section describes the integration architecture of application notification and the
Notification Engine. It also discusses two integration cases: Oracle Workflow and
Microsoft Exchange.

11.4.1 Notification Engine Integration
The application event notification process uses the OracleAS Wireless Notification
Engine to deliver notifications to wireless devices. It adds components that collect
application events, process user contact rules, and formats notification contents. An
architectural overview of the various components of the notification process is
shown below.

Figure 11–3 Integrated Notification Solutions

Applications outside of OracleAS Wireless can use two different mechanisms to
interface with the Notification Engine.

The first mechanism is the push interface. Applications send notification events
over HTTP to the Notification Event Collector, which is based on a servlet. The
Notification Event Collector then passes the notification event data to the
Notification Event Feeder, which is a customized Data Feeder to the Notification
Engine.

The second mechanism is the pull interface. The notification event collector process
connects to the application and retrieves the notification events. The notification

Integrated Notification Solutions

11-30 Oracle Application Server Wireless Developer’s Guide

event data is then passed onto the Notification Event Feeder. The notification event
collector process consists of a number of different adapters; each adapter is specific
for a particular application. You can enable and disable adapters by configuring the
notification collector process. Use the Enterprise Manager console to create, start,
stop or configure notification collector processes.

The notification event handler is a customized system-level notification application
that reads data from the notification event feeder. The data indicates the target user
for this notification, as well as the type of notification and other notification-specific
data.

The notification event handler then looks up the target user’s active contact rule to
determine the user’s preferred notification device type and address. The notification
event formatter is then invoked, which generates the content of the notification,
customized for the user’s device type. The generated notification content is
delivered to user’s devices by the notification engine.

The notification event handler is a system-level notification application. Users do
not need to explicitly create a notification subscription on this process in order to
receive notifications. Instead, only the user ORCLADMIN is subscribed to this
process. Depending on the application, users can specify (either in the
customization portal, or in the actual application itself), for which events they want
to receive notifications. For each notification processed, the system will look up the
contact rule of the target user and make sure that the correct user receives the
notification. Use the Enterprise Manager console to start, stop or configure
notification event process. See OracleAS Wireless Administrator’s Guide for more
information on using Oracle Enterprise Manager to start and stop processes.

The notification event collector and notification event handler are two separate
processes. Both of them must be running at the same time for the system to process
application event notifications.

11.4.2 Workflow Integration
Oracle Workflow integration includes two components. One is a notification
application which receives notifications from the Oracle Workflow Notification
queues and sends them to the user's mobile device. The other component is an

Note: Only the ORCLADMIN user should be subscribed to the
notification event handler notification application. If there is more
than one subscription, then users will receive multiple copies of
each notification (as many as there are subscriptions).

Integrated Notification Solutions

Notification Engine 11-31

Oracle Workflow Notification Worklist application which can be accessed through the
OracleAS Wireless portal.

Since Oracle Workflow and OracleAS Wireless are both components of Oracle
Application Server, OracleAS Wireless has the ability to connect to Oracle Workflow
through OID. And since OracleAS Wireless connects to Oracle Workflow through
OID, they share the same user repository.

11.4.2.1 Notification Application
Oracle Workflow provides a queue which contains all the outgoing notifications for
that particular instance. Each message on the queue contains all the necessary
information for the notification and the user to which it is going. OracleAS Wireless
dequeues these messages and constructs a message to be sent to the end user using
XMS. The user can then respond to this notification. The response is directed to a
OracleAS Wireless application which will then update Oracle Workflow according
to the user’s response.

11.4.2.2 Worklist Application
This is the equivalent of the Oracle Workflow Notification Worklist through the
OracleAS Wireless portal. Using OID, the Worklist Application will connect to
Workflow to retrieve a list of all the user’s open notifications. Each notification can
be closed or responded to (depending on the type of notification).

Note: If end users cannot receive notifications during the testing of the
Wireless integration with Oracle Workflow, then you must check the log
file for an ORA-4031 error, which indicates that the notification service
failed because of insufficient memory pool size in the database. To increase
the shared memory pool:

1. Increase the value for the shared_pool_size parameter in the init.ora file.
(Typically, the init.ora file is located on the infrastructure machine in
the $ORACLE_HOME/dbs directory.)

2. Restart the database for the change to take effect.

If end users still cannot receive notifications, then you must further
increase the size of the shared memory pool.

See: For more information on Oracle Workflow and OracleAS
Wireless, see Oracle Workflow Administrator’s Guide, and Oracle
Workflow Developer’s Guide.

Integrated Notification Solutions

11-32 Oracle Application Server Wireless Developer’s Guide

11.4.3 Microsoft Exchange Notification Integration
OracleAS Wireless provides multi-channel notification capability for Microsoft
Exchange Email Server, based on the architecture described above. Users of
OracleAS Wireless who have Microsoft Exchange Email accounts are able to receive
notification messages on their wireless devices when they receive urgent email
and/or email from specified people.

An architectural overview of the various components in Microsoft Exchange
Notification Integration is shown below.

Figure 11–4 Microsoft Exchange Notification Integration

The Microsoft Exchange notification is integrated through the pull interface. A
special Microsoft COM object is deployed in the Exchange server. The COM
intercepts Exchange Server’s store events and creates notification events based on
user’s event subscription. The notification events are delivered into a special
exchange notification account in the form of email. The Microsoft Exchange adapter
in the notification event collector process retrieves those notification event emails
through standard IMAP or POP3 protocol.

Users create notification subscriptions using OracleAS Wireless Tools. The
subscription data is transferred to the Microsoft Exchange Server host through
HTTP/ASP, and saved as Microsoft Exchange store event parameters.

See OracleAS Wireless Administrator’s Guide for notification configuration for
Microsoft Exchange Server and OracleAS Wireless.

Migrating the Notification System

Notification Engine 11-33

11.5 Migrating the Notification System
This section is for users who want to migrate from the 9.0.2.x version of the
notification system to the current version. It requires basic knowledge of the
notification systems in both versions, and details the steps required to perform this
migration. For information on the notification system for this or the previous
release, see the appropriate Developer’s Guide.

In this release, 9.0.2.x notifications and their APIs are depleted. Oracle Corporation
strongly recommends that you do not mix 9.0.2.x notifications with 9.0.4.x
notifications. Use only 9.0.2.x OR only 9.0.4.x notifications at a given time.

If you have not previously used 9.0.2.x notifications, then start with the 9.0.4.x after
you have completely migrated your OracleAS Wireless instance to the current
release.

If you have existing 9.0.2.x notifications on your system, continue using only them
in an environment in which OracleAS Wireless 9.0.2.x and 9.0.4.x co-exist. After
migrating your OracleAS Wireless instance to 9.0.4.x, upgrade your notification to
the 9.0.4.x style, and start using exclusively 9.0.4.x notifications. A script (provided
as part of the product) enables you to upgrade your 9.0.2.x notification objects into
9.0.4.x-compliant notifications. The script is discussed later in this section.

11.5.1 Notification Migration Scenario
Here is a typical notification migration scenario:

1. Start with a pure 9.0.2.x environment.

2. Start upgrade, and have an OracleAS Wireless 9.0.2.x and 9.0.4.x mixed
environment. At this time, use only 9.0.2.x-style notifications.

3. Complete upgrade to OracleAS Wireless 9.0.4.x environment.

4. Run the script migrateNotifications to upgrade 9.0.2.x-style notifications
to 9.0.4.x-style.

5. Use only 9.0.4.x-style notifications from this point on. The script is further
described later in this section.

Note: If you have any applications (such as a subscription portal)
that use the 9.0.2.x API to manipulate notifications, those
applications must be rewritten to use the 9.0.4.x notification API.
An example is provided later in this section.

Migrating the Notification System

11-34 Oracle Application Server Wireless Developer’s Guide

11.5.2 Structural Changes
There have been significant structural changes to notifications in this release. Major
differences include:

■ Section 11.5.2.1, "Event Generation"

■ Section 11.5.2.2, "Message Content Generation"

■ Section 11.5.2.3, "Authorization"

11.5.2.1 Event Generation
Previously, there were only two types of notifications: value-based and time-based.

Value-based notifications are evaluated every time the notification engine receives a
data push event from the data feeder component.

Time-based notifications are a bit more complicated.

These notifications were evaluated at certain times (specified by the notification
user at subscription time). Every notification, whether time- or value-based, was
based on a data feeder (in 9.0.2.x). 9.0.2.x timer events result in data retrieval at this
specified time. Furthermore, these time-based notifications are also evaluated every
time the notification system receives a data push event from the data feeder. For
example, a developer designs a time-based notification, created on a stock feed data
feeder. This stock feed data feeder has one input parameter: TICKER and one output
parameter: PRICE. If the user subscribes to this notification for 10:00A.M. everyday,
then the notification system will generate a notification at 10:00A.M., but it will also
evaluate notifications every time the notification engine receives data from the data
feeder. So, even though the user has subscribed to receive notifications at 10:00A.M.,
the user will receive notifications whenever the value triggering condition is
validated.

In this release, time-based notifications are extended to avoid receiving notifications
at times other than the specified time; this type of time-based notifications are called
strictly time-based. All new notifications are defaulted to strictly time-based, if a
developer does not specify this parameter.

In this release, it is also possible to design notifications without any data feeder.
This type of notification can be used when a user wants to send a simple
notification message at certain times, or to retrieve relevant content using the
message generation mechanism. For example, if a developer wants to design a calendar
notification, there are two options:

■ Design a data feeder that will push calendar information into the notification
system. Then, the developer can create a time-based master notification based

Migrating the Notification System

Notification Engine 11-35

on the calendar data feeder, which will generate a message using the content
and data provided by the data.

■ Design a time-based master notification without any data feeder. At content
generation time, the notification system calls an OracleAS Wireless application
provided by the developer. This OracleAS Wireless application can connect to
the calendar system, and retrieve relevant information to generate the content.

In 9.0.4.x, you can also utilize the Location Server to design location-based
notifications.

11.5.2.2 Message Content Generation
Using 9.0.2.x, one can provide a simple message template to generate message
content which in turn will be pushed to end-users. 9.0.2.x notifications can also
invoke a hook (java class) to generate message content for more complicated cases.

In this release, the only mechanism to generate message content is by invoking an
OracleAS Wireless application, which usually invokes an OracleAS Wireless
application to generate this content. For this reason, every notification must be
mapped to an OracleAS Wireless master application. In other words, in 9.0.4.x,
developers must notification-enable master applications. This feature avoids
replication of code, since the same master application can be used by both
notifications and regular device access. Also, user subscriptions can be handled by
using the mobile portal application tree.

It is still possible to use message templates in this release by utilizing a seeded
OracleAS Wireless application, which is capable of accessing and processing this
message template to generate end-user content. However, developers must still
create a master application to define mapping information between the seeded
OracleAS Wireless application and the master notification. In this case, the master
application creation process is automated, and manual steps (and API calls) are
minimal.

11.5.2.3 Authorization
Previously, notification authorization was performed by using topics and Alert
Services. After designing a master notification, developers must create
AlertServices/Topics and assign these to appropriate users for authorization
control.

In this release, since message generation is performed by regular master
applications, the notification system is utilizing regular Link and Folder objects to
provide authorization.

Migrating the Notification System

11-36 Oracle Application Server Wireless Developer’s Guide

11.5.3 Migration Limitations
After upgrading to 9.0.4.x, users must not mix 9.0.4.x notifications with 9.0.2.x. Use
9.0.2.x notifications only until you are ready to migrate to the 9.0.4.x notifications,
and use only 9.0.4.X notifications after a successful migration.

The 9.0.4.x OracleAS Wireless Webtool utility is defaulted to show/create only
9.0.4.x notifications. Likewise, the 9.0.4.x OracleAS Wireless Mobile Portal utility
can only process 9.0.4.x subscriptions. If you want to process 9.0.2.x notifications
using 9.0.4.x OracleAS Wireless Webtool, you must modify the
System.properties file located in IASW_
HOME/wireless/server/classes/oracle/panama/core/admin directory as follows:

■ Edit the IASW_
HOME/wireless/server/classes/oracle/panama/core/admin/System.properti
es using a standard text editor.

■ Locate the parameter named: DeprecatedAlertSupport, and change its
value to true.

■ Save this file, and restart your OC4J Portal instance.

Since the subscription process and authorization are completely different in 9.0.2.x
and 9.0.4.x, it is not possible to use OracleAS Wireless Mobile Portal to process
9.0.2.x subscriptions. To do so, users should either enable 9.0.2.x Customization
Portal utility or develop their own subscription mechanism. Sample code is
provided at the end of this section demonstrating how to migrate your existing code
for subscription handling.

11.5.4 Running the Migration Script
It is possible to transform (migrate) any 9.0.2.x notification to 9.0.4.x using a script
provided with OracleAS Wireless. This script performs the following operations:

■ Creates a new template-based 9.0.4.x master notification using the information
defined in the 9.0.2.x master notification. If the 9.0.2.x notification is time based,
then the time-based type will be set to non-strictly time-based in 9.0.4.x. This can
be changed any time using the OracleAS Wireless Webtool. The name of the
9.0.4.x master notification will be <OLD_MASTER_NOTIFICATION_NAME>_
NEW, the script will append _NEW to the 9.0.2.x master alert name. All
information (such as message template triggering conditions), is copied over,
and partial message templates are transformed into well-formed mobile XMLs
if necessary.

Migrating the Notification System

Notification Engine 11-37

■ Creates a master application and maps it to the new master notification. The
name of this master application will be <OLD_MASTER_NOTIFICATION_
NAME>_MS, and the master application will be created in a folder called
/master/notifications.

■ Creates a link based on the new master application for each 9.0.2.x alert. The
name of this link will be the same as the alert service, and again, it will be
created in the /notifications folder.

■ Migrates all group and user access information for the given 9.0.2.x master
notification application related objects (that is: AlertService, Topic, and others).

■ Converts all existing subscriptions to 9.0.4.x subscriptions.

Although the migration script does not remove or disable the old master alert
service for integrity and security purposes, you should disable the old master alert
services once the migration process is successfully completed.

To run this script:

1. Stop all notification processes that use the master notifications that are to be
migrated, or remove these master alert service from those processes and restart
them.

2. Change directory to $IASW_HOME/wireless/bin

3. Execute migrateNotifications.[sh|bat] by providing parameters as
follows:

a. migrateNotifications.[sh|bat] -name <9.0.2.X master
alert name(s)> -owner <owner user name>

b. migrateNotifications.[sh|bat] -oid <9.0.2.X master alert
oid> -owner <owner user name>

c. You can use % as a wildcard for the name parameter, but not for the OID.

Migrating the Notification System

11-38 Oracle Application Server Wireless Developer’s Guide

d. The Owner user name will be used to create required master applications,
application links and folders.

e. Check OracleAS Wireless Webtool and Mobile Portal to verify the migration
process for the master notification, master application, link and
subscriptions.

f. Create a new notification process and attach migrated master alerts to this
process.

Remember that you must stop existing notification processes that contain migrated
9.0.2.x notifications, or remove these master notifications from those processes and
restart them. As explained before, the migration script does not remove or disable
9.0.2.x notifications. Therefore, if these processes are not maintained correctly, users
will receive 2 copies of each notification, one from the old master notification and
one from the new one.

11.5.4.1 Sample code for subscription handling in both versions
Since the 9.0.4.x notification system is backward-compatible, any custom code
written for altering 9.0.2.x notifications or subscriptions should work without any
errors or problems, even after the migration. However, code written for 9.0.2.x APIs
will be altering 9.0.2.x notifications and subscriptions only; that is, if a new master
notification is created using the old API, this master notification will not be
available on the 9.0.4.x notification system, hence it will not be processed by the
9.0.4.x notification engine.

Table 11–1 Migration Script Examples

Script Function

migrateNotifications.[sh|b
at] -name StockAlert
-owner orcladmin

Migrates the master notification named “StockAlert”

migrateNotifications.[sh|b
at] -name Stock% -owner
orcladmin

Migrates all master notifications starting with “Stock”, such as
“StockAlert”, “StockTransaction”

migrateNotifications.[sh|b
at] -name % -owner
orcladmin

Migrates all master notifications.

migrateNotifications.[sh|b
at] -oid 1089 -owner
orcladmin

Migrates the master notification that has the oid 1089.

Migrating the Notification System

Notification Engine 11-39

Developers must modify their existing code to use 9.0.4.x APIs after successful
migration in order to take advantage of new functionality. As of this release, all
notification APIs included in the oracle.panama.alert package have been
deprecated, and a new package (oracle.panama.mobilealert) is introduced to
provide 9.0.4.x functionary. Some methods and interfaces are replicated in both
9.0.2.x and 9.0.4.x APIs. However, every 9.0.4.x notification-related method calls
should be performed using this new package (oracle.panama.mobilealert),
even for the methods that exist in 9.0.2.x APIs (in oracle.panama.alert
package).

The following code samples illustrate how to create a user subscriptions in 9.0.2.x
using the deprecated oracle.panama.alert package and also in 9.0.4.x (after
migrating the same notification) using the oracle.panama.mobilealert
package.

11.5.4.2 Sample Code for Adding a 9.0.2.x Subscription
The following sample illustrates code for adding a 9.0.2.x subscription.

 MetaLocator m = MetaLocator.getInstance();
 ModelServices s = m.getModelServices();

 //Assuming we have a user named "DemoUser"
 User myUser = s.lookupUser("DemoUser");

 //Assuming we have a validated E-Mail address, the first e-mail device
address
 DeviceAddress[] deviceAddrList =
 myUser.getDeviceAddresses(DeliveryType.EMAIL);
 DeviceAddress subscriptionDeviceAddr = deviceAddrList[0];

 //Retrieve the alert service object that will be used to create a
subscription
 oracle.panama.alert.AlertService alert =
s.lookupAlertService("StockNotification");

 alert.setUserAlertDevice(subscriptionDeviceAddr);

 oracle.panama.alert.UserAlertSubscription userSub =
 alert.addUserAlertSubscription(myUser);

 userSub.setDisplayName("DemoSubscription");

 // Set subscription time to 13:30 in daily mode.
 userSub.setHour(13);

Migrating the Notification System

11-40 Oracle Application Server Wireless Developer’s Guide

 userSub.setMinute(30);
 userSub.setFrequency(
 new oracle.panama.alert.impl.AlertTimeFrequencyImpl(
 oracle.panama.alert.AlertTimeFrequency.DAILY));

 // Expiration time set to one month ahead
 Calendar expireAt = Calendar.getInstance();
 expireAt.add(Calendar.MONTH, 1); //Expire next month
 userSub.setExpirationDate(expireAt);

 //Set the input parameter, i.e. stock ticker to ORCL
 oracle.panama.alert.AlertInputParamValue[] pVs =
userSub.getInputParameters();
 pVs[0].setValue("ORCL");

 // set the triggering condition, i.e. stock price >= 20
 oracle.panama.alert.AlertConditionValue[] acv = userSub.getConditions();
 acv[0].setValue("20");
 userSub.setCondition(pVs, acv);

 // Save subscription
 userSub.save();

 // Save AlertService, so that user alert device can be persisted
 alert.save();

Sample code for adding the 9.0.4.X subscription after migration:

 MetaLocator m = MetaLocator.getInstance();
 ModelServices s = m.getModelServices();

 //Retrieve the master alert service object that will be used to create a
subscription
 oracle.panama.mobilealert.MasterAlertService masterAlertService =
 s.lookupMobileMasterAlertService("StockAlert");

 //Retrieve the link that will be used to create a subscription,
 //note that it has the same name as the AlertService object
 Link myLink = s.lookupLink("/notifications/StockNotification");

 //Assuming we have a user named "DemoUser"
 User myUser = s.lookupUser("DemoUser");

 //Assuming we have a validated E-Mail address, the first e-mail device

Migrating the Notification System

Notification Engine 11-41

address
 DeviceAddress[] deviceAddrList =
 myUser.getDeviceAddresses(DeliveryType.EMAIL);
 DeviceAddress subscriptionDeviceAddr = deviceAddrList[0];

 //
 oracle.panama.mobilealert.ServiceAlertSubscription userSub =
 masterAlertService.addUserAlertSubscription(myUser, myLink);

 userSub.setSubscriptionDevice(subscriptionDeviceAddr);
 userSub.setAlternativeType(ServiceAlertSubscription.AFTERMAX_DISCARD);

 userSub.setDisplayName("DemoSubscription");

 // Set subscription time to 13:30 in daily mode.
 //Since start/end time are same, interval can be any value
 userSub.setHour(13);
 userSub.setMinute(30);
 userSub.setEndHour(13);
 userSub.setEndMinute(30);
 userSub.setInterval(1);
 userSub.setFrequency(
 new oracle.panama.mobilealert.impl.AlertTimeFrequencyImpl(
 AlertTimeFrequency.DAILY));

 // Expiration time set to one month ahead
 Calendar expireAt = Calendar.getInstance();
 expireAt.add(Calendar.MONTH, 1); //Expire next month
 userSub.setExpirationDate(expireAt);

 //Set the input parameter, i.e. stock ticker to ORCL
 oracle.panama.mobilealert.AlertInputParamValue[] pVs =
 userSub.getInputParameters();
 pVs[0].setValue("ORCL");

 // set the triggering condition, i.e. stock price >= 20
 oracle.panama.mobilealert.AlertConditionValue[] acv =
userSub.getConditions();
 acv[0].setValue("20");

 // Save subscription information
 userSub.save();

Migrating the Notification System

11-42 Oracle Application Server Wireless Developer’s Guide

Note that all notification-related objects are proceeded by the full package name to
avoid confusion.

J2ME Development and Provisioning 12-1

12
J2ME Development and Provisioning

Each section of this document presents a different topic. These sections include:

■ Section 12.1, "J2ME Overview"

■ Section 12.2, "Digital Rights Management Support"

■ Section 12.3, "The J2ME Provisioning Server"

12.1 J2ME Overview
J2ME (Java 2, Micro Edition) is a technology for Java applications on small devices.
As a mobile application development platform, J2ME is standard-based and offers a
rich UI, one that is comparable to browser-based solutions. In addition, J2ME-based
applications are more resilient to network disruption because they do not depend
on a wireless network to perform many sophisticated operations.

With the increasing market penetration of J2ME-capable handsets, enterprises are
eager to develop J2ME applications to access their back-end applications for their
mobile employees. Operators are also seeking to expand their revenue source by
deploying new customer applications on these handsets.

OracleAS Wireless provides a complete J2ME offering, which includes a J2ME
Developer Kit as a component of OracleAS Wireless Developer Kit for developing
Web service-enabled J2ME applications, J2ME application management, and J2ME
application provisioning which enables the flexible and reliable provisioning of
J2ME applications to handsets.

The key features provided by the OracleAS Wireless J2ME solution include:

■ Developer Kit: The OracleAS Wireless Developer Kit, which is installed with the
Oracle Application Server Developer Kit installation option offers a simple
J2ME client library API, utilities, and a J2ME Web service proxy server to invoke

J2ME Overview

12-2 Oracle Application Server Wireless Developer’s Guide

standard Web services from J2ME applications. The J2ME client library API
offers other advanced functionalities, including request queuing, response
caching and additional functions that address network unreliability.

■ J2ME Application Management: The provisioning system enables J2ME
applications to be uploaded into the OracleAS Wireless repository and
managed and categorized by OracleAS Wireless Tools. The provisioning system
enables developers to specify the API scan policy, the devices which support a
J2ME application (and those which cannot support the J2ME application) and
the required device capability to run a J2ME application. The provisioning
system tracks a user’s download history for future billing and reporting usage.

■ Digital Rights Management (DRM) Support: A Service Developer can associate
a Digital Rights Management policy for each J2ME application. Out of the box,
OracleAS Wireless provides count-based, and time-based pre-built DRM
policies, which are compliant to the Open Digital Rights Language (ODRL) 1.0
specification. The DRM framework can be further extended to integrate the
usage with any external billing system so that operators and service providers
can create a profitable business model for the J2ME provisioning service.

■ Delivery: OracleAS Wireless J2ME provisioning system supports the standard
Sun Over-the-air (OTA) provisioning protocol for delivering J2ME applications
to J2ME capable handsets. Additionally, the provisioning system provides an
open and extensible delivery framework to provision any J2ME application
through any delivery protocol.

OracleAS Wireless J2ME solution not only enables Service Developers to quickly
develop J2ME application that integrate with enterprise back-end systems through
Web service technology, but also enables Content Managers to easily manage these
applications. The provisioning and Digital Rights Management support offers a
new means of creating revenue for the operators and service providers marketing
J2ME applications to their consumers.

12.1.1 Overview of Features
The following sections provide an overview of the following features of the J2ME
Client Library and J2ME Proxy Server:

■ Section 12.1.1.1, "Minimum Memory Requirement in the MIDlet Suite"

■ Section 12.1.1.2, "Simple Registration and Invocation of Web Services"

■ Section 12.1.1.3, "Access to Both SOAP Web Services and Enterprise
Applications"

J2ME Overview

J2ME Development and Provisioning 12-3

■ Section 12.1.1.4, "Result Caching and Call Queuing"

■ Section 12.1.1.5, "Request and Response Packetization and Compression"

■ Section 12.1.1.6, "Session Support"

■ Section 12.1.1.7, "Deployment to OracleAS Wireless"

12.1.1.1 Minimum Memory Requirement in the MIDlet Suite
MIDlets are packaged and deployed as MIDlet Suite. Each MIDlet suite contains the
MIDlet’s JAR file and its descriptor (JAD) file. The J2ME Client Library client JAR
file requires only 26 KB of memory in a MIDlet suite. A currently available
alternative is kSOAP 1.2, which is 41 KB and requires kXML, which adds another 21
KB for a total size of 62 KB.

The proxy server enables the 36 KB memory requirement because the server
performs the operations on the Web services, thereby reducing the amount of work
performed by MIDP device.

12.1.1.2 Simple Registration and Invocation of Web Services
The entire process of a J2ME MIDlet calling a Web service consists of:

1. Registering a Web service with the J2ME Proxy Server using the Web service's
WSDL (Web Services Definition Language) document.

2. Generating a J2ME client stub class for the registered service.

3. Calling a Java method on the generated stub class from your J2ME MIDlet. Each
method in the generated J2ME client stub represents an operation of the Web
service. For example, a MIDlet compiled with the J2ME Client Library JAR file
makes a request to a Web service simply by making a Java method call.

12.1.1.3 Access to Both SOAP Web Services and Enterprise Applications
To register SOAP Web services with the J2ME Proxy Server, you provide the file
location of the Web service's WSDL document. During WSDL Registration, the
J2ME Proxy Server generates a SOAP client Java class. During execution, the J2ME
Proxy Server calls this client class to invoke operations on the Web service.

The J2ME Proxy Server also supports a second type of registration called Class
Registration, which enables you to register any Java class with the J2ME Proxy
Server. This enables you to access enterprise applications from J2ME MIDlets by
creating a Java client to these applications. Once you register this Java client with

J2ME Overview

12-4 Oracle Application Server Wireless Developer’s Guide

the J2ME Proxy Server, all of the public methods of the Java class become available
for invocation from the J2ME MIDlet.

12.1.1.4 Result Caching and Call Queuing
The methods in the generated J2ME client stub classes contain additional
parameters that allow you to cache the result from a Web service call in local
persistent storage on the MIDP device. This enables the MIDlet to access the results
returned from the Web service repeatedly without requiring additional network
round-trips, even after the device has been turned off or has been moved to an area
without network access.

Call queuing enables you to queue Web service operation invocations if a network
error prevents calling a Web service normally. The J2ME Client Library runtime
automatically retries the queued calls until they succeed, and then caches the
responses in persistent storage until MIDlet retrieves them.

12.1.1.5 Request and Response Packetization and Compression
Request packetization enables you to specify a maximum request size for cases in
which a wireless network cannot handle HTTP requests that exceed a certain size.
The J2ME Client Library and J2ME Proxy Server automatically break up call
requests and responses into pieces no larger than the maximum specified size.

The J2ME Client Library and J2ME Proxy Server compress requests and responses
for improved bandwidth and memory usage. Requests and responses are encoded
to reduce their size during network transmission and when cached in the MIDlet.
This is done automatically.

12.1.1.6 Session Support
Session support is activated by default, meaning that an instance of the Java class
registered with the J2ME Proxy Server (a class that was either generated during
WSDL Registration or provided during Class Registration) is stored in an
HttpSession object and then reused when the J2ME Proxy Server receives multiple
requests from the same MIDlet. Session support can be turned off by setting a
property in the J2ME Client Library.

12.1.1.7 Deployment to OracleAS Wireless
Once you complete the development of a MIDlet, the J2ME MIDlets and the Web
services registered with the J2ME Proxy Server can be easily deployed to a complete
OracleAS Wireless installation. The WDK and OracleAS Wireless contain migration
scripts to facilitate this deployment.

J2ME Overview

J2ME Development and Provisioning 12-5

12.1.2 Getting Started with the Wireless Development Kit
This section describes how to develop Web service-enabled J2ME MIDlets using the
J2ME Web Services Client Library (J2ME Client Library) and the J2ME Web Services
Proxy Server (J2ME Proxy Server) in the Wireless Development Kit (WDK).

12.1.2.1 Setup
The OracleAS Wireless Proxy Server consists of two sets of components: the actual
server and the scripts to manage the server.

1. First launch the WDK server, which includes the J2ME Proxy Server, by
executing the following script:

Windows: <ORALCE_HOME>\opmn\bin\opmnctl start wdk

UNIX: <ORACLE_HOME>/opmn/bin/opmnctl.sh start wdk

2. If you are running the Wireless Development Kit behind a firewall, you must
also configure your HTTP proxy server settings in the j2mesdkmgr.bat
(Windows) and j2mesdkmgr.sh (UNIX) scripts, located in <ORACLE_
HOME>\wireless\bin/. The scripts contain commented-out examples for setting
the HTTP proxy server for -registerwsdl option. If you want to register Java
classes as services and the classes are at URLs which are outside of your
firewall, you must also include HTTP proxy server settings in the –registerclass
option of above scripts. As illustrated in the examples for the -registerwsdl
option, setting the HTTP proxy server consists of defining the following
variables in the Java command line:

Dhttp.useProxy=true -Dhttp.proxyHost=<http proxy server>
Dhttp.proxyPort=<port number> -Dhttp.nonProxyHosts=<hosts inside firewall>

12.1.2.2 J2ME Directory Structure in the WDK
The following are the WDK directories relevant to the J2ME Client Library and
J2ME Proxy Server.

■ wireless/-- (OracleAS Wireless and WDK home)

■ bin/ (scripts for registration and management of Web services)

■ lib/ (libraries and properties files)

■ j2me/-- (J2me sdk home)

* docs/Javadoc (J2me SKD API documentation)

J2ME Overview

12-6 Oracle Application Server Wireless Developer’s Guide

* lib/ (contains J2me DK JAR file)

* sample/ (sample MIDlets and WSDL files)

■ j2ee/OC4J_Wireless/-- (OracleAS Wireless J2EE base)

■ applications/wdk/wdk-Web/Webservice -- (J2ME proxy server home)

* repository/ (descriptions of registered Web services)

* stage/ (source of classes generated during WSDL registration)

* classes/ (compiled classes generated during WSDL registration)

* lib/ (contains jar file with test services used by sample MIDlets)

* src/ (source code)

12.1.3 Walkthrough: Developing a J2ME MIDlet
This section walks you through the following step for creating a J2ME MIDlet that
calls a Web service:

■ Step 1: Registering a Web Service with the J2ME Proxy Server

■ Step 2: Generating a J2ME Client Stub Class for the Registered Web Service

■ Step 3: Calling the Methods in the J2ME Stub Class from the MIDlet

The Wireless Tools provide you with a graphical interface to the J2ME Proxy Server.
In the Wireless Development Kit, however, the interface to the J2ME Proxy Server is
through command-line scripts. The J2ME Proxy Server registration and
management scripts are:

For Windows: <ORACLE_HOME>\wireless\bin\j2mesdkmgr.bat

For UNIX: <ORACLE_HOME>/wireless/bin/ j2mesdkmgr.sh

12.1.3.1 Step 1: Register a Web Service with the J2ME Proxy Server
You can register a Web service either through Web Service Registration or through
Class Registration.

For Web Service Registration, you registering Web services with the J2ME Proxy
Server to make those Web services accessible to J2ME MIDlets. You register a SOAP
Web service with the J2ME Proxy Server by providing the WSDL document
describing the Web service. Once registered, the Web service is available to J2ME
MIDlets by calling methods of a J2ME stub class generated from the registered
service.

J2ME Overview

J2ME Development and Provisioning 12-7

In addition to registering SOAP Web services, you can also register any Java class
with the J2ME Proxy Server using Class Registration. All of the public methods of
the Java class become available for remote invocation from your MIDlet. This
enables you to give your MIDlets access to any enterprise application simply by
building a Java client to the enterprise application. This Java class must have either
a public constructor with no arguments or a public static method called
getInstance() with no arguments that returns an instance of the class.

Namespaces
When registering Web services, you can group them into namespaces. Associating
services with a namespace enables you to group related Web services and to avoid
naming conflicts. If you do not specify a namespace, then the Web service is
registered under the default namespace.

WSDL Registration Script Option (registerwsdl)
j2mesdkmgr –registerwsdl registers a Web service using the Web service’s WSDL
document.

Usage:

j2mesdkmgr –registerwsdl <URL of the WSDL> [<namespace>]

For example, to register the Hello World service (hello.wsdl) available from the Oracle
Technology Network (OTN), execute:

For Windows:

j2mesdkmgr.bat –registerwsdl
http://otn.oracle.com/tech/Webservices/htdocs/live/hello.wsdl

For UNIX:

j2mesdkmgr.sh –registerwsdl
http://otn.oracle.com/tech/Webservices/htdocs/live/hello.wsdl

To register the service inside a namespace, use the namespace as the third
parameter to the script. For example, to register the Hello World application in a
namespace called samples, execute:

For Windows:

j2mesdkmgr.bat –registerwsdl
http://otn.oracle.com/tech/Webservices/htdocs/live/hello.wsdl samples

For UNIX:

J2ME Overview

12-8 Oracle Application Server Wireless Developer’s Guide

j2mesdkmgr.sh –registerwsdl
http://otn.oracle.com/tech/Webservices/htdocs/live/hello.wsdl samples

Class Registration Script Option (registerclass)
j2mesdkmgr –registerclass registers a Web service using a Java class.

Usage:

j2mesdkmgr -registerclass <URL of the Class Library> <Name of the class>
[<namespace>]

The first parameter must be a URL. It may point to either a directory containing the
class or to a JAR file.

The second parameter must be a fully qualified class name. For example, to register
a service called TestWebService (which is included in the WDK), execute:

For Windows:

j2mesdkmgr.bat -registerclass file:C:\ora9ias\j2ee\OC4J_
Wireless\applications\wdk\wdk-Web\Webservice\lib\testservices.jar
oracle.wireless.me.server.TestWebService

For UNIX:

j2mesdkmgr.sh -registerclass file:/ias/j2ee/OC4J_
Wireless/applications/wdk/wdk-Web/Webservice/lib/testservices.jar
oracle.wireless.me.server.TestWebService

To register the service inside a namespace, use the namespace as the fourth
parameter to the script. For example, to register the TestWebService class in the
samples namespace, execute:

For Windows:

j2mesdkmgr.bat -registerclass file:C:\ora9ias\j2ee\OC4J_
Wireless\applications\wdk\wdk-Web\Webservice\lib\testservices.jar
oracle.wireless.me.server.TestWebService samples

For UNIX:

Note: For this example, the WDK home directory is
/iaswv904/wireless (UNIX) and C:\iaswv904\wireless (Windows).

J2ME Overview

J2ME Development and Provisioning 12-9

j2mesdkmgr.sh -registerclass file:/ias/j2ee/OC4J_
Wilreless/applications/wdk/wdk-Web/Webservice/lib/testservices.jar
oracle.wireless.me.server.TestWebService samples

12.1.3.2 Step 2: Generate J2ME Client Stub Class for the Registered Web
Service
The simplest way to call a Web service that you have registered with the J2ME
Proxy Server from your MIDlet is to generate a J2ME stub for the service and to call
the methods of the generated stub from your MIDlet.

Stub Generation Script Option (-generatestub)
j2mesdkmgr -generatestub generates a J2ME client stub class for a registered Web
service.

Usage:

j2mesdkmgr -generatestub [<namespace>.]<service name> [<Output directory>
[<stub name>]]

For example, to generate a J2ME stub class for the Hello World service available
from the Oracle Technology Network (IOTNHelloWorld):

j2mesdkmgr -generatestub IOTNHelloWorld

If the service is inside a namespace, you must prefix the service name with the
namespace and a period (.). For example, if the Hello World service
(IOTNHelloWorld) is registered inside the samples namespace, generate the stub
with:

j2mesdkmgr -generatestub samples.IOTNHelloWorld

You can specify a directory in which to place the generated stub as a third
parameter to the script.

If you do not specify a stub name, then the generated J2ME client stub class will be
called:

IOTNHelloWorldJ2MEStub.Java

To specify a different name for the generated stub, specify an output directory as the
third parameter (tmp in the following examples) and the desired stub class name
(HelloWord in the following examples) as the fourth parameter. For example:

For Windows:

j2mesdkmgr.bat -generatestub samples.IOTNHelloWorld c:\tmp HelloWorld

J2ME Overview

12-10 Oracle Application Server Wireless Developer’s Guide

For UNIX:

j2mesdkmgr.sh -generatestub samples.IOTNHelloWorld /tmp HelloWorld

The generated J2ME client stub class contains one method for each operation of the
Web service.

12.1.3.3 Step 3: Calling the Methods in the J2ME Stub Class from the MIDlet
Each of the public methods in the generated J2ME stub class represents an
operation of a registered service. The first two parameters of each method have
special meaning to J2ME Client Library: the first parameter is the number of
minutes to cache the response; the second parameter is a boolean, which should be
set to true to bypass any cached responses (that is, force the J2ME Client Library to
make a network call to the Web service), and set to false to use a cached response if
available and valid. For more information about these parameters, see
Section 12.1.4.1, "Response Caching".

All of the other parameters of the methods in the generated stub correspond to the
parameters of the service operation that the method represents. Calling these
methods from your MIDlet invokes these operations on the Web service.

To test your MIDlet with Sun’s J2ME Wireless Toolkit
(http://Java.sun.com/products/j2mewtoolkit/download.html):

1. Create a project for your MIDlet. Put the J2ME Client Library JAR file j2me_
sdk.jar in the lib directory of your project. Put the generated J2ME stub class in
the src directory of your project.

2. In the source code of your J2ME MIDlet, enter an import statement for the
generated J2ME stub class, create an instance of the stub class, and make calls to
the methods in the stub class. The first parameter of each stub method is the
number of minutes to cache the result. Set 0 for no caching, or -1 to cache
forever. The second parameter of each stub method is true to ignore cached
results (that is, always make a network call), or false to use valid cached results
if available. The remaining parameters of the stub methods correspond to the
parameters of the Web service operations represented by the methods.

3. Build and run your J2ME MIDlet.

12.1.3.3.1 Hello World Example The J2ME Client Library contains several sample
MIDlets. One of these calls the IOTNHelloWorld service using a generated stub. The
sample MIDlet is:

<ORACLE_HOME>\wireless\j2me\j2mesdk\sample\HelloWorld.Java

J2ME Overview

J2ME Development and Provisioning 12-11

12.1.3.3.2 Other Management Command Line Utilities

The listservices option lists all of the registered services. The removeservice option
removes registered services.

The Listing Services Option (-listservices)
The option j2mesdkmgr –listservices lists all the registered services. This script takes
no parameters.

This script lists all registered services, but does not list the methods available in the
services or the parameters that the methods take. You can view this information
with a Web browser, using the URL to the J2ME Proxy Server in the WDK:

http://<host name>:9010/wdk/proxy

For example:

http://www.example.com:9010/wdk/proxy

The Removing Services Option (-removeservice)
The option j2mesdkmgr –removeservice removes registered services.

Usage:

j2mesdkmgr –removeservice [<namespace>.]<service name>

For example, to remove the registered service Hello World (IOTNHelloWord):

j2mesdkmgr –removeservice IOTNHelloWorld.

If the service is inside a namespace, you must prefix the service name with the
namespace and a period (.). For example, to remove the Hello World service
(IOTNHelloWorld), which is registered inside the samples namespace:

j2mesdkmgr –removeservice samples.IOTNHelloWorld

Note: The directory also contains other MIDlets that have
examples of calling Web services through the J2ME Proxy Server
using either generated stubs or the J2ME Client Library API.

J2ME Overview

12-12 Oracle Application Server Wireless Developer’s Guide

12.1.3.4 Using TestStubMidlet to Access Simple Services
The J2ME Client Library provides a sample J2ME MIDlet, called TestStubMidlet,
which enables you to quickly test the generated stub files for the Web services that
you register with the J2ME Proxy Server.

To use the sample TestStubMidlet:

1. Download and install Sun’s J2ME Wireless Toolkit
(http://Java.sun.com/products/j2mewtoolkit/download.html)

2. Make the following modifications to the sample MIDlet file TestStubMidlet.Java,
which is located in:

<ORACLE_HOME>/wireless/j2me/j2mesdk/sample/

a. Add an import statement for the generated Java stub class.

b. Modify the callStub()method to instantiate the stub class, call the
operation, and assign the result to the instance variable
sCallResultString, used to display the result.

3. Create a Project in Sun’s J2ME Wireless Toolkit. (You must first locate the
OracleJ2ME Web Service Client Library, j2me_sdk.jar, which is located in
<ORACLE_HOME>/wireless/wdk/j2me/lib/)

Place this library inside the lib directory of the project. Place the stub class in the
src directory of the project, and place the modified TestStubMidlet class in
an oracle/wireless/me/sample1/ subdirectory inside the src directory of the project
(TestStubMidlet is in the package oracle.wireless.me.sample1)

4. Build and run the project. When the J2ME device emulator appears, launch the
test MIDlet and execute Call Stub. The test result then appears.

Example:

This example uses TestStubMidlet to call the XMethods Delayed Stock
Quote Web service to display a stock quote for Oracle Corporation:

a. Register the XMethods Delayed Stock Quote Web service
(xmethods-delayed-quotes.wsdl):

j2mesdkmgr -registerwsdl
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

b. Generate the stub:

j2mesdkmgr -generatestub
NetXmethodsServicesStockquoteStockQuoteService

J2ME Overview

J2ME Development and Provisioning 12-13

c. Modify TestStubMidlet.Java as in the following example.

...
import NetXmethodsServicesStockquoteStockQuoteServiceJ2MEStub;
...
/**
* Call Stub. Edit this method to test the stub.
* Remember to import the stub class
*/
private void callStub()
{
 try {
 // Add your code to test the stub.
 // For example:
 // Use the stub to call the XMethods delayed stock quote service to
get
 // Oracle’s stock price and cache the result for 1 minute.
 // Instantiate the Stub class:
 NetXmethodsServicesStockquoteStockQuoteServiceJ2MEStub stub =
 new NetXmethodsServicesStockquoteStockQuoteServiceJ2MEStub();

 // Call GetQuote Operation to get Oracle’s stock price and
 // cache the result for 1 minute
 sCallResultString = new String("Stock price for ORCL :" +
 stub.getQuote(1, false, "ORCL"));
 }
...

d. Build and run. The delayed stock quote for Oracle appears on the test result
screen. If you invoke the stub a second time within one minute, the result
appears quickly, since it is reading from the local cache without making a
round trip to the network.

12.1.3.4.1 Using TestStubMIDlet for Other Web Services You can register and test the
following Web services with TestStubMidlet:

■ Web Services Provided by Oracle Technology Network
(http://otn.oracle.com/tech/Webservices/htdocs/live/content.html):

Hello World:

http://otn.oracle.com/tech/Webservices/htdocs/live/hello.wsdl

■ Web Services Provided by XMethods, Inc (http://www.xmethods.com):

J2ME Overview

12-14 Oracle Application Server Wireless Developer’s Guide

Delayed Stock Quotes:

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

Weather Temperature:

http://www.xmethods.net/sd/2001/TemperatureService.wsdl

FedEx Tracker:

http://www.xmethods.net/sd/2001/FedExTrackerService.wsdl

12.1.3.4.2 TestWebService and TestWebService2 Sample Services The J2ME Proxy Server
in OracleAS Wireless includes a JAR file with two simple sample Web services in
the Java classes. Some of the sample MIDlets distributed with the J2ME Client
Library use these sample services. To register them, execute the scripts:

For Windows:

 <ORALCE_HOME>\wireless\bin\installj2mesamples.bat

For UNIX:

<ORALCE_HOME>/wireless/bin/installj2mesamples.sh

The script registers two Java classes as Web services – TestWebService and
TestWebService2.

The TestWebService class contains several simple methods for testing different
parameter types. It has a public constructor with no arguments.

The TestWebService2 class contains one simple test method and a
getInstance() method with no arguments that returns an instance of
TestWebService2. Its constructor is private.

The source code for these test services can be found at:

<ORACLE_HOME>/j2ee/OC4J_
Wireless/applications/wdk/wdk-Web/Webservice/src

The JAR file that contains the compiled services is:

<ORACLE_HOME>/j2ee/OC4J_
Wireless/applications/wdk/wdk-Web/Webservice/lib/testservices.jar

12.1.4 Advanced Features
This section describes the usage instructions for the key features provided by the
J2ME Client Library and J2ME Proxy Server.

J2ME Overview

J2ME Development and Provisioning 12-15

12.1.4.1 Response Caching
The first two parameters of every public method in a generated stub are int
timetokeep and boolean refresh. These parameters are used to control
response caching. The J2ME Client Library is able to cache the response of a Web
service operation in persistent memory on the wireless device. For future
invocations of the same operation, the response is retrieved from the local cache
instead of from the Web service.

int timetokeep

This is the time in minutes to keep the response in the cache. Further invocations of
the same operation within the specified number of minutes will retrieve the
response from the local cache instead of making a network round-trip to the Web
service. After the specified number of minutes has elapsed, the response in the
cache becomes invalid, and the next invocation of this operation will again make a
network round-trip to the Web service. Set this parameter to 0 to disable caching, or
to –1 to cache forever (the response never becomes invalid).

boolean refresh

This parameter indicates whether to bypass the cache when invoking this operation.
Setting this parameter to true forces a network round-trip, even if a valid response is
available in the local cache. If this parameter is false, the response if retrieved from
the local cache if an available cached response is valid.

12.1.4.2 HTTP Authentication
The J2ME Proxy Server and Client Library support accessing Web services that use
the HTTP basic authentication scheme. To set the username and password for
authentication, update the Web services’ generated stub, setting the instance
variables userName and password to the appropriate values. This username and
password will be passed to the Web service’s HTTP server by the proxy server for
authentication.

12.1.4.3 Session Support
Session support is activated by default. To disable session support, update the Web
services’ generated stub, setting the enableSession instance variable to false. The
J2ME Proxy Server uses a Java class to invoke operations on the Web service
whether you use WSDL Registration or Class Registration to register a Web service
with the J2ME Proxy Server, Session support means that successive invocations of
operations of a Web service coming from the same J2ME device use the same
instance object of this Java class. The instance of the class is saved in the J2ME Proxy

J2ME Overview

12-16 Oracle Application Server Wireless Developer’s Guide

Server’s servlet HttpSession object, so it is available as long as the HTTP session is
valid.

12.1.4.4 Request and Response Packetization
The J2ME Client Library sends requests to the J2ME Proxy Server using HTTP, the
only protocol that is guaranteed to support all MIDP implementations. Some
wireless carriers are unable to correctly send an HTTP request if it exceeds a certain
size. To work around this problem, the J2ME Client Library enables you to specify a
maximum size in bytes for the request and response. In the J2ME stub generated for
a Web service, edit the maxRequestSize instance variable to set the maximum
HTTP request and response size in bytes.

12.1.4.5 Client Library API
In most cases, you can use the server-generated client stub to invoke services
registered with the J2ME Proxy Server. If you want to use an advanced feature such
as call queuing, however, you must use the Client Library API directly, either from
your own MIDlet, or by modifying the generated stub.

The API documentation for the J2ME Client Library is located at:

<ORACLE_HOME>\wireless\j2me\Javadoc\index.html

12.1.4.5.1 Web Service Calls Use the ServiceFactory class to create Service
objects, which represent services registered with the J2ME Proxy Server. For
convenient access, store the URL of the J2ME Proxy Server as a property of your
MIDlet suite. For example, to create a Service object for the TestWebService
class in the default namespace (assuming that the J2ME Proxy Server URL is stored
in a MIDlet suite property called j2me_proxy_url):

// Get the URL of the J2ME proxy server.
String servURL = getAppProperty("j2me_proxy_url");
if (servURL == null) {
servURL = "http://localhost:9010/wdk/proxy";
System.out.println("Unable to get j2me_proxy app property, using
default: " + servURL);
}
ServiceFactory serviceFactory = ServiceFactory.getInstance();
Service service = serviceFactory.createService(servURL,Service.DEFAULT_
NAMESPACE,"TestWebService");

In the preceding code example, the first parameter to createService is the URL
of the J2ME Proxy Server, servURL the second is the namespace that contains the

J2ME Overview

J2ME Development and Provisioning 12-17

service (Service.DEFAULT_NAMESPACE), and the third is the name of the
registered service ("TestWebService").

Once you have an object of class Service, you can create Call objects. Each Call
object represents an operation of the remote Web service. For example, to create a
Call object for an operation called hello:

// Set cache timeout to 1 hour.
Call call = service.createCall("hello", 60);

The first parameter to createCall is the name of the operation of the Web service
("hello"). The second parameter is the number of minutes to cache the response
in the wireless device (60). Enter 0 to disable response caching, and –1 to cache
forever. For more information, see Section 12.1.4.1, "Response Caching".

Once you have a Call object, you can invoke the Web service operation that it
represents. Build a Java Vector to hold the parameters, and then call the Call
object’s invoke method. Assuming the hello operation takes a single String
parameter, invoke hello is as follows:

// Put the parameters in a Vector.
Vector params = new Vector();
params.addElement(new String("World"));
Response response = call.invoke(params, false);

The first parameter to the Call object’s invoke method is the Vector of parameters
for the Web service operation. The second parameter may be set to true if you want
to bypass the local cache. In other words, true ignores any valid cached response
and forces a network call to the remote Web service. For more information, see
Section 12.1.4.1, "Response Caching".

The invoke method returns a Response object. Always check the Response
object’s return code. If it is 0, then the call succeeded and you can use the Response
object’s methods to access the information returned from the remote operation. If
the return code is not 0, use the Response object’s getErrorMsg method to get
the error message. Assuming that the operation, hello, returns a String, perform
the following:

// Check if the response is valid (0 = OK).
int retCode = response.getReturnCode();
String retVal;
if (retCode == 0) {
 retVal = response.getString();
}
else { // return code not 0

J2ME Overview

12-18 Oracle Application Server Wireless Developer’s Guide

 retVal = "Call unsuccessful: " + response.getErrorMsg();
}

12.1.4.5.2 Setting Properties Use the Service.setProperty method to set the
following properties of the Service object, which represents a Web service registered
with the J2ME Proxy Server:

Service.USERNAME and Service.PASSWORD – Set these properties to access
Web services that require basic HTTP authentication.

Service.SESSION_MAINTAIN – Set this property to enable or disable session
support. For more information, see Section 12.1.1.6, "Session Support".

Service.MAX_REQUEST_SIZE – Set the maximum HTTP request and response size.
For more information, see Section 12.1.4.4, "Request and Response Packetization".

12.1.4.5.3 Call Queuing Calls to Web services from wireless devices sometimes fail
due to network connectivity problems. The J2ME Client Library enables MIDlets to
queue Web service calls for later invocation. Once queued, the J2ME Client Library
automatically retries the call periodically until it succeeds. You would queue a call
following a network error using the ServiceManager.queueCall method, as follows:

try {
 Response response = call.invoke(params, false);
...
catch (ServiceException se) {
 if (se.getErrorCode() == ServiceException.CONNECTION_FAILED) {
 int queuedId = ServiceManager.getInstance().queueCall(call);
 }
 ...
}
...

Use the getQueuedCalls method of the ServiceManager class to retrieve
queued calls. Set the boolean parameter of getQueuedCalls to true to retrieve the
IDs of queued calls that have already been invoked, and false to retrieve the IDs of
queued calls that have not yet been invoked. Then, use the
ServiceManager.getQueuedCall method to get a Call object from an ID, and
use Call.getResponse to retrieve the response to the call.

To find the queued Web service calls that have been invoked:

int[] queuedIds = ServiceManager.getInstance().getQueuedCalls(true);
for (int i = 0; i < queuedIds.length; i++){
 //Retrieve Call object

J2ME Overview

J2ME Development and Provisioning 12-19

 Call invokedCall =
 ServiceManager.getInstance().getQueuedCall(queuedIds[i]);
 Response response = invokedCall.getResponse();
 ...
}

To find the queued calls that have not been invoked:

...
int[] queuedIds = ServiceManager.getInstance().getQueuedCalls(false);
...

12.1.4.5.4 Required MIDlet Cleanup You should always call the close() method of
the ServiceManager class when your MIDlet exits. This closes the RMS
RecordStore used for Response Caching and Call Queuing. In a J2SE environment,
this is performed in the ServiceManager’s finalize() method. However, J2ME
does not support the finalize() method. As a result, your code is responsible for
closing the RMS RecordStore used by the J2ME Client Library.

You must collect all the cleanup code for your MIDlet into one method, which you
call from the MIDlet’s destroyApp method and from any other code that would
cause the MIDlet to terminate (such as an Exit command). In the following
example, which is taken from one of the sample MIDlets included in the J2ME
Client Library, the cleanup code is collected in the exitMIDlet method:

 private void exitMIDlet()
 {
 try {
 ServiceManager.getInstance().close();
 }
 catch (Exception e) {
 }

 notifyDestroyed();
 }

 protected void destroyApp(boolean unconditional)
 throws MIDletStateChangeException
 {
 exitMIDlet();
 }

J2ME Overview

12-20 Oracle Application Server Wireless Developer’s Guide

 public void commandAction(Command c, Displayable d)
 {
 if (c == exitCommand) {
 exitMIDlet();
 }
 . . .
 }

12.1.4.5.5 Supported Data Types Currently, the J2ME Web Services Client Library and
Proxy Server support the following data types for Web service operation parameters
and return values:

■ String

■ Integer

■ Boolean

■ Date

■ int

■ boolean

■ Vector

■ Hashtable

■ Arrays of String, Integer, Boolean, and Date

For every registered Web service, only those operations that use these data types
can be registered with the J2ME Proxy Server and invoked using the J2ME Client
Library.

Note: J2ME does not support the data types: float or double.
As a workaround, the J2ME Proxy Server converts float and
double to String. This workaround applies only to the data type
of the return value of Web service operations, not to operation
parameters. This enables you to call Web service operations that
return prices, temperatures, and other decimal values.

J2ME Overview

J2ME Development and Provisioning 12-21

The mapping of WSDL simple data types (which are XML Schema data types) to
Java data types is as follows:

12.1.4.6 Deploying MIDLets to OracleAS Wireless
When you have finished developing and testing your Web service-enabled J2ME
MIDlets using the Wireless Development Kit, you can deploy them on a real
OracleAS Wireless installation. You can do this by either one of the following two
methods.

12.1.4.6.1 Deploying through Re-registration You may migrate your work by
re-registering your Web services with the OracleAS Wireless J2ME Proxy Server.
The Service Manager, one of the OracleAS Wireless tools, enables you to register
Web services and generate J2ME stubs for them.

To deploy a service through re-registration:

1. Register every Web service that your MIDlets access.

2. Generate new J2ME stubs for the Web services that your MIDlets call.

3. Recompile your MIDlets with the new J2ME stubs.

If you made any manual modifications to the generated stubs, then you must
manually modify the J2ME stubs that you already have as an alternative to Step 2.
To do this, you must change the value of the _proxyUrl instance variable.
Update this URL with the correct hostname of the OracleAS Wireless server, the
correct port number for OracleAS Wireless (typically 7777), and the correct path
(typically: /mcs/wsproxy/proxy). For example:

private String _proxyUrl= "http://example.com:7777/mcs/wsproxy/proxy";

Table 12–1 WSDL Data Types Mapping

WSDL data type Java data type

boolean Java.lang.Boolean

integer Java.lang.Integer

string Java.lang.String

dateTime Java.util.Date

J2ME Overview

12-22 Oracle Application Server Wireless Developer’s Guide

12.1.4.7 Deploying through scripts
You can avoid reregistering every Web service that your MIDlets access by using the
migration scripts. The process consists of downloading, or exporting, all
information on the registered Web services to an XML file, and then uploading, or
importing, this information from the XML file to a OracleAS Wireless installation.

1. Export the Web services registered with the WDK J2ME Proxy Server to an XML
file using the following script:

migrateStandalone

This script is used to extract Web services registered with the WDK J2ME Proxy
Server into an XML file. This script is located with the other WDK J2ME Proxy
Server scripts for registration and management of Web services, at <ORACLE_
HOME>/wireless/wdk/bin.

Usage:

j2mesdkmgr -export <xml file name>

Examples:

For Windows:

j2mesdkmgr -export C:\temp\registered_services.xml

For UNIX:

j2mesdkmgr.sh -export /usr/tmp/registered_services.xml

2. Import the XML file to a OracleAS Wireless installation, using the following
script:

uploadJ2MEProxy

This script takes a single parameter: the name or full path to an XML file
produced by the j2mesdkmgr -export script. All of the Web services described in
this XML file are inserted into the database of this OracleAS Wireless and
become registered with the J2ME Proxy Server of this OracleAS Wireless
installation. This script is located in the directory <ORACLE_
HOME>/wireless/bin/.

Usage:

uploadJ2MEProxy <xml file name>

J2ME Overview

J2ME Development and Provisioning 12-23

Examples:

For Windows:

uploadJ2MEProxy.bat c:\temp\registered_services.xml

For UNIX:

uploadJ2MEProxy.sh /usr/tmp/registered_services.xml

5. Generate new J2ME stubs for the Web services that your MIDlets call.

You can skip this step by manually modifying the J2ME stubs that you
already have.(Do this if you made any manual modifications to the
generated stubs.) You must change the value of the _proxyUrl instance
variable to the correct hostname of the OracleAS Wireless server, the correct
port number (typically 7777), and the correct path: /mcs/wsproxy/proxy. For
example:

private String _proxyUrl= "http://example.com:7777/mcs/wsproxy/proxy";

6. Recompile your MIDlets with the new or corrected J2ME stubs.

12.1.4.8 Migration from One OracleAS Wireless Installation to Another
At some point, you may want to migrate all of the information on Web services
registered with the J2ME Proxy Server from one OracleAS Wireless installation to
another. The process consists of downloading, or exporting, all information on the
registered Web services of the source OracleAS Wireless to an XML file, and then
uploading, or importing, this information from the XML file to the destination
OracleAS Wireless. The scripts to do this are found in the following directory:

<ORACLE_HOME>/wireless/bin/

To migrate the information on Web services registered with the J2ME Proxy Server
from on OracleAS Wireless installation to another:

1. Export the Web services registered with the source OracleAS Wireless J2ME
Proxy Server to an XML file, using the following script:

downloadJ2MEProxy

This script takes a single parameter: the name or full path to an XML file. All
Web services registered with the J2ME Proxy Server on the OracleAS Wireless
where this script is run are extracted from the OracleAS Wireless database and
placed into this XML file.

J2ME Overview

12-24 Oracle Application Server Wireless Developer’s Guide

Usage:

downloadJ2MEProxy <xml file name>

Examples:

For Windows:

downloadJ2MEProxy.bat c:\temp\registered_services.xml

For UNIX:

downloadJ2MEProxy.sh /usr/tmp/registered_services.xml

7. Import the XML file to the destination OracleAS Wireless J2ME Proxy
Server, using the following script:

uploadJ2MEProxy

This script takes a single parameter: the name or full path to an XML file
produced by the downloadJ2MEProxy script. All of the Web services
described in this XML file are inserted into the database of the OracleAS
Wireless where this script is run and become registered with the J2ME
Proxy Server of this OracleAS Wireless installation.

Usage:

uploadJ2MEProxy <xml file name>

Examples:

For Windows:

uploadJ2MEProxy.bat c:\temp\registered_services.xml

For UNIX:

uploadJ2MEProxy.sh /usr/tmp/registered_services.xml

8. Generate new J2ME stubs for the Web services that your MIDlets call.

You can skip this step by manually modifying the J2ME stubs that you
already have.(Do this if you made any manual modifications to the
generated stubs.) Change the value of the _proxyUrl instance variable.
Update this URL with the correct hostname of the OracleAS Wireless server,
the correct port number (typically 7777), and the correct path
(/mcs/wsproxy/proxy). For example:

private String _proxyUrl= "http://example.com:7777/mcs/wsproxy/proxy";

9. Recompile your MIDlets with the new (or corrected) J2ME stubs.

Digital Rights Management Support

J2ME Development and Provisioning 12-25

12.2 Digital Rights Management Support
Digital Rights Management (DRM) enables the Content Manager to define the
content usage policy after the content has been downloaded to the device. The
usage policy defines the allowed permission associated with the content to the end
user with additional temporal and monetary constraints if necessary. The common
types of permission include:

■ Execute: The right to invoke the application (for example, a J2ME game).

■ Display: The right to display the content (for example, an image).

■ Play: The right to play the content (for example, audio/video clip).

■ Print: The right to create a hardcopy of the content (for example, image/jpeg).

■ The optional constraints on the permission for providing fine-grained
consumption control of content (for example, preview rights).

■ Count: The number of times the permission rights are granted (for example, the
number of times you can run).

■ Interval: The recurring period of time during which the permission rights are
granted (for example, the number of hours you can use).

■ Start and End time: The pre-defined time range which the permission rights
are granted.

There are many standards on expressing the digital rights. The one proposed by
Open Mobile Alliance (OMA) for mobile content is a simplified version of the Open
Digital Rights Language (ODRL) which means that digital rights should be
expressed in an XML document following the syntax defined as ODRL Mobile
Profile.

12.2.1 OracleAS Wireless Built-in DRM Polices
OracleAS Wireless includes two types of DRM policies that can be used to package
J2ME applications: Count DRM Policy and Interval DRM Policy.

■ Count DRM Policy: restricts the downloaded J2ME application to be run on
the device up to x times, where x is the count specified by the Foundation
Developer specifies while creating the policy.

■ Interval DRM Policy: restricts the downloaded J2ME application to be run
on the device for a specified period after it has been downloaded. The duration
is specified in years, months, days, hours or minutes (or all of these). A
standard conversion is used to handle years (365 days) and months (30 days).

Digital Rights Management Support

12-26 Oracle Application Server Wireless Developer’s Guide

The policy creation and the association of the policy with content is similar in both
cases. The actual packaging of the policy with the content occurs at download time.
The policy is enforced on the downloaded content after the user launches the
downloaded application on the device. The Foundation Manager, one OracleAS
Wireless Tools enables you to create built-in DRM policies Another Tool, the
Content Manager, enables you to associate those policies with the J2ME application.
See the Oracle Application Server Wireless Administrator’s Guide for more information
on the Content Manager.

12.2.2 Custom-built Digital Rights Policy and Content Enhancement
OracleAS Wireless provides a platform to facilitate customized Digital Rights Policy
and Content Enhancement for J2ME devices (OracleAS Wireless supports MIDP 1.0
complaint devices). Although Customized Digital Rights Policy and Content
Enhancement are two completely different features, they are implemented using
one framework in OracleAS Wireless.

The custom implementation of Digital Rights Policy or Content Enhancement is a
two-step development process.

1. Implementation of Custom Digital Rights for MIDP platform by extending
oracle.wireless.me.drm.DRMAgent class for MIDP platform. This
implementation is also referred to as a Digital Rights Object.

2. Implementation of
oracle.wireless.me.server.tools.drm.DRMPackager interface,
which implements the packaging logic of content with the Rights object
developed in Step 1.

12.2.2.1 Use Case Study
The following sections describe an example of PoweredByPolicy, where a splash
screen is packaged with the associated applications.

PoweredByPolicy.Java for Target Mobile Information Devices
package devguide;

import Java.io.IOException;
import Javax.microedition.midlet.*;
import Javax.microedition.lcdui.*;
import oracle.wireless.me.drm.DRMAgent;

/**
* <code>PoweredByPolicy</code> displays a "Powered By" splash

Digital Rights Management Support

J2ME Development and Provisioning 12-27

* screen for a packaged content. The product copyright string may
* be set using a property parameter using OracleAS Wireless Server.
*/
public class PoweredByPolicy extends DRMAgent implements CommandListener {

/**
* value of copyright
*/
private String copyright;

public PoweredByPolicy(MIDlet ctx) {
super(ctx);
copyright = getProperty("copyright");
}

/**
* Displays a splash screen when the application starts up.
*/
public void onStartApp() {
showSplash();
}

/**
* Creates a splash screen and sets it be the current display
*/
private void showSplash() {
Form form = new Form("Powered By:");
try {
form.append(Image.createImage("/devguide/9i.png"));
}
catch(IOException ioe){
form.append("Oracle AS Wireless");
}
form.append(copyright);
form.addCommand(new Command("OK", Command.SCREEN, 1));
form.setCommandListener(this);
Display.getDisplay(context).setCurrent(form);
}

/**
* Resume the normal application logic when user
* attends to the splash screen
*/
public void commandAction(Command c, Displayable d) {
resumeStartApp();

Digital Rights Management Support

12-28 Oracle Application Server Wireless Developer’s Guide

}
} // end of class PoweredByPolicy

The PoweredByPolicy class defines an implementation of
oracle.wireless.me.drm.DRMAgent (referred to as DRMAgent hereafter). It
defines a constructor with a single argument of type
Javax.microedition.midlet.MIDlet to satisfy the general contract of
DRMAgent, The implementation of onStartApp() method displays a splash
screen by calling the showSplash() method that houses the business logic of the
policy. Finally, the event handler of splash screen calls resumeStartApp() for the
packaged application to resume normally.

You can use the Sun J2ME Wireless Toolkit to compile and pre-verify the
PoweredByPolicy class. The required lib containing DRMAgent class can be
obtained from <IASW_HOME>/wireless/lib/j2medrm_demo.jar. The compiled and
pre-verified class file or JAR file (which must also be pre-verified) containing the
class file can be packaged by defining a packager as explained in Section 12.2.2.1.1.

12.2.2.1.1 Packaging Custom-built Digital Rights Policy
oracle.wireless.me.server.tools.drm.DRMPackager interface (referred
to hereafter as DRMPackager) defines API for packaging a MIDlet suite content
with Digital Rights Policy or Content Enhancement developed in Section 12.2.2.1.
The DRMPackager.getInitPropertiesDef() method defines a contract to
return a set of Properties used by tools such as user interfaces and publishing
frameworks for discovering the parameter definitions of the Digital Rights Object.
In turn, the OracleAS Wireless Runtime calls the init(Properties prop)
method with the value of the parameters. DRMPackager defines the following API
contract, which is invoked by OracleAS Wireless Runtime for packaging MIDlet
Suite content with the Digital Rights object.

public byte[] packageDRMContent(byte[] content, Properties policyProperties,
Document odrlXml,UserDevice device)

To simplify the implementation of DRMPackager,
oracle.wireless.me.server.tools.drm.J2MEDRMPackager (referred to
hereafter as J2MEDRMPackager) defines the default implementation to specify the
Digital Rights object and contain the JAR file using the
setDRMAgentInfo(String agentClassName, String implJarFileName)
method. The implJarFileName can be the absolute path of the file containing the
Rights Objects. If not, the J2MEDRMPackager performs a search for the specified
JAR file in the CLASSPATH.

No customization is required for Rights object specified using ODRL.

Digital Rights Management Support

J2ME Development and Provisioning 12-29

The following class describes the packaging logic of the Rights object. The
implementation assumes that JAR file containing the Rights object is archived in the
C:\temp\poweredby.jar file. You do not have to restart the OracleAS Wireless server
for changes made to the file containing the Digital Rights Object
(C:\temp\poweredby.jar).

package devguide;

import oracle.wireless.me.server.tools.drm.J2MEDRMPackager;
import oracle.wireless.me.server.tools.drm.DRMPackager;
import Java.util.Properties;

/**
 * Powered By Rights Packager
 */
public final class PoweredByPolicyPackager extends J2MEDRMPackager {
 private static Properties defaultInitProperties = null;

 static {
 defaultInitProperties = new Properties();
 // initializes the copyright property with a default value
 defaultInitProperties.setProperty("copyright", "Copyright 2003 Oracle
Corporation. All Rights Reserved.");
 }

 private Properties initProperties = null;

 private static PoweredByPolicyPackager instance = new
PoweredByPolicyPackager();

 /**
 * Static factory that returns the instance of DRMPackager
 */
 public static DRMPackager getInstance() {
 return instance;
 }

 private PoweredByPolicyPackager() {
 initProperties = defaultInitProperties;
 setDRMAgentInfo("devguide.PoweredByPolicy", "C:\\temp\\poweredby.jar");
 }

 public Properties getInitPropertiesDef() {
 return defaultInitProperties;
 }

Digital Rights Management Support

12-30 Oracle Application Server Wireless Developer’s Guide

}// end of the class

 public static DRMPackager getInstance() {
 return instance;
 }

12.2.3 Deployment of Custom-built Digital Rights Policies
1. Before you deploy the custom-built Digital Rights Policy, you must create a new

Digital Rights Policy using the Foundation Developer, one of the OracleAS
Wireless Tools. For more information on the Foundation Developer, see the
Oracle Application Server Wireless Administrator’s Guide.

To create a new Digital Rights Policy:

1. From the browsing page (Figure 12–1), click Create. The Select Digital Rights
Policy Type screen appears (Figure 12–2).

Figure 12–1 The Browsing Page for DRM Policies

Note: This class implements the general contract of
DRMPackager by implementing the following method.

Note: To use the Foundation Developer, you must be granted the
Foundation Manager role or the Super User role.

Digital Rights Management Support

J2ME Development and Provisioning 12-31

2. Select the Customized Package option.

3. Enter the name of the package. You can also define the initialization (init)
parameters and the ODRL document if the policy is supported by
DRMPackager implementation. See Figure 12–3, "Creating a New Digital
Rights Policy".

Figure 12–2 Create a New Digital Rights Policy

4. Click Create. The New Digital Rights Policy screen appears (Figure 12–3).

5. Enter the Name of the policy.

6. Click Create.

Digital Rights Management Support

12-32 Oracle Application Server Wireless Developer’s Guide

Figure 12–3 Creating a New Digital Rights Policy

Once the Digital Rights Object is created, you can associate it with an application
link of a MIDlet application. You use the Service Manager to create a J2ME MIDlet
application and then the Content Manager to create an application link to that
MIDlet, which is a means to customize a application and publish it to a user group.
For more information on creating a MIDlet application, see Section 5.3.6, "Creating a
J2ME Application". For more information on creating an application link, see Oracle
Application Server Wireless Administrator’s Guide.

The J2ME Provisioning Server

J2ME Development and Provisioning 12-33

Figure 12–4 Associating a Digital Rights Policy with a J2ME Application

12.3 The J2ME Provisioning Server
Using OracleAS Wireless J2ME Provisioning Server, Service Developers can upload,
organize, and download J2ME applications. The uploaded J2ME application can
then be published as an application using the Content Manager to users groups for
downloading. The published service is available in the wireless user’s application
tree along with the other applications distributed to that user.

12.3.1 The Application Model
The OracleAS Wireless J2ME Provisioning Framework’s Repository consists of the
Content Repository and the framework which provide a means to create an
association between the uploaded Digital Rights Management Policies (DRM) and
the content. The association of the content with a DRM policy is done at the service
creation time. All Content download transactions are recorded in an audit table.

The content repository stores the deliverable contents information for any uploaded
content. The information is accessible through public APIs. Table 12–2 describes this
information.

Table 12–2 Deliverable Content

Information Description

Name The name of the content.

Version The version of the content.

Display Name The display name of the content

The J2ME Provisioning Server

12-34 Oracle Application Server Wireless Developer’s Guide

The Deliverable Content contains the meta-information of the actual content, which
is available as a DeliverableContentItem object (described in Table 12–3).

The provisioning transactions are logged in an audit table, the PROVISIONING_
TRANSACTION_LOG (described in Table 12–4). These transactions are exposed as
runtime metrics in the System Manager.

Description A description of the content.

Verify time The time when content was pre-verified using the Api-Scan feature.

Status Indicates if the content is valid.

Owner The owner of the content.

Table 12–3 DeliverableContentItem

Information Description

MIME Type The MIME type of the content. (That is, the JAR or JAD MIME type.)

Content Binary The actual content stored in a binary format

Content Size The size of the content.

Audit Information The audit information, such as creation time, update time, and user information.

Table 12–4 PROVISIONING_TRANSACTION_LOG

Column Name Column Type Description

INSTANCE_NAME VARCHAR2 (256) (NOT NULL) The Instance name of the
Provisioning server which
served this content

HOST_NAME VARCHAR2 (256) The host name of the server

USER_DOWNLOAD_ID NUMBER Internal unique id of this
download transaction

USER_NAME VARCHAR2(2000) The name of the user who
was provisioned with this
content

SERVICE_NAME VARCHAR2 (256) The service used to access the
content

Table 12–2 Deliverable Content

Information Description

The J2ME Provisioning Server

J2ME Development and Provisioning 12-35

12.3.2 Hooks
The framework enables the download operation to be tracked and controlled by
allowing the implementer to plug in hooks at different stages. A custom
implementation of the hooks can be plugged using the System Manager. The hooks
need to be singleton classes and must contain the getInstance() method to
return their object reference.

APPLICATION_NAME VARCHAR2 (256) (NOT NULL) The application encapsulating
this content

APPLICATION_TYPE VARCHAR2 (256) The application type. For
example: J2ME

CONTENT_NAME VARCHAR2 (256) (NOT NULL) The name of the content. The
content name and version
uniquely identifies content.

CONTENT_VERSION VARCHAR2 (100) (NOT NULL) The version of the content.
The content name and version
uniquely identifies content.

MIME_TYPE VARCHAR2 (256) (NOT NULL) The MIME type of the
content.

DRM_POLICY_NAME VARCHAR2 (256) The DRM policy (if any)
associated with this service
used to download the content.

NUMBER_OF_DOWNLOADS NUMBER The total number of
downloads of this content by
the user

DEVICE_ID NUMBER The downloading device
information

DOWNLOAD_TIME_STAMP DATE The time stamp of the
download operation

DOWNLOAD_INTERNAL_STATUS VARCHAR2 (256) The internal status code to
indicate if the download was
successful or if it failed.

 DOWNLOAD_DISPLAY_STATUS VARCHAR2 (256) The descriptive status code to
indicate if the download was
successful or if it failed.

Table 12–4 PROVISIONING_TRANSACTION_LOG

Column Name Column Type Description

The J2ME Provisioning Server

12-36 Oracle Application Server Wireless Developer’s Guide

■ Pre download Hook: This is invoked at the time of application invocation
before the actual download happens. The hook interface is supplied to the user
download status object containing the user information and content
information. The hook can return a true or false status to allow the user to
proceed with the download or abort the operation respectively.

The ProvisioningPreDownloadHook interface is defined in the public
package oracle.panama.rt.hook as follows:

public interface ProvisioningPreDownloadHook {
 /** Delegate additional processing of this download
 * @param UserDownloadStatus The download status object encapsulates
the current download transaction i.e. user, application, content,
version, mime type etc.
 * @return boolean to indicate successful hook processing
 * @see oracle.panama.model.UserDownloadStatus
 */
 public boolean processRequest (
 UserDownloadStatus uds
);

}

■ Post download Hook: This hook is invoked at two stages during the post
download cycle: after a successful download and after a device notification of a
successful download.

The hook supplies the user download status object, which contains the user
information and the content information. The hook implementation can decide
to bill or audit the download operation at either of the stages.

The ProvisioningPostDownloadHook interface is defined in the public
package oracle.panama.rt.hook as follows:

public interface ProvisioningPostDownloadHook {
 public static final int POST_DOWNLOAD = 1;
 public static final int POST_NOTIFY = 2;
 public boolean processRequest (
 UserDownloadStatus uds,
 HttpServletRequest request,
 int hookType /* determines if it is a post notify or a
post download hook */
);
}

The J2ME Provisioning Server

J2ME Development and Provisioning 12-37

12.3.3 Upload J2ME Application
You use the Service Manager to create a J2ME application. To access this tool, you
must be granted either the Service Manager or Super User roles.

To create a J2ME MIDlet application:

1. From the browsing screen, click Create Application.

2. From the application type selection screen, select J2ME Midlet as the application
type.

3. Enter a name for the MIDlet application. For example, enter Morphing (as
depicted in Figure 12–5).

The URL parameter points to the Download Service manager JSP that is
included. You can also enter a custom JSP that provides the similar
functionality.

Figure 12–5 Entering the Basic Information for the MIDlet Application

4. Click Next to enter the details of the J2ME Content (Figure 12–6).

The J2ME Provisioning Server

12-38 Oracle Application Server Wireless Developer’s Guide

Figure 12–6 Entering the Content Details

5. Enter the version number, display name, and description for the application.

6. Upload the JAD and JAR file for the J2ME MIDlet application.

7. Click Next. The Device Requirement page appears (Figure 12–7).

The J2ME Provisioning Server

J2ME Development and Provisioning 12-39

Figure 12–7 Selecting the Devices that Support the J2ME Application

8. If needed, exclude the devices which cannot support the application.

9. Optionally, set the heap size requirement for the device.

10. Click Next. The Additional Information screen appears (Figure 12–8).

11. Select the Valid option.

12. Provide any additional information for the application, such as the file location
for a display menu icon.

13. Click Finish to complete the J2ME MIDlet application.

The J2ME Provisioning Server

12-40 Oracle Application Server Wireless Developer’s Guide

Figure 12–8 Entering Additional Information for the J2ME Application

12.3.4 Publishing the J2ME Application
The Content Manager enables you to publish the J2ME application to user groups.
The application created using the Service Manager is published as an application
link, which you create using the Content Manager. The Service Designer-created
application, or master application, forms the core of the application link. Using the
application link, you can customize the application. For example, you can
customize the application to a user group or to a location. For more information, see
Oracle Application Server Wireless Administrator’s Guide.

To publish the J2ME application:

1. From the browsing screen of the Content Manager, click Add Application Link.

2. Select the application targeted for publishing. For example, select Morphing
Application.

3. Click Next.

The J2ME Provisioning Server

J2ME Development and Provisioning 12-41

4. Enter a name for the application link.

5. If needed, select a DRM policy. By default, the user is allowed unrestricted
usage of the downloaded application. For more information, see Section 12.2.2,
"Custom-built Digital Rights Policy and Content Enhancement".

6. You can click Finish to complete the application link by accepting the defaults.
If needed, enter information in the Additional Information screen, such as a a
non-zero value for cost information for billing purposes. Select the Visible
option and any other information as appropriate.

12.3.5 Downloading a J2ME Application
For the J2ME to be accessed (that is used) you must assign the application to a user
group. Only users belonging to group to which you assign the J2ME application can
use the application. In addition, group members must have at least one device
address.

To access the application, users must log in to the Wireless and Voice portal using a
URL similar to the following:

http://yourwirelessserver:7777/ptg/rm

The J2ME Provisioning Server

12-42 Oracle Application Server Wireless Developer’s Guide

Figure 12–9 Morphing Service Example

When you choose the Morphing application (as depicted in Figure 12–9), the JSP
displays a list all the J2ME contents uploaded for that application. Download the
selected content to the device by clicking Download.

In the Customization Portal, you can view the download history log in to by
clicking Applications and then View Download History.

Web Scraping 13-1

13
Web Scraping

This document explains Transcoding. Each section of this document presents a
different topic. These sections include:

■ Section 13.1, "Web Scraping Overview"

■ Section 13.2, "Web Clipping"

■ Section 13.3, "Creating a Wireless Application"

■ Section 13.4, "Migrating from Existing Transcoding Technologies"

■ Section 13.5, "Customizing the Web Clipping Service"

■ Section 13.6, "Administrative Tasks for OracleAS Wireless Administrators"

■ Section 13.7, "WML Translator"

13.1 Web Scraping Overview
The majority of applications available on web render content in format specific to
certain types of devices. Web scraping allows applications developed for a
particular markup language to be reformatted for use with other devices. Web
scraping includes Web Clipping for repurposing PC browser applications and the
WML Translator for reusing WML applications.

13.2 Web Clipping
This section describes the Web Clipping application feature available with OracleAS
Wireless. It also describes the roles of the OracleAS Wireless Administrator and user
for creating, customizing, and viewing Web Clipping applications on a wireless
device. Information about some administrative tasks, such as how to configure
proxy settings and security, is also included.

Web Clipping

13-2 Oracle Application Server Wireless Developer’s Guide

13.2.1 Introduction
The Web Clipping server architecture relative to OracleAS Wireless is shown in
Figure 13–1, "Web Clipping Server Architecture Relative to OracleAS Wireless
Core".

Figure 13–1 Web Clipping Server Architecture Relative to OracleAS Wireless Core

The Web Clipping server enables OracleAS Wireless Administrators to clip and
scrape Web content and create Web Clipping applications that are stored
persistently in the Web Clipping server repository. When a request is initiated by a
user using a mobile wireless device to view a particular Web Clipping application,
that application is retrieved by the HTTP Adapter and delivered to OracleAS
Wireless Core for processing and delivery to the mobile device, as shown in
Figure 13–2, "Web Clipping Application".

Web Clipping

Web Scraping 13-3

Figure 13–2 Web Clipping Application

Figure 13–3, "Detailed Web Clipping Server Architecture" shows a more detailed
look at the Web Clipping server. Web clipping content can be clipped and scraped
from Internet or Intranet Web sites scattered throughout a large organization. Using
OracleAS Wireless, you can create and store in the wireless repository applications
containing Web clippings. In addition, you can create customized applications that
uses Web clippings to their best advantage by first identifying the development
environment that best fits your needs. Depending upon the development
environment you select, you must download and deploy the required archive files

Web Clipping

13-4 Oracle Application Server Wireless Developer’s Guide

into that development environment. Next, clip the desired content. Then, download
either the Java or JSP stub files to start developing.

Figure 13–3 Detailed Web Clipping Server Architecture

The archive files available are for each of the following development environments
are:

■ J2EE—for developing in a J2EE (OC4J) environment using the Sun standard
JCA Common Client Interface (CCI) instead of the Web Clipping Bean API, and
for developing with an OC4J version that is release 9.0.3 or higher. Download
the JCA Resource Adaptor Archive (RAR) file, webclipping.rar.

■ J2SE—for developing not only in a J2EE (OC4J) environment, but also with a
standalone Java 2 SDK environment. Download the Java library (JAR) file,
wcbean.jar.

Applications can be customized and deployed in the J2EE or J2SE environments as
standalone Java applications or part of other JSP applications, or these applications
can be created into wireless applications and stored in the wireless repository, or
this content can be clipped.

To create a Web Clipping application, the OracleAS Wireless Administrator simply
uses a Web browser to navigate to the Web page containing the desired content,
then selects the portion of the page to clip and scrape, sets some attributes and if the
Web clipping uses form-based submission, exposes input parameters, saves the
application, and tests the application.

Web Clipping

Web Scraping 13-5

Web Clipping applications support:

■ Navigation through various styles of login mechanisms, including form- and
JavaScript-based submission and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will still be identified
correctly by the Web Clipping server and delivered as the Web Clipping
application content.

■ Reuse of a wide range of Web content, including support for pages written with
HTML 4.0.1, JavaScript, applets, and plug-in enabled content, retrieved through
HTTP GET and POST (form submission) methods.

■ Clipping page content from HTML 4.0.1 pages, including:

– Clipping of <table>, <td>, , , <div> tagged content

– Preservation of <head> styles and fonts, Cascading Style Sheets (CSS)

– UTF-8 compliant character sets

– Navigation through hyperlinks (HTTP GET), form submissions (HTTP
POST), frames, URL redirection.

■ HTTPS-based external Web sites can be navigated and clipped, provided that
appropriate server certificates are acquired.

■ National Language Sets (NLS) from existing Web content in the following ways.
First, it checks the "Content-Type" in the HTTP header for the charset attribute.
If this is present, it assumes that this is the character encoding of the HTML
page; if this is not present, it next checks the HTML "META" tag on the page to
determine the character encoding. If the HTML "META" tag is not found, it
defaults to the ISO-8859-1 character encoding. In addition, support includes
NLS in URL and URL parameters.

■ Browsers including Netscape Navigator releases 6 and 7, Microsoft Internet
Explorer releases 5.0, 5.5, 6.0, and higher.

■ Most non-HTML elements, including applets, plugin content (for example,
embedded QuickTime video, Macromedia Flash presentation), and client-side
Javascript (v1.2).

Web Clipping

13-6 Oracle Application Server Wireless Developer’s Guide

The following are known limitations of Web clipping:

■ NLS or internationalization limitations include the following:

– Character set must be specified in the meta tags or HTTP header; if not
specified, the studio & provider will default to UTF-8 character set.

– Languages not supported under UTF-8 will not be shown correctly.

– Characters from two or more character sets specified on a page will not be
shown properly.

■ Back and Forward buttons in the Web Clipping Studio operate on the whole
page, not on individual frames.

■ Pages linked from plugin content (for example, Macromedia Flash)

■ Customization of HTTP parameters with multiple values

■ Javascript-based encryption of username/password for login pages

The following page content cannot be clipped by Web clipping:

■ Global Javascript statements that contain doc.write().

■ Javascript in sectioned Web clipping that writes additional Javascript.

The Web Clipping server provides and renders clipped Web content as Web
Clipping application content. The Web Clipping Studio allows OracleAS Wireless
Administrators and wireless application users to do the following:

■ Browse for Web content.

■ Divide the chosen target page into sections.

■ Choose the exact portion of the Web content to clip.

■ Preview the clipped content.

■ Scrape the clipped content.

■ Set some Web Clipping application attributes, parameterize input parameters in
form-based submission, and save the Web Clipping application.

■ Test the Web Clipping application and, if using form-based submission, modify
initial input values and test these as well.

All Web Clipping application definitions are stored persistently in the Oracle
Application Server infrastructure database. Any secure information, such as
passwords, are stored in encrypted form, according to the Data Encryption
Standard (DES), using Oracle encryption technology.

Web Clipping

Web Scraping 13-7

13.2.2 Getting Started
The Web Clipping server is automatically installed as part of OracleAS Wireless.
OracleAS Wireless administrators can access the Web Clipping server in the
repository under the Applications: Browse Folder: page in the Wireless Web Tool.

An OracleAS Wireless administrator may need to perform some configuration tasks
(see Section 13.6, "Administrative Tasks for OracleAS Wireless Administrators")
before getting started.

13.2.3 Creating a Web Clipping Application
To create a Web Clipping, perform the following steps:

1. Log into OracleAS Wireless Web Tool as an OracleAS Wireless Administrator.

2. Click the Services tab.

3. Click Create Application at the Applications Browse Folder: master page.

4. Click the Web Clipping Application radio button on the Select the
Application to Be created page, then click Create.

5. Click Add Web Clipping on the Manage Web Clippings page.

6. In the URL Location field on the Find Web Clipping page in the Web Clipping
Studio, enter the location of the first Web page that leads to the actual Web page
you want to clip. In the steps that follow, as an example, start with
http://oraclestore.oracle.com, as shown in Figure 13–4, "Find a Web
Clipping".

Web Clipping

13-8 Oracle Application Server Wireless Developer’s Guide

Figure 13–4 Find a Web Clipping

7. Click Start.

The page that appears tells you to choose your store.

8. Click United States or another country of your choice.

The Oracle Store Web page for the country of your choice appears inside the
Web Clipping Studio, as shown in Figure 13–5, "Browse
ORACLESTORE.ORACLE.COM in the Web Clipping Studio".

Note: To import a WIDL file and create a Web clipping, select the
Import from WIDL tab. The Import from WIDL page appears. See
Section 13.4, "Migrating from Existing Transcoding Technologies"
for more information.

Web Clipping

Web Scraping 13-9

Figure 13–5 Browse ORACLESTORE.ORACLE.COM in the Web Clipping Studio

As you click hyperlinks in the Web page to browse to the desired content you
want to clip, your navigation links are recorded. For example, using the
starting-point URL oraclestore.oracle.com, then clicking United States
to select the country, you could search for a product by name once you provide
the name in the Quick Search box and click Go. For example, enter the feature
name interMedia and click Go. All products containing that name appeared in
the search results, as shown in Figure 13–6, "Browse to the Content to Be
Clipped".

Web Clipping

13-10 Oracle Application Server Wireless Developer’s Guide

Figure 13–6 Browse to the Content to Be Clipped

Note: Any browsing operations that do not contribute to the
eventual Web clipping will be discarded. Thus, only the significant
browsing operations are recorded for later playback during the test
mode; any discarded links are not visited. See Figure 13–6, "Browse
to the Content to Be Clipped" and note for this example there are
just three URLs listed, the starting URL, one additional URL, and
the URL containing the form.

Note: For any Web sites that require HTTP Basic or Digest
Authentication, a form is displayed that requests user name and
password information. This encoded authentication information is
recorded as part of the browsing information.

Web Clipping

Web Scraping 13-11

9. In the Web Clipping Studio in browse mode, once you find the content you
want to clip, click Section. This divides the target Web page into its clippable
sections as shown in Figure 13–7, "Divide the Page into Clippable Sections in
the Web Clipping Studio".

Figure 13–7 Divide the Page into Clippable Sections in the Web Clipping Studio

10. In the Web Clipping Studio in section mode, find the Product Name section of
the Web content you want to clip, click Choose.

Note: After you click Section, you are no longer able to browse
links in the displayed page. If you want to continue navigation,
click Unsection.

Web Clipping

13-12 Oracle Application Server Wireless Developer’s Guide

11. In the Web Clipping Studio in preview mode, a preview of the Product Name
sections is displayed with the search results, as shown in Figure 13–8, "Preview
the Web Clipping in the Web Clipping Studio". If it is the section you want, click
Scrape to continue to scrape mode.

Figure 13–8 Preview the Web Clipping in the Web Clipping Studio

If you do not want to use the section you clipped in your Web Clipping
application, click Unselect to return to the page containing the section. You can

Note: Web content on the page is sectioned into Choose sections.
You can click only one Choose section. Only the content
immediately below the Choose section icon you selected is chosen
as a clipping. Continuing to preview mode will let you view the
clipped content; then, clicking Unselect will return you to section
mode again to choose another section to clip if the section you had
chosen was not the one you wanted. To increase the number of
sections available from which to choose, click Zoom In. For
example, you would click Zoom In to drill down one level of
nested tables. To decrease the number of sections available from
which to choose, click Zoom Out.

Web Clipping

Web Scraping 13-13

choose another section on the page, or click Unsection to navigate to another
page.

12. In scrape mode, click the check box at the end of the first output. For each
output you select, a row of values appears under the Value and Name table in
the bottom frame, where you can name your output. In the Name column, enter
a meaningful name for your output, such as Book.

In tables with cells, a special stacked check box appears to allow selection of all
text in the cell as output.

After selecting the output (first check box), you will have created a group that
can be repeated as a whole as long as the first output you selected represents
the first item in the collection of similar output. This means that you can only
apply repeatability to a collection of similar output. Click More once to increase
the repeat level to encompass the entire collection of similar output, as shown in
Figure 13–9, "Scrape Mode". Click Continue to continue to the Web Clipping
application attributes page.

A check box following anything indicates that you can select it as an output that
can be scraped. One or more items of output may make up a collection of
similar output. You can select output from the first row of similar output to be
scraped. For each output you select, a row of values appears under the Value
and Name table where you can name your output in the Name column. Give
each output a meaningful name based, for example, on the column name from
which it was scraped. Clicking More lets you quickly select the entire collection
of similar output to be scraped. As you click More, check boxes of successive
groups of selected output are checkmarked and designated to be scraped.This is
a quick way of selecting successive groups of similar output to be scraped as
output, rather than individually checking each one.

After you save your Web Clipping application and its attributes, you will be
returned to the Applications Browse Folders: Master page.

Note: The name cannot contain any spaces.

Web Clipping

13-14 Oracle Application Server Wireless Developer’s Guide

Figure 13–9 Scrape Mode

13. In the Edit Clipping Attributes section of the Find Web Clipping page, you
can set attributes of the Web Clipping application.

a. Specify the following Web Clipping application attributes: Title,
Description, Timeout (seconds). See Help for more information and see
Figure 13–10, "Select Web Clipping Application Options and Edit Clipping
Attributes", which shows the top third of the attributes page. For the
Description field, enter keyword search.

Web Clipping

Web Scraping 13-15

Figure 13–10 Select Web Clipping Application Options and Edit Clipping Attributes

b. If the OracleAS Wireless Administrator went through form-based
submission while clipping content for the Web Clipping application, a
heading titled Select the Clipping Customizable Parameters appears in the
Web Clipping dialog box. To customize parameters, select the desired
parameters to be customizable in the table that is displayed, as shown in
Figure 13–11, "Customize Form Input Information for a Web Clipping
Application", which shows the middle third of the attributes page. Find
each parameter you want to express as customizable to the page viewer by
selecting the desired parameter in the drop-down box in the Parameters
column, then selecting the box in the Customizable column. Doing this lets
OracleAS Wireless Administrators customize the input value to personalize
each parameter selected. See the help topic Editing Web Clipping Application
Attributes and Customizing Parameters in OracleAS Wireless help for more
information, and especially why you should not customize user name and
password parameters.

Web Clipping

13-16 Oracle Application Server Wireless Developer’s Guide

Figure 13–11 Customize Form Input Information for a Web Clipping Application

c. For the parameter kw in the row whose Index value is 2, change its Display
Name from kw to keyword to make this name more recognizable for
wireless application users, then click the Customizable box to let wireless
application users customize the parameter input value.

d. To test the Web clipping application, click Test in the Test the Web
Clipping section as shown in Figure 13–12, "Test the Web Clipping
Application", which shows the bottom third of the attributes page. Results
of the Web clipping test appear in a browser page as an XML document.
Inspect the contents of the XML document to see if it contains the desired
content. In a wireless device, this XML document would appear formatted.

Figure 13–12 Test the Web Clipping Application

e. Click Apply to save your changes when you have finished choosing the
options.

Web Clipping

Web Scraping 13-17

f. After you click Apply to save your changes, in the Test the Web Clipping
section of the Web Clipping application attributes dialog box, an Inputs
heading appears, listing all the parameters that were parameterized and
customized, along with their initial input values, as shown in Figure 13–13,
"Testing the Web Clipping Application Input Value".

Figure 13–13 Testing the Web Clipping Application Input Value

g. Notice the parameter named keyword and its input value interMedia
appears. To test another input value, replace the initial value interMedia
and enter a new initial value syndication, as shown in Figure 13–14,
"Changing the Input Value". Click Test to test the new input value.

Note: Selecting Apply saves all edits and options for the Web
Clipping application, which makes these changes immediately
accessible to wireless application users while letting the OracleAS
Wireless Administrator make more edits as necessary on the Web
Clipping application attributes page. On the other hand, selecting
OK both saves all edits to the Web Clipping application attributes,
and makes these changes immediately accessible to wireless
application users, but exits the Web Clipping application attributes
page and returns the OracleAS Wireless Administrator to the
Applications page.

Web Clipping

13-18 Oracle Application Server Wireless Developer’s Guide

Figure 13–14 Changing the Input Value

h. Results of this Web Clipping application test appear in a browser page.
Inspect the contents of the XML document to see if it contains the desired
content.

i. Click OK to save your changes and return to the Manage Web Clippings
page as shown in Figure 13–15, "Managing Web Clippings", where you can
manage Web clippings in the following ways:

Figure 13–15 Managing Web Clippings

Creating a Wireless Application

Web Scraping 13-19

– Create a new Web clipping.

Click Add Web Clipping. The Find Web Clipping page appears in
which you can enter a starting-point URL and begin browsing a Web
site, and looking for content to clip.

– Search for a Web clipping.

Enter a search string in the Search field that matches any part of the
name of the Web clipping you are looking for, then click Go to initiate
the search. The list of Web clippings whose names match this search
string is displayed.

– Edit a Web clipping.

Select the Web clipping you want to edit by clicking its radio button in
the Select column and then click Edit. The Find a Web Clipping and
Clipping Attributes page, as shown in Figure 13–10, "Select Web Clip-
ping Application Options and Edit Clipping Attributes", appears where
you can edit the Web clipping attributes.

– Delete a Web clipping.

Select the Web clipping you want to delete by clicking its radio button
in the Select column and then click Delete. A confirmation message is
displayed indicating the Web clipping is deleted.

13.3 Creating a Wireless Application
To create a wireless application from a Web clipping, you use either of the following
approaches:

■ You can choose to create a default application for development purposes just to
see a default rendering of your newly created Web clipping. See Section 13.3.1,
"Creating a Default Application".

■ You can use Java APIs to access the clipped data and customize the rendering.
See Section 13.3.2, "Building a Custom Application".

13.3.1 Creating a Default Application
At the Manage Web Clippings page as shown in Example 13–15, "Managing Web
Clippings", you can create a default wireless application.

Select the Web clipping you want to turn into a default wireless application by
clicking the radio button next to it, and then click Create Default Application. A

Creating a Wireless Application

13-20 Oracle Application Server Wireless Developer’s Guide

default wireless application will be created to deliver a default rendering of the
scraping just performed, in OracleAS Wireless XML.

After creating the default application, you are returned to the OracleAS Wireless
Applications page, where you can create new Web Clipping applications.

Continuing with our example, the iStore: Search Result application is added to the
list of applications, as shown in Figure 13–21, "The Develop Custom Applications
Page".

Figure 13–16 Your New Wireless Application iStore: Search Result Is Added to the List of Applications

Once you create a default application from a Web clipping, you can also:

■ Edit an existing Web Clipping application’s attributes.

Select the application to be edited by clicking its radio button, then click Edit in
the Edit Clip in Web Clipping Studio section to edit the Web Clipping
application attributes.

■ Delete a Web Clipping application.

Select the application to be deleted by clicking its radio button in the Select
column, and then click Delete. A confirmation message appears indicating that
the selected Web Clipping application is deleted.

Creating a Wireless Application

Web Scraping 13-21

■ Publish a new application

To create a new application link for a new wireless application, click the
Content tab and click Add Application Link to add this new application to the
Applications Links page. Follow the five steps provided by the wizard. At the
Application step, select the application on which you want to base this
application, then select your application, iStore: Search Result, then click Next.
At the General step, enter the application name ORACLESTORE for the name
of your new application, then click Next. At the Input Parameters step, accept
the default settings for your new application by clicking Next. At the Async
Application step, click Next. At the Additional step, in the Description field,
enter the word Books, then click Finish. Your new application should appear in
the Applications Links list of applications that will enable an application to be
published to user groups and made accessible to mobile users of wireless
devices, as shown in Figure 13–17, "Your New Application ORACLESTORE Is
Published to the Content Manager".

Creating a Wireless Application

13-22 Oracle Application Server Wireless Developer’s Guide

Figure 13–17 Your New Application ORACLESTORE Is Published to the Content Manager

■ Test an existing Web Clipping application.

You can test an application either from the Services tab or if you have
published it, from the Content tab.

a. At the Content tab, select the application to be tested, in this case, your new
application link ORACLESTORE by clicking its Test icon in the Test column.
An OracleAS Wireless PDA Simulator page appears in a new browser
window, showing the contents of the Web Clipping application, as shown
in Figure 13–2, "Web Clipping Application".

b. On the OracleAS Wireless PDA Simulator test display, scroll down to the
bottom of the page and click Change Input to change the value of the initial
input value for the parameter named keyword, as shown in Figure 13–18,
"Wireless PDA Simulator Showing an Initial Value interMedia". Delete the
initial input value interMedia and enter the value syndication, as shown in

Creating a Wireless Application

Web Scraping 13-23

Figure 13–19, "Wireless PDA Simulator Showing a New Value Syndication".
Then click Submit.

Figure 13–18 Wireless PDA Simulator Showing an Initial Value interMedia

Creating a Wireless Application

13-24 Oracle Application Server Wireless Developer’s Guide

Figure 13–19 Wireless PDA Simulator Showing a New Value Syndication

c. The OracleAS Wireless PDA Simulator test page now displays the results of
the search for items in the Oracle Store relating to the value syndication as
shown in Figure 13–20, "Wireless PDA Simulator Shows the Results of a
New Search for Items in the Oracle Store Using the Keyword Syndication".

Creating a Wireless Application

Web Scraping 13-25

Figure 13–20 Wireless PDA Simulator Shows the Results of a New Search for Items in the Oracle Store
Using the Keyword Syndication

13.3.2 Building a Custom Application
At the Manage Web Clippings page as shown in Figure 13–15, "Managing Web
Clippings", you can build a custom wireless application. Click the Custom
Applications tab. A Downloads page appears, as shown in Figure 13–21, "The
Develop Custom Applications Page", from which you can either:

Creating a Wireless Application

13-26 Oracle Application Server Wireless Developer’s Guide

Figure 13–21 The Develop Custom Applications Page

■ Download (for J2EE development) the Java Connector Architecture (JCA)
Resource Adaptor Archive (RAR) for development within an instance of Oracle
Container for J2EE (OC4J) using JCA’s Common Client Interface (CCI).

Click the RAR link under J2EE Development to download the JCA RAR file,
webclipping.rar.

Follow the instructions in the "OC4J Services" section in the latest Oracle
Application Server documentation to deploy an RAR file into your OC4J. Refer
to the Oracle Application Server Documentation page to find the
documentation for the correct version of OC4J.

You may need to restart OC4J for the library to take effect.

Return to the Web Clippings tab and find your desired Web clipping in the
form of a Java Server Page (JSP) to start developing using the RAR file you have
just deployed.

■ Download (for J2SE development) the Java library (JAR) for development using
a standalone Java 2 SDK.

Creating a Wireless Application

Web Scraping 13-27

Click the JAR link under J2SE development to download the Java library file,
wcbean.jar.

For a standalone Java 2 SDK environment, place the JAR file in the classpath
during compilation and running of your code.

For J2EE (OC4J) development, place this JAR file where your Web application
can access it, either in the root classpath of OC4J, in the application’s own
library path, or in the WEB-INF/lib directory of the Web Archive (WAR) file
containing your Web application. You must restart your OC4J instance to be
able to start using the Web Clipping Bean API.

The other files that are needed in order to compile and run the stub Java files
are http_client.jar, Javax-ssl-1_2.jar, jssl-1_2.jar, and
xmlparserv2.jar. Look for these files in your installation of Oracle
Application Server OC4J.

Return to the Web Clippings tab and find your desired Web clipping in the
form of a Java source file (.Java) to start developing using the JAR file you just
deployed.

■ At the Web Clippings tab, you can do either of the following:

– Generate a .Java file.

Click Download Java (see Figure 13–15, "Managing Web Clippings") to
generate .Java file from the Web clipping. This.Java file can be compiled
with other Java classes into an application, and deployed in J2SE as a
standalone Java 2 SDK application.

– Generate a .jsp file.

Click Download JSP (see Figure 13–15, "Managing Web Clippings") to
generate a .jsp file from the Web clipping. This .jsp file can be deployed
into J2EE OC4J so you can execute the Web clipping as a JSP.

■ Create your own custom HTTP application using the downloaded .Java file or
.jsp file.

– Using the .Java file

Starting with the .Java file that contains the sample code of how to use the
Web Clipping Bean APIs, the Wireless developer can create his own HTTP
application using any standard J2EE Container (such as OC4J), after having
included the previously mentioned wcbean.jar file as well as its
dependency libraries into the library path of the HTTP Server.

Migrating from Existing Transcoding Technologies

13-28 Oracle Application Server Wireless Developer’s Guide

– Using the .jsp file

Similarly, with the .jsp file that contains the sample code of how to use the
Java Connector Architecture APIs, the Wireless developer can create his
own HTTP application using OC4J (this is a hard requirement as the RAR
file is compliant to OC4J).

– Building the Mobile UI

In order to be compliant with OracleAS Wireless, the HTTP application
must render its output in either OracleAS Wireless XML, XHTML/MP, or
XHTML/XForms. The Wireless developer will have full control over the
Mobile UI of this HTTP application including the addition of mobile links
or images. Note that the default JSP code renders the data as an HTML
unordered list; the Wireless developer will need to change that rendering to
one that is compliant with OracleAS Wireless.

– Creating a Wireless Application

After the creation of the HTTP application, the Wireless developer can use it
to create a Wireless application using the HTTP Adaptor.

13.4 Migrating from Existing Transcoding Technologies
Previously in OracleAS Wireless, transcoding or Web content reuse was performed
using Web Methods’ Web Integration technologies. The recorded instructions on
how and where to fetch external Web content was captured in a Web Integration
Definition Language (WIDL) file. WIDL is a meta-language that implements a
service-based architecture over the document-based resources of the World Wide
Web. In this release, the responsibility of transcoding falls on Web Clippings.
Without having the developers or users recreate the same set of instructions on Web
Clippings terms, there is a migration path for them that allows for importing WIDL
files into Web Clippings so that they may reuse what they have captured previously.
This is shown in the augmented Web Clipping Server architecture (see Figure 13–22,
"Web Clipping Server Architecture Showing Importing a WIDL Definition File"),
with the added WIDL Source as an alternate means of creating a Web Clipping.

Migrating from Existing Transcoding Technologies

Web Scraping 13-29

Figure 13–22 Web Clipping Server Architecture Showing Importing a WIDL Definition File

1. To import from a WIDL definition file and create a Web clipping from it, click
the Web Clipping Studio tab and at the Find Web Clipping page, select the
Import from WIDL subtab.

Figure 13–23 Import from a WIDL Definition to a Web Clipping

2. At the Import from WIDL page, as shown in Figure 13–23, "Import from a
WIDL Definition to a Web Clipping", you can import an existing WIDL file,
create a Web clipping, and save it in the repository.

To import a WIDL definition file, do the following:

a. Enter either the starting-point URL in the WIDL Location field and click
Start. Or, browse to the directory on your system where your WIDL

Migrating from Existing Transcoding Technologies

13-30 Oracle Application Server Wireless Developer’s Guide

definition file is located and click the WIDL file to populate the WIDL
Location field, then click Start to begin importing the WIDL definition file.
The Import from WIDL page reappears, containing a new section Choose
the WIDL service to import, as shown in Figure 13–24, "Choose the WIDL
Service to Import, Choose Parameters, and Specify a Default Value for Each
Chosen Parameter (Upper Part of Page)" and Figure 13–25, "Choose the
WIDL Service to Import and Choose Parameters and Specify a Default
Value for Each Chosen Parameter (Lower Part of Page)".

Figure 13–24 Choose the WIDL Service to Import, Choose Parameters, and Specify a Default Value for
Each Chosen Parameter (Upper Part of Page)

Migrating from Existing Transcoding Technologies

Web Scraping 13-31

Figure 13–25 Choose the WIDL Service to Import and Choose Parameters and Specify a Default Value
for Each Chosen Parameter (Lower Part of Page)

b. If your WIDL file contains more than one service to be imported, below the
Choose the WIDL service to import section, select the service that you
want to import from the Choose WIDL Service drop-down box.

c. If the WIDL service went through form-based submission, choose each
parameter from the Parameters column drop-down box that you want, and
also enter a default value for each chosen parameter.

d. Click Continue. The WIDL service is imported and made into a Web
clipping. A Find a Web Clipping and Clipping Attributes page appears
where you can edit the attributes of the new Web clipping, including
customizing form input information if the Web clipping has form-based
submission. Edit the clipping attributes, such as the Description field, then
click OK to save your changes and return to the Manage Web Clippings
page.

Customizing the Web Clipping Service

13-32 Oracle Application Server Wireless Developer’s Guide

At the Manage Web Clippings page, you can then either create a default
application (see Section 13.3.1, "Creating a Default Application") and then
create an application link to enable an application to be published to user
groups and made accessible to mobile users of wireless devices, or build a
custom application and generate either a .Java file or a .jsp file from the
Web clipping (see Section 13.3.2, "Building a Custom Application").

13.5 Customizing the Web Clipping Service
Wireless users can click Change Input on the test page to customize values for any
input parameters of a form if the OracleAS Wireless Administrator parameterized
these input parameters and made them customizable. (See the help topic Editing
Web Clipping Application Attributes and Customizing Parameters in Help for more
information.)

13.6 Administrative Tasks for OracleAS Wireless Administrators
The administrative tasks that must be performed by the OracleAS Wireless
Administrator include:

■ Configuring HTTP or HTTPS proxy settings. See Server Configuration in Oracle
Application Server Wireless Administrator’s Guide for information about
configuring the proxy server.

■ Configuring security.

A trusted server certificate file, ca-bundle.txt, generated from Oracle Wallet
Manager, is shipped with the Web Clipping server feature. This file, located in
<ORACLE_HOME>/portal/conf on UNIX or in <ORACLE_
HOME>\portal\conf on Windows, contains an initial list of trusted server
certificates that might be used for navigating to some secure servers using
HTTPS. However, this is not a complete list of all possible server certificates
that exist on the Web. Therefore, this file must be configured or extended to
recognize any additional trusted server certificates for any new trusted sites
that are visited. See Section 13.7.1, "Deploying and Configuring WML
Translator" for more information about how to configure or extend this trusted
certificate file.

Note: The ca-bundle.txt file will still be present and
functional, even if Oracle Application Server Portal has not been
configured.

Administrative Tasks for OracleAS Wireless Administrators

Web Scraping 13-33

■ Rendering events to be logged and generating useful reports

Web Clippings allows rendering events to be logged so that an administrator
can query the event log and generate useful reports like those used for billing.
See Section 13.7.2, "Using the WML Translator" for more information about how
to enable the logging of rendering events and how to make use of a set of
PL/SQL procedures to operate on the logged events to generate useful reports.

13.6.1 Configuring Security
When an OracleAS Wireless Administrator navigates to a secure site, the Web site
giving secure information typically returns a certificate identifying itself to the
administrator. If the OracleAS Wireless Administrator accepts the certificate, the
certificate is placed into the list of trusted certificates of the browser so that a secure
channel can be opened between the browser and that server. Like a Web browser,
the Web Clipping server behaves as an HTTP client to external Web sites. In order
for the Web Clipping server to keep track of trusted sites, it makes use of a file that
stores the certificates of those sites, namely the ca-bundle.crt file.

The shipped ca-bundle.txt file is an exported version of the trusted server
certificate file from Oracle Wallet Manager. The default trusted server certificate in
Oracle Wallet Manager does not cover all possible server certificates that exist on
the Web. For this reason, when an OracleAS Wireless Administrator navigates to a
secure server using HTTPS, the administrator may get an "SSL Hand-shake failed"
exception in the Web Clipping Studio. To solve this problem, the ca-bundle.crt
file needs to be augmented with new trusted sites that are visited. As an OracleAS
Wireless administrator, you must do the following to extend the shipped
ca-bundle.crt file:

1. Use a browser (preferably Internet Explorer) to download the root server
certificate from each external HTTPS Web site in BASE64 format that is visited,
and is missing from the trusted certificate file.

2. Use Oracle Wallet Manager to import each certificate.

3. Export the trusted server certificates into a file, and replace the
ca-bundle.crt file with that file.

For more information about Oracle Wallet Manager, see Chapter 17 Using Oracle
Wallet Manager in Oracle Advanced Security Administrator’s Guide in the Oracle9i
Release 2 (9.0.2) documentation section on the Oracle Technology Network (OTN)
(http://otn.oracle.com).

Administrative Tasks for OracleAS Wireless Administrators

13-34 Oracle Application Server Wireless Developer’s Guide

13.6.2 Rendering Events to Be Logged and Generating Useful Reports
Web Clippings allows rendering events to be logged so that an administrator can
query the event log and generate useful reports, such as those used for billing
purposes. To enable event logging, the administrator must manually modify a
context-param within the web.xml file located at <ORACLE_
HOME>/j2ee/OC4J_
Wireless/applications/webclipping/webclipping-web/WEB-INF/web.
xml. The context-param to look for has its param-name equal to
oracle.webclipping.LogBusiness and has a default param-value of
false. To enable the logging of rendering events, the administrator must change
that value to true. After setting this parameter, restart the OC4J_Wireless instance
to refresh this change. Refer to the OC4J guide for how to use DCM to do that.

Once the logging is enabled, the Administrator can make use of a set of PL/SQL
procedures in the infrastructure database to operate on the logged events. The
administrator needs to first connect to the infrastructure database as a SYSDBA, then
execute the following line to change his user to WCRSYS:

ALTER SESSION SET CURRENT_SCHEMA=WCRSYS;

As user WCRSYS, the Administrator can make use of the following PL/SQL
procedures and functions to operate on the events logged. As a preface, the record
type that you will be using in most of these procedures and functions is WWWCP_
API_REGISTRY.REC_RENDER_EVENT:

/**
* This describes a record type used to return a single clipping rendering
* event.
*
* This structure is used by the lookup APIs to encapsulate the
* information that is retrieved from the wwwcp_render_log$ table.
* It is used to describe the cursor that will be returned as an OUT
* parameter of lookup_render_events.
*
* @field clip_id The clip id that allows the fetching of the
* other facets of the clipping definition to
* populate the events table.
* @field clip_description Textual description of the clip rendered.
* @field clip_title Title of the clip that was rendered.
* @field clip_timeout Timeout in milliseconds that allows the clipping
* that was rendered to be timed out. This could be
* an indication of the quality of service.
* @field effective_url The url where the clip resides. This is usually
* the last url declared in the clipping definition

Administrative Tasks for OracleAS Wireless Administrators

Web Scraping 13-35

* clipping definition, where the clip would reside.
* @field render_status A number that indicates either success or
* failure of the rendering call.
* @field render_type Tells what type of rendering is in question,
* whether it be for Portal Show Mode, for
* Wireless default SimpleResult show mode, or
* for the Wireless connector show mode.
* @field render_start Starting time of the rendering.
* @field render_end Ending time of the rendering.
* @field fuzzy_used Indicates whether fuzzy match was kicked in.
* @field db_lookup The time it takes in milliseconds to look up
* the clipping definition from the database.
* @field http_latency The time it takes to reach the first byte to
* read from the http remote site.
* @field render_user The user (together with a possible realm) for
* which the rendering was done.
* @field error_cause The cause of the error if the status indicated
* a failure of the rendering.
* @field event_description This field provides more information about
* the logged event.
* @field clip_input The input provided to render this clipping. It
* is usually provided in the form of an HTTP URL
* query string like abc=def.
* @field clip_output The possible output (only if it’s small) of
* rendering, if it gives any more hints on the
* billing process.
*/
type rec_render_event is record (
 clip_id integer,
 clip_description varchar2(1024),
 clip_title varchar2(512),
 clip_timeout integer,
 effective_url varchar2(2048),
 render_status integer,
 render_type integer,
 render_start date,
 render_end date,
 fuzzy_used integer,
 db_lookup integer,
 http_latency integer,
 render_user varchar2(512),
 error_cause varchar2(256),
 event_description varchar2(256),
 clip_input varchar2(128),
 clip_output varchar2(256));

Administrative Tasks for OracleAS Wireless Administrators

13-36 Oracle Application Server Wireless Developer’s Guide

The Cursor type that is used with this record type is WWWCP_API_
REGISTRY.RENDER_EVENT_CURSOR. The following procedures within the
WWWCP_API_REGISTRY have been defined to allow lookups on the render event
log.

/**
 * This API looks up rows of render events from the wwwcp_render_log$
 * table, filtered by a specific clip id.
 *
 * The full rendering event information structure is returned as iterable
 * by the cursor returned.
 *
 * @param p_clip_id The clip id as a filtering mechanism of the
 * events that were logged for this particular
 * clip.
 * @param p_cv_render_events The list of render events that are associated
 * with this clip.
 */
 procedure lookup_render_events(
 p_clip_id in integer,
 p_cv_render_events out render_event_cursor
);

/**
 * This API looks up rows of render events from the wwwcp_render_log$
 * table, filtered by a specific effective url.
 *
 * This is useful for business queries that center on not the clip id but by
 * the actual location of where the clips are found. For example, if Yahoo’s
 * partner, namely someone using Web Clippings, can do a search of all the
 * events that went to http://my.yahoo.com, it can find out how to charge
 * each user for what they have rendered.
 *
 * The full rendering event information structure is returned as iterable
 * by the cursor returned.
 *
 * @param p_effective_url The effective url, starting with which points
 * to the web page containing the clip.
 * @param p_cv_render_events The list of render events that are associated
 * with this clip.
 */
 procedure lookup_render_events(
 p_effective_url in varchar2,
 p_cv_render_events out render_event_cursor

Administrative Tasks for OracleAS Wireless Administrators

Web Scraping 13-37

);

/**
 * This API looks up rows of render events from the wwwcp_render_log$
 * table, filtered by the domain.
 *
 * This is useful for business queries that center on not the clip id but by
 * the domain of where the clips are found. For example, if Yahoo can do a
 * search of all the events that went to *.yahoo.com, it can find out how to
 * charge each user for what they have rendered.
 *
 * The full rendering event information structure is returned as iterable
 * by the cursor returned.
 *
 * @param p_effective_domain The domain of the effective url, starting with
 * which points to the web page containing the
 * clip. This domain is provided in the format
 * "oracle.com" or "yahoo.com".
 * @param p_cv_render_events The list of render events that are associated
 * with this clip.
 */
 procedure lookup_render_events(
 p_effective_domain in varchar2,
 p_cv_render_events out render_event_cursor
);

 /**
 * This API looks up rows of render events from the wwwcp_render_log$
 * table, filtered by the user that requested the render.
 *
 * This is useful for business queries that center on not the clip id but by
 * the user to visualize how much a user has rendered, regardless of where
 * the clipping is from, so it can charge for a flat fee based on for
 * example, the number of render events for a particular user.
 *
 * The full rendering event information structure is returned as iterable
 * by the cursor returned.
 *
 * @param p_render_user The user on behalf of whom the render request
 * is made.
 * @param p_cv_render_events The list of render events that are associated
 * with this clip.
 */
 procedure lookup_render_events(
 p_render_user in varchar2,

Administrative Tasks for OracleAS Wireless Administrators

13-38 Oracle Application Server Wireless Developer’s Guide

 p_cv_render_events out render_event_cursor
);

It is also the responsibility of the Administrator to make sure that the logged events
do not exceed the allotted database table space. Therefore the following procedures
have been defined to allow removal of entries from the render event log.

/**
 * This API removes all render events from the wwwcp_render_log$ table.
 *
 * This is useful as a cleansing measure that an organization can do between
 * the different phases of rolling out their Web Clipping usage initiative.
 * It can be used to reset the stage before going into development testing
 * phase, or when the rollout is going live and the company wishes to begin
 * charging its subscribers for their usages, or another possible cleansing
 * may occur at for example, every month end or year end when the data
 * recorded is no longer useful.
 */
 procedure remove_all_render_events;

/**
 * This API removes all render events from the wwwcp_render_log$ table for
 * a given rendering user.
 *
 * This is useful as a cleansing measure that an organization can do for
 * example, labeling the development user to be some constant user id and
 * then removing all rendering events when it goes live.
 *
 * @param p_render_user The user on behalf of whom the render request is
 * made.
 */
 procedure remove_render_events(p_render_user in varchar2);

/**
 * This API removes all render events from the wwwcp_render_log$ table for
 * a given starting or stopping time before or after the query time.
 *
 * This is useful as a cleansing measure that an organization can do for
 * example, all rendering events that started or stopped before a certain
 * date are deemed development efforts and therefore should be disregarded.
 *
 * @param p_query_time The date/time with which to query.
 * @param p_query_before Whether the query is for before or after. A value
 * of 1 signifies that the query is for comparing
 * times before the p_query_time while a 0 value.

WML Translator

Web Scraping 13-39

 * implies comparing times after the p_query_time.
 * @param p_query_start Whether or not the query is for start time.
 * A value of 1 means true while 0 means false.
 */
 procedure remove_render_events(
 p_query_time in date,
 p_query_before in number,
 p_query_start in number
);

13.7 WML Translator
The OracleAS Wireless WML Translator reformats applications developed in WML
for all wireless web-enabled devices. At runtime, content developed in WML is
converted to OracleAS Wireless XML, which is then transformed into the
appropriate device specific markup language.

Generally, source documents in WML 1.x (up to WML 1.3) are supported. Each
source document is processed in the following order:

■ Validity of source WML is checked: Is it a valid XML? Is it a valid WML?

■ All neighboring “p” elements under “card” elements are grouped. Grouped “p”
elements are consolidated.

■ Source WML is transformed into OracleAS Wireless XML.

■ Navigation elements (if any, see Section 13.7.1, "Deploying and Configuring
WML Translator") are added to the result Wireless XML

■ URLs in result Wireless XML are converted to absolute URL (if not yet), then
further rewritten to point back to OracleAS Wireless Portal

Table 13–1 shows a rough comparison between source elements in WML and
translated elements in OracleAS Wireless XML.

Table 13–1 Relationship between Source and Translated Elements

Source element in WML

Translated
element in
Wireless XML Notes

wml SimpleResult

head n/a Child element “meta” is translated into
SimpleMeta

WML Translator

13-40 Oracle Application Server Wireless Developer’s Guide

template n/a Attributes “@onenterforward”,
“@onenterbackward”, “@ontimer”, and
child element “do”, “onevent” are
honored based on WML specification (see
element “card” below)

card SimpleContainer Attributes “@onenterforward”,
“@onenterbackward”, “@ontimer”, and
child element “do”, “onevent” are
processed in combination with those
corresponding attributes/child elements
in “template” element. See blow
“card/@onenterforward”,
“card/@onenterbackward”, and
“card/@ontimer” for details.

card/@onenterforward (or
template/@onterforward,
if applicable)

SimpleBind Child element SimpleMatch (with child
element
SimpleEvent/@type=”onenterforward”),
and child element SimpleTask (with child
element SimpleGo/@target assigned to
card/@onenterforward)

card/@onterbackward (or
template/@onenterbackwa
rd, if applicable)

SimpleBind Child element SimpleMatch (with child
element
SimpleEvent/@type=”onenterbackward”)
, and child element SimpleTask (with
child element SimpleGo/@target assigned
to card/@onenterforward)

card/@ontimer (or
template/@ontimer, if
applicable)

SimpleTimer

card/onevent (or
template/onevent, if
applicable)

SimpleBind, or
SimpleTimer

If event/@type=”ontimer”, SimpleTimer
is generated; otherwise, SimpleBind with
corresponding child element
(SimpleEvent & SimpleTask) is generated

Table 13–1 Relationship between Source and Translated Elements

Source element in WML

Translated
element in
Wireless XML Notes

WML Translator

Web Scraping 13-41

card/do n(or template/do,
if applicable)

SimpleBind If “do” has a child “go” element,
SimpleBind with child element
(SimpleMatch/SimpleKey,
SimpleTask/SimpleSubmit, &
SimpleDisplay) is generated; if “do” has a
child “prev” element, SimpleBind with
child element (SimpleMatch/SimpleKey,
SimpleTask/Prev, & SimpleDisplay) is
generated; if “do” has a child “refresh”
element, SimpleBind with child element
(SimpleMatch/SimpleKey,
SimpleTask/SimpleRefresh, &
SimpleDisplay) is generated.

p SimpleForm,
SimpleMenu, or
SimpleText

If “p” has an “input” element or “select”
element (with option/@value),
SimpleForm is generated; if “p” has
“select/option” elements with only
“@onpick” attributes, SimpleMenu is
generated; otherwise, SimpleText is
generated

pre Only child elements “a”, “anchor”, “do”,
“u”, “br”, “b”, “i”, “em”, “strong” are
processed.

input SimpleFormItem Title which normally resides outside the
“input” element is copied into
SimpleFormItem

select SimpleMenuItem,
SimpleHref, or
SimpleFormOption

select/option/@onpick (without “event”
child) is translated to
SimpleMenu/SimpleMenuItem;
select/option/@onpick (with “event”
child) is translated to
SimpleMenu/SimpleBind/SimpleMatch/
SimpleMItem; select/@value is translated
to
SimpleForm/SimpleFormSelect/SimpleF
ormOption

a SimpleHref

Table 13–1 Relationship between Source and Translated Elements

Source element in WML

Translated
element in
Wireless XML Notes

WML Translator

13-42 Oracle Application Server Wireless Developer’s Guide

The WML Translator does not support pass-through mode. Even if the end user’s
device supports WML, WML translator will still translate source WML into
OracleAS Wireless XML format.

URLs are generally rewritten to point back to the Wireless and Voice Portal.
However, URLs to images are not rewritten. Image adaptation is utilized in this
release. For example, the following WML element

is translated into

<SimpleImage src="http://wap.yahoo.com/images/yahooicon.wbmp" vspace="0"
hspace="0" valign="bottom" alt="Yahoo!" addImageExtension="auto"/>

This image is adapted and rendered based on end user’s device model.

anchor SimpleHref If “anchor” has a “go” element,
SimpleHref is generated; if “anchor” has a
“prev” or “refresh” element, nothing will
be generated in current release.

img SimpleImage Image adaptation is utilized from 904
release.

br SimpleBreak

b, strong, em, big SimpleStrong

i, small SimpleEm

u SimpleUnderline

text node SimpleTextItem Generally the text node is copied as it is,
except for the following two cases: 1. The
node is a immediate preceding sibling of
“input”, “select”; 2. The node is not the
only child of a “formatting” element
(such as “em”, “b”, “u”, and etc.)

table SimpleTable

tr SimpleRow

td SimpleCol

Table 13–1 Relationship between Source and Translated Elements

Source element in WML

Translated
element in
Wireless XML Notes

WML Translator

Web Scraping 13-43

There are certain constraints in current release of WML Translator:

■ OracleAS Wireless XML has certain limitations that prevent flawless
transformation from WML to Wireless XML. The most noticeable drawback is
that Wireless XML does not have an event-processing model.

■ The WML user agent equipped with WML translator is limited. It does not
maintain a navigation history. It has very limited support of WML variables.

■ WML script is not supported yet.

■ Anchor submit: If there is an “anchor” element with a “go” child, then only one
“anchor” can appear in this card.

13.7.1 Deploying and Configuring WML Translator
The WML Translator is deployed as an OracleAS Wireless application. It can be
accessed via Commerce->Translator by end users like the previous version.
However, the following three service input parameters are no longer supported:

ORACLE_SERVICES_COMMERCE_TRANSLATOR_DEFAULT_CONNECTION
ORACLE_SERVICES_COMMERCE_TRANSLATOR_HELPER_WML
ORACLE_SERVICES_COMMERCE_TRANSLATOR_XSL_WML_FILENAME

The following service input parameter is still supported:

ORACLE_SERVICES_COMMERCE_TRANSLATOR_SHOW_GOHOME

The following service input parameter is added to enhance navigation support:

ORACLE_SERVICES_TRANSCODER_NAVIGATION

If ORACLE_SERVICES_TRANSCODER_NAVIGATION has valid value, ORACLE_
SERVICES_COMMERCE_TRANSLATOR_SHOW_GOHOME is ignored.

ORACLE_SERVICES_TRANSCODER_NAVIGATION should point to an XML file
that can be accessed via either a URL or a file on server's local file system. The XML
contains the navigation specification. The following is sample navigation XML:

<?xml version="1.0" encoding="UTF-8"?>
<Navigation>
<NavigationItems>
<Item target="%value home.url%"
label="Home"
showAs="Link"
preferredLocation="Header" />
<Item target="%value service.parent.url%"

WML Translator

13-44 Oracle Application Server Wireless Developer’s Guide

label_prefix="Back"
showAs="Link" />
<Item target="http://www.oraclemobile.com"
label="OracleMobile"
showAs="Button"
preferredLocation="Footer" />
</NavigationItems>
</Navigation>

Each navigation item has the attributes described in Table 13–2.

Here is the schema for navigation XML:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Table 13–2 Navigation Item Attributes

Attribute Name Meaning Mandatory
Accepted
values Default value

target where to go yes either a
fully-qualified
URL, or a
placeholder for
mobile context,
for example,
portal home,
service home.

N/a

label label shown to
end user

optional string N/a

label_prefix prefix to the
label

optional Only meaningful
for mobile
context, for
example, portal
home

label_suffix suffix to the label optional Only meaningful
for mobile
context, for
example, portal
home

showAs how to show the
label

Optional menuitem, link,
or button

button

preferredLocatio
n

where to show
the label

Optional header, or footer header

WML Translator

Web Scraping 13-45

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="Navigation">
<xs:complexType>
<xs:all>
<xs:element ref="NavigationItems" minOccurs="0"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="NavigationItems">
<xs:complexType>
<xs:sequence>
<xs:element ref="Item" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Item">
<xs:complexType>
<xs:attribute name="target" type="xs:string" use="required"/>
<xs:attribute name="label" type="xs:string" use="optional"/>
<xs:attribute name="label_prefix" type="xs:string" use="optional"/>
<xs:attribute name="label_suffix" type="xs:string" use="optional"/>
<xs:attribute name="showAs" type="xs:string" use="optional"/>
<xs:attribute name="preferredLocation" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
</xs:schema>

13.7.2 Using the WML Translator
The WML Translator is deployed as an OracleAS Wireless Application at URL
omp://oracle/services/commerce/translator. The application can be invoked by
passing WML source URL in request parameter XLTORSITE. For example, to
invoke www.oraclemobile.com, you can use the following URL in your OracleAS
Wireless XML

omp://oracle/services/commerce/translator?XLTORSITE=http%3A%2F%2Fwww.oraclemobil
e.com

WML Translator

13-46 Oracle Application Server Wireless Developer’s Guide

Using Location Services 14-1

14
Using Location Services

This chapter provides conceptual and usage information for developers of
location-based applications. It contains the following major sections:

■ Section 14.1, "Introduction to Location Services"

■ Section 14.2, "Developing Location-Based Applications"

■ Section 14.3, "Enabling Mobile Positioning"

■ Section 14.4, "Location Event Server"

■ Section 14.5, "Using the Region Modeling Tool"

■ Section 14.6, "Integrating an External Content Provider"

■ Section 14.7, "Integrating a Mobile Positioning Provider"

14.1 Introduction to Location Services
Developers of location-based applications need specialized services for:

■ Mobile positioning: associating a location with a mobile user

■ Geocoding: associating geographical coordinates with addresses

■ Mapping: providing a graphical map for a point, set of points, route, or driving
maneuver

■ Routing: providing driving directions

■ Business directories (Yellow Pages): listing businesses by region by
either category or name

■ Traffic: providing information about accidents, construction, and other
incidents that affect traffic flow

Introduction to Location Services

14-2 Oracle Application Server Wireless Developer’s Guide

Several companies provide these types of specialized content and applications. For
example, some Web sites have categories for business directories, and some sites
provide driving directions. Developers building mobile applications based on the
OracleAS Wireless framework can benefit from being able to use the specialized
content and services. It is inefficient for each application to write custom interfaces
to all the services that it wants to access.

OracleAS Wireless location application components are a set of APIs (application
programming interfaces) for performing geocoding, providing driving directions,
and looking up business directories. Service proxies are included that map existing
important providers to the APIs, and additional providers are expected to be
accommodated in the future.

OracleAS Wireless application developers can take advantage of a uniform interface
to access different service providers without having to make any changes to their
applications. They can also use the infrastructure to prioritize services based on
criteria such as quality, availability, or cost. Service providers also benefit from the
fact that their contents and specialized functions are available "out-of-the-box" to all
OracleAS Wireless application developers.

This section introduces the location application components API, describes how to
find the detailed javadoc-generated documentation and online examples, and
explains conceptual and usage information that you must understand before using
the components. It contains the following major subsections:

■ Section 14.1.1, "Getting Started"

■ Section 14.1.2, "Using the System Manager Interface for Location-Related
Information"

■ Section 14.1.3, "Location Services Architecture"

■ Section 14.1.4, "Location Service Categories"

■ Section 14.1.5, "Service Providers"

■ Section 14.1.6, "Geocoding Services"

■ Section 14.1.7, "Location Marks"

■ Section 14.1.9, "Mapping Services"

■ Section 14.1.10, "Routing Services"

■ Section 14.1.11, "Business Directory (Yellow Pages) Services"

■ Section 14.1.12, "Traffic Services"

Introduction to Location Services

Using Location Services 14-3

14.1.1 Getting Started
To get started using the OracleAS Wireless location application components, follow
these steps:

1. Read the conceptual and usage information in this document before using any
example programs or creating any applications.

2. Go to the sample directory, which contains example files. Read the
Readme.txt file in that directory; examine the supplied files, and use any that
meet your needs.

3. View the javadoc documentation, and refer to it for detailed reference
information about packages and classes. To view the javadoc documentation,
open the following file in a Web browser:

iAS-Wireless-Home/wireless/doc/index.html

where ias-Wireless-Home is your OracleAS Wireless home directory.

Figure 14–1 shows part of the index.html display. Navigate to find detailed
information about packages and classes.

Introduction to Location Services

14-4 Oracle Application Server Wireless Developer’s Guide

Figure 14–1 Javadoc Documentation

14.1.2 Using the System Manager Interface for Location-Related Information
You can use the OracleAS Wireless System Manager (referred to as System
Manager) interface within Enterprise Manager to perform configuration operations
and find information relating to location application components.

1. In the Wireless Server System tab page, click Site Administration.

2. Click to expand Component Configuration.

Figure 14–2 shows the System Manager page with the Component Configuration
section expanded.

Introduction to Location Services

Using Location Services 14-5

Figure 14–2 Component Configuration Section of Wireless System Manager

As shown in Figure 14–2, the Location-Related section in the Component
Configuration section contains the following links:

■ Location Management for mobile positioning configuration, mobile positioning
provider information and configuration, and mobile ID names

■ Location Services for configuration options relating to geocoding, routing,
mapping, traffic, and business directory services

■ Location Event Server for options relating to the location event server
(described in Section 14.4)

■ Location Mark Address Format for specifying location mark address fields

Introduction to Location Services

14-6 Oracle Application Server Wireless Developer’s Guide

14.1.3 Location Services Architecture
Location services are based on the architecture shown in Figure 14–3.

Figure 14–3 Location Services Architecture

As shown in Figure 14–3:

■ An alert engine and location-based applications are outside the architecture
(enclosed in a thick line), but communicate with it.

■ The architecture can process requests that use Java, XML, or JSP tags.

■ The processing is handled by components that handle specific activities and
kinds of service: business directory, geocoding, routing, map support, region
support, positioning, location query, location cache, and privacy management.

■ The provider connector framework communicates with local and external
sources of data and service, and has components for the various kinds of

Introduction to Location Services

Using Location Services 14-7

available providers, such as business directory, routing, mapping, and mobile
positioning.

14.1.4 Location Service Categories
Location services are provided in the following major categories: geocoding,
mapping, routing, business directory (Yellow Pages), and traffic.

Other sections in this chapter describe how to specify and configure external
providers for location services, and describe each type of service in greater detail.

The SpatialManager Java class manages all these location services, and is defined
as follows:

package oracle.panama.spatial;
import ...;
public class SpatialManager
{
 public static synchronized Geocoder getGeocoder() {...}
 public static synchronized Router getRouter() {...}
 public static synchronized YPFinder getYPFinder() {...}
 public static synchronized Mapper getMapper() {...}
 public static synchronized TrafficReporter getTrafficReporter() {...}
}

14.1.5 Service Providers
The actual core computation for location services is generally performed at an
external provider. The external provider might be accessed over the Internet or
other means of communication, or might be local. OracleAS Wireless Location
Application Components API performs the communication and adaptation of
results in a unified framework, so that users are generally not aware of which
provider is supplying a particular service. In addition, the API minimizes the
application developer’s implementation effort and dependence on specific
providers.

Access to an initial set of providers for most services is included. Some providers
have full configuration information included, and some do not. (For providers that
do not have configuration information, you usually receive the necessary
information after you purchase the right to use their user name and password.)

You can provide access to additional providers by using the OracleAS Wireless
System Manager through the Enterprise Manager interface. If a a new provider is
added and if the provider does not use the same interface as an existing provider, a

Introduction to Location Services

14-8 Oracle Application Server Wireless Developer’s Guide

Java class must be created to translate between the provider’s format and the
Wireless location application components API. (This program is specified as the
ProviderImpl attribute.) In addition, the implementing class file for the program
must be added to the class path.

Using multiple providers for a service increases the probable reliability of the
service. The API fails only either if all providers fail or if Web access is temporarily
unavailable. Because providers are specified in preference list, the API
automatically fails over when the preferred provider cannot perform the requested
service, such as when any of the following occurs:

■ The provider is temporarily inaccessible over the Web.

■ The provider does not support the exact requested service.

■ The request is incorrectly specified (such as a nonexistent address).

14.1.5.1 Provider Selection
Location services use a list of providers and support fail-over between them. The
sequence in which providers are tried should ideally represent an order of
preference. The preference ranking can be a simple ranking of providers, or it might
be affected by region, time, performance, reliability, and cost. Whichever criteria are
used, they are evaluated by a provider selection framework that determines
provider order of preference.

The provider selection framework needs to be configured, as described in this
section. If a service request is not satisfied by the framework, then either the
provider selection framework implementation has been incorrectly configured or all
providers have failed. You can find information about any problems or failures from
the console log or the log file, as explained in Section 14.1.5.2.

You must select a provider selection framework to be used. To select the framework,
use the OracleAS Wireless System Manager and follow these steps:

1. In the Wireless Server System tab page, click Site Administration.

2. Click to expand Component Configuration.

3. Click Location Services in the Configuration subsection. The Location Services
page is displayed, as shown in Figure 14–4.

Introduction to Location Services

Using Location Services 14-9

Figure 14–4 Location Services Page

Under Basic Configuration, for Provider Selector Class Name enter a provider
selection framework implementation. Your choice of a provider selection
framework implementation determines whether more or less complex rules can be
used for provider selection. The following implementations are available:

■ oracle.panama.spatial.core.ruleengine.SimpleRuleEngineImpl

This simple implementation tries all providers until one succeeds. The sequence
in which providers are tried is specified in the provider configuration list.

However, this implementation can use more time than the other
implementation, because it may issue queries to providers for regions that they
do not cover. This implementation might also result in inappropriate selections,
because some providers do not fail if they do not cover the requested region,
but instead make a "best attempt." For example, a provider might cover Europe,
only, but receive a route request from San Francisco to Boston. This provider
then "tries its best" and substitutes the places in Europe closest to Boston and
San Francisco, respectively.

Introduction to Location Services

14-10 Oracle Application Server Wireless Developer’s Guide

■ oracle.panama.spatial.core.ruleengine.RuleEngineImpl

This implementation can select providers based on whether or not they provide
satisfactory coverage for a given country. Among all providers that provide
satisfactory coverage for a given country, providers are tried based on the
sequence in the provider configuration list.

This implementation avoids time being wasted trying providers that do not
provide coverage for a country or that provide unsatisfactory service (for
example, if the cost is too high or the service quality is poor). However, this
selection framework does require more configuration: lists of countries and
country aliases need to be specified for each provider (although examples of
such configurations are provided).

■ oracle.panama.spatial.core.ruleengine.ExtendedRuleEngineImpl

This implementation automatically adjusts to changing provider properties. It
dynamically measures the performance and reliability of each provider. Based
on these statistics, the provider list is dynamically re-ranked.

This implementation automatically favors the providers that are currently
fastest and most reliable. It can also be used for load balancing, in that the
fastest and most reliable service will be used virtually all the time, until the
heavy load slows it down sufficiently for other providers to compete. From that
point on, other providers will start getting more requests than they did before.

14.1.5.1.1 Configuring Provider Information To configure the provider information, on
the Location Services page under Location Service Configurations (shown in
Figure 14–4 in Section 14.1.5.1), select the appropriate type of service for
configuration:

■ Geocoding Configuration

■ Routing Configuration

■ Mapper Configuration

■ Traffic Configuration

■ YP Provider Configuration

The provider information (described in Section 14.1.5.1.2, "Provider Configuration")
is very similar for all types of services (geocoding, mapping, routing, traffic, and
YP).

For geocoding and perhaps other services, you may need to provide configuration
information for country name aliases (see Section 14.1.5.1.3, "Country Name Alias

Introduction to Location Services

Using Location Services 14-11

Configuration") and address formats (see Section 14.1.5.1.4, "Address Format
(International) Configuration").

If the administrator configures the provider list (using the OracleAS Wireless
System Manager) to include a Web services proxy, any location service request will
automatically (and transparently) use Web services. For information about using
Web services, see Section 14.2.3, "Using Web Services".

14.1.5.1.2 Provider Configuration An ordered list of providers is configured with the
following parameters:

■ Provider Name: the provider name, which serves as an ID

■ Provider Impl Class: the class implementing the proxy for this provider
(for translation and communication with the provider)

■ URL: the static URL prefix used to access the provider

■ User Name: a user name as determined by the provider

■ Password: the password to be used in combination with the user name

■ Parameters: any parameters required to customize and configure the
provider proxy

■ ISO Locales: a semicolon-delimited list of country IDs (as specified in the
country name alias list, described in Section 14.1.5.1.3)

■ Corporate URL: the corporate URL of the provider (used as an
advertisement)

■ Service Version: the service version for the provider that this proxy uses

■ Corporate Logo URL: the corporate logo URL of the provider (used as an
advertisement)

14.1.5.1.3 Country Name Alias Configuration The country name alias configuration
relates country names and synonyms to a single standard identifier for a given

Note: All location services configuration information, except YP
category information, is maintained internally (by Wireless) in an
XML configuration file named site_cfg_bootstrap.xml.
However, you are encouraged not to modify that file directly;
instead, use the OracleAS Wireless System Manager interface to
modify configuration information.

Introduction to Location Services

14-12 Oracle Application Server Wireless Developer’s Guide

country. This standard identifier should be the ISO name (US for United States, DE
for Germany, and so on), although you can specify other identifiers.

The aliases are used in combination with the
oracle.panama.spatial.core.ruleengine.RuleEngineImpl provider
selection framework implementation. Each provider is configured for a set of
countries, specified by their IDs. For example, when a service request is made, for
example to geocode an address in the United States, the country alias table is
consulted to find the standard ID US. Subsequently, only providers with US in their
list of covered countries are tried.

If a country name is used which is not configured as a known alias for some country
ID, the ID unknown is used, instead. In this case, providers with unknown in the
covered country list are tried.

If the simple provider selection framework implementation
(oracle.panama.spatial.core.ruleengine.SimpleRuleEngineImpl) is
used, country aliases are not required for provider selection.

14.1.5.1.4 Address Format (International) Configuration The address format
configuration is used to specify international address formats. The
oracle.panama.spatial.intladdress package in the API uses this list to
determine which components are part of an address (US, French, German, Chinese,
and so on) and how they are presented for input and output.

The international address framework is configured with a list of address formats in
the repository, accessible through the OracleAS Wireless System Manager. This
configuration specifies all components of an address, aliases for the components,
and mappings to standard concepts such as city, state, and street name. The format of
the textual representation is also configured, to determine such things as:

■ How is the address usually divided into separate lines?

■ In which sequence do the components occur?

■ Which components are optional, and which are required?

This approach requires that users specify a country-specific format for addresses, in
order to view and enter addresses in that format. Otherwise, for example, the
system cannot know whether to ask a user to specify a state or province before the
country.

The benefits of this approach include the following:

■ Users see a form that exactly matches the desired address format for mailed
letters.

Introduction to Location Services

Using Location Services 14-13

■ The system can better analyze addresses when each component is known
separately and meaningfully identified, rather than simply being included
somewhere in first line, second line, and last line.

■ An application looks more professional if it automatically adapts to the local
address format, both for input and output of addresses.

■ Outside the US, customers are much more impressed when presented with their
local address format, as opposed to the US format.

■ The application does not have to be rewritten for different countries. Everything
is handled automatically by the framework

Several international address formats are supplied. Two examples are as follows.

For the US:

{name}
{house number/house} {street}[Apt {apt}]
{city} {state} {postal code}[-{postal code ext}]
{country}

For Germany:

{Name/name}
{Strasse/street/first line} {Hausnummer/house}[Wohnung {Wohnung/apt}]
{PLZ/postal code} {Stadt/city}
 [{Bundesland/state}]
{Land/country}

Syntax notes:

■ { } (braces) enclose an address component.

■ / (slash) separates alternative aliases within a component.

■ [] (brackets) enclose optional elements.

■ Anything outside braces other than brackets is taken as quoted from an address
(such as Apt in 123 Main Street Apt 4).

For programming information and examples relating to international address
formats, see Section 14.2.2.1.1, "International Addresses".

Introduction to Location Services

14-14 Oracle Application Server Wireless Developer’s Guide

14.1.5.2 Logging of Provider Selection Information
The provider selection framework implementation logs selection, success, and
failure of providers in the OracleAS Wireless log file (for example, sys_
panama.log). For example, you can look for events such as the following:

■ The multiplexers for geocoding, mapping, and so on (other types of services)
have been initialized.

■ The provider selection framework implementation has been initialized.

■ The proxies for geocoding, mapping, and so on (other types of services) have
been initialized.

■ A specific provider has been tried.

■ A specific provider has failed.

■ A specific provider has succeeded.

■ All providers have failed.

14.1.5.3 Logging of Provider Performance Information
The provider selection framework implementation logs provider performance
statistics. For each request made to a provider, the following information is logged,
regardless of whether the provider succeeds or fails:

■ Provider name

■ Provider proxy Java class

■ Time spent (in ms)

■ Success (true or false)

■ Time that request was made (timestamp)

The performance information is written to a table named PTG_LBS_LOG. You can
see this information using the Wireless System Manager, as follows:

1. In the Wireless Server System tab page, click Site Performance.

2. In the Component Performance section, click Location-Related.

14.1.6 Geocoding Services
The geocoding API provides the geographic location of a given address. For a user
of Wireless, an address is the most common way to specify a location. However, for
finding locations such as restaurants in close vicinity or providing driving

Introduction to Location Services

Using Location Services 14-15

directions, the text representation of an address may not be useful unless it is first
geocoded, that is, translated to geographic coordinates.

The address to be geocoded has a textual representation like that from a standard
mailed letter. The result returned is the longitude/latitude corresponding to the
address. For example, the input to geocoding might include the following:

■ firmName: "oracle"

■ firstLine: "1 Oracle Drive"

■ secondLine: ""

■ lastLine: "Nashua NH 03062"

■ matchMode: "tight"

In this example, the result is: Point(x = -71.455, y = 42.7117)

Because a user might specify an ambiguous address, the GeocodeResult contains
an array of Location objects instead of a single object.

14.1.6.1 Geocoding API
This section describes the geocoding API for location application components.

Two of the following classes, Point and Location, are used by the whole API and
are not specific to geocoding. However, they are described here because they
represent components central to the geocoding service, both for input and output.

14.1.6.1.1 Point Class The Point class defines a longitude/latitude coordinate
point. Additional values for a label and a radius can be used for representing a
point on a map. The label and radius are not used by any other functions than map
display.

14.1.6.1.2 Location Class The Location class defines a location with address and
longitude/latitude. If the location object is constructed using firstLine,
secondLine, and lastLine, then some external providers might not correctly
identify the city or state, because lastLine can contain city, state, and postal code
in a country-specific and relatively flexible format.

If no specific substring can be identified as the component representing the city, the
city is "unknown". In this case, the API itself might not try complex analysis, but
instead leave this task to the experts, that is, the external geocode providers.

Introduction to Location Services

14-16 Oracle Application Server Wireless Developer’s Guide

14.1.6.2 Geocoder Interface
The Geocoder interface defines how an application programmer accesses the
geocoding service. An object of a class implementing this interface is returned by
the SpatialManager.

14.1.7 Location Marks
Due to the limitations of certain mobile devices such as telephones, it is difficult to
input/display lengthy alphanumeric strings. A location mark stores a piece of
spatial information identified by a concise, easy-to-understand name. For example,
My home might be the name of a location mark, while the underlying spatial
information might be 123 Main Street, Somewhere City, CA, 12345; Lon = -122.42, Lat =
37.58.

Location marks allow users to avoid inconvenient string input on mobile devices.
Users can manage their location marks on a desktop and then access them by
referring to their names from mobile devices. Today’s location-aware applications
typically just use a point location (such as an address or a road intersection). In this
case, the spatial information can be provided by geocoding. However, a location
mark can also be a circular area around a point (that is, if you specify a point and a
radius) or a region that has been defined using the region modeling tool (described
in Section 14.5).

Location marks also allow users to try what-if scenarios: to make an application
behave as if they were in a location different from their default or current location.
For example, a user of an entertainment services application might actually be in
Boston now, but will be traveling to San Francisco in a few days. This person could
set a location mark in San Francisco as the default, and be presented with
information relevant to the San Francisco area.

Each user has personalized location marks, which are stored in the Wireless
repository.

A default location mark can be set for each user. If there is no mobile positioning
information for a user, that user’s default location mark (if defined) is used. For
example if the default location mark for user Smith is that person’s office, and if
there is no current positioning information for Smith, the current location is
assumed to be Smith’s office.

Location marks are created using the LocationMark class. Users can also create
location marks by logging into the Customization Portal, clicking the
LocationMarks tab, and clicking Create.

Introduction to Location Services

Using Location Services 14-17

For information about using a location mark to enable mobile positioning, see
Section 14.3.1, "Manual Positioning".

14.1.8 LOCATIONMARK Table
A new table named LOCATIONMARK is added to the Wireless repository schema.
This table contains detailed information about each location mark, including the
user associated with each location mark. For example, several users might have a
location mark named Office but with a different location for each.

Table 14–1lists the columns in the LOCATIONMARK table.

Table 14–1 LOCATIONMARK Table columns

Column Name Type

objectId_ NUMBER(10)

name VARCHAR2(32)

userId NUMBER(10)

longitude NUMBER

latitude NUMBER

addrline1 VARCHAR2(256)

addrline2 VARCHAR2(256)

addrlastline VARCHAR2(256)

block VARCHAR2(256)

city VARCHAR2(256)

country VARCHAR2(256)

county VARCHAR2(256)

firmname VARCHAR2(256)

pcode VARCHAR2(32)

pcode_ext VARCHAR2(16)

state VARCHAR2(256)

matchmode VARCHAR2(32)

description VARCHAR2(256)

Introduction to Location Services

14-18 Oracle Application Server Wireless Developer’s Guide

14.1.9 Mapping Services
The mapping API provides functions for creating map images for any of the
following:

■ A single point (such as an address or a location mark)

■ Multiple points (such as several addresses or location marks)

■ A complete route

■ A single driving maneuver

The mapping API lets you specify the size (resolution) of the map and the image
format.

Mapping capabilities can be made visible to users as a purely mapping application
or as part of a routing application. In a routing application, the mapping of routes
and driving maneuvers is performed by the routing provider. For information about
routing services, see Section 14.1.10, "Routing Services".

14.1.10 Routing Services
The routing API provides routing (driving directions) information based on a start
point, an end point, and optionally a list of intermediate via points. All points are
specified as longitude/latitude pairs or addresses.

The routing result consists of a set of maneuvers. A maneuver corresponds to a
driving instruction, such as turn left onto I-93 or bear right and merge to Route 3. The
routing result also includes estimated driving time and distance. Optionally, maps
and route coordinates can be requested.

14.1.10.1 Routing Settings
Routing can be influenced by preferences or requirements, called routing options.
These options are combined in a set, called routing settings. There are two types of
routing options: basic options and secondary options.

Basic options include:

■ Whether maps (images) are requested

■ Whether geometries (route coordinates) are requested

Secondary options include:

■ Optimization method, such as shortest distance or shortest driving time

Introduction to Location Services

Using Location Services 14-19

■ Route properties to avoid, such as toll roads, ferry lanes, or limited-access
highways

■ Map sizes

Secondary options can be mandatory or preferred:

■ If a secondary option is mandatory but not supported by the provider, the API
will automatically fail over to the next provider.

■ If a secondary option is preferred but not supported by the provider, the API
will not check to see if other providers support the option.

If the application developer requests a secondary option without specifying
whether it is mandatory or preferred, the following defaults are applied:

■ Optimization method: preferred

■ Avoid Ferry: preferred

■ Avoid Limited Access Hwy: preferred

■ Avoid Toll: preferred

■ Overview Map size: mandatory

■ Maneuver Map size: mandatory

■ Overview Map scale and zoom level: preferred

■ Maneuver Map scale and zoom level: preferred

14.1.10.2 Routing Results
The application can query the following components of a returned route:

■ List of maneuvers

■ Total distance

■ Total estimated driving time

■ Overview map

An overview map shows the source and destination, with the route highlighted.

A set of maneuvers (driving directions) is returned as part of the routing result.
Each maneuver corresponds to a driving instruction and contains the following
information:

■ Textual narrative

Introduction to Location Services

14-20 Oracle Application Server Wireless Developer’s Guide

■ Distance traveled during or prior to this maneuver ("After how many miles do I
have to make this right turn?")

■ Detailed maneuver map

■ Geometry (list of coordinate points, longitude/latitude)

Maps of the complete route or maneuvers can be requested as Java Image objects or
as Strings representing a URL.

14.1.10.3 Support for Multiple Languages
If the routing provider supports multiple languages, the API chooses a language
based on the Java locale object specified in the request to the router. The language
setting can affect the maneuver narratives and distance measures.

14.1.10.4 Routing API
This section describes the routing API for location application components.

14.1.10.4.1 Router Interface The Router interface defines how an application
programmer accesses the routing service. An object of a class implementing this
interface is returned by the SpatialManager.

14.1.10.4.2 RoutingSettings Class The RoutingSettings class defines a set of
options passed to routing. There are two types of routing options: basic and
secondary.

Basic options include whether or not to request a map or a geometry. Basic options
can be specified in the constructor of a RoutingSettings object.

Secondary options can be set using setSecondaryOption. The first parameter is a
RoutingOption object, which is a static constant defined in the RoutingOption
class. It identifies the option for which a value is set. The second parameter is a
String representing the value.

Whether or not the secondary option is mandatory is defined by
setSecondaryOptionRequired. The first parameter is the RoutingOption and
the second parameter specifies whether this option requirement is mandatory.
Unless this function is called, the default value is assumed.

14.1.10.4.3 RoutingResult Class The RoutingResult class defines the routing
results, which are described in Section 14.1.10.2.

Introduction to Location Services

Using Location Services 14-21

14.1.10.4.4 Maneuver Class The Maneuver class defines a single maneuver in a route
(see Section 14.1.10.2, "Routing Results" for the maneuver attributes).

14.1.11 Business Directory (Yellow Pages) Services
Business directory (Yellow Pages, or YP) services provide lists of businesses in a
given area and matching a specified name or category.

Existing providers use YP services with different interfaces. Specifically, they all
have different YP categories, and even different hierarchical structures. The
categories might be organized in a flat list or in a hierarchy of categories and
subcategories. A hierarchy tree might be deep or shallow, with a high or low fanout,
and might be balanced or unbalanced.

To unify the service of different providers, the Oracle business directory services use
a custom hierarchy that the OracleAS Wireless developer defines in an XML file.
Each leaf in this hierarchy has a reference to a category of one or more providers.
Non-leaf nodes might also have such references. This custom hierarchy defines
preferred categories first. Subsequently, the carrier using OracleAS Wireless tries to
match these categories to semantically similar categories supported by external
providers.

The customized hierarchy with the references to external providers’ categories is
represented in an XML file that stores hierarchical and ordered structures.
Representing order in the category hierarchy can account for the popularity of
different categories. For example, on a device with a limited screen size, an
application might restrict the choices among the most popular categories.

14.1.11.1 Different Approaches Among Yellow Pages Providers
Several providers offer YP services on the Web; however, the approaches taken by
these providers differ significantly and do not offer a uniform interface.
Furthermore, the respective approaches are not final in their methodology and can
be expected to change.

A unifying pattern in the various approaches is that businesses are categorized by
subject and location. The location component is well understood in that either a ZIP
code or the combination of a city and state can be used to determine the location.

The categorization of businesses, on the other hand, is not uniformly implemented.
Some providers offer a flat list of categories, user-selected by simple substring
matching. Another approach is a 3-level or 4-level hierarchical organization of
subcategories, often with a fanout of 20 to 50, sometimes more than 100. A user
might start the hierarchy traversal at the root of the hierarchy (by default).

Introduction to Location Services

14-22 Oracle Application Server Wireless Developer’s Guide

Alternatively, a user might enter a keyword that is matched to an appropriate
starting point within the hierarchy. Such keyword matching might go beyond
simple substring search and result in more intelligent choices.

14.1.11.2 Business Directory Category Configuration
Support for business categories and the hierarchy of categories is provided through
an XML configuration file. (You should view and modify business directory
provider information using the OracleAS Wireless System Manager; however, you
must view and modify business directory category information using the XML file.)

The category hierarchy definition file in Example 14–1 represents the custom
hierarchy of business directory categories. Each category can have any number of
subcategories. There is no restriction to the level of nesting. A category can be
linked to multiple business directory content providers. The flexibility allowed by
this file accommodates the different approaches of various business directory
service providers, as discussed in Section 14.1.11.1.

Example 14–1 Business Directory Category Hierarchy Definition File

<?xml version="1.0" standalone="yes"?>
<Categories>
 ...
 <Category
 CategoryName = "Berry crops">
 <Provider
 Name = "..."
 Parameter = "..."/>
 <Category
 CategoryName = "Cranberry farm">
 <Provider
 Name = "..."
 Parameter = "..."/>
 </Category>
 </Category>
 ...
 <Category
 CategoryName = "Ornamental nursery products">
 <Provider
 Name = "..."
 Parameter = "..."/>
 <Category
 CategoryName = "Florists’ greens and flowers">
 <Provider
 Name = "..."

Introduction to Location Services

Using Location Services 14-23

 Parameter = "..."/>
 </Category>
 <Category
 CategoryName = "Bulbs and seeds">
 <Provider
 Name = "..."
 Parameter = "..."/>
 </Category>
 </Category>
 <Category
 CategoryName = "Crops grown under cover">
 <Provider
 Name = "..."
 Parameter = "..."/>
 <Category
 CategoryName = "Mushrooms grown under cover">
 <Provider
 Name = "..."
 Parameter = "..."/>
 </Category>
 </Category>
 ...
</Categories>

14.1.11.3 Business Directories (Yellow Pages) API
The application developers can traverse the category hierarchy by using the
functions in the YPFinder interface. For any resulting category, the following can
be requested:

■ List of businesses

■ List of direct subcategories

■ List of direct or indirect subcategories containing a substring

14.1.11.3.1 YPFinder Interface The YPFinder interface defines how an application
programmer accesses the YP service. An object of a class implementing this
interface is returned by the SpatialManager.

An object of this class lets the user query:

■ Businesses in a state

■ Businesses in a city

■ Businesses in a postal code

Introduction to Location Services

14-24 Oracle Application Server Wireless Developer’s Guide

■ Businesses in a radius around a center

■ The closest n businesses around a center

In each of these region types, businesses can be found:

■ Matching a given business name or keyword

■ Matching a given category

■ Matching both a given business name or keyword and a given category

■ Matching a keyword in either a business name or category

14.1.11.3.2 YPCategory Class The YPCategory class defines a single category that is
part of the hierarchy. This class lets users access businesses in the category. It also
lets users find subcategories of the category; specifically, you can find:

■ All the direct subcategories

■ All direct or indirect subcategories matching a keyword

■ A subcategory with a given name

One of the most popular applications probably is to find subcategories of the root
matching a given keyword.

14.1.11.3.3 YPBusiness Class The YPBusiness class defines a single business. It
represents an address (Location interface) that also has a telephone number, a
description, and a list of categories it matches. You can get all businesses in a
category or all categories for each of these businesses. For example, a given
bookstore might be both in the categories book store and cafe.

14.1.12 Traffic Services
The traffic API provides information about conditions that can affect traffic flow on
road networks in major metropolitan areas. These areas are typically further
divided into smaller areas, such as downtown, metro West, metro East, and so on.
Real-time traffic reports update conditions in short time periods (such as every 5
minutes), thus providing information that is important for fleet management as
well as personal navigation.

The major components of traffic reports are incidents. An incident is an event that
will probably affect the flow of traffic. Examples of incidents are accidents,
construction activity, and traffic congestion (normal or unexpected). Each incident
includes such information as the type of incident, where the incident occurred (such

Introduction to Location Services

Using Location Services 14-25

as the route number, the location, or the region), the direction along the route (such
as northbound), the expected delay, and the length of the traffic backup.

For the current release, the following kinds of queries are supported for
incident-based traffic information:

■ City-level query: return traffic incidents in the entire city.

■ Route-level query: return traffic incidents on the specified route in a city.

■ Longitude/latitude (point) or address plus radius-level query: return traffic
incidents in the requested circular area.

Examples of traffic queries include returning the traffic report for:

■ A metropolitan area (such as Boston)

■ A route in a metropolitan area (such as I-93 South in Boston)

■ A planned route (such as from Nashua, NH to Boston, MA), returned as a
collection of (route, city)

■ A mobile range consisting of a location (longitude, latitude) and a radius from
the location

■ The vicinity of a given address (such as One Oracle Drive, Nashua, NH 03062)

The traffic API processes requests and returns responses. The requests and
responses can be in Java or XML format. Section 14.1.12.2 provides examples of an
XML request and response in XML format. Section 14.1.12.3 describes the traffic
Java API.

14.1.12.1 Traffic Report Caching
Traffic report information is cached at the city level. The first time that a traffic
report on a city is fetched, the report is written to the traffic report cache. The
cached report is considered invalid after a maximum cache age time (for example,
15 minutes), which can be set using the System Manager.

A network round-trip operation to the traffic service provider is required to update
the cached traffic report for the city. The cached report is updated only when both of
the following conditions are true:

Note: For the current release, no traffic service providers are
included in the sample configuration files.

Introduction to Location Services

14-26 Oracle Application Server Wireless Developer’s Guide

■ A query is made for the city or for any Spatial geometry (route or point with
radius) that is in or partially in the city (that is, where the queried geometry
spatially interacts with the city’s geometry).

■ The cached report for the city is older than the maximum cache age time.

14.1.12.2 Traffic XML Requests and Responses
Example 14–2 shows a city-level request in XML format for traffic information for
Boston.

Example 14–2 Traffic Request for Boston

<?xml version="1.0" encoding="UTF-8"?>
<traffic_request>
 <query_list>
 <query_info
query_type="city_level_query"
city_name="boston"
state_name="MA"
country_name="US"
 />
 </query_list>
</traffic_request>

Example 14–3 shows a response in XML format for traffic information for Boston.

Example 14–3 Traffic Response for Boston

<?xml version="1.0" encoding="UTF-8"?>
<traffic_response>
 <report_list>
 <traffic_report>
 <provider
 name="Trafficstation"
 covered_city_name="Boston"
 state_name="MA"
 country_name="US"/>
 <report_time month="6" day="19" year="2001" hour="5" minute="28" meridian =
 "PM"/>
 <unit distance_unit="MILES" time_unit="MINUTE"/>
 <incident_list>
 <incident id = "1">
 <incident_type>ACCIDENT</incident_type>
 <description>CAR ACCIDENT</description>

Introduction to Location Services

Using Location Services 14-27

 <route type = "Interstate" name = "I-93" direction = "SOUTH"/>
 <geo_location longitude = "-71.0607" latitude = "42.3659" radius =
 "5.0"/>
 <location_range>
 <at_location>EXIT 26</from_location>
 </location_range>
 <time_range>
 <from_time month = "6" day = "19" year = "2001" hour = "5" minute =
 "28" meridian = "PM"/>
 <to_time month = "6" day = "19" year = "2001" hour = "5" minute =
 "28" meridian = "PM"/>
 </time_range>
 <severity>HEAVY</severity>
 <speed>15.0</speed>
 <impact>EXPECT DELAY</impact>
 <advice>TAKE LEFT LANE</advice>
 </incident>
 <incident id = "2">
 <incident_type>CONSTRUCTION</incident_type>
 <description>REGULAR MAINTENANCE</description>
 <route type = "Interstate" name = "I-95" direction = "NORTH"/>
 <geo_location longitude = "-71.3555" latitude = "42.3601" radius =
 "30.0"/>
 <location_range>
 <at_location>EXIT 36</at_location>
 </location_range>
 <time_range>
 <at_time month = "6" day = "19" year = "2001" hour = "5" minute =
 "28" meridian = "PM"/>
 </time_range>
 <severity>MINOR</severity>
 <speed>35.0</speed>
 <impact>EXPECT DELAY</impact>
 <advice>USE I-495</advice>
 </incident>
 </incident_list>
 </traffic_report>
 </report_list>
</traffic_response>

14.1.12.3 Traffic Java API
This section describes the traffic Java API for location application components.

Introduction to Location Services

14-28 Oracle Application Server Wireless Developer’s Guide

14.1.12.3.1 CityInfo Class The CityInfo class provides the city name, state name,
and country name for a city. A common use of this class is to create a CityInfo
instance with city name, state name (optional), and country name, and pass it to the
query for a traffic report at city level, route level, or point and radius level with a
city.

14.1.12.3.2 City Interface The City interface provides information about a city from
a specified service provider. The information includes the city name, state name,
country name, and information about routes. A City instance could be obtained
from the TrafficReport interface.

14.1.12.3.3 RouteInfo Class The RouteInfo class provides the name and type for a
route. A common use of this class is to create a RouteInfo instance and pass it to
the query for a traffic report at route level.

14.1.12.3.4 TrafficRoute Interface The TrafficRoute interface provides information
for a route from a specified service provider. The information includes the route
name, route type, geometry that represents the route, and the city name. A
TrafficRoute instance could be obtained from the TrafficIncident interface.

14.1.12.3.5 TrafficReport Interface The TrafficReport interface provides
information for an incident-based traffic report, such as the report time, the number
of incidents, the provider’s information, the city, and the incidents. A report could
then be created to show to users or administrators of the application.

14.1.12.3.6 TrafficIncident Interface The TrafficIncident interface provides
information for a traffic incident, such as the severity, type, description, route and
direction on which the occurred, location, time range, impact, and advice.

14.1.12.3.7 TrafficReporter Interface The TrafficReporter interface provides
functions that return a traffic report based on different queries. The following kinds
of queries are supported:

■ Given the information about a city (city name, state name [optional], country
name), return the report.

■ Given the information about a route (with or without direction) and the city
where the route is located in, return the report.

■ Given the longitude/latitude coordinates of a point and the radius, return the
report for the area.

■ Given the address of a location and the radius, return the report for the area.

Introduction to Location Services

Using Location Services 14-29

When using SpatialManager.createLocation() to get an instance of
Location, you must specify the city name and country name. Do not use the
LastLine attribute to combine these pieces of information. Set the value of the
Point geometry to null to avoid automatic geocoding.

14.1.12.3.8 TrafficCityManager Interface The TrafficCityManager interface
provides two functions, one to obtain all the cities for which traffic information is
provided, and the other to obtain the routes info for a given city. A common use of
these functions is to call them to create a drop-down list of cities and routes
supported by the application.

14.1.12.4 Traffic Service Configuration
After the region modeling data and city coverage data has been loaded into the
repository during the Wireless installation, you can add traffic providers and
supported cities for a provider.

14.1.12.4.1 Adding a Traffic Provider To add support for a new traffic service provider,
follow these steps:

1. Using the System Manager, set the traffic provider information and the traffic
report cache time.

2. For each supported city of this new provider, use the region modeling tool
(described in Section 14.5) to check if there is an entry in the CITY table for that
city, including a valid GEOMETRY column value. If there is not an entry for the
city, including its geometry, add an entry.

3. Get and note the ID of this city.

4. Use SQL*Plus connect to the Wireless repository.

5. For each city to be supported for this traffic service provider, set the value of the
COVERED_BY_TRAFFIC column in the CITY_COVERAGE table to ’Y’, and use
the value of city’s ID to perform the update. For example:

UPDATE city_coverage SET covered_by_traffic = ’Y’ WHERE id = 12345;
COMMIT;

If there is not already an entry in the CITY_COVERAGE table for this city, add a
row and set the value of the COVERED_BY_TRAFFIC column to 'Y', and be
sure that the ID value in this table is the same as the ID value for the city in the
CITY table. For example:

INSERT INTO city_coverage (id, name, state_name, country_name,

Developing Location-Based Applications

14-30 Oracle Application Server Wireless Developer’s Guide

 covered_by_traffic) VALUES (10750, ’BOSTON’, ’MA’, ’US’, ’Y’);
COMMIT;

14.1.12.4.2 Adding a Supported City for a Provider To add support for a new city for an
existing traffic service provider, follow these steps:

1. For each supported city of this new provider, use the region model tool
(described in Section 14.5) to check if there is an entry in the CITY table for that
city, including a valid GEOMETRY column value. If there is not an entry for the
city, including its geometry, add an entry.

2. Get and note the ID of this city.

3. Use SQL*Plus connect to the Wireless repository.

4. If there is an entry in the CITY_COVERAGE table for this city, set the value of
the COVERED_BY_TRAFFIC column in the CITY_COVERAGE table to ’Y’, and
use the value of city’s ID to perform the update. For example:

UPDATE city_coverage SET covered_by_traffic = ’Y’ WHERE id = 12345;
COMMIT;

If there is not already an entry in the CITY_COVERAGE table for this city, add a
row and set the value of the COVERED_BY_TRAFFIC column to 'Y', and be
sure that the ID value in this table is the same as the ID value for the city in the
CITY table. For example:

INSERT INTO city_coverage (id, name, state_name, country_name,
 covered_by_traffic) VALUES (10750, ’BOSTON’, ’MA’, ’US’, ’Y’);
COMMIT;

14.2 Developing Location-Based Applications
You can develop a location-based application by using any of the following
approaches:

■ Creating JavaServer Pages (JSP) files that contain MobileXML and/or HTML
tags and that include custom Oracle-supplied tags (see Section 14.2.1, "Creating
JavaServer Pages (JSP) Files")

■ Using the Java API in JSP files (see Section 14.2.2, "Using the Location Java
API")

■ Using Web services (see Section 14.2.3, "Using Web Services")

Developing Location-Based Applications

Using Location Services 14-31

Using tags in JSP files is often easier and more convenient than using the Java
application programming interface (API); however, using the API gives you greater
flexibility and control over the application logic.

14.2.1 Creating JavaServer Pages (JSP) Files
If you do not need to write an adapter, you can create JavaServer Pages (JSP) files to
provide location-based capabilities to users.

This section provides detailed information about the Oracle-supplied tags that you
can use. Each reference section includes an example.

Table 14–2 groups the JSP tags for location services by the type of application for
which the tag is useful, and briefly describes the information specified by the tag.

Table 14–2 JSP Tags for Location Services

Category Tags

General geometry

point

Geocoding address

geocode

iterateGeocodes

iterateReverseGeocodes

listGeocodes

listReverseGeocodes

Mapping map

Routing drivingDistance

drivingTime

iterateManeuvers

listManeuvers

route

Developing Location-Based Applications

14-32 Oracle Application Server Wireless Developer’s Guide

Business directory (YP) businesses

category

iterateBusinesses

iterateBusinessesInCity

iterateBusinessesInCorridor

iterateBusinessesInPostalCode

iterateBusinessesInRadius

iterateBusinessesInState

iterateBusinessesNearestTo

iterateCategoriesMatchingKeyword

iterateChildCategories

listBusinessesInCity

listBusinessesInCorridor

listBusinessesInPostalCode

listBusinessesInRadius

listBusinessesInState

listBusinessesNearestTo

listCategoriesMatchingKeyword

listChildCategories

Sorting iterateByDistance

iterateByDrivingDistance

iterateByName

iterateByRegionName

listByDistance

listByDrivingDistance

listByName

listByRegionName

Location marks defaultLocationMark

iterateLocationMarks

listLocationMarks

Table 14–2 (Cont.) JSP Tags for Location Services

Category Tags

Developing Location-Based Applications

Using Location Services 14-33

Many pairs of tags have similar names, with one starting with iterate and the other
starting with list (for example, iterateManeuvers and listManeuvers).

■ Tags with names starting with iterate create a collection and present each item in
the collection individually, so that you can perform some processing action. For
example, on a Web page you might want display a horizontal rule after each
item, and perhaps some static text before each item.

■ Tags with names starting with list present an unformatted list of returned items.
These tags are useful for passing a single list of data for processing by a script
or algorithm; they are not typically used for directly displaying data on Web
pages.

The JSP tags for location services must be used with a prefix, which must be
specified in the JSP file. The following example defines the loc prefix, which is
used in other examples of specific tags:

<%@ taglib uri="LocationTags" prefix="loc" %>

The following example shows the loc prefix used with the address tag:

Mobile positioning mobilePos

Communities addMembers

createPrivateCommunity

createSharedCommunity

createSystemCommunity

deleteCommunity

getCommunity

listAllMembers

listCreatedCommunities

listCreatedPrivateCommunities

listCreatedSharedCommunities

listCreatedSystemCommunities

removeAllMembers

removeMembers

setCommunityName

Table 14–2 (Cont.) JSP Tags for Location Services

Category Tags

Developing Location-Based Applications

14-34 Oracle Application Server Wireless Developer’s Guide

<loc:address name="hq" type="oracle.panama.model.Location"
 businessName="Oracle Headquarters" firstLine="500 Oracle Parkway"
 city="Redwood City" state="CA" postalCode="94065" country="US"/>

Section 14.2.1.1 provides comprehensive JSP examples for location services. It is
followed by sections (in alphabetical order by tag name) that provide reference
information for all the parameters available for each tag: the parameter name, a
description, and whether or not the parameter is required If a parameter is required,
it must be included with the tag. If a parameter is not required and you omit it, the
interpretation is performed by the service provider. Each tag reference section also
includes a short example.

14.2.1.1 JSP Examples for Location Services
This section includes several examples of JSP code to perform operations that
involve location services. In these examples, addresses are specified in the points
attribute of the appropriate tag (<map> or <route>).

Example 14–4 displays small and large maps of two locations.

Example 14–4 Mapping Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
 public String transformString(String orig)
 {
 String result = "";
 for (int i=0;i<orig.length();i++)
 {
 if (orig.charAt(i) == ’&’) result = result + "&";
 else if (orig.charAt(i) == ’<’) result = result + "<";
 else if (orig.charAt(i) == ’>’) result = result + ">";
 else result = result + orig.charAt(i);
 }
 return result;
 }
%>

<SimpleResult>
 <loc:address
 name="NEDC"
 type="oracle.panama.model.Location"
 businessName="NEDC"
 firstLine="1 Oracle Dr"

Developing Location-Based Applications

Using Location Services 14-35

 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:map
 name="NEDCSmall" type="oracle.panama.spatial.jsptags.beans.Map" xres="400"
 yres="300" points="NEDC">
 </loc:map>

 <loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
 <loc:map name="HQSmall" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="400" yres="300" points="HQ">
 </loc:map>

 <loc:map name="BothSmall" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="400" yres="300" points="NEDC HQ"/>
 <loc:map name="NEDCLarge" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="800" yres="600" points="NEDC"/>
 <loc:map name="HQLarge" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="800" yres="600" points="HQ"/>
 <loc:map name="BothLarge" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="800" yres="600" points="NEDC HQ"/>

 <SimpleImage target="<%= transformString(NEDCLarge.toString()) %>"
 src="<%= transformString(NEDCSmall.toString()) %>"/>

 <SimpleImage target="<%= transformString(HQLarge.toString()) %>"
 src="<%= transformString(HQSmall.toString()) %>"/>

 <SimpleImage target="<%= transformString(BothLarge.toString()) %>"
 src="<%= transformString(BothSmall.toString()) %>"/>
</SimpleResult>

Example 14–5 displays the route between two locations and the driving directions
(maneuvers).

Developing Location-Based Applications

14-36 Oracle Application Server Wireless Developer’s Guide

Example 14–5 Routing Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
 public String transformString(String orig)
 {
 String result = "";
 for (int i=0;i<orig.length();i++)
 {
 if (orig.charAt(i) == ’&’) result = result + "&";
 else if (orig.charAt(i) == ’<’) result = result + "<";
 else if (orig.charAt(i) == ’>’) result = result + ">";
 else result = result + orig.charAt(i);
 }
 return result;
 }
%>

<SimpleResult>
 <loc:address
 name="NEDC"
 type="oracle.panama.model.Location"
 businessName="NEDC"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
 <loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
 xres="800" yres="600" points="NEDC HQ">
 </loc:route>

 <SimpleImage src="<%= transformString(myRoute.getMap()) %>"/>

 <SimpleText>
 <loc:iterateManeuvers name="aManeuver"

Developing Location-Based Applications

Using Location Services 14-37

type="oracle.panama.spatial.jsptags.beans.Maneuver" routeID="myRoute">
 <SimpleTextItem>
 <%= aManeuver.getNarrative() %>
 </SimpleTextItem>
 </loc:iterateManeuvers>
 </SimpleText>
</SimpleResult>

Example 14–6 displays business directory (YP) information by name within a
specified distance of a location: specifically, a map with the ten Starbucks locations
nearest to Oracle headquarters.

Example 14–6 Business Directory (YP) by Name Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
 public String transformString(String orig)
 {
 String result = "";
 for (int i=0;i<orig.length();i++)
 {
 if (orig.charAt(i) == ’&’) result = result + "&";
 else if (orig.charAt(i) == ’<’) result = result + "<";
 else if (orig.charAt(i) == ’>’) result = result + ">";
 else result = result + orig.charAt(i);
 }
 return result;
 }
%>

<SimpleResult>
 <loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>

 <loc:businesses
 name="starbucks"
 type="java.util.Collection"

Developing Location-Based Applications

14-38 Oracle Application Server Wireless Developer’s Guide

 businessName="Starbucks"
 centerID="HQ"
 nearestN="10"/>
 <loc:map name="starbucksMap" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="800" yres="600" points="starbucks">
 </loc:map>

 <SimpleImage src="<%= transformString(starbucksMap.toString()) %>"/>

 <SimpleText>
 <loc:iterateBusinesses name="singleStarbucks" type="oracle.panama.model.Point"
 collection="starbucks">
 <SimpleTextItem> <%= singleStarbucks %> </SimpleTextItem>
 </loc:iterateBusinesses>
 </SimpleText>
</SimpleResult>

Example 14–7 displays business directory (YP) information by category within a
specified area: specifically, a map with all automobile dealers (new cars) in San
Francisco, California.

Example 14–7 Business Directory (YP) by Category Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
 public String transformString(String orig)
 {
 String result = "";
 for (int i=0;i<orig.length();i++)
 {
 if (orig.charAt(i) == ’&’) result = result + "&";
 else if (orig.charAt(i) == ’<’) result = result + "<";
 else if (orig.charAt(i) == ’>’) result = result + ">";
 else result = result + orig.charAt(i);
 }
 return result;
 }
%>

<SimpleResult>
 <loc:category name="automotive"
type="oracle.panama.spatial.yp.YPCategory" categoryName="Automotive">
 </loc:category>

Developing Location-Based Applications

Using Location Services 14-39

 <loc:category name="automotiveDealers"
 type="oracle.panama.spatial.yp.YPCategory" categoryName="Dealers"
 parentCategory="automotive">
 </loc:category>

 <loc:category name="newAutomotiveDealers"
 type="oracle.panama.spatial.yp.YPCategory" categoryName="New"
 parentCategory="automotiveDealers">
 </loc:category>

 <loc:businesses name="dealers" type="java.util.Collection"
 categoryID="newAutomotiveDealers" country="US" state="CA"
 city="San Francisco"/>

 <loc:map name="dealerMap" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="800" yres="600" points="dealers">
 </loc:map>

 <SimpleImage src="<%= transformString(dealerMap.toString()) %>"/>

 <SimpleText>
 <loc:iterateBusinesses name="dealer" type="oracle.panama.model.Point"
 collection="dealers">
 <SimpleTextItem>
 <%= transformString(dealer.toString()) %>
 </SimpleTextItem>
 </loc:iterateBusinesses>
 </SimpleText>
</SimpleResult>

14.2.1.2 addMembers
The addMembers tag adds one or more members to a mobile community. For an
explanation of mobile communities, see Section 14.3.2.6, "Mobile Communities".

Table 14–4 lists the addMembers tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

Table 14–3 addMembers Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example: add_members Yes

type Type of object. Must be: Boolean (TRUE if the operation
is successful, FALSE if the operation is not successful).

Yes

Developing Location-Based Applications

14-40 Oracle Application Server Wireless Developer’s Guide

The following example adds the user named Song, at the request of the user named
Mike, to the mobile community associated with the variable named comm_
private. It also creates a java.util.Enumeration object of members of this
community, and displays this object.

<loc:addMembers
 name="add_members"
 type="Boolean"
 userName="Mike"
 communityID="comm_private"
 communityMembers="Song" />
<loc:listAllMembers
 name="list_all_mem1"
 type="java.util.Enumeration"
 communityID="comm_private" />
<%= list_all_mem1.toString() %>

14.2.1.3 address
The address tag specifies an address to be geocoded, located on a map, or used as
the start or end address of a route or as the center for a business directory query.

Table 14–4 lists the address tag parameters. (See Section 14.2.1, "Creating JavaServer
Pages (JSP) Files" for an explanation of the information provided.)

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

No

communityID Name of variable associated with the community to
which to add the members. Example: comm_private

Yes

communityMembers A space-delimited list of Oracle Application Server
Wireless users to be added to the community.

Yes

Table 14–4 address Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: office. Yes

type Type of object. Must be: oracle.panama.model.Location Yes

Table 14–3 (Cont.) addMembers Tag Parameters

Parameter Name Description Required

Developing Location-Based Applications

Using Location Services 14-41

The following example creates a route named myRoute between two addresses (a
person’s office and home), displays a map of the route followed by a horizontal
rule, and presents each driving maneuver (using the iterateManeuvers tag and
the getMap and getNarrative function calls) followed by a horizontal rule. Each
driving maneuver description is also a link that users can click to display a map of
the maneuver.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>

businessName Descriptive name of the business or other entity at the address.
Example: My office

No

firstLine Street address. No

city City name. No

state 2-character state (US) or province (Canada) code. No

postalCode Postal code. No

country Country name. No

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–4 (Cont.) address Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

14-42 Oracle Application Server Wireless Developer’s Guide

</loc:route>

<img src="<%= myRoute.getMap() %>">
<HR>

<loc:iterateManeuvers name="aManeuver"
type="oracle.panama.spatial.jsptags.beans.Maneuver" routeID="myRoute">
 <a href="<%= aManeuver.getMap() %>">
 <%= aManeuver.getNarrative() %>

 <HR>
</loc:iterateManeuvers>

14.2.1.4 businesses
The businesses tag creates a collection (of
oracle.panama.spatial.yp.YPBusiness objects) of businesses that share one
or more attributes.

Table 14–5 lists the businesses tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

Table 14–5 businesses Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: mikes_hardware_
stores

Yes

type Type of object. Must be: java.util.Collection Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

categoryID Business services category variable name. Example:
Automotive.

No

keyword Any string to search for in the name or categoryID. Example:
French

No

city City name. No

state 2-character state (US) or province (Canada) code. No

postalCode Postal code. No

country Country name No

Developing Location-Based Applications

Using Location Services 14-43

The following example of the businesses tag specifies all businesses named
Borders in the state of California in the United States. The use of the map tag to
enclose the businesses tag causes a map to be created that includes and labels
each Borders bookstore.

<loc:map name="map1" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="1000" yres="500">
 <loc:businesses name="bord" type="java.util.Collection"
businessName="Borders"
 country="US" state="CA"/>
</loc:map>

14.2.1.5 category
The category tag creates a business category (an
oracle.panama.spatial.yp.YPCategory object).

Table 14–6 lists the category tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

centerID A point variable name (such as for an address) to be used as
the center point from which to start searching. If you specify
centerID, you must also specify radius or nearestN.

No

radius Length (in meters) of the radius of the circle in which to search.
If you specify radius, you must also specify centerID.

No

nearestN Maximum number of nearest results that satisfy the query
requirements (for example, to find the 3 nearest banks to a
hotel or the user’s current position). If you specify nearestN,
you must also specify centerID.

No

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–6 category Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: cat_dealers Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPCategory

Yes

Table 14–5 (Cont.) businesses Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

14-44 Oracle Application Server Wireless Developer’s Guide

The following example uses two category tags. The first category tag creates an
object named cat_auto that specifies a category named Automotive. The second
category tag creates an object named cat_dealers that specifies a category
named Dealers that is a child of the cat_auto (Automotive) parent category.

<loc:category name="cat_auto" type="oracle.panama.spatial.yp.YPCategory"
 categoryName="Automotive" />
<loc:category name="cat_dealers" type="oracle.panama.spatial.yp.YPCategory"
 parentCategory="cat_auto" categoryName="Dealers" />

14.2.1.6 createPrivateCommunity
The createPrivateCommunity tag creates a private mobile community. For an
explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–7 lists the createPrivateCommunity tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag). If not
specified, the root is assumed.

No

categoryName Name of the category. Example: Dealers. Yes

Table 14–7 createPrivateCommunity Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example: comm_private Yes

type Type of object. Must be:
oracle.panama.model.Community

Yes

userName Name of the Oracle Application Server Wireless user to
be the owner of the community. The default is the
current user.

No

communityName Descriptive name of the community. Example: My
Private Community

Yes

Table 14–6 (Cont.) category Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 14-45

The following example creates a private community owned by user Mike and
including two users (Mike and Jing). If the community already exists, it is not
created. It also displays information about the community.

<loc:createPrivateCommunity
 name="comm_private"
 type="oracle.panama.model.Community"
 userName="Mike"
 communityName="My Private Community"
 communityMembers="Mike Jing"
 returnNullIfExists="FALSE" />
<%= comm_private.toString() %>

14.2.1.7 createSharedCommunity
The createSharedCommunity tag creates a shared mobile community. For an
explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–8 lists the createSharedCommunity tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

communityMembers A space-delimited list of Oracle Application Server
Wireless users to be included in the community, if they
are not already included.

No

returnNullIfExists TRUE (the default) causes a null value to be returned if
the community already exists. FALSE causes the
existing community to be returned if the community
already exists.

No

Table 14–8 createSharedCommunity Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example: comm_shared Yes

type Type of object. Must be:
oracle.panama.model.Community

Yes

userName Name of the OracleAS Wireless user to be the owner
of the community. The default is the current user.

No

Table 14–7 (Cont.) createPrivateCommunity Tag Parameters

Parameter Name Description Required

Developing Location-Based Applications

14-46 Oracle Application Server Wireless Developer’s Guide

The following example creates a shared community owned by user Mike and
including two users (Mike and Jing). If the community already exists, it is not
created. It also displays information about the community.

<loc:createSharedCommunity
 name="comm_shared"
 type="oracle.panama.model.Community"
 userName="Mike"
 communityName="My Shared Community"
 communityMembers="Mike Jing"
 returnNullIfExists="FALSE" />
<%= comm_private.toString() %>

14.2.1.8 createSystemCommunity
The createSystemCommunity tag creates a system mobile community. For an
explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–9 lists the createSystemCommunity tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

communityName Descriptive name of the community. Example: My
Shared Community

Yes

communityMembers A space-delimited list of Oracle Application Server
Wireless users to be included in the community, if they
are not already included.

No

returnNullIfExists TRUE (the default) causes a null value to be returned if
the community already exists. FALSE causes the
existing community to be returned if the community
already exists.

No

Table 14–9 createSystemCommunity Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example: comm_system Yes

type Type of object. Must be:
oracle.panama.model.Community

Yes

Table 14–8 (Cont.) createSharedCommunity Tag Parameters

Parameter Name Description Required

Developing Location-Based Applications

Using Location Services 14-47

The following example creates a system community owned by user Mike and
including two users (Mike and Jing). If the community already exists, it is not
created. It also displays information about the community.

<loc:createSystemCommunity
 name="comm_system"
 type="oracle.panama.model.Community"
 userName="Mike"
 communityName="My System Community"
 communityMembers="Mike Jing"
 returnNullIfExists="FALSE" />
<%= comm_private.toString() %>

14.2.1.9 defaultLocationMark
The defaultLocationbMark tag creates an object that represents the default
location mark for a specified user. You can use this tag to find a user’s default
location mark.

Table 14–10 lists the defaultLocationbMark tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

userName Name of the Oracle Application Server Wireless user to
be the owner of the community. The default is the
current user.

No

communityName Descriptive name of the community. Example: My
System Community

Yes

communityMembers A space-delimited list of Oracle Application Server
Wireless users to be included in the community, if they
are not already included.

No

returnNullIfExists TRUE (the default) causes a null value to be returned if
the community already exists. FALSE causes the
existing community to be returned if the community
already exists.

No

Table 14–9 (Cont.) createSystemCommunity Tag Parameters

Parameter Name Description Required

Developing Location-Based Applications

14-48 Oracle Application Server Wireless Developer’s Guide

The following example creates an object representing the default location mark for
user Mike, and it displays information about that object.

<loc:defaultLocationMark
 name="user_mark"
 type="oracle.panama.model.LocationMark"
 userName="Mike" />
<%= user_mark.toString() %>

14.2.1.10 deleteCommunity
The deleteCommunity tag deletes a private, shared, or system mobile community.
For an explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–11 lists the deleteCommunity tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

Table 14–10 defaultLocationMark Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: user_loc Yes

type Type of object. Must be:
oracle.panama.model.LocationMark

Yes

userName Name of the Oracle Application Server Wireless user for which
to find the default location mark. The default is the current
user.

No

Table 14–11 deleteCommunity Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example: delete_comm1. Yes

type Type of object. Must be: Boolean (TRUE if the operation is
successful, FALSE if the operation is not successful).

Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

No

communityName Descriptive name of the community (not a variable name).
Example: My Private Community

Yes

Developing Location-Based Applications

Using Location Services 14-49

The following example deletes, at the request of the user named Mike, the
community named My Private Community, and it displays the result of the
operation (TRUE or FALSE).

<loc:deleteCommunity
 name="delete_comm1"
 type="Boolean"
 userName="Mike"
 communityName="My Private Community" />
<%= delete_comm1.toString() %>

14.2.1.11 drivingDistance
The drivingDistance tag presents the driving distance for a route or driving
maneuver, as determined by the provider.

Table 14–12 lists the drivingDistance tag parameters. Although route and
maneuver are listed as optional, you must specify one of these parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example creates a route named myRoute between two addresses (a
person’s office and home), and displays the driving distance for the route.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"

Table 14–12 drivingDistance Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: drive_dist Yes

type Type of object. Must be: String Yes

route Name of the route. Example: myRoute No

maneuver Name of the maneuver. No

Developing Location-Based Applications

14-50 Oracle Application Server Wireless Developer’s Guide

 country="US"/>
 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>
</loc:route>
<loc:drivingDistance name="drive_dist" type="String" route="myRoute" />
<%= drive_dist.toString() %>

14.2.1.12 drivingTime
The drivingTime tag creates an object containing the estimated driving time for a
route.

Table 14–13 lists the drivingTime tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example creates a route named myRoute between two addresses (a
person’s office and home), and displays the driving time for the route.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>

Table 14–13 drivingTime Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: drive_time Yes

type Type of object. Must be: String Yes

route Name of the route. Example: myRoute Yes

Developing Location-Based Applications

Using Location Services 14-51

 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>
</loc:route>
<loc:drivingTime name="drive_time" type="String" route="myRoute" />
<%= drive_time.toString() %>

14.2.1.13 geocode
The geocode tag specifies an address to be geocoded, located on a map, or used as
the start or end address of a route or as the center for a business directory query.

Table 14–14 lists the geocode tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

Table 14–14 geocode Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware1 Yes

type Type of object. Must be:
oracle.panama.model.Location

Yes

businessName Descriptive name of the business or other entity at the
address. Example: Mike’s Hardware

No

houseNumber Number of the address on the street. No

streetName Name of the street. Yes

secondLine Second line of street address. No

intersection Name of the intersecting street, if houseNumber is not
specified.

No

city City name. Yes

state 2-character state (US) or province (Canada) code. Yes

postalCode Postal code (main part). Example: 01742 Yes

postalCodeExt Extension of the postal code, such as 4 additional numbers. No

Developing Location-Based Applications

14-52 Oracle Application Server Wireless Developer’s Guide

The following example of the geocode tag specifies an address (for a store named
Mike’s Hardware) to be geocoded.

<loc:geocode
 name = "hardware1"
 type = "oracle.panama.model.Location"
 businessName = "Mike’s Hardware"
 houseNumber = "22"
 streetName = "Monument Sq"
 city = "Concord"
 state = "MA"
 postalCode = "01742"
 country = "US"
 makeCorrections = "TRUE" />

14.2.1.14 geometry
The geometry tag creates a java.util.List object of points of type
oracle.panama.model.Point.

Table 14–15 lists the geometry tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.) You
must specify the points, route, or maneuver parameter.

country Country name or code. Yes

makeCorrections TRUE if the geocoding provider should correct any
misspellings in the address; FALSE if the geocoding provider
should not make corrections.

Yes

provider Name of the first-choice service provider for the request, if
there is a preference.

No

Table 14–15 geometry Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: my_geom Yes

type Type of object. Must be: java.util.List Yes

points Name of the variable for the points that make up the geometry. No

Table 14–14 (Cont.) geocode Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 14-53

The following example creates a route between a user’s office and home addresses,
uses the geometry tag to create an unformatted list of points along the route, and
displays the list.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600" requestGeom="true">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>
</loc:route>

<loc:geometry name="my_geom" type="java.util.List" route="myRoute" />
<%= my_geom.toString() %>

14.2.1.15 getCommunity
The getCommunity tag returns the object associated with the specified name of a
private, shared, or system mobile community. For an explanation of mobile

route Name of the variable for the route that makes up the geometry.
If you specify this parameter, the route tag that created the
route object must have specified the requestGeom="TRUE"
parameter.

No

maneuver Name of the variable for the maneuver that makes up the
geometry.

No

Table 14–15 (Cont.) geometry Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

14-54 Oracle Application Server Wireless Developer’s Guide

communities, including types of communities, see Section 14.3.2.6, "Mobile
Communities".

Table 14–16 lists the getCommunity tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example returns, at the request of the user named Mike, the
community named My Private Community, and it displays information about
the community.

<loc:getCommunity
 name="get_comm"
 type="oracle.panama.model.Community"
 userName="Mike"
 communityName="My Private Community" />
<%= get_comm.toString() %>

14.2.1.16 iterateBusinesses
The iterateBusinesses tag presents individually the businesses in a collection
returned by the businesses tag.

Table 14–17 lists the iterateBusinesses tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

Table 14–16 getCommunity Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example: get_comm. Yes

type Type of object. Must be:
oracle.panama.model.Community

Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation.The default is the current user.

No

communityName Descriptive name of the community (not a variable name).
Example: My Private Community

Yes

Developing Location-Based Applications

Using Location Services 14-55

The following example creates a map that shows the 10 Starbucks business locations
nearest to Oracle headquarters, and for each location displays information about it
followed by a horizontal rule. Each line of information is a link that the user can
click to display a detailed map of the location and its surrounding area.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:map name="starbucksMap" type="oracle.panama.spatial.jsptags.beans.Map"
xres="800" yres="600">
 <loc:businesses
 name="starbucks"
 type="java.util.Collection"
 businessName="Starbucks"
 centerID="HQ"
 nearestN="10"/>
</loc:map>

<img src="<%= starbucksMap %>">
<HR>

<loc:iterateBusinesses name="singleStarbucks"
type="oracle.panama.spatial.yp.YPBusiness" collection="starbucks">
 <loc:map name="singleStarbucksMap"
type="oracle.panama.spatial.jsptags.beans.Map" xres="800" yres="600"
points="singleStarbucks"/>

Table 14–17 iterateBusinesses Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: singleStarbucks Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

collection Name for the returned collection. Example: starbucks Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-56 Oracle Application Server Wireless Developer’s Guide

 <a href="<%= singleStarbucksMap %>">
 <%= singleStarbucks %>

 <HR>
</loc:iterateBusinesses>

14.2.1.17 iterateBusinessesInCity
The iterateBusinessesInCity tag presents individually businesses in a
specified city.

Table 14–18 lists the iterateBusinessesInCity tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example presents individually all Borders bookstores in San
Francisco, California. For each location, it displays information about the location
followed by a horizontal rule.

<loc:iterateBusinessesInCity name="a_business_city"
 type="oracle.panama.spatial.yp.YPBusiness"
 city="San Francisco" state="CA" country="US" businessName="Borders">
 <%= a_business_city.toString() %>
 <HR>

Table 14–18 iterateBusinessesInCity Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: a_business_city Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a category
is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

city City name. Yes

state 2-character state (US) or province (Canada) code. Yes

country Country name. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-57

</loc:iterateBusinessesInCity>

14.2.1.18 iterateBusinessesInCorridor
The iterateBusinessesInCorridor tag presents individually the businesses in
a corridor. A corridor is a collection of points, such as points representing
intersections or exits when creating a route.

Table 14–19 lists the iterateBusinessesInCorridor tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example creates a route between an office and another location, and
presents individually the Starbucks locations that are within 3000 meters of any
point in the corridor associated with the route. For each location, the example,
displays information about the location followed by a horizontal rule.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600" requestGeom="true">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="Some office"
 firstLine="500 Oracle Parkway"
 city="Redwood City"

Table 14–19 iterateBusinessesInCorridor Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a
category is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

corridorID Name of the variable associated with the corridor. Yes

radiusInMeters Radius in meters around each point in the corridor. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-58 Oracle Application Server Wireless Developer’s Guide

 state="CA"
 postalCode="94065"
 country="US"/>
 <loc:address
 name="ucsb"
 type="oracle.panama.model.Location"
 businessName="UCSB"
 firstLine="6750 El Colegio Rd"
 city="Goleta"
 state="CA"
 postalCode="93117"
 country="US"/>
</loc:route>

<loc:geometry name="myRouteGeom" type="java.util.List" route="myRoute"/>

<loc:iterateBusinessesInCorridor name="a_business_corridor"
 type="oracle.panama.spatial.yp.YPBusiness"
 businessName="Starbucks" corridorID="myRouteGeom" radiusInMeters="3000">
 <%= a_business_corridor.toString() %>
 <HR>
</loc:iterateBusinessesInCorridor>

14.2.1.19 iterateBusinessesInPostalCode
The iterateBusinessesInPostalCode tag presents individually businesses in
a specified postal code.

Table 14–20 lists the iterateBusinessesInPostalCode tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

Table 14–20 iterateBusinessesInPostalCode Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: a_business_pcode Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a category
is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

Developing Location-Based Applications

Using Location Services 14-59

The following example presents individually all Starbucks locations in postal code
93117 in the United States. For each location, it displays information about the
location followed by a horizontal rule.

<loc:iterateBusinessesInPostalCode name="a_business_pcode"
 type="oracle.panama.spatial.yp.YPBusiness"
 postalCode="93117" country="US" businessName="Starbucks">
 <%= a_business_pcode.toString() %>
 <HR>
</loc:iterateBusinessesInPostalCode>

14.2.1.20 iterateBusinessesInRadius
The iterateBusinessesInRadius tag presents individually businesses within a
circular area, associated with a specified radius in meters, around a point.

Table 14–21 lists the iterateBusinessesInRadius tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

postalCode Postal code. Yes

country Country name. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–21 iterateBusinessesInRadius Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
a_business_radius

Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a
category is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

Table 14–20 (Cont.) iterateBusinessesInPostalCode Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

14-60 Oracle Application Server Wireless Developer’s Guide

The following example presents individually all Starbucks locations within 5000
meters (5 kilometers) of the point associated with the address for Oracle
headquarters. For each location, it displays information about the location followed
by a horizontal rule.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:iterateBusinessesInRadius name="a_business_radius"
 type="oracle.panama.spatial.yp.YPCategory"
 businessName="Starbucks" centerID="HQ" radiusInMeters="5000">
 <%= a_business_radius.toString() %>
 <HR>
</loc:iterateBusinessesInRadius>

14.2.1.21 iterateBusinessesInState
The iterateBusinessesInState tag presents individually businesses in a
specified state.

Table 14–22 lists the iterateBusinessesInState tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

centerID Name of the variable associated with the center point for the
query.

Yes

radiusInMeters Number of meters of the radius for the circle around
centerID.

Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–21 (Cont.) iterateBusinessesInRadius Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 14-61

The following example presents individually all Starbucks locations in the state of
New Hampshire. For each location, it displays information about the location
followed by a horizontal rule.

<loc:iterateBusinessesInState name="a_business_state"
 type="oracle.panama.spatial.yp.YPBusiness"
 state="CA" country="US" businessName="Starbucks">
 <%= a_business_state.toString() %>
 <HR>
</loc:iterateBusinessesInState>

14.2.1.22 iterateBusinessesNearestTo
The iterateBusinessesNearestTo tag presents individually businesses within
a circular area, associated with a specified radius in meters, around a point.

Table 14–23 lists the iterateBusinessesNearestTo tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

Table 14–22 iterateBusinessesInState Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: a_business_state Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a category
is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

state 2-character state (US) or province (Canada) code. Yes

country Country name. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-62 Oracle Application Server Wireless Developer’s Guide

The following example presents individually the 10 Starbucks locations nearest to
the point associated with the address for Oracle headquarters. For each location, it
displays information about the location followed by a horizontal rule.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:iterateBusinessesNearestTo name="a_business_nearest"
 type="oracle.panama.spatial.yp.YPBusiness"
 businessName="Starbucks" centerID="HQ" n="10">
 <%= a_business_nearest.toString() %>
 <HR>
</loc:iterateBusinessesNearestTo>

Table 14–23 iterateBusinessesNearestTo Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
a_business_nearest

Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPBusiness

Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a
category is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

centerID Name of the variable associated with the center point for the
query.

Yes

n Number of nearest businesses around centerID. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-63

14.2.1.23 iterateByDistance
The iterateByDistance tag presents individually the points in a collection,
sorted by distance from a specified point. The distance is measured along a straight
line along the curvature of the Earth.

Table 14–24 lists the iterateByDistance tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates a collection of the 10 Starbucks business locations
nearest to Oracle headquarters. It uses the iterateByDistance tag to present
individually the locations sorted by distance from headquarters, and it displays the
information about each location followed by a horizontal rule.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:businesses
 name="starbucks"
 type="java.util.Collection"
 businessName="Starbucks"
 centerID="HQ"
 nearestN="10"/>
<loc:iterateByDistance name="iter_dist" type="oracle.panama.model.Point"
 collection="starbucks" centerID="HQ">

Table 14–24 iterateByDistance Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_dist Yes

type Type of object. Must be: oracle.panama.model.Point Yes

collection Name of the variable associated with the collection of points to
be sorted by distance.

Yes

centerID A point variable name (such as for an address) to be used as
the center point from which distances are to be computed.

Yes

Developing Location-Based Applications

14-64 Oracle Application Server Wireless Developer’s Guide

 <%= iter_dist.toString() %>
 <HR>
</loc:iterateByDistance>

14.2.1.24 iterateByDrivingDistance
The iterateByDrivingDistance tag presents individually the points in a
collection, sorted by driving distance from a specified point, as determined by the
routing provider.

Table 14–25 lists the iterateByDrivingDistance tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example creates a collection of the 10 Starbucks business locations
nearest to Oracle headquarters, and it uses the iterateByDrivingDistance tag
to sort the locations by driving distance from headquarters, and display the
information about each location followed by a horizontal rule.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"

Note: The sorting by driving distance is performed by the routing
provider. Therefore, this tag can be used only with providers that
support sorting by driving distance.

Table 14–25 iterateByDrivingDistance Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_drive Yes

type Type of object. Must be: oracle.panama.model.Point Yes

collection Name of the variable associated with the collection of points to
be sorted by driving distance.

Yes

centerID A point variable name (such as for an address) to be used as
the center point from which driving distances are to be
computed.

Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-65

 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:businesses
 name="starbucks"
 type="java.util.Collection"
 businessName="Starbucks"
 centerID="HQ"
 nearestN="10"/>
<loc:iterateByDrivingDistance name="iter_drive" type="oracle.panama.model.Point"
 collection="starbucks" centerID="HQ">
 <%= iter_drive.toString() %>
 <HR>
</loc:iterateByDrivingDistance>

14.2.1.25 iterateByName
The iterateByName tag presents individually the points in a collection, sorted by
business name.

Table 14–26 lists the iterateByName tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example presents individually the businesses, sorted by name, in a
collection named bookstores, which was previously created. For each business, it
displays information about the location followed by a horizontal rule.

<loc:iterateByName name="iter_name" type="oracle.panama.model.Point"
 collection="bookstores">
 <%= iter_name.toString() %>
 <HR>
</loc:iterateByName>

Table 14–26 iterateByName Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_name Yes

type Type of object. Must be: oracle.panama.model.Point Yes

collection Name of the variable associated with the collection of points to
be sorted by name.

Yes

Developing Location-Based Applications

14-66 Oracle Application Server Wireless Developer’s Guide

14.2.1.26 iterateByRegionName
The iterateByName tag presents individually the points in a collection, sorted by
region name. The regions are sorted first by country, then by state, then by city, and
then by postal code.

Table 14–27 lists the iterateByRegionName tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example presents individually the businesses, sorted by region name
(country, then state, then city, then postal code), in a collection named starbucks,
which was previously created. For each business, it displays information about the
location followed by a horizontal rule.

<loc:iterateByRegionName name="iter_reg_name" type="oracle.panama.model.Point"
 collection="starbucks">
 <%= iter_reg_name.toString() %>
 <HR>
</loc:iterateByRegionName>

14.2.1.27 iterateCategoriesMatchingKeyword
The iterateCategoriesMatchingKeyword tag creates a collection of categories
that match a specified keyword value, and presents the categories individually.

Table 14–28 lists the iterateCategoriesMatchingKeyword tag parameters.
(See Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

Table 14–27 iterateByRegionName Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_reg_name Yes

type Type of object. Must be: oracle.panama.model.Point Yes

collection Name of the variable associated with the collection of points to
be sorted by name.

Yes

Developing Location-Based Applications

Using Location Services 14-67

The following example presents individually the categories that match the keyword
restaurant. For each category, it displays the fully qualified name followed by a
horizontal rule.

<loc:iterateCategoriesMatchingKeyword name="a_category"
 type="oracle.panama.spatial.yp.YPCategory"
 keyword="restaurant">
 <%= a_category.getFullyQualifiedName() %>
 <HR>
</loc:iterateCategoriesMatchingKeyword>

14.2.1.28 iterateChildCategories
The iterateChildCategories tag specifies a collection of immediate child
subcategories, presented individually.

Table 14–29 lists the iterateChildCategories tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

Table 14–28 iterateCategoriesMatchingKeyword Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: a_category Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPCategory

Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag).

No

keyword Word or phrase to be searched for in the parent category
name, or in all category names if parentCategory is not
specified.

Yes

Table 14–29 iterateChildCategories Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_stores Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPCategory

Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag).

No

Developing Location-Based Applications

14-68 Oracle Application Server Wireless Developer’s Guide

The following example presents individually all child categories of the parent
category associated with the variable restaurant. For each child category, it
displays the fully qualified name followed by a horizontal rule.

<loc:iterateChildCategories name="a_child_category"
 type="oracle.panama.spatial.yp.YPCategory"
 parentCategory="restaurant">
 <%= a_child_category.getFullyQualifiedName() %>
 <HR>
</loc:iterateChildCategories>

14.2.1.29 iterateGeocodes
The iterateGeocodes tag returns a collection of geocoded addresses, presented
individually.

Table 14–30 lists the iterateGeocodes tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

Table 14–30 iterateGeocodes Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: main_bus Yes

type Type of object. Must be: oracle.panama.model.Location Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

houseNumber Number of the address on the street. No

streetName Name of the street. Yes

secondLine Second line of street address. No

intersection Name of the intersecting street, if houseNumber is not
specified.

No

city City name. Yes

state 2-character state (US) or province (Canada) code. Yes

postalCode Postal code (main part). Example: 01742 Yes

postalCodeExt Extension of the postal code, such as 4 additional numbers. No

Developing Location-Based Applications

Using Location Services 14-69

The following example of the iterateGeocodes tag presents each geocoded
address on Daniel Webster Highway in postal code 03060 in Nashua, New
Hampshire. For each geocoded address, it displays a horizontal rule and a line of
text, performs a line break, and displays the address information from the provider.

<loc:iterateGeocodes
 name = "a_business"
 type = "oracle.panama.model.Location"
 streetName = "Daniel Webster Hwy"
 city = "Nashua"
 state = "NH"
 postalCode = "03060"
 country = "US">
 <HR>
 Another business in our community:

<%= a_business.toString() %>
</loc:iterateGeocodes>

14.2.1.30 iterateLocationMarks
The iterateLocationMarks tag presents individually the location marks for an
Oracle Application Server Wireless user.

Table 14–31 lists the iterateLocationMarks tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

country Country name or code. Yes

provider Name of the first-choice service provider for the request, if
there is a preference.

No

Table 14–31 iterateLocationMarks Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_marks Yes

Table 14–30 (Cont.) iterateGeocodes Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

14-70 Oracle Application Server Wireless Developer’s Guide

The following example presents each location mark for user Mike as an object
associated with the variable iter_marks, and for each object it displays
information about the object followed by a horizontal rule.

<loc:iterateLocationMarks name="iter_marks"
 type="oracle.panama.model.LocationMark"
 userName="Mike" >
 <%= iter_marks.toString() %>
 <HR>
</loc:iterateLocationMarks>

14.2.1.31 iterateManeuvers
The iterateManeuvers tag creates a collection of driving maneuvers, and it
presents the maneuvers individually.

Table 14–32 lists the iterateManeuvers tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates a route named myRoute between two addresses (a
person’s office and home), displays a map of the route followed by a horizontal
rule, and presents each driving maneuver (using the iterateManeuvers tag and

type Type of object. Must be:
oracle.panama.model.LocationMark

Yes

userName Name of the Oracle Application Server Wireless user for which
to present the location marks. The default is the current user.

No

Table 14–32 iterateManeuvers Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: eManeuver Yes

type Type of object. Must be:
oracle.panama.spatial.jsptags.beans.Maneuver

Yes

routeID Name of the route for which to present the driving
maneuvers.

Yes

Table 14–31 (Cont.) iterateLocationMarks Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 14-71

the getMap and getNarrative function calls) followed by a horizontal rule. Each
driving maneuver description is also a link that users can click to display a map of
the maneuver.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>
</loc:route>

<img src="<%= myRoute.getMap() %>">
<HR>

<loc:iterateManeuvers name="aManeuver"
type="oracle.panama.spatial.jsptags.beans.Maneuver" routeID="myRoute">
 <a href="<%= aManeuver.getMap() %>">
 <%= aManeuver.getNarrative() %>

 <HR>
</loc:iterateManeuvers>

14.2.1.32 iterateReverseGeocodes
The iterateReverseGeocodes tag returns a collection of reverse geocoded
addresses (addresses associated by the provider with a specified point), presented
individually.

Developing Location-Based Applications

14-72 Oracle Application Server Wireless Developer’s Guide

Table 14–33 lists the iterateReverseGeocodes tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example of the iterateReverseGeocodes tag presents each
geocoded address that the provider associates with a specified point For each
geocoded address, it displays the address information from the provider followed
by a horizontal rule.

<loc:iterateReverseGeocodes
 name = "iter_rev"
 type = "oracle.panama.model.Location"
 lon = "-71.4424"
 lat = "42.712"
 label = "You Are Here" >
<%= iter_rev.toString() %>
<HR>
</loc:iterateReverseGeocodes>

14.2.1.33 listAllMembers
The listAllMembers tag creates an unformatted list of all members of a specified
mobile community.

Table 14–33 iterateReverseGeocodes Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be: oracle.panama.model.Location Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

firstLine Street address. No

city City name. No

state 2-character state (US) or province (Canada) code. No

postalCode Postal code. No

country Country name. No

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-73

Table 14–34 lists the listAllMembers tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates an unformatted list of all members of the community
associated with the variable named comm_private, and it displays the
java.util.Enumeration object that is created.

<loc:listAllMembers
 name="list_all_mem"
 type="java.util.Enumeration"
 communityID="comm_private" />
<%= list_all_mem.toString() %>

14.2.1.34 listBusinessesInCity
The listBusinessesInCity creates an unformatted list of businesses in a
specified city.

Table 14–35 lists the listBusinessesInCity tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

Table 14–34 listAllMembers Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: list_all_mem. Yes

type Type of object. Must be: java.util.Enumertion Yes

communityID Name of the variable associated with the community whose
members are to be listed.

Yes

Table 14–35 listBusinessesInCity Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
all_businesses_city

Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business. Example: Starbucks No

Developing Location-Based Applications

14-74 Oracle Application Server Wireless Developer’s Guide

The following example creates an unformatted list of all Borders bookstores in San
Francisco, California, and it displays the list.

<loc:listBusinessesInCity name="all_businesses_city"
 type="java.util.List"
 city="San Francisco" state="CA" country="US" businessName="Borders">
</loc:listBusinessesInCity>
<%= all_businesses_city.toString() %>

14.2.1.35 listBusinessesInCorridor
The listBusinessesInCorridor tag creates an unformatted list of the
businesses in a corridor. A corridor is a collection of points, such as points
representing intersections or exits when creating a route.

Table 14–36 lists the listBusinessesInCorridor tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

categoryID Name of the variable associated with the category, if a category
is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

city City name. Yes

state 2-character state (US) or province (Canada) code. Yes

country Country name. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–36 listBusinessesInCorridor Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be: oracle.panama.model.Location Yes

businessName Descriptive name of the business or other entity at the
address. Example: Mike’s Hardware

No

Table 14–35 (Cont.) listBusinessesInCity Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 14-75

The following example creates a route between an office and another location,
creates an unformatted list of the Starbucks locations that are within 3000 meters of
any point in the corridor associated with the route, and displays the list.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600" requestGeom="true">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="Some office"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
 <loc:address
 name="ucsb"
 type="oracle.panama.model.Location"
 businessName="UCSB"
 firstLine="6750 El Colegio Rd"
 city="Goleta"
 state="CA"
 postalCode="93117"
 country="US"/>
</loc:route>

<loc:geometry name="myRouteGeom" type="java.util.List" route="myRoute"/>

<loc:listBusinessesInCorridor name="all_businesses_corridor"
 type="java.util.List"

categoryID Name of the variable associated with the category, if a
category is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

corridorID Name of the variable associated with the corridor. Yes

radiusInMeters Radius in meters around each point in the corridor. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–36 (Cont.) listBusinessesInCorridor Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

14-76 Oracle Application Server Wireless Developer’s Guide

 businessName="Starbucks" corridorID="myRouteGeom" radiusInMeters="3000">
</loc:listBusinessesInCorridor>
<%= all_businesses_corridor.toString() %>

14.2.1.36 listBusinessesInPostalCode
The listBusinessesInPostalCode tag creates an unformatted list of
businesses in a specified postal code.

Table 14–37 lists the listBusinessesInPostalCode tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example creates an unformatted list of all Starbucks locations in
postal code 93117 in the United States, and it displays the list.

<loc:listBusinessesInPostalCode name="all_businesses_pcode"
 type="java.util.List"
 postalCode="93117" country="US" businessName="Starbucks">
</loc:listBusinessesInPostalCode>
<%= all_businesses_pcode.toString() %>

Table 14–37 listBusinessesInPostalCode Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
all_businesses_pcode

Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a category
is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

postalCode Postal code. Yes

country Country name. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-77

14.2.1.37 listBusinessesInRadius
The listBusinessesInRadius tag creates an unformatted list of businesses
within a circular area, associated with a specified radius in meters, around a point.

Table 14–38 lists the listBusinessesInRadius tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example creates an unformatted list of all Starbucks locations within
5000 meters (5 kilometers) of the point associated with the address for Oracle
headquarters, and it displays the list.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:listBusinessesInRadius name="all_businesses_radius"
 type="java.util.List"

Table 14–38 listBusinessesInRadius Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: all_businesses_
radius

Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a
category is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

centerID Name of the variable associated with the center point for the
query.

Yes

radiusInMeters Number of meters of the radius for the circle around
centerID.

Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-78 Oracle Application Server Wireless Developer’s Guide

 businessName="Starbucks" centerID="HQ" radiusInMeters="5000">
</loc:listBusinessesInRadius>
<%= all_businesses_radius.toString() %>

14.2.1.38 listBusinessesInState
The listBusinessesInState tag creates an unformatted list of businesses in a
specified state.

Table 14–39 lists the listBusinessesInState tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates an unformatted list of all Starbucks locations in the
state of New Hampshire, and it displays the list.

<loc:listBusinessesInState name="all_businesses_state"
 type="java.util.List"
 state="CA" country="US" businessName="Borders">
</loc:listBusinessesInState>
<%= all_businesses_state.toString() %>

Table 14–39 listBusinessesInState Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
all_businesses_state

Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a category
is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

state 2-character state (US) or province (Canada) code. Yes

country Country name. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-79

14.2.1.39 listBusinessesNearestTo
The listBusinessesNearestTo tag creates an unformatted list of businesses
within a circular area, associated with a specified radius in meters, around a point.

Table 14–40 lists the listBusinessesNearestTo tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example creates an unformatted list of the 10 Starbucks locations
nearest to the point associated with the address for Oracle headquarters, and it
displays the list.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:listBusinessesNearestTo name="all_businesses_nearest"
 type="java.util.List"

Table 14–40 listBusinessesNearestTo Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
all_businesses_nearest

Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business. Example: Starbucks No

categoryID Name of the variable associated with the category, if a
category is involved in the query.

No

keyword The keyword, if a keyword is involved in the query. No

centerID Name of the variable associated with the center point for the
query.

Yes

n Number of nearest businesses around centerID. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-80 Oracle Application Server Wireless Developer’s Guide

 businessName="Starbucks" centerID="HQ" n="10">
</loc:listBusinessesNearestTo>
<%= all_businesses_nearest.toString() %>

14.2.1.40 listByDistance
The listByDistance tag creates an unformatted list of the points in a collection,
sorted by distance from a specified point. The distance is measured along a straight
line along the curvature of the Earth.

Table 14–41 lists the listByDistance tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates a collection of the 10 Starbucks business locations
nearest to Oracle headquarters, uses the listByDistance tag to create an
unformatted list of locations sorted by distance from headquarters, and displays the
list.

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:businesses
 name="starbucks"
 type="java.util.Collection"
 businessName="Starbucks"

Table 14–41 listByDistance Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: list_dist Yes

type Type of object. Must be: java.util.List Yes

collection Name of the variable associated with the collection of points to
be sorted by distance.

Yes

centerID A point variable name (such as for an address) to be used as
the center point from which distances are to be computed.

Yes

Developing Location-Based Applications

Using Location Services 14-81

 centerID="HQ"
 nearestN="10"/>
<loc:listByDistance name="list_dist" type="java.util.List"
 collection="starbucks" centerID="HQ">
</loc:listByDistance>
<%= list_dist.toString() %>

14.2.1.41 listByDrivingDistance
The listByDrivingDistance tag creates an unformatted list of the points in a
collection, sorted by driving distance from a specified point, as determined by the
routing provider.

Table 14–42 lists the listByDrivingDistance tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates a collection of the 10 Starbucks business locations
nearest to Oracle headquarters, uses the listByDrivingDistance tag to create
an unformatted list of locations sorted by driving distance from headquarters, and
displays the list.

Note: The sorting by driving distance is performed by the routing
provider. Therefore, this tag can be used only with providers that
support sorting by driving distance.

Table 14–42 listByDrivingDistance Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be: java.util.List Yes

collection Name of the variable associated with the collection of points to
be sorted by driving distance.

Yes

centerID A point variable name (such as for an address) to be used as
the center point from which driving distances are to be
computed.

Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-82 Oracle Application Server Wireless Developer’s Guide

<loc:address
 name="HQ"
 type="oracle.panama.model.Location"
 businessName="HQ"
 firstLine="500 Oracle Parkway"
 city="Redwood City"
 state="CA"
 postalCode="94065"
 country="US"/>
<loc:businesses
 name="starbucks"
 type="java.util.Collection"
 businessName="Starbucks"
 centerID="HQ"
 nearestN="10"/>
<loc:listByDrivingDistance name="list_drive" type="java.util.List"
 collection="starbucks" centerID="HQ">
</loc:listByDrivingDistance>
<%= list_drive.toString() %>

14.2.1.42 listByName
The listByName tag creates an unformatted list of the points in a collection, sorted
by business name.

Table 14–43 lists the listByName tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example creates an unformatted list of the businesses, sorted by
name, in a collection named bookstores (which was previously created), and it
displays the list.

<loc:listByName name="list_name" type="java.util.List"
 collection="bookstores">
</loc:listByName>

Table 14–43 listByName Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_name Yes

type Type of object. Must be: java.util.List Yes

collection Name of the variable associated with the collection of points to
be sorted by name.

Yes

Developing Location-Based Applications

Using Location Services 14-83

<%= list_name.toString() %>

14.2.1.43 listByRegionName
The listByName tag creates an unformatted list of the points in a collection, sorted
by region name. The regions are sorted first by country, then by state, then by city,
and then by postal code.

Table 14–44 lists the listByName tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example creates an unformatted list of the businesses, sorted by
region name (country, then state, then city, then postal code), in a collection named
starbucks (which was previously created), and it displays the list.

<loc:listByRegionName name="list_reg_name" type="java.util.List"
 collection="starbucks">
</loc:listByRegionName>
<%= list_reg_name.toString() %>

14.2.1.44 listCategoriesMatchingKeyword
The listCategoriesMatchingKeyword tag creates an unformatted list of
business directory categories that match a specified keyword.

Table 14–45 lists the listCategoriesMatchingKeyword tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

Table 14–44 listByRegionName Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: list_reg_name Yes

type Type of object. Must be: oracle.panama.model.Point Yes

collection Name of the variable associated with the collection of points to
be sorted by name.

Yes

Developing Location-Based Applications

14-84 Oracle Application Server Wireless Developer’s Guide

The following example creates an unformatted list of the categories that match the
keyword restaurant, and it displays the list.

<loc:listCategoriesMatchingKeyword name="all_categories_key"
 type="java.util.List"
 keyword="restaurant">
</loc:listCategoriesMatchingKeyword>
<%= all_categories_key.toString() %>

14.2.1.45 listChildCategories
The listChildCategories tag creates an unformatted list of immediate child
subcategories.

Table 14–46 lists the listChildCategories tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

Table 14–45 listCategoriesMatchingKeyword Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
all_categories_key

Yes

type Type of object. Must be: java.util.List Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag).

No

keyword Word or phrase to be searched for in the parent category
name, or in all category names if parentCategory is not
specified.

Yes

Table 14–46 listChildCategories Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example:
all_categories_child

Yes

type Type of object. Must be: java.util.List Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag).

No

Developing Location-Based Applications

Using Location Services 14-85

The following example creates an unformatted list of all child categories of the
parent category associated with the variable restaurant, and it displays the list.

<loc:listChildCategories name="all_categories_child"
 type="java.util.List"
 parentCategory="restaurant">
</loc:listChildCategories>
<%= all_categories_child.toString() %>

14.2.1.46 listCreatedCommunities
The listCreatedCommunities tag creates an unformatted list of all mobile
communities (private, shared, and system) owned by a specified Oracle Application
Server mobile use. For an explanation of mobile communities, including types of
communities, see Section 14.3.2.6, "Mobile Communities".

Table 14–47 lists the listCreatedCommunities tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example created an unformatted list, at the request of the user named
Mike, of all mobile communities, and it displays the list.

<loc:listCreatedCommunities
 name="list_cr_comm"
 type="java.util.List"
 userName="Mike" />
<%= list_cr_comm.toString() %>

14.2.1.47 listCreatedPrivateCommunities
The listCreatedPrivateCommunities tag creates an unformatted list of all
mobile private communities owned by a specified Oracle Application Server mobile
use. For an explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–47 listCreatedCommunities Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
list_cr_comm

Yes

type Type of object. Must be: java.util.List Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

Yes

Developing Location-Based Applications

14-86 Oracle Application Server Wireless Developer’s Guide

Table 14–48 lists the listCreatedPrivateCommunities tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example created an unformatted list, at the request of the user named
Mike, of all mobile private communities, and it displays the list.

<loc:listCreatedPrivateCommunities
 name="list_cr_priv_comm"
 type="java.util.List"
 userName="Mike" />
<%= list_cr_priv_comm.toString() %>

14.2.1.48 listCreatedSharedCommunities
The listCreatedSharedCommunities tag creates an unformatted list of all
mobile shared communities owned by a specified Oracle Application Server mobile
use. For an explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–49 lists the listCreatedSharedCommunities tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

Table 14–48 listCreatedPrivateCommunities Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
list_cr_priv_comm

Yes

type Type of object. Must be: java.util.List Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation.The default is the current user.

Yes

Table 14–49 listCreatedSharedCommunities Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
list_cr_shar_comm

Yes

type Type of object. Must be: java.util.List Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

Yes

Developing Location-Based Applications

Using Location Services 14-87

The following example created an unformatted list, at the request of the user named
Mike, of all mobile shared communities, and it displays the list.

<loc:listCreatedSharedCommunities
 name="list_cr_shar_comm"
 type="java.util.List"
 userName="Mike" />
<%= list_cr_shar_comm.toString() %>

14.2.1.49 listCreatedSystemCommunities
The listCreatedSystemCommunities tag creates an unformatted list of all
mobile system communities owned by a specified Oracle Application Server mobile
use. For an explanation of mobile communities, including types of communities, see
Section 14.3.2.6, "Mobile Communities".

Table 14–50 lists the listCreatedSystemCommunities tag parameters. (See
Section 14.2.1, "Creating JavaServer Pages (JSP) Files" for an explanation of the
information provided.)

The following example created an unformatted list, at the request of the user named
Mike, of all mobile system communities, and it displays the list.

<loc:listCreatedSystemCommunities
 name="list_cr_sys_comm"
 type="java.util.List"
 userName="Mike" />
<%= list_cr_sys_comm.toString() %>

14.2.1.50 listGeocodes
The listGeocodes tag creates an unformatted list of geocoded addresses.

Table 14–51 lists the listGeocodes tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

Table 14–50 listCreatedSystemCommunities Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
list_cr_sys_comm

Yes

type Type of object. Must be: java.util.List Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

Yes

Developing Location-Based Applications

14-88 Oracle Application Server Wireless Developer’s Guide

The following example of the listGeocodes tag presents all geocoded addresses
on Daniel Webster Highway in postal code 03060 in Nashua, New Hampshire.

<loc:listGeocodes
 name = "all_businesses"
 type = "java.util.List"
 streetName = "Daniel Webster Hwy"
 city = "Nashua"
 state = "NH"
 postalCode = "03060"
 country = "US" />

14.2.1.51 listLocationMarks
The listLocationMarks tag creates an unformatted list of the location marks for
an OracleAS Wireless user.

Table 14–51 listGeocodes Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware1 Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

houseNumber Number of the address on the street. No

streetName Name of the street. Yes

secondLine Second line of street address. No

intersection Name of the intersecting street, if houseNumber is not
specified.

No

city City name. Yes

state 2-character state (US) or province (Canada) code. Yes

postalCode Postal code (main part). Example: 01742 Yes

postalCodeExt Extension of the postal code, such as 4 additional numbers. No

country Country name or code. Yes

provider Name of the first-choice service provider for the request, if
there is a preference.

No

Developing Location-Based Applications

Using Location Services 14-89

Table 14–52 lists the listLocationMarks tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

The following example creates an unformatted list of the location marks for user
Mike as an object associated with the variable list_marks, and it displays
information about the object.

<loc:listLocationMarks name="list_marks"
 type="java.util.List"
 userName="Mike" />
<%= list_marks.toString() %>

14.2.1.52 listManeuvers
The listManeuvers tag creates an unformatted list of driving maneuvers.

Table 14–53 lists the listManeuvers tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

Table 14–52 listLocationMarks Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: list_marks Yes

type Type of object. Must be:
oracle.panama.model.LocationMark

Yes

userName Name of the Oracle Application Server Wireless user for which
to list the location marks. The default is the current user.

No

Table 14–53 listManeuvers Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

firstLine Street address. No

city City name. No

state 2-character state (US) or province (Canada) code. No

Developing Location-Based Applications

14-90 Oracle Application Server Wireless Developer’s Guide

The following example creates a route named myRoute between two addresses (a
person’s office and home), displays a map of the route followed by a horizontal
rule, and presents an unformatted list of all the driving maneuvers for the route.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>
</loc:route>
<loc:listManeuvers name="all_maneuvers" type="java.util.List" routeID="myRoute"
/>
<%= all_maneuvers.toString() %>

14.2.1.53 listReverseGeocodes
The listReverseGeocodes tag creates an unformatted list of reverse geocoded
addresses (addresses associated by the provider with a specified point).

Table 14–54 lists the listReverseGeocodes tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

postalCode Postal code. No

country Country name. No

Table 14–53 (Cont.) listManeuvers Tag Parameters

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 14-91

The following example of the listReverseGeocodes tag presents addresses
associated by the provider with a specified point.

<loc:listReverseGeocodes
 name = "list_rev"
 type = "java.util.List"
 lon = "-71.4424"
 lat = "42.712"
 label = "You Are Here" />

<%= list_rev.toString() %>

14.2.1.54 map
The map tag specifies a map with a specified resolution and showing one of the
following:

■ One or more points

■ A route

■ A driving maneuver

Table 14–55 lists the map tag parameters. (See Section 14.2.1, "Creating JavaServer
Pages (JSP) Files" for an explanation of the information provided.)

Table 14–54 listReverseGeocodes Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be: java.util.List Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

firstLine Street address. No

city City name. No

state 2-character state (US) or province (Canada) code. No

postalCode Postal code. No

country Country name. No

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

14-92 Oracle Application Server Wireless Developer’s Guide

The following example of the map tag creates a map named NEDCSmall 400 pixels
wide and 300 pixels high. The center point for the map is the address defined by the
address tag enclosed in the map tag.

<loc:map name="NEDCSmall" type="oracle.panama.spatial.jsptags.beans.Map"
 xres="400" yres="300">
 <loc:address
 name="NEDC"
 type="oracle.panama.model.Location"
 businessName="NEDC"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
</loc:map>

14.2.1.55 mobilePos
The mobilePos tag creates an object with positioning information about a mobile
user.

Table 14–56 lists the mobilePos tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

Table 14–55 map Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: myMap Yes

type Type of object. Must be:
oracle.panama.spatial.jsptags.beans.Map

Yes

points Name of a collection of points around which to create the
map.

No

route Name of a route around which to create the map. No

maneuver Name of a maneuver around which to create the map. No

xres Width of the map in screen display units. Yes

yres Height of the map in screen display units. Yes

provider Name of the first-choice provider for the request, if there is a
preference.

No

Developing Location-Based Applications

Using Location Services 14-93

The following example creates an object with positioning information for user
Mike. By default, if the current position cannot be obtained, the default location
mark for that user is used. The example also displays the positioning information.

<loc:mobilePos
 name="position"
 type="oracle.panama.model.Point"
 userName="Mike" />
<%= position.toString() %>

14.2.1.56 point
The point tag specifies the longitude and latitude value of a point, using the WGS
84 coordinate system (Oracle Spatial SRID value 8307).

Table 14–57 lists the point tag parameters. (See Section 14.2.1, "Creating JavaServer
Pages (JSP) Files" for an explanation of the information provided.)

Table 14–56 mobilePos Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
position

Yes

type Type of object. Must be:
oracle.panama.model.Point

Yes

userName Name of the Oracle Application Server
Wireless user for which to request positioning
information. The default is the current user.

No

requestingUser Name of the Oracle Application Server
Wireless user for which to request positioning
information. The default is the current user. If
the requesting user is not authorized to
retrieve positioning information about
userName, the request fails.

No

failoverToDefaultLocationMark TRUE (the default) causes the default location
mark for userName to be used if the user
cannot be positioned and if requestingUser
is authorized to retrieve the positioning
information. FALSE causes the request to fail if
the user cannot be positioned.

No

Developing Location-Based Applications

14-94 Oracle Application Server Wireless Developer’s Guide

The following example of the point tag specifies the point at 75.3 degrees west
longitude and 45.71 degrees north latitude.

<loc:point
 lon = "-73.5"
 lat = "45.71" />

14.2.1.57 removeAllMembers
The removeAllMembers tag removes all members from a mobile community. (It
does not delete the community; to delete a community, use the deleteCommunity
tag.) For an explanation of mobile communities, see Section 14.3.2.6, "Mobile
Communities".

Table 14–58 lists the removeAllMembers tag parameters. (See Section 14.2.1,
"Creating JavaServer Pages (JSP) Files" for an explanation of the information
provided.)

Table 14–57 point Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: my_pt Yes

type Type of object. Must be: oracle.panama.model.Location Yes

lon Longitude value of the point (WGS 84 coordinate system).
Example: -75.3

Yes

lat Latitude value of the point (WGS 84 coordinate system).
Example: 45.71

Yes

Table 14–58 removeAllMembers Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
remove_all_members

Yes

type Type of object. Must be: Boolean (TRUE if the operation
is successful, FALSE if the operation is not successful).

Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

No

communityID Name of variable associated with the community from
which to remove all members. Example: comm_
private

Yes

Developing Location-Based Applications

Using Location Services 14-95

The following example removes, at the request of the user named Mike, all
members from the mobile community associated with the variable named comm_
private. It also creates a java.util.Enumeration object of members of this
community, and displays this object.

<loc:removeAllMembers
 name="remove_all_members"
 type="Boolean"
 userName="Mike"
 communityID="comm_private" />
<loc:listAllMembers
 name="list_all_mem3"
 type="java.util.Enumeration"
 communityID="comm_private" />
<%= list_all_mem3.toString() %>

14.2.1.58 removeMembers
The removeMembers tag removes one or more members from a mobile
community. For an explanation of mobile communities, see Section 14.3.2.6, "Mobile
Communities".

Table 14–59 lists the removeMembers tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example removes, at the request of the user named Mike, the users
named Oscar and Maria from the mobile community associated with the variable

Table 14–59 removeMembers Tag Parameters

Parameter Name Description Required

name Name for the returned object. Example:
remove_members

Yes

type Type of object. Must be: Boolean (TRUE if the operation
is successful, FALSE if the operation is not successful).

Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

No

communityID Name of variable associated with the community from
which to remove the members. Example: comm_
private

Yes

communityMembers A space-delimited list of Oracle Application Server
Wireless users to be removed from the community.

No

Developing Location-Based Applications

14-96 Oracle Application Server Wireless Developer’s Guide

named comm_private. It also creates a java.util.Enumeration object of
members of this community, and displays this object.

<loc:removeMembers
 name="remove_members"
 type="Boolean"
 userName="Mike"
 communityID="comm_private"
 communityMembers="Oscar Maria" />
<loc:listAllMembers
 name="list_all_mem2"
 type="java.util.Enumeration"
 communityID="comm_private" />
<%= list_all_mem2.toString() %>

14.2.1.59 route
The route tag specifies a route with a specified map resolution. It includes
maneuvers, an overview map, and maneuver maps.

Table 14–60 lists the route tag parameters. (See Section 14.2.1, "Creating JavaServer
Pages (JSP) Files" for an explanation of the information provided.)

Table 14–60 route Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: myRoute Yes

type Type of object. Must be:
oracle.panama.spatial.jsptags.beans.Route

Yes

xres Width of the displayed route in screen display units. Yes

yres Height of the displayed route in screen display units. Yes

requestGeom TRUE causes a route geometry to be created and supplied by
the provider (for example, to be used with the geometry tag).
FALSE (the default) causes a route geometry not to be
created.

No

Developing Location-Based Applications

Using Location Services 14-97

The following example creates a route named myRoute between two addresses (a
person’s office and home), displays a map of the route followed by a horizontal
rule, and presents each driving maneuver (using the iterateManeuvers tag and
the getMap and getNarrative function calls) followed by a horizontal rule. Each
driving maneuver description is also a link that users can click to display a map of
the maneuver.

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">
 <loc:address
 name="office"
 type="oracle.panama.model.Location"
 businessName="My office"
 firstLine="1 Oracle Dr"
 city="Nashua"
 state="NH"
 postalCode="03062"
 country="US"/>
 <loc:address
 name="home"
 type="oracle.panama.model.Location"
 businessName="My home"
 firstLine="2 Royal Crest Dr"
 city="Nashua"
 state="NH"
 postalCode="03060"
 country="US"/>
</loc:route>

<img src="<%= myRoute.getMap() %>">
<HR>

requestMap TRUE (the default) causes a route map to be created and
supplied by the provider; however, it does not actually
display the map. (To display the map, use the map tag.).
FALSE causes a route map not to be created. Note, however,
that some providers might always supply a map, regardless
of the requestMap setting.

No

provider Name of the first-choice provider for the request, if there is a
preference.

No

Table 14–60 (Cont.) route Tag Parameters (Cont.)

Parameter
Name Description Required

Developing Location-Based Applications

14-98 Oracle Application Server Wireless Developer’s Guide

<loc:iterateManeuvers name="aManeuver"
type="oracle.panama.spatial.jsptags.beans.Maneuver" routeID="myRoute">
 <a href="<%= aManeuver.getMap() %>">
 <%= aManeuver.getNarrative() %>

 <HR>
</loc:iterateManeuvers>

14.2.1.60 setCommunityName
The setCommunityName tag specifies an address to be geocoded, located on a
map, or used as the start or end address of a route or as the center for a business
directory query.

Table 14–61 lists the address tag parameters. (See Section 14.2.1, "Creating
JavaServer Pages (JSP) Files" for an explanation of the information provided.)

The following example sets, at the request of the user named Mike, the community
name of the existing community that is associated with the variable named comm_
shared. The community name is set to the value Renamed Shared Community.
The example also displays the result of the operation (TRUE or FALSE).

<loc:setCommunityName
 name="set_comm_name"
 type="Boolean"
 userName="Mike"
 communityID="comm_shared"
 newName="Renamed Shared Community" />
<%= set_comm_name.toString() %>

Table 14–61 setCommunityName Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_1. Yes

type Type of object. Must be: Boolean (TRUE if the operation is
successful, FALSE if the operation is not successful).

Yes

userName Name of the Oracle Application Server Wireless user
requesting the operation. The default is the current user.

No

communityID Name of variable associated with the community from which
to remove all members. Example: comm_shared

Yes

newName Descriptive new name to be assigned to the community. Yes

Developing Location-Based Applications

Using Location Services 14-99

14.2.2 Using the Location Java API
You can use the location Java API to write an application, such as in JSP files or
servlets, if you need to have more precise control over the application behavior than
is possible with JSP tags alone.

This section provides information on using the location Java API. It does not
describe JSP concepts or how to write MobileXML applications, because these topics
are covered in other chapters of this guide.

14.2.2.1 Geocoding
In a geocoding application, the user is asked for an address, and the application
geocodes that address. Such an application can start by constructing a SimpleForm
object for the address, as shown in Example 14–9.

Example 14–8 Constructing a SimpleForm Object

<SimpleResult>
 <SimpleForm target="EnterAddress2.jsp">
 <SimpleFormItem name="businessName" title="Business Name" value="Oracle"/>
 <SimpleFormItem name="houseNum" title="House Number" value="500"/>
 <SimpleFormItem name="street" title="Street" value="Oracle Parkway"/>
 <SimpleFormItem name="city" title="City" value="Redwood City"/>
 <SimpleFormItem name="state" title="State" value="CA"/>
 <SimpleFormItem name="postalCode" title="Postal Code" value="94065"/>
 <SimpleFormItem name="country" title="Country" value="US"/>
 </SimpleForm>
</SimpleResult>

The next time the application is invoked (after the user has entered values into the
fields), the application can access the data, as shown in Example 14–9.

Example 14–9 Accessing Address Data

String
 businessName = request.getParameter("businessName"),
 houseNumber = request.getParameter("houseNum"),
 streetName = request.getParameter("street"),
 city = request.getParameter("city"),
 state = request.getParameter("state"),
 postalCode = request.getParameter("postalCode"),
 country = request.getParameter("country");

Developing Location-Based Applications

14-100 Oracle Application Server Wireless Developer’s Guide

Geocoding can be done with a call, as shown in Example 14–10. (Another format of
SpatialManager.createlocation, not shown in Example 14–10, specifies a
point with longitude and latitude coordinates, in which case a Location object is
created but no geocoding is done.)

Example 14–10 Geocoding the Address

Location address =
 SpatialManager.createLocation(
 businessName,
 houseNumber,
 new String[] { streetName },
 null,
 city,
 state,
 postalCode,
 null,
 country);

The resulting longitude and latitude values can be accessed, as shown in
Example 14–11.

Example 14–11 Accessing Values of the Geocoded Address

address.getLongitude()
address.getLatitude()
address.getAddressLine1()
address.getCity()
address.getState()

Note that the getLongitude and getLatitude methods are inherited from the
Point interface.

14.2.2.1.1 International Addresses To better adapt to local address formats, you can
use the international address formatting options provided in the
oracle.panama.spatial.intladdress package. (For information about
international address formats, see Section 14.1.5.1.4, "Address Format
(International) Configuration".) The number of steps necessary to have a user input
an address increases by one: the user first has to select a country (address format) in
order to be presented with a form for entering the address. Because the form
depends on the choice of country, the two separate steps cannot be merged to one.

Example 14–12 creates a drop-down SimpleFormSelect element that lets the user
select an address format (US, German, French, and so on).

Developing Location-Based Applications

Using Location Services 14-101

Example 14–12 Selecting an Address Format

<SimpleResult>
 <SimpleMenu>
 <%
 java.util.Iterator it =
 oracle.panama.spatial.intladdress.IntlAddressManager.getAddressFormats();
 while(it.hasNext())
 {
 String name = (String)it.next();
 %>
 <SimpleMenuItem target="enterIntlAddress.jsp?name=<%= name %>">
 <%= name %>
 </SimpleMenuItem>
 <%
 }
 %>
 </SimpleMenu>
</SimpleResult>

The next step is to provide a form requesting all address components relevant to the
given address format. The components are determined dynamically based on the
specified country, as shown in Example 14–13.

Example 14–13 Requesting Address Components for a Specified Country

<SimpleResult>
 <SimpleForm target="readIntlAddress.jsp?name=<%= request.getParameter("name")
 %>">
 <%
 java.util.Iterator addressComponentNames =
 oracle.panama.spatial.intladdress.IntlAddressManager.getAddressFormat(
 request.getParameter("name")).getComponentNames();
 int num = 1;
 while(addressComponentNames.hasNext())
 {
 String name = (String)addressComponentNames.next();
 %>
 <SimpleFormItem name="component<%= num++ %>" title="<%= name %>"/>
 <%
 }
 %>
 </SimpleForm>
</SimpleResult>

Developing Location-Based Applications

14-102 Oracle Application Server Wireless Developer’s Guide

Example 14–14 displays the result. The components to display and the number of
lines depend on the country.

Example 14–14 Displaying Addresses in a Country-Specific Format

<SimpleResult>
 <SimpleText>
<%
 String name = request.getParameter("name");
 boolean finished = false;
 java.util.Vector components = new java.util.Vector();
 for(int i = 1; !finished; i++)
 {
 String component = request.getParameter("component" + i);
 if(component != null)
 components.add(component);
 else
 finished = true;
 }
 String componentArray[] = new String[components.size()];
 for(int i = 0; i < componentArray.length; i++)
 componentArray[i] = (String)components.get(i);
 oracle.panama.spatial.intladdress.IntlAddress loc =
 oracle.panama.spatial.intladdress.IntlAddressManager.createAddress(
 name,
 componentArray);

 java.util.Iterator lines = loc.getAddressLines(false, true);
 while(lines.hasNext())
 {
 %>
 <SimpleTextItem>
 <%= (String)lines.next() %>
 </SimpleTextItem>
 <%
 }
%>
 </SimpleText>
</SimpleResult>

14.2.2.2 Location Marks
An adapter can work with location marks. Example 14–15 retrieves the location
marks into an array. (Code not relevant to location marks is omitted from this
example.)

Developing Location-Based Applications

Using Location Services 14-103

Example 14–15 Getting Location Marks

…
LocationMark locMarks[] = sr.getSession().getUser().getLocationMarks();
…

Note that LocationMark extends Location (an address).

14.2.2.3 Routing
You can create an adapter that provides routing information between a start address
and an end address that the user enters. The adapter must:

1. Set the routing settings and options.

2. Compute the route.

3. Present the resulting route to the user (for example, as a list of maneuvers and
maneuver maps, plus an overview map).

Example 14–16 sets the routing settings and options by constructing a
RoutingSettings object and specifying the resolution (height and width) of the
resulting overview and maneuver maps.

Example 14–16 Setting Routing Settings and Options

RoutingSettings rS = new RoutingSettings(true, false);
rS.setSecondaryOption(RoutingOption.overviewMapHeight, "600");
rS.setSecondaryOption(RoutingOption.overviewMapWidth, "800");
rS.setSecondaryOption(RoutingOption.maneuverMapHeight, "600");
rS.setSecondaryOption(RoutingOption.maneuverMapWidth, "800");

Example 14–17 computes the route, returning a RoutingResult object.

Example 14–17 Computing the Route

RoutingResult rR =
 SpatialManager.getRouter().computeRoute(
 startLoc,
 endLoc,
 null, // via points
 rS, // routing options
 Locale.US);

Example 14–18 presents the resulting route to the user, displaying a list of
maneuvers and maneuver maps, plus an overview map. (In this example, code
specific to the routing API is shown in bold.)

Developing Location-Based Applications

14-104 Oracle Application Server Wireless Developer’s Guide

Example 14–18 Presenting the Route to the User

<%!
 public static String translate(String orig)
 {
 return oracle.panama.spatial.XMLEncoder.encodeToSimplifiedXML(orig);
 }
%>

<%
 oracle.panama.spatial.router.RoutingResult rR = ...
%>
<SimpleResult>
 <SimpleImage src="<%= translate(rR.getOverviewMapURL()[0].toString()) %>"/>
 <SimpleText>
 <%
 oracle.panama.spatial.router.Maneuver mans[] = rR.getManeuvers();
 for(int i = 0; i < mans.length; i++) {
 %>
 <SimpleTextItem>
 <%= mans[i].getNarrative() %>
 </SimpleTextItem>
 <% } %>
 </SimpleText>
</SimpleResult>

14.2.2.4 Mapping
In a typical mapping application, the user enters an address and wants to see a
map. Example 14–19 gets the map image URL of an address to be mapped. (The
variable loc of type Location contains an address that has been previously
geocoded.)

Example 14–19 Getting a Map Image URL:

String url =
 SpatialManager.getMapper().getMapURL(
 loc,
 oracle.panama.imagex.ImageFormats.GIF,
 800, // width
 600, // height
 false); // allow turning

Developing Location-Based Applications

Using Location Services 14-105

In Example 14–19, the last parameter specifies whether or not the API can switch
the width and height of the image to fit the map better to some mobile device
screens. In this example, this option is disabled.

As alternatives to passing a single point object as the first parameter, as shown in
Example 14–19, you can pass an array of Point objects or an object of type
Location (address) or YPBusiness, which extend the Point interface.

14.2.2.5 Business Directory (YP)
In a typical business directory (YP) application, the user enters a region specifying a
country, state, and city, and wants to get businesses in some category, such as
relating to wine tasting or wineries. The user must be asked for country, state, and
city, and the application must determine the exact category and then all the relevant
businesses.

The first step in determining the category is usually to ask the user for a category
keyword (for example, wine) through a SimpleForm object.

The next step is to determine all the categories that match the keyword, as shown in
Example 14–20.

Example 14–20 Finding Categories Matching a Keyword

YPFinder ypF = SpatialManager.getYPFinder();
YPCategory cats[] = ypF.getCategoryAtRoot().getCategoriesMatchingName(keyword);

Example 14–21 shows a simple user interface that presents categories from which to
choose. The user is presented a drop-down menu from which select the category
that best matches what he or she is looking for.

Example 14–21 User Interface for Selecting a Category

<SimpleResult>
 <SimpleMenu>
 <%
 oracle.panama.spatial.yp.YPFinder ypF =
 oracle.panama.spatial.SpatialManager.getYPFinder();
 oracle.panama.spatial.yp.YPCategory cats[] =
 ypF.getCategoryAtRoot().getCategoriesMatchingName("auto");
 for(int i = 0; i < cats.length; i++)
 {
 %>
 <SimpleMenuItem
 target="listCategories.jsp?cat=<%= cats[i].getFullyQualifiedName() %>">

Developing Location-Based Applications

14-106 Oracle Application Server Wireless Developer’s Guide

 <%= cats[i].getFullyQualifiedName() %>
 </SimpleMenuItem>
 <%
 }
 %>
 </SimpleMenu>
</SimpleResult>

When the application determines the fully qualified name of the chosen category,
you can obtain the appropriate category, as shown in Example 14–22.

Example 14–22 Finding the Category

YPCategory cat = YPCategory.fromFullyQualifiedName(categoryNameString);
YPBusiness b[] =
 SpatialManager.getYPFinder().getBusinessesInCity(
 cat,
 country,
 state,
 city,
 Locale.US);

The conversion in Example 14–22 from a category object to a String object and
back to a category object is required because a drop-down menu lets you make a
selection among String objects, not among general objects.

14.2.2.6 Traffic
To create an application based on the traffic services API, you must do the
following:

1. Prepare input objects (such as CityInfo, RouteInfo, Point, and Location)
for the query.

2. Get TrafficReporter and summit the query.

3. Obtain TrafficReport and process the information.

The rest of this section contains examples of typical operations. Example 14–23
performs a city-level query.

Example 14–23 City-Level Query

TrafficReporter reporter = SpatialManager.getTrafficReporter();
CityInfo c = new CityInfo("BOSTON", "MA", "US");
TrafficReport report = null;

Developing Location-Based Applications

Using Location Services 14-107

try{
 report = reporter.getReportViaCity(c);
}catch(LBSException e){
 System.out.println(e.getLocalizedMessage());
}

Example 14–24 performs a route-level query without specifying a direction, and
returns incidents in both directions.

Example 14–24 Route-Level Query (Incidents in Both Directions)

RouteInfo r = new RouteInfo("US 3", null);
try{
 report = reporter.getReportViaRoute(r,c);
}catch(LBSException e){
 System.out.println(e.getLocalizedMessage());
}

Example 14–25 performs a route-level query for a specified direction (north).

Example 14–25 Route-Level Query Specifying Direction

try{
 report = reporter.getReportViaRoute(r,TrafficReporter.North,c);
}catch(LBSException e){
 System.out.println(e.getLocalizedMessage());
}

Example 14–26 performs a route-level query for an area 10 miles around a specified
longitude/latitude point.

Example 14–26 Route-Level Query Around Longitude/Latitude Point

p = SpatialManager.createPoint(-71.0607, 42.3659);
try{
 report = reporter.getReportViaLocation(p, 10, TrafficReporter.MILES,
c);
}catch(LBSException e){
 System.out.println(e.getLocalizedMessage());
}

Example 14–27 performs a route-level query for an area 10 miles around a specified
address.

Developing Location-Based Applications

14-108 Oracle Application Server Wireless Developer’s Guide

Example 14–27 Route-Level Query Around Address

Location loc = SpatialManager.createLocation(null, null, "839 Kearny
 Street", null, "San Francisco", "CA", null, null, "US");
try{
 report = reporter.getReportViaAddress(loc, 10, TrafficReporter.MILES);
}catch(LBSException e){
 System.out.println(e.getLocalizedMessage());
}

Example 14–28 processes a traffic report to get useful information.

Example 14–28 Processing a Traffic Report

Calendar rTime = report.getReportTime();
TrafficIncident[] incidents = report.getIncidents();
if(incidents != null){
 for(int i=0; i<incidents.length; i++){
 TrafficIncident inc = incidents[i];
 String desc = inc.getDescription();
 String severity = inc.getSeverity();
 String type = inc.getType();
 TrafficRoute route = inc.getIncidentRoute();
 String[] locations = inc.getLocationRange(); //text description
 if(locations.length == 2){ //a location range
 String exit1 = locations[0];
 String exit2 = locations[1];
 }
 else if(locations.length == 1){
 String exit1 = locations[0]; //one location
 }
 Point geoLocation = inc.getIncidentLocation(); //lon/lat or
lon/lat+radius
 Calendar[] tr = inc.getTimeRange();
 }
}

Example 14–29 returns a list of cities for which traffic support is provided.

Example 14–29 Returning a List of Cities

TrafficCityManager manager = reporter.getCityManager();
CityInfo[] cities = null;
try{
 cities = manager.getActiveCities();
}catch(LBSException e){

Developing Location-Based Applications

Using Location Services 14-109

 System.out.println(e.getLocalizedMessage());
}

Example 14–30 returns a list of routes for which traffic support is provided in a
specified city (San Francisco, California).

Example 14–30 Returning a List of Routes in a City

TrafficCityManager manager = reporter.getCityManager();
CityInfo sf = new CityInfo("SAN FRANCISCO", "CA", "US");
RouteInfo[] routes = null;
try{
 routes = manager.getRoutesInCity(sf);
}catch(LBSException e){
 System.out.println(e.getLocalizedMessage());
}

14.2.3 Using Web Services
Oracle Application Server location services support the use of Web services with
wireless applications that use the capabilities of the Geocoder, Mapper, Router, or
YPFinder interfaces. Application developers do not need to add special coding if
the application runs within OracleAS Wireless. Rather, Web services are integrated
as service proxies for geocoding, mapping, routing, and business directory (YP)
support.

If you develop external applications, whether written in Java or another language,
you can access location-based Web services using the following kinds of files
supplied with Wireless:

■ WSDL files (see Section 14.2.3.1, "WSDL Files")

■ XML files (see Section 14.2.3.2, "XML Files")

■ XSD files (see Section 14.2.3.3, "XSD Files")

14.2.3.1 WSDL Files
The following WSDL files describe the Web services interfaces for geocoding,
mapping, routing, and business directory (yellow pages) services:

■ LbsSoapServiceGeocoder.wsdl

■ LbsSoapServiceMapper.wsdl

■ LbsSoapServiceRouter.wsdl

Developing Location-Based Applications

14-110 Oracle Application Server Wireless Developer’s Guide

■ LbsSoapServiceYPFinder.wsdl

14.2.3.2 XML Files
The following XML files contain example XML documents for the schema files:

■ lbsAddress.xml

■ lbsAddressArray.xml

■ lbsAddressArray2.xml

■ lbsBusiness.xml

■ lbsBusinessArray.xml

■ lbsCategory.xml

■ lbsMap.xml

■ lbsMapURL.xml

■ lbsMapURLArray2.xml

■ lbsPhone.xml

■ lbsPhoneArray.xml

■ lbsPoint.xml

■ lbsPointArray.xml

■ lbsRoute.xml

■ lbsRouteSettings.xml

14.2.3.3 XSD Files
The following XSD files describe the XML parameters and return values in the Web
services calls:

■ lbsAddress.xsd

■ lbsAddressArray.xsd

■ lbsAddressArray2.xsd

■ lbsBusiness.xsd

■ lbsBusinessArray.xsd

■ lbsCategory.xsd

Enabling Mobile Positioning

Using Location Services 14-111

■ lbsMap.xsd

■ lbsMapURL.xsd

■ lbsMapURLArray2.xsd

■ lbsPhone.xsd

■ lbsPhoneArray.xsd

■ lbsPoint.xsd

■ lbsPointArray.xsd

■ lbsRoute.xsd

■ lbsRouteSettings.xsd

14.3 Enabling Mobile Positioning
You can enable mobile positioning for individual users or groups of users of a
location-based application. Mobile positioning of a user refers to associating a
location with that user. When mobile positioning is enabled for a user, the user’s
current location, whether it is obtained dynamically from automatic positioning or
from a default location mark, is used by OracleAS Wireless to determine the
visibility of location-based services or folders. A service or folder can be defined as
location-dependent (as described in Section 14.5.3) by associating it with a system
region or a previously defined custom region. A location-dependent service or
folder appears in a user’s portal only when the user’s current location (from
automatic positioning or from a default location mark) is within the associated
region. For example, if the user’s current location is in Boston, a Boston traffic
information service would be visible to the user; otherwise, the service would not
be visible to that user.

Mobile positioning can be manual or automatic:

■ Manual positioning occurs when a specific location is assigned to a user. The
assigned location could be the geocoded result of an address that the user is
asked to enter, an explicitly specified location mark, or a default location for the
user. For example, the location of the user’s home might be specified for mobile
positioning, and an application could then offer information and options
relevant to that home area (regardless of the user’s actual current physical
location).

■ Automatic positioning (sometimes called location acquisition) occurs when the
user’s location is determined automatically based on positioning information

Enabling Mobile Positioning

14-112 Oracle Application Server Wireless Developer’s Guide

based on the location of the mobile device. For example, the location of a
delivery truck driver or service technician might be periodically determined
based on the person’s mobile device location, and an application could consider
that location data when providing information or instructions to the user.

Automatic positioning provides several options relating to frequency of
position updates and user privacy.

This section describes manual and automatic positioning in more detail, and
describes how to enable each type of positioning.

14.3.1 Manual Positioning
Manual positioning associates a specific location with the mobile application user.
The location can be explicitly specified (such as the user entering an address or the
name of a location mark), or it can be a default location mark for that user. A
location mark is a position that is typically associated with longitude and latitude
coordinates and that has a name. For example, an application user can create
location marks named MyHome and MyOffice (for the person’s home and office
locations, respectively), and associate a geocoded address with each one. If this
person designated MyHome as the default location mark, the mobile application
would consider the person’s home address as the person’s location.

If a user tries to set a default location mark that is not geocoded, a geocoding
operation is performed before the location mark is made the default. If the
geocoding operation fails, it is recommended that you not set that location mark as
the default, because many capabilities (such as location-dependent service
visibility) depend on the geocoded information of the default location mark.

For more information about location marks, see Section 14.1.7, "Location Marks".

14.3.1.1 Enabling Manual Positioning
To enable manual positioning for a user, first set up any location marks that you
might want to use. Use the API (LocationMark class) or the Personalization Portal
Web interface to create one of more location marks (if they do not already exist), and
specify a location mark as the default for that user.

Note: If automatic positioning (described in Section 14.3.2) is
turned off or if the positioning server is temporarily unavailable,
manual positioning is used, and the user’s default location mark is
used. (Automatic positioning can be turned on and off using the
OracleAS Wireless System Manager.)

Enabling Mobile Positioning

Using Location Services 14-113

To enable manual positioning using the Personalization Portal interface, follow
these steps:

1. Log in to the Personalization Portal Web interface

2. Click the LocationMarks tab.

3. If the location mark that you want for your default location does not already
exist it, create it. (Click Create and complete the information on the page that is
displayed.)

4. Select the location mark that you want for your default location.

5. Click Set Default.

14.3.2 Automatic Positioning
Automatic positioning allows the user’s location to be determined based on a
position based on the location of the user’s mobile device. You can determine how
timely, and thus potentially how accurate, the location is by setting a positioning
quality of service (QoS) value.

The OracleAS Wireless API enables an application to access a mobile user’s current
location through the current session (see getCurrentLocation() in the
oracle.panama.rt.Session interface). If automatic positioning is turned on in
the system, the user’s current physical location is returned from the mobile
positioning system. If automatic positioning is turned off or if the positioning server
is temporarily unavailable, the user’s default location mark is returned.

Privacy and the security of privacy-related information are important concerns in a
location acquisition system. OracleAS Wireless location services provide a privacy
management component that allows users to view and edit their privacy settings, to
enable and disable the positioning operation on themselves, and to authorize one or
more people (a mobile community) to obtain positioning information on them
within certain time frames. It also allows application developers to access these
capabilities through a public API.

Automatic positioning is controlled by the mobile positioning framework, which is
shown in Figure 14–5.

Enabling Mobile Positioning

14-114 Oracle Application Server Wireless Developer’s Guide

Figure 14–5 Mobile Positioning Framework

As Figure 14–5 shows:

■ Application developers can use the mobile positioning API together with the
privacy API to provide services.

■ The mobile positioning API in the application communicates with the location
cache (described in Section 14.3.2.2) and the location acquisition layer to
determine the user’s location. Whether or not the cache is used is affected by
the positioning quality of service (QoS) value, which is described in
Section 14.3.2.3.

■ The location acquisition layer passes the actual current position to the location
cache and to the mobile positioning API.

■ Privacy management logic controls privacy-related aspects of the mobile
positioning framework, which are described in later sections.

14.3.2.1 Providing Location Using a GPS Device
A mobile device can send its current location, usually provided through a global
positioning system (GPS), to the OracleAS Wireless server. The current location can
then be queried using the mobile positioning and privacy APIs.

You must create a client application program that runs on the mobile device and
posts the device's current location to the OracleAS Wireless server. The data can be
posted either to a JSP running on the OracleAS Wireless server or through a Web
service.

Enabling Mobile Positioning

Using Location Services 14-115

The data must be in XML format, and it must conform to the following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified">
 <xsd:element name="MP_GPS">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="USERNAME"/>
 <xsd:element ref="PASSWORD"/>
 <xsd:element ref="MSID"/>
 <xsd:element ref="TIME" minOccurs="0"/>
 <xsd:element ref="GMT" minOccurs="0"/>
 <xsd:element ref="POS"/>
 <xsd:element ref="ALTITUDE" minOccurs="0"/>
 <xsd:element ref="ALT_UNCERTAINTY" minOccurs="0"/>
 <xsd:element ref="VELOCITY" minOccurs="0"/>
 <xsd:element ref="BEARING" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ALTITUDE" type="xsd:string"/>
 <xsd:element name="ALT_UNCERTAINTY" type="xsd:string"/>
 <xsd:element name="BEARING" type="xsd:string"/>
 <xsd:element name="GMT" type="xsd:string"/>
 <xsd:element name="LAT" type="xsd:string"/>
 <xsd:element name="LONG" type="xsd:string"/>
 <xsd:element name="MSID" type="xsd:string"/>
 <xsd:element name="PASSWORD" type="xsd:string"/>
 <xsd:element name="POS">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="LAT"/>
 <xsd:element ref="LONG"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="TIME" type="xsd:string"/>
 <xsd:element name="USERNAME" type="xsd:string"/>
 <xsd:element name="VELOCITY" type="xsd:string"/>
</xsd:schema>

The <USERNAME> and <PASSWORD> elements are used by OracleAS Wireless server
to authorize the request.

Enabling Mobile Positioning

14-116 Oracle Application Server Wireless Developer’s Guide

The <MSID> element is the mobile station ID of the mobile device or user.

The optional <TIME> element indicates the time when this location is generated by
a GPS. If this value is missing, the time when the data arrives at the OracleAS
Wireless server is used.

The optional <VELOCITY> element specifies the velocity of the mobile device, in
meters per second.

The optional <BEARING> element specifies the bearing angle, in degrees, clockwise
from North.

The optional <ALTITUDE> element specifies the altitude of the mobile device, in
meters, above sea level.

14.3.2.2 Location Cache
The location cache is an area in memory that temporarily stores a mobile user’s ID,
the most recently acquired location information, and the time when that
information was gathered. If the location cache is searched for a mobile positioning
request, and if there is an entry in the cache for the user whose location is requested,
the time difference between the cache entry time and the current request time is
compared against the positioning quality of service level of the positioning request.
(Positioning quality of service is explained in Section 14.3.2.3.)

When a positioning request is satisfied by information in the cache, no position
sensing is required; that is, no network round-trip operation is required.

14.3.2.3 Positioning Quality of Service
The positioning quality of service (QoS) value controls:

■ Whether to check the current device position or the location cache to determine
the location.

■ If the location cache is checked, a maximum "age" of the most recent cached
location value (that is, a number of seconds since that value was written to the
location cache) for it to be used by the application.

You can specify the positioning quality of service value in either of the following
ways:

■ As a number of seconds, representing the maximum age of the position in the
location cache for it to be used by the application. If the most recent position in
the location cache is older than the appropriate time, the actual current position
of the device is obtained, written in the cache, and used by the application. A

Enabling Mobile Positioning

Using Location Services 14-117

value of 0 (zero) causes the positioning framework always to give the actual
positioning result and not to search the location cache.

■ As one of the following string values, each representing a level of positioning
quality:

■ Exact: Causes the positioning framework always to give the actual
positioning result and not to search the location cache; equivalent to
specifying 0 (zero) seconds.

■ High: Represents a high level of probable accuracy.

■ Medium: Represents a medium level of probable accuracy.

■ Low: Represents a lower level of probable accuracy than the Medium value.

For the High, Medium, and Low values, the positioning framework determines an
age value (number of seconds) in a heuristic manner.

There is a system default positioning quality of service level, which you can set. If a
positioning quality of service level is not specified with a positioning request, the
system default is used. The level can be set using the mobile positioning API (see
Section 14.3.2.8, "Mobile Positioning API") or the System Manager.

The trade-off in selecting a positioning quality of service level is probable accuracy
versus application performance. A value of 0 seconds or Exact guarantees that the
actual current position is obtained; however, obtaining the actual position requires
network round-trip to the service provider for each mobile positioning request.
Such round-trip operations can slow application performance, especially if there are
positioning requests for many users or many requests for the same user. You should
use a value of 0 seconds or Exact only if the application always needs to know the
actual position. A value of Low returns a location that is least likely to be accurate
(unless the user has not moved at all); however, it increases the probability that the
location will be obtained from the cache, eliminating the need for a network
round-trip operation. If the user is not likely to move very far or fast, or if it is not
important to know the actual current location, a value of Low may be best.

14.3.2.4 Specifying Positioning Providers
Automatic mobile position is queried by calling the
Positioner.requestPosition function. (Positioner is a class in the
oracle.panama.mp package). A Positioner object is based on one or more
mobile positioning providers. As with other location service providers, a mobile
positioning is configured by specifying information such as the name, version, URL,
user name, and password.

Enabling Mobile Positioning

14-118 Oracle Application Server Wireless Developer’s Guide

However, a mobile positioning service differs from other location services in that in
some cases positioning can only be handled by one specific provider, which is less
likely to be true for other location based services. For example, if you request a map
of California, several mapping providers are able to provide the map. However, if
you request mobile position for a specific phone number (such as +4412345678), it is
very likely only one provider can provide the position. A mobile ID (typically a
phone number) usually identifies a wireless carrier and thus also determines the
mobile positioning provider or providers. Therefore, application developers need to
be able to get a positioner based on specific mobile positioning providers.

To meet different application needs, several getPositioner signatures are
provided in the MPManager class:

■ getPositioner()

■ getPositioner(MPProvider provider)

■ getPositioner(MPProvider[] providers)

An Internet portal may have subscribers from different carriers, and they may need
to decide dynamically, based on the mobile ID, which provider to use at run time.
This need is supported by mobile positioning provider selector hooks (implemented
through the oracle.panama.mp.MPProviderSelector interface).

A provider selector hook takes a mobile ID and returns an array of MPProvider
objects that can handle the positioning request. The default provider selector hook
is provided by oracle.panama.mp.core.ProviderSelectorImpl, which
returns all providers in the system, which means by default the positioning
framework does not attempt to choose a provider. A selector hook is used by a
positioner when calling positioner.requestPosition and is applicable for the
getPositioner() signature. If the providers are already specified when the
positioner is called, the selector hook is not used.

OracleAS Wireless API enables an application to access a mobile user’s current
location through the current session (Session.getCurrentLocation()). By
default, the user’s mobile ID (which is in the user’s profile) is used to call the mobile
positioning API to get the current position. However, if advanced users want to use
a different value for positioning, they can write their own mobile ID hook by
implementing the oracle.panama.rt.hook.MobileIDHook interface. A mobile
ID hook takes the current user’s information and returns his or her mobile ID for
positioning. If the automatic positioning fails, the system fails over to the user’s
default location mark as the current location.

Note that you do not have to implement either the provider selector hook or the
mobile ID hook. If the default settings meet your needs, you can simply configure

Enabling Mobile Positioning

Using Location Services 14-119

mobile positioning providers and call
MPManager.getPositioner().requestPosition().

To summarize:

■ A Positioner can be a system default based on all mobile positioning
providers configured in the system, or it can be customized based only on one
or more specific providers.

■ When a system default is used, a provider selector hook is used only when
choosing the system default positioner. A selector hook takes a mobile ID and
decides which provider or providers can handle it. In the case of batch query,
the first mobile ID in the batch determines which provider is selected.

■ Failover is provided when a positioner is based on more than one provider and
a provider cannot handle the request.

Programs should check that the PositionResult has a nonzero error code before
using it.

Example 14–31 gets the user’s position using system default providers and the
default positioning quality of service.

Example 14–31 Getting Position using System Default Providers and Default QoS

Positioner positioner = MPManager.getPositioner();
PositionResult res = positioner.requestPosition("46708123456790");
Date timeStamp = res.getTimeStamp();
double lon = res.getPositionAreas()[0].getCenterPointLongitude();
double lat = res.getPositionAreas()[0].getCenterPointLatitude();

Example 14–32 shows two examples of getting the user’s position and specifying a
positioning quality of service level. The first example specifies the quality
descriptively as high, and the second example specifies the quality as a number of
seconds. (Section 14.3.2.3 explains the ways in which you can specify positioning
quality of service.)

Example 14–32 Getting Position Specifying QoS

PositionResult res = positioner.requestPosition("46708123456790",
ServiceQoS.HIGH_QUAL);

PositionResult res = positioner.requestPosition("46708123456790", new
ServiceQos(120));

Example 14–33 gets the user’s position based on an array of specific providers.

Enabling Mobile Positioning

14-120 Oracle Application Server Wireless Developer’s Guide

Example 14–33 Getting Position Based on an Array of Providers

MPProvider[] providers = new MPProvider[2];
providers[0] = MPManager.lookup("CellPoint", "1.2");
providers[1] = MPManager.lookup("Ericsson", "3.0");
Positioner positioner = MPManager.getPositioner(providers);

14.3.2.5 Granting and Revoking Positioning Rights
By default a user’s location information can only be accessed by himself or herself.
No other user has the right to access the user’s location information. If users want to
allow other users to access their location information, they must grant the
positioning right to those users. A user granting the positioning right can later
revoke the granted right.

The positioning right can also be granted for a certain duration or recurring interval
of time. In many cases, users want to restrict the time periods to grant other users
the right to access their location information. For example, users may want to grant
coworkers this right from 9:00 am to 5:00 pm during weekdays, but they do not
want coworkers to position them at night or during weekends. Users can specify
such time restrictions as:

■ Starting and ending dates of the granted right

■ Starting and ending time during a day

■ Exclusions: days that are within the start and end dates but are excluded from
the positioning right, such as Saturdays and Sundays

14.3.2.6 Mobile Communities
A mobile community is a collection of one or more users who can be granted or
denied positioning rights. Mobile users can be assigned to one or more
communities, and users can grant and deny positioning rights to communities.
Users can view and manage their community information through the
Personalization Portal, and application developers can access these capabilities
through the public API.

The concept of mobile community is useful in many mobile application scenarios.
For example, a project team can create a project community. A team member can
grant to the project community the right of accessing to his or her location
information instead of granting the right to each team member individually. For
example, with mobile positioning and location-based alerts, a field service manager
could know when service representatives are nearby and could contact them to get
status updates or to have them respond to local problems.

Enabling Mobile Positioning

Using Location Services 14-121

The concept of visibility applies to communities and to members of communities.
Visibility refers to the ability of system users to see that a community or member
exists and to obtain some relevant information. Visibility can depend on the
relationship of the requesting user to the community or member: for example,
whether the requesting user has administrator privileges or is a member of the
community in question. Visibility is implemented using calls to the privacy API,
which is described in Section 14.3.2.9, "Privacy API".

For any given request by a user to see information about a community or members
of a community, the following visibility conditions are possible:

■ The community and the members of the community are visible to the
requesting user.

■ The community is visible to the requesting user, but the members of the
community are not visible. For example, the community has been set up so that
its existence is visible to all system users; however, information about
community members is available only to administrators.

■ The community is not visible to the requesting user, and therefore members of
the community are not visible either.

Different types of communities are supported, to accommodate different user
requirements for visibility. When you create a community, you can specify the type
of community, namely:

■ Private: A private community is visible only to the creator of the community,
who has sole and complete control. No other users, including members of the
community, can see or perform operations on a private community.

■ Shared: A shared community is visible to all the community members but not to
other users in the system. A community member is visible to all other
community members. A community member can remove himself or herself
from the community.

■ Public with Member Visibility: A public community with member visibility is
visible to all the users in the system. Any users in the system can add
themselves to the community and remove themselves from the community.

■ Public Member-Controlled Visibility: A public community with
member-controlled visibility is visible to all the users in the system; however,
each member can control whether he or she is visible or not visible to other
users.

■ System: A system community is visible to all users of the system, but the
members are visible only to users who have administrator privileges. Users

Enabling Mobile Positioning

14-122 Oracle Application Server Wireless Developer’s Guide

without administrator privileges cannot remove themselves from a system
community.

 The following community operations are supported:

■ Create a community and add initial members

■ Delete a community

■ View a list of all the communities that are visible to the user

■ View all the members in the community who are visible to the user

■ Add users to a community (for the creator of a community)

■ Remove users from a community (for the creator of a community, or any
community member for removing himself or herself from a shared community)

14.3.2.7 Privacy Directives and Enabling/Disabling Automatic Positioning
With the initial default privacy settings, the system does not have the right to
position a user and temporarily store the user’s position in the location cache, and
write the user’s location information to the cache log. However, the administrator
can use the OracleAS Wireless System Manager to specify a different system default
level of privacy -- and users can control their level or privacy through the
Personalization Portal -- by using any of the following privacy directives, listed in
decreasing order of privacy provided:

■ Disable Positioning and Caching: No positioning on the user is allowed. The
system has no right to position the user, and no access to the user’s location is
allowed. This setting provides the most privacy.

■ Enable Positioning, Disable Caching: The user’s location information is not
cached. The system has the right to position the user, but the system cannot
store the user’s location information in the location cache. In this case, the
user’s location is always obtained by going to the positioning service providers
directly.

For example, with this directive a mobile user’s movements might not be
tracked, and the position at any time might be reported as the user’s office or
whatever location the service provider supplies.

■ No Log: The user’s location information is stored in the location cache, but is
not written to the cache log. Cache items for this user are not written to the log
when they are replaced from the cache, but are simply discarded.

Enabling Mobile Positioning

Using Location Services 14-123

For example, with the No Log directive, a mobile user’s current position might
be available, but earlier positions might not be available if they had discarded
from the location cache.

■ Enable Positioning and Caching: The system has the right to acquire and cache
the user’s location information.

14.3.2.8 Mobile Positioning API
Mobile device positioning is performed by calling the corresponding
requestPosition functions in the Positioner class. The API allows
application developers to specify the positioning quality of service (QoS) level.
(These levels are explained in Section 14.3.2.3.)

14.3.2.9 Privacy API
Developers of mobile applications can manage the privacy capabilities through the
location services privacy API. This section describes the privacy API and provides
examples.

14.3.2.9.1 LocationPrivacyManager Class The LocationPrivacyManager class
handles all the location privacy-related operations, such as granting and revoking
positioning rights, enabling and disabling positioning rights, setting and getting
system privacy options, and checking if a user has right to position another user.
The class also provides ways to retrieve the LocationPrivacyAuth object, which
stores information about a privacy authorization item.

A user can grant authorization to another user or to a mobile community using
grantAuthorization. The authorization can be temporarily disabled using
disableAuthorization. The disabled authorization can be recovered by using
enableAuthorization. The granted right can be permanently revoked using
revokeAuthorization. checkAuthorization can be used to check whether a
user has right to position another user at specific time.

All the privacy authorization operations are application-specific, which means that
they only affects the application in which the operation is performed.

14.3.2.9.2 CommunityManager Class The CommunityManager class handles
community-related operations, such as creating and deleting community and
retrieving community information. Community operations specific to a single
community are defined in the Community interface.

Enabling Mobile Positioning

14-124 Oracle Application Server Wireless Developer’s Guide

14.3.2.9.3 LocationPrivacyAuth Interface The LocationPrivacyAuth interface
provides methods to retrieve information specific to a location authorization item,
such as the authorization period, the service where the authorization occurs, the
user granting the right, and the user receiving the right.

14.3.2.9.4 Community Interface The Community interface provides methods to
retrieve information about the community object, add members to and remove
members from the community, and set community attributes.

14.3.2.9.5 AuthPeriod Class The AuthPeriod class maintains a time range that is
used when a user grants the positioning right to other users. An authorization
period is composed of start date, end date, start time, end time, and exclusions. The
class also provides a method contains to check whether a specific time falls in the
time range represented by the class.

14.3.2.9.6 LocationPrivacyException Class The LocationPrivacyException class
is a subclass of PanamaException. It represents a location privacy-specific
exception.

14.3.2.9.7 Privacy API Examples This section contains examples of the location
services privacy API. The examples are taken from the sample adapters
SampleCommunityManager.java and SampleFriendFinder.java is the
iAS-wireless-home\sample\sampleadapter\mp\privacy directory. These
two sample adapters demonstrate the major capabilities of the privacy API.

Example 14–34 lists all communities of a specified type that are visible to a user.

Example 14–34 List Communities of a Specified Type Visible to a User

CommunityManager commMan = CommunityManager.getInstance();
...
try{
 ResultSetEnumeration comms = commMan.getVisibleCommunities(user,type);
 while (comms.hasNextElement()){
 sfo = XML.makeElement(sfs,"SimpleFormOption");
 oracle.panama.model.Community comm =
(oracle.panama.model.Community)(comms.next());
 sfo.setAttribute("value",String.valueOf(comm.getId()));
 txt = XML.makeText(sfo,comm.getCreator().getName()+":"+ comm.getName()
);
 sfo.appendChild(txt);
 sfs.appendChild(sfo);
 }

Enabling Mobile Positioning

Using Location Services 14-125

 }catch(Exception e){ throw new AdapterException(e); }

Example 14–35 grants the positioning right to a user or a community based on user
input.

Example 14–35 Grant Positioning Right to a User or Community

CommunityManager commMan = CommunityManager.getInstance();
LocationPrivacyManager priMan = LocationPrivacyManager.getInstance();

...

SimpleDateFormat ddf = new SimpleDateFormat("MM/dd/yyyy");
SimpleDateFormat tdf = new SimpleDateFormat("HH:mm");
Calendar startD,endD,startT,endT=null;
try{
 startD = Calendar.getInstance();
 startD.setTime(ddf.parse(sdate));

 endD = Calendar.getInstance();
 endD.setTime(ddf.parse(edate));

 startT = Calendar.getInstance();
 startT.setTime(tdf.parse(stime));

 endT = Calendar.getInstance();
 endT.setTime(tdf.parse(etime));

}catch(ParseException e){
 showError(result,sr,"Illegal Date Format","&grantmenu=y");
 return;
}

StringTokenizer st = new StringTokenizer(excl,",");
String exclDate = null;
byte exclusions=0;
while (st.hasMoreTokens()) {
 exclDate=st.nextToken();
 if ("Mon".equals(exclDate))
 exclusions =(byte)(exclusions|AuthPeriod.MONDAY);
 else if ("Tue".equals(exclDate))
 exclusions =(byte)(exclusions | AuthPeriod.TUESDAY);
 else if ("Wed".equals(exclDate))
 exclusions =(byte)(exclusions | AuthPeriod.WEDNESDAY);
 else if ("Thu".equals(exclDate))

Location Event Server

14-126 Oracle Application Server Wireless Developer’s Guide

 exclusions =(byte)(exclusions | AuthPeriod.THURSDAY);
 else if ("Fri".equals(exclDate))
 exclusions =(byte)(exclusions | AuthPeriod.FRIDAY);
 else if ("Sat".equals(exclDate))
 exclusions =(byte)(exclusions | AuthPeriod.SATURDAY);
 else if ("Sun".equals(exclDate))
 exclusions =(byte)(exclusions | AuthPeriod.SUNDAY);
 else {
 showError(result,sr,"Illegal Exclusions.", "&grantmenu=y");
 return;
 }
 }

 AuthPeriod period = new AuthPeriod(startD,endD, startT,endT, exclusions);
 oracle.panama.model.Community commObj = null;
 User posUserObj = null;
 try{
 if (community!=null && !community.equals("")){
 commObj = commMan.getCommunity(Long.parseLong(community));
 priMan.grantAuthorization(service,owner,commObj,period);
 }
 else{
 posUserObj = services.lookupUser(positionUser);
 priMan.grantAuthorization(service,owner,posUserObj,period);
 }
}catch(PanamaException e){ throw new AdapterException(e); }

14.4 Location Event Server
The location event server generates an event when a location-based condition
occurs. The event could result in a location-based alert being delivered based on a
mobile user’s current location.

The wireless alert engine allows users to subscribe to a location-based alert service
and specify location-based conditions. When a location-based condition is satisfied,
the alert engine receives a location event. If all other conditions for delivering the
alert are also satisfied, the alert engine sends an alert to the subscriber. The
following are some typical scenarios in which location-based alerts can be provided
for mobile users:

■ A traveler wants to receive an alert when the limousine that she will take is
within 1 mile of the airport.

■ A member of a project team wants to receive an alert when all other team
members are at corporate headquarters.

Location Event Server

Using Location Services 14-127

■ A field service coordinator wants to receive an alert when a new service request
arrives and an engineer qualified to handle the request is within 2 miles of the
service center.

■ A subscriber to a weather information service wants to receive an alert when
the forecast predicts snow and his sister is not at home, because his sister travels
frequently and has asked him to take care of her plants when she is out of town.

The potential scenarios reflect a range of complexity, for example, combining a
location-related condition and conditions not directly related to location.

14.4.1 Location Event Server Concepts
A location-based alert is an alert service that has a location-based condition.

A location-based condition is a set of location-based alert criteria plus related
information, such as the condition expiration time and the condition evaluation
mode. The condition is satisfied only when all criteria in the condition are satisfied.

Location-based alert criteria are components of a location-based condition. Each
criterion has three elements: a target, a region, and a type. The target can be a user, a
community, or a mobile device. The region is a system-defined or user-defined
location. The type must be IN or OUT, indicating the position of the target in relation
to the region. Examples of location-based alert criteria include the following:

■ All team members are in Chicago.

■ Mr. Smith is outside the state of New York.

A location event server is a standalone process that retrieves the location-related
information from the positioning service provider, evaluates the location-based
conditions, and generates an event if a condition is satisfied. The location event
server cooperates with the mobile positioning and region modeling components to
do scheduling: the condition evaluation result is periodically updated, and when a
condition is satisfied, a location event is sent out to the client that generated the
condition.

A location event client is a wireless application or system component that specifies
location-based conditions and reports location-related information. Each location
event client has a location event agent that handles two-way communication
between the server and the client. The location event agent gets the location-based
conditions created in the client instance and registers them to the server side. The
agent receives location events from the server and invokes the location event
handler to process the event. It also supports the pull query, a request for the
evaluation result of a specified location condition.

Location Event Server

14-128 Oracle Application Server Wireless Developer’s Guide

A location event can be sent out to the client that generated the condition, or to one
or more other clients, or any combination. When a condition is activated, the
application can determine which recipients should receive a location event.

You can configure and use multiple location event servers and location event
clients.

Java classes are provided for implementing a location event client:

■ Location-based condition (LBCondition class; see Section 14.4.3,
"Location-Based Condition Object (LBCondition)")

■ Location event agent (LBEventAgent class; see Section 14.4.4, "Location Event
Agent Object (LBEventAgent)")

■ Location event handler (LBEventHandler class; see Section 14.4.5, "Location
Event Handler Object (LBEventHandler)")

14.4.2 Location Event Agent Example
Example 14–36 creates a location event agent and activates a location-based
condition, so that a parent will be alerted when his or her child goes out of the
region associated with the child’s school. A different location event agent (named
anotherAgent) will receive the event generated from the server when the
condition is satisfied.

Example 14–36 Location Event Agent

 try{
 LBEventAgent alertAgent = factory.createLBEventAgent("alertAgent",true);
 LBEventHandler handler = new ALBEventHandlerImpl();
 alertAgent.registerLBEventHandler(handler);
 User parent = factory.createUser(USERNAMEPARENT);
 User child = factory.createUser(USERNAMECHILD);
 LocationPrivacyDomain privacyDomain = new LocationPrivacyDomain();
 LBCondition condition = factory.createLBCondition(LBCondition.MODE_ONCE, null,
 parent, privacyDomain);
 condition.addCriteria(String.valueOf(child.getId()),
 LBCondition.TARGETTYPE_USER,LBCondition.TYPE_OUT,SCHOOL_REGION_ID);
 alertAgent.activateCondition(condition,null,null,"anotherAgent",false);
 }catch(LBEventException e){

 }

Location Event Server

Using Location Services 14-129

14.4.3 Location-Based Condition Object (LBCondition)
A location-based condition (LBCondition) object represents a location-based
condition. A typical alert condition consists of multiple criteria, each of which
defines a target, a criterion type (IN or OUT), and a region (system region, custom
region, or user-defined region). The relationship between the specified criteria is
AND, which means that the condition is satisfied only when all the criteria are
satisfied.

The LBCondition object also specifies a condition expiration time and a condition
evaluation mode. The condition expiration time indicates when the condition
becomes invalid. The condition evaluation mode must be one of the following:

■ Evaluate only once. After the condition is satisfied for the first time, the
condition is not evaluated any more and the condition status becomes inactive.

■ Evaluate until the expiration time arrives. If the condition is satisfied, a location
event is sent to the location event client. Regardless of whether the condition is
satisfied or the number of times the condition is satisfied, the condition remains
active until the expiration time. If the condition is satisfied, then not satisfied,
and then satisfied again, a new event is sent to the user. (For example, if the
condition is "user Smith is in Boston" and if Smith enters Boston, leaves Boston,
and enters Boston again, an event is sent each time Smith enters Boston.)

14.4.4 Location Event Agent Object (LBEventAgent)
A location event agent (LBEventAgent) object communicates with the location
event server on behalf of a location event client. A location event agent object
performs the following operations:

■ Activates location-based conditions.

■ Supports queries about whether a specific location-based condition is satisfied.

■ Allows the location event client to register a location event handler and to start
threads to listen to the location events. When a location event arrives, the
location event handler is invoked to process the event.

■ Deactivates location-based conditions from the server.

Each location event agent has a name and a messaging channel. When a location
event client creates a location event agent, it can specify whether it allows other
agents to share the same name with the new agent. Location event agents that have
the same name share the same messaging channel, which means that location
events sent to the messaging channel will be distributed among those location event
agents.

Location Event Server

14-130 Oracle Application Server Wireless Developer’s Guide

When a location-based condition is activated, the condition information is sent to
the location event server, and the server begins to evaluate the condition. If the
evaluationMode parameter passed to the activateCondition method, its
value overrides the evaluation mode defined in the LBCondition object. If the
RecipientAgent parameter is passed to the activateCondition method, it
specifies the name of the recipient agent, which means that a condition can be
created in one agent and the event can be sent to another agent when the condition
is satisfied.

The isSatisfied method in the location event agent checks if a specific condition
is satisfied or not. If the condition is not active, the isSatisfied method initiates
the condition evaluation, and this may take some time (from several seconds to
several minutes, depending on how complicated the condition is). The
checkStatusNoWait method also checks if a specific condition is satisfied or not,
but is the condition is not active, condition evaluation is not activated.

14.4.5 Location Event Handler Object (LBEventHandler)
The location event handler (LBEventHandler) object is a public interface.
Application developers are expected to implement the handler interface and
register it at the location event agent. The implementation should be thread safe.
The location event handler is responsible for processing a location event.

After a location event agent receives a location event, it invokes the
handleLocationEvent method of the location event handler that is registered
with the agent. The handleLocationEvent method accepts a condition ID that
uniquely identify a location-based condition, an event type that specifies whether
the condition has been satisfied and whether there are any errors, and the time
when the event was generated.

14.4.6 Location Event Server Configuration Options
You can configure the location event server using the Wireless System Manager, as
follows:

1. In the Wireless Server System tab page, click Site Administration.

2. Click to expand Component Configuration.

3. Under Location-Related, click Location Event Server.

The following location event server configuration options are available. The options
that you choose affect the behavior and performance of the location event client
applications.

Location Event Server

Using Location Services 14-131

■ Default validity period for no-wait pull request in seconds

The location event agent can use the checkStatusNoWait method to pull a
result from a location event server without waiting. The validity period for
no-wait pull request determines how old the pulled result can be and still be
considered valid. If the result was generated within the validity period, the
result is considered valid. If the pulled result is not valid, the no-wait pull
request does not wait for the server to generate a new result. For example, if the
validity period is 600 seconds (10 minutes) and if the most recent report of a
user’s position was 11 minutes ago, the positioning report is not considered
valid, and the checkStatusNoWait method returns without waiting.

The longer the validity period, the more likely a positioning report is to be
considered valid. However, if the application requires recent positioning
information, a short validity period might be needed.

■ Default validity period for pull request in seconds

The location event agent can use the isSatisfied method to pull a result
from a location event server. The validity period for pull request decides
whether the pulled result is valid. If the result was generated within the validity
period, the result is considered valid. If the pulled result is not valid, the pull
request will wait till a new result is generated by the server. For example, if the
validity period is 600 seconds (10 minutes) and if the most recent report of a
user’s position was 11 minutes ago, the positioning report is not considered
valid, and the isSatisfied method waits until the next report of the user’s
position is received.

The longer the validity period, the more likely a positioning report is to be
considered valid, and the more likely it is that the isSatisfied method will
accept the positioning information and return, so that the application can
continue. However, if the application requires recent positioning information, a
short validity period might be needed, although it may risk delaying the
application while the isSatisfied method waits for new information.

■ Default number of location event listeners

A location event agent can have multiple listeners listening for location-based
events. This setting specifies how many listeners a location event agent has.

The value should be based on the system workload. If many location
based-conditions are created and processed, a number greater than 1 (such as 5
or 10), is probably better. However, if few location based-conditions are created
and processed, one location event listener is sufficient. An application can
override this default.

Using the Region Modeling Tool

14-132 Oracle Application Server Wireless Developer’s Guide

For each location event server, you can specify the following:

■ Number of Positioning Schedulers

Each location event server can have one or more positioning schedulers that
process the location-based conditions. This setting specifies the number of
positioning schedulers for each location event server.

The value should be based on the system workload. If many location
based-conditions are created and processed, a number greater than 1 (such as 5
or 10), is probably better. However, if few location based-conditions are created
and processed, one positioning scheduler is sufficient. System administrators
can monitor the performance of the location event server and adjust the value
accordingly.

14.5 Using the Region Modeling Tool
The region modeling tool lets administrators of a wireless portal service manage
regions and make a service or folder location-dependent. When you create a service
or a folder, you can specify that it is location-dependent by associating a system
region or a previously created custom region with the service or folder. A
location-dependent service or folder appears is a user’s portal only when the user’s
current location (either from automatic mobile positioning or from the user’s
default location mark) is within the specified region.

A region is simply a geographic entity, or location. A region can be small (such as a
street address) or large (such as a country). A region can be represented by a point,
as is often done for addresses and locations of interest (such as airports and
museums), or by a polygon, as is usually done for states and countries.

14.5.1 Service and Folder Visibility Using Region Modeling
You may want to define specific regions for a variety of applications and services,
such as:

■ City guides for selected metropolitan areas, so that users in those areas receive
only services and information (such as restaurant listings or advertisements)
relevant to them

■ Colleges that have a certain ranking or that specialize in certain subject areas, so
that prospective students and their parents can receive information about those
locations

Using the Region Modeling Tool

Using Location Services 14-133

■ Art museums in a city or a multistate area, so that art lovers can plan trips to
museums

Your company may provide many specialized services, and users may be able to
subscribe to and pay for individual services tied to regions. For example, one user
might subscribe to city guides for the entire United States, while another user might
subscribe only to city guides for southeastern states.

To implement the city guide example, you could do the following:

1. Create a folder (static, not location dependent) called City_guide.

2. Under the City_guide folder create city guide services for Boston, San
Francisco, and California

3. Set the default location mark to an address in a city. If the address is in Boston,
the user sees the Boston city guide; if the address is in San Francisco, the user
sees both the San Francisco and California guides.

In another example scenario, several services may be relevant to a region, in which
case you can create a location-dependent folder and place the relevant services in
that folder (instead of designating each service as location-dependent on the
region). For example, assume that you have ATM Locator, Flight Gate Information,
Airport Parking Information, and Taxi Finder services associated with a region
named Airport, and that you have Printer Finder, Conference Room Scheduler, and
Cafeteria Menu services associated with a region named Office. In this case, you can
create two location-dependent folders named Airport and Office, and associate
them with the Airport and Office regions, respectively.

14.5.2 Folders and Hierarchies of Regions
Regions are stored in folders. Folders can be in a hierarchy (that is, there can be
folders in folders). There are two top-level folders: System-Defined Regions and
Custom Regions.

■ System-defined regions are arranged in a hierarchy of predefined areas:
continents, which contain countries. The United States further contains states,
which contain postal codes, counties, and cities.

■ Custom regions are regions created by users, based on entering an address or
on selecting one or more other regions (system-defined or custom).

Using the Region Modeling Tool

14-134 Oracle Application Server Wireless Developer’s Guide

14.5.3 Associating a Region with an Application
When you specify an application to be location-dependent, you must specify the
region for which the service applies or is relevant. Before you can specify the region,
it must already exist, either as a system-defined region or a custom region. If it is a
custom region, it must have been created using the region modeling tool.

Follow these steps to specify that an application is location-dependent and to use
the region modeling tool.

1. In the Wireless Server Services tab page, click the Applications tab (if it is not
already selected).

2. Select a location-dependent application (or one to be made location-dependent),
and click Edit.

3. Click Additional Info.

4. Enable (check) Location-Dependent.

5. To start the region modeling tool, click the flashlight icon next to the Region
Name box, shown in Figure 14–7.

Figure 14–6 Page for Starting the Region Modeling Tool

Using the Region Modeling Tool

Using Location Services 14-135

The region modeling tool is displayed, as shown in Figure 14–7.

Figure 14–7 Region Modeling Tool Interface

The Web browser window initially displays the top level of the region hierarchy,
with two entries: system-defined regions and custom regions. You can find regions,
and you can select regions for viewing or for adding to a collection from which you
create a custom region.

To find a region in a display of system or custom regions, enter a character string
that is in its name to search by name, or enter a number to search by ID (by region
ID). Specify to search all regions or only under current region (the currently selected
region), then click Go.

To select a region to perform an operation on it, click the box to the left of its icon
and name. (To deselect a selected item, click the box.) You can select all regions in
the current display by clicking Select All, and deselect all regions in the current
display by clicking Select None.

To perform an operation on the selected region or regions, click the command text
link or button shown in Table 14–62.

Using the Region Modeling Tool

14-136 Oracle Application Server Wireless Developer’s Guide

14.5.4 Loading and Updating Region Data
The region modeling tool is installed with an extensive set of data for the United
States, as well as country data for many countries. However, you can add data
about other countries, states, cities, and so on by adding rows to the tables where
the region data is stored. For example, you could add a row for each state in India to
the STATE table. If you are careful and know what you are doing, you can also
modify certain data in those tables, such as editing the DESCRIPTION column
values for certain cities or states.

Table 14–62 Region Modeling Tool Operations

To Do This: Click This:

Add selected regions to the
collection of regions at the
bottom of the display

Add to Collection

View a map display showing
selected regions

View

Create a custom region from the
collection of regions at the
bottom of the display

Create from Collection. A series of pages is then
displayed, in which you specify the location in the
region hierarchy and the name for the custom region.

Create a custom region from a
street address that you enter

Create from Address. A series of pages is then
displayed, in which you specify the address, the location
in the region hierarchy, and the name for the custom
region.

Create a custom region from the
collection of regions at the
bottom of the display

Create from Collection. A series of pages is then
displayed, in which you specify a location in the region
hierarchy and a name for the custom region.

Create a folder in which to
organize regions

Create Folder. A series of pages is then displayed, in
which you specify the location in the region hierarchy
under which to create the folder and the name for the
folder.

Go to the previous or next set of
entries in the display of regions
or the current collection

Previous or Next

Go up one or more levels in the
region hierarchy

The name of the desired level on the current hierarchy
line near the top of the page. Example of how this line
might look (with all items except the last as links):
Regions > System Defined Regions > NORTH
AMERICA > USA > California

Get help about any screen Help

Using the Region Modeling Tool

Using Location Services 14-137

14.5.4.1 Tables for Region Data
 Region data is stored in the OracleAS Wireless repository in the tables listed in
Table 14–63.

To see the definition of any of these tables, use the SQL statement DESCRIBE.
Example 14–37 shows the DESCRIBE statement output with information about all
of the tables.

Example 14–37 Region Data Table Definitions

SQL> DESCRIBE continent;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(100)
 REFCNT NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE country;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(300)
 REFCNT NUMBER
 CONT_ID NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY

Table 14–63 Tables for Region Data

Table Name Contains Information About

CONTINENT Continents

COUNTRY Countries

STATE States

COUNTY Counties

CITY Cities

POSTALCODE Postal codes

USERDEFINED Custom regions

Using the Region Modeling Tool

14-138 Oracle Application Server Wireless Developer’s Guide

SQL> DESCRIBE state;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(400)
 REFCNT NUMBER
 ABBR VARCHAR2(32)
 CONT_ID NUMBER
 COUNTRY_ID NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE county;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(400)
 REFCNT NUMBER
 CONT_ID NUMBER
 COUNTRY_ID NUMBER
 STATE_ID NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE city;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(400)
 REFCNT NUMBER
 CONT_ID NUMBER
 COUNTRY_ID NUMBER
 STATE_ID NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY
 MIN_LON NUMBER
 MIN_LAT NUMBER
 MAX_LON NUMBER
 MAX_LAT NUMBER

SQL> DESCRIBE postalcode;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(400)

Using the Region Modeling Tool

Using Location Services 14-139

 REFCNT NUMBER
 CONT_ID NUMBER
 COUNTRY_ID NUMBER
 STATE_ID NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE userdefined;
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 NAME VARCHAR2(200)
 REFCNT NUMBER
 TYPE NUMBER
 PARENT_FOLDER_ID NUMBER
 DESCRIPTION VARCHAR2(2000)
 GEOMETRY MDSYS.SDO_GEOMETRY

14.5.4.2 Inserting Data into Region Tables
You can use the SQL statement INSERT to insert rows into the region tables. The
following considerations apply when you are inserting region data:

■ You should use idseq.nextval to generate the ID column value whenever
you insert a new row, as shown in Example 14–38. The idseq sequence is created
automatically during installation; you should not create it.

■ The REFCNT column should be set to 0 (zero) when you insert a row. The
REFCNT column contains the reference count of how many services are
associated with the region. The value is automatically incremented when a
service is associated with the region and decremented when it is disassociated
from the region or when the service is deleted. A region with a nonzero
REFCNT value cannot be deleted.

■ If you are inserting data about postal codes, cities, or counties for a country that
does not use the default region hierarchy, specify 0 (zero) as the STATE_ID in
POSTALCODE, CITY, or COUNTY table.

■ The GEOMETRY column value must be a valid Oracle Spatial geometry of type
MDSYS.SDO_GEOMETRY. The SDO_GTYPE value must be 4 digits, and the
SRID (coordinate system) value must be 8307 (for WGS-84 longitude/latitude
format). If the SRID value is not currently 8307, you must transform geometries
into that format before inserting them into the region data tables. For detailed
information about the spatial data type, coordinate systems, and coordinate
system transformation, see the Oracle Spatial User’s Guide and Reference.

Using the Region Modeling Tool

14-140 Oracle Application Server Wireless Developer’s Guide

Example 14–38 shows an INSERT statement to insert a row for Concord,
Massachusetts into the CITY table. It assumes that the geometry representing
Concord exists in another table named MY_CITIES.

Example 14–38 Inserting a City

DECLARE
 city_geom MDSYS.SDO_GEOMETRY;

BEGIN

-- Populate geometry variable with city geometry from another table.
SELECT m.geometry into city_geom FROM my_cities m
 WHERE m.name = ’Concord’;

-- Insert into the CITY table.
INSERT INTO CITY VALUES (
 idseq.nextval,
 ’Concord’,
 0,
 5004, -- continent ID for North America
 5006, -- country ID for USA
 5028, -- state ID for Massachusetts
 ’The historic town of Concord’,
 city_geom,
 -71.35, -- minimum longitude
 42.46, -- minimum latitude
 -71.34, -- maximum longitude
 42.47); -- maximum latitude
END;
/

The minimum and maximum longitude and latitude values in the CITY table are
required and are used by traffic support services. The minimum longitude and
latitude values identify the lower-left corner, and the maximum longitude and
latitude values identify the upper-right corner, of the bounding rectangle.

14.5.5 Region Modeling API
The region modeling tool is based on the region modeling API, which is
implemented through the RegionModel interface of the
oracle.panama.spatial.region package. The RegionModel interface
includes methods for getting the postal code, state, and country, and for
determining different kinds of interaction among regions.

Integrating an External Content Provider

Using Location Services 14-141

14.6 Integrating an External Content Provider
OracleAS Wireless supports access to a number of location-related services, such as
geocoding, driving directions, business directory (Yellow Pages) services, and
mapping. It does not perform many of the services itself, but relies on external
providers. This section describes the features that you, the provider, can implement
and the interface options for communicating with OracleAS Wireless.

External providers can integrate their products with OracleAS Wireless by creating
a custom service proxy for each type of location-based service that you provide. A
service proxy is a Java class implementing a common interface; and for each service
(geocoding, mapping, routing, traffic, yellow pages), there is one interface. A
service proxy is executed on the same system as OracleAS Wireless, rather than on
your server.Service Proxies

The service proxy must translate between the interface for your server and the
interface specified by Oracle location services. It must also extend an
Oracle-supplied class to provide the necessary internal infrastructure.

Depending on the type of service (geocoding, mapping, and so on), you must
implement the appropriate interface from the following list:

oracle.panama.spatial.geocoder.Geocoder
oracle.panama.spatial.mapper.Mapper
oracle.panama.spatial.router.Router
oracle.panama.spatial.traffic.TrafficReporter
oracle.panama.spatial.yp.YPFinderSimple

Within the interface, there are functions that you must implement, may implement,
and must not implement, as explained in Section 14.6.2.

Depending on the type of service (geocoding, mapping, and so on), you must
extend the appropriate interface from the following list:

oracle.panama.spatial.core.geocoder.GeocoderImplXMLImpersonator
oracle.panama.spatial.core.mapper.MapperImplXMLImpersonator
oracle.panama.spatial.core.router.RouterImplXMLImpersonator
oracle.panama.spatial.core.traffic.TrafficReporterImplXMLImpersonator
oracle.panama.spatial.core.yp.YPFinderSimpleImplXMLImpersonator

For example, if you implement the
oracle.panama.spatial.geocoder.Geocoder interface, you must also
extend the following interface:

oracle.panama.spatial.core.geocoder.GeocoderImplXMLImpersonator

Integrating an External Content Provider

14-142 Oracle Application Server Wireless Developer’s Guide

14.6.1 Accessing External URLs from Inside a Firewall
The service proxies are located on the OracleAS Wireless server, which might be
behind a firewall. Content providers, on the other hand, are usually outside the
firewall. In this case, the proxy must use the OracleAS Wireless firewall proxy setup
(which is different from the location service proxy setup). The following example is
an excerpt that shows how to set the firewall proxy, with the important lines in bold
type:

URL u = …

 try
 {
 URLConnection c = u.openConnection();
 ProxyFirewall.setProxyAuthorization(c);
 c.connect();
 BufferedReader
 bReader = new BufferedReader(
 new InputStreamReader(
 c.getInputStream()));
 ...
 }
 catch(...) { ... }
 ...

14.6.2 Functions to Implement
The available functions for a service proxy are in three categories:

■ Must be implemented: functions that must be implemented as essential parts of
each proxy

■ May be implemented: functions that are optional, but that you can implement
(for example, to provide features that distinguish your product from those of
competitors)

■ Must not be implemented: functions that are already implemented by the
framework and must not be implemented by the proxy

The Javadoc documentation for each interface explains each available function.

This section lists the functions in each category for each type of service (geocoding,
mapping, and so on), with the class name in bold. However, for some types of
services, no functions are in the "may be implemented" category.

Integrating an External Content Provider

Using Location Services 14-143

14.6.2.1 Geocoding Services: Available Functions
A geocoding service proxy must implement the following function:

public Location[] geocodeAddress(Location inp, String matchMode);

A geocoding service proxy may implement the following functions:

public Location[][] geocodeAddresses(Location[] inp, String matchMode);
public Location[] reverseGeocodePoint(Point pt);

A geocoding service proxy must not implement the following function:

public String xmlGeocode(Document xmlRequest);

14.6.2.2 Mapping Services: Available Functions
A mapping service proxy must implement the following function:

public String getMapURL(Point[] locations, ImageFormats fileType, double minLon,
double maxLon, double minLat, double maxLat, int width, int height, boolean
allowTurning);

A mapping service proxy must not implement the following functions:

public String getMapURL(Point[] locations, ImageFormats fileType, int width, int
height, boolean allowTurning);
public String getMapURL(Point location, ImageFormats fileType, int width, int
height, boolean allowTurning);
public String getMapURL(RoutingResult route, boolean allowTurning);
public String getMapURL(Maneuver man, boolean allowTurning);
public String getMapURL(Point location, ImageFormats fileType, double minLon,
double maxLon, double minLat, double maxLat, int width, int height, boolean
allowTurning);
public String[][] getMapURLs(Point[] locations, ImageFormats fileType, int
width, int height, int subdivisionLevel, boolean allowTurning);
public String[][] getMapURLs(Point[] locations, ImageFormats fileType, double
minLon, double maxLon, double minLat, double maxLat, int width, int height, int
subdivisionLevel, boolean allowTurning);
public String[][] getMapURLs(Point location, ImageFormats fileType, int width,
int height, int subdivisionLevel, boolean allowTurning);
public String[][] getMapURLs(Point location, ImageFormats fileType, double
minLon, double maxLon, double minLat, double maxLat, int width, int height, int
subdivisionLevel, boolean allowTurning);
public String[][] getMapURLs(RoutingResult route, int subdivisionLevel, boolean
allowTurning);
public String[][] getMapURLs(Maneuver man, int subdivisionLevel, boolean

Integrating an External Content Provider

14-144 Oracle Application Server Wireless Developer’s Guide

allowTurning);
public String xmlMap(Document xmlRequest);

14.6.2.3 Routing Services: Available Functions
A routing service proxy must implement the following function:

public RoutingResult computeRoute(Point source, Point destination, Point[]
viaPoints, RoutingSettings opt, Locale locale);

A routing service proxy may implement the following functions:

public RoutingResult computeRoute(Location source, Location destination,
Location[] viaPoints, RoutingSettings opt, Locale locale);
public Ranking rankByDrivingDistance(Point source, Point[] locations);

A routing service proxy must not implement the following function:

public String xmlRoute(Document xmlRequest);

14.6.2.4 Traffic Services: Available Functions
A traffic service proxy must implement the following functions:

public TrafficReport getReportViaCity(CityInfo city) throws LBSException;
public TrafficReport getReportViaLocation(Point location, double radius, int
unit, CityInfo city) throws LBSException;
public TrafficReport getReportViaRoute(RouteInfo route, CityInfo city) throws
LBSException;
public TrafficReport getReportViaRoute(RouteInfo route, String direction,
CityInfo city) throws LBSException;

A traffic service proxy must not implement the following functions:

public TrafficCityManager getCityManager();
public TrafficReport getReportViaLocation(Point location, double radius, int
unit) throws LBSException;
public TrafficReport getReportViaAddress(Location address, double radius, int
unit) throws LBSException;
public String xmlTraffic(Document xmlRequest) throws LBSException;

14.6.2.5 Business Directory (YP) Services: Available Functions
A business directory (YP) service proxy must implement the following functions:

public YPBusiness[] getBusinessesInCity(String businessName, String country,
String state, String city, Locale locale);
public YPBusiness[] getBusinessesInState(String businessName, String country,

Integrating an External Content Provider

Using Location Services 14-145

String state, Locale locale);

A business directory (YP) service proxy may implement the following functions:

public Boolean anyBusinessesInCity(YPCategory category, String country, String
state, String city);
public Boolean anyBusinessesInState(YPCategory category, String country, String
state);
public Boolean anyBusinessesInPCode(YPCategory category, String country, String
postalCode);
public Boolean anyBusinessesInRadius(YPCategory category, Point location, double
metersRadius);
public YPBusiness[] getBusinessesInRadius(String businessName, Point location,
double metersRadius, Locale locale);
public YPBusiness[] getBusinessesInPCode(String businessName, String country,
String postalCode, Locale locale);
public YPBusiness[] getBusinessesInCity(YPCategory category, String country,
String state, String city, Locale locale);
public YPBusiness[] getBusinessesInState(YPCategory category, String country,
String state, Locale locale);
public YPBusiness[] getBusinessesInRadius(YPCategory category, Point location,
double metersRadius, Locale locale);
public YPBusiness[] getBusinessesInPCode(YPCategory category, String country,
String postalCode, Locale locale);
public YPBusiness[] getNearestNBusinesses(String businessName, Point location,
int n, Locale locale);
public YPBusiness[] getNearestNBusinesses(YPCategory category, Point location,
int n, Locale locale);

A business directory (YP) service proxy must not implement the following
functions:

public Boolean anyBusinessesInSameCity(YPCategory category, Location loc);
public Boolean anyBusinessesInSameState(YPCategory category, Location loc);
public Boolean anyBusinessesInSamePCode(YPCategory category, Location loc);
public YPBusiness[] getBusinessesInSameCity(String businessName, Location loc,
Locale locale);
public YPBusiness[] getBusinessesInSameState(String businessName, Location loc,
Locale locale);
public YPBusiness[] getBusinessesInSamePCode(String businessName, Location loc,
Locale locale);
public YPBusiness[] getBusinessesInSameCity(YPCategory category, Location loc,
Locale locale);
public YPBusiness[] getBusinessesInSameState(YPCategory category, Location loc,
Locale locale);

Integrating a Mobile Positioning Provider

14-146 Oracle Application Server Wireless Developer’s Guide

public YPBusiness[] getBusinessesInSamePCode(YPCategory category, Location loc,
Locale locale);
public YPBusiness[] getBusinessesInSameCity(String businessName, YPCategory
category, Location loc, Locale locale);
public YPBusiness[] getBusinessesInSameState(String businessName, YPCategory
category, Location loc, Locale locale);
public YPBusiness[] getBusinessesInSamePCode(String businessName, YPCategory
category, Location loc, Locale locale);
public YPBusiness[] getBusinessesInCity(String businessName, YPCategory
category, String country, String state, String city, Locale locale);
public YPBusiness[] getBusinessesInState(String businessName, YPCategory
category, String country, String state, Locale locale);
public YPBusiness[] getBusinessesInRadius(String businessName, YPCategory
category, Point location, double metersRadius, Locale locale);
public YPBusiness[] getBusinessesInPCode(String businessName, YPCategory
category, String country, String postalCode, Locale locale);
public YPBusiness[] getNearestNBusinesses(String businessName, YPCategory
category, Point location, int n, Locale locale);
public String xmlYP(Document xmlRequest);

14.7 Integrating a Mobile Positioning Provider
This section describes how to implement the service proxy for integrating an
external mobile positioning provider into OracleAS Wireless. Before you integrate a
mobile positioning provider, be sure that you understand the following:

■ Mobile positioning concepts and options, as explained in Section 14.3

■ External provider concepts in Section 14.6

Mobile positioning includes the following steps:

1. Check the location privacy settings to determine if the positioning request is
authorized.

2. Get the user’s mobile station ID through the provider selector hook (described
in Section 14.3.2.4). The system default is to use the Mobile Station ID field in
the user profile.

3. Check the location cache. If location caching is enabled and the request can be
satisfied from the cache, return the location found in the cache, and skip step 4.

4. If the location not satisfied from the cache, invoke one or more mobile
positioning proxies to acquire the user’s current location.

Integrating a Mobile Positioning Provider

Using Location Services 14-147

Step 4 in the preceding list (invoking one or more mobile positioning providers)
involves the following specific actions:

1. Examine the information about mobile positioning providers in the system
configuration file. This information includes the following: provider name,
proxy implementation class name, version number, mobile positioning server
URL, mobile positioning user name and password, and any additional
parameters.

2. Instantiate the proxy class.

3. Invoke the requestPosition() method in the class to acquire the location of
a mobile station.

14.7.1 Implementing a Mobile Positioning Proxy
To integrate a mobile positioning provider, you must implement the
oracle.panama.mp.Positioner interface.

The constuctor of the class must have the following format:

public MyMPImpl (String providerName,
 String providerImpl,
 String version,
 String url,
 String username,
 String password,
 String parameters);

The mobile positioning framework reads this information from the system
configuration and uses it to construct your proxy implementation. The class stores
the information in class variables for later use.

In addition to the constructor, the class must implement the following methods:

public PositionResult requestPosition (String msid);
public PositionResult requestPosition (String msid, PositionQoS qos);
public PositionResult[] requestPosition (String[] msids);
public PositionResult[] requestPosition (String[] msids, PositionQoS qos);

The first method takes a mobile station ID as the parameter.

The second method takes a mobile station ID and a quality of position
(PositionQoS) parameter. The PositionQoS parameter specifies the maximum
acceptable age of the mobile station’s location that can served out of the cache. For
example, an application may be willing to accept a user’s location that is as much as

Integrating a Mobile Positioning Provider

14-148 Oracle Application Server Wireless Developer’s Guide

5 minutes old. In your proxy implementation, you do not need to check with the
Oracle Application Server Wireless location cache to determine if the location
already exists, because that logic is implemented in the mobile positioning
framework. In other words, if a location exists in the system cache and satisfies the
request, the proxy will not be invoked. The proxy needs to consider the
PositionQoS parameter only if the actual mobile positioning provider has a
similar caching concept and can use this parameter.

The third and fourth methods are similar to the first and second methods,
respectively, but they are used to request the locations of multiple mobile stations. If
the actual mobile positioning provider can handle bulk requests, the proxy should
take advantage of this capability and be able to request multiple locations in a single
call (for example, using a FOR loop). If the provider cannot handle multiple
requests, the proxy must call the provider multiple times, once for each location.

Each method returns a PositionResult object or an array of these objects. The
PositionResult object represents the current location of a mobile station. For
more information about the PositionResult object, see the Javadoc
documentation for the oracle.panama.mp.PositionResult and
oracle.panama.mp.PositionArea classes.

The following guidelines apply to using the PositionResult object:

■ If the mobile positioning provider does not return one or more values in the
object, set these values to be null.

■ The PositionResult object includes an array of PositionArea objects. If
the mobile positioning provider returns only one PositionArea object, you
still must still include that single object in an array.

Your implementation of the oracle.panama.mp.Positioner interface must
also handles exceptions and error, as explained in Section 14.7.2.

14.7.2 Handling Exceptions and Errors with Mobile Positioning
This section describes guidelines for handling runtime mobile positioning errors
and exceptions, which can occur in any of the following ways:

■ The provider’s response includes an error code and error message.

■ An exception is thrown during parsing.

■ If the request is for positioning multiple mobile stations (using the third and
fourth requestPosition methods described in Section 14.7.1), the number of
returned results and the number of subscriber IDs do not match.

Integrating a Mobile Positioning Provider

Using Location Services 14-149

For any errors or exceptions from a request for a single subscriber ID or multiple
subscriber IDs, check the error code and error message from the provider:

■ If the error is a severe error, return null immediately to fail over. Severe errors
include authentication errors, errors during XML parsing, and other errors that
are not caused by the proxy implementation and that cannot be resolved by
re-sending the request.

■ If the error refers to unknown subscriber ID, construct and return a
PositionResult object with the error ID UNKNOWNSUBSCRIBER and the
error message UNKNOWNSUBSCRIBER_STR. You can later retrieve the error
message by using the getErrorMessage() method on the PositionResult
object.

■ For other error codes, construct and return a PositionResult object with the
error ID and error message from the provider.

Integrating a Mobile Positioning Provider

14-150 Oracle Application Server Wireless Developer’s Guide

Enabling User Customization 15-1

15
Enabling User Customization

Each section of this document presents a different topic. These sections include:

■ Section 15.1, "Overview of User Preferences"

■ Section 15.2, "Multiple Customization Profiles"

■ Section 15.3, "Presets"

■ Section 15.4, "Location Marks"

■ Section 15.5, "User Device Management"

■ Section 15.6, "User and Group Management"

■ Section 15.7, "Service Management"

15.1 Overview of User Preferences
OracleAS Wireless provides secure, reliable, and scalable facilities to manage User
Preferences. User Preferences enable development of adaptable applications that
personalize interactions and increase mobile application efficiency. This facility
allows rapid development and deployment of context-aware, multi-modal,
multi-channel applications. The result is enhanced user experiences and turning a
series of anonymous transactions into an enduring one-to-one customer
relationship.

This chapter describes OracleAS Wireless’s facilities for managing user preferences
and step-by-step examples for how to apply the user preferences to develop
advanced customization features. Customization typically refers to how a user
adapts the system or how the system adapts to the particular needs and preferences
of a user. The user-centric customization features give the users control over how
they adapt the system to their needs and preferences. The system can also introduce
mass customization techniques that apply user profiling (for example: by

Overview of User Preferences

15-2 Oracle Application Server Wireless Developer’s Guide

associating a user with like-minded group of users) to predict the user’s needs and
preferences, and adapt the system accordingly.

Customization can be performed by the applications that understand the users’
needs based on their roles and preferences — for example, it is beneficial to present
information in different ways to customers, suppliers, and employees. By knowing
enough about a user’s preferences and needs, the applications can intelligently
enhance user experiences.

You can introduce mass customization techniques using automatic user profiling.
The usage history of users can be found in the ptg_service_log and ptg_
session_ log tables in the OracleAS Wireless repository; some of the examples in
this chapter describe how to extend the OracleAS Wireless runtime to introduce
mass customization. OracleAS Wireless includes a sample customization portal to
enable end-users to manage their preferences from a PC browser.

The sample customization portal in OracleAS Wireless is developed using Oracle
Cabo UI XML (uix) and UI Beans. The customization portal enables end users to
customize their user preferences around the usual artifacts such as user devices,
folders, applications (also known as services), bookmarks, notification events (also
known as alerts), notification addresses, location marks, and presets. In addition,
users can specify the contact rules and location privacy rules used by collaboration
services. The UIX components and class library are categorized by specific
functions. You can reuse the UIX components to rebrand the sample customization
portal. By using and combining the UIX components, you can also develop your
own brand of customization portals or integrate the customization wizards to your
existing portals.

The example customization portal enables users to organize their folders, subscribe
or unsubscribe to services and create or delete bookmarks and quicklinks under one
or more customization profiles. Users can:

■ Create new location marks and geocode the location marks.

Note: UIX is not required to customize the customization portal;
any web UI framework may be used.

See Runtime API, Data Model API, and the sample UIX
components for guidance when developing customization portals.
You will find the concepts and examples provided in this chapter
useful for designing the customization features to empower end
users.

Overview of User Preferences

Enabling User Customization 15-3

■ Edit presets that contain personal information or preference settings.

■ Create new user devices, specify the manufacturer and models for the devices.
Based on the device manufacturer and model names, the system can determine
the device capabilities from its device repository.

■ Specify device addresses and validate the addresses to receive asynchronous
notifications. Users can subscribe to notification events for these devices.

OracleAS Wireless also provides a sample Device Customization Portal that enables
users to customize their personal portal directly from wireless devices, such as web
phones and PDAs; the Device Customization Portal can be accessed from set-up
buttons on wireless devices. This portal adapts to the limited display and input
capability of the devices and provides a special mode to enable users to change user
preference settings, organize their folders and service links, create, modify, or delete
location marks, bookmarks, quick links, and customization profiles.

Multiple user customization profiles make the interaction from wireless devices
more efficient and more personalized. Users can maintain one or more of their
customization profiles and manage them from a PC or Device Customization Portal.
They can switch between different customization profiles in their devices.

OracleAS Wireless includes the option to save the input values that a user has
entered as a preset value for future invocations. Furthermore, OracleAS Wireless
includes options to enter a symbolic name to represent presets. These symbolic
names allow easy selection if there are more than one group of preset values. In
addition, users can manage their presets from any device or PC.

Presets can contain as many attributes as required to match the fields in web forms.
Application developers can create Preset Categories to define the attributes of the
Presets. Each Preset Category consists of a Preset Category Name and any number
of Preset Attributes. For example, the name of a Preset Category can be Auto-Fill
Address Forms Fields whose first, second, and third attributes are Street, City, and ZIP.
Users can have multiple Presets under this category, for example, my home, my
work, Mom’s home, which can be used to auto-fill the forms for driving direction
services.

User Preferences in OracleAS Wireless include Contact Rules and Location Privacy
and Authorization Rules. The Contact Rules are one of the user preference settings
used by collaboration services and the messaging service. A Contact Rule describes
how the user wishes to receive calls and messages. For example, a user can set a
contact rule for meetings, wherein the user receives all notifications on a cell phone.
You may define multiple contact rules, each with appropriate settings for a given set
of circumstances. At any one time, only one contact rule is active. The active Contact
Rule controls which devices are available to the user and the way in which the user

Multiple Customization Profiles

15-4 Oracle Application Server Wireless Developer’s Guide

wishes to be notified. The Location Privacy and Authorization Rules are used by
location-based collaboration services. The location rules let the user control if and
when their locations can be revealed to the location-based applications. The rules
also let users authorize which services or users can query their locations.

15.2 Multiple Customization Profiles
OracleAS Wireless enables development of user-centric web services that adapt the
contents not only to the device and network capability but also to the end-user’s
preferences. The device portals typically provide a menu of services which may be
organized under several folders and subfolders. Menu-driven device portals are
designed to optimize the interactive efficiency of wireless devices. Service menus
are usually static, but the portal may intelligently suggest new services to the user
as it learns more about the user’s needs and preferences. OracleAS Wireless Server
enables end-users to personalize the portal by controlling the arrangement of
services in the menus. The portal can suggest new services to the user, but the user
still controls when to include or exclude each service in the user’s personalized
portal. Administrators can explicitly prevent end-users from rearranging or
removing certain services (such as promotions, preferred partners, emergency
services) from their personalized portals.

15.2.1 Concepts
Profiles enable users to create multiple personalized versions of the portals for their
devices; the service menus may be different from one profile to another. For
example, suppose that one of the folders for a user contains the following services:

■ E-mail

■ News

■ Stocks

■ Map

■ Phone Directory

■ Shopping

In the Home profile, the service menu in the folder may be customized as:

Note: For more information on Contact Rules, see OracleAS
Wireless Administrator’s Guide.

Multiple Customization Profiles

Enabling User Customization 15-5

■ Phone Directory

■ E-mail

■ News

■ Stocks

The same folder may be customized differently for the Traveling profile as:

■ Map

■ Shopping

■ Phone Directory

Multiple profiles can be created for different roles, locations or contexts, device and
network characteristics, or any other taxonomy.

Profiles may be created for each of these roles to increase efficiency and accessibility
of services. For a traveling user who frequents multiple metropolitan centers,
profiles may be created for each location. For example, a user’s customization
Profile for a cultural center (such as Rome, Italy) may include services for theaters,
museums, and transit schedules. The same user may have another profile for the
Lake Baikal area with a different combination of services. A location-aware portal
can automatically set the session Profiles for users when they connect from different
locations. A Profile may be associated with a Location Mark as described in the
section on Location Marks.

OracleAS Wireless runtime controllers can be extended to automatically provision
the Profiles for users, for example to provide different views of the portal from more
than one type of device. The example in the following section describes how to
automatically provision a profile for a user. Alternatively, end-users can create any
number of Profiles for any context through the Customization Portal using a PC
browser. Through OracleAS Wireless Tools, they can customize the arrangement of
services for each of the Profiles.

Administrators can specify the default sorting rules for shared folders. Under the
Profile architecture, end-users can alter the default sorting rules to personalize their
own views of shared folders. They can choose from the following sorting rules:

■ specified sequence numbers

■ lexicographic ordering

■ date of creation

■ frequency of access

Multiple Customization Profiles

15-6 Oracle Application Server Wireless Developer’s Guide

■ last access time

The sequence numbers, lexicographic ordering, and date-of-creation produce static
views of the folders. Sorting by frequency of access or last access time produces a
dynamic view of the folders. Furthermore, administrators can control the static or
dynamic arrangements of some of the applications in a folder, such as emergency,
promotion and preferred partner’s services, that may not be rearranged by end-users.
Administrators can designate the segments of the views that may be rearranged or
hidden by end-users.

The view of a folder may be segmented such that one segment is sorted by the
administrator’s specification and another segment is sorted by a user’s
specification.

The Profile architecture enables end-users to specify the visibility of an application
in the profile, provided the administrator does not explicitly disable the
personalizable attribute of the application. This enables end-users to subscribe or
unsubscribe to an application that may be placed in the user’s folder by the system.
The system may also apply location-based filtering of services in the
location-enabled folders, which offers additional dynamism to the views that vary
with the user’s mobile position.

Applications that access runtime objects can get the current Profile from the
ServiceContext.getProfile method. See Section 9.4.2, "MCS Runtime API"
for a description of runtime objects. This method first looks up the Profile in the
current Request. If the Request does not specify a Profile, the method looks in the
runtime Session for the session Profile. If the session Profile is empty, then the
method looks up the default Profile of the user. This resolution strategy lets the
Request override the session Profile, and the session to override the default user
profile. ServiceContext.getProfile will return null if no Profile is found.
Applications should be designed to react with default behavior when the Profile is
not specified.

15.2.2 Sample Applications
The following example illustrates how to automatically provision a user device, and
the device Profile for each of the device types that a user may use.
SampleRequestListener listens for the serviceBegin() event and provisions
a new user device and Profile in lines [22], [25], and [27]; if the Request and Session
do not already specify a Profile, line [17] and [19]. For the new Profile, it sets the
user’s home folder to sort the services in the home folder by the last access time of
the service in line [36]. For each service that is view-customizable in line [39], it sets
the service to be hidden in the Profile in line [40]. End-users can later customize the

Multiple Customization Profiles

Enabling User Customization 15-7

Profiles to unhide the services that they want to use. This must be done only once
after the Profiles are first created. The listener then sets the Profile in the Request in
line [54].

import oracle.panama.model.*;
import oracle.panama.rt.Session;
import oracle.panama.rt.Request;
import oracle.panama.rt.event.RequestAdapter;
import oracle.panama.rt.event.RequestEvent;
import oracle.panama.rt.event.AbortServiceException;
import oracle.panama.PanamaException;

public class SampleRequestListener extends RequestAdapter {

 public void serviceBegin(RequestEvent event) throws AbortServiceException {
 Request request = event.getRequest();
 Session session = request.getSession();
 User user = session.getUser();

 Profile profile = request.getProfile(); //[17]

 if (profile == null)
 profile = session.getProfile(); //[19]
 if (profile == null) {
 Device device = request.getDevice();
 String deviceName = device.getName();
 Profile deviceProfile;
 synchronized(user) {
 ModelFactory factory = MetaLocator.getInstance().getModelFactory();
 UserDevice userDevice = user.lookupUserDevice(deviceName);
 boolean deviceProfileCreated = false;
 if (userDevice == null) {
 userDevice = user.createUserDevice(); //[22]
 userDevice.setName(deviceName);
 userDevice.setDisplayName("My user device name for " + deviceName);
 try {
 factory.save();
 deviceProfileCreated = true;
 } catch (PanamaException ex) {
 deviceProfile = null;
 }
 }
 deviceProfile = userDevice.getUserProfile();
 if (deviceProfile == null) {
 deviceProfile = user.lookupProfile(deviceName); //[25]
 if (deviceProfile == null) {
 deviceProfile = user.createProfile(deviceName); //[27]
 }
 try {

Presets

15-8 Oracle Application Server Wireless Developer’s Guide

 factory.save();
 deviceProfileCreated = true;
 } catch (PanamaException ex) {
 deviceProfile = null;
 }
 }

 if (deviceProfileCreated) {
 boolean needCommit = false;
 Folder home = user.getHomeFolder();
 deviceProfile.setSortRule(home, SortRule.SORT_BY_ACCESS_TIME_ASCEND); //[36]
 Service[] services = home.getAccessibleUserServices(user);
 for (int i = 0; i < services.length; i++) {
 if (services[i].isViewCustomizable()) { //[39]
 deviceProfile.setHide(services[i], true); //[40]
 needCommit = true;
 }
 }
 try {
 if (needCommit)
 factory.save();
 } catch (PanamaException ex) {

 }
 }
 }
 }
 if (deviceProfile != null)
 request.setProfile(deviceProfile); //[54]

}

15.3 Presets
OracleAS Wireless provides the facilities for developers and end-users to apply
extensive customization to create personalized portals, which enhance the one-one
relationships between the portal and each end-user. One of the key facilities is the
Presets for storage of the user’s personal information, preference settings, and
frequently used input parameters on the server side so that the applications can use
them to generate personalized responses.

The OracleAS Wireless repository contains the concept of a portal user with
predefined persistent attributes. These basic attributes include name, gender,
date-of-birth, country, language, locale, and others. Presets are persistent objects in the
OracleAS Wireless repository that can be used to extend the repository schema,
especially to incorporate new persistent attributes for user objects in the repository.

Presets

Enabling User Customization 15-9

15.3.1 Presets Concept and Architecture
Presets are persistent objects in the OracleAS Wireless repository that can be used to
extend the user schema and incorporate users’ personal information into the
repository. Developers of applications can define the Preset Categories to extend the
user schema in application-specific ways, for example to incorporate the billing
address, credit card charge account, bank accounts, brokerage accounts, stock
portfolios, emergency contacts. These extended schemas may be defined and
exclusively maintained by Personal Information Management (PIM) services.

Presets can also be used to incorporate user preferences into the repository. The
standard user agent types and the device models in the repository describe the
capabilities of devices. Individual end-users can customize some of the capabilities
of the user agents. Presets for user agent profiles can be used to let end-users
customize the capabilities of the user agent, for example, to enable or disable sound,
select background color, select quality of service, or to disable images to minimize
packet transmissions. The user agent profiles control the format of the content, but
more general user preference profiles can affect the selection of the applications and
response of the applications. For example, the user preference profile for sports,
entertainment, technology and privacy requirements can be used by the applications to
filter the contents. The Presets architecture enables the development of adaptive
web services based on the emerging Composite Capability/Preference Profile
(CC/PP), User Agent profile (WAP UAProf), and Platform for Privacy Preferences
(P3P) standards (www.wapforum.org).

Presets can also store frequently-used input parameters for applications. The
applications can define the attributes of Presets to closely match the forms used by
the applications. These Presets can be used to auto-fill forms. The applications can
store user inputs as the Presets for subsequent use. The Presets names uniquely
identify the input parameter values and can be used as shorthand to significantly
reduce the amount of data entry.

There are different categories of Presets in the repository. Each Presets relation
contains a set of preset attribute values whose types and relations are defined by the
Preset Category. A user may own one or more Presets relations in each of the Preset
Categories. A Preset Category contains a collection of Preset Descriptors, each of
which provide the metadata for the attributes in the Presets relation. The metadata
of an attribute includes the name, type, size, format, and description of the attribute.
For example, a Presets relation of the address book Preset Category may contain the
name, address, and phone number attributes of a contact for the user. Such a Preset
Category may be defined and exclusively maintained by a Personal Information
Management (PIM) application. Another Preset Category may define the attributes
of the Presets relations that contain the stock symbols, names, and classifications of

Presets

15-10 Oracle Application Server Wireless Developer’s Guide

the companies in the user’s watch list or portfolio. The stock symbols in this
category can be used as input parameters for the stock quote service.

The name of the Preset Category must be unique within the repository. Likewise,
the name of the Preset Descriptor must be unique within the Preset Category to
which it belongs. The name of the Presets relation is optional but if given a name, it
must be unique among the Presets relations that are owned by the same user within
the same Preset Category. Preset Categories created programmatically are marked
as system by default; they are to be maintained by the applications exclusively.
System-level Preset Categories are not visible in the customization portals and
cannot be edited by end users directly. The applications can set the Preset Category
to non-system so that end-users may edit its Presets in the customization portal.

15.3.2 Sample Applications
Preset Categories can be created programmatically as shown in the following
examples. They can also be created from OracleAS Wireless Tools > Preset
Definitions control panel.

15.3.2.1 Example 1: Adding Attributes to the User Schema
The following code example shows how to create a Preset Category Billing Address
to extend a user schema. The method first checks in line [13] if the Billing Address
category already exists in the repository. If the category does not exist, the
ModelFactory method createPresetCategory(Billing Address) is used to
create the category in line [21]. Lines [23] through [27] define the first attribute
Addressee Name of the category. Line [25] defines that the first attribute is comprised
of a single line of text. In contrast, the second attribute Street Address is defined as a
multi-line text field in line [31]. The new Preset Category is committed in line [47].

import oracle.panama.model.ModelFactory;
import oracle.panama.model.PresetCategory;
import oracle.panama.model.PresetDescriptor;
import oracle.panama.ArgumentType;
import oracle.panama.PanamaException;

public void createAddressBook() throws PanamaException {

 ModelFactory factory = MetaLocator.getInstance().getModelFactory();
 ModelServices services = MetaLocator.getInstance().getModelServices();

 PresetCategory category;
 try {

Presets

Enabling User Customization 15-11

 category = services.lookupPresetCategory("Billing Address"); [13]
 } catch (PanamaRuntimeException ex) {
 category = null;
 }

 if (category != null) {
 return; // category already exists
 }
 category = factory.createPresetCategory("Billing Address"); [21]

 PresetDescriptor descriptor = category.createPresetDescriptor("Addressee Name"); [23]
 descriptor.setDescription("The name of the addressee");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE); [25]
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(40));[27]

 descriptor = category.createPresetDescriptor("Street Address");
 descriptor.setDescription("The street address");
 descriptor.setPresetType(ArgumentType.MULTI_LINE); [31]
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(120));

 descriptor = category.createPresetDescriptor("State");
 descriptor.setDescription("The name of the state");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(2));

 descriptor = category.createPresetDescriptor("Zip code");
 descriptor.setDescription("The postal zip code");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.NUMERIC);
 descriptor.setSize(new Long(5));

 factory.save(); [47]
 }

The name of the Preset Category must be unique in the repository. The
createPresetCategory() method of the ModelFactory will throw
oracle.panama.model.NameUniquenessViolationException if the
application tries to create a Preset Category with the same name. Likewise, the
name of the Preset Descriptor must be unique within the Preset Category. The
createPresetDescriptor() method of the PresetCategory will throw
oracle.panama.model.NameUniquenessViolationException if the

Presets

15-12 Oracle Application Server Wireless Developer’s Guide

application tries to create the Preset Descriptor with the same name. The names of
Preset Category and Preset Descriptor are case-sensitive and can contain any valid
characters including spaces.

15.3.2.2 Example 2: Adding a Unique Presets Relation for a User
The following code example shows how the Preset Category Billing Address is used
to add persistent attributes to the user. If the Billing Address category does not exist,
this method creates the new category. The example uses the unique object ID of the
user as the name of the Presets. The new Presets relation is created in line [16], only
if the look up method in line [13] does not find any existing Presets relation with the
same name. The use of the object ID as the Presets name ensures that only one
instance of the Presets relation for Billing Address is created for each user. The
attribute values of the Presets relation are modified in lines [18] through [21]. The
modified Presets relation is committed into the repository in line [23].

import oracle.panama.model.*;

public void addBillingAddress(User user, String addressee, String streetAddress,
 String state, int zipCode) throws PanamaException {
 ModelFactory factory = MetaLocator.getInstance().getModelFactory();
 ModelServices services = MetaLocator.getInstance().getModelServices();

 PresetCategory category;
 try {
 category = services.lookupPresetCategory("Billing Address");
 } catch (PanamaRuntimeException ex) {
 createAddressBook();[9]
 category = services.lookupPresetCategory("Billing Address");
 }

 Presets presets = user.getPresets(category, Long.toString(user.getId()));[13]

 if (presets == null) {
 presets = user.createPresets(category, Long.toString(user.getId())); [16]
 }

 presets.setPresetValue("Addressee Name", addressee); [18]
 presets.setPresetValue("Street Address", streetAddress);
 presets.setPresetValue("State", state);
 presets.setPresetValue("Zip code", Integer.toString(zipCode)); [21]

 factory.save(); [23]
 }

Presets

Enabling User Customization 15-13

The name of the Presets relation must be unique within the user’s domain. If the
application tries to create the Presets again with the same name for the same user,
the createPresets() method of the user will throw the
oracle.panama.model.NameUniquenessViolationException. The names
of Presets relations are case-sensitive and can contain any valid characters including
spaces.

15.3.2.3 Example 3: Adding a Unique Presets Relation for Users’ Profiles
Profiles are repository objects that support multiple versions of personalized portals
for each user. If a user has a Profile for Business and another Profile for Personal and
requires a separate credit card charge account for each of the Profiles, then the
following code example shows how to create the Credit Card Charge Account
category and the Presets relation that is unique for each profile of the user. The
unique presets name is created from the object ID of the User and the Profile in line
[43] to ensure that only one Presets relation is created for each profile. The example
also shows the use of preset type ArgumentType.ENUM for the Card Type attribute.
The ENUM type enables you to specify the valid options for that attribute as shown
in lines [28] and [30]. Lines [60] through [62] show the use of the Java.sql.Date
type for persistent storage. The expiration date of the credit card is formatted using
the Java.text.DateFormat utility in line [61] so that it can be parsed and stored
as Date type in the repository.

import oracle.panama.model.*;
import Java.util.Date;
import Java.text.DateFormat;

public void addCreditAccount(User user, Profile profile, String cardNumber,
 String cardType, int expireMonth, int expireYear)
 throws PanamaException {
 ModelFactory factory = MetaLocator.getInstance().getModelFactory();
 ModelServices services = MetaLocator.getInstance().getModelServices();

 PresetCategory category;
 try {
 category = services.lookupPresetCategory("Credit Card Charge Account");
 } catch (PanamaRuntimeException ex1) {
 try {
 category = factory.createPresetCategory("Credit Card Charge Account");
 } catch (PanamaException ex2) {
 throw ex2;
 }

Presets

15-14 Oracle Application Server Wireless Developer’s Guide

 PresetDescriptor descriptor = category.createPresetDescriptor("Account Number");
 descriptor.setDescription("The credit card account number");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(40));

 descriptor = category.createPresetDescriptor("Card Type");
 descriptor.setDescription("The type of credit card");
 descriptor.setPresetType(ArgumentType.ENUM); [25]
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(40));
 String cardTypes[] = { "Master", "Visa", "Discover", "American Express", "Diners
Club" }; [28]
 try {
 descriptor.setOptions(cardTypes); [30]
 } catch (TooManyOptionsException ex3) {
 throw new PanamaException(ex3);
 }

 descriptor = category.createPresetDescriptor("Expiration Date");
 descriptor.setDescription("The expiration date of the credit card");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.DATE);

 factory.save(); [40]
 }

 String presetsName = Long.toString(user.getId()) + "-" + Long.toString(profile.getId());
[43]
 Presets presets = profile.getPresets(category, presetsName);
 if (presets == null) {
 presets = profile.createPresets(category, presetsName);
 }

 presets.setPresetValue("Account Number", cardNumber);
 presets.setPresetValue("Card Type", cardType);
 Date date = new Date(expireYear, expireMonth, 1); [60]
 String dateStr = DateFormat.getInstance().format(date); [61]
 presets.setPresetValue("Expiration Date", dateStr); [62]

 factory.save(); [64]
 }

Presets

Enabling User Customization 15-15

15.3.2.4 Example 4: Selecting the Presets Relation Under the Current Profile
The following code example from a Request Listener illustrates how the Presets
relation for the Credit Card Charge Account is accessed during the serviceBegin()
event notification. The routine throws AbortServiceException if no valid credit
card charge account is available for the user. It checks for request profile, session
profile, or default user profile, in order, as shown in lines [14] and [16]. It composes
the Presets name from the object ID of the User and Profile. If the Presets relation for
Credit Card Charge Account is found, the listener provides the credit card information
to the service as request parameters in lines[51] through [52].

import oracle.panama.rt.event.RequestEvent;
import oracle.panama.rt.event.AbortServiceException;
import oracle.panama.rt.Session;
import oracle.panama.rt.Request;

public void serviceBegin(RequestEvent event) throws AbortServiceException {
 Request request = event.getRequest();
 PresetCategory category;
 String presetsName;
 ModelServices services = MetaLocator.getInstance().getModelServices();
 String serviceName = request.getServicePath();
 User user;

 Profile profile = request.getProfile(); [14]
 if (profile == null) {
 profile = request.getSession().getProfile(); [16]
 }
 if (profile != null) {
 user = profile.getUser();
 presetsName = Long.toString(user.getId()) + "-" + Long.toString(profile.getId());
 } else {
 user = request.getSession().getUser();
 presetsName = Long.toString(user.getId());
 }

 try {
 category = services.lookupPresetCategory("Credit Card Charge Account");
 } catch (PanamaRuntimeException ex1) {
 throw new AbortServiceException("This service " + serviceName + " requires a valid
charge account");
 }

 Presets presets = null;
 if (profile == null) {

Presets

15-16 Oracle Application Server Wireless Developer’s Guide

 presets = user.getPresets(category, presetsName);
 } else {
 presets = profile.getPresets(category, presetsName);
 if (presets == null) {
 presets = user.getPresets(category, presetsName);
 }
 }

 if (presets == null) {

 throw new AbortServiceException("This service " + serviceName + " requires a valid
charge account");
 }

 String creditCardNumber;
 String cardType;
 String expiration;
 try {
 creditCardNumber = presets.getPresetValue("Account Number");
 cardType = presets.getPresetValue("Card Type");
 expiration = presets.getPresetValue("Expiration Date");
 } catch (PanamaException ex) {
 throw new AbortServiceException("This service " + serviceName + " requires a valid
charge account");
 }

 if (! creditAvailable(creditCardNumber, cardType, expiration)) {
 throw new AbortServiceException("This service " + serviceName + " requires a valid
charge account");
 }

 request.setParameter("Account Number", creditCardNumber); [51]
 request.setParameter("Card Type", cardType); [52]
 request.setParameter("Expiration Date", expiration); [53]
 }

The above examples are based on a scenario that requires the applications to use
well-defined naming conventions for the Presets relations, although the Presets
names themselves are optional. The following example illustrates a Preset Category
Appointments which allows multi-set entries. The identity of the Presets relation is
provided by one of the attributes in the Presets relation. In this example, the Presets
are created without names.

Presets

Enabling User Customization 15-17

15.3.2.5 Example 5: Creating Presets without Given Name
The following code example shows the Preset Category Appointments that lets users
create appointment events. Since the attribute Short Title can be used to identify the
events, the event Presets are created without names as shown in line [65]. All event
Presets for the user can be retrieved from the repository as shown in line [97]. The
Appointments category is set to non-system in line [25] so that the category can be
included in the customization portal for end-users to edit. The example shows the
use of DateFormat utility to save the event time in line [69] and retrieve it in line
[105]. The expired events are deleted from the repository in line [112]. The example
also shows the use of the regular expression to constrain the format of the Phone
Number attribute. The regular expression is compatible with the public domain
org.apache.regexp.RE toolset. The regular expression in line [59] is for the
phone numbers in the US locale, which is:

"\s*[(]?[1-9]\d{2}[)]?\s*-?\s*\d{3}\s*-?\s*\d{4}"

without the escape characters. The setPresetValue() method, line [77], in the
Presets will throw PanamaException if the value does not match the regular
expression. The full regular expression syntax, which is compatible with the
org.apache.regexp.RE toolset, is given in the next section.

import oracle.panama.model.*;
import oracle.panama.PanamaException;
import oracle.panama.PanamaRuntimeException;
import oracle.panama.ArgumentType;

import Java.util.Vector;
import Java.util.Enumeration;
import Java.util.Date;
import Java.text.DateFormat;
import Java.text.ParseException;

public class SamplePresets {

 public void addAppointment(User user, String title, String memo, Date time,
 boolean alarm, String phone) throws PanamaException {
 ModelFactory factory = MetaLocator.getInstance().getModelFactory();
 ModelServices services = MetaLocator.getInstance().getModelServices();

 PresetCategory category;
 try {
 category = services.lookupPresetCategory("Appointments");
 } catch (PanamaRuntimeException ex1) {
 try {

Presets

15-18 Oracle Application Server Wireless Developer’s Guide

 category = factory.createPresetCategory("Appointments");
 category.setSystem(false); [25]
 } catch (PanamaException ex2) {
 throw ex2;
 }

 PresetDescriptor descriptor = category.createPresetDescriptor("Short Title");
 descriptor.setDescription("Brief description of the event");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);

 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(40));

 descriptor = category.createPresetDescriptor("Memo");
 descriptor.setDescription("Memo for the event");
 descriptor.setPresetType(ArgumentType.MULTI_LINE);
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(400));

 descriptor = category.createPresetDescriptor("Time");
 descriptor.setDescription("Time of event");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(40));

 descriptor = category.createPresetDescriptor("Alarm");
 descriptor.setDescription("Enable or disable alarm before event");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(1));

 descriptor = category.createPresetDescriptor("Phone Number");
 descriptor.setDescription("Optional phone number to ring for alarm");
 descriptor.setPresetType(ArgumentType.SINGLE_LINE);
 descriptor.setStoredType(Java.sql.Types.VARCHAR);
 descriptor.setSize(new Long(40));
 descriptor.setFormat("\\s*[(]?[1-9]\\d{2}[)]?\\s*-?\\s*\\d{3}\\s*-?\\s*\\d{4}");
[59]
 descriptor.setEmptyOK(true);

 factory.save();
 }

 Presets presets = user.createPresets(category); [65]

Presets

Enabling User Customization 15-19

 presets.setPresetValue("Short Title", title);
 presets.setPresetValue("Memo", memo);
 String timeStr = DateFormat.getDateTimeInstance().format(time); [69]
 presets.setPresetValue("Time", timeStr);
 if (alarm) {
 presets.setPresetValue("Alarm", "Y");
 } else {
 presets.setPresetValue("Alarm", "Y");

 }
 try {
 presets.setPresetValue("Phone Number", phone); [77]
 } catch (PanamaException ex) {
 // ignore
 }

 factory.save();
 }

 public Presets[] getAppointments(User user) throws PanamaException {
 ModelFactory factory = MetaLocator.getInstance().getModelFactory();
 ModelServices services = MetaLocator.getInstance().getModelServices();

 PresetCategory category;
 try {
 category = services.lookupPresetCategory("Appointments");
 } catch (PanamaRuntimeException ex1) {
 throw new PanamaException(ex1);
 }

 Date now = new Date(System.currentTimeMillis());
 Vector allPresets = user.getAllPresets(category); [97]
 Enumeration enum = allPresets.elements();
 Vector pending = new Vector();
 while (enum.hasMoreElements()) {
 Presets event = (Presets) enum.nextElement();
 String timeStr = event.getPresetValue("Time");
 Date time;
 try {
 time = DateFormat.getDateTimeInstance().parse(timeStr); [105]
 } catch (ParseException ex) {
 time = null;
 }
 if (time != null && time.after(now)) {
 pending.add(event);

Presets

15-20 Oracle Application Server Wireless Developer’s Guide

 } else {
 user.deletePresets(category, new Long(event.getId())); [112]
 }
 }
 factory.save();

 Presets presetsArray[] = new Presets[pending.size()];
 pending.copyInto(presetsArray);
 return presetsArray;

 }

}

15.3.3 Regular Expressions Syntax for the Presets Attribute Formats
The following tables shows the full regular expression syntax that can be used to
define formats.

Table 15–1 Characters Used to Define Presets Attribute Formats

Character Description

char Matches any identical character

 \ Used as an escape character (for example: *, \\, \w)

 \\ Matches a single ’\’ character

 \0nnn Matches a character with given octet number

 \xhh Matches a character with given 8-bit hexadecimal value

 \\uhhhh Matches a character with given 16-bit hexadecimal value

 \t Matches a tab character

 \n Matches a newline character

 \r Matches a return character

 \f Matches a form feed character

Table 15–2 Character Classes

Character Description

[abc] Simple character class

Presets

Enabling User Customization 15-21

[a-zA-Z] Range character class; range specified with “-” and “]” (for
example: [x-z]

[^abc] Negated character class, for exclusion tests.

Table 15–3 Standard POSIX Character Classes

Character Description

[:alnum:] Alphanumeric characters.

[:alpha:] Alphabetic characters.

[:digit:] Numeric characters.

[:upper:] Upper-case alphabetic characters.

[:lower:] Lower-case alphabetic characters.

[:space:] Space characters (such as space, tab, and formfeed, to name a
few).

Table 15–4 Variable Classes

Class Description

. Matches any character other than newline

\w Matches an alphanumeric character

\W Matches a non-alphanumeric character

\s Matches a whitespace character

\S Matches a non-whitespace character

\d Matches a digit character

\D Matches a non-digit character

Table 15–2 Character Classes

Character Description

Presets

15-22 Oracle Application Server Wireless Developer’s Guide

Table 15–5 Boundary Matchers

Matcher Description

^ Matches the beginning of a line

$ Matches the end of a line

\b Matches a word boundary

\B Matches a non-word boundary

Table 15–6 Greedy Closures (match as many elements as possible)

Element Description

A* Matches A 0 or more times (greedy)

A Matches A 1 or more times (greedy)

A? Matches A 1 or 0 times (greedy)

A{n} Matches A exactly n times (greedy)

A{n,} Matches A at least n times (greedy)

A{n,m} Matches A at least n but not more than m times (greedy)

Table 15–7 Reluctant Closures (match as few elements as possible)

Element Description

A*? Matches A 0 or more times (reluctant)

A? Matches A 1 or more times (reluctant)

A?? Matches A 0 or 1 times (reluctant)

Table 15–8 Logical Operators

Operator Description

AB Matches A followed by B (concatenation)

A|B Matches either A or B(union)

Location Marks

Enabling User Customization 15-23

15.4 Location Marks
Location awareness is a key feature of OracleAS Wireless. A user’s location can be
obtained from E911 or GPS units or Location Marks. Location Marks are
user-defined locations. For example, an end-user may enter home, work and
headquarters office addresses into their location-aware applications. Then, when
using a restaurant look-up application, the application can use the current location
to provide driving directions. To ensure security and privacy, users can control
which applications can access their location.

Due to the limitations of certain mobile devices such as telephones, it is difficult to
input or display lengthy alphanumeric strings. A location mark stores a piece of
spatial information identified by a concise, easy-to-understand name. For example,
My Home might be the name of a location mark, while the underlying spatial
information might be 123 Main Street, Somewhere City, CA, 12345; Lon = -122.42, Lat =
37.58.

Users have complete control over their location marks and are easily able to select,
create, delete and modify location with any device or PC.

Location marks also allow users to try what-if? scenarios; to make an application
behave as if they were in a location different from their default or current location.
For example, a user of an entertainment services application might be in Boston, but
will be traveling to Montevideo in a few days. This person could set a location mark
in Montevideo, and be presented with information relevant to the Montevideo area.
Each user can have personalized location marks, which are stored in the Wireless
repository.

Location marks are created using the LocationMark class. Users can also create
location marks by logging into the OracleAS Wireless Customization Portal, clicking
the LocationMarks tab, and clicking Create. See Chapter 14, "Using Location
Services" for more information on using Location Marks with Geocoding, Mapping,
Routing, Traffic and Region Modeling services. Location Marks may be geocoded as
a point (latitude and longitude) or a spatial region covering a metropolitan area.

The following code example illustrates how a Location Mark for the user
JohnBSmith’s work address is created and assigned to the user’s location profile

(A) Matches subexpression inside “(” and “)”, not including “(”
and “)”

Table 15–8 Logical Operators

Operator Description

User Device Management

15-24 Oracle Application Server Wireless Developer’s Guide

NEDC AREA LOCATION PROFILE. The user can switch to this location profile from
their device to adapt the responses from location-aware services.

public void createLocations() throws Exception {
 User user = services.lookupUser("JohnBSmith");
 Point point = SpatialManager.createPoint(-71.455, 42.7117);
 Location location = SpatialManager.createLocation(point,"", "","1 oracle
drive", "", "nashua", "nh", "03062", "", "", "", "","us");
 LocationMark locMark = factory.createLocationMark("NEDC AREA", user,
location, 2.0);
 Profile locationProfile = user.createProfile("NEDC AREA LOCATION
PROFILE");
 locationProfile.setLocationMark(locMark);
 factory.save();
 }

15.5 User Device Management
OracleAS Wireless enables users with multiple devices to easily manage and
optimize their mobile experiences for each device. Users can manage their devices
from either a PC or mobile device. In addition, users are easily able to modify their
current default device.

A User Device objects is a means for grouping multiple device addresses under the
same entity. This is useful for situations in which the same device may contain
multiple User Agents or may use multiple protocols or channels, each with a
different address or identification, but all emanating from the same physical entity.
Furthermore, the preference settings, location settings, device settings in one User
Agent may affect another User Agent on the same device. A customization profile is
automatically created for each User Device object.

Once a user creates a new device profile, they can enter the following attributes for
each device:

■ Device Name

■ Number of accepted notifications per day

■ One or more addresses/phone numbers

■ Device Type (such as: voice, WAP, PDA)

Service Management

Enabling User Customization 15-25

15.6 User and Group Management
OracleAS Wireless provides Group and User Management and Access Control Lists
(also known as Roles) to restrict or grant access to any folder or application. Any
user that is granted User Manager role is able to create, delete and modify groups
and users through any device or PC.

Group and User objects represent a convenient mechanism to define access control
on folders and applications. A user may be a member of one or more groups. Every
folder or application is owned by a single user, but can be shared among a group of
users by assigning the folder or application to the group. All users in a group are
granted access to any folder or application when the folder or application is
assigned to the group.

Users have full control over their own folders and applications placed under their
private folders. They can create, delete, or modify applications in their private
folders, especially Bookmarks and Quicklinks.

15.7 Service Management
OracleAS Wireless offers complete control to developers to manage what end-users
can do in terms of folder management. Developers can offer groups or users
complete flexibility with their Service Management or restricted use of Service
Management.

Services and folders may be organized in the following ways:

■ user-specified sequence numbers (any order)

■ lexicographic ordering

■ date of creation

■ dynamic ordering based on frequency of access or last access

End-user also have the ability to customize their mobile experience with Bookmarks
and Quicklinks. This gives users the ability to link frequently-accessed services to
the home deck or any other desired folder.

Service Management

15-26 Oracle Application Server Wireless Developer’s Guide

Billing 16-1

16
Billing

Each section of this document presents a different topic. These sections include:

Section 16.1, "Overview"

Section 16.2, "Using the Billing Integration Framework"

Section 16.3, "BillingLoader Utility"

Section 16.4, "Billing Collector and Service Detail Record"

Section 16.5, "Billing Driver"

Section 16.6, "Billing Integration Scenario"

16.1 Overview
OracleAS Wireless Billing Integration Framework provides an extensible and
flexible framework to model billable services, capture billable actions, and integrate
with any billing engine.

Overview

16-2 Oracle Application Server Wireless Developer’s Guide

Figure 16–1 Billing Framework Architecture

16.1.1 Concepts
Billable Action—Customer actions which should be tracked, authorized and
reported to the billing system. Typical examples are premium service access, mobile
content download, alert subscription and message delivery.

Billing Context—A marker interface whose implementation object provides all the
data related to a given billable action. OracleAS Wireless has the following objects
predefined as Billing Context:

■ For Multi-Channel service access: oracle.panama.rt.ServiceContext

■ For J2ME application download:
oracle.panama.model.UserDownloadStatus

■ For mobile alert subscription:
oracle.panama.mobilealert.ServiceAlertSubscription

■ For messaging:

■ Sending:
oracle.panama.messaging.transport.impl.SendingBillingCon
text

■ Receiving:
oracle.panama.messaging.transport.impl.ReceivingBilling
Context

Service Detail Record (SDR)—A generic object that captures all the billing-specific
attributes from the billing context for a given billable action. The attributes are of
two types: mandatory and extended. Mandatory attributes are user information,

Using the Billing Integration Framework

Billing 16-3

service information and component information. Extended attributes contain the
component-specific information.

Billing Collector—An extensible object that processes the BillingContext and
generates the corresponding service detail record.

Billing Driver—A Java interface defined by OracleAS Wireless; it interacts with an
external billing system to handle a given billable action. A billable action is usually
handled in two steps:

■ Before the action starts, the driver's preService API is called by the billing
framework. For example: In a typical scenario in which usage authorization is
based on user balance and credit, resource reservation, rating and fraud
detection, the driver can instruct the billing framework to veto the user billable
action request.

■ After the action completes, the driver's postService API will be called by the
billing framework which completes the billing transaction.

16.2 Using the Billing Integration Framework

16.2.1 Billable Actions and Billing System Interaction

16.2.1.1 Default Billable Actions
OracleAS Wireless defines the following billable actions:

■ Multi-Channel service request—the model service is defined with the cost
attribute set to a non-zero value:

■ calling driver's preService API right after service authorization and
before service invocation. If the result code of the API call indicates failure,
the request is rejected.

■ calling driver's postService API after the service request has been served
and before any listener notification.

■ J2ME application download:

■ calling driver's preService API right before the download request is
generated by the provisioning server. If the result code of the API call
indicates failure, the request is rejected.

Using the Billing Integration Framework

16-4 Oracle Application Server Wireless Developer’s Guide

■ calling driver’s postService API after provisioning server has received
notification from the installed device indicating successful installation and
before any listener notification.

■ Alert Subscription:

■ calling driver’s preService API right before user subscribes to a mobile
alert service. If the result code of the API call indicates failure, the request is
rejected.

■ calling driver’s postService API after the alert subscription has been
created.

■ Messaging:

■ Sending

* calling driver’s preService API before the message delivery request
is accepted by the messaging framework. If the result code of the API
call indicates failure, the request is rejected.

* calling driver’s postService API after the message delivery request is
accepted by the messaging framework.

■ Receiving

* calling driver’s preService API before the message is routed to
targeted registered application. If the result code of the API call
indicates failure, the message is discard.

* calling driver’s postService API after the message has been routed to
targeted registered application.

16.2.1.2 Custom Billable Actions
OracleAS Wireless billing integration framework allows users to introduce custom
billable actions to meet their business needs. Following are the steps to introduce a
new billable action:

■ Identify the place where the new billable action should take place, for example,
a runtime hook or a JSP.

■ Define an object which provides access to all the data related to this new
billable action. This object can be any Java class as long as it implements the
marker interface BillingContext. You may also use the predefined
BillingContext objects mentioned above if appropriate.

Using the Billing Integration Framework

Billing 16-5

■ Customize the Billing Collector object to handle your new BillingContext object
by either extending the BillingCollectorImpl or defining your own
implementation of the Billing Collector. Billing Collector’s implementation is
presented in greater detail in the next section.

The Billing Collector class can be extended (subclassed) from the out-of-the-box
collector implementation or created new. Once it is created, the implementation
class is set in: EM > Wireless Server: Site Administration > Billing Framework >
Billing Collector Class name.

Use the following code segment to trigger a new billable action for a preService
call:

// Suppose your BillingContext Object is foo
BillingController controller = BillingController.getInstance();
if (controller.isBillingEnabled())
 {
 try {
 BillingResult result = controller.preService(foo);
 if (result != null){
 ServiceDetailRecord sdr = result.getServiceDetailRecord();
 if (result.getResultCode() != BillingResult.FAILED) { //Succeed
 // Add your logic here
 }
 else { // Failed
 // Add your logic here to handle preService failure
 //BillingException e = new BillingException(failure message);
 // e.setResult(result);
 // throw e;

 }
 }
 } catch (BillingException be) {
 //Handle Billing Execption here
 }

Use the following code segment to trigger a new billable action for postService
call:

// Suppose your BillingContext Object is foo
BillingController controller = BillingController.getInstance();
if (controller.isBillingEnabled())
 {
 try {
 BillingResult result = controller.postService(foo);
 if (result != null){

BillingLoader Utility

16-6 Oracle Application Server Wireless Developer’s Guide

 ServiceDetailRecord sdr = result.getServiceDetailRecord();
 if (result.getResultCode() != BillingResult.FAILED) { //Succeed
 // Add your logic here
 }
 else { // Failed
 // Add your logic here to handle postService failure
 }
 }
 } catch (BillingException be) {
 //Handle Billing Execption here
 }

16.3 BillingLoader Utility
The BillingLoader Utility is a batch utility to download, purge and upload billing
transaction records. For more information on BillingLoader Utility, see OracleAS
Wireless Administrator’s Guide.

16.4 Billing Collector and Service Detail Record
A billable operation for every component is split into 2 parts: a pre-event and
post-event. An SDR is generated for both the pre- and post- events. The billing data
collector class is used to create one SDR for each pre- or post- service call.

When the pre-service SDR is passed to the billing system, the billing system is
expected to set a unique Billing Reference ID and return the SDR as part of the billing
result.

The returned pre-service billing reference ID is extracted by OracleAS Wireless. It is
set in the post service SDR of the same billable operation so that the external billing
system can maintain state between the pre- and post- event of any single billable
operation based on the billing reference ID.

Only the post service billing event SDR is logged to the database, unless the driver
starts-up a transaction by setting the transaction ID attribute in the SDR which it
returns after the pre-service. If the transaction ID is set, then the pre-service SDRs
are also logged. You can identify the pre and post service SDRs based on the LOG_
TYPE column which will be either PRE_SERVICE or POST_SERVICE.

The SDR ID is an internal ID used as a primary key in our tables. You can look up a
particular SDR based on the SDR ID.

There is normally only one SDR ID for every post-service event, unless the driver
starts up a transaction (in which case the pre-service SDR is logged).

Billing Collector and Service Detail Record

Billing 16-7

16.4.1 Default Billing Collector Implementation
The BillingCollector implementation object is responsible for processing the
BillingContext for a given billable action. It generates an appropriate Service Detail
Record for the billing driver to process. OracleAS Wireless includes a default
BillingCollector implementation named BillingCollectorImpl which handles
the following BillingContext objects:

■ For multi-channel service access: oracle.panama.rt.ServiceContext

■ Extended Attribute Name:

* SERVICE_URL—the URL of the service invoked

* SERVICE_TYPE—the type of the service, that is, Folder or Link (FOLD,
LINK)

* DEVICE_NAME—the device name

* INVOKER—the Invoker for this runtime service. The list of values
include HTTP, ASYNC, ALERT, PROVISIONING, AGENT. This attribute
can be used by the driver to trace the root-invoker of this service. The
Invoker attribute and the list of values are defined in the
BillingDataCollector Interface.

* ASK_IN_MSGID—this is set if the service is the INVOKER attribute
value is ASYNC. The value denotes the Incoming message ID for the
Async application. It can use used to relate the message request with
the Async action.

■ For J2ME application download:
oracle.panama.model.UserDownloadStatusAPPLICATION_NAME

■ Extended Attribute Name:

* CONTENT_NAME—the Application name

* CONTENT_VERSION—the Content version

* USER_DEVICE_NAME (if available)—the user device name

* MIME_TYPE—the mime type downloaded

* CURRENT_NUMBER_OF_DOWNLOADS—the number of previous
downloads before the current download

* CONTENT_SIZE—the size of the content

Billing Collector and Service Detail Record

16-8 Oracle Application Server Wireless Developer’s Guide

■ For mobile alert subscription:
oracle.panama.mobilealert.ServiceAlertSubscription

■ Extended Attribute Name:

* OPERATION_TYPE—indicates if it is an Alert Message SDR or Alert
Subscription SDR. The value for mobile alert is ALERT_SUBSCRIPTION

* SERVICE_URL—URL for the invoked service. Alert Engine invokes a
service to generate content, and this attribute is the URL for the service.

* ALERT_DELIVERY_ADDR—the end-user address to which alerts will
be delivered. A comma-separated list of possible addresses.

■ For messaging:

■ Sending:
oracle.panama.messaging.transport.impl.SendingBillingCon
text

■ Extended Attribute Name:

* TYPE—indicates if the action a sending or receiving action. It is set to S
for sending.

* FROM—the from address (can be null).

* TO—the destination address.

* DELIVERY_TYPE—the delivery channel type.

* SERVICE_NAME (Optional)—the client name (such as Push Server,
Async Agent).

* DRIVER_NAME—the driver name (for the sending case only).

* REPLY_TO—the reply to address.

■ Receiving:
oracle.panama.messaging.transport.impl.ReceivingBillingC
ontext

■ Extended Attribute Name:

■ Extended Attribute Name:

* TYPE—indicates if the action a sending or receiving action. It is set to R
for receiving.

* FROM—the from address (can be null).

Billing Collector and Service Detail Record

Billing 16-9

* TO—the destination address.

* DELIVERY_TYPE—the delivery channel type.

* SERVICE_NAME (Optional)—the client name (such as Push Server,
Async Agent).

* DRIVER_NAME—the driver name (for the sending case only).

* REPLY_TO—the reply to address.

16.4.2 Service Detail Record ID Versus Billing Reference ID
Service Detail Record ID is defined by the Billing Collector. The default format is
[Component Name: Random Key]. The Billing Reference ID is obtained from the
billing system. In the pre-bill case, it is usually defined as the authorization ID.

16.4.3 Extend Default Billing Collector
OracleAS Wireless billing integration framework enables users to extend the default
billing collector implementation for various reasons:

■ To capture more data than the default implementation for a default
BillingContext:

public class MyBillingCollector extends
oracle.wireless.billing.BillingDataCollectorImpl
{
 ...
 public ServiceDetailRecord createServiceDetailRecord(BillingContext context)
 {
 ServiceDetailRecord sdr = null;
 if (context instanceof oracle.panama.rt.ServiceContext){
 sdr = super.createServiceDetailRecord(context);
 if (sdr != null){
 // Add your additional data capture logic here
 // For example:
 // oracle.panama.rt.ServiceContext serviceContext =
(oracle.panama.rt.ServiceContext)context;
 // sdr.setExtendedData("SERVICE_PATHURL",
context.getService().getURLPathParameter());
 }
 }
 else{
 sdr = super.createServiceDetailRecord(context);
 }

Billing Collector and Service Detail Record

16-10 Oracle Application Server Wireless Developer’s Guide

 return sdr;
 }
 ...
}
■ To capture data from a custom BillingContext:

public class MyBillingCollector extends
oracle.wireless.billing.BillingDataCollectorImpl
{
 ...
 public ServiceDetailRecord createServiceDetailRecord(BillingContext context)
 {
 ServiceDetailRecord sdr = null;
 if (context instanceof MyBillingContext){
 // MyBillingContext mycontext = (MyBillingContext)context;
 // get the user name from your context
 // Java.sql.Timestamp accessTime = null;
 // BillingManager manager = BillingManager.getInstance();
 //sdr = manager.createServiceDetailRecord(<User Name>, <Your service
Name>, accessTime, <your billing component name>);
 // sdr.setExtendedData("MY_DATA", <Get data from your context
object>);
 ...
 }
 }
 else{
 sdr = super.createServiceDetailRecord(context);
 }
 return sdr;
 }
 ...
}

To ignore a billable action base on the context data. Simply return a null object from
the createServiceDetailRecord call based on your business logic.

Specify your extended Billing Collector using Oracle Enterprise Manager:

EM > Wireless Server: Site Administration > Billing Framework > Billing Collector
Class name

16.4.4 Maintaining Transaction Context on Multi-part Requests
A typical wireless request spans multiple entities (a multi-part request). For
example, an Async request may originate at the Messaging Server, forwarded to the

Billing Collector and Service Detail Record

Billing 16-11

Async Listener, which invokes a Runtime service and then returns the result back to
the user through the Messaging Server. The Billing Rules may demand a billing at
each stage of the transaction, but the pricing may vary depending on the context of
the request. To support such a scenario, it is necessary to maintain the history of the
request’s path (available resources to the Billing Driver [or Data Collector]), where
the Billing Rules are enforced.

16.4.4.1 Creating and Assigning Billing Transactions
The Billing Driver (or Data Collector) can assign a given Service Detail Record to be
part of a transaction. For example, the pre-service call implementation of the Billing
Driver can contain the following lines to add the SDR to a newly created
transaction.

 BillingTransaction Trans =
BillingTransactionManager.getInstance().createTransaction();
 Trans.getId(); // if its XYZ say
 sdr.setTransaction(Trans);

This creates a new transaction and adds the Service Detail Record to it. The
subsequent service detail records can be added to the same transaction by retaining
the transaction ID. Here is the pseudo-code for subsequent Service Detail Records:

 BillingTransaction Trans =
BillingTransactionManager.getInstance().lookupTransaction (XYZ);
 Trans.getId(); // if its XYZ say
 Trans.addSdr(sdr); // OR sdr.setTransaction(Trans);

The past Service Detail Records for this transaction can be looked-up using the
BillingTransaction public APIs (see BillingTransaction’s
getServiceDetailRecords()).

16.4.4.2 Logging Rules for Service Detail Records
A Service Detail Record, which is part of a transaction, is implicitly logged to the
database as soon as the call BillingResult is returned from the BillingDriver
implementation. The BillingController inspects the Service Detail Record and does
this automatically.

The SDR’s part of this transaction is available for lookup (see
BillingTransaction’s getServiceDetailRecords()). If the SDR is not
part of a transaction, then its logging is deferred to the logging framework, to be
accomplished in the background.

Billing Driver

16-12 Oracle Application Server Wireless Developer’s Guide

16.4.4.3 Maintaining Transaction State in a Single-Thread Multi-part Request
If all subsequent requests of a multi-part request are done in the context of the same
Java Thread, the transaction information can be stored in the Thread as a Thread
Local object and referenced later for a subsequent request. The Default
implementation of the BillingDataCollector
(oracle.wirless.billing.BillingDataCollectorImpl) provides just that.
The transaction APIs for setting and getting are available through the
BillingController object.

 /**
 * Returns the current billing transaction
 * @return BillingTransaction the current billing transaction
 */
public BillingTransaction getCurrentTransaction();

/** Sets the transaction for the current transaction
 * @param transaction the current transaction
 */
public void setCurrentTransaction(BillingTransaction transaction);

16.5 Billing Driver
To integrate OracleAS Wireless billing integration with an external billing system,
the system integrator must provide a Java implementation class which implements
the BillingDriver interface. To set your driver:

EM > Wireless Server: Site Administration > Billing Framework > Billing Driver
Provider (Driver Class Name)

The desired behavior of the Billing Driver implementation is as follows:

■ init—this API must contain logic to connect to an external billing system.

■ preService—this API must contain logic to handle one or all of the following
billing operations:

■ Authorization

■ Rating

■ Resource Reservation

■ Fraud Detection

■ Others

■ postService—this API must contain logic to complete a billing transaction.

Billing Integration Scenario

Billing 16-13

■ cancelService—this API must contain logic to cancel a billing transaction.

■ destroy—this API must contain logic to disconnect from a billing system.

16.6 Billing Integration Scenario

16.6.1 Handling Prebilling
Here is an implementation example of handling prebilling:

■ Define the billable actions using either default or custom actions.

■ Use the driver's preService call to do billing authorization and/or resource
reservation, return an authorization ID generated by the billing system.

■ Use the driver's postService call to complete the billing transaction by
passing the authorization obtained from the preService call.

16.6.2 Handling Postbilling
Here is an implementation example of handling postbilling:

■ Define the billable actions using either default or custom actions.

■ Use the driver's preService call to do billing authorization and/or
rating/fraud detection.

■ Use the driver's postService call to submit billing-related data to the billing
system.

Note: In this release, integration with only one billing system at a
time is supported. However, the driver implementor can use a
proxy which interfaces with different billing systems as needed.

Billing Integration Scenario

16-14 Oracle Application Server Wireless Developer’s Guide

XHTML Modules Supported A-1

A
XHTML Modules Supported

This appendix contains information about XHTML modules supported, and their
capabilities. Topics include:

■ Section A.1, "Structure Module"

■ Section A.2, "Text Module"

■ Section A.3, "HyperText Module"

■ Section A.4, "List Module"

■ Section A.5, "Presentation Module"

■ Section A.6, "Object Module"

■ Section A.7, "Embedding Images"

■ Section A.8, "Embedding Audio"

■ Section A.9, "Embedding Voice and DTMF Grammar"

■ Section A.10, "Using <param>"

■ Section A.11, "Basic Tables Module"

■ Section A.12, "Meta Information Module"

■ Section A.13, "Style Sheet Module"

■ Section A.14, "Style Attribute Module"

■ Section A.15, "Link Module"

■ Section A.16, "OracleAS Wireless MXML Media Attribute Module"

■ Section A.17, "Speech Recognition Grammar Module"

Structure Module

A-2 Oracle Application Server Wireless Developer’s Guide

A.1 Structure Module
The Structure module in XHTML defines the following elements:

■ <html> — OracleAS Wireless defines additional profile attribute. The profile
attribute specifies document compliance to a specific XHTML profile. The
profile values accepts URI List and must contain the following URI value:
http://xmlns.oracle.com/ias/dtds/xhtml+xforms/0.9.0/1.0

■ <head>

■ <title>

■ <body>

A.2 Text Module
The Text module in XHTML defines the following elements:

■ <div>, <p>

■ ,

■ <address>, <blockquote>, <h1>, <h2>, <h3>, <h4>, <h5>,
<h6>, <pre>

■ <abbr>, <acronym>, <cite>, <code>, <dfn>, , <kbd>, <q>, <samp>,
, <var>

A.3 HyperText Module
The HyperText module in XHTML defines the following elements:

■ <a>

■ The href attribute supports attribute value templates (as used in XSLT). This
allows the anchor to obtain the URL from the XForms instance data, for
example:

■ The type attribute is used to indicate the content type
(mime-type/media-type) of the indicated resource (href) would generate
when invoked. If the type attributes contain a value that is not a OracleAS
Wireless supported mime-type, then this resource will be treated as an
external resource. OracleAS Wireless will not act as a virtual browser/proxy
for this URL resource. When a user navigates to such a resource (link), the
device fetches the content from the resource.

HyperText Module

XHTML Modules Supported A-3

■ The rel attribute describes the relationship between the current document
and the target resource (href). rel can accommodate multiple relationships;
in such cases the values are space-separated. You can get a list of known rel
types at: http://www.w3.org/TR/html4/types.html#type-links. OracleAS
Wireless recognizes the following rel values:

* next —indicates that the href resource referenced could be the next
document in the application, and browsers can use this to prefetch the
document. A value of Next is used as a prefetch indicator for these
resources (otherwise the resource will be fetched by the device only
when activated by a user).

* maxage —a value added by OracleAS Wireless. The values indicate
that the device/browser can use a document from its cache with an age
that is less than the amount of time specified. The time is specified with
maxage value using a dash (-) as a separator as in: rel="maxage-5"
(implies an age of 5 seconds). The unit of time for Maxage is in seconds.
This is supported only on Voice interfaces that use a VoiceXML
Gateway.

* maxstale —a value added by OracleAS Wireless. The values indicate
the browser can use a document from its cache that has not exceeded
expiration time + specified limit time. The time limit is specified with
maxstale value using a dash (-) as a separator as in:
rel="maxstale-5" (implies the browser can accept stale documents,
and has not be stale for more than 5 seconds). The unit of time for
maxstale is in seconds. This is supported only on Voice interfaces that
use a VoiceXML Gateway.

* connecttimeout—a value added by OracleAS Wireless. The values
indicate to the browser a minimum time after which connect timeout
can occur in the case of when an anchor invokes a telephony services
such as: "tel:..". The time limit is specified with connect-timeout
value using a dash (-) as a separator such as:
rel="connecttimeout-5ms" (implies that the browser can issue a
timeout if the connection did not succeed after at least 5 milli seconds).
The unit of time for connect-timeout is either s or ms (this units must be
specified).

* caching —possible values fast and safe. This is supported only on
Voice interfaces that a VoiceXML Gateway.

List Module

A-4 Oracle Application Server Wireless Developer’s Guide

A.3.1 Example Using the Rel Attribute

Link

href supports the following protocols:

■ HTTP (http:// or https://)—industry-standard HTTP protocol

■ OMP (omp://)—allows applications to link to services defined in OracleAS
Wireless using a virtual URL

■ Mail To (mailto:)—allows applications to invoke a mail application (if
supported by the target device)

■ Tel To (tel:)—allows applications to invoke a phone application (if supported
by the target device)

To embed Grammar for Links (for Voice interface), <object> module will be used.

A.4 List Module
The List module in XHTML defines the following elements:

■ ol, ul, li

■ dl, dt, dd

■ nl—navigation list

Navigation List (nl) is part of the XHTML 2.0 specification
(http://www.w3.org/tr/xhtml20). Navigation lists are to be used to define a
navigation menu. Each Navigation list supports one <name> element and
elements for each menu item. Navigation list can be nested; an element can
contain another navigation list.

Each menu item in a Navigation list is defined by an element, and
elements have an href attribute (and other linking attributes such as type, rel and
others as defined by <a> element). The contents of an element, presented as a
menu item in the menu, when selected, the link defined by the href attribute is
followed.

The navigation list item supports href, rel and type (content type) attributes.
(See <a> above for details on rel and type attributes). To define Voice Grammar for a
navigation list <object> module must be used within the content model of
element.

Object Module

XHTML Modules Supported A-5

A.4.1 Example of a Nested Navigation List
 <nl>

 <name>Contents</name>
 <li href="/link1">Item 1

 <nl>
 <name>Nested Menu List</name>
 <li href="sub1">Sub List Item 1
 <li href="sub2">Sub List Item 2
 </nl>

 <li href="#conformance>Conformance
 </nl>

When Nested Navigation lists are nested (<nl> within an), only the nested
navigation list is presented (ignoring all other elements with the same).

A.5 Presentation Module
OracleAS Wireless supports the following elements defined in XHTML Presentation
module:

■ <hr>

A.6 Object Module
The Object module in XHTML defines the following elements:

■ <object> —Attributes declare, name, usemap and standby are not supported by
OracleAS Wireless. The data attribute supports the use of attribute value
templates as defined in <a> element. Object element is used for embedding
external content including images, audio or other embedded content such as
Applets or Flash (if the target device supports such content). The Objects tag
can contain HTML markup. The semantics of <object> requires that the
embedded markup (within the <object>) is rendered if the device's user agent
does not recognize the object's type or the user agent cannot render the
<object>. Objects can be nested, and the same semantics apply to any nested
<object>s.

In the following example, the markup contained in the <object> tag is rendered
when the target user agent does not support images.

Embedding Images

A-6 Oracle Application Server Wireless Developer’s Guide

<object data="myimage.jpg" type="image/jpeg">
 Images are not supported by your device
</object>

A.7 Embedding Images
<object> element must be used to embed images in a document. The data
attribute of <object> point to a URI where the image resource resides while the
type specifies the media type (mime-type) of the image.

Supporting multiple image formats for various devices can be done using nested
<object>s. In the following example, OracleAS Wireless renders the correct image
for the current device request.

gif image, if gif not supported then bmp else wbmp

 <object data="http://../myimage.gif" type="image/gif">
 <!-- render "bmp" if "gif" not supported -->
 <object data="http://../myimage.bmp" type="image/bmp">
 <!-- render "wbmp" if "bmp" not supported -->
 <object data="http://../myimage.wbmp" type="image/wbmp">
 Your UA does not support any image format
 </object>
 </object>
 </object>

If none of the images are supported by the device, OracleAS Wireless tries to adapt
the image provided in the top-level <object> to the format supported by the
device. The adaptation process affects both the image format and the image size
based on the device/media properties. Developers may provide additional
parameters that may affect the adaptation process.

Optional parameters that can be specified are adapt and notsize. Specifying a
<param> with the name adapt with the value attribute set to false will turn off the
image adaptation on <object>. Specifying a <param> with the name adapt with a
value attribute notsize will turn off size adaptation, while adapting only the format
of the image.

Here is an example that turns off any auto adaptation of the image:

Note: If the original image is small enough to fit in the screen (or
relevant frame where the object occurs), the size is unchanged by
default.

Embedding Audio

XHTML Modules Supported A-7

 <!-- Turn of auto adaptation, using <param> element -->
 <object id=myid2" data="images/oralogo.gif" type="image/gif">
 <param name="adapt" value="false" />
 </object>

Here is an example that limits the auto adaptation to image format only:

 <!-- Turn of auto size adaptation, using <param> element -->
 <object id=myid2" data="images/oralogo.gif" type="image/gif">
 <param name="adapt" value="notsize" />
 </object>

A.8 Embedding Audio
<object> element must be used to embed audio content into a document. The
data attribute of <object> point to a URI where the audio resource resides while
the type specifies the media-type of the image. Audio content can be used for both
visual devices and aural (voice) devices. If a particular format is not supported by
the Voice Gateway or Visual Browser, then the embedded audio markup is used to
play text using TTS.

 <object id="myid" data="myaudio.gif" type="audio/wav">
 <div>
 <p>Audio is not supported by your UA<p>
 <p>This will played using TTS</p>
 </div>
 </object>

Note: If none of the images are supported by the device,
OracleAS Wireless tries to adapt the image based on the
supported formats for a device and its width and height. It is
recommended (and a good practice) to specify <object>
width and height (using CSS width and height) in
percentages, rather than absolute widths and heights, enabling
better and consistent image adaptation.

Embedding Voice and DTMF Grammar

A-8 Oracle Application Server Wireless Developer’s Guide

A.9 Embedding Voice and DTMF Grammar
<object> element must be used to embed voice grammar resources. The data
attribute of <object> point to the grammar resource while the type specifies
grammar format.

Following is an example associating Voice Grammar with Link anchor (<a>):

 My Home Page
 <object data="grammar.dat" type="application/srgs+xml"/>

You can associate more than one grammar using multiple Objects:

 My Home Page
 <object data="grammar.dat" type="application/srgs+xml"/>
 <object data="#Grammar_in_head_1""
type="vnd.oracle.srgs+xmlapplication/srgs+xml"/>

<object> element can also use inline grammar. To embed inline Grammar,
OracleAS Wireless allows <grammar> element in the head section of the HTML
element, and <object> element can point to an inline grammar using a fragment
URI (#id). The <grammar> element (and its namespace) is as defined by the W3C
Speech Recognition Grammar Specification:
(http://www.w3.org/TR/speech-grammar/)

 <head>
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 id="grammar_in_head_1">

 </grammar>
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 id="grammar_in_head_2">

Note: The media-type (type attribute) does not identify the exact
format of the audio file. <param> element is used to identify the
format. To identify the audio format, use <param> element with
name="format" and the value containing the audio format. Also,
when embedding audio, parameters can be supplied for format,
fetchhint, fetchtimeout, maxage, maxstale and cache using <param>
element.

Basic Tables Module

XHTML Modules Supported A-9

 </grammar>
 </head>

A.10 Using <param>
Parameters for an <object> can be provided using <param> element. For
example, <param> element can be used to support prefetch, and use cached sources
for Aural interface (such as audio or grammar resources). Following are some
examples of using <param> element:

■ To support prefetch use: <param name="fetchhint"
value="prefetch"/>

■ To enable usage of a cached resource, use (maxage and/or maxstale). The value
represents unit of time in seconds:

 <param name="maxage" value="5"/>
 <param name="maxstale" value="5"/>

A.11 Basic Tables Module
The Basic tables module in XHTML defines the following elements

■ <table>

■ <caption>

■ <tr>

■ <tr>, <th>

Nested tables are illegal (XHTML Basic Tables defines this restriction). It is also
recommended to use tables for presenting tabular data only. Do not use tables for
presentation as this will break the device independence model; use CSS properties
for layout.

Note: When embedding a grammar using <object>, grammar
parameters can be supplied for scope, mode, root, version, weight,
fetchhint, fetchtimeout, maxage, maxstale, caching using <param>
element.

For more information on speech recognition, see Section A.17,
"Speech Recognition Grammar Module"

Meta Information Module

A-10 Oracle Application Server Wireless Developer’s Guide

OracleAS Wireless does not support rowspan or colspan attributes

A.12 Meta Information Module
The Meta Information Module in XHTML defines the following elements:

■ <meta> —expected to provide meta information about the document, though
authors have used the <meta> element for embedding HTTP protocol
semantics. Using meta for http equivalents (such as refresh, expires, cache-control
and others) may not produce a consistent result on all user agents/devices.
Documents authored to be device-independent should not use <meta> element
as http equivalent. Sample values for meta are author, copyright, description,
keywords, maintainer, robots, bookmark.

OracleAS Wireless supports a special <meta> for the following:

■ <meta> with name=" __ASYNC_NO_RESPONSE__"

The meta tag indicates to OracleAS Wireless Server that the response must not
be forwarded to the device. This is valid only when the target device is
messaging-based. Messaging protocol-based devices, sometimes do not expect a
response for a request message. Since the application uses HTTP protocol, it is
forced to generate a valid response stream. This <meta> value allows the
application to generate a response stream that is not forwarded to the device.

A.13 Style Sheet Module
The Style Sheet Module in XHTML defines the following element:

■ <style> —used to embed CSS style rules within an XHTML document. The
type attribute must use text/css media type (mime-type).

A.14 Style Attribute Module
The Style Attribute Module defines the style attribute. The style attribute specifies
the CSS style rules for the a given element.

A.15 Link Module
The Link Module in XHTML defines the following element:

■ <link> —allows references to external sources that can be used by an XHTML
document processor (such as a browser). OracleAS Wireless supports external

Speech Recognition Grammar Module

XHTML Modules Supported A-11

CSS Style sheet references using <link> element. To reference an external CSS
style sheet, the author must specify both the type attribute (type="text/css")
and rel (rel="stylesheet") attribute (if these attributes are missing or
contain different values, OracleAS Wireless will ignore these external
references).

A.16 OracleAS Wireless MXML Media Attribute Module
The Media Attribute Module defines the media attribute. The media attribute is
defined in the MXML namespace mxml:media attribute (mxml is the namespace
prefix for MXML namespace).

mxml:media assigns a media (device and device features) display condition to an
element. This a core attribute that specifies the target media (device and device
features) on which the current element is displayed/rendered. mxml:media supports
the Media Query Syntax as defined in:
(http://www.w3.org/TR/css3-mediaqueries/). For a list of media and media
features supported, see the sections on embedding media-specific content.

A.17 Speech Recognition Grammar Module
The Speech Recognition Grammar Module defines the following element:

■ <grammar> —grammar element's content model and namespace are defined by
the Speech Recognition Grammar Specification Version 1.0:
(http://www.w3.org/TR/speech-grammar/). The speech recognition grammar
is defined in XML, and all the elements are defined in the speech recognition
grammar namespace. The root element of this XML is <grammar>. The

Note: mxml:media merely affects the rendering. It does not
remove the element from the document, hence specifying
mxml:media on elements that declare event handlers/observers
still remain as part of the document and are registered with the
Events implementation irrespective of the value in mxml:media
attribute. mxml:media must be thought of as shortcut that
specifies the ’style="display: none"’ CSS property for the
current element where the current media (and media features) do
not match those specified in the mxml:media attribute.

Speech Recognition Grammar Module

A-12 Oracle Application Server Wireless Developer’s Guide

<grammar> element has been added to the XHTML Schema, as a module, as
defined by the XHTML Modularization specification.

OracleAS Wireless has added <grammar> element as an XHTML module to
support inline grammars for Voice devices. The <grammar> element can occur in
the head section of the XHTML document. Multiple grammars can be declared. In
addition, the <grammar> element can occur within the <extension> element of
the XForms UI Controls.

Elements such as <a>, (within an <nl>) or UI Controls can reference the
<grammar>s in the <head> section using the <object> element. The grammar
defined in the head section can be referenced by <object> using a document
fragment identifier (#id). Here is an example of such a grammar, included in an
XHTML document, that associates a grammar to a link (<a>) element:

<html xmlns="http://www.w3.org/1999/html"
 xmnls:grammar="http://www.w3.org/2001/06/grammar"
 >
 <head>
 <meta name=".." content="..."/>
 <title>...</title

 <grammar id="g1" xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en" version="1.0" mode="voice">
 <rule id="flight">
 ...
 <ruleref uri="#city"/>
 </rule>

 <rule id="city">
 <one-of>
 <item>New York</item>
 <item>Los Angeles</item>
 <item>Chicago</item>
 ...
 </one-of>
 </rule>
 ...
 </grammar>

 <grammar id="g2" xmlns="http://www.w3.org/2001/06/grammar">
 another grammar
 </grammar>
 </head>
 <body>

Speech Recognition Grammar Module

XHTML Modules Supported A-13

 Hello
 <object data="#id_of_grammar_element_in_head_section"
 type="application/vnd.oracle.srgs+xml">
 <param name="scope" value="dialog"/>
 ..
 <!-- all other attributes supported by <grammar> element
 as defined in VoiceXML-->
 <param name="....." value="....">
 </object>

 </body>
 </html>

Speech Recognition Grammar Module

A-14 Oracle Application Server Wireless Developer’s Guide

Media Types, Features and Capabilities B-1

B
Media Types, Features and Capabilities

This appendix contains information about media types, their features and
capabilities. Topics include:

■ Section B.1, "OracleAS Wireless CSS Media Query and MXML Media Attribute
Syntax"

■ Section B.2, "OracleAS Wireless Supported Media Types"

■ Section B.3, "OracleAS Wireless Supported Media Features"

■ Section B.4, "OracleAS Wireless-defined Capabilities"

■ Section B.5, "Sample Media Queries"

B.1 OracleAS Wireless CSS Media Query and MXML Media Attribute
Syntax

The CSS Media Query syntax consists of two parts:

1. Media Type—specifies a particular media as defined by CSS2 specification.
Examples of media type values are screen, handheld, tty, tv, aural.

2. Media Feature or Capability—specifies a particular capability of a target media
(such as color capability or sound capability).

The CSS Media queries allow media type and media features to be used together in
Query style syntax. For example:

media="handheld and (color)"

The query syntax also allows you to specify not and only conditions (by default only
is assumed if nothing is specified). For example:

mxml:media="not all and (color)"

OracleAS Wireless Supported Media Types

B-2 Oracle Application Server Wireless Developer’s Guide

The Media Query Syntax is defined in CSS3 Media queries at:
http://www.w3.org/TR/css3-mediaqueries

B.2 OracleAS Wireless Supported Media Types
OracleAS Wireless supports the following Media Types (in mxml:media attribute):

■ all—all media types

■ screen—computer screens, continuous, visual, both interactive and static

■ handheld—handheld devices, both continuous and paged, interactive and static

■ tty—portable devices with limited display capabilities, continuous (that is, not
paged) and fixed-pitch character grid

■ aural—for aural/voice interfaces

B.3 OracleAS Wireless Supported Media Features

B.3.1 Media Features Specified in CSS3 Media Queries Specification
A list of Media Features are specified by CSS3 Media Queries specification.
OracleAS Wireless will only support the following set of media features:

■ Media Feature: color

Description: Specifies the number of bits per color component supported by the
target device

min-property: min-color

max-property: max-color

Values: <integer>

Applies To: Visual Media

■ Media Feature: monochrome

Description: Specifies number of bits per pixel supported by the target
(monochrome) device

min-property: min-monochrome

max-property: max-monochrome

OracleAS Wireless Supported Media Features

Media Types, Features and Capabilities B-3

Values: <integer>

Applies To: Visual Media

■ Media Feature: device-width

Description: Specifies the screen height requirements of the target device

min-property: minidevice-width

max-property: max-device-width

Values: <length> (Supported length units in, cm, mm, pt, pc, px, em)

Applies To: Visual Media

■ Media Feature: device-height

Description: Specifies the screen height requirements of the target device

min-property: min-device-height

max-property: max-device-height

Values: <length> (Supported length units in, cm, mm, pt, pc, px, em)

Applies To: Visual Media

■ Media Feature: device-aspect-ratio

Description: Specifies the aspect ratio requirements of the target device

min-property: min-device-aspect-ratio ("min-device-aspect-ratio:1" implies
Portrait)

max-property: max-device-aspect-ratio ("max-device-aspect-ratio:1" implies
Landscape)

Values: <ratio> (<integer>/<integer>)

Applies To: Visual Media

■ Media Feature: grid

Description: Specifies grid versus bitmap requirements of the target device

min-property: No

max-property: No

Values: <integer> (Value of 1 indicates the device display type that is
grid-based and a value of 0 indicates a bitmap display type)

Applies To: Visual Media

OracleAS Wireless-defined Capabilities

B-4 Oracle Application Server Wireless Developer’s Guide

B.3.2 Extended Media Feature Set
The following is an extended list of media features defined by OracleAS Wireless:

■ Media Feature: paged

Description: Specifies paged versus continuous medium

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the paged device medium (such as a
WML Phone device or printer) and value of 0 indicates a continuous device
medium such as a desktop screen

Applies To: Visual Media

B.4 OracleAS Wireless-defined Capabilities

B.4.1 Device/Software UA Capabilities
■ Media Feature: text-input

Description: Specifies if device is capable if text input. Devices at the minimum
are assumed to have a phone key pad

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the device supports text input and a
value of 0 indicates a device only supports a phone keypad

Applies To: All Media

■ Media Feature: keyboard

Description: Specifies the type of keyboard support

min-property: No

max-property: No

Values: PhoneKeypad | Qwerty | Disambiguating

Applies To: All Media

■ Media Feature: tables

OracleAS Wireless-defined Capabilities

Media Types, Features and Capabilities B-5

Description: Specifies if the target medium supports rendering layouts (tables,
grids)

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the device supports layout rendering
and value of 0 indicates no native support for layout rendering

Applies To: Visual Media

■ Media Feature: speech-grammar

Description: Specifies if the target platform supports speech grammars

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the device supports speech grammars
and value of 0 indicates the device does not have speech grammars capability

Applies To: All Media

■ Media Feature: text-to-speech

Description: Specifies if the target platform has text-to-speech capabilities when
a page is rendered in Aural mode

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the device supports text-to-speech,
and value of 0 indicates device does not have text-to-speech capability

Applies To: Aural Media

■ Media Feature: record-speech

Description: Specifies if the target platform supports speech recording

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the device can record speech, and
value of 0 indicates device has no speech record

Applies To: All Media

OracleAS Wireless-defined Capabilities

B-6 Oracle Application Server Wireless Developer’s Guide

B.4.2 Network Capabilities and Characteristics
■ Media Feature: async

Description: Specifies the network mode of the target device

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the device is currently operating in
messaging mode in which the request and response are not blocked calls to the
remote resource. Value of 0 means device is operating in a synchronous mode,
where each request has a response

Applies To: All Media

■ Media Feature: voice-call

Description: Specifies if the network allows voice-call to be initiated from the
device agent

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the voice-call can be initiated and a
Value of 0 indicates voice-calls cannot be initiated

Applies To: All Media

■ Media Feature: call-control

Description: Specifies if the network allows call control of voice calls initiated
from the device’s agent. Call Control enables features such as transfer

min-property: No

max-property: No

Values: <integer>. Value of 1 indicates the call-control is supported and Value
of 0 indicates call-control is not supported

Applies To: All Media

■ Media Feature: email

Description: Specifies if the network allows email messages to be initiated from
the device’s agent

min-property: No

Sample Media Queries

Media Types, Features and Capabilities B-7

max-property: No

Values: <integer>. Value of 1 indicates the email can be initiated and Value of
0 indicates email cannot be initiated

Applies To: All Media

■ Media Feature: content-length

Description: Specifies the minimum and maximum content length size
supported by the network

min-property: Yes

max-property: Yes

Values: <Message Length> (size in bytes, for example: "content-length:
10")

Applies To: All Media

B.5 Sample Media Queries
Table B–1 Sample Media Queries

Device Query

Desktop browsers @media screen

Handheld (all PDAs, WML/HDML phones,
Industrial devices, XHTML phone browser)

@media handheld

HDML/WML browsers in phones @media handheld and (tables: 0)

Color PDAs (pocketpc), Color XHTML
phones

@media handheld and (color)

Palms (Palm VII and Palm V) - Monochrome
devices

@media handheld and (monochrome)

Two Way Pagers/SMS devices @media all and (async)

Voice devices @media aural

Note: @media handheld will map PDAs and HDML/WML
phones. If media is not specified, the implied media is always all.

Sample Media Queries

B-8 Oracle Application Server Wireless Developer’s Guide

XForms Specification Support C-1

C
XForms Specification Support

This appendix contains information about XForms specification support. Topics
include:

■ Section C.1, "XForms Document Structure"

■ Section C.2, "XForms Processing Model"

■ Section C.3, "DataTypes"

■ Section C.4, "Model Item Properties And Schema Constraints"

■ Section C.5, "XPath Expression in XForms"

■ Section C.6, "XForms UI Controls"

■ Section C.7, "XForms Actions"

C.1 XForms Document Structure

Note: OracleAS Wireless also supports a subset of features
specified by W3C XForms 1.0 Candidate Recommendation at
http://www.w3.org/TR/2002/CR-xforms-20021112/

Table C–1 XForms Document Structure

XForms
Specification Supported Comments

XForms
Namespace

Yes

Common
Attributes

Yes xsd:ID supported with XHTML as container

XForms Document Structure

C-2 Oracle Application Server Wireless Developer’s Guide

Linking
Attributes

Partial Supported only on instance element

Single-Node
Binding
Attributes

Yes Not supported in XForms elements label, help, hint, alert
or message elements. (Note: The same can be achieved
using an <output> control within any of label, help, hint,
alert or message element)

Node-Set
Binding
Attributes

Yes

model Element Yes Supports multiple models. Attributes "schema" not
supported. Attribute "functions" not supported

instance
Element

Yes Multiple Instances Supported

submission
Element

Yes method="put" in xforms:submission is not supported.

bind Element Yes Attribute p3ptype not supported.

xsd:schema
Element

Yes

Must
Understand

No

Extension
Module

Yes

Table C–1 XForms Document Structure

XForms
Specification Supported Comments

XForms Processing Model

XForms Specification Support C-3

C.2 XForms Processing Model

Table C–2 Initialization Events

XForms Specification Supported Comments

xforms-model-construct Yes

xforms-model-initialize Yes

xforms-initialize-done Yes

xforms-ui-initialize Yes

xforms-form-control-initialize Yes

xforms-model-destruct No

Table C–3 Interaction Events

XForms
Specification Supported Comments

xforms-previous No

xforms-next No

xforms-focus No

xforms-help Yes Supported where user agents
support help events

xforms-hint Yes Supported where user agents
support hint events

xforms-refresh Yes

xforms-revalidate Yes

xforms-recalculate Yes

xforms-reset Yes

xforms-submit Yes

XForms Processing Model

C-4 Oracle Application Server Wireless Developer’s Guide

Table C–4 Notification Events

XForms Specification Supported Comments

DOMActivate Yes

xforms-value-changing No

xforms-value-changed Yes

xforms-select No

xforms-deselect No

xforms-scroll-first No

xforms-scroll-last No

xforms-insert No

xforms-delete No

xforms-valid Yes

xforms-invalid Yes

DOMFocusIn No

DOMFocusOut No

 xforms-readonly Yes

xforms-readwrite Yes

xforms-required Yes

xforms-optional Yes

xforms-enabled Yes

xforms-disabled Yes

xforms-submit-done Yes

xforms-submit-error Yes

Table C–5 Error Indications

XForms Specification Supported Comments

xforms-bind-exception No

DataTypes

XForms Specification Support C-5

C.3 DataTypes

xforms-link-exception No

xforms-link-error No

xforms-compute-exception No

Table C–6 Basic Data Types

XForms Specification Supported Comments

dateTime Yes

time Yes

date Yes

gYearMonth Yes

gYear Yes

gMonthDay Yes

gDay Yes

gMonth Yes

string Yes

boolean Yes

base64Binary No

decimal Yes

anyURI Yes

integer Yes

nonPositiveInteger Yes

negativeInteger Yes

long Yes

int Yes

short Yes

Table C–5 Error Indications

XForms Specification Supported Comments

DataTypes

C-6 Oracle Application Server Wireless Developer’s Guide

byte Yes

nonNegativeInteger Yes

unsignedLong Yes

unsignedInt Yes

unsignedShort Yes

unsignedByte Yes

positiveInteger Yes

Table C–7 XForms DataTypes

XForms Specification Supported Comments

xforms:listItem Yes

xforms:listItems Yes

xforms:dayTimeDuration Yes

xforms:yearMonthDuration Yes

Table C–8 Advanced and Derived DataTypes

XForms Specification Supported Comments

normalized String No

hexBinary No

float No

double No

QName No

NOTATION No

token No

language No

Name No

Table C–6 Basic Data Types

XForms Specification Supported Comments

Model Item Properties And Schema Constraints

XForms Specification Support C-7

C.4 Model Item Properties And Schema Constraints

NCName No

ID No

IDREF No

IDREFS No

ENTITY No

ENTITIES No

NMTOKEN No

NMTOKENS No

Table C–9 Model Item Properties

XForms Specification Supported Comments

type Yes Restricted to schema datatypes
supported by the current implementation

readonly Yes

required Yes

relevant Yes

calculate Yes

constraint Yes

maxOccurs Yes

minOccurs Yes

p3ptype No

Table C–10 Schema Constraints

XForms Specification Supported Comments

Schema association No

Table C–8 Advanced and Derived DataTypes

XForms Specification Supported Comments

XPath Expression in XForms

C-8 Oracle Application Server Wireless Developer’s Guide

C.5 XPath Expression in XForms

xsi:type Yes

type attribute in Bind Yes

default xsi:string Yes

Table C–11 XPath DataTypes, DOM Access and Evaluation Context

XForms Specification Supported Comments

XPath 1.0 Datatypes
(boolean, string, number,
node-set)

Yes

DOM Access to Instance
Data

No

Evaluation Context Yes

Table C–12 Binding Expressions

XForms Specification Supported Comments

Model Binding Expressions Yes Expression used in Model Item
Propertied (bind element)

Dynamic dependences in
Model Binding Expressions

No XForms specifications does not allow
dynamic dependencies in model
binding expressions.

UI Binding Expressions Yes

Dynamic dependencies in UI
Binding Expressions

Yes XForms can support dynamic
binding expression in binding
attributes of UI controls. OracleAS
Wireless supports dynamic binding
expressions in UI controls with
exception of Voice rendering mode.

Table C–10 Schema Constraints

XForms Specification Supported Comments

XPath Expression in XForms

XForms Specification Support C-9

Table C–13 XPath Node Set Functions

XForms Specification Supported Comments

count() Yes

id()1 Yes

last()1 Yes

position()1 Yes

name()1 Yes

local-name()1 Yes

namespace-uri()1 Yes

instance()1 Yes

Table C–14 XPath String Functions

XForms Specification Supported Comments

concat() Yes

contains() Yes

normalize-space()1 Yes

starts-with() Yes

string() Yes

string-length() Yes

substring() Yes

substring-after() Yes

substring-before() Yes

translate() Yes

property() No

XPath Expression in XForms

C-10 Oracle Application Server Wireless Developer’s Guide

1 These XPath functions must be used carefully in Voice (aural) mode. The Voice
(aural) mode uses a scripting model to bring some actions to the client side for
greater form interactivity. If these XPath functions are used in aural mode, the

Table C–15 XPath Number Functions

XForms
Specification Supported Comments

ceiling() Yes

floor() Yes

number() Yes

round() Yes

sum() Yes

avg() Yes Defined in XForms Specification

min() Yes Defined in XForms Specification

max() Yes Defined in XForms Specification

count-non-empty()1 Yes

index() Yes Defined in XForms Specification

Table C–16 XPath Boolean Functions

XForms Specification Supported Comments

boolean() Yes

false() Yes

lang()1 Yes

not() Yes

true() Yes

boolean-from-string() Yes Defined in XForms Specification

if() Yes Defined in XForms Specification

XForms UI Controls

XForms Specification Support C-11

author should force the recalculation or revalidation on the server by using actions
that require server-side support.

C.6 XForms UI Controls

Table C–17 XForms/XPath Date and Time Functions

XForms Specification Supported Comments

now() Yes Defined in XForms Specification

days-from-date() Yes Defined in XForms Specification

seconds-from-dateTime() Yes Defined in XForms Specification

seconds() Yes Defined in XForms Specification

months() Yes Defined in XForms Specification

Table C–18 XPath Extension Functions

Extension
Specification Supported Comments

current() Yes As defined in XSLT Specification
current() function is useful when iterating inside the repeat.
Returns the current node in the repeat nodeset.
Note: If you change the context node using the ref/nodeset
attribute (such as group, setvalue), current() will no longer
return the current repeat node.

Table C–19 Basic UI Controls

XForms
Specification Supported Comments

input Yes navindex, accesskey, appearance attributes not supported.

inputmode attribute not supported.

Additional supported attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional supported attributes for style hints size,
mxml:media

XForms UI Controls

C-12 Oracle Application Server Wireless Developer’s Guide

secret Yes navindex, accesskey, appearance, incremental attributes not
supported.

inputmode attribute not supported.

Additional supported attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional supported attributes for style hints size,
mxml:media

textarea Yes navindex, accesskey, appearance, incremental attributes not
supported.

inputmode attribute not supported.

Additional supported attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional supported attributes for style hints rows, cols,
mxml:media

output Yes appearance attributes not supported.

Additional Extended attributes id, style, class

Additional device style hints mxml:media

upload No

range No

trigger Yes navindex, accesskey, appearance attributes not supported.
Additional Extended attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional device style hints mxml:media

submit Yes navindex, accesskey, appearance attributes not supported.
Additional Extended attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional device style hints mxml:media

Table C–19 Basic UI Controls

XForms
Specification Supported Comments

XForms UI Controls

XForms Specification Support C-13

select Yes navindex, accesskey, appearance attributes not supported.

selection attribute not supported. selection is always "closed"

Select ui displays as a checkbox.

Additional supported attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional supported attributes for style hints size,
mxml:media

select1 Yes navindex, accesskey, appearance attributes not supported.

selection attribute not supported. selection is always "closed"

Select ui displays as a radio button.

Additional supported attributes id, style, class

Additional supported attributes slot, modal (for aural/voice
grammar)

Additional supported attributes for style hints size,
mxml:media

choices Yes

item Yes help, hint, alert, actions on item is not supported

filename No

mediatype No

value Yes Only PCDATA, as child node, is supported by the value
element.

label Yes Single Node binding attributes are not supported (Note: Can
use <output> within label to embed values from instance).

Linking attributes not supported

help Yes Single Node Binding attributes are not supported (Note: Can
use <output> within help to embed values from instance).

Linking attributes not supported

hint Yes Single Node Binding attributes are not supported (Note: Can
use <output> within hint to embed values from instance).

Linking attributes not supported

Table C–19 Basic UI Controls

XForms
Specification Supported Comments

XForms UI Controls

C-14 Oracle Application Server Wireless Developer’s Guide

alert Yes Single Node Binding attributes are not supported (Note: Can
use <output> within notification to embed values from
instance).

Linking attributes not supported

itemset Yes help, hint, alert, actions on itemset are not supported

copy No No

extension Yes <extension> element supports declaration of <grammar> for
UI controls

<extension> element supports <label> elements. This allows
an UI control to have multiple Labels. These multiple
<label>’s are played on a voice interface as extended prompt
interface.

Table C–20 Advanced UI Controls

XForms
Specification Supported Comments

group Yes navindex, accesskey, appearance attributes not supported.

repeat Yes navindex, accesskey, appearance attributes not supported.

Nested repeats not supported

repeat
Attributes

No

switch/case Yes navindex, accesskey, appearance attributes not supported.

Table C–19 Basic UI Controls

XForms
Specification Supported Comments

XForms UI Controls

XForms Specification Support C-15

Table C–21 Extension UIControls

Extension Supported Comments

mxml:uiobject Yes This is an extension UI Control defined in the MXML
namespace. The “uiobject” element allows XForms
applications to launch user interfaces defined in other
languages, enabling reuse of existing applications defined
in those languages.

“uiobject” allows an XForms application to pass and
receive parameters (form data) from the external user
interface using the “uiparam” element. The content type
of a “uiobject” is indicated by its “type” attribute. The
URI of the external user interface is indicated by the
<uiobject>'s “data” attribute, while its “method” and
“enctype” attributes determine how the form data
parameters are passed to the external user interface. The
<uiobject>'s Single Node Binding attributes, as for
XForms <group>, sets the XPath context for the
<uiparam>'s child elements.

mxml:uiparam Yes This is an extension element defined in the MXML
namespace which occurs as a child node of a <uiobject>.
<uiparam> provides the ability to pass/receive instance
data between an XForms instance and the <uiobject>.
<uiparam> has single node binding attributes that map
instance data to either an input value to the <uiobject> (if
valuetype=”in”), an output value from the <uiobject> (if
valuetype=”out”), or a submission parameter to the URI
specified by the <uiobject>'s “data” attribute (if
valuetype”submit”). The “name” attribute of
<uiparam> identifies the parameter name in the external
user interface that is associated with the instance data.

mxml:uieventmap Yes This is an extension element defined in the MXML
namespace which occurs as a child of <uiobject>.
<uieventmap> allows the author to map custom events
thrown by the external user interface to XForms events.

Note: In this release, <uiobject> only supports launching of UI
interfaces defined in VoiceXML. The <uiobject> that links to
interfaces implemented in VoiceXML must have their type set to
text/x-vxml.

XForms Actions

C-16 Oracle Application Server Wireless Developer’s Guide

C.7 XForms Actions

Table C–22 Basic UI Controls

XForms
Specification Supported Comments

action Yes Deferred Updates Not Supported

dispatch No

rebuild No

recalculate Yes

refresh Yes

setfocus Yes Supported only on devices that support scripting or
an XForms plugin. In this release, this is supported in
Voice (aural) and Laptop devices.

load Yes show="new" not supported. Show="new" will behave
just like show="replace"

setvalue Yes

send Yes

reset Yes

message Yes src attribute not supported

Single Node Binding attributes (bind/ref attribute) are
not supported (Note: Can use <output> within help to
embed values from instance).

Table C–23 Extension Actions

Extension Supported Comments

mxml:disconnect Yes Extension action defined in MXML namespace.
OracleAS Wireless supports Voice Interface using a
regular telephone and VoiceXML Gateway. This action
performs a telephony call disconnect.

mxml:handler Yes Extension action defined in MXML namespace. This
action supports XForms actions based on the nth
occurrence of an event on a UI control.

OracleAS Wireless CSS Support D-1

D
OracleAS Wireless CSS Support

This appendix contains information about CSS Support.

D.1 OracleAS Wireless CSS Support

Table D–1 CSS Selectors

CSS
Specification

Supported Comments

* Yes

E Yes Matches any E element (i.e., any element of type E)

E F Yes Matches any E element (i.e., any element of type E)

E > F Yes Matches any F element that is a child of an element E

E.warning Yes Match any E element with class="warning" (Class
Selectors)

E#myid Yes Matches any E element with id equal to "myid"

#myid Yes Matches any element with id equal to "myid"

Note: In this release, OracleAS Wireless does not support
namespaces in CSS Selectors. Element selectors match all elements
in any (and no) namespace. XForms and XHTML do not have
conflicting element names.

OracleAS Wireless CSS Support

D-2 Oracle Application Server Wireless Developer’s Guide

Table D–2 CSS at-rules (@ Rules)

CSS Specification Supported Comments

@media (CSS3
Media Query
Syntax)

Yes The following values are supported: "all", "screen",
"handheld", "tty", "aural".

@import Yes Yes

Table D–3 CSS BackGround Properties

CSS
Specification

Suppo
rted Values Supported

Initial value/Inherited/Applies
to/media

background-
color

Yes <color> | transparent | inherit Initial Value: transparent

Inherited: no

Applies To: All Elements

Media: Visual Media

background-
image

Yes <uri> | none | inherit Initial Value: none

Inherited: no

Applies To: All Elements

Media: Visual Media

background-
position

No

background-
repeat

No

background-
attachment

No

background No

OracleAS Wireless CSS Support

OracleAS Wireless CSS Support D-3

Table D–4 CSS Border Properties

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

border-top-width,
border-right-width,
border-bottom-width,
border-left-width

Yes <border-width> |
inherit

<border-width> =>
[thin | medium | thick
| <length>]

Initial Value: medium
Inherited: no
Applies To: All Elements
Media: Visual Media

border-top-color,
border-right-color,
border-bottom-color,
border-left-color

Yes <color> | inherit Initial Value: <value of
color property>
Inherited: no
Applies To: All
Elements
Media: Visual Media

border-top-style,
border-right-style,
border-bottom-style,
border-left-style

Yes <border-style> |
inherit

<border-style> =>
[solid | none]

Initial Value: none
Inherited: no
Applies To: All
Elements
Media: Visual Media

Note: Border Properties are supported only on HTML-based
browsers. Also in HTML32 browsers, these properties are
supported only by table and grid layout elements. In addition,
HTML32 browsers do not support control of sides (left, right, top,
bottom) separately. In HTML32, you may either turn on or off the
properties for all sides using the ’border-left-*’ properties.

OracleAS Wireless CSS Support

D-4 Oracle Application Server Wireless Developer’s Guide

Table D–5 CSS Box Properties

CSS
Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

margin-top,

margin-right,

margin-bottom

margin-left

Yes <margin-width> | inherit

Note: Supported where
devices supports. In
HTML32 Browsers only
table elements supported

Initial Value: 0

Inherited: no

Applies To: All Elements

Media: Visual Media

padding-top,
padding-right,
padding-bottom,
padding-left

Yes <padding-width> |
inherit

Note: Supported where
devices supports. In
HTML32 Browsers only
table elements supported

Initial Value: 0
Inherited: no
Applies To: All Elements
Media: Visual Media

Note: Box Properties are supported only on HTML-based
Browsers. In HTML32 browsers, these properties are supported
only by table and grid layout elements. In addition, HTML32
browsers do not support control of sides (left, right, top, bottom)
separately. In HTML32, you may either turn on or off the properties
for all sides using the ’border-left-*’ properties.

Table D–6 CSS Color Properties

CSS
Specification Supported Values Supported

Initial value/Inherited/Applies
to/media

color Yes <color> Initial Value: #000000
Inherited: Yes
Applies To: All Elements
Media: Visual Media

OracleAS Wireless CSS Support

OracleAS Wireless CSS Support D-5

Table D–7 CSS Font Properties

CSS
Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

font-family Yes [[<family-name> |
<generic-family>],]*
[<family-name> |
<generic-family>] |
inherit

Inherited: Yes
Applies To: All Elements
Media: Visual Media

font-size Yes <absolute_size> | inherit

<absolute_size> =>
[xx-small | x-small |
small | medium | large |
x-large | xx-large]

Initial Value: medium
Inherited: Yes
Applies To: All Elements
Media: Visual Media

font-style Yes normal | italic | oblique
| inherit

Initial Value: normal
Inherited: Yes
Applies To: All Elements
Media: Visual Media

font-weight Yes normal | bold | bolder |
lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 |
800 | 900 | inherit

Initial Value: normal
Inherited: Yes
Applies To: All Elements
Media: Visual Media

OracleAS Wireless CSS Support

D-6 Oracle Application Server Wireless Developer’s Guide

Table D–8 CSS Layout Properties

CSS
Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

display Yes inline | block | list-item |
none |grid | grid-label |
grid-cell | grid-cell-label

Initial: inline
Inherited: Yes
Applies To: All Elements
Media: All Media

(Note: Only "display:
none" can be applicable to
aural media, as other
values are visual in
nature)

height Yes ‘‘<length> | <percentage> |
auto | inherit

Initial Value: auto
Inherited: Yes
Applies To: All Elements
Media: Visual Media

width Yes <length> | <percentage>
| auto | inherit

Initial Value: auto
Inherited: Yes
Applies To: All Elements
Media: Visual Media

float No

clear No

visibility No

Note: Height and width Properties are supported only on HTML
based browsers. In HTML32 Browsers (Pocket PC, Palm), these
properties are supported only by image, table and grid layout
elements. In general and especially for Multi-Channel applications,
it is good practice to use percentages for width and height.

OracleAS Wireless CSS Support

OracleAS Wireless CSS Support D-7

Table D–9 CSS List Properties

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

list-style Yes list-style-type |
list-style-position |
list-style-image | inherit

Inherited: Yes
Applies To: Elements
with display: list-item
Media: Visual Media

list-style-image Yes <uri> | none | inherit Initial Value: none
Inherited: Yes
Applies To: Elements
with display: list-item
Media: Visual Media

list-style-type Yes disc | circle | square |
decimal | lower-roman
| upper-roman |
lower-alpha |
upper-alpha | none |
inherit

Initial Value: disc
Inherited: Yes
Applies To: Elements
with display: list-item
Media: Visual Media

list-style-position No

Table D–10 CSS Text Properties

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

text-align Yes left | right | center |
justify | inherit

Inherited: Yes
Applies To: All Elements
Media: Visual Media

text-decoration Yes none | underline |
inherit

Initial Value: none
Inherited: Yes
Applies To: Elements
with display: list-item
Media: Visual Media

OracleAS Wireless CSS Support

D-8 Oracle Application Server Wireless Developer’s Guide

text-transform Yes capitalize | uppercase
| lowercase | none |
inherit

Initial Value: none
Inherited: Yes
Applies To: All Elements
Media: Visual Media

text-indent Yes <length> |
<percentage> | inherit

Initial Value: 0
Inherited: Yes
Applies To: All Elements
Media: Visual Media

vertical-align Yes top | middle | bottom
| sub | super

Initial Value: baseline
Inherited: Yes
Applies To: All Elements
Media: Visual Media

white-space Yes normal | pre | nowrap
| inherit

Initial Value: normal
Inherited: Yes
Applies To: All Elements
Media: Visual Media

Note:

text-align and vertical-align properties are supported only on HTML
based browsers. The following additional constraints on HTML32
Browsers (Pocket PC, Palm) apply:
’vertical-align: top | middle| bottom’ is supported
only by block level elements such as div, p and table-cells
’vertical-align: sub | super’ is supported only by inline
elements such as span, strong
’text-align: left | right | center’ is supported only
by block-level elements such as div, p and table-cells
’text-indent’ is supported only on XHTML MP-compliant
browsers
’white-space’ property should be used to control wrapping
(white-space: normal) and nowrapping modes.

Table D–10 CSS Text Properties

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

OracleAS Wireless CSS Support

OracleAS Wireless CSS Support D-9

Table D–11 CSS Page Break Properties

CSS Specification Supported Values Supported
Initial value/Inherited/Applies
to/media

page-break-before Yes auto | always | avoid
| inherit

Initial: auto
Inherited: No
Applies To: All Elements
Media: Visual and Paged Media

page-break-after Yes auto | always | avoid
| inherit

Initial: auto
Inherited: No
Applies To: All Elements
Media: Visual and Paged Media

page-break-inside Yes auto | avoid | inherit Initial: auto
Inherited: No
Applies To: All Elements
Media: Visual and Paged Media

Note: Page break properties are used to split a single page into
multiple cards on paged devices (browsers that support
WML/HDML). These properties control how deck (page) overflow
support is handled by the server on devices where deck (page) size
limitations may exist.

Table D–12 Oracle CSS Extensions for UI Layout

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

display Yes grid | grid-cell

(OracleAS Wireless
supports the above
extension values for
’display’ property)

Initial: inline
Inherited: Yes
Applies To: All Elements
Media: Visual Media

OracleAS Wireless CSS Support

D-10 Oracle Application Server Wireless Developer’s Guide

_orcl-grid-cells Yes <number> Initial: 1
Inherited: No
Applies To: Elements with
display: grid
Media: Visual Media

_orcl-grid-cellspan Yes <number | all Initial Value: 1
Inherited: No
Applies To: Elements with
display: grid-cell
Media: Visual Media

_orcl-label-side Yes left | right | top |
bottom

Initial Value: left
Inherited: No
Applies To: Elements with
display: grid-cell and
display: inline
Media: Visual Media

Note: _orcl-label-side property supports only ’left |
right’ when ’display: inline’.

Table D–13 Oracle CSS Extensions for List Control Layout

CSS
Specification Supported Values Supported

Initial value/Inherited/Applies
to/media

_orcl-list-orient Yes horizontal | vertical Inherited: Yes
Applies To: List Controls
(select/select1)
Media: Visual Media

Table D–12 Oracle CSS Extensions for UI Layout

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

OracleAS Wireless CSS Support

OracleAS Wireless CSS Support D-11

Table 16–1 Oracle CSS Extensions for Repeat Layout

CSS Specification Supported Values Supported
Initial value/Inherited/Applies
to/media

_orcl-repeat-labels Yes none | once | always Initial: once
Inherited: Yes
Applies To: Repeat Elements
Media: Visual Media

Note: _orcl-repeat-labels property is applicable
only to repeat elements. This property controls the display of
label, or UI controls with a repeat structure.

Table D–14 Other Oracle CSS Extensions

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

_orcl-table-col-separator Yes <string> Initial: ","
Inherited: Yes
Applies To: Table and Table
row
Media: Visual Media with no
"table" Media Feature

Note: _orcl-table-col-separator property is used when
tables are not supported natively on the target browser.

OracleAS Wireless CSS Support

D-12 Oracle Application Server Wireless Developer’s Guide

Table D–15 CSS Aural Properties

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

volume Yes default | silent | soft |
medium | loud | inherit

Initial: default
Inherited: Yes
Applies To: All Elements
Media: Aural Media

speak Yes normal | spell-out | date |
time | currency | duration
| telephone | net |
address| inherit |
measurement | name

Initial: normal
Inherited: Yes
Applies To: All Elements
Media: Aural Media

speak-numeral Yes digits | continuous |
ordinal | inherit

Initial Value: continuous
Inherited: Yes
Applies To: All Elements
Media: Aural Media

speak-header Yes once | always | inherit Initial Value: once
Inherited: Yes
Applies To: Elements that
have table header
Media: Aural Media

pause-after Yes <time> | none | small |
medium | large | inherit

Initial Value: none
Inherited: No
Applies To: All Elements
Media: Aural Media

pause-before Yes <time> | none | small |
medium | large | inherit

Initial Value: none
Inherited: Yes
Applies To: All Elements
Media: Aural Media

speech-rate Yes slow | medium | fast |
default | inherit

Initial Value: default
Inherited: No
Applies To: All Elements
Media: Aural Media

pitch Yes low | medium | high |
default | inherit

Initial Value: default
Inherited: Yes
Applies To: All Elements
Media: Aural Media

OracleAS Wireless CSS Support

OracleAS Wireless CSS Support D-13

pitch-range Yes low | medium | high |
default | inherit

Initial Value: default
Inherited: Yes
Applies To: All Elements
Media: Aural Media

stress Yes none | reduced | moderate
| strong | inherit

Initial Value: none
Inherited: Yes
Applies To: All Elements
Media: Aural Media

Table D–16 Oracle CSS Extensions for Aural

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

_orcl-bargein Yes true | false | inherit Initial: true
Inherited: Yes
Applies To: All Elements
Media: Aural Media

_orcl_sayas_format Yes none | date(dmy | mdy
| ymd | ym | my | md |
y) | time(hm | hms) |
duration(hm | hms | ms
| h | m | s) | net (email
| url)

Initial: none
Inherited: Yes
Applies To: All Elements
Media: Aural Media

_orcl-duration Yes <time> Inherited: Yes
Applies To: All Elements
with "speak: duration"
Media: Aural Media

_orcl-pitch-contour Yes <string>
Examples:
"(0%,+20)(10%,+30%)(40
%,+10)"

Inherited: Yes
Applies To: All Elements
with "speak: duration"
Media: Aural Media

_orcl-aural-props Yes vxml-gateway-property-
name(property-value)

[,vxml-gateway-property-
name(property-value)]*

Inherited: Yes
Applies To: All Elements
Media: Aural Media

Table D–15 CSS Aural Properties

CSS Specification Supported Values Supported

Initial
value/Inherited/Applies
to/media

OracleAS Wireless CSS Support

D-14 Oracle Application Server Wireless Developer’s Guide

Using CSS Layout Properties E-1

E
Using CSS Layout Properties

This appendix contains information about using CSS capabilities. Topics include:

■ Section E.1, "OracleAS Wireless CSS Layout Extensions—New Properties and
Values"

■ Section E.2, "Grid Layout Model"

■ Section E.3, "Default Styles for XForms Group"

E.1 OracleAS Wireless CSS Layout Extensions—New Properties and
Values

OracleAS Wireless defines CSS extension properties to layout form controls in
visual rendering of an XHTML+XForms document.

To support a grid layout model, OracleAS Wireless extends the valuespace of CSS
’display’ with the following additional values; these values are in addition to
those values defined by the CSS Specification.

’display’ : grid | grid-cell

In addition, OracleAS Wireless defines the following additional CSS properties:

■ ’_orcl-grid-cells’

Value: <number>

Initial: 1

Applies to: all elements with ’display: grid’

Inherited: No

Grid Layout Model

E-2 Oracle Application Server Wireless Developer’s Guide

Percentages: N/A

Media: Visual

■ ’_orcl-grid-cellspan’

Value: <number> | all

Initial: 1

Applies to: All Elements with ’display: grid-cell’

Inherited: No

Percentages: N/A

Media: Visual

■ ’_orcl-label-side’

Value: left | right | top | bottom

Initial: left

Applies to: Label Elements with ’display: grid-cell’ and ’display:
inline’

Inherited: No

Percentages: N/A

Media: Visual

E.2 Grid Layout Model
Grid control is a generated box that contains grids of cells laid out in a number of
rows. Elements with the CSS property ’display: grid’ generates a grid
control. Each cell in a grid control is called a ’grid-cell’. The number of
grid-cells in a row is determined by the CSS property ’_orcl-grid-cells’. Each
child element of a grid control will lay out its contents in a grid-cell when their CSS
’display’ property is set to ’grid-cell’ (style="display: grid-cell").
The document order determines the exact grid-cell a particular element occupies.
Elements may span more than one grid-cell based on the CSS property
’_orcl-grid-cellspan’.

Example of a Grid layout:

 <xforms:group style="display: grid; _orcl-grid-cells: 2">
 <p style="display: grid-cell">
 Content of ’grid-cell’ 1

Grid Layout Model

Using CSS Layout Properties E-3

 </p>
 <p style="display: grid-cell">
 Content of ’grid-cell’ 2
 </p>
 <p style="display: grid-cell">
 Content of ’grid-cell’ 3
 </p>
 <xforms:group>

E.2.1 Grid Cell Layout and Cell Spans
An element with ’display: grid-cell’ in the grid can span multiple cells and
the number of cell spans is controlled by the property ’_orcl-grid-cellspan’.

Example of a Grid layout and cell span:

 <xforms:group style="display: grid; _orcl-grid-cells: 2">
 <p style="display: grid-cell">
 Content of ’grid-cell’ 1
 </p>
 <p style="display: grid-cell">
 Content of ’grid-cell’ 12
 </p>
 <p style="display: grid-cell;_orcl-grid-cellspan: all">
 Content of ’grid-cell’ 3
 </p>
 <xforms:group>

Figure E–1 Result of Grid Layout and Cell Span

E.2.2 Grid Cell and Grid Cell Label
Child elements of a grid control can have a CSS display value of ’grid-cell’ or
can be another grid layout control. A grid-cell can optionally have elements
identified by the CSS property ’display: grid-cell’. Elements with
’display: grid-cell’ will occupy a separate grid cell in the grid structure. An
example of this is the <xforms:input> UI control which has <xforms:label>

Grid Layout Model

E-4 Oracle Application Server Wireless Developer’s Guide

that will occupy a separate grid-cell (distinct from the cell occupied from the UI
control itself).

Example of ’grid-cell’ and ’grid-cell-label’:

 <xforms:group style="display: grid; _orcl-grid-cells: 2">
 <xforms:input style="display: grid-cell">
 <xforms:label style="display: grid-cell">
 Field 1
 </xforms:label>
 </xforms:input>
 <xforms:input style="display: grid-cell">
 <xforms:label style="display: grid-cell">
 Field 2
 </xforms:label>
 </xforms:input>
 <xforms:group>

Figure E–2 Result of ’grid-cell’ and ’grid-cell-label’

It is not necessary for a <label> to be placed in a cell different from the UI Control
itself. For the label to be placed in the same cell as the UI control the CSS
’display’ property can be set to ’inline’ (’display: inline’).

Example of an Inline Label:

 <xforms:group style="display: grid; _orcl-grid-cells: 2">
 <xforms:input style="display: grid-cell">
 <xforms:label style="display: inline">
 Field 1
 </xforms:label>
 </xforms:input>
 <xforms:input style="display: grid-cell">
 <xforms:label style="display: inline">
 Field 2
 </xforms:label>
 </xforms:input>
 <xforms:group>

Grid Layout Model

Using CSS Layout Properties E-5

Figure E–3 Result of an Inline Label

E.2.3 In-lining Content within a Grid Cell
All child elements of a grid control do not place their content in a separate grid-cell.
Child elements with ’display’ property set to inline will lay out its contents in the
cell created by a preceding element.

Example of ’display: inline’ in Grid Layout:

 <xforms:group style="display: grid; _orcl-grid-cells: 2">
 <xforms:input style="display: grid-cell">
 <xforms:label style="display: grid-cell-label">
 Field 1
 </xforms:label>
 </xforms:input>
 <xforms:input style="display: grid-cell">
 <xforms:label style="display: grid-cell-label">
 Field 2
 </xforms:label>
 </xforms:input>
 <p style="display: inline">
 Some text
 </p>
 <xforms:group>

Figure E–4 Result of ’display: inline’ in Grid Layout

E.2.4 Label Side of a Grid Cell Label
OracleAS Wireless defines a new CSS property ’_orcl-label-side’. _
orcl-label-side controls the placement of the label relative to the grid cell
contents. The possible values for _orcl-label-side are left | right | top
| bottom

Default Styles for XForms Group

E-6 Oracle Application Server Wireless Developer’s Guide

Example of Label Side on Grid Cell:

 <xforms:group style="display: grid; _orcl-grid-cells: 2">
 <xforms:input style="display: grid-cell">
 <xforms:label
 style="display: grid-cell; _orcl-label-side: top">
 Field 1
 </xforms:label>
 </xforms:input>
 <xforms:input style="display: grid-cell; ">
 <xforms:label
 style="display: grid-cell; _orcl-label-side: left">
 Field 2
 </xforms:label>
 </xforms:input>
 <xforms:group>

Figure E–5 Result of Label Side on Grid Cell

E.3 Default Styles for XForms Group
OracleAS Wireless defines a default style sheet for the XForms Group element
based on the Grid Layout model. The default stylesheet renders XForms Group as
Grid Layout (display: grid) with the group’s label on top (_
orcl-label-side: top). Also the number of cells for a XForms group is 2 by
default (_orcl-grid-cells: 2). Also by default, all the Form Controls and its
label within the group occupy one grid cell each, with the label of the form control
on the left.

Example Using the Default CSS Stylesheet:

<xforms:group>
 <xforms:label>Grid label</xforms:label>
 <xforms:input>
 <xforms:label>
 Field 1

Default Styles for XForms Group

Using CSS Layout Properties E-7

 </xforms:label>
 </xforms:input>
 <div> some text that spans
 <p> entire line </p>
 </div>
 <xforms:input>
 <xforms:label>
 Field 2
 </xforms:label>
 </xforms:input>
 <xforms:group>

Figure E–6 Result of Using the Default CSS Stylesheet

Default Styles for XForms Group

E-8 Oracle Application Server Wireless Developer’s Guide

Oracle XML Grammar Subset F-1

F
Oracle XML Grammar Subset

This appendix contains information about the Oracle XML Grammar Subset.

F.1 Oracle XML Grammar Subset
The Oracle Grammar Subset (OGS) is a subset of the XML Form of the W3C Speech
Recognition Grammar Format (SRGS). The primary aims of the subset are:

■ make OGS grammars self-contained so they can be transformed to other
formats without resolving references to other grammars

■ exclude features such as multiple entry points and recursive rule references that
may not be supported by all gateways

■ exclude syntax-like double-quoted-delimited tokens

■ exclude features such as weights, and repeat probabilities whose semantics are
not well defined by the Speech Recognition Grammar Specification (SRGS)

■ restrict the use of semantic interpretation

■ rule out some features of both XML Form grammars and semantic
interpretation whose semantics are more likely to vary between
implementations (such as ambiguous grammars), and references to undefined
identifiers

Grammars in the OGS are not standalone XML documents; they have no XML
header or DOCTYPE, but consist only of the root <grammar> element and contents.
Such a <grammar> element and contents are in the subset if and only if they are
legal according to the DTD of the W3C Speech Recognition Grammar Format, and
satisfy the following additional restrictions:

■ The root attribute of the <grammar> element is defined, and is a reference to
one of the <rule>s in the grammar (which must, therefore, define at least one

Oracle XML Grammar Subset

F-2 Oracle Application Server Wireless Developer’s Guide

<rule>). The rule referred to by the root attribute of the <grammar> will be
called the root rule.

■ Any scope attributes defined have the value private.

■ All <ruleref> elements have a uri attribute whose value begins with a #; that
is, they are references to other rules in the same grammar. No <ruleref> has a
type, alias, or special attribute.

■ There are no loops in rule references. In other words:

■ No rule contains a <ruleref> that refers to itself.

■ There is no sequence of rules r1, ..., rn such that ri contains a <ruleref>
that refers to ri+1 for all i = 1, ..., n-1, and rn contains a <ruleref> that
refers to r1.

■ There are no double-quote-delimited tokens; all multi-word tokens are
delimited by <token> tags.

■ The only entity references occurring in the grammar are &, <, >,
", and ', and those represented using decimal or hex codes.

■ There are no <example>, <alias>, <meta>, <metadata>, or <lexicon>
elements.

■ No element has a weight or repeat-prob attribute.

■ The grammar is not ambiguous, as defined in the Speech Recognition Grammar
Specification.

■ Any utterance recognized by a rule includes at most one <ruleref> occurring
in that rule with a given uri attribute value (In other words, no rule can
recognize an utterance that includes more than one <ruleref> that refers to
the same rule).

■ All <tag> elements contain text in a subset of the format described in W3C
Semantic Interpretation for Speech Recognition (SISR), and satisfy the following
additional restrictions:

■ The content of every <tag> is one of the following:

* a double-quote-delimited string element

* a grammar rule reference attribute, that is, a $ followed by the id
attribute of a <rule>

* a property of a grammar rule reference attribute, that is, a grammar rule
reference attribute followed by a period (.) and a property name.

Oracle XML Grammar Subset

Oracle XML Grammar Subset F-3

* an AssignmentList as defined in the Semantic Interpretation
specification (a semicolon-delimited list of assignments), in which the
left-hand side of each assignment is an Identifier as defined in the
Semantic Interpretation specification, and the right-hand side is one of
the above three types of expression (a double-quote-delimited string
element, a grammar rule reference attribute, or a property of a grammar
rule reference attribute).

For example, all of the following lines are allowed content of a <tag>:

"sausage"
$gender
$animal.species
what = "animal"
where = "New York City";
; when = "now"
who = "me"; why = "because"
question = "how" ; how = "by hook or by crook";
;;
food = $order
diameter = $order.size
what = "pizza"; size = $order.diameter

■ If a rule is not the root rule, it falls into one of the following categories:

* the rule contains no <tag>s (we will call such rules void rules)

* each utterance recognized by the rule includes exactly one <tag> in
that rule, that <tag> is the last thing in the rule that is included in the
utterance, and the content of the <tag> is a double-quote-delimited
string, a grammar rule reference attribute, or a property of a grammar
rule reference attribute (we will call such rules string rules).

* each utterance recognized by the rule includes exactly one <tag> in
that rule, that <tag> is the last thing in the rule that is included in the
utterance, and the content of the <tag> is an AssignmentList (we will
call such rules structure rules).

■ Every <tag> in a structure rule must assign to the exact same set of
identifiers (that is, the exact same identifiers must appear as left-hand sides
of assignments in the every <tag>’s content). The set of identifiers assigned
to by the <tag>s in a structure rule will be called the signature of the rule.

■ If the content of a <tag> includes a property of a grammar rule reference
attribute, the referenced rule must be a structure rule, and the property

Oracle XML Grammar Subset

F-4 Oracle Application Server Wireless Developer’s Guide

must be in the referenced rule’s signature. For example, if a <tag> has
content:

$y.z
or

x = $y.z

then the rule with id y must be a structure rule, and all of the <tag>s in
rule y must include an assignment to identifier z.

■ If the content of a <tag> contains a grammar rule reference attribute with
no property, the referenced rule must be a string rule. For example, if a
<tag> has content:

$y
or

x = $y

then the rule with id y must be a string rule.

■ Every <tag> in the root rule contains an AssignmentList (the term structure
rule applies only to non-root rules, so the root rule is not subject to the
above restrictions on structure rules).

■ If an utterance is recognized by a rule (root rule or not), then the collection
of <tag>s in that rule that are included in that utterance do not contain
more than one assignment to the same identifier (not even if the expression
the identifier is assigned to is the same).

■ If an utterance recognized by a rule (root rule or not) includes a <tag> in
that <rule>, and that <tag> contains a grammar rule reference attribute
$id (standalone or as part of a property), then that utterance must include a
<ruleref> in the same rule as the <tag>, occurring before the <tag> in
the utterance, with uri= #id.

JSP Tag Library G-1

G
JSP Tag Library

Mobile Studio pages are written using J2EE JSP technology, making use of the
power of custom tag libraries. This section documents the custom tags available for
use when customizing Mobile Studio pages.

This document contains a listing of JSP tags. Tags include:

■ <om:is />

■ <om:not>

■ <om:get />

■ <om:bean />

■ <om:test />

■ <om:equals />

■ <om:indexIs />

■ <om:indexEquals />

■ <om:index />

■ <om:res />

■ <om:enc />

■ <om:exist />

■ <om:notexist />

Note: The JSP tag library is only used to customize Mobile Studio,
and is not required for developing wireless applications.

G-2 Oracle Application Server Wireless Developer’s Guide

■ <om:if />

■ <om:elseif>

■ <om:else />

■ <om:then />

■ <om:iterate />

■ <om:switch />

■ <om:case />

■ <om:default />

JSP Tag Library G-3

Table G–1 <om:is />

Specification in taglib Usage

 <tag>

 <name>is</name>

 <attribute>

 <name>attr</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>value</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>name</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>prefix</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.Is
Tag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Evaluate the body if the value
found from the bean matches the given
value</info>

 </tag>

<om:is attr= attrName value= attrValue
(name= beanName) (prefix= prefixName)
>.</om:is>

Note: The attributes in parenthesis are optional.

<om:is> is a body tag, that is, if the condition
evaluates to true, then the body content will be
processed and output as appropriate.

attr is the attribute of the bean whose value is being
tested.

value is the value of the bean attribute being tested
against.

name (optional) is the name of the bean in context.

prefix (optional) When asking the bean for the
attribute, we add the prefix to the name of the attribute
(for example, if prefix is is, and the attr is empty, then
the method to invoke on the bean is isEmpty()
which follows Java naming convention). If not given,
then we test first get and then is as the prefixes, if
neither one is found, then an exception will be thrown.

G-4 Oracle Application Server Wireless Developer’s Guide

Table G–2 <om:not>

Specification in taglib Usage

 <tag>

 <name>not</name>

 <attribute>

 <name>attr</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>value</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>name</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>prefix</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.No
tTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Evaluate the body if the value
found from the bean does not match the
given value.</info>

 </tag>

<om:not attr= attrName value= attrValue
(name= beanName) (prefix= prefixName)
>.</om:not>

Note: The attributes in parenthesis are optional.

<om:is> is a body tag, that is, if the condition
evaluates to true, then the body content will be
processed and output as appropriate.

attr is the attribute of the bean whose value is being
tested.

value is the value of the bean attribute being tested
against.

name (optional) is the name of the bean in context.

prefix (optional) When asking the bean for the
attribute, we add the prefix to the name of the attribute
(for example, if prefix is is, and the attr is empty, then
the method to invoke on the bean is isEmpty()
which follows Java naming convention). If not given,
then we test first get and then is as the prefixes, if
neither one is found, then an exception will be thrown.

JSP Tag Library G-5

Table G–3 <om:get />

Specification in taglib Usage

 <tag>

 <name>get</name>

 <attribute>

 <name>attr</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>name</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.Ge
tTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Gets the value of a bean
attribute using reflection.</info>

 </tag>

<om:get attr= attrName (name=
beanName)/>

<om:get> is a simple tag, that is, it does not allow
content inside its body. This tag attempts to get the
attribute from the bean and outputs it if found. It does
nothing if the bean or the attribute are not found.

attr is the attribute of the bean whose value is being
tested.

name (optional) is the name of the bean in context.

G-6 Oracle Application Server Wireless Developer’s Guide

Table G–4 <om:bean />

Specification in taglib Usage

<tag>

 <name>bean</name>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.Be
anTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Sets up the context for the
bean.</info>

 </tag>

<om:bean name= beanName/>

<om:bean> is a simple tag, that is, it does not allow
content inside its body. This tag puts the bean in the
context (same as JSP page context) with the given
name.

attr is the attribute of the bean that is being tested.

name (optional) is the name of the bean in context.

JSP Tag Library G-7

Table G–5 <om:test />

Specification in taglib Usage

<tag>

 <name>test</name>

 <attribute>

 <name>attr</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>value</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>prefix</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.Te
stTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Test if the value of a bean
attribute is the same as given using
reflection.</info>

 </tag>

<om:test attr= attrName value= attrValue
(prefix = prefix)>.</om:test>

<om:test> is a body tag, that is, its body content is
evaluated and output as appropriate if the test
condition evaluates to true.

attr is the attribute of the bean being tested.

value is the value of the attribute of the bean being
tested against.

prefix (optional) is the prefix used when invoking
the method against the bean in context.

G-8 Oracle Application Server Wireless Developer’s Guide

Table G–6 <om:equals />

Specification in taglib Usage

 <tag>

 <name>equals</name>

 <attribute>

 <name>attr</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>prefix</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.Eq
ualsTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Test if the value of a bean
attribute is the same as given using
reflection.</info>

 </tag>

<om:equals attr= attrName name= attrName
(prefix = prefix)>.</om:equals>

<om:equals> is a body tag, that is, its body content is
evaluated and output as appropriate if the test
condition evaluates to true.

attr is the attribute of the bean being tested.

name is the name of the attribute in context whose
value is being tested against.

prefix (optional) is the prefix used when invoking
the method against the bean in context.

JSP Tag Library G-9

Table G–7 <om:indexIs />

Specification in taglib Usage

 <tag>

 <name>indexIs</name>

<tagclass>oracle.panama.studio.taglib.In
dexIsTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Test if the index inside
iteration is the same as given by the
user.</info>

 <attribute>

 <name>value</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

<om:indexIs value= value >.</om:indexIs>

<om:indexIs> is a body tag, that is, its body content
is evaluated and output as appropriate if the test
condition evaluates to true.

value is the value of the index being tested against.

G-10 Oracle Application Server Wireless Developer’s Guide

Table G–8 <om:indexEquals />

Specification in taglib Usage

 <tag>

 <name>indexEquals</name>

<tagclass>oracle.panama.studio.taglib.In
dexEqualsTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Test if the index inside
iteration is the same as the value
found.</info>

 <attribute>

 <name>name</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

<om:indexEquals name= attrName
>.</om:indexEquals>

<om:indexEquals> is a body tag, that is, its body
content is evaluated and output as appropriate if the
test condition evaluates to true.

name is the name of the attribute in context whose
value is being tested against.

Table G–9 <om:index />

Specification in taglib Usage

 <tag>

 <name>index</name>

<tagclass>oracle.panama.studio.taglib.In
dexTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Gets the current index during
iteration.</info>

 </tag>

<om:index/>

<om:index> is a simple tag, that is, there is no
content inside the tag allowed. It simply outputs the
index of the current bean which is used mostly inside
<om:iterate>.

JSP Tag Library G-11

Table G–10 <om:res />

Specification in taglib Usage

<tag>

 <name>res</name>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.Re
sourceTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>A generic "get-resource"
tag.</info>

 </tag>

<om:res name= resName>.</om:res>

<om:res> is a simple tag, that is, there is no content
allowed inside its body.

name is the name of the attribute in context whose
value is output (if it exists).

The context is defined as the HTTP request parameter,
the JSP page context, or the current HTTP session.

G-12 Oracle Application Server Wireless Developer’s Guide

Table G–11 <om:enc />

Specification in taglib Usage

<tag>

 <name>enc</name>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<tagclass>oracle.panama.studio.taglib.En
codeTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>A generic "encode-resource"
tag.</info>

 </tag>

Table G–12 <om:exist />

Specification in taglib Usage

<tag>

 <name>exist</name>

<tagclass>oracle.panama.studio.taglib.Ex
istTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A logical exists tag.</info>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

<om:exist name= attrName >.</om:exist>

<om:exist> is a body tag, that is, its body content is
evaluated and output as appropriate if the test
condition evaluates to true.

name is the name of the attribute in context being
tested against.

The context is defined as the HTTP request parameter,
the JSP page context, or the current HTTP session.

JSP Tag Library G-13

Table G–13 <om:notexist />

Specification in taglib Usage

<tag>

 <name>notexist</name>

<tagclass>oracle.panama.studio.taglib.No
tExistTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A logical not-exists
tag.</info>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

<om:notexist name= attrName
>.</om:notexist>

<om:notexist> is a body tag, that is, its body
content is evaluated and output as appropriate if the
test condition evaluates to true.

name is the name of the attribute in context being
tested against.

The context is defined as the HTTP request parameter,
the JSP page context, or the current HTTP session.

G-14 Oracle Application Server Wireless Developer’s Guide

Table G–14 <om:if />

Specification in taglib Usage

<tag>

 <name>if</name>

<tagclass>oracle.panama.studio.taglib.If
Tag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A logical if tag.</info>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>value</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>op</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 </tag>

<om:if name= attrName value= attrValue”
op= equal >

 <om:then> .</om:then>

 <om:elseif name=attrName
value=attrValue op=equal>

 <om:then> </om:then>

 <om:ese>

 <om:then> </om:then>

 </om:else>

 </om:elseif>

</om:if>

<om:if> is used in combination with <om:elseif>,
<om:else> and <om:then>.

If the application of the operator between the value of
the given attribute in context and the value given
evaluates to true, then the immediate child
<om:then> tag’s content is evaluated and output.
Otherwise, the <om:elseif> or <om:else> that is
an immediate child of the <om:if> is evaluated, and
their contents are output as appropriate to them.

name: The name of the attribute in context whose
value we want to test against.

The context is the defined as the HTTP request
parameter, the JSP page context, or the current HTTP
session.

value: The value of the attribute that we are testing
against.

JSP Tag Library G-15

Table G–15 <om:elseif>

Specification in taglib Usage

 <tag>

 <name>elseif</name>

<tagclass>oracle.panama.studio.taglib.ElseIfTag</tagc
lass>

 <bodycontent>JSP</bodycontent>

 <info>A logical elseif tag, allowed only inside if or
elseif.</info>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>value</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>op</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 </tag>

<om:if name= attrName value= attrValue
op= equal >

 <om:then> .</om:then>

 <om:elseif name=attrName
value=attrValue op=equal>

 <om:then> </om:then>

 <om:ese>

 <om:then> </om:then>

 </om:else>

 </om:elseif>

</om:if>

<om:elseif> is used in combination with <om:if>,
<om:else> and <om:then>.

If the application of the operator between the value of
the given attribute in context and the value given
evaluates to true, then the immediate child
<om:then> tag’s content is evaluated and output.
Otherwise, the <om:else> that is an immediate child
of the <om:elseif> is evaluated, and its contents are
output as appropriate to it.

name is the name of the attribute in context whose
value is being tested against.

The context is defined as the HTTP request parameter,
the JSP page context, or the current HTTP session.

value is the value of the attribute being tested
against.

G-16 Oracle Application Server Wireless Developer’s Guide

Table G–16 <om:else />

Specification in taglib Usage

<tag>

 <name>else</name>

<tagclass>oracle.panama.studio.taglib.El
seTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A logical else tag.</info>

 </tag>

<om:if name= attrName value= attrValue
op= equal >

 <om:then> .</om:then>

 <om:elseif name=attrName
value=attrValue op=equal>

 <om:then> </om:then>

 <om:ese>

 <om:then> </om:then>

 </om:else>

 </om:elseif>

</om:if>

<om:else> is used in combination with
<om:elseif>, <om:else> and <om:then>.

When the parent <om:if> or <om:elseif> evaluates
to false, then the content of the child <om:then> tag is
evaluated and output as appropriate, otherwise, no
action is taken.

JSP Tag Library G-17

Table G–17 <om:then />

Specification in taglib Usage

<tag>

 <name>then</name>

<tagclass>oracle.panama.studio.taglib.Th
enTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A logical else tag.</info>

 </tag>

<om:if name= attrName value= attrValue
op= equal >

 <om:then> .</om:then>

 <om:elseif name=attrName
value=attrValue op=equal>

 <om:then> </om:then>

 <om:ese>

 <om:then> </om:then>

 </om:else>

 </om:elseif>

</om:if>

<om:then> is used in combination with <om:if> ,
<om:elseif> and <om:else>.

If the parent <om:if> , <om:elseif> and
<om:else> evaluate to true, then the contents of the
<om:then> tag are evaluated and output as
appropriate.

G-18 Oracle Application Server Wireless Developer’s Guide

Table G–18 <om:iterate />

Specification in taglib Usage

 <tag>

 <name>iterate</name>

<tagclass>oracle.panama.studio.taglib.It
erateTag</tagclass>

 <!--
teiclass>oracle.panama.studio.taglib.Ite
rateTagTEI</teiclass -->

 <bodycontent>JSP</bodycontent>

 <info>An iteration tag.</info>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

</tag>

<om:iterate name= collectionName >

. . .

</om:iterate>

<om:iterate> is used for iterating over a collection
of bean objects. If an object with the given name is
found in the context, and it is of Java Collection type,
then we can loop through the collection and use each
of the objects inside the collection as we loop through
it. The body of the <om:iterate> tag will be output
n times where n is the number of objects inside the
collection.

JSP Tag Library G-19

Table G–19 <om:switch />

Specification in taglib Usage

<tag>

 <name>switch</name>

<tagclass>oracle.panama.studio.taglib.Sw
itchTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A switch tag.</info>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

</tag>

<om:switch name= attrName>

<om:case value= value1>

</om:case>

<om:case value= value2 >

</om:case>

<om:default>

</om:default>

</om:switch>

<om:switch> is used in combination with
<om:case> and <om:default>, where in
<om:switch> we specify the name of the attribute we
are testing upon, and inside <om:case> we specify
the value of the attribute we are testing against, in case
of a match, the body of the <om:case> that satisfies
the match is evaluated and output as appropriate,
otherwise if the <om:default > is specified, then its
body is evaluated and output instead.

G-20 Oracle Application Server Wireless Developer’s Guide

Table G–20 <om:case />

Specification in taglib Usage

<tag>

 <name>case</name>

<tagclass>oracle.panama.studio.taglib.Ca
seTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A case tag.</info>

 <attribute>

 <name>value</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

</tag>

<om:switch name= attrName>

<om:case value= value1>

</om:case>

<om:case value= value2 >

</om:case>

<om:default>

</om:default>

</om:switch>

<om:switch> is used in combination with
<om:case> and <om:default>, where in
<om:switch> we specify the name of the attribute we
are testing upon, and inside <om:case> we specify
the value of the attribute we are testing against, in case
of a match, the body of the <om:case> that satisfies
the match is evaluated and output as appropriate,
otherwise if the <om:default > is specified, then its
body is evaluated and output instead.

JSP Tag Library G-21

Table G–21 <om:default />

Specification in taglib Usage

<tag>

 <name>default</name>

<tagclass>oracle.panama.studio.taglib.De
faultTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>A default tag. </info>

</tag>

<om:switch name= attrName>

<om:case value= value1>

</om:case>

<om:case value= value2 >

</om:case>

<om:default>

</om:default>

</om:switch>

<om:switch> is used in combination with
<om:case> and <om:default>, where in
<om:switch> we specify the name of the attribute we
are testing upon, and inside <om:case> we specify
the value of the attribute we are testing against, in case
of a match, the body of the <om:case> that satisfies
the match is evaluated and output as appropriate,
otherwise if the <om:default > is specified, then its
body is evaluated and output instead.

G-22 Oracle Application Server Wireless Developer’s Guide

 Index-1

Index
A
accidents, 14-24
Advanced Customization, 16-1
alerts

location-based, 14-126
Application

debugging, 5-39
deleting, 5-39
editing, 5-38
Quick Publishing, 5-40

Applications
Building and Testing, 2-3
Delivering, 2-4
Deploying, 2-4
moving, 5-40

automatic positioning, 14-113
enabling and disabling, 14-122
using GPS with, 14-114

Average Revenue Per User (ARPU), 1-1

B
basic formatting, 8-87

tables, 8-87
Billing, 16-1

concepts, 16-2
integration scenario, 16-13

Billing Collector, 16-6
extending, 16-9

Billing Driver, 16-12
Billing Integration Framework

using, 16-3
BillingLoader, utility, 16-6

Bookmark
deleting, 7-12

Bookmarks
editing, 7-11
managing, 7-10

Bookmarks,creating, 7-10
Building and Testing Your Applications, 2-3
business directory services

API, 14-23
overview, 14-21
XML configuration files, 14-22

C
cache

location, 14-116, 14-122
log, 14-122

Cascading Style Sheets (CSS), 8-6
City interface, 14-28
CityInfo interface, 14-28
community

mobile, 14-120
operations supported on, 14-122
types of, 14-121
visibility, 14-121

configuration file
site_cgf_bootstrap.xml, 14-11

construction activity, 14-24
Contact Rules

managing, 7-35
contact rules

selecting from a voice application, 7-44
selecting from an Async service, 7-42
selecting from devices, 7-40

Index-2

selecting from Web applications, 7-40
coordinate system for region data, 14-139
Creating a Folder using Service Manager, 5-6
Creating a Multi-Channel Application using Service

Manager, 5-8
Creating an Application, 5-7
Creating an Application using Service

Manager, 5-7
CSS

Grid Layout model, E-2
layout properties, E-1

CSS Media Queries, 8-47
custom regions (user-defined), 14-133
Customization Portal, 7-1

rebranding, 7-44
customization profiles, multiple, 15-4

D
Data Feeders

creating, 5-55
editing, 5-65
Managing, 5-54

data feeders, 11-21
creating, 5-55
editing, 5-65
entering basic information for, 5-56
entering output parameters, 5-64
samples, 11-23
setting the init parameters, 5-58

Debugging an Application, 5-39
DeckExample.xml, 8-84
Deleting an Application, 5-39
Developing Services, 5-1
device management, 15-24
deviceclass attribute, 8-85
Devices

browsing, 7-19
managing, 7-18

device-specific markup language, 8-83
Digital Rights Management (DRM), 12-25

built-in policies, 12-25
directives

privacy, 14-122
display

formatting, 8-86
displaying and formatting contents of XML, 8-81
DOCTYPE declaration, 8-83
driving directions, 14-18

maneuvers, 14-18, 14-19

E
Editing an Application, 5-38
example files

location services, 14-3
external providers for location services, 14-7

F
Folders

moving, 5-40
folders

creating with Service Designer, 5-6
formatting display, 8-86
formatting, basic, 8-87
FormattingExample.xml, 8-86

G
Geocoder interface, 14-16
geocoding

API, 14-15
overview, 14-14

getPositioner method, 14-118
global positioning system (GPS)

providing location using, 14-114
GPS

providing location using, 14-114

H
HDML devices, 8-85
Hello World Application, 4-2

building, using Mobile Studio, 6-3
creating, using XHTML MP, 8-79
deploying, 8-15
displaying and formatting content, 8-82
generating a J2ME stub class for, 12-9
register and test with TestStubMidlet, 12-13

 Index-3

registering with the J2ME Proxy Server, 12-7
removing a registered service, 12-11
sample MIDlets, 12-10
writing, using XHTML and XForms, 8-19

HelloWorld.xml, 8-82
HTTP Adapter

setting input parameters, 5-33

I
idseq sequence, 14-139
image adaptation, 9-7
incident (traffic), 14-24

J
J2ME (Java 2, Micro Edition)

and the Wireless Development Kit (WDK), 12-5
development and provisioning, 12-1
features, 12-2
overview, 12-1

J2ME Application
creating, 5-21

J2ME application
downloading, 12-41
publishing, 12-40
uploading, 12-37

J2ME Applications
creating, 4-3

J2ME Provisioning Server, 12-33
J2ME Web Services

managing, 5-71
registering, 5-71

Java 2 Micro Edition (J2ME), 1-3
Java Beans, 6-21
JavaServer Pages (JSP) tags for location-based

applications, 14-31
JDeveloper Wireless Extension (JWE), 2-3, 4-1

Developing Multi-Channel Applications, 4-2
JSP Page

loginPortlet.jsp, 6-13
JSP page

home.jsp, 6-18
login.jsp, 6-9
pageFooter.jsp, 6-14

pageHeader.jsp, 6-13
pageMenu.jsp, 6-15
pagePortlets.jsp, 6-15
profile.jsp, 6-16
registraton.jsp, 6-10
testAppInfoBox.jsp, 6-21

JSP tags, G-1
JWE Options, 4-2

L
languages (support for multiple), 14-20
location cache, 14-116, 14-122
Location class, 14-15
location event server, 14-126
location mark, 14-16, 14-112
Location Marks, 15-23

managing, 7-27
location privacy, 14-113
location services, 14-7

providers, 14-7
location-based alerts, 14-126
location-dependent

identifying service as, 14-134
LocationMark class, 14-16
LOCATIONMARK table, 14-17
log

cache, 14-122
longitude/latitude region data, 14-139

M
management

service, 15-25
user and group, 15-25
user device, 15-24

Managing Applications using Service Manager, 5-4
maneuver, 14-18, 14-19
Maneuver class, 14-20, 14-21
manual positioning, 14-112

enabling, 14-112
Master Alert

creating, 5-49
master alert service, 11-8
Master Alerts

Index-4

editing, 5-54
managing, 5-48

master alerts
creating, 5-49
creating a message template for, 5-43, 5-50
editing, 5-47, 5-54
entering basic information, 5-49
setting trigger conditions, 5-43, 5-50

Master Notification
creating, 5-41

master notification service
creating, 11-11
mapping to a master service, 11-13

master services
assigning Async Agents to, 5-35
debugging, 5-39
deleting, 5-39
editing, 5-38
entering basic information, 5-27
entering caching information, 5-29
entering init parameters, 5-30
entering input parameters, 5-31
entering output parameters, 5-34
moving, 5-40
searching, 5-5
selecting a result transformer, 5-36

MCSLite
Advanced Configuration, 3-8
Common Mistakes Encountered, 3-27
Device Description, 3-9
Device Detection, 3-10
Key Features, 3-4
Location Services, 3-10
Log File, 3-7
Multimedia Adaptation, 3-10
National Language Support (NLS, 3-7
Sending Parameters to a Back-end

Application, 3-6
URL Rewriting and Caching, 3-7

MCSLite deployment
local, 3-3
remote, 3-3

messenger, 8-85
microbrowser, 8-85
micromessenger, 8-85

Microsoft Exchange notification integration, 11-32
Mobile Browser & Voice Applications

Overview, 8-1
Mobile Center on OTN, 2-2
mobile community, 14-120

operations supported on, 14-122
types of, 14-121
visibility, 14-121

mobile positioning
API, 14-123
framework, 14-113
privacy directives relating to, 14-122
using GPS with, 14-114

Mobile Studio, 6-1
branding, 6-6
building applications with, 6-3
Creating Sample Services, 6-6
customizing, 6-5
deploying applications, 6-5
Getting Started, 6-2
JSP pages used in, 6-8
key features, 6-2
Login and Registration, 6-3
on Oracle Technology Network, 6-2
Overview, 6-1
supporting multiple locales, 6-7
testing applications, 6-4

MPManager class, 14-118
Multi-Channel Application

creating, 5-27
Multi-Channel Server, 9-1

features, 9-4
Multimedia Adaptation Services, 9-6
MXML Media Attribute, 8-49
MXML Media Attribute syntax, B-1

N
New Features

J2ME Support, 1-3
Location Services, 1-6
Multi-Channel Server, 1-3
Notifications and Multi-media Messaging, 1-4
Web Clipping, 1-5
Wireless Development Kit (WDK), 1-5

 Index-5

notification engine, 11-1
architecture, 11-3
backward compatibility, 11-7
integrated solutions, 11-28
triggering, 11-2

Notification Subscriptions
adding new, 7-16
deleting, 7-18
editing, 7-18
managing, 7-14

Notifications
editing, 5-47
managing, 5-40

notifications
administering, 11-19
creating, 11-7
migrating, 11-19
subscribing to, 11-15

O
Oracle JDeveloper, 1-2, 3-2
Oracle Workflow, 11-30
Oracle XML Grammar Subset, F-1
OracleAS Mobile Studio, 2-4
OracleAS Wireless

Billing Integration Framework, 16-1
CSS Media Query, B-1
CSS support, D-1
Deployed in a Network, 1-7
Developing Services, 5-1
Development Path, 2-1
Introducing Developer Tools, 2-2
notification system, 11-1
supported media features, B-2
supported media types, B-2

OracleAS Wireless Client, 8-72
installing, 8-74
using, 8-73

OracleAS Wireless Developer Kit, 3-1
Installation and Configuration, 3-2
J2ME, 3-1
Location Services, 3-1
Messaging, 3-1
Multi-Channel Server, 3-2

Multi-Channel Server Lite (MCSLite), 3-3
Overview, 3-1
Structure, 3-2
Wireless Client, 3-1

OracleAS Wireless J2ME Provisioning
Server, 12-33

OracleAS Wireless Mobile Studio, 6-1
OracleAS Wireless XML, 8-80
overview map, 14-19

P
PAsection parameter, 5-31
pcbrowser, 8-85
pdabrowser, 8-85
Point class, 14-15
positioning

automatic, 14-113
manual, 14-112
privacy directives relating to, 14-122
providers, 14-117
quality of service, 14-116
using GPS with, 14-114

positioning rights, 14-120
Preset Definitions

creating, 5-68
editing, 5-70
managing, 5-67

preset definitions
creating, 5-68
editing, 5-68, 5-70

Presets, 15-8
concepts and architecture, 15-9

presets
samples, 15-10

privacy
API, 14-123
directives, 14-122
location, 14-113

providers
configuring, 14-11
location services, 14-7
positioning, 14-117
selection of, 14-8
selector hook, 14-118

Index-6

Push Service, 10-1

Q
QoS (quality of service), 14-116
quality of service, 14-116

R
REFCNT column in region tables, 14-139
reference count (REFCNT), 14-139
region, 14-132

adding new region, 14-139
API for modeling, 14-140
associating with a service, 14-134
custom, 14-133
reference count (REFCNT), 14-139
system-defined, 14-133
using sequence to generate ID, 14-139

repeating structures, 8-54
rights

positioning, 14-120
Ringtone Adaptation, 9-11
RouteInfo interface, 14-28
Router interface, 14-20
routing

languages (support for), 14-20
maneuver, 14-18, 14-19
overview, 14-18
overview map, 14-19
results, 14-19
settings, 14-18

RoutingSettings class, 14-20

S
Sample Media Queries, B-7
Searching for a Master Application using Service

Manager, 5-5
selection of service providers, 14-8
selector hook, 14-118
Service Detail Record, 16-6
service management, 15-25
Service Manager

Creating a Folder, 5-6

Creating an Application, 5-7
Logging in, 5-3
Managing Applications, 5-4
Overview, 5-1
Searching for a Master Application, 5-5

service proxy
integrating external content provider, 14-141

Short Names
creating, 7-13
deleting, 7-14
editing, 7-14
managing, 7-12

SimpleAudio, 8-85
SimpleBreak, 8-86
SimpleCol, 8-87
SimpleContainer, 8-84
SimpleEm, 8-86
SimpleHref, 8-85
SimpleResult, 8-84
SimpleRow, 8-87
SimpleStrong, 8-86
SimpleTable, 8-87
SimpleTableBody, 8-87
SimpleTableHeader, 8-87
SimpleText, 8-85
SimpleTextItem, 8-85
site_cgf_bootstrap.xml, 14-11
spatial mark, 14-16
SpatialManager class, 14-7
SRID (coordinate system) for region data, 14-139
Stub Classes

generating, 5-73
stylesheet

XSL, 8-81
styling and embedding content, 8-47
system-defined regions, 14-133

T
TableExample.xml, 8-87
traffic

incident, 14-24
overview, 14-24
request XML DTD, 14-26

TrafficCityManager interface, 14-29

 Index-7

TrafficIncident interface, 14-28
TrafficReport interface, 14-28
TrafficReporter interface, 14-28
TrafficRoute interface, 14-28
triggering conditions, 11-10

U
user and group management, 15-25
User Customization, 15-1

V
visibility

mobile community, 14-121
voice, 8-85

W
WDK

Log File, 3-21
Log Sample, 3-22

Web Clipping, 13-1
customizing the service, 13-32

Web Clipping Application
creating, 5-37

Web Clipping Service
creating, 13-7

Web Integration
migrating from, 13-28

Web Scraping, 13-1
Web services

for location-based applications, 14-109
WGS-84 coordinate system for region data, 14-139
Wireless components

Development Tools, 1-2
Device Portal, 1-2
Foundation Services, 1-2
Mobile Applications, 1-2
Multi-Channel Server, 1-2

Wireless Customization
accessing as a new user, 7-3
accessing as a registered user, 7-4
customizing applications, 7-5
logging into, 7-2

managing folders, 7-7
managing user profiles, 7-4
overview, 7-1

Wireless Developer’s Kit (WDK), 2-3
Wireless Development Kit (WDK), 1-2
Wireless-Enabled J2EE Application

creating, 4-3
WML Translator, 13-39

deploying and configuring, 13-43
using, 13-45

WSDL files for location services, 14-109

X
XForms, 8-8

Actions, C-16
DataTypes, C-5
document structure, C-1
Model Item Properties And Schema

Constraints, C-7
Processing Model, C-3
specification support, C-1
UI Controls, C-11
XPath Expression, C-8

XHMTL Mobile Profile (XHTML MP), 8-76
XHTML

Basic Tables module, A-9
embedding audio, A-7
embedding images, A-6
embedding voice and DTMF grammar, A-8
HyperText module, A-2
Link module, A-10
List module, A-4
Meta Information module, A-10
modules supported, A-1
Object module, A-5
Presentation module, A-5
Speech Recognition Grammar module, A-11
structure model, A-2
Style Attribute module, A-10
Style Sheet module, A-10
text module, A-2
using, A-9
Wireless MXML Media Attribute module, A-11

XHTML+XForms, 8-4

Index-8

advanced sample, 8-50
advanced voice sample, 8-63
and visual applications, 8-26
and voice applications, 8-34

XHTML, technology background, 8-5
XML

schema, 8-81
XML configuration file

site_cgf_bootstrap.xml, 14-11
XML Events Support, 8-26
XML files

business directory category hierarchy, 14-22
examples, 14-3
traffic request DTD, 14-26

XML Namespaces, overview, 8-8
XPath, 8-16
XPath, overview, 8-9
XSL stylesheet, 8-81

Y
Yellow Pages services, 14-21
YPBusiness class, 14-24
YPCategory class, 14-24
YPFinder interface, 14-23

	Contents
	Send Us Your Comments
	Audience and Roadmap
	Part I� Introduction
	1 Introduction to Oracle Application Server Wireless
	1.1� Overview of OracleAS Wireless
	1.2� New in OracleAS Wireless
	1.2.1� Multi-Channel Server
	1.2.2� J2ME Support
	1.2.3� Notifications and Multi-media Messaging
	1.2.4� Wireless Development Kit
	1.2.5� Web Clipping
	1.2.6� Location Services

	1.3� OracleAS Wireless Deployed in a Network

	Part II� Oracle Application Server Wireless Developer’s Tools
	2 Introducing Oracle Application Server Wireless Developer’s Tools
	2.1� OracleAS Wireless Development Path
	2.1.1� Leverage Web Services and Reuse Business Logic
	2.1.2� Building and Testing Your Applications
	2.1.3� Deploying your Applications

	2.2� Delivering Your Applications

	3 OracleAS Wireless Developer Kit
	3.1� Wireless Developer Kit Overview
	3.2� WDK Installation and Configuration
	3.2.1� Oracle Application Server Wireless Developer Kit Structure
	3.2.2� Multi-Channel Server Lite (MCSLite)
	3.2.2.1� Key Features
	3.2.2.2� How to Use MCSLite
	3.2.2.3� Sending Parameters to a Back-end Application
	3.2.2.4� MCSLite URL Rewriting and Caching
	3.2.2.5� National Language Support (NLS)
	3.2.2.6� MCSLite Log File
	3.2.2.7� MCSLite Advanced Configuration
	3.2.2.8� Device Description
	3.2.2.9� Device Detection
	3.2.2.10� Multimedia Adaptation
	3.2.2.11� Location Services

	3.3� WDK Log File
	3.3.1� WDK Log Sample
	3.3.2� Common Mistakes Encountered

	3.4� Running a Wireless Application with the WDK Tutorial
	3.4.1� What you Need
	3.4.2� Tutorial Overview
	3.4.3� Environment Set Up
	3.4.3.1� Set up your WDK Environment
	3.4.3.2� Configure the WDK
	3.4.3.3� Start the WDK

	3.4.4� Multi-media Adaptation Demonstration

	4 JDeveloper Wireless Extension
	4.1� Overview
	4.2� Developing Multi-Channel Applications
	4.3� Creating a Wireless-Enabled J2EE Application
	4.4� Creating J2ME Applications
	4.4.1� Creating a Default MIDlet
	4.4.2� Deploying the MIDlet Application
	4.4.3� Creating a MIDlet that Calls a Web Service

	5 Developing Services
	5.1� Overview of the Service Manager
	5.2� Logging into the Service Manager
	5.3� Managing Applications
	5.3.1� Searching for a Master Application
	5.3.2� Creating a Folder
	5.3.3� Creating an Application
	5.3.4� Selecting the Application Type
	5.3.5� Creating a Multi-Channel Application
	5.3.5.1� Entering the Basic Information for the Application
	5.3.5.2� Entering the Notification-Related Information
	5.3.5.3� Entering the Input Parameters for the Application
	5.3.5.4� Entering the Async Information
	5.3.5.5� Setting the Built-In Parameters
	5.3.5.6� Setting the Caching Information
	5.3.5.7� Setting Additional Information

	5.3.6� Creating a J2ME Application
	5.3.6.1� Entering the Basic Information for the MIDlet
	5.3.6.2� Specifying the Deliverable Content
	5.3.6.3� Setting the Device Requirements
	5.3.6.4� Setting Additional Information

	5.3.7� Creating a Multi-Channel Application (Based on Any Adapter)
	5.3.7.1� Step 1: Entering the Basic Information for the Application
	5.3.7.2� Step 2: Entering Caching Information
	5.3.7.3� Step 3: Entering the Initialization Parameters of the Application
	5.3.7.4� Step 4: Selecting the Input Parameters for the Application
	5.3.7.5� Step 5: Selecting the Output Parameters for the Application
	5.3.7.6� Step 6: Creating an Async Agent Service—Optional
	5.3.7.7� Step 7: Selecting the Result Transformer—Optional

	5.3.8� Creating a Web Clipping Application
	5.3.9� Editing an Application
	5.3.10� Deleting an Application
	5.3.11� Debugging an Application
	5.3.12� Quick Publishing an Application
	5.3.13� Moving Folders and Applications

	5.4� Managing Notifications
	5.4.1� Creating a Master Notification
	5.4.1.1� Step 1: Entering the Basic Configuration Parameters for the Notification
	5.4.1.2� Step 2: Setting the Trigger Conditions for the Notification
	5.4.1.3� Step 3: Creating the Message Template

	5.4.2� Editing a Notification

	5.5� Managing Master Alerts (Deprecated)
	5.5.1� Creating a Master Alert
	5.5.1.1� Step 1: Entering the Basic Configuration Parameters for the Master Alert
	5.5.1.2� Step 2: Setting the Trigger Conditions for the Master Alert
	5.5.1.3� Step 3: Creating the Message Template for the Master Alert

	5.5.2� Editing a Master Alert

	5.6� Managing Data Feeders
	5.6.1� Creating a Data Feeder
	5.6.1.1� Step 1: Entering the Basic Information for the Data Feeder
	5.6.1.2� Step 2: Entering the Initialization Parameters for the Data Feeder
	5.6.1.3� Entering the Init Parameters for the HTTP Protocol
	5.6.1.4� Entering the Init Parameters for the File Protocol
	5.6.1.5� Entering the Init Parameters for the FTP Protocol
	5.6.1.6� Entering the Init Parameters for the SQL Protocol
	5.6.1.7� Entering the Init Parameters for the Application Protocol
	5.6.1.8� Step 3: Entering the Input Parameters for the Data Feeder
	5.6.1.9� Step 4: Entering the Output Parameters for the Data Feeder

	5.6.2� Editing a Data Feeder
	5.6.2.1� Editing the Basic Configuration of a Data Feeder
	5.6.2.2� Editing the Init Parameters of a Data Feeder
	5.6.2.3� Editing the Input Parameters of a Data Feeder
	5.6.2.4� Editing the Output Parameters of a Data Feeder

	5.7� Managing Preset Definitions
	5.7.1� Creating a Preset Definition
	5.7.1.1� Adding Preset Attributes

	5.7.2� Editing a Preset Definition
	5.7.2.1� Adding, Editing, and Deleting Preset Attribute Enumeration Options

	5.8� Managing J2ME Web Services
	5.8.1� Registering a J2ME Web Service
	5.8.2� Generating Stub Classes
	5.8.2.1� Viewing the Class Method Details

	6 Mobile Studio
	6.1� Overview
	6.1.1� Mobile Studio Key Features
	6.1.2� Mobile Studio on the Oracle Technology Network

	6.2� Getting Started with Mobile Studio
	6.2.1� Login and Registration
	6.2.2� Building an Application Using Mobile Studio
	6.2.3� Testing an Application
	6.2.4� Deploying an Application

	6.3� Customizing Mobile Studio
	6.3.1� Creating Sample Services
	6.3.2� Branding
	6.3.3� Supporting Multiple Locales
	6.3.4� JSP Pages
	6.3.4.1� JSP page: login.jsp
	6.3.4.2� JSP page: registraton.jsp
	6.3.4.3� JSP Page: loginPortlet.jsp
	6.3.4.4� JSP page: pageHeader.jsp
	6.3.4.5� JSP page: pageFooter.jsp
	6.3.4.6� JSP page: pageMenu.jsp
	6.3.4.7� JSP page: pagePortlets.jsp
	6.3.4.8� JSP page: profile.jsp
	6.3.4.9� JSP page: home.jsp
	6.3.4.10� Java Beans
	6.3.4.11� JSP page: testAppInfoBox.jsp

	7 Wireless Customization Portal
	7.1� Overview of OracleAS Wireless Customization
	7.2� Logging into Wireless Customization
	7.2.1� Accessing Wireless Customization as a New User
	7.2.2� Accessing Wireless Customization as a Registered User

	7.3� Managing User Profiles
	7.4� Customizing Applications
	7.4.1� Managing Folders
	7.4.1.1� Creating a Subfolder
	7.4.1.2� Editing a Folder
	7.4.1.3� Reordering the Display Sequence for Folder
	7.4.1.4� Deleting a Folder

	7.4.2� Managing Bookmarks
	7.4.2.1� Creating a Bookmark
	7.4.2.2� Editing a Bookmark
	7.4.2.3� Deleting a Bookmark

	7.4.3� Managing Short Names
	7.4.4� Creating Short Names
	7.4.4.1� Editing a Short Name
	7.4.4.2� Deleting a Short Name

	7.4.5� Managing a Notification Subscription
	7.4.5.1� Adding a New Notification Subscription
	7.4.5.2� Editing Notification Subscriptions
	7.4.5.3� Deleting Notification Subscriptions

	7.5� Managing Devices
	7.5.1� Creating a New Phone
	7.5.1.1� Validating a Phone
	7.5.1.2� Editing a Phone
	7.5.1.3� Deleting a Phone

	7.5.2� Creating a New Fax
	7.5.2.1� Validating a Fax
	7.5.2.2� Editing a Fax
	7.5.2.3� Deleting a Fax

	7.5.3� Creating an Email Device
	7.5.3.1� Validating the Email Device
	7.5.3.2� Editing an Email Device
	7.5.3.3� Deleting an Email Device

	7.5.4� Creating a New Mobile Device
	7.5.4.1� Validating the Mobile Device
	7.5.4.2� Editing a Mobile Device
	7.5.4.3� Deleting an Mobile Device

	7.5.5� Setting a Default Device

	7.6� Managing Location Marks
	7.6.1� Creating Location Marks
	7.6.2� Editing a Location Mark
	7.6.3� Changing the Default Status of a Location Mark
	7.6.4� Deleting a Location Mark
	7.6.5� Setting the Location Privacy Preferences
	7.6.6� Managing the Location Awareness Authorization
	7.6.7� Assigning Location Awareness Authorization
	7.6.8� Changing Location Awareness Authorization
	7.6.9� Managing the User Groups for Location Authorization
	7.6.10� Creating User Group
	7.6.11� Editing a User Group
	7.6.11.1� Deleting User Group

	7.7� Managing Contact Rules
	7.7.1� Contact Rules in the Customization Portal
	7.7.1.1� Adding a Contact Rule
	7.7.1.2� Editing a Contact Rule
	7.7.1.3� Deleting a Contact Rule
	7.7.1.4� Selecting an Active Contact Rule
	7.7.1.5� Selecting a Contact Rule from a Web-Based User Interface

	7.7.2� Selecting a Contact Rule from a Device
	7.7.2.1� Selecting a Contact Rule from a Web-Based User Interface
	7.7.2.2� Selecting a Contact Rule from a Device
	7.7.2.3� Selecting a Contact Rule from a Device
	7.7.2.4� Selecting a Contact Rule from an SMS- or Email-Based Device
	7.7.2.5� Selecting a Contact Rule Using a Voice Application

	7.8� Viewing UTF-8 Pages in Localized Languages with Netscape 4.7 or Lower
	7.9� Rebranding the Customization Portal
	7.9.1� Page Naming Conventions
	7.9.2� UIX Pages Structure
	7.9.3� Directory Structure
	7.9.4� Customizing the Look of the Customization Portal
	7.9.4.1� Colors and Fonts
	7.9.4.2� UIX Modification

	7.9.5� Application Customization Page Plugin Framework
	7.9.5.1� Customizing an Application in a Plugin Page

	7.9.6� Setting the Multi-Byte Encoding for the Customization Portal

	Part III� Developing Wireless Applications
	8 Authoring Mobile Browser and Voice Applications
	8.1� Overview
	8.1.1� MobileXML or XHTML/XForms; Which to Use?
	8.1.2� Multi-Channel Overview

	8.2� XHTML+XForms
	8.2.1� Overview
	8.2.2� Technology Background
	8.2.2.1� XHTML
	8.2.2.2� Cascading Style Sheets (CSS)
	8.2.2.3� XForms
	8.2.2.4� Overview of XML Namespaces
	8.2.2.5� Overview of XPath
	8.2.2.6� Overview of XForms
	8.2.2.7� XForms Processing Logic
	8.2.2.8� XForms User Interface Components
	8.2.2.9� XForms and XPath
	8.2.2.10� XHTML as Host Language for XForms
	8.2.2.11� Setting Document Content Type and Profile Attributes

	8.2.3� Hello World Application Using XHTML and XForms
	8.2.3.1� About Hello World and Basic Requirements
	8.2.3.2� Writing the Hello World Application
	8.2.3.3� Deploy the Hello World Page and Provide a CGI Program

	8.2.4� OracleAS Wireless and XHTML+XForms+CSS
	8.2.4.1� OracleAS Wireless XHTML, XForms and CSS Support
	8.2.4.2� OracleAS Wireless and XML Events Support
	8.2.4.3� Visual Applications and XHTML+XForms
	8.2.4.4� Voice Applications and XHTML+XForms

	8.2.5� Styling and Embedding Content Based on Media
	8.2.5.1� CSS Media Queries
	8.2.5.2� MXML Media Attribute

	8.2.6� Advanced Sample Using XHTML and XForms
	8.2.6.1� About the Example
	8.2.6.2� Shopping Cart Data and XForms Model
	8.2.6.3� Showing the Data to a User
	8.2.6.4� Adding Repeating Structures
	8.2.6.5� Adding Calculated Fields: Sub-Totals and Totals
	8.2.6.6� Adding Styles
	8.2.6.7� Adding Update Buttons and Using Events
	8.2.6.8� Adding Type Validations
	8.2.6.9� Complete Sample

	8.2.7� Advanced Voice Sample Using XHTML and XForms

	8.3� OracleAS Wireless Client
	8.3.1� Using the Wireless Client
	8.3.1.1� User Interactions
	8.3.1.2� Logging
	8.3.1.3� Server Side Considerations

	8.3.2� Using OracleAS Wireless with XClient
	8.3.2.1� Mime Types

	8.3.3� Installing OracleAS Wireless Client
	8.3.3.1� Requirements
	8.3.3.2� Installing the Wireless Client
	8.3.3.3� Deploying to Users
	8.3.3.4� XClient.CAB File
	8.3.3.5� Registry Keys

	8.4� XHTML Mobile Profile
	8.4.1� Overview
	8.4.2� OracleAS Wireless and XHTML MP + CSS Mobile Profile
	8.4.3� XHTML Mobile Profile Modules Supported
	8.4.4� XHTML MP HelloWorld Example

	8.5� OracleAS Wireless XML
	8.5.1� OracleAS Wireless XML Overview
	8.5.2� OracleAS Wireless XML and OracleAS Wireless
	8.5.3� Displaying and Formatting Content
	8.5.3.1� Hello World Example
	8.5.3.2� DOCTYPE Declaration
	8.5.3.3� SimpleResult
	8.5.3.4� Formatting the Display
	8.5.3.5� Tables and Basic Formatting Example
	8.5.3.6� Image Adaptation Support in OracleAS Wireless XML

	8.5.4� Enhancing with Audio for Voice Access
	8.5.4.1� SimpleAudio and SimpleSpeech
	8.5.4.2� Recommendation for Voice Navigation

	8.5.5� Application Navigation
	8.5.5.1� Introduction
	8.5.5.2� Basic Navigation
	8.5.5.3� SimpleMenu, SimpleMenuItem
	8.5.5.4� Navigating by Voice

	8.5.6� Document Linking
	8.5.6.1� SimpleHref, SimpleTimer
	8.5.6.2� Enhancing with Voice

	8.5.7� Filling Out Forms for Data Entry and Navigation
	8.5.7.1� Introduction
	8.5.7.2� Basic User Interaction
	8.5.7.3� Complete User Forms
	8.5.7.4� Enhancing Voice
	8.5.7.5� Working with Signature Capture Form Control

	8.5.8� Advanced User Interactions and Channel Optimization
	8.5.8.1� Introduction
	8.5.8.2� Events and Tasks Using SimpleBind

	8.6� Device Headers and Device Class
	8.6.1� Article.jsp
	8.6.2� PageNavigation.Java
	8.6.3� Async-enabling OracleAS Wireless XML Applications
	8.6.3.1� Overview

	9 Using Multi-Channel Server
	9.1� Overview
	9.1.1� Benefits of Multi-Channel
	9.1.2� Features of Multi-Channel Server

	9.2� Multimedia Adaptation
	9.2.1� Overview
	9.2.2� Image Adaptation Features
	9.2.2.1� Authoring Multichannel Applications with Images

	9.2.3� Command Line Tool
	9.2.4� Extensibility Using ImageProcessor API
	9.2.4.1� Description
	9.2.4.2� Interface oracle.panama.multimedia.ImageProcessor
	9.2.4.3� Implementation
	9.2.4.4� Configuration

	9.2.5� Ringtone Adaptation
	9.2.5.1� Features
	9.2.5.2� RingtoneProcessor Java API
	9.2.5.3� Implementation
	9.2.5.4� Configuration
	9.2.5.5� Sample Usage

	9.2.6� Ringtone Converter Java API
	9.2.6.1� Description
	9.2.6.2� Interface oracle.panama.multimedia.RingtoneConverter
	9.2.6.3� Implementation
	9.2.6.4� Configuration

	9.3� Device Adaptation
	9.3.1� Device Repository
	9.3.2� Device Repository Access
	9.3.3� Device Detection
	9.3.4� Dynamic HTTP Header Composition and UAProf
	9.3.5� Device Transformers
	9.3.6� Device Repository API
	9.3.7� Device Information and Classification

	9.4� Modifying Multi-Channel Server Runtime
	9.4.1� MCS Runtime Session Management
	9.4.2� MCS Runtime API
	9.4.2.1� Runtime Objects
	9.4.2.2� Event Listeners

	9.4.3� MCS Reverse Proxy, URL Rewrite, Caching, and Compression
	9.4.4� MCS Virtual Browser Model
	9.4.5� Wireless and Voice Portal
	9.4.5.1� Device Identification
	9.4.5.2� Virtual User Concept
	9.4.5.3� Authentication and Authorization

	9.4.6� Globalization (NLS) Support

	9.5� Modifying the Data Models
	9.5.1� OracleAS Wireless Services Overview
	9.5.2� MasterService
	9.5.2.1� Link
	9.5.2.2� Module
	9.5.2.3� Folder
	9.5.2.4� ExternalLink

	9.5.3� Access Control
	9.5.4� Folder Renderer
	9.5.4.1� Overview
	9.5.4.2� Structure of JSP pages
	9.5.4.3� Execution Flow

	9.5.5� Bookmark
	9.5.5.1� Creating and Editing Bookmarks Using OracleAS Wireless Tools

	9.5.6� Model API: General Usage
	9.5.6.1� Data Model Cache and Synchronization
	9.5.6.2� Interfaces and Interface Hierarchy
	9.5.6.3� Model API Inheritance Hierarchy
	9.5.6.4� Sample Code that Uses the Data Model API

	10 Creating Messaging Applications
	10.1� Messaging Overview and Architecture
	10.1.1� General Overview
	10.1.2� Key Messaging Features
	10.1.3� Multi-Channel, Adaptive Messaging
	10.1.4� Multimedia Messaging
	10.1.5� Transport Framework
	10.1.6� MMS Center
	10.1.6.1� Actionable Messaging Framework

	10.2� Sending and Receiving Messages
	10.2.1� One-way Message Application API Overview
	10.2.1.1� XMSSimpleSender
	10.2.1.2� XMSSender
	10.2.1.3� Text-based Messages
	10.2.1.4� Multimedia Messages
	10.2.1.5� Other Content

	10.2.2� Two Way Messaging, Transport API
	10.2.2.1� Destination Analysis
	10.2.2.2� Message Routing
	10.2.2.3� Providing Hints to Facilitate Transport Internal Processing

	10.2.3� Actionable Messages
	10.2.3.1� Components Overview
	10.2.3.2� Actionable Message Flow
	10.2.3.3� Enabling Actionable Messages
	10.2.3.4� Configuration Parameters

	10.3� Building Async Applications
	10.3.1� Asynchronous Listener
	10.3.1.1� Asynchronous Listener Architecture

	10.3.2� Key Challenges
	10.3.2.1� Multiple messaging transport protocol support
	10.3.2.2� The asynchronous nature of messaging protocols
	10.3.2.3� Supporting Sessions
	10.3.2.4� User Navigation
	10.3.2.5� Naming/Addressing an Application

	10.3.3� Key Solutions
	10.3.3.1� Multiple Transport Protocol Support
	10.3.3.2� The asynchronous nature of messaging protocols
	10.3.3.3� Supporting Sessions
	10.3.3.4� User Navigation
	10.3.3.5� Naming/Addressing an Application

	10.3.4� Async Request Authorization
	10.3.5� User Interface and Navigation Commands
	10.3.6� Configuration and Customization
	10.3.6.1� System Configuration Parameters
	10.3.6.2� User Customization Parameter

	10.3.7� Application Invocation Examples
	10.3.7.1� Invoking the Application by the Application Short Name
	10.3.7.2� Invocation through Application-Associated Access Point
	10.3.7.3� Menu Capability
	10.3.7.4� Form Capability
	10.3.7.5� Form Field with Select Options
	10.3.7.6� Current Menu State
	10.3.7.7� Current Form State
	10.3.7.8� Multiple Commands in One Message
	10.3.7.9� Parameter Separator

	10.3.8� Writing Async Applications

	10.4� XMS Message Center
	10.4.1� Configuration
	10.4.1.1� Server-Side
	10.4.1.2� Client (Handset) Side

	10.5� Device Channel Selection
	10.5.1� Automatic Device Selection
	10.5.2� Presence Integration

	10.6� Transport Component
	10.6.1� Pre-built Drivers
	10.6.1.1� Nokia MMS Driver
	10.6.1.2� CMG MMS Driver
	10.6.1.3� MM7 Driver
	10.6.1.4� CIMD Driver
	10.6.1.5� VVSP Driver
	10.6.1.6� WCTP Driver
	10.6.1.7� Data Communication Driver
	10.6.1.8� WAP Push PAP Driver
	10.6.1.9� Instant Messaging (IM) Driver
	10.6.1.10� XMS Driver
	10.6.1.11� Email Driver
	10.6.1.12� Voice Driver
	10.6.1.13� UCP Driver
	10.6.1.14� SMPP Driver
	10.6.1.15� Fax Driver (RightFax)

	10.6.2� How to Develop New Drivers
	10.6.2.1� Class oracle.panama.messaging.transport.TransportLocator
	10.6.2.2� Interface oracle.panama.messaging.transport.Driver
	10.6.2.3� Interface oracle.panama.messaging.transport.DriverController
	10.6.2.4� Interface oracle.panama.messaging.transport.GSMSmartMSGEncoder
	10.6.2.5� Interface oracle.panama.messaging.transport.MessageListener and StatusListener
	10.6.2.6� Class oracle.panama.messaging.common.Message
	10.6.2.7� Class oracle.panama.messaging.common.ContentTypes
	10.6.2.8� Properties of the driver
	10.6.2.9� Custom properties for a driver
	10.6.2.10� Example: A Sample Driver

	10.6.3� Upgrading OracleAS Wireless 9.0.2x Drivers
	10.6.3.1� New and Changed Methods

	10.6.4� Extend the Transport Server, Hooks
	10.6.4.1� Named Hooks
	10.6.4.2� General Hooks

	10.7� Supporting Premium SMS and Reverse Charge SMS
	10.7.1� Premium SMS and Reverse Charge New Features
	10.7.2� Enabling Premium SMS Services

	11 Notification Engine
	11.1� Overview and Architecture
	11.1.1� Architecture
	11.1.2� Key Features
	11.1.3� Backward Compatibility

	11.2� Creating a Notification
	11.2.1� Defining a Master Notification Application
	11.2.1.1� Predicates
	11.2.1.2� Subscriber Filtering Hook
	11.2.1.3� Triggering Conditions
	11.2.1.4� Message Template
	11.2.1.5� API Sample: Creating Master Notification Application

	11.2.2� Mapping Master Notification Application to a Master Application
	11.2.2.1� Sample Code: Notification Mapping
	11.2.2.2� Sample Code: Template-based Notification Mapping

	11.2.3� Subscription
	11.2.3.1� Sample Code: Creating a Subscription

	11.2.4� Notification Administration
	11.2.5� Notification Migration
	11.2.5.1� Sample Usage

	11.3� Data Feeders
	11.3.1� Building a Data Feeder
	11.3.2� Creating a Passthrough DataFeeder
	11.3.3� Sample Applications
	11.3.3.1� Sample Application: Downloading Stock Quotes in XML
	11.3.3.2� Sample Application: Downloading Stock Quotes in CSV Format
	11.3.3.3� Adding Input Parameter Values to the Feed
	11.3.3.4� Retrieving Downloaded Values
	11.3.3.5� Starting the Data Feeder Process
	11.3.3.6� Feed Parameter External Names
	11.3.3.7� Feed Scheduling
	11.3.3.8� XML Data Feeds

	11.4� Integrated Notification Solutions
	11.4.1� Notification Engine Integration
	11.4.2� Workflow Integration
	11.4.2.1� Notification Application
	11.4.2.2� Worklist Application

	11.4.3� Microsoft Exchange Notification Integration

	11.5� Migrating the Notification System
	11.5.1� Notification Migration Scenario
	11.5.2� Structural Changes
	11.5.2.1� Event Generation
	11.5.2.2� Message Content Generation
	11.5.2.3� Authorization

	11.5.3� Migration Limitations
	11.5.4� Running the Migration Script
	11.5.4.1� Sample code for subscription handling in both versions
	11.5.4.2� Sample Code for Adding a 9.0.2.x Subscription

	12 J2ME Development and Provisioning
	12.1� J2ME Overview
	12.1.1� Overview of Features
	12.1.1.1� Minimum Memory Requirement in the MIDlet Suite
	12.1.1.2� Simple Registration and Invocation of Web Services
	12.1.1.3� Access to Both SOAP Web Services and Enterprise Applications
	12.1.1.4� Result Caching and Call Queuing
	12.1.1.5� Request and Response Packetization and Compression
	12.1.1.6� Session Support
	12.1.1.7� Deployment to OracleAS Wireless

	12.1.2� Getting Started with the Wireless Development Kit
	12.1.2.1� Setup
	12.1.2.2� J2ME Directory Structure in the WDK

	12.1.3� Walkthrough: Developing a J2ME MIDlet
	12.1.3.1� Step 1: Register a Web Service with the J2ME Proxy Server
	12.1.3.2� Step 2: Generate J2ME Client Stub Class for the Registered Web Service
	12.1.3.3� Step 3: Calling the Methods in the J2ME Stub Class from the MIDlet
	12.1.3.4� Using TestStubMidlet to Access Simple Services

	12.1.4� Advanced Features
	12.1.4.1� Response Caching
	12.1.4.2� HTTP Authentication
	12.1.4.3� Session Support
	12.1.4.4� Request and Response Packetization
	12.1.4.5� Client Library API
	12.1.4.6� Deploying MIDLets to OracleAS Wireless
	12.1.4.7� Deploying through scripts
	12.1.4.8� Migration from One OracleAS Wireless Installation to Another

	12.2� Digital Rights Management Support
	12.2.1� OracleAS Wireless Built-in DRM Polices
	12.2.2� Custom-built Digital Rights Policy and Content Enhancement
	12.2.2.1� Use Case Study

	12.2.3� Deployment of Custom-built Digital Rights Policies

	12.3� The J2ME Provisioning Server
	12.3.1� The Application Model
	12.3.2� Hooks
	12.3.3� Upload J2ME Application
	12.3.4� Publishing the J2ME Application
	12.3.5� Downloading a J2ME Application

	13 Web Scraping
	13.1� Web Scraping Overview
	13.2� Web Clipping
	13.2.1� Introduction
	13.2.2� Getting Started
	13.2.3� Creating a Web Clipping Application

	13.3� Creating a Wireless Application
	13.3.1� Creating a Default Application
	13.3.2� Building a Custom Application

	13.4� Migrating from Existing Transcoding Technologies
	13.5� Customizing the Web Clipping Service
	13.6� Administrative Tasks for OracleAS Wireless Administrators
	13.6.1� Configuring Security
	13.6.2� Rendering Events to Be Logged and Generating Useful Reports

	13.7� WML Translator
	13.7.1� Deploying and Configuring WML Translator
	13.7.2� Using the WML Translator

	14 Using Location Services
	14.1� Introduction to Location Services
	14.1.1� Getting Started
	14.1.2� Using the System Manager Interface for Location-Related Information
	14.1.3� Location Services Architecture
	14.1.4� Location Service Categories
	14.1.5� Service Providers
	14.1.5.1� Provider Selection
	14.1.5.2� Logging of Provider Selection Information
	14.1.5.3� Logging of Provider Performance Information

	14.1.6� Geocoding Services
	14.1.6.1� Geocoding API
	14.1.6.2� Geocoder Interface

	14.1.7� Location Marks
	14.1.8� LOCATIONMARK Table
	14.1.9� Mapping Services
	14.1.10� Routing Services
	14.1.10.1� Routing Settings
	14.1.10.2� Routing Results
	14.1.10.3� Support for Multiple Languages
	14.1.10.4� Routing API

	14.1.11� Business Directory (Yellow Pages) Services
	14.1.11.1� Different Approaches Among Yellow Pages Providers
	14.1.11.2� Business Directory Category Configuration
	14.1.11.3� Business Directories (Yellow Pages) API

	14.1.12� Traffic Services
	14.1.12.1� Traffic Report Caching
	14.1.12.2� Traffic XML Requests and Responses
	14.1.12.3� Traffic Java API
	14.1.12.4� Traffic Service Configuration

	14.2� Developing Location-Based Applications
	14.2.1� Creating JavaServer Pages (JSP) Files
	14.2.1.1� JSP Examples for Location Services
	14.2.1.2� addMembers
	14.2.1.3� address
	14.2.1.4� businesses
	14.2.1.5� category
	14.2.1.6� createPrivateCommunity
	14.2.1.7� createSharedCommunity
	14.2.1.8� createSystemCommunity
	14.2.1.9� defaultLocationMark
	14.2.1.10� deleteCommunity
	14.2.1.11� drivingDistance
	14.2.1.12� drivingTime
	14.2.1.13� geocode
	14.2.1.14� geometry
	14.2.1.15� getCommunity
	14.2.1.16� iterateBusinesses
	14.2.1.17� iterateBusinessesInCity
	14.2.1.18� iterateBusinessesInCorridor
	14.2.1.19� iterateBusinessesInPostalCode
	14.2.1.20� iterateBusinessesInRadius
	14.2.1.21� iterateBusinessesInState
	14.2.1.22� iterateBusinessesNearestTo
	14.2.1.23� iterateByDistance
	14.2.1.24� iterateByDrivingDistance
	14.2.1.25� iterateByName
	14.2.1.26� iterateByRegionName
	14.2.1.27� iterateCategoriesMatchingKeyword
	14.2.1.28� iterateChildCategories
	14.2.1.29� iterateGeocodes
	14.2.1.30� iterateLocationMarks
	14.2.1.31� iterateManeuvers
	14.2.1.32� iterateReverseGeocodes
	14.2.1.33� listAllMembers
	14.2.1.34� listBusinessesInCity
	14.2.1.35� listBusinessesInCorridor
	14.2.1.36� listBusinessesInPostalCode
	14.2.1.37� listBusinessesInRadius
	14.2.1.38� listBusinessesInState
	14.2.1.39� listBusinessesNearestTo
	14.2.1.40� listByDistance
	14.2.1.41� listByDrivingDistance
	14.2.1.42� listByName
	14.2.1.43� listByRegionName
	14.2.1.44� listCategoriesMatchingKeyword
	14.2.1.45� listChildCategories
	14.2.1.46� listCreatedCommunities
	14.2.1.47� listCreatedPrivateCommunities
	14.2.1.48� listCreatedSharedCommunities
	14.2.1.49� listCreatedSystemCommunities
	14.2.1.50� listGeocodes
	14.2.1.51� listLocationMarks
	14.2.1.52� listManeuvers
	14.2.1.53� listReverseGeocodes
	14.2.1.54� map
	14.2.1.55� mobilePos
	14.2.1.56� point
	14.2.1.57� removeAllMembers
	14.2.1.58� removeMembers
	14.2.1.59� route
	14.2.1.60� setCommunityName

	14.2.2� Using the Location Java API
	14.2.2.1� Geocoding
	14.2.2.2� Location Marks
	14.2.2.3� Routing
	14.2.2.4� Mapping
	14.2.2.5� Business Directory (YP)
	14.2.2.6� Traffic

	14.2.3� Using Web Services
	14.2.3.1� WSDL Files
	14.2.3.2� XML Files
	14.2.3.3� XSD Files

	14.3� Enabling Mobile Positioning
	14.3.1� Manual Positioning
	14.3.1.1� Enabling Manual Positioning

	14.3.2� Automatic Positioning
	14.3.2.1� Providing Location Using a GPS Device
	14.3.2.2� Location Cache
	14.3.2.3� Positioning Quality of Service
	14.3.2.4� Specifying Positioning Providers
	14.3.2.5� Granting and Revoking Positioning Rights
	14.3.2.6� Mobile Communities
	14.3.2.7� Privacy Directives and Enabling/Disabling Automatic Positioning
	14.3.2.8� Mobile Positioning API
	14.3.2.9� Privacy API

	14.4� Location Event Server
	14.4.1� Location Event Server Concepts
	14.4.2� Location Event Agent Example
	14.4.3� Location-Based Condition Object (LBCondition)
	14.4.4� Location Event Agent Object (LBEventAgent)
	14.4.5� Location Event Handler Object (LBEventHandler)
	14.4.6� Location Event Server Configuration Options

	14.5� Using the Region Modeling Tool
	14.5.1� Service and Folder Visibility Using Region Modeling
	14.5.2� Folders and Hierarchies of Regions
	14.5.3� Associating a Region with an Application
	14.5.4� Loading and Updating Region Data
	14.5.4.1� Tables for Region Data
	14.5.4.2� Inserting Data into Region Tables

	14.5.5� Region Modeling API

	14.6� Integrating an External Content Provider
	14.6.1� Accessing External URLs from Inside a Firewall
	14.6.2� Functions to Implement
	14.6.2.1� Geocoding Services: Available Functions
	14.6.2.2� Mapping Services: Available Functions
	14.6.2.3� Routing Services: Available Functions
	14.6.2.4� Traffic Services: Available Functions
	14.6.2.5� Business Directory (YP) Services: Available Functions

	14.7� Integrating a Mobile Positioning Provider
	14.7.1� Implementing a Mobile Positioning Proxy
	14.7.2� Handling Exceptions and Errors with Mobile Positioning

	15 Enabling User Customization
	15.1� Overview of User Preferences
	15.2� Multiple Customization Profiles
	15.2.1� Concepts
	15.2.2� Sample Applications

	15.3� Presets
	15.3.1� Presets Concept and Architecture
	15.3.2� Sample Applications
	15.3.2.1� Example 1: Adding Attributes to the User Schema
	15.3.2.2� Example 2: Adding a Unique Presets Relation for a User
	15.3.2.3� Example 3: Adding a Unique Presets Relation for Users’ Profiles
	15.3.2.4� Example 4: Selecting the Presets Relation Under the Current Profile
	15.3.2.5� Example 5: Creating Presets without Given Name

	15.3.3� Regular Expressions Syntax for the Presets Attribute Formats

	15.4� Location Marks
	15.5� User Device Management
	15.6� User and Group Management
	15.7� Service Management

	16 Billing
	16.1� Overview
	16.1.1� Concepts

	16.2� Using the Billing Integration Framework
	16.2.1� Billable Actions and Billing System Interaction
	16.2.1.1� Default Billable Actions
	16.2.1.2� Custom Billable Actions

	16.3� BillingLoader Utility
	16.4� Billing Collector and Service Detail Record
	16.4.1� Default Billing Collector Implementation
	16.4.2� Service Detail Record ID Versus Billing Reference ID
	16.4.3� Extend Default Billing Collector
	16.4.4� Maintaining Transaction Context on Multi-part Requests
	16.4.4.1� Creating and Assigning Billing Transactions
	16.4.4.2� Logging Rules for Service Detail Records
	16.4.4.3� Maintaining Transaction State in a Single-Thread Multi-part Request

	16.5� Billing Driver
	16.6� Billing Integration Scenario
	16.6.1� Handling Prebilling
	16.6.2� Handling Postbilling

	A XHTML Modules Supported
	A.1� Structure Module
	A.2� Text Module
	A.3� HyperText Module
	A.3.1� Example Using the Rel Attribute

	A.4� List Module
	A.4.1� Example of a Nested Navigation List

	A.5� Presentation Module
	A.6� Object Module
	A.7� Embedding Images
	A.8� Embedding Audio
	A.9� Embedding Voice and DTMF Grammar
	A.10� Using <param>
	A.11� Basic Tables Module
	A.12� Meta Information Module
	A.13� Style Sheet Module
	A.14� Style Attribute Module
	A.15� Link Module
	A.16� OracleAS Wireless MXML Media Attribute Module
	A.17� Speech Recognition Grammar Module

	B Media Types, Features and Capabilities
	B.1� OracleAS Wireless CSS Media Query and MXML Media Attribute Syntax
	B.2� OracleAS Wireless Supported Media Types
	B.3� OracleAS Wireless Supported Media Features
	B.3.1� Media Features Specified in CSS3 Media Queries Specification
	B.3.2� Extended Media Feature Set

	B.4� OracleAS Wireless-defined Capabilities
	B.4.1� Device/Software UA Capabilities
	B.4.2� Network Capabilities and Characteristics

	B.5� Sample Media Queries

	C XForms Specification Support
	C.1� XForms Document Structure
	C.2� XForms Processing Model
	C.3� DataTypes
	C.4� Model Item Properties And Schema Constraints
	C.5� XPath Expression in XForms
	C.6� XForms UI Controls
	C.7� XForms Actions

	D OracleAS Wireless CSS Support
	D.1� OracleAS Wireless CSS Support

	E Using CSS Layout Properties
	E.1� OracleAS Wireless CSS Layout Extensions—New Properties and Values
	E.2� Grid Layout Model
	E.2.1� Grid Cell Layout and Cell Spans
	E.2.2� Grid Cell and Grid Cell Label
	E.2.3� In-lining Content within a Grid Cell
	E.2.4� Label Side of a Grid Cell Label

	E.3� Default Styles for XForms Group

	F Oracle XML Grammar Subset
	F.1� Oracle XML Grammar Subset

	G JSP Tag Library
	Index

