
Oracle® Application Server 10g
High Availability Guide

10g (9.0.4)

Part No. B10495-02

March 2004

Oracle Application Server 10g High Availability Guide, 10g (9.0.4)

Part No. B10495-02

Copyright © 2003, 2004 Oracle. All rights reserved.

Primary Author: Kai Li, Thomas Van Raalte

Contributor: Jay Feenan, Shari Yamaguchi, Ashesh Parekh, Susan Kornberg, Pradeep Bhat, Ashish
Prabhu, Mukul Paithane, Wei Hu, Wayne Milsted, Jerry Bortveldt, Michael Moon, David Rowlands, Paul
Mackin, Wes Root

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. ix

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Organization ... xii
Related Documents .. xii
Conventions ... xiii

1 Introduction

What is High Availability ... 1-1
High Availability in Oracle Application Server 10g.. 1-1
Types of Failures... 1-3
Organization of this Guide .. 1-4
High Availability Information in Other Documentation... 1-4

2 Middle Tier High Availability

OracleAS Middle Tier Overview .. 2-1
OracleAS Middle Tier Terminology.. 2-2
Services Available .. 2-3

J2EE ... 2-3
HTTP... 2-3
Portal... 2-3
Business Intelligence... 2-3
Oracle Application Server Forms Services .. 2-4
Single Sign-On... 2-4
Caching... 2-4

Features and Components for Middle Tier High Availability .. 2-5
Oracle Application Server Instance High Availability ... 2-5
Oracle Application Server Clusters ... 2-6

Types of Oracle Application Server Clusters.. 2-7
Cluster-Wide Configuration for Oracle Application Server Clusters that are
Managed Using a Repository.. 2-9
Requirements for Oracle Application Server Instances to Join Oracle Application
Server Clusters that are Managed Using a Repository... 2-10

iv

Properties of Oracle Application Server Instances in Oracle Application Server
Clusters that are Managed Using a Repository... 2-10

Oracle Application Server Web Cache Clusters ... 2-11
OC4J Islands... 2-11

Web Application Session State Replication with OC4J Islands .. 2-12
Web Application Session State Protecting Against Software Problems................... 2-12
Web Application Session State Replication Protecting Against Hardware
Problems... 2-13
Configuring OC4J Islands With High Availability.. 2-14

Stateful Session EJB High Availability Using EJB Clustering ... 2-14
JNDI Namespace Replication... 2-15
OC4J Distributed Caching Using Java Object Cache.. 2-15

Process Monitoring and Restart .. 2-15
Oracle Process Manager.. 2-16
Oracle Notification System... 2-16

High Availability Through Distributed Configuration... 2-16
Other High Availability Components.. 2-17

Improving Availability with an External Load Balancer ... 2-17
Types of External Load Balancers .. 2-17
High Availablity Benefits of External Load Balancing.. 2-18

Improving Availability with Operating System Clusters .. 2-18
HTTP Service High Availability .. 2-18

Web Cache and Oracle HTTP Server High Availability Summary ... 2-18
OC4J Load Balancing Using mod_oc4j .. 2-19

OC4J Load Balancing Using Local Afinity and Weighted Routing Options 2-20
Choosing a mod_oc4j Routing Algorithm.. 2-21

J2EE High Availability ... 2-21
EJB Client Routing .. 2-21

Oracle Application Server Portal High Availability .. 2-22
Oracle Application Server Wireless High Availability.. 2-23
Business Intelligence High Availability ... 2-24

Oracle Application Server Reports Services High Availability.. 2-24
High Availability Solution.. 2-24

Oracle Application Server Discoverer High Availability.. 2-25
Oracle Application Server Forms Services High Availability .. 2-25
Oracle Application Server Integration High Availability ... 2-26
Middle Tier Recovery Solutions... 2-27

Restarting Processes.. 2-27
Restoring from Cold Backup ... 2-27
Restoring from Online Backup.. 2-27
Disaster Recovery.. 2-28
DCM Archive/Recover .. 2-28
Configuration Cloning ... 2-29

3 Infrastructure High Availability

Oracle Application Server 10g Infrastructure Overview .. 3-1
Oracle Application Server 10g Infrastructure Components... 3-2

v

Oracle Application Server Metadata Repository... 3-2
When to Use Oracle Application Server Metadata Repository.. 3-3

Oracle Identity Management.. 3-3
Oracle Internet Directory ... 3-4
Oracle Application Server Single Sign-On ... 3-4

Oracle HTTP Server ... 3-4
Oracle Application Server Containers for J2EE (OC4J) .. 3-5
Oracle Enterprise Manager - Application Server Console ... 3-5

High Availability Configurations for Infrastructure .. 3-5
Oracle Application Server Cold Failover Clusters .. 3-7

Terminology... 3-7
Hardware Cluster .. 3-7
Failover.. 3-7
Primary Node... 3-7
Secondary Node... 3-7
Logical or Virtual IP .. 3-7
Virtual Hostname .. 3-8
Shared Storage.. 3-8

Architecture (UNIX) ... 3-8
Architecture (Windows) ... 3-10
Middle Tier on OracleAS Cold Failover Cluster Nodes... 3-12

Oracle Application Server Active Failover Cluster (UNIX).. 3-14
Load Balancer Configuration ... 3-16

4 Managing and Operating Middle Tier High Availability

Middle Tier High Availability Configuration Overview ... 4-1
Configuration Overview OracleAS Clusters Managed Using a Repository 4-2

Oracle Application Server Clusters Managed Using Database Repository 4-2
Oracle Application Server Clusters Managed Using File-Based Repository 4-2
Common Tasks for OracleAS Cluster Configuration ... 4-3

Manually Configured OracleAS Clusters Configuration Overview .. 4-3
OracleAS Web Cache Cluster Overview .. 4-4

Managing and Configuring OracleAS Clusters ... 4-4
Creating and Managing OracleAS Clusters ... 4-4

Associating an Instance with a Farm ... 4-5
Associating an Instance to be Managed Using a Database Repository 4-5
Associating an Instance to be Managed Using a File-Based Repository 4-5

Creating OracleAS Clusters Using Application Server Console.. 4-5
Managing OracleAS Clusters Using Application Server Console....................................... 4-6

Managing Application Server Instances in an OracleAS Cluster ... 4-7
Adding an Application Server Instance to an OracleAS Cluster... 4-7
Removing an Application Server Instance from an OracleAS Cluster 4-8

Using a File-Based Repository with OracleAS Clusters ... 4-9
Initializing File-Based Repository Host and Adding Instances to a Farm 4-9

Testing an Instance With whichFarm and Leaving a Farm... 4-9
Initializing the Repository Host Instance for a File-Based Repository 4-11
Joining a Farm Managed Using a File-Based Repository... 4-11

vi

Managing Instances in a Farm That Uses a File-Based Repository ... 4-12
Managing Oracle Application Server Instances and Clusters With a File-Based
Repository ... 4-12
Availability Issues for OracleAS Clusters With a File-Based Repository........................ 4-12
Exporting and Importing Configuration Information With a File-Based Repository ... 4-13
Moving an Instance Between Repositories .. 4-14

Moving to a Database-Based Repository .. 4-14
Moving to Another File-Based Repository ... 4-15

Enabling SSL For Communication Between Instances That are Using a File-Based
Repository ... 4-15

Generating the Keystore .. 4-16
Shutdown Oracle Application Server Processes on Each Instance 4-16
Set Up the Keystore Information File on Each Instance in the Farm 4-16
Enable SSL By Configuring dcmCache.xml.. 4-16
Verify that Configuration Changes are Effected.. 4-17
Start Each Instance in the Farm .. 4-17
Adding a New Instance to a SSL-Enabled Farm.. 4-17

OC4J Configuration with an OracleAS Cluster .. 4-18
Overview of OracleAS Cluster Configuration for OC4J Instances .. 4-18
Cluster-Wide Configuration Changes and Modifying OC4J Instances 4-19

Creating or Deleting OC4J Instances on OracleAS Clusters.. 4-19
Deploying Applications on OracleAS Clusters ... 4-20
Configuring Web Application State Replication for OracleAS Clusters 4-20
Configuring EJB Application State Replication for OracleAS Clusters 4-21
Configuring Stateful Session Bean Replication for OracleAS Clusters............................ 4-22

End of Call Replication .. 4-22
JVM Termination Replication ... 4-23

Configuring OC4J Instance-Specific Parameters .. 4-23
Configuring OC4J Islands and OC4J Processes... 4-23
Configuring Port Numbers and Command Line Options... 4-24

Oracle HTTP Server Configuration with OracleAS Clusters ... 4-25
mod_oc4j Load Balancing With OracleAS Clusters ... 4-25

Load Balancing Overview .. 4-25
Setting Load Balancing Options .. 4-26

Configuring Oracle HTTP Server Instance-Specific Parameters.. 4-26
Security – Configuring Single Sign-On .. 4-27
Advanced Clustering Configuration ... 4-29

Routing Between Instances in Same Farm .. 4-29
Routing Between Instances Across Firewalls.. 4-30

Opening Intranet Communication through the OracleAS Port Tunnel 4-31
Opening OracleAS Ports To Communicate Through Intranet.. 4-32

5 Managing Infrastructure High Availability

Oracle Application Server Cold Failover Clusters .. 5-1
Starting Up .. 5-1
Stopping... 5-2

Oracle Application Server Active Failover Cluster (UNIX) ... 5-3

vii

Starting Up .. 5-3
Shutting Down.. 5-5
Monitoring .. 5-5
Failing Over During an Outage ... 5-6
Restoring Resiliency After an Outage ... 5-7
Synchronizing Configuration Files Using the Oracle Application Server Active Failover
Cluster Runtime Control Utility (afcctl) .. 5-7

Setting Up afcctl .. 5-8
Obtain the afcctl Utility... 5-8
Install the afcctl Utility .. 5-8

Using afcctl... 5-8
Setting the Default Baseline Timestamp... 5-9
Synchronizing Files From a Node to Other Nodes in an OracleAS Active
Failover Cluster.. 5-9
Listing Modified Files on a Node Since the Last Synchronization............................ 5-10
Excluding Specific Configuration Files from Synchronization.................................. 5-11

Example ... 5-11
Best Practises for Using afcctl... 5-12

6 Oracle Application Server Disaster Recovery

Oracle Application Server 10g Disaster Recovery Solution... 6-2
Terminology.. 6-2
Requirements .. 6-3
Topology.. 6-4

Setting Up the OracleAS Disaster Recovery Environment .. 6-5
Planning and Assigning Hostnames ... 6-6

Physical Hostnames.. 6-8
Logical Hostnames.. 6-9
Virtual Hostname.. 6-9

Configuring Hostname Resolution.. 6-9
Using Local Hostnaming File Resolution... 6-10
Using DNS Resolution .. 6-11

Additional DNS Server Entries for Oracle Data Guard .. 6-13
Secure Shell (SSH) Port Forwarding... 6-14

Installing Oracle Application Server 10g Software .. 6-14
Setting Up Oracle Data Guard .. 6-15

Enable ARCHIVELOG Mode for Production Database... 6-16
Identifying the Production Database Datafiles ... 6-18
Make a Copy of the Production Database.. 6-18
Create a Control File for the Standby Database .. 6-19
Prepare the Initialization Parameter File to be Copied to the Standby Database 6-19
Copy Files from the Production System to the Standby System 6-19
Set Initialization Parameters for the Physical Standby Database 6-21
Create a Windows Service (for Microsoft Windows systems) .. 6-21
Create a New Password File on the Standby System ... 6-21
Configure Listeners for the Production and Standby Databases...................................... 6-22
Enable Dead Connection Detection on the Standby System ... 6-22

viii

Create Oracle Net Service Names.. 6-22
Create a Server Parameter File for the Standby Database ... 6-23
Start the Physical Standby Database ... 6-24
Enable Archiving to the Physical Standby Database.. 6-24
Start Remote Archiving... 6-24
Verify the Physical Standby Database .. 6-24

Synchronizing Baseline Installation with Standby Site ... 6-26
Backing Up Production Site .. 6-26

Shipping Infrastructure Database Archive Logs .. 6-27
Backing Up Configuration Files (Infrastructure and Middle Tier).. 6-28

Restoring to Standby Site .. 6-29
Restoring Configuration Files (Infrastructure and Middle Tier) ... 6-29
Restoring the Infrastructure Database - Applying Log Files .. 6-30

Scheduled Outages ... 6-31
Site Switchover Operations.. 6-32

Unplanned Outages .. 6-35
Site Failover Operations ... 6-35

Setting Up the New Standby Database... 6-37
Wide Area DNS Operations .. 6-37

Using a Wide Area Load Balancer.. 6-37
Manually Changing DNS Names ... 6-38

A Setting Up a DNS Server

Index

ix

Send Us Your Comments

Oracle Application Server 10g High Availability Guide, 10g (9.0.4)

Part No. B10495-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

x

xi

Preface

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documents

■ Conventions

Intended Audience
Oracle Application Server 10g High Availability Guidet is intended for administrators,
developers, and others whose role is to deploy and manage Oracle Application Server
10g with high availability requirements.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

xii

Organization
The following chapters make up this guide:

Chapter 1, "Introduction"
This chapter provides an introduction to high availability with Oracle Application
Server 10g.

Chapter 2, "Middle Tier High Availability"
This chapter provides a description of high availability in the Oracle Application
Server 10g middle tier.

Chapter 3, "Infrastructure High Availability"
This chapter describes the high availability solutions available for the Oracle
Application Server 10g Infrastructure.

Chapter 4, "Managing and Operating Middle Tier High Availability"
This chapter provides instructions to manage and operate the middle tier high
availability environment.

Chapter 5, "Managing Infrastructure High Availability"
This chapter provides instructions to set up and manage the Infrastructure high
availability solutions.

Chapter 6, "Oracle Application Server Disaster Recovery"
This chapter describes the disaster recovery solution for OracleAS. The solution covers
both the middle and Infrastructure tiers.

Appendix A, "Setting Up a DNS Server"
This appendix provides instructions for setting up a DNS server relevant to the Oracle
Application Server Disaster Recovery solution.

Related Documents
For more information, see these Oracle resources:

■ Oracle Application Server Documentation Library

■ Oracle Application Server Platform-Specific Documentation on Oracle Application
Server Disk 1

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

xiii

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xiv

The following table describes typographic conventions used in code examples and
provides examples of their use.

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating systems
and provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

xv

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (’) do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_
NAMETNSListener

Convention Meaning Example

xvi

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is C:\oracle. If you install
Oracle9i release 1 (9.0.1) on a computer
with no other Oracle software installed,
then the default setting for the first Oracle
home directory is C:\oracle\ora90. The
Oracle home directory is located directly
under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

Introduction 1-1

1
Introduction

In this release of Oracle Application Server 10g, 10g (9.0.4), work has been done to
improve and extend the high availability solutions for Oracle Application Server.
Several new solutions for the Oracle Application Server 10g Infrastructure have been
tested and are described in this book. All of these solutions seek to ensure that
applications that you deploy on Oracle Application Server 10g meet the required
availability to achieve your business goals. The solutions and procedures described in
this book seek to eliminate single points of failure of any Oracle Application Server
components with no or minimal outage in service.

This chapter explains high availability and its importance from the perspective of
Oracle Application Server.

What is High Availability
The availability of a system or any component in that system is defined by the
percentage of time that it works normally. A system works normally when it meets its
correctness and performance specifications. For example, a system that works
normally for twelve hours per day is 50% available. A system that has 99% availability
is down 3.65 days per year on average. System administrators can expect critical
systems to have 99.99% or even 99.999% availability. This means that the systems
experience as little as four to five minutes of downtime per year.

Availability may not be constant over time. For example, availability may be higher
during the daytime when most transactions occur, and lower during the night and on
weekends. In the event of an unexpected disaster, such as a fire or earthquake, a
system may go down suddenly for a period of time. However, because the Internet
provides a global set of users, it is a common requirement that systems always be
available.

Redundant components can improve availability, but only if a spare component takes
over immediately for a failed component. If it takes ten minutes to detect a component
failure and twenty additional minutes to start the spare component, then the system
experiences a 50% reduction in availability for that hour of service.

Oracle Application Server is designed to provide a wide variety of high availability
solutions, ranging from load balancing and basic clustering to providing maximum
system availability during catastrophic hardware and software failures.

High Availability in Oracle Application Server 10g
Oracle Application Server consists of many components that can be deployed in
distributed topologies. The underlying paradigm used to enable high availability for
Oracle Application Server is clustering, which unites various Oracle Application

High Availability in Oracle Application Server 10g

1-2 High Availability Guide

Server components in certain permutations to offer scalable and unified functionality,
and redundancy should any of the individual components fail.

Before you continue, we recommend that you read the book Oracle Application Server
10g Concepts to gain an understanding of the different components in Oracle
Application Server. The descriptions there will allow you to understand the rest of the
text in this guide more efficiently.

Oracle Application Server has several solutions and techniques to achieve high
availability, which are all described in this guide. They allow you to achieve the
following goals:

■ Redundancy

A highly available system requires its sub-systems to be redundant. All Oracle
Application Server components can be deployed redundantly using the
procedures and solutions described in this book. Depending on the type of
components, they can be deployed in an active-active configuration or
active-passive configuration.

In active-active configuration, multiple instances of a component service client
requests at the same time. If one instance fails, the requests being serviced by that
instance can be fulfilled by other active instances; the failure and failover of that
instance is transparent to clients. An active-active configuration can usually be
achieved by clustering instances of components together.

In active-passive configuration, requests are usually serviced by one instance of a
component. Upon failure of that component, another instance is made active to
respond to the request workload.

■ Death Detection and Auto Restart

Software processes belonging to Oracle Application Server components, local or
distributed, are managed by a central process management system. This system is
able to detect the death of processes and restart them even if they are distributed
over multiple machines. The system allows customization of parameter values
that define process death and restart (such as number of heartbeats). The processes
implementing the process management system are themselves redundant as each
has a shadow process.

■ Clustering

Clustering components of a system together allows the components to be viewed
functionally as a single entity from the perspective of a client. A cluster increases
the scalability, availability, and manageability of the components.

Several types of clusters can exist with Oracle Application Server components.
Procedures to create and configure these clusters are comprehensively
documented in this book.

■ State Replication and Routing

For stateful client requests, Oracle Application Server can replicate client state in
order to enable stateful failover of requests in the event that processes servicing
these requests fail. For J2EE requests, replicating client state for J2EE applications
can be done declaratively or programmatically, depending on the mechanism
being used. For most other components, state-based routing using cookies is
available.

■ Connection Failure Management

Types of Failures

Introduction 1-3

Clients often connect to services on the server and reuse these connections. When
a process implementing one of these services on the server is restarted, the
connection may need to be re-established.

Oracle Application Server components ensure that if a reused connection fails, the
connection is retried before a failure condition is propagated to the rest of the
system. This allows clients to be transparent to any failures.

■ Backup and Recovery

Oracle Application Server provides facilities for backing up system state and using
this backup to recover from failures. In certain circumstances, a component or
system failure may not be repairable. The Oracle Application Server Backup and
Recovery Tool can be used to back up the system at certain intervals and restore a
backup when an unrepairable failure occurs.

For specific problems localized to the HTTP listener and J2EE container, a runtime
configuration management system allows these components to be check pointed
quickly and also allows for undo operations for configuration errors.

■ Disaster Recovery

Natural and physical disasters can happen to areas where an Oracle Application
Server site hosting critical applications is physically located. A solution for
recovering from such disasters is documented in this guide. This solution is a
site-to-site recovery solution that allows the backing up of the state of an entire
Oracle Application Server site and recovering it to another site that is physically
distant from the first.

Types of Failures
Table 1–1 depicts the various types of failures that are possible with the Oracle
Application Server system and the strategies that are used to prevent or solve the
failures. For the purpose of discussion, maintenance activities during planned
downtime is also included.

As depicted, solutions exist to prevent or recover from unplanned system failures to
unintentional human errors. These solutions enable Oracle Application Server to be
robust and reliable, and offer high availablity to the applications that it hosts.

Table 1–1 System downtime, failures, and availability solutions

Downtime Type Failure Type Solution

Unplanned
Downtime

System Failure Load balancers, Farm, Oracle Process
Management and Notification, Oracle
Application Server Active Failover
Cluster, Oracle Application Server
Cold Failover Clusters

Data Failure and Disaster Remote Site, Backup and Recovery,
Oracle Data Guard

Human Error Backup and Recovery, Oracle Data
Guard

Planned Downtime System Maintenance Distributed and Dynamic
Configuration

Data Maintenance No downtime required as data is
stored in Oracle database. Backup and
Recovery tool for configuration files in
filesystem.

Organization of this Guide

1-4 High Availability Guide

Organization of this Guide
This guide has been organized into several chapters using the layers of the middle tier
and Oracle Application Server Infrastructure as a baseline. When the term "middle
tier" is mentioned in this book, the reference is made generically to the Oracle
Application Server middle tier installation types. However, where Oracle Application
Server Clusters are discussed, only the J2EE and Web Cache installation type is
inferred as this is the only middle tier installation type that can be part of an Oracle
Application Server Cluster.

Chapters 2 and 3 contain the description and configuration of the middle tier for high
availability, respectively. Chapters 3 and 5 have the similar organization of information
but for the Infrastructure. Chapter 6 contains the setup and operational information
for the site-to-site Oracle Application Server Disaster Recovery solution.

High Availability Information in Other Documentation
The following table provides a list of cross-references to high availability information
in other documents in the Oracle library. This information mostly pertains to high
availability of various Oracle Application Server components.

Table 1–2 Cross-references to high availability information in Oracle documentation

Component Location of Information

Overall high availability concepts In the high availability chapter of Oracle Application Server 10g Concepts.

Oracle installer In the chapter for installing in a high availability environment in Oracle
Application Server 10g Installation Guide.

Oracle Application Server Backup
and Recovery Tool

In the backup and restore part of Oracle Application Server 10g Administrator’s
Guide.

Oracle Application Server Web
Cache

Oracle Application Server Web Cache Administrator’s Guide

Identity Management service
replication

In "Advanced Configurations" chapter of Oracle Application Server Single
Sign-On Administrator’s Guide.

Identity Management high
availability deployment

In "Directory Replication and High Availability" chapter of Oracle Internet
Directory Administrator’s Guide.

In "Oracle Identity Management Deployment Planning" chapter of Oracle
Identity Management Concepts and Deployment Planning Guide.

Database high availability Oracle High Availability Architecture and Best Practices

Distributed Configuration
Management commands

Distributed Configuration Management Reference Guide

Oracle Process Management and
Notification commands

Oracle Process Manager and Notification Server Administrator’s Guide

OC4J high availability Oracle Application Server Containers for J2EE Services Guide

Oracle Application Server Containers for J2EE User’s Guide

Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide

Java Object Cache Oracle Application Server Web Services Developer’s Guide

Load balancing to OC4J processes Oracle HTTP Server Administrator’s Guide

Oracle Application Server
Wireless high availability

Oracle Application Server Wireless Administrator’s Guide

High Availability Information in Other Documentation

Introduction 1-5

In addition, references to these and other documentation are noted in the text of this
guide, where applicable.

Oracle Application Server
Reports Services high availability

Oracle Application Server Reports Services Publishing Reports to the Web

Oracle Application Server
Discoverer high availability

Oracle Application Server Discoverer Configuration Guide

Oracle Application Server Forms
Services high availability

Oracle Application Server Forms Services Deployment Guide

Oracle Application Server
InterConnect ini file information

Oracle Application Server InterConnect User’s Guide

Table 1–2 (Cont.) Cross-references to high availability information in Oracle documentation

Component Location of Information

High Availability Information in Other Documentation

1-6 High Availability Guide

Middle Tier High Availability 2-1

2
Middle Tier High Availability

This chapter describes solutions that are available to protect the Oracle Application
Server middle tier from failures. It is organized into the following main sections:

■ OracleAS Middle Tier Overview

■ Features and Components for Middle Tier High Availability

■ HTTP Service High Availability

■ J2EE High Availability

■ Oracle Application Server Portal High Availability

■ Oracle Application Server Wireless High Availability

■ Business Intelligence High Availability

■ Oracle Application Server Forms Services High Availability

■ Oracle Application Server Integration High Availability

■ Middle Tier Recovery Solutions

OracleAS Middle Tier Overview
OracleAS middle tier consists of components that provide front-end application
services to clients. The middle tier can be created with one of three installation types:

■ J2EE and Web Cache

This installation type installs components for Oracle Application Server
Containers for J2EE (OC4J) and Oracle Application Server Web Cache (OracleAS
Web Cache). These components provide J2EE 1.3 runtime containers, and static
and dynamic content caching functionality. Of the three installation types, J2EE
and Web Cache installations are the only ones that can be clustered together as
OracleAS Clusters.

■ Portal and Wireless

This installation type installs Oracle Application Server Portal and Oracle
Application Server Wireless components in addition to the components in the J2EE
and Web Cache installation type.

■ Business Intelligence and Forms

This installation installs components for Oracle Application Server Forms Services,
Oracle Application Server Reports Services, Oracle Application Server Discoverer,
Oracle Application Server Personalization, and components in the Portal and
Wireless installation type.

OracleAS Middle Tier Overview

2-2 High Availability Guide

For running J2EE applications, the J2EE and Web Cache installation type provides the
core functionality to do so. This includes HTTP services through Oracle HTTP Server.
J2EE applications can be enabled with single sign-on functionality if the middle tier is
configured to use the Oracle Identity Management framework in the OracleAS
Infrastructure.

OracleAS Middle Tier Terminology
The following terms are useful to review before discussing Oracle Application Server
middle tier high availability:

■ Oracle Application Server Instance: An Oracle Application Server instance (also
called an application server instance and OracleAS instance) is the set of processes
required to run the configured components within an application server
installation. There can be only one application server instance per application
server installation. The terms installation and instance are sometimes used
interchangeably; however, note that an installation is the set of files installed into
an Oracle home, while an instance is a set of processes associated with those files.

■ Component Instance: Component instances include a single Oracle HTTP Server
process or multiple Oracle Application Server Containers for J2EE (OC4J)
instances (see Figure 2–2).

■ Oracle Application Server Cluster: An Oracle Application Server Cluster
(OracleAS Cluster) is a collection of application server instances with identical
configurations and application deployments. Oracle Application Server Clusters
enforce homogeneity between instances that are part of the cluster so that the
cluster appears and functions as a single instance. With appropriate front-end load
balancing, any instance in an Oracle Application Server Cluster can serve client
requests. This simplifies configuration and deployment across multiple instances
and provides high availability for applications deployed to Oracle Application
Server Clusters. Oracle Application Server Clusters can be managed using a
database or file-based repository. They can also be manually configured without a
repository. See "Oracle Application Server Clusters" on page 2-6 for more details.

■ OC4J Island: An Oracle Application Server Containers for J2EE (OC4J) island is a
group of OC4J processes that replicate session state, for stateful Web applications,
among each OC4J process that is part of the island. OC4J processes in an island
can be on multiple nodes. When an OC4J island shares the same name across
OracleAS instances, session state is replicated across the OracleAS instances.

Note: Oracle Application Server ProcessConnect and Oracle
Application Server InterConnect have their own installers that are run
from their own CD-ROMs.

See Also: Oracle Application Server 10g Installation Guide for your
platform for complete information on Oracle Application Server
installation types.

Note: The Portal and Wireless, and Business Intelligence and Forms
installation types always require the Oracle Application Server
Metadata Repository and Oracle Identity Management services,
because components in these middle tier types need to access their
schemas in the Oracle Application Server Metadata Repository.

OracleAS Middle Tier Overview

Middle Tier High Availability 2-3

■ Oracle Application Server Farm: A Farm is a collection of application server
instances that share the same Oracle Application Server Infrastructure or that use
the same application server instance for their file-based repository host. An Oracle
Application Server Farm can include application server instances that are in an
OracleAS Cluster, as well as those that are not (Figure 2–2).

Services Available
The three installation types mentioned above provide the following services to
application clients:

J2EE
J2EE services are provided by OC4J. OC4J is a J2EE-compliant container providing a
JSP, Servlet, and EJB runtime environment. OC4J can be clustered together to provide
failover and redundancy to clients. See "Oracle Application Server Clusters" on
page 2-6 and Chapter 4, "Managing and Operating Middle Tier High Availability".

HTTP
Oracle HTTP Server provides HTTP support for Oracle Application Server. It is based
on the open source Apache HTTP Server (version 1.3.27) with several standard
Apache and OracleAS-specific modules. Oracle HTTP Server is a component of
OracleAS Instances in the middle tier. HTTP support for the Infrastructure tier is also
provided by Oracle HTTP Server (refer to the section "Oracle HTTP Server" on
page 3-4).

Additionally, Oracle Application Server Web Cache (OracleAS Web Cache) provides a
cache for requested HTTP objects. See the section called "Caching" on page 2-4.

Portal
OracleAS provides an out-of-the-box enterprise portal that does not require extensive
programming and maintenance. You can use Oracle Application Server Portal
(OracleAS Portal) and its associated components to build, deploy, and maintain
self-service and integrated enterprise portals. OracleAS Portal allows for self-service
content management and publishing, wizard-based development, and Web services
deployment and publishing in an extensible framework. Oracle Application Server
Portal Developer Kit, Oracle Ultra Search, and Oracle Application Server Syndication
Services support OracleAS Portal to provide these functionalities. Refer to "Oracle
Application Server Portal High Availability" on page 2-22 for high availability details.

Business Intelligence
Oracle Application Server 10g provides business intelligence services through several
components:

■ Oracle Application Server Reports Services

Oracle Application Server Reports Services publish high quality, dynamically
generated reports on a scalable, secure platform. These reports can be delivered
through Web-browers or non browser interface.

■ Oracle Application Server Discoverer

See Also: Oracle Application Server 10g Concepts

See Also: Oracle HTTP Server Administrator’s Guide

See Also: Oracle Application Server Portal Configuration Guide

OracleAS Middle Tier Overview

2-4 High Availability Guide

Oracle Application Server Discoverer enables you to perform dynamic, ad-hoc
query reporting and analysis for Web browser delivery.

■ Oracle Application Server Personalization

Oracle Application Server Personalization dynamically serves personalized
content recommendations to both registered and anonymous visitors as they
browse your site.

Refer to "Business Intelligence High Availability" on page 2-24 for a discussion of high
availability for these components.

Oracle Application Server Forms Services
Oracle Application Server Forms Services (OracleAS Forms Services) is a
comprehensive application framework optimized to deploy OracleAS Forms Services
applications in a multi-tiered environment. It is a middle tier application framework
for deploying complex, transactional forms applications.

You can build new applications with Forms Developer and deploy them to the Internet
with OracleAS Forms Services. Developers can also take current applications that were
previously deployed in the legacy client-server model and move them to a three-tier
architecture without changing the application code.

At runtime, Oracle Application Server Forms Services has two components: a servlet
and a separate runtime process. Refer to "Oracle Application Server Forms Services"
on page 2-4 for information on how they can be made highly available.

Single Sign-On
Single sign-on service in Oracle Application Server 10g is provided by Oracle
Application Server Single Sign-On (OracleAS Single Sign-On), which is part of the
Oracle Identity Management framework. This framework allows all applications
deployed on Oracle Application Server and its components, such as OracleAS Portal
and OracleAS Reports Services, to have a centralized authentication and authorization
system for users. Users need only log in once to access any of the applications and
resources they are authorized for. The credentials for users are stored in an LDAP
version 3-compliant repository (Oracle Internet Directory).

On the middle tier, the Apache module, mod_osso, allows single sign-on requests to
be forwarded to the single sign-on server in the OracleAS Infrastructure where the
other components of the framework reside. These components are Oracle Internet
Directory, and Oracle Application Server Certificate Authority. They are further
discussed in Chapter 3, "Infrastructure High Availability".

Caching
Two main caching mechanisms are available in OracleAS:

■ OracleAS Web Cache

OracleAS Web Cache is a HTTP-level cache deployed in front of Oracle HTTP
Server. It caches both static (HTML, GIF, and JPEG) and dynamic (generated by
servlets and JSPs) content. OracleAS Web Cache can be configured to perform as a
load balancer for Oracle HTTP Server instances. Additionally, they can be
clustered together to provide failover, redundancy, and improved scalability for
cached content. Refer to "Oracle Application Server Web Cache Clusters" on
page 2-11 for details.

See Also: Oracle Application Server 10g Concepts for a discussion on
Oracle Identity Management.

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-5

■ OC4J Java Object Cache

Java Object Cache is an in-process caching service for Java application use. It stores
frequently accessed or resource-expensive (to create) objects in memory or on disk.
Objects can be distributed across OC4J processes that have the same applications
deployed in them (for example, OC4J processes in the same OracleAS Cluster).
The distributed objects are coordinated and synchronized. Hence, failure of one
process does not reduce the availability of cached objects. Java Object Cache
enables Oracle Application Server 10g to retrieve content faster and reduce load on
Java applications, thereby increasing application availability. See "Oracle
Application Server Clusters" on page 2-6 for more information.

Features and Components for Middle Tier High Availability
The middle tier architecture involves several features and constructs that allow for
high availability. These are:

■ Oracle Application Server Instance High Availability

■ Oracle Application Server Clusters

■ Oracle Application Server Web Cache Clusters

■ OC4J Islands

■ Other High Availability Components

■ High Availability Through Distributed Configuration

■ Process Monitoring and Restart

Oracle Application Server Instance High Availability
The Oracle Application Server architecture supports high availability in the middle
tier that in many cases can prevent unplanned down time for deployed applications.
This section provides an overview of the architecture of an Oracle Application Server
instance and shows some of the mid-tier high availability features.

Within each Oracle Application Server instance, the following features provide high
availability within the instance, and for any clusters that the instance is a part of:

■ Process Monitoring – Using the Oracle Process Management and Notification
system provides for process death detection and process restarting in the event
that problems are detected for monitored processes.

■ Configuration Cloning – Using the Distributed Configuration Management
features that uses a Oracle Application Server Metadata Repository for
configuration information provides distributed and managed configuration for
Oracle Application Server instances and for Oracle Application Server instances
that are part of a cluster.

■ Data Replication – Using OC4J instances with OC4J islands that provide Web
application level stateful session replication, and using EJB sessions, data is
replicated across processes within an Oracle Application Server instance and
across different Oracle Application Server instances that may reside on different
hosts when using Oracle Application Server Clusters. This allows stateful session
based applications to remain available even when processes within an Oracle
Application Server instance become unavailable or fail.

■ Smart Routing – Oracle Application Server Web Cache and Oracle HTTP Server
(mod_oc4j) provide configurable and intelligent routing for incoming requests.

Features and Components for Middle Tier High Availability

2-6 High Availability Guide

Requests are routed only to processes and components that mod_oc4J determines
to be alive, through communication with the Oracle Process Management and
Notification system.

Figure 2–1 shows the architecture of an Oracle Application Server instance, including
the features listed above that provide redundant processes and automatic recovery
within an instance.

Figure 2–1 Oracle Application Server Instance Architecture

Oracle Application Server Clusters
An Oracle Application Server Cluster (OracleAS Cluster) is a set of application server
instances configured to act in concert to deliver greater scalability and availability than
a single instance. Using OracleAS Clusters removes the single point of failure that a
single host poses. While a single application server instance leverages the operating
resources of a single host, a cluster can span multiple hosts, distributing application
execution over a greater number of CPUs. A single application server instance is
vulnerable to the failure of its host and operating system, but a cluster continues to
function despite the loss of an operating system or a host, hiding any such failure from
clients.

This section covers the following:

■ Types of Oracle Application Server Clusters

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-7

■ Cluster-Wide Configuration for Oracle Application Server Clusters that are
Managed Using a Repository

■ Requirements for Oracle Application Server Instances to Join Oracle Application
Server Clusters that are Managed Using a Repository

■ Properties of Oracle Application Server Instances in Oracle Application Server
Clusters that are Managed Using a Repository

Types of Oracle Application Server Clusters
There are two types of Oracle Application Server Clusters, Oracle Application Server
Clusters managed using a file-based or database repository and Oracle Application
Server Clusters that are manually configured:

■ Oracle Application Server Clusters managed using a file-based or database
repository contain a collection of application server instances with identical
configurations and application deployments. Oracle Application Server Clusters
enforce homogeneity between instances that are part of the cluster so that the
cluster appears and functions as a single instance. Oracle Application Server
Clusters that are managed using a repository propagate configuration information
across all application server instances in the cluster, which simplifies configuration
and deployment.

There are two types of Oracle Application Server Clusters managed using a
reository: Oracle Application Server Clusters managed using a database repository
and Oracle Application Server Clusters managed using a file-based repository:

■ Oracle Application Server Clusters managed using a database repository
These clusters use a database to store metadata and configuration information.
This type of Oracle Application Server Cluster requires the Oracle Application
Server Infrastructure since metadata and configuration information is stored
in a Oracle Application Server Metadata Repository that resides on an
Infrastructure host.

■ Oracle Application Server Clusters managed using a file-based repository
These clusters designate an application server instance as the repository host.
The repository host uses its file system to store the Oracle Application Server
Metadata Repository that retains the metadata and configuration information
for the cluster.

Figure 2–2 shows an example of an Oracle Application Server Cluster managed
using a database repository. Figure 2–2 shows three application server instances.
All three application server instances share the same Oracle Application Server
Metadata Repository. Thus, all three application server instances in the cluster are
part of the same Farm.

Application server instances 1 and 2 are part of an Oracle Application Server
Cluster managed using a database repository. In front of the cluster is a front-end
load balancer, this may be Oracle Application Server Web Cache or a hardware
load balancer appliance. Included within each application server instance are its
manageability features—Oracle Process Management and Notification (OPMN)
and Distributed Configuration Management (DCM)—and its installed
components—Oracle HTTP Server and Oracle Application Server Containers for
J2EE (OC4J).

Note: Only OracleAS instances of the J2EE and Web Cache
installation type can be clustered as an OracleAS Cluster.

Features and Components for Middle Tier High Availability

2-8 High Availability Guide

Figure 2–2 OracleAS Cluster Architecture

■ Manually Configured Oracle Application Server Clusters rely on the
administrator to manually configure each instance within the cluster (Figure 2–3).
With manually configured Oracle Application Server Clusters, it is the
administrator’s job to make a group of application server instances function as a
cluster. Maintaining the configuration and application deployment information on
these Oracle Application Server Clusters can be a difficult task. Manually
configured Oracle Application Server Clusters provide scalability and availability,
but not manageability. The administrator has the responsibility to synchronize the
configuration of the application server instances across the cluster.

Network
Load

Balancer
Client

Metadata
Repository

O
_1

02
3

Oracle Application Server Farm

Oracle Application Server Cluster

OPMN

DCM

Oracle HTTP
Server

mod_oc4

OC4J
Instances

OPMN

DCM

Oracle HTTP
Server

mod_oc4

OC4J
Instances

Oracle Application Server Instance 2

Oracle Application Server Instance 1

OPMN

DCM

Oracle HTTP
Server

mod_oc4

OC4J
Instances

Oracle Application Server Instance 3

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-9

Figure 2–3 Manually Configured OracleAS Clusters

Cluster-Wide Configuration for Oracle Application Server Clusters that are
Managed Using a Repository
Oracle Application Server Clusters that are managed using a repository contain a
collection of application server instances with identical configuration information.
Oracle Application Server propagates configuration information across all application
server instances that are in a Oracle Application Server Cluster. Each application
server instance in a cluster uses the same base configuration. The base configuration is
defined by cluster-wide configuration information. When an application server
instance joins an Oracle Application Server Cluster, the Distributed Configuration
Management system assures that the base configuration is applied to the new instance
so that the new instance uses the same cluster-wide configuration.

Using either Application Server Console or dcmctl to deploy an application on an
instance, or to modify an application server instance, cluster-wide configuration
modifications are propagated to all other application server instances across Oracle
Application Server Clusters.

Cluster-wide configuration excludes certain instance-specific parameters. The
instance-specific parameters are not propagated to all of the application server
instances across a cluster. If you modify an instance-specific parameter, it is not
propagated as it is only applicable to the specific application server instance where the
change is made.

See Also:

■ "High Availability Through Distributed Configuration" on
page 2-16

■ "Process Monitoring and Restart" on page 2-15

■ "Using a File-Based Repository with OracleAS Clusters" on
page 4-9

See Also: "Cluster-Wide Configuration Changes and Modifying
OC4J Instances" on page 4-19

Client Load Balancer

O
_1

02
2

Oracle
Application Server

Instances

Administrator

No database
is required

Application Server Cluster

Features and Components for Middle Tier High Availability

2-10 High Availability Guide

Requirements for Oracle Application Server Instances to Join Oracle Application
Server Clusters that are Managed Using a Repository
In order for an application server instance to join Oracle Application Server Clusters,
the application server instance must be clusterable. For an application server instance
to be clusterable, the following must be true:

1. The application server instance must be part of the Farm where the Oracle
Application Server Cluster resides. You can associate application server instances
with a OracleAS Metadata Repository either during installation time or after
installation using Application Server Console.

2. Each application server instance in a cluster must be installed on the same type of
operating system, such as UNIX.

3. Each application server instance can contain only one Oracle HTTP Server.

4. Each application server instance can contain one or more OC4J instances.

Properties of Oracle Application Server Instances in Oracle Application Server
Clusters that are Managed Using a Repository
Once application server instances join a cluster, they have the following properties:

■ Each application server instance uses the same cluster-wide configuration. That is,
if you modify any cluster-wide parameters, the modifications are propagated to all
application server instances in the cluster.

■ If you deploy an application to one application server instance, it is propagated to
all application server instances in the cluster. The application is actually deployed
to an OC4J instance in the application server instance and propagated to the same
OC4J instance in the other application server instances in the cluster. You can
change some of the configuration for the deployed application, and this change is
propagated to the same OC4J instance in the other application server instances
across the cluster.

■ Most clustering management, configuration, and application deployment is
handled through Oracle Enterprise Manager. If you want to use a command-line
tool, you can use the Distributed Configuration Management command-line tool
dcmctl.

■ The base configuration is created from the first application server instance to join a
cluster.

■ You can remove application server instances from the cluster. The application
server instance is stopped when removed from the cluster. When the last
application server instance is removed, the cluster still remains. You must delete
the cluster itself for it to be removed.

See Also: "Adding an Application Server Instance to an OracleAS
Cluster" on page 4-7

See Also:

■ "Managing Application Server Instances in an OracleAS Cluster"
on page 4-7

■ Distributed Configuration Management Reference Guide for
information on dcmctl commands

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-11

Oracle Application Server Web Cache Clusters
Two or more OracleAS Web Cache instances can be clustered together to create a
single logical cache. Physically, the cache can be distributed amongst several nodes. If
one node fails, a remaining node in the same cluster can fulfill the requests serviced by
the failed node. The failure is detected by the remaining nodes in the cluster who take
over ownership of the cacheable content of the failed member. The load balancing
mechanism in front of the OracleAS Web Cache cluster, for example, a hardware load
balancing appliance, redirects the requests to the live OracleAS Web Cache nodes.

OracleAS Web Cache clusters also add to the availability of OracleAS instances. By
caching static and dynamic content in front of the OracleAS instances, requests can be
serviced by OracleAS Web Cache reducing the need for the requests to be fulfilled by
OracleAS instances, particularly for Oracle HTTP Servers. The load and stress on
OracleAS instances is reduced, thereby increasing availability of the components in the
instances.

Oracle Application Server Web Cache can also perform a stateless or stateful load
balancing role for Oracle HTTP Servers. Load balancing is done based on the
percentage of the available capacity of each Oracle HTTP Server, or, in other words,
the weighted available capacity of each Oracle HTTP Server. If the weighted available
capacity is equal for several Oracle HTTP Servers, OracleAS Web Cache uses round
robin to distribute the load. Refer to Oracle Application Server Web Cache Administrator’s
Guide for the formula to calculate weighted available capacity.

In the case of failure of a Oracle HTTP Server, OracleAS Web Cache redistributes the
load to the remaining Oracle HTTP Servers and polls the failed server intermittently
until it comes back online. Thereafter, OracleAS Web Cache recalculates the load
distribution with the revived Oracle HTTP Server in scope.

OC4J Islands
Oracle Application Server provides several strategies for ensuring high availability
with OC4J instances, both within an application server instance and across a cluster
that includes multiple application server instances.

This section covers the following:

■ Web Application Session State Replication with OC4J Islands

■ Stateful Session EJB High Availability Using EJB Clustering

■ JNDI Namespace Replication

■ OC4J Distributed Caching Using Java Object Cache

Besides the high availability features described in this section, other Oracle
Application Server features enable OC4J processes to be highly available, including the
load balancing feature in Oracle HTTP Server and the Oracle Process Management
and Notification system that automatically monitors and restarts processes.

See Also:

■ "HTTP Service High Availability" on page 2-18

■ Oracle Application Server Web Cache Administrator’s Guide

See Also:

■ "HTTP Service High Availability" on page 2-18

■ "Process Monitoring and Restart" on page 2-15

Features and Components for Middle Tier High Availability

2-12 High Availability Guide

Web Application Session State Replication with OC4J Islands
When a stateful Web application is deployed to OC4J, multiple HTTP requests from
the same client may need to access the application. However, if the application
running on the OC4J server experiences a problem where the OC4J process fails, the
state associated with a client request may be lost. Using Oracle Application Server,
there are three ways to guard against such failures:

■ State safe applications save their state in a database or other persistent storage
system, avoiding the loss of state when the server goes down. Obviously, there is a
performance cost for continually writing the application state to persistent storage.

■ Stateless applications do not have a state that needs to be carried between
requests, and so, stateless applications do not have state integrity considerations
when a server goes down. Another active server can handle the request. High
availability for stateless applications is easier to achieve than for state safe or
stateful applications.

■ Stateful applications can use OC4J session state replication, with OC4J islands, to
automatically replicate the session state across multiple processes in an application
server instance, and in a cluster, across multiple application instances which may
run on different nodes.

OC4J processes can be grouped into islands to support session state replication for
high availability of Web applications. Using OC4J islands together with Oracle HTTP
Server mod_oc4j request routing provides stateful failover in the event of a software
or hardware problem. For example, if an OC4J process that is part of an island fails,
mod_oc4j is notified of the failure by OPMN and routes requests to another OC4J
process in the same island.

Web Application Session State Protecting Against Software Problems To guard against
software problems, such as OC4J process failure or hang, you can configure an OC4J
instance to run multiple OC4J processes in the same OC4J island. The processes in the
OC4J island communicate their session state between each other. Using this
configuration provides failover and high availability by replicating state across
multiple OC4J processes running on an application server instance.

In the event of a failure, Oracle HTTP Server forwards requests to active (alive) OC4J
process within the OC4J island. In this case, the Web application state for the client is
preserved and the client does not notice any loss of service.

Figure 2–4 shows this type of software failure within an application server instance.

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-13

Figure 2–4 Web Application Session State Failover Within An OC4J Island in an OC4J
Instance

Web Application Session State Replication Protecting Against Hardware Problems To guard
against hardware problems, such as the failure of the node where an application server
instance runs, you can configure OC4J islands across application server instances that
are in more than one node in an OracleAS Cluster. By configuring an OC4J island that
uses the same name across multiple application server instances, the OC4J processes
can share session state information across the OracleAS Cluster. When an application
server instance fails or is not available, for example, when the node it runs on goes
down, Oracle HTTP Server forwards requests to an OC4J process in an application
server instance that is available. Thus, Oracle HTTP Server forwards requests only to
active (alive) OC4J processes within the cluster.

In this case, the Web application state for the client is preserved and the client does not
notice any irregularity.

Figure 2–5 depicts an OC4J island configured within an OracleAS Cluster.

Application Server Instance #1

default_island

OC4J_home instance

O
_1

02
8

OC4J
Process

OC4J
Process

Features and Components for Middle Tier High Availability

2-14 High Availability Guide

Figure 2–5 Web Application Session State Failover Within An OracleAS Cluster

Configuring OC4J Islands With High Availability To protect against software or hardware
failure while maintaining state with the least number of OC4J processes, you need to
configure at least two OC4J processes in the same island on multiple application server
instances running on separate nodes. For example, if you have two application server
instances, instance 1 and instance 2, you can configure two OC4J processes in the
default_island on each application server instance. With this configuration,
stateful session applications are protected against hardware and software failures, and
the client maintains state if either of the following types of failures occurs:

■ If one of the OC4J processes fails, then the client request is redirected to the other
OC4J process in the default_island on the same application server instance.
State is preserved and the client does not notice any irregularity.

■ If application server instance 1 terminates abnormally, then the client is redirected
to the OC4J process in the default_island on application server instance 2. The
state is preserved and the client does not notice any irregularity.

Stateful Session EJB High Availability Using EJB Clustering
Using OC4J, stateful session EJBs can be configured to provide state replication across
OC4J processes running within an application server instance or across an OracleAS
Cluster. This EJB replication configuration provides high availability for stateful
session EJBs by using multiple OC4J processes to run instances of the same stateful
session EJB.

See Also: "Configuring OC4J Islands and OC4J Processes" on
page 4-23

Note: Use of EJB replication (EJB clusters) for high availability is
independent of OracleAS Clusters and can involve multiple
application server instances installed across nodes that are or are not
part of OracleAS Clusters.

Application Server Instance #1 Application Server Instance #2

OC4J_home instance OC4J_home instance

O
_1

02
9

default_island

OC4J
Process

OC4J
Process

OC4J
Process

OC4J
Process

OC4J
Process

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-15

EJB clusters provide high availability for stateful session EJBs. They allow for failover
of these EJBs across multiple OC4J processes that communicate over the same
multicast address. Thus, when stateful session EJBs use replication, this can protect
against process and node failures and can provide for high availability of stateful
session EJBs running on Oracle Application Server.

JNDI Namespace Replication
When EJB clustering is enabled, JNDI namespace replication is also enabled between
the OC4J instances in an OracleAS Cluster. New bindings to the JNDI namespace in
one OC4J instance are propagated to other OC4J instances in the OracleAS Cluster.
Re-bindings and unbindings are not replicated.

The replication is done outside the scope of OC4J islands. In other words, multiple
islands in an OC4J instance have visibility into the same replicated JNDI namespace.

OC4J Distributed Caching Using Java Object Cache
Oracle Application Server Java Object Cache provides a distributed cache that can
serve as a high availability solution for applications deployed to OC4J. The Java Object
Cache is an in-process cache of Java objects that can be used on any Java platform by
any Java application. It allows applications to share objects across requests and across
users, and coordinates the life cycle of the objects across processes.

Java Object Cache enables data replication among OC4J processes even if they do not
belong to the same OC4J island, application server instance, or Oracle Application
Server Cluster.

By using Java Object Cache, performance can be improved since shared Java objects
are cached locally, regardless of which application produces the objects. This also
improves availability; in the event that the source for an object becomes unavailable,
the locally cached version will still be available.

Process Monitoring and Restart
In an application server instance and across OracleAS Clusters, Oracle Process
Management and Notification (OPMN) monitors Oracle Application Server
components, including Oracle HTTP Server, OC4J, OracleAS Web Cache, and Oracle
Application Server Reports Services (OracleAS Reports Services).

The OPMN system, which is itself an Oracle Application Server component, assists in
making Oracle Application Server highly available by monitoring and automatically
restarting Oracle Application Server processes that fail. When a process becomes
unavailable, OPMN notifies certain other Oracle Application Server components that
the process is unavailable. For example, in an OracleAS Cluster, when an OC4J process

See Also:

■ "Configuring EJB Application State Replication for OracleAS
Clusters" on page 4-21

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

See Also: Oracle Application Server Containers for J2EE Services Guide

See Also: The Java Object Cache chapter in the Oracle Application
Server Web Services Developer’s Guide for complete information on
using Java Object Cache

Features and Components for Middle Tier High Availability

2-16 High Availability Guide

fails, the Oracle HTTP Server mod_oc4j modules are notified of the failure and do not
send requests to the failed OC4J process until OPMN uses an event to notify the
modules that the OC4J process has been restarted.

OPMN consists of the following sub-components:

■ Oracle Process Manager

■ Oracle Notification System

Oracle Process Manager
The Oracle Process Manager is responsible for starting, restarting, shutting down, and
detecting the death of Oracle Application Server processes. The Oracle Process
Manager can start or stop processes through one of the following ways:

■ directives in the opmn.xml configuration file

■ by selecting Application Server Console operations, such as start or stop for
components such as OC4J instances

■ by using the opmnctl command line utility.

Oracle Notification System
The Oracle Notification System is the communication mechanism for failure, recovery,
startup, and other related notifications between components. The notification system
operates according to a subscriber-publisher model, wherein any component that
wishes to receive an event of a certain type subscribes to the Oracle Notification
System. When such an event is published, the Oracle Notification System sends it to
all relevant subscribers.

In an Oracle Application Server Cluster, the Oracle HTTP Servers communicate using
the Oracle Notfication System and are aware of the active OC4J processes across the
Oracle Application Server Cluster. This communication mechanism enables each
Oracle HTTP Server to know the live OC4J processes in the Oracle Application Server
Cluster so that incoming requests can be load balanced to them.

High Availability Through Distributed Configuration
Oracle Application Server uses the Distributed Configuration Management (DCM)
system to manage the cluster-wide configuration in Oracle Application Server clusters.
DCM provides supports the following actions:

■ When new application server instances join a cluster, DCM automatically
replicates the base configuration to all instances in the cluster.

■ DCM propagates application deployments and configuration changes to all
application server instances across a cluster.

For Oracle Application Server high availability, when a system in an Oracle
Application Server cluster is down, there is no single point of failure for DCM. DCM
remains available on all the available nodes in the cluster.

Using DCM helps reduce deployment and configuration errors in a cluster; these
errors could, without using DCM, be a significant cause of system downtime.

See Also: Oracle Process Manager and Notification Server
Administrator’s Guide

Features and Components for Middle Tier High Availability

Middle Tier High Availability 2-17

Enterprise Manager uses DCM commands to perform application server configuration
and deployment. You can also issue DCM commands manually using the dcmctl
command.

DCM controls the following configuration commands

■ Create or remove a cluster

■ Add or remove application server instances to or from a cluster

■ Synchronize configuration changes across application server instances

Note the following when making configuration changes to a cluster or deploying
applications to a cluster:

■ If Enterprise Manager is up and managing the cluster, you can invoke the DCM
command-line tool from any host where a clustered application server instance is
running. DCM informs Enterprise Manager of the requested function and
Enterprise Manager then interfaces with the other DCM management features on
the other application server instances in the cluster to complete the cluster-wide
configuration or application deployment.

■ If Enterprise Manager is not up and managing the cluster, if you want
configuration changes to by applied dynamically across the cluster, the DCM
daemon must be running on each cluster. To start the DCM daemon, run the DCM
command-line tool, dcmctl, on each application server instance in the cluster.

Other High Availability Components
Several external components can be used to improve the availability of Oracle
Application Server. These components are discussed in the following sections:

■ Improving Availability with an External Load Balancer

■ Improving Availability with Operating System Clusters

Improving Availability with an External Load Balancer
You can use an external load balancer to improve the availability of both clustered and
non-clustered Oracle Application Server instances.

Clients access the cluster through a load balancer, which hides the cluster
configuration. The load balancer can send requests to any application server instance
in the cluster, as any instance can service any request. An administrator can raise the
capacity of the system by introducing additional application server instances to the
cluster. These instances can be installed on multiple nodes to allow for redundancy in
case of node failure.

You can also use a load balancer to increase the availability of non-clusterable Oracle
Application Server instances, such as Portal and Wireless, when they are installed on
multiple nodes. As long as the load balancer is configured to serve a set of nodes, it
will route requests accordingly.

Types of External Load Balancers There are three types of load balancers you can use with
Oracle Application Server instances: hardware load balancers and network load
balancers. Table 2–4 summaries these:

See Also: Distributed Configuration Management Reference Guide

HTTP Service High Availability

2-18 High Availability Guide

High Availablity Benefits of External Load Balancing There are three main benefits of using
clusters: scalability, availability, and manageability. Load balancing improves
scalability by providing an access point through which requests are routed to one of
many available instances. Instances can be added to the group that the load balancer
serves to accomodate additional users.

Load balancing improves availability by routing requests to the most available
instances. If one instance goes down, or is particularly busy, the load balancer can send
requests to another active instance.

Load balancing improves the system manageability by routing application
deployment and system configuration requests to the most available instances. If one
instance goes down, or is particularly busy, the load balancer can send requests to
another active instance.

Improving Availability with Operating System Clusters
Using operating sytem clusters involves installing Oracle Application Server on a
hardware cluster created through the operating system or other clustering system
solutions, such as HP MC Service Guard. Operating system clustering is supported in
Oracle Application Server 10g (9.0.4).

HTTP Service High Availability
Oracle HTTP Server and Oracle Application Server Web Cache provide HTTP and
HTTPS request handling for Oracle Application Server requests. Each HTTP request is
met by a response from Oracle HTTP Server or from Web Cache if the content
requested is cached.

This section covers the following topics:

■ Web Cache and Oracle HTTP Server High Availability Summary

■ OC4J Load Balancing Using mod_oc4j

Web Cache and Oracle HTTP Server High Availability Summary
Table 2–2 summarizes some of the Oracle Application Server high availability features
for the Oracle HTTP Server and OracleAS Web Cache components.

Table 2–1 Types of External Load Balancers Summary

Load Balancer Type Description

Hardware Load Balancer Hardware load balancing involves placing a hardware load balancer, such as Big-IP
or Alteon, in front of a group of Oracle Application Server instances or OracleAS
Web Cache. The hardware load balancer routes requests to the Oracle HTTP Server
or OracleAS Web Cache instances in a client-transparent fashion.

Windows Network Load
Balancer
(applicable to Windows
version of Oracle
Application Server)

With some Windows operating systems, you can use the operating system to
perform network load balancing. For example, with Microsoft Advanced Server, the
NLB functionality allows you to send requests to different machines that share the
same virtual IP or MAC address. The servers themselves to do not need to be
clustered at the operating system level.

Note: Check http://metalink.oracle.com for information on
supported external load balancers.

HTTP Service High Availability

Middle Tier High Availability 2-19

OC4J Load Balancing Using mod_oc4j
The Oracle HTTP Server module, mod_oc4j provides intelligent routing for HTTP
requests that are handled by OC4J. The intelligent routing that mod_oc4j provides is
an import Oracle Application Server high availability feature. If an OC4J process fails
Oracle Process Management and Notification detects the failure and mod_oc4j does
not send requests to the failed OC4J process until the OC4J process is restarted.

Generally, mod_oc4j deals with stateless HTTP requests, since stateful HTTP requests
are forwarded to the OC4J process that served the previous request (unless mod_oc4j
determines, through communication with Oracle Process Management and
Notification that the process is not available, in which case mod_oc4j forwards the
request to an available OC4J).

Table 2–2 Oracle HTTP Server and OracleAS Web Cache high availability characteristics

Component

Protection
from Node
Failure

Protection
from Service
Failure

Protection
from Process
Failure

Automatic
Re-routing

State
Replication

Configuation
Cloning

OracleAS
Web Cache

OracleAS Web
Cache cluster
protects from
single point of
failure. An
external load
balancer
should be
deployed in
front of this
cluster to
route requests
to live
OracleAS Web
Cache nodes.

In an
OracleAS Web
Cache cluster,
pings are
made to a
specific URL
in each cluster
member to
ensure that
the URL is
still
serviceable.

OPMN
monitors
OracleAS Web
Cache
processes and
restarts them
upon process
failure

OracleAS Web
Cache
members in a
cluster ping
each other to
verify that
peer members
are alive or
have failed.

OracleAS Web
Cache
clustering
manages
replicated
objects

OracleAS Web
Cache cluster
maintains
uniform
configuration
across cluster

Oracle HTTP
Server

OracleAS
Cluster
protects from
single point of
failure. A load
balancer
should be
deployed in
front of Oracle
HTTP Server
instances. This
can be an
external load
balancer or
OracleAS Web
Cache.

Load balancer
in front of
Oracle HTTP
Server sends
request to
another
Oracle HTTP
Server if first
one doesn’t
respond or is
deemed failed
through URL
pings. Load
balancer can
be either
OracleAS Web
Cache or
hardware
appliance.

OPMN
monitors
Oracle HTTP
Server
processes and
restarts them
upon process
failure. Each
Oracle HTTP
Server is also
notified by
OPMN when
another
Oracle HTTP
Server process
in the
OracleAS
Cluster fails.

Load balancer
in front of
Oracle HTTP
Server auto
re-routes to
another
Oracle HTTP
Server if first
does not
respond.

None. OracleAS
Cluster allows
configuration
to be
replicated
across to other
Oracle HTTP
Servers in the
cluster
through DCM.

See Also:

■ "Oracle Application Server Web Cache Clusters" on page 2-11

■ "Process Monitoring and Restart" on page 2-15

■ "Types of External Load Balancers" on page 2-17

HTTP Service High Availability

2-20 High Availability Guide

Using mod_oc4j configuration options you can specify different load balancing
routing algorithms, depending on the type and complexity of routing you need.

Table 2–3 summarizes the routing styles that mod_oc4j provides. For each routing
style, Table 2–3 lists the different algorithms that you can configure to modify the
routing behavior. These mod_oc4j configuration options determine the OC4J process
where mod_oc4j sends incoming HTTP requests to be handled.

OC4J Load Balancing Using Local Afinity and Weighted Routing Options
Using mod_oc4j options, you can select a routing method for routing OC4J requests.
If you select either round robin or random routing, you can also use local affinity or
weighted routing options. If you select metric-based routing, you can also use the local
affinty option.

Using the weighted routing option, a weight is associated with OC4J processes on a
node, as configured in mod_oc4j, on a node by node basis. During request routing,
mod_oc4j then uses the routing weight to calculate which OC4J process to assign
requests to. Thus, OC4J processes running on different nodes can be assigned different
weights.

Using the local affinity option, mod_oc4j keeps two lists of available OC4J processes
to handle requests, a local list and a remote list. If processes are available from the local
list then requests are assigned locally using the random routing method or, for
metric-based routing using metric-based routing. If no processes are available in the
local list, then mod_oc4j selcts processes randomly from the remote list when random
method, using a round robin method for the round robin method, or using
metric-based routing with the metric-based method.

See Also:

■ "mod_oc4j Load Balancing With OracleAS Clusters" on page 4-25

■ Oracle HTTP Server Administrator’s Guide for information on using
weighted routing and selecting local affinity with mod_oc4j load
balancing options.

Table 2–3 mod_oc4j Routing Algorithms Summary

Routing Method Description

Round Robin Using the simple round robin configuration, all OC4J processes, remote and local to the
application server instance running the Oracle HTTP Server, are placed in an ordered list.
Oracle HTTP Server then chooses an OC4J process at random for the first request. For each
subsequent request, Oracle HTTP Server forwards requests to another OC4J process in
round robin style.

The round robin configuration supports local affinity and weighted routing options.

Random Using the simple random configuration, all OC4J processes, remote and local to the
application server instance running the Oracle HTTP Server, are placed in an ordered list.
For every request, Oracle HTTP Server chooses an OC4J process at random and forwards the
request to that instance.

The random configuration supports local affinity and weighted routing options.

Metric-Based Using the metric-based configuration OC4J processes, remote and local to the application
server instance running the Oracle HTTP Server, are placed into an ordered list. OC4J
processes then regularly communicate to Oracle HTTP Server how busy they are and Oracle
HTTP Server uses this information to send requests to the OC4J processes that are less busy.

The metric-based configuration supports a local affinity option.

J2EE High Availability

Middle Tier High Availability 2-21

Choosing a mod_oc4j Routing Algorithm
Table 2–3 summarizes the available routing options. To select a routing algorithm to
configure with mod_oc4j, you need to consider the type of environment where Oracle
HTTP Server runs. Use the following guidelines to help determine which
configuration options to use with mod_oc4j:

■ For a Oracle Application Server cluster setup, with multiple identical machines
running Oracle HTTP Server and OC4J, the round robin with local affinity
algorithm is preferred. Using this configuration, an external router distributes
requests to multiple machines running Oracle HTTP Server and OC4J. In this case
Oracle HTTP Server gains little by using mod_oc4j to route requests to other
machines, except in the extreme case that all OC4J processes on the same machine
are not available.

■ For a tiered deployment, where one tier of machines contains Oracle HTTP Server
and another contains OC4J instances that handle requests, the preferred
algorithms are simple round robin and simple metric-based. To determine which
of these two is best in a specific setup, you may need to experiment with each and
compare the results. This is required because the results are dependent on system
behavior and incoming request distribution.

■ For a heterogeneous deployment, where the different application server instances
run on nodes that have different characteristics, using the weighted round robin
algorithm is preferred. Tune the number of OC4J processes running on each
application server instance may allow you to achieve the maximum benefit. For
example, a machine with a weight of 4 gets 4 times as many requests as a machine
with a weight of 1, but if the system with a weight of 4 may not be running 4 times
as many OC4J processes.

J2EE High Availability
J2EE requests are fulfilled by OC4J, and involve OracleAS Web Cache and Oracle
HTTP Server (mod_oc4j). Hence, the high availability of the J2EE service requires that
these components are highly available. The high availability of Oracle HTTP Server
and OracleAS Web Cache is discussed in the section "HTTP Service High Availability"
on page 2-18. The high availability of OC4J is presented in the section "Features and
Components for Middle Tier High Availability" on page 2-5.

EJB Client Routing
In EJB client routing, EJB classes take on the routing functionality that mod_oc4j
provides for Oracle HTTP Server. Using the Active Components for Java (AC4J)
architecture, EJBs can interact in a loosely-coupled fashion. This provides support for
reliable asynchronous, disconnected, one-way request and response interactions,
without the complexity of JMS programming. It automatically routes service requests
to the appropriate service provider, and provides automatic security context
propagation, authorization and identity impersonation. It also provides automatic
exception routing and handling, which is integrated into the EJB framework.

See Also:

■ "mod_oc4j Load Balancing With OracleAS Clusters" on page 4-25

■ Oracle HTTP Server Administrator’s Guide for information on using
weighted routing and selecting local affinity with mod_oc4j load
balancing options.

Oracle Application Server Portal High Availability

2-22 High Availability Guide

Oracle Application Server Portal High Availability
An OracleAS Portal request’s lifecycle is serviced by a number of OracleAS
components. These are:

■ OracleAS Web Cache

■ Oracle HTTP Server and the following modules:

■ mod_oc4j (on middle and Infrastructure tiers)

■ mod_osso (on Infrastructure tier to access OracleAS Single Sign-On)

■ mod_plsql (on middle tier with OracleAS Portal DAD and Infrastructure tier
with ORASSO DAD)

■ mod_oradav (on middle tier)

■ OC4J (the Portal Page Engine runs as a stateless servlet)

■ OracleAS Portal repository (contains OracleAS Portal schemas and also caches
group memberships of users after their retrieval from Oracle Internet Directory)

■ OracleAS Single Sign-On

■ Oracle Internet Directory (including Oracle Delegated Administration Services
and Oracle Directory Integration and Provisioning)

■ Various web and database portlet providers

In order for OracleAS Portal to be highly available, all these components must be
highly available individually. Of particular importance is the availability of Oracle
Identity Management because OracleAS Portal uses it for portlet security and
management functions.

Reference the following table to find out where you can find high availability
information for each of the components mentioned above.

Table 2–4 High availability information for components involved in an OracleAS Portal
request

Component Where to find information

OracleAS Web Cache See "Oracle Application Server Web Cache Clusters" on
page 2-11.

Oracle HTTP Server See:

"Oracle Application Server Clusters" on page 2-6

"HTTP Service High Availability" on page 2-18

OC4J See:

"J2EE High Availability" on page 2-21

Note: The Portal Page Engine is stateless.

OracleAS Portal repository See:

Chapter 3, "Infrastructure High Availability" and Chapter 5,
"Managing Infrastructure High Availability" of this book.

Oracle Application Server Portal Configuration Guide

OracleAS Single Sign-On See:

Chapter 3, "Infrastructure High Availability" and Chapter 5,
"Managing Infrastructure High Availability" of this book.

Oracle Identity Management Concepts and Deployment Planning
Guide

Oracle Application Server Wireless High Availability

Middle Tier High Availability 2-23

Oracle Application Server Wireless High Availability
Typical Oracle Application Server Wireless (OracleAS Wireless) deployments in the
enterprises, and particularly in telecom operator infrastructure, have very high
availability and fault tolerance requirements. Oracle Application Server provides a
framework and the mechanism to address these requirements.

OracleAS Wireless is integrated with this framework to extend these features to
wireless deployments. Since OracleAS Wireless components are deloyed as OC4J
applications, Oracle HTTP Server can be configured to provide high availability to
OracleAS Wireless applications. In addition, the OracleAS Wireless runtime is
designed to handle session state replication so that client sessions failover
transparently among multiple OC4J containers. Typical high availability deployments
involve several network components, which in turn lead to considerations of
configuration topology, performance, and security.

Refer to the "Wireless Gateway Configuration" chapter and the "Load Balancing and
Failover" chapters of the Oracle Application Server Wireless Administrator’s Guide for
details.

Oracle Internet Directory See:

Chapter 3, "Infrastructure High Availability" and Chapter 5,
"Managing Infrastructure High Availability" of this book.

Oracle Internet Directory Administrator’s Guide

Oracle Identity Management Concepts and Deployment Planning
Guide

Web Provider See:

"Oracle Application Server Clusters" on page 2-6

"HTTP Service High Availability" on page 2-18

"OC4J Islands" on page 2-11

"Stateful Session EJB High Availability Using EJB Clustering" on
page 2-14

"Oracle Application Server Web Cache Clusters" on page 2-11
(OracleAS Web Cache could be providing access to the provider)

Database Providers For providers using mod_plsql, Oracle HTTP Server high
availability is relevant. See "HTTP Service High Availability" on
page 2-18 and "Oracle Application Server Clusters" on page 2-6.

For database high availability, see:

"Oracle Application Server Cold Failover Clusters" on page 3-7

"Oracle Application Server Active Failover Cluster (UNIX)" on
page 3-14

See also: "Oracle Application Server Web Cache Clusters" on
page 2-11 (OracleAS Web Cache could be providing access to the
provider)

See Also: Oracle Application Server Portal Configuration Guide

Table 2–4 (Cont.) High availability information for components involved in an OracleAS
Portal request

Component Where to find information

Business Intelligence High Availability

2-24 High Availability Guide

Business Intelligence High Availability
The business intelligence components in Oracle Application Server include Oracle
Application Server Reports Services and Oracle Application Server Discoverer. The
following sections discuss the high availability of each:

■ Oracle Application Server Reports Services High Availability

■ Oracle Application Server Discoverer High Availability

Oracle Application Server Reports Services High Availability
At runtime, Oracle Application Server Reports Services (OracleAS Reports Services)
consists of the following components shown in Table 2–5.

Of the three components described in the table above, the Reports Server process is the
critical process that will adversely affect availability of OracleAS Reports Services if it
fails. As it maintains state for client requests and the state is not replicated, its failure
will cause client sessions to be lost.

Reports Server processes are monitored by OPMN. When OracleAS Reports Services is
installed, it is registered with OPMN by default. Hence, OPMN can monitor and
restart a Reports Server process if it fails. If you add more Reports Server processes
after installation, you need to add them to the opmn.xml and targets.xml (for
Application Server Console). See the book Oracle Application Server Reports Services
Publishing Reports to the Web for instructions as well as for more high availability
information.

The Reports Server makes database connections to the OracleAS Portal repository in
the OracleAS Infrastructure as well as to Oracle Internet Directory. If any of these
connections fail, Reports Server retries them before throwing an exception. If a
successful connection is made, Reports Server need not be restarted. This also applies
to Reports Servlet, which makes connections to Oracle Internet Directory.

High Availability Solution
To eliminate the single point of failure of the Reports Server process, perform multiple
installations of OracleAS Reports Services (Business Intelligence and Forms
Installation Type). These installations should also be installed on multiple nodes to
protect from node failure.

Table 2–5 Oracle Application Server Reports Services runtime components

Component Characteristics

Reports Servlet Translates client requests between HTTP and the Reports Server.
It runs in-process in OC4J, and hence, is subject to the failures
and high availability solutions for OC4J.

Reports Server Processes client requests and forwards them to the Reports
Engine. It runs as a standalone process and is stateful. Its state is
not replicated to other Reports Server processes.

Reports Engine Fetches requested data from data sources, formats the reports,
and notifies the Reports Server that jobs are complete. It runs as
a separate process from the Reports Server but is spawned by
the latter to service requets. The Reports Engine is stateless.

Failure of a Reports Engine process has minimal impact on the
overall Reports Services as the Reports Server can spawn new
Engine processes.

Oracle Application Server Forms Services High Availability

Middle Tier High Availability 2-25

For the OracleAS Infrastructure that is used by the OracleAS Reports Services
installations, inclusive of Oracle Identity Management, use the Oracle Application
Server Cold Failover Clusters or OracleAS Active Failover Cluster high availability
solutions. These are described in Chapter 3, "Infrastructure High Availability".

Oracle Application Server Discoverer High Availability
Oracle Application Server Discoverer achieves high availability in the following ways:

■ Process monitoring and restart

OPMN is configured to monitor and restart Oracle Application Server Discoverer
processes on each middle tier node. See Chapter 4 of Oracle Application Server
Discoverer Configuration Guide.

■ Load balancing

OracleAS Web Cache can be set up to perform as a load balancer for Oracle
Application Server Discoverer requests. See Chapter 5 of Oracle Application Server
Discoverer Configuration Guide.

Oracle Application Server Forms Services High Availability
At runtime, Forms Services consist of the components listed in Table 2–6.

Forms Services doesnt exist as a dedicated server process on the middle tier, and
therefore, all that is required to request and run a Forms application on the Web is the
availability of a servlet container (OC4J) that is configured to run Forms Services.

Because Forms Services launches a dedicated Forms Runtime process for each user
there is no transparent application failover. Once a user session is interrupted, the user
has to restart the Forms Web application by issuing a new request to the Forms Servlet.

If a middle tier server crashes or a servlet session is interrupted, recover from either
failure by restarting the application. To set up high availability for Forms, the
following components can be used:

mod_oc4j - Handling the failure of an OC4J instance, Forms can be setup to load
balance application requests between different OC4J instances. This ensures that an

See Also: Oracle Application Server Reports Services Publishing Reports
to the Web ("Clustering Reports Servers" chapter)

Table 2–6 Runtime Forms Services components

Component Function

Forms Servlet The Forms Servlet handles the initial application request and
dynamically generates the start HTML file for the Forms generic Java
Applet. If using OracleAS Single Sign-On, the Forms Servlet is also
used to verify users’ authentication.

Forms Listener Servlet The Forms Listener Servlet is a dispatcher servlet that handles the
communication between the Forms Java client in the client browser
and the Forms runtime process in the middle tier server. The Forms
Listener Servlet starts a Forms runtime process for each application
request and user.

Forms Runtime Engine The Forms Runtime Engine interprets the Forms application modules
(fmx files) and executes the contained business logic. The Forms
Runtime Engine also makes the database connection using SQLNet.

Oracle Application Server Integration High Availability

2-26 High Availability Guide

application request can be routed to the next available OC4J instance if the current
OC4J instance fails.

OracleAS Web Cache - Using OracleAS Web Cache as a HTTP load balancer allows
you to distribute Forms requests between many Oracle Application Server instances
that may or may not share the same Infrastructure installation. If one instance fails,
then the next Forms application request gets routed to the next available instance.
Each instance can also use mod_oc4j to load balance Forms sessions between OC4J
instances.

Hardware load balancers - A hardware load balancer can be deployed in front of
OracleAS Web Cache, thereby adding one more layer of load balancing for Forms
requests. Or, they can also replace OracleAS Web Cache and load balance requests
directly to Oracle HTTP Servers.

For the OracleAS Infrastructure that is used by Forms Services installations, inclusive
of Oracle Identity Management, use the Oracle Application Server Cold Failover
Clusters or Oracle Application Server Active Failover Cluster high availability
solutions. These are described in Chapter 3, "Infrastructure High Availability".

For more information about Forms Services architecture and setup, refer to Oracle
Application Server Forms Services Deployment Guide.

Oracle Application Server Integration High Availability
High availability for the Oracle Application Server 10g e-business integration
products, Oracle Application Server 10g InterConnect and Oracle Application Server
10g ProcessConnect, are dependent on the various high availability solutions for the
Infrastructure (see the section "High Availability Configurations for Infrastructure" on
page 3-5). This is because InterConnect and ProcessConnect utilize the database in the
Infrastructure to store and queue information. However, not all high availability
solutions for the Infrastructure can be used by InterConnect or ProcessConnect. The
following points elaborate further:

■ Oracle Application Server 10g InterConnect

High availability is supported by the Oracle Application Server Cold Failover
Clusters and Oracle Application Server Active Failover Cluster solutions. The
adapter.ini and hub.ini files are populated with the host, port, and instance
information of all the nodes in the cluster. When a node or database instance
failure occurs, the InterConnect adapters are able to reconnect and continue
message delivery without the need to republish the message and without losing
the message at any stage of processing and delivery.

Detailed information on the adapter.ini and hub.ini contents can be found in
chapter 8, under the section "RAC Support," in the Oracle Application Server
InterConnect User’s Guide.

■ Oracle Application Server 10g ProcessConnect

ProcessConnect uses the database in the Infrastructure to store connection
information instead of storing the information in files as for InterConnect. Hence,
both the Oracle Application Server Cold Failover Clusters and Oracle Application
Server Active Failover Cluster solutions for the Infrastructure enable high
availability for ProcessConnect.

Middle Tier Recovery Solutions

Middle Tier High Availability 2-27

Middle Tier Recovery Solutions
Once a failure has occurred in your system, it is important to recover from that failure
as quickly as possible. There are four main types of recovery solutions that you can
use, depending on the type and severity of the failure.

Restarting Processes
Recovering from almost all types of failures requires restarting one or more failed
processes in your system. There are three process restart scenarios:

■ Automatic restart of processes: The failed processes are automatically restarted by
OPMN upon detected failure. No manual intevention is required.

■ Manually restart an individual process: This implies that the process failure does
not affect any other middle tier or Infrastructure processes, and can be restarted
individually.

■ Manually restart all processes.

Most types of failures in both the middle tier and Infrastructure only require a process
restart solution. Such failures include the death of OPMN, an Oracle Application
Server Metadata Repository failure, or an Application Server Console crash.

Restoring from Cold Backup
Some failures require more involved recovery scenarios than simply restarting
processes. In some cases, you will have to perform restoration operations based on
cold backup procedures that you had previously implemented. These cold backups
include installed OracleAS binaries. Cold backup restoration operations can be done
for both the middle tier and the Infrastructure.

■ Middle tier restoration from cold backup - Restoration of the entire Oracle
Application Server middle tier, including the Oracle Home, configuration files,
and database files, which were backed up after completing a clean and normal
shutdown of all Oracle Application Server Infrastructure processes and the Oracle
Application Server Metadata Repository.

■ Infrastructure restoration from cold backup - Restoration of the entire Oracle
Application Server Infrastructure instance, including the Oracle Home,
configuration files, and data base files, which were backed up after completing a
clean and normal shutdown of all Oracle Application Server Infrastructure
processes and the Oracle Application Server Metadata Repository.

Failures that require the restoring from cold backup solution for recovery include node
failure where the node needs to be completely replaced, and the deletion or corruption
of Oracle software or binary files. Failures that require this type of recovery solution
also then require the manual restart of all processes. For details about specific failure
types and how to recover, see the Oracle Application Server 10g Administrator’s Guide

Restoring from Online Backup
Depending on the type of failure your system is experiencing, you may need to restore
your system from an online backup. There are four types of online backup restoration
scenarios:

■ Middle tier restoration from online backup - Restoration of the Oracle Application
Server configuration files, which were backed up while processes were up and
running on the middle tier. This also includes restoring a stamped image, which
may require additional steps to complete the restoration.

Middle Tier Recovery Solutions

2-28 High Availability Guide

■ Infrastructure restoration from online backup - Restoration of the Oracle
Application Server Infrastructure configuration files, which were backed up after
completing a proper online backup of the Oracle Application Server instance and
Oracle Application Server Metadata Repository.

■ Oracle Application Server Metadata Repository restoration from online backup -
Restoration of the Oracle Application Server Metadata Repository taken from a
proper online backup. Complete recovery is required of the database component.

■ Infrastructure configuration files restoration from online backup - Restoration of
the Infrastructure configuration files taken from an online backup.

Failures that require restoration from online backup solutions for recovery include
data failure in the Oracle Application Server Metadata Repository, and deletion or
corruption of Oracle Application Server component runtime configuration files.
Failures that require this type of solutions also then require one or more processes to
be restarted. For details about specific failure types and how to recover, see the Oracle
Application Server 10g Administrator’s Guide.

Disaster Recovery
Disaster recovery (DR) refers to how a system recovers after a catastrophic site failure.
Catastrophic failures include earthquakes, tornadoes, floods, and fires. On the most
basic level, DR involves replicating an entire site, not just pieces of hardware or
subcomponents. The service-level requirements for DR depend on the business
applications. Some applications may not have any disaster recovery requirements.
Others may simply have backup data tapes from which they would rebuild a new
working site over a period of time. Still others may have requirements to begin
operations with a few days or hours after the disaster. The most stringent requirement
is to keep the services running despite the disaster.

The Oracle Application Server disaster recovery solution consists of two identically
configured sites. Both sites may be dispersed geographically, and if so, they are
connected via a network. When the primary site becomes unavailable due to disaster,
the secondary site can become operational within a reasonable amount of time. Client
requests are always routed to the site in the production role. After a failover or
switchover operation occurs due to an outage, client requests are routed to another site
that assumes the production role. Each site contains identical middle tier servers,
which are also identical between the two sites. The site that is in the production role
contains a production backend customer database and production Oracle Application
Server Metadata Repository configured using the cold failover cluster Infrastructure
high availability solution to protect from host failure. The site in the standby role
contains a physical standby of the Oracle Application Server Metadata Repository.
Database switchover and failover functions allow the roles to be traded between sites.

DCM Archive/Recover
The DCM archive and recovery feature allows you to take a snapshot of your system
configuration. Taken at a time when everything is working properly and optimally,
you can restore the system to this previous configuration in the event of a failure. In
response to a catastrophic failure, the snapshot can be restored to a system in a remote
location.

See Also: Chapter 6, "Oracle Application Server Disaster Recovery"

See Also: Distributed Configuration Management Reference Guide for
instructions on how to perform archive and recover operations.

Middle Tier Recovery Solutions

Middle Tier High Availability 2-29

Configuration Cloning
Using the DCM tool, dcmctl, you can clone the configuration of an existing Oracle
Application Server instance to a new instance. The new instance will then have the
exact same configuration as the first instance, thereby reducing the possibility of
introducing configuration errors in the setup of the new instance.

The cloning process involves creating a new DCM archive and applying it to a new
instance. This is different from restoring a DCM archive to the same instance the
archive was created from.

Note: Only configurations managed by DCM can be cloned using
the dcmctl archive commands. DCM currently manages
configuration data for the OC4J, OHS, OPMN, and JAZN components.

See Also: The chapter on archiving configurations in the Distributed
Configuration Management Reference Guide.

Middle Tier Recovery Solutions

2-30 High Availability Guide

Infrastructure High Availability 3-1

3
Infrastructure High Availability

This chapter focuses on the high availability aspects of the Oracle Application Server
10g Infrastructure. It discusses the features and architectural solutions for high
availability of the Infrastructure and is divided into the following sections:

■ Oracle Application Server 10g Infrastructure Overview

■ Oracle Application Server 10g Infrastructure Components

■ High Availability Configurations for Infrastructure

Oracle Application Server 10g Infrastructure Overview
Oracle Application Server 10g provides a completely integrated infrastructure and
framework for development and deployment of enterprise applications. An Oracle
Application Server 10g Infrastructure installation type provides centralized product
metadata, security and management services, and configuration information and data
repositories for the Oracle Application Server 10g middle tier. By integrating the
Infrastructure services required by the middle tier, time and effort required to develop
enterprise applications are reduced. In turn, the total cost of developing and deploying
these applications is reduced, and the deployed applications are more reliable.

The Oracle Application Server 10g Infrastructure provides the following overall
services:

■ Product Metadata Service

Oracle Application Server 10g Infrastructure stores all application server metadata
required by Oracle Application Server 10g middle tier instances. This data is
stored in an Oracle9i database, thereby leveraging the robustness of the database
to provide a reliable, scalable, and easy-to-manage metadata repository.

■ Security Service

The security service provides a consistent security model and identity
management for all applications deployed on Oracle Application Server 10g. The
service enables centralized authentication using single sign-on, Web-based
administration through the Oracle Delegated Administration Services, and
centralized storage of user authentication credentials. The Oracle Internet
Directory is used as the underlying repository for this service.

■ Management Service

This service is used by Distributed Configuration Management to manage and
administer Oracle Application Server 10g middle tier instances and the Oracle
Application Server 10g Infrastructure. It is also used to administer clustering
services for the middle tier. Application Server Console reduces the total

Oracle Application Server 10g Infrastructure Components

3-2 High Availability Guide

administrative cost by centralizing the management of deployed J2EE
applications.

Oracle Application Server 10g Infrastructure Components
The Oracle Application Server 10g Infrastructure consists of several components that
contribute to its role and function. These components work with each other to provide
the Infrastructure’s product metadata, security, and management services. This section
describes these Infrastructure components, which are:

■ Oracle Application Server Metadata Repository

■ Oracle Identity Management

■ Oracle HTTP Server

■ Oracle Application Server Containers for J2EE (OC4J)

■ Oracle Enterprise Manager - Application Server Console

Oracle Application Server Metadata Repository
Oracle Application Server Metadata Repository is an Oracle9i Enterprise Edition
database server and stores component-specific information that is accessed by the
Oracle Application Server middle tier or Infrastructure components as part of their
application deployment. The end user or the client application does not access this
data directly. For example, a Portal application on the middle tier accesses the Portal
metadata as part of the Portal page assembly aggregation. Metadata also includes
demo data for many Oracle Application Server components, such as data used by the
Order Management Demo for BC4J.

Oracle Application Server metadata and customer or application data can co-exist in
the Oracle Application Server Metadata Repository, the difference is in which
applications are allowed to access them.

The Oracle Application Server Metadata Repository stores three main types of
metadata corresponding to the three main Infrastructure services described in the
section "Oracle Application Server 10g Infrastructure Overview". These types of
metadata are:

■ product metadata

■ identity management metadata

■ management metadata

Table 3–1 shows the Oracle Application Server components that store and use these
types of metadata during application deployment.

Table 3–1 Metadata and Infrastructure Components

Type of Metadata Infrastructure Components Involved

Product metadata (includes
demo data)

Oracle Application Server Metadata Repository

Idendity Management
metadata

OracleAS Single Sign-On, Oracle Internet Directory, Oracle
Application Server Certificate Authority

Management metadata Distributed Configuration Management, Oracle Enterprise
Manager

Oracle Application Server 10g Infrastructure Components

Infrastructure High Availability 3-3

When to Use Oracle Application Server Metadata Repository
Oracle Application Server Metadata Repository (OracleAS Metadata Repository) is
needed for all application deployments except for those using the J2EE and Web Cache
installation type. Oracle Application Server provides three middle tier installation
options:

■ J2EE and Web Cache: Installs Oracle HTTP Server, Oracle Application Server
Containers for J2EE (OC4J), Oracle Application Server Web Cache (OracleAS Web
Cache), Web Services, Oracle Business Components for Java (BC4J), and
Application Server Console.

■ Portal and Wireless: Installs all components of J2EE and OracleAS Web Cache,
plus UDDI, Oracle Application Server Portal (OracleAS Portal), Oracle
Application Server Syndication Services (OracleAS Syndication Services), Oracle
Ultra Search, and Oracle Application Server Wireless (OracleAS Wireless).

■ Business Intelligence and Forms: Installs all components of J2EE and OracleAS
Web Cache, OracleAS Portal and Oracle Application Server 10g Wireless, plus
Oracle Application Server Forms Services, Oracle Application Server Reports
Services, Oracle Application Server Discoverer, and Oracle Application Server
Personalization.

Integration components, such as Oracle Application Server ProcessConnect, Oracle
Application Server InterConnect, and Oracle Workflow are installed on top of any of
these middle tier install options.

The Distributed Configuration Management (DCM) component enables middle tier
management, and stores its metadata in the OracleAS Metadata Repository for both
the Portal and Wireless, and the Business Intelligence and Forms install options. For
the J2EE and Web Cache installation type, by default, DCM uses a file-based
repository. If you choose to associate the J2EE and Web Cache installation type with an
Infrastructure, the file-based repository is moved into the OracleAS Metadata
Repository.

Oracle Identity Management
The Oracle Identity Management framework in the Infrastructure includes the
following components:

■ Oracle Internet Directory

■ Oracle Application Server Single Sign-On

Note: The OracleAS Metadata Repository can be installed in an
existing Real Application Clusters database (without the Oracle
Identity Management components of the Infrastructure). The Oracle
Application Server 10g Installation Guide provides information on this
installation scenario.

See Also: Oracle Application Server 10g Installation Guide for
information on the Oracle Application Server 10g installation details.

See Also: Oracle Identity Management Concepts and Deployment
Planning Guide

Oracle Application Server 10g Infrastructure Components

3-4 High Availability Guide

Oracle Internet Directory
Oracle Internet Directory is Oracle’s implementation of a directory service using the
Lightweight Directory Access Protocol (LDAP) version 3. It runs as an application on
the Oracle9i database and utilizes the database’s high performance, scalability, and
high availability.

Oracle Internet Directory provides a centralized repository for creating and managing
users for the rest of the Oracle Application Server 10g components such as OC4J,
Oracle Application Server 10g Portal, or Oracle Application Server 10g Wireless.
Central management of user authorization and authentication enables users to be
defined centrally in Oracle Internet Directory and shared across all Oracle Application
Server 10g components.

Oracle Internet Directory is provided with a Java-based management tool (Oracle
Directory Manager), a Web-based administration tool (Oracle Delegated
Administration Services) for trusted proxy-based administration, and several
command-line tools. Oracle Delegated Administration Services provide a means of
provisioning end users in the Oracle Application Server 10g environment by delegated
administrators who are not the Oracle Internet Directory administrator. It also allows
end users to modify their own attributes.

Oracle Internet Directory also enables Oracle Application Server 10g components to
synchronize data about users and group events, so that those components can update
any user information stored in their local application instances.

Oracle Application Server Single Sign-On
OracleAS Single Sign-On is a multi-part environment which is made up of both
middle tier and database functions allowing for a single user authentication across
partner applications. A partner application can be achieved either by using the
SSOSDK or via the Apache mod_osso module. This module allows Apache (and
subsequently URLS) to be made partner applications.

OracleAS Single Sign-On is fully integrated with Oracle Internet Directory, which
stores user information. It supports LDAP-based user and password management
through Oracle Internet Directory.

OracleAS Single Sign-On supports Public Key Infrastructure (PKI) client
authentication, which enables PKI authentication to a wide range of Web applications.
Additionally, it supports the use of X.509 digital client certificates and Kerberos
Security Tickets for user authentication.

By means of an API, OracleAS Single Sign-On can integrate with third-party
authentication mechanisms such as Netegrity Site Minder.

Oracle HTTP Server
The Infrastructure installation type installs Oracle HTTP Server for the Infrastructure.
This is used to service requests from other distributed components of the
Infrastructure and middle tier instances. In the Infrastructure, Oracle HTTP Server
services requests for OracleAS Single Sign-On and Oracle Delegated Administration

See Also: Oracle Internet Directory Administrator’s Guide for more
information.

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide. (This guide also includes Identity Management replication
instructions.)

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-5

Services. The latter is implemented as a servlet in an OC4J process in the
Infrastructure.

Oracle Application Server Containers for J2EE (OC4J)
In the Infrastructure, OC4J is installed in the Infrastructure to run Oracle Delegated
Administration Services and OracleAS Single Sign-On. The former runs as a servlet in
OC4J.

Oracle Delegated Administration Services provide a self-service console (for end users
and application administrators) that can be customized to support third-party
applications. In addition, it provides a number of services for building customized
administration interfaces that manipulate Oracle Internet Directory data. Oracle
Delegated Administration Services are a component of Oracle Identity Management.

Oracle Enterprise Manager - Application Server Console
Oracle Enterprise Manager - Application Server Console (Application Server Console)
provides a Web-based interface for managing Oracle Application Server components
and applications. Using the Oracle Application Server Console, you can do the
following:

■ monitor Oracle Application Server components, Oracle Application Server middle
tier and Infrastructure instances, OracleAS Clusters, and deployed J2EE
applications and their components

■ configure Oracle Application Server components, instances, OracleAS Clusters,
and deployed applications

■ operate OracleAS components, instances, OracleAS Clusters, and deployed
applications

■ manage security for OracleAS components and deployed applications

For more information on Oracle Enterprise Manager and its two frameworks, see
Oracle Enterprise Manager Concepts.

High Availability Configurations for Infrastructure
As described earlier the Oracle Application Server 10g Infrastructure provides the
following services

■ product metadata

■ security service

■ management service

From an availability standpoint, these services are provided by the following
components, which must all be available to guarantee availability of the Infrastructure:

■ OracleAS Metadata Repository

See Also: Oracle HTTP Server Administrator’s Guide

See Also: Oracle Internet Directory Administrator’s Guide for more
information about Oracle Delegated Administration Services.

See Also: Oracle Application Server 10g Administrator’s Guide -
provides descriptions on Application Server Console and instructions
on how to use it.

High Availability Configurations for Infrastructure

3-6 High Availability Guide

■ Oracle Net listener

■ Oracle HTTP Server

■ For Oracle Identity Management:

■ Oracle Internet Directory and Oracle Internet Directory monitor

■ OC4J Oracle Delegated Administration Services instance

■ OracleAS Single Sign-On

■ For Oracle Management Services:

■ Distributed Configuration Management

For the Infrastructure to provide all essential services, all of the above components
must be available. On UNIX platforms, this means that the processes associated with
these components must be up and active. Any high availability solution must be able
to detect and recover from any software failures of any of the processes associated
with the Infrastructure components. It must also be able to detect and recover from
any hardware failures on the hosts that are running the Infrastructure.

In Oracle Application Server 10g, all of the Infrastructure processes, except the
database, its listener, and Application Server Console, are started, managed, and
restarted by the Oracle Process Management and Notification (OPMN) framework.
This means any failure of an OPMN-managed process is handled internally by OPMN.
OPMN is automatically installed and configured at install time. However, any
database process failure or database listener failure is not handled by OPMN. Also,
failure of any OPMN processes leaves the Infrastructure in a non-resilient mode if the
failure is not detected and appropriate recovery steps taken.

OracleAS provides two solutions to provide intrasite high availability for the
Infrastructure. These are:

■ Oracle Application Server Cold Failover Clusters

■ Oracle Application Server Active Failover Cluster (UNIX)

These intrasite high availability solutions provide protection from local hardware and
software failures that cannot be detected and recovered by OPMN. Examples of such
failures are a system panic or node crash. These solutions, however, cannot protect the
Infrastructure from site failures or media failures, which result in damage to or loss of
data.

Oracle Application Server 10g provides a disaster recovery solution to protect against
disasters and site failures. This solution is described in Chapter 6, "Oracle Application
Server Disaster Recovery".

A site failure or disaster will most likely affect all the systems including middle tiers,
Infrastructure, and backend databases. Hence, the disaster recovery solution also
provides mechanisms to protect the middle tier and the Infrastructure database.

In short, the intrasite high availability solutions, OracleAS Cold Failover Cluster and
OracleAS Active Failover Cluster, provide resilience for only the OracleAS
Infrastructure from local hardware and software failures. The middle tier can continue
to function with a resilient Infrastructure. The disaster recovery solution, on the other
hand, deals with a complete site failure, which requires failing over not only the
Infrastructure but also the middle tier. The intrasite high availability solutions for the
Infrastructure are discussed in the following sections.

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-7

Oracle Application Server Cold Failover Clusters
The Oracle Application Server Cold Failover Clusters (OracleAS Cold Failover
Cluster) solution for the Infrastructure uses a two node hardware cluster as depicted
in Figure 3–1, "Normal operation of OracleAS Cold Failover Cluster solution" below.

Terminology
For the purpose of describing the solution, it is important to clarify the following
terminology within the context of the OracleAS Cold Failover Cluster solution.

Hardware Cluster A cluster, in generic definition, is a collection of loosely coupled
computers (called nodes) that provides a single view of network services (for example:
an IP address) or application services (for example: databases, web servers) to clients
of these services. Each node in a cluster is a standalone server that runs its own
processes. These processes can communicate with one another to form what looks like
a single system that cooperatively provides applications, system resources, and data to
users. This type of clustering offers several advantages over traditional single server
systems for highly available and scalable applications.

Hardware clusters are clusters that achieve high availability and scalability through
the use of additional hardware (cluster interconnect, shared storage) and software
(health monitors, resource monitors). (The cluster interconnect is a private link used by
the hardware cluster for heartbeat information to detect node death.) Due to the need
for additional hardware and software, hardware clusters are commonly provided by
hardware vendors such as SUN, HP, IBM, and Dell. While the number of nodes that
can be configured in a hardware cluster is vendor dependent, for the purpose of
Oracle Application Server 10g Infrastructure High Availability using the Oracle
Application Server Cold Failover Clusters solution, only two nodes are required.
Hence, this document assumes a two-node hardware cluster for that solution.

Failover Failover is the process by which the hardware cluster automatically relocates
the execution of an application from a failed node to a designated standby node. When
a failover occurs, clients may see a brief interruption in service and may need to
reconnect after the failover operation has completed. However, clients are not aware of
the physical server from which they are provided the application and data. The
hardware cluster’s software provides the APIs to automatically start, stop, monitor,
and failover applications between the two nodes of the hardware cluster.

Primary Node The node that is actively executing one or more Infrastructure
installations at any given time. If this node fails, the hardware cluster automatically
fails the Infrastructure over to the secondary node. Since the primary node runs the
active Infrastructure installation(s), it is considered the "hot" node.

Secondary Node This is the node that takes over the execution of the Infrastructure if
the primary node fails. Since the secondary node does not originally run the
Infrastructure, it is considered the "cold" node. And, because the application fails from
a hot node (primary) to a cold node (secondary), this type of failover is called cold
failover.

Logical or Virtual IP To present a single system view of the cluster to network clients,
hardware clusters use what is called a logical or virtual IP address. This is a dynamic
IP address that is presented to the outside world as the entry point into the cluster. The
hardware cluster’s software manages the movement of this IP address between the
two physical nodes of the cluster while the external clients connect to this IP address
without the need to know which physical node this IP address is currently active on.
In a typical two-node cluster configuration, each physical node has its own physical IP

High Availability Configurations for Infrastructure

3-8 High Availability Guide

address and hostname, while there could be several logical IP addresses, which float
or migrate between the two nodes. For a given OracleAS Infrastructure installation,
the logical IP/virtual name associated with that installation is the IP/name that is
used by the clients to connect to the Infrastructure. Refer to the Oracle Application
Server 10g Installation Guide for more information on the installation process.

Virtual Hostname The virtual hostname is the hostname associated with the logical or
virtual IP. This is the name that is chosen to give the OracleAS middle tier a single
system view of the hardware cluster. This name-IP entry must be added to the DNS
that the site uses, so that the middle tier nodes can associate with the Infrastructure
without having to add this entry into their local /etc/hosts (or equivalent) file. For
example, if the two physical hostnames of the hardware cluster are
node1.mycompany.com and node2.mycompany.com, the single view of this cluster
can be provided by the name selfservice.mycompany.com. In the DNS,
selfservice maps to the logical IP address of the Infrastructure, which floats
between node1 and node2 without the middle tier knowing which physical node is
active and servicing the requests.

Shared Storage Even though each hardware cluster node is a standalone server that
runs its own set of processes, the storage subsystem required for any cluster-aware
purpose is usually shared. Shared storage refers to the ability of the cluster to be able
to access the same storage, usually disks, from both the nodes. While the nodes have
equal access to the storage, only one node, the primary node, has active access to the
storage at any given time. The hardware cluster’s software grants the secondary node
access to this storage if the primary node fails. For the OracleAS Infrastructure, its
ORACLE_HOME is on such a shared storage file system. This file system is mounted by
the primary node; if that node fails, the secondary node takes over and mounts the file
system. In some cases, the primary node may relinquish control of the shared storage,
such as when the hardware cluster’s software deems the Infrastructure as unusable
from the primary node and decides to move it to the secondary.

Architecture (UNIX)
Figure 3–1 shows the layout of the two-node cluster for the OracleAS Cold Failover
Cluster high availability solution. The two nodes are attached to shared storage. For
illustration purposes, a virtual/logical IP address of 144.25.245.1 is active on physical
Node 1. Hence, Node 1 is the primary or active node. The virtual name
selfservice.mycompany.com is mapped to this virtual IP address, and the middle
tier associates the Infrastructure with selfservice.mycompany.com.

Note: Whenever the phrase "virtual name" is used in this document,
it is assumed to be associated with the logical IP address. In cases
where just the IP address is needed or used, it will be explicitly stated
so.

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-9

Figure 3–1 Normal operation of OracleAS Cold Failover Cluster solution

In normal operating mode, the hardware cluster’s software enables the virtual IP
144.25.245.1 on physical Node 1 and starts all Infrastructure processes (database,
database listener, Oracle Enterprise Manager process, and OPMN) on that node.
OPMN then starts, monitors, and restarts, if necessary, any of the following failed
Infrastructure processes: Oracle Internet Directory, OC4J instances, and Oracle HTTP
Server.

High Availability Configurations for Infrastructure

3-10 High Availability Guide

Figure 3–2 Infrastructure after primary node failover

If the primary node fails, the virtual IP address 144.25.245.1 is manually enabled on the
secondary node (Figure 3–2). All the Infrastructure processes are then started on the
secondary node. The middle tier processes accessing the Infrastructure will see a
temporary loss of service as the virtual IP and the shared storage are moved over and
the database, database listener, and all other Infrastructure processes are started. Once
the processes are up, middle tier processes that were retrying during this time are
reconnected. New connections are not aware that a failover has occurred.

While the hardware cluster framework can start, monitor, detect, restart, or failover
Infrastructure processes, these actions are not automatic and involve some scripting or
simple programming. Required scripts are described in Chapter 5, "Managing
Infrastructure High Availability".

For information on setting up and operating the OracleAS Cold Failover Cluster
solution for the Infrastructure, see Oracle Application Server 10g Installation Guide. This
guide covers pre-installation and installation tasks.

Architecture (Windows)
The OracleAS Cold Failover Cluster solution consists of a two-node cluster accessing a
shared disk (see Figure 3–3) that contains the Infratructure’s data files. At any point in
time, only one node is active. During normal operation, the second node is on standby.
OracleAS middle tier components access the cluster through a virtual hostname that is
mapped to a virtual IP in the subnet. In the example in Figure 3–3, the virtual
hostname selfservice.mycompany.com and virtual IP 144.25.245.1 are used.
When a failover occurs from node 1 to node 2, these virtual hostname and IP are

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-11

moved to the standby node, which now becomes the active node. The failure of the
active node is transparent to the OracleAS middle tier components.

Figure 3–3 Oracle Application Server Cold Failover Clusters solution for Windows

The concepts explained in the previous section (OracleAS Cold Failover Cluster for
UNIX) are also applicable for the Windows OracleAS Cold Failover Cluster solution,
which uses Microsoft Cluster Server software for managing high availability for the
hardware cluster. Additionally, Oracle Fail Safe is used in conjunction with Microsoft
Cluster Server to configure the following components:

■ virtual hostname and IP

■ OracleAS Infrastructure database

■ Oracle Process Management and Notification service

■ Application Server Console

Central to the Windows OracleAS Cold Failover Cluster solution is the concept of
resource groups. A group is a collection of resources defined through Oracle Fail Safe.
During failover from the active node to the standby node, the group, and hence, the
resources in it, failover as a unit. During installation and configuration of the OracleAS

Note: Only static IP addresses can be used in the OracleAS Cold
Failover Cluster solution for Windows.

High Availability Configurations for Infrastructure

3-12 High Availability Guide

Cold Failover Cluster, a single group is defined for the solution. This group consists of
the following:

■ virtual IP for the cluster

■ virtual hostname for the cluster

■ shared disk

■ Infrastructure database

■ TNS listener for the database

■ OPMN

■ Application Server Console

The integration of Oracle Fail Safe and Microsoft Cluster Server provide an easy to
manage environment and automatic failover functionality in the OracleAS Cold
Failover Cluster solution. The Infrastructure database, its TNS listener, and OPMN are
installed as Windows services and are monitored by Oracle Fail Safe and Microsoft
Cluster Server. Upon failure of any of these Windows services, Microsoft Cluster
Server will try to restart the service three times (default setting) before failing the
group to the standby. Additionally, OPMN monitors, starts, and restarts the Oracle
Internet Directory, OC4J, and Oracle HTTP Server processes.

Middle Tier on OracleAS Cold Failover Cluster Nodes
OracleAS middle tier can also be installed on the same node(s) as the OracleAS Cold
Failover Cluster solution (see Figure 3–4). If the OracleAS middle tier is installed on
both nodes of the OracleAS Cold Failover Cluster, both middle tier installations are
concurrently active and servicing requests while the Infrastructure is active only on
one of the nodes. Figure 3–4 provides a graphical depiction of this discussion.

See Also: Oracle Application Server 10g Installation Guide for details
on the installation process and requirements for installation.

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-13

Figure 3–4 OracleAS Middle Tier on same nodes as OracleAS Cold Failover Cluster
solution

This set up has the following characteristics:

■ The middle tiers are installed on local storage, and a load balancer should be
available in front of them to load balance between them.

■ The middle tiers do not benefit from the failover capabilities of the hardware
cluster system or OracleAS Cold Failover Cluster solution. They have their own
ways of achieving high availability, as discussed in Chapter 2 and Chapter 4 of this
guide.

■ The middle tier instances (J2EE and Web Cache installation type) can be grouped
together to form an Oracle Application Server 10g Cluster, benefiting from the
high availability attributes of Oracle Application Server 10g Clusters as described
in Chapter 2.

■ On each node, port conflicts between the middle tier and the Infrastructure must
be avoided. Port numbers used by the middle tier must be different from those
used by the Infrastructure. Any conflict can be avoided at installation time using
the staticports.ini file. See Oracle Application Server 10g Installation Guide.

■ If the Infrastructure on a node experiences a software failure, the middle tier on
the same node may still be serviceable. This can be true even after the
Infrastructure fails over to the standby node in the OracleAS Cold Failover
Cluster.

See Also: Oracle Application Server 10g Installation Guide

High Availability Configurations for Infrastructure

3-14 High Availability Guide

Oracle Application Server Active Failover Cluster (UNIX)

Oracle Application Server Active Failover Cluster (OracleAS Active Failover Cluster)
provides a robust cluster architecture for the Infrastructure. It provides a more
transparent high availability solution than the OracleAS Cold Failover Cluster
solution. Because the nodes in the OracleAS Active Failover Cluster solution are all
active, failover from one node to another is quick and requires no manual intervention.
The active-active set up also provides scalability to the Infrastructure deployed on it.
Figure 3–5 depicts the overall architecture of the solution.

Figure 3–5 OracleAS Active Failover Cluster high availability solution

In this solution, the Infrastructure software is installed identically on each node of a
hardware cluster that is running OracleAS Active Failover Cluster technology. Each
node has a local copy of the Infrastructure software (including Oracle Identity
Management software) and an instance of the database. The database files are installed

Note: Check OracleMetalink (http://metalink.oracle.com) for the
most current certification status of this feature or consult your Oracle
sales representative before deploying this feature in a production
environment.

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-15

in shared storage accessible by all nodes. The database instances open the database
concurrently for read/write operations. The Infrastructure configuration files that are
not in the database but in the file system are local to each node. These files contain
node-specific configuration information.

The cluster is front-ended by a load balancer appliance. Oracle recommends that this
load balancer be deployed in a fault-tolerant mode to maintain availability in case of
load balancer failure. The load balancer appliance is used to direct non Oracle Net
traffic from the middle tier to the Infrastructure. This traffic includes HTTP, HTTPS,
and LDAP requests. The configuration of the load balancer is set to direct requests
from the middle tier to any of the active Infrastructure nodes.

Oracle Net traffic from the middle tier does not go through the load balancer. This
traffic is directed to the Infrastructure nodes via connect descriptors with multiple
addresses in the address list. The address list is used to load balance certain Oracle Net
traffic across the Infrastructure nodes. Oracle Net traffic include those initiated by:

■ JDBC OCI

■ JDBC thin

■ dblinks using connect strings or tnsAlias

■ tnsAlias-based access such as DADs (Database Access Descriptors)

■ connect descriptor-based access

The OracleAS Active Failover Cluster high availability solution enables failover for
failure of a whole node as well as failure of individual components of the node such as
the database instance and Oracle Internet Directory.

The following considerations apply to this solution:

1. The OracleAS Active Failover Cluster is deployed on a hardware cluster.

2. All nodes in the cluster are peers in the following ways:

a. They run the same version of operating system.

b. They have the same version or compatible versions of all software such as the
Java runtime.

c. ORACLE_HOME path and structure is the same on all nodes of the cluster.

d. ORACLE_SID has to be unique for each database instance on each node.

e. Service name has to be common for all database instances.

f. Identical port numbers for Infrastructure components.

3. Infrastructure components are in one cluster (not asymmetrically distributed) and
in a single OracleAS Active Failover Cluster database. All nodes have identical
configuration of Infrastructure components (OPMN, Oracle HTTP Server,
OracleAS Single Sign-On, Oracle Enterprise Manager process, Oracle Internet
Directory LDAP server, and Oracle Delegated Administration Services).

For information on setting up and operating the OracleAS Active Failover Cluster high
availability solution for the Infrastructure, see Chapter 5, "Managing Infrastructure
High Availability". The pre-installation and installation tasks for this high availability
solution are provided in detail in Oracle Application Server 10g Installation Guide.

Note: Check http://metalink.oracle.com for information on
supported external load balancers.

High Availability Configurations for Infrastructure

3-16 High Availability Guide

Load Balancer Configuration
In order for an OracleAS Active Failover Cluster to service Oracle Internet Directory
LDAP and HTTP (for OracleAS Single Sign-On and Oracle Delegated Administration
Services) requests, a load balancer is required for the OracleAS Active Failover Cluster
configuration. The hostname of the load balancer virtual server is exposed as the
hostname of the Infrastructure for these requests. This section describes the
configuration requirements for the load balancer for the default installation of
OracleAS Active Failover Cluster.

For high availability, the following is recommended:

■ The load balancer should be deployed in a fault tolerant configuration. Two load
balancers should be used. These fault tolerant load balancers should be identical in
terms of their configuration and capacity. Their failover should be automatic and
seamless from the middle tier’s standpoint.

■ The load balancer type used should be able to handle both HTTP and LDAP traffic
in the default OracleAS Active Failover Cluster configuration described in this
chapter. Any load balancing mechanism that supports only one of the protocols
(for example, OracleAS Web Cache for HTTP) cannot be used in the default
configuration.

■ The load balancer should be accessible from all nodes of the OracleAS Active
Failover Cluster deployment.

■ The load balancer should be accessible from all machines that need to access the
Infrastructure.

■ The load balancer should not drop idle connections. Any timeouts associated with
dropping of connection should be eliminated.

Two load balancer parameters are of primary importance for the OracleAS Active
Failover Cluster configuration:

■ The nodes to which the load balancer directs traffic.

■ The persistence setting of the load balancer.

The recommended setting for the load balancer for the above two parameters are
provided below in Table 3–2. Load balancers come in many flavors and each may have
its own configuration mechanism. Consult your load balancer’s documentation for the
specific instructions to achieve these configurations.

Table 3–2 Recommended settings for load balancer

Deployment Phase Traffic redirection Setting Persistence Setting

OracleAS Active
Failover Cluster
installation

■ Load balancer directs traffic to the
node being installed and only to
that node.

NA

High Availability Configurations for Infrastructure

Infrastructure High Availability 3-17

The persistence mechanism used should provide session level stickiness. By default,
HTTP and Oracle Internet Directory requests both use the same virtual host address
configured for the load balancer. Hence, the persistence mechanism used is available
for both kinds of requests.

If the load balancer allows for the configuration of different persistence mechanisms
for different server ports (LDAP and HTTP) for the same virtual server, then this is
recommended strategy. In this case, a cookie-based persistence with session-level
timeout is more suitable for the HTTP traffic. No persistence setting is required for the
LDAP traffic.

OracleAS Active
Failover Cluster normal
operations

■ Load Balancer directs traffic to all
nodes of the OracleAS Active
Failover Cluster configuration
that are up and is configured to
load balance this traffic.

■ If not all hardware cluster nodes
are used for the OracleAS Active
Failover Cluster, the number of
nodes to load balance traffic to
may be less than the nodes in the
hardware cluster .

■ If any node of the OracleAS
Active Failover Cluster is not
available or if any of the Oracle
Internet Directory, HTTP, or SSO
processes is down, the load
balancer should not direct traffic
to these nodes.

Session level persistence
should be configured for
LDAP and HTTP traffic.

OracleAS Active
Failover Cluster node or
process is brought down

■ If a node or an OracleAS Active
Failover Cluster process on a
node is being brought down, the
current node should be disabled
from the list of nodes the load
balancer directs traffic to. Refer to
your load balancer’s
documentation for the best way to
do this.

Session level persistence
should be configured for
LDAP and HTTP traffic.

middle tier association ■ When a new middle tier is being
associated (such as during middle
tier installation), the load balancer
is required to direct traffic to just
one node of the OracleAS Active
Failover Cluster. This could be
any node in the cluster.

This is required only during the
duration of the middle tier
installation. Once middle tier
association is done, the load
balancer can be configured back
to its previous state. Check with
your load balancer
documentation on accomplishing
this without disrupting existing
connections (primarily LDAP) to
the OracleAS Active Failover
Cluster.

Session level persistence
should be configured for
LDAP and HTTP requests.

Table 3–2 (Cont.) Recommended settings for load balancer

Deployment Phase Traffic redirection Setting Persistence Setting

High Availability Configurations for Infrastructure

3-18 High Availability Guide

If the load balancer does not allow specification of different persistence mechanisms
for LDAP and HTTP, then the timeout value for session level stickiness should be
configured based on the requirements of the deployed application. The timeout value
should not be too high as chances of traffic from a given middle tier instance always
being directed to the same node of the OracleAS Active Failover Cluster are higher.
Alternatively, if the timeout is too low, the chances of a session timeout occurring for
longer running operations that access the Infrastructure are higher.

The recommended default stickiness timeout is 60 seconds. This should be adjusted
based on the nature of the deployment and the load balancing achieved across the
OracleAS Active Failover Cluster nodes. It should be increased if session timeouts are
experienced by Delegated Administration Services users. It should be decreased if
even load balancing is not achieved.

Both the LDAP & HTTP traffic should be tested after configuration of the load
balancer. This should be done from any machine outside the OracleAS Active Failover
Cluster. The tests should have the following coverage:

■ Access and test the Oracle Delegated Administration Services URL to test HTTP
requests.

■ Access and test the OracleAS Single Sign-On URL to test HTTP requests.

■ Access and test the Oracle Internet Directory by running a few ldapsearch
commands for LDAP requests.

The requests types above should be directed to different nodes of the OracleAS Active
Failover Cluster. The desired operation(s) should complete successfully for the tests to
be successful.

Managing and Operating Middle Tier High Availability 4-1

4
Managing and Operating Middle Tier High

Availability

This chapter describes how to perform configuration changes and on-going
maintenance of OracleAS Clusters. Because managing individual nodes involves some
complexity, an OracleAS Cluster provides the ability to manage the nodes as a single
entity, thereby reducing the management complexity. Instructions are provided for
managing and configuring OracleAS Clusters using Oracle Enterprise Manager -
Application Server Console (Application Server Console) and where required, using
the dcmctl command line utility.

This chapter covers the following topics:

■ Middle Tier High Availability Configuration Overview

■ Managing and Configuring OracleAS Clusters

■ Using a File-Based Repository with OracleAS Clusters

■ OC4J Configuration with an OracleAS Cluster

■ Oracle HTTP Server Configuration with OracleAS Clusters

■ Security – Configuring Single Sign-On

■ Advanced Clustering Configuration

Middle Tier High Availability Configuration Overview
Oracle Application Server supports different clustering configuration options to
support high availability in the Oracle Application Server middle tier. OracleAS
Clusters provide distributed configuration information and let multiple Oracle
Application Server instances work together and behave as a single system to external
clients. When configured to use redundant components throughout, OracleAS Clusters
support a highly available system in which to deploy and run applications with no
single point of failure.

This section covers the following topics:

■ Configuration Overview OracleAS Clusters Managed Using a Repository

■ Manually Configured OracleAS Clusters Configuration Overview

Note: Only OracleAS instances of the J2EE and Web Cache
installation type can be clustered as an OracleAS Cluster.

Middle Tier High Availability Configuration Overview

4-2 High Availability Guide

■ OracleAS Web Cache Cluster Overview

Configuration Overview OracleAS Clusters Managed Using a Repository
When administering an OracleAS Cluster that is managed using a repository, an
administrator uses either Application Server Console or dcmctl commands to
manage and configure common configuration information. The Oracle Application
Server manageability components then replicate the common configuration
information across all Oracle Application Server instances within the cluster. Using
OracleAS Clusters, the common configuration information for the cluster is called the
cluster-wide configuration.

Each application server instance in a OracleAS Cluster has the same base
configuration. The base configuration contains the cluster-wide configuration and
excludes instance-specific parameters.

This section covers the following:

■ Oracle Application Server Clusters Managed Using Database Repository

■ Oracle Application Server Clusters Managed Using File-Based Repository

■ Common Tasks for OracleAS Cluster Configuration

Oracle Application Server Clusters Managed Using Database Repository
Oracle Application Server Clusters managed using a database repository utilize
Oracle9i database to store configuration information and metadata, including both
cluster-wide configuration information and instance-specific parameters.

Using a database repository protects configuration information by storing the
information in the database. Using the database, combined with Oracle Application
Server high availability solutions both protects configuration information and allows
you to continue operations after system failures.

Oracle Application Server Clusters Managed Using File-Based Repository
Oracle Application Server Clusters managed using a file-based repository use the file
system to store configuration information, including both cluster-wide configuration
information and instance-specific parameters. Using Oracle Application Server
Clusters managed using a file-based repository does not present a single point of
failure; remaining Oracle Application Server instances within a cluster are available to
service client requests when one or more Oracle Application Server instances is down.

Configuring and managing Oracle Application Server Clusters managed using a
file-based repository requires that the administrator set up a farm and perform certain
configuration tasks using the dcmctl command line utility.

See Also: Chapter 2, "Middle Tier High Availability"

Note: There is configuration information that can be configured
individually, per Oracle Application Server instance within a cluster
(these configuration options are also called instance-specific
parameters).

See Also: "Using a File-Based Repository with OracleAS Clusters"
on page 4-9

Middle Tier High Availability Configuration Overview

Managing and Operating Middle Tier High Availability 4-3

Common Tasks for OracleAS Cluster Configuration
Figure 4–1 shows the cluster configuration hierarchy, starting with an Oracle
Application Server top-level farm for an OracleAS Cluster. This figure applies to both
types of OracleAS Clusters: those managed using a file-based repository and those
managed using a database repository.

Figure 4–1 shows the OracleAS Clusters configuration hierarchy, including the
following:

■ Clusters that contain Oracle Application Server instances

■ Oracle Application Server instances containing a single Oracle HTTP Server and
one or more OC4J instances

■ OC4J instances containing the following:

– One or more OC4J islands

– One or more OC4J processes within OC4J islands

– Deployed applications

Figure 4–1 Application Server Console Cluster Configuration Tree

Manually Configured OracleAS Clusters Configuration Overview
Manually configured OracleAS Clusters store configuration information in local
configuration files and do not use either a database repository or a file-based
repository. In a manually configured cluster, it is the administrator’s responsibility to

Farm

Cluster 0...n for each farm

0...r for each cluster

1 per application server instance

1...n per application server instance

1...n per 0C4J instance

Application
Server

Instance

OHS
 Instance

OC4J
 Instance

OC4J
Processes

O
_1

02
7

Managing and Configuring OracleAS Clusters

4-4 High Availability Guide

synchronize the configuration of the Oracle Application Server instances that are part
of the cluster.

OracleAS Web Cache Cluster Overview
In an OracleAS Web Cache cluster, multiple instances of OracleAS Web Cache operate
as one logical cache to provide high availability. Each OracleAS Web Cache in the
cluster is called a cache cluster member. A cache cluster can consist of two or more
members. The cache cluster members communicate with one another to request
cacheable content that is cached by another cache cluster member and to detect when a
cache cluster member fails. When a cache cluster member detects the failure of another
cluster member, the remaining cache cluster members automatically take over
ownership of the content of the failing member. When the cache cluster member can
be reached again, OracleAS Web Cache again reassigns the ownership of the content.

Managing and Configuring OracleAS Clusters
This section describes how to create and use an OracleAS Cluster. The information in
this section applies both to Oracle Application Server Clusters managed using a
database repository and to those managed using a file-based repository.

This section covers the following topics:

■ Creating and Managing OracleAS Clusters

■ Managing Application Server Instances in an OracleAS Cluster

Creating and Managing OracleAS Clusters
The collection of Oracle Application Server instances within a single repository, either
a database repository or a file-based repository is known as a farm. When an Oracle
Application Server instance is part of a farm, you can view a list of all application
server instances that are part of the farm when you start Application Server Console.
The application server instances shown in the Standalone Instances area on the
Application Server Console Farm Home Page are available to be added to a cluster.

This section covers the following:

■ Associating an Instance with a Farm

■ Creating OracleAS Clusters Using Application Server Console

■ Managing OracleAS Clusters Using Application Server Console

See Also: Oracle Application Server Web Cache Administrator’s Guide
for information on OracleAS Web Cache clustering and configuring a
OracleAS Web Cache cluster.

Note: As an alternative to using Application Server Console, you can
create an OracleAS Cluster, add application server instances to the
cluster, and manage the cluster using dcmctl commands.

See Also: Distributed Configuration Management Reference Guide for
information on dcmctl commands

Managing and Configuring OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-5

Associating an Instance with a Farm
If you have not already done so during the Oracle Application Server installation
process, you can associate an application server instance with a farm using one of the
following techniques:

■ Associating an Instance to be Managed Using a Database Repository

■ Associating an Instance to be Managed Using a File-Based Repository

Associating an Instance to be Managed Using a Database Repository For a farm that uses a
database repository, do the following to add an application server instance to the farm:

1. Navigate to the Oracle Application Server Instance Home Page.

2. In the Home area, select the Infrastructure link and follow the instructions for
associating an application server instance with an Oracle Application Server
Infrastructure.

Associating an Instance to be Managed Using a File-Based Repository For a farm that is
managed using a file-based repository, you need to use the dcmctl joinFarm
command to add a standalone application server instance to the farm.

Creating OracleAS Clusters Using Application Server Console
You create a new OracleAS Cluster using the Application Server Console Farm Home
Page. Application Server Console only shows the Farm Home Page when an Oracle
Application Server instance is part of a farm.

From the Farm Home page, create a new OracleAS Cluster as follows:

1. Navigate to the Farm Home Page.

2. Select the Create Cluster button.

Application Server Console displays the Create Cluster page.

Figure 4–2 shows the Create Cluster page.

Figure 4–2 Create Cluster Page

3. Enter a name for the new cluster and click Create. Each new cluster name within
the farm must be unique.

A confirmation page appears.

4. Click OK to return to the Farm Home Page.

See Also: Oracle Application Server 10g Administrator’s Guide

See Also: "Joining a Farm Managed Using a File-Based Repository"
on page 4-11

Managing and Configuring OracleAS Clusters

4-6 High Availability Guide

After creating a new OracleAS Cluster, the Farm Home page shows the cluster in the
Clusters area. After creating a new cluster, the cluster is empty and does not include
any application server instances. Use the Join Cluster button on the Farm Home page
to add application server instances to the cluster.

Managing OracleAS Clusters Using Application Server Console
Figure 4–3 shows the Application Server Console Farm Home Page, including two
clusters, cluster1 and cluster2.

Figure 4–3 Oracle Application Server 10g Farm Page

Table 4–1 lists the cluster control options available on the Farm Home Page.

Note: For Oracle Application Server Clusters using a file-based
repository, Oracle recommends a size of four or less OracleAS
instances per cluster.

See Also: Managing Application Server Instances in an OracleAS
Cluster on page 4-7

Table 4–1 Oracle Application Server Farm Page Options

If you want to... Then...

Start all application server instances in an
OracleAS Cluster

Select the radio button next to the cluster and
click Start

Restart all application server instances in an
OracleAS Cluster

Select the radio button next to the cluster and
click Restart

Stop all application server instances in an
OracleAS Cluster

Select the radio button next to the cluster and
click Stop

Delete an OracleAS Cluster, including any
application server instances still included in
the cluster.

Select the radio button next to the cluster and
click Delete

Managing and Configuring OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-7

Managing Application Server Instances in an OracleAS Cluster
Oracle Application Server replicates cluster-wide configuration within an OracleAS
Cluster. This applies whether the cluster contains only one application server instance
or many application server instances. To provide high availability for the Oracle
Application Server middle tier using an OracleAS Cluster, a cluster needs to contain at
least two application server instances.

This section covers the following topics:

■ Adding an Application Server Instance to an OracleAS Cluster

■ Removing an Application Server Instance from an OracleAS Cluster

Adding an Application Server Instance to an OracleAS Cluster
To add an application server instance to a cluster:

1. Navigate to the Farm Home Page.

2. Select the radio button for the application server instance that you want to add to
a cluster from the Standalone Instances section.

3. Click Join Cluster.

Figure 4–4 shows the Join Cluster page.

Figure 4–4 Join Cluster Page

4. Select the radio button of the cluster that you want the application server instance
to join.

5. Click Join. OracleAS adds the application server instance to the selected cluster
and then displays a confirmation page.

6. Click OK to return to the Farm Home Page.

Repeat these steps for each additional standalone application server instance you want
to join the cluster.

Note the following when adding application server instances to an OracleAS Cluster:

■ When adding application server instances to an OracleAS Cluster, the order that
you add instances to the cluster is significant. The first application server instance

See Also:

■ "Cluster-Wide Configuration Changes and Modifying OC4J
Instances" on page 4-19

■ Distributed Configuration Management Reference Guide for
information on dcmctl commands

Managing and Configuring OracleAS Clusters

4-8 High Availability Guide

that joins the cluster is used as the base configuration for all additional application
server instances that join the cluster. The base configuration includes all
cluster-wide configuration information. It does not include instance-specific
parameters.

■ After the first application server instance joins the cluster, the base configuration
overwrites existing cluster-wide configuration information for subsequent
application server instances that join the cluster. Each additional application server
instance, after the first, that joins the cluster inherits the base configuration
specified for the first application server instance that joins the cluster.

■ Before an application server instance joins a cluster, Application Server Console
stops the instance. You can restart the application server instance by selecting the
cluster link, selecting the appropriate instance from within the cluster, and then
selecting the Start button.

■ An application server instance is removed from the Standalone Instances area
when the instance joins a cluster.

■ To add multiple standalone application server instances to a cluster in a single
operation, use the dcmctl joinCluster command.

■ When an application server instance contains certain Oracle Application Server
components, it is not clusterable. Use the dcmctl isClusterable command to
test if an application server instance is clusterable. If the application server
instance is not clusterable, then Application Server Console returns an error when
you attempt to add the instance to a cluster.

■ To be clusterable, all application server instances that are to be members of an
OracleAS Cluster must be installed on the same operating system (this includes
the same variant of UNIX).

Removing an Application Server Instance from an OracleAS Cluster
To remove an application server instance from a cluster, do the following:

1. Select the cluster in which you are interested on the Farm Home Page. This brings
you to the cluster page.

2. Select the radio button of the application server instance to remove from the
cluster and click Remove.

To remove multiple standalone application server instances, you need to repeat these
steps multiple times.

Note the following when removing application server instances from an OracleAS
Cluster:

■ Before an application server instance leaves a cluster, Application Server Console
stops the instance. After the operation completes, you restart the application
server instance from the Standalone Instances area of the Farm Home Page.

■ The dcmctl leaveCluster command removes one application server instance
from the cluster at each invocation.

■ When the last application server instance leaves a cluster, cluster-wide
configuration information associated with the cluster is removed. The cluster is
now empty and the base configuration is not set. Subsequently, Oracle Application
Server uses the first application server instance that joins the cluster as the base
configuration for all additional application server instances that join the cluster.

■ You can remove an application server instance from the cluster at any time. The
first instance to join a cluster does not have special properties. The base

Using a File-Based Repository with OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-9

configuration is created from the first instance to join the cluster, but this instance
can be removed from the cluster in the same manner as the other instances.

Using a File-Based Repository with OracleAS Clusters
You can create OracleAS Clusters that do not depend on the database to store
cluster-wide configuration and management information. Using a file-based
repository, cluster-wide configuration information and related metadata is stored on
the file system of an Oracle Application Server instance that is the repository host
(host). Oracle Application Server instances that are part of a farm that uses a file-based
repository depend on the repository host to store cluster-wide configuration
information. After creating a farm that includes Oracle Application Server instances
managed using a file-based repository, you can create OracleAS Clusters.

This section covers the following topics:

■ Initializing File-Based Repository Host and Adding Instances to a Farm

■ Managing Instances in a Farm That Uses a File-Based Repository

Initializing File-Based Repository Host and Adding Instances to a Farm
This section describes how to create a farm that uses a file-based repository and covers
the following:

■ Testing an Instance With whichFarm and Leaving a Farm

■ Initializing the Repository Host Instance for a File-Based Repository

■ Joining a Farm Managed Using a File-Based Repository

After a farm is created that includes Oracle Application Server instances managed
using a file-based repository, you can create OracleAS Clusters using either
Application Server Console or dcmctl commands.

Testing an Instance With whichFarm and Leaving a Farm
To create a file-based repository you need to start with a standalone application server
instance. A standalone application server instance is an instance that is not associated
with a farm. To verify that the Oracle Application Server instance that you want to use
as the repository host for a file-based repository is a Standalone Instance, issue the
following command:

% dcmctl whichFarm

This command returns the following when an instance is not associated with any farm:

Standalone OracleAS instance

Table 4–2 shows sample output from whichFarm. When an instance is not a
standalone instance whichFarm returns information showing that the instance is part
of a farm.

Note: The whichFarm command returns detailed output when
dcmctl runs with the verbose setting on. When verbose is off,
whichFarm returns less output. Use the dcmctl set -v off to set
the verbose mode off. Likewise, use dcmctl set -v on to set the
verbose mode on.

Using a File-Based Repository with OracleAS Clusters

4-10 High Availability Guide

When the instance that you want to use with a file-based repository is part of an
existing farm, you need to first leave the farm before you can initialize a file-based
repository.

Use the leavefarm command to leave the farm as follows:

% dcmctl leaveFarm

After you leave the farm, whichFarm returns the following:

% dcmctl whichFarm
Standalone OracleAS instance

There are restrictions on leaving a farm using dcmctl leaveFarm, including the
following:

■ If you attempt to use dcmctl leaveFarm on an Oracle Application Server
Infrastructure system, dcmctl reports an error unless the Infrastructure system is
the only Oracle Application Server instance that is part of the farm.

■ Running the dcmctl leaveFarm command stops all the Oracle Application
Server components running on the Oracle Application Server instance.

■ You cannot use leaveFarm on an Oracle Application Server Infrastructure system
that serves as the repository for any Oracle Application Server instances other

Table 4–2 Dcmctl whichFarm Command Verbose Output

Executing whichFarm on instance of type Generates the following output...

Standalone Instance % dcmctl whichFarm
Standalone OracleAS instance

File-Based Repository – repository host instance
(host)

% dcmctl whichFarm
Farm Name: .private.904M13.dcm.repository
Host Instance: 904M13.sc-sun.us.oracle.com
Host Name: sc-sun.us.oracle.com
Repository Type: Distributed File Based (host)
SSL In Use: false

File-Based Repository – not the repository host
instance

% dcmctl whichFarm
Farm Name: .private.904M13.dcm.repository
Host Instance: 904M13.sc-sun.us.oracle.com
Host Name: sc-sun.us.oracle.com
Repository Type: Distributed File Based
SSL In Use: false

Database Repository – Infrastructure Instance % dcmctl whichFarm
Host Instance: 904M12infra.sc-sun.us.oracle.com
Host Name: sc-sun.us.oracle.com
Repository Type: Database (host)

Database Repository – not on the Infrastructure
Instance

% dcmctl whichFarm
Farm Name: tv1.us.oracle.com
Host Instance: 904M12infra.sc-sun.us.oracle.com
Host Name: sc-sun.us.oracle.com
Repository Type: Database

Note: Using the leaveFarm command on an instance stops all the
Oracle Application Server components running on the instance.

Using a File-Based Repository with OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-11

than itself. To run leavefarm on the Oracle Application Server Infrastructure, you
must first go the Oracle Application Server instances and run leaveFarm on
those instances.

Initializing the Repository Host Instance for a File-Based Repository
After selecting the Oracle Application Server instance to be the repository host for the
file-based repository, do the following to create a farm and initialize the file-based
repository on the repository host instance:

1. Issue the following command on the Oracle Application Server instance that is to
be the repository host instance for the file-based repository:

dcmctl getRepositoryid

2. Using the repository ID that you obtain, issue the command:

dcmctl joinFarm -r <repositoryID>

Where repositoryID is the value returned from the previous step. The dcmctl
joinFarm command sets up the repository host instance and initializes the farm
managed using a file-based repository; Oracle Application Server stores the farm’s
configuration information in a file-based repository on the repository host
instance.

Joining a Farm Managed Using a File-Based Repository
After selecting the repository host instance for the file-based repository and initializing
the file-based repository, do the following to add additional application server
instances to the farm:

1. Obtain the repository ID on the repository host instance. To do this, issue the
following command:

dcmctl getRepositoryId

To obtain the repository ID for the repository host instance, you can issue the
getRepositoryid command on any system which is part of the farm you want
to join (that is, if another instance uses the same repository host instance, you can
use the dcmctl getRepositoryid command on that system).

2. On the application server instance that you want to add to the farm, do the
following:

dcmctl joinFarm -r <repositoryID>

Where the repositoryID you specify is the value returned in step 1.

Note: If you create a farm using the dcmctl command and you are
using Application Server Console to view the changes, you need to
restart Application Server Console for the changes to be shown. Use
the emctl start and stop commands to restart Application Server
Console.

Using a File-Based Repository with OracleAS Clusters

4-12 High Availability Guide

Managing Instances in a Farm That Uses a File-Based Repository
This section covers the following topics:

■ Managing Oracle Application Server Instances and Clusters With a File-Based
Repository

■ Availability Issues for OracleAS Clusters With a File-Based Repository

■ Exporting and Importing Configuration Information With a File-Based Repository

■ Moving an Instance Between Repositories

■ Enabling SSL For Communication Between Instances That are Using a File-Based
Repository

Managing Oracle Application Server Instances and Clusters With a File-Based
Repository
Once a farm is set up that is managed using a file-based repository, you can use the
Application Server Console or dcmctl commands to create and manage OracleAS
Cluster within the farm, and you can configure standalone instances within the farm
to join a cluster.

Availability Issues for OracleAS Clusters With a File-Based Repository
An important consideration for using OracleAS Clusters with a file-based repository is
determining which Oracle Application Server instance is the repository host.

Consider the following when selecting the repository host for a file-based repository:

Note: In this step, do not specify the repository ID of the instance
you are on. Rather, use the repository ID for the farm’s repository host
instance, or use the repository ID of any instance that is already part
of the farm you want to join (this value is the same for all Oracle
Application Server instances that use the same file-based repository).

Also, if you are using Application Server Console to view the changes
after executing the dcmctl joinFarm command, you need to restart
Application Server Console for the changes to appear. Use the emctl
start and stop commands to restart Application Server Console.

See Also: Distributed Configuration Management Reference Guide for
information on dcmctl commands

Note: For Oracle Application Server Clusters using a file-based
repository, Oracle recommends a size of four or less OracleAS
instances per cluster.

See Also:

■ "Managing and Configuring OracleAS Clusters" on page 4-4

■ Distributed Configuration Management Reference Guide for
information on dcmctl commands

Using a File-Based Repository with OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-13

■ When the repository host instance is temporarily unavailable, an OracleAS Cluster
that uses a file-based repository is still able to run normally, but it cannot update
any configuration information.

■ Since the Oracle Application Server instance that is the repository host instance
stores and manages the cluster related configuration information in its file system,
the repository host instance should use mirrored or RAID disks. If the repository
host instance uses disk mirroring, this improves the availability of the OracleAS
Clusters.

■ When the repository host instance is not available, read-only configuration
operations are not affected on any Oracle Application Server instances that are
running (the farm’s cluster-wide configuration information is distributed and
managed through local Oracle Application Server Java Object Cache),

■ When the repository host instance is not available, operations that attempt to
change configuration information in the file-based repository will generate an
error. These operations must be delayed until the repository host instance is
available, or until the repository host instance is relocated to another application
server instance within the farm.

Exporting and Importing Configuration Information With a File-Based Repository
Oracle Application Server provides commands to save a file-based repository and
prevent it from being permanently lost, when the repository host instance goes down
or its file system is damaged. Using the exportRepository command you can save
the entire file-based repository. After saving the configuration information using the
exportRepository command, using importRepository, you can restore the
saved configuration information to the repository host instance, or to a different
instance in the farm.

To export the repository from the repository host instance, do the following:

dcmctl exportRepository -file <file_name>

To import a saved file-based repository, on the system that is to be the repository host
instance for the farm, do the following:

dcmctl importRepository -file <file_name>

The file_name is a previously saved file that was created using the dcmctl
exportRepository command. When the file-based repository is restored to a
different Oracle Application Server instance, the instance where the
importRepository command runs becomes the new repository host instance.

To specify that the Oracle Application Server instance that was the old repository host
instance for a file-based repository is no longer the repository host instance, issue the
following command:

dcmctl repositoryRelocated

Note: Before running dcmctl with the importRepository option,
stop all other DCM daemons in the instances of the same farm except
for the current instance where you are running dcmctl. Use the
following command at each instance:

ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=dcm-daemon

Using a File-Based Repository with OracleAS Clusters

4-14 High Availability Guide

Moving an Instance Between Repositories
If you have an Oracle Application Server instance joined to a farm that uses a
file-based repository, you can move that instance to another repository whether it is a
file-based or database-based repository. The steps to move to another repository type
involve the steps to leave a farm and join another farm.

When an OracleAS instance leaves a farm, it essentially becomes a standalone
instance. The instance’s DCM-managed configuration metadata in the repository is
moved to the instance. Any archives for the instance are also deleted. However,
connections to the Infrastructure database that may exist for other components (Oracle
Application Server Single Sign-On, JAAS, and Oracle Internet Directory) are not
removed.

To leave a farm, execute the following command at the OracleAS instance:

dcmctl leaveFarm

The following sections provide instructions to move an OracleAS instance from a
file-based repository to other repositories:

■ Moving to a Database-Based Repository

■ Moving to Another File-Based Repository

Moving to a Database-Based Repository When moving an OracleAS instance from a
file-based repository to a database-based repository, you must first disassociate the
instance from its current repository by leaving the repository’s farm. The instance then
becomes a standalone instance at which point you can join it to the farm of a
database-based repository. The following instructions tell you how to perform these
tasks:

1. Determine if the instance is still part of a farm using the following command:

dcmctl whichFarm

2. If the command returns a farm name, the OracleAS instance is still part of a farm,
and hence, still associated with an existing repository. Use the dcmctl
leaveFarm command to bring the instance to a standalone state.

3. If the instance is joining the farm of the database-based repository for the first
time, its configuration metadata is not in the repository. Use the Application
Server Console to join the farm of the repository. Instructions to do this are in the
Oracle Application Server 10g Administrator’s Guide.

4. If the instance is joining a farm of the database-based repository, and the instance
was a member of that farm earlier, use the following command to rejoin the farm:

dcmctl joinFarm

Note: If you want the instance that was the old repository host
instance to join the farm, be sure to run repositoryRelocated on
the old repository host instance.

Note: After executing the dcmctl leaveFarm command, it is
recommended that you create a new baseline archive for the instance
that just left the farm. Refer to the Distributed Configuration
Management Reference Guide for archiving instructions.

Using a File-Based Repository with OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-15

Moving to Another File-Based Repository To join the instance to another farm that is using
a file-based repository, use the dcmctl command together with the file-based
repository’s ID. At the command line of the OracleAS instance:

1. Run the following command:

dcmctl whichFarm

2. If the command returns a farm name, the OracleAS instance is still part of a farm,
and hence, still associated with an existing repository. Use the dcmctl
leaveFarm command to bring the instance to a standalone state.

3. After ensuring that the instance is not part of a farm, run the following command
at one of the instances that is joined to the farm of the repository that you want to
join. This command gets the repository ID of the file-based repository. If you want
to establish and join a new file-based repository using the host where the
standalone instance is as the repository host, run the following command at the
standalone instance.

dcmctl getRepositoryId

A repository identifier in the format "hostname:port" is returned.

4. Join the farm of the desired repository using the following command:

dcmctl joinFarm -r <repository_ID>

Enabling SSL For Communication Between Instances That are Using a File-Based
Repository
When instances in a farm use a file-based repository, you can configure DCM so that
configuration information that is sent between instances uses SSL. This feature
provides for the security of messages sent between all instances in the farm and
prevents unauthorized instances from joining the farm.

This section describes the steps required to setup SSL and certificate-based security for
instances that use a file-based repository. The overall steps are:

■ Generating the Keystore

■ Shutdown Oracle Application Server Processes on Each Instance

■ Set Up the Keystore Information File on Each Instance in the Farm

■ Enable SSL By Configuring dcmCache.xml

■ Verify that Configuration Changes are Effected

■ Start Each Instance in the Farm

■ Adding a New Instance to a SSL-Enabled Farm

Note: if you are using Application Server Console to view the
changes after executing the dcmctl joinFarm command, you need
to restart Application Server Console for the changes to appear. Use
the emctl start and stop commands to restart Application Server
Console.

See Also: Distributed Configuration Management Reference Guide

Using a File-Based Repository with OracleAS Clusters

4-16 High Availability Guide

Generating the Keystore Use the JDK keytool command to generate a certificate and set
up the keystore, as documented in:

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/keytool.html

If you have already generated the key pair and obtained the certificate for OC4J, then
you can use the same keystore you previously obtained.

To use SSL certificate-based security, a Java keystore must be setup on each instance in
the farm. This keystore may be the same as that used by other Java applications or it
can be unique for DCM file-based repository configuration. Note the path to each
keystore location for each instance in the farm.

Shutdown Oracle Application Server Processes on Each Instance At each instance of the
farm, execute the following commands to shut down Oracle Application Server
processes:

in UNIX:

$ORACLE_HOME/bin/emctl stop iasconsole
$ORACLE_HOME/dcm/bin/dcmctl stopproc

in Windows:

%ORACLE_HOME%\bin\emctl stop iasconsole
%ORACLE_HOME%\dcm\bin\dcmctl shutdown

Set Up the Keystore Information File on Each Instance in the Farm After obtaining the
keystore and certificate information, on each Oracle Application Server instance in the
farm, you need to use the dcmctl configRepositorySSL command to create the
file that holds keystore information.

To set up the keystore information file, execute the following instructions beginning
with the repository host instance of the file-based repository (after that, the
instructions can be performed in no particular sequence for the remaining instances):

1. Copy the keystore file that you generated in the first step, "Generating the
Keystore," to a location in the local host.

2. Use the configRepositorySSL as follows on each instance to create the
keystore information file:

dcmctl configRepositorySSL -keystore <path_to_keystore> -storepass <password>

The generated file, .ssl.conf, is stored in <ORACLE_HOME>/dcm/config.

Enable SSL By Configuring dcmCache.xml Modify the dcmCache.xml cache
configuration <useSSL> attribute as shown in Table 4–3 to enable or disable the use of
SSL.

Optionally, you can specify the location of the file that was generated using
configRepositorySSL by modifying the value of the <sslConfigFile> element.
If you modify this value, you need to copy the .ssl.conf file that

Important: The keystore information file must be set up for the
repository host instance of the file-based repository before any
other instance in the farm. To find the respository host and host
instance, execute the following:

dcmctl getrepositoryid

Using a File-Based Repository with OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-17

configRepositorySSL generated to the new file that you specify using
<sslConfigFile>.

The dcmCache.xml file is in $ORACLE_HOME/dcm/config directory in Unix, and in
%ORACLE_HOME%\dcm\config directory in Windows.

Verify that Configuration Changes are Effected Ensure that the configuration changes are
effected by executing the following command on each instance in the farm beginning
with the repository host instance:

dcmctl getstate

The synchronization state of the local instance with the file-based repository is shown.

Start Each Instance in the Farm After the security configuration is consistent across all the
instances in the farm, restart each instance, beginning with the repository host
instance, using the following command:

in UNIX:

$ORACLE_HOME/opmn/bin/opmnctl startall
$ORACLE_HOME/bin/emctl start iasconsole

in Windows:

%ORACLE_HOME%\opmn\bin\opmnctl startall
%ORACLE_HOME%\bin\emctl start iasconsole

Adding a New Instance to a SSL-Enabled Farm You can add a standalone instance to a farm
that is using SSL. On the standalone machine:

1. Copy the keystore file that you generated in the first step, "Generating the
Keystore," to a location in the local host.

2. Use the configRepositorySSL as follows on each instance to create the
keystore information file:

dcmctl configRepositorySSL -keystore <path_to_keystore> -storepass <password>

The generated file, .ssl.conf, is stored in <ORACLE_HOME>/dcm/config.

3. Follow the instructions in the section Joining a Farm Managed Using a File-Based
Repository on page 4-11 to join the instance to the farm.

Table 4–3 Elements for Enabling SSL in a Farm Using a File-Based Repository

Element Description

<useSSL>
true | false

</useSSL>

Set to true to use SSL or to false to disable the use of SSL by
the DCM file-based repository communications mechanism.

 The default value is false.

Valid values: true, false

<sslConfigFile>
sslfile

</sslConfigFile>

Specifies the name, sslfile for the SSL configuration file.

The default value is .ssl.conf.

For most installations, there should be no need to change the
default value for this element.

OC4J Configuration with an OracleAS Cluster

4-18 High Availability Guide

OC4J Configuration with an OracleAS Cluster
This section describes OC4J configuration for OC4J Instances and processes that are
part of OracleAS Clusters that are managed using repositories.

This section covers the following:

■ Overview of OracleAS Cluster Configuration for OC4J Instances

■ Cluster-Wide Configuration Changes and Modifying OC4J Instances

■ Configuring OC4J Instance-Specific Parameters

Overview of OracleAS Cluster Configuration for OC4J Instances
After application server instances join OracleAS Clusters, the application server
instances, and the OC4J instances that run on the application server instances have the
following properties:

■ Each application server instance has the same cluster-wide configuration. When
you use Application Server Console or dcmctl to modify any cluster-wide OC4J
parameters, the modifications are propagated to all application server instances in
the cluster. To make cluster-wide OC4J configuration changes you need to change
the configuration parameters on a single application server instance; the Oracle
Application Server distributed configuration management system then propagates
the modifications to all the other application server instances within the cluster.

■ When you modify any instance-specific parameters, on an OC4J instance that is
part of a cluster, the change is not propagated across the cluster. Changes to
instance-specific parameters are only applicable to the specific application server
instance where the change is made. Since different hosts running application
server instances in the cluster could each have different capabilities, such as total
system memory, it may be appropriate for the OC4J processes within an OC4J
instance to run with different configuration options.

Table 4–4 provides a summary of the OC4J instance-specific parameters. Other OC4J
parameters are cluster-wide parameters and are replicated across OracleAS Clusters.

See Also: Oracle Application Server Containers for J2EE User’s Guide
for detailed information on configuring OC4J Instances

OC4J Configuration with an OracleAS Cluster

Managing and Operating Middle Tier High Availability 4-19

Cluster-Wide Configuration Changes and Modifying OC4J Instances
This section covers the following topics:

■ Creating or Deleting OC4J Instances on OracleAS Clusters

■ Deploying Applications on OracleAS Clusters

■ Configuring Web Application State Replication for OracleAS Clusters

■ Configuring EJB Application State Replication for OracleAS Clusters

■ Configuring Stateful Session Bean Replication for OracleAS Clusters

Creating or Deleting OC4J Instances on OracleAS Clusters
You can create a new OC4J instance on any application server instance within
managed OracleAS Clusters and the OC4J instance will be propagated to all
application server instances across the cluster.

To create an OC4J instance, do the following:

1. Navigate to any application server instance within the cluster.

2. Select the Create OC4J Instance button. This brings up the page that requests a
name for the new instance. Provide a name in the field.

3. Click create.

4. The Oracle Application Server distributed configuration management system
propagates the new OC4J instance across the cluster.

A new OC4J instance is created with the name you provided. This OC4J instance
shows up on each application server instance page across the cluster, in the System
Components section.

Table 4–4 OC4J Instance-Specific Parameters Summary for OracleAS Clusters that are managed using
repositories

OC4J Parameter Description

islands definitions While you want to keep the names of islands consistent across the application server
instances, the definition of the islands and the number of OC4J processes associated
with each island is configured on each instance, and the Oracle Application Server
configuration management system does not replicate the configuration across the
cluster.

Note: state is replicated in OC4J islands with the same name across application
boundaries and across the cluster. So to assure high availability, with stateful
applications, the OC4J island names must be the same in each OC4J instance across
the cluster.

number of OC4J processes While you want to keep the names of islands consistent across the application server
instances, the definition of the islands and the number of OC4J processes associated
with each island is configured on each instance, and the Oracle Application Server
configuration management system does not replicate the configuration across the
cluster.

On different hosts you can tune the number of OC4J processes specified to run per
island to match the host capabilities.

port numbers The RMI, JMS, and AJP port numbers can be different for each host.

command line options The command line options you use can be different for each host.

See Also: Oracle Application Server Containers for J2EE User’s Guide
for complete information OC4J configuration and application
deployment

OC4J Configuration with an OracleAS Cluster

4-20 High Availability Guide

To delete an OC4J instance, select the radio button next to the OC4J instance you wish
to delete, then click Delete. The Oracle Application Server Distributed Configuration
Management system propagates the OC4J removal across the cluster.

Deploying Applications on OracleAS Clusters
Using OracleAS Clusters, when you deploy an application to one application server
instance, the application is propagated to all application server instances across the
cluster.

To deploy an application across a cluster, do the following:

1. Select the cluster you want to deploy the application to.

2. Select any application server instance from within the cluster.

3. Select an OC4J instance on the application server instance where you want to
deploy the application.

4. Deploy the application to the OC4J instance using either Application Server
Console or dcmctl commands.

5. The Oracle Application Server Distributed Configuration Management system
then propagates the application across the cluster.

Configuring Web Application State Replication for OracleAS Clusters
To assure that Oracle Application Server maintains, across OracleAS Clusters, the state
of stateful Web applications you need to configure state replication for the Web
applications.

To configure state replication for stateful Web applications, do the following:

1. Select the Administration link on the OC4J Home Page.

2. Select Replication Properties in the Instance Properties column.

3. Scroll down to the Web Applications section. Figure 4–5 shows this section.

4. Select the Replicate session state checkbox.

Optionally, you can provide the multicast host IP address and port number. If you
do not provide the host and port for the multicast address, it defaults to host IP
address 230.0.0.1 and port number 9127. The host IP address must be between
224.0.0.2 through 239.255.255.255. Do not use the same multicast address for both
HTTP and EJB multicast addresses.

See Also: Oracle Application Server Containers for J2EE User’s Guide
for complete information on deploying applications to an OC4J
instance.

Note: When choosing a multicast address, ensure that the address
does not collide with the addresses listed in

http://www.iana.org/assignments/multicast-addresses

Also, if the low order 23 bits of an address is the same as the local
network control block, 224.0.0.0 – 224.0.0.255, then a collision may
occur. To avoid this provide an address that does not have the same
bits in the lower 23 bits of the address as the addresses in this range.

OC4J Configuration with an OracleAS Cluster

Managing and Operating Middle Tier High Availability 4-21

5. Add the <distributable/> tag to all web.xml files in all Web applications. If
the Web application is serializable, you must add this tag to the web.xml file.

The following shows an example of this tag added to web.xml:

<web-app>
<distributable/>
<servlet>

 ...
</servlet>

</web-app>

Figure 4–5 Web State Replication Configuration

Configuring EJB Application State Replication for OracleAS Clusters
To create an EJB cluster, you specify the OC4J instances that are to be involved in the
cluster, configure each of them with the same multicast address, username, and
password, and deploy the EJB, which is to be clustered, to each of the nodes in the
cluster.

Unlike HTTP clustering, EJBs involved in a cluster cannot be sub-grouped in an island.
Instead, all EJBs within the cluster are in one group. Also, only session beans are
clustered.

The state of all beans is replicated at the end of every method call to all nodes in the
cluster using a multicast topic. Each node included in the EJB cluster is configured to
use the same multicast address.

The concepts for understanding how EJB object state is replicated within a cluster are
described in the Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide.

To configure EJB replication, you must do the following:

1. Select the Administration link on the OC4J Home Page.

2. Select Replication Properties in the Instance Properties column.

3. In the EJB Applications section, select the Replicate State checkbox.

 Figure 4–6 shows this section.

4. Provide the username and password, which is used to authenticate itself to other
hosts in the cluster. If the username and password are different for other hosts in
the cluster, they will fail to communicate. You can have multiple username and
password combinations within a multicast address. Those with the same
username/password combinations will be considered a unique cluster.

Optionally, you can provide the multicast host IP address and port number. If you
do not provide the host and port for the multicast address, it defaults to host IP

See Also: Oracle Application Server Containers for J2EE User’s Guide

OC4J Configuration with an OracleAS Cluster

4-22 High Availability Guide

address 230.0.0.1 and port number 9127. The host IP address must be between
224.0.0.2 through 239.255.255.255. Do not use the same multicast address for both
HTTP and EJB multicast addresses.

5. Configure the type of EJB replication within the orion-ejb-jar.xml file within
the JAR file. See "Configuring Stateful Session Bean Replication for OracleAS
Clusters" on page 4-22 for full details. You can configure these within the
orion-ejb-jar.xml file before deployment or add this through the Application
Server Console screens after deployment. To add this after deployment, drill down
to the JAR file from the application page.

Figure 4–6 EJB State Replication Configuration

Configuring Stateful Session Bean Replication for OracleAS Clusters
For stateful session beans, you may have you modify the orion-ejb-jar.xml file to
add the state replication configuration. Since you configure the replication type for the
stateful session bean within the bean deployment descriptor, each bean can use a
different type of replication.

Stateful session beans require state to be replicated among nodes. In fact, stateful
session beans must send all their state between the nodes, which can have a noticeable
effect on performance. Thus, the following replication modes are available to you to
decide on how to manage the performance cost of replication:

End of Call Replication The state of the stateful session bean is replicated to all nodes in
the cluster, with the same multicast address, at the end of each EJB method call. If a
node loses power, then the state has already been replicated.

To use end of call replication, set the replication attribute of the
<session-deployment> tag in the orion-ejb-jar.xml file to "endOfCall".

 For example,

<session-deployment replication="EndOfCall" .../>

Note: When choosing a multicast address, ensure that the address
does not collide with the addresses listed in

http://www.iana.org/assignments/multicast-addresses

Also, if the low order 23 bits of an address is the same as the local
network control block, 224.0.0.0 – 224.0.0.255, then a collision may
occur. To avoid this provide an address that does not have the same
bits in the lower 23 bits of the address as the addresses in this range.

OC4J Configuration with an OracleAS Cluster

Managing and Operating Middle Tier High Availability 4-23

JVM Termination Replication The state of the stateful session bean is replicated to only
one other node in the cluster, with the same multicast address, when the JVM is
terminating. This is the most performant option, because the state is replicated only
once. However, it is not very reliable for the following reasons:

■ The state is not replicated if the power is shut off unexpectedly. The JVM
termination replication mode does not guarantee state replication in the case of
lost power.

■ The state of the bean exists only on a single node at any time; the depth of failure
is equal to one node.

To use JVM termination replication, set the replication attribute of the
<session-deployment> tag in the orion-ejb-jar.xml file to
"VMTermination".

For example,

<session-deployment replication="VMTermination" .../>

Configuring OC4J Instance-Specific Parameters
This section covers the instance-specific parameters that are not replicated across
OracleAS Clusters that are managed using repositories.

This section covers the following:

■ Configuring OC4J Islands and OC4J Processes

■ Configuring Port Numbers and Command Line Options

Configuring OC4J Islands and OC4J Processes
To provide a redundant environment and to support high availability using OracleAS
Clusters, you need to configure multiple OC4J processes within each OC4J instance.

Using OracleAS Clusters, state is replicated in OC4J islands with the same name
within OC4J instances with the same name across the cluster. To assure high
availability, with stateful applications, OC4J island names within an OC4J instance
must be the same in corresponding OC4J instances across the cluster. It is the
administrator’s responsibility to make sure that island names match where session
state replication is needed in a cluster.

The number of OC4J processes on an OC4J instance within a cluster is an
instance-specific parameter since different hosts running application server instances
in the cluster could each have different capabilities, such as total system memory.
Thus, it could be appropriate for cluster to contain application server instances that
each run different numbers of OC4J processes within an OC4J instance.

To modify OC4J islands and the number of processes each OC4J island contains, do
the following:

1. Select the Administration link on the OC4J Home Page of the application server
instance of interest in the cluster.

2. Select Server Properties in the Instance Properties area.

See Also: Oracle Application Server Containers for J2EE User’s Guide
for complete information OC4J configuration and application
deployment

OC4J Configuration with an OracleAS Cluster

4-24 High Availability Guide

3. Scroll down to the Multiple VM Configuration section. This section defines the
islands and the number of OC4J processes that should be started on this
application server instance in each island.

Figure 4–7 displays the Multiple VM Configuration Islands section.

Figure 4–7 OC4J instance Island and Number of Processes Configuration

4. Create any islands for this OC4J instance within the cluster by clicking Add
Another Row. You can supply a name for each island within the Island ID field.
You can designate how many OC4J processes should be started within each island
by the number configured in the Number of Processes field.

Configuring Port Numbers and Command Line Options
Figure 4–8 shows the section where you can modify these ports and set command line
options.

To modify OC4J ports or the command line options, do the following:

1. Select the Administration link on the OC4J Home Page of the application server
instance of interest in the cluster.

2. Select Server Properties in the Instance Properties area.

3. Scroll down to the Multiple VM Configuration section. This section defines the
ports and the command line options for OC4J and for the JVM that runs OC4J
processes.

Figure 4–8 shows the Ports and Command line options areas on the Server Properties
page.

Oracle HTTP Server Configuration with OracleAS Clusters

Managing and Operating Middle Tier High Availability 4-25

Figure 4–8 OC4J Ports and Command Line Options Configuration

Oracle HTTP Server Configuration with OracleAS Clusters
This section describes Oracle HTTP Server configuration for OracleAS Clusters that
are managed using repositories.

This section covers the following:

■ mod_oc4j Load Balancing With OracleAS Clusters

■ Configuring Oracle HTTP Server Instance-Specific Parameters

mod_oc4j Load Balancing With OracleAS Clusters
This section covers the following:

■ Load Balancing Overview

■ Setting Load Balancing Options

Load Balancing Overview
Using OracleAS Clusters, the Oracle HTTP Server module mod_oc4j load balances
requests to OC4J processes. The Oracle HTTP Server, using mod_oc4j configuration
options, supports different load balancing policies. By providing configurable load
balancing policies, OracleAS Clusters can provide performance benefits along with
failover and high availability for different types of systems, depending on the network
topology and host machine capabilities.

By default, mod_oc4j uses weights to select a node to forward a request to. Each node
has a default weight of 1 unless specified otherwise. A node’s weight is taken as a ratio
compared to the weights of the other available nodes to define the number of requests
the node should service compared to the other nodes in the cluster. Once a node is
selected to service a particular request, by default, mod_oc4j uses the roundrobin
policy to select OC4J processes on the node. If an incoming request belongs to an
established session, the request is forwarded to the same node and the same OC4J
process that started the session.

Oracle HTTP Server Configuration with OracleAS Clusters

4-26 High Availability Guide

The OC4J load balancing policies do not take into account the number of OC4J
processes running on a node when calculating which node to send a request to. Node
selection is based on the configured weight for the node, and its availability. The
number of OC4J processes to run is configured using Application Server Console.

Setting Load Balancing Options
To modify the mod_oc4j load balancing policy, Administrators use the
Oc4jSelectMethod and Oc4jRoutingWeight configuration directives in the mod_
oc4j.conf file.

To configure the mod_oc4j.conf file, using Application Server Console, select the
HTTP_Server component in an application server instance. Then, select the
Administration link and select the Advanced Server Properties link. On the Advanced
Server Properties page, select the mod_oc4j.conf link. On the Edit mod_oc4j.conf
page, within the <IfModule mod_oc4j.c> section, modify Oc4jSelectMethod
and Oc4jRoutingWeight to select the desired load balancing option.

If you do not use Application Server Console, then edit mod_oc4j.conf and use the
dcmctl command to propagate the changes to other mod_oc4j.conf files across the
OracleAS Clusters as follows:

% dcmctl updateconfig -ct ohs
% opmnctl @cluster:<cluster_name> restartproc ias-component=HTTP_Server

process-type=HTTP_Server

The opmnctl restartproc command is required to restart all the Oracle HTTP
Server instances in the OracleAS Clusters for the changes to take effect.

Configuring Oracle HTTP Server Instance-Specific Parameters
The following are instance-specific parameters used by Oracle HTTP Server.

■ ApacheVirtualHost

■ Listen

■ OpmnHostPort

■ Port

■ User

■ Group

■ NameVirtualHost

■ ServerName

■ PerlBlob

You can modify the HTTP Server ports and listening addresses on the Server
Properties Page, which can be accessed from the HTTP Server Home Page. You can

See Also: "Configuring OC4J Instance-Specific Parameters" on
page 4-23

See Also:

■ "Configuring OC4J Instance-Specific Parameters" on page 4-23

■ Oracle HTTP Server Administrator’s Guide for information on using
mod_oc4j load balancing directives

■ Oracle Application Server 10g Performance Guide

Security – Configuring Single Sign-On

Managing and Operating Middle Tier High Availability 4-27

modify the virtual host information by selecting a virtual host from the Virtual Hosts
section on the HTTP Server Home Page.

Security – Configuring Single Sign-On
To enable Oracle Application Server Single Sign-On to work with an OracleAS Cluster,
the Single Sign-On server needs to be aware of the entry point into the cluster, which is
commonly the load balancing mechanism in front of the Oracle HTTP Servers. This
mechanism could exist as Oracle Application Server Web Cache, a network load
balancer appliance, or an Oracle HTTP Server installation.

In order to register an OracleAS Cluster’s entry point with the Single Sign-On server,
use the SSORegistrar tool, which can be executed through ossoreg.jar.

In order to participate in Single Sign-On functionality, all Oracle HTTP Server
instances in a cluster must have an identical Single Sign-On registration.

■ Each Oracle HTTP Server is registered with the same Single Sign-On server.

■ Each Oracle HTTP Server redirects a success, logout, cancel, or home message to
the public network load balancer. In a clustered environment, each Oracle HTTP
Server should redirect message URLs to the network load balancer. Since the client
cannot access an Oracle HTTP Server directly, the client interacts with the network
load balancer.

As with all cluster-wide configuration information, the Single Sign-On configuration is
propagated among all Oracle HTTP server instances in the cluster. However, the initial
configuration is manually configured and propagated. On one of the application
server instances, define the configuration with the ossoreg.jar tool. Then, DCM
propagates the configuration to all other Oracle HTTP Servers in the cluster.

If you do not use a network load balancer, then the Single Sign-on configuration must
originate with whatever you use as the incoming load balancer— Oracle Application
Server Web Cache, Oracle HTTP Server, and so on.

To configure a cluster for Single Sign-On, execute the ossoreg.jar command against
one of the application server instances in the cluster. This tool registers the Single
Sign-On server and the redirect URLs with all Oracle HTTP Servers in the cluster.

Run the ossoreg.jar command with all of the options as follows, substituting
information for the italicized portions of the parameter values.

The values are described fully in Table 4–5.

■ Specify the host, port, and SID of the database used by the Single Sign-On server.

■ Specify the host and port of the front-end load balancer in mod_osso_url
parameter. This should be a HTTP or HTTPS URL depending on the site security
policy regarding SSL access to OracleAS Single Sign-On protected resources.

■ Specify the root user of the host that you are executing this tool on in the -u option.

$ORACLE_HOME/jdk/bin/java -jar $ORACLE_HOME/sso/lib/ossoreg.jar
-oracle_home_path <orcl_home_path>
-site_name <site_name>
-config_mod_osso TRUE
-mod_osso_url <URL>
-u <userid>
[-virtualhost <virtual_host_name>]
[-update_mode CREATE | DELETE | MODIFY]
[-config_file <config_file_path>]
[-admin_info <admin_info>]

Security – Configuring Single Sign-On

4-28 High Availability Guide

[-admin_id <adminid>]

Table 4–5 SSORegistrar Parameter Values

Parameter Value

oracle_home_path
<orcl_home_path>

Absolute path to the Oracle home of the application server
instance, where you are invoking this tool.

site_name <site_name> Name of the sitetypically, the effective host name and port of
the partner application. For example,
application.mydomain.com.

config_mod_osso TRUE If set to TRUE, this parameter indicates that the application
being registered is mod_osso. You must include config_mod_
osso for osso.conf to be generated.

mod_osso_url <URL> The effective URL of the partner application. This is the URL
that is used to access the partner application. The value should
be specified in this URL format:

http://oracle_http_host.domain:port

u <userid> The user name that will start the Oracle HTTP Server. In UNIX,
this name is usually "root." On Windows NT/2000, it is
SYSTEM. The parameter u is mandatory.

virtualhost <virtual_
host_name>

Optional. Use this parameter only if registering an Oracle
HTTP virtual host with the OracleAS Single Sign-On server.

If you create a virtual host, be sure, in the httpd.conf file, to
fill in the following directive for each protected URL:

<VirtualHost host_name>
OssoConfigFile $ORACLE_

HOME/Apache/Apache/conf/osso/host_
name/osso.conf
OssoIpCheck off
#<Location /your_protected_url>
AuthType basic
Require valid-user
#</Location>
#Other configuration information for the virtual host
</VirtualHost>

The commented lines must be uncommented before the
application is deployed.

update_mode CREATE |
DELETE | MODIFY

Optional. Creates, deletes, or modifies the partner registration
record. CREATE, the default, generates a new record. DELETE
removes the existing record. MODIFY deletes the existing record
and then creates a new one.

config_file <config_
file_path>

Optional. Location of the osso.conf file for the virtual host if
one is being configured. It may, for example, be $ORACLE_
HOME/Apache/Apache/conf/osso/virtual_host_
name/osso.conf.

Note that the osso.conf for the non-virtual host is located at
$ORACLE_HOME/Apache/Apache/conf/osso.

admin_id <name> (Optional) User name of the mod_osso administrator. This
shows up in the Single Sign-On tool as contact information.

admin_info <text> (Optional) Additional information about the mod_osso
administrator, such as e-mail address. This shows up in the
Single Sign-On tool as contact information.

Advanced Clustering Configuration

Managing and Operating Middle Tier High Availability 4-29

The SSORegistrar tool establishes all information necessary to facilitate secure
communication between the Oracle HTTP Servers in the cluster and the Single
Sign-On server.

When using Single Sign-On with the Oracle HTTP Servers in the cluster, the
KeepAlive directive must be set to OFF since the Oracle HTTP Servers are behind a
network load balancer. If the KeepAlive directive is set to ON, then the network load
balancer maintains state with the Oracle HTTP Server for the same connection, which
results in an HTTP 503 error. Modify the KeepAlive directive in the Oracle HTTP
Server configuration. This directive is located in the httpd.conf file of the Oracle
HTTP Server.

Advanced Clustering Configuration
You can configure a cluster of OracleAS instances to provide only certain limited
advantages of clustering.

This section describes how to configure these advanced types of clusters.

■ Routing Between Instances in Same Farm

■ Routing Between Instances Across Firewalls

Routing Between Instances in Same Farm
If you have more than a single OracleAS instance in a farm, you can configure one of
the Oracle HTTP Servers to be the load balancer for all of the instances. This eliminates
the need for all but one of the Oracle HTTP Servers in the OracleAS instances. When
you configure a single Oracle HTTP Server as a load balancer, the Oracle HTTP Server
must be configured to know about all the OC4J instances in the farm and route the
incoming requests appropriately.

Configure the following:

1. Retrieve the OracleAS instance name and its components of all instances in the
farm.

a. Change to the DCM directory of each OracleAS instance in the farm.

cd ORACLE_HOME_Instance/dcm/bin

a. Retrieve the OracleAS instance name and list all of its components.

dcmctl whichInstance
dcmctl listComponents

2. Update the mod_oc4j.conf configuration file with the OC4J instance
information for each root context, which enables mod_oc4j to route to each
deployed application.

a. Change to the Apache directory of each OracleAS instance in the cluster.

cd ORACLE_HOME_Instance/Apache/Apache/conf

b. Edit the mod_oc4j.conf to include mount points for the root context of each
deployed application in the other OC4J instances in the cluster. Each mod_

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide

Advanced Clustering Configuration

4-30 High Availability Guide

oc4j configuration file contains mount points for each root context of the
deployed applications to which it routes incoming requests.

To route to applications deployed in another instance, you must add a mount
point for the other instances’ application root context with the additional
keyword of "instance://". The syntax for this keyword requires the
OracleAS Instance name and the OC4J instance name.

To route to applications deployed in another cluster, you must add a mount
point for the application root context with the additional keyword of
"cluster://". The syntax for this keyword requires the cluster name and the
OC4J instance name.

Examples of routing to another instance, multiple instances, or another cluster
are as follows:

Oc4jMount /myapp/* instance://Inst2:OC4J_Home
Oc4jMount /myapp1/* instance://Inst2:OC4J_Home, Inst3:OC4J_Home
Oc4jMount /myapp2/* cluster://Cluster1:OC4J_Home

c. Inform DCM of the configuration changes and restart DCM.

dcmctl updateConfig
dcmctl restart

Once configuration for the cluster is complete, you must ensure that each OracleAS
instance and OC4J instance has the same configuration. This type of cluster does not
replicate configuration across all instances. You must manage the configuration
manually.

You can configure for OC4J state replication through the Application Server Console in
the same way as for managed clustering.

Routing Between Instances Across Firewalls
Firewalls protect a company’s infrastructure by restricting illegal network traffic.
Firewall configuration typically involves restricting the ports that are available to one
side of the firewall. In addition, it can be set up to restrict the type of traffic that can
pass through a particular port, such as HTTP. If a client attempts to connect to a
restricted port or uses a protocol that is not allowed, then the client is disconnected
immediately by the firewall. Firewalls can also be used within a company Intranet to
restrict user access to specific servers.

Some of the components of OracleAS can be deployed on different nodes, which can
be separated by firewalls. Figure 4–9 demonstrates one recommended organization of
OracleAS components between two firewalls:

■ An external firewall protects the Oracle HTTP Servers from external misuses.

Note: We suggest that you mount all clustered applications to the
same root context to avoid multiple entries in each mod_oc4j
configuration file involved in the cluster.

See Also: "Configuring OC4J Instance-Specific Parameters" on
page 4-23

Advanced Clustering Configuration

Managing and Operating Middle Tier High Availability 4-31

■ The internal firewall protects the OC4J processes within an intranet in case the first
firewall is penetrated.

All communication between the Oracle HTTP Servers and the OC4J processes behind
the second firewall should use SSL encryption. Authorization should be provided
using SSL client certificates.

Figure 4–9 Routing Between Oracle HTTP Servers and OC4J Processes Through
Multiple Firewalls

However, the Oracle HTTP Server and OC4J processes communicate through several
ports using DCM, OPMN, and mod_oc4j for this communication. This
communication must continue, even if a firewall exists between them. You can
continue the communication by exposing the OracleAS component ports through the
firewall that are needed to communicate between the OC4J components. You can
either manually open each port needed for this communication or you can use the
OracleAS Port Tunnel, which opens a single port to handle all communication that
normally occurs through several ports. These options are discussed in the following
sections:

■ Opening Intranet Communication through the OracleAS Port Tunnel

■ Opening OracleAS Ports To Communicate Through Intranet

Opening Intranet Communication through the OracleAS Port Tunnel
Instead of opening multiple ports on the intranet firewall, you can use the OracleAS
Port Tunnel. The Port Tunnel is a process that facilitates the communication between
Oracle HTTP Server and OC4J, including the communication for DCM, OPMN and
mod_oc4j, using a single port exposed on the intranet firewall. Thus, you do not have
to expose several ports for communication for a single OC4J process. Instead, the Port
Tunnel exposes a single port and can handle all of the port requirements for several
OC4J processes.

All communication between the Oracle HTTP Servers and the Port Tunnel is
encrypted using SSL.

Figure 4–10 shows how three Oracle HTTP Servers communicate with three OC4J
processes through the Port Tunnel. Only a single port is exposed on the intranet

Advanced Clustering Configuration

4-32 High Availability Guide

firewall. The Oracle HTTP Servers exist on a single machine; the Port Tunnel and OC4J
processes exist on a separate machine.

Figure 4–10 OracleAS Port Tunnel

However, if you have only a single process managing the communication between the
Oracle HTTP Servers and the OC4J processes, you cannot guarantee high availability
or failover. You can add multiple Port Tunnel processes, each listening on their own
port, to manage the availability and the failover. We recommend that you use two Port
Tunnel processes for each machine. You want to minimize the number of ports
exposed on the intranet for security, but you also should provide for failover and
availability.

Once the Port Tunnel processes are configured and initialized, then the Oracle HTTP
Servers automatically balance the load among the port tunnel processes, just as they
would among OC4J processes.

While you are risking exposure of a single port for each Port Tunnel process, the
number of ports exposed using the Port Tunnel are much less than if you expose all of
the ports needed for straight communication between Oracle HTTP Server and OC4J
processes, as you can see in "Opening OracleAS Ports To Communicate Through
Intranet" on page 4-32.

All of the details for configuring and initializing Port Tunnel processes are
documented in the HTTP Security chapter in the Oracle Application Server 10g Security
Guide.

Opening OracleAS Ports To Communicate Through Intranet
You can route between Oracle HTTP Servers and OC4J processes that are located on
either side of an intranet firewall by exposing each of the OracleAS component ports
through the firewall that are needed to communicate between the OC4J components.

The ports that should be opened on the firewall depend on the services that you are
using. Table 4–6 describes the ports that you should open for each service.

Advanced Clustering Configuration

Managing and Operating Middle Tier High Availability 4-33

At installation time, the Oracle Installer picks available ports and assigns them to
relevant processes. You can see the assigned ports for all components by selecting
Ports in the default home page using Application Server Console.

You can view all of the ports that are in use through Application Server Console. From
the OracleAS Home Instance, select Ports at the top left corner of the page. Figure 4–11
shows all of the ports in use for this OracleAS instance, including all Oracle HTTP
Server and OC4J instances. See the "Managing Ports" chapter in the Oracle Application
Server 10g Administrator’s Guide for more information on managing ports.

Table 4–6 Ports that Each Service Uses

Service Name Description Configuration XML File

Oracle HTTP Server Any incoming requests uses HTTP or HTTPS. The ports listed in the listen directives in
the httpd.conf configuration file.

OPMN OPMN uses HTTP ports to communicate between
other OPMN processes in a OracleAS Cluster.
OPMN communication is bidirectional, so the ports
for all OPMN processes must be opened to each
other and to the OC4J processes.

The ons.conf configuration file, which
is modified either through hand editing or
through the Application Server Console
GUI. You can also find out these port
numbers by executing dcmctl
getOPMNPort.

DCM DCM uses JDBC to talk to the back-end
Oracle-based repository. If it is not desirable to
open up a port to the database, then you can use a
file-based repository, instead of a database
repository. See "Routing Between Instances in Same
Farm" on page 4-29 for directions on setting up a
file-based repository.

The JDBC default port number is 1521.
The JDBC database port number is
defined in the listener.ora file in the
Net8 database configuration.

DCM bootstraps with information from the Oracle
Internet Directory over an LDAP port.

The default ports are 389 for LDAP and
636 for LDAP over SSL. If these are taken,
then the next in the range are selected; the
range is 4031-4040. You can change the
port numbers in the ORACLE_
HOME/config/ias.properties file.

mod_oc4j module Communicates with each OC4J process over an AJP
port. The port range default is 3001-3100.

Defined in the <port> element either
specifically or within a range in the
opmn.xml file. We recommend that you
specify exactly the number of ports
needed for the number of OC4J processes
used.

RMI or JMS You may use RMI or JMS to communicate with
OC4J. The default for the port range for RMI ports
is 3101 to 3200. The default for the port range for
JMS ports is 3201 to 3300.

Defined in the <port> element either
specifically or within a range in the
opmn.xml file. We recommend that you
specify exactly the number of ports
needed for the number of OC4J processes
used.

Infrastructure The Infrastructure database only executes on port
1521.

N/A

Portal Uses the same AJP port range as configured for
OC4J processes.

Defined in the <port> element either
specifically or within a range in the
opmn.xml file.

Note: Some port numbers have multiple dependencies. If you
change a port number, you may be required to alter other
components. See the "Managing Ports" chapter in the Oracle
Application Server 10g Administrator’s Guide for a full discussion on
how to manage your port numbers.

Advanced Clustering Configuration

4-34 High Availability Guide

Figure 4–11 Ports used in OracleAS

Managing Infrastructure High Availability 5-1

5
Managing Infrastructure High Availability

This section provides instructions to manage your Infrastructure’s high availability
environment. Instructions for operations such as stopping, starting, and recovering
from scheduled and unplanned outages are provided. The two high availability
solutions are discussed:

■ Oracle Application Server Cold Failover Clusters

■ Oracle Application Server Active Failover Cluster (UNIX)

Oracle Application Server Cold Failover Clusters
The instructions in this section detail the steps for starting and stopping the OracleAS
Infrastructure in an OracleAS Cold Failover Cluster.

Starting Up
Use the following steps to start the Infrastructure in an OracleAS Cold Failover
Cluster:

1. Set the ORACLE_HOME environment variable to the Infrastructure’s Oracle home.

2. Set the ORACLE_SID environment variable to the metdata repository’s system
identifier.

3. Set the PATH environment variable to include the Infrastructure’s $ORACLE_
HOME/bin directory.

4. Enable volume management software and mount the file system (if necessary).

5. Enable the virtual IP address.

6. Start the metadata repository listener.

$ORACLE_HOME/bin/lsnrctl start

7. Start the metadata repository.

Note: For details on installing for high availability, refer to the Oracle
Application Server 10g Installation Guide.

Important: Specify the path of the working Oracle home as the first
entry in the PATH environment variable if there are several Oracle
homes installed on the machine. Also, ensure that the full paths of the
executables you use are specified.

Oracle Application Server Cold Failover Clusters

5-2 High Availability Guide

8. Start OPMN and all OPMN-managed processes for each OracleAS instance locally.

If OPMN daemon is not running, start both OPMN daemon and OPMN-managed
processes:

$ORACLE_HOME/opmn/bin/opmnctl startall

If OPMN daemon is running, start all OPMN-managed processes collectively:

$ORACLE_HOME/opmn/bin/opmnctl startproc

Alternatively, to individually start up OPMN-managed processes:

a. Start Oracle HTTP Server:

$ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server

b. Start Oracle Internet Directory:

$ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=OID

c. Start the Delegated Administration Services instance:

$ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=OC4J instancename=OC4J_SECURITY

d. Check the status of the OPMN-managed processes using the following
command:

$ORACLE_HOME/opmn/bin/opmnctl status

9. Start the Application Server Console. Use one of the following commands:

$ORACLE_HOME/bin/emctl start iasconsole

Or:

$ORACLE_HOME/bin/emctl startifdown iasconsole

Stopping
Use the following steps to stop the OracleAS Infrastructure in an OracleAS Cold
Failover Cluster:

1. Set the ORACLE_HOME environment variable to the Infrastructure’s Oracle home.

2. Set the ORACLE_SID environment variable to the metdata repository’s system
identifier.

3. Stop OPMN and all OPMN-managed processes for each OracleAS instance locally.

To shutdown the OPMN daemon and all OPMN-managed processes:

$ORACLE_HOME/opmn/bin/opmnctl stopall

To shutdown all OPMN-managed processes but leave the OPMN daemon
running:

$ORACLE_HOME/opmn/bin/opmnctl stopproc

Alternatively, to individually shutdown all OPMN-managed processes:

a. Stop the Delegated Administration Services instance:

$ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=OC4J
instancename=OC4J_SECURITY

Oracle Application Server Active Failover Cluster (UNIX)

Managing Infrastructure High Availability 5-3

b. Stop Oracle Internet Directory:

$ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=OID

c. Stop Oracle HTTP Server.

$ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server

4. Stop the metadata repository

5. Stop the metadata repository listener.

$ORACLE_HOME/bin/lsnrctl stop

6. Stop the Application Server Console.

$ORACLE_HOME/bin/emctl stop iasconsole

7. Disable volume management software and unmount the file system (if necessary).

8. Disable the virtual IP address.

Oracle Application Server Active Failover Cluster (UNIX)

The instructions in this section detail the steps for starting and stopping the
Infrastructure in the OracleAS Active Failover Cluster high availability solution.

Starting Up
For an OracleAS Active Failover Cluster-enabled Infrastructure, each node in the
cluster is functionally equivalent to the other nodes. All nodes access a common
repository. The database instance and the individual OracleAS processes need to be
started on each node of the cluster. At any given time, the load balancer should be
configured to direct traffic to only the active nodes. The order of starting up
Infrastructure instances on all nodes is:

1. On each node, start the global services daemon:

$ORACLE_HOME/bin/gsd

2. Start the database instances and listeners on all nodes with the following
command (can be run from any node in the cluster):

$ORACLE_HOME/bin/srvctl start -p <database_name>

The global services daemon on each node ensures that the local database processes
on each node are started.

3. Start OPMN and all OPMN-managed processes.

If OPMN daemon is not running, start both OPMN daemon and OPMN-managed
processes (following command need only be run once):

Note: Check OracleMetalink (http://metalink.oracle.com) for the
most current certification status of this feature or consult your Oracle
sales representative before deploying this feature in a production
environment.

Oracle Application Server Active Failover Cluster (UNIX)

5-4 High Availability Guide

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> startall

If OPMN daemon is running, you can start all OPMN-managed processes on all
nodes (following command need only be run once):

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> startproc

For example, assuming there are two nodes in the cluster:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:infra_node1:infra_node2 startproc

Alternatively, to individually start up OPMN-managed processes on all nodes
(following commands need only be run once):

a. Start Oracle HTTP Server:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> startproc

ias-component=HTTP_Server

b. Start Oracle Internet Directory.

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> startproc

ias-component=OID

c. Start the Delegated Administration Services instance:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> startproc

ias-component=OC4J instancename=OC4J_SECURITY

4. Configure the load balancer and enable traffic to the current node.

5. Check the status of OPMN-managed processes on all nodes using the following
command:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> status

6. Start the Application Server Console. Run one of the following commands on each
node in the cluster:

$ORACLE_HOME/bin/emctl start iasconsole

Or:

$ORACLE_HOME/bin/emctl startifdown iasconsole

Note: For more efficient startup of the OracleAS Active Failover
Cluster nodes, you can configure each node’s operating system to start
up the OPMN daemon whenever the node starts up. The procedures
for performing this task are specific to each operating system. For
example, in UNIX, the rc scripts can be configured by the system
administrator for this purpose.

Oracle Application Server Active Failover Cluster (UNIX)

Managing Infrastructure High Availability 5-5

Shutting Down
The OracleAS Active Failover Cluster-enabled Infrastructure provides better
availability since individual Infrastructure instances can be shut down while others
continue to be available. The order of shutting down an instance is:

1. Configure the load balancer and disable traffic to the current node.

2. Stop all OPMN and OPMN-managed processes.

To stop all OPMN-managed processes but leave the OPMN daemon running, run
the following command once:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> stopproc

To individually stop OPMN-managed processes on all cluster nodes, run the
following commands once:

a. Stop the Delegated Administration Services instance:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> stopproc

ias-component=OC4J instancename=OC4J_SECURITY

b. Stop Oracle Internet Directory:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2> stopproc

ias-component=OID

c. Stop Oracle HTTP Server:

$ORACLE_HOME/opmn/bin/opmnctl
@instance:<instancename_on_node1>:<instancename_on_node2>

stopproc ias-component=HTTP_Server

3. Stop the database instances and listeners on all nodes with the following
command (can be run from any node in the cluster):

$ORACLE_HOME/bin/srvctl stop -p <database_name>

The global services daemon on each node ensures that the local database processes
on each node are stopped.

4. Stop the Application Server Console. Run the following command on each node in
the cluster:

$ORACLE_HOME/bin/emctl stop iasconsole

Monitoring
Monitoring the OracleAS Active Failover Cluster-enabled Infrastructure is similar to
monitoring any regular Infrastructure deployment. The only special consideration is
monitoring the load balancer and ensuring that it is directing traffic to the active
nodes. Please contact your load balancer vendor on monitoring the availability of the
load balancer as well as the sanity of its configuration.

Oracle Application Server Active Failover Cluster (UNIX)

5-6 High Availability Guide

Failing Over During an Outage
The OracleAS Active Failover Cluster-enabled Infrastructure provides continued
availability under many scheduled and unplanned outages. The outages handled
automatically by this solution are listed in Table 5–1 below.

For the outages in Table 5–2, there may be a small downtime. Having a disaster
recovery site can mitigate but not eliminate this downtime. A standby site can be
activated while the production site experiences an outage. Refer to the section "Oracle
Application Server 10g Disaster Recovery Solution" on page 6-2 for more information.

System behavior under these outages is as follows:

■ When a node fails:

■ All processes in the node are unavailable.

■ Middle tier and Infrastructure processes from other nodes connected to the
database instance on the failed node lose their database session.

■ A surviving instance on another node begins instance recovery. Requests that
were directed to the failed instance experience a brief interruption in service. If
they are disconnected, they can retry the connections again until successful.

■ The processes connected to the active instance performing the recovery
experience uninterrupted service. These processes may experience a lag.

■ If only one node is available to service requests and it fails, connections that
are retrying will only succeed when at least one instance becomes available.

■ When a database instance fails, the following need to be performed:

Table 5–1 Outages handled automatically by OracleAS Active Failover Cluster solution

Outage Type Outages

Scheduled Node hardware and operating system maintenance

Database instance maintenance

Infrastructure software maintenance

Fault tolerant load balancer maintenance

Unplanned Node failure

Database instance failure

Infrastructure process failure

Fault tolerant load balancer partial failure

Table 5–2 Outages not handled automatically by OracleAS Active Failover Cluster
solution

Outage Type Outages

Scheduled Cluster maintenance

Database maintenance

Unplanned Cluster failure

Data error

User error

Fault tolerant load balancer complete failure

Oracle Application Server Active Failover Cluster (UNIX)

Managing Infrastructure High Availability 5-7

■ The load balancer should be notified of the failure. It should stop directing
non Oracle Net traffic to he node with the failed instance.

■ All non-database processes on the node with the failed instance should be
brought down. This includes Oracle HTTP Server, OPMN, Application Server
Console, and Oracle Internet Directory processes.

■ Middle tier and Infrastructure processes from other nodes connected to the
failed instance lose their database session.

■ A surviving instance on another node begins instance recovery.

■ Middle tier requests that were directed to the failed instance experience a brief
interruption in service. If they are disconnected, they can retry the connections
again until successful.

■ The processes connected to the active instance performing the recovery
experience uninterrupted service.

■ All new middle tier requests are directed to the surviving instance.

Restoring Resiliency After an Outage
Restoration of resiliency post-outage involves the addition of an Oracle Application
Server 10g instance to the current set of active Oracle Application Server 10g instances.
The primary steps involved are:

1. Fix the problem that caused the outage.

2. Startup an Oracle database instance on the node.

3. Startup Oracle Application Server 10g Infrastructure processes on the node. Refer
to Oracle Application Server 10g Administrator’s Guide on how to start and stop the
Infrastructure.

4. Configure the load balancer to direct traffic to the currently started node.

Synchronizing Configuration Files Using the Oracle Application Server Active Failover
Cluster Runtime Control Utility (afcctl)

Each node of an OracleAS Active Failover Cluster has in its file system configuration
files that are part of the Infrastructure but are not stored in the OracleAS Metadata
Repository. These files are likely to change as administration operations such as the
following are performed on each node:

■ Manual changes made to these configuration files

■ Application Server Console-based changes to these configuration files

■ Association of a middle tier instance with the Infrastructure

A primary requirement for an OracleAS Active Failover Cluster deployment is that all
nodes in the cluster are configured similarly. The configuration files should be similar,
if not, identical.

In order to maintain a consistent Infrastructure across all nodes in the OracleAS Active
Failover Cluster, a command line utility is provided to synchronize these
configuration files across the nodes. This utility is called Oracle Application Server Active
Failover Cluster Runtime Control Utility and can be invoked using the command afcctl.
Synchronization of files using this utility should be performed at least everytime an
administration change is made to Oracle Application Server.

Oracle Application Server Active Failover Cluster (UNIX)

5-8 High Availability Guide

Setting Up afcctl
This section describes how to download and install the afcctl utility and perform
initial configuration. The overall steps are:

■ Obtain the afcctl Utility

■ Install the afcctl Utility

Obtain the afcctl Utility

The afcctl utility is available with the utility CD that comes with your Oracle
Application Server 10g product. The file containing the utility is
<mount-point>/utilities/ha/afcctl.zip (where <mount-point> is the
mount point of the CD-ROM drive. This file is installed along with the Oracle
Application Server 10g Backup and Recovery Tool. Hence, you need to install the latter
tool first. Refer to Oracle Application Server 10g Administrator’s Guide for instructions on
installing this tool.

After the Oracle Application Server 10g Backup and Recovery Tool has been installed
on a node, create the directory <ORACLE_HOME>/afcctl/ on that node, and copy
afcctl.zip to the new directory. Do this for every node in the OracleAS Active
Failover Cluster.

Install the afcctl Utility

1. Change to the <ORACLE_HOME>/afcctl/ directory and unzip afcctl.zip. It
should contain the following files:

afcctl
afcctl.pl
afcctl.jar
afcctl_exclude.inp
README

2. In UNIX , run the following command to enable execute permissions:

> chmod 755 afcctl

3. The afcctl utility relies on the Oracle Application Server 10g Backup & Recovery
Tool being available and installed. Make sure that the latter tool has been installed
and the .inp files of the tool are accessible by the afcctl utility.

Using afcctl
Run the afcctl utility on any node in the OracleAS Active Failover Cluster to perform
the following tasks:

■ Setting the Default Baseline Timestamp

■ Synchronizing Files From a Node to Other Nodes in an OracleAS Active Failover
Cluster

■ Listing Modified Files on a Node Since the Last Synchronization

■ Excluding Specific Configuration Files from Synchronization

Note: You can also create a directory to store afcctl.zip outside
of ORACLE_HOME. The instructions in this section assumes you have
afcctl in <ORACLE_HOME>/afcctl/.

Oracle Application Server Active Failover Cluster (UNIX)

Managing Infrastructure High Availability 5-9

Setting the Default Baseline Timestamp

Immediately after installation of OracleAS and afcctl, you should set the default
configuration timestamp across the OracleAS Active Failover Cluster. This baseline
timestamp marks the default configuration after installation.

After this baseline is set, the next synchronization performed using afcctl with the
sync option synchronizes only those configuration files that have changed since the
baseline and the time the afcctl sync command is run.

To create a timestamp baseline, use the following command:

afcctl createbase -p <dbname>|-r <host1>,<host2>,...,<hostN> [-c <cp_exec>]

where:

<dbname> is the name of the Infrastructure database

<host1>,<host2>,..,<hostN> is a comma separated list of remote hosts in the
OracleAS Active Failover Cluster

<cp_exec> is the full path to a remote copy utility to be used to copy files from the
current node to other nodes in the cluster. By default, afcctl uses /usr/bin/rcp, or
/usr/local/bin/scp if the former (rcp) is not found. If neither of these are present
or if you wish scp to precede rcp in the invocation order, use the -c <cp_exec>
option to specify the copy utility to be used.

Synchronizing Files From a Node to Other Nodes in an OracleAS Active Failover Cluster

After the initial configuration baseline is set using the createbase option, you can
synchronize any configuration changes across the cluster using the sync option. This
option synchronizes changed configuration by copying only the modified
configuration files from the current node to all nodes in the OracleAS Active Failover
Cluster.

The command syntax for invoking a synchronization is:

afcctl sync -p <dbname>|-r <host1>,<host2>,...,<hostN> -f <filename>|<file_list_dir>
[-c <cp_exec>] [-l <hostname>]

 where :

<dbname> is the name of the Infrastructure database

<host1>,<host2>,..,<hostN> is a comma separated list of remote hosts in the
OracleAS Active Failover Cluster

<filename> is the name of the file to be synchronized

<file_list_dir> is the name of the directory where the .inp files reside

<cp_exec> is the full path to a remote copy utility to be used to copy files from the
current node to other nodes in the cluster. By default, afcctl uses /usr/bin/rcp, or

Note: Ensure that ORACLE_HOME is set before running afcctl.

Note: Running afcctl with the createbase option is highly
recommended right after installation of OracleAS Active Failover
Cluster software.

Oracle Application Server Active Failover Cluster (UNIX)

5-10 High Availability Guide

/usr/local/bin/scp if the former (rcp) is not found. If neither of these are present
or if you wish scp to precede rcp in the invocation order, use the -c <cp_exec>
option to specify the copy utility to be used.

<hostname> is the hostname of the local host at installation time of the Infrastructure

Take note of the following when using the above command line:

■ The -p option can only be used if the gsd process has been started and is running.
This option also requires that the Infrastructure database and its instances have
been registered with the srvm repository, which is the case by default. The -p
option automatically determines the nodes of the OracleAS Active Failover
Cluster deployment and propagates the necessary files to the other nodes.

■ The -r option can be used in lieu of -p to explicitly specify the hostnames of the
nodes that need to be synchronized with the node the utility is run on. No other
process dependencies exist in this case. Ensure that the hostname(s) specified are
valid nodes of the OracleAS Active Failover Cluster deployment.

■ <file_list_dir> for the -f option is the directory where the .inp files of the
Oracle Application Server 10g Backup and Recovery Tool exist. The afcctl utility
references these files for the list of configuration files that need to be synchronized.

■ <filename> for the -f option is used only when a single file needs to be
synchronized across the cluster.

■ Before using afcctl, set up user equivalence so that the rcp and scp copy
utilities can be used without further authentication for the remote hosts. User
equivalence is also required for the OracleAS Active Failover Cluster installation.
Refer to the high availability chapter in Oracle Application Server 10g Installation
Guide for instructions on how to set up user equivalence.

■ -l is optional. It is used to specify the host where afcctl is run and should be
specified only in cases where the local hostname during Infrastructure installation
is different from the default hostname.

■ It is strongly recommended that the utility is installed on all nodes of the OracleAS
Active Failover Cluster deployment. The utility can be invoked from any node of
the cluster on which it has been installed. However, as a best practice, designate
one node as an administration node and perform all administrative operations
and subsequent synchronizations from it.

Listing Modified Files on a Node Since the Last Synchronization

To find out which configuration files on a node in the OracleAS Active Failover Cluster
has changed since the last synchronization, use the following command line syntax:

afcctl list -f <filename>|<file_list_dir>

where

<filename> is the name of a file that is to be checked for any updates since the last
synchronization.

<file_list_dir> is the name of the directory where the .inp files of the Oracle
Application Server 10g Backup and Recovery Tool exist. Files in that directory which
have been changed since the last synchronization are listed.

A text file containing a list of files that have changed since the last synchronization is
created in the /tmp directory. See an example in the section "Example" on page 5-11.

The syntax above can be used on any node of the OracleAS Active Failover Cluster
deployment. It displays the files that have changed, since the last synchronization, on

Oracle Application Server Active Failover Cluster (UNIX)

Managing Infrastructure High Availability 5-11

the node it is executed on. The returned list of files can be different depending on the
site. To synchronize the listed file(s) individually, the -f <filename> option of the
afcctl sync command can be used after determing which version of the file is the
latest.

Excluding Specific Configuration Files from Synchronization

Oracle recommends that all nodes are configured similarly. If, however, some
configuration files need to be different, their names can be added to the exclude file,
afcctl_exclude.inp, so that they are not synchronized across the cluster when
afcctl is run. afcctl_exclude.inp is found in the same directory where you
uncompressed afcctl.zip.

■ Excluding files may be necessary in situations such as when you want to turn
debugging on for only a particular node or change a configuration file temporarily
to measure impact on the system. Since the files listed in the exclude file are not
synchronized, any changes to them have to be propagated manually to the
equivalent files on the other nodes until they are removed from the exclude file. If
you do not want the exclusions to be permanent, remove the filenames after
peforming synchronization.

Example
After any administrative operation to Oracle Application Server 10g (through
Application Server Console or DCM), which can change any of the configuration files,
do the following on each node of the OracleAS Active Failover Cluster:

1. Set the ORACLE_HOME environment variable. For example, in a Bourne shell
environment, type:

$ export ORACLE_HOME=/home/oracle/test1

2. Invoke afcctl with the list option to display the configuration files that have
changed on the current node.

$ afcctl list -f ./br_inp_dir
Oracle Application Server Active Failover Cluster Run Time Control Utility
Copyright (c) 2002, 2003 Oracle Corporation. All rights reserved.

Last Sync up time was Mon Sep 8 11:09:11 2003
Check the following for list of files that have changed since last sync

work/Files_to_Change_and_Copy.23123

Please look at log/afcctl.log for more information.
Exiting....

The file work/Files_to_Change_and_Copy.23123 is created to contain the
list of configuration files that have changed since the last synchronization.

3. View the created file to validate that the list of files in it are the ones you want to
propagate to the other nodes in the OracleAS Active Failover Cluster. For
example:

$ cat work/Files_to_Change_and_Copy.23123

Note: You can also include custom files to be synchronized across the
OracleAS Active Failover Cluster nodes each time the afcctl utility
is run. The file config.inp contains rules for this task.

Oracle Application Server Active Failover Cluster (UNIX)

5-12 High Availability Guide

/home/oracle/test1/Apache/Apache/conf/ssl.wlt/default/ewallet.p12

/home/oracle/test1/ldap/admin/oidpwdlldap1

/home/oracle/test1/ldap/admin/oidpwdrgit11

4. Invoke afcctl with the sync option to synchronize files from one node in the
OracleAS Active Failover Cluster to another.

$ afcctl sync -r hasun26 -f ./backup_scripts
Oracle Application Server Active Failover Cluster Run Time Control Utility
Copyright (c) 2002, 2003 Oracle Corporation. All rights reserved.

Files to massage & copy are listed in work/Files_to_Change_and_Copy.22339
Files to copy are listed in work/Files_to_Copy.22339

Do you want to sync up files from hasun25.us.oracle.com to
hasun26.us.oracle.com (y/n) ? y

Syncing up files
..
...!
Syncing completed

Do you want to update the dcm repository with configuration files from
"hasun25.us.oracle.com" (y/n) ? y

DCM update repository started

DCM update repository completed

Please look at log/afcctl.log for more information.
Exiting....

Best Practises for Using afcctl
■ Avoid making manual changes to configuration files as far as possible. Use

Application Server Console or the automated configuration tools (dcmctl) to
make any changes to the Infrastructure configuration.

If you have to make changes manually, designate a node as the administration
node and perform all changes on it. Then, run the afcctl tool from this node to
propagate the changes to other nodes in the OracleAS Active Failover Cluster.

■ When synchronizing configuration files, preferably perform any administration
changes and consequent synchronization between the nodes when all nodes of the
OracleAS Active Failover Cluster are up. If this is not possible, remember to
perform the synchronization with the down nodes after they are up again.

■ Use the list option regularly on all nodes of the cluster to verify that nothing has
been changed locally since the last synchronization. Reconcile any changes across
the nodes, if required.

■ If sharing .inp files with the Oracle Application Server 10g Backup & Recovery
Tool, keep in mind that any changes to the exclude and personalization files of the

Note: Typing afcctl without any options displays a list of all
options available.

Oracle Application Server Active Failover Cluster (UNIX)

Managing Infrastructure High Availability 5-13

tool impacts the afcctl utility as well. See the Oracle Application Server 10g
Administrator’s Guide for more information on the tool.

Oracle Application Server Active Failover Cluster (UNIX)

5-14 High Availability Guide

Oracle Application Server Disaster Recovery 6-1

6
Oracle Application Server Disaster Recovery

Disaster recovery refers to how a system recovers from catastrophic site failures
caused by natural or unnatural disasters. Examples of catastrophic failures include
earthquakes, tornadoes, floods, or fire. Additionally, disaster recovery can also refer to
how a system is managed for planned outages. For most disaster recovery situations,
the solution involves replicating an entire site, not just pieces of hardware or
subcomponents. This also applies to the Oracle Application Server Disaster Recovery
(OracleAS Disaster Recovery) solution.

This chapter describes the OracleAS Disaster Recovery solution, how to configure and
set up its environment, and how to manage the solution for high availability. The
discussion involves both OracleAS middle and Infrastructure tiers in two sites:
production and standby. The standby site is configured identically to the production
site. Under normal operation, the production site actively services requests. The
standby site is maintained to mirror the applications and content hosted by the
production site.

The sites are synchronized using the Oracle Application Server Backup and Recovery
Tool (for configuration files in the file system) and Oracle Data Guard (for the
Infrastructure database). The following table provides a summary of the OracleAS
Disaster Recovery strategy:

In addition to the recovery strategies, configuration and installation of both sites are
discussed. For these tasks, two different ways of naming the middle tier nodes are
covered as well as two ways of resolving hostnames intra-site and inter-site.

Table 6–1 Overview of OracleAS Disaster Recovery strategy

Coverage Procedure Purpose

Middle Tier
Configuration Files

Backup and Recovery Tool To backup OracleAS configuration
files in the production site middle
tier nodes and restore the files to
the standby site middle tier nodes.

Infrastructure
Configuration Files

Backup and Recovery Tool To backup OracleAS configuration
files in the production site
Infrastructure node and restore
them to the standby site
Infrastructure node.

Infrastructure
Database

Oracle Data Guard To ship archive logs from
production site Infrastructure
database to standby site
Infrastructure database. Note that
logs are not applied immediately.

Oracle Application Server 10g Disaster Recovery Solution

6-2 High Availability Guide

With OracleAS Disaster Recovery, planned outages of the production site can be
performed without interruption of service by switching over to the standby site.
Unplanned outages are managed by failing over to the standby site. Procedures for
switchover and failover are covered in this chapter.

This chapter is organized into the following main sections:

■ Oracle Application Server 10g Disaster Recovery Solution

■ Setting Up the OracleAS Disaster Recovery Environment

■ Installing Oracle Application Server 10g Software

■ Synchronizing Baseline Installation with Standby Site

■ Backing Up Production Site

■ Restoring to Standby Site

■ Scheduled Outages

■ Unplanned Outages

■ Wide Area DNS Operations

Oracle Application Server 10g Disaster Recovery Solution
The Oracle Application Server Disaster Recovery solution consists of two identically
configured sites - one primary (production/active) and one secondary (standby). Both
sites have the same number of middle tier and Infrastructure nodes and the same
number and types of components installed. In other words, the installations on both
sites, middle tier and Infrastructure are identical. Both sites are usually dispersed
geographically, and if so, they are connected via a wide area network.

This section describes the overall layout of the solution, the major components
involved, and the configuration of these components. It has the following sections:

■ Terminology

■ Requirements

■ Topology

Terminology
Before describing and detailing the OracleAS Disaster Recovery solution, several
terms used in this chapter require clear definition in order for the concepts described
in this chapter to be understood properly.

■ physical hostname

For the purpose of discussion in this chapter, a differentiation is made between the
terms physical hostname and logical hostname. Physical hostname is used to refer to

See Also: Oracle Application Server 10g Installation Guide for
instructions on how to install the OracleAS Disaster Recovery
solution.

Note: The definitions below apply specifically to OracleAS
Disaster Recovery. They may have a varying definition outside this
context.

Oracle Application Server 10g Disaster Recovery Solution

Oracle Application Server Disaster Recovery 6-3

the "internal name" of the current machine. In UNIX, this is the name returned by
the command hostname.

Physical hostname is used by Oracle Application Server 10g components that are
installed on the current machine to reference the local host. During the installation
of these components, the installer retrieves the physical hostname from the current
machine and stores it in Oracle Application Server 10g configuration metadata on
disk.

■ logical hostname

Logical hostname is a name assigned to an IP address either through the
/etc/hosts file (in UNIX), C:\WINDOWS\system32\drivers\etc\hosts
file (in Windows), or through DNS resolution. This name is visible on the network
that the host to which it refers to is connected. Often, the logical hostname and
physical hostname are literally identical. However, their usage in the OracleAS
Disaster Recovery solution necessitates them to be clearly distinct.

■ virtual hostname

Virtual hostname is used to refer to the name for the Infrastructure host that is
specified in the Specify High Availibility screen of the OracleAS installer. The
virtual hostname is used by the middle tier and Infrastructure components to
access the Infrastructure regardless of whether the Infrastructure is a single node
installation or part of the OracleAS Cold Failover Cluster solution. Virtual
hostname, as used in this chapter, applies only to the Infrastructure host(s).

Requirements
To ensure that your implementation of the OracleAS Disaster Recovery solution
performs as designed, the following requirements need to be adhered to:

■ On each host in the standby site, make sure the following is identical to its
equivalent peer in the production site:

■ For the middle tier hosts, physical hostnames

■ Virtual hostname for the Infrastructure. The virtual hostname can be specified
in the Specify High Availibility screen presented by the installer.

■ Hardware platform.

■ Operating system release and patch levels.

■ All installations conform to the requirements listed in the Oracle Application Server
10g Installation Guide to install Oracle Application Server.

■ Oracle Application Server software is installed in identical directory paths
between each host in the production site and its equivalent peer in the standby
site.

■ Username and password of the user who installed Oracle Application Server must
be the same between a host in the production site and its peer in the standby site.

■ Numerical user ID of the user who installed Oracle Application Server on that
particular node

■ Group name of the user who installed Oracle Application Server on that particular
node

Oracle Application Server 10g Disaster Recovery Solution

6-4 High Availability Guide

■ Numerical group ID of the group of the user who installed Oracle Application
Server on that particular node

■ Environment profile

■ Shell (command line environment)

■ Directory structure and path of the Oracle home for each OracleAS installation on
a node. Do not use symbolic links anywhere in the path.

■ OracleAS installation types:

■ Middle tier: J2EE and Web Cache, Portal and Wireless, and Business
Intelligence and Forms

■ Infrastructure: Metadata Repository and Identity Management (both are
required to be installed with the Infrastructure installation type in both sites
for the OracleAS Disaster Recovery solution)

Topology
Figure 6–1 depicts the topology of the OracleAS Disaster Recovery solution.

Figure 6–1 Oracle Application Server 10g site-to-site disaster recovery solution (load
balancer appliance is optional if only one middle tier node is present)

The procedures and steps for configuring and operating the OracleAS Disaster
Recovery solution support 1 to n number of middle tier installations in the production
site. The same number of middle tier installations must exist in the standby site. The
middle tiers must mirror each other in the production and standby sites.

For the Infrastructure, a uniform number of installations is not required between the
production and standby sites. For example, the Oracle Application Server Cold

Setting Up the OracleAS Disaster Recovery Environment

Oracle Application Server Disaster Recovery 6-5

Failover Clusters solution can be deployed in the production site, and a single node
installation of the Infrastructure can be deployed in the standby site. This way, the
production site’s Infrastructure has protection from host failure using an OracleAS
Cold Failover Cluster. Refer to the section "Oracle Application Server Cold Failover
Clusters" in Chapter 3 for more information on OracleAS Cold Failover Clusters.

The following are important characteristics of the OracleAS Disaster Recovery
solution:

■ Middle tier installations are identical between the production and standby sites. In
other words, each middle tier installation in the production site has an identically
equivalent installation in the standby site. More than one middle tier node is
recommended because this enables each set of middle tier installations on each site
to be redundant. Being on multiple machines, problems and outages within a site
of middle tier installations are transparent to clients.

■ The OracleAS Disaster Recovery solution is restricted to identical site
configuration to ensure that processes and procedures are kept the same between
sites, making operational tasks easier to maintain and execute. Identical site
configuration also allows for a higher success rate for manually maintaining the
synchronization of Oracle Application Server 10g component configuration files
between sites.

■ When the production site becomes unavailable due to a disaster, the standby site
can become operational within a reasonable time. Client requests are always
routed to the site that is operating in the production role. After a failover or
switchover operation occurs due to an outage, client requests are routed to another
site that assumes the production role. The quality of service offered by the new
production site should be the same as that offered by the original production site
before the outage.

■ The sites are set up in active-passive configuration. An active-passive setup has
one primary site used for production and one secondary site that is initially
passive (on standby). The secondary site is made active only after a failover or
switchover is made to it. Since the sites are symmetrical, after failover or
switchover, the original standby site can be kept active as the new production site.
After repairing or upgrading the original production site, it can be made into the
new standby site. Either site should offer the same level of service to clients as the
other.

■ The site playing the standby role contains a physical standby of the Oracle
Application Server Infrastructure managed by Oracle Data Guard. Oracle Data
Guard together with procedures for backing up and restoring Infrastructure
configuration files provide configuration synchronization between the production
and standby sites. Switchover and failover procedures allow the roles to be traded
between the Infrastructures in the two sites. Refer to the section "Setting Up Oracle
Data Guard" on page 6-15 for instructions on how to set up Oracle Data Guard to
work in the OracleAS Disaster Recovery solution.

Setting Up the OracleAS Disaster Recovery Environment
Prior to the the installation of OracleAS software for the OracleAS Disaster Recovery
solution, a number of system level configurations are required. The tasks that
accomplish these configurations are:

■ Planning and Assigning Hostnames

■ Configuring Hostname Resolution

Setting Up the OracleAS Disaster Recovery Environment

6-6 High Availability Guide

■ Secure Shell (SSH) Port Forwarding

This section covers the steps needed to perform these tasks.

Planning and Assigning Hostnames
Before performing the steps to set up the physical and logical hostnames, plan the
physical and logical hostnames you wish to use with respect to the entire OracleAS
Disaster Recovery solution. The overall approach to planning and assigning
hostnames is to meet the following goals:

■ OracleAS components in the middle tier and Infrastructure can use the same
physical hostnames in their configuration settings regardless of whether the
components are in the production or standby site.

For example, if a middle tier component in the production site uses the name
"asmid1" to reach a host in the same site, the same component in the standby site
can use the same name to reach asmid1’s equivalent peer in the standby site.

■ No changes to hostnames (physical, logical, or virtual) are required when the
standby site takes over the production role.

To illustrate what should be done to plan and assign hostnames, let us use an example
as shown in Figure 6–2.

Note: Although the physical hostnames in the production and
standby sites must remain uniform between the two sites, the
resolution of these physical hostnames to the correct hosts can be
different. The section "Configuring Hostname Resolution" on
page 6-9 explains more on hostname resolution.

Setting Up the OracleAS Disaster Recovery Environment

Oracle Application Server Disaster Recovery 6-7

Figure 6–2 Name assignment example in the production and standby sites

In Figure 6–2, two middle tier nodes exist in the production site. The Infrastructure can
be a single node or an OracleAS Cold Failover Cluster solution (represented by a
single virtual hostname and a virtual IP, as for a single node Infrastructure). The
common names in the two sites are the physical hostnames of the middle tier nodes
and the virtual hostname of the Infrastructure. Table 6–2 below details what the
physical, logical, and virtual hostnames are in the example:

■ Co-hosting non OracleAS applications

If the hosts in the production site are running non OracleAS applications, and you
wish to co-host OracleAS on the same hosts, changing the physical hostnames of

Table 6–2 Physical, logical, and virtual hostnames in Figure 6–2

Physical Hostnames Virtual Hostname Logical Hostnames

asmid1 - prodmid1, standbymid1

asmid2 - prodmid2, standbymid2

- infra prodinfra, standbyinfra

Setting Up the OracleAS Disaster Recovery Environment

6-8 High Availability Guide

these hosts may break these applications. In such a case, you can keep these
hostnames in the production site and modify the physical hostnames in the
standby site to the same as those in the production site. The non OracleAS
applications can then also be installed on the standby hosts so that they can act in
a standby role for these applications.

As explained in the section "Terminology" on page 6-2, physical, logical, and virtual
hostnames have differing purposes in the OracleAS Disaster Recovery solution. They
are also set up differently. Information on how the three types of hostnames are set up
follow.

Physical Hostnames
The naming of middle tier hosts in both the production and standby sites require the
changing of the physical hostname in each host.

In Solaris, to change the physical hostname of a host:

1. Check to see what the existing physical hostname is set to. Type:

prompt> hostname

2. Use a text editor, such as vi, to edit the name in /etc/nodename to your planned
physical hostname.

3. For each middle tier host, reboot it for the change to take effect.

4. Repeat step 1 to verify the correct hostname has been set.

5. Repeat the above steps for each host in the production and standby sites.

In Windows, to change the physical hostname of a host:

1. In the Start menu, select Control Panel.

2. Double-click the System icon.

3. Select the Advance tab.

4. Select Environment variables.

5. Under the User Environment variables for the installer account, select New to
create a new variable.

6. Enter the name of the variable as "_CLUSTER_NETWORK_NAME_".

7. For the value of this variable, enter the planned physical hostname.

Note: For other UNIX variants, consult your system administrator
for equivalent commands in each step.

Note: The user interface elements in your version of Windows may
vary from those described in the following steps.

Setting Up the OracleAS Disaster Recovery Environment

Oracle Application Server Disaster Recovery 6-9

Logical Hostnames
The logical hostnames used in the OracleAS Disaster Recovery solution are defined in
DNS. These hostnames are visible in the network that the solution uses and are
resolved through DNS to the appropriate hosts via the assigned IP address in the DNS
system. You need to add these logical hostnames and their corresponding IP addresses
to the DNS system.

Using the example in Figure 6–2, the following should be the additions made to the
DNS system serving the entire network that encompasses the production and standby
sites:

prodmid1.oracle.com IN A 123.1.2.333
prodmid2.oracle.com IN A 123.1.2.334
prodinfra.oracle.com IN A 123.1.2.111
standbymid1.oracle.com IN A 213.2.2.443
standbymid2.oracle.com IN A 213.2.2.444
standbyinfra.oracle.com IN A 213.2.2.210

Virtual Hostname
As defined in the Terminology section, virtual hostname applies to the Infrastructure
only. It is specified during installation of the Infrastructure. When you run the
Infrastructure installation type, a screen called "Specify High Availibility" appears to
provide a textbox to enter the virtual hostname of the Infrastructure that is being
installed. Refer to the Oracle Application Server 10g Installation Guide for more details.

For the example in Figure 6–2, when you install the production site’s Infrastructure,
enter its virtual hostname, "infra", when you see the Specify High Availibility screen.
Enter the same virtual hostname when you install the standby site’s Infrastructure.

Configuring Hostname Resolution
In the Oracle Application Server Disaster Recovery solution, one of two ways of
hostname resolution can be configured to resolve the hostnames you planned and
assigned in the previous section. These are:

■ Using Local Hostnaming File Resolution

■ Using DNS Resolution

In UNIX, the order of the method of name resolution can be specified using the
"hosts" parameter in the file /etc/nsswitch.conf. The following is an example of
the hosts entry:

hosts: files dns nis

In the above statement, local hostnaming file resolution is preferred over DNS and NIS
(Network Information Service) resolutions. When a hostname is required to be
resolved to an IP address, the /etc/hosts file (UNIX) or
C:\WINDOWS\system32\drivers\etc\hosts file is consulted first. In the event
that a hostname cannot be resolved using local hostnaming resolution, DNS is used.
(NIS resolution is not used for the OracleAS Disaster Recovery solution.) Refer to your
UNIX system’s documentation if you wish to find out more about
/etc/nsswitch.conf.

Note: If the Infrastructure is installed in a OracleAS Cold Failover
Cluster solution, the virtual hostname is the name that is associated
with the virtual IP of the OracleAS Cold Failover Cluster.

Setting Up the OracleAS Disaster Recovery Environment

6-10 High Availability Guide

Using Local Hostnaming File Resolution
This method of hostname resolution relies on a local hostnaming file to contain the
requisite hostname-to-IP address mappings. In UNIX, this file is /etc/hosts. In
Windows, this file is C:\WINDOWS\system32\drivers\etc\hosts.

To use the local hostnaming file to resolve hostnames for the OracleAS Disaster
Recovery solution in UNIX, for each middle tier and Infrastructure host in both the
production and standby sites, perform the following:

1. Use a text editor, such as vi, to edit the /etc/nsswitch.conf file. With the
"hosts:" parameter, specify "files" as the first choice for hostname resolution.

2. Edit the /etc/hosts file to include the following:

■ The physical hostnames and their correct IP addresses of all middle tier nodes
in the current site. Ensure that the first entry is the hostname and IP address of
the current node.

For example, if you are editing the /etc/hosts file of a middle tier node in
the production site, enter all the middle tier physical hostnames and their IP
addresses in the production site beginning the list with the current host. (Note
that you should also include fully qualified hostnames in addition to the
abbreviated hostnames. See Table 6–3.)

■ The virtual hostname of the Infrastructure in the current site.

For example, if you are editing the /etc/hosts of a middle tier node in the
standby site, enter the virtual hostname, fully qualified and abbreviated, and
IP address of the Infrastructure host in the standby site.

3. Reboot each host after editing the above files.

4. From each host, ping each physical hostname that is valid in its particular site to
ensure that the IP addresses have been assigned correctly.

For the example in Figure 6–2, on the asmid1 host, use the following commands
in:

ping asmid1

The returned IP address should be 123.1.2.333.

ping asmid2

The returned IP address should be 123.1.2.334.

ping infra

The returned IP address should be 123.1.2.111.

In Windows, the method of ordering hostname resolution varies depending on the
Windows version. Refer to the documentation for your verion of Windows for the
appropriate steps.

Using the example in Figure 6–2, Table 6–3 contains the required entries in the
/etc/hosts file of each UNIX host. The entries in the Windows
C:\WINDOWS\system32\drivers\etc\hosts file should reflect similarly.

Note: Some UNIX variants, such as Solaris, require the -s option
to return an IP address.

Setting Up the OracleAS Disaster Recovery Environment

Oracle Application Server Disaster Recovery 6-11

Using DNS Resolution
To set up the OracleAS Disaster Recovery solution to use DNS hostname resolution,
site-specific DNS servers must be set up in the production and standby sites in
addition to the overall corporate DNS servers (usually more than one DNS server
exists in a corporate network for redundancy). Figure 6–3 provides an overview of this
setup.

Table 6–3 Logical and virtual hostname entries in each /etc/hosts file of example in
Figure 6–2

Host Entries in /etc/hosts

asmid1 in production site 123.1.2.333 asmid1.oracle.com asmid1
123.1.2.334 asmid2.oracle.com asmid2
123.1.2.111 infra.oracle.com infra

asmid2 in production site 123.1.2.334 asmid2.oracle.com asmid2
123.1.2.333 asmid1.oracle.com asmid1
123.1.2.111 infra.oracle.com infra

infra in production site 123.1.2.111 infra.oracle.com infra
123.1.2.333 asmid1.oracle.com asmid1
123.1.2.334 asmid2.oracle.com asmid2

asmid1 in standby site 213.2.2.443 asmid1.oracle.com asmid1
213.2.2.444 asmid2.oracle.com asmid2
213.2.2.210 infra.oracle.com infra

asmid2 in standby site 213.2.2.444 asmid2.oracle.com asmid2
213.2.2.443 asmid1.oracle.com asmid1
213.2.2.210 infra.oracle.com infra

infra in standby site 213.2.2.210 infra.oracle.com infra
213.2.2.443 asmid1.oracle.com asmid1
213.2.2.444 asmid2.oracle.com asmid2

See Also: Appendix A, "Setting Up a DNS Server" for instructions
on how to set up a DNS server in a UNIX environment.

Setting Up the OracleAS Disaster Recovery Environment

6-12 High Availability Guide

Figure 6–3 DNS resolution topology overview

For the above topology to work, the following requirements and assumptions are
made:

■ The production and standby sites’ DNS servers are not aware of each other. They
make non authoritative lookup requests to the overall corporate DNS servers if
they fail to resolve any hostnames within their specific sites.

■ The production site and standby site DNS servers contain entries for middle tier
physical hostnames and Infrastructure virtual hostnames. Each DNS server
contain entries of hostnames within their own site only. The sites have a common
domain name that is different from that of the overall corporate domain name.

■ The overall corporate DNS servers contain logical hostname entries for the middle
tier hosts and Infrastructure hosts of both production and standby sites.

■ In UNIX, the /etc/hosts file in each host does not contain any entries for the
physical, logical, or virtual hostnames of any host in either site. In Windows, this
applies to the file C:\WINDOWS\system32\drivers\etc\hosts.

To set up the OracleAS Disaster Recovery solution for DNS resolution:

1. Configure each of the overall corporate DNS servers with the logical hostnames of
all the hosts in the production and standby sites. Using the example in Figure 6–2,
the following entries are made:

prodmid1.oracle.com IN A 123.1.2.333
prodmid2.oracle.com IN A 123.1.2.334
prodinfra.oracle.com IN A 123.1.2.111
standbymid1.oracle.com IN A 213.2.2.443
standbymid2.oracle.com IN A 213.2.2.444

Setting Up the OracleAS Disaster Recovery Environment

Oracle Application Server Disaster Recovery 6-13

standbyinfra.oracle.com IN A 213.2.2.210

2. For each site, production and standby, create a unique DNS zone by configuring a
DNS server as follows:

a. Select a unique domain name to use for the two sites that is different from the
corporate domain name. As an example, let’s use the name "oracleas" for
the domain name for the two sites in Figure 6–2. The high level corporate
domain name is oracle.com.

b. Configure the DNS server in each site to point to the overall corporate DNS
servers for unresolved requests.

c. Populate the DNS servers in each site with the physical hostnames of each
middle tier host and the virtual hostname of each Infrastructure host. Include
the domain name selected in the previous step.

For the example in Figure 6–2, the entries are as follows:

For the production site’s DNS:

asmid1.oracleas IN A 123.1.2.333
asmid2.oracleas IN A 123.1.2.334
infra.oraclas IN A 123.1.2.111

For the standby site’s DNS:

asmid1.oracleas IN A 213.2.2.443
asmid2.oracleas IN A 213.2.2.444
infra.oracleas IN A 213.2.2.210

Additional DNS Server Entries for Oracle Data Guard

Because Oracle Data Guard technology is used to synchronize the production and
standby Infrastructure databases, the production Infrastructure must be able to
reference the standby Infrastructure and vice versa.

For this to work, the IP address of the standby Infrastructure host must be entered in
the production site’s DNS server with a unique hostname with respect to the
production site. Similarly, the IP address of the production Infrastructure host must be
entered in the standby site’s DNS server with the same hostname. The reason for these
DNS entries is that Oracle Data Guard uses TNS Names to direct requests to the
production and standby Infrastructures. Hence, the appropriate entries must be made
to the tnsnames.ora file as well.

Using the example in Figure 6–2 and assuming that the selected name for the remote
Infrastructure is "remoteinfra", the entries in the DNS server in the production site
are:

asmid1.oracleas IN A 123.1.2.333

Note: If you are using the OracleAS Cold Failover Cluster
solution for the Infrastructure in either site, enter the cluster’s
virtual hostname and virtual IP address. For example, in the
previous step above, infra is the virtual hostname and
123.1.2.111 is the virtual IP of the cluster in the production site.
For more information on the OracleAS Cold Failover Cluster
solution, see "Oracle Application Server Cold Failover Clusters" on
page 3-7.

Installing Oracle Application Server 10g Software

6-14 High Availability Guide

asmid2.oracleas IN A 123.1.2.334
infra.oracleas IN A 123.1.2.111
remoteinfra.oracleas IN A 213.2.2.210

And, for the standby site, its DNS server should have the following entries:

asmid1.oracleas IN A 213.2.2.443
asmid2.oracleas IN A 213.2.2.444
infra.oracleas IN A 213.2.2.210
remoteinfra.oracleas IN A 123.1.2.111

Secure Shell (SSH) Port Forwarding
Oracle Data Guard sends redo data across the network to the standby system using
OracleNet. SSH tunneling should be used with Oracle Data Guard as an integrated
way to encrypt and compress the redo data before it is transmitted by the production
system and subsequently decrypt and uncompress the redo data when it is received by
the standby system.

Installing Oracle Application Server 10g Software
This section provides an overview of the steps for installing the OracleAS Disaster
Recovery solution. After following the instructions in the previous section to set up the
environment for the solution, go through this section for an overview of the
installation process. Thereafter, follow the detailed instructions in the Oracle
Application Server 10g Installation Guide to install the solution.

The following is the overall sequence for installing the OracleAS Disaster Recovery
solution:

1. Install OracleAS Infrastructure in the production site (refer to Oracle Application
Server 10g Installation Guide).

2. Install OracleAS Infrastructure in the standby site (refer to Oracle Application Server
10g Installation Guide).

3. Start the Infrastructure in each site before installing the middle tiers for that site.

4. Install the middle tiers in the production site (refer to Oracle Application Server 10g
Installation Guide).

See Also:

■ Implementing SSH port forwarding with Data Guard:
http://metalink.oracle.com/metalink/plsql/showdoc?
db=NOT&id=225633.1

■ Troubleshooting Data Guard network issues:
http://metalink.oracle.com/metalink/plsql/showdoc?
db=NOT&id=241925.1

Note: To assign identical ports to be used by symmetrical hosts in
the production and standby sites, static port definitions can be
used. These definitions are defined in a file, for example, named
staticports.ini, that is declared in the command that starts the
installer (see below). Detailed information on this static ports file is
found in the Oracle Application Server 10g Installation Guide.

Installing Oracle Application Server 10g Software

Oracle Application Server Disaster Recovery 6-15

5. Install the middle tiers in the standby site (refer to Oracle Application Server 10g
Installation Guide).

Note the following important points when you perform the installation:

■ The Infrastructure Identity Management and OracleAS Metadata Repository
components must be installed on the same host. These components cannot be
distributed over multiple hosts. (This requirement also applies to the OracleAS
Cold Failover Cluster and OracleAS Active Failover Cluster solutions.)

■ Ensure that the same ports are used by equivalent peer hosts in both sites. For
example, the asmid1 host in the standby site must use the same ports as the
asmid1 host in the production site. Utilize a static ports definition file for this
purpose (see note above and the next point).

■ Start the installer from the command line to use a static ports definition file. The
command syntax is different for the middle tier and Infrastructure hosts.

For each middle tier host, use the following syntax:

In UNIX:

runInstaller oracle.iappserver.iapptop:s_staticPorts=staticports.ini

In Windows:

setup oracle.iappserver.iapptop:s_staticPorts=staticports.ini

For each Infrastructure host, use the following syntax:

In UNIX:

runInstaller oracle.iappserver.infrastructure:s_staticPorts=staticports.ini

In Windows:

setup oracle.iappserver.infrastructure:s_staticPorts=staticports.ini

■ In the installer’s Select Configuration Options screen, ensure that you select the
High Availability Addressing option.

■ During Infrastructure installation, specify the virtual address assigned to the
Infrastructure in the Specify High Availibility screen.

■ For the middle tier hosts, any of the available middle tier installation types can be
installed. (Ensure that the Infrastructure services have been started for a site before
installing any middle tiers in that site.)

■ During each middle tier installation, specify the Infrastructure’s virtual hostname
as the Infrastructure database.

■ Start the OracleAS services on the hosts in each site starting with the
Infrastructure.

Setting Up Oracle Data Guard
For OracleAS Disaster Recovery purposes, the metadata information maintained
within the the Infrastructure database is kept in synchronization by utilizing Oracle
Data Guard technology. This technology propagates all database changes at the
production site to the standby site for disaster tolerance.

Note that for OracleAS Disaster Recovery, archive logs are shipped from the
production Infrastructure database to the standby Infrastructure database but are not
applied. The application of these logs have to be done with the synchronization of file

Installing Oracle Application Server 10g Software

6-16 High Availability Guide

system configuration information, which is discussed in the section "Backing Up
Configuration Files (Infrastructure and Middle Tier)".

The setup of Oracle Data Guard for OracleAS Disaster Recovery involves the
following steps:

■ Enable ARCHIVELOG Mode for Production Database

■ Identifying the Production Database Datafiles

■ Make a Copy of the Production Database

■ Create a Control File for the Standby Database

■ Prepare the Initialization Parameter File to be Copied to the Standby Database

■ Copy Files from the Production System to the Standby System

■ Set Initialization Parameters for the Physical Standby Database

■ Create a Windows Service (for Microsoft Windows systems)

■ Create a New Password File on the Standby System

■ Configure Listeners for the Production and Standby Databases

■ Enable Dead Connection Detection on the Standby System

■ Create Oracle Net Service Names

■ Create a Server Parameter File for the Standby Database

■ Start the Physical Standby Database

■ Enable Archiving to the Physical Standby Database

■ Start Remote Archiving

■ Verify the Physical Standby Database

Enable ARCHIVELOG Mode for Production Database
By default, the production database does not have ARCHIVELOG mode enabled.
However, it needs to be in ARCHIVELOG mode in order to ship archive logs to the
standby database. The default destination directory for archive logs is:

UNIX:

<INFRA_ORACLE_HOME>/dbs/arch/

Windows:

<INFRA_ORACLE_HOME>\database\archive

To enable ARCHIVELOG mode:

1. Make sure the ORACLE_HOME and ORACLE_SID (the default is asdb) environment
variables are properly set.

Note: For configuration information that is stored outside the
Infrastructure database in the file system, the OracleAS Backup and
Recovery Tool is used to synchronize this information between the
two sites.

Installing Oracle Application Server 10g Software

Oracle Application Server Disaster Recovery 6-17

2. Ensure that the database is not being used by stopping all usage of the
Infrastructure database. Execute the following commands on the Infrastructure
database host:

UNIX:

<ORACLE_HOME>/bin/emctl stop iasconsole
<ORACLE_HOME>/opmn/bin/opmnctl stopall

Windows:

<ORACLE_HOME>\bin\emctl stop iasconsole
<ORACLE_HOME>\opmn\bin\opmnctl stopall

3. Ensure that Enterprise Manager has been stopped using the following command:

UNIX:

<ORACLE_HOME>/bin/emctl status iasconsole

Windows:

<ORACLE_HOME>\bin\emctl status iasconsole

4. Execute the following commands to connect and confirm that ARCHIVELOG mode
is not enabled:

<ORACLE_HOME>/bin/sqlplus /nolog
SQL> connect sys/<password> as sysdba
SQL> archive log list
Database log mode No Archive Mode
Automatic archival Disabled
Archive destination /private/oracle/oracleas/dbs/arch
Oldest online log sequence 4
Current log sequence 6

In Windows, the sqlplus command can be executed as:

<ORACLE_HOME>\bin\sqlplus /nolog

In Windows, the archive destination should be <ORACLE_
HOME>\database\archive.

5. Shutdown the database instance. Execute:

SQL> shutdown immediate

6. For Windows only, create an spfile using the following commands:

SQL> connect sys/<password> as sysdba
SQL> create spfile from pfile;

7. Start up the instance, mount it, but do not open the database.

SQL> startup mount;

8. Enable database ARCHIVELOG mode.

SQL> alter database archivelog;
SQL> alter system set log_archive_start=true scope=spfile;
SQL> alter system set LOG_ARCHIVE_DEST_1=
’LOCATION=/private/oracle/oracleas/oradata MANDATORY’ SCOPE=BOTH;

Installing Oracle Application Server 10g Software

6-18 High Availability Guide

In Windows, substitute the archive log path shown above appropriately
(<ORACLE_HOME>\oradata).

9. Shut down and restart the database instance.

SQL> shutdown
SQL> connect sys/<password> as sysdba
SQL> startup

10. Verify that the database is now in ARCHIVELOG mode.

Execute the following command and verify that Database log mode is in
Archive Mode and Automatic archival is Enabled.

SQL> archive log list
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /private/oracle/oracleas/oradata
Oldest online log sequence 4
Next log sequence to archive 6
Current log sequence 6

In Windows, substitute the archive destination path shown above appropriately.

Identifying the Production Database Datafiles
On the production database, query the V$DATAFILE view to list the files that will be
used to create the physical standby database as follows (UNIX paths are shown):

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/private/oracle/oracleas/oradata/asdb/system01.dbf
/private/oracle/oracleas/oradata/asdb/undotbs01.dbf
/private/oracle/oracleas/oradata/asdb/drsys01.dbf
/private/oracle/oracleas/oradata/asdb/dcm.dbf
/private/oracle/oracleas/oradata/asdb/portal.dbf
.
.
.
24 rows selected.

Make a Copy of the Production Database
On the production database, perform the following steps to make a closed backup
copy of the production database:

1. Shut down the production database. Issue the following SQLPLUS statement to
shut down the production database:

SQL> SHUTDOWN IMMEDIATE;

2. Copy the datafiles to a temporary location. Copy the datafiles that you identified
in the previous section, "Identifying the Production Database Datafiles", to a
temporary location using an operating system utility copy command. The
following example uses the UNIX cp command (<ORACLE_HOME> is
/private/oracle/oracleas):

mkdir /private/standby
cp /private/oracle/oracleas/oradata/asdb/system01.dbf /private/standby/system01.dbf
cp /private/oracle/oracleas/oradata/asdb/undotbs01.dbf /private/standby/undotbs01.dbf
cp /private/oracle/oracleas/oradata/asdb/drsys01.dbf /private/standby/drsys01.dbf
cp /private/oracle/oracleas/oradata/asdb/dcm.dbf /private/standby/dcm.dbf

Installing Oracle Application Server 10g Software

Oracle Application Server Disaster Recovery 6-19

cp /private/oracle/oracleas/oradata/asdb/portal.dbf /private/standby/portal.dbf

In Windows, use the md command to create a new directory and the copy
command to copy the files.

3. Restart the production database. Issue the following SQLPLUS statement to restart
the production database:

SQL> STARTUP;

Create a Control File for the Standby Database
On the production database, create the control file for the standby database, as shown
in the following example in UNIX (in Windows, substitute with your appropriate
path):

SQL> alter database create standby controlfile as ’/private/standby/asdb.ctl’;

The filename for the newly created standby control file must be different from the
filename of the current control file of the production database. In the example above, it
is created in the new temporary directory for the standby. The control file must also be
created after the last time stamp for the backup datafiles.

Prepare the Initialization Parameter File to be Copied to the Standby Database
Create a traditional text initialization parameter file from the server parameter file
used by the production database; a traditional text initialization parameter file can be
copied to the standby location and modified. For example in UNIX (in Windows,
substitute with your appropriate path):

SQL> create pfile=’/private/standby/initasdb.ora’ from spfile

Later, in the section "Create a Server Parameter File for the Standby Database" and
thereafter, you will convert this file back to a server parameter file after it is modified
to contain the parameter values appropriate for use with the physical standby
database.

Copy Files from the Production System to the Standby System
On the production system, use an operating system copy utility to copy the binary files
mentioned in the following steps from the production system to the standby system.
Before copying, make sure the following tasks have been performed:

■ Stop any processing against the infrastructure by using opmnctl and emctl as
specified in the section "Enable ARCHIVELOG Mode for Production Database".

■ Backup datafiles created in the section "Make a Copy of the Production Database".

■ Standby control file created in the section "Create a Control File for the Standby
Database".

■ Initialization parameter file created in the section "Prepare the Initialization
Parameter File to be Copied to the Standby Database".

1. Clean up standby database files:

Note: You cannot use a single control file for both the production
and standby databases.

Installing Oracle Application Server 10g Software

6-20 High Availability Guide

In UNIX:

standby> rm /private/oracle/oracleas/dbs/spfileasdb.ora
standby> rm /private/oracle/oracleas/dbs/orapwasdb
standby> rm /private/oracle/oracleas/oradata/asdb/*.*

In Windows:

del <ORACLE_HOME>\database\spfileasdb.ora
del <ORACLE_HOME>\database\PWDasdb.ora
del <ORACLE_HOME>\oradata\asdb*

2. Identify the location of the init paramter file and clean this up (this is performed
on the standby system).

In UNIX:

standby> ls -l initasdb.ora
lrwxrwxrwx 1 nedcias svrtech 54 Nov 10 09:25 initasdb.ora ->
/private/oracle/oracleas/admin/asdb/pfile/initasdb.ora
standby> rm /private/oracle/oracleas/admin/asdb/pfile/initasdb.ora

In Windows:

del <ORACLE_HOME>\database\initasdb.ora

3. Copy the parameter initialization file in the previous step from the production
machine to the standby machine.

In UNIX:

production> cd /private/standby
production> cp initasdb.ora
/net/standby/private/oracle/oracleas/admin/asdb/pfile/initasdb.ora

In Windows, use Windows Explorer or FTP to perform the copy operation.

4. Copy the control files to the standby machine:

For example, in UNIX:

production> cp asdb.ctl /net/standby/private/oracle/oracleas/oradata/asdb/control01.ctl
production> cp asdb.ctl /net/standby/private/oracle/oracleas/oradata/asdb/control02.ctl
production> cp asdb.ctl /net/standby/private/oracle/oracleas/oradata/asdb/control03.ctl

In Windows, you can use Windows Explorer to copy and paste the files or use FTP
to copy them to the following location: <STANDBY_ORACLE_
HOME>\oradata\asdb\

5. Copy the data files to the standby machine:

In UNIX:

production> cp <ORACLE_HOME>/oradata/asdb/*.dbf

Note: The commands in this step must be run on the standby
database.

Note: These copy steps are examples and depending on the
network configuration other utilities may need to be used.

Installing Oracle Application Server 10g Software

Oracle Application Server Disaster Recovery 6-21

/net/standby/private/oracle/oracleas/oradata/asdb/.

In Windows, use Windows Explorer to copy and paste the files or use FTP to copy
the *.dbf files to the following location: <STANDBY_ORACLE_
HOME>\oradata\asdb\

Set Initialization Parameters for the Physical Standby Database
Although most of the initialization parameter settings in the text initialization
parameter file that you copied from the production system are also appropriate for the
physical standby database, some modifications need to be made.

The following steps detail the parameters to modify or add to the standby
initialization parameter file:

1. Edit the following parameters in the initasdb.ora file that was copied over
from the production system:

■ *.standby_archive_dest - Specify the location of the archived redo logs
that will be received from the production database.

■ *.standby_file_management - Set to AUTO.

■ *.remote_archive_enable - Set to TRUE.

For example, in UNIX:

*.standby_archive_dest=’/private/oracle/oracleas/standby/’
*.standby_file_management=AUTO
*.remote_archive_enable=TRUE

In Windows, substitute the appropriate path for the standby_archive_dest
parameter.

2. Create the directory that is specified for the standby_archive_dest parameter.
For example, in UNIX:

Standby> mkdir /private/oracle/oracleas/standby

In Windows, use Windows Explorer or the md command to create a new directory.

3. At the standby site , make sure the ORACLE_HOME and ORACLE_SID (the default
is asdb) environment variables are properly set.

For example, in UNIX:

Standby> setenv ORACLE_HOME /private/oracle/oracleas
Standby> setenv ORACLE_SID asdb

In Windows, these variables should be set correctly in the registry.

Create a Windows Service (for Microsoft Windows systems)
If the standby system is running on a Windows system, use the ORADIM utility to
create a Windows Service. For example:

<ORACLE_HOME>\bin\oradim -NEW -SID payroll2 -STARTMODE manual

Create a New Password File on the Standby System
A new password file has to be created on the standby system. Use the commands in
the following example:

In UNIX:

Installing Oracle Application Server 10g Software

6-22 High Availability Guide

standby> cd $ORACLE_HOME/dbs
standby> $ORACLE_HOME/bin/orapwd file=orapwasdb password=<passwd>

In Windows:

cd %ORACLE_HOME%\database
%ORACLE_HOME%\bin\orapwd file=PWDasdb.ora password=<passwd>

Configure Listeners for the Production and Standby Databases
On both the production and standby sites, the Oracle Net Manager can be used to
configure a listener for the respective databases. This is completed during the
installation of the Infrastructure. During the installation process, the listeners were
configured and started. The following is the configuration file that maintains the
listener configuration information.

In UNIX:

<ORACLE_HOME>/network/admin/listener.ora

In Windows:

<ORACLE_HOME>\network\admin\listener.ora

Any modifications to this file requires the listeners to be restarted using the following
commands:

In UNIX:

<ORACLE_HOME>/bin/lsnrctl stop
<ORACLE_HOME>/bin/lsnrctl start

In Windows:

<ORACLE_HOME>\bin\lsnrctl stop
<ORACLE_HOME>\bin\lsnrctl start

Enable Dead Connection Detection on the Standby System
Enable dead connection detection by setting the SQLNET.EXPIRE_TIME parameter to
2 in the SQLNET.ORA parameter file on the standby system. For example:

SQLNET.EXPIRE_TIME=2

Create Oracle Net Service Names
On both the production and standby systems, use Oracle Net Manager to create a
network service name for the production and standby databases that is to be used by
log transport services.

The Oracle Net service name must resolve to a connect descriptor that uses the same
protocol, host address, port, and SID that are specified in the listener configuration file
listener.ora. The connect descriptor must also specify that a dedicated server be
used.

The following steps illustrate how the above should be set up:

1. On both the production and standby hosts, there needs to be an entry to point at
the local database as well as the remote copy. Execute the TNSPING command on
both nodes to confirm that the entries in the TNSNAMES.ORA file are correct.

Installing Oracle Application Server 10g Software

Oracle Application Server Disaster Recovery 6-23

2. Add the following to the TNSNAMES.ORA file on the production database host that
points to the standby database (the standby hostname in this example is
standby.oracle.com):

ASDB_REMOTE =
(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = standby.oracle.com)(PORT=1521))
)
(CONNECT_DATA =

(SERVICE_NAME = asdb.oracle.com)
)

)

3. TNSPING the remote host to verify that it can be reached:

In UNIX:

production> /private/oracle/oracleas/bin/tnsping asdb_remote

In Windows:

<ORACLE_HOME>\bin\tnsping asdb_remote

4. Add the following entry to the TNSNAMES.ORA file on the standby host that points
to the production database (the production host in this example is assumed to be
production.oracle.com):

ASDB_REMOTE =
(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = production.oracle.com)(PORT=1521))
)
(CONNECT_DATA =

(SERVICE_NAME = asdb.oracle.com)
)

)

5. TNSPING the production host to verify that it can be reached:

In UNIX:

standby> /private/oracle/oracleas/bin/tnsping asdb_remote

In Windows:

<ORACLE_HOME>\bin\tnsping asdb_remote

Create a Server Parameter File for the Standby Database
On an idle standby database, use the SQLPLUS CREATE statement to create a server
parameter file from the text initialization parameter file that was edited in the section
"Set Initialization Parameters for the Physical Standby Database". For example:

Note: The tnsping command may require a fully qualified
hostname. The NAMES.DEFAULT_DOMAIN setting in sqlnet.ora
determines whether a fully qualified hostname is required or not.

Installing Oracle Application Server 10g Software

6-24 High Availability Guide

1. Make sure the ORACLE_HOME and ORACLE_SID (the default is asdb) environment
variables are properly set.

2. Connect and create an spfile.

In UNIX:

$ORACLE_HOME/bin/sqlplus /nolog
SQL> connect sys/password as sysdba
SQL> create spfile=’/private/oracle/oracleas/dbs/spfileasdb.ora’ from
pfile=’/private/oracle/oracleas/dbs/initasdb.ora’;

In Windows:

%ORACLE_HOME%\bin\sqlplus /nolog
SQL> connect sys/password as sysdba
SQL> create spfile=’<ORACLE_HOME>\database\spfileasdb.ora’ from
pfile=’<ORACLE_HOME>\database\initasdb.ora’;

Start the Physical Standby Database
On the standby database,issue the following SQLPLUS statements to start and mount
the database in standby mode:

SQL> STARTUP NOMOUNT;
SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

Enable Archiving to the Physical Standby Database
This section describes the minimum amount of work you must do on the production
database to set up and enable archiving to the physical standby database.

To configure archive logging from the production database to the standby site, the
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n parameters must be
defined. The service name used must be the same as that set up in the "Create Oracle
Net Service Names" section.

The following statements executed on the production database set the initialization
parameters needed to enable archive logging to the standby site:

SQL> alter system set log_archive_dest_2=’SERVICE=asdb_remote’ scope=both;
SQL> alter system set log_archive_dest_state_2=enable scope=both;

Start Remote Archiving
Archiving of redo logs to the remote standby location does not occur until after a log
switch. A log switch occurs, by default, when an online redo log becomes full.

To force the current redo logs to be archived immediately, use the SQLPLUS ALTER
SYSTEM statement on the production database:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Verify the Physical Standby Database
Once you create the physical standby database and set up log transport services, you
should verify that database modifications are being successfully shipped from the
production database to the standby database.

Installing Oracle Application Server 10g Software

Oracle Application Server Disaster Recovery 6-25

To see the new archived redo logs that were received on the standby database, you
should first identify the existing archived redo logs on the standby database, archive a
few logs on the production database, and then check the standby database again. The
following steps illustrate how to perform these tasks:

1. Identify the existing archived redo logs.

On the standby database, query the V$ARCHIVED_LOG view to identify existing
archived redo logs:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME FROM V$ARCHIVED_LOG ORDER BY
SEQUENCE#;
SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
10 11-JUL-02 17:50:58 11-JUL-02 17:51:03
3 rows selected.

2. Archive the current log.

On the production database, archive the current log using the following SQLPLUS
statement:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

3. Verify that the new archived redo log has been received.

On the standby database, query the V$ARCHIVED_LOG view to verify that the
redo log has been received using the following statement:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME FROM V$ARCHIVED_LOG ORDER BY
SEQUENCE#;
SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
10 11-JUL-02 17:50:58 11-JUL-02 17:51:03
11 11-JUL-02 17:51:03 11-JUL-02 18:34:11
4 rows selected.

The logs have now been shipped and are available on the standby database. To
confirm that they are there, list out the contents of the directory <ORACLE_
HOME>/standby.

4. Verify that the new archived redo log has NOT been applied.

On the standby database, query the V$ARCHIVED_LOG view to verify that the
archived redo log has not been applied.

SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;
SEQUENCE# APP
--------- ---
8 NO
9 NO
10 NO
11 NO
4 rows selected.

See Also: Oracle Data Guard Concepts and Administration Release 2
(9.2) (part number A96653-02) for more information on Oracle Data
Guard.

Synchronizing Baseline Installation with Standby Site

6-26 High Availability Guide

Synchronizing Baseline Installation with Standby Site
Once Oracle Data Guard has been set up between the production and standby sites,
the procedure for synchronizing the two sites can be carried out. An initial
synchronization should be done, before the production site is used, in order to obtain a
baseline snapshot of the post-installation production site onto the standby site. This
baseline can then be used to recover the production site configuration on the standby
site if needed later.

In order to obtain a consistent point-in-time snapshot of the production site, the
information stored in the Infrastructure database and the Oracle Application
Server-related configuration files in the middle tier and Infrastructure hosts must be
synchronized at the same time. Synchronization of the configuration files can be done
by backing up the files and restoring them on the standby hosts using the Oracle
Application Server Backup and Recovery Tool. For the Infrastructure database,
synchronization is done using Oracle Data Guard by shipping the archive logs to the
standby Infrastructure and applying these logs in coordination with the restoration of
the configuration files.

The sequence of steps for the baseline synchronization (which can also be used for
future synchronizations) are:

■ Shipping Infrastructure Database Archive Logs

■ Backing Up Configuration Files (Infrastructure and Middle Tier)

■ Restoring Configuration Files (Infrastructure and Middle Tier)

■ Restoring the Infrastructure Database - Applying Log Files

These steps are detailed in the following two main sections.

Backing Up Production Site
The main strategy and approach to synchronizing configuration information between
the production and standby sites is to synchronize the backup of Infrastructure and
middle tier configuration files with the application of log information on the standby
Infrastructure database.

For Oracle Application Server, not all the configuration information is in the
Infrastructure database. The backup of the database files needs to be kept
synchronized with the backup of the middle tier and Infrastructure configuration files.
Due to this, log-apply services should not be enabled on the standby database. The log
files from the production Infrastructure are shipped to the standby Infrastructure but
are not applied.

The backup process of the production site involves backing up the configuration files
in the middle tier and Infrastructure nodes. Additionally, the archive logs for the
Infrastructure database are shipped to the standby site.

The procedures to perform the backups and the log ship are discussed in the following
sections:

■ Shipping Infrastructure Database Archive Logs

■ Backing Up Configuration Files (Infrastructure and Middle Tier)

Backing Up Production Site

Oracle Application Server Disaster Recovery 6-27

Shipping Infrastructure Database Archive Logs
After installing the OracleAS Disaster Recovery solution, Oracle Data Guard should
have been installed in both the production and standby databases. The steps for
shipping the archive logs from the production Infrastructure database to the standby
Infrastructure database involve configuring Oracle Data Guard and executing several
commands for both the production and standby databases. Execute the following steps
to ship the logs for the Infrastructure database:

1. If not disabled already, disable log-apply services by running the following
SQLPLUS statement on the standby host:

SQL> alter database recover managed standby database cancel;

2. Run the following command to perform a log switch on the production
Infrastructure database. This ensures that the latest log file is shipped to the
standby Infrastructure database

SQL> alter system switch logfile;

3. In normal operation of the production site, the production database frequently
ships log files to the standby database but are not applied. At the standby site, you
want to apply the logs that are consistent up to the same time that the production
site’s configuration files are backed up. The following SQL statement encapsulates
all Infrastructure database changes into the latest log and allows the Oracle Data
Guard transport services to transport this log to the Infrastructure in the standby
site:

SQL> select first_change# from v$log where status=’CURRENT’;

A SCN or sequence number is returned, which essentially represents the
timestamp of the transported log.

4. Note down the SCN number as you will need this for the restoration of the
production database changes on the standby site.

Continue to the next section to back up the configuration files on the middle tier
host(s) and Infrastructure host.

IMPORTANT: Ensure that no configuration changes are going to
be made to the Oracle Application Server system (underlying
configuration files and Infrastructure database) as you perform the
steps in this section.

Note: At the minimum, the backup and restoration steps
discussed in this section and the "Restoring to Standby Site" section
should be performed whenever there is any administration change
in the production site (inclusive of changes to the Infrastructure
database and configuration files on the middle tier and
Infrastructure nodes). On top of that, scheduled regular backups
and restorations should also be done (for example, on a daily or
twice weekly basis). See the Oracle Application Server 10g
Administrator’s Guide for more backup and restore procedures.

Backing Up Production Site

6-28 High Availability Guide

Backing Up Configuration Files (Infrastructure and Middle Tier)
Use the instructions in this section to back up the configuration files. The instructions
require the use of the Oracle Application Server Backup and Recovery Tool. They
assume you have installed and configured the tool on each OracleAS installation
(middle tier and Infrastructure) as it needs to be customized for each installation. Refer
to Oracle Application Server 10g Administrator’s Guide for more details about that tool,
including installation and configuration instructions.

For each middle tier and Infrastructure installation, perform the following steps (the
same instructions can be used for the middle tier and Infrastructure configuration
files):

1. After performing the installation and configuration steps detailed in the Oracle
Application Server 10g Administrator’s Guide, for the Oracle Application Server
Backup and Recovery Tool, the variables oracle_home, log_path, and
config_backup_path in the tool’s configuration file, config.inp, should
have the appropriate values. Also, the following command for the tool should
have been run to complete the configuration:

perl bkp_restore.pl -m configure_nodb

In Windows, the Perl executable can be found in <ORACLE_HOME>\perl\<perl_
version>\bin\MSWin32-x86.

If you have not completed these tasks, do so before continuing with the ensuing
steps.

2. Execute the following command to back up the configuration files from the current
installation:

perl bkp_restore.pl -v -m backup_config

This command creates a directory in the location specified by the config_
backup_path variable specified in the config.inp file. The directory name
includes the time of the backup. For example: config_bkp_2003-09-10_
13-21.

3. A log of the backup is also generated in the location specified by the log_path
variable in the config.inp file. Check the log files for any errors that may have
occurred during the backup process.

4. Copy the Backup and Recovery Tool’s directory structure and contents from the
current node to its equivalent in the standby site. Ensure that the path structure on
the standby node is identical to that on the current node.

5. Copy the backup directory (as defined by config_backup_path) from the
current node to its equivalent in the standby site. Ensure that the path structure on
the standby node is identical to that on the current node.

6. Repeat the steps above for each Oracle Application Server installation in the
production site (middle tier and Infrastructure).

Note: There are two important items that should be maintained
consistently between the production and standby sites. The
directory names should be the same and the correlation of SCN to a
given backup directory should be noted at both sites in
administration procedures.

Restoring to Standby Site

Oracle Application Server Disaster Recovery 6-29

Restoring to Standby Site
After backing up the configuration files from the middle tier Oracle Application Server
instances and Infrastructure together with the Infrastructure database, restore the files
and database in the standby site using the instructions in this section, which consists of
the following sub-sections:

■ Restoring Configuration Files (Infrastructure and Middle Tier)

■ Restoring the Infrastructure Database - Applying Log Files

Restoring Configuration Files (Infrastructure and Middle Tier)
Restoring the backed up files from the production site requires the Oracle Application
Server Backup and Recovery Tool that was used for the backup. The instructions in
this section assume you have installed and configured the tool on each OracleAS
installation in the standby site, both in the middle tier and Infrastructure nodes. Refer
to Oracle Application Server 10g Administrator’s Guide for instructions on how to install
the tool.

For each middle tier and Infrastructure installation in the standby site, perform the
following steps (the same instructions can be used for the middle tier and
Infrastructure configuration files):

1. Check that the Backup and Recovery Tool’s directory structure and the backup
directory from the equivalent installation in the production site are present in the
current node.

2. Stop the Oracle Application Server instances and their processes so that no
modification of configuration files can occur during the restoration process. Use
the following OPMN command:

In UNIX:

<ORACLE_HOME>/opmn/bin/opmnctl stopall

In Windows:

<ORACLE_HOME>\opmn\bin\opmnctl stopall

Check that all relevant processes are no longer running. In UNIX, use the
following command:

ps -ef | grep <ORACLE_HOME>

In Windows, press <ctrl><alt> to bring up the Task Manager and verify
that the processes have stopped.

3. Configure the backup utility for the Oracle home.

This can be accomplished either by configuring the Backup and Recovery Tool for
the Oracle home or copying the backup configuration file, config.inp, from the
production site peer. Below is an example of running the Backup and Recovery
Tool configuration option:

perl bkp_restore.pl -v -m configure_nodb

In Windows, the Perl executable can be found in <ORACLE_HOME>\perl\<perl_
version>\bin\MSWin32-x86.

4. Execute the following command to view a listing of the valid configuration
backup locations:

Restoring to Standby Site

6-30 High Availability Guide

perl bkp_restore.pl -v -m restore_config

5. Restore the configuration files using the following command:

perl bkp_restore.pl -v -m restore_config -t <backup_directory>

where <backup_directory> is the name of the directory with the backup files that
was copied from the production site. For example, this could be config_bkp_
2003-09-10_13-21.

6. Check the log file specified in config.inp for any errors that may have occurred
during the restoration process.

7. Repeat the steps above for each Oracle Application Server installation in the
production site (middle tier and Infrastructure).

Restoring the Infrastructure Database - Applying Log Files
During the backup phase, you executed several instructions to ship the database log
files from the production site to the standby site up to the SCN number that you
recorded as per instructed. To restore the standby database to that SCN number, apply
the log files to the standby Infrastructure database using the following SQLPLUS
statement:

SQL> alter database recover automatic from ’/private/oracle/oracleas/standby/’ standby
database until change <SCN>;

(In Windows, substitute the path shown above appropriately.)

With this command executed and the instructions to restore the configuration files
completed on each middle tier and Infrastructure installation, the standby site is now
synchronized with the production site. However, there are two common problems that
can occur during the application of the log files: errors caused by the incorrect
specification of the path and gaps in the log files that have been transported to the
standby site.

The following are methods of resolving these problems:

1. Find the correct log path.

On the standby Infrastructure database, try to determine location and number of
received archive logs using the following SQLPLUS statement:

SQL> show parameter standby_archive_dest

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
standby_archive_dest string /private/oracle/oracleas/standby/

(The above example shows the UNIX path. The Windows equivalent path is
shown in Windows systems.)

2. Use the log path obtained from the previous step to ensure that all log files have
been transported.

At the standby Infrastructure database, perform the following:

standby> cd /private/oracle/oracleas/standby
standby> ls
1_13.dbf 1_14.dbf 1_15.dbf 1_16.dbf 1_17.dbf 1_18.dbf 1_19.dbf

(In Windows, use the command cd to change to the appropriate directory and dir
to view the directory contents.)

Scheduled Outages

Oracle Application Server Disaster Recovery 6-31

At the production Infrastructure database, execute the following SQLPLUS
statement:

SQL> show parameter log_archive_dest_1

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
log_archive_dest_1 string LOCATION=/private/oracle/oracleas/oradata

MANDATORY
log_archive_dest_10 string

(The above example shows the UNIX path. The Windows equivalent path is
shown in Windows systems.)

3. Using the path specified in step 1, note the number and sequence of the log files.
For example:

production> cd /private/oracle/oracleas/oradata
production> ls
1_10.dbf 1_12.dbf 1_14.dbf 1_16.dbf 1_18.dbf asdb
1_11.dbf 1_13.dbf 1_15.dbf 1_17.dbf 1_19.dbf

(In Windows, use the command cd to change to the appropriate directory and dir
to view the directory contents.)

In the above example, note the discrepency where the standby Infrastructure is
missing files 1_10.dbf through 1_12.dbf. Since this gap in the log files happened
in the past, it could be due to a problem with the historic setup involving the network
used for the log transport. This problem has obviously been corrected and subsequent
logs have been shipped. To correct the problem, copy (FTP) the log files to the
corresponding directory on the standby Infrastructure database host and re-attempt
the SQLPLUS recovery statement shown earlier in this section.

Scheduled Outages
Scheduled outages are planned outages. They are required for regular maintenance of
the technology infrastructure supporting the business applications and include tasks
such as hardware maintenance, repair and upgrades, software upgrades and patching,
application changes and patching, and changes to improve performance and
manageability of systems. Scheduled outages can occur either for the production or
standby site. Descriptions of scheduled outages that impact the production or standby
site are:

■ Site-wide maintenance

The entire site where the current production resides is unavailable. Examples of
site-wide maintenance are scheduled power outages, site maintenance, and
regular planned switchovers.

■ OracleAS Cold Failover Cluster cluster-wide maintenance

This is scheduled downtime of the OracleAS Cold Failover Cluster for hardware
maintenance. The scope of this downtime is the whole hardware cluster. Examples
of cluster-wide maintenance are repair of the cluster interconnect and upgrade of
the cluster management software.

■ Testing and validating the standby site as a means to test disaster recovery
readiness.

For scheduled outages, a site switchover has to be performed, which is explained in
the following section.

Scheduled Outages

6-32 High Availability Guide

Site Switchover Operations
A site switchover is performed for planned outages of the production site. Both the
production and standby sites have to be available during the switchover. The
application of the database redo logs is synchronized to match the backup and
restoration of the configuration files for the middle tier and Infrastructure installations.

During site switchover, considerations to avoid long periods of cached DNS
information have to be made. Modifications to the site’s DNS information, specifically
time-to-live (TTL), have to performed. Refer to "Manually Changing DNS Names" on
page 6-38 for instructions.

To switchover from the production to standby site, perform the following:

1. Reduce the wide area DNS TTL value for the site.

2. On the production site, backup the middle tier and Infrastructure configuration
files as described in the section "Backing Up Configuration Files (Infrastructure
and Middle Tier)" on page 6-28.

3. On the standby site, restore the backed up configuration files as described in the
section "Restoring Configuration Files (Infrastructure and Middle Tier)" on
page 6-29.

4. Execute the following SQLPLUS statement to enable log apply services on the
standby Infrastructure database so that all of the archive redo logs are applied:

SQL> alter database recover managed standby database disconnect from session;

5. Shut down all Oracle Application Server instances to close all sessions to the
databases. Use the following command on all hosts:

In UNIX:

<ORACLE_HOME>/opmn/bin/opmnctl stopall

In Windows:

<ORACLE_HOME>\opmn\bin\opmnctl stopall

6. Stop the CJQ0 and QMN0 database processes as these also have open sessions to
the database that need to be closed.

To stop the CJQ0 process, run the following query for the production and standby
databases:

SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;

To stop the QMN0 process, run the following query for the production and
standby databases:

SQL> ALTER SYSTEM SET AQ_TM_PROCESSES=0;

(The changes effected by the above statements need not require a database restart.)

7. Perform the switchover steps for the Infrastructure database in each site.

Note: All sessions to the production and standby databases need
to be closed in order to perfom the switchover operation. This
requires that all middle tier and Infrastructure instances need to be
shut down. Also, the CJQO and QMNO database processes have
sessions that need to be stopped.

Scheduled Outages

Oracle Application Server Disaster Recovery 6-33

On the production database, perform the following:

a. Verify that it is possible to perform a switchover operation.

On the current production database, query the SWITCHOVER_STATUS column
of the V$DATABASE fixed view on the production database to verify that it is
possible to perform a switchover operation. For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO STANDBY
1 row selected

The TO STANDBY value in the SWITCHOVER_STATUS column indicates that it
is possible to switch the production database to the standby role. If the TO
STANDBY value is not displayed, then verify that the Data Guard
configuration is functioning correctly (for example, verify that all LOG_
ARCHIVE_DEST_n parameter values are specified correctly).

b. Initiate the switchover operation on the production database.

To transition the current production database to a physical standby database
role, use the following SQLPLUS statement on the production database:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;

After this statement completes, the production database is converted into a
standby database. The current control file is backed up to the current
SQLPLUS session trace file before the switchover operation. This makes it
possible to reconstruct a current control file, if necessary.

c. Shut down and restart the former production instance.

Shut down the former production instance and restart it without mounting the
database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP NOMOUNT;
SQL> ALTER SYSTEM SET STANDBY_ARCHIVE_DEST=’/private/oracle/oracleas/standby/’ SCOPE=BOTH;
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=’auto’ SCOPE=BOTH;

(In Windows, substitute the path above appropriately.)

Mount the database as a physical standby database:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

Create the standby archive destination directory. For example:

In UNIX:

mkdir /private/oracle/oracleas/standby/

In Windows, use Windows Explorer or the following command:

md <ORACLE_HOME>\standby\

At this point in the switchover process, both databases are configured as
standby databases.

On the original standby database, perform the following:

d. Verify the switchover status in the V$DATABASE view.

Scheduled Outages

6-34 High Availability Guide

After you transition the production database to the physical standby role and
the switchover notification is received by the standby databases in the
configuration, you should verify if the switchover notification was processed
by the original standby database by querying the SWITCHOVER_STATUS
column of the V$DATABASE fixed view on the original standby database.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

SWITCHOVER PENDING
1 row selected

The SWITCHOVER PENDING value of the SWITCHOVER_STATUS column
indicates the standby database is about to switch from the standby role to the
production role. If the SWITCHOVER PENDING value is not displayed and the
TO PRIMARY value is displayed, this indicates all redo has been received and
applied and the standby is now a candidate for switchover to a production
role. Verify that the Data Guard configuration is functioning correctly (for
example, verify that all LOG_ARCHIVE_DEST_n parameter values are
specified correctly).

e. Switch the original standby database to the production role.

You can switch a physical standby database from the standby role to the
production role when the standby database instance is either mounted in
managed recovery mode or open for read-only access. It must be mounted in
one of these modes so that the production database switchover operation
request can be coordinated.

The SQL ALTER DATABASE statement used to perform the switchover
automatically creates online redo logs if they do not already exist. Use the
following SQLPLUS statements on the physical standby database that you
want to transition to the production role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;
SQL> SHUTDOWN IMMEDIATE;
SQL> CONNECT sys/<PASSWORD> AS SYSDBA
SQL> STARTUP MOUNT;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2=’SERVICE=asdb_remote’ SCOPE=BOTH;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=enable SCOPE=BOTH;
SQL> ALTER DATABASE OPEN;

f. Shut down and restart the new production database.

Shut down the original standby instance and restart it using the appropriate
initialization parameters for the production role:

SQL> SHUTDOWN;
SQL> STARTUP;

The original physical standby database is now transitioned to the production
database role.

g. Begin sending redo data to the standby databases.

Issue the following statement on the new production database:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Unplanned Outages

Oracle Application Server Disaster Recovery 6-35

8. On the new production database, start the Oracle Application Server instances
using the following command:

In UNIX:

<ORACLE_HOME>/opmn/bin/opmnctl startall

In Windows:

<ORACLE_HOME>\opmn\bin\opmnctl startall

9. Perform a wide area DNS switchover to direct requests to the new production site
based on one of the options presented in the section "Wide Area DNS Operations"
on page 6-37.

10. Adjust the wide area DNS TTL to an appropriate value.

Unplanned Outages
An unplanned outage that impacts either or both the production and standby sites can
be one of the following:

■ Site-wide failure The entire site where the current production resides is
unavailable. Examples of site-wide outages are disasters at the production or
standby site such as fire, flood, earthquake, or power outages.

■ Complete failure of the middle tier The entire middle tier is not available. Either
all nodes are down or the application server instances on all nodes are down. The
last surviving node of the Oracle Application Server 10g Farm for a service is no
longer available.

■ OracleAS Cold Failover Cluster cluster-wide failure. The entire hardware cluster
hosting the OracleAS Infrastructure is unavailable or crashes. This includes failure
of nodes in the cluster as well as any other components that results in the
hardware cluster and the Infrastructure on this site not being available.

Unplanned outages warrant the failover of the production site to the standby site.
Configuration files restoration and an Oracle Data Guard failover operation are
required. Failover restores the Oracle Application Server environment to the point of
the last successful backup.

Site Failover Operations
A site failover is performed for unplanned outages for the production site. Failover
operations require the restoration on the standby site of the last backup of the
configuration files of all hosts and the synchronized application of equivalent
point-in-time redo logs (using the correct SCN number) to the standby database.

To failover the production site to the standby site:

1. On the standby site, restore the most recently backed up configuration files as
described in the section "Restoring Configuration Files (Infrastructure and Middle
Tier)" on page 6-29.

Note: A site-wide or OracleAS Cold Failover Cluster cluster-wide
unplanned outage on the standby site does impact availability; a
production database outage is required to restore the standby
outage.

Unplanned Outages

6-36 High Availability Guide

2. Initiate the failover operation on the target physical standby database. Execute the
following SQLPLUS statement:

SQL> alter database recover automatic from ’/private/oracle/oracleas/standby/’ standby
database until change <SCN>;

(In Windows, substitute the path above appropriately.)

3. Convert the physical standby database to the production role.

Once the statement in the previous step completes successfully, the standby
database is recovered to a consistent level with the configuration files that were
restored in step 1.

Execute the following statements to transform the standby database to the
production role:

SQL> connect sys/internal as sysdba
SQL> select OPEN_MODE, STANDBY_MODE, DATABASE_ROLE from v$database;

OPEN_MODE STANDBY_MOD DATABASE_ROLE
---------- ----------- ----------------
MOUNTED UNPROTECTED PHYSICAL STANDBY

SQL> alter database activate standby database;

Database altered.

SQL> alter database mount;

Database altered.

SQL> select OPEN_MODE, STANDBY_MODE, DATABASE_ROLE from v$database;

OPEN_MODE STANDBY_MOD DATABASE_ROLE
---------- ----------- ---------------
MOUNTED UNPROTECTED PRIMARY

SQL> alter database open resetlogs;
alter database open resetlogs
*
ERROR at line 1:
ORA-01139: RESETLOGS option only valid after an incomplete database recovery

4. Shut down and restart the new production database.

To complete the failover operation, you need to shut down the new production
database and restart it in read/write mode using the proper traditional
initialization parameter file (or server parameter file) for the production role:

SQL> SHUTDOWN IMMEDIATE;

Note: The last statement, "alter database open
resetlogs;", may generate an ORA-01139 message (as shown)
depending on the completeness of the recovery command in step 2.
The message appears if the database recovery is complete and can
be ignored.

Also, after issuing the last statement, you can no longer use this
database as a standby database and subsequent redo logs from the
original production database cannot be applied.

Wide Area DNS Operations

Oracle Application Server Disaster Recovery 6-37

SQL> STARTUP;
ORACLE instance started.

Total System Global Area 143427356 bytes
Fixed Size 280348 bytes
Variable Size 92274688 bytes
Database Buffers 50331648 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.
SQL> select OPEN_MODE, STANDBY_MODE, DATABASE_ROLE from v$database;

OPEN_MODE STANDBY_MOD DATABASE_ROLE
---------- ----------- ----------------
READ WRITE UNPROTECTED PRIMARY

5. Perform a wide area DNS switchover to direct requests to the new production site
based on one of the options presented in the section "Wide Area DNS Operations"
on page 6-37.

Setting Up the New Standby Database
After starting the new production database, a new standby site needs to be created.
The steps for performing this are documented in this chapter starting from the section
"Setting Up Oracle Data Guard" on page 6-15 to the section "Backing Up Configuration
Files (Infrastructure and Middle Tier)" on page 6-28.

Once a new standby site has been established, a planned switchover may be
performed to migrate production quality processing to the correct geographical site.
Perform the steps in the section "Site Switchover Operations" on page 6-32.

Wide Area DNS Operations
In order for client requests to be directed to the entry point of a production site, DNS
resolution is used. When a site switchover or failover is performed, client requests
have to be redirected transparently to the new site playing the production role. To
accomplish this redirection, the wide area DNS that resolves requests to the
production site has to be switched over to the standby site. The DNS switchover can
be accomplished in one of the following two ways:

■ Using a Wide Area Load Balancer

■ Manually Changing DNS Names

Using a Wide Area Load Balancer
When a wide area load balancer (global traffic manager) is deployed in front of the
production and standby sites, it provides fault detection services and
performance-based routing redirection for the two sites. Additionally, the load
balancer can provide authoritative DNS name server equivalent capabilities.

During normal operations, the wide area load balancer can be configured with the
production site’s load balancer name-to-IP mapping. When a DNS switchover is

Note: A hardware load balancer is assumed to be front-ending
each site. Check http://metalink.oracle.com for supported load
balancers.

Wide Area DNS Operations

6-38 High Availability Guide

required, this mapping in the wide area load balancer is changed to map to the
standby site’s load balancer IP. This allows requests to be directed to the standby site,
which should have been brought up and now has the production role.

This method of DNS switchover works for both site switchover and failover. One
advantage of using a wide area load balancer is that the time for a new name-to-IP
mapping to take effect can be almost immediate. The downside is that an additional
investment needs to be made for the wide area load balancer.

Manually Changing DNS Names
This method of DNS switchover involves the manual change of the name-to-IP
mapping that is originally mapped to the IP address of the production site’s load
balancer. The mapping is changed to map to the IP address of the standby site’s load
balancer. Follow these instructions to perform the task:

1. Note the current time-to-live (TTL) value of the production site’s load balancer
mapping. This mapping is in the DNS cache and will be there until the TTL
expires. For the purposes of discussion and providing an example, let’s assume
this TTL to be 3600 seconds.

2. Modify the TTL value to a short interval. For example, 60 seconds.

3. Wait one interval of the original TTL. This is the original TTL of 3600 seconds that
we noted in step 1.

4. Ensure that the standby site is switched over to receive requests.

5. Modify the DNS mapping to resolve to the standby site’s load balancer giving it
the appropriate TTL value for normal operation (for example, 3600 seconds).

This method of DNS switchover works for planned site switchovers only. The TTL
value set in step 2 should be a reasonable time period where client requests cannot be
fulfilled. The modification of the TTL is effectively modifying the caching semantics of
the address resolution from a long period of time to a short period. Due to the
shortened caching period, an increase in DNS requests can be observed.

Setting Up a DNS Server A-1

A
Setting Up a DNS Server

This appendix provides instructions on setting up a DNS server in UNIX. These
instructions are applicable for setting up the site-specific DNS zones used for
hostname resolution in the example in Figure 6–3 on page 6-12.

For the discussion in this chapter, the DNS server that is set up creates and services a
new DNS zone with the unique domain oracleas. Within the zone, this DNS server
resolves all requests for the oracleas domain and forwards other requests to the
overall wide area company DNS server(s).

On the UNIX host that will act as the DNS zone server, perform the following steps:

1. Create the name server configuration file /var/named.conf. Assuming the wide
area company DNS server IP address is 123.1.15.245, the contents of this file
should be as follows:

options {
directory "/var/named";
forwarders {
123.1.15.245;

};
};

zone "." in {
type hint;
file "named.ca";

};

zone "oracleas" {
type master;
file "oracleas.zone";

};

zone "0.0.127.IN-ADDR.ARPA {
type master;
file "127.zone";

};

Note: The DNS setup information provided in this appendix is an
example to aid in the understanding of OracleAS Disaster Recovery
operations. It is generic to DNS, and other appropriate DNS
documentation should be consulted for comprehensive DNS
information.

A-2 High Availability Guide

2. Create the root hint file /var/named/named.ca, which has the following
contents (123.1.2.117 is the IP of the zone DNS server):

. 999999 IN NS ourroot.private.
ourroot.private. IN A 123.1.2.117

3. Create the loopback address file /var/named/127.zone, which has the
following contents (assume the zone DNS server’s hostname is aszone1):

$ORIGIN 0.0.127.IN-ADDR.ARPA.
0.0.127.IN-ADDR.ARPA. IN SOA aszone1.oracleas. root.aszone1.oracleas.
(

25 ; serial number
900 ; refresh
600 ; retry
86400 ; expire
3600) ; minimum TTL

0.0.127.IN-ADDR.ARPA. IN NS aszone1.oracleas.
1 IN PTR localhost.oracleas.

4. Create the zone data file /var/named/oracleas.dns, which has the following
contents (values shown are applicable to the example of the production site in
Figure 6–3):

;
; Database file oracleas.dns for oracleas zone.
; Zone version: 25
;
$ORIGIN oracleas.
oracleas. IN SOA aszone1.oracleas. root.aszone1.oracleas (

25 ; serial number
900 ; refresh
600 ; retry
86400 ; expire
3600) ; minimum TTL

;
; Zone NS records
;
oracleas. IN NS aszone1.oracleas.

;
; Zone records
;
localhost IN A 127.0.0.1

asmid1 IN A 123.1.2.333
asmid2 IN A 123.1.2.334
infra IN A 123.1.2.111
remoteinfra IN A 213.2.2.210

5. Run the following command to start the name server:

/sbin/in.named

6. On all the hosts in the domain that is serviced by this DNS server, edit the domain
and nameserver settings in the file /etc/resolv.conf as follows (all previous
nameserver settings should be removed; 123.1.2.117 is assumed to the zone DNS
server’s IP address):

Setting Up a DNS Server A-3

domain oracleas
nameserver 123.1.2.117

A-4 High Availability Guide

Index-1

Index

A
AC4J, 2-21
afcctl, 5-7
AJP

port number, 4-19
ports, 4-33

Application Server Console, 2-10, 2-16, 3-5
Application Server Control, 4-5, 4-12, 4-14, 4-18,

4-26, 4-33, 5-2, 5-4, 5-5, 5-7
stop, 5-3

archive logs, 6-1, 6-15, 6-26
shipping, 6-27

authentication credentials, 3-1
automatic recovery, 2-6
availability, 2-8

B
backup and recovery, 1-3
Business Intelligence and Forms, 2-1, 3-3
Business Intelligence and Forms installation

type, 6-4

C
centralized repository, 3-4
client certificates, 4-31
cloning, 2-29
clusterable, 2-10
clustering

configure Web application state replication, 4-20
configuring

EJB application state replication, 4-21
OC4J processes, 4-23

configuring islands, 4-23
EJB applications, 4-21
managing

application server instances in a cluster, 4-7
OracleAS Clusters, 4-4

OracleAS Cluster configuration, 4-4
removing application server instance, 4-8

cluster-wide configuration, 2-9
cold backup, 2-27
component instance, 2-2
config.inp, 6-28

configuration cloning, 2-5
configuration files, 6-1, 6-5

backup, 6-28
configuring SSL, 4-15

D
data maintenance, 1-3
data replication, 2-5
database provider, 2-23
database repository, 2-7
DCM, 2-5, 2-7, 2-9, 2-16, 3-1, 3-2, 3-3, 3-6, 4-17, 4-29,

4-30, 4-31
cloning, 2-29
daemon, 2-17
dcmctl, 2-10, 2-17
file-based repository, 3-3
ports, 4-33

dcmCache.xml, 4-16
dcmctl, 2-17, 4-5, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14,

4-16, 4-18, 4-20, 4-26, 4-29, 5-12
Delegated Administration Services

start, 5-2, 5-4
stop, 5-2, 5-5

directory service, 3-4
disaster recovery, 2-28, 6-1
Distributed Configuration Management, see

DCM, 2-10
DNS, 6-9, 6-11, 6-12

mapping, 6-38
switchover, 6-35, 6-37

DNS resolution, 6-3, 6-11

E
EJB

client routing, 2-21
cluster, 2-15
replication, 2-14
stateful session, 2-14

EJB application state replication, 4-21
EJB session, 2-5
emctl, 4-12
exporting configuration information, 4-13
external load balancer, 2-17

Index-2

F
failover, 3-7, 6-5, 6-35
failure types, 1-3
file-based repository, 2-7, 3-3

repository host, 2-7
firewall

routing between, 4-30
Forms Listener Servlet, 2-25
Forms Runtime Engine, 2-25
Forms Servlet, 2-25

G
global services daemon, 5-3, 5-5

H
hardware cluster, 3-7
hostname

logical, 6-3, 6-9
physical, 6-2, 6-7, 6-10
virtual, 6-3, 6-7, 6-9, 6-10

hostname resolution, 6-9
HTTP, 3-15, 4-27
HTTPS, 3-15, 4-27
human error, 1-3

I
identity management metadata, 3-2
importing configuration information, 4-13
installation type

Business Intelligence and Forms, 2-1, 2-24, 3-3,
6-4

J2EE and Web Cache, 2-1, 2-7, 3-3, 6-4
Portal and Wireless, 2-1, 3-3, 6-4

instance-specific parameters, 2-9
intelligent routing, 2-5

J
J2EE, 2-21
J2EE 1.3, 2-1
J2EE and Web Cache, 2-1, 2-7, 3-3
J2EE and Web Cache installation type, 6-4
JAAS, 4-14
Java Object Cache, 2-5, 2-15
JDBC, 3-15
JDK keytool, 4-16
JMS, 2-21

port, 4-33
port number, 4-19

JNDI namespace
replication, 2-15

K
Kerberos Security Tickets, 3-4
keystore, 4-16
keytool, 4-16

L
LDAP, 3-4, 3-15, 3-17
load balancer, 3-16, 5-5, 6-4

external, 2-17
hardware, 2-18, 2-26

load balancing
mod_oc4j, 2-19, 4-25, 4-26

local affinity, 2-20
log apply, 6-26
logical hostname, 6-3, 6-9
logical IP, 3-7

M
manageability, 2-8
management metadata, 3-2
management service, 3-1
managing

application server instances in a cluster, 4-7
adding, 4-7
removing, 4-8

OracleAS Clusters, 4-4
manually configured, 2-7, 2-8
metadata

identity management, 3-2
management, 3-2
product, 3-2

metric-based, 2-20
middle tier recovery, 2-27
mod_oc4j, 2-5, 2-12, 2-21, 2-22

load balancing, 2-19, 2-20, 4-25, 4-26
mod_oc4j.conf, 4-26, 4-29
mod_oradav, 2-22
mod_osso, 2-4, 2-22
mod_plsql, 2-22
multicast, 2-15
multicast address, 4-20, 4-21

N
Netegrity Site Minder, 3-4
NIS, 6-9

O
OC4J, 2-7, 2-15, 3-5

cluster-wide parameters, 4-18
distributed caching, 2-15
instance, 2-5, 2-10, 2-15, 4-19
instance-specific parameters, 4-18, 4-23

islands, 4-19
number of processes, 4-19
port numbers, 4-19

island, 2-2, 2-5, 2-11, 2-12, 2-13, 2-14, 4-19, 4-23
islands, 4-23

processes, 4-23
Java Object Cache, 2-5, 2-15
Oracle Delegated Administration Services

instance, 3-6
port numbers, 4-24

Index-3

process, 2-12, 2-14, 2-16, 2-20, 4-18, 4-19, 4-23,
4-25

processes
configuring, 4-23

OC4J load balancing, 2-19
OC4J process, 4-31
online backup, 2-27
operating system cluster, 2-18
OPMN, 2-6, 2-7, 2-12, 2-15, 2-19, 2-24, 3-6, 3-9, 3-15,

4-31, 5-2, 5-3, 5-5, 5-7
opmnctl, 2-16
Oracle Notification System, 2-16
Oracle Process Manager, 2-16
ports, 4-33

opmnctl, 2-16, 4-26, 6-29, 6-32
opmn.xml, 2-16
Orache HTTP Server, 2-15
Oracle Application Server

Active Failover Cluster, 2-25, 2-26, 3-6, 3-14, 5-3,
5-6, 6-15

Active Failover Cluster Runtime Control
Utility, 5-7

Backup and Recovery Tool, 5-8, 6-1, 6-16, 6-26,
6-28, 6-29

Certificate Authority, 2-4, 3-2
Cluster, 2-5, 2-6, 2-13, 2-14, 2-15, 2-16, 3-5, 4-19,

4-25, 4-26, 4-27
adding instances, 4-7
cluster-wide configuration, 2-9
manually configured, 2-7, 2-8
using database repository, 2-7, 4-10, 4-14
using file-based repository, 2-7, 4-5, 4-6, 4-9,

4-10, 4-11, 4-12, 4-13, 4-15, 4-17
Cold Failover Cluster, 2-25, 2-26, 3-6, 3-7, 5-1, 6-3,

6-5, 6-15, 6-31, 6-35
Containers for J2EE, 2-7
Disaster Recovery, 6-1
Discoverer, 2-1, 2-3, 2-25

load balancing, 2-25
process monitoring and restart, 2-25

Farm, 4-4, 4-5, 4-9, 4-10, 4-12, 4-14, 6-35
Form Services, 2-4
Forms Services, 2-1, 2-25
Infrastructure, 3-1, 4-14, 6-35

ports, 4-33
stopping, 5-2

instance, 2-2, 2-5, 2-11
Integration, 2-26, 3-3
InterConnect, 2-2, 2-26, 3-3
Java Object Cache, 4-13
Metadata Repository, 2-2, 2-5, 2-10, 2-28, 3-3, 3-5,

5-7, 6-4, 6-15
Personalization, 2-1, 2-4
Port Tunnel, 4-31
Portal, 2-22

DAD, 2-22
ports, 4-33
repository, 2-22

ports used, 4-34
ProcessConnect, 2-2, 2-26, 3-3

Reports Services, 2-1, 2-3, 2-15, 2-24
Single Sign-On, 2-4, 2-22, 3-2, 3-4, 3-6, 3-15, 4-14,

4-27
third party authentication, 3-4

using file-based repository, 4-15
Web Cache, 2-4, 2-5, 2-15, 2-18, 2-26, 4-27
Web Cache clusters, 2-11
Wireless, 2-23

Oracle Data Guard, 1-3, 6-1, 6-5, 6-13, 6-14, 6-27, 6-35
Oracle Delegated Administration Services, 2-22, 3-1,

3-4, 3-5, 3-6, 3-15
Oracle Directory Integration and Provisioning, 2-22
Oracle Directory Manager, 3-4
Oracle Enterprise Manager, 3-2, 3-9, 3-15

Application Server Console, 3-5
Oracle HTTP Server, 2-2, 2-3, 2-4, 2-5, 2-7, 2-10, 2-12,

2-13, 2-16, 2-21, 2-23, 3-4, 3-6, 3-9, 3-15, 4-25, 4-26,
4-27, 4-30, 4-31, 5-3, 5-7

ports, 4-33
start, 5-4
stateful load balancing, 2-11
stateless load balancing, 2-11
stop, 5-5

Oracle HTTP Sever
start, 5-2

Oracle Identity Management, 2-2, 2-4, 2-22, 3-5, 3-6,
6-4

Oracle Internet Directory, 2-22, 2-24, 3-1, 3-4, 3-15,
4-14, 5-7

start, 5-2, 5-4
stop, 5-3, 5-5

Oracle Management Services, 3-6
Oracle Net, 3-15
Oracle Net listener, 3-6
Oracle Notification System, 2-16
Oracle Process Management and Notification, see

OPMN, 2-15
Oracle Process Manager, 2-16
Oracle Workflow, 3-3
Oracle9i, 3-1, 3-2
OracleAS Active Failover Cluster, 1-3
OracleAS Cluster

configuration, 4-4
OracleAS Cold Failover Cluster, 1-3
OracleAS Single Sign-On

configuring, 4-27
OracleNet, 6-14
ORASSO DAD, 2-22
orion-ejb-jar.xml, 4-22
ossoreg.jar, 4-27
outage, 5-6

P
physical hostname, 6-2, 6-7, 6-10
physical standby database, 6-33
port numbers, 3-13, 4-19, 4-24
Portal and Wireless, 2-1, 3-3
Portal and Wireless installation type, 6-4
Portal Page Engine, 2-22

Index-4

process monitoring, 2-5, 2-15
process restart, 2-27
product metadata, 3-2
product metadata service, 3-1
production site, 6-2, 6-12

backup, 6-26
Public Key Infrastructure, 3-4

R
RAID disks, 4-13
random, 2-20
Real Application Clusters, 3-3
redo logs, 6-35
Reports Engine, 2-24
Reports Server, 2-24
Reports Servlet, 2-24
repository host, 2-7, 4-9, 4-10, 4-11

initializing, 4-11
repository ID, 4-11, 4-15
RMI

port, 4-33
port number, 4-19

round robin, 2-20

S
scalability, 2-6, 2-8
scheduled outages, 6-31
SCN, 6-27, 6-30, 6-35
secure shell port forwarding, 6-14
security service, 3-1
sequence number, 6-27, 6-30, 6-35
serializable, 4-21
session state replication, 2-12, 2-13
shared storage, 3-8
single point of failure, 2-6, 2-16
single sign-on, 2-4, 3-1
smart routing, 2-5
SQLPLUS, 6-30, 6-32
SSH tunneling, 6-14
SSL, 4-16, 4-17, 4-31
SSORegistrar, 4-27
SSOSDK, 3-4
standby site, 6-2, 6-3, 6-12

restoration, 6-29
state replication

configuring for EJB applications, 4-21
configuring for Web applications, 4-20
JVM termination, 4-23

state safe applications, 2-12
stateful applications, 2-12
stateful HTTP requests, 2-19
stateful session EJB, 4-22, 4-23
stateful session replication, 2-5
stateless applications, 2-12
stateless HTTP requests, 2-19
static ports file, 6-14
staticports.ini, 3-13, 6-14
switchover, 6-5, 6-32, 6-33

system maintenance, 1-3

T
time-to-live, 6-38
TNS Names, 6-13

U
unplanned outages, 6-35

V
virtual hostname, 3-8, 6-3, 6-7, 6-9, 6-10
virtual IP, 3-7, 6-7
volume management software, 5-1, 5-3

W
Web application session state replication, 2-12, 2-13
Web provider, 2-23
web.xml, 4-21
weighted routing, 2-20
wide area network, 6-2

X
X.509 certificate, 3-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documents
	Conventions

	1 Introduction
	What is High Availability
	High Availability in Oracle Application Server 10g
	Types of Failures
	Organization of this Guide
	High Availability Information in Other Documentation

	2 Middle Tier High Availability
	OracleAS Middle Tier Overview
	OracleAS Middle Tier Terminology
	Services Available
	J2EE
	HTTP
	Portal
	Business Intelligence
	Oracle Application Server Forms Services
	Single Sign-On
	Caching

	Features and Components for Middle Tier High Availability
	Oracle Application Server Instance High Availability
	Oracle Application Server Clusters
	Types of Oracle Application Server Clusters
	Cluster-Wide Configuration for Oracle Application Server Clusters that are Managed Using a Repository
	Requirements for Oracle Application Server Instances to Join Oracle Application Server Clusters that are Managed Using a Repository
	Properties of Oracle Application Server Instances in Oracle Application Server Clusters that are Managed Using a Repository

	Oracle Application Server Web Cache Clusters
	OC4J Islands
	Web Application Session State Replication with OC4J Islands
	Web Application Session State Protecting Against Software Problems
	Web Application Session State Replication Protecting Against Hardware Problems
	Configuring OC4J Islands With High Availability

	Stateful Session EJB High Availability Using EJB Clustering
	JNDI Namespace Replication
	OC4J Distributed Caching Using Java Object Cache

	Process Monitoring and Restart
	Oracle Process Manager
	Oracle Notification System

	High Availability Through Distributed Configuration
	Other High Availability Components
	Improving Availability with an External Load Balancer
	Types of External Load Balancers
	High Availablity Benefits of External Load Balancing

	Improving Availability with Operating System Clusters

	HTTP Service High Availability
	Web Cache and Oracle HTTP Server High Availability Summary
	OC4J Load Balancing Using mod_oc4j
	OC4J Load Balancing Using Local Afinity and Weighted Routing Options
	Choosing a mod_oc4j Routing Algorithm

	J2EE High Availability
	EJB Client Routing

	Oracle Application Server Portal High Availability
	Oracle Application Server Wireless High Availability
	Business Intelligence High Availability
	Oracle Application Server Reports Services High Availability
	High Availability Solution

	Oracle Application Server Discoverer High Availability

	Oracle Application Server Forms Services High Availability
	Oracle Application Server Integration High Availability
	Middle Tier Recovery Solutions
	Restarting Processes
	Restoring from Cold Backup
	Restoring from Online Backup
	Disaster Recovery
	DCM Archive/Recover
	Configuration Cloning

	3 Infrastructure High Availability
	Oracle Application Server 10g Infrastructure Overview
	Oracle Application Server 10g Infrastructure Components
	Oracle Application Server Metadata Repository
	When to Use Oracle Application Server Metadata Repository

	Oracle Identity Management
	Oracle Internet Directory
	Oracle Application Server Single Sign-On

	Oracle HTTP Server
	Oracle Application Server Containers for J2EE (OC4J)
	Oracle Enterprise Manager - Application Server Console

	High Availability Configurations for Infrastructure
	Oracle Application Server Cold Failover Clusters
	Terminology
	Hardware Cluster
	Failover
	Primary Node
	Secondary Node
	Logical or Virtual IP
	Virtual Hostname
	Shared Storage

	Architecture (UNIX)
	Architecture (Windows)
	Middle Tier on OracleAS Cold Failover Cluster Nodes

	Oracle Application Server Active Failover Cluster (UNIX)
	Load Balancer Configuration

	4 Managing and Operating Middle Tier High Availability
	Middle Tier High Availability Configuration Overview
	Configuration Overview OracleAS Clusters Managed Using a Repository
	Oracle Application Server Clusters Managed Using Database Repository
	Oracle Application Server Clusters Managed Using File-Based Repository
	Common Tasks for OracleAS Cluster Configuration

	Manually Configured OracleAS Clusters Configuration Overview
	OracleAS Web Cache Cluster Overview

	Managing and Configuring OracleAS Clusters
	Creating and Managing OracleAS Clusters
	Associating an Instance with a Farm
	Associating an Instance to be Managed Using a Database Repository
	Associating an Instance to be Managed Using a File-Based Repository

	Creating OracleAS Clusters Using Application Server Console
	Managing OracleAS Clusters Using Application Server Console

	Managing Application Server Instances in an OracleAS Cluster
	Adding an Application Server Instance to an OracleAS Cluster
	Removing an Application Server Instance from an OracleAS Cluster

	Using a File-Based Repository with OracleAS Clusters
	Initializing File-Based Repository Host and Adding Instances to a Farm
	Testing an Instance With whichFarm and Leaving a Farm
	Initializing the Repository Host Instance for a File-Based Repository
	Joining a Farm Managed Using a File-Based Repository

	Managing Instances in a Farm That Uses a File-Based Repository
	Managing Oracle Application Server Instances and Clusters With a File-Based Repository
	Availability Issues for OracleAS Clusters With a File-Based Repository
	Exporting and Importing Configuration Information With a File-Based Repository
	Moving an Instance Between Repositories
	Moving to a Database-Based Repository
	Moving to Another File-Based Repository

	Enabling SSL For Communication Between Instances That are Using a File-Based Repository
	Generating the Keystore
	Shutdown Oracle Application Server Processes on Each Instance
	Set Up the Keystore Information File on Each Instance in the Farm
	Enable SSL By Configuring dcmCache.xml
	Verify that Configuration Changes are Effected
	Start Each Instance in the Farm
	Adding a New Instance to a SSL-Enabled Farm

	OC4J Configuration with an OracleAS Cluster
	Overview of OracleAS Cluster Configuration for OC4J Instances
	Cluster-Wide Configuration Changes and Modifying OC4J Instances
	Creating or Deleting OC4J Instances on OracleAS Clusters
	Deploying Applications on OracleAS Clusters
	Configuring Web Application State Replication for OracleAS Clusters
	Configuring EJB Application State Replication for OracleAS Clusters
	Configuring Stateful Session Bean Replication for OracleAS Clusters
	End of Call Replication
	JVM Termination Replication

	Configuring OC4J Instance-Specific Parameters
	Configuring OC4J Islands and OC4J Processes
	Configuring Port Numbers and Command Line Options

	Oracle HTTP Server Configuration with OracleAS Clusters
	mod_oc4j Load Balancing With OracleAS Clusters
	Load Balancing Overview
	Setting Load Balancing Options

	Configuring Oracle HTTP Server Instance-Specific Parameters

	Security - Configuring Single Sign-On
	Advanced Clustering Configuration
	Routing Between Instances in Same Farm
	Routing Between Instances Across Firewalls
	Opening Intranet Communication through the OracleAS Port Tunnel
	Opening OracleAS Ports To Communicate Through Intranet

	5 Managing Infrastructure High Availability
	Oracle Application Server Cold Failover Clusters
	Starting Up
	Stopping

	Oracle Application Server Active Failover Cluster (UNIX)
	Starting Up
	Shutting Down
	Monitoring
	Failing Over During an Outage
	Restoring Resiliency After an Outage
	Synchronizing Configuration Files Using the Oracle Application Server Active Failover Cluster Runtime Control Utility (afcctl)
	Setting Up afcctl
	Obtain the afcctl Utility
	Install the afcctl Utility

	Using afcctl
	Setting the Default Baseline Timestamp
	Synchronizing Files From a Node to Other Nodes in an OracleAS Active Failover Cluster
	Listing Modified Files on a Node Since the Last Synchronization
	Excluding Specific Configuration Files from Synchronization

	Example
	Best Practises for Using afcctl

	6 Oracle Application Server Disaster Recovery
	Oracle Application Server 10g Disaster Recovery Solution
	Terminology
	Requirements
	Topology

	Setting Up the OracleAS Disaster Recovery Environment
	Planning and Assigning Hostnames
	Physical Hostnames
	Logical Hostnames
	Virtual Hostname

	Configuring Hostname Resolution
	Using Local Hostnaming File Resolution
	Using DNS Resolution
	Additional DNS Server Entries for Oracle Data Guard

	Secure Shell (SSH) Port Forwarding

	Installing Oracle Application Server 10g Software
	Setting Up Oracle Data Guard
	Enable ARCHIVELOG Mode for Production Database
	Identifying the Production Database Datafiles
	Make a Copy of the Production Database
	Create a Control File for the Standby Database
	Prepare the Initialization Parameter File to be Copied to the Standby Database
	Copy Files from the Production System to the Standby System
	Set Initialization Parameters for the Physical Standby Database
	Create a Windows Service (for Microsoft Windows systems)
	Create a New Password File on the Standby System
	Configure Listeners for the Production and Standby Databases
	Enable Dead Connection Detection on the Standby System
	Create Oracle Net Service Names
	Create a Server Parameter File for the Standby Database
	Start the Physical Standby Database
	Enable Archiving to the Physical Standby Database
	Start Remote Archiving
	Verify the Physical Standby Database

	Synchronizing Baseline Installation with Standby Site
	Backing Up Production Site
	Shipping Infrastructure Database Archive Logs
	Backing Up Configuration Files (Infrastructure and Middle Tier)

	Restoring to Standby Site
	Restoring Configuration Files (Infrastructure and Middle Tier)
	Restoring the Infrastructure Database - Applying Log Files

	Scheduled Outages
	Site Switchover Operations

	Unplanned Outages
	Site Failover Operations
	Setting Up the New Standby Database

	Wide Area DNS Operations
	Using a Wide Area Load Balancer
	Manually Changing DNS Names

	A Setting Up a DNS Server
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

