ORACLE

Oracle® Application Server Integration
InterConnect

User's Guide
10g Release 2 (10.1.2)
Part No. B14069-01

November 2004

Oracle Application Server Integration InterConnect User’s Guide 10g Release 2 (10.1.2)
Part No. B14069-01

Copyright © 2003, 2004, Oracle. All rights reserved.

Primary Author: Pradeep Vasudev, Vimmy K Raj

Contributor: Rahul Pathak, Maneesh Joshi, Harish Sriramulu, Aska Onoda, Aruna Kasturi

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SenNd Us YOUIr COMMEBNLES ...t Xi
PUOIACE ... et s et s e e xiii
AN S Lo = VLT S PSRRI Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e xiii
114 B 6] 101y <SR Xiv
ReELAtEA DOCUIMEIES ..ottt ettt ettt e et e s et e e e sateeesataeesateesneeeessaeessaaeeesseeeesnseeesnseeean XV
CONMVEIIEIONS ..oeittieieee ettt ettt e e e ettt e e e e e atee e e e e seaaeeeesessaaateeeesssssseeesesasseessessaseeessssnasssessssnseeeesssnnnseeeeesnn XV

1 Getting Started with OracleAS Integration InterConnect

1.1 What is OracleAS Integration InterConnect?............cccooviiiiiiiiiiiiiiiicceeccceenns 1-1
1.1.1 OracleAS Integration InterConnect COMPONENtS........cccocueueueueucuimicucueuecereeieeeenenenes 1-2
1.1.1.1 OracleAS Integration InterConnect HUb ... 1-2
1.11.2 OracleAS Integration InterConnect Adapters............ccccceeueiiciiiiiiiiiiiceicnns 1-2
1.1.1.3 OracleAS Integration InterConnect Development Kit........c.cccccccoeeciccciicenes 1-3
1.1.1.31 OracleAS Integration InterConnect SDKScccccoeiiiiiiiiiiiiiiiiiins 1-3
1.2 Standard MeSSAZINGccccuruririiiiiiiiiiiiiiicee s 1-4
1.2.1 Supported Messaging Paradigmsccccoeiiiviiiiiiiiiniiiiiiccne 1-4
1.3 OracleAS Integration InterConnect Integration Process..........cccocviiiiiiiiiiiiiiiininnns 1-5
1.3.1 DeSign TiMe......voviviiiiiciicc e 1-5
1.3.2 RUNTIIMNE .ttt ettt et e st e beesba e saba e s st e esbeesssessseenbeesssaensaenns 1-6
1.3.3 Separation of Integration Logic and Platform Functionalityccccoooviiiiiinnnnnn. 1-6
1.34 Unique Integration Methodologyccccccceuiiiiiiiiiiiiiiiiicicccccccs 1-6
1.3.4.1 How the Hub-and-Spoke Methodology Works..........ccccceeviiiiiiiiiinnine, 1-6
1.3.5 Integration Lifecycle Management.............cccccvvviiviinininiiinins 1-8
1.3.6 Using Adapters for Integration.............ccooeiiiiiiiiiiiiiicicccceceeeeeas 1-8
1.4 What's New in This RELEASETcc.ecieiieiiciieieeceeste ettt te s te e sae e aessnesesnnens 1-10

2 Using iStudio

2.1 OVEIVIEW Of ISTUAIO .evveieeiieiieiieie ettt sttt et e aesre e besssesbeesaesaessensenseenns 2-1
211 IStUAIO CONCEPLS ..o 2-1
2.1.11 APPLCALIONS ... 2-2
211.2 Common Views and Business ObJectsccoovieriieiiiiiiiiiiiiiiiicceceeeenes 2-2
2.1.1.2.1 EVEIES oottt ettt ettt et e te et s re et e e re et e sre e b e reenbesreans 2-2
2.1.1.2.2 PrOCEAUTES ...ttt ettt ettt ettt eaeere e e e eteera e seessenseessens 2-3

2113 Transformations or Mappings.........cccceieureiiiiiiiiiieiiciie e 2-3

2114 Metadata Versioning ..ottt s 2-4
2115 Tracking FIelds........ccccuiiiiiiiicccccrce e 2-4
2.1.1.6 Content-Based ROUtING.......ccuoviimiiiiiiii 2-4
21.1.7 Cross Reference Tables ... 2-5
21.1.8 Domain Value Mappingccccceeervrinirnnninireeereseeeeeseseeeses e 2-5
21.1.9 Routing and the Message Capability MatriX........cccoovoiiiieiiiiieeiicccnc 2-5
2.2 Starting iStUAIO.vveeceeie e 2-5
2.3 Parts of the iStudio WINdOWc.ccoviiiiiiiiiiiii s 2-5
2.31 MENU BT ..ot 2-6
2.3.1.1 FAIE MENU ...oviiiiiiii bbb 2-6
2.3.1.2 Edit MENU ...ttt 2-7
2.3.1.3 Procedure MENUccciieiiiiiiiiiiiiiiiiiccc s 2-7
23.1.4 EVeNt MENUoovoiiiiiiic s 2-7
2.3.15 HEIP MENU....ooiiiiiiiicicee e 2-8
2.3.2 TOOIDAT ..o 2-8
2.3.3 Design Navigation LiSt ... 2-9
2.3.4 Deploy Navigation List.........cccccociiiiiiiiiiiiiiceeceeeeeeeeeeeeeeeeeeeeeeee e 2-9
2.3.5 CONEXt MEIIUS ...ttt 2-9
2.3.6 Detail VIEW ..o 2-10
2.4 Using Workspaces in iStUAIOccceuiuiuiiiiiiiiiciccceeeeeeecee e 2-10
241 Creating a New WOrKSpace.........cccueuiicieiiiiicic e 2-10
2.4.2 Opening an Existing Workspace ..o 2-10
25 Using Projects in iStUAI0 ... 2-11
2,51 Creating a New Project ..o 2-11
2.5.2 Opening an Existing Project........c.ccooooeiiiii 2-12

Creating Applications, Common Views, and Business Objects

3.1 Overview of APPLCAtIONScooeuiueiiicicieie e 3-1
3.1.1 APPLCAION VIBW ... 3-1
3.1.2 Application Data TYPeScccccevveviiiiiiiiiiiiiicic s 3-1
3.1.3 Creating an APPplCation..........cccccuiiiiiiiiiiiiiiii s 3-1
3.2 Overview of Common Views and Business ObjJects..........ccccccueueueuruiiciiininieinicicnrecieeens 3-2
3.2.1 Defining COmMmON VIEWScoouiiiiiiiiiieiiceie it 3-2
3.2.1.1 Creating Business ODJECtSccccoeucuviriiiiiiinininiiiiiinsc e 3-2
3.2.1.2 Creating Common Data TyPes.......ccoccoviiiiniiiiiniiiiiiiccns 3-2
3.2.1.3 Adding AHIDULES ..ooevie 3-3
3.2.1.4 Importing AtribULESc.ccoceiiiiiiiicc e 3-4
3.2.15 Deleting and Clearing Attributesccceevvviinrniircrre e 3-5

Using Events in iStudio

41 OVEIVIEW Of EVEINES ..c.viieeieiciieeetcteetee ettt ettt s et e st essesaeseesassanseasens 4-1
411 EVENt MAPS ..ot 4-2
4.2 Creating EVENtSc.coiiiiiiiicc s 4-2
4.3 Publishing and Subscribing to an EVent............c.cccccociiiiiiiiiiiicccececeeeieeenenennes 4-3
4.3.1 Publishing an EVent.........ccooiiiiiiii s 4-3
4.3.2 Subscribing to an EVent ... 4-8

Using Procedures in iStudio

5.1 USING ProCeAUIESc.cviviiiiiiiiici s 5-1
5.1.1 Creating a Procedure...........cccoviiiiiiiiiiiiii s 5-2
5.2 Invoking and Implementing a Procedureccocovvviiniiniiiiinininiiii, 5-3
5.2.1 Invoking a Procedurecccovuvviiiiiiiiiininiiiiiiii s 5-3
5.2.2 Implementing @ ProCedUre............cccevviviririviririircrrr e 5-6

Enabling Infrastructure

6.1 Enabling INfrastriCturec.ccoeueiiiiiiiiiniiiicciceeee e 6-1
6.2 Working with Content-based ROUtING..........ccooriiiiiiiiii 6-2
6.3 Working with Domain Value Mappings............cocccoeoiimrieioiicciceccc e 6-5
6.3.1 Adding Applications to Domain Value Mappings........c.cccocovvrirrnnnnnnnnencncnenenene. 6-5
6.3.2 Removing Applications From Domain Value Mappingsccccovvvnininnnnininiennn. 6-5
6.3.3 Modifying Domain Value Mappings..........cccoceueiimieieiiicieiniccieie e 6-6
6.3.4 Deleting Domain Value Mappingsccccceeeeiemeiemimeeieieieeeeeeeeeneieeneseneeesenenenenenns 6-6
6.3.5 Deleting Domain Value Mapping Tables.............ccccoooiiiiiiiiiiccc, 6-6
6.3.6 Modifying Attribute Mappingscccocoeueioiiueieiiiiicicieiecceecic e 6-7
6.3.7 Removing Attribute Mappings..........cccvviiiiiiiniiiiniiiic e 6-7
6.4 Working with Cross-referencing ... 6-7
6.4.1 Adding Applications to Cross-reference Tablescccooouriiiiiiiiriiiicie, 6-7
6.4.2 Removing Applications From Cross-reference Tables..........cccccccovvrrrnrnnnnirnencnce. 6-7
6.4.3 Populating Cross-reference Tables.............cccoveuiiriiiiiiiiinicicc e, 6-7

Using Oracle Workflow

7.1 Oracle WOrKflow OVEIVIEWc.couiuiiiiiiiiiiiiiiiiiiiciecee e 7-1
7141 Oracle Workflow Solves Common Business Problems.............ccccccooeiiiiiiniiiiiinnnns 7-1
7111 Error Management and Compensating Transactionscccccccceccucueeucieuencenne 7-1
7.11.2 Human INteractionooeveiiiiiiiecccec e 7-2
7113 Message JUNCHONScoiiiiiiiiiiiiiicticctt e 7-2
7114 Stateful ROULINGc.couiiiiiiiiiiicccccccee e 7-2
7115 COMPOSILE SEIVICESvvviiiiiicieice e 7-2
7.2 OracleAS Integration InterConnect Integration with Oracle Workflowcccccc.c..c.... 7-3
7.21 Design Time TOOIScoiviiiiiiiiiiii e 7-3
7.2.2 RUNEME ..ottt 7-5
7.3 Using Oracle Workflow with OracleAS Integration InterConnect...........cccccoveveuriniinnnnnn. 7-6
7.3.1 Model BUSINESS PTOCESScvvuiviviviiiiiiiiiciit s 7-6
7.3.2 Deploy Business Processes for Runtime..........c.coooeueiiiiiciniiiciiccccce, 7-6
7.4 MoOdel BUSINESS PIOCESScveiuiriieiiiiiiieiciiirieieeiteee ettt e es 7-6
7.41 Process Bundle ..o 7-6
7.4.2 BUSINESS PrOCESS.......ooviviviiiiictctiie ettt 7-7
7.4.3 ACHVILY ot 7-7
74.4 Creating a Process Bundle............cccociiiiiiiiiiiiiicccceceecceeeeeeeeeeeeeeeeeeees 7-8
745 Creating a Business PTOCeSScc.ciiueiiiiiiiieiicic s 7-8
7.4.6 Populating a Business Process with Activities...........ccocoiiiiiiiiiiiiiiiiiiiicns 7-8
747 Deploying to Oracle WOrkflowcccccccviiiiiiiiiiiiinncireeeeeeeeee e 7-9
7.4.8 Launching Oracle WOrkflow TOOIS........c.cccouiioiuiiiiiiiiiee e, 7-11

10

vi

7.4.8.1 Launching the Oracle Workflow Home Pageccccooerieiiiiiciiiiice, 7-12

7.4.8.2 Launching Oracle Workflow Builderccocoooiie, 7-12
7.4.9 Modifying Existing Oracle Workflow Processes...........ccccoceuveruruverreverernnnsenercrcecnenes 7-13
Deployment

8.1 Deploying PL/SQL Stored Proceduresc.cccceiueuiueiiieieiiccicieeciceieieieeieneenenenenenenenenes 8-1
8.1.1 Manual Deployment............cciirieiiiiiieieiiceie it 8-1
8.1.2 Auto Deployment ... s 8-2
8.2 Specifying Application Queue Names for AQ Adapterccceveiiieeeeceeccceeenenas 8-6
8.3 Deploying Workflow Events and Process Definitions............ccccooeiiiiiniiiiiiicce 8-7
8.4 Sync Adapters from iStUdiO ..ot 8-7

Runtime System Concepts and Components

9.1 Integration Architecture...........oooiiiiiiiii s 9-1
9.2 COMPONENLES.....oviiiiiiiiiii e s 9-2
9.2.1 AdAPLEIS...oviiiiicc s 9-2
9.2.1.1 Agent and Bridge Combination ..o 9-2
9.2.2 REPOSILOTY .. 9-3
9.2.3 AdVanCed QUEUEScc.eeeeeiieiiiieieceeiete ettt et eesaesreesaeseessesssesbeessasseessansesnsessesnsas 9-4
9.24 Oracle WOrKEIOWc.ccuiiiiiiiiiiiiiiiiii s 9-4
9.3 Runtime System Features ... 9-4
9.3.1 Messaging Paradigmscccoeeurioiiiciciiicic e 9-4
9.3.2 MesSage DELiVerYcouiiiiiieiiccte e 9-5
9.3.3 Message Retention ... 9-5
9.34 ROUHNE SUPPOTLt...iiiiiiiiiiiiiiiiiiciciiec s 9-5
9.3.4.1 Content-Based ROUtING.........couoiiiiiiii s 9-5
9.3.5 Partitioning ..o 9-5
9.3.6 High Availability ... 9-6
9.3.7 Backup and RECOVEIY ...t 9-7
9.4 Real Application Clusters COnfiguration ... 9-7
9.4.1 OracleAS Integration InterConnect Adapters Supporting Real Application Clusters......
9-8
9.41.1 Adapter Failover Mechanism ... 9-8
942 CONFIGUIATION ...ttt 9-8
9.4.3 Sample Database Adapter adapter.ini File that Shows the Spoke Database Entry ... 9-9

Using InterConnect Manager

10.1 Overview of InterConnect Manager ..o 10-1
10.2 Starting InterConnect Manager ... 10-1
10.3 Using InterConnect Managercccovueuiiiiiiiiiiiiiiiiicinccecsescs s 10-2
10.3.1 HUD oottt ettt e e a et e s re e b e reenaesaeesbesreenrenaeans 10-2
10.3.1.1 Hub Quete Management.............ccceiiiiiiiiiiiiieeeceeeeeene s 10-3
10.3.1.1.1 LiSt MESSAZESveviniiiieiiiiiiciccc e 10-3
10.3.1.1.2 Delete MeSSagES.......covvviuiiiriiiiiiiiiicicieiiecieieee s 10-4
10.3.1.1.3 Export Messages To @ File........ccccccciiiiiiiiiiiiiiiiccccccccc, 10-5
10.3.1.1.4 Import Messages From a File.........cccccccooiiiiiiiiiiiiiccccecccenee 10-6

10.3.1.2 Error Message Resubmission............coccueueiiciiiiiiicicc e, 10-7

10.3.1.2.1 List MESSAZEScveveuiiitcniiiietctce it 10-7
10.3.1.2.2 ReSENA MESSAZES ...t 10-7
10.3.2 AdAPLEIS...oviiiiiiiicc s 10-8
10.3.2.1 Configuration File Managementccoceeiiiiiiiiiiiccccec 10-9
10.3.2.2 Error Management ... 10-9
10.3.2.2.1 LiSt RULES ... 10-10
10.3.2.2.2 Add RUle......oiiiiiiiiiiiii e 10-10
10.3.2.2.3 VIEW RUIE ..o s 10-11
10.3.2.2.4 Update Rule........ooiiiiiiie s 10-11
10.3.2.2.5 Delete RULEccooviiiiiiiiiciccc s 10-11
10.3.2.2.6 Set Mail SEIVET ... 10-11
10.3.2.2.7 View Mail ServVer ... 10-11
10.3.3 REPOSIEOTY .ttt 10-11
10.3.4 Message Trackingcccccueruririririririiicrrrre e 10-12
10.4 Using InterConnect Manager in Silent Modecccoviiiieiiiniciiicec, 10-13

Integration Scenario

A1 Integration Scenario OVEIVIEWccciiiriiiiiiiciiiicie e A-1
A1 The New Centralized System..........cccoooeiiiiiiiiiiiicc e A-1
A12 The Legacy SYSTEIMc.cuiuiiiiiiiiiiiiciceccc et A-1
A13 The Integration SCENATIO.......ccviiiveieiiicie s A-2
A2 Modeling the INtegration ..ot A-2
A3 Implementing the SCENATIO.cceuiuiiiiiiiiiiiiiicccc e ees A-3
A.3.1 Review Legacy System Database Triggerccocoerueiiiiieiiiiiicicieccce A-4
A3.2 Create a Project. ... A-4
A3.3 Create the Common View Business Object........ccccccccueuriiiiiiieiiiiincciccrceeeeenes A-5
A3.4 Create Business Object EVENtScccceviiiiiiiiiiiiiiiccccs A-5
A3.4.1 DTD €O ...ttt A-6
A3.5 Create APPLICAtIONSc.cuiuiuiuiuiiiiiiicicieeccee et eaeees A-7
A.3.6 Create a Cross Reference Table...........ccooviiiiiiininiiiiiiiices A-8
A3.7 Create PUblisSh EVENLSc.ccciiiiiiiiiiciiicccecceeee e A-8
A.3.8 Subscribe t0 EVENtS......c.ccviiiiiiiiccccc s A-11
A.3.8.1 DBAPP Application Subscriptions. ..o A-11
A.3.8.2 AQAPP Application SUbSCIIptions..........ccceucuiiiiiiiiiiiiiiciciiiccccec A-16
A3.9 Create Content-based ROULING.........ccccciiiiiiiiiiiiiiccecccceeee e A-17
A.3.10 Create an Oracle Workflow Process Bundle...........cccooviiiiiiinininiinen, A-18
A3.11 Deploy the Process Bundle to Oracle Workflow...........ccccccceueiiiiiiiniiiinniniiine A-19
A3.12 Creating Objects in Oracle Workflow for Modeling...........ccccccevuevvviinnvnnnnnenes A-20
A.3.121 MESSAZEcveveiiiiteiitee s A-21
A3.12.2 LOOKUP TYPE vttt A-21
A.3.12.3 NOHFICAtION .. .oceviii e A-21
A3.12.4 What Oracle Workflow provides.cccccoviviniiiiniiniicn, A-21
A3.125 Copy Lookup Type (APProval)......ccccccccieuiiiiiiiiiniiiiiicccieieceeeeeeeees A-21
A3.12.6 Create an Oracle Workflow MeSSageccccccueucueurieuiicininininiccniceiceeeeeeeeeeeeenes A-21
A3.12.7 Create an Oracle Workflow Notificationcccoevviviiiiiiiinci, A-22
A4 Modeling Business Logic in Oracle WOrkflowcccccovviiiniinnnnniiininnne, A-23

vii

viii

A5 DEPLOYINENL ..ottt e A-25

A.5.1 Setting QUEUESooviiiiiiictcc s A-25
A5.2 SYNC AQPLETS ...t A-26
AS5.3 Exporting and Installing Code..........ccoorueiiiiiiiiiiiicc A-27
A6 CONCIUSION ..o A-27

Using the Data Definition Description Language

B.1 ADOUE DBL..oiii e B-1
B.1.1 What IS DL ... B-1
B.1.2 When Is D3L USd? ...ttt B-2
B.1.3 D3L FEAtUTIES......cooiiiiitiiietctct s B-2
B.1.3.1 Integrate Transport Properties ... B-3
B.1.3.2 Allow Multiple IMParrays ... B-4
B.2 Native Format Message and D3L File Examplecccooooiiiiiiiiicce, B-4
B.2.1 Description of Native Format Message Contents in a D3L File.......cccccccccovvvnnnenne. B-5
B.2.2 Configuration of Native Format Message with a D3L File........c.ccccooooeiiiiiiiinnnne. B-5
B.2.2.1 adapter.ini Parameter File Setting..........ccccooooriiiiiii, B-6
B.2.2.2 Message Header AttribUtes..........cccoeuvueviiiriiirinriiiriiiecerr s B-6
B.2.2.2.1 Name/Value Pair Message Header Attributes...........ccccceevviiniiininnnnnn B-6
B.2.2.2.2 Magic Value Message Header Attribute...........cccoooooiiiiiiiii B-7
B.3 DBL Fle STIUCEUTIE ...t B-8
B.3.1 Supported D3L Data TYPeS.......ccccviiiiriiiiiiiiicieieicicieceee s B-10
B.3.1.1 Signed or Unsigned Integers.............coooeuiiiiieiiiiiiciicc e B-10
B.3.1.2 Floating Point NUMDETSc.cccccoiiuiiiiiiiiiiiiiicceicieeeeeece e B-12
B.3.1.3 SHINES .ottt B-13
B.3.1.4 SEUCHUTES . B-17
B.3.1.5 SEQUENCES ...t B-17
B.3.1.6 Data Padding.........oooeueieiiiieieiiiciee B-20
B.3.2 Comma-Separated Values File Parsing with D3L.........ccccoooiiii B-21
B.3.2.1 CSVs are Assigned to Named Fields ... B-21
B.3.2.2 All CSVs are Read into an Array.........cccceeeicieiiicicieiceieei B-22
B.3.2.3 Delimiter Encoding Styles...........cccocoiiiiiiiiiiiiiiiicceecceeeeees B-22
B.4 D3L Integration with OracleAS Integration InterConnect Adapters...........cccceevvveruencee B-23
B.4.1 Runtime INitialiZationcccoiiiiiiiiiiii s B-23
B.4.2 Native Format Message to Common View Incoming Message Translations.......... B-24
B.4.3 Common View to Native Format Message Outgoing Messages Translations........ B-25
B.5 INStalling D3Lcoviiiiiitce s B-26
B.6 Configuring DBLccooiiiiiiiiiiiiiii s B-27
B.6.1 Task 1: Configure D3L with iStUAIOccoveueeeiiiiiiiiicccccce, B-27
B.6.2 Task 2: Create a Native Format Messagecccocveueiiinicieiiiiciecce e B-27
B.6.3 Task 3: Create a D3L File Describing the Native Format Messagecccccceuevuuce. B-27
B.6.4 Task 4: Configure a Native Format Message with a D3L File.........cccccccccccceninnnnne. B-28
B.6.5 Task 5: Configure D3L with OracleAS Integration InterConnect Adapters............ B-28
B.6.6 Task 6: Import a D3L File in iStudiocccccciieiviiiiiiiiiniiiiiicccccccccc B-29
B.6.7 Task 7: Define Metadata Properties with Each Event (Optional)...........ccccccceueneeeee. B-30
B.7 DBL USE CASE....ovvivirriiicicicicicietet s B-31
B.7.1 D3L Use Case OVEIVIEWcccccciviiiriiiniiiriiiiieinieietetete sttt B-31

B.7.2 Creating Data Type Definitions for Application Views.........cccceeviiiiniinnnnnnnn B-32

B.7.21 Task 1: Create a DTD File for the Advanced Queuing Adapter......................... B-32
B.7.2.2 Task 2: Create a D3L File for the FTP Adapter.......ccccccoeceeiceceiecccccceee B-32
B.7.3 Configuring the aqapp_pub and fileapp_sub Applications in iStudio B-34
B.7.3.1 Task 1: Create a New Workspace and New Projectcccooooreiiiciinn, B-34
B.7.3.2 Task 2: Create the Employee Business Objectccccceueueueicicinceiiiicinciciccene B-35
B.7.3.3 Task 3: Create the newEmployee Event........ccocooiiiii, B-35
B.7.3.4 Task 4: Create the aqapp_pub Application...........cccoeueiiiiiiiiiiiicicceee, B-36
B.7.3.5 Task 5: Enable the aqapp_pub Application to Publish the newEmployee Event.......
B-36
B.7.3.5.1 Select the Event to Publish..........cccccooeiiiiiii, B-36
B.7.3.5.2 Define the Application VIewccccoooiiiiiiiiicc B-37
B.7.3.5.3 Define the Application View to Common View Mapping..........ccccccueueueeee. B-38
B.7.3.6 Task 6: Define the Application Queue for the agapp_pub Application............ B-39
B.7.3.7 Task 7: Create the fileapp_sub Application..........ccceuevvirieiiiiiiciiiic, B-40
B.7.3.8 Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee
Event B-40
B.7.3.8.1 Select the Event to which to Subscribe...........ccccoooeiiiiiiiiiiiiiiin B-40
B.7.3.8.2 Define the Application VIew ..o B-40
B.7.3.8.3 Define the Application View to Common View Mapping..........cccccccueueuneee. B-41
B.7.4 Installing the Advanced Queuing and FTP Adapters..........ccooceuviirieiiiiiciiinne B-42
B.7.4.1 Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub .. B-42
B.7.4.2 Task 2: Create the Application Queue AQAPP_NEWEMPcccccccvvicuincnnnn B-42
B.7.4.3 Task 3: Install the FTP Adapter for Application fileapp_subccccccveunnnnce. B-43
B.7.4.4 Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory
B-44
B.7.4.5 Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter Initialization
File B-44
B.7.5 Running the D3L Use Case.........ccccovviiiiiiiiiiiiiiiiiiiicccne s B-44
B.7.5.1 Task 1: Start the Adapters ..., B-44
B.7.5.1.1 To Start the Adapters on UNIX: ..o B-44
B.7.5.1.2 To Start the Adapters on Windows:cccevvieiiiiiiicciniecceee, B-45
B.7.5.2 Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event....... B-45
B.7.5.3 Task 3: Trigger the newEmployee Event ..., B-46
B.7.5.4 Task 4: Verify Receipt of newEmployee Eventcccoooviiiiiiiiicnicne B-47
B.7.6 Using Other Adapters in D3L and XML Modes ..o, B-47
B.7.6.1 Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode.........ccccccueuueee. B-48
B.7.6.2 Using XML MOdec.couiieiiiiiiiiiiiciiicccccc s B-48
B.8 Additional D3L Sample Files and DTDccccccccvuviniiiininiiiiniiiniiiciccccneceeaes B-48
B.8.1 Additional D3L Sample Filescccccociiiiiiiiniiiincccrrcccreeee s B-49
B.8.1.1 Sample File with Structure VehicleRegistrationcccccoevviiiiinninnnnn, B-49
B.8.1.2 Sample File with Structure Hierarchy PersonRecordcccccccvvvivivnninincnnnes B-50
B.8.1.3 Sample File with Structure ProductRecordcccccccvuviiiinvniinnnnirrccnes B-51
B.8.2 DBL DTD .t B-52
Transformations
CA1 OracleAS Integration InterConnect Transformationsccccceeirieiniiiicicicicce, C-1

C.1A1
Cc1.2
C1.3
C14
C15
C.1.6
C17
Cc.1.8
c.1.9
C.1.10
C.1.11
C.1.12
C.1.13
C.1.14
C.1.15
C.1.16
C.1.17
C.1.18
C.1.19
C.1.20
C.1.21
c.1.22
C.1.23
C1.24
C.1.25
C.1.26
Cc1.27
c.1.28

COPY FHELAS ..o e C-1
COPY ODJECL ...t C-1
CONECAt FIELAS ...t C-1
EXpand Fields ... C-1
St CONSTANL ...t C-2
True Conditional Lookup XRefcccccciiiiiiiiiiiiieececeeeeeeeeeeeeeeeeeeeeeeeeeas C-2
True Conditional Lookup DVM ... C-2
Conditional COPY....covuruiiiiiiieieiicicie s C-2
True ConditioNal COPY ...c.cueuemmimimimiiiiiiiiicieicieeeeete e aeeees C-3
True Conditional CONCatcccceuiviiiiiiiiiii s C-3
True Conditional To NUMDETcccccoiiiiiiiiiiiiiiiiis C-3
False Conditional CopPy.....ccoceuiiiiiiiieiicicceicieiecieeeee et eeeeaes C-3
False Conditional Concat..........cccociviniiiiiiiiniiiiiiiiii s C-3
False Conditional To NUMDeTcccccociiiiiiiiiiiiiiiis C-4
TO NUMDET ...t C-4
SUDSEIINE .ot s C-4
Char RepPlace........c.ouiiuiiiiicie e C-4
SHANG REPIACE ... C-5
LTI ot C-5
RTTIM b C-5
LPAG s C-5
RPAG ..o s C-6
LOOKUP XREf ..ot C-6
Deelete XREf ..ot s C-6
LooKUP DVM....ooiiiiiiiiiicicccc s C-6
TTUNCATE. ... C-7
INCIOMENT ...t C-7
DatabaseOperationc.cvciiieieiiiiiiiiiiiiie s C-7

D Troubleshooting OracleAS Integration InterConnect

D.1

D.1.1
D.1.2
D.1.3
D.1.4
D.15
D.1.6
D.1.7

D.1.8
D.1.9
D.1.10
D.2

Glossary

Index

Problems and SOIUHIONScciiiiiiiiiiiiiic s D-1
iStudio Fails t0 CONMMECEc.ccciviiieiiiirieiccicctreec e D-1
Mappings N ISEUAIOcucuiiiiiiicccc s D-2
Metadata Not Editable in iStudio..........ccoceeiiiiniiiiiiiiiciiiicccc D-3
Subscribing Adapter Does Not Receive Messages From the Hub ... D-3
Messages Are Not Getting Delivered to a Spoke Application.........ccccceeuvuveveverurunnnne. D-3
OracleAS Integration InterConnect Repository Does Not Start ..o D-4

DB Adapter Does Not Pick Up Messages That Have Been Published From the
Database D-5

FTP Adapter Cannot Match Incoming Message With Any D3L Definiton D-5
AQ Adapter Does Not Pick Up Mesage From the Spoke AQ........cccccccovviiiiiinnnnnn. D-5
CBR Issue with DB Adapter..........cccccciiiiiiiiiiiiiiiiiiiiiicicnies s D-6
INeed MoOTe HELP? ... D-6

Send Us Your Comments

Oracle Application Server Integration InterConnect User’s Guide, 10g Release 2
(10.1.2)

Part No. B14069-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

s Electronic mail: appserverdocs_us@oracle.com
s FAX: 650-506-7356 Attn: Oracle Application Server Documentation Manager
= Postal service:

Oracle Corporation

Oracle Application Server Documentation Manager

500 Oracle Parkway, M/S 1op6

Redwood Shores, CA 94065

USA
If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xi

Xii

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Structure

= Related Documents

s Conventions

This guide is targeted at the following types of users:
= Business analysts and integration engineers, for iStudio.
= System Administrators, for the runtime component.

The audience should have the following prerequisites, which are discussed but not
explained:

= Domain knowledge of the applications being integrated.

= Database concepts and working knowledge of SQL, PL/SQL, or SQL* Plus.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

xiii

Structure

Xiv

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

This document contains:

Chapter 1, "Getting Started with OracleAS Integration InterConnect"

Introduces OracleAS Integration InterConnect and presents an overview of the
product and the tools.

Chapter 2, "Using iStudio"
Describes iStudio and how to create workspaces and projects.

Chapter 3, "Creating Applications, Common Views, and Business Objects"

Describes how to create and manage applications, common views, and business
objects using iStudio.

Chapter 4, "Using Events in iStudio"
Describes using iStudio to create, publish, and subscribe to events.

Chapter 5, "Using Procedures in iStudio"
Describes using iStudio to create, invoke, and implement procedures.

Chapter 6, "Enabling Infrastructure"

Describes the enabling infrastructure tasks in iStudio including creating cross
reference tables and domain value mappings.

Chapter 7, "Using Oracle Workflow"
Describes how OracleAS Integration InterConnect works with Oracle Workflow.

Chapter 8, "Deployment”
Describes the deployment tasks in iStudio.

Chapter 9, "Runtime System Concepts and Components"

Describes the runtime components and concepts of OracleAS Integration
InterConnect.

Chapter 10, "Using InterConnect Manager"

Introduces the InterConnect Manager and describes how you use it to manage your
integration environment.

Appendix A, "Integration Scenario"

Provides an integration scenario and model based on a fictitious company, Acme, Inc.
using OracleAS Integration InterConnect.

Appendix B, "Using the Data Definition Description Language"

Describes how to use the data definition description language (D3L) in native format
message-to-application view and application view-to-native format message
translations.

Appendix C, "Transformations"
Provides a list of OracleAS Integration InterConnect transformations.

Appendix D, "Troubleshooting OracleAS Integration InterConnect"

Describes common problems that you might encounter when using OracleAS
Integration InterConnect and explains how to solve them.

Related Documents

For more information, refer to these Oracle resources:

» Oracle Application Server Integration InterConnect Installation Guide

» Oracle Application Server Integration InterConnect Release Notes

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text
= Conventions in Code Examples

= Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning Example

Bold

Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.

XV

Convention

Meaning

Example

Italics

UPPERCASE
monospace

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
data types, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

Oracle Database 10g Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

Enter sglplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

You can specify the parallel_ clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT username FROM dba_users WHERE username =

'MIGRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[] Anything enclosed in brackets is optional. = DECIMAL (digits [, precision])
{1} Braces are used for grouping items. {ENABLE | DISABLE}
| A vertical bar represents a choice of two {ENABLE | DISABLE}
options. [COMPRESS | NOCOMPRESS]
Ellipsis points mean repetition in syntax CREATE TABLE ... AS subquery;
descriptions.
In addition, ellipsis points can mean an SELECT coll, colz, » coln FROM
omission in code examples or text. employees;
Other symbols You must use symbols other than brackets acctbal NUMBER(11,2);
([1), braces ({ }), vertical bars (1), and acct CONSTANT NUMBER (4) := 3;

XVi

ellipsis points (...) exactly as shown.

Convention Meaning Example
Italics Italicized text indicates placeholders or CONNECT SYSTEM/system password
variables for which you must supply DB_NAME = database_name
particular values.
UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish gg,EcT * FROM USER_TABLES;
them fr(?m terms you define. Unless terms ppop TABLE hr.employees;
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.
lowercase Lowercase typeface indicates user-defined ~SELECT last_name, employee_id FROM
programmatic elements, such as names of employees;
tables, columns, or files. sqlplus hr/hr
Note: Some programmatic elements usea ~ CREATE USER mjones IDENTIFIED BY ty3MU9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example
Click Start, and How to start a program. To start the Database Configuration Assistant,
then choose the click Start, and choose Programs. In the
menu item Programs menu, choose Oracle - HOME_NAME

File and directory
names

C:\>

Special characters

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (*). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

and then click Configuration and Migration
Tools. Choose Database Configuration
Assistant.

c:\winnt"\"system32 is the same as
CAWINNT\SYSTEM32

C:\oracle\oradata>

C:\>exp HR/HR TABLES=employees
QUERY=\"WHERE job_id='SA_REP' and
salary<8000\"

xvii

Convention

Meaning

Example

HOME_NAME

ORACLE_HOME
and
ORACLE_BASE

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is
C:\oracle\product\10.1.0.If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\product\10.1.0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

C:\> net start OracleHOME NAMETNSListener

Change to the
ORACLE_BASE\ ORACLE_HOME\rdbms\admin
directory.

xviii

1

Getting Started with OracleAS Integration
InterConnect

This chapter provides an overview of Oracle Application Server Integration
InterConnect (OracleAS Integration InterConnect), its features, and components. It
contains the following topics:

= Whatis OracleAS Integration InterConnect?
» Standard Messaging
» OracleAS Integration InterConnect Integration Process

s What’s New in This Release?

1.1 What is OracleAS Integration InterConnect?

OracleAS Integration InterConnect is an integral component of Oracle Application
Server and provides a comprehensive application integration framework to enable
seamless integration of enterprise software. It is built on top of the Oracle Application
Server integration platform and leverages its underlying services. It is designed to
integrate heterogeneous systems, such as Oracle, non-Oracle, and legacy applications.
Together with OracleAS Integration B2B, it provides a complete end-to-end for
integrating your enterprise and beyond. OracleAS Integration B2B provides extensive
protocol support to enable the deployment of industry-recognized
Business-to-Business (B2B) standards: RosettaNet, Electronic Data Interchange (EDI),
Applicability Statement 2 (AS2), and custom configurations.

I Party to ok

Lo &

OracieAS integration Ros ettaiet

‘ OracleAS OracleAS ? :
E-Business Sue $-1' nterConnect | B2B _% ‘ =
= | EDJ
L Oracle Application Server 10g
"B ¢

Custom

Applications

Applications #——» EA| 4——— p BZE #4—» Trading Parthers

Getting Started with OracleAS Integration InterConnect 1-1

What is OracleAS Integration InterConnect?

OracleAS Integration InterConnect provides the following value proposition:

Speed of Integration Development: Elevate the integration problem from a
technical coding exercise to a functional modeling exercise, thereby reducing or
eliminating the programming effort normally associated with integration. This
ensures that the development time is reduced significantly.

Speed of Runtime Integration Execution: Minimize latency and maximize
throughput for real-time cross-application integration. This ensures that the
integration solution is performant.

Speed of Integration Evolution: Expose an integration methodology that promotes
reuse of existing integration logic and minimizes change impact. As the
integration scenario evolves over time (existing applications are upgraded, new
applications are added, old applications are removed), the change impact is
limited to just the application that is undergoing the change. The other
applications are shielded from these changes. This reduces the complexity and
management issues that arise over the integration lifecycle.

1.1.1 OracleAS Integration InterConnect Components

OracleAS Integration InterConnect has the following core components:

1-2 User’s Guide

OracleAS Integration InterConnect Hub
OracleAS Integration InterConnect Adapters

OracleAS Integration InterConnect Development Kit

1.1.1.1 OracleAS Integration InterConnect Hub

The hub consists of a middle tier repository server program communicating with a
database. The repository has the following functionality:

At design time, all integration logic defined in iStudio is stored in tables in the
repository as metadata.

At runtime, the repository provides access to this metadata for adapters to
integrate applications.

The repository server is deployed as a standalone Java application running outside the
database. The repository schema is a set of tables in the Oracle Application Server hub
database.

Note: From the current release of OracleAS Integration
InterConnect, the adapters and iStudio connect to the repository
server using RMI (Remote Method Invocation) instead of CORBA
(Common Object Request Broker Architecture).

1.1.1.2 OracleAS Integration InterConnect Adapters
Adapters perform two major tasks:

Provide connectivity between an application and the hub.

Transform and route messages between the application and the hub.

Adapters are deployed as standalone Java applications running outside the database.
Adapters can be deployed in the following configurations:

Co-located with the OracleAS Integration InterConnect Hub

What is OracleAS Integration InterConnect?

s Co-located with the application they are connecting to

= Located on a separate computer altogether

See Also: "Using Adapters for Integration” on page 1-8

1.1.1.3 OracleAS Integration InterConnect Development Kit

iStudio is a design time integration specification tool targeted at business analysts.
This tool helps business analysts specify the integration logic at a functional level,
instead of a technical coding level. iStudio exposes the integration methodology using
simple wizards and reduces, or eliminates, the need for writing code to specify the
integration logic. This reduces the total time required to complete an integration.

iStudio is a multiuser tool with fine-grained locking for all OracleAS Integration
InterConnect first class objects. As a result, multiple users can work simultaneously on
the same integration scenario without compromising the consistency of the metadata.

iStudio allows business analysts to complete the following tasks:
= Define data to be exchanged across applications.
= Semantically map data across applications.

= Define the business process collaboration across applications using Oracle
Workflow and associate the semantic maps with business processes, if required.

= Configure and deploy the integration.

iStudio is deployed as a standalone Java application running outside the database. It
can be deployed on any computer with access to the hub computer running Windows.

See Also: Chapter 2, "Using iStudio”

1.1.1.3.1 OracleAS Integration InterConnect SDKs OracleAS Integration InterConnect
Software Development Kit (SDK) allows you to customize OracleAS Integration
InterConnect to meet your integration needs.

iStudio SDK The iStudio SDK is a collection of Java jar and Javadoc files usually
deployed on the same computer as iStudio. The iStudio SDK is only available on
Windows. Using the iStudio SDK and Java, users can build the following:

= New transformation functions
= New browsers to import application-native data structures and APIs into iStudio

Documentation and samples are provided with the iStudio SDK.

Adapter SDK The Adapter SDK is a collection of Java jar and Javadoc files that
can be deployed on any computer. The Adapter SDK is available on all tier one
platforms. Using the Adapter SDK, users can write new adapters in Java for
applications or protocols not currently supported by OracleAS Integration
InterConnect. Specifically, only the bridge subcomponent must be written. The agent
is a generic engine already written and is part of each adapter.

Documentation and samples are provided with the Adapter SDK.

Oracle Workflow Oracle Workflow provides a comprehensive business process
management system that enables traditional workflow applications, and process
collaboration in a single solution. Using Oracle Workflow Business Event System,
OracleAS Integration InterConnect can model an integration solution on business
processes. With OracleAS Integration InterConnect and Oracle Workflow, business

Getting Started with OracleAS Integration InterConnect 1-3

Standard Messaging

collaborations across two or more applications can be defined to implement the
organization's business processes.

1.2 Standard Messaging

OracleAS Integration InterConnect provides the following basic services expected of a
messaging middleware platform:

= Guaranteed delivery of messages: All messages have guaranteed delivery
end-to-end. Messages are delivered exactly once and in the order sent.

= Scalability: Multiple adapters are instantiated to serve one application. The hub
runs in an Oracle Real Application Clusters environment.

= Load Balancing: Messages can be partitioned based on load between multiple
adapters servicing one application. One or more adapters can serve all messages
for one application. In addition, one or more adapters can be dedicated per
integration point in which the application participates.

= Runtime Management: The Oracle InterConnect Manager helps manage the
integration scenario and components at runtime. The IC Manager allows users to
start and stop components, monitor message flow, detect problems, and manage
erTors.

= Deployment Support: The messaging hub consists of Advanced Queues that are
configured for runtime. You can configure the number of queues to create, name
these queues, and match adapters with messages in a specific named queue.

The following supplementary features do not require any additional coding;:

= Content-based Routing: Route messages by building business rules based on
message content. For example, a procurement system routes fulfillment requests
to different fulfillment centers based on an originating location.

» Cross-referencing: Correlate keys that uniquely identify the entities in one
application with corresponding entities created in other applications. For example,
a purchase order created in a procurement system has a native ID X. The purchase
order is then routed to a fulfillment system, where it is created with native ID Y.
As a result, X and ¥ must be cross referenced for OracleAS Integration
InterConnect to correlate communication about this same logical entity in two
different systems without each system understanding the native ID of the other
system.

= Domain Value Mapping: Map code tables across systems. For example, a purchase
order in a procurement system has a PO Status field with domain values, Booked
and Shipped. The corresponding field in a fulfillment system has the domain
values, 1 and 2. OracleAS Integration InterConnect allows the user to create the
mappings booked=1, shipped=2 so that it can correlate these values at runtime
without each system understanding the domain value set of the other system.

1.2.1 Supported Messaging Paradigms

OracleAS Integration InterConnect supports the following messaging paradigms.
These paradigms are defined in iStudio at design time. The definitions are used at
runtime to route the messages suitably:

» Publish/Subscribe Messaging: An application publishes a message if it sends data
out to the OracleAS Integration InterConnect hub without knowing the
destination applications. In addition, data is not expected in return. An application
subscribes to a message if it receives the data from the OracleAS Integration

1-4 User’s Guide

OracleAS Integration InterConnect Integration Process

InterConnect hub regardless of the application that sent the data. Also, it does not
send any data out in return. Events in iStudio are used to model this paradigm.

= Request/Reply Messaging: An application publishes a message and expects a
message in return as a reply. The application subscribing to the request sends a
reply back to the sender after processing the request. Procedures in iStudio are
used to model this paradigm. Request/Reply has two types of messaging:

= Synchronous: The application making the request is blocked until it receives a
reply.
= Asynchronous: The application makes the request and proceeds with normal

processing. It does not wait for a response. A reply is delivered
asynchronously and is consumed by the application.

= Point-to-Point Messaging: Both Publish /Subscribe and Request/Reply can acquire
a point-to-point characteristic if the sending application explicitly specifies which
application should receive the message. This can be modeled using content-based
routing in iStudio.

1.3 OracleAS Integration InterConnect Integration Process

Application integration using OracleAS Integration InterConnect involves the
following two phases:

s Design Time
= Runtime

Figure 1-1 provides an overview of design time and runtime phases in integration.

Figure 1-1 A Graphical Overview of Design Time and Runtime Phases in Integration

istudio

Repository

AQ .
PPl «—> e '.I-Iﬁ' -~ e :I-Iﬁ' <>
E B

—>
racleAS
InterConnect
Hub

1.3.1 Design Time

During the design time, a business analyst uses iStudio to define the integration
objects, applications that participate in the integration, and the specifications of the
data exchanged between applications. All the specifications are stored as metadata in
the OracleAS Integration InterConnect Repository.

Getting Started with OracleAS Integration InterConnect 1-5

OracleAS Integration

InterConnect Integration Process

1.3.2 Runtime

One or more OracleAS Integration InterConnect adapters are configured to service
each application participating in the integration. At runtime, if an application is
sending messages out, the adapters attached to it will retrieve the metadata from the
repository to receive messages from the application, determine their formats, perform
transformations,and route to corresponding queues in the OracleAS Integration
InterConnect hub. For applications receiving messages, the adapters attached to it will
retrieve the metadata from the repository to receive messages from the OracleAS
Integration InterConnect hub queues, determine their formats, perform
transformations and then deliver the messages to the application.

1.3.3 Separation of Integration Logic and Platform Functionality

Integration using OracleAS Integration InterConnect is a two-step process. During
design time, integration logic is modeled in iStudio and captured in the repository as
metadata. Metadata is created in the repository using iStudio during design time and
is represented by application views, common views, and transformations. At runtime,
the underlying services treat this metadata as runtime instructions to enable the
conversation among participating applications. Integration has two components:

= Integration logic: Consists of the business rules and transformation logic necessary
to integrate heterogeneous systems. Using iStudio, this integration logic can be
modeled and the results stored in the repository as metadata.

s Platform functionality: Consists of the integration infrastructure provided with
OracleAS Integration InterConnect and the Oracle database. In addition, OracleAS
Integration InterConnect provides application and protocol adapters. The platform
services provide the requisite infrastructure necessary for integration.

1.3.4 Unique Integration Methodology

1-6 User’s Guide

iStudio exposes an integration methodology that eliminates the complexities of
point-to-point custom integration solutions. The integration methodology is based on
a hub-and-spoke model.

1.3.4.1 How the Hub-and-Spoke Methodology Works

An integration point is the context, which ties in a particular message exchange,
between two or more participating applications in the integration scenario. OracleAS
Integration InterConnect supports two types of integration points:

= Events: This type of integration point is used to model the publish/subscribe
messaging paradigm.

Create Customer: For example, an integration scenario may require that
customer information across two applications be synchronized in real time.
Whenever a new customer is created in the application, App1, the customer
should also be created in the application, App2. Create_Customer is an event
that triggers the communication between the two applications. App1 produces the
information, and App2 consumes it.

» Procedures: This type of integration point is used to model the request/reply
messaging paradigm.

Get Item Info:For example, a user of Appl may request information about an
item stored in App1l. The information about that item might be segmented across
the two applications. To give a meaningful response to the user of App1, it is
necessary to query App2 for information about the item. Get_Item_Infoisan

OracleAS Integration InterConnect Integration Process

integration point between the two applications because it triggers communication
between the two applications. App1 produces a query and App2 consumes it.
App2 produces the response and Appl consumes it.

The common view consists of a list of such integration points, each with its own
associated data. Applications participate in the integration by binding to one or more
of these common view integration points.

For each binding, applications have their own application view of data that needs to
be exchanged. Each binding involves a mapping, or transformation, between the
application view and the common view in the context of the integration point. In this
model, the application views are the spokes and the common view is the hub.

Create_Customer is an integration point. If the information to exchange is only the
new customer's name, the common view has all the information potentially captured
in a name defined in an application-independent method. This information must be a
superset of all the information that needs to be exchanged across App1 and App?2.

Prefix, First Name, Last Name, Middle Initial, Maiden Name,
Suffix is an example of a common view customer name definition.

Now, App1l's internal definition of name (App1l's application view) could be First
Name, Last Name, Middle Initial, Prefix.

The application view for App2 could be Name (one field that describes Last
Name, First Name).

When App1 sends this information out or publishes an event, transformations are
defined from its application view to the common view. When App2 receives this
information or subscribes to an event, transformations are defined from the common
view to its application view.

Figure 1-2 illustrates this example within the hub-and-spoke model where the
common view is the hub, and the application views are the spokes.

Figure 1-2 OracleAS Integration InterConnect Hub-and-Spoke Model

Trarmslomalion Tramstomalion

. Comman .
Appyiew 1 i i View S e s AppView 2
Internm]l defFiniticn Frefix HimiToe
Firmt Hame Tmmt Hame
Tmmt Hame Firmt Hame
Middle Initiml Middle Initiml
Prefix Maiden Hame

duEfix

The hub-and-spoke model has the following advantages:

= Loosely Coupled Integration: If applications are integrated directly with each
other, then any change in one application will result in changes required for the
other applications. In OracleAS Integration InterConnect, applications integrate to
the common view and not directly with each other. This reduces the number of
integration interfaces.

» Easy Customization: If an application is upgraded or changed, then only the
corresponding application view needs to be remapped to the hub. The other
spokes and their relationships with the hub remain unchanged. This localizes the
change impact to the affected application.

Getting Started with OracleAS Integration InterConnect 1-7

OracleAS Integration InterConnect Integration Process

Easy Extensibility: If an application is added or removed from the integration
scenario, then other integrated applications are not affected. For example, if a new
application is added to the integration scenario, it must define its spoke
component (the application view) and map that component to the hub (common
view) on a per integration point basis. This does not affect other applications in the
integration.

Enhanced Reusability: If the common view of an application is already built, then
this common view can be reused to integrate the application with any other
applications. For example, to integrate the Marketing CRM module to SAP, the
integration would be from iMarketing to common view to SAP. If there is a
requirement to integrate iMarketing to Peoplesoft, then the iMarketing to common
view integration can be reused. Only the common view to the Peoplesoft
integration needs to be built.

1.3.5 Integration Lifecycle Management

Managing, customizing, and evolving an integration over time is as important as
creating the integration in the first place. The hub-and-spoke integration model has
advantages to help achieve this goal. In addition, the OracleAS Integration
InterConnect repository, which contains all the integration logic, provides extensive
services for managing changes over time. The repository provides fine-grained
versioning of all OracleAS Integration InterConnect first class objects such as events,
messages, and data types. Some important aspects of versioning to aid the lifecycle
support include:

Basic Versioning: New versions of first class objects, such as messages, can be
created to address changing integration needs. Different versions of the same
object can co-exist in the repository. This approach has two advantages:

s Eliminates the need for an expanded namespace to address modifications.
= Allows related entities to be grouped together for easy management.

Multiple Active Versions: Multiple versions of the same message can be active in
the same integration scenario simultaneously. This helps transition and
integration incrementally without requiring changes to existing messages. For
example, if a purchase order definition for an application or the application view
of the purchase order needs to change, a new version of the message can be
created and activated for that application. Once this metadata is created, the
application can smoothly transition from sending and receiving messages based
on the old definitions to the new one.

Migration Support: Different versions of metadata can be migrated across
repositories on a first class object basis. This feature allows fine-grained control of
content in different repositories, such as a development repository and a
production repository.

Consistency Control: OracleAS Integration InterConnect detects and flags
metadata conflicts. This helps prevent accidental overwriting of metadata and
maintains consistency of metadata in the repository.

1.3.6 Using Adapters for Integration

Adapters are runtime components, which process integration logic captured in the
repository as runtime instructions, to enable the integration. Prepackaged adapters
help applications at runtime to participate in the integration without any
programming effort.

1-8 User’s Guide

OracleAS Integration InterConnect Integration Process

Adapters perform the following tasks:

Application Connectivity: Adapters connect applications with OracleAS
Integration InterConnect hub to transfer data between them. The logical
subcomponent within an adapter that handles this responsibility is called a bridge.
This is the protocol /application-specific piece of the adapter that communicates
with the application.

For example, the database adapter can connect to an Oracle database using JDBC
and runtime SQL APIs. The bridge subcomponent only knows how to call the
correct APIs.

Transformations: Transform data from the application view to common view and
conversely as dictated by the repository metadata. In general, adapters are
responsible for carrying out all the runtime instructions captured through iStudio
as metadata in the repository. Transformations are an important subset of these
instructions. The logical subcomponent within an adapter that handles the
runtime instructions is called an agent. This is the generic runtime engine in the
adapter that is independent of the application to which the adapter connects. It
focuses on the integration scenario based on the integration metadata in the
repository. There is no integration logic coded into the adapter itself. All
integration logic is stored in the repository. The repository contains the metadata
that drives this subcomponent.

In the preceding database adapter example, the bridge subcomponent knows
which SQL APIs to call, but not how to call them. All adapters have the same
agent code but the metadata is different. This difference in metadata controls and
differentiates the behavior of each adapter.

The OracleAS Integration InterConnect Adapter Architecture is displayed in
Figure 1-3.

Figure 1-3 OracleAS Integration InterConnect Adapter Architecture

/ Adapter \

App
> View

Metadata Driven

T ransformation Transport and/or

Application

See Also: OracleAS Integration InterConnect Installation Guide for a
complete list of OracleAS Integration InterConnect Adapters

Getting Started with OracleAS Integration InterConnect 1-9

What's New in This Release?

1.4 What’s New in This Release?

Oracle Application Server Integration InterConnect 10g Release 2 (10.1.2) introduces a
number of new features to provide simplified configuration and management.

Recursive DTD support

OracleAS Integration InterConnect 10g Release 2 (10.1.2) is designed to handle
recursion in data types, with support in iStudio and all adapters.

RMI Implementation

The current release of OracleAS Integration InterConnect implements Remote Method
Invokation (RMI) as the communication protocol for distributed computing, replacing
the existing CORBA implementation.

HTTP Adapter Synchronous Request/Reply support

In this release of OracleAS Integration InterConnect, the HTTP adapter supports the
synchronous request/reply scenario, in addition to the publish/subscribe model. The
functionality will enable the HTTP adapter to send the status codes and also enable
synchronous replies for its requests.

IC Manager

InterConnect Manager is a new utility that takes care of both the runtime management
and error handling needs of OracleAS Integration InterConnect. Oracle Enterprise
Manager is no longer required for managing OracleAS Integration InterConnect.

Complete HA support

OracleAS Integration InterConnect uses Oracle Process Manager and Notification
(OPMN), Oracle Database Server, and Oracle Real Application Clusters to enable high
availability for its components. OracleAS Integration InterConnect ensures a complete
high availability support at three different levels: process-level, node-level, and
site-level.

Enhancements in iStudio

In this release of OracleAS Integration InterConnect, a number of enhancements have
been made to iStudio, such as the deployment of generated procedures through
iStudio, and enhacement in iStudio usability.

Oracle Applications Adapter

A new adapter called the Oracle Applications adapter, designed specifically to support
Oracle Applications, has been included in this release.

1-10 User’s Guide

2

Using iStudio

This chapter describes iStudio and its concepts. It contains the following topics:
= Overview of iStudio

= Starting iStudio

» Parts of the iStudio Window

= Using Workspaces in iStudio

= Using Projects in iStudio

2.1 Overview of iStudio

iStudio is a design time integration specification tool used to help business analysts
specify the integration logic at a functional level, instead of a technical coding level.
iStudio exposes the integration methodology using simple wizards and reduces or
eliminates the need for writing code to specify the integration logic. This reduces
the total time required to complete an integration.

iStudio is a multiuser tool with fine-grained locking for all OracleAS Integration
InterConnect first-class objects. This allows multiple users to work simultaneously on
the same integration scenario without compromising the consistency of the metadata.

iStudio allows business analysts to perform the following tasks:
= Define the data that needs to be exchanged across applications.
= Semantically map the data across applications.

» Define the business process collaboration across applications and associate the
semantic maps with business processes if required.

= Configure and deploy the integration.

iStudio is deployed as a standalone Java application running outside the database.
iStudio runs only on Windows and can be deployed on any computer that has access
to the hub computer.

See Also: Oracle Application Server Integration InterConnect
Installation Guide

2.1.1 iStudio Concepts

The following concepts are described:
= Applications

s Common Views and Business Objects

Using iStudio 2-1

Overview of iStudio

s Transformations or Mappings

s Metadata Versioning

s Tracking Fields

= Content-Based Routing

s Cross Reference Tables

= Domain Value Mapping

= Routing and the Message Capability Matrix

2.1.1.1 Applications

Each component integrated with OracleAS Integration InterConnect is referred to as
an application. Each application expresses interest in specific messages, what its
internal data type is, and how the message should be mapped to or from that internal
type to the external world.

See Also: Chapter 3, "Creating Applications, Common Views,
and Business Objects"

2.1.1.2 Common Views and Business Objects

OracleAS Integration InterConnect follows a hub-and-spoke integration methodology.
The common view is the hub view of the integration in which each spoke is an
application participating in the integration. The common view consists of the
following elements:

= Business Objects: A collection of logically related integration points. For example,
Create Customer, Update Customer, Delete Customer, and Get Customer Info are
integration points that logically belong under a Customer business object.

= Events: An integration point used to model the Publish/Subscribe paradigm. An
event has associated data which is the common view of all the data to be
exchanged through this event.

» Procedures: An integration point used to model the Request/Reply paradigm.
This is a modeling paradigm only, no actual procedures are called. Like events,
procedures have associated data that represents the common view of data
exchanged through the procedure.

s Common Data Types: A data type used to define data for reuse. It’s useful to
define complex hierarchical data.

See Also: Chapter 3, "Creating Applications, Common Views,
and Business Objects"

2.1.1.21 Events An event is an integration point used to model the Publish/Subscribe
paradigm. An event is only associated with one data set. An event has associated data
that is the common view of all data to be exchanged through the event. The data
associated with an event in the common view must be a superset of the data of
participating applications. The publish/subscribe paradigm is used for asynchronous
one-way communication. The sending application is said to publish the event. The
receiving application subscribes to the event.

See Also: Chapter 4, "Using Events in iStudio”

2-2 User's Guide

Overview of iStudio

2.1.1.2.2 Procedures A procedure is an integration point used to model the
Request/Reply paradigm. This is a modeling paradigm only, no actual procedures are
called. The request/reply paradigm is used for two-way context sensitive
communication. This communication can be either synchronous (the requesting
application is blocking until it receives a reply) or asynchronous (the requesting
application gets the reply ansynchronously, it does not block-wait for the response
after sending the request). An application can either invoke a procedure to model
sending a request and receiving a reply, or implement a procedure to model receiving
a request and sending a reply. Similar to events, a procedure has associated data. A
procedure has two data sets: one for the request or IN data and one for the reply or
OUT data.

See Also: Chapter 5, "Using Procedures in iStudio”

2.1.1.3 Transformations or Mappings

Transformations are used to map application views of data to their corresponding
common views and vice versa. This is used in the context of publishing/subscribing to
an event or invoking /implementing a procedure. There are several built-in
transformation routines provided with OracleAS Integration InterConnect that are
used to build complex mappings. In addition, using the iStudio SDK allows new
transformation routines to be created using Java. These transformations can be
imported into iStudio and then used similar to a built-in routine.

For example, assume there are two applications, Appl and App2.

Appl is publishing the event and its application view contains the following fields:
First Name

Last Name

Middle Initial

App?2 is subscribing to the event and its application view contains the following fields:
Name: One field in the form of LastName, FirstName

When publishing or subscribing to the event, the application view for App1 and App2
must be mapped to the common view using transformations. Assume that the
common view event contains the following fields:

Prefix

First Name
Last Name
Middle Initial
Suffix

Thus, there are two transformations performed. In the first, the data from App1 is
transformed to the common view, and in the second, the data from the common view
is transformed to the application view of App2.

See Also:
s Chapter 5, "Using Procedures in iStudio"

s Appendix C, "Transformations"

Using iStudio 2-3

Overview of iStudio

2-4 User's Guide

2.1.1.4 Metadata Versioning

iStudio supports versioning for application and common data types, events,
procedures, and messages.

An owner is the creator of the object and only the owner can modify the object.
However, other users can create new versions or copy the original object under a new
name. The owner is specified when the repository is installed.

The following functionality is available for versioning:

= Automatic Versioning: Whenever a new version is created, it automatically gets a
version number. For example, assume that an event called NewCustomerEvent is
created. When this object is created for the first time, the assigned owner is OAT
and the version is V1. The event name is NewCustomerEvent /OAL/V1.

= Modify Object: The owner is the only user who can modify the contents of an
event and the data associated with it. However, the owner cannot change the
version number or the name of the event.

» Create New Version: If the owner wants to retain the original event but wants to
create a new version of the information with modified data, the owner can create a
new version. For example, assume OAT wants to retain the original version of the
NewCustomerEvent object but wants a new version of the object with modified
data. Using the Create New Version functionality will provide two objects,
NewCustomerEvent /OAI/V1 and NewCustomerEvent /OAI/V2.

= Load Version: Not all versions of objects are loaded into iStudio. To work with a
specific version of an object, use the Load Version capability. When a new version
is created, it becomes the current version.

= Copy Object: To create a new object that has many elements identical to an already
existing object, first load the existing object and copy it in iStudio. Copying the
object allows only modifications to the data, and modifications to the name of the
event. Once the name has been modified, the existing object and the object with
the new name will coexist in the repository.

Note: Names of events must be unique.

See Also: Chapter 4, "Using Events in iStudio”

2.1.1.5 Tracking Fields

Tracking fields are one or more application view fields in the context of a particular
message. If specified in iStudio, tracking fields can be used to track messages at
runtime using the Oracle InterConnect Manager. Tracking is performed only from the
perspective of the sending application.

For example, if App1 publishes a new purchase order and specifies the PO_order
number field as the tracking field, then the user can log in to the runtime console and
specify the message to track, or New Purchase Order in this case. The user is then
prompted to enter the purchase order number to display the corresponding tracking
information.

2.1.1.6 Content-Based Routing

Content-based routing allows you to define rules to route messages based on message
content. For example, a sales lead generation system can route leads to different sales
force automation systems based on the location of the potential customer.

Parts of the iStudio Window

See Also: Chapter 6, "Enabling Infrastructure”

2.1.1.7 Cross Reference Tables

Keys for corresponding entities created in different applications can be correlated
through cross referencing in iStudio.

See Also: Chapter 6, "Enabling Infrastructure”

2.1.1.8 Domain Value Mapping

Code tables can be mapped across systems using domain value mapping in iStudio.

See Also: Chapter 6, "Enabling Infrastructure”

2.1.1.9 Routing and the Message Capability Matrix

In the OracleAS Integration InterConnect hub, Advanced Queues in the database are
used to store, route, and forward messages from the sending application adapters to
the receiving application adapters. The sending adapters evaluate the recipients based
on the metadata. The following method is used to route messages.

= Every adapter has one or more queues where it receives messages.

» The Message Capability Matrix allows queues to be specified for receiving
messages On a per message per receiving application basis.

Note: By default, OracleAS Integration InterConnect comes
preconfigured with one queue named the oai_hub_qgueue. This
queue is used for all messages and applications. This queue does
not need to be changed unless the single queue implementation
causes a performance bottleneck.

2.2 Starting iStudio

The database and repository must be running before logging in to iStudio. To log on to
iStudio, perform the following steps:

1. From the Windows Start menu, select OracleAS Integration InterConnect.
2. Select iStudio.

3. When iStudio starts, the last opened project is automatically loaded into the
default workspace.

See Also: "Creating a New Project” on page 2-11

2.3 Parts of the iStudio Window

The main iStudio window has the following parts:
= Menu Bar

s Toolbar

s Design Navigation List

= Deploy Navigation List

s Context Menus

Using iStudio 2-5

Parts of the iStudio Window

s Detail View

When iStudio is started, the main window is displayed as shown in Figure 2-1.

Figure 2—1 OracleAS Integration InterConnect iStudio

mOradle iStudio - myWorkspace.iws - & x|
Fie Edt Event Procedure Help
0| e|s|n|a)n|n|m|a) |
Desion | Depioy |
SProjct Test Business Object Customer
4 Comman Views
(L] Business Ohjscts Evert Mame: Create_Customer Orwener i/ersion: OAIN
2 Customer
Events Atribut
===
Frcedires gy e | [T s a Defaut
£ Cormman el Types ame ype it Version rray ot
£ Apglications Copy Ctri+C Custid Irtener r HULL
] Worklaw Delete Cir+D Custname String ~ HULL
Pracess Bundles
T Encibing hastroct Load Version Custadid String ~ HULL
 Ermbing frastructure

2.3.1 Menu Bar

2-6 User's Guide

The menu bar provides access to all commands. Click each menu to display its
commands. Click a command to run it. There are five menus:

= File Menu

s Edit Menu

s Procedure Menu
s Event Menu

= Help Menu

2.3.1.1 File Menu

Use the File menu to create new projects and workspaces, open existing projects and
workspaces, or reload existing projects. You can also create objects such as events,
procedures, and common data types from the File menu. Commands include:

= New Project...: Creates a new project.

= Open Project...: Opens an existing project. In the Open dialog, select the directory
and project, then click Open.

= New Workspace...: Creates a new workspace.

= Open Workspace...: Opens an existing workspace. In the Open dialog, select the
directory and workspace, then click Open.

Parts of the iStudio Window

= Reload Project: Reloads a project. When Reload Project is selected, a list of current
projects is displayed. Select the project to Reload from the list.

= Migrate: Migrates objects from one repository to another. This functionality can be
used to migrate metadata from a development to a production integration system.

s New: Creates a new object in iStudio. When New is selected, a list of available
objects is displayed. Select the object to create. If some objects are grayed-out, then
they are not allowed to be created.

= Sync Adapters: Pushes metadata to adapters. Adapters can be configured to cache
metadata locally so that they avoid any runtime performance penalties around
repository access. If they are so configured, any changes made in iStudio will need
to be explicitly pushed to the corresponding adapters to refresh their local cached
repository metadata. This functionality provides that explicit mechanism to
refresh adapter-cached metadata.

Note: Before you attempt to sync adapters, you must ensure that
there are no messages flowing between the relevant adapters.

m Exit: Exits iStudio.

2.3.1.2 Edit Menu

Use the Edit menu to edit, copy, or delete selected objects. If an object is selected and
the Edit menu is not available, that selected object cannot be edited. Commands
include:

» Edit: Edits a selected object. The type of editing depends on the object selected.

= Copy: Copies a selected object.

» Delete: Deletes a selected object.

= Rename: Renames a selected application.

= Version: Creates a new version of or load a selected object.

s Domain Value Map: Adds or removes applications from a domain value map.

» Cross Reference Table: Adds or removes applications from a cross reference table.

= Workflow: Deploys events to Oracle Workflow or edits Oracle Workflow
configuration information.

2.3.1.3 Procedure Menu
Use the Procedure menu to invoke or implement procedures. Commands include:

= Invoke: Invokes a selected procedure by launching the Invoke Wizard.

= Implement: Implements a selected procedure by launching the Implement Wizard.

2.3.1.4 Event Menu

Use the Event menu to publish or subscribe events. Commands include:

» Publish: Publishes a selected event by launching the Publish Wizard. An event
must be created.

= Subscribe: Subscribes to a selected event by launching the Subscribe Wizard. An
event must be created.

Using iStudio 2-7

Parts of the iStudio Window

2.3.2 Toolbar

2-8 User’s Guide

2.3.1.5 Help Menu

The Help menu provides links to online help. Commands include:

= Contents: Opens the User’s Guide.

= About...: Displays version information for iStudio.

The toolbar consists of icons that represent frequently used commands. To display a
caption describing the icon, place the cursor on the icon. The following functions are

provided:

Function

Icon

Description

New Project

Creates a new project in iStudio.

Open Project Opens an existing project in iStudio.
Create Creates a new integration object.
Integration
Object L;
Create Like Creates a new integration object similar to an
existing object. This icon is enabled only when an
th object is selected in the Navigator.
[y
Edit Edits a selected integration object.
Integration
Object %
Delete Deletes a selected integration object. This icon is
Integration enabled only when an integration object is
Object ﬁ selected in the Navigator.
Publish Event Publishes a selected event. This icon is enabled
only when an integration object is selected in the
Navigator.
ek
Subscribe Subscribes to a selected event. This icon is
Event enabled only when an integration object is
selected in the Navigator.
]
Invoke Invokes a selected procedure. This icon is
Procedure enabled only when an integration object is
;.9 1 selected in the Navigator.
-k

Parts of the iStudio Window

Function Icon Description
Implement Implements a selected procedure. This icon is
Procedure enabled only when an integration object is
L selected in the Navigator.
S
Help Displays the help file.
P
2

2.3.3 Design Navigation List

The Design Navigation list displays the hierarchical layout of all objects used in the
design phase of an opened project. Each object type in the Deploy Navigation list is
identified by an icon and name. A container is represented by a folder icon and is a
logical grouping of a specific type of object, such as a Business Object and an
Application Data Type.

The objects are grouped as follows:
= Common Views

= Applications

s Workflow

= Enabling Infrastructure

2.3.4 Deploy Navigation List

The Deploy Navigation list displays the hierarchical structure of all objects used in the
deploy phase of an opened project. Each object type in the Deploy Navigation list is
identified by an icon and name. A container is represented by a folder icon and is a
logical grouping of a specific type of object, such as Process Bundles.

The objects are grouped as follows:
= Applications
= Workflow

2.3.5 Context Menus

You can right-click an object to display a context menu, that is, a shortcut menu related
to the object.

Navigation List Selected ltem Context Menu Options

Design Object, such as Common View, New, Edit, Copy, Delete
Application, Business Objects,
and Common Data Types

Container object, such as an New, Edit, Copy Delete, Load Version,
existing event or procedure New Version
Workflow object New, Edit, Copy, Delete, Launch WF
Builder, Launch WF Home Page
Deploy Object such an Application Il?TIie;véS]ilit, Copy, Delete, Deploy, Export

Using iStudio 2-9

Using Workspaces in iStudio

Navigation List Selected Item Context Menu Options
Workflow object New, Edit, Copy, Delete, Deploy, Edit
Configuration, Launch WF Home Page,
Export
Container object, such as an New, Edit, Copy, Delete, Create Partition

existing routing object

2.3.6 Detail View

To the right of the Navigation list is the Detail View, composed of one or more
property sheets displaying information about the object selected. Often, these property
sheets may be edited.

2.4 Using Workspaces in iStudio

A workspace stores user settings and preferences, such as application login credentials
and information about the last opened project. Inside a workspace, users can work on
multiple projects.

2.41 Creating a New Workspace

To create a new workspace:

1. From the File menu, select New Workspace. The New Workspace Dialog is
displayed.

2. Enter a name for the workspace in the Workspace Name field.

3. Click OK.

2.4.2 Opening an Existing Workspace

To open an existing workspace:
1. From the File menu, select Open Workspace. The Open dialog is displayed.

2. Enter the name and path to an existing workspace or select the workspace to open.

2-10 User’s Guide

Using Projects in iStudio

Lookin | istudio =1 ek =

[:I images
myWarkspace ivs

File: natne: I Open |
Files of type: IIStudio Workspace Files ﬂ Cancel |

3. Click Open. The selected workspace is displayed in iStudio.

2.5 Using Projects in iStudio

A project in iStudio captures all the integration logic for one integration scenario. An
integration scenario is defined as a set of two or more applications integrated with
each other using OracleAS Integration InterConnect. One project corresponds to one
repository. For example, a user may have a development integration environment and
a production integration environment. These are two separate projects and must be
self-contained in their own separate repositories.

As iStudio is a multiuser tool, multiple users can work on the same project,
simultaneously, without jeopardizing the integrity of the metadata.

Note: To create a project in iStudio, the repository must be running.

2.5.1 Creating a New Project

The repository must be running in order to create a project in iStudio. To create a new
project in iStudio:

1. From the File menu, select New Project. The New Project dialog is displayed.
2. Enter the project name and click OK. The Hub Information dialog is displayed.

Using iStudio 2-11

Using Projects in iStudio

Hub Information i |

Pleaze enter Hub infortmstion

Hubk database username: Iichub
Hub database pazsword: I*****
Hub dstabase URL: Iscuﬂ-pc:1 521:0RCL

Ok I Cancel |

3. Enter information in the following fields:

s Hub database username: The name of the hub database user. The default
username is ichub.

» Hub database password: The password associated with the hub database user.
The default password is set when OracleAS Integration InterConnect is
installed.

» Hub database url: Information of the following format:

machine name:port number:database sid

4. C(lick OK.

2.5.2 Opening an Existing Project

To open an existing project:

1. From the File menu, select Open Project. The Open dialog is displayed.

Lookin |1 istucio =1 ckE =
] images
Test ipt

Recent

e

File: name: I Open |
Files of type: IIStudio Project Files ﬂ Cancel |

2. Enter the name and path to an existing project or select the workspace to open.

3. Click Open. The selected project opens in iStudio.

2-12 User’s Guide

3

Creating Applications, Common Views, and
Business Objects

This chapter describes how to create and manage applications, common views, and
business objects using iStudio. It contains the following topics:

s Overview of Applications

s Overview of Common Views and Business Objects

3.1 Overview of Applications

Each component integrated with OracleAS Integration InterConnect is referred to as
an application. Each application expresses interest in specific messages, what its
internal data type is, and how the message should be mapped to or from that
internal type to the external world.

3.1.1 Application View

Each application has its internal data types, formats, and structures that it exposes
to the external world. This is the application's public interface. This application
interface is called the application view of data. Transformations are used to bridge
the gap between application views and common views of data.

Once an application is created in iStudio, it can start participating in the integration
scenario by plugging into events and procedures available in the common view.

See Also: Chapter 4, "Using Events in iStudio" and Chapter 5,
"Using Procedures in iStudio".

3.1.2 Application Data Types

Application Data Types are useful for reusing structure definitions for application
views. You can define an Application Data Type once and then utilize it in multiple
application views. They are especially useful for defining complex hierarchical data.
Application data types have the same function as Common Data Types but relate to a
particular application.

See Also: Section 3.2.1.2, "Creating Common Data Types"

3.1.3 Creating an Application

To create an application:

Creating Applications, Common Views, and Business Objects 3-1

Overview of Common Views and Business Objects

1. From the File menu, select New, then select Application. The Create Application
dialog is displayed.

2. Enter a name for the application in the Application Name field.
3. Click OK.

The application created is displayed in the Design Navigation list under the
Applications node.

3.2 Overview of Common Views and Business Objects

The common view is the hub view of the integration where each spoke is an application
wanting to participate in the integration. After defining a common view by creating a
business object and common data types, existing events can be published or
subscribed to, and procedures can be invoked or implemented.

See Also: Chapter 2, "Using iStudio”

3.2.1 Defining Common Views

3-2 User's Guide

When defining a common view, you must create business objects and common data
types.

3.2.1.1 Creating Business Objects

To create a new business object:

1. From the File menu select New, then select Business Object. The Create Business
Object dialog is displayed.

2. Enter a name for the business object in the Business Object Name field.

3. Click OK. The business object is displayed in the Design Navigation list under the
Common View node.

3.2.1.2 Creating Common Data Types

When creating the data associated with an event or a procedure, it is possible to define
the data once and reuse it for different integration points. Common data types are
used to define such data for reuse and are especially useful for defining complex
hierarchical data.

For example, a purchase order contains a header object and an array of line item
objects. In addition, the header object contains two address objects: Bi11_To and
Ship_To. As a result, the purchase order can be defined once and used for other
purchase order-related integration points, such as Create_Purchase_Order,
Update_Purchase_Order, and Get_Purchase_Order. Moreover, Address can
be defined once and used in the Bill_To and Ship_To addresses.

To create a common data type:

1. From the File menu, select New, then select Common Data Type. The Create Data
Type dialog is displayed.

Overview of Common Views and Business Objects

wlCreate Data Type ﬂ
Cormaon Data Type MName: || IOAIN1
- Attribute:
Mame | Type OwnerNersionl Array | Default
Impart | Al | Delete | Clear |
Save | Cancel |

Enter a name for the common data type in the Common Data Type Name field.

The owner and version number of the common data type display next to the
common data type name. This field cannot be edited.

2. Specify the attributes for this common data type using one of the following
methods:

= Add attributes individually.

= Import attributes from already existing application native data types or APIs.

3.2.1.3 Adding Attributes
To add attributes:

1. In the Create Data Type dialog, click Add. A new entry is displayed in the
attribute list.

w1Create Data Type £ x|
Cormmaon Data Type Mame: [CustomerData AN
- Attribute:
Type Crvvneriversion | Array Default
String r MULL
Impart | Al | Delete | Clear |
Save | Cancel

2. Specify the following information by editing the fields.

Name: The name of the attribute.

Creating Applications, Common Views, and Business Objects 3-3

Overview of Common Views and Business Objects

Type: The type of the attribute. Select the type by selecting the Type column in the
attribute entry. A list is displayed. The attribute can be of primitive type such as
string, integer, float, double, date, or another common data type used to build
hierarchical data types.

Array: Select this check box if the attribute is a collection instead of a single
attribute.

Default: The default value of the field if it is not populated at runtime.
3. Click Save. Repeat the preceding steps to add other attributes.

3.2.1.4 Importing Attributes

To import attributes:

1. In the Create Data Type dialog, click Import. Attributes can be imported from
various sources.

The following steps describe the database import facility.

See Also: Appendix B, "Using the Data Definition Description
Language"

2. Click Database. The Database Login dialog is displayed.

Database Login - =

Please enter database login informsation

Uzername: cust

Pazsword: |FrEEEEES

LIRL: scoft-pe: 1521 ORCL

Driver: pracle jobc driver OracleDriver ;I

[save zettings as default

Lowin | Cancel |

3. Enter information in the following fields:
User Name: The database log in name.
Password: The database log in password.
URL: The computer name: port number: database SID.
Driver: The JDBC driver used to connect to the database.

Save settings as default: Select this check box to save the settings for the
workspace.

4. Click Login.

After logging in, the database tables and arguments display in the Database
Browser window.

Select the fields to add. To select a range of fields, press Shift when clicking the
mouse button. To select multiple items, press Ctrl while clicking the mouse
button.

3-4 User's Guide

Overview of Common Views and Business Objects

w10racle Database Browser =

;I Definition | cgmeml

| Marne Type |
I MUMBER
GROUPID MUMBER
MAME WARCHARZ
WERSION WARCHARZ
QAHUESD4 APPID LSECOUNT MUMBER
CHANER WARCHARZ

QAHUES04 ACF_
QAHUES04 A
QAHUES04 ACF_
QAHUES04 ACF_
QAHUES04 ACF_
QAHUES04 ACF_
QAHUES04 ACF_
QAHUES04 ACF_
QAHUES04 ACF_
QAHUES04 ACF_
QaHUES04 AT
QaHUES04 BF
QaHUES04 BP
QaHUES04 BPEN
QaHUES04 CER
QAHUES04 CORE

Done |

5. Click Done to import the attributes into the common data type. The selected
attributes are displayed in the Create Data Type dialog.

= 1Create Data Type LI
Cormaon Data Type MName: ICustomerData AN
- Attribute:
[Marne Type Crvvneriversion | Array Default
String r MULL
D Double r MULL
GROURID Drauble r MULL
MAME String r MULL
WERSION String r MULL
USECOUNT Drauble r MULL
CWAMER: String r MULL
Save | Cancel

3.2.1.5 Deleting and Clearing Attributes

To delete a selected attribute:
= In the Create Data Type dialog, select the attribute to be deleted, and click Delete.
To clear all attributes:

= In the Create Data Type dialog, click Clear.

Creating Applications, Common Views, and Business Objects 3-5

Overview of Common Views and Business Objects

3-6 User's Guide

4

Using Events in iStudio

This chapter describes how to use iStudio to create, publish, and subscribe to
events. It contains the following topics:

s Overview of Events
s Creating Events

= Publishing and Subscribing to an Event

4.1 Overview of Events

An event is an integration point used to model the Publish/Subscribe paradigm. An
event has associated data that is the common view of all the data to be exchanged
through this event.

The data structure that should be used for defining the common view is entirely
dependent on the integration scenario, and the choice is left to the implementor.
The only condition that data structure should satisfy is that it should be a superset
of all the application views for applications that will be publishing or subscribing to
this event. The choices for common view data include:

» Corporate internal standards enforced by the organization where OracleAS
Integration InterConnect is being implemented.

» Industry standard definitions, such as Open Applications Group (OAG) and
Business Object Definitions (BOD).

= One of the application views can be used as the common view, if the scenario
has one application that is driving the integration.

For example, Appl and App2 publish customer names, and App3 subscribes to it. If
Appl publishes First Name, Last Name, and Middle Initial, and App2
publishes First Name, Last Name, Prefix, and Suffix, the event could be
defined as follows:

New Customer Event
Prefix

First Name

Last Name

Middle Initial
Suffix

See Also: "How the Hub-and-Spoke Methodology Works" on
page 1-6

Using Events in iStudio 4-1

Creating Events

4.1.1 Event Maps

If an application publishes exactly the same data structure for two or more events,
event maps allow OracleAS Integration InterConnect to distinguish which message
corresponds to which event. For example, an application publishes the same Customer
Application Data Type whether or not it is a Create_Customer event or an Update_
Customer event. Through event maps, OracleAS Integration InterConnect can
determine which messages correspond to Create_Customer and Update_
Customer.

Note: Event maps need to be used only if two or more events
published by a particular application have the exact same application
view structure.

4.2 Creating Events
To create an event:

1. From the File menu, click New, then select Event. The Create Event dialog is

displayed.
w1Create Event) x|
Business Object: ICustomer LI
Event Name: | Joaira
- Attribute:
[Marne Type Ovvner i ersion | Array Default
Impart | Al | Delete | Clear |
Save | Cancel

2. Enter the following information in the fields:

= Business Object: The name of the category to which the event belongs. Select a
category from the list.

= Event Name: The name of the event. Only alphanumeric characters can be
used.

s OAI/V1: The owner and version number of the Business Object. This field
cannot be edited.

3. Add or import attributes to this event.
4. Click Save.

4-2 User's Guide

Publishing and Subscribing to an Event

See Also:

= "Adding Attributes" on page 3-3

s Appendix B, "Using the Data Definition Description Language"
s "Deleting and Clearing Attributes" on page 3-5

4.3 Publishing and Subscribing to an Event

The publish/subscribe paradigm is used for asynchronous one-way communication.
The sending application is said to publish the event. The receiving application
subscribes to the event.

4.3.1 Publishing an Event

Publishing an event in an application in iStudio involves the Publish Wizard. To start
the Publish Wizard:

1. In the Design Navigation list, expand the Application node. Select and expand the
Application node to display the Published Events leaf. Right-click Published
Events and select Publish. The Publish Wizard is displayed.

s Publish Wizard - Select an Event =
Application IMyAQApp LI
Message Type |DATABASE =l
Select an Event
=+ | Business Objects
) Customer
L

= Back | Mext = I Finizh Cancel

a. Enter following information in the fields:
= Application: The name of the invoking application is selected by default.

= Message Type: The mode of communication between OracleAS Integration
InterConnect and the application. Select from the following message types:

= Database: OracleAS Integration InterConnect communicates with the
application using the database.

= Generic: OracleAS Integration InterConnect communicates with the
application using a user-defined bridge.

s XML: OracleAS Integration InterConnect communicates with the application
using XML data described through a data type definition (DTD) using the
FTP, SMTP, HTTP, MQ Series, or user-defined adapters.

Using Events in iStudio 4-3

Publishing and Subscribing to an Event

4-4 User's Guide

2.

s AQ: OracleAS Integration InterConnect communicates with the application
through Oracle Advanced Queues using the Advanced Queue adapter. The
payload can be Oracle Objects where fields may be XML or RAW XML.

s D3L: OracleAS Integration InterConnect communicates with the application
using non-XML data formats described through D3L using the FIP, SMTP,
HTTP, and MQSeries adapters.

Note: Other choices will be visible if you've purchased and installed
additional adapters for Oracle E-Business Suite, SAP, Peoplesoft, and
Siebel.

b. Select the event name.
c. Click Next.
The Define Application View page is displayed.

= 1Publish Wizard - Define Application Yiew =
- Attribute:
[Marne Cvners... | Array Default
| TR
Custriame IR
Custadd IR
Impart | Al | Delete | Clear |

Tracking Fields |
= Back | Mext = I Finizh | Cancel |

Once an event is selected to publish, the application view is defined. The
application view page is initially an empty table. Define the attributes using Add,
or import the definitions from a database or an API Repository using Import.

a. Click Add or Import to add or import attributes.

See Also:

= "Adding Attributes" on page 3-3

= 'Importing Attributes" on page 3-4

= "Deleting and Clearing Attributes" on page 3-5

= Appendix B, "Using the Data Definition Description Language"

b. Toimport an XML DTD, click Import and select XML to display a file dialog;:

Publishing and Subscribing to an Event

x|
Lookin: | Iabfiles =l £
oo
1394
Recent 3_1_AG_Customer citd
o 3_1_Common_view _Customer ctd
3_2_Common_view_PO dtd
4_1_AQ_ttem_Reply dtd
4_1_AQ_tem_Request dtd
File name: I1y\ProjecﬂProject_lnterc0nnec,t\IC_Training\Training\Iabfiles Open |
Files of type: IDocument Type Declarations (*.ctd) LI Cancel |

Select a DTD file and click Open. The Choose Root Element dialog is
displayed.

Choose Root Element Dialog =

Pleaze select the roat element of the DTC:

Customer
action
acdr

ity

icd

hatne
state
street

Zip

OK I Cancel |

Select a root DTD element and click OK.

If this is a XML type message, the Event Map button is enabled. To define the
event map, click Event Map. The Event Map dialog is displayed.

Note: Event maps need to be used only if two or more events
published by a particular application have the exact same application
view structure.

Using Events in iStudio 4-5

Publishing and Subscribing to an Event

e' Event Map

Evert Map

Field Walue

Al Delete |

OK I Cancel |

f. Click Add to add an event map attribute. The New Event Map dialog is
displayed.

£ Add Event Map =

Event Map

EH_] Create_Customer
E|—_| Customer
* id
action
& [

) mddr

* street
& city
* state
& zip

Walue

OK I Cancel |

Expand the list and select an attribute and enter a value in the Value field.
Click OK on the Add Event Map dialog to return to the Event Map dialog.
i. Click OK to return to the Publish Event wizard.
j. Click Next.

3. Click Next on the Define Application View page. The Define Mapping page is
displayed. Mapping involves copying the individual fields or simple
shape-change transformations.

4-6 User's Guide

Publishing and Subscribing to an Event

-E_l Publish Wizard - Define Mapping ' ﬁl

Summsry

Il Source Fields Tranztarmation Name | Destinatic

d|

a. Click New to define new mappings. The Mapping Parameters dialog is
displayed.

tﬂMapping Parameters il
My A ARD View: Transfarmations: Catmmmon Yies:
. ey ChjectCopy &
=] Custorner CopyFields # Custid
* id ConcatFislds # Custname[|
action ExpandFisids ® Custadd[]
name CharReplace
] el StringReplace
M STFEET Substring
& cty LPad
state
. FPad
L :
L Tritn
RTrim
Truncate
Toklumber j
Custam Transformations |

Commerts I

Advanced | Search Yariahles | | (06 I Cancel

Use a transformation to map fields in the application view to fields in the
common view. For example, to map fields in the FirstName and LastName
in the common view to Name in the application view, use the ConcatFields
transform.

See Also: "Invoking a Procedure” on page 5-3

b. Click OK to return to the Publish Event Wizard.

Using Events in iStudio 4-7

Publishing and Subscribing to an Event

4. Click Finish.

4.3.2 Subscribing to an Event

Subscribing to an application event in iStudio involves using the Subscribe Wizard. To
subscribe to an event in an application:

4-8 User's Guide

1.

In the Design Navigation list, expand the Application node. Select and expand the
Application node to display the Subscribed Events leaf. Right-click Subscribed
Events and select Subscribe. The Subscribe Wizard is displayed.

ml5ubscribe Wizard - Select an Event =

Application JMyaciapp =l
Message Type IAQ LI
Select an Event
=+ | Business Objects
E|—_| Customer

L e Create_Customer

= Back |

Finizh Cancel

a. Enter following information in the fields:

Application: The name of the application selected in the navigation list, which
invokes the procedure, appears selected by default.

Message Type: The message type that specifies the mode of communication
between OracleAS Integration InterConnect and the application. Select from
the following message types:

Database: OracleAS Integration InterConnect communicates with the
application using the database.

Generic: OracleAS Integration InterConnect communicates with the
application using a user-defined bridge.

XML: OracleAS Integration InterConnect communicates with the
application using XML data described through a data type definition
(DTD) using the FTP, SMTP, HTTP, MQ Series, or user-defined adapters.

AQ: OracleAS Integration InterConnect communicates with the
application through Oracle Advanced Queues using the Advanced Queue
adapter. The payload can be Oracle Objects where fields may be XML or
RAW XML.

D3L: OracleAS Integration InterConnect communicates with the
application using non-XML data formats described through D3L using the
FTP, SMTP, HTTP, and MQSeries adapters.

Oracle Applications: OracleAS Integration InterConnect communicates
with Oracle Applications using this message type.

Publishing and Subscribing to an Event

Note: Other choices will be visible if you've purchased and installed
additional adapters for SAP, Peoplesoft, and Siebel.

b. Select the event name.
c. Click Next.
2. The Define Application View page is displayed.

w15ubscribe Wizard - Define Application Yiew i ll

- Attribute:

[Marne Type Cvners... | Array Default
Custid Integer Mo
Custharme String I MULL
Custadd String VN

Al | Delete | Clear |

Crozs Reference |

= Back | Mext = | Finizh | Cancel |

Once an event is selected to subscribe to, the application view is defined. The
application view page is initially an empty table. Define the attributes using Add
or import the definitions from a database or an API Repository using Import.

a. Click Add or Import to add or import attributes.

See Also:
s "Adding Attributes" on page 3-3
s "Importing Attributes" on page 3-4
s "Deleting and Clearing Attributes" on page 3-5
= Appendix B, "Using the Data Definition Description Language"
b. Populate and look up cross-reference tables by clicking Cross Reference... The

Cross Reference dialog is displayed. Click OK to return to the Subscribe
Wizard.

3. Click Next on the Define Application View page. The Define Mapping Page is
displayed. Mapping can involve either copying the individual fields or simple
shape-change transformations.

Using Events in iStudio 4-9

Publishing and Subscribing to an Event

w15ubscribe Wizard - Define Mapping

Surmary

Ied Source Fields

Tranzformation Mame | Destinatic

Ediit

Delete

Clear;

Fitter

Shos Al

= Back | Iesxt = |

Cancel

i LEREER

a. Click New to define mappings. The Mapping Parameters dialog is displayed.

i'n‘_lMapping Parameters ﬂ
Comman Yiew: Transformations: My AGARR Yiew:
EH_ | Create_Customer (ChjectCopy EH_ | Create_Customer
L ticd (
Custnamef] (ConcatFislds # Custnamef]
Custadd]] ExpandFields ® Custadd[]
CharReplace
StringReplace
Substring
LPaci
FPacd
L Trim
FTrim
Truncate
Toklumber LI
Custom Tranzformations |
Comments I
Advanced | Search | Wariahles | | OK I Cancel |

Use a transformation to map fields in the common view to fields in the
application view. For example, to map fields in the FirstName and
LastName in the common view to Name in the application view, use the
ConcatFields transform.

See Also: "Invoking a Procedure" on page 5-3

b. Click OK to return to the Subscribe Event Wizard.
4. Click Finish.

4-10 User’s Guide

O

Using Procedures in iStudio

This chapter describes using iStudio to create, invoke, and implement procedures. It
contains the following topics:

= Using Procedures

= Invoking and Implementing a Procedure

5.1 Using Procedures

A procedure is an integration point used to model the Request/Reply paradigm.
The request/reply paradigm is used for two-way context sensitive communication.
This communication can be either synchronous (the requesting application is
blocking until it receives a reply) or asynchronous (the requesting application gets
the reply ansynchronously, it does not block-wait for the response after sending the
request). This is a modeling paradigm only, no actual procedures are called. An
application can either invoke a procedure to model sending a request and receiving
a reply, or implement a procedure to model receiving a request and sending a reply.
Similar to events, a procedure has associated data. While an event is only associated
with one data set, a procedure has two data sets: one for the request, IN data and
one for the reply, OUT data.

Note: Synchronous request/reply can only be used if an application
supports an outbound synchronous interface. Currently, only the
Oracle database adapter qualifies for such support. For all other
adapters, only asynchronous request/reply is available. This is a
limitation of the protocols exposed by systems to communicate.

For example, if a Get _Address procedure is defined so that the request contains the
social security number, SSN, for a person and the reply contains the address in four
fields: Street, City, Zip, State, then the procedure is defined as follows:

get Address Procedure
SSN IN

Street OUT

City OUT

Zip OUT

State OUT

The data structure that should be used for defining the common view is entirely

dependent on the integration scenario, and the choice is left to the implementor. The
only condition that data structure should satisfy is that it should be a superset of all

Using Procedures in iStudio 5-1

Using Procedures

the application views for applications that will be publishing or subscribing to this
event. The choices for common view data include:

s Corporate internal standards enforced by the organization where OracleAS
Integration InterConnect is being implemented.

» Industry standard definitions, such as Open Applications Group (OAG) and
Business Object Definitions (BOD).

= One of the application views can be used as the common view, if the scenario has
one application that is driving the integration.

See Also: "How the Hub-and-Spoke Methodology Works" on
page 1-6

5.1.1 Creating a Procedure

To create a procedure:

1. From the File menu, select New, and then select Procedure. The Create Procedure

dialog is displayed.
wlCreate Procedure x|
Business Object: ICustomer LI
Procedure Mame: || IOAIN1
- Attribute:
[Marne | Type Owvnerive... | Array | Default INASUTAMGC....
4 |
Impart | Al | Delete | Clear |
Save | Cancel |

2. Enter required information in the following fields:

= Business Object Name: The name of the category to which the procedure
belongs. Select BO name from the list.

s Procedure Name: The name of the procedure. Only alpha-numeric characters
can be used.

s OAI/V1: The owner and version number of the procedure. This field cannot
be edited.

3. Add or import attributes to the procedure.
4. Click Save.

5-2 User's Guide

Invoking and Implementing a Procedure

See Also:

"Adding Attributes" on page 3-3

"Importing Attributes" on page 3-4

"Deleting and Clearing Attributes" on page 3-5

Appendix B, "Using the Data Definition Description Language"

5.2 Invoking and Implementing a Procedure

Procedures are used to model the request/reply messaging paradigm.The requesting
application invokes the procedure. The replying application implements the

procedure.

5.2.1 Invoking a Procedure

Use Invoke Wizard to invoke a procedure in iStudio. To start the Invoke Wizard:

1. In the Design Navigation list, expand the Application node.

2. Select and expand the Application node to display the Invoked Procedures leaf.

3. Right-click Invoke Procedures, and select New. The Invoke Wizard is displayed.

mlInvoke Wizard - Select a Procedure =
Application IMyAQApp LI
Message Type IAQ LI
Select a Procedure
=] Business Ohjects
IJ:'|—_] Customer
L« I

= Back |

Finizh Cancel

4. Enter the following information in the fields:

Application: the name of the invoking application is selected by default.

Message Type: The mode of communication between OracleAS Integration
InterConnect and the application. Select one of the following message types:

Database: OracleAS Integration InterConnect communicates with the
application using the database.

Generic: OracleAS Integration InterConnect communicates with the
application using a user-defined bridge.

XML: OracleAS Integration InterConnect communicates with the
application using XML data described through a data type definition
(DTD) using the FTP, SMTP, HTTP, MQ Series, or user-defined adapters.

Using Procedures in iStudio 5-3

Invoking and Implementing a Procedure

— DB3L: OracleAS Integration InterConnect communicates with the
application using non-XML data formats described through D3L using the
FIP, SMTP, HTTP, and MQSeries adapters.

Note: Other choices will be visible if you've purchased and installed
additional adapters for Oracle Applications, SAP, Peoplesoft, and

Siebel.

- AQ: OracleAS Integration InterConnect communicates with the
application through Oracle Advanced Queues using the Advanced Queue
adapter. The payload can be RAW XML or Oracle Objects where fields

may be XML .

5. Select the procedure to invoke in the Select a Procedure box.

6. Click Next in the Select a Procedure page. The Define Application View page is

displayed.
w1 Invoke Wizard - Define Application Yiew =
- Attribute:
[Marne Type Owvne... | Array Default | IMAOUT... |
TSN Integer | Y]
Street String MV |moL |out
City String MV |moL |out
Zip String MV |moL |out
State String MV |moL |out
4 |
Al | Delete | Clear |
Returned In Args | Evert Map | I Message is active J
= Back | Mext = | Finizh | Cancel |

Once a procedure is selected to invoke, the application view is defined. The

application view page is initially an empty table.

7. Define the attributes using Add or import the definitions from a database or an

API Repository using Import.

See Also:

= "Adding Attributes" on page 3-3

= 'Importing Attributes" on page 3-4

s '"Deleting and Clearing Attributes" on page 3-5

= Appendix B, "Using the Data Definition Description Language"

8. Click Returned In Args to specify IN arguments to be returned. The Please Select
In Arguments dialog is displayed.

5-4 User's Guide

Invoking and Implementing a Procedure

Please Select In Arguments -;Z' ll

Select arguments to be returned

[o |

Cancel |

9. Select the input and output arguments to be returned. Use the left mouse button to
select multiple arguments. Only non user-defined input arguments are shown for
selection.

10. Click OK to return to the Define Application View page.
11. Click Next. The Define Mapping IN Arguments Page is displayed.

Mapping arguments involves copying the individual fields or simple
shape-change transformations.

12. Click New to define mappings. The Mapping Parameters dialog is displayed.

E]Mapping Parameters EI
My ACLARE Wiew: Transtarmations: Carmrmar View:
EI—J Create_Customer ChjectCopy - eate 2
E'I—_| Customer CopyFields ® Custid
* id ConcatFields #® Custnamel]
action ExpandFields # Custadd]]
* name CharReplace
| addr StringReplace
: #reet SLbstring
city LPad
state
. FPad
zip)
LTrim
FTritr
Truncate
Takumker j
Cuztam Transfarmations |
Comnents I
Advanced | Search Yatiahles | | 054 I Cancel

To map fields in the application view to fields in the common view, use a
transform. To use a transform to map fields,

Using Procedures in iStudio 5-5

Invoking and Implementing a Procedure

1. Select fields to map from in the application view. Use the left mouse button to
select multiple fields in a view.

2. Select the transformation, for example, ConcatFields.

3. Select the fields to map to in the common view. Use the left mouse button to
select multiple fields in a view.

4. Click Apply to confirm selection and continue specifying additional
mappings.

5. When all mappings have been made, click OK.

See Also: "Invoking a Procedure” on page 5-3

13. Click Next. The Define Mapping OUT Arguments Page is displayed.

Mapping arguments involves copying the individual fields or simple
shape-change transformations. Use this page to map the common view return
arguments to the application view return arguments.

‘iu‘.'lnvoke Wizard - Define Mapping:0UT Arguments ll

Surmary

Ied Source Fields Tranzformation Mame | Destinatic

= |
Eciit |
Delete |
Clear; |
Fitter |

Shos Al |

Cancel |

14. Click New to define mappings.

See Also: Step 6 on page 5-4

15. Click Finish.

5.2.2 Implementing a Procedure

Implement a procedure in iStudio using the Implement Wizard. To start the
Implement Wizard:

1. In the Design navigation list, expand the Application node. Select and expand the
Application node to display the Implemented Procedures leaf. Right-click
Implemented Procedures, and select New. The Implement Wizard is displayed.

5-6 User's Guide

Invoking and Implementing a Procedure

iﬂlmplement Wizard - Select a Procedure ll

Application JMyaciapp =l

Message Type IAQ =l

Select a Procedure

=+ | Business Objects

E|—_| Customer
s

= Back | Mext = I Finizh Cancel

Use this page to select a procedure to implement.

2. Select information for the following fields:

= Application: The name of the application selected in the navigation list, which
invokes the procedure, appears selected by default. Select an application from
the list.

= Message Type: This field specifies the mode of communication between
OracleAS Integration InterConnect and the application. Select from the
following message types:

Database: OracleAS Integration InterConnect communicates with the
application using the database.

Generic: OracleAS Integration InterConnect communicates with the
application using a user-defined bridge.

XML: OracleAS Integration InterConnect communicates with the
application using XML data described through a DTD using the FIP,
SMTP, HTTP, MQ Series, or user-defined adapters.

AQ: OracleAS Integration InterConnect communicates with the
application through Oracle Advanced Queues using the Advanced Queue
adapter. The payload can be Oracle Objects where fields may be XML or
RAW XML.

D3L: The adapter communicates with the application using D3L.

3. Select the procedure to invoke.

4. Click Next. The Define Application View page is displayed.

Using Procedures in iStudio 5-7

Invoking and Implementing a Procedure

iﬂlmplement Wizard - Define Application Yiew : ﬂ
- Attribute:
[Marne Type Owvne... | Array Default | IMAOUT... |
TSN Integer | Y]
Street String MV |moL |out
City String MV |moL |out
Zip String MV |moL |out
State String MV |moL |out
1 I»
Al | Delete | Clear |
Cross Reference | Evert Map | ¥ Message is active J
= Back | Mext = | Finizh | Cancel |

Initially, this page is an empty table. Attributes can be defined by using Add.
Attribute definitions can be imported from a database or an API Repository by
using Import.

See Also:

= "Adding Attributes" on page 3-3

s "Importing Attributes" on page 3-4

s "Deleting and Clearing Attributes" on page 3-5

= Appendix B, "Using the Data Definition Description Language"

5. Click Cross Reference... to populate cross reference tables.
See Also: '"Populating Cross-reference Tables" on page 6-7

6. Click Next. The Define Mapping IN Arguments page is displayed.

Mapping may involve copying individual fields, or simple shape-change
transformations. After clicking next on the Define Application View page, the
Define Mapping IN Arguments page is displayed.

5-8 User's Guide

Invoking and Implementing a Procedure

10.

‘i.‘.'lmplement Wizard - Define Mapping:IN Arguments ﬂ
Surmary
Ied | Source Fields | Tranzformation Mame | Destinatic
0 |SSN |C0pyFieIds |SSN
Eciit
Delete |
Clear |
Fitter |
Shos Al |
4 | i
= Back | Mext = | Finizh | Cancel

Click New to define IN mappings.

See Also: Step 6 on page 5-4

Click Next. The Define Mapping OUT Arguments page is displayed.
Click New to define OUT mappings.

See Also: Step 6 on page 5-4

Click Next. The Define Stored Procedure page is displayed.

"iu‘.'lmplement Wizard - Define Stored Procedure

SGOL code for fimp_Get_Address_OA1_W1 LI

— - eneratedbataTypes
o_Zip OUT Lijfaes
o_State OUT LONG
I

]

dunmy NUMEER:

-- declare here

EEGIN

-- £ill code here

dunmy:= 0;

[END imp Get_iddress 0AT V1:

=
1. | |
= Back | It = | Finish I Cancel |

If the message type selected was database, the data is received by a stored
procedure. In this stored procedure, the action performed when the values are
returned to the application can be specified. The adapter invokes the stored
procedure at runtime with the corresponding data.

The following arguments will be returned:
= All OUT arguments.

= All IN arguments specified to be returned as part of the reply.

Using Procedures in iStudio 5-9

Invoking and Implementing a Procedure

11. Select a generated procedure from the SQL Code For list.
12. Click Finish.

5-10 User's Guide

6

Enabling Infrastructure

This chapter describes the enabling infrastructure tasks in iStudio. It contains the
following topics:

Enabling Infrastructure
Working with Content-based Routing
Working with Domain Value Mappings

Working with Cross-referencing

6.1 Enabling Infrastructure

Enabling Infrastructure provides additional important features that are critical to
enable an end-to-end integration. These features include:

Content-based Routing. Route messages by building business rules based on
message content. For example, a procurement system routes fulfillment
requests to different fulfillment centers based on an originating location.

Content based routing can be done for both events and procedures and is

driven off the common view data. The adapter that publishes an event (or
invokes a procedure), evaluates the content based routing rules to determine

the recipient list. This recipient list is then added to the JMS header for the
message before it is sent off to the OracleAS Integration InterConnect Hub. In the
hub, AQ looks up the recipient list and wakes up the relevant target adapters.

Note: When defining content based routing rules, make sure that all
routing cases are covered for all possible values of the fields used in
the rule. Once you define even one content based routing rule, the
default event based routing rules are no longer in effect.

Domain Value Mapping. Map code tables across systems. For example, a purchase
order in a procurement system has a PO Status field with domain values, Booked
and Shipped. The corresponding field in a fulfillment system has the domain
values, 1 and 2. OracleAS Integration InterConnect allows the user to create the
mappings booked=1, shipped=2 so that it can correlate these values at runtime
without each system understanding the domain value set of the other system.

Cross Referencing. Correlate keys that uniquely identify the entities in one
application with corresponding entities created in other applications. For example,
a purchase order created in a procurement system has a native ID X. The purchase
order is then routed to a fulfillment system, where it is created with native ID Y.
As a result, X and Y must be cross referenced for OracleAS Integration

Enabling Infrastructure 6-1

Working with Content-based Routing

InterConnect to correlate communication about this same logical entity in two
different systems without each system understanding the native ID of the other
system.

6.2 Working with Content-based Routing
To modify content-based routing for an event or procedure:

1. Right-click the event or procedure under the Content-based Routing node in the
Design Navigation list, and then click Edit. The Content Based Routing Rules
dialog is displayed.

i'ﬂl:ontent Based Routing : Create_Customer ll

Routing Rules |

=

Delete

[

Clear;

OK I Cancel |

2. Click New. The wizard that provides a series of pages to follow for editing
content-based routing is displayed.

w1Content Based Routing =

Choose Source

| Create_Customer
Custname[]

Custadd]]

Expression

(Custid Addl | Removel |

= Back | Mext = I Finizh | Cancel |

3. Choose the source event attribute to be used for building rules, and click Next. An
attribute can be chosen either from the message payload (common view data) or
the message header that accompanies this payload.

6-2 User's Guide

Working with Content-based Routing

w1Content Based Routing =

Choose Operator

Expression

(Creste_Customer ==

= Back | Mext = I Finizh | Cancel |

Select an operator from the list and click Next. The Choose Value page is
displayed.

w1Content Based Routing =

Chooze Walue

% Enter Value Select Attribute
IN | Create_Customer
Custid
Custname[]
Custadd[]
Expression

(Creste_Customer == "N") Al | Rermaove] |

= Back | Mext = I Finizh | Cancel |

Enter a literal value or select another attribute in the message payload (or header)
to be compared against the source event attribute selected in Step 3. For literal
values, enter a value in the text field. For attributes, select an attribute from the
navigation list.

Note: In some cases, in the Choose Value page, a list of avaliable
applications is visible. This list appears only when you select the
SendingApplication event attribute in the Choose Source page.

Use Select Attribute to compare one value in an attribute to another.

Click Next. The Additional Condition page is displayed. You can add to the
condition through the operators AND and OR.

Enabling Infrastructure 6-3

Working with Content-based Routing

w1Content Based Routing =

Additional Condition

' add To Condition ' Condition Complete

I jv

Expression

(Creste_Customer == "N")

= Back Finizh | Cancel |

8. To further build your rule, select Add To Condition. This can be used to build
complex routing rules such Age <50 AND Salary > 100000 OR AGE >= 50. Repeat
steps 3-7.

9. If your rule is built, select Condition Complete, and click Next. The Select
Destination Application page is displayed.

w1Content Based Routing =

Select Destination Application

Expression

(Create_Customer == "N") = MyLAGLpp Remove Application |

= Back | It = | Finish I Cancel |

10. Select one or more applications from the Select Destination Application page, and
click Finish.

i'ﬂl:ontent Based Routing : Create_Customer ll

Routing Rules
[Creste_Customer == "N") -= MyAGLARD

Delete |
Clear |

6-4 User's Guide

Working with Domain Value Mappings

The Content Based Routing Rule is created and displayed in the Content Based
Routing dialog.

11. Click New to add another rule or click OK to finish.

6.3 Working with Domain Value Mappings
To create a domain value mappings table:
1. IniStudio, click Domain Value Maps under Enabling Infrastructure.

2. Select New from the File menu, and select Domain Value Mapping. The Create
Domain Value Mapping dialog is displayed.

Create Domain Yalue Map k- |

Map Matne: ICustDVM

Ok I Cancel |

3. Enter a name for the domain value map in the Map Name field.

4. Click OK.

6.3.1 Adding Applications to Domain Value Mappings

To add applications to domain value mappings:
1. In the Design Navigation list, select the domain value mapping and right-click.

2. From the context menu, select Add Application. The Add Application to Domain
Value Map dialog is displayed.

OK I Cancel |

3. Select an application name from the list.

4. C(lick OK.

6.3.2 Removing Applications From Domain Value Mappings

To remove applications from the domain value mappings:
1. In the Design Navigation list, select a domain value mapping and right-click.

2. From the context menu, select Remove Application. The Remove Application
from Domain Value Mapping dialog is displayed.

Remove Application from D¥M Table x|

Application Mame: [T

Ok I Cancel |

Enabling Infrastructure 6-5

Working with Domain Value Mappings

3. Select the Application Name to remove from the list.

4. Click OK.

6.3.3 Modifying Domain Value Mappings

To modify data domain value mappings:
1. In the Design Navigation list, select a domain value mapping and right-click.

2. From the context menu, select Edit Values. The Edit Domain Value Map dialog
appears.

Edit Domain ¥alue Map B 1'

Domain Walue Map: CustDhWh

~Mapping:

Wy AGAPE

Import | Al | Delete | Clear |

OK I Cancel |

3. Click Add to add mappings or Import to import mappings.
4. Click OK.

6.3.4 Deleting Domain Value Mappings

To delete a selected domain value mapping;:
1. Select the domain value mapping to delete.

2. C(lick Delete.

6.3.5 Deleting Domain Value Mapping Tables

To delete the domain value mapping table:
1. Select the domain value mapping table to be deleted and right-click.
2. From the context menu, select Delete.

3. Click YES in the Confirm Delete dialog.

6-6 User's Guide

Working with Cross-referencing

6.3.6 Modifying Attribute Mappings

To modify a selected attribute mapping, use the Define Mapping page on the Publish
Wizard:

See Also: "Publishing an Event" on page 4-3

1. Select a mapping, and click Edit.
2, Edit the appropriate fields.
3. Click OK.

6.3.7 Removing Attribute Mappings

To remove attribute mappings, use the Define Mapping page in the Publish Wizard.
= Toremove a mapping, delete the attribute and click Remove.

= Toremove all mappings, click Clear.

6.4 Working with Cross-referencing

Creating a cross-reference in iStudio creates a table in the repository schema. To create
a cross-reference table:

1. Click New from the File menu and select Cross Reference Tables. The Create
Cross Reference Table dialog is displayed.

2. Enter a name for the cross-reference table in the Table Name field, and click OK.

6.4.1 Adding Applications to Cross-reference Tables

To add applications to the cross-reference table:
1. In the Design Navigation list, select the cross-reference table and right-click.

2. From the context menu, select Add Application. The Add Application to Cross
Reference Table dialog is displayed.

3. From the list, select an application name.

4. Click OK.

6.4.2 Removing Applications From Cross-reference Tables

To remove applications from a cross-reference table:
1. In the Design Navigation list, select the cross-reference table and right-click.

2. From the context menu, select Remove Application. The Remove Application
from Cross Reference Table dialog appears.

3. From the list, select an application name.

4. C(lick OK.

6.4.3 Populating Cross-reference Tables

To populate the cross-reference tables, returned arguments must first be defined.

Use the Subscribe Wizard to access the correct page for populating cross-reference
tables.

Enabling Infrastructure 6-7

Working with Cross-referencing

See Also: "Subscribing to an Event" on page 4-8

To populate cross-reference tables:

1. Click Cross Reference... in the Define Application View page. The XRef dialog is
displayed.

Application Returned Arguments For Cross Reference Common Wiew

= | Returned Object | |2 Comman Object
E-_] PurchiaseOrder # Custicl
* id # Custhame[]
action & Custacdd[]
* jtem
amourt =l
flzg Clear: | Delete | Mocify Returhied Arguinents
SUMSEy

Ok I Cancel

The Application Returned Arguments box displays the returned arguments. This
information is initially populated with the OUT arguments from the application
view.

2. Click Modify Return Arguments to modify the returned arguments list.

3. Select corresponding attributes in the Application Returned Arguments For XRef
and Common View windows, then click Map.

4. Specify the Cross-reference Table name to be populated using these attributes
values.

5. Click OK.

6-8 User's Guide

7

Using Oracle Workflow

This chapter discusses using Oracle Workflow to apply business logic to an
integration. It contains the following topics:

m Oracle Workflow Overview
s OracleAS Integration InterConnect Integration with Oracle Workflow
s Using Oracle Workflow with OracleAS Integration InterConnect

» Model Business Process

7.1 Oracle Workflow Overview

Oracle Workflow is integrated with OracleAS InterConnect. In the context of OracleAS
InterConnect, Oracle Workflow is used for business process collaborations across two
or more applications. A business process collaboration is defined as the conversation
between two or more applications in the context of a business process.

OracleAS InterConnect leverages the robust design time and runtime Oracle
Workflow business process definition and execution support to make these business
processes explicit and manageable.

Note: Knowledge of Oracle Workflow, its tools, and its Business
Event System is required to utilize OracleAS Integration
InterConnect with Oracle Workflow for business process
collaboration. For more information on Oracle Workflow, refer to
Oracle Workflow Administrator’s Guide.

7.1.1 Oracle Workflow Solves Common Business Problems

The following are some of the common business problems that can be solved using
Oracle Workflow.

7.1.1.1 Error Management and Compensating Transactions

If there is an interaction problem between two or more applications, the errors arising
from the problem can be centrally managed, and suitable remedial actions can be
defined and performed.

Example 7-1 Oracle Workflow, OracleAS Integration InterConnect, and Error
Management

Consider a situation where it may be required to keep data of an order entry system
synchronized with a backend ERP (Enterprise Resource Planning) system. Assume

Using Oracle Workflow 7-1

Oracle Workflow Overview

7-2 User's Guide

that a new purchase order is created in the order entry system and an attempt is made
to create a corresponding new purchase order through messaging using OracleAS
Integration InterConnect in the backend ERP system. The attempt fails. To deal with
this scenario, the integrator can utilize Oracle Workflow to automatically send a
compensating message to the order entry system to undo the creation of the purchase
order and notify the user who created the order.

In the preceding example, OracleAS Integration InterConnect and Oracle Workflow
can be used to model the following for every purchase order that is over $50,000:

= Send a notification to a named approver and wait for approval.

s If approved, send the message to the ERP system. Otherwise send a message to
the order entry system to rollback the order creation.

7.1.1.2 Human Interaction

OracleAS Integration InterConnect adds human interaction to better capture business
processes. In the preceding example, OracleAS Integration InterConnect and Oracle
Workflow can be used to model the following:

For every purchase order that is over $50,000, send a notification to a named approver,
and wait for approval. If approved, then send the message to the ERP system,
otherwise send a message to the order entry system to rollback the order creation.

7.1.1.3 Message Junctions

Fan-in and fan-out of messages can be effectively modeled using OracleAS Integration
InterConnect and Oracle Workflow. Fan-in messages involve combining two or more
messages into one message. Fan-out messages involve splitting one message into two
or more messages.

Example 7-2 Fan-in and Fan-out of Messages

For example, a global organization has a centralized Human Resources ERP
application in the United States. Each country has one or more local systems that
capture local employee information. If a new employee joins the Japanese branch of
this organization, data is entered into a local human resources application and local
benefits application. Each entry submits a message for adding this information to the
centralized system.

The centralized system needs data from both systems combined and will only commit
the data if it was entered successfully in both of the local systems connecting to
OracleAS Integration InterConnect. Using Oracle Workflow, this process can be
modeled so that OracleAS Integration InterConnect routes messages from both local
systems to Oracle Workflow. Oracle Workflow waits until it receives both messages,
combines the data, and launches a single message to be delivered by OracleAS
Integration InterConnect to the centralized human resources system.

7.1.1.4 Stateful Routing

OracleAS Integration InterConnect provides extensive support for stateless routing
through event-based and content-based routing features. Using Oracle Workflow,
stateful routing can be accomplished. The decision to route can be based on more than
the event or the content of the message.

7.1.1.5 Composite Services

An internal (organization focused) or external (customer/partner focused) service can
be built through a well-defined set of business processes involving communication

OracleAS Integration InterConnect Integration with Oracle Workflow

between two or more applications. For example, a brick-and-mortar retail company
wants to provide an on-line procurement service to their customers. Behind the user
interface are several business processes controlling communication across several
internal applications to deliver a robust, high performance service to the customer.

Note: The ability to define explicit business process collaborations
is a feature, not a requirement for completing integrations. It is not

necessary to utilize Oracle Workflow for integration if the business

process definition is simple enough to be implicitly captured in the
messaging through the core functionality in iStudio.

7.2 OracleAS Integration InterConnect Integration with Oracle Workflow

This section describes how OracleAS Integration InterConnect and Oracle Workflow
are integrated. It includes the following sections:

s Design Time Tools

s Runtime

7.2.1 Design Time Tools

During design time, business process and event definitions in iStudio can be deployed
to Oracle Workflow. Consequently, Oracle Workflow tools can be launched from
within iStudio to graphically create process diagrams in the context of enterprise
integration through OracleAS Integration InterConnect.

Using iStudio, the following Oracle Workflow tools can be used:

s Oracle Workflow Builder: Use this tool to complete business process definitions
defined and deployed through iStudio. Oracle Workflow Builder creates the
process diagrams as shown in Figure 7-1.

Using Oracle Workflow 7-3

OracleAS Integration InterConnect Integration with Oracle Workflow

Figure 7-1 Oracle Workflow Builder

Ed oracle Workflow Builder 2.6.3.0.1 -0l x|

File Edit Wiew ‘Window Help

-/ Processes
-7 Motifications

i Lookup Types

=-[E Standard
¥ Aftributes

1@ Processes
-2 Motifications
; | Functiors
1#| Events

B Messages
Lookup Types
£ Directory Service

Oracle Workflow Home Page: Use this tool for centralized access to the Web-based
features of Oracle Workflow. The Business Event System management and
administration is a key feature on this page as shown in Figure 7-2.

See Also: For more information on the Business Event System, refer
to Oracle Workflow Administrator’s Guide.

7-4 User’s Guide

OracleAS Integration InterConnect Integration with Oracle Workflow

Figure 7-2 Oracle Workflow Home Page

“Dracle Workflow Home Page - SYSADMIN - Netscape

File Edit “iew Go Communicator Help

O T S = T

Back Fomward Reload Home Search Metscape Print Securty Siop
Z| w# " Bookmarks i Location: [http://1pathak-lap. us.oracle.com/pls i Awta_himl home =]
[. i Oracle Workflow ; ? ORACLE
& TWerldist (0 open notifications) & Events
& Find Notifications & Find Bvent/Group
() Wotification Rules) Systems
() Find Processes & Find System
(2} User Preferences @) Agents
& Global Workflow Preferences & Find A pent
& Document Modes @ Event subscriptions
@ Ttem Type Definition @& Find Subseription
(&) Launch Processes & Check Setup
(2} Demonstration Page {2 Raise Event
@ SYStem Simup
@ Svystetn Identifier
@ Ewvent Queue Summary

7.2.2 Runtime

OracleAS Integration InterConnect integrates with the Business Event System of
Oracle Workflow. The Business Event System is an application service that uses the
Advanced Queuing infrastructure to communicate business events between systems.
OracleAS Integration InterConnect registers itself as an external system in Business
Event System so the following conditions exist:

= Messages can flow from applications through OracleAS Integration InterConnect,
in the common view format, to the Business Event System. The messages will
either trigger an event, or continue Oracle Workflow business processes, as
defined by iStudio processes and described in Oracle Workflow Builder diagrams.

= Messages can flow from the Business Event System to OracleAS Integration
InterConnect in the common view format to applications to either continue or end
Oracle Workflow business processes.

At runtime, Oracle Workflow is integrated with OracleAS Integration InterConnect at
the hub. Messages are passed between OracleAS Integration InterConnect and the
Business Event System of Oracle Workflow using Advanced Queues. The OracleAS
Integration InterConnect Oracle Workflow Communication Infrastructure facilitates
this communication.

At design time, to keep the integration methodology consistent, iStudio reuses the
messaging paradigms of publish/subscribe and request/reply to specify
communication between OracleAS Integration InterConnect and Oracle Workflow. For
inbound Oracle Workflow messages, an iStudio user can specify using a business
process which events Oracle Workflow should subscribe to, and which procedures

Using Oracle Workflow 7-5

Using Oracle Workflow with OracleAS Integration InterConnect

Oracle Workflow should implement. For outbound messages, events Oracle Workflow
can publish, and procedures it can invoke can be specified.

See Also: "Using Oracle Workflow with OracleAS Integration
InterConnect" on page 7-6

7.3 Using Oracle Workflow with OracleAS Integration InterConnect

OracleAS Integration InterConnect can be used with Oracle Workflow. The following
steps describe, in general terms, how to apply business logic:

1. Model Business Process. The user will design the business process using iStudio,
and then deploy the process bundles from iStudio to a .wft file. Next, the user will
complete the process diagrams in Oracle Workflow Builder using the .wft file.

2. Deploy Business Processes for Runtime. The user will deploy the events to the
Business Event System using iStudio. Next, the user will deploy the process
diagram to the database using Oracle Workflow Builder.

7.3.1 Model Business Process

To model the business process:
= Design process bundles using iStudio.
= Deploy process bundles from iStudio to a . wtt file.

s Complete process diagrams in Oracle Workflow Builder by launching Oracle
Workflow Builder from iStudio and using the deployed .wtt file.

7.3.2 Deploy Business Processes for Runtime

To deploy business processes for runtime:
= Deploy events to the Business Event System from iStudio.

= Deploy a process diagram from a file to the database using Oracle Workflow
Builder.

7.4 Model Business Process

This section describes how iStudio and Oracle Workflow work together in OracleAS
Integration InterConnect. It also has instructions on how to use iStudio and Oracle
Workflow during design time for business process collaborations across applications.
This section includes the following topics:

m Process Bundle
m Business Process

= Activity

7.4.1 Process Bundle

A process bundle is a set of logically-related business processes. The process bundles
maps one-to-one with an Oracle Workflow item.

See Also: "Business Process" on page 7-7

7-6 User's Guide

Model Business Process

7.4.2 Business Process

A business process contains a set of OracleAS Integration InterConnect common view
events or procedures that must be routed through Oracle Workflow in one Oracle
Workflow business process. These events and procedures manifest themselves as
Oracle Workflow business events and can be used to define a process diagram in
Oracle Workflow Builder. It is a one-to-one mapping between OracleAS Integration
InterConnect and Oracle Workflow Builder.

7.4.3 Activity

iStudio activities allow the user to define the common view events and procedures
that must be a part of an Oracle Workflow business process. The following are types of
activities in iStudio:

s Publish Event: Oracle Workflow publishes an OracleAS Integration InterConnect
common view event. At deployment time, a business event corresponding to the
common view event is created in the Business Event system.

= Subscribe Event: Oracle Workflow subscribes to an OracleAS Integration
InterConnect common view event. At deployment time, a business event
corresponding to the common view event is created in the Business Event system.

s Invoke Procedure: Oracle Workflow invokes an OracleAS Integration
InterConnect common view procedure. At deployment time, two business events
corresponding to the common view procedure are created in the Business Event
system. One event is for sending the request, and the other is for receiving the
reply.

= Implement Procedure: Oracle Workflow implements an OracleAS Integration
InterConnect common view procedure. At deployment time, two business events
corresponding to the common view procedure are created in the Business Event
system. One event is for receiving the request, and the other is for sending the
reply.

The following table describes how iStudio and Oracle Workflow concepts are mapped.

iStudio Concept Oracle Workflow Concept = Mapping
Process Bundle Item One-to-one
Business Process Business Process One-to-one
Common View Event Business Event One-to-one!
Common View Business Event Two business events per
Procedure procedure
Publish Activity Send Event Activity One-to-one
Subscribe Activity Receive Event Activity One-to-one
Invoke Activity Send Event Activity (for the

request)

Receive Event Activity (for

the reply)
Implement Activity Send Event Activity (for the

reply)

Receive Event Activity (for

the request)

Using Oracle Workflow 7-7

Model Business Process

1 Only for events that are part of a business process in iStudio. Events that are part of the common
view but not part of a business process are not instantiated as Oracle Workflow business events. All
common view events need not be part of business processes. Depending on the integration, some
common view events could be exchanged directly between applications without involving Oracle
Workflow. These events use the core functionality of OracleAS Integration InterConnect. Other
events may need to be part of an explicit business process.This set of events become business events
in Oracle Workflow. The same is true for common view procedures.

7.4.4 Creating a Process Bundle

2.

To create a process bundle using iStudio:

1. From the project list, click Workflow, and expand the subtree.

displayed.

3. Enter the name of the process bundle in the Process Bundle Name field.

4. Click OK.

7.45 Creating a Business Process

To create a business process:

1. From the project list, expand the process bundle for the business process to be
created.

2. Right-click Business Processes, and select New. The Create Business Process

dialog is displayed.

3. Enter a name for the business process in the Business Process Name field.

4. Click OK.

7.4.6 Populating a Business Process with Activities

To populate a business process with activities:

7-8 User's Guide

Right-click Process Bundles, and select New. The Create Process Bundle dialog is

1.
2

From the project list, select the business process to populate.

Right-click the business process and in the context menu, select the activity to be

part of the business process. Choose from the following activities:

s Publish Activity: Oracle Workflow sends a message to OracleAS Integration

InterConnect in the context of the business process.

= Subscribe Activity: Oracle Workflow receives a message from OracleAS
Integration InterConnect.

= Invoke Activity: Oracle Workflow sends a request message to OracleAS
Integration InterConnect and receives a reply.

s Implement Activity: Oracle Workflow receives a request from OracleAS
Integration InterConnect and sends a reply.

The Subscribe Activity Wizard is displayed.

3. Select an event for the activity.

Model Business Process

e 15ubscribe Activity Wizard - Select an Event x|

Select an Event

EH_ | Business COhjects
IJ:'|—_| Customer

L B Create_Customer

= Back | Mext = I Finizh Cancel

4. Click Finish.

Repeat these steps for adding other activities to the process.

Note: When you create multiple activities under a business
process, the list of activities is unordered because the order in
which the activities are added is not important. The order can be
defined in Oracle Workflow Builder through a process diagram.

7.4.7 Deploying to Oracle Workflow

After populating business processes with activities, the information must be deployed
to Oracle Workflow to graphically model a business process. To deploy this
information to Oracle Workflow:

1. In the Deploy tab in iStudio, right-click Workflow, and select Deploy To
Workflow. The Deploy dialog is displayed.

x

~Deploy ToWiarkflow:

[v' Evert Definitions to Wiorkflow: Business Event Systent

|7 Process Definitions to File [wit)

rLaunch Wiarkflosy Tool

[wyorkflowe Homepage

™ wiorkiloe Builder

O I Cancel

2. There are two sets of information that need to be deployed, either independently
or together:

Using Oracle Workflow 7-9

Model Business Process

7-10 User’s Guide

s Oracle Workflow Business Events: Business Events need to be created in the
Business Event System. This is a requirement for runtime only. You can
deploy these after all design-time work, including modeling the process, is
complete.

Note: iStudio checks if an event is already deployed before
deploying it. You can re-deploy all events at any time. If you
deploy an event after all design-time work, then you don’t have to
re-deploy the event.

To check if events have been deployed, launch the Oracle Workflow Home
page.

See Also: "Launching the Oracle Workflow Home Page" on
page 7-12.

= Oracle Workflow Process Definitions through .wft file generation:
Information about business processes captured in iStudio provides a
foundation for building process diagrams in Oracle Workflow Builder.
Deploying process definitions is required for design time.

Note: When deploying process definitions, iStudio prompts for a
filename. If an existing file is specified, iStudio will overwrite the
file. As a result, if there are existing process definitions in a file
modified using Oracle Workflow Builder, do not select that
filename as the target, otherwise all modifications made will be
lost.

By default, both choices are selected. The dialog also allows the following to be
automatically launched:

s Oracle Workflow Builder: Defines business process diagrams.
= Oracle Workflow Home Page: Verifies Business Event deployment.

By default, these choices are unselected. Choose to launch these tools with
deployment or complete this task at a later time on the Design tab.

See Also: "Launching Oracle Workflow Tools" on page 7-11

Select the appropriate choices, and click OK.

If deploying event definitions to the Oracle Workflow Business Event system is
selected, the following dialog is displayed.

Model Business Process

Workflow BES Login |

Fleaze erter Woarkflow BES info:

Usernarme: IOWF_MGR

Pazzwoard: I* wEE **l

LRL: IStdcu:D?:'1 S21:0RCL

[Save settings as default

QI I Cancel

4. Enter the required information based on the selections made during Oracle
Workflow installation, and click OK.

If Deploying Process Definitions to a .wtt file was selected, a file dialog is

displayed.
wlDeploy To Workflow : |
Logkin: | Iabfiles = ck|E

File narme: IB_1_.&.pprc-ve.wﬂ Cpen |
Files of type: IWFT Files LI Cancel |

5. Enter the name and location of the file to create, and click OK.

Note: When deploying process definitions, iStudio prompts for a
filename. If an existing file is specified, iStudio will overwrite the
file. If there are existing process definitions in a file modified using
Oracle Workflow Builder, do not select that filename as the target,
otherwise all modifications made will be lost.

7.4.8 Launching Oracle Workflow Tools

Oracle Workflow tools can be directly accessed through iStudio. You do not need to
start Workflow independently. The following sections discuss how to launch Oracle
Workflow tools in iStudio.

Using Oracle Workflow 7-11

Model Business Process

7.4.8.1 Launching the Oracle Workflow Home Page
To launch the Oracle Workflow Home page:

1. In the Design tab in iStudio, right-click Workflow.
2. Select Launch WF Home Page. The Workflow Home Page dialog is displayed.

Workflow Homepage x|

Flease enter Wiorkflow Homepage URL:

LRL: Imp:Ifscoﬂ-pcrplsmvfm\-'fa_krtml.home

3. Ensure the URL is correct, and click OK. The Username and Password Required
dialog is displayed.

4. Enter the login information for the Oracle Workflow Home Page, and click OK.
The Oracle Workflow Home page is launched using the default browser.

7.4.8.2 Launching Oracle Workflow Builder
To launch Oracle Workflow Builder:

1. In the Design tab in iStudio, right-click Process Bundle to view in Oracle
Workflow Builder.

2. Select Launch Workflow Builder. The Deploy To Workflow dialog is displayed.

iﬂDEpIo‘r To Workflow ﬁl

Logkin: | Iabfiles =l kB

]| G_1_Approve. st

File narme: IB_1_.&.pprc-ve.wﬂ Cpen |
Files of type: IWFT Files ll Cancel |

3. Select an existing . wtt file name to load into Oracle Workflow Builder. The
assumption is that a process definition has already been deployed to a file.

Oracle Workflow Builder is launched depending on which process definition file
is selected.

7-12 User’s Guide

Model Business Process

Note: To launch Oracle Workflow Builder outside of a specific
OracleAS Integration InterConnect process bundle, right-click
Workflow and select Launch Workflow Builder.

7.49 Modifying Existing Oracle Workflow Processes

When modifying existing Oracle Workflow processes, do not add, modify, or remove
OracleAS Integration InterConnect event activities directly in Oracle Workflow
Builder. Always make event-related process changes in iStudio, redeploy to the file,
and import in Oracle Workflow Builder.

Example 7-3 Oracle Workflow Processes

For example, the following steps must be carried out to create an integration-related
Oracle Workflow business process:

1.

5.

Create a process bundle in iStudio and create business processes with some
activities.

Deploy to the my_process_bundle.wtt file.
Import the file into Oracle Workflow Builder.

Make non-event modifications to the process in Oracle Workflow Builder, such as
adding notifications or decision functions to complete the business process.

Save the modified process to my_process_bundle.wft.

If two new events need to be added to the business process, use the following
guidelines:

1.
2.

Using iStudio, make the additions to the particular business process.

Deploy to a different file such as changes_to_my_process_bundle.wft. Do
not deploy to my_process_bundle.wft because any non-event modifications
made through Oracle Workflow Builder will be lost.

Launch Oracle Workflow Builder and import both my_process_bundle.wft
and changes_to_my_process_bundle.wft.

Move the required modifications from the process representing changes_to_
my_process_bundle.wft to the process representing my_process_
bundle.wft.

Save the modified process to my_process_bundle.wft.

The my_process_bundle.wft file now contains the updated process definition.

Using Oracle Workflow 7-13

Model Business Process

7-14 User’s Guide

8

Deployment

This chapter describes the deployment tasks in iStudio. It contains the following
topics:

= Deploying PL/SQL Stored Procedures
» Specifying Application Queue Names for AQ Adapter
= Deploying Workflow Events and Process Definitions

= Sync Adapters from iStudio

8.1 Deploying PL/SQL Stored Procedures

iStudio generates PL/SQL stored procedures if the database adapter or the Oracle
Applications adapter (only for tables, views, or PL/SQL APIs as interfaces) is used

to connect to an application. These stored procedures enable an application to
interface with OracleAS Integration InterConnect through the Oracle database. Refer
to the respective adapter guides for more information on the content of these stored
procedures. This code is generated regardless of the integration point used, which is
the event for publish/subscribe or procedure for request/reply, and must be deployed
in the application schema to be performed at runtime. There are two ways to deploy
this generated PL/SQL code:

= Manual Deployment
= Auto Deployment

8.1.1 Manual Deployment

This model requires two steps to deploy your code:
= Export the generated code to a file
s Load the exported file manually to the target application schema

This model enables a user to utilize their favorite development environment to modify
(if application is receiving data) or build upon (if application is sending data) the
generated PL/SQL code. The file export mechanism is also useful for storing the final
PL/SQL code in the user desired source control system. To export stored procedures:

1. In the iStudio window, click the Deploy tab.

2. Right-click Applications, and select Export PL/SQL. The Export Application
dialog is displayed.

Deployment 8-1

Deploying PL/SQL Stored Procedures

Export Application x|

Select the messages or types of messages to export:

Applications
) wyactpp
[wyDbapg

File Prefix Brovese |
Ok I Cancel |

Select the messages to export stored procedures. Messages can be filtered as
follows:

= Export all messages: Select Applications at the top of the directory.

= Export all messages of a certain type for all applications: Check All
Applications, then select one or more types of messages to export.

= Export all messages for a specific application: Select the application name.

= Export all messages of a certain type for a specific application: Select the type
under the application name in the directory.

= To export specific messages: Select the messages by name. To select more than
one message or class of messages click the application.

Enter the name of the file to contain the exported stored procedures in the File
Prefix field. The name generates multiple files.

To view the directory page, click Browse.

Click OK. The stored procedure is now exported to a text file, which is stored in
the user specified directory (iStudio directory by default), on your computer.

Load the exported file into the target schema. The exported PL/SQL file is
deployed for the selected application.

8.1.2 Auto Deployment

This option allows you to deploy the PL/SQL from iStudio, using the Deploy PL/SQL
Wizard.

8-2 User's Guide

To deploy PL/SQL stored procedures from iStudio:

1.
2.

Click the Deploy tab in the iStudio window.

Right-click a Database application and select Deploy PL/SQL. The Deploy
PL/SQL - Select Events/Procedures screen is displayed.

The application list displays the published /subscribed events and
invoked /implemented procedures.

Deploying PL/SQL Stored Procedures

] Deploy PL/SQL - Select Events /Procedures

Select an entire application or one or moke ewvent(s)/procedure(s) from an

application that you want to deploy.

E-T My acapn
[Publizhed Events

[subscribed Everts

7 Irvvoked Procedures

£ Implemented Procedures

Cancel |

= Back | et = [eploy: |

3. Select the application, event or procedure to deploy the corresponding PL/SQL.

iﬂDEploy PL/SOL - Select Events/Procedures

Jelect an entire application or one or more event(s)/procedure(s) from an

application that you want to deploy.

E-C Myaospp

(] Publishes Events

[subscribed Events
:,—‘\ B

[irwaked Procedures

] Implemerted Procedures

Deploy Cancel

= Bach

Note: You can deploy PL/SQL code either for one application at a
time or at a message level.

4. Click Next. The Deploy PL/SQL - Database Information screen is displayed. This
page allows you to specify the database connection information for deploying the

PL/SQL code.

Deployment 8-3

Deploying PL/SQL Stored Procedures

'inl‘_lDeleJ'_.r PL/SOL - Database Information) 5[

Flease enter database login informstion

Database username: Isys‘tem

Database password: Inn +*

Database URL:

thost port sid) Jstdocor: 15210001

= Back Desloy Cancel

5. Enter information in the following fields:

- Database username: The database username required for connecting to the
database.

— Database password: The password required for connecting to the database.

— Database URL: The URL of the database required for connecting to the
database. The URL should be in the form: host : port : SID.

6. Click Next. The Deploy PL/SQL: Summary screen appears, which displays a
summary of the database connectivity information entered in the previous screen.

E_'Deploy PL/SOL - Summary él

Pleazse confirm the following informartion before proceeding to deploy the PLAIOL
for the application. The packages corresponding to the ewents/procedures you
have selected are shown below.

NOTE: Previously deployed package(s) will be redeployed.

Summary:

Database Information:
Username: system
URL:stdoc07: 1521:0rcl

Selected EvertsiProcedures:
[E-hly2ipp
us‘tnmer (Mot Deployed)

Deploy | Cancel |

7. The Deploy PL/SQL - Summary screen displays the following:
- Database Information
— Selected Events/Procedures

This page displays a list of selected packages and the corresponding
procedures contained in those packages that you have selected for
deployment. The status of each package appears in parenthesis next to the
package name.

8-4 User's Guide

Deploying PL/SQL Stored Procedures

Note: The status can be any of the following:

Not deployed

Package Status Unknown

Previously Deployed

Previously Deployed, but package specification invalid
Previously Deployed, but package body invalid

Previously Deployed, but package specification and body invalid

8. Click Next. The Deploy PL/SQL - Status screen is displayed.

s 1Deploy PL/SOL - Status x|

Package MName I Status |
Customer Not Deployed |;|

r Stop =t first error
Status of the PL/SGL package instaill

=

= cancel |

The Status screen displays:

A non-editable table: A table that displays the packages of the corresponding
application, event or procedure selected for deployment, and the current
status of the package.

A Stop At First Error checkbox: If this option is checked and multiple
packages are being deployed, then the deployment process will stop after
encountering the first error. You will be prompted whether you want to
continue with the deployment of the remaining packages or not.

Click Deploy. The generated PL/SQL is deployed for the selected application,

event or procedure.

After the deployment is complete, the Status of The PL/SQL Package Install
textarea displays the status of the PL/SQL deployment process. If an exception is
thrown while executing a PL/SQL stored procedure, it is displayed in this
textarea. After deploying each package, the Status column is updated with success
or error messages. The messages are:

Deployed successfully: The PL/SQL package was deployed successfully.

Deployed, but package specification invalid : The PL/SQL package was
deployed. However, the status of the package specification in the database is
invalid.

Deployed, but package body invalid : The PL/SQL package was deployed.
However, the status of the package body in the database is invalid.

Deployment 8-5

Specifying Application Queue Names for AQ Adapter

— Deployed, but package specification and body invalid : The PL/SQL package
was deployed. However, the status of both, the package specification and
body in the database is invalid.

— Failed to Deploy : The PL/SQL package could not be deployed in the
database.

- Package status unknown : An error occured while deploying the PL/SQL
package in the database.

8.2 Specifying Application Queue Names for AQ Adapter

If an application is configured to use the AQ adapter, then the user must specify which
queues will be used to send and received data to/from the application. These queues
are called application queues.

Note: Application queues are not the same as the hub queues. The
hub queue names come preconfigured and all adapters use the hub
queues to communicate with each other. Application queues, on the
other hand, are used only by applications that expose data to the
adapter using AQ. Application queues are peculiar to an AQ adapter
enabled spoke system, and the queue names must be specified at
deployment time so that the adapter can communicate to the
application.

The following steps describe this task.
1. On the Deploy tab in iStudio, expand the Applications list and navigate to AQAPP.
2. Expand the AQAPP node and navigate to the Routing node.

3. Expand the Routing node and select Application Queues. The Application
Queues property sheet displays on the right side of the iStudio window.

4. Select Edit from the Edit menu. This will launch the Edit Application Queues
dialog.

'i.‘_lEdit Application Queues e il

Application Cueues

~Routing Information

Business Object | Event Cwwner v ersion Role Gueue Mame
Customer Creste_Customer |04 Puklizh

Customer Create_Customer |(OL0A Subzcribe

Custamner zet_AdddressiIM A Zend Request

Customer Get_AddressOUT (0L Feceive Reply

Ok I Cancel

8-6 User's Guide

Sync Adapters from iStudio

5. Add the application Queue name to each event.

Queue Name Event
INBOUND_QUEUE PO_Cancel
OUTBOUND_QUEUE PO_Insert, PO_Update, and PO_Delete

‘iT.'Edit Application Queues 5'

Application Gueues

~Routing Information

Business Chject | Event Orvner iersion Fuale Gueue Mame
Purchaze OCrder PO _Cancel DA Publizh INECIIMD_GQUELE
Purchase_Crder |PC_nsert DA Subscribe OUTBCUND _GIUE. ..
Purchaze_Crder PO _Update DA Send Request OUTECSUND _GILE...
Purchase_Crder |PO_Delete DA Receive Reply OUTECUND _QILE...

[9],4 I Cancel

6. Click OK.

8.3 Deploying Workflow Events and Process Definitions

After business processes have been populated with activities, you must deploy the
information to Oracle Workflow and then graphically model a business process.

See Also: Section 7.4.7, "Deploying to Oracle Workflow™"

8.4 Sync Adapters from iStudio

Adapters can be configured to cache metadata locally to minimize communication
with the repository at runtime. If so configured, these adapters are not aware of
changes made through iStudio after they have cached the metadata. Synching
metadata is an explicit way to refresh the adapter local cache with the new repository
metadata. The following steps describe this task:

» Select File from the menu bar, then Sync Adapters. The Sync Adapters dialog is
displayed.

= Select the applications to which to sync adapters, and click OK.

Deployment 8-7

Sync Adapters from iStudio

8-8 User's Guide

9

Runtime System Concepts and
Components

This chapter describes the runtime concepts of OracleAS Integration InterConnect. It
contains the following topics:

» Integration Architecture
s Components
s Runtime System Features

= Real Application Clusters Configuration

9.1 Integration Architecture

OracleAS Integration InterConnect runtime system is an event-based distributed
messaging system. An event is any action that initiates communication through
messaging between two or more applications integrated through OracleAS Integration
InterConnect. The messaging system can be deployed both within an enterprise or
across enterprise boundaries.

The runtime enables inter-application communication through hub and spoke
integration. This methodology keeps the applications decoupled from each other by
integrating them to a central hub rather than to each other directly. The applications
are at the spokes of this arrangement and are unaware of the other applications they
are integrating with. To them, the target of a message (or the source) is the hub. As
each application integrates with the hub, transformation of data between the
application and hub (in either direction) is sufficient to integrate two or more
applications.

Figure 9-1 provides an overview of design time and runtime phases in integration.

Runtime System Concepts and Components 9-1

Components

Figure 9—-1 A Graphical Overview of Design Time and Runtime Phases in Integration

iStudio

Repository

k?i - He :Iniia' -—> = A ’.I-“a' <~ .
E o

R —
racleAS
InterConnect
Hub

9.2 Components

The following are the main components in the runtime system:

9.2.1 Adapters

Prepackaged adapters help applications at runtime to participate in the integration
without any programming effort.

9-2 User's Guide

Adapters
Repository
Advanced Queues

Oracle Workflow

9.2.1.1 Agent and Bridge Combination

Adapters are the runtime component for OracleAS Integration InterConnect. Adapters
have the following features:

Application Connectivity: Connect to applications to transfer data between the
application and OracleAS Integration InterConnect. The logical subcomponent
within an adapter that handles this connectivity is called a bridge. This
protocol/application-specific subcomponent of the adapter knows how to
communicate with the application. For example, the database adapter is capable of
connecting to an Oracle database using JDBC and calling SQL APIs. This
subcomponent does not know which APIs to call, only how to call them.

Transformations: Transform data to and from the application view to common
view as dictated by the repository metadata. In general, adapters are responsible
for carrying out all the runtime instructions captured through iStudio as metadata
in the repository. Transformations are an important subset of these instructions.
The logical sub component within an adapter that handles the runtime
instructions is called an agent. This is the generic runtime engine in the adapter
that is independent of the application to which the adapter connects. It focuses on
the integration scenario based on the integration metadata in the repository. There
is no integration logic coded into the adapter itself. All integration logic is stored
in the repository. The repository contains the metadata that drives this sub

Components

component. For example, in a database adapter, the agent subcomponent knows
which SQL APIs to call, but not how to call them. All adapters have the same
agent code. It is the difference in metadata that each adapter receives from the
repository that controls and differentiates the behavior of each adapter.

/ Adapter

Common App
View P View

Metadata Driven
Transfomation

Transport and/ or
Application

Adapters can be configured to cache the metadata at runtime to address performance
needs. There are three settings for caching metadata:

No Caching: For each message, the adapter will query the repository for metadata.
This setting is recommended for an early or unstable integration development
environment.

Demand Caching: The adapter will query the repository only once for each
message type and then cache that information. For subsequent messages of the
same type, it will use the information from the cache. This setting is recommended
for a stable integration development environment.

Full Caching: At start-up time, the adapter will cache all its relevant metadata.
This setting is recommended for a production environment.

Note: For more information on the adapters provided by OracleAS
Integration InterConnect, refer to Oracle Application Server InterConnect
Installation Guide.

Adapters are stateless by default. As a result, in case an adapter goes down, the
message is either with the application or in the OracleAS Integration InterConnect
Hub AQ. This behavior lends itself well to load balancing and high availability
requirements for the adapter.

9.2.2 Repository

The repository consists of two components:

Repository Server: A Java application that runs outside the database. It provides
RMI services to create, modify, or delete metadata at design time using iStudio
and query during runtime using adapters. Both adapters and iStudio act as RMI
clients to communicate with the repository server.

Runtime System Concepts and Components 9-3

Runtime System Features

= Repository Database: The repository server stores metadata in database tables. The
server communicates to the database using JDBC.

Adapters have the ability to cache metadata. If the repository metadata is modified
after adapters have cached metadata, the relevant adapters can be notified through
iStudio's Sync Adapters functionality.

See Also: Section 8.4, "Sync Adapters from iStudio”

9.2.3 Advanced Queues

Advanced Queues provide the messaging infrastructure for OracleAS Integration
InterConnect in the hub. In addition to being the store and forward unit, they provide
message retention, auditing, tracking, and guaranteed delivery of messages.

See Also: Oracle Database Application Developer’s Guide for
information on Advanced Queues

9.2.4 Oracle Workflow

Oracle Workflow facilitates integration at the business process level through its
Business Event System. OracleAS Integration InterConnect and Oracle Workflow are
integrated to leverage this facility for business process collaborations across
applications.

9.3 Runtime System Features
The OracleAS Integration InterConnect runtime features are as follows:
= Messaging Paradigms
= Message Delivery
= Message Retention
= Routing Support
= Partitioning
= High Availability

= Backup and Recovery

9.3.1 Messaging Paradigms

OracleAS Integration InterConnect runtime supports three major messaging
paradigms:

» Publish/Subscribe
= Request/Reply (synchronous and asynchronous)
= Point-to-Point

Point-to-Point messaging can be achieved both in the context of Publish/Subscribe
and Request/Reply by using Content Based Routing.

Applications can be configured (per integration point) to support any of these
paradigms.

See Also: Chapter 1, "Getting Started with OracleAS Integration
InterConnect"

9-4 User's Guide

Runtime System Features

9.3.2 Message Delivery

The following are features of message delivery:

s Guaranteed Delivery: All messages are guaranteed to be delivered from the source
applications to the destination applications.

= Exactly Once Delivery: The destination applications will receive each sent message
exactly once. The messages are never lost or duplicated.

= In Order Delivery: The messages are delivered in the exact same order as they
were sent. This is applicable only when there is one instance of the adapter
running per application serviced.

9.3.3 Message Retention

Messages remain in the runtime system until they are delivered. Advanced Queues in
the hub provide the message retention. Messages are deleted when each application
that is scheduled to receive a specific message has received that message. For auditing
purposes, you can configure the system to retain all successfully delivered messages.

9.3.4 Routing Support

Routing is a function of the Advanced Queues in the hub. By default, oai_hub_
queue is the only multiconsumer Advanced Queue configured as the persistent store
for all messages for all applications. This queue will handle all standard as well as
content-based routing needs. The queue is created automatically when you install the
repository in the hub. The only reason to change this configuration is if Advanced
Queues becomes a performance bottleneck. This is unlikely because most of the
message processing is done in the adapters, not in the hub.

See Also: 'Partitioning" on page 9-5

9.3.4.1 Content-Based Routing

Content-based routing allows you to route messages to specific destination
applications based on message content. For example, an electronic funds transaction
settlement application is designed to transmit bank transactions with a specific bank
code to identify the destination bank system. When the electronic funds transfer
application publishes a message at runtime, the OracleAS Integration InterConnect
runtime component determines the bank code value based on metadata stored in the
repository, and routes the message to the correponding recipient system.

9.3.5 Partitioning

OracleAS Integration InterConnect uses partitioning to manage load balancing across
different instances of the same adapter. At runtime, it is possible that the adapter
attached to a particular application becomes a performance bottleneck. You can detect
this by monitoring the message throughput information using the InterConnect
Manager.

OracleAS Integration InterConnect addresses adapter scalability through a
well-defined methodology.

Multiple adapters can be attached to one application to share the message load. This
can be done in several ways depending upon the needs of your integration
environment. For example, Application A publishes three different kinds of events:
EventA, EventB, and EventC. Three potential scenarios should be examined to

Runtime System Concepts and Components 9-5

Runtime System Features

determine how one or more adapters could be attached to the application to meet
performance objectives.

Scenario 1

The order in which the messages are sent by application A must be strictly adhered to
for the life of the messages. Messages sent by application A must be received by the
subscribing applications in the same order across the different event types.

Recommendation In this case, you cannot add more than one adapter to Application
A for load balancing.

Scenario 2

The order in which messages are sent by Application A must be adhered to but not
across different event types. Application A publishes the following messages in order:
M1_EventA, M2_EventB,M3_EventA.M1l_ EventA and M3_EventA must be ordered
with respect to each other because they correspond to the same event type. M2_
EventB has no ordering restrictions with respect to M1_EventA and M3_EventA.

Recommendation IIn this case, you can leverage the Partitioning feature enabled
through iStudio's Deploy tab. This feature allows you to allocate specific adapters for
specific message types thereby segmenting the runtime load processing. For this
scenario, you can create two partitions: Partition1 corresponds to EventA and
Partition2 corresponds to EventB. Dedicate one adapter to each partition (specified at
adapter install time or through modification of adapter. ini after install). The end
result: The order of messsages is maintained as per requirements and the processing
power has doubled because of two adapter servicing the messages instead of just one.
This kind of partitioning is called Message-based partitioning.

Scenario 3
There is no message order dependency, even within the same event type.

Recommendation Two approaches for load balancing are available:

1. One or more adapters are added utilizing the entire Message Capability Matrix.
This means that at runtime any one of the adapters would be available to receive
any message, though only one of them would actually receive the message. The
adapter that is first to request the next message for processing will determine the
adapter that will receive the message. This is called Pure Load Balancing
partitioning.

2. Message-based Partitions are created based on projections of the number of
messages for a particular event type. For example, if there will be three times as
many EventA messages than EventB or EventC messages, you could create two
partitions: one for handling EventA messages, and the other for handling the
other two event types. Now you can dedicate several adapters to handle the
EventA message load only. Fewer adapters can be dedicated to the other two
event types.

9.3.6 High Availability

9-6 User's Guide

Enterprise applications need high availability (HA) because they cannot afford
downtime. OracleAS Integration InterConnect uses Oracle Process Manager and
Notification (OPMN), Oracle Database Server, and Oracle Real Application Clusters to
enable high availability for its components.

Real Application Clusters Configuration

See Also: Oracle Application Server High Availability Guide

9.3.7 Backup and Recovery

The OracleAS Backup and Recovery feature can be used to back up the critical
configuration files for any OracleAS Integration InterConnect 10g Release 2 (10.1.2)
installation. You can use the config misc_files. inp file provided by the
OracleAS Backup and Recovery tool to back up InterConnect configuration files. The
config _misc_files. inp file is located in the following directory:

$SORACLE_HOME/backup_restore/config

See Also: Oracle Application Server Administrator’s Guide

The following files should be backed up from the OracleAS Integration InterConnect
install along with other Application Server component files.

[Hub Component]

SORACLE_HOME/integration/interconnect/hub/hub.ini
SORACLE_HOME/integration/interconnect/repository/repository.ini
SORACLE_HOME/integration/interconnect/security/cwallet.sso
SORACLE_HOME/integration/interconnect/security/ewallet.pl2
SORACLE_HOME/integration/interconnect/adapters/workflow/adapter.ini
SORACLE_HOME/integration/interconnect/adapters/workflow/ErrorManagement.xml [if
file exists]

[Adapter Component]

SORACLE_HOME/integration/interconnect/adapters/<adaptername>/adapter.ini
SORACLE_HOME/integration/interconnect/adapters/<adaptername>/ErrorManagement .xml
[if file exists]

SORACLE_HOME/integration/interconnect/security/cwallet.sso [if adapter not
installed in the same midtier as hub]
SORACLE_HOME/integration/interconnect/security/ewallet.pl2 [if adapter not
installed in the same midtier as hub]

You can append the preceding mentioned OracleAS Integration InterConnect
configuration file names to the config_misc_files. inp file with the same file
name format.

If all files in a directory have to be backed up, then you can specify only the directory
names or use wildcards. You can also exclude certain files from the backup by
specifying those file names in the config_exclude_files. inp file. However, you
cannot specify directories or use wildcards in the config_exclude_files. inp file,
only single entries are allowed.

9.4 Real Application Clusters Configuration

In Real Application Clusters environment, all active instances can concurrently
perform transactions against a shared database. Real Application Clusters coordinates
each instance’s access to the shared data to provide data consistency and data
integrity. It features balanced workloads among the nodes by controlling multiple
server connections during period of heavy use and provide persistent, fault tolerant
connections between clients and Real Application Clusters database.

Runtime System Concepts and Components 9-7

Real Application Clusters Configuration

See Also: The following documentation for additional
information on Real Application Clusters:

» Oracle10g Real Application Clusters Administration

» Oracle Application Server Concepts

9.4.1 OracleAS Integration InterConnect Adapters Supporting Real Application

Clusters

OracleAS Integration InterConnect adapters leverage Real Applicatio Clusters
technology, provide consistent and uninterrupted service without having to restart the
adapters, if an instance fails, and provide guaranteed message delivery. OracleAS
Integration InterConnect adapters connect to the first of the listed available nodes.
Nodes are defined in adapter.ini and hub. ini files.

See Also: OracleAS Integration InterConnect adapters installation
documentation for details on adapter. ini and hub. ini files
associated with specific adapters

If one node fails then the database connection is established with the next available
node in the adapter. ini or hub. ini file recursively until a successful connection.
Failover is transparent to the user.

The hub connections for all adapters and the spoke connections for Database and
Advance Queuing adapters are RAC enabled. From this release, the adapter process is
also RAC enabled.

See Also: Section "Support for Oracle Real Application Clusters"
in the Oracle Application Server Application Developer’s Guide
Advanced Queuing

9.4.1.1 Adapter Failover Mechanism

In the earlier OracleAS Integration InterConnect releases, the adapters failed over to
the next node in the Real Application Clusters environment for any exception. This
release changes the adapter failover mechanism. The adapters are designed to failover
only when the corresponding node fails. This means that a normal exception will not
cause a failover to be triggered. Instead, the adapter will failover only when the node
itself fails.

9.4.2 Configuration

9-8 User's Guide

The adapter. ini and hub. ini files must be populated with the information about
the host, port, and instance for all the nodes. Additional sets of parameters which
specify the number of nodes are also required to be populated. All existing entries
remain the same except a new entry for each node is added. Table 9-1 describes the
additional sets of parameters which specify the number of nodes required to be
populated.

Real Application Clusters Configuration

Table 9-1 Additional Parameters for RAC Configuration

File Name Parameter
hub.ini host_num_nodes
hub_hostx
hub_portx
hub_instancex: where x varies between 2 and the number of
nodes.
adapter.ini for the ab_bridge_num_nodes
Advanced Queuing .
adapter aqg_bridge_host
aqg_bridge_port
ag bridge_instance
adapter.ini for the db_bridge_num_nodes
Database adapter

db_bridge_schemal_hostx
db_bridge_schemal_portx

db_bridge_schemal_instancex: where x is a value
between 2 and the number of nodes.

Sample hub.ini File
The following is a sample hub. ini file.

hub_username=ichub
encrypted_hub_password=<encrypted_password> use SORACLE_
HOME/integration/<version>/bin/encrypt for encryption
hub_use_thin_jdbc=true

hub_host=dlsunl312

hub_instance=iasdb

hub_port=1521

hub_num_nodes=2

hub_host2=vindaloo

hub_instance2=orcl

hub_port2=1521

9.4.3 Sample Database Adapter adapter.ini File that Shows the Spoke Database Entry

The following is a sample adapter. ini file for the Database adapter that shows the
spoke database entry.

db_bridge_schemal_host=dlsunl312
db_bridge_schemal_port=1521
db_bridge_schemal_instance=iasdb
db_bridge_num_nodes=2
db_bridge_schemal_host2=vindaloo
db_bridge_schemal_port2=1521
db_bridge_schemal_instance2=orcl

Runtime System Concepts and Components 9-9

Real Application Clusters Configuration

9-10 User’s Guide

10

Using InterConnect Manager

InterConnect Manager is a new utility that takes care of both the runtime management
and error handling needs of OracleAS Integration InterConnect. This chapter describes
the functionality of the utility in detail, in the following topics:

s Overview of InterConnect Manager
= Starting InterConnect Manager
s Using InterConnect Manager

s Using InterConnect Manager in Silent Mode

10.1 Overview of InterConnect Manager

InterConnect Manager is a command-line based, menu-driven utility that allows you
to:

= List messages present in the hub queue and hub error table.

= View details and content of specific messages.

= Export messages from queues to files.

» Import messages to queues and resend edited messages.

s Track messages.

= Start and stop adapters.

s Install and uninstall adapters.

s Create and drop the hub schema in the hub database.

= Import/Export the integration metadata repository to and from a file.

= Adapter Error Management.

10.2 Starting InterConnect Manager
InterConnect Manager can run in two modes:
s Command-line, menu-driven mode
= Silent mode
The silent mode is provided for calling the utility from another script.

To start InterConnect Manager in the command-line mode, enter the following
command at the prompt:

ICManager [-properties hub.ini]

Using InterConnect Manager 10-1

Using InterConnect Manager

InterConnect Manager gets all its information from OATHOME/hub/hub. ini. If you
want it to take information from another location instead, use the properties parameter
and provide the absolute path of the hub. ini file as argument. This brings up the
main menu of InterConnect Manager as shown in Figure 10-1. From here, you can
choose to manage the hub, adapters, and repository. You can also track messages
across the OracleAS Integration InterConnect system, from one application to the
other.

Figure 10-1 InterConnect Manager Main Menu

WINNT" System32' cmd.exe - icnanager

D:“oracle~OraHome?BICxoain?.A.4%hin>icmanager

InterConnect Sysztem Management

. Hub

. Adapters

. Repository

. Message Tracking
. Exit

Select one of the items from the above menu = _

10.3 Using InterConnect Manager
The main menu of InterConnect Manager consists of the following options:
= Hub
= Adapters
= Repository
= Message Tracking

To select any option, enter its number at the prompt. Each option has further menu
options under it.

10.3.1 Hub

When you choose Hub in the main menu, the menu shown in Figure 10-2 is displayed.

10-2 User’s Guide

Using InterConnect Manager

Figure 10-2 Hub Menu

i WINNT Sysbem32% cond.exe - icnanager

Items for the "Hub' menu

. Hub Queue Management

. Error Message Resubmission
. Back

. Exit

Select one of the items from the above menu =

Use the Hub menu to manage the hub queues, and to view and manage the errors that
may have occurred during message delivery. Key menu options include:

s Hub Queue Management

» Error Message Resubmission

10.3.1.1 Hub Queue Management

When you choose Hub Queue Management in the Hub menu, the menu shown in
Figure 10-3 is displayed.

Figure 10-3 Hub Queue Management menu

WINNT' System32' cmd.exe - icnanager

Items for the "Hub Queue Management' menu

. List messages
. Delete

. Export

. Import from a file
. Back

. Exit

Select one of the items from the above menu :

Hub Queue Management allows you to view and manage messages present in the hub
queue. When messages arrive from adapters, they are placed in the hub queue. The
hub processes each message in the queue on a first-come, first-serve basis, applying
various routing rules and sending the messages to various adapters. You can also
export one or more messages to a file, edit and import them. Key menu options
include:

» List Messages

s Delete Messages

= Export Messages To a File

= Import Messages From a File

10.3.1.1.1 List Messages When you choose the List Messages option in the Hub Queue

Management menu, details of all the messages present in the hub queue are displayed
as shown in Figure 10-4.

Using InterConnect Manager 10-3

Using InterConnect Manager

Figure 10-4 List Messages

C:WINNTY System32h,

Items for the "Hub Queue Management" menu
List messages
Delete M ag
Export m ag to a file
Import m ages from a file
Back
Exit

of the items from the above menu :

H s
Engqueue Time

13FA1994824F4FA98 CDAFEADBDG 46 3CE
AQAPP H

ustomer H
'
H

C

4
93145D59F1564C8B928620AFC628458C

glstomer H AQAPP H

B47AA?ACGAFD477CBA943152CA221 EBR
e_Customer H AQAPPE H

i Customer i Creat
DEAFPF.SHTPAPP H A7-09-2864 18

1
3
2

i Customer i Creat
3 DEAFPF.SHTPAPP H A7-09-2864 18
3

i Customer i Creat
DEAFF . SMTPAPP H A7-09-2004 10k

The message details include:

s Id: Id acts a unique identifier for each message in the system. No two messages
will have the same Id.

= Enqueue Time: Enqueue Time is the time when the hub receives the message from
the adapter.

= Business Object: The Business Object field contains the name of the message
corresponding to the business objects.

= Event: Each Business Object consists of one or more events. The Event field
contains the name of the Business Event that triggered the message.

= Sender: The Sender field contains the name of the application that sent the
message.

= Recipients: The Recipients field contains the names of the applications that will
receive the message.

10.3.1.1.2 Delete Messages When you choose the Delete Messages option in the Hub
Queue Management menu, the menu in Figure 10-5 is displayed.

Figure 10-5 Delete Messages

TNNT" System32%cmd.exe - icnanager

Items for the "Delete Messages" menu

Delete a single message

Delete a range of messages

Delete all messages from a sender

Delete all messages targeted to a receiver
Delete all messages

Back

Exit

of the items from the above menu :

The key menu options are:

Delete a Single Message

Delete a Range of Messages

Delete All Messages From a Sender

Delete All Messages Targeted To a Receiver

10-4 User’s Guide

Using InterConnect Manager

Delete All Messages

When an option is chosen, InterConnect Manager displays a list of messages present in
the queue, and prompts the user about which messages should be deleted from the
queue.

Delete a Single Message

InterConnect Manager requests the index number of the message to be deleted and
then removes the message from the queue.

Delete a Range of Messages

InterConnect Manager requests the low range value and the high range value. It then
removes all messages from the hub queue with Ids in the specified range.

Delete All Messages From a Sender

InterConnect Manager requests the name of the sender, and removes all its messages
present in the hub queue.

Delete All Messages Targeted To a Receiver

InterConnect Manager requests the name of the receiver, and removes all its messages
present in the hub queue. If a message has more than one recepient and one of them is
targeted from removal, only the name of the targeted recepient is removed from the
message. For example, if you decide to delete all messages targeted to application A,
and a particular message in the queue has recipients A and B, the message will not be
dropped. Instead, A will be removed from the recipient list.

Delete All Messages
This option removes all messages present in the hub queue.

10.3.1.1.3 Export Messages To a File This option allows you to export a message, or a
range of messages to a file. When you choose this option, the menu shown in
Figure 10-6 is displayed.

Figure 10-6 Export Messages to a File

INNT System32' cnd.exe - icnanager
e. Exit

Select one of the items from the above menu :

H Business Object H Business Event
Recipients Engueue Time

H 61 B4
e_Customer H AQAFP i DBAFP
2 1 AG3EBA7F37E348CBY93C44FE3DYBACEFBE Customer H Creat
AQAPP H DB

e_Customer i AFP i B7-87-2064 A3:18:22

31 7184DADCD72F4B648B74BB528FREVB2B Customer ' Creat
e_Customer ' AQAPP ' DBAFPP ' a7-@7-2804 A3:18:22

4 i 6E35466E521F4516BAF227DEDC3528CD Customer H Creat
e_Customer i AQAFP i DBAFP H A7-@7-2004 @3:18:22
Enter the lowest index of the message you want to export : 2

Enter the highest index of the meszage you want to export : 2

Enter the file to store the exported messages : D:“Messzages.txt

Do you want to delete the messages that i to export? [ys/nl :

Using InterConnect Manager 10-5

Using InterConnect Manager

InterConnect Manager displays the list of messages present in the hub queue. It then
requests information for the export process. The questions are as follows:

1.

Enter the lowest index of the message you want to export:
Enter the lower bound of the range of messages to be exported.
Enter the highest index of the message you want to export:
Enter the upper bound of the range of messages to be exported.

If you wish to export only one message, enter the same message Id for both the
lower and upper bounds.

Enter the file to store the exported messages:

Enter the full path of the text file that stores the exported message. If the file
already exists, then it will be overwritten.

Do you want to delete the message that you are going to export?

If you wish to drop the messages from the queue, then enter y. Once the messages
have been exported to the target file, InterConnect Manager displays a
confirmation. You can open the file in any text editor, view the contents, and
change them to suit your needs. You can then import the messages back into the
hub queue by choosing the Import Messages From a File option in the Hub Queue
Management menu.

10.3.1.1.4 Import Messages From a File The Import Messages From a File option allows
you to import a message or a range of messages from a file into the hub queue. When
you choose this option, the menu shown in Figure 10-7 is displayed.

Figure 10-7 Import Messages from a File

\WINNT" System32'cmd.exe - icnanager
Itemz for the "Hub Queue Management' menu

. List mess

. Delete Me

- Export me

- Import messzages from a file
. Back

. Exit

Select one of the items from the ahove menu : 4

Enter the file to import the messages : D:i“Messages.txt

Enter the recipient names separated by comma to send the messages to them : DBAP
P

InterConnect Manager requests information for the import process. The questions are
as follows:

1.

10-6 User’s Guide

Enter the file to import the messages:

The messages that you wish to import must all be present in a single XML file.
Enter the full path of the file that contains the messages to be imported.

Enter the recipient name separated by comma to send the message to them:

Enter the names of the application that will receive the imported messages.
Separate the names using commas.

Using InterConnect Manager

10.3.1.2 Error Message Resubmission

If a message, for some reason, cannot be delivered to the target application by the
adapter, it is placed in the Error table of the hub. The Error Message Resubmission
option provides you the tools to manage the Error table of the hub, and allows you to
carry out various actions on the messages in the queue.

When you choose Error Message Resubmission in the Hub menu, the menu shown in
Figure 10-8 is displayed.

Figure 10-8 Error Message Resubmission Menu

W WINNT System 32 cmd.exe - icmmanager

Itemz for the "Error Message Resubmission' menu

: Import messages from a file
. Back
. Exit

Select one of the items from the above menu :

Key menu options include:

m List Messages

= Resend Messages

s Delete Messages

= Export Messages To a File

= Import Messages From a File

10.3.1.2.1 List Messages The List Messages option provides the details of all the
messages present in the error queue. The message details include:

s Id: Id acts as a unique identifier for each message in the system. No two messages
will ever have the same Id.

= Enqueue Time: Enqueue Time is the time when the hub receives the message from
the adapter.

= Sender: The Sender field contains the name of the application that sent the
message.

= Recipient: The Recipient field contains the name of the application that was
supposed to receive the message.

= LoggingComponent: The LoggingComponent field contains the name of the
component that logged the error. This helps identify the exact point at which the
error occurred.

» Error Description: The Error Description field gives a brief description of the error
and the action taken.

10.3.1.2.2 Resend Messages The Resend Messages option of the Error Management
menu allows you to resend messages that have been put into the Error table. For
example, if the message could not be delivered to the target application by the adapter,
then the message is moved to the cai_agent_error table. But if the adapter is
down, then the message will be persisted in the queue, until the adapter is up and
running.

Using InterConnect Manager 10-7

Using InterConnect Manager

When you choose the Resend Messages option in the Error Management menu, the
menu shown in Figure 10-9 is displayed.

Figure 10-9 Resend Messages

WINNT" System32'crd.exe - icmanager

Items for the "Resend Messages' menu

. Send a single message

. Send a range of messages
. Send all messages

. Back

. Exit

Select one of the items from the above menu :

InterConnect Manager displays another menu where you can choose:
= Send a Single Message

= Send a Range of Messages

= Send All Messages

InterConnect Manager then asks a series of questions related to the resend operation.
The questions are as follows:

1. Enter the index of the error message you want to resend:
Enter the index number of the message to be resent.
2. Enter the recipient name separated by comma to send the message to them:

Enter the names of the application that will receive the message. Separate the
names using commas.

3. Enter the priority for the imported messages:

The priority level decides how quickly the messages will be sent to the recipients.
You can choose from level 0-9, with 0 being the lowest and 9 being the highest
priority.

4. Do you want to delete the selected error message from the error table?
If you wish to drop the messages from the Error table, then enter y, else enter n.

The functionality of the Delete Messages, Export Messages To a File, and Import
Messages From a File options are explained in earlier sections.

See Also: Delete Messages on page 10-4, Export Messages To a File
on page 10-5, and Import Messages From a File on page 10-6

10.3.2 Adapters

When you choose Adapters in the main menu, the menu in Figure 10-10 is displayed.

10-8 User’s Guide

Using InterConnect Manager

Figure 10-10 Adapters Menu

W WINNT System32 cmd.exe - icmanager
Items for the "AQAPPCstdevtB8" menu

Restart

Suspend

Resume

Ping

Configuration File Management
Error Management

Back

Exit

1.
2.
3.
4.
5.
6.
h.
g.

Select one of the items from the above menu :

The complete list of adapters that are present is displayed. When you choose any
adapter, InterConnect Manager displays the Adapters menu. Use the Adapters menu
to manage the various adapters that form the spokes in the OracleAS Integration
InterConnect hub and spoke paradigm. An identical menu is presented for each
adapter. Key menu options include:

= Restart: Restarts the adapter.

= Suspend: Temporarily suspends all activity on the adapter. The adapter no longer
sends or accepts messages.

= Resume: Allows the adapter to start its normal activities again. This is a
counterpart to the Suspend command.

= Ping: Checks to see if the adapter is up and active.
= Configuration File Management
s Error Management

The Configuration File Management and Error Management options are described in
detail in the following section.

10.3.2.1 Configuration File Management

The Configuration File Management option of the Adapter Management menu allows
you to manage configuration files for adapters. If you wish to change the behaviour of
an adapter, then you must edit its adapter. ini file. InterConnect Manager allows
you to remotely read and edit the config file.

Key menu options in the Configuration File Management menu include:
= View Config File: Displays the contents of the config file (adapter. ini file).

= Edit Config File: Reads the adapter’s config file (adapter. ini file) from the
remote machine and saves it to the local machine.

= Update Config File: Writes the adapter’s config file (adapter. ini file) to the
remote machine where the adapter is installed. You can stop and restart the
adapter to reread the config file.

10.3.2.2 Error Management

The Error Management option of the Adapter Management menu allows you to create
rules for errors that occur during adapter operation. For example, if an adapter
receives messages with an invalid format, the messages are processed in accordance
with the rules specified here. Figure 10-11 displays the Error Management Menu.

Using InterConnect Manager 10-9

Using InterConnect Manager

Figure 10-11 Error Management Menu

Items for the “Error Management' menu

Select one of the items from the abhove menu :

4 WINNT System32 cmd.exe - icmanager

List rules

Add rule

View rule

Update rule
Delete rule

Set Mail Server
View Mail Server
Back

Exit

i.
2.
3.
4.
5.
6.
7.
h.
e.

Key menu options in the Error Management menu include:

List Rules

Add Rule
View Rule
Update Rule
Delete Rule
Set Mail Server

View Mail Server

10.3.2.2.1 List Rules The List Rules option displays the list of rules that are currently
set for the adapter.

10.3.22.2 Add Rule The Add Rule option allows you to add new rules for the adapter
error messages.

To add a new rule, enter 2 in the Error Management menu. InterConnect Manager
asks a series of questions that help build the new rule for the error messages. The
questions are as follows:

1.

10-10 User’s Guide

Enter the name for this rule:

Enter a name for the rule you are about to create. Use alphanumeric characters
only and do not use spaces in the name.

Enter the error codes separated by comma:
The rule will apply to all error codes listed here.
Do you want the adapter to retry the message in case of above errors?

If you enter y, then the adapter will retry sending the message. If you enter n, then
skip to Step 7.

How many times would you like to retry the message?

Enter the number of times the adapter must retry sending the message before
giving up. If the retries fail, then a message is deleted from the queue.

What is the interval for each retry in milliseconds?
Enter the time interval between each retry.
Do you want to perform more actions if retry fails?

If you choose y, then InterConnect Manager continues with more questions. If you
choose n, then the questions stop at this point.

Using InterConnect Manager

7. Do you want to send mail notification?

If you choose y,then InterConnect Manager continues with more questions. If you
choose n, then the questions stop at this point.

8. Enter the From address:
9. Enter the To addresses separated by comma:

10. Enter the subject [S$ERROR_CODE and $$ERROR_MESSAGE$$ can be used as
part of the subject]:

You can enter any text in the subject field, which will be used as the subject of the
mails sent in case of an error. If you have used the variables $$ERROR_CODE$$
and $$ERROR_MESSAGE$$ in the message, then they are dynamically replaced
with the appropriate error code and error message before the mail is sent.

11. Enter the message body [$$ERROR_CODE and $$ERROR_MESSAGES$$ can be
used as part of the subject]:

You can enter any text in the message body, which will be used as the message
sent in case of an error. If you have used the variables $$ERROR_CODE$$ and
$$ERROR_MESSAGES$$ in the message, then they are dynamically replaced with
the appropriate error code and error message before the mail is sent.

10.3.2.2.3 View Rule The View Rule option allows you to view the existing rules.
10.3.2.2.4 Update Rule The Update Rule option allows you to edit the existing rules.
10.3.2.2.5 Delete Rule The Delete Rule option allows you to delete an existing rule.

10.3.2.2.6 Set Mail Server The Set Mail Server option allows you to set the SMTP mail
server that will be used to mail updates and errors.

10.3.2.2.7 View Mail Server The View Mail Server option allows you to view the current
SMTP mail server.

10.3.3 Repository

When you choose Repository in the main menu, the menu shown in Figure 10-12 is
displayed.

Figure 10-12 Repository Menu

WINNT' System 32 cmd.exe - icnanager
for the "Repository' menu
. interconnectrepositorylstdevtdd

. Back
. Exit

Select one of the items from the above menu : 1

Items for the "interconnectrepositorylstdevtB8" menu

. Restapt

- Suspend

. Resume

. Ping

. Configuration File Management
. Back

. Exit

Select one of the items from the above menu :

Use the Repository menu to manage the hub repository.

Using InterConnect Manager 10-11

Using InterConnect Manager

Key menu options include:

» Restart

= Suspend

= Resume

= Ping

= Configuration File Management

You can carry out all major administrative tasks on the repository from InterConnect
Manager. In the case of Configuration File Management option, the functionality is
identical to that described on page 10-9, except that the config file read from or written
to is the repository.ini file.

10.3.4 Message Tracking

When you choose Message Tracking in the main menu, the menu shown in
Figure 10-13 is displayed.

Figure 10-13 Message Tracking

WINNT' System 32 crnd.exe - icnanager
InterConnect System Management

. Hub

. Adapters

. Repository

. Message Tracking
. Exit

Select one of the items from the above menu :

Items for the "Message Tracking' menu

. AQApp
. DBApp
. Test
. Back
. Exit

Select one of the items from the above menu :

The Message Tracking option first lists the applications participating in the
integration. When you choose an application, InterConnect Manager lists the Business
Objects associated with the application.

When you choose a Business Object, InterConnect Manager lists the Business Events
associated with the Business Object.

When you choose a Business Event, InterConnect Manager lists the Message Tracking
menu.

Key menu options for the Message Tracking menu include:
= Consolidated Information

s Detailed Information

s Detailed Information For a Tracking ID

When you choose the Consolidated Information option, InterConnect Manager asks
you a set of questions that help identify the exact set of messages whose consolidated
information needs to be collected and then displays the messages in a tabular format.

When you choose the Detailed Information option, InterConnect Manager directly
displays the list of all the messages associated with the particular Business Event.

10-12 User's Guide

Using InterConnect Manager in Silent Mode

When you choose the Detailed Information For a Tracking ID option, InterConnect
Manager asks for the tracking ID details and then displays the messages in a tabular
format.

10.4 Using InterConnect Manager in Silent Mode

InterConnect Manager also has a silent mode of operation, where no menu is
displayed and all commands are given directly on the command line. InterConnect
Manager commands in the silent mode have the following form:

ICManager -component componenttype -name componentname -action actiontype
Here, componenttype is the type of the component, componentname is the name of

the component instance that InterConnect Manager should act on, and actiontype
specifies the action to carry out on the component.

You can use InterConnect Manager to carry out the following activities:

Restart a Component

To restart a component, provide the component type, component instance name and
restart as the argument for the action parameter. For example, to restart an adapter
called DBApp, the command is:

ICManager -component adapter -name DBApp -action restart

Similarly, to restart a repository called ICrepo, the command is:

ICManager -component repository -name ICrepo -action restart

Suspend a Component

To suspend a component, provide the component type, component instance name and
suspend as the argument for the action parameter. For example, to suspend the
DBApp adapter, the command is:

ICManager -component adapter -name DBApp -action suspend

Similarly, to suspend the ICrepo repository, the command is:

ICManager -component repository -name ICrepo -action suspend

Resume a Component

To bring a suspended component into running mode, provide the component type,
component instance name and resume as the argument for the action parameter. For
example, to resume the DBApp adapter, the command is:

ICManager -component adapter -name DBApp -action resume

Similarly, to resume the ICrepo repository, the command is:

ICManager -component repository -name ICrepo -action resume

Check a Component’s Availability

To view if a component is running, provide the component type, component instance
name and ping as the argument for the action parameter. For example, to view if the
DBApp adapter instance is running, the command is:

Using InterConnect Manager 10-13

Using InterConnect Manager in Silent Mode

ICManager -component adapter -name DBApp -action ping

Similarly, for the ICrepo repository, the command is:

ICManager -component repository -name ICrepo -action ping

List the Contents of Queues

To view the contents of either the errortable or the hub queue, provide hub as the
component type, errortable or queue as the component name and list as the action. For
example, to list the contents of the errortable queue, the command is:

ICManager -component hub -name errortable -action list

Similarly, to list the contents of the hub queue, the command is:

ICManager -component hub -name queue -action list

Delete the Contents of Queues

To delete the contents of either the errortable or the hub queue, provide hub as the
component type, errortable or queue as the component name and delete as the action.
For example, to list the contents of the errortable queue, the command is:

ICManager -component hub -name errortable -action delete

Similarly, to delete the contents of the errortable queue, the command is:

ICManager -component hub -name errortable -action delete

10-14 User's Guide

A

Integration Scenario

This appendix provides an integration scenario and model based on a fictitious
company, Acme, Inc. using OracleAS Integration InterConnect. It contains the
following topics:

= Integration Scenario Overview

= Modeling the Integration

» Implementing the Scenario

= Modeling Business Logic in Oracle Workflow
= Deployment

s Conclusion

A.1 Integration Scenario Overview

Each division of Acme, Inc. has multiple Order Fulfillment Systems which are a legacy
from various mergers and acquisitions. Maintaining the parts of these systems such as
platforms, software, training, and so on is costly and time consuming for Acme. In
addition, the lack of integration between the systems prevents business analysis at the
enterprise level.

Acme has created a new centralized system, and the first phase of the integration
project is to synchronize the purchase order information on one of the legacy systems
with the new system.

A.1.1 The New Centralized System

The new order fulfillment system operates on an Oracle10g database and uses the
OracleAS Integration InterConnect Database Adapter to communicate with the
system.

A.1.2 The Legacy System

The legacy order fulfillment system operates on an Oracle8i database and uses the
OracleAS Integration InterConnect Advanced Queuing Adapter to communicate with
the system.

The Purchase Order table in this system has a database trigger to queue the changed
records. OracleAS Integration InterConnect is configured to listen to that queue to
accomplish the integration.

Integration Scenario A-1

Modeling the Integration

Note: There are many methods available to capture changes to a
system. These methods include, but are not limited to, database
triggers, interface tables, and database log files.

A.1.3 The Integration Scenario

Consider an organization that wishes to integrate its legacy system containing its
purchase order tables with the new order fulfillment application running on
Oraclel(g. Figure A-1 illustrates this integration scenario:

Figure A-1 Integration Scenario

Workflow (OWF)

-
PO_lrsert, PO _Lpdste £ PO _Delete

o ‘) e

Legacy Application Order Fulillment Application

Sends Messages Receives Mesmges

PO_Insert, PO_Update & PO_Delete

Oraole adwnoed @usuing

Oracle 9:
Receives Meszage PO _Cancel

The first step in any integration scenario is to model the integration.
s Legacy System

= Any change to the Purchase Order table in the legacy application is published
using a database trigger. An administrator must approve all changes, such as
insert, update, & delete before they are applied to the new order fulfillment
System

s Order Fulfillment System

= If a change is approved, then it is sent to the order fulfillment system. If a
change is rejected, then a cancellation notification is sent back the legacy
system.

s Additional Issues

s The process must be non-intrusive. The user cannot alter the structure in
either system.

= Synchronization of the primary keys of each system must be maintained by
the integration platform.

= The integration must be scalable and support addition of systems.

A.2 Modeling the Integration

Figure A-2 illustrates how OracleAS Integration InterConnect integrates with the
scenario in Figure A-1.

A-2 User's Guide

Implementing the Scenario

Figure A-2 Integration Modeling

Workflow (OWF)
L]
Fa
S Order Fulfiliment
| Legacy Application |I 1 1 1 | Applicati on
Sends 3 !
PO_Insert 1 1 Receives
Message 1 " = =1 1 PO_Insert
— s : s i b : P —f : =
-
31 E ,g |° |g g I%
& < 2| ®; 2 [z 13|13
Receives g ! % ﬂ E ﬂ % I g
PO_Cancel ! E R g E !
Mes=zage 1 !
1 I = Event Routing

Common View

Now that the integration scenario has been defined:

How are we going to accomplish this task?

Legacy Application publishes the insert, update, and delete messages to a queue.
OracleAS Integration InterConnect Adapter for AQ (Advanced Queuing adapter)
is used to send and receive messages to and from the queue.

The Order Fulfillment Application uses a standard Oracle database and the
OracleAS Integration InterConnect Adapter for DB (Database adapter).

All messages are routed to Oracle Workflow to apply user-defined logic.

A.3 Implementing the Scenario

The following sections describe implementing the integration scenario using iStudio.

Review Legacy System Database Trigger
Create a Project

Create the Common View Business Object
Create Business Object Events

Create Applications

Create a Cross Reference Table

Create Publish Events

Subscribe to Events

Create Content-based Routing

Create an Oracle Workflow Process Bundle
Deploy the Process Bundle to Oracle Workflow
Creating Objects in Oracle Workflow for Modeling

Integration Scenario A-3

Implementing the Scenario

A.3.1 Review Legacy System Database Trigger

The source system uses Oracle1l0g Advanced Queuing to publish changes to the
purchase order table. The user creates a database trigger on the purchase order table.
When a record is updated, inserted, or deleted and then committed, the trigger
enqueues the appropriate payload. The OracleAS Integration InterConnect Advanced
Queuing Adapter is configured to listen on this queue.

The following is an example of the code for the database trigger:

CREATE OR REPLACE TRIGGER AQAPP.ENQUEUE_PO
AFTER INSERT OR DELETE OR UPDATE ON AQAPP.PURCHASE_ORDER FOR EACH ROW

DECLARE
gname VARCHAR2 (20) := 'OUTBOUND_QUEUE' ;
enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T;
message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
msgid RAW(16) ;
recip_agent SYS.AQS$_AGENT;
raw_payload RAW(32767) ;
payload VARCHAR?2 (256) ;
BEGIN
IF INSERTING THEN
payload := ’<?xml version="1.0" standalone="no"?>’ |
'<PO_Insert>’ ||
'<id>’ || :new.id || r</id>’ [
'<action>’ [] 1 || '</action>’ \
'<item>’ || :new.item [| "</item>’ \
"<amount>’ || :new.amount || '</amount>’ |
‘<quantity>’ || :new.quantity || "</quantity>’ || '</PO_Insert>';
ELSIF DELETING THEN
payload := ’<?xml version="1.0" standalone="no"?>’ |
'<PO_Delete>’ ||
'<id>’ || :o0ld.id || '</id>’ [
'<action>’ [| 'D || '</action>’ || '</PO_Delete>';
ELSIF UPDATING THEN
payload := ’‘<?xml version="1.0" standalone="no"?>’ |
'<PO_Update>’ |
'<id>’ || :old.id || '</id>" [
"<action>’ [| 'u’ || '</action>’ |
‘<item>’ || :new.item || "</item>’ \
' <amount>’ || :new.amount || '</amount>’ \
'<quantity>’ || :new.quantity || '</quantity>’ |
'<last_updated>’ || :new.last_updated|| ‘</last_updated>’|| ’'</PO_Update>’;
END IF;

raw_payload := UTL_RAW.CAST_TO_RAW(payload);

DBMS_AQ.ENQUEUE(queue_name => gname
,enqueue_options => enqueue_options
,message_properties => message_properties
,payload => raw_payload
,msgid => msgid);

EXCEPTION

WHEN OTHERS THEN NULL;
END;

A.3.2 Create a Project

A project is a container for the integration logic pertaining to an integration scenario.
The following steps describe creating the PO_Integration project using iStudio.

1. From the File menu, select New Project. The Create Project dialog is displayed.

A-4 User's Guide

Implementing the Scenario

2. Enter PO_Integration in the Project Name field, and click OK. The Repository
Information dialog is displayed.

3. Enter the correct repository information, and click OK.

See Also: "Creating a New Project” on page 2-11

A.3.3 Create the Common View Business Object

Each application has its own semantics and syntax. In order to integrate the data from
multiple sources, a common view that is semantically compatible is required. The
common views are events or procedures that are grouped in a business object, located
under the Common Views node in iStudio. In this scenario, all events are grouped
under the Purchase_Order business object.

The following steps describe creating the Purchase_Order business object.

1. From the File menu, select New, then select Business Object. The Create Business
Object dialog is displayed.

2. Enter Purchase_Order in the Business Object Name field, and click OK.

See Also: '"Creating Business Objects" on page 3-2

A.3.4 Create Business Object Events

In order to integrate data between two or more systems, a semantically compatible
view, or common view, is required. In this scenario, the insert, update, delete, and
cancel events are grouped under the Purchase_Order business object. The following
four events must be created:

s PO_Cancel
» PO_Insert

= PO_Update
s PO_Delete

Note: When an event is created, a Common Data Type
representing its structure is automatically created. This common
data type can then be reused to define the structure of other events.

The following steps describe creating the PO_Insert event using an XML DTD (Data
Type Definition). The user can also use the database or other common data type to
describe the structure of the event.

1. From the File menu, click New, and then select Event. The Create Event dialog is
displayed.

Select Purchase_Order as the Business Object.
Enter PO_Insert in the Event Name field.
Click Import, and select XML.

a k& ® N

Select the predefined file, PO_Insert_CV.dtd in the Open dialog, and click
Open.

6. Select PO_Insert in the Choose Root Dialog, and click OK to return to the Create
Event dialog.

Integration Scenario A-5

Implementing the Scenario

7. Click OK.

Use similar steps for the PO_Update, PO_Delete, and PO_Cancel events, substituting
the following correct XML DTD for each event. The PO_Cancel, PO_Delete, PO_Insert,
and PO_Update events appear in the Design Object Navigator under the Events node
as shown in Figure A-3.

See Also: "Creating Events" on page 4-2

Figure A-3 Completed Event Node in iStudio

w | Dracle iStudio - myWorkspace.iws i] 4
File Edit Ewent Procedure Help

MEIRIRYES

Design I Deplay I |
[E-Project PO_Integration Business Chject: Purchase_Order
= Cammon Yiews
=L Business Objects Everit Mame: PO _Update Crwyrierersion: DAL
~ 2 Customer
EH
i Employes - Bttributes
- 2 Purchasze_Order
Events - - . A
= ey nsert ame 5 weEr ... | Array
EIPC_Update DA =
icd String -
& Po_cCancel " - -
Procedures Action fing
#0710 Common Data Types item String r
= Applications amount String -
I ity At =
. . -
| myDhapg ll uantity String | _}I_I
E:+ E ok k flose
' Enahling Infrastructure

A.3.4.1 DTD Code

Each event has its own XML DTD. The code for each event is shown.
s PO_Cancel

<!ELEMENT PO_Cancel (id, action, item, amount, quantity)>
<!ELEMENT id (#PCDATA) >

<!ELEMENT action (#PCDATA) >
<!ELEMENT item (#PCDATA) >
<!ELEMENT amount (#PCDATA) >
<!ELEMENT quantity (#PCDATA) >

s PO_Update

<!ELEMENT PO_Update (id, action, item, amount, quantity, last_updated)>
<!ELEMENT id (#PCDATA) >
<!ELEMENT action (#PCDATA) >
<!ELEMENT item (#PCDATA) >
<!ELEMENT amount (#PCDATA) >
<!ELEMENT quantity (#PCDATA) >
<!ELEMENT last_updated (#PCDATA) >

n PO_Delete

A-6 User's Guide

Implementing the Scenario

<!ELEMENT PO_Delete (id, action)>

<!ELEMENT id (#PCDATA) >

<!ELEMENT action (#PCDATA) >
n PO_Insert

<!ELEMENT PO_Insert (id, action, item, amount, quantity)>
<!ELEMENT id (#PCDATA)>

<!ELEMENT action (#PCDATA)>

<!ELEMENT item (#PCDATA)>

<!ELEMENT amount (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

A.3.5 Create Applications

An application in iStudio represents an instance of an adapter communicating with an
application. When the user installs an adapter, a unique name is supplied, and in
iStudio, this name is used as the name of the application. This scenario demonstrates
creating the AQAPP and DBAPP applications.

See Also: "Creating an Application" on page 3-1

The following steps describe creating the AQAPP application using iStudio.

1. From the File menu, select New, and then select Application. The Create
Application dialog is displayed.

2. Enter AQAPP in the Application Name field, and click OK.

Complete the same steps to create the DBAPP application. The AQAPP and DBAPP
applications appear in the Design Object Navigator under the Applications node as
shown in Figure A—4.

Figure A-4 AQAPP and DBAPP Applications in iStudio

w Oracle iStudio - myWorkspace.iws

File Edit Ewent Procedure Help

=10 %]

NMEIEINEIL R

Desian | Depioy |

[E-Project PO_Integration
o Comtnon Views

Applicstions
M| acare
M| oearp
12 \iorkflow

=+ Enabling Infrastructure

Integration Scenario A-7

Implementing the Scenario

A.3.6 Create a Cross Reference Table

Each system has its own unique identifier or primary key. In most cases, an
administrator does not allow any changes to the structure of their systems. As a result,
using a cross reference table, the keys of both systems can be maintained and
cross-referenced for subsequent updates and deletes.

The following steps describe creating the PO_XREF cross reference table using iStudio.
The table is automatically created in the repository schema and is referenced by the
subscribing application. The WORKFLOW and DBAPP applications are added to the
table, as the publisher and subscriber respectively.

1. From the File menu, click New, and then select Cross Reference Tables. The
Create Cross Reference Table dialog is displayed.

2. Enter PO_XREF in the Table Name field, and click OK.

3. Right-click the PO_XREF in the Navigator, and add the WORKFLOW and DBAPP

applications. The PO_XREF cross reference table appears in the Design Object
Navigator under the Cross Reference Tables node as shown in Figure A-5.

Figure A-5 PO_XREF Cross Reference Table in iStudio

w1 Oracle iStudio - myWorkspace.iws

File Edit Ewent Procedure Help
D] @] o|s|%]@]

Desigh I Deploy | W
[=EHProject PO_Integration

"J Common Yigws

=HE Aaplications

[acare

[oBARPP

2] wiorkflowe

+ Enabling Infrastructure

[contert Based Roting

Cross Reference Table PO_XREF

—Mapping

WWORKFLCAW DEAPP

See Also: "Working with Cross-referencing" on page 6-7

A.3.7 Create Publish Events

A-8 User's Guide

The database trigger in the Legacy Application, AQAPP, publishes messages when
records are inserted, updated, or deleted in the purchase order table. This process
happens outside the OracleAS Integration InterConnect environment. The OracleAS
Integration InterConnect Advanced Queuing adapter is configured to read these

messages. The publish events under the iStudio application will:
= Map the application view to the common view.

m Perform transformations.

Implementing the Scenario

s Publish the new event to subscribers in the OracleAS Integration InterConnect

environment.

The following steps describe how the message received from the Legacy Application

queue is processed.

Starting the Publish Wizard
To start the Publish Wizard:

1. Expand the Applications node in the Design Object Navigator.

Select and expand the AQAPP application.

2
3. Select the published events node.
4. Right-click Published Events, and select New. The Publish Wizard is displayed.

Using the Publish Wizard to Publish the PO_Insert Event

To publish the PO_Insert Event:

1. Select an Event Page

a. Enter information in the following fields:

*

*

Application: Select AQAPP for the application.

Message Type: Select AQ for the message type.

b. Expand the Business Objects list in the Select an Event box and drill down to

PO_Insert.

c. Select PO_Insert and click Next.

Figure A-6 Publish Wizard - Select an Event page

= Publish Wizard - Select an Event

Application
Meszage Type

Select an Event

Jacuape

jea

EH__ 1 Business Ohbjects
;| Customer
| Employee
(=1 Purch:

Po_Cancel
Po_Delete

= Back | Mext = I

Firizh

Cancel

2. Define Application View Page
a. Import Attributes

Import attributes from the common view by clicking Import and selecting
Common View. The structure of the PO_Insert common view event is
displayed. If the application view is different from the common view, then use

the database or an XML DTD to define the structure.

Integration Scenario A-9

Implementing the Scenario

c
d.

e.

f.

Create an Event Map

An event is received and converted into a common view. This common view
can be mapped by any application. If the structure of one or more events is
identical, then routing becomes an issue. An event map is used to distinguish
the routing in this situation. The Action field in the application view contains I
for insert, U for update, or D for delete. Complete the following steps to create
an event map:

Click Event Map, then click Add.
Select the Action field, and enter I.
Click Add.

Click Next.

Define Mapping Page

Use the Define Mapping page to map fields from the AQAPP View to the common
view using transformations. In this scenario the structure is identical, as a result,
the ObjectCopy transformation is used to map all the fields at once. To define
new mappings:

a.

b.

Click New. The Mapping Parameters dialog is displayed.

Expand the PO_Insert list and select the PO_Insert node in the AQAPP View
box.

Select ObjectCopy in the Transformations box.

Expand the PO_Insert list and select the PO_Insert node in the Common View
box.

Click OK. The new mapping is displayed in the Summary box of the Define
Mapping page.
Click Finish.

Figure A-7 Publish Wizard - Mapping Parameters

=l Mapping Parameters ﬂ
AGIAPP Wigw: Tranzformations: Comman Sigsw:
OhijectCopy EH_] PO_Insert
CopyFields = e
ConcatFields *id
ExpandFisids ® action
CharReplace ® itern
StringReplace hd amourfd
Substring * quartity
LPac
FPad
L Trim
F:Trirm
Truncate
Tokurmber LI
Custom Transformations |
Commerts |
Aolyanced | Search | Wariahles | | Ok | Cancel |

To create the PO_Update and PO_Delete publish events, repeat the same steps, using
the following values for steps 2 and 3.

A-10 User's Guide

Implementing the Scenario

s PO_Update

s Use the PO_Update common view.

s The event map value is U.

s Use the ObjectCopy transformation and map to PO_Update.
» PO_Delete

n Use the PO_Delete common view.

s The event map value is D.

= Use the ObjectCopy transformation and map to PO_Delete.

See Also: "Publishing an Event" on page 4-3

A.3.8 Subscribe to Events

The DBAPP application subscribes to the following three events:

s PO_Insert
= PO_Update
s PO_Delete

The AQAPP application subscribes only to the PO_Cancel event.

See Also: "Subscribing to an Event" on page 4-8

A.3.8.1 DBAPP Application Subscriptions

The following steps describe how the Order Fulfillment Application subscribes to
messages.

Starting the Subscribe Wizard:
1. In the Design Object navigator, expand the Application node.

2. Select and expand the Application node to display the Subscribed Events node.

3. Right-click Subscribed Events, and select New. The Subscribe Wizard is
displayed as shown in Figure A-8.

Using the Subscribe Wizard to Subscribe to the PO_Insert Event
1. Select an Event Page
a. Enter information in the following fields:
* Application: Select DBAPP.
*

Message Type: Select Database.

b. Expand the Business Objects node in the Select an Event box and navigate to
PO_Insert.

c. Select PO_Insert, and click Next.

Integration Scenario A-11

Implementing the Scenario

Figure A-8 Subscribe Wizard - Select an Event page

2.

A-12 User's Guide

= 15ubscribe Wizard - Select an Event x|
Application [T =1
Message Type |DATABASE =l
Select an Event

EH_ | Business Objects
| Customer
| Emploves
= _| Purchase_Order

PO_Update
Po_tancel
Po_Delete

= Back | Mext = I Finizh Cancel

Define Application View Page

a.

Import attributes from the database.

* Click Import, and select Database. The Database Login dialog is
displayed.

Enter the correct information to login to the database, and click Login. The
Oracle Database Browser dialog is displayed as shown in Figure A-9.

In the Browser dialog, expand the Tables/Views node and select
DBAPP. PO.

* (Click Done.
Create a cross-reference.

In "Create a Cross Reference Table" on page A-8, the PO_XREF cross reference
table was created. This table synchronizes the primary keys on the source and
target systems.

* Click Cross Reference and select PO_XREF. The XRef dialog is displayed
as shown in Figure A-10.

* Select POID in the Application Returned Arguments For XRef box.
Select id in the Common View box.

* Click Map.

* Click OK.

Implementing the Scenario

Figure A-9 Subscribe Wizard - Oracle Database Browser

4. Dracle Database Browser x|

E} DEAPP @stocO? 1321 DEBAPP ~ | | Definition | cgm.gml

o ARONYMOUS
- CTHSYS Hame Type |
L PoiD MUMEER

o DEAPP
S POITEM ' SRCHARZ
PRICE \ARCHARZ
- GUANTITY MUMEER
LAST_UPDATED DATE

PCID

POITEM

FRICE
GUANTITY
LAST_UPDATED

o MGMT_WIEW
o OLAPSYS
o ORDPLUGING
- ORDSYS

o, OLTLR

= SCoTT
B S_NFORMTH_SCHEMA | ﬂl

Figure A-10 Subscribe Wizard - Cross Reference

x|
Application Returned Arguments For Cross Reference Commar 'iew
E-_ | Returned Object 51 PO_ingert 5
& pop * id
#* action
* item
amount
quantity =
[i(=]] Clear Delete Modify Returned Arguments

POID: mapped to: Common Okject.PO_Inzert idiusing PO_XREF)

Surntnary

OK I Cancel

c. Click Next.
3. Define Mapping Page
a. Define a new mapping:

* Click New. The Mapping Parameters dialog is displayed as shown in
Figure A-11.

* Expand the PO_Insert list and the PO_Insert node in the Common View
box. Map the following:

Integration Scenario A-13

Implementing the Scenario

Common View Transformation DBAPP View

item CopyFields POITEM

amount CopyFields PRICE

quantity CopyFields QUANTITY
* (lick OK.

Figure A-11 Subscribe Wizard - Mapping Parameters

h'ﬂ Mapping Parameters

Comrman “iew: Transformations: DEAPP View:
E-_ 1 PO_Inzert OhjectCopy | | B Po_inzert
] OAHeader #® POD
=1 PO_Inzert ConcatFields LRrOITEM
* i ExpandFields # PRICE
action CharReplace # QUANTITY
. tringReplace # LAST UPDATED
. amourfd Subatring
* guartity Pad
FPad
L Trim
FTrim
Truncate
ToPumber ;I
Custom Transfarmations |
Comments I

Advanced |

Search

Wariahles

[——

Cancel

b. Click Next.

4. Define Stored Procedure Page

a.

C.

A-14 User's Guide

Select sub_PO_Insert_OAI_V1 from the SQL code list. The SQL code is

displayed in the box.

PROCEDURE sub_PO_Insert_OAI_V1(POID

Add the following code at end of the existing SQL code:
IN OUT LONG,
POITEM IN LONG,
PRICE IN LONG,
QUANTITY IN NUMBER,
LAST_UPDATED IN DATE)

AS
v_poid NUMBER;

BEGIN

SELECT PO_SEQ.NEXTVAL INTO v_poid FROM dual;

POID :=v_POID;

INSERT INTO PO VALUES
(v_POID, POITEM, PRICE, QUANTITY, SYSDATE);

COMMIT;

END sub_PO_Insert_OAI_V1;

Click Finish.

Implementing the Scenario

Create the Subscribed PO_Update Event
To create the subscibed PO_Update Event:

1. Select the PO_Update event.

2. Import the Common View.

3. Define Mapping Page
a. Map the same parameters as described in PO_Insert.
b. Inaddition, map the following:

* Expand the PO_Update list and node in the Common View box and select
id.

* Select the LookupXref transformation.
* Expand the PO_Update list and select POID in the Application View box.
* Click Apply. The Mapping dialog is displayed.

* Select the Req. checkbox for table listed in the Parameters column and
click OK.

c. Click Next.
4. Define Stored Procedure Page

a. Select sub_PO_Update_OAI_V1 for the SQL code for field. The code is

displayed in the box.
b. Add the following code at end of the existing SQL code:
PROCEDURE sub_PO_Update_OAI_V1(POID IN NUMBER,
POITEM IN LONG,
PRICE IN LONG,
QUANTITY IN NUMBER,
LAST_UPDATED IN DATE)
AS
v_poid NUMBER :=poid;
v_poitem LONG :=poitem;
v_price LONG :=price;
v_quantity NUMBER :=quantity;
BEGIN

UPDATE PO SET poitem = v_poitem, price = v_price

quantity = v_quantity, last_updated = sysdate
WHERE poid = v_poid;
COMMIT;

EXCEPTION
WHEN OTHER THENS NULL;

END sub_PO_Update_OAI_V1;

c. Click Finish.

Create the Subscribe PO_Delete Event
To create the subscribe PO_Delete Event:

1. Select the PO_Delete event.
2. Import the Common View.

3. Define Mapping Page

Integration Scenario A-15

Implementing the Scenario

a. Map the same parameters as described in PO_Insert.
b. Inaddition, map the following:

* Expand the PO_Delete list and node in the Common View box and select
id.
* Select the DeleteXref transformation.
* Expand the PO_Delete list and select POID.
* Click Apply. The Mapping dialog is displayed.
* Select PO_XREF from the values column and click OK.
c. Click Next.
4. Define Stored Procedure Page

a. Select sub_PO_Delete_OAI_V1 for the SQL code for field. The code is

displayed in the box.
b. Add the following code at the end of the existing SQL code:
PROCEDURE sub_PO_Delete_OAI_V1(POID IN NUMBER,
POITEM IN LONG,
PRICE IN LONG,
QUANTITY IN NUMBER,
LAST_UPDATED IN DATE)
AS
v_poid NUMBER :=poid;
BEGIN
DELETE FROM WHERE PO v_poid = poid;
COMMIT;
EXCEPTION

WHEN OTHERS THEN NULL;
END sub_PO_Update_OAI_V1;

c. Click Finish.

A.3.8.2 AQAPP Application Subscriptions
The AQAPP application subscribes to the PO_Cancel event.

1. Select an Event Page
a. Enter information in the following fields:
* Application: Select AQAPP.
* Message Type: Select AQAPP.
b. Select PO_Cancel and click Next.
2. Define Application View Page
a. Import attributes from the common view and click Next.
3. Define Mapping Page
a. Define a new mapping:
* Click New and map the following;:
Id Copyfields Id
* Click OK.

A-16 User's Guide

Implementing the Scenario

b. Click Finish.

A.3.9 Create Content-based Routing

When an event is published, it is automatically routed to any event’s subscriber, by
default. If the routing of an event needs to be based on a value in the message or
message header, then content-based routing is required in this scenario. All changes to
the purchase orders must be approved and routed to Oracle Workflow to apply
business logic.

The logic to be applied for the Events PO_Insert, PO_Update, and PO_Delete as
follows:

= If AQAPP is the source application, then route to the WORKFLOW destination
application. The Wizard steps are as follows:

1. Source Page: Select OAI_Header.SendingApplication

2. Chose Operator Page: Select =

3. Chose Value Page: Enter AQAPP

4. Addition Condition Page: Select Radio Button Complete & press Finished
5. Destination Page: Select WORKFLOW

s If WORKFLOW is the source application, then route to the DBAPP destination
application. The Wizard steps are as follows:

1. Source Page: Select OAI_Header.SendingApplication

2. Choose Operator Page: Select =

3. Chose Value Page: Enter WORKFLOW

4. Addition Condition Page: Select Radio Button Complete & press Finished
5. Destination Page: Select DBAPP

The procedure repeats for the PO_Update and PO_Delete events. Figure A-12
describes the completed content-based routing in iStudio.

Figure A-12 Completed Content Routing in iStudio

w10racle iStudio - myWorkspace.iws _ | |:||5|

File Edit Ewent Frocedure Help

ID|<] e]|s|s|n|&

Dezigh | Deploy |]
+ Enaniing InTrasiruciure
- Content Based Routing
42 Customer
Everts
l—{?ﬁ Create_Customer
Procedures - Routing Rule:
Lt1] Get_sddress
2 Employes Contion —

=2 Purchasze_Order (PO_Inzert OslHeader Sen... WORKFLCW
Everts

B0 nse (PO_lhsert. OalHeader Sen... DBAPP
2 PO_Updste
%M Po_Delete

oa Po_Cancel
Procedures
=+ Cross Reference Tables
i Po_xREF

| 7 Datmain Valuia Maps =
4 »

- Business Ohject: Purchase_Order

Event Marme: P2 _Insert Oyvnertersion:

Integration Scenario A-17

Implementing the Scenario

A.3.10 Create an Oracle Workflow Process Bundle

A process bundle enables related business processes to be grouped and transferred to
the Oracle Workflow environment where user-defined business logic is applied.

Each business process enables related publish, subscribe, invoke, and implement
activities to be grouped and placed in the Oracle Workflow Business Event System.

Create a Process Bundle
The following steps describe creating the PO process bundle using iStudio:

1. From the project list, expand the Workflow node and navigate to Process Bundle.

2. Right-click Business Processes and select New. The Create Process Bundle dialog
is displayed.

3. Enter PO in the Process Bundle Name field and click OK.

Create a Business Process
The following steps describe creating the PO business process using iStudio:

1. Expand the Process Bundle node on the project list and navigate to Business
Processes.

2. Right-click Business Processes and select New. The Create Business Process
dialog is displayed.

3. Enter PO in the Business Process Name field and click OK.

Create the Subscribe and Publish Activities

The Oracle Workflow business process uses the common view. As a result,
transformation and mapping is not required and the only types of activities used are
as follows:

= Subscribe: Oracle Workflow receives a message from OracleAS Integration
InterConnect.

= Publish: Oracle Workflow sends a message to OracleAS Integration InterConnect.

s Invoke: Oracle Workflow sends a request message to OracleAS Integration
InterConnect and receives a reply.

s Implement: Oracle Workflow receives a request from OracleAS Integration
InterConnect and sends a reply.

In this scenario, the PO_Insert, PO_Update, and PO_Delete messages are routed to
Oracle Workflow to apply business logic. Based on this logic, messages are sent to the
Order Fulfillment Application or the PO_Cancel message is sent to the Legacy
Application. Oracle Workflow must:

» Subscribe to and publish PO_Insert.

= Subscribe to and publish PO_Update.
» Subscribe to and publish PO_Delete.
» Publish PO_Cancel.

Create Subscribe Activity
The following steps describe creating the subscribe activity using iStudio:

1. From the Project list, expand the Workflow node and navigate to Business
Processes.

A-18 User's Guide

Implementing the Scenario

2. Right-click PO business process and select Subscribe Activity. Right-click any
item to display a dialog.

3. Select Event PO_Insert and click OK.

Repeat these steps for the PO_Update and PO_Delete events, substituting the correct
values where necessary.

Create Publish Activity
The following steps describe creating the publish activity using iStudio:

1. From the Project list, expand the Workflow node and navigate to Business
Processes.

2. Right-click PO business process and select Publish Activity. Right-clicking any
item displays a pop-up box.

3. Select Event PO_Insert and click OK.

Repeat these steps for the PO_Update, PO_Delete, and PO_Cancel events, substituting
the correct values where necessary. The subscribe and publish events appear in the
Design Object Navigator under the PO node as shown in Figure A-13.

Figure A-13 Subscribe and Publish Activities in iStudio

= 1Dracle iStudio - myWorkspace.iws _ | |:||5|

File Edit Ewent Procedure Help

D<o %@ |62

Design | Deplay | N
= UBECTbEd Cverts ;I
':_l‘,_' Subscribe(Purchaze_Crder PO_Update)
l,_| Subzcribe(Purchaze_Crder Po_Delete)
Invaoked Procedures
Implemented Procedures
[-]—,;ﬂ iior kflon:
Process Bundies
B custer
=-E ro
EI—E Business Processes
- po
ﬂ SubzcribelPurchase_Crder PO_Inzert)
ﬂ SubzcribelPurchase_Order PO_Update)
ﬂ SubscribefPurchase_COrder Po_Delete)
ﬂ PublishiPurchase_Order PO_nzert)
ﬂ PublishiPurchase_Order PO_Update)
ﬂ Publizh{Purchase_COrder Po_Cancel)

L]

#HE? Enabling Infrastructure

A.3.11 Deploy the Process Bundle to Oracle Workflow
Deploying the Oracle Workflow process bundle accomplishes the following;:

= Places the event definitions in the Oracle Workflow Business Event System.
n Creates a default Oracle Workflow file (.wft).
= Launches the Oracle Workflow Builder and Monitor.

See Also: Chapter 7, "Using Oracle Workflow"

The following steps describe deploying the process bundle to Oracle Workflow:

1. Right-click the Workflow node on the Deploy tab in iStudio and select Deploy.
The Deploy dialog is displayed.

Integration Scenario A-19

Implementing the Scenario

Select Event Definitions to Workflow Business Event System, then Process
Definitions for File in the Deploy to Workflow box.

Click OK. The Workflow BES Login dialog is displayed.

Log in to Oracle Workflow using the correct username, password, and URL. Click
OK. The Deploy dialog is displayed.

Enter a file name for the Oracle Workflow file, such as InterConnect_Demo.wft, in
the File Name field, and click Open. Oracle Workflow is started with
InterConnect_Demo as shown in Figure A-14.

Figure A-14 Completed Deployment in Oracle Workflow

Oracle Workflow Builder 2.6 - [Navigator] [M[=] E3

Fle Edi Yew window Help JETET
D[Sl x| Be| v[T|e] o2
Colmmmes
?E Dl Prozes: Burdle | PO
= ibutes
&) Fro
FO
== Mot
ﬂ "
=1 I
F
1
;)\
[sui
5.
1]
1 & Messages
A Lo ;
+ B8 Divectory Service

A.3.12 Creating Objects in Oracle Workflow for Modeling

The original requirement for this scenario are as follows:

"An administrator must approve all changes such as insert, update, and delete before

they are applied to the Order Fulfillment System. If a change is approved, it is sent to

the Order Fulfillment System. If a change is rejected, then a cancellation notification is
sent back the legacy system."

This business logic can be implemented in Oracle Workflow. The Oracle Workflow
components required are:

An Item Type equivalent to a Project

An Attribute An object to hold the message in the event
A Process To model the Business Logic

Events For the modeling in the process.

A Notification To notify the administrator in the Oracle Workflow Monitor.

Components transferred from iStudio.

A-20 User's Guide

Item Type: OAI Process Bundle: PO

Implementing the Scenario

= Attribute: OAI Message

m Process: OAI Business Process: PO

s Events:
n Publish Purchase_Order.PO_Cancel
n Publish Purchase_Order.PO_Insert
s Publish Purchase_Order.PO_Update
s Publish Purchase_Order.PO_Delete

n Subscribe Purchase_Order.PO_Insert
n Subscribe Purchase_Order.PO_Update
n Subscribe Purchase_Order.PO_Delete

Oracle Workflow components are required to create a Notification.

A.3.12.1 Message

The message a notification activity will send.

A.3.12.2 Lookup Type

A static list of values that can be referenced by various objects. For example a message
attribute can reference a lookup type as a means of providing a list of possible
responses to the performer of a notification.

A.3.12.3 Notification

When the workflow engine reaches a notification activity, it issues a Send() API call to
the Notification System to send the message to an assigned performer. When a
performer responds to a notification activity, the Notification System processes the
response and informs the workflow engine that the notification activity is complete.

A.3.12.4 What Oracle Workflow provides.

Oracle Workflow has a set of pre-defined item types with standard functionality The
Standard item type contains generic activities that can be copied in a users item type.
In this scenario we will be using the Lookup Type Approval.

A.3.12.5 Copy Lookup Type (Approval)

As described, the user must create a Oracle Workflow Notification. The notification
has two dependent objects, A lookup Type and a Message. The Lookup Type
(Approval) can be copied from the standard item type.

A.3.12.6 Create an Oracle Workflow Message

The following steps describe creating a new Oracle Workflow message called Insert_
Message

1. In the Object Navigator right-click the Message Node and select New to launch the
property sheet. In each tab, add the following entries:

2. Message Tab:
= Internal Name: Insert_Message

= Display Name: Insert Message

Integration Scenario A-21

Implementing the Scenario

s Description: Insert Message
3. Body Tab:

= Subject: Insert Message

s Text Body: A record has been Inserted in the Purchase Order Table.
4. Result Tab:

s Display Name: Insert_Message

s Description: Insert_Message

s Lookup Type: Approval (From Lookup Type)
5. Click OK.

Using the default Copy and Paste functionality create the following messages using
message Insert_Message as the template:

s Update_Message: Repeats the preceding steps and use the same setting, changing
all references to insert to update.

s Delete_Message: Repeats the preceding steps and use the same setting, changing
all references to insert to Delete.

A.3.12.7 Create an Oracle Workflow Notification
The following steps describe creating a new Oracle Workflow Notification.

1. In the Object Navigator, right-click the Notification Node and select New to
launch the property sheet. In each tab, add the following entries:

2. Activity Tab:
s Internal Name:Insert_Notification
s Display Name: Insert_Notification
» Description: Insert_Notification
= Message: Insert_Message (Created previous step)
= Result Type: Approval (From Lookup Type)
3. Click OK.

Using the default Copy and Paste functionality create the following notifications using
notification Insert_Notification as the template:

» Update_Notification: Repeats the preceding steps and use the same setting,
changing all references to insert to update.

= Delete_Notification: Repeats the preceding steps and use the same setting,
changing all references to insert to delete.

A-22 User's Guide

Modeling Business Logic in Oracle Workflow

Figure A-15 Completed Oracle Workflow Notifications

Ed Dracle Workflow Builder 2.6 - [Navigator] [E3

#| Fle Edi Yiew Window Hep HEE|
0S| X =& v|T]e] 2|2
EE]

=1- L2 Diecloey Seevica
I SYSADMIN
=-[§ D&l Proces: Bunde: FO
= B4 Anibutes
0l Meszage
=-u#| Frocesses
#| DAl Bugness Frocass: FO
= Nuotifications
=g Delete Noafication
g Insest Motification
=g Updabe Notfication
) Functions
= Events
Pubiish Purchaze_Order PO_Carncel
Pubiish Purchaze_Order PO_Delste
Pubiish Purchaze_Order PO_Inzeit
Pubiizh Purchaze_Order PO_Uipdate

Subzciibe Purchase_Drdes FO_Delete
Subscribe Purchase_Drdes FO_Inseit
Subzciibe Purchase_Ordes PO_Updae
&) Messages
) Delete Meszage
{52 Iraest Message
) Update Meszage
= Lookup Types
Appiorval
[Hidclen ltem Types

A.4 Modeling Business Logic in Oracle Workflow

Now that all of the required objects have been created, the business logic can be
modeled. The following steps describe this process.

1.

In the Oracle Workflow Object Navigator, expand the OAI Process Bundle: PO
item type.

Expand the Processes node.
Right-click OAI Business Process: PO and select Process Details.

Another way to display the process details is to double-click OAI Business
Process: PO.

Move the following from the Oracle Workflow Object Navigator to the Oracle
Workflow Workspace:

m Insert Notification
s Update_Notification
m Delete Notification

Rearrange the items as shown in Figure A-16.

Integration Scenario A-23

Modeling Business Logic in Oracle Workflow

Figure A-16 Items Arranged in Oracle Workflow Builder

A-24 User's Guide

Dracle Workflow Builder 2.6 - [DA] Businesz Process : PO]

2/ Fle Edi View window Hep NETET
Slul&] -[E®ln] X[] Tlo] vl 2lo] 2]
=

i

Subscibe
Purchags_Order FO_Insait

Ins=it Hobfication Pubiizh
Purchase_Ordes PO_Insert

Subscrbe: Update Nobhication Publish
Puichass_Crdes FO_Updts Furchase_Ordes FO_Update

H = 7

Subscrbe: Drelete Notification

Fubdish
Puchase_OidePD_Delete Purchaze_Oider PO_Delste

_|

ubksh
Puizhars_Oeder PO_Cancel

4] —— ﬂﬂ

The subscribe events are the entry point in this process. The Start and End
Property for each event must be edited and set to START. Double-click an object to
launch its property sheet. The Start and End property is under the Node tab.

Subscribe to the following events:

m Purchase_Order.PO_Insert
m Purchase_Order.PO_Update
m Purchase_Order.PO_Delete

The publish events are the exit point from this process. The Start and End Property
for each event must be edited and set to END. Double-click an object to launch its
property sheet. The Start and End property is under the Node tab.

Publish to the following events:

m Purchase_Order.PO_Insert
m Purchase_Order.PO_Update
m Purchase_Order.PO_Delete
m Purchase_Order.PO_Cancel

The notifications must be assigned in order for a person to receive the notification
in Oracle Workflow Monitor. The Performer value property should be set to
SYSADMIN for each notification. Double-click an object to launch its property
sheet. The Performer Value field is located under the Node tab.

Assign the following notifications:
» Insert_Notification

= Update_Notification

= Delete_Notification

Mapping lines need to be drawn between the objects to define the process flow.
Lines are drawn by right-clicking on an object and dragging to another object.

Deployment

Draw a mapping line from Subscribe Purchase_Order. PO_Insert to Insert_

Draw a mapping line from Insert_Notification to Publish Purchase_Order.PO_

Insert and select Approve from the list that will appear when the line is

Draw a mapping line from Insert_Notification to Publish Purchase_Order.PO_

Cancel and select Reject from the list that will appear when the line is drawn.

a.
Notification.

b.
drawn.

c.

d. Repeat steps for Update & Delete objects.

Save your work to the database. The completed business process in Oracle

Workflow Builder is shown in Figure A-17.

Figure A-17 Completed Business Process in Oracle Workflow Builder

Ed Dracle Workflow Builder 2.6 - [DAI Business Process : PO]

A Fle Edi Miew lwindow Help

—15] %]

Slla] (- [Emle) XI] Tlo] wlwl-2l0] 2]

|
(= = Approve
Suibzribe Inzert Notfication. Pubiizh
Purchase_Dider PO_insest . Puichase_Ordes PO_inseit
-
“h
; e
Fublizh .

Purchase_Drder PO_Update s

L Ak
»?am«e Fisjact——""-014
-

e

Subscrbe Update Notifcshon -
Puichass_Ordee PO_Update /,/ Reject
T
>

| Ry .
(228 *= R 7 |
Subscrbe Dislete Hoblication Fublizh
Puchase_Dide.PD_Dekte Puichass_DederPO_Delete
4] I

y izh
fw: haze_Oider PD_Carcel

|

=

A.5 Deployment

After modeling the business objects, it is time to deploy the OracleAS Integration
InterConnect business objects. The following section describes the deployment

process.

= Setting Queues

= Sync Adapters

= Exporting and Installing Code

A.5.1 Setting Queues

The AQAPP application in iStudio corresponds to the Advanced Queuing adapter that

communicates with the legacy application.

The legacy application, through a database

trigger, places inserted, updated, and deleted records into a queue using Oracle
Advanced Queuing. To communicate to and from the OracleAS Integration
InterConnect environment, the adapter must be configured to send and receive on

those external queues.

Integration Scenario A-25

Deployment

The following steps describe this task.

1. On the Deploy tab in iStudio, expand the Applications list and navigate to
AQAPP.

2. Expand the AQAPP node and navigate to the Routing node.

3. Expand the Routing node and select Application Queues. The Application
Queues property sheet is displayed in the iStudio window.

4. Select Edit from the Edit menu. This will launch the Edit Application Queue
dialog as shown in Figure A-18.

Figure A-18 Application Queues in iStudio

wEdit Application Queues 1 x|

Application Gueues

~Routing Information

Business Ohbject Event Crywner i ersion Role Gueue Mame
Purchase_Order PO _Cancel oA A Fublish IMECUND_QUELE
Purchase_Crder |PO_Insert OAIMN Subzcribe OUTEOUMD_QLE...
Purchase_Crder |PO_Update A Send Request OUTECUMD _GLE. .
Purchase_Crder |PO_Delete A Receive Reply OUTECUMD _GLE...

OK I Cancel

5. Add the Queue name to each event:

Queue Name Event
INBOUND_QUEUE PO_Cancel
OUTBOUND_QUEUE PO_Insert, PO_Update, and PO_Delete

6. Click OK.

A.5.2 Sync Adapters

Each adapter has different cache settings to minimize communication to the repository
and to improve performance. If you have updated the metadata, you must
synchronize the adapter and repository metadata. The following steps describe this
task:

1. Select File from the menu, then select Sync Adapters. The Sync Adapters dialog is
displayed.

2. Select the applications to which to sync adapters, and click OK.

A-26 User's Guide

Conclusion

A.5.3 Exporting and Installing Code

Depending on the adapter type, there may be code that must be exported to a file and
installed in the target application database. The following steps describe exporting the
code using the Export Application dialog in iStudio.

1. In the iStudio window, click the Deploy tab. Right-click Applications and select
Export PL/SQL. The Export Application dialog is displayed.

2, Select the applications to export code.
3. Enter the file prefix in the File Prefix field and click OK.

The resulting text file is a SQL*Plus script that is run on the target schema.
See Also: "Deploying PL/SQL Stored Procedures” on page 8-1

Example A-1 Exporting and Installing Code

The following example helps to explain exporting and installing code. This example is
based on the following;:

= Adapter type: Database Adapter
= iStudio application: DBAPP

s Subscribe event: PO_Delete

PROCEDURE sub_PO_Delete_OAI_V1 (POID IN NUMBER,
POITEM IN LONG,
PRICE IN LONG,
QUANTITY IN NUMBER,
LAST_UPDATED IN DATE,)
AS
v_poid NUMBER :=poid;
BEGIN DELETE FROM PO WHERE v_poid = poid;
COMMIT;
EXCEPTION

WHEN OTHERS THEN NULL;

END sub_PO_Delete_OAI V1;

A.6 Conclusion
The final step is to test the integration.
1. A record is inserted into the Legacy System.
2. The legacy system’s database trigger queues the record in its OUTBOUND_QUEUE.

3. OracleAS Integration InterConnect receives the message, performs
transformations, converts data to a common view, and routes the message to
Oracle Workflow.

4. Oracle Workflow applies the business logic and issues a notification.

5. The System Administrator logs on to Oracle Workflow Monitor, receives the
Insert_notification, and approves the record.

6. OracleAS Integration InterConnect received the message, performs
transformations, cross-references the primary keys, converts data to the
application View, and routes the message to Order Fulfillment System.

Integration Scenario A-27

Conclusion

7. The deployed code receives the message and inserts the record into the Order
Fulfillment system.

8. Oracle InterConnect Manager is used to examine the inserted record and monitor
the integration throughput.

This process should be repeated for Update and Delete.

A-28 User's Guide

Using the Data Definition Description

Language

This appendix describes how to use the Data Definition Description Language (D3L)
in its native format message to application view translations and vice-versa. It contains
the following topics:

B.1 About D3L

About D3L

Native Format Message and D3L File Example

D3L File Structure

D3L Integration with OracleAS Integration InterConnect Adapters
Installing D3L

Configuring D3L

D3L Use Case

Additional D3L Sample Files and DTD

This section contains these topics:

What Is D3L?
When Is D3L Used?

B.1.1 What Is D3L?

D3L is an XML-based message description language. It describes the structure that an
application’s native, non-XML format message (also called the native view of the
application) must follow to communicate with OracleAS Integration InterConnect.
Oracle provides the following OracleAS Integration InterConnect transport adapters
that interact with the D3L message description language:

FIP
HTTP
MQ Series
SMTP

OracleAS Integration InterConnect Adapters perform the following tasks:

Validate the D3L message description files during runtime initialization.

Using the Data Definition Description Language B-1

About D3L

= Use the D3L translation engine (subcomponent of the bridge) to translate
messages from:

= Native format message to application view
= Application view to native format message

= Transport message payload data between an application and OracleAS Integration
InterConnect.

Note: Native format messages that are already in XML format are
not translated by OracleAS Integration InterConnect Adapters if
the ota. type parameter is set to XML in the adapter. ini file.

See Also: "D3L Integration with OracleAS Integration
InterConnect Adapters" on page B-23

B.1.2 When Is D3L Used?

Some applications do not use XML as their native message payload format. These
applications use native formats, such as structured records of bytes and characters. For
these native formats to be successfully translated into a format understood by other
applications, the content of their messages must follow a predefined, structured set of
rules. This structured format can then be translated into an application view,
transformed into a common view, and understood by other applications.

D3L provides both a predefined, structured set of rules and translation capabilities for
native format messages. D3L provides:

= An XML-based message description language that describes the contents of native
format messages

= A translation engine that uses the instructions defined in the D3L file to translate
the native format message contents to and from an application view

The D3L descriptions must comply with a syntax defined by the D3L document type
definition (DTD). D3L enables you to describe the record layout of binary, string,
structured, and sequence data. Use D3L only when the number of fields in the
underlying native format message is fixed and known. D3L is not suitable for the
following:

s Descriptions of arbitrarily structured data like regular XML
= Name-value pair data

= Conditional data structures, which require token look-aheads to parse

See Also:
= "Supported D3L Data Types" on page B-10
"D3L DTD" on page B-52

B.1.3 D3L Features

B-2 User’s Guide

This section describes data definition description language enhancements. It includes
the following topics:

s Integrate Transport Properties

= Allow Multiple Imparrays

About D3L

B.1.3.1 Integrate Transport Properties

This enhancement allows the Data Definition Description Language (D3L) author to
add a new type of member, property. Syntax, to a D3L structure, in addition to
fields and pads. For example:

<struct ...
<property name="prop_name" />

</struct>

Note: There is no type definition associated with this structure
element.

The modified D3L Data Type Definition (DTD) for this new structure element is:

<!ENTITY % StructElements
"field | property | pad"

<!ELEMENT property EMPTY >
<!ATTLIST property
$FieldAttributes;
>

The semantics of this new structure element is to link data in a transport protocol
header with the message payload. In other words, when a D3L containing a structure
with one, or more, property member(s) is imported in iStudio, it will create a String
OATI attribute with the name specified in the property name attribute.

At runtime, this OAT attribute will be populated with the value of a transport protocol
header, inbound-to-hub, which name matches the name attribute of the property
member. Simlarly, for outbound messages, the OracleAS Integration InterConnect
message payload property value will define the value of the corresponding protocol
header.

For example, if using OracleAS Integration InterConnect Adapter for FTP, the file
structure would be:

<struct ..>
<property name="filename" />
<field ...

In this case, the OracleAS Integration InterConnect Application View attribute
filename, thatis derived from the D3L definition, would be assigned the name of the
actual file being passed to D3L. For outbound message, the value will determine the
physical filename being used to store the file.

If using OracleAS Integration InterConnect Adapter for HTTP, an example file
structure would be:

<gstruct ..>
<property name="Host" />
<property name="Referer" />
<field name="...> < ...

Using the Data Definition Description Language B-3

Native Format Message and D3L File Example

Note: This is a dynamic payload dependent feature, which will
override settings in the adapter. ini file and/or Application
View Meta Data Modify Fields. As a result, the property
ota.send.endpoint could be overridden by a corresponding
message attribute defined through the D3L.

B.1.3.2 Allow Multiple Imparrays

The D3L syntax allows you to create multiple nested imparrays for outbound
translations (app-to-native or hub-to-spoke).

Intuitively it makes sense to allow multiple nested imparrays to match multiple nested
arrays in XML as XML does not have the need to declare the length of an array. For
example:

<arrayl>
<array2>..</array2>
<array2>..</array2>

</arrayl>

<arrayl>
<array2>..</array2>
<array2>..</array2>

<array2>..</array2>

If this XML message was published by OracleAS Integration InterConnect Adapter for
AQ, and consumed by OracleAS Integration InterConnect Adapter for FIP that is
running in D3L mode, the preceding structure would then be matched by the
following D3L structure:

<imparray id="arrayl">
<imparray id="array2">

As D3L does not perform parsing for app-to-native translation, also known as
production, the preceding D3L is entirely possible. However, for native-to-app
translations, the preceding D3L would be invalid as a single imparray by itself would
consume the rest of the native message.

Note: This new imparray semantics depart from the design
principle that D3L is a fully bidiretional symmetric translator and
can perform both native-to-app and app-to-native
translation using just one the same D3L definition.

Finally, the D3L translator will determine, at runtime, whether multiple nested
imparrays exist in a D3L. If multiple nested imparrays are detected, the translator will
prevent the D3L from being used for parsing purposes (native-to-app
translations). If not detected, the D3L translator will flag an error condition.

B.2 Native Format Message and D3L File Example

This section provides an example of how the contents of a native format message are:
s Described in a D3L file
s Configured with the required D3L file

B-4 User’s Guide

Native Format Message and D3L File Example

To successfully translate the native format message, you need to satisfy both the
preceding conditions.

This section contains the following topics:
s Description of Native Format Message Contents in a D3L File

s Configuration of Native Format Message with a D3L File

B.2.1 Description of Native Format Message Contents in a D3L File

This section describes an application’s native format message (named price) that
contains data for updating the price of personal computer model number 2468 to
199.99. The native message uses the following format to describe the data:

message ::= action model price
Where... Is...

action UPDATE_PRICE
model 2468

price 199.99

The data must strictly follow the structure defined in a D3L file, for this example,
price.xml. This D3L translation engine translates the data into an application view.
Figure B-1 shows how a D3L file defines the structure that the native format message
price must follow to successfully define the data elements.

Figure B-1 Native Format Message Payload Data and D3L File Syntax

Halive Formal Message: message = <actien> <medelr> <pricex

Halive Formal Wessage Payload Dala: “*UPDATE_PRICE* 2468 | 109 09 |*

D3L File price sl Syniax:
«7Eml version=*1.0% encoding=*US-ARCII 7>
< !DOCTYFE message SYSTEM “d3l._ ded¥»
message name=*changePrice® sbject=*Product®
cype=*priceCommand®>
«struck id=*priceCommand® =
<field name="action®»<limstring delimiter="4%/:
<ffield=
<field name=*madel*r<limstring delimiter=* “,’}-—
<ffield=
«fipld name=*price*=<limstring del:i_mil:er—“l“,"}‘
<ffield=
</scruece>

All three data elements are defined as strings with different delimiters for separating
their data.

B.2.2 Configuration of Native Format Message with a D3L File

When the D3L translation engine receives a native format message, such as price, it
must determine the exact D3L file to verify the native format message contents, such
as, price.xml.

This section describes the methods for configuring the correct D3L file with the native
format message. It contains the following topics:

Using the Data Definition Description Language B-5

Native Format Message and D3L File Example

B-6 User's Guide

= adapter.ini Parameter File Setting

s Message Header Attributes

B.2.2.1 adapter.ini Parameter File Setting

The ota.d31s parameter in the $ORACLE_
HOME%\integration\interconnect\adapters\application\adapter.ini
file enables you to define the D3L file to use with the native format message. For
example:

ota.d31ls=price.xml
When the D3L translation engine receives the native format message from the bridge,

it retrieves the correct D3L file based on this parameter setting. Multiple D3L files can
also be defined using the ota.d3ls parameter. For example:

ota.d31ls=price.xml, emp.xml, booking.xml
Unless one of the methods described in "Message Header Attributes" is used, the D3L

translation engine compares the data structure in the native format message to each
D3L file until it finds the correct one to use for translation.

B.2.2.2 Message Header Attributes

The D3L file includes message header attributes work with the D3L engine to choose
the correct D3L file for translating a native format message to an application view. The
values for these message header attributes match the settings in the native format
message.

Message header attribute values override the approach of comparing each D3L file
defined with the ota.d31s parameter in the adapter. ini file with a native format
message.

Two methods to set the message header attribute values are available:
= Name/Value Pair Message Header Attributes
= Magic Value Message Header Attribute

Both methods enable the D3L translation engine to use the correct D3L file for
translation after receiving the native format message.

Note: When the correct D3L file is selected and a successful
translation has taken place, the message element attributes name
and object in the D3L file define the OracleAS Integration
InterConnect event name and business object, respectively.

B.2.2.2.1 Name/Value Pair Message Header Attributes

OracleAS Integration InterConnect Adapters, such as the HTTP adapter, make their
protocol level transport properties available to the D3L translation engine, including
custom properties added by a sender application, such as an HTTP client. The D3L file
message element enables the user to specify two attributes, header and value,
which match the protocol level headers in a received native format message.

For example, a third-party application uses the custom transport header D3L-Header
to communicate with the D3L translation engine which D3L file to use to translate an
incoming native format message. The following steps must be performed to set custom
values in the transport header:

Native Format Message and D3L File Example

s Set the D3L-Header parameter in the transport message header to a value that
matches the value attribute setting of the <message> element in the D3L file.

m Set the header attribute of the <message> element in the D3L file to D3L-Header
to match the D3L-Header parameter name in the transport message header.

Figure B-2 illustrates using the HTTP adapter where D3L-Header and price are the
header name and header value, respectively. The header name and value are used to
match a native format message with the correct D3L file. The D3L translation engine
retrieves the correct D3L file based on these settings.

Figure B-2 Name/Value Pair Message Header Attributes

Transporl Message Header of Nalive Formal Wessage:

POST /oal/servlet/transporcServlet HITPS1.1
Content-Type : application/x—www-form-urlencoded
Host: acme._com: BEEER
Content-Lengeh: 28
= [ZL—Header . price -

NameValue Par Message Header Aliribudes of D3L File:

cmessage name="modify* object="Emploves” Etvype=*modif s onmand®
header=*D3I-Header* value=*price*:

The D3L engine supports a rudimentary pattern matching capability in the value
attribute of the D3L message element.

A D3L author can create a D3L definition, such as:

<message type="CrtCust" header="filename" value="cust_create%" ...

This definition is for the FIP adapter, which provides a header property called
filename that holds the name of a received file.

The preceding D3L destination will be selected to parse incoming files whose
filenames match the name pattern in the value attribute, such as,

cust_createll
cust_create02
po_int_ext01
cust_createl3
po_int_ext02

The "wildcard" character in the pattern ("%") can only appear at two places in the
attribute string-value, as either the first or the last character, or both the first and last
characters.

For example, the following patterns are acceptable:

" %endstring: suchas %.csv
" startstring%:suchaspo_int$%
" $substring%: such as $create%

B.2.2.2.2 Magic Value Message Header Attribute You can set the magic attribute of the
message element in the D3L file to match the first n bytes of data in a native format

Using the Data Definition Description Language B-7

D3L File Structure

message. This feature enables you to define the D3L file to use with the native format
message. When a native format message is received by the D3L translation engine, the
magic values of all D3L files are compared with the first n bytes of the native format
message. The magic values must be long enough to be unique across all registered
D3Ls for a given adapter instance.

Figure B-3 provides an example where *UPDATE_PRICE is the value that configures
the native format message with the correct D3L file.

Figure B-3 Magic Value Message Header Attribute

Payload Dala of Malive Formal Message:

POST /oal/servlet/transporcServlet HITFS1.1
Content-Type : application)x—-www-form-urlencoded
Host : acme.com: 3383

Content-Lengeh: 28

D3L-Header: price

YW®JPDATE_FRICE* 2468 |199_ 993|"

D3L File Magic Yalue Messane Header Afirbule:

cmessage name="modify* object="Emploves” tvype=*modif s onmand®
Mayic=* *UFDATE FRICE" > o

The D3L translation engine retrieves the correct D3L file based on these settings.

The D3L attribute startsat of the message element enables the D3L author to
specify the byte location to start the magic matching.

Having this attribute allows the D3L definition:
<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE message SYSTEM "d31l.dtd">

<message name="newBook" type="BookType" object="BookObj" magic="ISBN#"
startsat="12">

This D3L definition will trigger if a native message contains the byte character
sequence ISBN# in byte positions 12 to 16.

See Also:

= "Native Format Message to Common View Incoming Message
Translations" on page B-24

= "Additional D3L Sample Files and DTD" on page B-48

B.3 D3L File Structure

This section describes the contents of a sample D3L file named book_reply . xml.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d31.dtd">
<message name="replyFlight" type="BookingReplyType" object="Booking"
header="D3L-Header" value="replyOptions">
<unsigned4 id="ud" />
<unsigned?2 id="u2" />

o U1 W DN

B-8 User's Guide

D3L File Structure

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<struct id="DateTimeRecord">

<field name="DateInfo">

<date format="MMDDYY">
<pfxstring id="datstr" length="u4" />
</date>

</field>

<field name="TimeHour"><limstring delimiter="*" /></field>

<field name="TimeMinute"><limstring delimiter="*" /></field>
</struct>
<struct id="ItinRecord">

<field name="DepartureTime"><typeref type="DateTimeRecord" /></field>

<field name="ArrivalTime"><typeref type="DateTimeRecord" /></field>
</struct>
<pfxarray id="ItinArray" length="u2">

<typeref type="ItinRecord" />
</pfxarray>
<struct id="BookingReplyType">

<field name="AirportCodeFrom"><limstring delimiter="*" /></field>

<field name="AirportCodeTo"><limstring delimiter="*" /></field>

<field name="Itineraries"><typeref type="ItinArray" /></field>
</struct>
</message>

Lines 1 and 2
These lines define standard information, such as the Prolog and Document Type

Declaration (DTD) that must have the specified values (for example, specifying
d31.dtd as the DTD).

Lines 3 and 4
These lines define the following message element attributes:

name: It must correspond to the associated Oracle Application Server Integration
InterConnect application view event name defined in iStudio. The D3L file can
also be imported in iStudio when defining the message attributes of an event (the
name of which must match the name attribute of the D3L message element).

type: It names a structure that is defined in subsequent lines of this D3L file.

object: It must match the Oracle Application Server Integration InterConnect
business object defined in iStudio.

header: It is identified in the set of protocol level transport message headers
associated with a native format message.

value: It must match the actual value of the corresponding protocol level
transport message header defined through the header attribute.

See Also:

s "Creating Business Objects" on page 3-2

= "Creating Events" on page 4-2

= "Name/Value Pair Message Header Attributes" on page B-6
» "Task 6: Import a D3L File in iStudio" on page B-29

Using the Data Definition Description Language B-9

D3L File Structure

Lines 5 and 6

These lines define an unsigned, four-byte integer and unsigned, two-byte integer.
These data type declarations are named u4 and u2, respectively, so they can be
referred to later.

Lines 7 Through 15

These lines define the following fields of a structure named DateTimeRecord:

s DateInfo defines a date format of MMDDYY and a length prefixed by an unsigned
four-byte integer.

» TimeHour defines a string delimited by the character *.

s TimeMinute defines a string delimited by the character *.

Lines 16 Through 19

These lines define the fields of the structure named ItinRecord. The fields
DepartureTime and ArrivalTime both consist of the DataTimeRecord structure.

Lines 20 Through 22

These lines define a length-prefixed array named InitArray, where each array
element is of type ItinRecord.

Lines 23 Through 28

These lines define the following fields of the message structure BookingReplyType,
which satisfies the BookingReplyType type declaration in the message document
element:

» AlrportCodeFrom is a string delimited by the character *.
s AlrportCodeTo is a string delimited by the character *.

s Itinerariesisa field of type ItinArray, which is an array of ItinRecord.

B.3.1 Supported D3L Data Types

D3L supports use of the following data types and declarations in a D3L file:
= Signed or Unsigned Integers

s Floating Point Numbers

m Strings

= Structures

= Sequences

B.3.1.1 Signed or Unsigned Integers

D3L supports signed or unsigned integers that can be one, two, four, or eights octets in
size, and in big or little endian octet ordering.

Example B-1 Quantity Field

<field name="quantity">
<unsigned4 endian="big" align="6"/>
</field>

B-10 User's Guide

D3L File Structure

The quantity field defines a four byte unsigned binary integer, using big (default)
endian, and at an alignment of 6 bytes. For example, D3L will ensure that the reading
or writing of this integer will start at a position in the buffer, so that <position>
modulus <alignment> = 0.

Note: Little Endianmeans thatthe low-order byte of the
number is stored in memory at the lowest address, and the
high-order byte at the highest address. whereas Big Endian
means that the high-order byte of the number is stored in memory
at the lowest address, and the low-order byte at the highest
address.

Data example
Byte addresses (hex):
00 01 02 03 04 05 06 07 08 09 0A OB

Byte (hex):
00 00 00 00 00 OO 80 FF FF FF 00 00

Parsed value (dec):

quantity = 128x256° + 255x256° + 255x256% + 255x256° = 2164260863

Example B-2 Weight and Length Field

<field name="weight"> <unsigned2 align="3"/> </field>
<field name="length"> <unsigned2 align="3"/> </field>

The weight and length fields define two 2-byte unsigned binary integers, using big
endian, and an alignment of 3 bytes.
Data example
Byte addresses (hex):
07 08 09 0A 0B 0C OD OE

Byte (hex):
00 00 EE 88 (00 22 FO 00

Parsed value (dec):

weight = 238x256% + 136x256° = 61064
length = 34x2561 + 240x256° 8944

Example B-3 Temperature and Pressure Field

<field name="temperature"> <signed2 endian="little" /> </field>
<field name="pressure"> <unsigned4 endian="big" /> </field>
<field name="wind"> <unsigned2 endian="little" align="4" /> </field>

The temperature field defines a 2-byte signed binary integer, using little endian, and
no alignment.

Using the Data Definition Description Language B-11

D3L File Structure

The pressure field defines a 4-byte unsigned binary integer, using big endian, and
no alignment.

The wind field defines a 2-byte unsigned binary integer, using little endian, and a
4-byte alignment.

Data example
Byte addresses (hex):

60 61 62 63 64 65 66 67 68 69

Byte (hex):
EF FE (00 00 04 oA 00 00 3c 00

A A A

little end big end alignment

Parsed value (dec):

temperature = 256x256 - (239x256° + 254x256') = -273
pressure = 4x256% + 10x256° = 1034
wind = 60x256° + 0x256% = 60

B.3.1.2 Floating Point Numbers

D3L supports single- and double-precision, IEEE format, floating-point data.
Single-precision floating point numbers (floats) take up four bytes or octets.
Double-precision floating point numbers (doubles) take up eight bytes or octets.

Example B-4 Distance and Age Field

<field name="distance"> <double align="6"/> </field>
<field name="age"> <float /> </field>

The distance field defines an 8-byte double-float (floating-point value according to
the IEEE 754 floating-point double precision bitlayout), at an alignment of 6
bytes.

The age field defines a 4-byte single-float (floating-point value according to the IEEE
754 floating-point single precision bitlayout).

Note: The IEEE 754 floating-point format is parsed and produced
by the following Java class methods:

java.lio.DataInput.readFloat ()
java.io.DataInput.readDouble ()
java.io.DataOutput.writeFloat ()

java.io.DataOutput.writeDouble ()

Data example
Byte addresses (hex):
77 18 03 04 05 06 07 08 09 0A 0B =xx XX

Byte (hex):

00 00 D2 47 D3 CE 16 22 Bl Al 5E 5D 6B 0B
~ double ~ float

B-12 User's Guide

D3L File Structure

Parsed value (dec):

distance = 1 x 10°°
age = 1 x 10%8

B.3.1.3 Strings
D3L supports the following string types:

= Constant length strings without delimiters, with optional padding to fill out
empty spaces.

s Delimited strings can be delimited by an arbitrary delimiter character.

= Length-prefixed strings where the length prefix is a numeric type. Numeric types
are binary integer types described in "Signed or Unsigned Integers" or are a
number stored as a string.

= Strings terminated by a specified character.
= Strings terminated by a delimiter defined by an enclosing 1imarry structure.

s Four date formats: MMDDYY, DDMMYY, MMDDYYYY, DDMMYYYY, where the
information is stored as a string in one of these formats with any separator
character between month, date, and year, such as 12124=01).

= Numbers not defined as binary data, but as strings. Any string format can define a
number (either an integer or a floating-point entity). In iStudio, a D3L field of type
number is handled as a double.

Example B-5 Constant length strings

<field name="CURRENCY_CODE">

<padstring length="4" padchar=" " padstyle="tail"/>
</field>
<field name="COUNTRY_CODE">

<padstring length="2" padchar="" padstyle="none"/>
</field>
<field name="TO_USD_RATE">

<padstring length="12" padchar="0" padstyle="head"/>
</field>

The CURRENCY_CODE field defines a fixed length string of four characters. Any blank
(" ") characters (pads) near the end (padstyle="tail") of the string are not
considered part of the data value.

The COUNTRY_CODE field defines a fixed length string of two characters. All
characters in this field are part of the data value because padstyle is "none".

The TO_USD_RATE field defines a fixed length string of 12 characters. Any zeros at
the beginning (padstyle="head") of the string are not considered part of the data
value.

Data example

Native byte (character) stream:

GBP UK000012550.00
Parsed values:

CURRENCY_CODE = 'GBP'
COUNTRY_CODE = 'UK'
TO_USD_RATE '12550.00"

Using the Data Definition Description Language B-13

D3L File Structure

Example B-6 Delimited strings

<field name="State"> <limstring delimiter="." /> </field>
<field name="Region"> <limstring delimiter="." /> </field>
<field name="City"> <limstring delimiter="|" /> </field>
<field name="Landmark"> <limstring delimiter="|" /> </field>

<field name="Street"> <limstring delimiter="+" /> </field>

"non non

The "State", "Region", "City", "Landmark", and "Street" fields are delimited

strings enclosed by ".", ".", " ", """, and "+", respectively .
Data example
Native byte (character) stream:

.FL..Florida Keys.|Key West||Ernest Hemingway Museum|+Whitehead St.+

Parsed values:

State = 'FL'

Region = 'Florida Keys'

City = 'Key West'

Landmark = 'Ernest Hemingway Museum'

Street = 'Whitehead St.'

Example B-7 Length prefixed strings

<unsignedl id="ubytel" />

<unsigned2 id="ubyte2" endian="little" />

<struct>
<field name="user"> <pfxstring length="ubytel" /> </field>
<field name="encr_user"> <pfxstring length="ubyte2" /> </field>

The user field defines a string the length of which is defined by a 1-byte binary
integer preceeding the string contents.

The encr_user field defines a string the length of which is defined by a 2-byte binary
integer preceeding the string contents.

Data example
Byte addresses (hex):
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D OE OF 10 11 12

Characters:

03 j o eODO0 D U Z a c¢c . 1 HEK Vm I Y

Parsed values:

user = 'joe'
encr_user = 'DUZac.lHKVmIY'

Example B-8 Terminated strings

<field name="product"> <termstring endchar=","/ > </field>
<field name="ordered"> <termstring endchar=","/ > </field>
<field name="inventory"> <termstring endchar=","/ > </field>
<field name="backlog"> <termstring endchar=","/ > </field>

<field name="listprice"> <termstring endchar="\n"/> </field>

B-14 User’s Guide

D3L File Structure

Each of the first four fields is populated with input characters until the

terminating/ending character (endchar) is encountered (","). The last field ends with

a linefeed.
Data example
Native byte (character) stream:

1020,16,18,,1580.00<LF>

Parsed values:

product = '1020"'
ordered = '16'
inventory = '18'
backlog = "'
listprice = '1580.00'

Note: The backlog field is empty.

Example B-9 Simple strings - simplestring

<limarray id="CSV_Type" contchar="," endchar="\n">
<simplestring/>

</limarray>

<struct>

<field name="CSV"> <typeref type="CSV_Type"/> </field>

The sV field references a type declaration "CSV_Type" to a delimited array. The
array members are separated by comma (contchar=",") and end with linefeed
(endchar="\n").

Data example
Native byte (character) stream:

5,18,2.5,255,78.75,9
Parsed values:

csv([] = { '5*, '18', '2.5", '255', '78.75', '9' }

Example B-10 Dates - date

<field name="StartDate">

<date format="MMDDYY"> <termstring endchar="\n"/> </date>
</field>
<field name="EndDate">

<date format="DDMMYY"> <termstring endchar="\n"/> </date>
</field>
<field name="Milestone">

<date format="MMDDYYYY"> <termstring endchar="\n"/> </date>
</field>
<field name="DueDate">

<date format="DDMMYYYY"> <termstring endchar="\n"/> </date>
</field>

The fields contain dates representing the four date formats.
Data example

Byte stream (characters):

Using the Data Definition Description Language

D3L File Structure

11/16/02<LF>
24/11/02<LF>
11/20-2002<LF>
23*11*2002<LF>

Parsed values:

StartDate = Sat Nov 16 00:00:00 PST 2002

EndDate = Sun Nov 24 00:00:00 PST 2002
Milestone = Wed Nov 20 00:00:00 PST 2002
DueDate = Sat Nov 23 00:00:00 PST 2002

Note: The D3L parser will accept any character between the DD,
MM and YY (YY) characters in the native format, but will always
produce the "/" separator when translating from application
message format to native message format. Hours, minutes, and
seconds are not parseable.

Example B-11 String based numbers

<unsignedl id="ul" />
<pfxstring id="HueType" length="ul" />

<struct id="ColorDefinition">
<field name="Red">
<number> <padstring length="4" padstyle="head" padchar="0"/> </number>
</field>
<field name="Green">
<number> <pfxstring length="ul" /> </number>

</field>
<field name="Blue">

<number> <limstring delimiter="."/> </number>
</field>
<field name="Brightness">

<number> <termstring endchar="|"/> </number>
</field>

<field name="Hue">
<number> <typeref type="HueType"/> </number>
</field>
</struct>

The declared type ul is an unsigned 1-byte integer (0-255). The second type
declaration "HueType" is a length prefixed string, where the string length will be
defined in a one-byte binary integer preceding the string contents.

The Red field is a number defined as a fixed length string of 4 characters, which can be
padded with zeros at the beginning.

The Green field is a number defined as a length prefixed string, where the string
length will be defined in a one-byte binary integer preceeding the string contents.

The Blue field is a number defined as a "." delimited string. The string beginning and

"nn

end is demarcated by ".".

The Brightness field is a number defined as a string which is read from the current
point until the ending character (" ") is encountered.

The Hue field is a number defined as a string of type "HueType".

Data example

B-16 User's Guide

D3L File Structure

Byte addresses (hex) and characters (hex values shown
in italics):

00 01 02 03 04 05 06 07 08 09 0A 0B OC OD OE OF

012 8031 28 . 255 . 0 .7
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
5 3 3 3 3 |08 0 . 6 6 6 6 6 6

Parsed values:

Red = 128.0
Green = 128.0
Blue = 255.0

Brightness= 0.753333
Hue = 0.666666

Note: The parsed numbers always internally become doubles.

B.3.1.4 Structures

D3L supports structured types, such as ordered records containing other data types
(predefined or user defined). Types can be nested to arbitrary depth. This means you
can use structures of sequences of structures of sequences to any finite depth.
Recursive, self referencing, and data structures are not supported in D3L.

All data fields in a message format description must be named. These names are used
as Oracle Application Server Integration InterConnect message attribute names. All
names within the same structure must be mutually unique.

Within a D3L file the first allowable element is message. The message element must
refer to a struct (using the IDREF type attribute), which then becomes the top-level
data structure of the message.

Example B-12 ColorDefinition Field

<message type="ColorDefinition" name="myEV" object="myBO">
<unsignedl id="ul" />
<pfxstring id="HueType" length="ul" />
<struct id="ColorDefinition">
<field name="Red">
<field name="Green">

Note: The top-level structure can be placed anywhere in the D3L
file within the scope of the message element.

B.3.1.5 Sequences

D3L supports sequences, such as arrays of various types. These include:

s Delimited arrays (with arbitrary separator and terminator characters)
» Length-prefixed arrays (where the length is one of the numeric types)
» Fixed-length arrays

» Implicit-length arrays (which use all remaining data in the native format message
to the end of the buffer)

The data being sequenced can be any other D3L type (predefined or user defined).

Using the Data Definition Description Language B-17

D3L File Structure

Example B-13 Delimited arrays

<field name="members">

<limarray contchar=";" endchar=".">
<limstring delimiter="." />
</limarray>
</field>

The members field becomes an array of data elements separated by semicolons

"o

(contchar=";"). The end of the array is marked by a period (endchar="."). Each data
element in the array is a string delimited by a set of periods (delimiter=".").

Data example
Native byte (character) stream:

.John.;.Steve.;.Paul.;.Todd..

Parsed values:

members[] = { 'John', 'Steve', 'Paul', 'Todd' }

Example B-14 Length prefixed arrays

<unsigned2 id="u2" endian="little" align="4" />
<struct>
<field name="measurements">
<pfxarray length="u2" > <signedl /> </pfxarray>
</field>

The measurements field becomes an array of signed 1-byte binary integers (signed1).
The number of elements in the array is determined by the unsigned two-byte binary
integer at the beginning of the array.

Data example
Byte addresses (hex):
08 09 0A OB 0OC OD OE OF 10

Bytes (hex):
06 00 FF A2 6C 24 OE 77

Values (dec):

measurements[] = { -1, -94, 108, 36, 14, 119 }

Example B-15 Fixed length arrays

<field name="digits">
<fixarray length="10">
<number>
<termstring endchar="-">
</number
</fixarray>

The digits field becomes an array of numbers (doubles). Each number element in the
native byte format is represented as a string which is terminated by a dash
(endchar="-"). The number of elements in the array must always be 10
(length="10").

Data example

B-18 User's Guide

D3L File Structure

Native byte (character) stream:

1-2-3-4-5-6-7-8-9-0-

Parsed values:

digits[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 0.0}

Example B-16 Implicit length arrays

<message name="addOrders" object="Order" type="OrdersType">

<number id="Number"> <termstring endchar="," /> </number>
<number id="Price"> <termstring endchar=";" /> </number>
<number id="Total"> <termstring endchar="\n"/> </number>

<struct id="OrderLineType">
<field name="LineNo"> <typeref type="Number" /> </field>
<field name="ProductNo"> <typeref type="Number" /> </field>
<field name="Quantity"> <typeref type="Number" /> </field>
<field name="LinePrice"> <typeref type="Price " /> </field>
</struct>

<struct id="OrderType">
<field name="OrderTotal"> <typeref type="Total" /> </field>
<field name="OrderLines">
<limarray contchar="\n" endchar="\n\n">
<struct>
<field name="OrderLine"> <typeref type="OrderLineType" /> </field>
</struct>
</limarray>
</field>
</struct>

<number id="ID"> <termstring endchar="\n" /> </number>

<imparray id="OrdersArrayType">
<struct>
<field name="CustomerID"> <typeref type="ID" /> </field>
<field name="CustomerName"> <termstring endchar="\n" /> </field>
<field name="Order"> <typeref type="OrderType" /> </field>
</struct>
</imparray>

<struct id="OrdersType">
<field name="OrdersArray"> <typeref type="OrdersArrayType" /> </field>
</struct>
</message>

The OrdersType structure consists of a single field OrdersArray which is an
implicit array of three fields: a CustomerID, CustomerName and Order (of type
OrderType). OrdersArrayType is an implicit array. As a result, it will consume all
remaining bytes in the native byte input stream. The size of the array is first known
when the input byte stream has been exhausted.

The OrderLines field is a (nested) array, where each array element is of type
OrderLineType. The OrderLineType is a structure of four fields: LineNo,
ProductNo, Quantity, and LinePrice.

This input stream must use the following structure to be parseable:

Using the Data Definition Description Language B-19

D3L File Structure

CustomerID

CustomerName

Order:

OrderTotal

OrderLines:

LineNo, ProductNo, Quantity, LinePrice
LineNo, ProductNo, Quantity, LinePrice

Data example
Native byte (character) stream:

1234

Boeing

1000
1,555,10,250.00;
2,666,10,750.00;

5678
Lockheed Martin
424
1,555,5,125.00;
2,777,1,100.00;
3,888,2,199.00;

Parsed values:

{OrdersArray=
[{ CustomerName=Boeing, CustomerID=1234.0,
Order=
{ OrderTotal=1000.0,
OrderLines = [
{OrderLine={LinePrice=250.0, ProductNo=555.0, Quantity=10.0,
LineNo=1.0}},
{OrderLine={LinePrice=750.0, ProductNo=666.0, Quantity=10.0,
LineNo=2.0}}

b,
{ CustomerName=Lockheed Martin, CustomerID=5678.0,
Order=
{ OrderTotal=424.0,
OrderLines = [
{ OrderLine={LinePrice=125.0, ProductNo=555.0, Quantity=5.0,
LineNo=1.0}},
{ OrderLine={LinePrice=100.0, ProductNo=777.0, Quantity=1.0,
LineNo=2.0}},
{ OrderLine={LinePrice=199.0, ProductNo=888.0, Quantity=2.0,
LineNo=3.0}}
]

B.3.1.6 Data Padding

D3L supports data padding. Padding is unnamed gaps in a native format message that
satisfy alignment constraints of the underlying native system. Padding is discarded in
the Oracle Application Server Integration InterConnect application view message.

B-20 User's Guide

D3L File Structure

The following D3L example defines a number as a left-aligned string, which is padded
at the end with blanks to a field width of 10.

<field name="Quantity">
<number>
<padstring length="10" padchar=' ' padstyle="tail" />
</number>
The following native byte (character) stream satisfies this format:
9876.5
Pads can also be explicitly defined between fields in a structure by using the <pad>

element.

The following D3L example shows two fields, which are separated by a pad of size 10.

<struct id="PROD">

<field name=PRODID"> <termstring endchar=";" /> </field>

<pad length="10" />

<field name=PRODDESC"> <termstring endchar=";" /> </field>
</struct>

The following native byte (character) stream would satisfy this format:

48682HW; ~~~~~ WASHER AND DRYER;
[...]

B.3.2 Comma-Separated Values File Parsing with D3L

A comma-separated values (CSV) file consists of multiple lines. Each line contains
values separated by commas that end when a new line is required:

a,b,c,d
1,2,3
The string types, termstring and simplestring, have been added to parse CSV files.

= termstring: String type termstring is a variation of 1imstring. It requires only
a terminating delimiter, but not a beginning delimiter. For example:

<termstring endchar="," />

This parses any string contents until encountering a comma.

= simplestring: String type simplestring is a special data type. It is used when
the nearest parent structure defines a valid set of delimiters, which for the current
data definition description language (D3L) library is limited to 1imarray. For
example:

<limarray contchar="," endchar="\n">
<simplestring />
</limarray>

The examples provided in the following sections use imparray so that input can be
any number of elements, lines, or both.

B.3.2.1 CSVs are Assigned to Named Fields

This method assigns all CSVs on each line to named fields fixed number of fields per
line. Example B-17 describes CSVs assigned to named fields.

Using the Data Definition Description Language B-21

D3L File Structure

Example B-17 CSVs Assigned to Named Fields

<message name="createPhone" object="Phone" type="phoneRecord">
<imparray id="lines">

<struct>
<field name="rectype"> <termstring endchar=","/ > </field>
<field name="quantity"><termstring endchar=","/ > </field>
<field name="endHour"> <termstring endchar=","/ > </field>
<field name="endMin"> <termstring endchar=","/ > </field>
<field name="cost"> <termstring endchar="\n"/> </field>
</struct>
</imparray>

<struct id="phoneRecord">

<field name="csv"> <typeref type="lines" /> </field>
</struct>
</message>

The native format message payload for Example B-17 is as follows:

4,,9,22,2324.29

IR

55,2342,11,46,728372339.57

B.3.2.2 All CSVs are Read into an Array

This method read all CSVs on each line into an array. There are variable number of
fields per line. Example B-18 describes all the CSVs read into an array.

Example B-18 All CSVs are Read into an Array

<message name="createPhone" object="Phone" type="phoneRecord">
<limarray id="linearr" contchar="#44" endchar="\n">
<simplestring />

</limarray>

<imparray id="myArray">

<struct>

<field name="line"> <typeref type="linearr" /> </field>
</struct>

</imparray>

<struct id="phoneRecord">

<field name="csv"> <typeref type="myArray" /> </field>
</struct>

</message>

The native format message for Example B-18 is as follows:

4,,9,22,2324.29

55,2342,11,46,728372339.57
55,2342,11,46,728372339.57,4,,9,22,2324.29
1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0

B.3.2.3 Delimiter Encoding Styles

The delimiters for 1imstring, termstring, and 1imarray are enhanced to allow
multiple characters, as well as additional encoding styles. The associated ASCII table
codes are shown in parentheses:

= Escape code using "\": This works for "\r" (13),"\n" (10),"\t" (9),and "\ £"
(12).

B-22 User's Guide

D3L Integration with OracleAS Integration InterConnect Adapters

where:
= (13) is the ASCII code for a carriage return (CR)
m (10) is the ASCII code for a line feed (LF)
m (9) is the ASCII code for a horizontal tab (HT)
s (12) is the ASCII code for a form feed (FF)
s Escape ASCII code using "#": for example, "#13".
s Escape ASCII hexadecimal code using "#x": for example, "#x0D".

s End-of-file delimiter "\ eo£f", which maps to a virtual end-of-file character: This
delimiter can only be used once. No other fields can follow once it has been used.

Example B-19 provides several examples of delimiter encoding styles.

Example B-19 Delimiter Encoding Styles

<termstring endchar="#x2C"/>
<termstring endchar="\n"/>

<limarray id="linearr" contchar="," endchar="\r\n">
<simplestring/>
</limarray>

<termstring id="FileContents" endchar="\eof"/>

The "\r\n" on line 3 of Example B-19 represents a DOS line break. The "\eof" on the
last line of Example B-19 represents an End of File.

B.4 D3L Integration with OracleAS Integration InterConnect Adapters

This section provides information on the D3L translation engine and its files’
integration with the OracleAS Integration InterConnect adapter agent and bridge
subcomponents to perform events and translations. It contains the following topics:

= Runtime Initialization
= Native Format Message to Common View Incoming Message Translations

s Common View to Native Format Message Outgoing Messages Translations

B.4.1 Runtime Initialization

The OracleAS Integration InterConnect Adapter agent reads . ini files (such as
adapter.ini) at runtime to access each OracleAS Integration InterConnect adapter’s
configuration information. The OracleAS Integration InterConnect Adapter bridge are
initialized and the configuration information provided by the OracleAS Integration
InterConnect adapter agent. At the completion of a successful initialization, the
OracleAS Integration InterConnect adapter bridge knows the following;:

» The Oracle Application Server Integration InterConnect application name and its
default endpoint (message destination)

s The various Oracle Application Server Integration InterConnect events to be
handled by the OracleAS Integration InterConnect Adapter bridge

s D3L files that describe each of these events

s D3L files that are accessible and valid. If a file is invalid, then the OracleAS
Integration InterConnect adapter cannot start

Using the Data Definition Description Language B-23

D3L Integration with OracleAS Integration InterConnect Adapters

See Also:

s Chapter 1, "Getting Started with OracleAS Integration
InterConnect”

s Chapter 2, "Using iStudio”

B.4.2 Native Format Message to Common View Incoming Message Translations

When the OracleAS Integration InterConnect adapter common transport layer detects
an incoming message from an application, it receives the message in its native format.
The message is then passed to the OracleAS Integration InterConnect adapter bridge.

The bridge performs the following functions:

= Using the D3L translation engine to translate the native format message into an
application view an Oracle Application Server Integration InterConnect message
object.

= Raises an application view event

The agent transforms the application view event into a common view event and passes
it on for further routing and processing. Table B-1 describes the data flow sequence if
D3L message header attributes are used.

Table B-1 Message Header Attributes

If The... Then...

Name/value The incoming native event might contain one of the following:

pair message Transport message headers/properties (made available to the bridge by

header
attributes are the transport layer)
used = Transport message header parameter name (for example,

D3L-Header) matches the header attribute of the message element in
the D3L file (header="D3L-Header")

» Transport message header value (for example, D3L-Header: price)
matches the value attribute of the message element in the D3L file
(value="price")

In the preceding cases, the bridge assumes that the matching D3L describes
the incoming native event. Any conflicting header and value settings are
detected and rejected by the bridge during initialization time.

These operations are logged by OracleAS Integration InterConnect logging
and tracing APIs for debugging, performance analysis, and business
intelligence functions.

Magic value A magic value is specified by using the following;:

}II; 25521?6 s The D3L file (length = n bytes)
attribute is » The first n bytes of payload data in an incoming native event (for
used example, *UPDATE_PRICE) match the magic attribute of the message

element in the D3L file (for example, magic="*UPDATE_PRICE")

In the preceding cases, the bridge assumes the native event must be
processed using the matching D3L. If multiple D3Ls specify magic values
that may match the same native event, the bridge randomly picks a D3L.
This can lead to undesirable bridge behavior because the resulting
application view event raised may not be the correct one.

Figure B—4 depicts the data flow sequence.

B-24 User's Guide

D3L Integration with OracleAS Integration InterConnect Adapters

Figure B-4 Native Format Message to Common View Incoming Messages

- Native Format Message
WaSeries {bryte stream)
Queus
MHanager

[|

£l

IMAP Server Oracle9iAS InferConnec C‘;‘::’"
Technol Ada
echnology Adapler " "
i I =
e i Bridge - Ageni
= >
» & 2 - Tannjla_tion >
= ™| Tran=porl = Orac ed s
i Engine InterCannect
= Lt Application
e 1 Yiew Message
— ' “
Remole L
FTPServer | ~~ 7777
File
e pric Fiatrieval
ener Qracle9ifs
Serviet InferConnect| €
Runiime Logs ! Traces !
D3L Files f adapier ini File
{adapter.ini identifies the DAL file
o retrieve that oescribes the native
format message contents)
See Also:

s "Message Header Attributes" on page B-6

= Section B.6.4, "Task 4: Configure a Native Format Message with
a D3L File" on page B-28

B.4.3 Common View to Native Format Message Outgoing Messages Translations

When a common view event is raised, the OracleAS Integration InterConnect Adapter
agent subscribing to the event, performs the following:

= Receives the associated message

s Transforms it to an Oracle Application Server Integration InterConnect message
object

= Hands it to the OracleAS Integration InterConnect adapter bridge as an
application view event

The OracleAS Integration InterConnect Adapter bridge queries the metadata
associated with the event to determine the following;:

» The D3L file for the D3L translation engine for the translation of the application
view event into a native format message.

s The application to which the native format message event will be sent. There are
two levels of rules to determine the application endpoint (the destination) of an
OracleAS Integration InterConnect event:

Using the Data Definition Description Language B-25

Installing D3L

s If the event contains metadata that specifies an endpoint, then the bridge uses
this endpoint for the event. With the exception of the MQ Series adapter, all
OracleAS Integration InterConnect adapters follow this rule.

Note: Here the metadata itself names the endpoint and the content

of the event is not searched.

» If the message metadata did not specify an endpoint, then the bridge uses its
default endpoint, specified in the adapter. ini file, and made available to

the bridge during initialization.

All OracleAS Integration InterConnect adapter operations are logged using the Oracle
Application Server Integration InterConnect logging and tracing APIs for debugging,

performance analysis, and other business intelligence functions.

Figure B-5 shows the data flow sequence.

Figure B-5 Common View to Native Format Message Outgoing Messages

T Mative Format Message
wQaseries thyte stream) =
Queue | 4

o
F 3

Runiime Logs ! Traces !
D3L Files ! adapler ni File
{adapter.ini identifies the DAL file
to retrieve that describas the native
format message contents)

B.5 Installing D3L

I Comi
Local
SMTP Server Oracke9iAS InferConnecl = 'r:m
Technology Adapler “"E""ge
: Bridge Agend
[—— o 7 ‘
B | Common Transkation Cracks s
Lo | Transpori Engine InterConnect
Frewal/ [View Wassage
o : . essay Runime
Remole = booe o N
FTP Server =
= DaL
= File
“ﬁﬁlﬁ = Retrioval
= Oraclefirs e
Serviel ‘_§- InterConneci

D3L is automatically installed with OracleAS Integration InterConnect.

See Also:

» Oracle Application Server Installation Guide

» OracleAS Integration InterConnect Adapter documentation

B-26 User's Guide

Configuring D3L

B.6 Configuring D3L

After installation, perform the following tasks to configure D3L:

Task 1: Configure D3L with iStudio

Task 2: Create a Native Format Message

Task 3: Create a D3L File Describing the Native Format Message

Task 4: Configure a Native Format Message with a D3L File

Task 5: Configure D3L with OracleAS Integration InterConnect Adapters
Task 6: Import a D3L File in iStudio

Task 7: Define Metadata Properties with Each Event (Optional)

B.6.1 Task 1: Configure D3L with iStudio

You must define D3L in the browsers . init file. This enables you to import D3L
files as attributes and select D3L as the message type in iStudio.

To integrate D3L with iStudio:

1.

Use a text editor to open the

ORACLE_HOME\integration\interconnect\iStudio\browsers.init
file.

Add the following information at the end of the file:

D3L;oracle.oai.agent.adapter.technology.D3LBrowser;
Save your changes and exit the file.

See Also: "Task 6: Import a D3L File in iStudio” on page B-29

B.6.2 Task 2: Create a Native Format Message
The native format is typically predefined by your third-party application.

1.

Create a native format message. For example, this native format message updates
the salary of employee number 33201 to 55000:

UPDATE_EMPLOYEE SALARY 33201 |55000 |

Where... Is...
UPDATE_EMPLOYEE_SALARY action

33201 EmployeelD
55000 newSalary

B.6.3 Task 3: Create a D3L File Describing the Native Format Message

To create a D3L file (for example, updemp.xml) that describes the format of the native
message:

1.

Use a text editor. The following D3L file describes the contents of the native
format message created in "Task 2: Create a Native Format Message".

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d31l.dtd">
<message name="modify" object="Employee" type="modifyCommand"

Using the Data Definition Description Language B-27

Configuring D3L

header="D3L-Header" value="employee">
<struct id="modifyCommand">
<field name="action"><limstring delimiter="*"/></field>

<field name="EmployeeID"><limstring delimiter=" "/></field>
<field name="newSalary"><limstring delimiter:"|“/></field>
</struct>
</message>

2. Store the D3L file in the ORACLE__
HOME\integration\interconnect\adapters\application directory for
direct access at deployment time.

See Also: The following sections for additional examples of D3L
files:

s Figure B-1 on page B-5
= Example B-20 on page B-33
= "Additional D3L Sample Files" on page B-49

B.6.4 Task 4: Configure a Native Format Message with a D3L File

Configure a native format message with the correct D3L file. This enables the D3L
translation engine to use the correct D3L file to verify native format message contents.
For example, the D3L file created in "Task 3: Create a D3L File Describing the Native
Format Message" includes settings for name/value pair message header attributes:

<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE message SYSTEM "d31.dtd">

<message name="modify" object="Employee" type="modifyCommand"
header="D3L-Header" value="employee">

These settings can match with the transport message header D3L-Header parameter
name and employee value of a native format message:

POST /oai/servlet/transportServlet HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: acme.com:8888

Content-Length: 38

D3L-Header: employee

See Also:
= Figure B-2 on page B-7
= Table B-1 on page B-24

B.6.5 Task 5: Configure D3L with OracleAS Integration InterConnect Adapters

The adapter. ini file is read by the appropriate OracleAS Integration InterConnect
Adapter at startup.

1. Use a text editor to open the

ORACLE__
HOME\integration\interconnect\adapters\application\adapter.in
i file.

In the preceding directory, applicationis the name of your application and the
value of the application parameter in the adapter.ini file.

2. Ensure that parameter ota. type is set to the following value:

B-28 User's Guide

Configuring D3L

ota.type=D3L

This defines D3L as the message type for the OracleAS Integration InterConnect
Adapter to handle incoming and outgoing messages.

Add the following line to define the D3L files for the bridge and D3L translation
engine to use:

ota.d31ls=updemp.xml

where updemp.xml is the name of the D3L file created in "Task 3: Create a D3L
File Describing the Native Format Message". Each event handled by the bridge
must have its own D3L file. Whenever a new D3L file is imported in iStudio for
use by an application, this parameter must be updated and the OracleAS
Integration InterConnect adapter restarted.

Save your changes and exit the file.

B.6.6 Task 6: Import a D3L File in iStudio

iStudio enables you to import a D3L file for use with the following OracleAS
Integration InterConnect features:

Common data types

Application data types

Published /subscribed events
Invoked /implemented procedures

Business object events and procedures

When a D3L file is associated with Oracle Application Server Integration InterConnect
common data types, application data types, events, or procedures, an iStudio
OracleAS Integration InterConnect Adapter browser plug-in verifies that the file
conforms to the syntax and semantics of D3L. Table B-2 identifies the iStudio tasks
and locations where you can import a D3L file as an attribute and select D3L as a
message type. Documentation references that describe how to perform these tasks are
also provided.

Table B-2 D3L Functionality in iStudio

For this D3L Functionality... Do This...

Common Data Type Tasks:

Create a common data type that imports a D3L Refer to "Creating Common Data
file as an attribute. Types" on page 3-2

Application Data Types Tasks:

Creating an application data typedata type that Select New from File, then select
imports a D3L file as an attribute. Application Data Type from the
iStudio menu

Event Tasks:

s Create an event that imports a D3L file as an Refer to "Creating Events" on
attribute. page 4-2

= Publish an event that uses D3L as the message Refer to "Publishing an Event" on
type and imports a D3L file as an attribute. page 4-3

Using the Data Definition Description Language B-29

Configuring D3L

Table B-2 (Cont.) D3L Functionality in iStudio

For this D3L Functionality... Do This...

= Subscribe to an event that uses D3L as the Refer to "Subscribing to an Event”
message type and imports a D3L file as an on page 4-8
attribute.

Procedure Tasks:

= Create a procedure that imports a D3L fileasan Refer to "Creating a Procedure” on

attribute. page 5-2
= Invoke a procedure that uses D3L as the message Refer to "Invoking a Procedure” on
type and imports a D3L file as an attribute. page 5-3
= Implement a procedure that uses D3L as the Refer to "Implementing a
message type and imports a D3L file as an Procedure” on page 5-6
attribute.

Note: D3L functionality with procedures in iStudio is only
available with the MQ Series adapter.

B.6.7 Task 7: Define Metadata Properties with Each Event (Optional)

You can associate metadata with each event in iStudio by selecting Modify Fields in
the Subscribe Wizard - Define Application View. The Modify Fields appears after you
select D3L as the Message Type in the preceding Subscribe Wizard - Select an Event.
Such metadata is used for content-based routing of events at runtime.

The following application view event metadata is used by the OracleAS Integration
InterConnect adapters. The property name is prefixed by ota to minimize namespace
conflicts with user-defined metadata on application view events. The property name is
considered a keyword/reserved name, and is used by both iStudio and the bridge,
and must be kept consistent between these two components.

Property Name Property Value Type Explanation

ota.d31Path The D3L filename (string). This The path name (relative or
is automatically set. Do not absolute) of the file that contains
modify this property. the D3L guidelines for this event.

ota.isD3L This value is always true A flag indicating that this event is
(boolean) and automatically based on D3L.
set. Do not modify this
property.

ota.send.endpoint The endpoint URL (string). The actual endpoint to which this
This is mandatory. For message is sent. This setting must
example: match the type of OracleAS

Integration InterConnect Adapter

http://foo.com/serviet/ that subscribes to the event.

test

B-30 User's Guide

D3L Use Case

Property Name Property Value Type Explanation
http.sender. * Refer to Chapter 2 of the The properties define the
file.sender.* appropriate OracleAS transport layer configuration.

Integration InterConnect
Adapter documentation for the
adapter being defined in the
ota.send.endpoint
parameter URL!). This is
optional. For example:

http.sender.timeout=500
0

! The MQ Series adapter does not define any smtp . sender properties. This is because the MQ Series
adapter does not support multiple sending endpoints in this release.

See Also: "Subscribing to an Event" on page 4-8

B.7 D3L Use Case
This section contains these topics:
s D3L Use Case Overview
s Creating Data Type Definitions for Application Views
= Configuring the agapp_pub and fileapp_sub Applications in iStudio
» Installing the Advanced Queuing and FIP Adapters
= Running the D3L Use Case
= Using Other Adapters in D3L and XML Modes

B.7.1 D3L Use Case Overview

This use case provides an example of a minimal Oracle Application Server Integration
InterConnect configuration and setup that uses D3L. This use case involves two
applications using OracleAS Integration InterConnect Adapters:

» agapp_pub, which is based on the Advanced Queuing adapter
» fileapp_sub, which is based on the FIP adapter running in D3L mode

These applications use a business object called Employee, which has one defined
event called newEmployee.

The agapp_pub application publishes the newEmployee event, while fileapp_
sub subscribes to it. Table B-3 describes the attributes (message structure) of the
newEmployee event:

Table B-3 Common View Attributes

Attribute Name Attribute Type
EmpName String
EmpDept Integer
EmpHiredate Date
EmpSalary Double

Using the Data Definition Description Language B-31

D3L Use Case

All these attributes are scalar (that is, there are no arrays). This message structure
represents the common view of the newEmployee event. For simplicity, the
application views for the two applications have the exact same structure as the
common view.

In "Creating Data Type Definitions for Application Views", a DTD file and a D3L file
are created that match the common view attributes shown in Table B-3 on page B-31.
These files are used when the application views for the two applications are defined.

B.7.2 Creating Data Type Definitions for Application Views

You must create data type definitions for the two application views.
This section contains these topics:

» Task 1: Create a DTD File for the Advanced Queuing Adapter

» Task 2: Create a D3L File for the FTP Adapter

Note: This use case assumes that you have already installed and
configured Oracle Application Server Integration InterConnect and
iStudio.

B.7.2.1 Task 1: Create a DTD File for the Advanced Queuing Adapter

The application view for the Advanced Queuing adapter must be defined through a
DTD. The DTD enables the Advanced Queuing adapter to translate a received XML
(text) document into a runtime application view (Java) object. The agent component of
the Advanced Queuing adapter can then transform it to a common view object before
routing it to any application subscribers. A DTD is registered with (imported to) the
application while defining, for example, a publication in iStudio.

1. Create a DTD file that matches the common view message structure shown in
Table B-3 on page B-31:

<!ELEMENT NewEmpRec (EmpName, EmpDept, EmpHiredate, EmpSalary)>
<!ELEMENT EmpName (#PCDATA) >
<!ELEMENT EmpDept (#PCDATA) >
<!ELEMENT EmpHiredate (#PCDATA)>
<!ELEMENT EmpSalary (#PCDATA) >

2. Save this DTD in a text file named newemp . dtd. This file can be saved to any
location.

B.7.2.2 Task 2: Create a D3L File for the FTP Adapter

When running in D3L mode, the FIP adapter must have its application view defined
by a D3L (XML) file. The D3L file enables a bidirectional translation between the
internal runtime application view (Java) object representation and an external
binary/native format message representation. The D3L file is registered with
(imported to) the application while defining, for example, a subscription in iStudio.

Assume the external binary native format message of the newEmployee event is as

follows:

message ::= <empname> <empdept> <emphiredate> <empsalary>

empname ::= char[20] // left adjusted string, 20 chars wide, right padded with
spaces

empdept ::= byte[2] // unsigned 2-byte integer, little endian

emphiredate ::= '|' + <month> + <anysep> + <day> + <anysep> + <year> + '|'

B-32 User's Guide

D3L Use Case

empsalary ::= 'S$' <number> '$'

Where... Is...

<month>, <day>, and The date format elements MM, DD, and YYYY (all digits)
<year>

<anysep> Any single character
<number> Any decimal number using the character "." as a decimal
separator

1. Create a D3L file that describes the structure that the native format message must
follow to communicate with Oracle Application Server Integration InterConnect.
The native format message can be expressed /mapped in the D3L XML definition
as shown in Example B-20:

Example B-20 D3L Sample File

<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE message SYSTEM "d31.dtd">

<message type="NewEmpRec" name="newEmployee" object="Employee">
<!-- TYPE DECLARATIONS -->

<!-- string field 20 chars wide with trailing spaces -->
<padstring id="str20" padchar=" " padstyle="tail" length="20" />
<!-- unsigned 2-byte integer -->

<unsigned2 id="uword" endian="little" />

<!-- date format using pattern MM-DD-YYYY enclosed by '|' -—>
<date id="date" format="MMDDYYYY"><limstring delimiter:“\" />
</date>

<!-- decimal number format enclosed by 'S$' -->

<number id="number"><limstring delimiter="$" /></number>
<!-- MESSAGE STRUCTURE -->
<struct id="NewEmpRec">
<field name="EmpName"> <typeref type="str20" /> </field>
<field name="EmpDept"> <typeref type="uword" /> </field>
<field name="EmpHiredate"> <typeref type="date" /> </field>
<field name="EmpSalary"> <typeref type="number" /> </field>
</struct>
</message>

2. Save the D3L definition in Example B-20 to a file called newemp . xm1.

3. Include a copy of this file on both the host computer where Oracle Application
Server Integration InterConnect is installed and on the Windows computer where
iStudio is installed.

Note: newemp.xml is also copied to the FIP adapter application
directory in "Task 4: Copy the newemp.xml D3L File to the fileapp_
sub Adapter Directory" on page B-44.

The following example shows a native format message that can be translated by
the newemp . xm1 D3L file (The ? character means nonprintable):

Pos Bytes (in hexadecimal) Characters
0000000 4a6f 686e 2044 6f65 2020 2020 2020 2020 John Doe
0000020 2020 2020 4000 7c31 322f 3134 2£32 3030 @?|12/14/200
0000040 317c 2435 3432 3230 2e37 3524 1]$54220.75%

Using the Data Definition Description Language B-33

D3L Use Case

Where... Is...

EmpName John Doe
EmpDept 64 (hex: 0x40)
EmpHiredate 12/14/2001
EmpSalary 54220.75

In "Configuring the aqapp_pub and fileapp_sub Applications in iStudio" on page B-34,
you complete all the steps necessary in iStudio, including defining the common view,
defining the application creation, and so on.

B.7.3 Configuring the agapp_pub and fileapp_sub Applications in iStudio

This section describes the tasks to complete in iStudio.

This section contains these topics:

» Task 1: Create a New Workspace and New Project

» Task 2: Create the Employee Business Object

» Task 3: Create the newEmployee Event

» Task 4: Create the aqapp_pub Application

s Task 5: Enable the agapp_pub Application to Publish the newEmployee Event
» Task 6: Define the Application Queue for the agapp_pub Application

» Task 7: Create the fileapp_sub Application

» Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee
Event

B.7.3.1 Task 1: Create a New Workspace and New Project
1. Start iStudio from the Start menu.

When iStudio starts, the last used workspace is automatically loaded. For this use
case, define a new workspace and new Project.

2. Select File, and then New Workspace.

3. Enter d31_tests for the Workspace Name, and click OK.
4. Select File, and then New Project.

5. Enter d31_test_£ftp for the Project Name, and click OK.
6. Enter the following values in the Hub Information dialog;:

For... Enter...

Hub database username oaihub

Hub database password oaihub (the default)

Hub database URL hubDB-host: hubDB-port: hubDB-SID
For example:

dlsunl0:1521:V904

B-34 User's Guide

D3L Use Case

B.7.3.2 Task 2: Create the Employee Business Object
1. Select File, New, and then Business Object.

2. Enter Employee for the Business Object name and click OK.

Note: The Employee Business Object name matches with the
value for the object attribute of the <message> element in the
D3L file created in "Task 2: Create a D3L File for the FTP Adapter"
on page B-32.

B.7.3.3 Task 3: Create the newEmployee Event

Define the newEmployee event as described in "D3L Use Case Overview" on

page B-31. Define the (common view) attributes of the event by importing the
newemp . xm1 D3L file defined in "Task 2: Create a D3L File for the FTP Adapter” on
page B-32. This D3L file defines the same data types as used by the common view.
(Refer to Table B-3 on page B-31.)

1. Select File, New, and then Event.
Select Employee in the Business Object list.
Enter newEmployee in the Event Name field.

2
3
4. Click Import.
5. Select D3L from the list that appears.
6

Locate and select the newemp . xm1 D3L file created in "Task 2: Create a D3L File
for the FTP Adapter" on page B-32. The contents of newemp . xm1 display in the
Attributes fields of the Create Event dialog. If you receive an error while
importing, check if the contents of the newemp . xm1 file on your iStudio computer
are identical to the text shown in Example B-20 on page B-33.

Note: The newEmployee Event Name matches with the value for
the name attribute of the <message> element in the D3L file
created in "Task 2: Create a D3L File for the FTP Adapter" on

page B-32.

The Create Event dialog is displayed as follows:

Using the Data Definition Description Language B-35

D3L Use Case

= |Create Event |

Eusiness Ohject; IEmpIDyee LI
Evetit Mame: INew_Emponee A0
~atributes
Matre Type Orvtierersion | Array Default
| EMAME String r MULL
' JOB String r MULL
|
SaL Double r MUILL
COMM Double r MUILL

Import | Common Data Type Clear |

CIZS
D3l
DATABASE Save | Cancel
JCE

Oracle Applications #

PeopleSaft
SAR

Siebel
Lt

7. Click Save.

See Also: "Creating Events" on page 4-2

B.7.3.4 Task 4: Create the aqapp_pub Application

Now create the agapp_pub application, which publishes the defined event
Employee.newEmployee.

1. Click File, New, and then Application.
2. Enter agapp_pub for the Application Name, and click OK.

B.7.3.5 Task 5: Enable the aqapp_pub Application to Publish the newEmployee
Event
Use the Publish Wizard to publish the newEmployee event.

This section contains the following topics:

= Select the Event to Publish

= Define the Application View

s Define the Application View to Common View Mapping

B.7.3.5.1 Select the Event to Publish
Select the event to publish with the Publish Wizard.

1. Select Event, and then Publish Event. The Publish Wizard - Select an Event dialog
is displayed.

2. Select agapp_pub from the Application list.

B-36 User's Guide

D3L Use Case

3. Select 20 from the Message Type list. This choice means that the agapp_pub
application is based on the Advanced Queuing adapter.

4. C(lick the newEmployee event in the Select an Event list, which is a child of the
Employee business object.

il Publish Wizard - Select an Event x|

Application IMYAGADD LI

Message Type IAQ =

Select an Event

B+ | Business Ohjects
| Customer

[Create_Customer
| Employes
l—. newEmployves

= Back |Ne>d:= Firish | Cancel |

5. Click Next. The Publish Wizard - Define Application View dialog is displayed.

B.7.3.5.2 Define the Application View Define the application view for the Advanced
Queuing adapter-based application agapp_pub in this dialog. This view was defined
in "Task 1: Create a DTD File for the Advanced Queuing Adapter" on page B-32 as an
XML DTD, which is a requirement of the Advanced Queuing adapter. Import this
DTD to define the application view.

1. Click Import.
2. Select XML from the list that appears.

3. Locate and select the newemp . dtd file, which you created in "Task 1: Create a
DTD File for the Advanced Queuing Adapter" on page B-32.

4. Select NewEmpRec in the Choose Root Element dialog.

5. Click OK. The Publish Wizard - Define Application View dialog is displayed.

Using the Data Definition Description Language B-37

D3L Use Case

6.

w1 Publish Wizard - Define Application Yiew L i'

Attributes
Marme Tyvpe CrwvnerS... | Array Default
EMPMNO Double [l rIJLL =
EMAME String [MULL
JOB String [MULL
MGR Double [l rIJLL
HIREDATE Date [l RMUILL
SAL Doble [MLILL L
CCOhAbA Daouble [MULL -]
Irnport | Caommon Vieww Clear |
Application Data Type

Common Data Type
Ewent Magp | I~ DATABASE Tracking Fields |
= Back I Mext = I Finizh I Cancel I

Click Next. The Publish Wizard - Define Mapping dialog is displayed.

B.7.3.5.3 Define the Application View to Common View Mapping Define the application view
to common view mapping on this dialog.

1.
2.

6.

B-38 User's Guide

Click New. The Mapping Parameters dialog is displayed.

Expand newEmployee and NewEmpRec (clicking the '+') in the agapp_pub View
pane.

Expand newEmployee and NewEmpRec (clicking the '+') in the Common View
pane.

Click the EmpName attribute in both panes.

Select CopyFields in the Transformations list. The Mapping Parameters dialog is
displayed as follows:

= |Mapping Parameters x|
My £G4 Yiew: Transfartmations: COmimon Yiss:
=1 neswEmiployes ;l OhjectCopy | | E-) newEmployee
—# EMPNO # EMPNO
_: w ConcatFields L AME
* MoR ExpandFields ® JOB
CharRepl # MGR

—# HREDATE a.ar ERane # HREDATE

& o4 StringReplace & il

% cotm Substring & o

—# DEPTHG LPad * DEFTHO

-] Custamer FPad
» id L Trim
* title F.Trirm
* firstName Truncate
[asthlame Torurnber LI
® email |

| address - Custam Transformations |
Comments I
Addvanced | Search Yariables | | Ol I Cancel

Click OK.

D3L Use Case

Repeat Steps 4 through 6 for the remaining attributes EmpDept, EmpHiredate,
and EmpSalary. When complete, the Publish Wizard - Define Mapping dialog is
displayed.

Click Finish. The Publication for application agapp_pub is complete. The
navigation pane on the left hand side of iStudio shows the structure for the
agapp_pub application.

B.7.3.6 Task 6: Define the Application Queue for the agapp_pub Application

As the agapp_pub application publishes the newEmployee event and is based on the
Advanced Queuing adapter, you must define the (Oracle Advanced Queuing) queue
from which the Advanced Queuing adapter reads the event. When an XML message,
which complies with the DTD defined in "Task 1: Create a DTD File for the Advanced
Queuing Adapter” on page B-32, is enqueued onto the outbound queue, the Advanced
Queuing adapter:

Picks the message up
Translates the message to an application view event

Passes the message to the adapter agent for further transformation to the common
view representation

The following steps describe how to choose the queue name. The queue does not have
to exist physically at this point, as you create it in a later step. (Refer to section "Task 2:
Create the Application Queue AQAPP_NEWEMP" on page B-42.)

1.

o g k& 0 b

Click the Deploy navigation tab on top of the iStudio navigation list.
Expand the Applications node.

Expand the agapp_pub node.

Expand the Routing node.

Right-click the Application Queues node.

Select the Edit option from the list that appears. The Edit Application Queues
dialog is displayed.

Click in the empty field under the Queue Name column header, and enter the
chosen queue name, for example, AQAPP_NEWEMP:

‘i.‘.'Edit Application Queues ﬂ
Application Gueues
~Routing Informstion
Business Object | Event | Ovvneriversion | Role | Gueue Marme |
Ernployes |newEmpI0yee |OAIN1 |Pub|ish |AQAPP_NEWEMP |
OK I Cancel

Using the Data Definition Description Language B-39

D3L Use Case

8. Click OK.

B.7.3.7 Task 7: Create the fileapp_sub Application

Create the fileapp_sub application to subscribe to the defined event
Employee.newEmployee (which is published by agapp_pub).

1. Click File, New, and then Application.
2. Enter fileapp_sub for the Application Name and click OK.

B.7.3.8 Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee
Event

Use the Subscribe Wizard to subscribe to the newEmployee event.

This section contains these topics:

= Select the Event to which to Subscribe

= Define the Application View

= Define the Application View to Common View Mapping

B.7.3.8.1 Select the Event to which to Subscribe Select the event to which to subscribe
with the Subscribe Wizard.

1. Select Event, and then Subscribe Event. The Subscribe Wizard - Select an Event
dialog is displayed.

2. Select fileapp_sub from the Application list.

3. Select D3L from the Message Type list.

4. C(lick newEmployee (under Employee) in the Select an Event list.

5. Click Next. The Subscribe Wizard - Define Application View dialog appears.
B.7.3.8.2 Define the Application View Define the application view for the FTP
adapter-based application £ileapp_sub in this dialog. This view was defined in
"Task 2: Create a D3L File for the FTP Adapter" on page B-32 as a D3L file. This is a

requirement of any OracleAS Integration InterConnect Adapter operating in D3L
mode. Import this D3L file to define the application view.

1. Enter Employee as the business object name in the Object Name input field.
2. Click Import.

3. Select D3L from the list that appears.

4

Locate and select the newemp . xm1 file, which you saved in "Task 2: Create a D3L
File for the FTP Adapter" on page B-32.

The contents of newemp . xm1 display in the Attributes fields:

B-40 User's Guide

D3L Use Case

m15ubscribe Wizard - Define Application Yiew =
Modify Fields |
Ohject Name IEmponee
- Attribute:
[Marne Type Cvvners... | Array Default
EnewEmpRec MewEmpRe CALA r MULL =l
Ernpharme String r MULL |
ErmpDept String I~ |muL
EmpHiredate | String I~ |muL K
Impart | Common Yiew Clear |
Application Data Type

Commaon Data Type
CICS Crozs Reference |

DATABASE =
Finizh | Cancel |
JDE

5. Click Next. The Subscribe Wizard - Define Application View dialog appears.
B.7.3.8.3 Define the Application View to Common View Mapping Define the application view
to common view mapping in this dialog.

1. Click New. The Mapping Parameters dialog appears.

2. Expand newEmployee by clicking the '+' in the Common View pane.

3. Expand newEmployee by clicking the '+' in the fileapp_sub View pane.

4. Click the NewEmpRec node in both panes.
5

Select ObjectCopy in the Transformations list and click OK.

Note: You can choose ObjectCopy here because the common
view and application view are based on the same D3L file.

The Subscribe Wizard - Define Mapping dialog appears as follows:

‘;' Subscribe Wizard - Define Mapping 5[
Sumrnaty
Ief Source Fields Transfortration Marne | Drestitatic
Edlit

[Delete |

Clear |

Fitter |

St Al |
« | i

= Back | et = | Finish | Cancel

Using the Data Definition Description Language B-41

D3L Use Case

6. Click Finish. This completes the necessary setup steps in iStudio.

B.7.4 Installing the Advanced Queuing and FTP Adapters

Now that iStudio setup is complete, you must install one instance of each of the two
adapter types. This section contains these topics:

Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub
Task 2: Create the Application Queue AQAPP_NEWEMP

Task 3: Install the FTP Adapter for Application fileapp_sub

Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory

Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter Initialization
File

B.7.4.1 Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub

1.

Refer to "Advanced Queuing Adapter Installation"” in Chapter 2 of the Oracle
Application Server Integration InterConnect Adapter for AQ Installation and User’s
Guide for installation instructions.

During installation, enter the following specific values when prompted:

a. Enter agapp_pub in the Application Name field of the Oracle Application
Server Integration InterConnect AQ Adapter Configuration dialog.

b. Enter the database connection information to connect to the database instance
on the Application Spoke Database page. The AQAPP_NEWEMP application
queue defined in "Task 6: Define the Application Queue for the agapp_pub
Application" on page B-39 is created here.

c. Enter the database username and password of the account and schema on the
Spoke Application Database AQ Username dialog, which owns the
Application Queue (AQAPP_NEWEMP). Select the schema name agapp and the
password agapp. Leave the Consumer Name field blank, as you are creating
the AQAPP_NEWEMP queue as a single consumer queue.

Complete adapter installation by providing appropriate responses when
prompted.

When installation is complete, the new adapter instance is located in the following
directory:

Platform Directory

Windows %ORACLE_
HOME%\integration\interconnect\adapters\agapp_
pub

UNIX SORACLE_
HOME/integration/interconnect/adapters/agapp_
pub

B.7.4.2 Task 2: Create the Application Queue AQAPP_NEWEMP

To create the Advanced Queuing AQAPP_NEWEMP application queue, you must first
create the queue table, create the queue, and start the queue.

1.

B-42 User's Guide

Ensure that the database user issuing the commands in this section has been
granted the following roles:

D3L Use Case

RESOURCE,
CONNECT,
AQ_ADMINISTRATOR ROLE

Use SQL*Plus to log in to the database account specified in Step 1 of "Task 1:
Install the Advanced Queuing Adapter for Application aqapp_pub" on page B-42.
Create the queue table using the same name as the application queue:

SQL> EXECUTE dbms_agadm.create_queue_table('AQAPP_NEWEMP', 'RAW');

Create the queue:

SQL> EXECUTE dbms_agadm.create_queue ('AQAPP_NEWEMP', 'AQAPP_NEWEMP') ;

Start the queue:

SQL> EXECUTE dbms_agadm.start_queue ('AQAPP_NEWEMP') ;

B.7.4.3 Task 3: Install the FTP Adapter for Application fileapp_sub

1.

Refer to "FTP Adapter Installation" in Chapter 2 of the Oracle Application Server
Integration InterConnect Adapter for FIP Installation and User’s Guide for installation
instructions.

During installation, enter the following specific values when prompted:

a. Enter fileapp_sub in the Application Name field of the Oracle Application
Server Integration InterConnect FIP Adapter Configuration dialog.

b. Enter the following value in the URL field of the Oracle Application Server
Integration InterConnect FIP Adapter Configuration Configure receiving
endpoint information dialog;:

ftp://localhost/tmp/fileapp_sub/read

c. Enter the following value in the URL field of the Oracle Application Server
Integration InterConnect FTP Adapter Configuration Configure sending
endpoint information dialog:

ftp://localhost/tmp/fileapp_sub/write

This action places every newEmployee message received by the fileapp_
sub application (by way of its configured subscription created in "Task 8:
Enable the fileapp_sub Application to Subscribe to the newEmployee Event"
on page B-40) in the /tmp/fileapp_sub/write directory of the computer
where the FIP adapter is installed. Ensure that you create these directories
with global read and write permissions before starting the fileapp_sub
application (based on the FIP adapter), for example:

S umask 0
$ mkdir -p /tmp/fileapp_sub/read
$ mkdir -p /tmp/fileapp_sub/write

Complete adapter installation by providing appropriate responses when
prompted.

When installation is complete, the new adapter instance is located in the following
directory:

Using the Data Definition Description Language B-43

D3L Use Case

Platform Directory

Windows %ORACLE_
HOME%$\integration\interconnect\adapters\fileapp
sub

UNIX SORACLE_
HOME/integration/interconnect/adapters/fileapp_
sub

B.7.4.4 Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory

1. Copy the newemp.xml D3L file defined in "Task 2: Create a D3L File for the FTP
Adapter" on page B-32 to the platform-specific directory mentioned in the
preceding Step 2 on page B-43.

B.7.4.5 Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter
Initialization File

Set the ota.d31s and ota. type parameters in the adapter. ini adapter
initialization file for the FTP adapter. The adapter. ini file is located in the
platform-specific directory mentioned in the preceding Step 2 on page B-43.

1. Use a text editor to set the ota.d31s parameter to newemp . xml in
adapter.ini:

ota.d31ls=newemp.xml

If the ota.d31s parameter line already exists in adapter. ini, replace it with
the preceding version.

2. Use a text editor to set the ota. type parameter to D3L in adapter. ini:

ota.type=D3L

B.7.5 Running the D3L Use Case

Now that both the Advanced Queuing adapter instance agapp_pub and the FIP
adapter instance fileapp_sub have been installed, use both to run the D3L use case.

This section contains these topics:

» Task 1: Start the Adapters

s Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event
» Task 3: Trigger the newEmployee Event

» Task 4: Verify Receipt of newEmployee Event

B.7.5.1 Task 1: Start the Adapters
The first task is to start the adapters.

B.7.5.1.1 To Start the Adapters on UNIX: Follow these steps to start the adapters on
UNIX:

To start the agapp_pub (Advanced Queuing) adapter:

1. Change directories to where the agapp_pub adapter is installed:

$ cd $ORACLE_HOME/integration/interconnect/adapters/agapp_pub

B-44 User's Guide

D3L Use Case

2. Start the adapter as a background process:

$ start &

To start the £ileapp_sub (FIP) adapter:
1. Change directories to where the £ileapp_sub adapter is installed:

$ cd SORACLE_HOME/integration/interconnect/adapters/fileapp_sub

2. Start the adapter as a background process:

$ start &

B.7.5.1.2 To Start the Adapters on Windows: Follow these steps to start the adapters on
Windows:

To start the agapp_pub (Advanced Queuing) adapter:
1. Change directories to where the agapp_pub adapter is installed:

cd %ORACLE_HOME%\integration\interconnect\adapters\agapp_pub

2. Start the adapter:

start

To start the £ileapp_sub (FIP) adapter:
1. Change directories to where the fileapp_sub adapter is installed:

cd $ORACLE_HOME%$\integration\interconnect\adapters\fileapp_sub

2, Start the adapter:

start

Note: You can also start adapters from the Windows Control
Panel. Refer to the OracleAS Integration InterConnect Adapter
documentation for instructions.

B.7.5.2 Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event

The next task generates the native event (that is, triggers the newEmployee event). As
configured in iStudio, the agapp_pub application publishes the newEmployee event.
It does so when it sees a new (XML) message on the AQAPP_NEWEMP queue that
conforms to the DTD defined in "Task 1: Create a DTD File for the Advanced Queuing
Adapter" on page B-32.

To generate the native event, you must enqueue a message on the application queue
(AQAPP_NEWEMP) for the application agapp_pub. You do this through an anonymous
PL/SQL block.

1. Change directories to where the agapp_pub application (of the Advanced
Queuing adapter) is installed, for example:

on... Change To...

UNIX $ cd $ORACLE_
HOME/ integration/interconnect/adapters/aqapp_pub

Using the Data Definition Description Language B-45

D3L Use Case

on... Change To...

Windows cd %ORACLE_
HOME%\integration\interconnect\adapters\aqapp_pub

2. Create a file (named newemp . sql in this example) with the contents shown in
Example B-21:

Example B-21 File newemp.sql

DECLARE
enqueue_options dbms_aqg.enqueue_options_t;
message_properties dbms_ag.message_properties_t;
msgid RAW(16) ;
raw_payload RAW (32767) ;
payload varchar2 (2000) ;
BEGIN
payload :=
'<?xml version="1.0" standalone="no"?>
<NewEmpRec>

<EmpName>Scott Tiger</EmpName>
<EmpDept>257</EmpDept>
<EmpHiredate>05/01/2001</EmpHiredate>
<EmpSalary>52308.75</EmpSalary>

</NewEmpRec> "' ;
raw_payload := utl_raw.cast_to_raw(payload) ;
dbms_ag.enqueue (queue_name => 'AQAPP_NEWEMP',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => raw_payload,
msgid => msgid) ;
commit;
END;
/

Note: The payload variable is assigned a string value, which
contains a valid XML document that conforms to the DTD
newemp . dtd defined in "Task 1: Create a DTD File for the
Advanced Queuing Adapter" on page B-32.

B.7.5.3 Task 3: Trigger the newEmployee Event

Everything is now defined, created, and started. You must now trigger the
newEmployee event, which was prepared in "Task 2: Create PL/SQL Code to Trigger
the Native newEmployee Event" on page B-45.

As mentioned earlier, the event is triggered when you place an XML message on the
AQAPP_NEWEMP queue, which is what the newemp . sql script does.

Run the PL/SQL script to generate the event.

1. Log in to the database account agapp where the AQAPP_NEWEMP queue was
defined. (Refer to "Task 2: Create the Application Queue AQAPP_NEWEMP" on
page B-42.) For example, assuming no connect string is necessary, specify the
following command:

sglplus agapp/agapp

B-46 User's Guide

D3L Use Case

2. Run the newemp. sql script:

SQL> START newemp.sql

The following message appears:

PL/SQL procedure successfully completed.

3. Exit SQL*Plus:

SQL> EXIT

B.7.5.4 Task 4: Verify Receipt of newEmployee Event

After some time (maybe several minutes depending on the system performance), a file
appears in the /tmp/fileapp_sub/write directory, which represents the sending
endpoint for the FIP adapter. The file is named after the pattern:

app-name- times tamp
1. Verify that the newEmployee event has been published and received by the

fileapp_sub application. On UNIX, for example, perform the following
commands:

$ cd /tmp/fileapp_sub/write
$ 1s -1
total 2

-rw-rw-r-- 1 bstern svrtech 44 Dec 18 15:29 FILEAPP_SUB-1008718194783

The contents of the file can be displayed in different formats:

$ od -c FILEAPP_SUB-1008718194783

0000000 S c o) t t T i g

0000020 001 001 | 0 5 / 0 1 / 2 0 0
0000040 1 | $ 5 2 3 0 8 . 7 5 $

or

$ od -x FILEAPP_SUB-1008718194783

0000000 5363 6£74 7420 5469 6765 7220 2020 2020
0000020 2020 2020 0101 7c30 352f 3031 2£32 3030
0000040 317c 2435 3233 3038 2e37 3524

2. Verify that this output corresponds to the D3L definition shown in "Task 2: Create
a D3L File for the FTP Adapter” on page B-32 and the data enqueued by
newemp.sql.

3. Repeat Step 2 on page B-47 to trigger and generate another event (file). The second
time you trigger the event, the new file in the /write directory appears much
faster (in approximately 3-4 seconds). This is because the adapter allocates and
initializes all connections and data structures after processing the first message.

4. You have completed the use case.

B.7.6 Using Other Adapters in D3L and XML Modes

This section briefly describes how to use adapters other than the FTP adapter, and
how to run them in XML mode instead of D3L mode. It contains these topics:

s Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode

Using the Data Definition Description Language B-47

Additional D3L Sample Files and DTD

Using XML Mode

B.7.6.1 Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode

Perform the following steps to use the D3L use case with a different OracleAS
Integration InterConnect adapter.

1.

Enter another application name that indicates which adapter you are using in
"Task 7: Create the fileapp_sub Application" on page B-40 (for example,
smtpapp_sub.)

Specify the parameters needed for the particular adapter in Step 1 on page B-43.
Refer to the installation documentation for the appropriate OracleAS Integration
InterConnect Adapter.

In "Task 4: Verify Receipt of newEmployee Event" on page B-47, the verification
process depends entirely on the adapter type, or more specifically, the exact
sending endpoint defined.

Replace the fileapp_sub application name where ever it appears with the new
application name.

The remaining steps are the same as decribed in the previous section.

B.7.6.2 Using XML Mode

Perform the following steps to use XML as the operational mode of the OracleAS
Integration InterConnect adapters.

1.
2.

Skip "Task 2: Create a D3L File for the FITP Adapter" on page B-32.

Define the following common view event attributes in Step 4 and Step 5 of "Task 3:
Create the newEmployee Event" on page B-35:

a. Manually create a common data type (right-click + New) named NewEmpRec
that has the same attributes as shown in the Create Event dialog on page B-35.

b. Import the common data typedata type defined in Step 2 instead of importing
a D3L file.

Select XML instead of D3L in Step 3 of "Select the Event to which to Subscribe" on
page B-40.

Select to import XML and choose the file newemp . dtd in Step 4 of "Define the
Application View" on page B-40.

Perform Steps 2 through 4 in "Define the Application View to Common View
Mapping" on page B-41 like you did Steps 2 through 7 in "Define the Application
View to Common View Mapping" on page B-38.

Skip Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory
on page B-44 and "Task 5: Set the D3L file and Payload Type in the adapter.ini
Adapter Initialization File" on page B-44.

Note: Replacement step Step 2 assumes that you do not have the
D3L file. However, as a shortcut, you can still define the common

view event attributes as they were performed in Step 6 of "Task 3:

Create the newEmployee Event" on page B-35.

B.8 Additional D3L Sample Files and DTD

This section contains these topics:

B-48 User's Guide

Additional D3L Sample Files and DTD

= Additional D3L Sample Files
= D3LDTD

B.8.1 Additional D3L Sample Files

This section provides several D3L sample files. These example files describe how to
use the D3L language to define the content of native format messages.

= Sample File with Structure VehicleRegistration
= Sample File with Structure Hierarchy PersonRecord

= Sample File with Structure ProductRecord

B.8.1.1 Sample File with Structure VehicleRegistration

Sample file msg-1.xml represents a structure named VehicleRegistration.
Table B—4 describes the file fields and Example B-22 shows msg-1.xml file contents.

Table B-4 msg-1.xml File Fields

Field Description

SizeWeight A fixed-length array of four signed, one-byte, little-endian integers,
each aligned on two-byte boundaries (implying a one-byte padding
between elements of the array.)

ProductCode An unsigned, two-byte, big-endian integer aligned on two-byte
boundaries.

VIN An unsigned, eight-byte, big-endian integer aligned on two-byte
boundaries.

PreviousOwners A length-prefixed array of dates in the MMDDYYYY format (the length of
the array is a signed, one-byte, little-endian integer with a two-byte
alignment.)

Miles An unsigned, two-byte, big-endian integer with a two-byte alignment.

DateProduced A single date in the MMDDYYYY format.

Example B-22 Sample File msg-1.xml with Structure EmployeeRegistration

<?xml version="1.0" encoding="US-ASCII"?>
<message type="VehicleRegistration" name="Register" object="Vehicle">
<date format="MMDDYYYY" id="Date_ T">
<padstring id="FixStringl0_T" length="10" padchar='' padstyle="none" />
</date>
<struct id="VehicleRegistration">
<!-- Width x Length x Height x Weight (inch/1lb) -->
<field name="SizeWeight"><typeref type="ShortArray4 T" /></field>
<field name="ProductCode"><unsigned2 align="2" endian="big" /></field>
<field name="VIN"><unsigned8 align="2" endian="big" /></field>
<field name="PreviousOwners"><typeref type="StringArray T" /></field>
<field name="Miles"><unsigned2 align="2" endian="big" /></field>
<field name="DateProduced"><typeref type="Date_T" /></field>

</struct>

<fixarray id="ShortArray4 T" length="4">
<unsigned? align="2" endian="little" id="" />

</fixarray>

<unsignedl align="2" endian="little" id="Short_T" />

<pfxarray id="StringArray_T" length="Short_T">
<typeref type="FixStringlO_T" />

</pfxarray>

Using the Data Definition Description Language B-49

Additional D3L Sample Files and DTD

</message>

The following native format message examples show a hexadecimal and character
representation of the same message, which can be parsed by the msg-1.xml D3L file:
» Hexadecimal format:

0000000 4500 b200 3400 8alb 3049 0000 0000 0072
0000020 55ff 0200 4a6f 6e65 732c 502e 2020 536d
0000040 6974 682c 522e 2020 5208 3131 2532 3225
0000060 3139 3939

s Character format:

0000000 E \0 262 \O 4 \0 212 013 0 331 \0O \O \O \O \O r
0000020 U 377 002 \O J o) n e s , P . S m
0000040 i t h , R . R \b 1 1 % 2 2 %

0000060 1 9 9 9

B.8.1.2 Sample File with Structure Hierarchy PersonRecord

Sample file msg-2 .xml demonstrates a structure hierarchy named PersonRecord.
Table B-5 describes the file fields and Example B-23 shows msg-2 . xm1 file contents.

Table B-5 msg-2.xml File Fields

Field Description
Name A string delimited by a comma.
Age An unsigned, one-byte integer.
DOB A date in MMDDYYYY format, length prefixed by a signed, four-byte integer.
Phone An unsigned, four-byte integer.
City A structure named CityRecord that consists of the following fields:
= Name

= Astring delimited by *

[State

= Astring delimited by *

n Country

= Astring delimited by *

n Population

= Anunsigned, four-byte integer
State A structure named StateRecord that consists of the following fields:

[Name

= Astring delimited by a space

n Capital

= Astring delimited by a space

n Population

= Anunsigned, four-byte integer

Example B-23 Sample File msg-2.xml with Structure PersonRecord

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d31.dtd">
<message type="PersonRecord">

B-50 User's Guide

Additional D3L Sample Files and DTD

<signed4 id="s4" />
<struct id="CityRecord">

<field name="Name"><limstring delimiter="*" /></field>
<field name="State"><limstring delimiter="*" /></field>
<field name="Country"><limstring delimiter="," /></field>
<field name="Population"><unsigned4 /></field>

</struct>

<struct id="StateRecord">

<field name="Name"><limstring delimiter=" " /></field>
<field name="Capital"><limstring delimiter=" " /></field>
<field name="Population"><unsigned4 /></field>

</struct>

<struct id="PersonRecord">

<field name="Name"><limstring delimiter="," /></field>
<field name="Age"><unsignedl /></field>
<field name="DOB">

<date format="MMDDYYYY">

<pfxstring id="dobstr" length="s4" />

</date>
</field>
<field name="Phone"><unsigned4 /></field>
<field name="City"><typeref type="CityRecord" /></field>
<field name="State"><typeref type="StateRecord" /></field>

</struct>

</message>

The following is a combined hexadecimal and character representation of a native
message, which can be parsed by msg-2.xm1:

000 2cda 6f68 6e20 446f 652c 1e00 0000 000a ,John Doe,_.....
020 3131 2£32 352f 3139 3635 0000 002c alb5 11/25/1965...,.U
040 2ab0 6£f72 746c 616e 642a 2a4f 522a 2c¢b5 *Portland**OR*,U
060 5341 2c00 000f 4240 204f 7265 676f 6e20 SA,...B@_Oregon_
100 2053 616c 656d 2000 003d 0900 _Salem_..=..

B.8.1.3 Sample File with Structure ProductRecord

Sample file msg-3 . xml defines a structure named ProductRecord. Table B-6
describes the file fields and Example B-24 shows msg-3 . xml file contents.

Table B-6 msg-3.xml File Fields

Field

Description

Manufacturer A string delimited by a space.

Weight

A single-precision, floating-point number.

Widgets A length-prefixed array of WidgetRecord structures. A WidgetRecord

consists of:

= Name

= A string delimited by a space
" Color

= A string delimited by a space
s Weight

= A single-precision, floating point number

Using the Data Definition Description Language B-51

Additional D3L Sample Files and DTD

Example B-24 Sample File msg-3.xml with Structure ProductRecord

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d31.dtd">

<message type="ProductRecord">

<unsignedl id="ul" />

<unsigned2 id="u2" />

<number id="pfxnum">
<padstring length="8" padchar="" padstyle="none" />

</number>

<pfxarray id="UnsignedlTab" length="ul">
<unsignedl />

</pfxarray>

<pfxarray id="Signed4Tab" length="pfxnum">
<unsigned4 />

</pfxarray>

<pfxarray id="StrTab" length="ul">
<limstring delimiter=" " />

</pfxarray>

<struct id="WidgetRecord">
<field name="Name"><limstring delimiter=" " /></field>
<field name="Color"><limstring delimiter=" " /></field>
<field name="Weight"><float /></field>

</struct>

<pfxarray id="WidgetTab" length="u2">
<typeref type="WidgetRecord" />

</pfxarray>

<struct id="ProductRecord">

<field name="Manufacturer"><limstring delimiter=" " /></field>

<field name="Weight"><float /></field>
<field name="Widgets"><typeref type="WidgetTab" /></field>
</struct>

</message>

B.8.2 D3L DTD

Example B-25 shows the DTD to which D3L (XML) files must conform.

Example B-25 D3L DTD

<!ENTITY % Name "CDATA" >
<!ENTITY % Number "NMTOKEN" >
<!ENTITY % Comment "CDATA" >
<!ENTITY % DelimiterChar
"CDATA"
>

<!ENTITY % QuotationCharAttribute

quote %DelimiterChar; #IMPLIED

<!-— Z====o=o=o=o---o-oo-o------o-o---o-oo------oo-o--o-ooo-—--o-==o
<!ENTITY % GenericAttributes

name %Name; #IMPLIED
comment %Comment; #IMPLIED
id ID #IMPLIED

B-52 User's Guide

Additional D3L Sample Files and DTD

>
<!ENTITY % FieldAttributes

name %Name; #REQUIRED
comment %Comment; #IMPLIED
id ID #IMPLIED

"

>

<!ENTITY % NonTypeAttributes
name %Name; #IMPLIED
comment %Comment; #IMPLIED

<l-- =Z===============—=—=-==—=-=—=—=—=-==—=-==—=—=-==—=-=—==—================== -->
<!ENTITY % StructAttributes

%GenericAttributes;

%QuotationCharAttribute;

>
<l-— == -->
<!ENTITY % Align

"$Number; "
>
<!ENTITY % IntegerSize

(1|2 4] 8)
>

<!ENTITY % Endian
"(big | little)"
>
<!ENTITY % IntegerAttributes
%GenericAttributes;
endian %Endian; ‘big’
>
<!ENTITY % IntegerTypes
" signedl | unsignedl

| signed2 | unsigned2
| signed4 | unsigned4
| signed8 | unsigned8

"

>
<!ENTITY % FloatAttributes

%GenericAttributes;
>
<!ENTITY % FloatTypes

" float | double

<IENTITY % PadStyle

"(head | tail | none)"
>
<!ENTITY % PadChar

"CDATA"

Using the Data Definition Description Language B-53

Additional D3L Sample Files and DTD

>
<!ENTITY % StringAttributes

%GenericAttributes;
>
<!ENTITY % SimpleStringAttributes

"

%StringAttributes;
>
<!ENTITY % TerminatedStringAttributes
%StringAttributes;
endchar %DelimiterChar; #REQUIRED
>
<!ENTITY % QuotedTerminatedStringAttributes
%StringAttributes;
%QuotationCharAttribute;
endchar %DelimiterChar; #REQUIRED
>
<!ENTITY % PaddedStringAttributes

"

%StringAttributes;

length $Number ; #REQUIRED
padchar %PadChar; #REQUIRED
padstyle %PadStyle; #REQUIRED

>
<!ENTITY % PrefixedStringAttributes
%StringAttributes;
length IDREF #REQUIRED
>
<!ENTITY % DelimitedStringAttributes
%StringAttributes;
delimiter %DelimiterChar; #REQUIRED
>
<!ENTITY % StringTypes
"padstring | pfxstring | limstring | gtdtermstring | termstring |
simplestring "
>
<l-- ===========—==—========= -->
<!ENTITY % DateFormat
"(DDMMYY ‘ DDMMYYYY | MMDDYY MMDDYYYY)"
>
<!ENTITY % DateAttributes
%GenericAttributes;
format %DateFormat; #REQUIRED

<!ENTITY % NumberAttributes

B-54 User's Guide

Additional D3L Sample Files and DTD

%GenericAttributes;

<l-- =Z=========—==—======= -->
<!ENTITY % ArrayAttributes

%GenericAttributes;
>
<!ENTITY % FixedArrayAttributes
%ArrayAttributes;
length %Number ; #REQUIRED
>
<!ENTITY % PrefixedArrayAttributes
%ArrayAttributes;
length IDREF #REQUIRED
>
<!ENTITY % DelimitedArrayAttributes

%ArrayAttributes;
contchar %DelimiterChar; #REQUIRED
endchar %DelimiterChar; #REQUIRED

>
<!ENTITY % ImplicitArrayAttributes

%ArrayAttributes;

<!ENTITY % ScalarElements
" signedl | unsignedl

| signed2 | unsigned2
| signed4 | unsigned4
| signed8 | unsigned8
| float | double
| date | number
| padstring
| pfxstring
| limstring
| termstring
| qtdtermstring
| simplestring
>
<!ENTITY % TypeElements
"$ScalarElements;
| struct
| fixarray
| pfxarray
| limarray
| imparray
>
<!-- == -->

Using the Data Definition Description Language B-55

Additional D3L Sample Files and DTD

<!ENTITY % FieldElements

"$TypeElements; "

>

<!ENTITY % MessageElements
"$TypeElements; "

>

<!ENTITY % StructElements
"field | pad"

>

<!ENTITY % ArrayElements
"$ScalarElements; | struct"

>

<!ENTITY % ImplicitArrayElements
"$ArrayElements; | limarray"

>

<l-- ==============—=—=—=—=—=—=—==—=—=—=—=—=—=—=—=—=—==—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—======

<!ELEMENT message (%MessageElements;)* >
<!ATTLIST message

name %Name; #REQUIRED
object CDATA #REQUIRED
type IDREF #REQUIRED
comment %Comment ; #IMPLIED

id ID #IMPLIED

header CDATA #IMPLIED

value CDATA #IMPLIED

magic CDATA #IMPLIED

startsat %Number ; #IMPLIED

reply (Y|N) "N

%QuotationCharAttribute;

<!ELEMENT struct (%StructElements;)* >
<!ATTLIST struct
%StructAttributes;

<l-- =================-====—==—=====-==-=—=-=—=—=—=—=—==—=—=—==—==—===========
<!ELEMENT field (typeref | %FieldElements;) >
<IATTLIST field
%FieldAttributes;

<l-- =Z==========—==—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=——=—=—=—=—=—=———=—=—=—=—=—=—=—=—=—=—=—=======
<!ELEMENT signedl EMPTY >
<!ATTLIST signedl

%$IntegerAttributes;
size %IntegerSize; #FIXED "1"
align %Align; "

>
<!ELEMENT unsignedl EMPTY >
<!ATTLIST unsignedl

$IntegerAttributes;
size %IntegerSize; #FIXED "1"
align %Align; LN

>
<!ELEMENT signed2 EMPTY >
<!ATTLIST signed2

%$IntegerAttributes;
size %IntegerSize; #FIXED "2"
align %Align; "

>
<!ELEMENT unsigned2 EMPTY >

B-56 User's Guide

Additional D3L Sample Files and DTD

<!ATTLIST unsigned2

$IntegerAttributes;
size %IntegerSize; #FIXED "2"
align %Align; "

>
<!ELEMENT signed4 EMPTY >
<!ATTLIST signedd

%$IntegerAttributes;
size %IntegerSize; #FIXED "4"
align %Align; "4

>
<!ELEMENT unsigned4 EMPTY >
<!ATTLIST unsigned4

%$IntegerAttributes;
size %IntegerSize; #FIXED "4"
align %Align; "4

>
<!ELEMENT signed8 EMPTY >
<!ATTLIST signed8

%$IntegerAttributes;
size %IntegerSize; #FIXED "8"
align %Align; "g"

>
<!ELEMENT unsigned8 EMPTY >
<!ATTLIST unsigned8

%$IntegerAttributes;
size %IntegerSize; #FIXED "8"
align %Align; "g"
>
<l-- == -->

<!ELEMENT float EMPTY >
<!ATTLIST float
%FloatAttributes;
align %Align; "4
>
<!ELEMENT double EMPTY >
<!ATTLIST double
%FloatAttributes;
align %Align; "g

<l-- == -->
<!ELEMENT simplestring EMPTY >
<!ATTLIST simplestring
$SimpleStringAttributes;
>
<!ELEMENT gtdtermstring EMPTY >
<!ATTLIST gtdtermstring
%QuotedTerminatedStringAttributes;
>
<!ELEMENT termstring EMPTY >
<!ATTLIST termstring
%$TerminatedStringAttributes;
>
<!ELEMENT padstring EMPTY >
<!ATTLIST padstring
%$PaddedStringAttributes;
>
<!ELEMENT pfxstring EMPTY >
<!ATTLIST pfxstring
$PrefixedStringAttributes;

Using the Data Definition Description Language

B-57

Additional D3L Sample Files and DTD

B-58 User's Guide

>
<!ELEMENT limstring EMPTY >
<!ATTLIST limstring
%DelimitedStringAttributes;

<l== == -->
<!ELEMENT fixarray (typeref | %ArrayElements;) >
<!ATTLIST fixarray
$FixedArrayAttributes;
>
<!ELEMENT pfxarray (typeref | %ArrayElements;) >
<!ATTLIST pfxarray
$PrefixedArrayAttributes;
>
<!ELEMENT limarray (typeref | %ArrayElements;) >
<!ATTLIST limarray
%DelimitedArrayAttributes;
>
<!ELEMENT imparray (typeref | %ImplicitArrayElements;) >
<!ATTLIST imparray
$ImplicitArrayAttributes;

<l-- =================—=======-=—=-=—=-=—=-=—=-=—=—=-—=—=—==—=—==—=—==—===—======== -->
<!ELEMENT date (typeref | %StringTypes;) >
<!ATTLIST date
%DateAttributes;

<l-- =Z===============—=-=-===—=—=—=—=-==—=-=—=—=—=-==—=-=—==—================== -->
<!ELEMENT number (typeref \ %StringTypes;) >
<!ATTLIST number
$NumberAttributes;

<l -- ===========z========z=====z================================ -->
<!ELEMENT typeref EMPTY >
<!ATTLIST typeref
%NonTypeAttributes;
type IDREF #REQUIRED

< ! —— SEE=E=S=S==S=SSSSSSSSCSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS=S=S=S=S=S===== - -3
<!ELEMENT pad EMPTY >
<!ATTLIST pad
%NonTypeAttributes;
length $%$Number; #REQUIRED

C

Transformations

C.1 OracleAS Integration InterConnect Transformations

This appendix provides a table with the OracleAS Integration InterConnect
transformations.

C.1.1 Copy Fields

Copy the source fields into the destination fields.

Parameters:
None

C.1.2 Copy Object

Copy the source object into the destination object.

Parameters:
None

C.1.3 Concat Fields

Concatenate the source fields, and copy into the destination fields.

Parameter Description

prefix An optional prefix to the concatenated
string.

separator The separator, a string of characters, that
separate source fields in the concatenated
string.

suffix An optional suffix to the concatenated
string.

C.1.4 Expand Fields

Expand the source field into the destination fields.

Transformations C-1

OracleAS Integration InterConnect Transformations

Parameter Description

delimiter The delimiter or string of characters around
which the source field should be separated.

C.1.5 Set Constant

Copy a constant into the destination fields.

Parameter Description

constant The constant to be copied.

C.1.6 True Conditional Lookup XRef

Find the source field in a cross-reference table. If the condition is satisfied, then copy it
into the destination field.

Parameter Description

condition The condition for this parameter.

table The cross-reference table.

pass through If there is no corresponding cross-reference,

and the parameter is true, then the
destination field is set to the source field. If
this parameter is false, then the
destination field is set to null.

C.1.7 True Conditional Lookup DVM

Find the source field in a domain value map table. If the condition is satisfied, then
copy it into the destination field.

Parameter Description

condition The condition for this parameter.

table The domain value map table.

pass through If there is no corresponding domain value

map and this parameter is set to true, then
the destination field is set to the source
field. If this parameter is set to false, then
the destinations field is set to null.

C.1.8 Conditional Copy

Copy the source fields into the destination fields if the expression is satisfied.

Parameter Description
expression The expression.
only copy on true If this parameter is set to true and the

expression evaluates to false, then
nothing is copied. If this parameter is set to
false and the expression evaluates to
false, then the second input object is
copied.

C-2 User’s Guide

OracleAS Integration InterConnect Transformations

C.1.9 True Conditional Copy

Copy the source fields into the destination fields if the condition is satisfied.

Parameter

Description

condition

The condition for this parameter.

C.1.10 True Conditional Concat

Concatenate the source fields into the destination field if the condition is satisfied.

Parameter Description

condition The condition for this parameter.

prefix An optional prefix to the concatenated
string.

separator The separator, a string of characters, that
separate source fields in the concatenated
string.

suffix An optional suffix to the concatenated

string.

C.1.11 True Conditional To Number

Convert the sign, value, and precision source fields into a number, and copy it into the
destination field if the condition is satisfied.

Parameter

Description

condition

int length

dec length

character

DVM

The condition for this parameter.

The number of digits before the decimal
point excluding the sign.

The number of digits after the decimal
point.

The padding character.

An optional domain value map to lookup
decimal point character.

C.1.12 False Conditional Copy

Copy the source fields into the destination fields if condition is not satisfied.

Parameter Description

condition The condition for this parameter.
condition The condition for this parameter.
condition The condition for this parameter.

C.1.13 False Conditional Concat

Concatenate the source fields into the destination field if the condition is not satisfied.

Transformations C-3

OracleAS Integration InterConnect Transformations

Parameter Description

condition The condition for this parameter.

prefix An optional prefix to the concatenated
string.

separator The separator, a string of characters, that

separate source fields in the concatenated
string.

C.1.14 False Conditional To Number

Convert the sign, value, and precision source fields into a number and copy it into the
destination field if condition is not satisfied.

Parameter

Description

condition

int length

dec length

The condition for this parameter.

The number of digits before the decimal
point excluding the sign.

The number of digits after the decimal
point.

C.1.15 To Number

Convert the sign, value, and precision source fields into a number, and copy it into the

destination field.

Parameter

Description

int length

dec length

character

The number of digits before the decimal
point excluding the sign.

The number of digits after the decimal
point.

The padding character.

C.1.16 Substring

Copy a substring of the source field into the destination field.

Parameter

Description

begin index
length

begin index

The index at which the substring begins.
An optional length of the substring.

The index at which the substring begins.

C.1.17 Char Replace

Replace characters in the source field, and copy it into the destination field.

Parameter Description
targets The string of characters to replace.
replacements The string of replacement characters.

C-4 User’s Guide

OracleAS Integration InterConnect Transformations

Parameter Description

targets The string of characters to replace.

C.1.18 String Replace

Replace each occurrence of a string in the source field, and copy the replacement into
the destination field.

Parameter Description

targets The string of characters to replace.
replacements The string of replacement characters.
targets The string of characters to replace.

C.1.19 LTrim

Delete source field characters starting from the left until a character from the set is
found, and copy the remaining string into the destination field.

Parameter Description

characters The string of characters to seek that stop the
deletion.

characters The string of characters to seek that stop the
deletion.

characters The string of characters to seek that stop the
deletion.

C.1.20 RTrim

Delete source field characters starting from the right until a character from the set is
found, and copy the remaining string into the destination field.

Parameter Description

characters The string of characters to seek that stop the
deletion.

characters The string of characters to seek that stop the
deletion.

characters The string of characters to seek that stop the
deletion.

C.1.21 LPad

Pad source field starting from the left for a given length, and copy it into the
destination field.

Parameter Description

length The padding length.

character An optional character to pad with, default is
<space>.

length The padding length.

Transformations C-5

OracleAS Integration InterConnect Transformations

C.1.22 RPad

Pad source field starting from the right for a given length, and copy it into the
destination field.

Parameter Description

length The padding length.

character An optional character to pad with, default is
<space>.

length The padding length.

C.1.23 Lookup XRef

Lookup the source field in a cross-reference table, and copy it into the destination

field.

Parameter Description

table The cross-reference table.

pass through If there is no corresponding cross-reference
and this parameter is set to true, then the
destination field is set to the source field. If
this parameter is set to false, then the
destination field is set tonull.

table The cross-reference table.

C.1.24 Delete XRef

Delete the source field from a cross-reference table.

Parameter Description

table The cross-reference table.
table The cross-reference table.
table The cross-reference table.

C.1.25 Lookup DVM

Look up the source field in a domain value map table, and copy it into the destination

field.

Parameter Description

table The domain value map table.

pass through If there is no corresponding domain value
map and this parameter is set to true, then
the destination field is set to the source
field. If this parameter is set to false, then
the destination field is set to nul1l.

table The domain value map table.

C-6 User’s Guide

OracleAS Integration InterConnect Transformations

C.1.26 Truncate

Truncate source field starting from the right for a given length, and copy it into the

destination field.

Parameter

Description

length
length

length

The length to truncate.
The length to truncate.
The length to truncate.

C.1.27 Increment

Increment a counter, and copy the incremented value into the destination field.

Parameter

Description

start value

counter

step size

The initial counter value.

The name of the counter. The name should
distinguish it from other counters that may
be at different values at a given time and
may have a different step size.

The increment size.

C.1.28 DatabaseOperation

Apply SQL or PL/SQL operations to the source fields, and copy the result to the
destination fields. This transformation can be processed on any database, including
the hub or database adapter instance. Connect to the database given by the
connectivity parameters and bind the input variables to the corresponding bind
variables of the SQL or PL/SQL given by the operation parameters.

The statement is then run. Upon successful execution, the results are copied to the
destination field of the transformation. The connection to the database is then closed
and the result of the transformation is returned.

Parameter

Description

db user
db password
db host

The database user name.
The password of the database user.

The hostname of the database.

Transformations C-7

OracleAS Integration InterConnect Transformations

C-8 User’s Guide

Note: For the PL/SQL type of transformation, the following
syntax of the PL/SQL statement is assumed:

= IN parameters are specified with a ?I
s OUT parameters are specified with a ?0:<T>
s IN/OUT parameters are specified with a ?10:<T>

<T> is a single character type specifier denoting the type of the
variable. Valid variable values are:

= S:String
= I:Integer
= F:Float

= D: Double
s T:Date

= B:Binary

D

Troubleshooting OracleAS Integration
InterConnect

This appendix describes common problems that you might encounter when using
OracleAS Integration InterConnect and explains how to solve them. It also gives
detailed instructions on how to diagnose OracleAS Integration InterConnect problems.
It contains the following topics:

s Problems and Solutions

= Need More Help?

D.1 Problems and Solutions

This section describes common problems and solutions. It contains the following
topics:

= iStudio Fails to Connect

= Mappings in iStudio

= Metadata Not Editable in iStudio

= Subscribing Adapter Does Not Receive Messages From the Hub
= Messages Are Not Getting Delivered to a Spoke Application

= OracleAS Integration InterConnect Repository Does Not Start

= DB Adapter Does Not Pick Up Messages That Have Been Published From the
Database

» FTP Adapter Cannot Match Incoming Message With Any D3L Definiton
= AQ Adapter Does Not Pick Up Mesage From the Spoke AQ
= CBR Issue with DB Adapter

D.1.1 iStudio Fails to Connect

iStudio is not connecting to the repository. For example, a message pops up saying
"Failed to connect to the repository".

Problem 1
Incorrect hub database parameters entered in the Hub Information dialog.

Troubleshooting OracleAS Integration InterConnect D-1

Problems and Solutions

Solution 1

iStudio uses the user name, password, and connect string entered in the 'Hub
Information' dialog to establish a connection with the respository. Ensure that you
have provided the correct hub database parameters, <hostname>:<tns_listener_
port>:<db_sid>, for connecting to the Infrastructure Database. For example,
myhost.us.mycompany.com:1521:orcl.

See Also: Section 2.5.1, "Creating a New Project"” for more details on
the hub database parameters

Problem 2
Repository is down.

Solution 2

Ensure that the repository is properly started and check the SORACLE_
HOME/intergration/<version>/repository/reposlog. txt file for any
problems.

Problem 3
Repository is running behind a firewall.

Solution 3

Ensure that you configure the repository to use a specific RMI communication port.
This is configurable in the SORACLE_
HOME/integration/<version>/repository/repository.ini file.

D.1.2 Mappings in iStudio

D-2 User’s Guide

I'have changed the mapping, but the adapter(s) still seem to use the old information.

Problem 1
Metadata is not refreshed.

Solution 1

In the File menu, select Sync Adapters. This pushes the updated metadata to the
adapters.

Solution 2
Alternatively, you could perform the following steps to change the behavior after
transformation:

1. Stop the adapters.

2. Inthe adapter.ini file, set the value of the parameter agent_delete_file_
cache_at_startup to True, to delete all cached metadata at startup.

This parameter specifies whether to delete the cached metadata during startup. If
any of the agent caching methods such as metadata caching, DVM table caching,
or lookup table caching is enabled, then metadata from the repository is cached
locally on the file system. However, if you change some metadata or DVM table
using iStudio and you want the Adapter to use those changes the next time it is
started, then you can either delete the cache files or set this parameter to true
before restarting.

3. Restart the adapters.

D.1.3 Metadata Not Editable in iStudio

The metadata is not editable in iStudio as the "Edit" option is greyed out.

Problem 1

The metadata in the repository might belong to a different metadata owner than the
one specified in the SORACLE_
HOME/integration/<version>/repository/repository.ini file.

Solution 1

Ensure that the "owner" of the data is same in both repositories. Data types have an
owner, usually, that is "OAI". But you can change it in the repository. ini file.
Only data that is owned by the local repository owner may be edited.

The metadata owner information is stored along with the objects at the time of their
creation. If the repository owner name does not match the creation time owner name,
then you will notice that the edit buttons are greyed out. You will need to edit the
repository.ini file to change the owner name to the one used during creation and
restart the repository. You will also need to reestablish the iStudio connection to the
repository.

D.1.4 Subscribing Adapter Does Not Receive Messages From the Hub

The subscribing adapter is not able to pickup any message from the hub queue (cai_
hub_queue). The messages are queued up in the hub queue but aren't subscribed by
the subscribing adapter.

Problem 1

The value for the application, agent_subscriber_ name, and agent_message_
selector parameter in the SORACLE_
HOME/integration/<version>/adapters/<adapter_name>/adapter.ini
file doesn't match the application name in iStudio.

Solution 1

Ensure that the value for the application, agent_subscriber_name, and
agent_message_selector parameter in the SORACLE_
HOME/integration/<version>/adapters/<adapter_name>/adapter.ini
file match the application name in iStudio.

Problem 2
Hub Queue name of the application may be longer than 20 characters.

Solution 2
Apply patch 2659228.

D.1.5 Messages Are Not Getting Delivered to a Spoke Application

If an adapter successfully received a message from the hub, but encounters a problem
while transforming the message or delivering the message to the spoke application,
then it will try to reprocess/resend the message in a certain interval until the problem
has been resolved and the message has been successfully delivered. In most cases, this
unfortunately means that all other pending messages that need to be processed to the
spoke application won't get delivered until this one message has cleared out of the
system.

Troubleshooting OracleAS Integration InterConnect D-3

Problems and Solutions

Problem

OracleAS Integration InterConnect guarantees in-order-delivery of messages, meaning
that if an adapter encounters a problem while processing a message, it will try to
re-send the message until the problem has been resolved and the message can be
delivered successfully. All other pending messages can't get delivered as this would
change the order of delivery.

Solution 1

Refer to the error message and the cailog. txt file in SORACLE_
HOME/integration/<version>/adapters/<adapter_name>/logs/ directory,
to resolve the error message.

Solution 2

Use the SORACLE_HOME/integration/<version>/adapters/<adapter_
name>/ignoreErrors script to drop the problem message out of the system. The
ignoreErrors script will reconfigure the adapter, so that it ignores a specific error
code. The adapter will then drop all messages that fail with that specific error code
rather than trying to resend them, which ensures that other pending messages can be
processed.

D.1.6 OracleAS Integration InterConnect Repository Does Not Start

D-4 User’s Guide

The OracleAS Integration InterConnect repository does not start properly and there
are java excpetions in the $ORACLE_
HOME/integration/<version>/repository/reposlog. txt file. For example,
"Could not register with the hub database. Please check your hub database
parameters.” Error message: "Retrying in 10 sec.java.sql.SQLException: Io exception:
The Network Adapter could not establish the connection".

Problem 1

The information in the $ORACLE_HOME/integration/<version>/hub/hub.ini
file is not valid.

Solution 1

Provide the correct information in the SORACLE_
HOME/integration/<version>/hub/hub. ini file.

[Database]
hub_username=ichub

encrypted_hub_password=<encrypted_password> use SORACLE_
HOME/integration/<version>/bin/encrypt for encryption

hub_host=<hub_host_name>
hub_instance=<database_sid>
hub_port=<tns_listsner_port>
hub_use_thin_jdbc=true
[Repository Info]

repository_name:InterConnectRepos itoryl012

Problem 2
The hub schema does not exist on the hub database.

Solution 2

Run the $ORACLE_HOME/integration/<version>/repository/hubschema
script to create the hub schema.

D.1.7 DB Adapter Does Not Pick Up Messages That Have Been Published From the

Database

The database adapter does not pick up messages that have been published from the
database, even though the publshing PL/SQL procedure was performed successfully
and the message object record exists in the MESSAGEOBJECT table.

Problem

You might have published the message for the wrong application. The value provided
for srcAppName+partition id parameter in the publishing PL/SQL procedure
pub_<event/procedure_name>_<metadata_owner>_<version> does not
match the application parameter value in the SORACLE_

HOME/integration/<version>/adapters/<adapter_name>/adapter.ini
file.

Solution

Ensure that the value provided for the srcAppName+partition id parameter
matches the value of the application parameter in the SORACLE_

HOME/integration/<version>/adapters/<adapter_name>/adapter.ini
file.

D.1.8 FTP Adapter Cannot Match Incoming Message With Any D3L Definiton

The FTP adapter throws an error message that it cannot match the incoming message
with any of the D3L defintions, and drops the message.

Problem 1
The ota.d31s parameter is either empty or points to the wrong D3L file(s).

Solution 1
Provide a valid D3L file for ota.d31s (or list of D3L files).

Problem 2

The D3L header does not contain the correct information for OracleAS Integration
InterConnect event mapping.

Solution 2
Ensure that the

= name tag in the D3L header matched the BusinessObject event name in iStudio.

s Object Name field in the Define application View window of the
Publish /Subscribe /Invoke /Implement wizard is not empty.

= object tag matches the value of the Object Name field in the Define application
View window of the Publish/Subscribe/Invoke/Implement wizard.

D.1.9 AQ Adapter Does Not Pick Up Mesage From the Spoke AQ

The AQ adapter does not pick up message that have been enqueued to a spoke AQ.

Troubleshooting OracleAS Integration InterConnect D-5

Need More Help?

Problem 1

You have not provided the name of the spoke queue in the Deploy Tab in iStudio for
this integration point.

Solution 1

Provide the name of the spoke queue. The AQ adapter log file should contain a line
"<timestamp>: AQ Adapter: created a reader for queue <queue_name>".

Problem 2

The spoke queue might be a multiconsumer queue (JMS Topic) and you might connect
to it with an incorrect consumer name.

Solution 2

Ensure that the ag_bridge_consumer_name parameter in the SORACLE_
HOME/integration/<version>/adapters/<adapter_name>/adapter.ini
file is correct and matches the name of the consumer that the message was enqueued
for.

D.1.10 CBR Issue with DB Adapter

I created an event with the name ProdRelease. The root element name is
BatchProdRelease. When I restart the adapter, it displays the following error:

"An exception occured while evaluating the CBR expression: (ProdRelease_CO:0AI_
META /V1.BatchProdRelease_CO:OAI_META /V1.Header.PlantCode == "GFL").
Following is a detailed message. oracle.oai.agent.common.AgentRuntimeException:
Specified attribute (BatchProdRelease_ CO:OAI_META /V1) does not exist in Data
Type (ProdRelease_CO:0OAI_META /V1)."

Problem
The root element name is a substring of the event name.

Solution

Ensure that the root element name does not have a substring of the event name. The
root element name in this situation is BatchProdRelease and the event name is
ProdRelease. This causes the adapter to fail. A workaround for this is to change either
the root element name or event name.

D.2 Need More Help?

User’s Guide

You can find more solutions on Oracle MetaLink, http://metalink.oracle.com.
If you do not find a solution for your problem, log a service request.

See Also:

» Oracle Application Server Release Notes, available on the Oracle
Technology Network:
http://www.oracle.com/technology/documentation/
index.html

Glossary

Advanced Business Application Programming
A programming language developed by SAP for application development purposes.

adapter

Enables third-party environments to participate in application integration. An adapter
has two major tasks:

= Provide connectivity between an application and the hub.

s Transform and route messages between the application and the hub.

adapter.ini file

An initialization parameter file that an adapter uses at startup to connect to an
application.

advanced queuing adapter

Enables an Oracle Advanced Queuing application to be integrated with other
applications using OracleAS Integration InterConnect.

agent

A subcomponent of an adapter that handles runtime instructions. The agent is
independent of the application to which the adapter connects. The agent focuses on
the integration scenario based on the integration metadata in the repository.

application

A component integrated with OracleAS Integration InterConnect.

application view

A native view translated into the syntax used by an adapter. . Each application has its
own application view of data that allows it to participate in the integration. The
application view of data uses transformations to map into the common view.

bridge

A subcomponent of an agent adapter that transfers data between the application and
OracleAS Integration InterConnect. The bridge is the protocol/application-specific
piece of the adapter that communicates with the application.

Business Application Programming Interface

Standardized programming interface that enables external applications to access the
business processes and data of the R/3 system.

Glossary-1

Glossary-2

business object

A collection of logically related integration points.

cipher suites

A set of cryptographic algorithms. SSL supports different cryptographic algorithms, or
ciphers, for tasks such as authenticating the server and client to each other,
transmitting certificates, and establishing session keys. Clients and servers support
different cipher suites depending on factors such as the SSL version supported,
company policies regarding permissible encryption strength, and government
restrictions on export of SSL-enabled software.

common view

A view that is syntactically and semantically in the OracleAS Integration InterConnect
format. The common view:

= Identifies the list of integration points for applications. Applications participate in
integration by binding to one or more common view integration points, such as
creating a purchase order and creating a new customer.

= Eliminates the complexity of multiple integration points between applications.

content-based routing

Messages routed to specific applications based on business rules or message content.

cross-reference tables

Keys for corresponding entities created in different applications can be correlated
through cross-referencing.

D3L

Data Definition Description Language. An XML-based message description language
that describes application message information in its native format, also known as its
native view.

database adapter

Enables an Oracle Application, typically PL/SQL-based, to be integrated with other
applications using OracleAS Integration InterConnect.

design time

During the design phase, a business analyst uses iStudio to define the integration
objects, applications that participate in the integration, and the specifications of the
data exchanged between applications.

domain value maps

Code tables mapped across different systems.

DTD

Document Type Definition. A set of rules that defines the allowable structure of an
XML document. DTDs are text files that derive their format from SGML and are either
embedded within an XML document.

EAI

Enterprise Application Integration. The integration of applications and business
processes within the same company.

endpoints

The physical destination points for messages exchanged between OracleAS Integration
InterConnect and an application.

event

An integration point used to pattern the publish/subscribe model. An event has
associated data that is the common view of all the data to be exchanged through this
event. An event can be published or subscribed by an application.

event map

Allows application data to be mapped to an OracleAS Integration InterConnect event
without the application having to know about the OracleAS Integration InterConnect
event itself.

FTP adapter

Enables an FIP to be integrated with other applications using OracleAS Integration
InterConnect.

HTTP

Hypertext Protocol Transfer. The underlying format, or protocol, used by the Web to
format and transmit messages and determine what actions Web servers and browsers
should take in response to various commands. HTTP is the protocol used between
Oracle Application Server and clients.

HTTP adapter

Enables an Oracle HTTP application to be integrated with other applications using
OracleAS Integration InterConnect. This adapter is useful in all EAI environments that
use the HTTP transport protocol.

IDoc Type

Indicates the SAP format used to transfer the data for a business transaction. An IDoc
is a real business process in the form of an IDoc type. An IDoc type is described using
the following components:

m A control record is the format of the control record, which is identical for all IDoc
types.

= One or more data records consist of a fixed administration part and a data part
(segment). The number and format of the segments can be different for each IDoc

type.

= Status records describe the processing stages which an IDoc can pass through and
have identical formats for each IDoc type.

invoke/implement model

An application involes a procedure by sending data out to the OracleAS Integration
InterConnect hub and expects return of the result from an applicaion implementing
the procedure. An application implements a procedure by receiving data from the
OracleAS Integration InterConnect hub and returns the result once the procedure has
been performed. In iStudio, a procedure is used to model this scenario.

IMAP4

Internet Message Access Protocol 4. IMAP4 is a standard protocol for accessing e-mail
from a local server. IMAP4 is a client/server protocol in which e-mail is received and
held for users by their Internet server. Users can view just the heading and sender of

Glossary-3

Glossary-4

the e-mail, and then decide whether to download the e-mail. Users can also create and
manipulate folders or mailboxes on the server, delete messages, or search for certain
parts or an entire note. IMAP requires continual access to the server during the time
that users work with their e-mail.

iStudio

A design time integration specification tool targeted at business analysts. This tool
helps business analysts specify the integration logic at a functional level, instead of a
technical coding level. iStudio exposes the integration methodology using simple
wizards and reduces, or eliminates, the need for writing code to specify the integration
logic. This reduces the total time required to complete an integration.

metadata

A definition or description of data (essentially, data about data).

MQ Series adapter

Enables OracleAS Integration InterConnect to send message to and receive messages
from the MQ Series queues and topics.

native view

An application’s message information in its native format (for example, SAP IDoc).
Native events are both syntactically and semantically in the native format of the
application, and are defined external to OracleAS Integration InterConnect.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and server. Security credentials consist of a
public/private key pair, a certificate, and a trustpoint.

Oracle Workflow

Integrated with OracleAS Integration InterConnect and is used for business process
collaborations across two or more applications.

OracleAS Integration InterConnect

The integration hub that coordinates the communication and transformation of
messages between two or more heterogeneous applications. OracleAS Integration
InterConnect defines business events, their associated data, and any transformations
required to map one application's view of a business object to another's view.

payload

The data sent between applications. For example, the payload data for a purchase
order sent from one application to another application may include the product name,
the quantity ordered, and the price.

persistence

The ability to save data and restore it when needed.

procedure

An integration point used to pattern the invoke/implement model. A procedure has
associated data that is the common view of all the data to be exchanged through this
procedure. A procedure can be invoked or implemented by an application.

project

Encapsulates all the integration logic for one integration scenario.

proxy host

A server through which messages sent to remote Web servers must pass. A proxy
server also prevents users outside a company’s firewall from breaking into an
organization's private network.

publish/subscribe model

An application publishes an event when it sends data out to the OracleAS Integration
InterConnect hub without knowing the destination applications. Furthermore, data is
not expected in return. An application subscribes to an event if it receives the data
from the OracleAS Integration InterConnect hub regardless of who sent the data.
Furthermore, it does not send out any data in return. Events in iStudio are used to
model this scenario.

realm

Realms enable the protected resources on a server to be partitioned into a set of
protection spaces, each with its own authentication scheme and authorization
database.

repository
The repository has the following functionality:

= Atdesign time, all integration logic defined in iStudio is stored in tables in the
repository metadata.

= Atruntime, the repository provides access to this metadata for an metadata to
integrate applications.

The repository server is deployed as a standalone Java application running outside the
database. The repository schema is a set of tables in the Oracle Application Server
Infrastructure.

RMI

Remote Method Invocation. An interaction scheme for distributed objects written in
Java. It enables a Java program running on one computer to access the methods of
another Java program running on another computer.

runtime

For each application participating in a specific integration, OracleAS Integration
InterConnect attaches one or more adapters to it. At runtime, the adapters retrieve the
metadata from the repository to determine the format of messages, perform
transformations between the various data formats, and route the messages to the
appropriate queues in the OracleAS Integration InterConnect hub.

SMTP

Simple Mail Transfer Protocol. A TCP/IP protocol for sending and receiving e-mail.
SMTP is typically used with one of two other protocols, Post Office Protocol 3 (POP3)
or Internet Message Access Protocol (IMAP), that enable users to save messages in a
server mailbox and periodically download them. Users typically use a program that
uses SMTP for sending e-mail and either POP3 or IMAP for receiving messages on
their local server.

Glossary-5

Glossary-6

SMTP adapter

The SMTP adapter enables an SMTP application to be integrated with other
applications using OracleAS Integration InterConnect. This adapter is useful in all
EAL environments where e-mail used the IMAP4 and SMTP transport protocols.

SSL

Secure Sockets Layer. SSL is a standard for the secure transmission of documents over
the Internet using HTTPS (secure HT'TP). SSL uses digital signatures to ensure that
transmitted data is not tampered with.

tracking fields

One or more application view fields in the context of a particular event. Used to track
the event instances at runtime.

wallet

A wallet is an abstraction used to store and manager security credentials for an
individual entity. It implements the storage and retrieval of credentials for use with
various cryptographic services.

workspace

Stores user settings and preferences such as application login credentials and last
opened project.

XML

eXtensible Markup Language. XML is a set of rules for defining data markup in a plain
text format.

XSLT

Extensible Stylesheet Language transformations. XSLT describes how to transform the
structure of an XML document into a differently-structured XML document. XSLT is
an extension of the Extensible Stylesheet Language (XSL). XSLT shows how to
reorganize the XML document into another data structure (that can then be presented
by following an XSL style sheet).

A

activity
populating a business process with, 7-8
adapter.ini file
configuring for D3L, B-28
setting the ota.d3ls parameter, B-6, B-28, B-44
setting the ota.type parameter, B-28, B-44
specifying the default message endpoint, B-25
Adapters, 1-2,10-8
adapters
agents, bridges, 9-2
D3L responsibilities, B-1
integration, 1-8
sdk, 1-3
Additional Parameters for RAC Configuration, 9-9
agents, 9-2
use with D3L, B-23
application data types, 3-1
importing a D3L file, B-29
application view, 3-1
applications, 2-2
application view, 3-1
creating, 3-1
overview, 3-1
attributes
adding to common data types, 3-3
deleting and clearing from common data
types, 3-5
importing for common data types, 3-4
modifying mappings, 6-7
removing mappings, 6-7
Auto Deployment, 8-2

bridges, 9-2
use with D3L, B-23
browsers.init file
configuring for D3L, B-27
business objects, 2-2
creating, 3-2
defining in a D3L file, B-9
overview, 3-2
business process, 7-7
creating, 7-8

Index

populating with activities, 7-8

Cc

common data types
adding attributes, 3-3
creating, 3-2
deleting and clearing attributes, 3-5
importing a D3L file, B-29
importing attributes, 3-4
common view, 2-2
defining, 3-2
overview, 3-2
components, 1-2
oracle workflow, 1-3
OracleAS interconnect hub, 1-2
repository, 9-3
sdk, 1-3
content-based routing, 2-4
working with, 6-2
context menu, 2-9
cross reference tables, 2-5
adding applications, 6-7
populating, 6-7
removing applications, 6-7
working with, 6-7

D

D3L. See Data Definition Description Language (D3L)
Data Definition Description Language (D3L)
common view, B-31
common view to native format message outgoing
messages translations, B-25
configuration
configuring a native format message with a D3L
file, B-5, B-28
configuring the browsers.init file with
iStudio, B-27
configuring with OracleAS InterConnect
Adapters, B-28
creating a D3L file describing native format
messages, B-27
creating a native format message, B-27
defining metadata properties with each
event, B-30

Index-1

importing a D3L file in iStudio, B-29
D3L DTD, B-52
D3L file examples, B-5, B-8, B-27, B-33, B-49, B-50,
B-51
defining business objects, B-9
defining events, B-9
definition, B-1
file structure example, B-8
installing, B-26
iStudio values in the D3L file, B-9
magic value message header attributes, B-7, B-24
message header attributes, B-6
name/value pair message header attributes, B-6,
B-24, B-28
native format message examples, B-5, B-27, B-32,
B-50, B-51
native format message to common view incoming
message translations, B-24
runtime initialization, B-23
setting the ota.d3ls parameter in the adapter.ini
file, B-6
supported data types, B-10
unsuitable D3L formats, B-2
use case, B-31
configuring the aqapp_pub and fileapp_sub
applications in iStudio, B-34
creating a business object Employee, B-35
creating a D3L file for the FTP adapter, B-32
creating a DTD file for the Advanced Queuing
Adapter, B-32
creating a new workspace and new
project, B-34
creating the aqapp_pub application, B-36
creating the fileapp_sub application, B-40
creating the newEmployee Event, B-35
defining the application queue for the aqapp_
pub application, B-39
defining the application view, B-37, B-40
defining the application view to common view
mapping, B-38, B-41
enabling the aqapp_pub application to publish
the newEmployee event, B-36
installing the Advanced Queuing and FTP
adapters, B-42
making the fileapp_sub application subscribe to
the newEmployee event, B-40
overview of aqapp_pub and fileapp_sub
applications, B-31
running the use case, B-44
selecting the event to publish, B-36
selecting the event to which to subscribe, B-40
using other adapters, B-47
using XML mode, B-47
when to use, B-2
XML mode, B-2
data types
supported by D3L, B-10
Delete a Range of Messages, 10-5
Delete a Single Message, 10-5
Delete All Messages From a Sender, 10-5

Index-2

Delete All Messages Targeted To a Receiver,

Delete Messages,

deploy navigation tree,
Deploying to Oracle Workflow, 7-9
design navigation tree,

design time,

removing,

10-4

1-5
design time tools, 7-3
detail view, 2-10
development kit,
domain value mapping tables
deleting, 6-6
domain value mappings,
adding applications to,
deleting, 6-6
modifying data in, 6-6

6-

1-3

5

working with, 6-5

E

29

2-9

2-5
6-5

10-5

edit menu, 2-7

enabling infrastructure,

content-based routing,

cross reference tables,

domain value mappings, 6-5
Error Management, 10-7

event maps,

4-2

event menu, 2-7

events, 2-2

creating, 4-2
defining in a D3L file,
importing a D3L file,
4-3

publishing,

subscribing,
Export messages to a file,

F

4-8

6-1

6-2
6-7

B-9
B-29

10-5

features

integration lifecycle management,
integration logic, platform functionality,

integration methodology, 1-6
message delivery, 9-5

message retention,

messaging paradigms,
routing support, 9-5
standard messaging,

H

9-5

9-4

1-4

1-8

1-6

help menu, 2-8

Hub, 10-2

hub and spoke
how it works,
Hub Queue Management,

1-6

10-3

Import messages from a file, 10-6

infrastructure
enabling,

6-1

integration
create a cross reference table, A-8
create a project, A-4
create an oracle workflow process bundle,
create applications, A-7
create business object events, A-5
create common view business object, A-5
create content based routing, A-17
create publish events, A-8
creating objects in oracle workflow for
modeling, A-20
deploy the process bundle to oracle
workflow, A-19
deployment, A-25
dtd code, A-6
exporting and installing code, A-27
implementing the scenario, A-3
legacy system, A-1
legacy system database trigger, A-4
modeling business logic in oracle workflow, A-23
modeling the integration, A-2
new centralized system, A-1
overview, A-1
setting queues, A-25
subscribing to events, A-11
synching adapters, A-26
the integration scenario, A-2
using adapters, 1-8
integration architecture, 9-1
integration logic, 1-6
integration methodology, 1-6
integration process
design time, 1-5
overview, 1-5
runtime, 1-6
InterConnect Manager, 10-1
istudio, 1-3
activities, 7-7
adding applications to cross reference tables, 6-7
adding applications to domain value
mappings, 6-5
application data types, 3-1
applications, 2-2
common views and business objects, 2-2
concepts, 2-1
content-based routing,
context menu, 2-9
creating a business object, 3-2
creating a business process, 7-8
creating a new project, 2-11
creating a new workspace,
creating a procedure, 5-2
creating a process bundle, 7-8
creating an application, 3-1
creating an event, 4-2
creating common data types, 3-2
cross reference tables, 2-5, 6-7
deleting domain value mapping tables, 6-6
deleting domain value mappings, 6-6
deploy navigation tree, 2-9

A-18

2-4,6-2

2-10

design navigation tree, 2-9
detail view, 2-10

domain value mapping, 2-5
domain value mappings, 6-5
event maps, 4-2

events, 2-2

exporting stored procedures, 8-1
implementing a procedure, 5-6
invoking a procedure, 5-3

invoking and implementing a procedure, 5-3

launching oracle workflow builder, 7-12

launching oracle workflow tools, 7-11

launching the oracle workflow home page,

mapping, transformations, 2-3

menu bar, 2-6

metadata versioning, 2-4

modifying attribute mappings, 6-7

modifying data in domain value mappings,

opening a project, 2-12

opening a workspace, 2-10

overview, 2-1

parts of the window, 2-5

populating cross reference tables, 6-7

procedures, 2-3,5-1

projects, 2-11

publishing an event, 4-3

removing applications from cross reference
tables, 6-7

removing applications from domain value
mappings, 6-5

removing attribute mappings, 6-7

routing, message capability matrix, 2-5

sdk, 1-3

starting, 2-5

subscribing to an event, 4-8

toolbar, 2-8

tracking fields, 2-4

7-12

6-6

workspaces, 2-10
L
List Messages, 10-3, 10-7
M

Manual Deployment, 8-1
mapping, 2-3
mapping and transformations, 2-3
menu bar, 2-6

edit menu, 2-7

event menu, 2-7

file menu, 2-6

help menu, 2-8

procedure menu, 2-7
message capability matrix, 2-5

Message Tracking, 10-12
Message-based partitioning, 9-6
messaging

standard, 1-4
supported paradigms, 1-4

Index-3

metadata

defining for D3L, B-30
metadata versioning, 2-4
Model Business Process, 7-6

N

creating, 2-11
opening, 2-12
using, 2-11
Pure Load Balancing partitioning, 9-6

R

native format message
examples, B-5, B-27, B-32, B-50, B-51

(o)

oracle workflow, 1-3,7-1
apply business logic, 7-6
composite services, 7-2
deploy business process for runtime, 7-6
design business process, 7-6
design time tools, 7-3
error management, 7-1
Human Interaction, 7-2
integration with oracle applications
interconnect, 7-3
launching oracle workflow builder, 7-12
launching the home page, 7-12
launching tools, 7-11
message junctions, 7-2
modify existing processes, 7-13
overview, 7-1
runtime, 7-5
solves business problems, 7-1
stateful routing, 7-2
OracleAS InterConnect, C-1
OracleAS interconnect
components, 1-2
overview, 1-1
sdk, 1-3
using oracle workflow, 7-6
OracleAS interconnect components
development kit, 1-3
OracleAS interconnect hub, 1-2
OracleAS InterConnect iStudio, 2-6
ota.d3ls parameter

setting in the adapter.ini file, B-6, B-28, B-44

ota.type parameter

setting in the adapter.ini file, B-2, B-28, B-44

P

platform functionality, 1-6
procedure menu, 2-7
procedures, 2-3
creating, 5-2
exporting stored procedures, 8-1
implementing, 5-6
importing a D3L file, B-29
invoking, 5-3
invoking and implementing, 5-3
using, 5-1
process bundle, 7-6
creating, 7-8
projects

Index-4

RAC, 9-7
configuration, 9-8
Real Application Clusters, 9-7
Repositories, 10-11
Resend Messages, 10-7
routing, 2-5
routing support
content-based routing, 9-5
runtime, 1-6,7-5
components, 9-2
features, 9-4
runtime components
adapters, 9-2
advanced queues, 9-4
workflow, 9-4

S

standard messaging, 1-4
stored procedures, 8-1
Sync Adapters from iStudio, 8-7

T

toolbar, 2-8
tracking fields, 2-4
transformations, 2-3
char replace, C-4
concat fields, C-1
conditional copy, C-2
copy object, C-1
delete xref, C-6
expand fields, C-1
false conditional concat, C-3
false conditional copy, C-3
false conditional to number, C-4
increment, C-7
I trim, C-5
lookup dvm, C-6
lookup xref, C-6

lpad, C-5
rtrim, C-5
rpad, C-6

set constant, C-2

string replace, C-5

to number, C-4

true conditional concat, C-3

true conditional copy, C-3

true conditional lookup dvm, C-2
true conditional lookup xref, C-2
true conditional to number, C-3
truncate, C-7

x substring, C-4

w

workspaces
creating, 2-10
opening, 2-10
using, 2-10

Index-5

Index-6

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Getting Started with OracleAS Integration InterConnect
	1.1 What is OracleAS Integration InterConnect?
	1.1.1 OracleAS Integration InterConnect Components
	1.1.1.1 OracleAS Integration InterConnect Hub
	1.1.1.2 OracleAS Integration InterConnect Adapters
	1.1.1.3 OracleAS Integration InterConnect Development Kit
	1.1.1.3.1 OracleAS Integration InterConnect SDKs

	1.2 Standard Messaging
	1.2.1 Supported Messaging Paradigms

	1.3 OracleAS Integration InterConnect Integration Process
	1.3.1 Design Time
	1.3.2 Runtime
	1.3.3 Separation of Integration Logic and Platform Functionality
	1.3.4 Unique Integration Methodology
	1.3.4.1 How the Hub-and-Spoke Methodology Works

	1.3.5 Integration Lifecycle Management
	1.3.6 Using Adapters for Integration

	1.4 What’s New in This Release?

	2 Using iStudio
	2.1 Overview of iStudio
	2.1.1 iStudio Concepts
	2.1.1.1 Applications
	2.1.1.2 Common Views and Business Objects
	2.1.1.2.1 Events
	2.1.1.2.2 Procedures

	2.1.1.3 Transformations or Mappings
	2.1.1.4 Metadata Versioning
	2.1.1.5 Tracking Fields
	2.1.1.6 Content-Based Routing
	2.1.1.7 Cross Reference Tables
	2.1.1.8 Domain Value Mapping
	2.1.1.9 Routing and the Message Capability Matrix

	2.2 Starting iStudio
	2.3 Parts of the iStudio Window
	2.3.1 Menu Bar
	2.3.1.1 File Menu
	2.3.1.2 Edit Menu
	2.3.1.3 Procedure Menu
	2.3.1.4 Event Menu
	2.3.1.5 Help Menu

	2.3.2 Toolbar
	2.3.3 Design Navigation List
	2.3.4 Deploy Navigation List
	2.3.5 Context Menus
	2.3.6 Detail View

	2.4 Using Workspaces in iStudio
	2.4.1 Creating a New Workspace
	2.4.2 Opening an Existing Workspace

	2.5 Using Projects in iStudio
	2.5.1 Creating a New Project
	2.5.2 Opening an Existing Project

	3 Creating Applications, Common Views, and Business Objects
	3.1 Overview of Applications
	3.1.1 Application View
	3.1.2 Application Data Types
	3.1.3 Creating an Application

	3.2 Overview of Common Views and Business Objects
	3.2.1 Defining Common Views
	3.2.1.1 Creating Business Objects
	3.2.1.2 Creating Common Data Types
	3.2.1.3 Adding Attributes
	3.2.1.4 Importing Attributes
	3.2.1.5 Deleting and Clearing Attributes

	4 Using Events in iStudio
	4.1 Overview of Events
	4.1.1 Event Maps

	4.2 Creating Events
	4.3 Publishing and Subscribing to an Event
	4.3.1 Publishing an Event
	4.3.2 Subscribing to an Event

	5 Using Procedures in iStudio
	5.1 Using Procedures
	5.1.1 Creating a Procedure

	5.2 Invoking and Implementing a Procedure
	5.2.1 Invoking a Procedure
	5.2.2 Implementing a Procedure

	6 Enabling Infrastructure
	6.1 Enabling Infrastructure
	6.2 Working with Content-based Routing
	6.3 Working with Domain Value Mappings
	6.3.1 Adding Applications to Domain Value Mappings
	6.3.2 Removing Applications From Domain Value Mappings
	6.3.3 Modifying Domain Value Mappings
	6.3.4 Deleting Domain Value Mappings
	6.3.5 Deleting Domain Value Mapping Tables
	6.3.6 Modifying Attribute Mappings
	6.3.7 Removing Attribute Mappings

	6.4 Working with Cross-referencing
	6.4.1 Adding Applications to Cross-reference Tables
	6.4.2 Removing Applications From Cross-reference Tables
	6.4.3 Populating Cross-reference Tables

	7 Using Oracle Workflow
	7.1 Oracle Workflow Overview
	7.1.1 Oracle Workflow Solves Common Business Problems
	7.1.1.1 Error Management and Compensating Transactions
	7.1.1.2 Human Interaction
	7.1.1.3 Message Junctions
	7.1.1.4 Stateful Routing
	7.1.1.5 Composite Services

	7.2 OracleAS Integration InterConnect Integration with Oracle Workflow
	7.2.1 Design Time Tools
	7.2.2 Runtime

	7.3 Using Oracle Workflow with OracleAS Integration InterConnect
	7.3.1 Model Business Process
	7.3.2 Deploy Business Processes for Runtime

	7.4 Model Business Process
	7.4.1 Process Bundle
	7.4.2 Business Process
	7.4.3 Activity
	7.4.4 Creating a Process Bundle
	7.4.5 Creating a Business Process
	7.4.6 Populating a Business Process with Activities
	7.4.7 Deploying to Oracle Workflow
	7.4.8 Launching Oracle Workflow Tools
	7.4.8.1 Launching the Oracle Workflow Home Page
	7.4.8.2 Launching Oracle Workflow Builder

	7.4.9 Modifying Existing Oracle Workflow Processes

	8 Deployment
	8.1 Deploying PL/SQL Stored Procedures
	8.1.1 Manual Deployment
	8.1.2 Auto Deployment

	8.2 Specifying Application Queue Names for AQ Adapter
	8.3 Deploying Workflow Events and Process Definitions
	8.4 Sync Adapters from iStudio

	9 Runtime System Concepts and Components
	9.1 Integration Architecture
	9.2 Components
	9.2.1 Adapters
	9.2.1.1 Agent and Bridge Combination

	9.2.2 Repository
	9.2.3 Advanced Queues
	9.2.4 Oracle Workflow

	9.3 Runtime System Features
	9.3.1 Messaging Paradigms
	9.3.2 Message Delivery
	9.3.3 Message Retention
	9.3.4 Routing Support
	9.3.4.1 Content-Based Routing

	9.3.5 Partitioning
	9.3.6 High Availability
	9.3.7 Backup and Recovery

	9.4 Real Application Clusters Configuration
	9.4.1 OracleAS Integration InterConnect Adapters Supporting Real Application Clusters
	9.4.1.1 Adapter Failover Mechanism

	9.4.2 Configuration
	9.4.3 Sample Database Adapter adapter.ini File that Shows the Spoke Database Entry

	10 Using InterConnect Manager
	10.1 Overview of InterConnect Manager
	10.2 Starting InterConnect Manager
	10.3 Using InterConnect Manager
	10.3.1 Hub
	10.3.1.1 Hub Queue Management
	10.3.1.1.1 List Messages
	10.3.1.1.2 Delete Messages
	10.3.1.1.3 Export Messages To a File
	10.3.1.1.4 Import Messages From a File

	10.3.1.2 Error Message Resubmission
	10.3.1.2.1 List Messages
	10.3.1.2.2 Resend Messages

	10.3.2 Adapters
	10.3.2.1 Configuration File Management
	10.3.2.2 Error Management
	10.3.2.2.1 List Rules
	10.3.2.2.2 Add Rule
	10.3.2.2.3 View Rule
	10.3.2.2.4 Update Rule
	10.3.2.2.5 Delete Rule
	10.3.2.2.6 Set Mail Server
	10.3.2.2.7 View Mail Server

	10.3.3 Repository
	10.3.4 Message Tracking

	10.4 Using InterConnect Manager in Silent Mode

	A Integration Scenario
	A.1 Integration Scenario Overview
	A.1.1 The New Centralized System
	A.1.2 The Legacy System
	A.1.3 The Integration Scenario

	A.2 Modeling the Integration
	A.3 Implementing the Scenario
	A.3.1 Review Legacy System Database Trigger
	A.3.2 Create a Project
	A.3.3 Create the Common View Business Object
	A.3.4 Create Business Object Events
	A.3.4.1 DTD Code

	A.3.5 Create Applications
	A.3.6 Create a Cross Reference Table
	A.3.7 Create Publish Events
	A.3.8 Subscribe to Events
	A.3.8.1 DBAPP Application Subscriptions
	A.3.8.2 AQAPP Application Subscriptions

	A.3.9 Create Content-based Routing
	A.3.10 Create an Oracle Workflow Process Bundle
	A.3.11 Deploy the Process Bundle to Oracle Workflow
	A.3.12 Creating Objects in Oracle Workflow for Modeling
	A.3.12.1 Message
	A.3.12.2 Lookup Type
	A.3.12.3 Notification
	A.3.12.4 What Oracle Workflow provides.
	A.3.12.5 Copy Lookup Type (Approval)
	A.3.12.6 Create an Oracle Workflow Message
	A.3.12.7 Create an Oracle Workflow Notification

	A.4 Modeling Business Logic in Oracle Workflow
	A.5 Deployment
	A.5.1 Setting Queues
	A.5.2 Sync Adapters
	A.5.3 Exporting and Installing Code

	A.6 Conclusion

	B Using the Data Definition Description Language
	B.1 About D3L
	B.1.1 What Is D3L?
	B.1.2 When Is D3L Used?
	B.1.3 D3L Features
	B.1.3.1 Integrate Transport Properties
	B.1.3.2 Allow Multiple Imparrays

	B.2 Native Format Message and D3L File Example
	B.2.1 Description of Native Format Message Contents in a D3L File
	B.2.2 Configuration of Native Format Message with a D3L File
	B.2.2.1 adapter.ini Parameter File Setting
	B.2.2.2 Message Header Attributes
	B.2.2.2.1 Name/Value Pair Message Header Attributes
	B.2.2.2.2 Magic Value Message Header Attribute

	B.3 D3L File Structure
	B.3.1 Supported D3L Data Types
	B.3.1.1 Signed or Unsigned Integers
	B.3.1.2 Floating Point Numbers
	B.3.1.3 Strings
	B.3.1.4 Structures
	B.3.1.5 Sequences
	B.3.1.6 Data Padding

	B.3.2 Comma-Separated Values File Parsing with D3L
	B.3.2.1 CSVs are Assigned to Named Fields
	B.3.2.2 All CSVs are Read into an Array
	B.3.2.3 Delimiter Encoding Styles

	B.4 D3L Integration with OracleAS Integration InterConnect Adapters
	B.4.1 Runtime Initialization
	B.4.2 Native Format Message to Common View Incoming Message Translations
	B.4.3 Common View to Native Format Message Outgoing Messages Translations

	B.5 Installing D3L
	B.6 Configuring D3L
	B.6.1 Task 1: Configure D3L with iStudio
	B.6.2 Task 2: Create a Native Format Message
	B.6.3 Task 3: Create a D3L File Describing the Native Format Message
	B.6.4 Task 4: Configure a Native Format Message with a D3L File
	B.6.5 Task 5: Configure D3L with OracleAS Integration InterConnect Adapters
	B.6.6 Task 6: Import a D3L File in iStudio
	B.6.7 Task 7: Define Metadata Properties with Each Event (Optional)

	B.7 D3L Use Case
	B.7.1 D3L Use Case Overview
	B.7.2 Creating Data Type Definitions for Application Views
	B.7.2.1 Task 1: Create a DTD File for the Advanced Queuing Adapter
	B.7.2.2 Task 2: Create a D3L File for the FTP Adapter

	B.7.3 Configuring the aqapp_pub and fileapp_sub Applications in iStudio
	B.7.3.1 Task 1: Create a New Workspace and New Project
	B.7.3.2 Task 2: Create the Employee Business Object
	B.7.3.3 Task 3: Create the newEmployee Event
	B.7.3.4 Task 4: Create the aqapp_pub Application
	B.7.3.5 Task 5: Enable the aqapp_pub Application to Publish the newEmployee Event
	B.7.3.5.1 Select the Event to Publish
	B.7.3.5.2 Define the Application View
	B.7.3.5.3 Define the Application View to Common View Mapping

	B.7.3.6 Task 6: Define the Application Queue for the aqapp_pub Application
	B.7.3.7 Task 7: Create the fileapp_sub Application
	B.7.3.8 Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee Event
	B.7.3.8.1 Select the Event to which to Subscribe
	B.7.3.8.2 Define the Application View
	B.7.3.8.3 Define the Application View to Common View Mapping

	B.7.4 Installing the Advanced Queuing and FTP Adapters
	B.7.4.1 Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub
	B.7.4.2 Task 2: Create the Application Queue AQAPP_NEWEMP
	B.7.4.3 Task 3: Install the FTP Adapter for Application fileapp_sub
	B.7.4.4 Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory
	B.7.4.5 Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter Initialization File

	B.7.5 Running the D3L Use Case
	B.7.5.1 Task 1: Start the Adapters
	B.7.5.1.1 To Start the Adapters on UNIX:
	B.7.5.1.2 To Start the Adapters on Windows:

	B.7.5.2 Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event
	B.7.5.3 Task 3: Trigger the newEmployee Event
	B.7.5.4 Task 4: Verify Receipt of newEmployee Event

	B.7.6 Using Other Adapters in D3L and XML Modes
	B.7.6.1 Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode
	B.7.6.2 Using XML Mode

	B.8 Additional D3L Sample Files and DTD
	B.8.1 Additional D3L Sample Files
	B.8.1.1 Sample File with Structure VehicleRegistration
	B.8.1.2 Sample File with Structure Hierarchy PersonRecord
	B.8.1.3 Sample File with Structure ProductRecord

	B.8.2 D3L DTD

	C Transformations
	C.1 OracleAS Integration InterConnect Transformations
	C.1.1 Copy Fields
	C.1.2 Copy Object
	C.1.3 Concat Fields
	C.1.4 Expand Fields
	C.1.5 Set Constant
	C.1.6 True Conditional Lookup XRef
	C.1.7 True Conditional Lookup DVM
	C.1.8 Conditional Copy
	C.1.9 True Conditional Copy
	C.1.10 True Conditional Concat
	C.1.11 True Conditional To Number
	C.1.12 False Conditional Copy
	C.1.13 False Conditional Concat
	C.1.14 False Conditional To Number
	C.1.15 To Number
	C.1.16 Substring
	C.1.17 Char Replace
	C.1.18 String Replace
	C.1.19 LTrim
	C.1.20 RTrim
	C.1.21 LPad
	C.1.22 RPad
	C.1.23 Lookup XRef
	C.1.24 Delete XRef
	C.1.25 Lookup DVM
	C.1.26 Truncate
	C.1.27 Increment
	C.1.28 DatabaseOperation

	D Troubleshooting OracleAS Integration InterConnect
	D.1 Problems and Solutions
	D.1.1 iStudio Fails to Connect
	D.1.2 Mappings in iStudio
	D.1.3 Metadata Not Editable in iStudio
	D.1.4 Subscribing Adapter Does Not Receive Messages From the Hub
	D.1.5 Messages Are Not Getting Delivered to a Spoke Application
	D.1.6 OracleAS Integration InterConnect Repository Does Not Start
	D.1.7 DB Adapter Does Not Pick Up Messages That Have Been Published From the Database
	D.1.8 FTP Adapter Cannot Match Incoming Message With Any D3L Definiton
	D.1.9 AQ Adapter Does Not Pick Up Mesage From the Spoke AQ
	D.1.10 CBR Issue with DB Adapter

	D.2 Need More Help?

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	W

