
Oracle® Application Server 10g
Globalization Guide

10g (9.0.4)

Part No. B10380-01

September 2003

Oracle Application Server 10g Globalization Guide, 10g (9.0.4)

Part No. B10380-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

Primary Author: Theresa M. Robertson

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle Discoverer,
SQL*Plus, Pro*C, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other
names may be trademarks of their respective owners.

Contents

Send Us Your Comments .. ix

Preface.. xi

Audience ... xi
Documentation Accessibility ... xi
Organization .. xii
Related Documentation ... xiii
Conventions.. xiv

1 Overview of Globalization Support in Oracle Application Server

Globalizing Internet Applications .. 1-1
Globalization Concepts ... 1-1

Locale.. 1-2
Character Set ... 1-2
Unicode .. 1-2

Designing a Global Internet Application .. 1-2
Monolingual Internet Application Architecture .. 1-3
Multilingual Internet Application Architecture... 1-4

 Overview of Developing Global Internet Applications .. 1-6
iii

Part I Development

2 Developing Locale Awareness

Developing Locale Awareness in Global Internet Applications ... 2-1
Locale Awareness in J2EE and Internet Applications.. 2-4

Locale Awareness in Java Applications .. 2-5
Locale Awareness in Perl and C/C++ Applications ... 2-6
Locale Awareness in SQL and PL/SQL Applications... 2-7

Locale Awareness in Oracle Application Server Component Applications............................ 2-9
Locale Awareness in Oracle Application Server Wireless Services 2-9
Locale Awareness in Oracle Application Server Forms Services .. 2-9
Locale Awareness in Oracle Application Server Reports Services...................................... 2-12
Locale Awareness in Oracle Application Server Discoverer.. 2-14

3 Implementing HTML Features

Implementing HTML Features for Global Applications .. 3-1
Encoding HTML Pages .. 3-1

Specifying the Page Encoding for HTML Pages .. 3-3
Specifying the Encoding in the HTTP Header .. 3-4
Specifying the Encoding in the HTML Page Header ... 3-4

Specifying the Page Encoding in Java Servlets and Java Server Pages................................. 3-4
Specifying the Page Encoding in PL/SQL Server Pages... 3-5
Specifying the Page Encoding in Perl .. 3-7
Specifying the Page Encoding in Oracle Application Server Mobile Services
Applications... 3-8
Specifying the Page Encoding in Oracle Application Server Web Cache Enabled
Applications ... 3-9
Specifying the Page Encoding in Oracle Application Server Reports Services
Applications... 3-10

Specifying the Page Encoding in JSP Reports for the Web.. 3-10
Specifying the Page Encoding in HTML for Oracle Application Server Reports
Services.. 3-10
Specifying the Page Encoding in XML for Oracle Application Server Reports
Services.. 3-11
iv

Handling HTML Form Input.. 3-11
Handling HTML Form Input in Java... 3-12
Handling HTML Form Input in PL/SQL ... 3-13
Handling HTML Form Input in Perl ... 3-14
Handling Form Input in Oracle Application Server Mobile Services Applications......... 3-15

Decoding HTTP Headers .. 3-16
Decoding HTTP Headers from Oracle Application Server Single Sign-On 3-16
Decoding String-type Mobile Context Information Headers in Oracle Application
Server Wireless Services .. 3-17

Encoding URLs.. 3-17
Encoding URLs in Java .. 3-18
Encoding URLs in PL/SQL... 3-19
Encoding URLs in Perl... 3-19

Formatting HTML Pages to Accommodate Text in Different Languages.............................. 3-20
Organizing the Content of HTML Pages for Translation ... 3-21

Translation Guidelines for HTML Page Content... 3-21
Organizing Static Files for Translation.. 3-22
Organizing Translatable Static Strings for Java Servlets and Java Server Pages 3-23
Organizing Translatable Static Strings in C/C++ and Perl .. 3-26
Organizing Translatable Static Strings in Message Tables ... 3-27
Organizing Translatable Dynamic Content in Application Schema................................... 3-28

4 Using a Centralized Database

Using a Centralized Database and Accessing the Database Server.. 4-1
Using JDBC to Access the Database.. 4-2
Using PL/SQL to Access the Database.. 4-3
Using Perl to Access the Database... 4-4
Using C/C++ to Access the Database .. 4-5

Using the OCI API to Access the Database... 4-6
Using the Unicode API Provided with OCI to Access the Database 4-7
Using Unicode Bind and Define in Pro*C/C++ to Access the Database 4-8
v

Part II Deployment

5 Configuring Oracle Application Server for Global Deployment

Installing Oracle Application Server for Global Deployment .. 5-1
Configuring Oracle HTTP Server and OC4J for Global Deployment 5-3

About Manually Editing HTTP Server and OC4J Configuration Files................................. 5-3
Configuring the NLS_LANG Parameter ... 5-4

Preconfigured NLS_LANG Values ... 5-6
Configuring Transfer Mode for mod_plsql Runtime .. 5-9
Configuring the Runtime Default Locale .. 5-10

mod_jserv Runtime for Java... 5-10
OC4J Java Runtime.. 5-11
mod_plsql Runtime for PL/SQL and PL/SQL Server Pages.. 5-11
mod_perl Runtime for Perl Scripts ... 5-11
C/C++ Runtime... 5-11

Configuring Oracle Application Server Portal for Global Deployment 5-12
Configuring Oracle Application Server Wireless for Global Deployment 5-13

Configuring Encoding for Outgoing Email Messages .. 5-13
Configuring Oracle Application Server Single Sign-On for Global Deployment 5-13
Configuring Oracle Application Server Forms Services for Global Deployment 5-14
Configuring Oracle Application Server Reports Services for Global Deployment 5-15
Configuring Oracle Application Server Discoverer for Global Deployment....................... 5-16
Configuring Oracle Business Components for Java for Global Deployment 5-16
Configuring a Centralized Unicode-enabled Database to Support Global Deployment .. 5-17

6 A Multilingual Demo for Oracle Application Server

Description of the World-of-Books Demo ... 6-1
Architecture and Design of the World-of-Books Demo .. 6-2

World-of-Books Architecture.. 6-2
World-of-Books Design.. 6-4
World-of-Books Schema Design ... 6-5

Installing the World-of-Books Demo .. 6-7
vi

Building, Deploying, and Running the World-of-Books Demo ... 6-7
How to Build the World-of-Books Demo.. 6-9
How to Deploy the World-of-Books Demo .. 6-10
How to Run the World-of-Books Demo.. 6-11

Locale Awareness of the World-of-Books Demo .. 6-12
How World-of-Books Determines the User’s Locale .. 6-13
How World-of-Books Uses Locale Information in Localizer Methods 6-14
How World-of-Books Sorts Query Results ... 6-15
How World-of-Books Searches the Contents of Books ... 6-16

Encoding HTML Pages for the World-of-Books Demo ... 6-17
Handling HTML Form Input for the World-of-Books Demo .. 6-17
Encoding URLs in the World-of-Books Demo .. 6-18
Formatting HTML Pages in the World-of-Books Demo ... 6-19
Accessing the Database in the World-of-Books Demo .. 6-20
Organizing the Content of HTML Pages in the World-of-Books Demo................................ 6-20

Static Files for World-of-Books Online Help .. 6-21
Using Resource Bundles for the Content of World-of-Books HTML Pages 6-21

A Oracle Application Server Translated Languages

Glossary

Index
vii

viii

Send Us Your Comments

Oracle Application Server 10g Globalization Guide, 10g (9.0.4)

Part No. B10380-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

� Electronic mail: appserverdocs_us@oracle.com
� FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

Oracle Application Server 10g Globalization Guide describes how to design, develop,
and deploy Internet applications for a global audience.

This preface contains the following topics:

� Audience

� Documentation Accessibility

� Organization

� Related Documentation

� Conventions

Audience
Oracle Application Server 10g Globalization Guide is intended for Internet application
developers and Webmasters who design, develop, and deploy Internet applications
for a global audience.

To use this document, you need to have some programming experience and be
familiar with Oracle databases.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
xi

evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

Chapter 1, "Overview of Globalization Support in Oracle Application Server"
This chapter defines concepts that are essential to understanding the rest of the
book. It also describes models for monolingual Internet application design and
multilingual Internet application design.

Part I, "Development"

Chapter 2, "Developing Locale Awareness"
This chapter describes how to make Internet applications locale-aware and how to
present locale-appropriate data to users.

Chapter 3, "Implementing HTML Features"
This chapter describes how to encode HTML pages, handle HTML form input, and
encode URLs so that clients in different locales can exchange information with the
application server.
xii

Chapter 4, "Using a Centralized Database"
This chapter describes how the application server accesses the database with
minimal character set conversion and data loss.

Part II, "Deployment"

Chapter 5, "Configuring Oracle Application Server for Global Deployment"
This chapter describes how to configure Oracle Application Server (Oracle
Application Server) for global application deployment.

Chapter 6, "A Multilingual Demo for Oracle Application Server"
This chapter describes World-of-Books, the multilingual demo that is provided with
Oracle Application Server.

Appendix A, "Oracle Application Server Translated Languages"
This appendix contains a list of languages that Oracle Application Server supports.

Glossary
The glossary defines terms that are related to globalization support for Oracle
Application Server.

Related Documentation
For more information, see these Oracle resources:

� The Oracle Application Server documentation set

� Oracle9i Globalization Support Guide in the Oracle Database Documentation
Library

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at
xiii

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xiv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xv

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example
xvi

Overview of Globalization Support in Oracle Application S
1

Overview of Globalization Support in Oracle

Application Server

This chapter contains the following topics:

� Globalizing Internet Applications

� Globalization Concepts

� Designing a Global Internet Application

� Overview of Developing Global Internet Applications

Globalizing Internet Applications
It is increasingly important for businesses to make their Internet applications
available to users around the world with appropriate locale characteristics, such as
language and currency formats. The Oracle Application Server (Oracle Application
Server) is fully internationalized to provide a global platform for developing and
deploying Internet applications.

Building an Internet application or Web site for Oracle Application Server requires
good globalization practices in development and deployment. This book describes
recommended globalization practices.

Chapter 6 contains information about a multilingual demo that is included with
Oracle Application Server.

Globalization Concepts
You need to be familiar with the following concepts to understand the rest of this
book:
erver 1-1

Designing a Global Internet Application
� Locale

� Character Set

� Unicode

Locale
Locale refers to a language, a character set, and the region (territory) in which the
language is spoken. Information about the region includes formats for dates and
currency. For example, the primary languages of the United States and Great Britain
are both forms of English, but the two territories have different currencies and
different conventions for date formats. Therefore, the United States and Great
Britain are different locales.

Character Set
A character set defines the binary values that are associated with the characters that
make up a language. For example, the ISO-8859-1 character set can be used to
encode most Western European languages.

Unicode
Unicode is a universal character set that defines binary values for characters in
almost all languages. Unicode characters can be encoded as follows:

� In 1 to 4 bytes in the UTF-8 character set

� In 2 or 4 bytes in the UTF-16 character set

� In 4 bytes in the UTF-32 character set

Designing a Global Internet Application
There are several approaches to designing global Internet applications. This book
discusses two approaches: monolingual and multilingual.

You can design a monolingual Internet application so that it supports several
instances. Each instance supports a different locale. Users with different locale
preferences must invoke the instance that serves their locale.

You can design a multilingual Internet application to support several locales with
one instance. All users, regardless of locale, can invoke the same instance.

Both designs include one centralized database that uses a Unicode character set.
1-2 Oracle Application Server 10g Globalization Guide

Designing a Global Internet Application
Monolingual Internet Application Architecture
Figure 1–1 shows the design of a monolingual Internet application.

Figure 1–1 Monolingual Internet Application Architecture

The clients (in English, Japanese, Hebrew, and Thai locales) communicate with
separate instances of Oracle Application Server through HTTP connections. One
instance of the application runs in the same locale as one of the Oracle Application
Server instances. For example, the English application runs in the same locale as
Oracle Application Server Instance 1. The English and Japanese applications and
their Oracle Application Server instances are running on Server A, and the Hebrew
and Thai applications and their instances are running on Server B. Each Oracle
Application Server instance communicates with the Unicode database. The
instances communicate with the database through Oracle Net.
Overview of Globalization Support in Oracle Application Server 1-3

Designing a Global Internet Application
The client character set for the English locale, for example, is ISO-8859-1. The Oracle
Application Server instance that is associated with the English locale, Instance 1,
uses the Oracle character set WE8MSWIN1252 to communicate with the database.
The database character set is a Unicode character set.

Table 1–1 shows the advantages and disadvantages of deploying monolingual
Internet applications. As the number of locales increases, the disadvantages
outweigh the advantages of the monolingual design. This type of application design
is suitable for customers who support only one or two locales.

Multilingual Internet Application Architecture
Figure 1–2 shows the design of a multilingual Internet application.

See Also: Chapter 4, "Using a Centralized Database"

Table 1–1 Advantages and Disadvantages of Monolingual Internet Application Design

Advantages Disadvantages

You can separate the support of different
locales into different servers. This allows
locales to be supported in different time
zones. Work load can be distributed
accordingly.

There are more Oracle Application Server
servers to administer.

Writing the code is simpler than for a
multilingual Internet application.

The Internet application requires more testing
resources to certify it on each Oracle
Application Server instance.

You must configure Oracle Application Server
for each instance of the application.

You must maintain a server instance for each
locale regardless of the amount of work that is
demanded of it. Load-balancing is possible
only among a group of Oracle Application
Server instances that support the same locale.

Supporting multilingual content is difficult.
1-4 Oracle Application Server 10g Globalization Guide

Designing a Global Internet Application
Figure 1–2 Multilingual Internet Application Architecture

The clients (in English, Japanese, Hebrew, and Thai locales) communicate with one
Oracle Application Server instance through HTTP connections. Each client can use a
different character set because each application running on Oracle Application
Server is configured to support several locales simultaneously, regardless of the
locale of the Oracle Application Server instance. The Oracle Application Server
instance and the database communicate through Oracle Net. Both the application
running on the Oracle Application Server instance and the database use Unicode
character sets.

See Also: Chapter 4, "Using a Centralized Database"

English
Locale

Japanese
Locale

Hebrew
Locale

Thai
Locale

Multilingual
Application with
Dynamic Locale

Switching

OracleAS
Instance

Shift-JIS

ISO-8859-1

UTF-8

UTF-8

Oracle
Unicode

Unicode

HTTP

Oracle Net

Browsers Customer
Database

Server
Overview of Globalization Support in Oracle Application Server 1-5

Overview of Developing Global Internet Applications
In order to support several locales in a single application instance, an application
should:

� Process character data in Unicode so that it can support data in any language

� Dynamically detect the user’s locale and adapt to the locale by constructing
HTML pages in the correct language and cultural conventions

� Dynamically determine the character set to use for HTML pages and convert
content from Unicode to the HTML page encoding and vice versa

Table 1–2 shows the advantages and disadvantages of deploying multilingual
Internet applications.

 Overview of Developing Global Internet Applications
Building an Internet application for Oracle Application Server that supports
different locales requires good development practices. The application itself must be
aware of the user’s locale and be able to present locale-appropriate content to the
user. Clients must be able to communicate with the application server regardless of
the client’s locale, with minimal character set conversion. The application server
must be able to access the database server with data in many languages, again with
minimal character set conversion. Character set conversion decreases performance
and increases the chance of data loss because some characters may not be available
in the target character set.

Table 1–2 Advantages and Disadvantages of Multilingual Internet Application Design

Advantages Disadvantages

You can use one Oracle Application Server
configuration, which reduces maintenance
costs.

Multilingual applications are more complex to
code than monolingual applications. They
must be able to detect locales dynamically and
use Unicode. This is costly if you only need to
support one or two languages.

Performance tuning and capacity planning
do not depend on the number of locales.

Supporting additional languages is
relatively easy. You do not need to add
more machines for the new locales.

You can test the application for several
locales in a single testing environment.

The application can support multilingual
content.
1-6 Oracle Application Server 10g Globalization Guide

Overview of Developing Global Internet Applications
Oracle Application Server supports the following programming languages and
corresponding Web development environments for developing global Internet and
J2EE applications:

� Java callable from the mod_oc4j module

Oracle Application Server Containers for J2EE (OC4J) is the Java2 Enterprise
Edition (J2EE) container that Oracle Application Server provides. The mod_oc4j
module routes HTTP requests to Java Servlets and JSPs running on the OC4J
Servlet runtime.

� Java callable from the mod_jserv module

The mod_jserv module routes HTTP requests to the corresponding Java
Servlets and Java Server Pages (JSPs) running on the Jserv Servlet runtime.

� Perl callable from the mod_perl module

The standard mod_perl module provides fast execution of Perl scripts. The
mod_perl module routes HTTP requests to the Perl scripts running on the Perl
interpreter from within the mod_perl module.

� PL/SQL callable from the mod_plsql module

The mod_plsql module is a gateway that routes HTTP requests from the Web
server to PL/SQL procedures or PL/SQL Server Pages (PSP) running in a
database.

� C/C++ as CGI or shareable libraries

You can write C and C++ programs as CGI applications callable from the mod_
fastcgi module or as libraries callable from any of the above Web
development environments.

See Also: Oracle9i Globalization Support Guide in the Oracle
Database Documentation Library for more information about
character set conversion

See Also: Oracle HTTP Server Administrator’s Guide for more
information about the modules

Note: In this book, encoding and page encoding refer to the
character set used in a particular programming environment.
Overview of Globalization Support in Oracle Application Server 1-7

Overview of Developing Global Internet Applications
Oracle Application Server also supports the development of global applications
using the following Oracle Application Server components:

� Oracle Application Server Forms Services

� Oracle Application Server Reports Services

� Oracle Application Server Discoverer

� Oracle Application Server Web Cache

� Oracle Application Server Wireless

This guide discusses global application development in terms of each of these
languages and development environments. It addresses the basic tasks associated
with developing and deploying global Internet applications, including developing
locale awareness, implementing HTML features, accessing a centralized database,
and configuring Oracle Application Server.
1-8 Oracle Application Server 10g Globalization Guide

Part I

Development

Part I contains the following chapters:

� Chapter 2, "Developing Locale Awareness"

� Chapter 3, "Implementing HTML Features"

� Chapter 4, "Using a Centralized Database"

Developing Locale Aware
2

Developing Locale Awareness

This chapter contains the following topics:

� Developing Locale Awareness in Global Internet Applications

� Locale Awareness in J2EE and Internet Applications

� Locale Awareness in Oracle Application Server Component Applications

Developing Locale Awareness in Global Internet Applications
Global Internet applications need to be aware of the user’s locale.

Locale-sensitive functions, such as date formatting, are built into programming
environments such as C/C++, Java, and PL/SQL. Applications can use
locale-sensitive functions to format the HTML pages according to the cultural
conventions of the user’s locale.

Different programming environments represent locales in different ways. For
example, the French (Canada) locale is represented as follows:

Environment Representation Locale Explanation

Various ISO standard fr-CA fr is the language
code defined in the
ISO 639 standard. CA
is the country code
defined in the ISO
3166 standard.

Java Java locale object fr_CA Java uses the ISO
language and
country code.
ness 2-1

Developing Locale Awareness in Global Internet Applications
Table 2–1 shows how different programming environments represent some
commonly used locales.

C/C++ POSIX locale name fr_CA on Sun Solaris POSIX locale names
may include a
character set that
overrides the default
character set. For
example, the
de.ISO8859-15 locale
is used to support the
Euro symbol.

PL/SQL and SQL NLS_LANGUAGE and
NLS_TERRITORY
parameters

NLS_LANGUAGE=
"CANADIAN
FRENCH"

NLS_TERRITORY=
"CANADA"

See Also: Chapter ,
"Configuring the
NLS_LANG
Parameter"

Table 2–1 Locale Representations in Different Programming Environments

Locale ISO Java
POSIX
Solaris

NLS_LANGUAGE,
NLS_TERRITORY

Arabic (U.A.E.) ar ar ar ARABIC, UNITED ARAB
EMIRATES

Germany (German) de-DE de_DE de GERMANY, GERMAN

English (U.S.A) en en_US en_US AMERICAN, AMERICA

English (United Kingdom) en-GB en_GB en_UK ENGLISH, UNITED
KINGDOM

Greek el el el GREEK, GREECE

Spanish (Spain) es-ES es_ES es SPANISH, SPAIN

French (France) fr fr_FR fr FRENCH, FRANCE

French (Canada) fr-CA fr_CA fr_CA CANADIAN FRENCH,
CANADA

Hebrew he he he HEBREW, ISRAEL

Italian (Italy) it it it ITALIAN, ITALY

Japanese ja-JP ja_JP ja_JP JAPANESE, JAPAN

Environment Representation Locale Explanation
2-2 Oracle Application Server 10g Globalization Guide

Developing Locale Awareness in Global Internet Applications
If you write applications for more than one programming environment, then locales
must be synchronized between environments. For example, Java applications that
call PL/SQL procedures should map the Java locales to the corresponding NLS_
LANGUAGE and NLS_TERRITORY values and change the parameter values to match
the user’s locale before calling the PL/SQL procedures.

There are two thing that affect an application’s overall locale awareness: the
development environment in which you create the application, and the target
architecture for which the application is built. This chapter addresses these topics
with respect to both monolingual and multilingual application architectures.

Determining a User’s Locale in Monolingual Internet Applications
A monolingual application, by definition, serves users with the same locale. A
user’s locale is fixed in a monolingual application and is the same as the default
runtime locale of the programming environment.

In almost all programming environments, almost all locale-sensitive functions
implicitly use the default runtime locale to perform their tasks. Monolingual
applications can rely on this behavior when calling these functions.

Determining a User’s Locale in Multilingual Internet Applications
In a multilingual application, the user’s locale may vary. Multilingual applications
should do the following:

� Dynamically detect the user’s locale

Korean ko-KR ko_KR ko_KR KOREAN, KOREA

Portuguese (Portugal) pt pt pt PORTUGUESE, PORTUGAL

Portuguese (Brazil) pt-BR pt_BR pt_BR BRAZILIAN PORTUGUESE,
BRAZIL

Turkish tr tr tr TURKISH, TURKEY

Thai th th th THAI, THAILAND

Chinese (Taiwan) zh-TW zh_TW zh_TW TRADITIONAL CHINESE,
TAIWAN

Chinese (P.R.C) zh-CN zh_CN zh_CN SIMPLIFIED CHINESE,
CHINA

Table 2–1 Locale Representations in Different Programming Environments(Cont.)

Locale ISO Java
POSIX
Solaris

NLS_LANGUAGE,
NLS_TERRITORY
Developing Locale Awareness 2-3

Locale Awareness in J2EE and Internet Applications
� Construct HTML content in the language of the locale

� Use the cultural conventions implied by the locale

Multilingual applications can determine a user’s locale dynamically in the
following ways:

� Based on the user profile information from an LDAP directory server such as
Oracle Internet Directory (OID)

The application can store the user profile in the OID server provided by Oracle
Application Server. The LDAP schema for the user profile should include a
preferred locale attribute. This method does not work if a user has not logged
on before.

� Based on the default ISO locale of the user’s browser

Every HTTP request sends the default ISO locale of the browser with the
Accept-Language HTTP header. If the Accept-Language header is NULL, then
the locale should default to English. The drawback of this approach is that the
Accept-Language header may not be a reliable source of information about the
user’s locale.

� Based on user input

Users can select a locale from a list or a group of icons such as flags.

You can use these methods of determining the user’s locale together or separately.
After the application determines the locale, the locale should be:

� Mapped to the locale representations that correspond to the programming
environments on which the application runs

� Used in locale-sensitive functions

Locale Awareness in J2EE and Internet Applications
This section discusses locale awareness in terms of the particular programming
language and development environment in which an application is written.

See Also: Table 2–1 for common locale representations in
different programming environments
2-4 Oracle Application Server 10g Globalization Guide

Locale Awareness in J2EE and Internet Applications
Locale Awareness in Java Applications
A Java locale object represents the corresponding user’s locale in Java. The Java
encoding used for the locale is required to properly convert Java strings to byte data
and vice versa.

Consider the Java encoding for the locale when you make the Java code aware of a
user’s locale. There are two ways to make a Java method sensitive to the Java locale
and the Java encoding:

� Using the default Java locale and default Java encoding for the method

� Explicitly specifying the Java locale and Java encoding for the method

Locale Awareness in Monolingual Java Applications
Monolingual applications should run implicitly with the default Java locale and
default Java encoding so that the applications can be configured easily for a
different locale. For example, to create a date formatter using the default Java locale,
use the following method call:

DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);
dateString = df.format(date); /* Format a date */

Locale Awareness in Multilingual Java Applications
You should develop multilingual applications such that they are independent of
fixed default locales or encodings. Explicitly specify the Java locale and Java
encoding that correspond to the current user’s locale. For example, specify the Java
locale object that corresponds to the user’s locale, identified by user_locale, in
the getDateTimeInstance() method:

DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL, user_
locale);
dateString = df.format(date); /* Format a date */

Note that the only difference between the example code for the monolingual
application and the multilingual application is the inclusion of user_locale.

Similarly, do not use encoding-sensitive methods that assume the default Java
encoding. For example, you should not use the String.getBytes() method in a
multilingual application because it is encoding-sensitive. Instead, use the method
that accepts encoding as an argument, which is String.getBytes(String
encoding). Be sure to specify the encoding used for the user’s locale.

Do not use the Locale.setDefault() method to change the default locale for
these reasons:
Developing Locale Awareness 2-5

Locale Awareness in J2EE and Internet Applications
� It changes the Java default locale for all threads and makes your applications
unsafe to threads

� It does not affect the Java default encoding

Locale Awareness in Perl and C/C++ Applications
Perl and C/C++ use the POSIX locale model for internationalized applications.

Locale Awareness in Monolingual Perl and C/C++ Applications
Monolingual applications should be sensitive to the default POSIX locale, which is
configured by changing the value of the LC_ALL environment variable or changing
the operating system locale from the Control Panel in Windows.

To run on the default POSIX locale, the applications should call the setlocale()
function to set the default locale to the one defined by LC_ALL and use the POSIX
locale-sensitive functions such as strftime() thereafter. Note that the
setlocale() function affects the current process and all the threads associated
with it, so any multithread application should assume the same POSIX locale in
each thread. The following example gets the current time in the format specific to
the default locale in Perl:

use locale;
use POSIX qw (locale_h);
...
$old_locale = setlocale(LC_ALL, "");
$dateString = POSIX::strftime("%c", localtime());
...

Locale Awareness in Multilingual Perl and C/C++ Applications
Multilingual applications should be sensitive to dynamically determined locales.
Call the setlocale() function to initialize the locale before calling locale-sensitive
functions. For example, the following C code gets the local time in the format of the
user locale identified by user_locale:

#include <locale.h>
#include <time.h>
 ...
 const char *user_locale = "fr";
 time_t ltime;
 struct tm *thetime;

See Also: Table 2–1 for a list of commonly used POSIX locales
2-6 Oracle Application Server 10g Globalization Guide

Locale Awareness in J2EE and Internet Applications
 unsigned char dateString[100];
 ...
 setlocale(LC_ALL, user_locale);
 time (<ime);
 thetime = gmtime(<ime);
 strftime((char *)dateString, 100, "%c", (const struct tm *)thetime));
 ...

You must map user locales to POSIX locale names for applications to initialize the
correct locale dynamically in C/C++ and Perl. The POSIX locales depend on the
operating system.

Locale Awareness in SQL and PL/SQL Applications
PL/SQL procedures run in the context of a database session whose locale is
initialized by the NLS_LANG parameter in the database access descriptor (DAD).
The NLS_LANG parameter specifies top-level NLS parameters, NLS_LANGUAGE and
NLS_TERRITORY, for the database session. Other NLS parameters, such as NLS_
SORT and NLS_DATE_LANGUAGE, inherit their values from these top-level
parameters. These NLS parameters define the locale of a database session.

There are two ways to make SQL and PL/SQL functions locale sensitive:

� Basing the locale on the NLS parameters of the current database session

� Explicitly specifying the NLS parameters

Locale Awareness in Monolingual SQL and PL/SQL Applications
Generally speaking, the initial values of the NLS parameters inherited from NLS_
LANG are sufficient for monolingual PL/SQL procedures. For example, the
following PL/SQL code calls the TO_CHAR() function to get the formatted date,
which uses the current values of the NLS_DATE_FORMAT and NLS_DATE_
LANGUAGE parameters:

mydate date;

See Also:

� Chapter , "Configuring the NLS_LANG Parameter"

� Oracle9i Database Reference in the Oracle Database Documentation
Library

� Oracle9i Globalization Support Guide in the Oracle Database
Documentation Library

for more information about NLS parameters
Developing Locale Awareness 2-7

Locale Awareness in J2EE and Internet Applications
dateString varchar2(100);
...
select sysdate into mydate from dual;
dateString = TO_CHAR(mydate);

If the initial values of the NLS parameters are not appropriate, then use an ALTER
SESSION statement to overwrite them for the current database session. You can use
the ALTER SESSION statement with the DBMS_SQL package. For example:

cur integer;
status integer;
...
cur := dbms_sql.open_cursor;
dbms_sql.parse(cur, 'alter session set nls_date_format = "Day Month, YYYY"',

dbms_sql.native);
status := dbms_sql.execute(cur);

Locale Awareness in Multilingual SQL and PL/SQL Applications
Multilingual applications should use ALTER SESSION statements to change the
locale of the database session to the user’s locale before calling any locale-sensitive
SQL or PL/SQL functions. You can use the ALTER SESSION statement with the
DBMS_SQL package. For example:

cur integer;
status integer;
...
cur := dbms_sql.open_cursor;
dbms_sql.parse(cur, 'alter session set nls_language = "NLS_LANGUAGE_of_user_

locale"', dbms_sql.native);
dbms_sql.parse(cur, 'alter session set nls_territory = "NLS_TERRITORY_of_

user_locale"’, dbms_sql.native);
status := dbms_sql.execute(cur);

Alternatively, applications can specify the NLS parameters in every SQL function
that accepts an NLS parameter as an argument. For example, the following PL/SQL
code gets a date string based on the language of the user’s locale:

mydate date;
dateString varchar2(100);
...
select sysdate into mydate from dual;
dateString TO_CHAR(mydate, 'DD-MON-YYYY HH24:MI:SSxFF',
 'NLS_DATE_LANGUAGE=language');
...

language specifies the Oracle language name for the user’s locale.
2-8 Oracle Application Server 10g Globalization Guide

Locale Awareness in Oracle Application Server Component Applications
Locale Awareness in Oracle Application Server Component
Applications

This section discusses locale awareness in terms of application development for
particular Oracle Application Server components.

Locale Awareness in Oracle Application Server Wireless Services
Oracle Application Server Wireless sends all of the Mobile Context information as
HTTP headers when invoking a request. The user locale is sent using the
X-Oracle-User.Locale header. The locale value contains the ISO language, and
an optional ISO country code, separated by a hyphen. For example, "en-US",
"zh-CN", and "ja" are all valid locale values for this header. Mobile service
applications should use the user locale specified in this header to determine the
language and cultural conventions used in the user interface.

For example, JSP applications may retrieve the user locale as follows:

<%
String userLocale = request.getHeader("X-Oracle-User.Locale");

%>

Locale Awareness in Oracle Application Server Forms Services
The Oracle Application Server Forms Services architecture includes:

� A Java Client (browser)

� Oracle Application Server Forms Services (middle tier)

� The Oracle9i customer database (back end)

The Java Client is dynamically downloaded from Oracle Application Server when a
user runs a Forms Services session. The Java Client provides the user interface for
the Forms Services Runtime Engine. It also handles user interaction and visual
feedback for actions such as navigating between items or checking a checkbox.

Oracle Application Server Forms Services consists of the Forms Services Runtime
Engine and the Forms Listener Servlet. The Forms Services Runtime Engine is the
process that maintains a connection to the database on behalf of the Java Client. The
Forms Listener Servlet acts as a broker, taking connection requests from the Java
Client processes and initiating a Forms Services runtime process on their behalf.

The NLS_LANG parameter for Forms Services initializes the locale of Oracle
Application Server Forms Services. The NLS_LANGUAGE parameter derives its value
Developing Locale Awareness 2-9

Locale Awareness in Oracle Application Server Component Applications
from NLS_LANG and determines the language of Forms messages. The NLS_
TERRITORY parameter also derives its value from NLS_LANG and determines
conventions such as date and currency formats.

By default, the NLS_LANG parameter for Oracle Application Server Forms Services
initializes the Java Client locale. The locale of the Java Client determines such things
as button labels on default messages and parts of strings in menus.

Locale Awareness in Monolingual Oracle Application Server Forms Services
Applications
A user’s locale is fixed in a monolingual Oracle Application Server Forms Services
application and is usually the same as the default Forms Services locale. When you
develop a monolingual Forms Services application, you must develop it to conform
to the intended user’s locale. The database character set should be a superset of the
Forms Services character set.

For example, a monolingual Forms Services application for a Japanese locale should
include Japanese text, Japanese button labels, and Japanese menus. The application
should also connect to a database whose character set is JA16SJIS, JA16EUC, or
UTF8.

The NLS_LANG parameter in the default.env file controls the Forms Services
locale. Additionally, in order to pass non-Latin-1 parameters to Forms Services, you
can set the defaultcharset parameter in formsweb.cfg.

Locale Awareness in Multilingual Oracle Application Server Forms Services
Applications
In a multilingual environment, the application can dynamically determine the
locale of Oracle Application Server Forms Services in two ways:

� Based on the user’s profile

� Based on the user’s input

When you develop a Forms Services application you must choose one of these
methods.

See Also: Oracle Application Server Forms Services Deployment
Guide

See Also: Oracle Application Server Forms Services Deployment
Guide
2-10 Oracle Application Server 10g Globalization Guide

Locale Awareness in Oracle Application Server Component Applications
You can configure multilingual Forms Services applications by using multiple
environment configuration files (EnvFile). For example, you can create a form
called form.fmx and translate it into Japanese and into Arabic using Oracle9i
Translator. Then save them as d:\form\ja\form.fmx (Japanese) and
d:\form\ar\form.fmx (Arabic). Finally, create two environment configurations
files, ja.env and ar.env, and specify the following in the appropriate
environment file:

Also, you can configure Forms Services to read the preferred language settings of
the browser. For example, if you have a human resources application translated into
24 languages, then add an application entry in the formsweb.cfg file like the
following:

[HR]
default.env
[HR.DE]
DE.env
[HR.FR]
FR.env
.
.
.

When the Forms Servlet detects a language preference in the browser, it checks the
formsweb.cfg file to see if there is a translated version of the application.

For example, suppose the request is
http://myserver.mydomain/servlet/f90servlet?config=HR and the
preferred languages are set to German (DE), Italian (IT), and French (FR), in this
order, then this is the order of priority. The Forms Servlet tries to read from the
application definitions in the following order:

HR.DE
HR.IT
HR.FR
HR

Form Environment File NLS_LANG FORMS90_PATH

d:\form\ja\form.fmx ja.env JAPANESE_JAPAN.JA16SJIS d:\form\ja

d:\form\ar\form.fmx ar.env ARABIC_EGYPT.ARMSWIN1256 d:\form\ar
Developing Locale Awareness 2-11

Locale Awareness in Oracle Application Server Component Applications
If the Forms Servlet cannot find any of those configurations, then it uses the HR
configuration (default.env).

This means that you can configure Forms to support multiple languages with one
URL. Each application definition can have its own environment file that contains
the NLS language parameter definition. You can also specify separate working
directory information and path information for each application.

Additionally, Forms can display more than one language in a form if the Java client
machine has the Albany WT J font installed. You can obtain this font from the
utilities CD in your CD pack or from http://metalink.oracle.com.

The Albany WT J font should be copied to %WINDOWS%\Fonts if the client is using
JInitiator 1.3.1, or %JAVA_HOME%\lib\fonts if the client is using Java Plug-in
1.4.1.

Locale Awareness in Oracle Application Server Reports Services
The Oracle Application Server Reports Services architecture includes:

� A client tier (browser)

� A Reports Server (middle tier)

� An Oracle9i customer database (back end)

Oracle Application Server Reports Services can run multiple reports simultaneously
upon users’ requests. The Reports Server enters requests for reports into a job queue
and dispatches them to a dynamic, configurable number of pre-spawned runtime
engines. The runtime engine connects to the database, retrieves data, and formats
output for the client.

The NLS_LANG setting for the Reports Server initializes the locale of the runtime
engine. The NLS_LANGUAGE parameter derives its value from the NLS_LANG
parameter and determines the language of the Reports Server messages. The NLS_
TERRITORY parameter derives its value from the NLS_LANG parameter and
determines the date and currency formats. For example, if NLS_LANG is set to
JAPANESE_JAPAN.JA16SJIS, then Reports Server messages are in Japanese and
reports use the Japanese date format and currency symbol.

The dynamic environment switching feature enables one instance of the Reports
Server to serve reports with any arbitrary environment setting, including NLS_

See Also: Chapter 5, "Configuring Oracle Application Server for
Global Deployment"
2-12 Oracle Application Server 10g Globalization Guide

Locale Awareness in Oracle Application Server Component Applications
LANG. Using the environment element in the Reports Server configuration file, you
can create a language environment that can be referenced in two ways:

� On a per-runtime engine basis through the engine element of the Reports Server
configuration file

� On a per-job basis using the ENVID command line argument

Report output is generated in the Reports Services character set. The client needs to
be aware of the character set in which Reports Services generated the HTML or
XML.

Locale Awareness in Monolingual Oracle Application Server Reports Services
Applications
A user’s locale is fixed in a monolingual Oracle Application Server Reports Services
application and is usually the same as the locale of the Reports Server. The database
character set should be a superset of the Reports Server character set.

Locale Awareness in a Multilingual Oracle Application Server Reports
Services Application
In a multilingual report, the application can dynamically determine the locale of the
Reports Server in two ways:

� Based on the user’s profile

� Based on the user’s input

When you develop a report you must choose one of these methods.

You can use the dynamic environment switching feature to support multiple
languages.

See Also: Oracle Application Server Reports Services Publishing
Reports to the Web for more information about dynamic
environment switching

See Also: "Specifying the Page Encoding in Oracle Application
Server Reports Services Applications"
Developing Locale Awareness 2-13

Locale Awareness in Oracle Application Server Component Applications
Locale Awareness in Oracle Application Server Discoverer
Oracle Application Server Discoverer can simultaneously support users with
different locales. Discoverer always uses UTF-8 encoding for communication
between the client and middle-tier services. Users may explicitly control the locale
used for the user interface, or they may allow Oracle Application Server Discoverer
to automatically determine a default. The order of precedence is:

1. Language and locale settings included in the URL for Oracle Application Server
Discoverer

2. Language and locale settings specified in the Discoverer Connection (this is part
of the Oracle Application Server Discoverer integration with Oracle Application
Server Single Sign-On).

3. Language and locale setting specified in the user’s browser

4. Language and locale of Oracle Application Server

For example, suppose a user’s browser’s language and locale are set to German -
Germany and the user goes to the URL to start Oracle Application Server
Discoverer. The HTML page returned to the user is displayed in German. If the user
clicks on the Discoverer Connection, which has the language and locale specified as
English - US, the Discoverer user interface appears in English. This is because
the Discoverer Connection settings take precedence over the browser’s settings.

See Also:

� Chapter , "Specifying the Page Encoding in HTML for Oracle
Application Server Reports Services" for more information about the
encoding of HTML, XML, and JSP report output

� Chapter , "Configuring Oracle Application Server Reports Services for
Global Deployment" for more information about specifying NLS_
LANG parameters from the command line

� Oracle Application Server Reports Services Publishing Reports to the Web
for more information about dynamic environment switching
2-14 Oracle Application Server 10g Globalization Guide

Implementing HTML Fea
3

Implementing HTML Features

This chapter contains the following topics:

� Implementing HTML Features for Global Applications

� Encoding HTML Pages

� Handling HTML Form Input

� Decoding HTTP Headers

� Encoding URLs

� Formatting HTML Pages to Accommodate Text in Different Languages

� Organizing the Content of HTML Pages for Translation

Implementing HTML Features for Global Applications
There are a variety of HTML features that you can use to enhance your global
Internet applications. The following sections discuss some of the most important
HTML features to keep in mind when designing your global applications.

Encoding HTML Pages
The encoding of an HTML page is important information for a browser and an
Internet application. You can think of the page encoding as the character set used
for the locale that an Internet application is serving. The browser needs to know
about the page encoding so that it can use the correct fonts and character set
mapping tables to display pages. Internet applications need to know about the
HTML page encoding so they can process input data from an HTML form. To
correctly specify the page encoding for HTML pages, Internet applications must:
tures 3-1

Encoding HTML Pages
� Choose a page encoding

� Encode HTML content in the desired encoding

� Correctly specify the HTML pages with the encoding name

Choosing an HTML Page Encoding for Monolingual Applications
The HTML page encoding is based on the user’s locale. If the application is
monolingual, it supports only one locale per instance. Therefore, you should encode
HTML pages in the native encoding for that locale. The encoding should be
equivalent to the Oracle character set specified by the NLS_LANG parameter in the
Oracle HTTP Server configuration file.

Table 3–1 lists the Oracle character set names for the native encodings of the most
commonly used locales, along with the corresponding Internet Assigned Numbers
Authority (IANA) encoding names and Java encoding names. Use these character
sets for monolingual applications.

See Also: Chapter , "Setting NLS_LANG for a Monolingual
Application Architecture"

Table 3–1 Native Encodings for Commonly Used Locales

Language
Oracle Character Set
Name

IANA Encoding
Name

Java Encoding
Name

Western European WE8MSWIN1252 ISO-8859-1 ISO8859_1

Central European EE8MSWIN1250 ISO-8859-2 ISO8859_2

Japanese JA16SJIS Shift_JIS MS932

Traditional Chinese ZHT16MSWIN950 Big5 MS950

Simplified Chinese ZHS16GBK GB2312 GBK

Korean KO16MSWIN949 EUC-KR MS949

Arabic AR8MSWIN1256 ISO-8859-6 ISO8859_6

Hebrew IW8MSWIN1255 ISO-8859-8 ISO8859_8

Cyrillic CL8MSWIN1251 ISO-8859-5 ISO8859_5

Baltic BLT8MSWIN1257 ISO-8859-4 ISO8859_4

Greek EL8MSWIN1253 ISO-8859-7 ISO8859_7

Thai TH8TISASCII TIS-620 TIS620
3-2 Oracle Application Server 10g Globalization Guide

Encoding HTML Pages
Choosing an HTML Page Encoding for Multilingual Applications
Multilingual applications need to determine the encoding used for the current
user’s locale at runtime and map the locale to the encoding as shown in Table 3–1.

Instead of using different native encodings for different locales, you can use UTF-8
for all page encodings. Using the UTF-8 encoding not only simplifies the coding for
multilingual applications but also supports multilingual content. In fact, if a
multilingual Internet application is written in Perl, the best choice for the HTML
page encoding is UTF-8 because these programming environments do not provide
an intuitive and efficient way to convert HTML content from UTF-8 to the native
encodings of various locales.

There are limitations to using UTF-8 with the Netscape 4.x browser:

� HTTP multipart requests cannot contain non-ASCII file names.

� Localized versions of Windows NT 4.0 corrupt Asian characters in tool tips.

� Users must manually specify the font to be used for UTF-8 pages in the user
preferences.

Netscape 6 resolves the second and third limitations.

Specifying the Page Encoding for HTML Pages
The best practice for monolingual and multilingual applications is to specify the
encoding of HTML pages returned to the client browser. The encoding of HTML
pages can tell the browser to:

� Switch to the specified encoding

� Return user input in the specified encoding

There are two ways to specify the encoding of an HTML page:

� Specifying the Encoding in the HTTP Header

� Specifying the Encoding in the HTML Page Header

Turkish TR8MSWIN1254 ISO-8859-9 ISO8859_9

Universal UTF8 UTF-8 UTF8

Table 3–1 Native Encodings for Commonly Used Locales (Cont.)

Language
Oracle Character Set
Name

IANA Encoding
Name

Java Encoding
Name
Implementing HTML Features 3-3

Encoding HTML Pages
If you use both methods, then specifying the encoding in the HTTP header takes
precedence.

Specifying the Encoding in the HTTP Header
Include the Content-Type HTTP header in the HTTP specification. It specifies the
content type and character set. The most commonly used browsers, such as
Netscape 4.0 and Internet Explorer 4.0 or later, correctly interpret this header. The
Content-Type HTTP header has the following form:

Content-Type: text/plain; charset=iso-8859-4

The charset parameter specifies the encoding for the HTML page. The possible
values for the charset parameter are the IANA names for the character encodings
that the browser supports. Table 3–1 shows commonly used IANA names.

Specifying the Encoding in the HTML Page Header
Use this method primarily for static HTML pages. Specify the character encoding in
the HTML header as follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. The possible
values for the charset parameter are the IANA names for the character encodings
that the browser supports. Table 3–1 shows commonly used IANA names.

Specifying the Page Encoding in Java Servlets and Java Server Pages
For both monolingual and multilingual applications, you can specify the encoding
of an HTML page in the Content-Type HTTP header in a Java Server Page (JSP)
using the contentType page directive. For example:

<%@ page contentType="text/html; charset=utf-8" %>

This is the MIME type and character encoding that the JSP file uses for the response
it sends to the client. You can use any MIME type or IANA character set name that
is valid for the JSP container. The default MIME type is text/html, and the default
character set is ISO-8859-1. In the example, the character set is set to UTF-8. The
character set of the contentType page directive directs the JSP engine to encode
the dynamic HTML page and set the HTTP Content-Type header with the specified
character set.
3-4 Oracle Application Server 10g Globalization Guide

Encoding HTML Pages
For Java Servlets, you can call the setContentType() method of the Servlet API
to specify a page encoding in the HTTP header. The following doGet() function
shows how you should call this method:

public void doGet(HttpServletRequest request, HttpServletResponse
response)throws ServletException, IOException
{

 // generate the MIME type and character set header
 response.setContentType("text/html; charset=utf-8");
 ...
 // generate the HTML page
 Printwriter out = response.getWriter();
 out.println("<HTML>");
 ...
 out.println("</HTML>");
}

You should call the setContentType() method before the getWriter() method
because the getWriter() method initializes an output stream writer that uses the
character set that the setContentType() method call specifies. Any HTML
content written to the writer and eventually to a browser is encoded in the encoding
that the setContentType() call specifies.

Specifying the Page Encoding in PL/SQL Server Pages
You can specify a page encoding for PL/SQL front-end applications and PL/SQL
Server Pages (PSP) in two ways:

� Specify the page encoding in the NLS_LANG parameter in the corresponding
DAD. Use this method for monolingual applications so that you can change the
page encoding without changing the application code to support a different
locale.

� Specify the page encoding explicitly from within the PL/SQL procedures and
PSPs. A page encoding that is specified explicitly overwrites the page encoding
inherited from the NLS_LANG character set. Use this method for multilingual
applications so that they can use different page encodings for different locales at
runtime.

See Also: Chapter , "Configuring Transfer Mode for mod_plsql
Runtime" for more information about configuring DADs
Implementing HTML Features 3-5

Encoding HTML Pages
The specified page encoding tells the mod_plsql module and the Web Toolkit to
tag the corresponding charset parameter in the Content-Type header of an HTML
page and to convert the page content to the corresponding character set.

Specifying the Page Encoding in PL/SQL for Monolingual Environments
In order for monolingual applications to take the page encoding from the NLS_
LANG parameter, the Content-Type HTTP header should not specify a page
encoding. For PL/SQL procedures, the call to mime_header(), if any, should be
similar to the following:

owa_util.mime_header(’text/html’,false);

For PSPs, the content type directive should be similar to the following:

<%@ page contentType="text/html"%>

Without the page encoding specified in the mime_header() function call or the
content type directive, the Web Toolkit API uses the NLS_LANG character set as the
page encoding by default, and converts HTML content to the NLS_LANG character
set. Also, the Web Toolkit API automatically adds the default page encoding to the
charset parameter of the Content-Type header.

Specifying the Page Encoding in PL/SQL for Multilingual Environments
You can specify a page encoding in a PSP the same way that you specify it in a JSP
page. The following directive tells the PSP compiler to generate code to set the page
encoding in the HTTP Content-Type header for this page:

<%@ page contentType="text/html; charset=utf-8" %>

To specify the encoding in the Content-Type HTTP header for PL/SQL procedures,
use the Web Toolkit API in the PL/SQL procedures. The Web Toolkit API consists of
the OWA_UTL package, which allows you to specify the Content-Type header as
follows:

owa_util.mime_header('text/html', false, 'utf-8')

You should call the mime_header() function in the context of the HTTP header. It
generates the following Content-Type header in the HTTP response:

Content-Type: text/html; charset=utf-8

See Also: PL/SQL User’s Guide and Reference
3-6 Oracle Application Server 10g Globalization Guide

Encoding HTML Pages
After you specify a page encoding, the Web Toolkit API converts HTML content to
the specified page encoding.

Specifying the Page Encoding in Perl
For Perl scripts running in the mod_perl environment, specify the encoding for an
HTML page in the HTTP Content-Type header as follows:

$page_encoding = 'utf-8';
$r->content_type("text/html; charset=$page_encoding");
$r->send_http_header;
return OK if $r->header_only;

Specifying the Page Encoding in Perl for Monolingual Applications
For monolingual applications, the encoding of an HTML page should be equivalent
to:

� The character set used for the POSIX locale on which a Perl script runs

� The Oracle character set specified by the NLS_LANG parameter if the Perl script
accesses the database

Specifying the Page Encoding in Perl for Multilingual Applications
For multilingual applications, Perl scripts should run in an environment where:

� Both the NLS_LANG character set and the character set used for the POSIX locale
are equivalent to UTF-8

� The UTF8 Perl pragma is used

This pragma tells the Perl interpreter to encode identifiers and strings in the
UTF-8 encoding.

This environment allows the scripts to process data in any language in UTF-8. The
page encoding of the dynamic HTML pages generated from the scripts, however,
could be different from UTF-8. If so, then use the UNICODE::MAPUTF8 Perl module
to convert data from UTF-8 to the page encoding.

See Also: Oracle HTTP Server Administrator’s Guide

See Also: Oracle HTTP Server Administrator’s Guide for more
information about the UTF-8 pragma
Implementing HTML Features 3-7

Encoding HTML Pages
The following example illustrates how to use the UNICODE::MAPUTF8 Perl module
to generate HTML pages in the Shift_JIS encoding:

use Unicode::MapUTF8 qw(from_utf8)
This shows how the UTF8 Perl pragma is specified
but is NOT required by the from_utf8 function.
use utf8;
...
$page_encoding = 'Shift_JIS';
$r->content_type("text/html; charset=$page_encoding");
$r->send_http_header;
return OK if $r->header_only;
...
#html_lines contains HTML content in UTF-8
print (from_utf8({ -string=>$html_lines, -charset=>$page_encoding}));
...

The from_utf8() function converts dynamic HTML content from UTF-8 to the
character set specified in the charset argument.

Specifying the Page Encoding in Oracle Application Server Mobile Services
Applications

The page encoding for a Mobile Services application is specified in the application
in the same way as other Java or JSP Internet applications. The page encoding
specifies the encoding of the Mobile XML generated by the application, and it
should be consistently specified in the Mobile XML prolog and the HTTP
Content-Type header. The HelloGlobe.jsp application illustrates how the page
encoding for the Mobile XML prolog should be specified.

Example 3–1 HelloGlobe.jsp

<?xml version="1.0" encoding="UTF-8"?> (1)
<%@ page contentType="text/vnd.oracle.mobilexml; charset=UTF-8"%> (2)
<SimpleResult>

<SimpleContainer>
<SimpleForm title="Hello Globe"

target="HelloGlobeReply.jsp" method="POST">
<SimpleFormItem name="UserName" title="Your Name:" />

</SimpleForm>

See Also: http://www.cpan.org to download the
UNICODE::MAPUTF8 Perl module
3-8 Oracle Application Server 10g Globalization Guide

Encoding HTML Pages
</SimpleContainer>
</SimpleResult>

In this example, line (1) sets the content encoding XML prolog, and line (2) sets the
content encoding in the HTTP Content-Type header.

Oracle Application Server Wireless converts the Mobile XML into the page
encoding supported by the target device from the encoding information specified in
the XML prolog and the HTTP Content-Type header. It then renders the content in
the markup language supported by the target device. If the encodings specified in
the XML prolog and the HTTP Content-Type header are inconsistent, the Oracle
Application Server Wireless Mobile XML conversion will fail.

Specifying the Page Encoding in Oracle Application Server Web Cache Enabled
Applications

When an edge side include (ESI) fragment is in a different page encoding from that
of the corresponding ESI template, Oracle Application Server Web Cache converts
the fragment to the page encoding of the template. This is to avoid cases where the
content of a cached page is constructed in multiple page encodings. The character
set conversion in Oracle Application Server Web Cache takes place only when both
the template’s and fragment’s page encodings are known. Otherwise Oracle
Application Server Web Cache assumes they are in the same page encoding, and
therefore embeds the fragment into the template without converting the fragment.

Oracle Application Server Web Cache looks for the page encoding information only
in the Content-Type header of an HTTP response. It does not look for the page
encoding information within the content of the HTTP response.

To avoid losing information during the character set conversion of ESI fragments to
ESI templates, applications should use a page encoding for ESI fragments that is a
subset of the ESI template page encoding. There are two basic best practices for
developers to consider:

1. Use UTF-8 as the page encoding for ESI templates, since UTF-8 is a superset of
all other non-Unicode page encodings.

2. Use the same page encoding for ESI fragments and ESI templates. Character set
conversion will not happen in this case.
Implementing HTML Features 3-9

Encoding HTML Pages
Specifying the Page Encoding in Oracle Application Server Reports Services
Applications

The page encodings that you use for different types of Reports Services applications
depend on what type of report you are creating. This section discusses the page
encoding options for Reports Services.

Specifying the Page Encoding in JSP Reports for the Web
You can specify the page encoding in JSP or HTML with the Web Source Editor in
Reports Builder.

Specifying the Page Encoding in HTML for Oracle Application Server Reports
Services
Specify the HTML page encoding in the page header. For example, to specify a
Japanese character set, include the following tag in the page header:

<META http-equiv="Content-Type" content="text/html;charset=SHIFT_JIS">

Reports Builder puts this tag in your report via the Before Report Value and
Before Form Value properties. The default values for these properties are
similar to the following:

<html><head><meta http-equiv="Content-Type" content="text/html;charset=&Encoding"></head>

The IANA locale name that is equivalent to the NLS_LANG setting for Oracle
Application Server Reports Services is assigned to &Encoding dynamically at
runtime. Thus you do not need to modify your report or Oracle Application Server
Reports Services settings to include the proper locale.

See Also: "Specifying the Encoding in the HTML Page Header"
and "Specifying the Page Encoding in Java Servlets and Java Server
Pages" for more information.

See Also: "Specifying the Encoding in the HTML Page Header"

See Also: Reports Builder online help for more information
3-10 Oracle Application Server 10g Globalization Guide

Handling HTML Form Input
Specifying the Page Encoding in XML for Oracle Application Server Reports
Services
Generally, when using XML, you would specify the encoding for XML by including
a statement similar to the following as the Prolog at the first line in the outputted
XML file:

<?xml version="1.0" encoding="SHIFT_JIS"?>

To set this Prolog in your report, you can specify the XML Prolog Value property
of your report in or use the SRW.SET_XML_PROLOG built-in. The default value for
the XML Prolog Value property is:

<?xml version="1.0" encoding="&Encoding"?>

In this case, Reports translates the value set as the NLS_CHARACTERSET into what
is expected in the XML specification.

Handling HTML Form Input
Applications generate HTML forms to get user input. For Netscape and Internet
Explorer browsers, the encoding of the input always corresponds to the encoding of
the forms for both POST and GET requests. In other words, if the encoding of a
form is UTF-8, input text that the browser returns is encoded in UTF-8. Thus
Internet applications can control the encoding of the form input by specifying the
corresponding encoding in the HTML form that requests information.

How a browser passes input in a POST request is different from how it passes input
in a GET request:

Note: You can overwrite the mapping by adding entries to your
REPORTS_NLS_XML_CHARSET. The syntax is:

<old_name>=<new_name>[;<old_name>=<new_name>][;<old_name>=<new_
name>]...

Example:

ISO-8859-8=ISO-8859-8-1;CSEUCKR=EUC-KR;WINDOWS-949=EUC-KR;EUC-CN
=GBK;WINDOWS-936=GBK

See Also: Reports Builder online help for more information
Implementing HTML Features 3-11

Handling HTML Form Input
� For POST requests, the browser passes input as part of the request body. 8-bit
data is allowed.

� For GET requests, the browser passes input as part of a URL as an embedded
query string where every non-ASCII byte is encoded as %XX, where XX is the
hexadecimal representation for the binary value of the byte.

HTML standards allow named and numbered entities. These special codes allow
users to specify characters. For example, æ and æ both refer to the
character æ. Tables of these entities are available at

http://www.w3.org/TR/REC-html40/sgml/entities.html

Some browsers generate numbered or named entities for any input character that
cannot be encoded in the encoding of an HTML form. For example, the Euro
character and the character à (Unicode values 8364 and 224 respectively) cannot be
encoded in Big5 encoding and are sent as € and à when the
HTML encoding is Big5. However, the browser does not need to generate numbered
or named entities if the page encoding of the HTML form is UTF-8 because all
characters can be encoded in UTF-8. Internet applications that support page
encoding other than UTF-8 need to be able to handle numbered and named entities.

Handling HTML Form Input in Java
In most JSP and Servlet containers, including Apache JServ, the Servlet API
implementation assumes that incoming form input is in ISO-8859-1 encoding. As a
result, when theHttpServletRequest.getParameter() API is called, all
embedded %XX data in the input text is decoded, and the decoded input is
converted from ISO-8859-1 to Unicode and returned as a Java string. The Java string
returned is incorrect if the encoding of the HTML form is not ISO-8859-1. However,
you can work around this problem by converting the form input data. When a JSP
or Java Servlet receives form input in a Java string, it needs to convert it back to the
original form in bytes, and then convert the original form to a Java string based on
the correct encoding.

The following code converts a Java string to the correct encoding. The Java string
real is initialized to store the correct characters from a UTF-8 form:

String original = request.getParameter("name");
try
{
 String real = new String(original.getBytes("8859_1"),"UTF8");
}
catch (UnsupportedEncodingException e)
3-12 Oracle Application Server 10g Globalization Guide

Handling HTML Form Input
{
 String real = original;
}

In addition to Java encoding names, you can use IANA encoding names as aliases
in Java functions.

OC4J implements Servlet API 2.3, from which you can get the correct input by
setting the CharEncoding attribute of the HTTP request object before calling the
getParameter() function. Use the following code:

request.setCharacterEncoding("UTF8");
String real = request.getParameter("name");

Handling HTML Form Input in PL/SQL
The browser passes form input to PL/SQL procedures as PL/SQL procedure
arguments. When a browser issues a POST or a GET request, it first sends the form
input to the mod_plsql module in the encoding of the requesting HTML form. The
mod_plsql module then decodes all %XX escape sequences in the input to their
actual binary representations. It then passes the input to the PL/SQL procedure
serving the request.

You should construct PL/SQL arguments you use to accept form input with the
VARCHAR2 datatype. Data in VARCHAR2 are always encoded in the database
character set. For example, the following PL/SQL procedure accepts two
parameters in VARCHAR2:

procedure test(name VARCHAR2, gender VARCHAR2)
begin
...
end;

By default, the mod_plsql module assumes that the arguments of a PL/SQL
procedure are in VARCHAR2 datatype when it binds them. Using VARCHAR2 as the
argument datatype means that the module uses Oracle Character Set Conversion
facility provided in Oracle Callable Library to convert form input data properly
from the NLS_LANG character set, which is also your page encoding, to the database
character set. The corresponding DAD specifies the NLS_LANG character set. As a
result, the arguments passed as VARCHAR2 should already be encoded in the
database character set and be ready to use within the PL/SQL procedures.

See Also: Table 3–1 for mapping between commonly used IANA
and Java encoding names
Implementing HTML Features 3-13

Handling HTML Form Input
Handling HTML Form Input in PL/SQL for Monolingual Applications
For monolingual application deployment, the NLS_LANG character set specified in
the DAD is the same as the character set of the form input and the page encoding
chosen for the locale. As a result, form input passed as VARCHAR2 arguments
should be transparently converted to the database character set and ready for use.

Handling HTML Form Input in PL/SQL for Multilingual Applications
For multilingual application deployment, form input can be encoded in different
character sets depending on the page encodings you choose for the corresponding
locales. You can no longer use Oracle Character Set Conversion facility because the
character set of the form input is not always the same as the NLS_LANG character
set. Relying on this conversion corrupts the input. To resolve this problem, disable
Oracle Character Set Conversion facility by specifying the same NLS_LANG
character set in the corresponding DAD as the database character set. Once you
disable the conversion, PL/SQL procedures receive form input as VARCHAR2
arguments. You must convert the arguments from the form input encoding to the
database character set before using them. You can use the following code to convert
the argument from ISO-8859-1 character set to UTF-8:

procedure test(name VARCHAR2, gender VARCHAR2)
begin

name := CONVERT(name, ’AMERICAN_AMERICA.UTF8’,
AMERICAN_AMERICA.WE8MSWIN1252’)

gender := CONVERT(gender, ’AMERICAN_AMERICA.UTF8’,
 AMERICAN_AMERICA.WE8MSWIN1252’)

...
end;

Handling HTML Form Input in Perl
In the Oracle HTTP Server mod_perl environment, GET requests pass input to a
Perl script differently than POST requests. It is good practice to handle both types of
requests in the script. The following code gets the input value of the name
parameter from an HTML form:

my $r = shift;
my %params = $r->method eq 'POST' ? $r->content : $r->args ;
my $name = $params{'name'} ;

For multilingual Perl scripts, the page encoding of an HTML form may be different
from the UTF-8 encoding used in the Perl scripts. In this case, input data should be

See Also: Chapter , "Configuring the NLS_LANG Parameter"
3-14 Oracle Application Server 10g Globalization Guide

Handling HTML Form Input
converted from the page encoding to UTF-8 before being processed. The following
example illustrates how the Unicode::MapUTF8 Perl module converts strings
from Shift_JIS to UTF-8:

use Unicode::MapUTF8 qw(to_utf8);
This is to show how the UTF8 Perl pragma is specified,
and is NOT required by the from_utf8 function.
use utf8;
...
my $page_encoding = 'Shift_JIS';
my $r = shift;
my %params = $r->method eq 'POST' ? $r->content : $r->args ;
my $name = to_utf8({-string=>$params{'name'}, -charset=>$page_encoding});
...

The to_utf8() function converts any input string from the specified encoding to
UTF-8.

Handling Form Input in Oracle Application Server Mobile Services Applications
When a mobile service is registered to Oracle Application Server Wireless using the
Wireless Tools administration tool, the Input Encoding parameter of the service
must be specified. Oracle Application Server Wireless encodes URL parameters
using the encoding specified in the Input Encoding parameter of the service. The
mobile service application should be written so that it uses the same encoding as
the Input Encoding parameter to interpret input from the target mobile devices. The
HelloGlobeReply.jsp example illustrates how to handle the response from the
service HelloGlobe.jsp, which is described in Example 3–1.

Example 3–2 HelloGlobeReply.jsp

<%xml version="1.0" encoding="UTF-8"?>
<%@ page contentType="text/vnd.oracle.mobilexml; charset=UTF-8"%>
<%

request.setCharaecterEncoding("UTF-8"); (1)
String name = request.getParameter("UserName");

%>
<SimpleResult>

<SimpleContainer>
<SimpleText>

<SimpleTextItem>Hello <%=name%> !</SimpleTextItem>
</SimpleText>

</SimpleContainer>
</SimpleResult>
Implementing HTML Features 3-15

Decoding HTTP Headers
In this example, line (1) specifies that parameters are encoded using UTF-8.

This assumes that the Input Encoding parameter is specified as UTF-8 when the
Master Service of HelloGlobe.jsp is created. The mobile service application
should specify the same encoding for all input parameters that are received from
the target device.

Decoding HTTP Headers
In all HTTP headers specific to Oracle Application Server, any value containing
non-ASCII characters is MIME encoded according to the RFC 2047 specification.
The encoded headers must be properly decoded before being used in an
application. Applications deployed on Oracle Application Server may receive these
HTTP headers.

Decoding HTTP Headers from Oracle Application Server Single Sign-On
When applications are using Oracle Application Server Single Sign-On (SSO) to
authenticate a user, they need to decode the headers that SSO sends. The headers
whose values may contain encoded non-ASCII characters include:

� REMOTE_USER

� Osso-User-Dn

� Osso-Subscriber

� Osso-Subscriber-Dn

For Java-based Web applications deployed on OC4J, the REMOTE_USER header is
already interpreted for you in the HTTPServletRequest.getRemoteUser()
method, and the REMOTE_USER header is removed from HTTP requests. For other
types of Web applications, the REMOTE_USER header is present and should be
properly decoded along with other headers. To decode a header value, you may use
the javax.mail.internet.MimeUtility package of the Java Mail API. See the
example in "Decoding String-type Mobile Context Information Headers in Oracle
Application Server Wireless Services" for more details.

For PL/SQL applications, you need to write your own code to decode these header
values.
3-16 Oracle Application Server 10g Globalization Guide

Encoding URLs
Decoding String-type Mobile Context Information Headers in Oracle Application
Server Wireless Services

String-type mobile context information, such as Login User Name
(X-Oracle-User.name), User Display Name (X-Oracle-User.DisplayName),
and Address Line of the Location (X-Oracle.User.Location.AddressLine1)
are MIME encoded in the HTTP headers. Applications must decode them after they
are retrieved from the HTTP request. For example, a JSP application may retrieve
and decode the user’s display name as follows:

<@ page import="java.io.*" %>
<@ page import="javax.mail.internet.MimeUtility" %>
<%

String rawDisplayName = request.getHeader("X-Oracle-User.DisplayName");
String displayName = null;
try
{

displayName = MimeUtility.decodeText(rawDisplayName);
}
catch (UnsupportedEncodingException e)
{

// don’t care
displayName = rawDisplayName;

}
%>

Encoding URLs
If HTML pages contain URLs with embedded query strings, you must escape any
non-ASCII bytes in the query strings in the %XX format, where XX is the
hexadecimal representation of the binary value of the byte. For example, if an
Internet application embeds a URL that points to a UTF-8 JSP page containing the
German name "Schloß," then the URL should be encoded as follows:

http://host.domain/actionpage.jsp?name=Schlo%c3%9f

Here, c3 and 9f represent the binary value in hexadecimal of the ß character in the
UTF-8 encoding.

To encode a URL, be sure to complete the following tasks:

� Convert the URL into the encoding expected from the target object. This
encoding is usually the same as the page encoding used in your application.

� Escape non-ASCII bytes of the URL into the %XX format.
Implementing HTML Features 3-17

Encoding URLs
Most programming environments provide APIs to encode and decode URLs. The
following sections describe URL encoding in various environments:

� Encoding URLs in Java

� Encoding URLs in PL/SQL

� Encoding URLs in Perl

Encoding URLs in Java
If you construct a URL in a JSP or Java Servlet, you must escape all 8-bit bytes using
their hexadecimal values prefixed by a percent sign. The
URLEncoder.encode(String s, String enc) function provided in JDK 1.4
or above enables you to escape the URL in a given HTML page encoding. You need
to specify the proper Java encoding name that corresponds to the page encoding in
the second argument. See Table 3–1 for the Java encoding names of some commonly
used page encodings.

If you are using JDK 1.1, 1.2, or 1.3, only the URLEncoder.encode(String s)
function is available. It only encodes a URL in the Java default encoding. To make
this function work for URLs in any encoding, you must add code to escape any
non-ASCII characters in a URL into their hexadecimal representation, based on the
encoding of your choice.

The following code shows an example of how to encode a URL based on the UTF-8
encoding:

String unreserved = new String("/\\- _.!~*'()
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz 0123456789");
StringBuffer out = new StringBuffer(url.length());
for (int i = 0; i < url.length(); i++)
{

int c = (int) url.charAt(i);
if (unreserved.indexOf(c) != -1) {

if (c == ' ') c = '+';
out.append((char)c);
continue;

}
byte [] ba;
try {

ba = url.substring(i, i+1).getBytes("UTF8");
} catch (UnsupportedEncodingException e) {

ba = url.getBytes();
}
for (int j=0; j < ba.length; j++)
3-18 Oracle Application Server 10g Globalization Guide

Encoding URLs
{
out.append("%" + Long.toHexString((long)(ba[j]&0xff)).toUpperCase());

}
}
String encodedUrl = out.toString();

Encoding URLs in PL/SQL
In Oracle9i, you can call the ESCAPE() function in the UTL_URL package to encode
a URL in PL/SQL. You can call the ESCAPE() function as follows:

encodedURL varchar2(100);
url varchar2(100);
charset varchar2(40);
...
encodedURL := UTL_URL.ESCAPE(url, FALSE, charset);

The url argument is the URL that you want to encode. The charset argument
specifies the character encoding used for the encoded URL. Use a valid Oracle
character set name for the charset argument. To encode a URL in the database
character set, always specify the charset argument as NULL.

Encoding URLs in Perl
You can encode a URL in Perl by using the escape_uri() function of the
Apache::Util module as follows:

use Apache::Util qw(escape_uri);
...
$escaped_url = escape_uri($url);
...

The escape_uri() function takes the bytes from the $url input argument and
encodes them into the %XX format. If you want to encode a URL in a different
character encoding, you need to convert the URL to the target encoding before
calling the escape_uri() function. Perl provides some modules for character
conversion.

See Also: Table 3–1 for a list of commonly used Oracle character
set names

See Also: http://www.cpan.org for Perl character conversion
modules
Implementing HTML Features 3-19

Formatting HTML Pages to Accommodate Text in Different Languages
Formatting HTML Pages to Accommodate Text in Different Languages
Design the format of HTML pages according to the following guidelines:

� Allow table cells to resize themselves as the enclosed text expands, instead of
hard-coding the widths of the cells. The following is an example of hard-coding
the width of a cell:

<TD WIDTH="50">

If you must specify the widths of cells, then externalize the width values so that
translators can adjust them with the translated text.

� Do not specify fonts directly in the HTML pages because they may not contain
glyphs for all languages that the application supports. Instead, each element
should inherit from a class in a cascading style sheet (CSS) that specifies fonts
and font sizes.

� For bidirectional languages such as Arabic and Hebrew, the pages should have
a DIR attribute in the <HTML> tag to indicate that the direction of the language
displayed is from right to left. The <HTML DIR="RTL"> tag causes all
components of an HTML page to follow the direction of the HTML tag. To
make direction settings seamless to developers, set the direction in the CSS file
as follows:

HTML{ direction:rtl }

CSS level 2 introduced the direction property, which is supported in Internet
Explorer 5.0.

� Text alignment should be sensitive to the direction of the text. In HTML, LEFT
and RIGHT are absolute alignments. When the direction of the text is from left
to right, as in English, the alignment should be LEFT. When the direction of the
text is from right to left, as in Hebrew, the alignment should be RIGHT.

� It is good practice to provide Cascading Style Sheets (CSS) for different locales
or groups of locales and use them to control HTML page rendering. Using a
CSS isolates the locale-specific formatting information from HTML pages.
Applications should dynamically generate CSS references in HTML pages
corresponding to the user’s locale so that the pages can be rendered with the
corresponding locale-specific formats. Locale-specific information in the CSS
file should include:

� Font names and sizes

� Alignments (for bidirectional language support only)
3-20 Oracle Application Server 10g Globalization Guide

Organizing the Content of HTML Pages for Translation
� Direction of text (for bidirectional language support only)

Organizing the Content of HTML Pages for Translation
You should have the user interface (UI) and content presented in HTML pages
translated. Translatable sources for the content of an HTML page belong to the
following categories:

� Static files such as HTML, images, and cascading style sheets (CSS)

� Static UI strings stored as Java resource bundles used by Java Servlets and JSPs

� Static UI strings stored as POSIX message files used by C/C++ programs and
Perl scripts

� Static UI strings stored as relational data in a database used by PL/SQL
procedures and PL/SQL Server Pages

� Dynamic content such as product information stored in the database

This section contains the following topics:

� Translation Guidelines for HTML Page Content

� Organizing Static Files for Translation

� Organizing Translatable Static Strings for Java Servlets and Java Server Pages

� Organizing Translatable Static Strings in C/C++ and Perl

� Organizing Translatable Static Strings in Message Tables

� Organizing Translatable Dynamic Content in Application Schema

Translation Guidelines for HTML Page Content
When creating translatable content, developers should follow these translation
guidelines:

� Externalize to resource files all static and translatable UI strings used in
programs such as Java Servlets, Java Server Pages, Perl scripts, PL/SQL
procedures, and PL/SQL Server Pages. These resource files can then be
translated independent of program code.

� All dynamic text in an HTML page must be able to expand by at least 30%
without overlapping adjacent objects to allow for text expansion that can result
from translation. The HTML page should look acceptable after expanding
strings by 30%.
Implementing HTML Features 3-21

Organizing the Content of HTML Pages for Translation
� Avoid concatenating strings to form sentences at runtime. The concatenated
translated strings might not have the same meaning as the original strings. Use
the string formatting functions provided by different programming languages
to substitute runtime values for placeholders.

� Avoid embedding text into images and graphics because they are often not easy
to translate.

� JavaScript code must not include any translatable strings. JavaScript is hard to
translate. Instead, applications should externalize translatable strings, if any,
into resource files or message tables. Applications should construct JavaScript
code at runtime and replace the dynamic text with text corresponding to the
user’s locale.

� Because translations are often not available in the initial release of an
application, it is important to make the application work when the
corresponding translation is not available by putting a fallback mechanism in
the application. The fallback mechanism can be as simple as using English
information or as complex as using the closest language available. For example,
the fr-CA locale is French (Canadian). The fallback for this language can be fr
(French) or en (English). A simple way to find the closest possible language is
to remove the territory part of the ISO locale name. It is up to the application
how the fallback mechanism behaves.

Organizing Static Files for Translation
You should organize translatable HTML, images, and CSS files into different
directories from non-translatable static files so that you can zip files under the
locale-specific directory for translation. There are many possible ways to define the
directory structure to hold these files. For example:

/docroot/images - Non-translatable images
/docroot/html - HTML common to all languages
/docroot/css - Style sheets common to all languages
/docroot/<lang> - Locale directory such as en, fr, ja etc.
/docroot/<lang>/images - Images specific for <lang>
/docroot/<lang>/html - HTMLs specific for <lang>
/docroot/<lang>/css - Style sheets specific for <lang>

You can replace the <lang> placeholder with the ISO locale names. Based on the
above structure, you must write a utility function called getLocalizedURL() to
take a URL as a parameter and look for the available language file from this
structure. Whenever you reference an HTML, image, or CSS file in an HTML page,
the Internet application should call this function to construct the path of the
3-22 Oracle Application Server 10g Globalization Guide

Organizing the Content of HTML Pages for Translation
translated file corresponding to the current locale and fall back appropriately if the
translation does not exist. For example, if the path
/docroot/html/welcome.html is passed to the getLocalizedURL() function
and the current locale is fr_CA, then the function looks for the following files in the
order shown:

/docroot/fr_CA/html/welcome.html
/docroot/fr/html/welcome.html
/docroot/en/html/welcome.html
/docroot/html/welcome.html

The function returns the first file that exists. This function always reverts to English
when the translated version corresponding to the current locale does not exist.

For Internet applications that use UTF-8 as the page encoding, the encoding of the
static HTML files should also be UTF-8. However, translators usually encode
translated HTML files in the native encoding of the target language. To convert the
translated HTML into UTF-8, you can use the JDK native2ascii utility shipped
with Oracle Application Server.

For example, to convert a Japanese HTML file encoded in Shift_JIS into UTF-8:

1. Replace the value of the charset parameter in the Content-Type HTML header
in the <meta> tag with UTF-8.

2. Use the native2ascii utility to copy the Japanese HTML file to a new file
called japanese.unicode:

native2ascii -encoding MS932 japanese.html japanese.unicode

3. Use the native2ascii utility to convert the new file to Unicode:

native2ascii -reverse -encoding UTF8 japanese.unicode japanese.html

Organizing Translatable Static Strings for Java Servlets and Java Server Pages
You should externalize translatable strings within Java Servlets and JSPs into Java
resource bundles so that these resource bundles can be translated independent of

See Also:

� Oracle9i SQLJ Developer’s Guide and Reference in the Oracle Database
Documentation Library

� JDK documentation at http://java.sun.com

for more information about the native2ascii utility
Implementing HTML Features 3-23

Organizing the Content of HTML Pages for Translation
the Java code. After translation, the resource bundles carry the same base class
names as the English bundles, but with the Java locale name as the suffix. You
should place the bundles in the same directory as the English resource bundles for
the Java resource bundle look-up mechanism to function properly.

Some people may disagree about externalizing JSP strings to resource bundles
because it seems to defeat the purpose of using JSPs. There are two reasons for
externalizing JSPs strings:

� Translating JSPs is error-prone because they consist of Java code that is not
familiar to translators

� The translation process should be separated from the development process so
that translation can take place in parallel to development on JSPs. This
eliminates the huge effort of merging the translated JSPs with the most
up-to-date JSPs that contain bug fixes to the embedded Java code.

You can use resource bundles in your Java programs by providing your own
subclass of the ResourceBundle class. Additionally, Java provides two subclasses
of the ResourceBundle abstract class: ListResourceBundle and
PropertyResourceBundle. It is good practice to provide your implementation of
the ResourceBundle class as a subclass of ListResourceBundle. The main
reasons are:

� List resource bundles are essentially Java programs that must be compiled.
Translation errors can be caught at compile time. Property resource bundles are
text files read directly from Java. Translation errors can only be caught at
runtime.

� Property resource bundles expose all string data in your Internet application to
users. There are potential security and support issues for your application.

The following is an example of a list resource bundle:

import java.util.ListResourceBundle;
public class Resource extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents =
 {
 {"hello", "Hello World"},

See Also: JDK documentation at http://java.sun.com for
more information about Java resource bundles
3-24 Oracle Application Server 10g Globalization Guide

Organizing the Content of HTML Pages for Translation
 ...

 };
}

Translators usually translate list resource bundles in the native encoding of the
target language. Japanese list resource bundles encoded in Shift_JIS cannot be
compiled on an English system because the Java compiler expects source files that
are encoded in ISO-8859-1. In order to build translated list resource bundles in a
platform-independent manner, you need to run the JDK native2ascii utility to
escape all non-ASCII characters to Unicode escape sequences in the \uXXXX format,
where XXXX is the Unicode value in hexadecimal. For example:

native2ascii -encoding MS932 resource_ja.java resource_ja.tmp

Java provides a default fallback mechanism for resource bundles when translated
resource bundles are not available. An application only needs to make sure that a
base resource bundle without any locale suffix always exists in the same directory.
The base resource bundle should contains strings in the fallback language. As an
example, Java looks for a resource bundle in the following order when the fr_CA
Java locale is specified to the getBundle() function:

resource_fr_CA
resource_fr
resource_en_US /* where en_US is the default Java locale */
resource_en
resource (base resource bundle)

Retrieving Strings in Monolingual Applications
At runtime, monolingual applications can get strings from a resource bundle of the
default Java locale as follows:

ResourceBundle rb = ResourceBundle.getBundle("resource");
String helloStr = rb.getString("hello");

Retrieving Strings in Multilingual Applications
Because the user’s locale is not fixed in multilingual applications, they should call
the getBundle() method by explicitly specifying a Java locale object that
corresponds to the user’s locale. The Java locale object is called user_locale in
the following example:

ResourceBundle rb = ResourceBundle.getBundle("resource", user_locale);
String helloStr = rb.getString("hello");
Implementing HTML Features 3-25

Organizing the Content of HTML Pages for Translation
Organizing Translatable Static Strings in C/C++ and Perl
For C/C++ programs and Perl scripts running on UNIX platforms, externalize static
strings in C/C++ or Perl scripts to POSIX message files. For programs running on
Windows platforms, externalize static strings to message tables in a database
because Windows does not support POSIX message files.

Message files (with the .po file extension) associated with a POSIX locale are
identified by their domain names. You need to compile them into binary objects
(with the .mo file extension) and place them into the directory corresponding to the
POSIX locale. The path name for the POSIX locale is implementation-specific. For
example, the Solaris msgfmt utility compiles a Canadian French message file,
resource.po, and places it into the /usr/lib/locale/fr_CA/LC_MESSAGES
directory on Solaris.

The following is an example of a resource.po message file:

domain "resource"
msgid "hello"
msgstr "Hello World"
...

Note that the encoding used for the message files must match the encoding used for
the corresponding POSIX locale.

Instead of putting binary message files into an implementation-specific directory,
you should put them into an application-specific directory and use the
binddomain() function to associate a domain with a directory. The following
piece of Perl script uses the Locale::gettext Perl module to get a string from a
POSIX message file:

use Locale::gettext;
use POSIX;
...
setlocale(LC_ALL, "fr_CA");
textdomain("resource");
binddomain("resource", "/usr/local/share");
print gettext("hello");

See Also: "Organizing Translatable Static Strings in Message
Tables"

See Also: Operating system documentation for gettext,
msgfmt, and xgettext
3-26 Oracle Application Server 10g Globalization Guide

Organizing the Content of HTML Pages for Translation
The domain name for the resource file is resource, the ID of the string to be
retrieved is hello, the translation to be used is Canadian French (fr_ca), and the
directory for the binary.mo files is /usr/local/share/fr_CA/LC_MESSAGES.

Organizing Translatable Static Strings in Message Tables
Message tables mainly store static translatable strings used by PL/SQL procedures
and PSPs. You can also use them for some C/C++ programs and Perl scripts. The
tables should have a language column to identify the language of static strings so
that accessing applications can retrieve messages based on the user’s locale. The
table structure should be similar to the one below:

CREATE TABLE messages
(msgid NUMBER(5)
, langid VARCHAR2(10)
, message VARCHAR2(4000)
);

The primary key for this table consists of the msgid and langid columns. One
good choice for the values in these columns is the Oracle language abbreviations of
corresponding locales. Using the Oracle language abbreviation allows applications
to retrieve translated information transparently by issuing a query on the message
table.

To provide a fallback mechanism when the translation of a message is not available,
create the following views on top of the message table defined in the previous
example:

-- fallback language is English which is abbreviated as 'US'.
CREATE VIEW default_message_view AS
 SELECT msgid, message
 FROM messages
 WHERE langid = 'US';
/
-- create view for services, with fall-back mechanism
CREATE VIEW messages_view AS

See Also: http://www.cpan.org to download the
Locale:gettext Perl module

See Also: Oracle9i Globalization Support Guide in the Oracle
Database Documentation Library for a list of Oracle language
abbreviations
Implementing HTML Features 3-27

Organizing the Content of HTML Pages for Translation
SELECT d.msgid,
 CASE WHEN t.message IS NOT NULL
 THEN t.message
 ELSE d.message
 END AS message
FROM default_view d,
 translation t
WHERE t.msgid (+) = d.msgid AND
 t.langid (+) = sys_context('USERENV', 'LANG');

Messages should be retrieved from the messages_view view that provides the
logic to provide a fallback message in English by joining the default_message_
view view with the messages table. The sys_context() SQL function returns
the Oracle language abbreviation of the locale for the current database session. This
locale should be initialized to the user’s locale at the time when the session is
created.

To retrieve a message, an application should use the following query:

SELECT message FROM message_view WHERE msgid = 'hello';

The NLS_LANGUAGE parameter of a database session defines the language of the
message that the query retrieves. Note that there is no language information needed
for the query with this message table schema.

In order to minimize the load to the database, you should set up all message tables
and their associated views on an Oracle Application Server instance as a front end
to the database where PL/SQL procedures and PSPs run.

Organizing Translatable Dynamic Content in Application Schema
An application schema stores translatable dynamic information that the application
uses, such as product names and product descriptions. The following shows an
example of a table that stores all the products of an Internet store. The translatable
information for the table is the product description and the product name.

CREATE TABLE product_information
 (product_id NUMBER(6)
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
3-28 Oracle Application Server 10g Globalization Guide

Organizing the Content of HTML Pages for Translation
);

To store product names and product descriptions in different languages, create the
following table so that the primary key consists of the product_id and
language_id columns:

CREATE TABLE product_descriptions
 (product_id NUMBER(6)
 , language_id VARCHAR2(3)
 , translated_name NVARCHAR2(50)

, translated_description NVARCHAR2(2000)
);

Create a view on top of the tables to provide fallback when information is not
available in the language that the user requests. For example:

CREATE VIEW product AS
SELECT i.product_id
, d.language_id
, CASE WHEN d.language_id IS NOT NULL
 THEN d.translated_name
 ELSE i.product_name
 END AS product_name
, i.category_id
, CASE WHEN d.language_id IS NOT NULL
 THEN d.translated_description
 ELSE i.product_description
 END AS product_description
, i.warranty_period
, i.supplier_id
, i.product_status
, i.list_price
FROM product_information i
, product_descriptions d
WHERE d.product_id (+) = i.product_id
AND d.language_id (+) = sys_context('USERENV','LANG');

This view performs an outer join on the product_information and
production_description tables and selects the rows with the language_id
equal to the Oracle language abbreviation of the current database session.

To retrieve a product name and product description from the product view, an
application should use the following query:

SELECT product_name, product_description FROM product
 WHERE product_id = '1234';
Implementing HTML Features 3-29

Organizing the Content of HTML Pages for Translation
This query retrieves the translated product name and production description
corresponding to the value of the NLS_LANGUAGE session parameter. Note that you
do not need to specify any language information in the query.
3-30 Oracle Application Server 10g Globalization Guide

Using a Centralized Data
4

Using a Centralized Database

This chapter contains the following topics:

� Using a Centralized Database and Accessing the Database Server

� Using JDBC to Access the Database

� Using PL/SQL to Access the Database

� Using Perl to Access the Database

� Using C/C++ to Access the Database

Using a Centralized Database and Accessing the Database Server
A centralized Unicode database is a feature of both the monolingual approach and
the multilingual approach to developing globalized Internet applications. Using a
centralized database has the following advantages:

� It provides a complete view of your data. For example, you can query for the
number of customers worldwide or the worldwide inventory level of a product.

� It is easier to manage a centralized database than several distributed databases.

The database character set should be Unicode. You can use Unicode to store and
manipulate data in several languages. Unicode is a universal character set that
defines characters in almost all languages in the world. Oracle9i databases can store
Unicode data in one of the following encoding forms:

� UTF-8: Each character is 1 to 4 bytes long.

� UTF-16: Each character is either 2 or 4 bytes long.

� UTF-32: Each character is 4 bytes long.
base 4-1

Using JDBC to Access the Database
There are several methods by which Internet applications can access the database
server through Oracle Application Server. Any Java-based Internet applications that
use technologies such as Java Servlets, JSPs, and EJBs can use the Oracle JDBC
drivers for database connectivity.

Because Java strings are always Unicode-encoded, JDBC transparently converts text
data from the database character set to Unicode and vice versa. Java Servlets and
JSPs that interact with an Oracle database should ensure the following:

� The Java strings returned from the database are converted to the encoding of
the HTML page being constructed

� Form inputs are converted from the encoding of the HTML form to Unicode
before being used in calling the JDBC driver

For non-Java Internet applications that use programming technologies such as Perl,
PL/SQL, and C/C++, text data retrieved from or inserted into a database are
encoded in the character set specified by the NLS_LANG parameter. The character
set used for the POSIX locale should match the NLS_LANG character set so that data
from the database can be directly processed with the POSIX locale-sensitive
functions in the applications.

For multilingual applications, the NLS_LANG character set and the page encoding
should both be UTF-8 to avoid character set conversion and possible data loss.

Using JDBC to Access the Database
Use the Oracle JDBC drivers provided in Oracle Application Server for Oracle9i
database access when you use JSPs and Java Servlets. Oracle Application Server
provides two client-side JDBC drivers that you can deploy with middle-tier
applications:

� JDBC OCI driver, which requires the Oracle client library

See Also:

� Chapter , "Configuring Oracle HTTP Server and OC4J for Global
Deployment"

� Oracle9i Globalization Support Guide in the Oracle Database
Documentation Library

See Also: Chapter 5, "Configuring Oracle Application Server for
Global Deployment"
4-2 Oracle Application Server 10g Globalization Guide

Using PL/SQL to Access the Database
� JDBC Thin driver, which is a pure Java driver

Oracle JDBC drivers transparently convert character data from the database
character set to Unicode for the SQL CHAR data types and the SQL NCHAR data
types. As a result of this transparent conversion, JSPs and Java Servlets calling
Oracle JDBC drivers can bind and define database columns with Java strings and
fetch data into Java strings from the result set of a SQL execution.

You can use a Java string to bind the NAME and ADDRESS columns of a customer
table. Define the columns as VARCHAR2 and NVARCHAR2 data types, respectively.
For example:

String cname = request.getParameter("cname")
String caddr = request.getParameter("caddress");
OraclePreparedStatement pstmt = conn.prepareStatement("insert into" +
 "CUSTOMERS (NAME, ADRESS) values (?, ?) ");
pstmt.setString(1, cname);
pstmt.setFormOfUse(2, OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(2, caddr);
pstmt.execute();

To bind a Java string variable to the ADDRESS column defined as NVARCHAR2, you
should call the setFormOfUse() method before the setString() method.

The Oracle JDBC drivers set the values for the NLS_LANGUAGE and NLS_
TERRITORY session parameters to the values corresponding to the default Java
locale when the database session was initialized. For monolingual applications, the
Java default locale is configured to match the user’s locale. Hence the database
connection is always synchronized with the user’s locale.

Using PL/SQL to Access the Database
PL/SQL procedures and PSPs use SQL to access data in the local Oracle9i database.
They can also use SQL and database links to access data from a remote Oracle9i
database.

For example, you can call the following PL/SQL procedure from the mod_plsql
module. It inserts a record into a customer table with the customer name column
defined as VARCHAR2 and the customer address column defined as NVARCHAR2:

procedure addcustomer(cname varchar2 default NULL, caddress nvarchar2 default

See Also: Oracle9i JDBC Developer’s Guide and Reference in the
Oracle Database Documentation Library
Using a Centralized Database 4-3

Using Perl to Access the Database
NULL) is
begin

....
if (cname is not null) then

caddr :=TO_NCHAR(address);
insert into customers (name, address) values (cname, caddr);
commit;

end if;
end;

Note that Apache mod_plsql does not support NVARCHAR argument passing. As a
result, PL/SQL procedures have to use VARCHAR2 for arguments and convert them
to NVARCHAR explicitly before executing the INSERT statement.

The example uses static SQL to access the customer table. You can also use the
DBMS_SQL PL/SQL package to access data in the database, using dynamic SQL.

Using Perl to Access the Database
Perl scripts access Oracle9i databases using the DBI/DBD driver for Oracle. The
DBI/DBD driver is part of Oracle Application Server. It calls Oracle Callable
Interface (OCI) to access the databases. The data retrieved from or inserted into the
databases is encoded in the NLS_LANG character set. Perl scripts should do the
following:

� Initialize a POSIX locale with the locale specified in the LC_ALL environment
variable

� Use a character set equivalent to the NLS_LANG character set

This allows you to process data retrieved from the databases with POSIX string
manipulation functions.

The following code shows how to insert a row into a customer table in an Oracle9i
database through the DBI/DBD driver.

Use Apache::DBI;
...
Connect to the database
$constr = 'host=dlsun1304.us.oracle.com;sid=icachedb;port=1521' ;
$usr = 'system' ;
$pwd = 'manager' ;
$dbh = DBI->connect("dbi:Oracle:$constr", $usr, $pwd, {AutoCommit=>1}) ||

See Also: Oracle9i Supplied PL/SQL Packages Reference in the
Oracle Database Documentation Library
4-4 Oracle Application Server 10g Globalization Guide

Using C/C++ to Access the Database
 $r->print("Failed to connect to Oracle: " . DBI->errstr);

prepare the statement
$sql = 'insert into customers (name, address) values (:n, :a)';
$sth = $dbh->prepare($sql);
$sth->bind_param(':n' , $cname);
$sth->bind_param(':a', $caddress);
$sth->execute();
$sth->finish();
$dbh->disconnect();

If the target columns are of the SQL NCHAR data types, then you need to specify the
form of use flag for each bind variable. For example, if the address column is of
NVARCHAR2 datatye, you need to add the $sth->func() function call before
executing the SQL statement:

use DBD::Oracle qw(:ora_forms);
...
$sql = 'insert into customers (name, address) values (:n, :a)';
$sth = $dbh->prepare($sql);
$sth->bind_param(':n', $cname);
$sth->bind_param(':a', $caddress);
$sth->func({ ':a' => ORA_NCHAR }, 'set_form');
$sth->execute();
$sth->finish();
$dbh->disconnect();

To properly process UTF-8 data in a multilingual application, Perl scripts should do
the following:

� Use a POSIX locale associated with the UTF-8 character set

� Use the UTF-8 Perl module to indicate that all strings in the Perl scripts are in
UTF-8

Using C/C++ to Access the Database
C/C++ applications access the Oracle9i databases with OCI or Pro*C/C++. You can
call OCI directly or use the Pro*C/C++ interface to retrieve and store Unicode data
in a UTF-8 database and in SQL NCHAR data types.

Generally, data retrieved from and inserted into the database is encoded in the
NLS_LANG character set. C/C++ programs should use the same character set for
their POSIX locale as the NLS_LANG character set. Otherwise, the POSIX string
functions cannot be used on the character data retrieved from the database, and the
Using a Centralized Database 4-5

Using C/C++ to Access the Database
character data encoded in the POSIX locale may be corrupted when it is inserted
into the database.

For multilingual applications, you may want to use the Unicode API provided in
the OCI library instead of relying on the NLS_LANG character set. This alternative is
good for applications written for platforms such as Windows NT/2000, which
implement the wchar_t datatype using UTF-16 Unicode. Using the Unicode API
for those platforms bypasses some unnecessary data conversions that using the
regular OCI API requires.

This section includes the following topics:

� Using the OCI API to Access the Database

� Using the Unicode API Provided with OCI to Access the Database

� Using Unicode Bind and Define in Pro*C/C++ to Access the Database

Using the OCI API to Access the Database
This example shows how to bind and define the VARCHAR2 and NVARCHAR2
columns of a customer table in C/C++. It uses OCI and is based on the NLS_LANG
character set. Note that the text datatype is a macro for unsigned char.

text *sqlstmt= (text *)"SELECT name, address FROM customers
 WHERE id = :cusid";
text cname[100]; /* Customer Name */
text caddr[200]; /* Customer Address */
text custid[10] = "9876"; /* Customer ID */
ub2 cform = SQLCS_NCHAR; /* Form of Use for NCHAR types */
...
OCIStmtPrepare (stmthp, errhp, sqlstmt,
 (ub4)strlen ((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
/* Bind the custid buffer */
OCIBindByName(stmthp, &bnd1p, errhp, (text*)":custid",
 (sb4)strlen((char *)":custid"),
 (dvoid *) custid, sizeof(cust_id), SQLT_STR,
 (dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0,(ub4 *)0, OCI_DEFAULT);

/* Define the cname buffer for VARCHAR */

Note: OCI libraries are part of Oracle Application Server. You do
not need to install the Oracle9i database client to use them.
4-6 Oracle Application Server 10g Globalization Guide

Using C/C++ to Access the Database
OCIDefineByPos (stmthp, &dfn1p, errhp, (ub4)1, (dvoid *)cname,
 (sb4)sizeof(cname), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);

/* Define the caddr buffer for the address column in NVARCHAR2 */
OCIDefineByPos (stmthp, &dfn2p, errhp, (ub4)2, (dvoid *)caddr,
 (sb4)sizeof(caddr), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn2p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

Using the Unicode API Provided with OCI to Access the Database
You can use the Unicode API that the OCI library provides for multilingual
applications.

Turn on the Unicode API by specifying Unicode mode when you create an OCI
environment handle. Any handle inherited from the OCI environment handle is set
to Unicode mode automatically. By changing to Unicode mode, all text data
arguments to the OCI functions are assumed to be in the Unicode text (utext*)
datatype and in UTF-16 encoding. For binding and defining, the data buffers are
assumed to be utext buffers in UTF-16 encoding.

The program code for the Unicode API is similar to the code for the non-Unicode
OCI API, with the following exceptions:

� All text data types are changed to the utext datatype, which is a macro of the
unsigned short datatype

� All literal strings are changed to Unicode literal strings

� All strlen() functions are changed to wcslen() functions to calculate the
string length in number of Unicode characters instead of bytes

The following Windows program shows how to do these tasks:

� Create an OCI environment handle with Unicode mode turned on

� Bind and define the name column in VARCHAR2 and the address column in
NVARCHAR2 of the customers table

utext *sqlstmt= (text *)L"SELECT name, address FROM customers
 WHERE id = :cusid";
utext cname[100]; /* Customer Name */
utext caddr[200]; /* Customer Address */
text custid[10] = "9876"; /* Customer ID */
Using a Centralized Database 4-7

Using C/C++ to Access the Database
ub1 cform = SQLCS_NCHAR; /* Form of Use for NCHAR types */
...
/* Use Unicode OCI API by specifying UTF-16 mode */
status = OCIEnvCreate((OCIEnv **)&envhp, OCI_UTF16, (void *)0,
 (void *(*) ()) 0, (void *(*) ()) 0, (void(*) ()) 0,
 (size_t) 0, (void **)0);
...
OCIStmtPrepare (stmthp, errhp, sqlstmt,
 (ub4)wcslen ((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
/* Bind the custid buffer */
OCIBindByName(stmthp, &bnd1p, errhp, (constant text*) L":custid",
 (sb4)wcslen(L":custid"),
 (dvoid *) custid, sizeof(cust_id), SQLT_STR,
 (dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0,(ub4 *)0, OCI_DEFAULT);

/* Define the cname buffer for the name column in VARCHAR2 */
OCIDefineByPos (stmthp, &dfn1p, errhp, (ub4)1, (dvoid *)cname,
 (sb4)sizeof(cname), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);

/* Define the caddr buffer for the address column in NVARCHAR2 */
OCIDefineByPos (stmthp, &dfn2p, errhp, (ub4)2, (dvoid *)caddr,
 (sb4)sizeof(caddr), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn2p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

Using Unicode Bind and Define in Pro*C/C++ to Access the Database
You can use Unicode bind and define in Pro*C/C++ for multilingual applications.

Pro*C/C++ lets you specify UTF-16 Unicode buffers for bind and define operations.
There are two ways to specify UTF-16 buffers in Pro*C/C++:

� Use the utext datatype, which is an alias for the unsigned short datatype in
C/C++

� Use the uvarchar datatype provided by Pro*C/C++. It will be preprocessed to
a struct with a length field and a utext buffer field.

struct uvarchar
{
 ub2 len; /* length of arr */
4-8 Oracle Application Server 10g Globalization Guide

Using C/C++ to Access the Database
 utext arr[1] ; /* UTF-16 buffer */
};
typedef struct uvarchar uvarchar ;

In the following example, there are two host variables: cname and caddr. The
cname host variable is declared as a utext buffer containing 100 UTF-16 code units
(unsigned short) for the customer name column in the VARCHAR2 datatype. The
caddr host variable is declared as a uvarchar buffer containing 50 UCS2
characters for the customer address column in the NVARCHAR2 datatype. The len
and arr fields are accessible as fields of a struct.

#include <sqlca.h>
#include <sqlucs2.h>

main()
{
 ...
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 utext cname[100] ; /* unsigned short type */
 uvarchar caddr[200] ; /* Pro*C/C++ uvarchar type */
 ...
 EXEC SQL SELECT name, address INTO :cname, :caddr FROM customers;
 /* cname is NULL-terminated */
 wprintf(L"ENAME = %s, ADDRESS = %.*s\n", cname, caddr.len, caddr.arr);
 ...
}

Using a Centralized Database 4-9

Using C/C++ to Access the Database
4-10 Oracle Application Server 10g Globalization Guide

Part II

Deployment

Part II contains the following chapters:

� Chapter 5, "Configuring Oracle Application Server for Global Deployment"

� Chapter 6, "A Multilingual Demo for Oracle Application Server"

Configuring Oracle Application Server for Global Deploy
5

Configuring Oracle Application Server for

Global Deployment

When developing and deploying global Internet applications with Oracle
Application Server, you need to consider the following tasks:

� Installing Oracle Application Server for Global Deployment

� Configuring Oracle HTTP Server and OC4J for Global Deployment

� Configuring Oracle Application Server Portal for Global Deployment

� Configuring Oracle Application Server Wireless for Global Deployment

� Configuring Oracle Application Server Single Sign-On for Global Deployment

� Configuring Oracle Application Server Forms Services for Global Deployment

� Configuring Oracle Application Server Reports Services for Global Deployment

� Configuring Oracle Application Server Discoverer for Global Deployment

� Configuring Oracle Business Components for Java for Global Deployment

� Configuring a Centralized Unicode-enabled Database to Support Global
Deployment

Installing Oracle Application Server for Global Deployment
In addition to the schemas of the infrastructure components, such as Oracle Internet
Directory (OID) and Distributed Configuration Management (DCM), the Oracle
Application Server Infrastructure database stores data pertaining to many Oracle
Application Server middle-tier components that are installed on top of it. These
components include Portal, Wireless, Forms, Reports, and Discoverer. Therefore, it
is important to choose the correct database character set for the infrastructure
ment 5-1

Installing Oracle Application Server for Global Deployment
database at install time so that all of the dependent components are able to provide
the same level of global support.

During the installation of the Oracle Application Server infrastructure database,
you are prompted to choose the database character set you would like to use for the
database. There are two basic scenarios that will determine which choice is best for
your environment:

� If your environment is intended to support multiple languages in a single
global instance of the Oracle Application Server infrastructure, choosing UTF-8
as the character set for the infrastructure database is highly recommended.
Even if you only support a single language, such as English, you may choose
UTF-8 as the database character set. The implications of choosing UTF-8
include, but are not limited to, the following:

1. Databases with UTF-8 as the database character set are slightly slower than
those with single-byte character sets. The performance impact is due to
UTF-8 being a multibyte character set and the increase in the number of
character set conversions between the middle tier and the database.

2. Web pages served through mod_plsql must be encoded in UTF-8.
However, there are some browsers, such as Netscape 4.7x and those for
mobile devices, that may have some problems supporting UTF-8. Products
that deliver Web pages through mod_plsql include Single Sign-On and
Portal.

� If your environment is intended to support a single language or a group of
languages that share the same native character set, you can choose the character
set that is most commonly used for these languages as an alternative to UTF-8.
For example, you can choose WE8MSWIN1252 if you are only interested in
supporting Western European languages. You can choose JA16SJIS if you are
interested in supporting Japanese and English.

During installation of any Oracle Application Server 10g installation type, support
for user-selected languages is automatically installed and configured. It includes the
translation files and fonts being used in the product. Additionally, command-line
language installation is still supported.

If the required fonts are not available after installation, you can copy them from the
Utilities CD included in the Oracle Application Server CD pack, or from
http://metalink.oracle.com into the $ORACLE_
HOME/jdk/jre/lib/fonts directory.
5-2 Oracle Application Server 10g Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment
Configuring Oracle HTTP Server and OC4J for Global Deployment
This section contains the following topics related to configuring Oracle HTTP
Server for multilingual support:

� About Manually Editing HTTP Server and OC4J Configuration Files

� Configuring the NLS_LANG Parameter

� Configuring Transfer Mode for mod_plsql Runtime

� Configuring the Runtime Default Locale

About Manually Editing HTTP Server and OC4J Configuration Files
If you edit Oracle HTTP Server or OC4J configuration files manually, instead of
using Oracle Enterprise Manager, you must use the DCM command-line utility
dcmctl to notify the DCM repository of the changes. Otherwise, your changes will
not go into effect and will not be reflected in the Enterprise Manager consoles. The
commands are as follows:

� To notify the DCM repository of changes made to Oracle HTTP Server
configuration files:

ORACLE_HOME/dcm/bin/dcmctl updateConfig ohs

� To notify the DCM repository of changes made to OC4J configuration files:

ORACLE_HOME/dcm/bin/dcmctl updateConfig oc4j

� To notify the DCM repository of changes made to both Oracle HTTP Server and
OC4J configuration files:

ORACLE_HOME/dcm/bin/dcmctl updateConfig

Before you change configuration parameters, manually or using Oracle Enterprise
Manager, you can save the current state of Oracle HTTP Server and OC4J
configuration files and installed J2EE applications with the following command:

ORACLE_HOME/dcm/bin/dcmctl saveInstance -dir directory_name

You can then restore the state and back out of any subsequent changes that were
made using the following command:

ORACLE_HOME/dcm/bin/dcmctl restoreInstance -dir directory_name
Configuring Oracle Application Server for Global Deployment 5-3

Configuring Oracle HTTP Server and OC4J for Global Deployment
Configuring the NLS_LANG Parameter
The NLS_LANG parameter controls the language, territory, and character set used
for database connections in an Internet application. Specify the value of NLS_LANG
in the following format, including the punctuation as shown:

language_territory.characterset

language, territory, and characterset must be valid Oracle language,
territory, and character set names. The specified language and territory are used to
initialize the locale that determines the default date and time formats, number
formats, and sorting sequence in a database session. The Oracle9i database converts
data to and from the specified character set when it is retrieved from or inserted
into the database.

You can specify the NLS_LANG parameter in the Oracle HTTP Server and OC4J files.
The Oracle HTTP Server and OC4J files where NLS_LANG can be specified are as
follows:

� $ORACLE_HOME/Apache/Apache/conf/httpd.conf

This is the configuration of Oracle HTTP Server powered by Apache, and it
defines the environment variables that are passed to Apache modules. If you
want to explicitly specify the NLS_LANG parameter for CGI scripts such as Perl
and SSI pages, you can add the following line to this file:

SetEnv NLS_LANG language_territory.characterset

Oracle HTTP Server is already configured to use the NLS_LANG shell
environment variable in CGI scripts and SSI pages when NLS_LANG is not
explicitly specified as described above. It does so by putting the following line
into this file:

PassEnv NLS_LANG

� $ORACLE_HOME/Apache/Apache/bin/apachectl

This is the Oracle HTTP Server startup script used in UNIX. If you want to start
Oracle HTTP Server directly from apachectl, you can specify the following line
in this script file to define an NLS_LANG value:

NLS_LANG=language_territory.characterset; export NLS_LANG

See Also: Oracle9i Globalization Support Guide in the Oracle
Database Documentation Library for a list of valid Oracle language,
territory, and character set names
5-4 Oracle Application Server 10g Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment
� $ORACLE_HOME/opmn/conf/opmn.xml

Oracle Process Management and Notification (OPMN) is used to manage
Oracle HTTP Server and OC4J instances. The opmn.xml configuration file
allows you to specify the NLS_LANG environment variable for Oracle HTTP
Server and OC4J processes through the following XML construct:

<environment>
...
<prop name="NLS_LANG" value="language_territory_characterset" />
...
</environment>

This construct can be specified at the Oracle Application Server instance level
where it applies to all Oracle HTTP Server and OC4J instances belonging to the
Oracle Application Server instance. It can also be specified for the individual
Oracle HTTP Server or OC4J instance where it only applies to the
corresponding instance.

� $ORACLE_HOME/Apache/modplsql/conf/dads.conf

This file defines database access descriptors (DADs) for mod_plsql to use
when creating a database connection. You can specify the NLS_LANG value for
the corresponding DAD. For example, you can specify the NLS_LANG value for
the /pls/scott DAD as follows:

<Location /pls/scott>
SetHandler pls_handler
Order deny, allow
Allow from all
PlsqlDatabasePassword tiger
PlsqlDatabaseUsername scott
PlsqlDocumentPath docs
PlsqlEnableConnectionPooling On
PlsqlNlsLanguage <NLS_LANG value>

</Location>

Note that, when the Transfer Mod of a DAD is CHAR instead of RAW, the NLS_
LANG character set of the DAD should be the same as that of the database
character set for mod_plsql to work properly.

� $ORACLE_HOME/Apache/Jserv/etc/jserv.properties

If JServ is needed in your environment, then you need to add or modify the
following line in this file to define the appropriate NLS_LANG value:
Configuring Oracle Application Server for Global Deployment 5-5

Configuring Oracle HTTP Server and OC4J for Global Deployment
wrapper.env=NLS_LANG=language_territory.characterset

If you do not explicitly specify the NLS_LANG environment variable in these files as
described above, Oracle HTTP Server and OC4J will use the value set as follows:

� On UNIX: The NLS_LANG shell environment variable when Oracle HTTP
Server and OC4J are invoked

� On Windows: The NLS_LANG registry key at \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACE\HOMEn in the Win32 registry

Preconfigured NLS_LANG Values
The Oracle Application Server installation pre-configures NLS_LANG values in the
following Oracle HTTP Server and OC4J files for you based on the locale of the
runtime environment on which the product is installed.

� $ORACLE_HOME/Apache/Apache/bin/apachectl (for UNIX platforms)

� $ORACLE_HOME/opmn/conf/opmn.xml/opmnctl (for UNIX platforms)

The pre-configured NLS_LANG values in the apachectl and opmnctl scripts are
specified as follows:

NLS_LANG=${NLS_LANG=language_territory.characterset}; export NLS_LANG

The above line means that the pre-configured NLS_LANG values are used only when
the shell environments from which the scripts are invoked have no defined the
NLS_LANG environment variable. If you want to use an NLS_LANG value regardless
of the shell environment, you can change this line to:

NLS_LANG=language_territory.characterset; export NLS_LANG

The NLS_LANG parameter controls the locale of the runtime environment on which
OPMN runs. It should correspond to the default locale of the middle-tier runtime
environment, which is the default locale of the operating system. The same NLS_
LANG parameter is inherited by the OPMN managed processes, such as Oracle
HTTP Server and OC4J, unless it is explicitly specified with a different value in
opmn.xml.

For Windows platforms, the pre-configured NLS_LANG is automatically registered
in the Win32 registry as the NLS_LANG registry key at \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\HOMEn. The NLS_LANG value in this registry key
controls the locale of the runtime environment on which OPMN and its managed
processes run.
5-6 Oracle Application Server 10g Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment
The pre-configured NLS_LANG values are the best values derived from the runtime
locale during product installation, and may not represent the appropriate value for
your Oracle HTTP Server and OC4J configurations. You may need to alter these
values according to your specific requirements and runtime environments.

Setting NLS_LANG for a Monolingual Application Architecture
Set the NLS_LANG parameter to specify the language, territory, and character set
that correspond to the locale that its middle-tier server is configured to serve. If
most clients are running on Windows platforms, then it is a good practice to use the
NLS_LANG character set that corresponds to the Windows code page of the locale.
For example, when you configure the middle tier server to serve Japanese clients,
then specify the following value for NLS_LANG:

JAPANESE_JAPAN.JA16SJIS

JA16SJIS corresponds to code page 932 of the Japanese Windows operation system.

Table 5–1 lists the NLS_LANG values for the most commonly used locales.

Table 5–1 NLS_LANG Values for Commonly Used Locales

Locale NLS_LANG Value

Arabic (Egypt) ARABIC_EGYPT.AR8MSWIN1256

Arabic (U.A.E.) ARABIC_UNITED ARAB EMIRATES.AR8MSWIN1256

Chinese (Taiwan) TRADITIONAL CHINESE_TAIWAN.ZHT16MSWIN950

Chinese (P.R.C.) SIMPLIFIED CHINESE_CHINA.ZHS16GBK

Czech CZECH_CZECH REPUBLIC.EE8MSWIN1250

Danish DANISH_DENMARK.WE8MSWIN1252

Dutch DUTCH_THE NETHERLANDS.WE8MSWIN1252

English (United Kingdom) ENGLISH_UNITED KINGDOM.WE8MSWIN1252

English (U.S.A.) AMERICAN_AMERICA.WE8MSWIN1252

Finnish FINNISH_FINLAND.WE8MSWIN1252

French (Canada) CANADIAN FRENCH_CANADA.WE8MSWIN1252

French (France) FRENCH_FRANCE.WE8MSWIN1252

Germany (German) GERMANY_GERMAN.WE8MSWIN1252

Greek GREEK_GREECE.EL8MSWIN1253
Configuring Oracle Application Server for Global Deployment 5-7

Configuring Oracle HTTP Server and OC4J for Global Deployment
Setting NLS_LANG for a Multilingual Application Architecture
The language and territory components of the NLS_LANG parameter are not as
important in the multilingual application architecture as they are in the
monolingual application architecture. A multilingual application needs to handle
different locales dynamically and cannot rely on fixed settings. The application
should always use the UTF-8 character set so that Unicode data can be retrieved
from and inserted into the database. An example of an appropriate value for NLS_
LANG in a multilingual deployment is:

NLS_LANG=AMERICAN_AMERICA.UTF8

Hebrew HEBREW_ISRAEL.IW8MSWIN1255

Hungarian HUNGARIAN_HUNGARY.EE8MSWIN1250

Italian (Italy) ITALIAN_ITALY.WE8MSWIN1252

Japanese JAPANESE_JAPAN.JA16SJIS

Korean KOREAN_KOREA.KO16MSWIN949

Norwegian NORWEGIAN_NORWAY.WE8MSWIN1252

Polish POLISH_POLAND.EE8MSWIN1250

Portuguese (Brazil) BRAZILIAN PORTUGUESE_BRAZIL.WE8MSWIN1252

Portuguese (Portugal) PORTUGUESE_PORTUGAL.WE8MSWIN1252

Romanian ROMANIAN_ROMANIA.EE8MSWIN1250

Russian RUSSIAN_CIS.CL8MSWIN1251

Slovak SLOVAK_SLOVAKIA.EE8MSWIN1250

Spanish (Spain) SPANISH_SPAIN.WE8MSWIN1252

Spanish (Latin American) LATIN AMERICAN SPANISH_AMERICA.WE8MSWIN1252

Swedish SWEDISH_SWEDEN.WE8MSWIN1252

Thai THAI_THAILAND.TH8TISASCII

Turkish TURKISH_TURKEY.TR8MSWIN1254

Table 5–1 NLS_LANG Values for Commonly Used Locales (Cont.)

Locale NLS_LANG Value
5-8 Oracle Application Server 10g Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment
Configuring Transfer Mode for mod_plsql Runtime
The transfer mode of each database access descriptor (DAD) of the mod_plsql
runtime enables PL/SQL to construct HTML content and process HTML form input
in different character sets. You must set the transfer mode with the appropriate
value.

It is important to configure the transfer mode for the mod_plsql module in the
$ORACLE_HOME/Apache/modplsql/cfg/dads.conf file where the DADs are
specified.

The mod_plsql module supports two transfer modes that you can configure in a
DAD:

� CHAR mode: This is a default mode where dynamic HTML content is sent as
VARCHAR2 data from the database to mod_plsql. In this mode, the NLS_LANG
character set must be the same as that of the back-end database character set.

� RAW mode: Dynamic HTML content is sent as RAW data from the database to
mod_plsql and is subject to character set conversion in the database server
where the PL/SQL procedures and PSPs run. Character set conversion happens
only when the HTML page encoding is specified, either by the NLS_LANG
character set or by the charset parameter specified in the OWA_UTIL.MIME_
HEADER() function call.

You should turn on the RAW transfer mode in a DAD for both monolingual and
multilingual Internet applications as follows:

<Location /pls/scott>
SetHandler pls_handler
Order deny,allow
Allow from all

PlsqlDatabasePassword tiger
PlsqlDatabaseUsername scott
PlsqlDatabaseConnectString local
PlsqlDocumentPath docs
PlsqlEnableConnectionPooling On
PlsqlNlsLanguage AMERICAN_AMERICA.UTF8
PlsqlTransferMode RAW

</Location>

Note that if the value of PlsqlNlsLanguage has a space in it, the value must be
enclosed in quotation marks. For example:

PlsqlNlsLanguage "SIMPLIFIED CHINESE_CHINA.ZHS16GBK"
Configuring Oracle Application Server for Global Deployment 5-9

Configuring Oracle HTTP Server and OC4J for Global Deployment
Configuring the Runtime Default Locale
This section describes how to initialize the runtime default locale for runtime
environments that Oracle Application Server supports:

� mod_jserv Runtime for Java

� OC4J Java Runtime

� mod_plsql Runtime for PL/SQL and PL/SQL Server Pages

� mod_perl Runtime for Perl Scripts

� C/C++ Runtime

The default locale of a runtime environment controls the default locale-sensitive
behavior of the applications, such as the character set used in file I/O operations,
the language of the user interface, and the date format used. It needs to be properly
set in order for applications relying on the default runtime locale to run with the
expected locale-sensitive behavior. The default runtime locale is usually inherited
from the default locale of the operating system or the locale of the runtime process.

The default runtime locale should be used as the user’s preferred locale for
monolingual applications. For multilingual applications, the default runtime locale
is used for any server-side I/O operations, such as logging messages.

mod_jserv Runtime for Java
For UNIX platforms, the LANG or LC_ALL variable defines the following:

� The POSIX (also known as XPG4) locale used for a process

� How Java VM initializes its default locale

To configure the Java VM for JServ, define the LANG or LC_ALL environment
variable with a POSIX locale name in the jserv.properties file. For example,
the following line in jserv.properties defines Japanese (Japan) to be the
default locale of Java VM for JServ on UNIX:

wrapper.env=LANG=ja_JP

The values for the LANG and LC_ALL environment variables should refer to the
same POSIX locale available in your operating system. The LC_ALL environment
variable always overrides the LANG environment variable if they are different.

The regional settings of the Control Panel control the default locale of the Java VM
for JServ on Windows platforms. Change the regional settings to the desired locale
from the Control Panel before starting Oracle HTTP Server.
5-10 Oracle Application Server 10g Globalization Guide

Configuring Oracle HTTP Server and OC4J for Global Deployment
OC4J Java Runtime
Define the LANG or LC_ALL environment variable with a POSIX locale name in
$ORACLE_HOME/opmn/conf/opmn.xml. For example, the following line within
the <environment> tags in opmn.xml defines Japanese (Japan) to be the default
locale of Java VM for OC4J on Solaris:

<environment>
...
<prop name="LANG" value="ja_JP" />
...
</environment>

The regional settings of the Control Panel control the default locale of the Java VM
for OC4J on Windows platforms. Change the regional settings to the desired locale
from the Control Panel before starting Oracle HTTP Server.

mod_plsql Runtime for PL/SQL and PL/SQL Server Pages
PL/SQL and PL/SQL Server Pages run on an Oracle9i database in the context of a
database session. Therefore, the NLS_LANG parameter controls the runtime default
locale. The NLS_LANG parameter should be configured as described in "Configuring
the NLS_LANG Parameter".

mod_perl Runtime for Perl Scripts
Perl scripts run on the Perl interpreter that the mod_perl module provides. The
locale support in Perl is based on the POSIX locale available in the operating
system. It uses the underlying POSIX C libraries as a foundation. To configure the
Perl runtime default locale, follow the procedure described for the C/C++ runtime.

C/C++ Runtime
The C/C++ runtime uses the POSIX locale system that the operating system
provides. You can configure the locale system by defining the LC_ALL or LANG
environment variable. Define LC_ALL with a valid locale value that the operating
system provides. These values are different on different operating systems.

See Also:

� "C/C++ Runtime"

� Oracle HTTP Server Administrator’s Guide for more information about
how Perl scripts use POSIX locales
Configuring Oracle Application Server for Global Deployment 5-11

Configuring Oracle Application Server Portal for Global Deployment
For UNIX platforms, define LC_ALL as follows:

� In $ORACLE_HOME/Apache/Apache/conf/httpd.conf, add the following
line:

PassEnv LC_ALL

� In $ORACLE_HOME/Apache/Apache/bin/apachectl, add the following
line:

LC_ALL=${LC_ALL=OS_locale}; export LC_ALL

For Windows platforms, the POSIX locale should inherit its value from the regional
settings of the Control Panel instead of being specified in the LC_ALL environment
variable. Change the regional settings to change the default runtime POSIX locale.

Configuring Oracle Application Server Portal for Global Deployment
Oracle Application Server Portal is designed to allow application development and
deployment in different languages. OracleAS Portal is configured with the
languages that are selected in the Oracle Universal Installer (OUI) during the Oracle
Application Server middle-tier installation. Languages that are configured show up
in the Set Language portlet.

To configure additional languages after installation, the OracleAS Portal
Configuration Assistant (OPCA) must be used in LANGUAGE mode. Once you have
installed a language, OracleAS Portal allows you to specify the preferred locale and
territory to be used for that language; for example, Australian English or Canadian
French. See Appendix A for a list of languages and abbreviations that are available
for OracleAS Portal.

See Also: Table 5–1 for a list of commonly used POSIX locales for
Solaris

See Also:

� Oracle Application Server Portal Configuration Guide for details
and usage information for OPCA

� Oracle Application Server 10g mod_plsql User’s Guide
5-12 Oracle Application Server 10g Globalization Guide

Configuring Oracle Application Server Single Sign-On for Global Deployment
Configuring Oracle Application Server Wireless for Global Deployment
When users access wireless services from their mobile devices, Oracle Application
Server Wireless uses the user profile information from Oracle Internet Directory
(OID) to determine the user’s preferred language. Administrators can select the
language when creating a new user through the Oracle Application Server Wireless
Tools. Users can change their preferred language through the Wireless
Customization Tool.

Configuring Encoding for Outgoing Email Messages
When users send email messages from their mobile devices, Oracle Application
Server Wireless sends the messages in the encoding specified in the encoding
parameter of the PIM/Mail service.

You can change the default encoding for outgoing email messages by modifying the
ORACLE_SERVICES_PIM_MAIL_MESSAGE_ENCODING parameter of the PIM/Mail
master service.

Configuring Oracle Application Server Single Sign-On for Global
Deployment

Oracle Application Server Single Sign-On is automatically configured with the
languages that are selected in the Oracle Universal Installer (OUI) during the Oracle
Application Server Infrastructure installation. To configure additional languages
after installation, you need to execute the following command:

ORACLE_HOME/jdk/bin/java -jar ORACLE_HOME/sso/lib/ossoca.jar langinst lang make_
lang_avail ORACLE_HOME

In this command, lang specifies the abbreviation code for the language to be
installed. See Appendix A for a list of languages and their corresponding
abbreviations. The value of make_lang_avail specifies whether or not to make
the language available. Enter 1 to make the language available, 0 otherwise.

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide for detailed steps on configuring additional languages
Configuring Oracle Application Server for Global Deployment 5-13

Configuring Oracle Application Server Forms Services for Global Deployment
Configuring Oracle Application Server Forms Services for Global
Deployment

The NLS_LANG parameter controls the language, territory, and character set that an
Internet application uses for database connections. Specify the value of NLS_LANG
in the following format, including the punctuation as shown:

language_territory.characterset

language, territory, and characterset must be valid Oracle language,
territory, and character set names. The specified language and territory are used to
initialize the locale that determines the default date and time formats, number
formats, and sorting sequence in a database session. Oracle Net converts data to
and from the specified character set when it retrieves data from or inserts data into
the database.

You can set the NLS_LANG parameter in the $ORACLE_
HOME/forms90/server/default.env file. If you do not set the NLS_LANG
parameter in the default.env file, then Forms Services uses the value set as
follows:

� On UNIX: The NLS_LANG shell environment variable when Forms Server is
invoked

� On Windows: The NLS_LANG setting at the \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\FormsServerOracle_HOME in the Win32
registry

You can have different NLS_LANG settings on the same Forms Server by specifying
an alternate environment file. Use the envFile parameter in the formsweb.cfg
file. To do this:

1. Create two environment configuration files under $ORACLE_
HOME/forms90/server. For example, an American environment
configuration file (en.env) should contain the following lines:

NLS_LANG=AMERICAN_AMERICA.US7ASCII
FORMS90_PATH=d:\us

A Japanese environment configuration file (ja.env) should contain the
following lines:

NLS_LANG=JAPANESE_JAPAN.JA16SJIS
FORMS90_PATH=d:\ja
5-14 Oracle Application Server 10g Globalization Guide

Configuring Oracle Application Server Reports Services for Global Deployment
2. In the formsweb.cfg file ($ORACLE_HOME/forms90/server), set the
envFile parameter for the alternative setting. For example:

[ja]
envFile=ja.env

[en]
envFile=en.env

Then specify the configuration name in the URL for your forms servlet as
follows:

http://formsservermachine/forms90/f90servlet?config=ja
http://formsservermaching/forms90/f90servlet?config=en

Configuring Oracle Application Server Reports Services for Global
Deployment

The NLS_LANG parameter controls the language, territory, and character set used
for database connections in an Oracle Application Server Reports Services
application. Specify the value of NLS_LANG in the following format, including the
punctuation as shown:

language_territory.characterset

language, territory, and characterset must be valid Oracle language,
territory, and character set names. The specified language and territory are used to
initialize the locale that determines the default date and time formats, number
formats, and sorting sequence in a database session. Oracle Net converts data to
and from the specified character set when it retrieves data from or inserts data into
the database.

Oracle Application Server Reports Services uses the value of the NLS_LANG
parameter set as follows:

� On UNIX: The NLS_LANG shell environment variable when Oracle Application
Server Reports Services is invoked. The default NLS_LANG value is set in
$ORACLE_HOME/bin/reports.sh.

See Also: Oracle Application Server Forms Services Deployment
Guide
Configuring Oracle Application Server for Global Deployment 5-15

Configuring Oracle Application Server Discoverer for Global Deployment
� On Windows: The value of NLS_LANG set at \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\%ReportsORACLE_HOME% in the Win32
registry

� For dynamic environment switching: In the Reports Server configuration file
through the environment element. On UNIX, the default NLS_LANG value in
the reports.sh file needs to be commented out to enable this feature.

Configuring Oracle Application Server Discoverer for Global
Deployment

Oracle Application Server Discoverer can simultaneously support users with
different locales. Users may explicitly control the locale used for the user interface,
or they may allow Oracle Application Server Discoverer to automatically determine
a default. The order of precedence for determining the language and locale is:

1. Language and locale settings specified in the URL for Oracle Application Server
Discoverer

2. Language and locale settings specified in the Discoverer Connection (this is part
of the Oracle Application Server Discoverer integration with Oracle Application
Server Single Sign-On)

3. Language and locale setting specified in the user’s browser

4. Language and locale of Oracle Application Server

Configuring Oracle Business Components for Java for Global
Deployment

You can set the following Oracle Business Components for Java (BC4J) properties:

� jbo.default.language

� jbo.default.country

See Also:

� Oracle Application Server Reports Services Publishing Reports to the Web
for more information about dynamic environment switching

� Oracle9i Globalization Support Guide in the Oracle Database
Documentation Library for more information about these parameters

See Also: Oracle Application Server Discoverer Configuration Guide
for more information on using URL parameters with Discoverer.
5-16 Oracle Application Server 10g Globalization Guide

Configuring a Centralized Unicode-enabled Database to Support Global Deployment
Their default values are en and US, respectively.

You can set them at the command line, by modifying the
jboserver.properties file, or with an applet parameter tag. All sessions share
this locale to display messages.

Configuring a Centralized Unicode-enabled Database to Support Global
Deployment

You can set up the centralized Oracle9i database to store Unicode data in the
following ways:

� As UTF-8 in the SQL CHAR data types (CHAR, VARCHAR2, and CLOB)

� As UTF-16 in the SQL NCHAR data types (NCHAR, NVARCHAR2, and NCLOB)

It is good practice to configure the centralized Oracle9i database to support the
following:

� UTF-8 in the SQL CHAR data types

Specify AL32UTF8 for the database character set when you create the
centralized database.

� UTF-16 in the SQL NCHAR data types

Specify AL16UTF16 for the national character set when you create the
centralized database.

Example 5–1 shows part of a CREATE DATABASE statement that sets the
recommended database character set and national character set.

Example 5–1 Specifying the Database Character Set and the National Character Set

CREATE DATABASE myunicodedatabase
CONTROL FILE REUSE
LOGFILE ’/u01/oracle/ubfdb/redo01.log’ SIZE 1M REUSE
’/u01/oracle/utfdb/redo02.log’ SIZE 1M REUSE
DATAFILE ’/u01/oracle/utfdbsystem01.dbf’ SIZE 10M REUSE
AUTOEXTENT ON

See Also:

� Oracle9i Globalization Support Guide in the Oracle Database
Documentation Library

� Oracle9i SQL Reference in the Oracle Database Documentation Library
Configuring Oracle Application Server for Global Deployment 5-17

Configuring a Centralized Unicode-enabled Database to Support Global Deployment
NEXT 10M MAXSIZE 200M
CHARACTER SET UTF8
NATIONAL CHARACTER SET AL16UTF16
... ;
5-18 Oracle Application Server 10g Globalization Guide

A Multilingual Demo for Oracle Application S
6

A Multilingual Demo for Oracle Application

Server

This chapter describes the World-of-Books demo that is provided with Oracle
Application Server.

This chapter contains the following topics:

� Description of the World-of-Books Demo

� Architecture and Design of the World-of-Books Demo

� Building, Deploying, and Running the World-of-Books Demo

� Locale Awareness of the World-of-Books Demo

� Encoding HTML Pages for the World-of-Books Demo

� Handling HTML Form Input for the World-of-Books Demo

� Encoding URLs in the World-of-Books Demo

� Formatting HTML Pages in the World-of-Books Demo

� Accessing the Database in the World-of-Books Demo

� Organizing the Content of HTML Pages in the World-of-Books Demo

Description of the World-of-Books Demo
The World-of-Books (WOB) demo demonstrates how to write a multilingual Web
application and deploy it on the Oracle Application Server J2EE container. The
application consists of the following Web sites:

� An online store that sells books in different languages
erver 6-1

Architecture and Design of the World-of-Books Demo
� An online Chinese book supplier administration site that represents book
Supplier A

� An online global book supplier administration site that represents book
Supplier B

The online bookstore is a multilingual Web application that interacts with
customers. It allows customers to view books, check prices, and place orders. The
application uses HTTP connections to send orders as XML documents to the
suppliers. The online book supplier administration sites are Web applications that
the book suppliers use to get orders from the bookstore, to send order status reports
to the bookstore, and to notify the bookstore about newly available books.

The online bookstore supports 60 locales. Customers in these locales can use the
online bookstore with their preferred language and cultural conventions. The online
book supplier administration sites are in English only.

Architecture and Design of the World-of-Books Demo
The WOB demo serves customers with different locale preferences. It is mainly
written in Java, using Java Servlets, Java beans, and Java Server Pages (JSPs). It uses
the Unicode capabilities available in Java, XML, JDBC, and the Oracle9i database to
support multilingual data and a multilingual user interface.

This section contains the following topics:

� World-of-Books Architecture

� World-of-Books Design

� World-of-Books Schema Design

World-of-Books Architecture
Figure 6–1 shows the architecture of the WOB demo.
6-2 Oracle Application Server 10g Globalization Guide

Architecture and Design of the World-of-Books Demo
Figure 6–1 World-of-Books Architecture

The application architecture can be summarized as follows:

� JSPs generate dynamic content in UTF-8 encoded HTML pages.

� Java Servlets and Java Beans implement the business logic.

� The Oracle9i database stores book and customer information.

– Oracle Text enables locale-sensitive, full-text searches on the contents of
books.

– The SQL NVARCHAR2 datatype stores multilingual book information.

� The Oracle JDBC driver (either OCI or the Thin driver) accesses Unicode data
stored in the Oracle9i database. The data can be encoded in UTF-8 if the target
column is of a SQL CHAR datatype, or the data can be encoded in UTF-16 if the
target column is of a SQL NCHAR datatype.

� The document format for communications between the online bookstore and
the book suppliers is UTF-8 encoded XML.

English
Customer

UTF-8

Japanese
Customer

UTF-8

German
Customer

UTF-8

Oracle
Database

Oracle Application Server
Online Bookstore

Internet

Oracle
HTTP
Server

JDBC

XSQL Utility

JSP / Java Servlet

UTF-16UTF-8

Multilingual
Book
Supplier

Chinese
Book
Supplier

XML in
UTF-8

XML in
UTF-8
A Multilingual Demo for Oracle Application Server 6-3

Architecture and Design of the World-of-Books Demo
Figure 6–1 shows the WOB application on Oracle Application Server. The
processing character set for the WOB application is UTF-16. The application uses
XML messages to communicate with the Chinese book supplier and the
multilingual book supplier. The XML messages are encoded in the UTF-8 character
set. English, Japanese, and German customers connect to the WOB application
through the Internet. The application serves all of the customers HTML pages
encoded in the UTF-8 character set.

World-of-Books Design
Table 6–1 shows the Java programs that contain most of the internationalization
features for the WOB application. The programs are located in $WOB_
HOME/src/oracle/demo/wob2/wob.

The Language and Country classes are used only by the LocaleUtil class to
represent a language and a country. The Localizer bean calls the LocaleUtil
class for all static information about locale and character set, such as the default
language and the default encoding used for the user interface of the bookstore. The
LocaleUtil class reads the properties resource bundle, wob.properties, to
initialize all static information for the online bookstore. The wob.properties file
is located in $WOB_HOME.

Most of the JSPs for the online bookstore include the header.jsp file, which uses
the Localizer Java bean to keep locale information for a session. JSPs call the
Localizer Java bean to perform all locale-sensitive operations such as formatting
a date, encoding a URL, and converting HTML form parameters to Java strings.
Some JSPs also call the LocaleUtil static class to get information such as the list of
available languages and the list of currencies used for a specific country.

Table 6–1 Java Programs that Contain Internationalization Features for the
World-of-Books Application

Java Program Purpose

beans/Localizer.java Contains all locale-related information and locale-sensitive
methods for a specific user session

LocaleUtil.java Contains methods for retrieving static information such as the
list of supported languages and the list of supported countries

Language.java Contains information about a language and its properties such
as the writing direction (right to left or left to right)

Country.java Contains information about a country and its properties such
as currency and date formats
6-4 Oracle Application Server 10g Globalization Guide

Architecture and Design of the World-of-Books Demo
World-of-Books Schema Design
The database schema for the WOB demo consists of the following tables:

� customers: Stores the user profile for each WOB user

� books: Stores the information about each book

� docs: Stores the content of each book so that customers can search the content
of the books

Table 6–2 describes the customers table. When a registered user is logged in, the
online bookstore uses the locale preferences in the customer table in the Localizer
bean.

Table 6–3 describes the books table. The NVARCHAR2 datatype is used for the title,
author, short description, and publisher of the book. By storing this information as
Unicode in the NVARCHAR2 datatype, the WOB demo can support books in
languages from around the world. The nsort column is used for queries about
books so that the list is returned in an order appropriate for the locale.

Table 6–2 Description of the customers Table

Column Datatype Description

custid VARCHAR2(50) User’s name (this is the primary key\)

locale VARCHAR2(10) User’s preferred locale, in ISO locale format (for
example, en-US)

currency1 VARCHAR2(10) ISO locale whose default primary currency is used by
the user

currency2 VARCHAR2(10) ISO locale whose default dual currency is used by the
user

timezone VARCHAR2(50) User’s time zone (for example, Asia/Hong Kong)

encoding VARCHAR(40) User’s HTML page encoding (for example, UTF-8)

Table 6–3 Description of the books Table

Column Datatype Description

langid NUMBER(3) Language of the book

bookid NUMBER (10) Unique identifier of the book (this is the primary key)

nsort VARCHAR2(30) Locale-sensitive sorting sequence used in the
NLSSORT() SQL function for the book
A Multilingual Demo for Oracle Application Server 6-5

Architecture and Design of the World-of-Books Demo
Table 6–4 describes the docs table. It stores the contents of the books.

Indexes have been built for these tables. The following SQL files are used to create
these tables and build the corresponding indexes. They are located in the $WOB_
HOME/schema directory:

� customers.sql

� books.sql

� docs.sql

Oracle Text requires the language, format, cset, and doc columns of the docs
table to build a full-text search index on the docs table. The ctxidx.sql and
ctxsys.sql scripts are used to set up the full-text search index. They are located
in $WOB_HOME/schema/ctx.

title NVARCHAR(300) Book title

author NVARCHAR(300) Book author

descpt NVARCHAR(2000) Short description of the book

publisher NVARCHAR(200) Name of the book’s publisher

Table 6–4 Description of the docs Table

Column Datatype Description

bookid NUMBER(10) Unique identifier of the book (this is the primary key)

langid NUMBER(3) Language of the book

mimetype VARCHAR2(50) MIME type of the book

language VARCHAR2(30) Language of the contents of the book, using the Oracle
NLS language naming convention

format VARCHAR2(10) Format of the contents of the book (TEXT or BINARY)

cset VARCHAR2(30) Character set of the contents of the book

doc BLOB Contents of the book

Table 6–3 Description of the books Table (Cont.)

Column Datatype Description
6-6 Oracle Application Server 10g Globalization Guide

Building, Deploying, and Running the World-of-Books Demo
Installing the World-of-Books Demo
The World-of-Books demo is available as a zip file that you can download from the
Oracle Technology Network (OTN) at
http://otn.oracle.com/tech/java/oc4j/demos/. After you download the
globalization_wob_demo.zip file, unzip the file as follows:

� Go to the $ORACLE_HOME/j2ee/home/demo directory, or create it if it does
not already exist.

� Copy the file to the $ORACLE_HOME/j2ee/home/demo directory.

� Unzip the file.

After unzipping the downloaded file, you should see the directory
globalization under $ORACLE_HOME/j2ee/home/demo. This directory,
$ORACLE_HOME/j2ee/home/demo/globalization, is the root directory of the
World-of-Books demo. This root directory is referred to as $WOB_HOME throughout
this chapter.

Building, Deploying, and Running the World-of-Books Demo
The source code and the build files of the World-of-Books demo are in the WOB
demo home directory located in $WOB_HOME. Table 6–5 shows the directory
structure under $WOB_HOME.

See Also: Oracle9i Globalization Support Guide in the Oracle
Database Documentation Library for more information about
building a full-text search index

Note: Environment variable references, such as $ORACLE_HOME,
are shown in UNIX format. For Windows environments, use the
%ORACLE_HOME% notation.

Note: Environment variable references, such as $ORACLE_HOME,
are shown in UNIX format. For Windows environments, use the
%ORACLE_HOME% notation.
A Multilingual Demo for Oracle Application Server 6-7

Building, Deploying, and Running the World-of-Books Demo
This section contains the following topics:

� How to Build the World-of-Books Demo

� How to Deploy the World-of-Books Demo

� How to Run the World-of-Books Demo

Table 6–5 World-of-Books Directory Structure

Directory/Files Description

docroot Contains all static files such as HTML files, JSPs, and
images

docroot/wob Contains static files for the online bookstore Web
application

docroot/suppa Contains static files for the Chinese book supplier
administration application

docroot/suppb Contains static files for the global book supplier
administration application

src/oracle/demo/wob2 Contains all Java programs

src/oracle/demo/wob2/wob Contains Java programs for the online bookstore
application

src/oracle/demo/wob2/supp Contains Java programs shared by the two online
supplier applications

build.xml Builds the WOB demo

README.TXT Contains useful information for building and
deploying the WOB demo

schema Contains SQL files to create and populate the database
schema that the WOB demo uses

j2ee_config Contains J2EE deployment files for the WOB demo

etc Contains the configuration files for the WOB demo
applications
6-8 Oracle Application Server 10g Globalization Guide

Building, Deploying, and Running the World-of-Books Demo
How to Build the World-of-Books Demo

To build the WOB demo:

1. Go to the $ORACLE_HOME/j2ee/home/demo/globalization directory.

2. Update the suppa.properties, suppb.properties, and
wob.properties files in the $WOB_HOME/etc directory.

� Replace <J2EE_HOME> with the full path where OC4J is installed. It should
be $ORACLE_HOME/j2ee/home.

� Replace <HOSTNAME> with the host name of your machine.

� Replace <PORT> with the port number of your default Web site. By default,
this should be 7778.

3. Set up the JAVA build environment by defining the JAVA_HOME and
CLASSPATH environment variables. Oracle Application Server bundles JDK
under $ORACLE_HOME/jdk so that you can use it for your JAVA_HOME.

You can also use your own JDK. For example:

% setenv ORACLE_HOME yourOracleHome
% setenv JAVA_HOME $ORACLE_HOME/jdk
% setenv J2EE_HOME $ORACLE_HOME/j2ee
% copy $ORACLE_HOME/rdbms/jlib/xsul2.jar to $ORACLE_HOME/j2ee/home/lib

Make sure that $ORACLE_HOME/bin is in your path directory. For example:

% setenv PATH $ORACLE_HOME/bin:$PATH

4. Ensure that an Oracle9i database is available to load the schema and data for
the WOB demo by defining the TWO_TASK environment variable to point to
your database. For example, if you can access the database from SQL*Plus with
the connect string iasdb, you can define the TWO_TASK environment variable
as follows:

% setenv TWO_TASK iasdb

Note: Commands for setting environment variables are based on
the C shell convention. For Windows platforms, use the SET
command at the DOS prompt to set environment variables.
Additionally, replace forward slashes with backslashes in all
directory paths.
A Multilingual Demo for Oracle Application Server 6-9

Building, Deploying, and Running the World-of-Books Demo
5. Build the WOB demo by entering the ANT command from the $WOB_HOME
directory.

% ant

The build process performs the following tasks:

� Compiles all Java programs

� Packages all of the static files and Java classes into an EAR file and a WAR
file, which are used for deployment

� Creates the WOB schema and populates it with the seed data that is
provided

6. If you enabled Oracle Text in your database, then you can set up full text
searches on book content by building the full text search index.

% ant setupctx

How to Deploy the World-of-Books Demo
To deploy the WOB demo on Oracle Application Server J2EE:

1. Update $WOB_HOME/j2ee_config/data-sources.xml, which is used for
database connection.

� Replace <HOSTNAME> with the host name of the Oracle9i database server.

� Replace <PORT> with the port number of the Oracle9i database server.

� Replace <ORACLE_SID> with the SID of the Oracle9i database server.

� Cut and paste the contents of data-sources.xml into $J2EE_
HOME/config/data-sources.xml.

2. Update the configuration file using DCM as follows:

dcmctl updateConfig

3. Deploy the application $WOB_HOME/lib/glln.ear using Oracle Enterprise
Manager (OEM). Alternatively, you can deploy the application using dcmctl as
follows:

dcmctl deployApplication -file $WOB_HOME/lib/glln.ear
-application glln -component home
6-10 Oracle Application Server 10g Globalization Guide

Building, Deploying, and Running the World-of-Books Demo
How to Run the World-of-Books Demo
The online bookstore requires one of the following browsers:

� Internet Explorer 5.0 or above

� Netscape 4.7 or above

The book supplier administration applications require Internet Explorer 5.0 or
above.

To run the WOB demo, start the browser and enter the following URL:

http://host_name:7778/g11n/imap.html

You should see a screen similar to the following:

Select a link to start the desired application.

You can navigate the online bookstore as a registered customer or as a visitor.

Image Link Target

World-O-Books image Online bookstore application

Supplier A image Chinese book supplier administration application

Supplier B image Global book supplier administration application
A Multilingual Demo for Oracle Application Server 6-11

Locale Awareness of the World-of-Books Demo
If you click the Supplier B image, the following screen appears:

The links on the Supplier B administration site are as follows:

Locale Awareness of the World-of-Books Demo
The World-of-Books online bookstore is fully aware of the user’s locale. The
application determines the user’s locale and uses this locale to format dynamic
HTML pages according to the user’s language and cultural conventions.

Link Description

Update Catalog Allows the supplier to send new book information to the online
bookstore to update the bookstore catalog. It sends an XML file
to the online bookstore.

Order Table Allows the supplier to check for customer orders sent from the
online bookstore and can update the order status.

Clean up Restores the data to the initial state. All previous orders and
newly added books are deleted.

XML dir Lists the XML documents that have been sent to and from the
online bookstore.

Home Returns to the WOB home page.
6-12 Oracle Application Server 10g Globalization Guide

Locale Awareness of the World-of-Books Demo
This section contains the following topics:

� How World-of-Books Determines the User’s Locale

� How World-of-Books Uses Locale Information in Localizer Methods

� How World-of-Books Sorts Query Results

� How World-of-Books Searches the Contents of Books

How World-of-Books Determines the User’s Locale
The online bookstore determines the user’s locale using three methods in the
following order:

� If a customer has logged into the bookstore, it examines the locale associated
with the customer’s user profile and uses it as the preferred locale.

� Allows the user to enter the locale from the bookstore’s user interface.

� Examines the Accept-Language HTTP header sent from the browser.

The Localizer bean has two properties, AcceptLang and localeOverride.
The AcceptLang property indicates the Accept-Language header of the current
HTTP request. The localeOverride property indicates whether a user has
explicitly selected a locale, which is passed as a GET request parameter of the
current HTTP request. The header.jsp file initializes the values of these
properties as follows:

<jsp:useBean id="my" class="oracle.demo.wob2.wob.beans.Localizer"
scope="session" />
<jsp:setProperty name="my" property="AcceptLang"
value="<%=request.getHeader(\"Accept-Language\") %>" />
<jsp:setProperty name="my" property="localeOverride" value="<%=
request.getParameter(\"v_override\") %>" />

This initialization causes the setAcceptLang() and setlocaleOverride()
methods of the Localizer bean to initialize the Localizer associated with the
current HTTP request with the appropriate locale information. The application
determines the current user’s locale as follows, in this order:

1. If the user has already been logged in to the current HTTP session, it uses the
locale preference in the user profile. The isLoggedIn() method of the
Localizer determines whether the current user is logged in.

2. If the localeOverride property is not NULL, it uses the locale that this
property indicates as the user locale.
A Multilingual Demo for Oracle Application Server 6-13

Locale Awareness of the World-of-Books Demo
3. If the AcceptLang property is not NULL, it uses the locale that this property
indicates as the user locale.

4. Otherwise, it uses the default locale indicated by the default_language
property from the wob.properties resource bundle. This default locale is
initialized in LocaleUtil.java.

The displayFlags() method in the Localizer generates the HTML content
that enables users to enter a locale by clicking one of the displayed flags. The
header.jsp file calls this method.

How World-of-Books Uses Locale Information in Localizer Methods
After the Localizer is initialized with the user’s locale, all methods of the
Localizer are sensitive to the locale. Table 6–6 shows examples of locale-sensitive
methods defined in the Localizer.

Other locale-sensitive functions are described in the following sections.

Table 6–6 Examples of Locale-Sensitive Methods of the Localizer Bean

Method Example of Use

String formatDate() The following JSPs use the formatDate() method:

� welcome.jsp formats the system date that the welcome
page displays.

� History.jsp formats the date of the order history.

� setting.jsp formats the date to be displayed when a
registered user updates the user profile.

String getCurrency() Changeprofile1.jsp gets the primary currency symbol to
be displayed for the user profile modification screen.

String
getDualCurrency()

Changeprofile1.jsp gets the alternate or dual currency
symbol to be displayed for the user profile modification screen.

String getTimeZone() myaccount.jsp displays the time zone of the current user.

String
getDirection()

setting.jsp displays the direction that text is written, based
on the current user.

String getMessage() Most of the JSPs use this method to get the translated message
that corresponds to the current locale from a resource bundle.

String
getNLSLanguage()

search.jsp gets the Oracle language name used for the
current locale and for submitting a language-sensitive search.
6-14 Oracle Application Server 10g Globalization Guide

Locale Awareness of the World-of-Books Demo
How World-of-Books Sorts Query Results
The order in which books are listed in the results of a query is sensitive to the
current user’s locale. The search template is as follows:

SELECT books.bookid,
 langmap.language,
 books.title,
 books.author,
 substr(books.descpt, 1, 50)
 FROM books, langmap
 WHERE <specific search criteria>
 books.langid = langmap.langid AND
 nlssort(books.title, 'NLS_SORT = '|| books.nsort) IS NOT NULL
 ORDER BY langord(books.langid, 'Oracle_NLS_language'),
 nlssort(books.title, 'NLS_SORT='||books.nsort);

The langmap table maps language IDs to Oracle NLS language names and Oracle
sort names used in the NLSSORT SQL function. The $WOB_
HOME/schema/langmap.sql file creates the langmap table.

The SELECT statement orders the books with the ORDER BY clause as follows:

1. It groups the books by their languages, using the first sort key that the
langord PL/SQL function returns. The langord function returns the smallest
key value when the Oracle NLS language that corresponds to the current user’s
locale matches the language of the book. Thus the books are grouped so that the
first group consists of books whose language corresponds to the user’s locale.

2. Within each language group, it orders the books by the sort key that the
NLSSORT SQL function returns. The NLSSORT function generates sort keys
based on the linguistic order specified by the NLS_SORT parameter. The value
of the NLS_SORT parameter is stored in the nsort column of the books table.
Thus the books in the sorted group are ordered by the Oracle sort sequence
name stored in the nsort column.

The application also orders lists in the user interface using locale information. For
example, it uses the displayLanguageOptions() method of the Localizer
bean to construct a list of languages so users can select a language. The
displayLanguageOptions() method collates the languages in the list based on
the locale-specific Java collator. This collator is constructed using the current locale
represented by the Localizer bean. The following code gets the collation key of
each language name in the current user’s locale:

String[] languages = localeutil.getSupportedLanguagesArray();
 CollationKey[] keys = new CollationKey[languages.length];
A Multilingual Demo for Oracle Application Server 6-15

Locale Awareness of the World-of-Books Demo
 for (int i = 0; i < languages.length; i++)
 {
 keys[i] = collator.getCollationKey(getMessage(languages[i])
 + " [" + languages[i]);
 }

After the keys array is filled with collation keys, the array is sorted based on the
binary value of each key. The other methods that collate drop-down lists are
displayCountryOptions(), displayCurrencyOptions(), and
displayScriptCountryVars().

How World-of-Books Searches the Contents of Books
The online bookstore allows users to search the contents of books in a
locale-sensitive manner. The following query searches the contents of the books
from the docs table:

SELECT books.bookid,
 langmap.language,
 books.title,
 books.author,
 substr(books.descpt, 1, 50)
 FROM books, langmap, docs
 WHERE contains(docs.doc, ’search_key’, 0) > 0 AND
 books.langid = langmap.langid AND
 nlssort(books.title, ’NLS_SORT = ’|| books.nsort) IS NOT NULL

 ORDER BY langord(books.langid, ’Oracle_NLS_language’),
 nlssort(books.title, ’NLS_SORT=’||books.nsort);

The contains(docs.doc, ’search_key’, 0) function in the WHERE clause
returns a positive value when the search key is found in the contents of a document
stored in the doc column of the docs table. The rest of the query is similar to the
query used for the book search.

Oracle Text by default uses the language of the search key as defined by the NLS_
LANGUAGE session parameter. To conduct the search in a language-sensitive
manner, search.jsp issues an ALTER SESSION statement to change the value of
the NLS_LANGUAGE parameter to the value that the user specifies before submitting
the content search query. The ALTER SESSION statement is as follows:

ALTER SESSION SET NLS_LANGUAGE=language;
6-16 Oracle Application Server 10g Globalization Guide

Handling HTML Form Input for the World-of-Books Demo
Calling the getParameter("v_language") method of the
HTTPServletRequest object obtains the language value, where v_language is a
form input parameter from the advanced search screen.

Encoding HTML Pages for the World-of-Books Demo
In the online bookstore, an attribute of the Localizer bean stores the encoding
used for HTML pages. The default_encoding property of the
wob.properties resource bundle initializes the attribute with the default page
encoding. By default, the online bookstore uses UTF-8 as the HTML page encoding
to provide support for multilingual content.

To enforce UTF-8 as the page encoding in JSPs, define the appropriate Content-Type
header. For the online bookstore, put the Content-Type page directive into
header.jsp as follows:

<%@ page contentType="text/html;charset=UTF-8" %>

You only need to put this directive into header.jsp because all other JSPs that
produce HTML output include header.jsp.

The online bookstore allows users to override the default encoding with the
preferred encoding from the user profile. The user can choose a preferred page
encoding from the user profile modification page. After the user logs in, the
encoding attribute of the current Localizer bean is updated to the preferred
encoding. To set the encoding in JSPs, header.jsp checks whether the user has
logged in and calls the HTTPServletResponse.setContentType() method to
overwrite the Content-Type header defined in the JSP page directive with the
preferred encoding. The code is as follows:

<% if (my.isLoggedIn())
 response.setContentType("text/html; charset=" + my.getEncoding());
%>

The getEncoding() method of the Localizer bean (my) returns the preferred
encoding from the current user’s profile.

Handling HTML Form Input for the World-of-Books Demo
The online bookstore accepts multilingual text as HTML form input. The input can
be a search key when the user wants to search for a book, or it can be a user name at
login. The browser sends form input as a sequence of bytes in the same encoding as
the HTML form. Converting the input to Java strings encoded as Unicode requires
A Multilingual Demo for Oracle Application Server 6-17

Encoding URLs in the World-of-Books Demo
the page encoding information. Because the page encoding is stored as an attribute
of the Localizer, the conversion function is encapsulated in the Localizer class.

The translateParameter() method of the Localizer bean converts form
input from the encoding indicated in the encoding attribute of the bean to a Java
string. The method is as follows:

public String translateParameter(parameter_string)
{
 try {
 byte[] paramBytes = param.getBytes("ISO-8859-1");
 return new String(paramBytes, getEncoding());
 } catch (UnsupportedEncodingException e)
 {
 // return the same string if exception
 }
 return param;
}

The getEncoding() method of the Localizer bean returns the page encoding
for HTML forms.

The JSPs call the translateParameter() method where form input is processed.
For example, the following files call this method:

� search.jsp uses it to get a search key

� updateprofile.jsp uses it to get new user profile information

� login.jsp uses it to get the user name

Encoding URLs in the World-of-Books Demo
All URLs that are embedded in an HTML page must be encoded. They must use the
same encoding as the HTML page. The Localizer bean is the best place to
encapsulate the encodeURL() method. This method encodes a URL according to
the encoding attribute of the Localizer.

The following JSPs call the encodeURL() method:

� Item.jsp

� OrderItem.jsp

� Search.jsp
6-18 Oracle Application Server 10g Globalization Guide

Formatting HTML Pages in the World-of-Books Demo
All embedded URLs for the online bookstore are encoded in ASCII and do not need
to be encoded. The encodeURL() method is called to illustrate the concept of
encoding URLs.

Formatting HTML Pages in the World-of-Books Demo
The online bookstore uses the following locale-sensitive text formatting elements
for HTML pages:

� Font family

� Writing direction

� Text alignment

To support multiple locales simultaneously, the online bookstore externalizes these
elements to a locale-specific cascading style sheet (CSS) instead of hard-coding them
in JSPs. The CSS file structure is the same as the static HTML file structure for the
WOB online help.

The CSS files are as follows:

� $WOB_HOME/docroot/wob/css/style.css (the default CSS)

� $WOB_HOME/docroot/wob/css/ar/style.css

� $WOB_HOME/docroot/wob/css/he/style.css

� $WOB_HOME/docroot/wob/css/iw/style.css

� $WOB_HOME/docroot/wob/css/ja/style.css

� $WOB_HOME/docroot/wob/css/zh/style.css

In $WOB_HOME/docroot/wob/jsp/header.jsp, the getLocalizedURL()
method of the Localizer bean gets the full path of the CSS that corresponds to the
current locale. If there is no CSS that is specific to the locale, then the application
uses the default CSS.

The following is the CSS for Arabic text:

html { direction: rtl }
h3 { font-size: 100%;
 text-align: end;
 font-weight: bold;
 color: #FFFFFF }
A Multilingual Demo for Oracle Application Server 6-19

Accessing the Database in the World-of-Books Demo
The Arabic CSS defines the writing direction of the HTML page as right to left
(RTL). The text is always aligned to the end of the writing direction.

The following is the CSS for Japanese text:

html { direction: ltr }
h3 { font-size: 100%;
 text-align: end;
 font-family: "MS Gothic", "MS Mincho", "Times New Roman"…
 font-weight: bold;
 color: #FFFFFF }
tr { font-family: "MS Gothic", "MS Mincho", "Times New Roman",…
 font-size: 12pt; }
p { font-family: "MS Gothic", "MS Mincho" "Times New Roman",…
 font-size: 12pt}

The Japanese CSS defines the writing direction as left to right (LTR). The text is
aligned to the end of the writing direction. The font families that are used for
displaying Japanese text are MS Gothic and MS Mincho. These are Japanese
Microsoft Windows fonts. If you do not specify the font family in the CSS, then the
application uses the default font of the browser.

Accessing the Database in the World-of-Books Demo
The WOB demo uses the Oracle JDBC driver to access an Oracle9i database. The
JDBC driver transparently converts the data stored in the database to and from Java
strings. No special handling is necessary to access Unicode data stored in the
database in most cases.

There is one case in which you need special data handling. When a Java string is
bound to a column of the NVARCHAR datatype in an INSERT or UPDATE SQL
statement, you should call the setFormOfUse() method of the
OraclePreparedStatement class to tell JDBC that the target column is of the
NVARCHAR datatype. The setFormOfUse() method is called in
$WOB_HOME/src/orcalc/demo/wob2/supp/beans/insertItem.java when
a new book is inserted into the books table.

Organizing the Content of HTML Pages in the World-of-Books Demo
The online bookstore consists of the following translatable content:

� Online help as static HTML and image files

� Strings or messages stored for use in composing an HTML page
6-20 Oracle Application Server 10g Globalization Guide

Organizing the Content of HTML Pages in the World-of-Books Demo
� Dynamic book information such as the book name and author

This section contains the following topics:

� Static Files for World-of-Books Online Help

� Using Resource Bundles for the Content of World-of-Books HTML Pages

Static Files for World-of-Books Online Help
The static HTML files for the WOB online help are located in $WOB_
HOME/docroot/wob/help. The English version of the online help is stored at the
top level of the help directory. The translated help for each locale is stored in the
corresponding help/locale_name directory. For example, the Japanese online
help is stored in the help/ja_JP directory.

The current user’s locale determines which help subdirectory the application uses.
The Localizer bean stores the user’s current locale. The getLocalizedURL()
method returns the correct path of an HTML file that corresponds to the user’s
locale. Given the relative help path of ../help/index.html and the current
locale of ja_JP, this method checks for existence of the following files in the order
they are listed and returns the first one it finds:

� $WOB_HOME/docroot/wob/help/ja_JP/index.html

� $WOB_HOME/docroot/wob/help/ja/index.html

� $WOB_HOME/docroot/wob/help/index.html

The header.jsp file calls this method to get the correct path for every translated
HTML file and uses the result to construct the HREF tag to reference the appropriate
online help.

Using Resource Bundles for the Content of World-of-Books HTML Pages
A list resource bundle stores all translatable messages that comprise the online
bookstore user interface. The resource bundle is located in
$WOB_HOME/src/oracle/demo/wob2/wob
/resource/MessageBundle.java. This resource bundle is translated into 27
languages, and the translated resource bundle names have suffixes that correspond
to the Java locale name.

The getMessage() method of the Localizer bean gets a translated message
from the resource bundle that corresponds to the current locale. Most JSPs call this
method.
A Multilingual Demo for Oracle Application Server 6-21

Organizing the Content of HTML Pages in the World-of-Books Demo
6-22 Oracle Application Server 10g Globalization Guide

Oracle Application Server Translated Langu
A

Oracle Application Server Translated

Languages

The following languages are those into which Oracle Application Server is
translated. Oracle Application Server provides runtime support for more languages
than those into which Oracle Application Server itself is translated. For a list of all
supported languages, see the Oracle9i Globalization Support Guide in the Oracle
Database Documentation Library.

Table A–1 Translated Languages and Abbreviations

Language Oracle Language Abbreviation

ARABIC ar

BRAZILIAN PORTUGUESE ptb

CANADIAN FRENCH frc

CATALAN ca

CZECH cs

DANISH dk

DUTCH nl

FINNISH sf

FRENCH f

GERMAN d

GREEK el

HEBREW iw
ages A-1

HUNGARIAN hu

ITALIAN i

JAPANESE ja

KOREAN ko

LATIN AMERICAN SPANISH esa

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SPANISH e

SWEDISH s

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

Table A–1 Translated Languages and Abbreviations (Cont.)

Language Oracle Language Abbreviation
A-2 Oracle Application Server 10g Globalization Guide

Glossary

character set

Defines the binary values that are associated with the characters that make up a
language. For example, you can use the ISO-8859-1 character set to encode most
Western European languages.

database access descriptor (DAD)

Describes the connect string and Oracle parameters of a target database to which an
Oracle HTTP Server mod_plsql module connects.

encoding

The character set used in a particular programming environment for the locale to
which an Internet application is serving. See page encoding, character set.

locale

Refers to a language and the region (territory) in which the language is spoken.
Information about the region includes formats for dates and currency.

page encoding

The character set an HTML page uses for the locale to which an Internet application
is serving.

Unicode

A universal character set that defines binary values for characters in almost all
languages. Unicode characters can be encoded in 1 to 4 bytes in the UTF-8 character
set, in 2 to 4 bytes in the UTF-16 character set, and in 4 bytes in the UTF-32 character
set.
 Glossary-1

Glossary-2

Index

A
accessing the database server, 4-1
Albany WT J font, 2-12
ALTER SESSION statement

in monolingual applications, 2-8
in multilingual applications, 2-8

Apache::Util module, 3-19
application design, 1-2
architecture

monolingual, 1-2
multilingual, 1-2

B
BC4J, configuring for multilingual support, 5-16
bidirectional languages

formatting HTML pages, 3-20
Business Components for Java (BC4J), configuring

for multilingual support, 5-16

C
cascading style sheets, 3-20
C/C++

database access, 4-5
database access in multilingual applications, 4-6
translatable strings, 3-26

C/C++ runtime, configuring, 5-11
CHAR datatypes, 5-17
character set, definition, 1-2
CharEncoding attribute, 3-13
charset argument, 3-19
charset parameter, 3-4

configuration files
editing manually, 5-3

configuring NLS_LANG
in Oracle HTTP Server files, 5-4
on Windows platforms, 5-6

configuring Oracle HTTP Server for multilingual
support, 5-3

configuring OracleAS Portal for multilingual
support, 5-12

configuring the NLS_LANG environment
variable, 5-4

configuring transfer mode for mod_plsql, 5-9
Content-Type HTTP header, 3-4
CREATE DATABASE statement, 5-17

D
database

centralized, 4-1
configuring, 4-1

database access
C/C++, 4-5
Java, 4-2
JDBC, 4-2
multilingual non-Java applications, 4-2
OCI API, 4-6
Perl, 4-4
PL/SQL, 4-3
Unicode API, 4-7
Unicode bind and define in Pro*C/C++, 4-8
World-of-Books demo, 6-20
Index-1

database character set
setting in the CREATE DATABASE

statement, 5-17
database server

accessing, 4-1
decoding HTTP headers, 3-16

in OracleAS Single Sign-On, 3-16
decoding string-type mobile context information

headers, 3-17
demo

installing, 6-7
See World-of-Books demo, 6-1

determining user locale
monolingual applications, 2-3
multilingual applications, 2-3

developing locale awareness, 2-1
development environments, 1-6
Discoverer

configuring Java Plus for multilingual
support, 5-16

locale awareness, 2-14
doGet() function, 3-5
dynamic environment switching, 5-16

E
editing configuration files, 5-3
encoding

UTF-16, 4-1
UTF-32, 4-1
UTF-8, 4-1

encoding HTML pages, 3-1
encoding URLs, 3-17

Java, 3-18
Perl, 3-19
PL/SQL, 3-19
World-of-Books demo, 6-18

entities
named and numbered, 3-12

environment switching, 5-16
ESCAPE() function, 3-19
escape_uri() function, 3-19

F
fonts

specifying in HTML pages, 3-20
Forms Services

configuring for multilingual support, 5-14
locale awareness, 2-9
locale awareness in a monolingual

application, 2-10
locale awareness in a multilingual

application, 2-10
Forms servlet, 2-11
formsweb.cfg file, 2-11
from_utf8() function, 3-8

G
GET requests, 3-11
getDateTimeInstance() method, 2-5
getParameter() function, 3-13
getWriter() method, 3-5

H
HTML form input

encoding, 3-11
Java, 3-12
named and numbered entities, 3-12
Perl, 3-14
Perl in multilingual applications, 3-14
PL/SQL, 3-13
PL/SQL monolingual applications, 3-14
PL/SQL multilingual applications, 3-14
World-of-Books demo, 6-17
Index-2

HTML page encoding
choosing for monolingual applications, 3-2
choosing for multilingual applications, 3-3
in PL/SQL and PSPs, monolingual

environments, 3-6
in PL/SQL and PSPs, multilingual

environments, 3-6
named and numbered entities, 3-12
specifying, 3-3
specifying in Java servlets and Java Server

Pages, 3-4
specifying in OracleAS Mobile Services, 3-8
specifying in OracleAS Web Cache enabled

applications, 3-9
specifying in Perl, 3-7
specifying in Perl for monolingual

applications, 3-7
specifying in Perl for multilingual

applications, 3-7
specifying in PL/SQL and PL/SQL Server

Pages, 3-5
specifying in the HTML page header, 3-4
specifying in the HTTP header, 3-4
World-of-Books demo, 6-17

HTML pages
concatenating strings, 3-22
embedding text into images, 3-22
fallback mechanism for translation, 3-22
formatting for bidirectional languages, 3-20
formatting in World-of-Books demo, 6-19
formatting to accommodate text in different

languages, 3-20
JavaScript code, 3-22
organizing content for translation, 3-21
organizing static files for translation, 3-22
space for dynamic text, 3-21
specifying fonts, 3-20
translatable C/C++ and Perl strings, 3-26
translatable dynamic content in application

schema, 3-28
translatable strings in message tables, 3-27
translation guidelines, 3-21
user interface strings, 3-21

HTTP Content-Type header, 3-7

HTTP headers
decoding, 3-16
decoding in OracleAS Single Sign-On, 3-16

HttpServletRequest.getParameter() API, 3-12

I
IANA encoding names for commonly used

locales, 3-2
installing the World-of-Books demo, 6-7

J
Java

accessing the database, 4-2
encoding URLs, 3-18
HTML form input, 3-12
organizing translatable static strings, 3-23

Java encoding names for commonly used
locales, 3-2

Java Server Pages
specifying HTML page encoding, 3-4

Java servlets
specifying HTML page encoding, 3-4

JDBC
database access, 4-2

L
LANG environment variable, 5-10, 5-11
languages

OracleAS translated languages, A-1
LC_ALL environment variable, 2-6, 5-10, 5-11
Index-3

locale
as ISO standard, 2-1
as Java locale object, 2-1
as NLS_LANGUAGE and NLS_TERRITORY

parameters, 2-2
as POSIX locale name, 2-2
based on the default ISO locale of the user’s

browser, 2-4
changing operating system locale, 2-6
common representations, 2-2
definition, 1-2
determined by user input, 2-4
using user profile information from an LDAP

directory server, 2-4
locale awareness

C++ applications, 2-6
developing, 2-1
in multilingual Perl and C/C++

applications, 3-1
in OracleAS Discoverer applications, 2-14
Java applications, 2-5
OracleAS Forms Services, 2-9
OracleAS Reports Services, 2-12
OracleAS Wireless Services, 2-9
Perl applications, 2-6
PL/SQL applications, 2-7
SQL applications, 2-7
World-of-Books demo, 6-12

determining locale, 6-13
localizer methods, 6-14

Locale.setDefault() method, 2-5
localizer methods, World-of-Books demo, 6-14

M
manually editing configuration files, 5-3
message tables

translatable strings, 3-27
Mobile Services

specifying HTML page encoding, 3-8
mod_jserv runtime for Java, configuring, 5-10
mod_perl environment, 3-7
mod_perl runtime for Perl scripts,

configuring, 5-11

mod_plsql
configuring transfer mode, 5-9

mod_plsql module
datatypes, 3-13
HTML form input in monolingual

applications, 3-13
mod_plsql runtime for PL/SQL and PL/SQL Server

Pages, configuring, 5-11
monolingual applications

advantages, 1-4
architecture, 1-3
determining user locale, 2-3
disadvantages, 1-4

multilingual applications
advantages, 1-6
architecture, 1-4
database access with C/C++, 4-6
database access with Perl, 4-5
database access with Unicode API, 4-7
database access with Unicode bind and define in

Pro*C/C++, 4-8
determining user locale, 2-3

based on ISO locale, 2-4
based on user input, 2-4
based on user profile, 2-4

disadvantages, 1-6
HTML form input in Perl, 3-14

N
native encodings for commonly used locales, 3-2
native2ascii utility, 3-23
NCHAR datatypes, 5-17
NLS_LANG parameter, 2-7

configuring, 5-4
configuring in Oracle HTTP Server files, 5-4
configuring on Windows platforms, 5-6
setting in a multilingual application

architecture, 5-8
values for commonly used locales, 5-7
Index-4

O
OC4J Java runtime, configuring, 5-11
OCI API

database access, 4-6
Unicode API, 4-7

Oracle Business Components for Java, 5-16
Oracle character set names for commonly used

locales, 3-2
OracleAS Discoverer

configuring Java Plus for multilingual
support, 5-16

locale awareness, 2-14
OracleAS Forms Services

configuring for multilingual support, 5-14
locale awareness, 2-9

OracleAS Infrastructure
and global deployment, 5-1

OracleAS Mobile Services
specifying HTML page encoding, 3-8

OracleAS Portal
configuring for multilingual support, 5-12

OracleAS Reports Services
locale awareness, 2-12

OracleAS Single Sign-On
configuring for multilingual support, 5-13

OracleAS Web Cache
specifying HTML page encoding in Web Cache

enabled applications, 3-9
OracleAS Wireless

configuring encoding for outgoing
messages, 5-13

configuring for multilingual support, 5-13

P
Perl

database access, 4-4
database access in multilingual applications, 4-5
encoding URLs, 3-19
HTML form input, 3-14
HTML form input in multilingual

applications, 3-14
specifying HTML page encoding, 3-7
specifying HTML page encoding for monolingual

applications, 3-7
specifying HTML page encoding for multilingual

applications, 3-7
translatable strings, 3-26

PL/SQL
database access, 4-3
encoding URLs, 3-19
HTML form input, 3-13
HTML form input in monolingual

applications, 3-14
HTML form input in multilingual

applications, 3-14
PL/SQL and PL/SQL Server Pages

specifying HTML page encoding, 3-5
Portal

configuring for multilingual support, 5-12
POSIX locale names, 5-10
POST requests, 3-11
Pro*C/C++

database access, 4-8
programming languages

supported, 1-6
Index-5

R
Reports Server

configuring for multilingual support, 5-15
Reports Services

locale awareness, 2-12
locale awareness in a multilingual

application, 2-13
page encoding in HTML output, 3-10
page encoding in XML output, 3-11
specifying the page encoding, 3-10

runtime default locale, configuring in a monolingual
application architecture, 5-10

S
schema

translatable content, 3-28
Servlet API, 3-12
setContentType() method, 3-5
setlocale() function

monolingual applications, 2-6
multilingual applications, 2-6

setting NLS_LANG
monolingual applications, 5-7

setting NLS_LANG parameter
in a multilingual application architecture, 5-8

Single Sign-On
configuring for multilingual support, 5-13

String.getBytes() method, 2-5
String.getBytes(String encoding) method, 2-5
string-type mobile context information headers

decoding, 3-17
strlen() function, 4-7
switching environments, 5-16

T
text datatypes, 4-7
to_utf8() function, 3-15
transfer mode

configuring for mod_plsql, 5-9
translated languages, A-1
translation

organizing HTML page content, 3-21

U
Unicode

definition, 1-2
Unicode API

database access, 4-7
Unicode bind and define

database access, 4-8
Unicode data

storing in the database, 5-17
UNICODE::MAPUTF8 Perl module, 3-7
url argument, 3-19
URLs

encoding, 3-17
encoding in Java, 3-18
encoding in Perl, 3-19
encoding in PL/SQL, 3-19
encoding in World-of-Books demo, 6-18
with embedded query strings, 3-17

utext datatype, 4-7, 4-8
UTF-16 encoding, 4-1
UTF-32 encoding, 4-1
UTF-8 encoding, 3-14, 4-1

for HTML pages, 3-3
limitations with Netscape 4.x browser, 3-3

UTL_URL package, 3-19
uvarchar datatype, 4-8

W
wcslen() function, 4-7
Web Toolkit API, 3-6
Wireless

configuring encoding for outgoing
messages, 5-13

configuring for multilingual support, 5-13
Index-6

World-of-Books demo
architecture, 6-2
building, 6-9
database access, 6-20
deploying, 6-10
design, 6-4
directory structure, 6-8
encoding URLs, 6-18
formatting HTML pages, 6-19
HTML form input, 6-17
HTML page encoding, 6-17
installing, 6-7
locale awareness, 6-12

determining locale, 6-13
localizer methods, 6-14

online help, 6-21
organizing HTML content, 6-20
organizing static files, 6-21
overview, 6-1
resource bundles, 6-21
running, 6-11
schema design, 6-5

books table, 6-5
customers table, 6-5
docs table (book content), 6-6

searching book contents, 6-16
sorting query results, 6-15
source file location, 6-7
Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Overview of Globalization Support in Oracle Application Server
	Globalizing Internet Applications
	Globalization Concepts
	Locale
	Character Set
	Unicode

	Designing a Global Internet Application
	Monolingual Internet Application Architecture
	Multilingual Internet Application Architecture

	Overview of Developing Global Internet Applications

	Part I Development
	2 Developing Locale Awareness
	Developing Locale Awareness in Global Internet Applications
	Locale Awareness in J2EE and Internet Applications
	Locale Awareness in Java Applications
	Locale Awareness in Perl and C/C++ Applications
	Locale Awareness in SQL and PL/SQL Applications

	Locale Awareness in Oracle Application Server Component Applications
	Locale Awareness in Oracle Application Server Wireless Services
	Locale Awareness in Oracle Application Server Forms Services
	Locale Awareness in Oracle Application Server Reports Services
	Locale Awareness in Oracle Application Server Discoverer

	3 Implementing HTML Features
	Implementing HTML Features for Global Applications
	Encoding HTML Pages
	Specifying the Page Encoding for HTML Pages
	Specifying the Encoding in the HTTP Header
	Specifying the Encoding in the HTML Page Header

	Specifying the Page Encoding in Java Servlets and Java Server Pages
	Specifying the Page Encoding in PL/SQL Server Pages
	Specifying the Page Encoding in Perl
	Specifying the Page Encoding in Oracle Application Server Mobile Services Applications
	Specifying the Page Encoding in Oracle Application Server Web Cache Enabled Applications
	Specifying the Page Encoding in Oracle Application Server Reports Services Applications
	Specifying the Page Encoding in JSP Reports for the Web
	Specifying the Page Encoding in HTML for Oracle Application Server Reports Services
	Specifying the Page Encoding in XML for Oracle Application Server Reports Services

	Handling HTML Form Input
	Handling HTML Form Input in Java
	Handling HTML Form Input in PL/SQL
	Handling HTML Form Input in Perl
	Handling Form Input in Oracle Application Server Mobile Services Applications

	Decoding HTTP Headers
	Decoding HTTP Headers from Oracle Application Server Single Sign-On
	Decoding String-type Mobile Context Information Headers in Oracle Application Server Wireless Ser...

	Encoding URLs
	Encoding URLs in Java
	Encoding URLs in PL/SQL
	Encoding URLs in Perl

	Formatting HTML Pages to Accommodate Text in Different Languages
	Organizing the Content of HTML Pages for Translation
	Translation Guidelines for HTML Page Content
	Organizing Static Files for Translation
	Organizing Translatable Static Strings for Java Servlets and Java Server Pages
	Organizing Translatable Static Strings in C/C++ and Perl
	Organizing Translatable Static Strings in Message Tables
	Organizing Translatable Dynamic Content in Application Schema

	4 Using a Centralized Database
	Using a Centralized Database and Accessing the Database Server
	Using JDBC to Access the Database
	Using PL/SQL to Access the Database
	Using Perl to Access the Database
	Using C/C++ to Access the Database
	Using the OCI API to Access the Database
	Using the Unicode API Provided with OCI to Access the Database
	Using Unicode Bind and Define in Pro*C/C++ to Access the Database

	Part II Deployment
	5 Configuring Oracle Application Server for Global Deployment
	Installing Oracle Application Server for Global Deployment
	Configuring Oracle HTTP Server and OC4J for Global Deployment
	About Manually Editing HTTP Server and OC4J Configuration Files
	Configuring the NLS_LANG Parameter
	Preconfigured NLS_LANG Values

	Configuring Transfer Mode for mod_plsql Runtime
	Configuring the Runtime Default Locale
	mod_jserv Runtime for Java
	OC4J Java Runtime
	mod_plsql Runtime for PL/SQL and PL/SQL Server Pages
	mod_perl Runtime for Perl Scripts
	C/C++ Runtime

	Configuring Oracle Application Server Portal for Global Deployment
	Configuring Oracle Application Server Wireless for Global Deployment
	Configuring Encoding for Outgoing Email Messages

	Configuring Oracle Application Server Single Sign-On for Global Deployment
	Configuring Oracle Application Server Forms Services for Global Deployment
	Configuring Oracle Application Server Reports Services for Global Deployment
	Configuring Oracle Application Server Discoverer for Global Deployment
	Configuring Oracle Business Components for Java for Global Deployment
	Configuring a Centralized Unicode-enabled Database to Support Global Deployment

	6 A Multilingual Demo for Oracle Application Server
	Description of the World-of-Books Demo
	Architecture and Design of the World-of-Books Demo
	World-of-Books Architecture
	World-of-Books Design
	World-of-Books Schema Design

	Installing the World-of-Books Demo
	Building, Deploying, and Running the World-of-Books Demo
	How to Build the World-of-Books Demo
	How to Deploy the World-of-Books Demo
	How to Run the World-of-Books Demo

	Locale Awareness of the World-of-Books Demo
	How World-of-Books Determines the User’s Locale
	How World-of-Books Uses Locale Information in Localizer Methods
	How World-of-Books Sorts Query Results
	How World-of-Books Searches the Contents of Books

	Encoding HTML Pages for the World-of-Books Demo
	Handling HTML Form Input for the World-of-Books Demo
	Encoding URLs in the World-of-Books Demo
	Formatting HTML Pages in the World-of-Books Demo
	Accessing the Database in the World-of-Books Demo
	Organizing the Content of HTML Pages in the World-of-Books Demo
	Static Files for World-of-Books Online Help
	Using Resource Bundles for the Content of World-of-Books HTML Pages

	A Oracle Application Server Translated Languages
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

