ORACLE

Oracle® Application Development Framework
Development Guidelines Manual

10g Release 2 (10.1.2)

Part No. B14362-01

October 2004

This document describes the components available in Oracle
JDeveloper 10g that help you to create MVC-style
applications for the J2EE platform.

Oracle Application Development Framework Development Guidelines Manual, 10g Release 2 (10.1.2)
Part No. B14362-01

Copyright © 2004, Oracle. All rights reserved.

Primary Authors: Ralph Gordon, Avrom Faderman

Contributors: Joe Malin, Odile Sullivan-Tarazi

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software” or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SeNd US YOUTE COMMEBNTS ...ttt iX
PlrOIACE ...ttt ettt Xi
| gk)l (<o BN U s K<) Lol <R RRSTRRTT xi
Documentation ACCESSIDILILYccccuiuiiiiiiiiiiiiccee e Xi
o1 b a1 10 o < ST TSRO TR Xii
REIAtEA DIOCUIMEIES ..ottt e et e e et e e s aa e e s et eeseaaeesamaeeesnseeesaseessseeeessseesneeeensaeeans Xii
(@16 4N 1< a1 Te) o T= PSSR TRRRRRRRON Xii

1 Introduction to J2EE Application Development in JDeveloper

11 SUIMIMATY vt 1-1
1.2 INETOAUCHION 1. s 1-2
13 Considering the Application Architecture.........c.ccoooiioiiioriiiii 1-3
14 Partitioning Application Development in JDeveloperc.ccoiiiioiiicciccccccenenas 1-4
15 Speeding Development with Frameworks in JDeveloper ... 1-5
16 Development Methodology in JDeveloperccoceiiiiiiiiieeicce e 1-6
161 Iterative Development and Visual TOOIS..........cccccoeuiiiiniiiiinncicreceeeeae 1-6
16.2 Roles and Code INtegration...........cccceucucuririeiriiiciriiiniiicrreeeeeeee e 1-7
1.7 Proceeding with Application Development in JDeveloper ..., 1-7
18 Related INfOrmation.........cocoeuiviiiiiiiiiiiici s 1-8

2 Business Services and the Oracle Application Development Framework

2.1 SUIMIMATY vt 2-1
2.2 The Available Business Service TechnolOgiescccccccueueuciiiiiniininiirrreceeeeeeeeeeene 2-2
221 Oracle ADF Business Components Technologycccoceeiiieiiinicceeccce, 2-3
222 Enterprise JavaBeans TeChNOIOZYc.ccocoueuriiieiririniiiirrrrrceee e 2-3
2.2.3 OracleAS TopLink Plain Old Java Objects (POJO)cccccovvuirrivirrrrrnrrcrcerreenne 2-3
22.4 Enterprise JavaBeans Technology with TopLink CMP..........ccccoooiiiiiiiiiiiiin, 2-4
2.2.5 WWED SEIVICES.....ouitiiiiiiittttc e 2-4
2.2.6 Java Objects with Hand-Coded Persistence...........cccevuvuverirevenenenininicnniircccccceneens 2-5
2.3 Which Business Services Technology Should I Use? ..o 2-5
23.1 Do You Have Your Own Object Framework?cccoovivininnnnnicnieccccreenns 2-5
23.2 Do You Want to Use an Existing Object Framework?............cccccceceeevnnnnnnnnnenen. 2-5
2.3.3 Can You Use Oracle Runtime Technology?..........ccoorueieiniininiiiiniicccc e, 2-6

2.4
24.1
242
243
2.5
251

25.2

253
254
255
256
257

258

25.9
2.5.10

2511

25.12

Business Service Layers.........cccoviiiiiiniiiiiiiiiii s 2-6

Persistent Business ObJects............coiirieioiiiiicic 2-6
Data Access COMPONENLS ...t 2-6
SerVICE ODJECES. ..ot 2-7
Detailed Comparison of Business Service Architectures..........cccccevvvniininnnnninnnn, 2-7
How ADF Business Components Technology Provides Persistent Business Objects.......
2-8
How ADF Business Components Technology Provides Data Access Components
2-10
How ADF Business Components Technology Provides Service Objects................. 2-11
How Enterprise JavaBeans Technology Provides Persistent Business Objects....... 2-12
How Enterprise JavaBeans Technology Provides Data Access Components.......... 2-13
How Enterprise JavaBeans Technology Provides Service Objects...........ccccueeeeee. 2-14

How OracleAS TopLink Technology with POJO Provides Persistent Business Objects ..
2-15

How OracleAS TopLink Technology with POJO Provides Data Access Components.....
2-16

How OracleAS TopLink Technology with POJO Provides Service Objects............ 2-16
How Enterprise JavaBeans Technology with TopLink CMP Provides Persistent
BUSINESS ODJECES ...t 2-16
How Enterprise JavaBeans Technology with TopLink CMP Provides Data Access
COMPONENLS ...ttt 2-17

How Enterprise JavaBeans Technology with TopLink CMP Provides Service Objects....
2-17

ADF Business Components in Depth

3.1

3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3

3.3.1
3.3.2
3.3.3
3.34
3.4

34.1
3.4.2
3.4.3
3.5

351
3.5.2
3.5.3
3.54

SUMIMATY ..ottt 3-1
ADF Entity Object Definitionscccccceuiiiiiiiiicicceeeecreeeeeeeees e 3-2
Attributes and ACCESSOTSccvuiiiiiiiiiiiiiii s 3-3
Validators......coiiiiiiiiiiii s 3-4
The validateEntity() Methodccoovuiiiiiiiiccicccce e 3-5
Creation and Deletion LOZICccouiiiiurieiiiicicicc e 3-5
DML CustOmiZationc.oueuiiiiiiiiiiiiieicccci et 3-5
SECUTILY ..t 3-5
ADF ASSOCIAtIONS......cvcviiiiiititiiietctctc ettt s 3-6
ACCeSSOT ATIDULES......oviiiiiiiii s 3-6
Cardinality ..c.c.oveveueueiieiciecc e 3-6
ROW TteIAtOTS c..vvetce e 3-7
COMPOSIEIONS.....viiitiieiieiteet e 3-8
ADF DOMAINS ...ovviiieieiicteee et 3-8
Predefined DOMAINSccccouviiiiiiiiiiiiiiiiiiicn s 3-8
Oracle Object Type DOmainscccooerieiiiiiiicicicccie e 3-9
Validation DOmains...........cccoveveiiiiiiiiic e 3-9
ADF View Object Definitions...........oocruiieiiiiiii 3-10
Attribute Mappingsc.ooccueiiiiieie s 3-11
Navigating Through Result Sets..........ccccioiiiiiiiiiiiiicccccceeceeeeeeeeeeeees 3-11
Creating and Deleting ROWSc.c.cooriioiiiiiiiciic s 3-12
KOS 3-12

355 YA T A G < o - LU 3-12

3.6 ADF View Link Definitions.......ccccceuviiiiiiiniiiiiiiiciniiisece s 3-12
3.6.1 ACCeSSOT ATIDULES. ..o 3-13
3.6.2 Cardinality .c.o.oveveveueiieiecec s 3-13
3.7 ADF Application Module Definitionsccooioioiieiiiiiiiicce 3-13
3.7.1 View Object and View Link INSTANCESccoovuiuicuiiciiiiciiiiccicccceceeeeeeeeneenes 3-14
3.7.2 TrANSACIONSvovvvvreictee s 3-15
3.7.3 Service Methods........cccviiiiiiiiiiiiiiiiiii s 3-15
3.7.4 Application Module POOINGcccccoocuiuiiiiiiiiiiiiiiicececerceeeeeeeeeeeeee s 3-15
3.8 ADF Business Components Design DeciSions ..o, 3-16
3.8.1 Where to Implement Business Rulesccccouoiiiiiiic e 3-16
3.8.2 Whether to Use Entity Object Definitionscccoociiciciiiecniccieceecereeene 3-18

Overview of the Oracle ADF Model Layer

4.1 SUIMIMATY vt 4-1
4.2 Role of the Model Layer ...t 4-2
421 About MetaData for the Oracle ADF Binding Context.........cccooeoiniiiiiiciiiiicnan, 4-2
4.2.2 Oracle ADF Model API OVEIVIEWcccoviimiiniiiiiiiiiniiiiecccsns s 4-3
4.3 Benefiting from the Oracle ADF Model Layer..........c.cccoooiiiiiiniiiicce 4-4
4.3.1 Role of the Oracle ADF Data Controls...........cccccovviiiiinininniiccs 4-4
431.1 Business Object ACCESS SEIVICEScueuvuiuiririririirrrrree e 4-4
43.12 Transaction SEIVICES.........ovuiiiiiiiiiiiic s 4-5
4.3.1.3 State Management Services ...t 4-5
43.2 Role of the Oracle ADF Bindingsccccccoeeuiieiiiniiieieiicceeeeeeeeeeeeeeeeeseeeseseeeeene 4-6
4.3.3 Generic Runtime Properties for All Oracle ADF Bindings........ccccooooviiiiiiiiiiininnnnn. 4-7
4.4 Oracle ADF Data Control Runtime Integration with Business Services............cccccceueeuce. 4-7
4.5 Creating the Oracle ADF Model Layer in JDeveloper...........ccccoccvvvvnnnnnnnnieccceeene 4-9
45.1 Oracle ADF Business Components as Data Controls............cccoooeiiriiniiiciciicnen, 4-9
4.5.2 Oracle ADF Data Controls for EJB Components...........cccoeiiiiniininnciiiee 4-10
453 Oracle ADF Data Controls for Web Services.........cccoovvieiiiiinininciiniiiccccnens 4-12
4531 Creating Data Controls for Web Services Created in JDeveloper 4-13
4532 Creating Data Controls for External Web Services.........ccccooooiiuiiiiiiiiinncnnn, 4-13
4533 Web Services That RetUrn Arrays........cccccccccveeiiieicninenieereseeeeeeeeeeeeeseseeens 4-15
454 Oracle ADF Data Controls for JavaBeans and TopLink-Based Beans Components 4-15
4.6 Summary of Oracle ADF Data Control Operations.............ccooeceieioicieieiniiicieieiccieeae 4-16
4.7 Summary of Oracle ADF BINdings.........ccccccvueiiiiiiiiiiiiiiccececcerreeeeer s 4-18
4.7.1 About the Iterator Bindingccoeoiiiiiii e 4-18
4.7.2 About the Value BINdingscccooiiiiiii e 4-19
4.7.21 Attribute Value Binding ... 4-19
4.7.2.2 Boolean Value Bindingcoooiiii 4-19
4.7.2.3 List Value BiNdingcooceiioiiiii 4-21
4724 Range Value BIndingccccoovueuviiiiiiiiiiiiirccecreeereeesee s 4-22
4.7.2.5 Scroll Value BInding.........c.ceueviirieiiiiee 4-23
4.7.3 About the Action Binding..........c.ccooiiiiiiiii e 4-24

5

Vi

Overview of Oracle ADF Integration with Struts

5.1 SUMIMATY ..oviiii e 5-1
5.2 Highlights of the Struts Framework.........c.cccccccociiiiiiiiicececer e 5-2
5.3 Oracle ADF EXtensions t0 StrUtSccoccvveviiiiiiiiiiiiiiccc s 5-3
5.3.1 Oracle ADF Data Action and Data Forward Action Classes............cccccocovviniiininininne. 5-3
5.3.2 Oracle ADF LIfeCyCle.....c.cciiiiiiiiccccceeeeee et 5-4
533 Named Events in Oracle ADF..........ccccooviiiiiiiic e 5-6
5.3.4 Oracle ADF Data Action Mapping Classcccociueiiiiiiiieiicceecceec e 5-7
535 Oracle ADF Data FOrm Bean..........ccccocviiiiiiininiiiiicccc s 5-7
5.3.6 Oracle ADF Binding FIEETc.cccoiiiiiiiiiiiiiicceccrcere e 5-8
5.4 Struts Design Time Integration with Oracle ADF............ccoooiiii 5-10
54.1 Struts Page FLow DIagram ... 5-10
5.4.2 Source VIew Tab ... 5-11
5.4.3 Property Inspector Integration with the Struts Configuration File......................... 5-11
54.4 Design Time Rendering of Struts Tag Libraries.........cccccccevevriiivniinninirnne 5-11
5.4.5 Interactive Code Insight for JSP Code Editingc.ccccovoeiiiiiiiiiiiiice 5-12
5.5 Struts Runtime Integration with the Oracle ADF Model Layer..........ccccoooeeiniireinnnes 5-12
5.6 Data Pages and Data Actions in the Databound Struts Page Flowcccccccoeuvuinnenne. 5-13
5.6.1 Working with Data Pages.........ccceuoiiiiiiiiii e 5-13
5.6.2 Working with Data ACHONS ..o 5-14
5.7 BeSt PractiCescvuiueieviieieiceiciceec s 5-16
5.7.1 When to Use a Data Page or Data ACtionccoceieiiiciiiiiccice 5-16
5.7.2 Adding Business Service Methods to a Data Actioncccoceveiiicciciiiiciieecne, 5-17
573 When to Subclass the DataAction or DataForwardAction Classc..cccoeeveeennen. 5-17
5.7.4 When to Use an Oracle ADF Lifecycle Plugin.............ccoooiiiiiiicce 5-17
5.7.5 Summary of Best Practices in Working with Oracle ADF/Struts Integration......... 5-18

Overview of Oracle ADF Data Binding in View Technologies

6.1 SUMIMATY ..ot 6-1
6.2 Role Of the VIEW LaYercciiiiiiiiiiiiciiecrrere e 6-2
6.2.1 Differences Between JSP Pages and UIX XML Documents............ccccoveveiiieieieincnnnnnn. 6-3
6.3 JDeveloper Design Time Integration with the Oracle ADF Model Layer 6-3
6.3.1 Overview of Data Control Palette USagecccccueueueueurueiniriiniriciicrreseecreecseseene 6-4
6.3.2 Overview of the Data Control Business Objectscccoceeioiiriiiiiccic, 6-5
6.3.3 Overview of Oracle ADF Project Files..........cccoooiiiiiiiic 6-7
6.3.3.1 Files in the Oracle ADF Model Projectcccccccceuvrniiiinnnrincnccrreeeccceceeene 6-7
6.3.3.1.1 About the DataControls.dcx File Syntax........ooieiiiice 6-8
6.3.3.2 Files in the ViewController Project ... 6-9
6.3.3.2.1 About the UIModel.xml File SyntaX.......ccccccccvrvirinnnnirnrrrreeeceeseseane 6-9
6.3.3.2.2 About the DataBindings.cpx File Syntax ..., 6-10
6.4 Web Application Runtime Integration with the Oracle ADF Model Layer.................... 6-12
6.5 JClient Application Runtime Integration with the Oracle ADF Model Layer 6-13
6.5.1 About Data Binding in JCHeNt..........cooioiiiiiic 6-13
6.5.2 Generated JClient CONTAINETScoeveriirierierieieeetete ettt ettt s 6-14
6.5.2.1 Standard Java CONtAINeTS.........cccevvererierieieieieeeeeeee ettt es e esaesaesessessessenes 6-14
6.5.2.2 How JClient Preserves the Data Context Between Data Panels......................... 6-14
6.5.3 Process for Creating and Using the Panel Binding...........ccccoooiii, 6-15

6.5.4 About the Frame Class in JCHENTocvvververieieieieieiieeiteseseteeeese e essesaessesens 6-16

6.5.4.1 Application BoOtStrapcooeoicueieiiiic 6-16
6.5.4.2 Frame Initializationccccoovvviviiiniiiii 6-17
6.5.5 About the Layout Panel in JCHent.........cccccociiiiiiiiiccreccceeeeeeeeeaes 6-17
6.5.6 About Data Panels in JCHENT.cooririeieieeieee ettt 6-18
6.5.7 About Control Binding in JCHeNt ... 6-19
6.5.7.1 Populating Controls with Data.........c.cccccoeeeiiiiniiiiicrceeerreeeeeenes 6-19
6.5.7.2 Updating Data Through Controls............cccoooioiiiiiiice, 6-19
6.6 BeSt PractiCesceueueveviieieicieiciceee s 6-19
6.6.1 Customizing the Oracle ADF Iterator Binding for Ul Access.......ccccoeuvuvurverivcrcncnnes 6-19
6.6.2 Creating a Search Criteria Form Using Oracle ADF Find Mode............cccccooeeeen. 6-20
6.6.2.1 About Parameterized QUETIESccoveeviiiiieeiieiieeeeee ettt ve e e 6-20
6.6.2.2 Process for Displaying ReSuUltsc.cccccoceiiiiiniiiiiicccreeeeceeeceeaes 6-21
6.7 Summary of Ul Components in Oracle ADF Web Pages..........ccccoorriiiiiiiiniine 6-21
6.7.1 Value Bindings for the Entire Collection or Row Setcccccociiiiiciiicnncninenes 6-22
6.7.2 Value Bindings for Individual Data Object Attribute Values ..o 6-22
6.7.3 Action Bindings for Business Object Methods and Data Control Operations 6-23
6.8 Summary of Ul Components in Oracle ADF Java Clients..........cccccccceeeccccnncccnennes 6-24
6.8.1 Value Bindings for the Entire Collection or Data Objectcoceveiiiiiiiiiireine 6-24
6.8.2 Value Bindings for Individual Data Object Attribute Valuesccccoceeireinne. 6-25

JDeveloper Runtime Problems and Solutions

Al JSP Page Fails with HTTP 404-Page Not Found Errorcccccovvinniininniinne, A-1

A.2 Browser Locates JSP File But Fails to Render with Content..........ccccecvvevierieciereninenennennn A-2

A3 JDeveloper Unable to Establish Connection to Embedded OC4]J Server..........ccccccecunee.e. A-3

A4 Unable to Specify Connection Driver Class to Use with a Web Application in JDeveloper ...
A-3

A5 Unable to Establish Connection Upon EJB LOOKUP.....c.ccccceuiciiiiiciiiiicccrecreeenes A-6

Oracle ADF Problems and Solutions

B.1 Oracle ADF Runtime Installer Fails With EXTOTcccccooviiiiiiiiiniiiiccc, B-1

B.2 Previously Working Application Using ADF Business Components Starts Throwing JDBC
Errors B-4

B.3 Changes to ADF Business Components Parameters Have No Effect..............c.....c......... B-4

B.4 ADF Business Components Throw ClassNotFoundExceptioncccocoevvvnvnnncnne. B-5

B.5 ADF Business Components Deployed with Libraries Throw Exceptions......................... B-6

vii

viii

Send Us Your Comments

Oracle Application Development Framework Development Guidelines Manual,
10g Release 2 (10.1.2)

Part No. B14362-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Isthe information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserver_docs@oracle.com
« FAX: (650) 633-3846

Attention: Oracle Application Development Framework Documentation Manager
= Postal service:

Oracle Corporation

Oracle Application Development Framework Documentation
200 Oracle Parkway, MS2op11

Redwood Shores, CA 94065

US.A

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Preface

This manual shows developers how to combine Java 2 Platform, Enterprise Edition
(J2EE) and JDeveloper technologies to suit particular application needs. The
recommendations in this manual focus on ease of development and recognized best
practices that exploit the design-time features of the JDeveloper IDE.

This preface contains the following sections:
» Intended Audience

« Documentation Accessibility

= Structure

= Related Documents

« Conventions

Intended Audience

This manual is intended for enterprise application developers who want to use
JDeveloper to implement enterprise business solutions.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. conf accessi bility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Xi

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Structure
This manual contains the following chapters and appendixes:
= Chapter 1, "Introduction to J2EE Application Development in JDeveloper"

= Chapter 2, "Business Services and the Oracle Application Development
Framework"

= Chapter 3, "ADF Business Components in Depth"

= Chapter 4, "Overview of the Oracle ADF Model Layer"

= Chapter 5, "Overview of Oracle ADF Integration with Struts"

= Chapter 6, "Overview of Oracle ADF Data Binding in View Technologies"
= Appendix A, "JDeveloper Runtime Problems and Solutions"

= Appendix B, "Oracle ADF Problems and Solutions"

Related Documents

For more information:

= For JDeveloper IDE features that support team development, testing, and
production deployment to the J2EE platform, see the JDeveloper help system.
These topics are beyond the scope of the present document.

« For alist of J2EE-related learning resources, see Section 1.8, "Related Information"

Conventions

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

italic text Italic type in text indicates a term defined in the text, the glossary, or in
both locations. Italic text also indicates book titles

<> Angle brackets enclose XML and HTML tags.

[] Brackets enclose optional clauses from which you can choose one or
none.

Xii

Convention

Meaning

code (| owercase
nonospace or
fixed-width
font)

bol df ace code

italicized code

Lowercase monospace typeface indicates executables, file names,
directory names, and sample user-supplied elements. Such elements
include computer and database names, net service names, and connect
identifiers, as well as user-supplied database objects and structures,
column names, packages and classes, user names and roles, program
units, and parameter values.

Note: Some programmatic elements use a mixture of UPPERCASE and
lowercase. Enter these elements as shown.

Boldface monospace typeface is used to emphasize parts of the code
examples provided.

Italicized code indicates placeholder text that you need to replace with
an appropriate value

Xiii

Xiv

1

Introduction to J2EE Application

Development in JDevelop

er

The Oracle Application Development Framework (Oracle ADF), available with Oracle
JDeveloper 9.0.5.1 and later, offers developers greater flexibility and openness when
deciding how to implement the layers of a J2EE enterprise application. Oracle ADF
brings "data control" abstraction to back-end business services (data sources) and
generalizes Oracle's existing data binding objects to support it. These features of
Oracle ADF give developers a consistent and pluggable model layer to the J2EE
application architecture.

This chapter provides an overview of the ways in which Oracle ADF supports J2EE
application development in JDeveloper.

1.1 Summary

Section 1.2, "Introduction”

Section 1.3, "Considering the Application Architecture"”

Section 1.4, "Partitioning Application Development in JDeveloper"
Section 1.5, "Speeding Development with Frameworks in JDeveloper”
Section 1.6, "Development Methodology in JDeveloper"

= Section 1.6.1, "Iterative Development and Visual Tools"

= Section 1.6.2, "Roles and Code Integration”

Section 1.7, "Proceeding with Application Development in JDeveloper"

Section 1.8, "Related Information"

Introduction to J2EE Application Development in JDeveloper

1-1

Introduction

1.2 Introduction

This document addresses the enterprise application developer who wants to use
JDeveloper to implement enterprise business solutions for the J2EE platform (Java 2
Platform, Enterprise Edition). Enterprise applications are built from various
components that derive from standards-based technologies. As a J2EE-compliant
development tool, JDeveloper supports building enterprise applications using these
same standard technologies:

= JavaServer Pages technology to handle the presentation of the user interface

= Servlet and JavaBeans technology for the Apache Struts framework to manage the
application flow

= Enterprise JavaBeans to manage application state and define the business logic

In addition, JDeveloper extends the J2EE paradigm by giving developers alternatives
to the standard technology stack. Developers can elect to work with a wide variety of
technologies, as illustrated by the following diagram.

Oracle Application Devel Fi k (ADF) Mode! - View - Controller
View anngr JsP ADF UIX JSF
Controller Struts
Model ADF Model
SIS e Smsen At O
Beans Module

The purpose of this document is to show how developers can combine technologies to
suit their particular application needs. Recommendations are made in the interest of
ease of development and recognized best practices that exploit the design time of the
JDeveloper IDE.

The remainder of this chapter describes the application development choices
JDeveloper provides in more detail. These choices comprise best practices that can
improve application reliability, increase your productivity, and decrease the overall
time to deployment.

Where to find additional information:

« For information about JDeveloper IDE features that support team development,
testing, and production deployment to the J2EE platform, see the JDeveloper help
system. These topics are beyond the scope of the present document.

« For alist of J2EE-related learning resources, see Section 1.8, "Related Information"
links at the end of this chapter.

1-2 Oracle Application Development Framework Development Guidelines Manual

Considering the Application Architecture

1.3 Considering the Application Architecture

The enterprise application is typically deployed across multiple servers to achieve its
distributed component architecture. On the client side, the part of the application that
users interact with, the application can be browser-based or it may be a standalone
client based on Java Swing components. JDeveloper supports two databound web
application user interface technologies and one standalone client:

« Standard JSP pages and HTML elements

= Oracle's own ADF UIX pages with its own set of ADF UIX user interface
components

« Standard Java/Swing components with Oracle's own ADF JClient bindings

The JDeveloper IDE for building enterprise applications provides equal support for all
styles of application clients. Screen designers, whether creating web pages or Swing
forms, work with databound UI components through a single, easy-to-use design time
tool, known as the Data Control Palette.

For the middle tier, several technologies are available in JDeveloper to help define the
application's business logic. In the J2EE platform, Enterprise JavaBeans components
provide the persistence layer for the application and manage transactions between the
client and the back-end data store. However, in JDeveloper, business logic developers
can choose to implement this functionality using a variety of technologies:

» Standard Enterprise JavaBeans components

= Oracle ADF Business Components technology, which implements many of the
design patterns required by transactional applications

= OracleAS TopLink mapping objects based on JavaBeans components

Or when the middle tier need not support transactional operations (that is, when users
can commit or roll back changes), the developer can provide data-access and
method-execution operations to the view and controller layers using these
technologies:

= Web services
« Standard JavaBeans components

All five of the above business services are accessible at design time through the
JDeveloper Data Control Palette. Because data controls abstract business services, the
Swing Ul developer, the page designer, or the controller layer developer can work
from a single, consistent design time regardless of the chosen technology stack.

Note: InJDeveloper, business objects that define the business logic
are referred to as business services. The Oracle ADF model layer objects
abstract the implementation of a business service and provide
access to the application in a consistent way for all business
services. As already mentioned, JDeveloper provides a range of
available business services technologies that work out of the box
with Oracle ADF.

The following section describes how you use these technology choices in JDeveloper to
implement the application based on the Model-View-Controller architecture.

Introduction to J2EE Application Development in JDeveloper 1-3

Partitioning Application Development in JDeveloper

1.4 Partitioning Application Development in JDeveloper

The J2EE architectural design pattern for the interactive enterprise application is
known as Model-View-Controller, or MVC. The MVC pattern is ideally suited for the
kind of application that combines distributed application logic with a complex user
interface. When developing applications based on the MVC pattern, the goal is to
enforce separating or "partitioning” the application logic and the user interface.

In the most general terms, the model is the underlying logical representation, the view
is the visual representation, and the controller specifies how to handle user input.
When the data model changes, it notifies all views that depend on it. This separation
of state and presentation results in these important characteristics of the enterprise
application:

= Multiple views can be based on the same model. For instance, the same data can
be presented in both table form and chart form. As the data model becomes
updated, the model notifies both views and gives each an opportunity to update
itself.

= Because models specify nothing about presentation, you can modify or create
views without affecting the underlying model.

A view uses a controller to specify its response mechanism. For instance, the controller
determines what action to take when receiving keyboard input. To accomplish this
requires additional objects to pass information between the two layers, but the benefits
are worth the effort. Having a clean separation between application layers at each tier
makes it easier for the development team to divide roles and responsibilities.

In JDeveloper, the integration effort is minimized, since the design time helps establish
the wiring between the model, the view, and the controller, as described in the

following table:
Browser-Based Web

Layer Application Java Client Application

Model layer A thin data binding layer, A thin data binding layer,
identical for web applications identical for Java clients and web
and Java clients, known as the applications, known as the Oracle
Oracle ADF model layer, provides ~ ADF model layer, provides access
access to the business objects. In to the business objects. In a Java
the web application, instances of client application, instances of
the model layer are created by the model layer are created in
standard Struts action classes. Java code during a panel

initialization.
View layer HTML, Struts tags, and JSTL tags Standard Swing UI components

comprise the view layer in the
JSP web application. JDeveloper
also provides an alternative view
technology, known as Oracle ADF
UIX components. Both JSP and
Oracle ADF UIX have full design
time support that integrates
them with the model layer.

comprise the view layer in the
Java client graphical user
interface. JDeveloper provides
design time integration with the
model layer for Swing
components and specialized
composite widgets (like chart
controls), known as JClient
controls.

1-4 Oracle Application Development Framework Development Guidelines Manual

Speeding Development with Frameworks in JDeveloper

Layer

Browser-Based Web
Application

Java Client Application

Controller layer

The Struts action servlet that
dispatches incoming requests
from the view layer to the
appropriate action classes in the
model layer. The Oracle ADF

Standard Swing UI components
serve the role of the controller
layer in the Java client. Again,
JDeveloper provides design time
integration with Swing

UIX technology is also fully components.
integrated with the Struts

controller.

The following section provides more detail about the technology stack available with
Oracle ADFE.

1.5 Speeding Development with Frameworks in JDeveloper

Frameworks make sense for developers because developers can write code based on
well-defined interfaces. This is largely a time-saving benefit, but it also makes sense in
a J2EE environment because J2EE frameworks provide the necessary infrastructure for
the enterprise application. In other words, J2EE frameworks make the concepts
expressed in the J2EE design patterns more concrete.

One example of a J2EE framework already familiar to many web application
developers is the framework available from Apache Software Foundation, known as
Struts. Web application developers currently work with the Struts framework to
manage the flow of their application. Simply, JavaBeans technology and declarative
definition files define the Struts framework. The framework provides the web
application view layer with a single, centralized point of access for request handling.

Another such framework, also provided with JDeveloper, is the Oracle Application
Development Framework (Oracle ADF). In its entirety, Oracle ADF provides you with
the means to easily create the business services, the model, the controller, and the view
layers. The full stack of Oracle ADF looks like this:

Oracle Application D (ADF) Applicati
Rich client Webiwireless
Swing/
ADF JCiient | JSP | ADF UIX | JsF View
1
Struts Controller
| ADF bindings
ADF
Model
: | ADF Data Controls 5
"
5 | —
ADF Business "
§ Java Beans S;"B Components Web B -,
beans =ion application Services senvice §
w Beans objects
o module o
< | | e —
I ! I !
. ADF Business i)
JDBC TopLink EJB Components Data Business
queries finders view object access services
Java EJBEntity ADF Business Persistent
classes Beans Components business
entity object objects
| TopLink il

Introduction to J2EE Application Development in JDeveloper 1-5

Development Methodology in JDeveloper

The salient point when using Oracle ADF is that you may use the framework
components in their entirety, or you can elect to use just the Oracle ADF model layer,
just the Oracle ADF UIX view, or just the Oracle ADF BC business services. In fact,
JDeveloper places no restrictions on the Oracle ADF framework technology usage. For
example, JDeveloper makes it especially easy to integrate a non-Oracle ADF business
service with the Oracle ADF UIX view technology. For the complete set of applicable
J2EE technologies, see the illustration at the beginning of this document.

The glue that makes customization of the technology stack possible is the Oracle ADF
model layer, represented in the diagram as the Oracle ADF data controls and data
bindings. Chapter 3, "ADF Business Components in Depth" describes the objects of
that layer in detail. For now it is sufficient to understand that the Oracle ADF model
layer places no restrictions on which view technology or which back-end business
service to use. Further, because the Oracle ADF model layer is designed by Oracle as a
thin integration layer, the Oracle ADF model objects provide data binding and other
services without degradation of performance to the application.

The following section describes how the JDeveloper design time helps you to build
seamless enterprise applications easily and transparently.

1.6 Development Methodology in JDeveloper

Oracle ADF and the JDeveloper design time support two high-level concepts of
development: iterative development and division of labor. These concepts lay the
foundation for the Oracle ADF best practices described in subsequent chapters.

Consider the demands of iterative development before examining roles-based
development in more detail.

1.6.1 Ilterative Development and Visual Tools

Developers approach a business problem by analyzing and dividing the task into its
constituent parts. The team then proceeds to create the application's components,
including model data abstractions, screens that the user will interact with, and code to
manage the application flow. The development phase frequently progresses iteratively.
That is to say, as the application grows, and the constituent parts become better
identified, developers expect to be able to add new components to the application, for
example, to address new functionality.

The finished result, created from diverse components, must function as a coherent
whole. To allow you to work in this fashion, the tools of the IDE must be both highly
visual and interactive. The benefit of getting immediate feedback that an addition was
successfully integrated across layers is vital to creating robust applications. JDeveloper
serves this need with a rich assortment of visual tools.

Tools such as Oracle ADF Business Components wizards, the Struts Page Flow
Modeler, the JSP Visual Editor, and the Data Control Palette assist in iterative
development because you can create an object in one layer and allow others to work
with it in their own layers. For instance, the JSP or Oracle ADF UIX page created by
the page designer will be accessible to the developer managing the application's flow
control in the Struts Page Flow Modeler. Similarly, the objects of the business services
are exposed to the Oracle ADF model layer through the Data Control Palette, which is
refreshed to display items used to create data bindings for the UI components.

1-6 Oracle Application Development Framework Development Guidelines Manual

Proceeding with Application Development in JDeveloper

1.6.2 Roles and Code Integration

An additional demand for building enterprise applications is the need to support the
development roles suggested by the model-view-controller paradigm. The model layer
designer, for example, should decide what to expose from the model data, but the Ul
developer need not be concerned with how this is performed. Likewise, page flow
control should be tightly integrated with the actual pages of the application, but the
page designer should not have to write Java code for this purpose.

In the realm of web application development, where the model-view-controller
paradigm is known as Model 2 to distinguish it from the early notion that pages might
contain the flow control logic, the need for experts to work by roles has real merit. At
this time, the Struts framework provides the integration mechanism that allows page
designers to refer to page handler classes (Struts actions) in a declarative fashion.
Similarly, in JDeveloper, the visual editor together with the Data Control Palette (the
design time for working with the Oracle ADF model layer) simplifies binding Ul
components or Struts actions to data and methods. In the case of web pages, the result
is easy-to-read binding expressions that appear as part of the markup language of the
page itself (HTML elements, Struts form tags, or Oracle ADF UIX elements).

Overall, the JDeveloper design time permits developers to work across the
model-view-controller areas, without requiring detailed knowledge of how the
integration is accomplished.

1.7 Proceeding with Application Development in JDeveloper

To quickly become familiar with the full technology stack provided in Oracle ADF,
continue reading this document. Here are some specific suggestions that may begin to
address your application development questions:

1. Read Chapter 2, "Business Services and the Oracle Application Development
Framework" and determine which business services the business logic developers
will be most comfortable creating when exposing the model data to the
application. Each business service, including Oracle's own transactional
technology, Oracle ADF Business Components, provides its own unique set of
features and benefits.

2. Determine the style of application you want to create: one that uses JSP pages,
Oracle ADF UIX pages, or Oracle ADF JClient for Swing forms. More information
about each of these technologies can be found in Chapter 6, "Overview of Oracle
ADF Data Binding in View Technologies" dealing with the view layer.

3. If your application will be browser-based, and you are uncertain about whether or
not to work with the Struts framework, read Chapter 5, "Overview of Oracle ADF
Integration with Struts" on the integration of Oracle ADF and the controller layer.
JDeveloper supports Model 1-style application development when the Struts
controller is not required. However, this document only addresses Struts
integration.

4. In your browser, run the Quick Tour of the JDeveloper IDE for an overview of the
available enterprise application development tools. The Quick Tour is accessible
from the JDeveloper help system Getting Started topics.

Introduction to J2EE Application Development in JDeveloper 1-7

Related Information

5. InJDeveloper, create an application workspace based on a template that meets
your application needs. The JDeveloper help system describes this
technology-scoping feature in the Working with Application Design Tools topics.

6. Investigate typical use cases for your application in the end-to-end procedural
documentation. The JDeveloper help system provides this information in the
Working with Oracle ADF topics.

Once you have decided how to implement your application, selecting an application
template or creating a custom template in JDeveloper will streamline the IDE and set
up project folders with the appropriate standard libraries. The technology scope
feature is particularly useful when the development effort is underway and limiting
choices to the application requirements is desirable.

It is important to note that application templates and technology scopes, once selected,
do not permanently remove tools and technologies from JDeveloper, nor do they
prevent you from accessing the full list of technologies should you need to alter the
chosen technology stack.

1.8 Related Information

Additionally, the following resources may be helpful when you wish to read more
about J2EE and JDeveloper:

= For getting started information on the Oracle Technology Network, specifically for
new users, see ht t p: / / ww. or acl e. com t echnol ogy/ new i ndex. htm .

= For Oracle JDeveloper production information on the Oracle Technology Network,
see htt p: // www. or acl e. conf t echnol ogy/ product s/ j dev/i ndex. htm .

= For the Oracle JDeveloper documentation page on the Oracle Technology
Network, see ht t p: / / ww. or acl e. coni t echnol ogy/ docunent ati on/ 9i _
jdev.htn.

= For the Sun Microsystems home page for J2EE, see
http://java. sun. conml j 2eel.

= For the Apache Software Foundation home page for Struts, see
http://struts. apache. org/.

1-8 Oracle Application Development Framework Development Guidelines Manual

2

Business Services and the Oracle
Application Development Framework

Business services are behind-the-scenes components that mediate between an MVC
application and a data source (usually a database). Business services are responsible
for the following;:

= Retrieving data requested by the rest of the application

= Representing this data as Java objects usable by the rest of the application
(object-relational ['O/R"] mapping)

« Persisting changes made by the rest of the application

« Implementing business rules, such as validation logic, calculated attributes, and
defaulting logic

= Providing services that can perform large-scale batch operations on data upon
request

Business services segregate the persistence and business logic of an application from
the logic that governs the application's UI and control flow. Keeping persistence and
business logic separate allows you to reuse them in multiple MVC applications.

This chapter provides an overview of the business service technologies that work out
of the box with the Oracle Application Development Framework.

2.1 Summary

= Section 2.2, "The Available Business Service Technologies"
= Section 2.2.1, "Oracle ADF Business Components Technology"
= Section 2.2.2, "Enterprise JavaBeans Technology"
= Section 2.2.3, "OracleAS TopLink Plain Old Java Objects (POJO)"
= Section 2.2.4, "Enterprise JavaBeans Technology with TopLink CMP"
« Section 2.2.5, "Web Services"
= Section 2.2.6, "Java Objects with Hand-Coded Persistence"

= Section 2.3, "Which Business Services Technology Should I Use?"
= Section 2.3.1, "Do You Have Your Own Object Framework?"
= Section 2.3.2, "Do You Want to Use an Existing Object Framework?"
= Section 2.3.3, "Can You Use Oracle Runtime Technology?"

Business Services and the Oracle Application Development Framework 2-1

The Available Business Service Technologies

2.2

Section 2.4, "Business Service Layers"

Section 2.4.1, "Persistent Business Objects"
Section 2.4.2, "Data Access Components"

Section 2.4.3, "Service Objects"

Section 2.5, "Detailed Comparison of Business Service Architectures"

Section 2.5.1, "How ADF Business Components Technology Provides
Persistent Business Objects"

Section 2.5.2, "How ADF Business Components Technology Provides Data
Access Components"

Section 2.5.3, "How ADF Business Components Technology Provides Service
Objects"

Section 2.5.4, "How Enterprise JavaBeans Technology Provides Persistent
Business Objects"

Section 2.5.5, "How Enterprise JavaBeans Technology Provides Data Access
Components"

Section 2.5.6, "How Enterprise JavaBeans Technology Provides Service
Objects"

Section 2.5.7, "How OracleAS TopLink Technology with POJO Provides
Persistent Business Objects"

Section 2.5.8, "How OracleAS TopLink Technology with POJO Provides Data
Access Components"

Section 2.5.9, "How OracleAS TopLink Technology with POJO Provides
Service Objects"

Section 2.5.10, "How Enterprise JavaBeans Technology with TopLink CMP
Provides Persistent Business Objects"

Section 2.5.11, "How Enterprise JavaBeans Technology with TopLink CMP
Provides Data Access Components"

Section 2.5.12, "How Enterprise JavaBeans Technology with TopLink CMP
Provides Service Objects"

The Available Business Service Technologies

JDeveloper provides tools to develop business services using multiple technologies.
You can usually choose a business service technology independently of the design of
the rest of your application: the Oracle ADF Model (described later) provides a
common interface for all business services, allowing your view and controller to access

business services almost interchangeably. All of the following technologies are

supported out of the box by the ADF Model; you can also support additional business

service technologies by creating your own data control classes.

2-2 Oracle Application Development Framework Development Guidelines Manual

The Available Business Service Technologies

2.2.1 Oracle ADF Business Components Technology

ADF Business Components technology is a fully-featured, XML-based framework for
creating business services. ADF Business Components evolved from the Business
Components for Java (BC4J) technology distributed with Oracle9i JDeveloper and
earlier releases. The ADF Business Components runtime library handles most business
service functionality, which you can customize declaratively (by changing the XML
files using JDeveloper's RAD tools) or programatically (by extending library classes).
Oracle ADF Business Components technology:

= Automatically handles O/R mappings and persistence for instances of its own
library classes

= Allows you to make complex requests for data retrieval using SQL

= Automatically handles transaction management, including optimistic or
pessimistic locking

= Provides a framework for implementing complex business logic
= Automatically implements many J2EE design patterns

« Has a powerful caching and data passivation system for increasing the
performance and scalability of applications

All of the above functionality is fully customizable: if you do not like the way ADF
Business Components handles O/R mappings, for example, you can override it.

2.2.2 Enterprise JavaBeans Technology

Enterprise JavaBeans technology is an alternative for creating business services
without a framework. While EJB execution depends on an EJB container (which is part
of any J2EE-compliant application server), running EJB beans requires no
Oracle-specific runtime library or other Oracle-specific technology.

Enterprise JavaBeans technology:

= Generally relies upon the application server to handle O/R mappings and
persistence (this is called "container-managed persistence," or CMP), although
experienced EJB developers can override the application server and code
persistence logic themselves ("bean-managed persistence,” or BMP)

= Requires requests for data to be made using Java APIs or an EJB-specific query
language called "E]B QL"

= Generally relies upon the application server to handle transaction logic (this is
called "container-managed transactions," or CMT), although experienced EJB
developers can override the application server and code transaction logic
themselves ("bean-managed transactions," or BMT)

= Requires you to implement your own business logic
= Requires you to implement J2EE design patterns, if desired

= Relies on the Java object caching capabilities of the application server

2.2.3 OracleAS TopLink Plain Old Java Objects (POJO)

OracleAS TopLink is a technology for providing complex mappings between Java
objects and a relational database. TopLink POJO uses ordinary JavaBeans as the Java
objects. Unlike users of ADF BC, users of TopLink POJO do not extend a framework;
instead, they create their own object model and allow the TopLink runtime to integrate
it with the database.

Business Services and the Oracle Application Development Framework 2-3

The Available Business Service Technologies

TopLink technology with POJO:

= Automatically handles O/R mappings and persistence logic for arbitrary Java
objects

= Allows you to make complex requests for data retrieval using SQL, EJBQL, or
TopLink's own expression language

= Automatically manages transactions
= Requires you to implement your own business logic
= Requires you to implement J2EE design patterns, if desired

= Has a powerful caching and data passivation system for increasing the
performance and scalability of applications

Like ADF Business Components, TopLink mapping technology is highly
customizable.

2.2.4 Enterprise JavaBeans Technology with TopLink CMP

You can also use TopLink mappings to provide container-managed persistence for EJB
entity beans. Doing so will override the CMP behavior of your application server.

Enterprise JavaBeans technology with TopLink CMP:

= Uses TopLink technology to handle complex object-relational mappings and
persistence

= Allows you to make complex requests for data retrieval using SQL, EJBQL, or
TopLink's own expression language

= Automatically manages transactions
= Requires you to implement your own business logic
= Requires you to implement J2EE design patterns, if desired

= Relies on the Java object caching capabilities of the application server

2.2.5 Web Services

Web services are a special case. Rather than a technology for implementing business
services, web services use XML-based standards to enable application-to-application
interaction across the Web regardless of platform, language, or data format. An MVC
application can use web services as a wrapper for business services in any format
deployed anywhere on the Web.

For example, a web service can wrap Enterprise JavaBeans, ADF Business
Components, stored procedures in a database, or other business services written in a
Java or any other language. MVC applications can access the service's API using XML
messages sent over the Web.

Because of this, web service technology does not itself handle O/R mappings,
persistence, data validation, or caching, instead leaving these to the underlying classes.

2-4 Oracle Application Development Framework Development Guidelines Manual

Which Business Services Technology Should | Use?

2.2.6 Java Objects with Hand-Coded Persistence

Oracle ADF also allows you to use any JavaBeans-compliant Java objects as business
services for your application. If you choose to go this route, you will need to
implement your own framework for data retrieval, persistence, and manipulation.
Usually, this involves:

= Retrieving data from the database using JDBC

= Implementing your own O/R mapping framework

= Persisting data to the database using JDBC

= Manually coding transaction management using JDBC

= Adding your own business logic to the getters and setters for your classes
= Creating your own caching mechanism or sacrificing scalability

For the vast majority of users, this option is not recommended. It is intended primarily
for users who have already created their own complex framework for business
services.

2.3 Which Business Services Technology Should | Use?

There is no single answer to the question of which business services technology is the
best. The right choice of a business services technology depends on your needs, your
background, and your priorities.

Note: Web services are not included in the following discussion.
They have a very specific purpose: providing very loose coupling
between an MVC application and its business services. In cases
where you need such loose coupling, web services are the only
choice; in other cases, they are not an appropriate choice.

2.3.1 Do You Have Your Own Object Framework?

OracleAS TopLink POJO can provide O/R mappings and caching for arbitrary Java
objects. For this reason, OracleAS TopLink is generally the best alternative for
developers and organizations who have a Java object framework in place or who wish
to create one. If you have your own systems or requirements for representing business
objects, implementing business logic, and shaping and aggregating the data for clients,
TopLink POJO is most likely the best option for your projects. E]B technology requires
that your components match EJB specifications, and ADF BC component classes must
extend ADF BC framework classes, but TopLink will work with any object model to
provide O/R mapping, data retrieval and caching, and transaction functionality.

2.3.2 Do You Want to Use an Existing Object Framework?

If you are creating a completely new application, with no existing application
infrastructure, Oracle ADF Business Components technology is the most productive
option you can choose. ADF Business Components technology handles all aspects of
application plumbing completely automatically: O/R mapping, data retrieval and
caching, transaction management, and integration with the ADF data binding layer. In
addition, ADF Business Components automatically implements key J2EE design
patterns to improve performance and scalability; it provides a framework for creating
validation rules and other business logic; and it includes base classes to represent your
entities and views.

Business Services and the Oracle Application Development Framework 2-5

Business Service Layers

2.3.3 Can You Use Oracle Runtime Technology?

Oracle ADF Business Components and OracleAS TopLink are both 100%
J2EE-compliant technologies that will run on any J2EE-compliant application server.
Neither of these technologies requires you to use an Oracle database or application
server, nor do they in any way restrict which technologies you can use for the view or
controller layer of your application.

Both of these technologies, however, make use of some Oracle runtime classes on the
application server. If you use ADF Business Components, your business services will
extend the ADF Business Components base classes. If you use OracleAS TopLink,
your business services will rely on the TopLink runtime to provide O/R mappings
and caching.

If you have requirements that prevent you from using any Oracle classes at runtime,

you will need to choose a different business service technology: either EJB with CMP
provided by the application server, or entirely hand-coded JavaBeans-based business
services.

2.4 Business Service Layers
All business services must have a way of handling three main tasks:
= Representing data
= Retrieving and shaping data for clients to use
= Presenting data and specific services to clients

Each of these tasks is accomplished by a separate layer of components: persistent
business objects, data access objects, and service objects, respectively.

Note: "Components" and "objects" are here being used in a logical,
rather than programmatic, sense. While some business service
technologies use Java objects for their persistent business objects,
data access objects, and service objects, others may use methods,
queries, or other logical constructs.

2.4.1 Persistent Business Objects

In general, your business services should always have a layer of persistent business
objects, which are based on the most logical representation of the data. If you already
have a well-designed data source, the structure of your persistent business objects
should reflect the structure of that data source. This practice allows you to write
business rules in the most logical way, expressing the properties and requirements for
the actual entities your application must represent.

If your application needs to work with customers, orders, and order items, for
example, it will generally need to have persistent business objects representing
customers, orders, and order items, respectively. You will write business rules on
these objects, expressing the properties and requirements for customers, orders, and
order items.

2.4.2 Data Access Components

Persistent business objects provide a logical representation of your data, but they do
not always provide exactly the data your application needs. Data access components
organize and shape data to match the needs of a particular application.

2-6 Oracle Application Development Framework Development Guidelines Manual

Detailed Comparison of Business Service Architectures

For example, your application might need to work with the specific data returned by
the following SQL query:

SELECT *

FROM ORDER | TEMB
WHERE PRODUCT | D = 501;

or even the more complicated query

SELECT

CUSTOMERS. CUSTOMVER | D,

CUSTOMERS. FI RST_NAME,

CUSTOVERS. LAST_NAME,

ORDERS, ORDER | D
FROM

CUSTOMERS,

CRDERS
WHERE

CUSTOVERS. CUSTOMER | D=ORDERS. ORDER | D;
Retrieving this information would be handled by data access components. The power
of data access components depends on the particular business services technology:
some can handle queries of arbitrary complexity; some can only retrieve collections of
persistent business objects (the equivalent of queries that start with SELECT * and
have only one table in their FROMclause).

2.4.3 Service Objects

A service object is the single point of contact between your business services and the
rest of the application. Service objects handle transactions, provide access to data
model components, and expose high-level tasks to the application in the form of service
methods.

2.5 Detailed Comparison of Business Service Architectures

Any business services technology must have a way of implementing the three business
service layers.

Note: Web services technology and Java objects with hand-coded
persistence are special cases. In the case of web service technology,
the web service itself provides the service object, but the
implementation of persistent business objects and data access
objects is up to the developer who writes the web service. In the
case of Java objects with hand-coded persistence, implementing
persistent business objects, data access components, and service
objects is also entirely up to the developer.

Business Services and the Oracle Application Development Framework 2-7

Detailed Comparison of Business Service Architectures

The following table shows how the other business services technologies implement
persistent business objects, data access components, and service objects.

Persistent Business Data Access

Technology Objects Components Service Objects

Oracle ADF Business "How ADF Business "How ADF Business =~ "How ADF Business

Components Components Components Components
Technology Provides Technology Provides Technology Provides
Persistent Business Data Access Service Objects”
Objects" Components"

Enterprise JavaBeans "How Enterprise "How Enterprise "How Enterprise
JavaBeans Technology JavaBeans Technology JavaBeans Technology
Provides Persistent Provides Data Access Provides Service
Business Objects" Components" Objects"”

OracleAS TopLink "How OracleAS "How OracleAS "How OracleAS

with POJO TopLink Technology =~ TopLink Technology = TopLink Technology
with POJO Provides with POJO Provides with POJO Provides
Persistent Business Data Access Service Objects”
Objects" Components"

Enterprise JavaBeans "How Enterprise "How Enterprise "How Enterprise

with TopLink CMP JavaBeans Technology JavaBeans Technology JavaBeans Technology
with TopLink CMP with TopLink CMP with TopLink CMP
Provides Persistent Provides Data Access Provides Service
Business Objects” Components" Objects"

2.5.1 How ADF Business Components Technology Provides Persistent Business

Objects

ADF Business Components technology uses ADF entity object definitions as persistent
business objects. As with persistent business objects in all technologies, a single entity
object maps to a single entity in the data source (in the vast majority of cases, these
data sources are tables or views in a database).

An entity object definition is the template for entity object instances, which are single
Java objects representing individual rows in a database table. For example, an entity
object definition called "Departments” could provide a template for entity object
instances that represent individual rows of the DEPARTMENTS table.

An entity object definition can have up to four parts:

= An XML file, which represents the portion of the entity object definition that can
be developed declaratively. Most of the information is that needed for O/R
mapping, but it can also contain simple validation rules, called validators. For
many entity object definitions, the XML file by itself is sufficient.

= An entity object class, which represents individual entity object instances. Entity
object classes allow you to write complex business logic in Java, when using XML
validators is not sufficient. Entity object classes extend the class
oracl e.jbo.server. Entitylnpl.If you do not need custom Java business
logic, you need not generate an entity object class—ADF can use
oracl e.jbo.server. Entitylnpl directly to represent rows of the data
source.

2-8 Oracle Application Development Framework Development Guidelines Manual

Detailed Comparison of Business Service Architectures

= An entity definition class, which represents the data source object in its entirety.
Entity definition classes act as Java wrappers for the XML file, so if you need
special handling of the metadata (for example, if you need to change it
dynamically), you can add this code in the entity definition class. Entity definition
classes extend the class or acl e. j bo. server. Enti t yDef | mpl . If you do not
need custom handling of your metadata, you need not generate an entity
definition class—ADF can use or acl e. j bo. server. Enti t yDef | npl directly
to wrap the metadata.

= An entity collection class, which represents the cache of rows (instances of the
entity object class) held in memory for a single user. The vast majority of
developers do not need to generate an entity collection class: you should do so
only if you want to override ADF Business Components' default caching behavior.

When entity object definitions are based on database objects, columns in the database
object map to a single entity object attribute in the entity object definition. The
definitions of these attributes (reflected in the entity object definition's XML file) reflect
the properties of these columns, such as the columns' data types, column constraints,
and precision and scale specifications. When entity object definitions are based on
objects from other data sources, entity object attributes map to "columns” from those
objects, as defined by the developer. If you generate an entity object class, attributes
will also be represented as fields in that class.

As mentioned previously, you can declaratively add validation logic to entity object
definitions or attributes in the form of validators. JDeveloper comes with four simple
validators:

« CompareValidator, which compares an attribute to a value (either a literal value or
a value drawn from the data source).

« ListValidator, which checks to see whether an attribute is in a list of values (either
a literal list or the results of a query).

= RangeValidator, which checks to see whether an attribute is between two literal
values.

= MethodValidator, which can invoke any method which returns a boolean value.
Validation is passed if the method returns t r ue.

In addition, you can create your own custom validators. These require coding to create
initially, but once created, they can be applied declaratively in many different projects.

If the default validators do not meet your needs, and you do not want to create your
own validators, you can also put validation code in the entity object class: in the setter
methods (for attribute-level validation) or in a method called val i dat eEnti ty()
(for multiattribute validation).

Entity object classes also provide hooks for other business logic, including the methods
cr eat e(), which is called whenever a new row is created, and r enove() , which is
called whenever a row is deleted. By adding business logic to these methods, you can
ensure that the logic is invoked whenever rows are created or deleted.

Finally, although ADF Business Components technology automatically handles DML
operations for you (by issuing INSERT, UPDATE, and DELETE commands to the
database), you can also override this behavior by overriding the doDM_() method in
the entity object class—if, for example, you want to use stored procedures in the
database to handle DML operations.

Business Services and the Oracle Application Development Framework 2-9

Detailed Comparison of Business Service Architectures

Relationships between entity object definitions are handled by Oracle ADF
associations, which define a relationship between two Oracle ADF entity object
definitions based on sets of entity attributes from each. These can range from simple
one-to-many relationships based on foreign keys to complex many-to-many
relationships. For example, associations can represent:

The one-to-many relationship between a customer and all orders placed by that
customer

The one-to-one relationship between a product and its extended description (if
these are represented by separate entity object definitions)

The many-to-many relationship between products and the warehouses that
currently stock them

2.5.2 How ADF Business Components Technology Provides Data Access Components

ADF Business Components technology uses ADF view object definitions as data access
components. ADF view object definitions collect data from the data source, shape that
data for use by MVC applications, and allow those applications to change the data in
the Oracle ADF Business Components cache.

A view object definition can have up to four parts:

An XML file, which represents the portion of the entity object that can be
developed declaratively. This information consists of the mechanism (usually a
SQL query) that the view object uses to retrieve data from the data source, and the
way in which the columns of the SQL query map to entity attributes (which
handle actual O/R mapping). For many view object definitions, the XML file by
itself is sufficient.

A view object class, which represents an individual instance of the query result
set, called a view object instance. Different users will always use different view
object instances, but the same user may also use multiple view object instances.
View object classes allow you to write custom methods that affect multiple rows in
a query. View object classes extend the class

oracl e. j bo. server. Vi ewCbj ect | npl . If you do not need to write custom
view object methods, you need not generate an entity object class—ADF can use
oracl e.jbo. server. Vi ewObj ect | npl directly to represent instances of the
query result set.

A view row class, which represents individual rows of the query result. View row
classes allow you to write custom methods that affect a single row of data, and
they provide typesafe accessors to retrieve and change data. View row classes
extend the class or acl e. j bo. server. Vi enRow npl . If you do not need
custom row-level methods or typesafe accessors, you need not generate a view
row class—ADF can use or acl e. j bo. server. Vi ewRowl npl directly to
represent rows of the data source. (Vi ewRowl npl contains the get Att ri but e()
and set At tri but e() methods, which allow you to retrieve and change data,
but these methods are not typesafe.)

A view definition class, which represents the query itself. View definition classes
act as Java wrappers for the XML file, so if you need special handling of the
metadata (for example, if you need to change it dynamically), you can add this
code in the view definition class. View definition classes extend the class

oracl e. j bo. server. Vi ewDef | npl . If you do not need custom handling of
your metadata, you need not generate a view definition class—ADF can use
oracl e.jbo. server. Vi ewDef | npl directly to wrap the metadata.

2-10 Oracle Application Development Framework Development Guidelines Manual

Detailed Comparison of Business Service Architectures

Columns in the query map to individual view object attributes in the view object
definition. The definitions of these attributes (reflected in the view object's XML file)
reflect the properties of these columns, including data types and how, if at all, they
should be mapped to entity object attributes. If you generate a view row class,
attributes will also be represented as fields in that class.

A view object definition can be based on a query of arbitrary complexity: joins,
calculated attributes, and even group functions can be represented within a view
object definition.

As mentioned previously, view object definitions handle the mapping of query
columns to entity object attributes. There is no requirement that attributes of a single
view object all map to attributes of the same, or even any, entity object. The view
object handles reading from the data source, and the entity object definitions (if any)
handle DML. This operation of the ADF Business Components cache is one of its most
powerful features.

Among Sun's J2EE BluePrints design patterns is the "fast-lane reader” pattern. Rather
than search through persistent business objects for needed data, a fast-lane reader
queries the data source directly. This is a much faster operation than searching the
persistent business objects, but has the disadvantage of being read-only, since
persistent business objects handle updates to the data source.

View object definitions are an improvement on the fast-lane reader pattern. Like the
fast-lane reader, they query the database directly, but they optionally store the results
in entity object instances and maintain pointers to those instances. Therefore, they can
query the database with fast-lane reader speed but avoid the read-only disadvantages
of standard fast-lane readers.

Relationships between view object definitions are handled by Oracle ADF view link
definitions, which define a relationship between two Oracle ADF view object
definitions based on sets of entity attributes from each. Like associations, these can
range from simple one-to-many relationships based on foreign keys to complex
many-to-many relationships.

Individual view object instances can also be related by individual view link instances,
which create a master-detail relationship between the query result sets. For example,
suppose that you have view object definitions representing a query for department
information and a query for employee information, and a view link between the view
object definitions representing the relationship between a department and its
employees. If an instance of the former view object definition, al | Depart ment s, is
related to an instance of the latter, enpl oyees| nDepar t ment , by an instance of the
view link, those instances will be synchronized: whenever a particular row of

al | Depart ment s is selected, enpl oyeesl| nDepar t ment will only display details of
that row.

2.5.3 How ADF Business Components Technology Provides Service Objects

ADF Business Components technology uses ADF application module definitions as
service objects. ADF application module definitions serve as a single point of contact
between MVC applications and the business services layer; they manage transactions;
and they provide a container for view object and view link instances.

An application module definition can have one or two parts:

= An XML file, which represents the portion of the application module definition
that can be developed declaratively: the view object and view link instances that
the application module definition contains and the way in which they are related.
For many application module definitions, the XML file by itself is sufficient.

Business Services and the Oracle Application Development Framework 2-11

Detailed Comparison of Business Service Architectures

= An application module class, which lets you write custom code such as service
methods that an MVC application can invoke for batch data handling. Application
module classes extend the class
oracl e.j bo. server. Appl i cati onMbdul el npl . If you do not need to write
custom service methods, you need not generate an application module
class—ADF can use or acl e. j bo. server. Appl i cat i onModul el npl directly.

The most important feature of an application module definition is its data model—the
view object and view link instances it contains. These specify what data the client will
have access to, and what relationships hold within that data.

You can use application module definitions in two different ways:

= Asaservice object, in which case each instance of the MVC application has access
to one instance of the application module. These root-level application module
instances control ADF BC transaction objects, which in turn control the entity and
view caches.

= Asareusable object for nesting, in which case you can create a data model and
service methods on it and then nest one of its instances in other application
module definitions. Those application module definitions can, in turn, access the
nested module's methods and data model. Nested application modules share the
root-level application module's transaction.

Application module instances are elements in an application module pool, a
configurable resource manager that automatically decides whether an instance needs
to be maintained, with its caches, in memory, whether it can be serialized to the
database to save memory, or whether it can be removed altogether. Application
module pooling can greatly increase the scalability of your application.

2.5.4 How Enterprise JavaBeans Technology Provides Persistent Business Objects

Enterprise JavaBeans technology uses EJB entity beans as persistent business objects. As
with persistent business objects in all technologies, a single entity bean maps to a
single entity in the data source (in the vast majority of cases, these data sources are
tables or views in a database). For most purposes, applications should use
container-managed persistence (CMP), which allows an external container (such as an
application server or the TopLink runtime) to handle O/R mappings. The alternative
is bean-managed persistence (BMP), which shares many disadvantages with Java
classes that use hand-coded persistence: to use BMP entity beans, you must handle
O/R mappings, persistence, and data retrieval yourself. BMP beans are mostly useful
for applications that need to use a data source other than the database.

EJB CMP entity beans can have up to six parts:

= Anelement in the EJB deployment descriptor, an XML file that describes all aspects
of a set of EJB beans. This entry describes the bean's metadata, such as how its
fields are mapped to database columns.

= Abean class, which is an abstract class listing the fields of the bean.

« A local home interface, which contains methods that create instances of the bean
class, for use by other beans in the same container.

« A home interface, which contains methods that create instances of the bean class,
for use by classes outside the container.

= Alocal interface, which is how other EJB beans interact with the entity bean.

= A remote interface, which is how Java objects outside the EJB container interact
with the bean.

2-12 Oracle Application Development Framework Development Guidelines Manual

Detailed Comparison of Business Service Architectures

Note that a CMP entity bean does not have any parts that can be directly instantiated:
it consists of an XML element, an abstract class, and three interfaces. The CMP
provider will automatically extend the abstract class to create an implementation class,
which is directly instantiated to create entity bean instances, which represent single
rows in the database. Similarly, the CMP provider automatically implements the home
and/or local home interfaces. You will never need to work with the implementation
classes directly: your application will always refer to entity bean instances through the
local or remote interface, and to the home through the home or local home interface.

Columns in the database object map to single fields in the entity bean class and single
subelements of the XML element. The attributes of the XML subelements reflect the
properties of these columns, such as the columns' data types, column constraints, and
precision and scale specifications.

Unlike ADF entity object definitions, EJB entity beans do not provide hooks for
business logic. You cannot implement business logic in accessor methods because the
implementation of those methods is left to the CMP provider (in the bean class, the
methods are abstract). However, JDeveloper can automatically generate a data transfer
object for an entity bean. The data transfer object is an implementation of a J2EE
Blueprints design pattern and serves as an intermediary between MVC applications
and the entity bean. Data transfer objects expose some or all of the entity bean's
attributes, and have getters and setters that you can modify to implement business
logic. They do not, however, provide a convenient way to implement multiattribute
logic. If you use EJB technology, you must implement multiattribute logic in the
controller layer or write your own framework code to create it.

Relationships between entity beans are handled by container-managed relationships
(CMRs), which define a relationship between two entity beans based on sets of fields
from each. These can range from simple one-to-many relationships based on foreign
keys to complex many-to-many relationships. For example, associations can represent:

= The one-to-many relationship between a customer and all orders placed by that
customer

= The one-to-one relationship between a product and its extended description (if
these are represented by separate entity object definitions)

= The many-to-many relationship between products and the warehouses that
currently stock them

2.5.5 How Enterprise JavaBeans Technology Provides Data Access Components

Unlike ADF Business Components technology, Enterprise JavaBeans technology does
not use actual objects to provide data access components. Instead, EJB applications use
EJB finder methods as data access components.

EJB finder methods are methods on the EJB's home interface. When you create a finder
method, you can specify a query in a specialized query language called EJBQL. The
query will get added to the deployment descriptor, and the CMP provider will use it
to generate code to search among the entity bean instances for those matching the
query conditions.

Business Services and the Oracle Application Development Framework 2-13

Detailed Comparison of Business Service Architectures

Unlike ADF view object definitions, EJB finder methods have limits to their
complexity. Since they simply return collections of entity beans, they cannot
implement joins or calculated attributes. Also, because E]JB finder methods query the
entity beans instead of the database, they do not provide the efficiency of the fast-lane
reader pattern. You can, of course, implement the fast-lane reader pattern yourself, but
since this pattern does not create a collection of entity beans (but rather simply a list of
data), you cannot use it to perform DML operations. For optimal performance, you
should create and use a fast-lane reader whenever read-only data is sufficient, and use
EJB finder methods in other cases.

2.5.6 How Enterprise JavaBeans Technology Provides Service Objects

Enterprise JavaBeans technology uses EJB session beans as service objects. Session beans
serve as a single point of contact between MVC applications and the business services
layer, and provide access to entity bean home and local home interfaces.

As with entity beans, there are two types of session beans: for most purposes,
applications should use container-managed transactions (CMT), which allows an external
container (such as an application server or the TopLink runtime) to handle
transactions. The alternative is bean-managed transactions (BMT), which requires you to
write code to handle transactions yourself, and is useful only if you have specialized
requirements for transaction handling.

An EJB CMT session bean definition can have up to six parts:

= Anelement in the EJB deployment descriptor. Unlike the elements for entity
beans, this element contains only the bean's name.

= Abean class, which lets you write custom code such as service methods that an
MVC application can invoke for batch data handling. Unlike bean classes for CMP
entity beans, this class is not abstract.

« A local home interface, which contains methods that create instances of the bean
class, for use by other beans in the same container.

« A home interface, which contains methods that create instances of the bean class,
for use by classes outside the container.

« Alocal interface, which is how other EJB beans in the container interact with the
session bean.

= A remote interface, which is how Java objects outside the EJB container interact
with the bean.

Unlike ADF application module definitions, a session bean does not contain a
complete data model. Instead, it has EJB local references to the local home interfaces of
the "master” entity beans. Detail entity beans are accessed from the masters through
container-managed relationships.

The ADF model layer can currently use only stateless session beans. These are beans
that do not maintain any state in between client access—they simply serve as
immediate intermediaries between the client and the database. The MVC application
sends one request to the bean to retrieve data, caches the entity bean instances, and
sends another request to the bean to post the data and commit. JDeveloper allows you
to create stateful session beans as well, but you cannot create data controls from them.

2-14 Oracle Application Development Framework Development Guidelines Manual

Detailed Comparison of Business Service Architectures

2.5.7 How OracleAS TopLink Technology with POJO Provides Persistent Business

Objects

TopLink technology with POJO uses ordinary JavaBeans classes as persistent business
objects. You create the classes yourself, implementing everything except their
interaction with the database. This interaction is handled by the TopLink runtime,
which uses a descriptor—an element in the TopLink deployment descriptor, an XML file
that describes all aspects of TopLink mappings for a set of JavaBeans classes. The
descriptor describes the way in which the classes map to database columns, as well as
providing information on keys and sequences.

One of the most important features of TopLink is its automation of complex O/R
mappings. TopLink technology provides these O/R mappings to allow you to map
database objects to arbitrary Java objects, even Java objects that have a substantially
different structure than the objects in the database.

TopLink provides the following mappings between fields and database columns:

= Direct-to-field mappings, which are the simple mapping between one field and one
database column.

= Type conversion mappings, which allow more complex conversions between the
datatype of the field and that of the database column (for example, a String to a
NUMBER or DATE).

= Object type mappings, which allow the data stored in the Java objects to be
fundamentally different from the database data (for example, you could require a
value of "M" in the database to map to a value of "male" in the field, and a value of
"F" to map to a value of "female").

= Serialized object mappings, which help you to efficiently map large data objects like
BLOBs and multimedia files.

« Transformation mappings, which allow you to map several database columns onto
a single field.

= Array mappings, which map VARRAYs and nested tables into Java arrays.
= Structure mappings, which map database structures onto Java classes.

Unlike ADF Business Components, TopLink technology is specifically intended to
manage the interaction between an existing Java object framework and the database.
For this reason, TopLink does not provide validation or other business rules
functionality; such functionality is left up to your object model.

Relationships between JavaBeans classes are handled in the deployment descriptor by
Java object mappings. As it does with O/R mappings, TopLink has a very flexible
system of relationships, allowing you to relate Java objects based on a wide variety of
relationships in the database:

= Simple one-to-many relationships, such as that between a customer and all orders
placed by that customer

= Simple one-to-one relationships, such as that between a product and its extended
description (if these are represented by separate entity object definitions)

= Many-to-many relationships, such as that between products and the warehouses
that currently stock them

= One-to-many relationships between mapped objects and unmapped objects (such
as Strings)

Business Services and the Oracle Application Development Framework 2-15

Detailed Comparison of Business Service Architectures

= Aggregate object relationships: one-to-one relationships between JavaBeans classes
that require them to map to the same database row

= Aggregate collection relationships: one-to-many relationships that can be
programmatically defined (as opposed to one-to-many relationships based on
attribute matching or foreign keys)

= Variable one-to-one relationships, which can relate interfaces (with variable
implementation classes) as opposed to JavaBeans

= Relationships based on REFs

= One-to-many or many-to-many relationships based on nested tables

2.5.8 How OracleAS TopLink Technology with POJO Provides Data Access

Components

Like Enterprise JavaBeans technology, TopLink technology with POJO does not use
actual objects to provide data access components. Instead, it uses TopLink queries as
data access components.

TopLink queries are elements in the JavaBeans descriptors. When you create a
TopLink query, you can specify it in SQL, EJBQL, or TopLink's own structured
expression language. The TopLink runtime will use it to search in the TopLink cache
for objects matching the query.

Like EJB finder methods, TopLink queries have limits to their complexity. Since they
simply return collections of JavaBeans classes mapped to database tables, they cannot
implement joins or calculated attributes. They also do not provide the efficiency of the
fast-lane reader pattern, although TopLink does have a separate sort of query, called a
report query, which does. The results of report queries, however, cannot be used to
perform DML operations.

2.5.9 How OracleAS TopLink Technology with POJO Provides Service Objects

OracleAS TopLink technology does not provide true service objects. The TopLink
deployment descriptor serves to aggregate all the JavaBeans classes, which the MVC
portion of the application works with directly.

There is no fixed data model in TopLink. Applications can dynamically traverse Java
object mappings to get detail or other related objects from their source objects.

TopLink does maintain a cache. Unlike ADF Business Components or standard E]B
technology, the TopLink cache, and a single database transaction, is shared across
users. The TopLink runtime automatically merges data to maintain consistency. The
cache and transaction are accessed through a Java object called a TopLink session.

2.5.10 How Enterprise JavaBeans Technology with TopLink CMP Provides Persistent
Business Objects

The TopLink runtime can also act as a CMP provider for EJB entity beans. Using
TopLink as your CMP provider has the advantage of automating far more complex
O/R mappings. Direct-to-field, type conversion, object type, serialized object, and
transformation mappings are all available for EJB entity beans using TopLink CMP.

Like other entity beans, TopLink entity beans are related through CMRs.

2-16 Oracle Application Development Framework Development Guidelines Manual

Detailed Comparison of Business Service Architectures

2.5.11 How Enterprise JavaBeans Technology with TopLink CMP Provides Data
Access Components

Like other CMP providers, the TopLink runtime uses EJB finder methods as data
access components. However, the TopLink runtime allows you to specify queries in
SQL, EJBQL, or TopLink's own structured expression language.

2.5.12 How Enterprise JavaBeans Technology with TopLink CMP Provides Service
Objects

As a CMP provider, the TopLink runtime does not interact with EJB session beans.
Your EJB session beans will work the same way whether or not you use TopLink
technology.

Business Services and the Oracle Application Development Framework 2-17

Detailed Comparison of Business Service Architectures

2-18 Oracle Application Development Framework Development Guidelines Manual

3

ADF Business Components in Depth

ADF Business Components technology is a fully-featured, XML-based framework for
creating business services. ADF Business Components evolved from the Business
Components for Java (BC4J) technology distributed with Oracle9i JDeveloper and
earlier releases. The ADF Business Components runtime library handles most business
service functionality, which you can customize declaratively (by changing the XML
files using JDeveloper's RAD tools) or programatically (by extending library classes).
Oracle ADF Business Components technology:

= Automatically handles O/R mappings and persistence
« Allows you to make complex requests for data retrieval using SQL

= Automatically handles transaction management, including optimistic or
pessimistic locking

= Provides a framework for implementing complex business logic
= Automatically implements many J2EE design patterns

= Has a powerful caching and data passivation system for increasing the
performance and scalability of applications

All of the above functionality is fully customizable: if you do not like the way ADF
Business Components handles O/R mappings, for example, you can override it.

This chapter introduces ADF Business Components technology. After you have read
this chapter, you will be familiar with the ADF BC component types and with some
basic issues in ADF Business Components design.

3.1 Summary
= Section 3.2, "ADF Entity Object Definitions"
« Section 3.2.1, "Attributes and Accessors"
« Section 3.2.2, "Validators"
= Section 3.2.3, "The validateEntity() Method"
= Section 3.2.4, "Creation and Deletion Logic"
« Section 3.2.5, "DML Customization"

= Section 3.2.6, "Security"

ADF Business Components in Depth 3-1

ADF Entity Object Definitions

Section 3.3, "ADF Associations"

« Section 3.3.1, "Accessor Attributes"

= Section 3.3.2, "Cardinality”

« Section 3.3.3, "Row Iterators"

= Section 3.3.4, "Compositions"

Section 3.4, "ADF Domains"

« Section 3.4.1, "Predefined Domains"

= Section 3.4.2, "Oracle Object Type Domains"

« Section 3.4.3, "Validation Domains"

Section 3.5, "ADF View Object Definitions"

= Section 3.5.1, "Attribute Mappings"

= Section 3.5.2, "Navigating Through Result Sets"
= Section 3.5.3, "Creating and Deleting Rows"

= Section 3.5.4, "Keys"

« Section 3.5.5, "View Criteria"

Section 3.6, "ADF View Link Definitions"

=« Section 3.6.1, "Accessor Attributes"

= Section 3.6.2, "Cardinality"

Section 3.7, "ADF Application Module Definitions"

= Section 3.7.1, "View Object and View Link Instances"

« Section 3.7.2, "Transactions"
=« Section 3.7.3, "Service Methods"

= Section 3.7.4, "Application Module Pooling"

Section 3.8, "ADF Business Components Design Decisions"
= Section 3.8.1, "Where to Implement Business Rules"

= Section 3.8.2, "Whether to Use Entity Object Definitions"

3.2 ADF Entity Object Definitions

ADF entity object definitions are business components that encapsulate the business
model, including data, rules, and persistence behavior, for items that are used in your

application. For example, entity objects can represent:

Entity object definitions map to single objects in the data source. In the vast majority of
cases, these are tables, views, synonyms, or snapshots in a database. Advanced
programmers can base entity objects on objects from other data sources, such as

Elements of the logical structure of the business, such as product lines,

departments, sales, and regions

Business documents, such as invoices, change orders, and service requests

Physical items, such as warehouses, employees, and equipment

spreadsheets, XML files, or flat text files.

3-2 Oracle Application Development Framework Development Guidelines Manual

ADF Entity Object Definitions

An entity object definition is the template for entity object instances, which are single
Java objects representing individual rows in a database table. For example, the entity
object definition called "Departments” provides a template for entity object instances
that represent individual rows of the DEPARTMENTS table.

An entity object definition can have up to four parts:

= An XML file, which represents the portion of the entity object definition that can
be developed declaratively. Most of the information is that needed for O/R
mapping, but it can also contain simple validation rules, called validators. For
many entity objects, the XML file by itself is sufficient.

= An entity object class, which represents individual entity object instances. Entity
object classes allow you to write complex business logic in Java, when using XML
validators is not sufficient. Entity object classes extend the class
oracl e.jbo.server. Entitylnpl.If you do not need custom Java business
logic, you need not generate an entity object class—ADF can use
oracl e.jbo.server. Entityl npl directly to represent rows of the data
source.

= An entity definition class, which represents the data source object in its entirety.
Entity definition classes act as Java wrappers for the XML file, so if you need
special handling of the metadata (for example, if you need to change it
dynamically), you can add this code in the entity definition class. Entity definition
classes extend the class or acl e. j bo. server. Enti t yDef | npl . If you do not
need custom handling of your metadata, you need not generate an entity
definition class—ADF can use or acl e. j bo. server. Enti t yDef | npl directly
to wrap the metadata.

= An entity collection class, which represents the cache of rows (instances of the
entity object class) held in memory for a single user. The vast majority of
developers do not need to generate an entity collection class. You should do so
only if you want to override ADF Business Components' default caching behavior.

3.2.1 Attributes and Accessors

When entity objects are based on database objects, columns in the database object
(such as a database table) map to single entity object attributes in the entity object,
although the mapping is not necessarily one-to-one. The definitions of these attributes
reflect the properties of these columns, such as the columns' data types, column
constraints, and precision and scale specifications. When entity objects are based on
objects from other data sources, entity object attributes map to "columns” from those
objects, as defined by the programmer.

There are two sorts of entity object attributes:
» DPersistent attributes are those attributes that do map to data source object columns.

= Transient attributes are all those attributes that do not map to data source object
columns. Transient attributes may be derived from information in a database, and
are often used for temporary storage and retrieval.

The values of entity attributes can be read and changed in one of two ways:

« The Entitylmpl class provides methods, get At t ri but e() and
set Attri but e(), that accept the attribute's name as a String. For example, if the
entity object has an attribute called "DepartmentName," you can access this value
by calling get Att ri but e(" Depar t ment Name") or
set Attri but e(" Departnment Nane", "Marketing").

ADF Business Components in Depth 3-3

ADF Entity Object Definitions

= If you generate an entity object class, it will contain typesafe getters and setters for
each attribute. For example, if the entity object has an attribute,
"DepartmentName," and you have generated an entity object class, you can access
this value by calling get Depar t ment Name() or
set Depart nent Name(" Mar keti ng").

Typesafe getters and setters are ideal places to put attribute-level business rules, such
as validation logic. They contain calls to the methods
Entitylnpl.getAttributelnternal () and

Entityl npl.setAttributelnternal () respectively, and by wrapping that call
in additional code (such as an if-then block), you can place conditions on attribute
change or access, or enforce logic before or after the attribute is accessed or changed.

3.2.2 Validators

In addition to adding validation logic to getters and setters, you can also declaratively
attach validators to entity attributes, whether or not you have generated the entity
object class. JDeveloper comes with four simple validators:

« CompareValidator, which compares an attribute to a value (either a literal value or
a value drawn from the data source).

« ListValidator, which checks to see whether an attribute is in a list of values (either
a literal list or the results of a query).

= RangeValidator, which checks to see whether an attribute is between two literal
values.

= MethodValidator, which can invoke any method in the entity object class which
returns a boolean value. Validation is passed if the method returns t r ue.

In addition, you can create your own custom validators. These require coding to create
initially, but once created, they can be applied declaratively in many different projects.
The validator classes must implement the

interfaceor acl e. j bo. server. rul es. Jbi Val i dat or, which has three
requirements:

= A method, val i dat eVal ue() , which acceptsaj ava. | ang. Obj ect (the new
attribute value) as a parameter and returns a boolean value, t r ue or f al se.
Generally, you will use this method to return t r ue if the attribute value is
acceptable and f al se if it is not.

= A method, vet oabl eChange() , which accepts a parameter of type
oracl e.jbo.server.util.PropertyChangeEvent. This is the method that
Entityl npl calls when the attribute value is changed. Generally, you will use
this method to extract the value from the Pr oper t yChangeEvent instance, call
val i dat eVal ue() , and throw an exception if val i dat eVal ue() returns
fal se.

« A field (with accessor methods), descri pt i on. ADF does not use this field, but it
is required by the interface.

In addition to these requirements, you can add additional fields to the validation rule.
When you apply the rule to an entity attribute, you can customize it declaratively by
supplying values for the fields.

3-4 Oracle Application Development Framework Development Guidelines Manual

ADF Entity Object Definitions

3.2.3 The validateEntity() Method

Row-level validation is useful when you need to validate two or more attributes at the
same time. You implement this type of validation at the entity level by overriding
Entitylnpl.validateEntity().

Whenever an instance of an entity object loses its currency (the client is done looking
at a particular row), or whenever a client attempts to commit a transaction,

val i dat eEntity() iscalled.Ifval i dat eEntity() throws an exception, the entity
object is prevented from losing currency until the error is fixed.

You should always include a call to super . val i dat eEnti ty() as part of your
extended method. JDeveloper contains tools that will generate a skeleton

val i dat eEnti t y() method that does this. You can, however, add additional code
before the call to throw exceptions if your validation logic is not satisfied.

3.2.4 Creation and Deletion Logic

Whenever an entity object instance is created or marked for deletion, it calls the
method Entityl npl . create() orEntityl npl.renove(). You can override
either or both of these methods to implement business rules that fire when rows are
created or deleted.

You should always include a call to super . creat e() or super. renove() as part
of your extended method. JDeveloper contains tools that will generate skeleton
create() and cr eat e() methods that do this. By adding additional logic after these
calls, you can perform additional initialization or cleanup tasks.

3.2.5 DML Customization

ADF BC technology will automatically handle DML operations for you, issuing
INSERT, UPDATE, or DELETE commands to the database as necessary. However, you
can override the method Enti tyl npl . doDM_() to implement different persistence
behavior (such as using stored procedures or writing to a data source other than a
database).

doDM_() takes as a parameter ani nt, oper at i on, representing the DML operation
requested. The value of the i nt will always be one of three numbers, each represented
by afi nal variable:

= DM__I NSERT, for row insertion requests
«» DM__DELETE, for row deletion requests
= DML_UPDATE, for row update requests

By checking the value of operation against these three values, you can override the
framework's default behavior.

3.2.6 Security

If you want, you can use Oracle ADF Business Components with the Java
Authentication and Authorization Service (JAAS) to provide authentication of users of
Oracle ADF applications. Oracle ADF Business Components works with both the
OracleAS JAAS Provider and with any JAAS-compliant foreign implementation.

Oracle ADF Business Components uses OracleAS Single Sign-On (SSO) through either
the Oracle Internet Directory (OID) or a lightweight JAZN-XML file (useful for testing
and scenarios where there is a small number of authorized users) to manage identity.

ADF Business Components in Depth 3-5

ADF Associations

If you elect to use JAAS authorization with your business components, you can attach
permissions to entity object attributes to allow only particular users or members of
particular groups access (a process called authorization). You can set access levels to no
access, read-only access, or full access.

You can also use entity object attributes called history column attributes to maintain
audit trails in the database. These trails contain information about which authenticated
users inserted or modified rows and when the changes took place.

3.3 ADF Associations

Relationships between entity object definitions are handled by Oracle ADF associations,
which define a relationship between two Oracle ADF entity object definitions based on
sets of entity attributes from each.

Associations map to relationships between single objects in the data source. In the vast
majority of cases, these are relationships among tables, views, synonyms, and
snapshots in a database. Advanced programmers can use associations to represent
relationships within other data sources, such as spreadsheets, XML files, or flat text
files.

When the data source is a database, associations often map to foreign key relationships
between tables in the database. Although you do not need to actually create a foreign
key constraint between tables to create a one-to-one or one-to-many association
between the corresponding entity objects, there should at least be an appropriate
logical relationship between the tables.

3.3.1 Accessor Attributes

When you create an association between two entity object definitions, you can elect to
add accessor attributes to the source entity object definition, the destination entity
object definition, or both. These accessor attributes function much like other attributes:

= Their names can be passed as arguments to Enti tyl npl . get Attri bute().

= If you generate an entity object class, a getter method for the accessor attributes
will be included in the class.

What is returned by the call to get At t ri but e() or the getter method depends on the
cardinality of the association.

3.3.2 Cardinality

Associations can range from simple one-to-many relationships based on foreign keys
to complex many-to-many relationships. For example, associations can represent:

= The one-to-many relationship between a customer and all orders placed by that
customer

= The one-to-one relationship between a product and its extended description (if
these are represented by separate entity objects)

= The many-to-many relationship between products and the warehouses that
currently stock them

One-to-one and one-to-many associations work much like foreign key relationships: a
set of attributes (such as those representing a primary key) of the source entity object
are matched with a set of attributes (such as those representing a foreign key) of the
destination entity object definition.

3-6 Oracle Application Development Framework Development Guidelines Manual

ADF Associations

Many-to-many associations are effectively the same as two one-to-many relationships
involving the source and destination entity object definitions and a third entity object
definition, the intersection. For example, the many-to-many relationship between
products and the warehouses that stock them can be thought of as two one-to-many
relationships:

= The one-to-many relationship between products and the warehouse inventory
entries that mention them

= The one-to-many relationship between warehouses and their inventory entries

These relationships require three entity objects: one representing products (the
source), one representing warehouses (the destination), and one representing
warehouse inventory entries (the intersection).

The cardinality of an association affects what is returned by its association accessors:

= Association accessors returning the "one" end of a one-to-many or a one-to-one
association return individual entity object instances.

= Association accessors returning the "many" end of a one-to-many or a
many-to-many association return row iterators.

3.3.3 Row lterators

Row iterators are containers of entity object instances or view rows. Although row
iterators occur in multiple places in the ADF BC architecture, the row iterators
returned by association accessors contain entity object instances.

Row iterators contain a current row pointer that points to one particular entity object
instance or view row. This pointer can be moved around and used to extract rows
from the iterator.

Row iterators contain a number of methods to help you navigate and extract
individual rows from them:

= next () advances the current row pointer in the row iterator and returns that row.

« hasNext () checks to make sure that the row iterator has more rows after the
current row pointer. You can use next () and hasNext () together to create a
loop to cycle through the rows in the iterator.

« first() moves the current row pointer to the first row in the iterator and returns
that row.

= | ast () moves the current row pointer to the last row in the iterator and returns
that row.

= previous() steps the current row pointer back one row and returns that row.

« hasPrevi ous() checks to make sure that the row iterator has more rows after
the current row pointer. You can use pr evi ous() and hasPr evi ous() together
to create a loop to cycle backwards through the rows in the iterator.

ADF Business Components in Depth 3-7

ADF Domains

3.3.4 Compositions

A composition is an association in which the source object acts as a container for the
destination objects. For inserts, updates, and deletes, instances of the destination entity
object are considered parts of instances of the source entity object, rather than
independent entities that are merely related to them. An example of this sort of
relationship is that between a purchase order and the line items in that order. Unlike
the relationship between a department and its employees (employees are
independently existing entities that merely have membership in a department), line
items are truly part of the purchase order, with no existence independent of it.

Making an association into a composition has the following effects:

= It prevents instances of the destination from existing independently of their
source. You can have ADF Business Components automatically delete destination
instances when the source instance is deleted; alternatively, you can have it throw
an exception if a source instance is deleted while it still has destination instances.

« It marks source instances as needing revalidation whenever destination instances
are changed.

« Itvalidates destination instances as part of the validation of source instances.

3.4 ADF Domains

An ADF domain is a special datatype used for Oracle ADF Business Components
attributes, such as entity attributes. Oracle ADF Business Components attributes must
be objects: they can't be primitive Java types. Attributes can be of standard Java types,
such as j ava. | ang. St ri ng, or they can be special Oracle ADF BC components
called domains. The Oracle typemap maps all SQL types except VARCHAR? to
domains by default (VARCHAR?2 is mapped to St ri ng).

There are three types of domains:
« Predefined domains are wrappers for SQL types such as NUMBER or BLOB.
« Validation domains are used to implement business logic at the type level.

= Oracle object type domains are used exclusively for wrapping Oracle object types.

3.4.1 Predefined Domains

Predefined domains are Java classes in the ADF BC library that wrap JDBC classes
(which, in turn, provide Java wrappers for SQL datatypes such as NUMBER). You can
use these domains as attribute types when standard Java classes such as St r i ng are
not appropriate.

The primary domains for use against an Oracle database are all in the package
oracl e. j bo. donai n. They are listed in the following table:

Domain JDBC Class

Array oracl e. sqgl . ARRAY
BFi | eDonai n oracl e. sqgl . BFI LE
Bl obDormrai n oracl e.sqgl . BLOB
Char oracl e. sql . CHAR
Cl obDonai n oracl e.sqgl.CLOB
Dat e oracl e. sql . DATE

3-8 Oracle Application Development Framework Development Guidelines Manual

ADF Domains

Domain JDBC Class

Nurber oracl e. sql . NUMBER
Raw oracl e. sql . RAW

Rowl D oracl e.sql. ROND
Struct oracl e. sql . STRUCT

Ti mest anp oracl e. sql . TI MESTAMP

Three of the above domains, Char , Dat e, and Nurrber , are generic domains that can
be used with any implementation of JDBC (and therefore against any JDBC-compliant
database).

oracl e. j bo. domai n also contains the DBSequence domain. This domain functions
like Nunber , but it maintains a temporary sequence value in memory until the data is
posted, thus preventing the wasting of database sequence numbers.

In addition to or acl e. j bo. domai n, the ADF BC library also contains the package
oracl e. ord. i m This package contains domains that allow ADF BC to integrate with
Oracle interMedia types for multimedia applications.

3.4.2 Oracle Object Type Domains

Oracle object types can be represented in either of two ways:

= If you use the Oracle object type as a type for object tables only, you can simply
use an entity object definition to represent those tables. The entity attributes will
match the columns in the object type.

= If you use the Oracle object type as a type for object columns, the object type will
be represented as a custom domain.

Domains for Oracle object types have attributes representing each column in the object
type. You can access column values using getter and setter methods, much as you do
for entity object attributes.

3.4.3 Validation Domains

You can create custom domains to provide type-level validation. These domains wrap
other types that could be used as attribute values (such as predefined domains or
standard Java classes like St ri ng). After creating such domains, you can use them in
place of the other datatype. For example, suppose the Employees entity object
definition has an attribute, Email, of type St r i ng. You could create a domain,

Enai | Donai n, that wraps St ri ng, and use it as the type of Email instead.

Validation domains contain a method, val i dat e(), that is called whenever the
domain is instantiated. You can write code in this method to perform tests and throw
an exception if the tests are not passed. Doing so has the effect of adding validation
logic to all attributes that use the domain as their type.

ADF Business Components in Depth 3-9

ADF View Object Definitions

3.5 ADF View Object Definitions

ADF view object definitions are business components that collect data from the data
source, shape that data for use by clients, and allow clients to change that data in the
Oracle ADF Business Components cache. For example, a view object definition can
gather all the information needed to:

= Populate a single table element in a form
= Create and process an insert or edit form
= Create an LOV for populating a dropdown list

View object definitions must have a mechanism for retrieving data from the data
source. Usually, the data source is a database, and the mechanism is a SQL query.
Oracle ADF Business Components can automatically use JDBC to pass this query to
the database and receive the result.

When view object definitions use a SQL query, query columns map to view attributes in
the view object definition. The definitions of these attributes reflect the properties of
these columns, such as the columns' data types and precision and scale specifications.
When view object definitions use other data sources, view object attributes map to
"columns" of data from those data sources, as defined by the programmer.

A view object definition is a template for view object instances, which represent
particular caches of rows of data. Different users will always use different view object
instances, but the same user may also use multiple view object instances if they need
separately maintained caches from the same query.

A view object definition can have up to four parts:

= An XML file, which represents the portion of the view object definition that can be
developed declaratively. This information consists of the mechanism (usually a
SQL query) that the view object uses to retrieve data from the data source, and the
way in which the columns of the SQL query map to entity attributes (which
handle actual O/R mapping). For many view object definitions, the XML file by
itself is sufficient.

= A view object class, which represents an individual view object instance. View
object classes allow you to write custom methods that affect multiple rows in a
query. View object classes extend the class
oracl e. j bo. server. Vi ewCbj ect | npl . If you do not need to write custom
view object methods, you need not generate an entity object class—ADF can use
oracl e.jbo. server. Vi ewObj ect | npl directly to represent instances of the
query result set.

= A view row class, which represents individual rows of the query result. View row
classes allow you to write custom methods that affect a single row of data, and
they provide typesafe accessors to retrieve and change data. View row classes
extend the class or acl e. j bo. server. Vi enRow npl . If you do not need
custom row-level methods or typesafe accessors, you need not generate a view
row class—ADF can use Vi ewRowl npl directly to represent view rows.

= A view definition class, which represents the query itself. View definition classes
act as Java wrappers for the XML file, so if you need special handling of the
metadata (for example, if you need to change it dynamically), you can add this
code in the view definition class. View definition classes extend the class
oracl e. j bo. server. Vi ewDef | npl . If you do not need custom handling of
your metadata, you need not generate a view definition class—ADF can use
Vi ewDef | mpl directly to wrap the metadata.

3-10 Oracle Application Development Framework Development Guidelines Manual

ADF View Object Definitions

3.5.1 Attribute Mappings

Like entity attributes, the values of view attributes can be read or changed using the
methods get Attribute() and set Attri bute() in the Vi ewRow npl class or by
using generated getters and setters in a custom view row class.

There are two different types of view attributes, however, for which these accesssor
methods function quite differently:

= SQL-only view attributes are not mapped to entity attributes. For these attributes,
the accessor methods read values from and make changes to data in the view
object instance's cache of view rows.

= Entity-derived view attributes are mapped to attributes in an entity object definition.
For these attributes, the accessor methods will call get Attri but e() and
set Attri bute() on the relevant entity object instance. The data will be changed
within the entity collection's cache of entity object instances, not within the view
object instance's cache of view rows.

Because entity object definitions handle DML operations, attributes that will be used
to make changes to the database must be entity-derived. However, if a view object
definition will be used for data retrieval only, there is an advantage to making all its
attributes SQL-only: such view object definitions, called SQL-only view object definitions,
bypass the entity collection's cache entirely, avoiding the overhead and resources
required to create entity object instances.

3.5.2 Navigating Through Result Sets

View object instances are row iterators. In particular, they are row iterators of view
TOWS.

Like other row iterators, view object instances contain a current row pointer that
points to one particular view row. This pointer can be moved around and used to
extract rows from the iterator.

Row iterators contain a number of methods to help you navigate and extract
individual rows from them:

= next () advances the current row pointer in the row iterator and returns that row.

« hasNext () checks to make sure that the row iterator has more rows after the
current row pointer. You can use next () and hasNext () together to create a
loop to cycle through the rows in the iterator.

« First() moves the current row pointer to the first row in the iterator and returns
that row.

« Last () moves the current row pointer to the last row in the iterator and returns
that row.

= Previous() steps the current row pointer back one row and returns that row.

« hasPrevious() checks to make sure that the row iterator has more rows after
the current row pointer. You can use pr evi ous() and hasPr evi ous() together
to create a loop to cycle backwards through the rows in the iterator.

ADF Business Components in Depth 3-11

ADF View Link Definitions

3.5.3 Creating and Deleting Rows

3.5.4 Keys

Vi ewCbj ect | npl also contains methods to create rows:
= creat eRow() creates a view row appropriate to the view object definition.
« insertRow) inserts the row into the view cache.

You can mark a row for deletion by calling Row. r enmove() or
Vi ewObj ect | npl . renoveCurrent Row() .

A key is a set of attributes that allow you to quickly retrieve one or more rows from a
view object instance's query result. Persistent view object attributes based on primary
keys are automatically part of the view object's key; you can make other attributes part
of the view object's key as well.

You can use an array containing a partial or complete list of attribute values to set up
an object of type or acl e. j bo. Key. You can then pass this object into the method

Vi ewQbj ect | npl . fi ndByKey() to return an array of rows that match the key
values.

3.5.5 View Criteria

View criteria are structured criteria that you can use to create searches.

View criteria are collections of view criteria rows. A view criteria row specifies
query-by-example requirements for one or more view object attributes. A view row
matches if it meets all of the requirements.

When you apply view criteria to a view object instance, the query is restricted to
return those view rows that match at least one of the view criteria rows. Effectively,
therefore, view criteria assemble a WHERE clause in conjunctive normal form: the
WHERE clause is a disjunction of conjunctions of query-by-example requirements.

View criteria are implemented by the class or acl e. j bo. ViewCri teri a; view
criteria rows, by the class or acl e. j bo. Vi ewCri t eri aRow.

3.6 ADF View Link Definitions

Relationships between view object definitions are handled by Oracle ADF view link
definitions, which define a relationship between two Oracle ADF view object
definitions based on sets of entity attributes from each. Like associations, these can
range from simple one-to-many relationships based on foreign keys to complex
many-to-many relationships.

Individual instances of view objects can also be related by individual instances of view
links, which create a master-detail relationship between the query result sets. For
example, suppose that you have view object definitions representing a query for
department information and a query for employee information, and a view link
between the view objects representing the relationship between a department and its
employees. If an instance of the former view object definition, al | Depart ment s, is
related to an instance of the latter, enpl oyees| nDepar t ment , by an instance of the
view link, those instances will be synchronized: whenever a particular row of

al | Depart ment s is selected, enpl oyeesl nDepar t nent will only display details of
that row.

3-12 Oracle Application Development Framework Development Guidelines Manual

ADF Application Module Definitions

3.6.1 Accessor Attributes

When you create a view link definition between two view object definitions, you can
elect to add accessor attributes to the source view object definition, the destination
view object definition, or both. These accessor attributes function much like the
accessor attributes to associations:

= Their names can be passed as arguments to
Vi ewObj ect | npl . get Attribute().

= If you generate a view row class, a getter method for the accessor attributes will be
included in the class.

= The accessor method will return a view row or a row iterator, depending on the
cardinality of the view link definition.

An accessor attribute returns a row or row iterator that is static, not one that maintains
a synchronized master-detail relationship. For example, suppose
DepartmentEmployees is an accessor attribute that returns rows of EmployeesView
from rows of DepartmentView. Suppose you execute the following code on the
current row of DepartmentView:

Rowlterator details = current.getAttribute("DepartmentEmployees");

Then suppose the current row of DepartmentView changes. The row iterator in
det ai | s will not change: it will still contain details of the original row.

To maintain a synchronized master-detail relationship, you should use view link
instances in an application module instance.

3.6.2 Cardinality

Like associations, view link definitions can be one-to-one, one-to-many, or
many-to-many. One-to-one and one-to-many view link definitions can either be based
on associations or they can use attribute matching the way associations do.
Many-to-many view link definitions must be based on many-to-many associations.

3.7 ADF Application Module Definitions

Oracle ADF application module definitions are business components that represent
particular application tasks. The application module definition provides a data model
for the task by aggregating the view object and view link instances required for the
task. It also provides services that help the client accomplish the task. For example, an
application module can represent and assist with tasks such as:

» Updating customer information
« Creating a new order
= Processing salary increases

The most important feature of an application module is its data model—the view object
and view link instances it contains. These specify what data the client will have access
to, and what relationships hold within that data.

You can use application module definitions in two different ways:

= Asaservice object, in which case each instance of the MVC application has access
to one instance of the application module. These root-level application module
instances control ADF BC transaction objects, which in turn control the entity and
view caches.

ADF Business Components in Depth 3-13

ADF Application Module Definitions

= Asareusable object for nesting, in which case you can create a data model and
service methods on it and then nest one of its instances in other application
module definitions. Those application module definitions can, in turn, access the
nested module's methods and data model. Nested application modules share the
root-level application module's transaction.

An application module definition can have one or two parts:

= An XML file, which represents the portion of the application that can be
developed declaratively: the view object and view link instances that the
application module contains and the way in which they are related. For many
application modules, the XML file by itself is sufficient.

= An application module class, which lets you write custom code such as service
methods that an MVC application can invoke for batch data handling. Application
module classes extend the class
oracl e.j bo. server. Appli cati onMbdul el npl . If you do not need to write
custom service methods, you need not generate an application module
class—ADF can use or acl e. j bo. server. Appl i cat i onModul el npl directly.

3.7.1 View Object and View Link Instances

One of the primary functions of an application module definition is to provide
applications with the data they need to complete a specific task. This data can be
represented by a tree—the application module's data model—which, in turn, contains
view object and view link instances.

A view object instance manages a single cache of retrieved data. View object instances
use data retrieval mechanisms (usually SQL queries) provided in view object
definitions. However, these mechanisms can be customized on an instance level. In
other words, by dynamically adding or changing clauses in the query of one view
object instance, you do not automatically make similar changes in other view object
instances, even if the instances share a definition. Moreover, executing a query on one
view object instance does not automatically execute the others' queries.

All view object instances have a name assigned to them when they are first added to a
data model. This name is used by clients and service methods to access the instance
and the data stored in the instance's cache. This name is not necessarily related to the
view object definition name. For example, the same data model could contain two
view object instances, called AllOrders and OrdersForCustomer, based on the same
view object definition, called OrdersView.

A view link instance provides a master-detail relationship between view object
instances. View link instances are based on view link definitions, which relate the
relevant view object definitions.

Adding a view link instance to the data model puts two view object instances in a
master-detail relationship; removing the view link makes the detail view object
instance completely independent. This, rather than view link accessor attributes, is the
way to dynamically maintain master-detail relationships: the detail view object
instance's cache will contain only those rows that are details of the master view object
instance's current row. When that row changes, the detail cache will automatically
change as well.

3-14 Oracle Application Development Framework Development Guidelines Manual

ADF Application Module Definitions

3.7.2 Transactions

A transaction object is an Oracle ADF Business Components object that represents a
database transaction. A transaction object maintains pointers to entity and view
caches; it maintains a database connection; and it is responsible for post, commit, and
rollback operations.

Unlike database transactions, transaction objects survive commit and rollback
operations. Therefore, a single transaction object can correspond to several database
transactions over its lifetime.

In general, there is exactly one transaction object per root-level (non-nested)
application module instance. If you access a transaction object from a root-level
application module instance, any of its nested application modules, or any of the
entity object instances in its caches, you will retrieve the same object. If you access
transaction objects from two root-level application module instances, you will retrieve
different objects.

3.7.3 Service Methods

Service methods are methods on ADF application module definitions that perform
complex operations on data. Applications can call these methods in a single network
round-trip, saving processing on the client and reducing network chattiness.

Service methods are implemented in an application module's class, and exposed on
tier-independent interfaces that allow clients to access the application module
consistently, whether it is deployed locally or as an E]B session bean. Inside the service
method, you can do any of the following;:

= Dynamically add view object and view link instances to the data model
= Remove view object and view link instances from the data model
« Find view object instances and perform operations on their row sets

= Retrieve and manipulate transaction objects

3.7.4 Application Module Pooling

An application module pool is a resource manager for top-level application module
instances. Since storing the view object and entity object caches associated with a
transaction and application module instance can be expensive, the application module
pool maintains some instances in memory and reuses others. There is one application
module pool for each application module definition: all instances of that application
module are stored in the pool.

When an application is actively using an application module instance (for example,
during a Struts data action), that application module instance is described as checked
out. As soon as the application is done with the instance, the instance is checked in to
the pool. When the application needs the instance again, it will attempt to check it out
again.

When an application requests an application module instance for the first time, the
application module pool checks to see how many instances it already contains. If this
number is below a parameter called the recycle threshold, the pool creates a new
instance for the application.

ADF Business Components in Depth 3-15

ADF Business Components Design Decisions

If the application module pool contains a number of instances equal to or higher than
the recycle threshold, it recycles one of the instances. It does so using the following
process:

1. The pool finds the application module instance that has been checked in for the
longest time.

2. The pool writes a redo log of the instance's transaction to the database table PS_
TXN.

3. The instance clears its caches.
4. The pool passes the newly cleared caches to the application.

By default, the recycle threshold is 10. Many applications will perform better with a
higher recycle threshold: setting the threshold is a balance between not having too
much data in memory (which can degrade the performance of the application server)
and not recycling too many times (because recycling is a time-consuming process).
Trial and error using a load tester is often the best way to find this balance.

3.8 ADF Business Components Design Decisions

Two central design decisions face developers who are using ADF Business
Components technology as their business services: where to put the code that
implements their applications' business rules and whether to base view object
definitions on entity object definitions or to make them SQL-only.

3.8.1 Where to Implement Business Rules

Business rules can be provided at multiple levels of an application—in the database,
the view, or the business services layer. There are times where each of these locations
is appropriate.

Adding business rules to the database, in the form of triggers or stored procedures,
provides the maximum level of robustness. These business rules are guaranteed to be
available and respected by any application—even by SQL commands run directly
from a SQL*Plus prompt. However, business rules coded in the database are not
highly responsive. They do not fire until data is posted to the database, which either
requires waiting for an explicit post command or requires posting data after every
change, which will degrade performance by requiring excessive JDBC round-trips. In
addition, adding business rules to the database requires the database to perform tasks
other than handling data, which reduces its efficiency and your application's
modularity. Finally, adding business rules to the database requires you to integrate
your Java or web application with business logic written in PL/SQL code.

Adding business rules to the view layer, in Java for Java client applications or
JavaScript for web applications, provides the maximum level of responsiveness.
Business rules that trigger as each character is typed into a field, for example, or as a
mouse pointer wanders over a graphical image, must be implemented at the view
level. However, business rules added to the view layer are not robust. If users access
the data through any other user interface, business logic added to the view layer will
not be available or enforced.

Adding business rules to ADF BC components is a compromise between these
alternatives. Business rules in ADF BC components are more responsive than business
rules coded in the database, because they are enforced as soon as changes are made to
Java objects in memory, and they avoid the other disadvantages of adding business
rules to the database. They are more robust than business rules coded in the view
layer, because they will be enforced by any application that uses the components.

3-16 Oracle Application Development Framework Development Guidelines Manual

ADF Business Components Design Decisions

Your most critical business rules should be implemented in the database, or
redundantly in the database and business services (for increased responsiveness and
easier Java integration at the cost of some productivity). Business rules that require
truly immediate responsiveness must be implemented in the view layer. The
remainder of your business rules can be implemented in ADF Business Components.
For this sort of business rule, the hooks provided by ADF BC provide a distinct
advantage over other business services technologies.

If you decide to implement a business rule in ADF BC components, you should
generally implement it in entity object definitions. Because entity object definitions
perform all DML operations, any changes that will affect the database will trigger any
appropriate business rules in entity object definitions. Business rules implemented in
view object definitions are less robust—they will not be invoked when changes are
made through other view object definitions, even those based upon the same entity
object definition.

As discussed earlier in this chapter, there are still several choices for where to put
business rules in entity object definitions:

= In the entity object class
« Invalidators
« Indomains

If you have business rules other than validation rules, they must be placed in the
entity object class. Validation rules can be placed in any of these locations, but there
are reasons to choose one over another:

Validation code in the entity object class cannot easily be reused by other entity object
definitions. However, it is the easiest way to initially create validation code—simply
edit the entity object class and add a method. It's also the only place you can put
validation logic that traverses associations.

Validators are highly reusable: they can be reused with multiple entity objects, on
attributes of differing type, and customized declaratively. However, they take more
work to set up initially than the other forms of validation logic—you must create a
validator class, implement the Jbi Val i dat or interface, create a property editor if
you want to use one to customize the validator, and register the validator with
JDeveloper.

Domains represent a compromise between these two options. Creating a validation
domain involves creating the domain class and writing the code, but it is still
significantly more straightforward than creating a validator. It is also reusable across
many attributes in many entity object definitions, although all the attributes must have
the same underlying type.

Some architects of large projects have reported that they have found it necessary to
impose a single location for business rules. They have found that having some
business rules in the entity object class, some in domains, and some in validators
makes maintenance considerably more difficult.

ADF Business Components in Depth 3-17

ADF Business Components Design Decisions

3.8.2 Whether to Use Entity Object Definitions

If you want to be able to make changes to the database through a view object
definition, you must base it on an entity object definition, because entity object
definitions handle all DML operations. Basing view object definitions on entity object
definitions has the following other advantages as well:

= If the view object definition's query is a join query (such as SELECT * FROM
DEPARTMENTS, EMPLOYEES WHERE DEPARTMENTS.DEPARTMENT _
ID=EMPLOYEES.DEPARTMENT_ID), each row from the master table will appear
in many rows of the query result set. If you create an entity object definition for
the master table and use it in the view object definition, the data from each row in
the master table will be stored only once, in the entity cache. If you do not use an
entity object definition, the data will be stored redundantly, in the view cache, for
each row in the query result set.

= Each view object instance maintains its own view cache. If multiple view object
instances query data from the same table, and they use an entity object definition
to represent the table, the data will need to be stored only once. If they do not use
an entity object definition to represent the table, the data must be stored in each
view cache.

« Two entity-derived view attributes mapped to the same entity attribute will show
synchronized values. If you call set At t ri but () on one view row to change an
attribute value for an entity-derived attribute, and get At t ri but () on another
to read the value of an attribute mapped to the same entity attribute,
get Attri but e() will return the changed value. If the attributes are SQL-only,
they will not be synchronized in this way.

If you need to perform DML operations with a view object definition, you should
definitely base it on entity object definitions, and if any of the above considerations
apply to the view object definition, you should at least consider the option. Otherwise,
you should generally not base view object definitions on entity object definitions—this
saves time and resources by not creating entity object instances.

3-18 Oracle Application Development Framework Development Guidelines Manual

A

Overview of the Oracle ADF Model Layer

The Oracle Application Development Framework (Oracle ADF) in JDeveloper
supports data controls based on Java classes, E]B session beans, web services, and
Oracle ADF application modules. The Oracle ADF components, including data
controls and data bindings, are configured using XML metadata. This capability
allows a small set of framework base classes to handle most of the application
development needs without coding. In JDeveloper, you use the design time to expose
desired business service data sources in the Oracle ADF model layer. The design time
tools lets all developers visualize the exposed business services in a uniform way.

This chapter provides an overview of how you can work with JDeveloper to create the
Oracle ADF data controls and data binding objects of the ADF model layer. Creating
the Oracle ADF model layer objects is a preliminary step to working with the data
binding objects in the application controller and view layers, as is described in
Chapter 5, "Overview of Oracle ADF Integration with Struts" and Chapter 6,
"Overview of Oracle ADF Data Binding in View Technologies".

4.1 Summary
= Section 4.2, "Role of the Model Layer"

Section 4.2.1, "About MetaData for the Oracle ADF Binding Context"
Section 4.2.2, "Oracle ADF Model API Overview"

Section 4.3, "Benefiting from the Oracle ADF Model Layer"

Section 4.3.1, "Role of the Oracle ADF Data Controls"
Section 4.3.2, "Role of the Oracle ADF Bindings"
Section 4.3.3, "Generic Runtime Properties for All Oracle ADF Bindings"

Section 4.4, "Oracle ADF Data Control Runtime Integration with Business
Services"

Section 4.5, "Creating the Oracle ADF Model Layer in JDeveloper"

Section 4.5.1, "Oracle ADF Business Components as Data Controls"
Section 4.5.2, "Oracle ADF Data Controls for EJB Components"
Section 4.5.3, "Oracle ADF Data Controls for Web Services"

Section 4.5.4, "Oracle ADF Data Controls for JavaBeans and TopLink-Based
Beans Components"

Section 4.6, "Summary of Oracle ADF Data Control Operations"

Overview of the Oracle ADF Model Layer

Role of the Model Layer

= Section 4.7, "Summary of Oracle ADF Bindings"
= Section 4.7.1, "About the Iterator Binding"
= Section 4.7.2, "About the Value Bindings"
= Section 4.7.3, "About the Action Binding"

4.2 Role of the Model Layer

In a J2EE application that uses the Oracle ADF model, model data is surfaced to the
view and controller layers through data control objects implemented for each type of
data provider. A model-specific set of data controls:

= Manages the J2EE application's connection to the data provider

= Presents bindings and binding containers to the J2EE application client or
controller

Once the data is surfaced by data control adapter classes, interaction with the business
service by the J2EE application is possible by any method that acts on or retrieves data
from data objects and collections (also described as rows and row sets).

4.2.1 About MetaData for the Oracle ADF Binding Context

Using the JDeveloper design time, you create a set of XML files that declaratively
define the Oracle ADF data controls and data bindings. At runtime, the application
creates the Oracle ADF binding context from the files in the application, as shown in
the following diagram.

Oracle Application Devel Fi k (ADF)
Runtime File Usage

1-
L 7

Model data
description file

4 opx
b [, Ref

BC Ref1

e EC Ref2 — |

Client data - —D‘—
binding

description file

Binding context

* xmil
DC lter n
L | oC Bina1
COC Bind2y ADF data binding objects
T and business services
Client binding DC = Dafa Control
oA EC = Binding Cantainer
Iter = lerator
ADF data Bindx = Binding
binding files

The client binding description file (. cpx) references the binding definitions in the
client binding container definition files (. xnl). The . cpx file also contains a reference
to the data control description file (. dcx), which specifies the data control factory to
use for a specific business service.

4-2 Oracle Application Development Framework Development Guidelines Manual

Role of the Model Layer

The design time supports creating these files through your interaction with the Data
Control Palette, a visual editor, the Structure window, and the Property Inspector.
After you use the Data Control Palette to insert a databound Ul component into the
displayed web page or JClient panel, the binding definition is created in the
document's binding definition file. Additionally, source code is added to the
document that references the binding objects, which the application makes available
through the Oracle ADF binding context bi ndi ngs namespace.

For more information about the generated project files and design time tools, see
Chapter 6, "Overview of Oracle ADF Data Binding in View Technologies".

4.2.2 Oracle ADF Model APl Overview

Specifically, these objects in the ADF model layer provide runtime access to business
services:

= Binding context object (or acl e. adf . nodel . Bi ndi ngCont ext)

Defines a common namespace for use by the client application and allows all
model objects to be exposed through a convenient root name. Each web page or
Java panel registers with the binding context using the definition for the variable
name bi ndi ng.

« Data control interfaces (or acl e. adf . nodel . bi ndi ng. DCDat aContr ol)

Provides the client application with an interface into the model objects. One data
control is needed to wrap the model objects of each business service configuration.
Also, in the case of a JavaBeans model object, provides direct access to the native
object, when programmatic access is desired.

« Binding container objects
(oracl e. adf . nodel . bi ndi ng. DCBi ndi ngCont ai ner)

Defines a container for data binding objects, including iterator bindings and
control bindings. One binding container is created for each web page or Java
panel, but may be reused in multiple pages and panels when they share the same
data. The binding container object also lets you specify whether the page or panel
is to be used in data entry mode or query mode.

= lterator binding objects (or acl e. adf . nodel . bi ndi ng. DCI t er at or Bi ndi ng)

Handles the events generated from the associated business service row iterator
and sends the current row to individual control bindings to display current data.
Iterator bindings can specify the number of rows to display in a web page.

= Control binding objects (or acl e. j bo. ui cl i . bi ndi ng. JUCont r ol Bi ndi ng)

Defines the way a specific Ul component interacts with the corresponding
business service. For example, depending upon the control binding selection, a
text field may be bound to an Oracle ADF Business Components view object
attribute and display as an editable field or a static label. Or, if the business service
attribute defines an enumerated list of values, the bound UI component might
display a static list, a single-selection list, or a multi-selection list. Other more
complex Ul components, such as table and graphs, are also supported by their
own control bindings.

= Action binding objects
(oracl e.jbo.uicli.binding.JUCrI ActionBi ndi ng)

Overview of the Oracle ADF Model Layer 4-3

Benefiting from the Oracle ADF Model Layer

At runtime, when the user initiates the action, using a button control, the action
binding accesses the Oracle ADF binding context and initiates the specified action
on the data objects of the selected collection. Action bindings can take parameters
that will be passed to the controller to handle.

4.3 Benefiting from the Oracle ADF Model Layer

4.3.1 Role of the Oracle ADF Data Controls

Oracle ADF data controls provide an abstraction of the business service's data model.
The Oracle ADF data controls provide a consistent mechanism for clients and web
application controllers to access data and actions defined by these diverse
data-provider technologies:

= Oracle ADF Business Components

= JavaBeans, including TopLink Plain Old Java Objects (TopLink POJO)
« EJB session beans

= Web services

For most of these, the data controls are implemented by a thin layer of adapter classes.
The exception is Oracle ADF Business Components technology, which implements the
data controls directly in the component classes.

Oracle ADF data controls are represented on the Data Control Palette, where they can
be added to the view as Ul controls or to the controller as operations.

The remainder of this section provides an overview of the base features of the
provided data controls. The following terms have these definitions:

= Business service: Any JavaBean that publishes business objects and provides
methods that manipulate business objects. Examples of business services include
web services, E]B session beans, or any Java class being used as an interface to
some functionality.

= Business object: A JavaBean that models a business entity. Business objects are
typically persisted to a data source. Examples of business objects in an order entry
application may include Order, Customer, and Product.

= Data collection: A collection of business objects. A collection may be an instance of
java.util.Collection,java.util.lterator,orjava array, orasingle
business object that is treated as a collection of one.

4.3.1.1 Business Object Access Services

The business object access services provide built-in Oracle ADF support for binding to
data collections and business objects using a business service or a business object. The
business object access services are:

« Business collection iteration services

The Oracle ADF data controls provide an Iterator pattern implementation that
may be used with any business collection. You may use built-in operations on this
iterator binding implementation to display or iterate business objects. Examples of
operations include first, next, previous, and last.

4-4 Oracle Application Development Framework Development Guidelines Manual

Benefiting from the Oracle ADF Model Layer

« Find and refresh services

The Oracle ADF model provides features for defining search parameters for a
page model or an ADF model layer iterator. You may use built-in operations to
toggle the Oracle ADF model find mode for defining search parameters and to
refresh the Oracle ADF model layer iterator bindings.

= Business object property services

The Oracle ADF model provides features for accessing JavaBeans-style properties
of business objects. You may use built-in operations to bind to business object
properties. A special class of business object properties includes properties whose
accessor methods (like Cust oner . get Or der s()) access business collections.
These properties are referred to as accessor attribute properties or accessor attributes.

« Method invocation services

The Oracle ADF model provides features for invoking business object and
business service methods. You may use built-in operations to invoke methods and
to bind iterators to the results of operations.

4.3.1.2 Transaction Services

The transaction services provide built-in Oracle ADF model layer support for
mutating business objects. Please note that the Oracle ADF model transaction services
do not provide a transaction system itself. Instead, the Oracle ADF model transaction
services provide a notification system that individual Oracle ADF data controls
integrate with. The presence of a notification system allows custom Oracle ADF data
controls to be created that can integrate a model transaction service with the Oracle
ADF model layer.

The transaction services are:
= Business object services

The Oracle ADF model provides features for adding business objects to a
collection, for removing business objects from a collection, and for mutating the
JavaBeans-style properties of business objects. You may use built-in operations to
invoke these services, and the Oracle ADF model layer will automatically notify
the Oracle ADF data control of a create, remove, or update event.

« Transaction demarcation services

The Oracle ADF model provides features for committing and rolling back
transactions. You may use built-in operations to notify the Oracle ADF data
control to commit or roll back transaction changes.

4.3.1.3 State Management Services

The state management services provide built-in Oracle ADF model layer support for
managing Oracle ADF data control user state. The state management services are:

« Data control lifecycle notifications

The Oracle ADF model provides Oracle ADF data control lifecycle notifications to
the Oracle ADF data control. The individual data controls implement these
notifications to passivate or activate the business service user state.

« State distribution services

The Oracle ADF model provides features to distribute state or to fail over state to
other tiers.

Overview of the Oracle ADF Model Layer 4-5

Benefiting from the Oracle ADF Model Layer

For further details about the design time for working with the Oracle ADF model layer
and the code generated by the design time, see Section 4.5, "Creating the Oracle ADF
Model Layer in JDeveloper".

4.3.2 Role of the Oracle ADF Bindings

Oracle ADF provides several types of binding objects to support the attributes and
operations exposed by the Oracle ADF data controls for a particular business object:

« lterator binding, one per accessor attribute that your page or panel displays.
Iterates over the business objects of the data collection and maintains the row
currency and state.

= Value bindings, one for each databound Ul component. Provides access to data.

= Action binding, one for each button component. Provides access to operations
defined by the business object.

You create these bindings in JDeveloper through your interaction with the Data
Control Palette, a visual editor, the Structure window, and the Property Inspector. You
can view the binding in your application in any one of several ways:

In the source code view of a web page, where binding references appear in expressions
that get evaluated at runtime using the expression language (EL) features. In the code
view, the expression looks like this:

<c:forEach var="rv"
i tens="${ bi ndi ngs. Dat aBi ndi ngChj ect . t heCol | ecti onProperty}"

The data binding object accesses the Oracle ADF binding container through the

bi ndi ngs variable, which is a variable that specifies the namespace for the binding
containers in the Oracle ADF binding context. The binding container is initialized for
Model 2-style web applications in the Oracle ADF class

oracl e. adf.control l er.struts. actions. Dat aActi on.

Note: Although a data action class does not appear in your
project, you can see that the action mapping for data action appears
in the st rut s- confi g. xnl file, which defines the

nmodel Ref er ence property to initialize the binding container from
the pageNaneUl Model . xm file.

= In the code view of a JClient panel or form, where the set Mbdel () method call
on the Ul component initializes the data binding object and accesses the binding
container through the ADF binding context (specified by the
set Bi ndi ngCont ext () method call on the data panel).

The binding container is initialized from the Panel NaneUl Model . xni file in the
JClient project when the panel binding is created (by the JUPanel Bi ndi ng
panel Bi ndi ng constructor).

= Inthe Structure window for either client type (web page or JClient panel), where
the data binding objects defined for each Ul component in your view document
appear in the UI Model tab. To edit the declarative properties of the binding
definitions, right-click and choose Edit. To understand what values you can set for
runtime-only properties, select the binding node and press F1.

4-6 Oracle Application Development Framework Development Guidelines Manual

Oracle ADF Data Control Runtime Integration with Business Services

4.3.3 Generic Runtime Properties for All Oracle ADF Bindings

When you create a databound component using the Data Control Palette, JDeveloper
adds metadata to the Ul Model . xmi file defined for your view-controller project. The
metadata determines the default display characteristics of each databound Ul
component and sets properties of the binding object at runtime. You can work with the
data binding metadata through:

= Design time editors that you display on specific bindings in the Ul Model tab of
the Structure window

Additionally, each binding's implementing class defines methods that give you
access to runtime information about the binding. You can work with
runtime-specific properties through:

= EL expressions that you insert into the HTML of your web page when you want to
access the runtime properties of the value binding object

The or acl e. j bo. ui cli. bi ndi ng. DCCont r ol Bi ndi ng class provides
accessor methods for these properties that are accessible by all value bindings:

= error returns any cached exception which was raised during the invocation of the
method or action to which the binding is bound.

= fullName returns the fully qualified name of the binding object in the Oracle ADF
binding context.

« iteratorBinding returns the iterator binding that provides access to the data
collection.

= name returns the name of the binding object in the context of the binding
container to which it is registered.

= rowKeyStr returns the key of the data collection. The key specifies the location of
the data object and is returned in its String format.

4.4 Oracle ADF Data Control Runtime Integration with Business Services

At runtime, the interaction with the business services initiated from the client or
controller is managed by the application through a single object known as the Oracle
ADF model binding context. The Oracle ADF binding context is a container object that
defines a hierarchy of data controls and data binding objects derived from the Oracle
ADF model layer, as shown in the following figure.

Cracle Application De F k (ADF) Binding Context

Binding container

{Contains

binding cbjects) Data Business
control service 1

p Data » Business
control service 2

ADF
client

Business
services
data providers

Binding context

ADF Model

The binding context defines these hierarchies, whose objects reference one another in
order to allow the Oracle ADF model to service the controller and view layers.

The hierarchy for the data controls looks like this:

= binding context -> data controls

Overview of the Oracle ADF Model Layer 4-7

Oracle ADF Data Control Runtime Integration with Business Services

The hierarchy for the data binding objects, which also starts from the same parent

container, looks like this:

= binding context -> binding container -> iterator bindings

and, additionally:

= binding context -> binding container -> data control binding -> value bindings

and action bindings

The following diagram depicts binding container containment hierarchy in detail.
Note that the definition of the binding context and the data binding objects available to
the application are specified by XML-based files at the level of the client project. For
details about the client project, see Chapter 6, "Overview of Oracle ADF Data Binding

in View Technologies".

Oracle Application Development Framework (ADF)
Binding Context and Data Binding Objects

Binding container
- Aclion
bindin
L.Qs
ADF BC
Daa TR opieat
Value lterator Control Apphcation
ADF page bindings bindings
- e
Data -
| g TR T
¥)\ » Binding context E;::'i‘:::
data providers
ADF page flow ADF Model P

Through the iterator binding's object hierarchy path, the iterator binding accesses the
data collection and iterates over its data objects. In contrast, value binding objects
allow UI components to display or update the current data object of the collection
being iterated over.

For example, in the source of the web page or Java panel, a Ul component's value
binding definition references the page or panel's iterator binding object. The iterator
binding object, in turn, references the data controls, which completes the data-access
path and allows the Oracle ADF model to traverse the object hierarchy:

1. Starting from an event (such as rendering the data) that is received by the control

binding

2. All the way back to the data controls, specified by the binding context, that
interact finally with business services

Note:

The above description has been simplified to include both

web applications and Java client applications. In an actual web
application, the controller layer is responsible for populating the
Oracle ADF model binding context prior to dispatching to the view
layer. Then, following the pull model for interactive web
applications, the view layer pulls the data to render values in the

page.

4-8 Oracle Application Development Framework Development Guidelines Manual

Creating the Oracle ADF Model Layer in JDeveloper

4.5 Creating the Oracle ADF Model Layer in JDeveloper

Oracle ADF data controls permit the application client to access business services
defined by your application's model object layer. Business services can be any
collection, value, or action that your model project defines. At runtime, the Oracle
ADF binding context is initialized with the data control definition to permit
databound UI components to access the business services.

Before you create data controls, ensure that you have created (or otherwise have access
to) business services.

4.5.1 Oracle ADF Business Components as Data Controls

Note: You do not need to create data controls for Oracle ADF
Business Components—Oracle ADF BC data model components
already implement the data control interfaces.

If you use Oracle ADF Business Components as your business service technology,
your data model components will be exposed in the model layer as Oracle ADF data
controls, as shown in the following figure.

Data Control Palette
i ;'. AppModuleataContnol

ManagerTd
2 Locationld
DepartmentEmplayees

2 Firsthanme
2 Lasthame

EE Managerld

=i Departmentid

[E] teptmarFkLinkDetall

[E] empManagerFiLinkDetail

- Cper stions
:33 Creats
22 Find
3 Execute

i Previous Set
2 Mext Set
2 Mext
& Last
3 Delete
(i) setCurrentRowswithkey(Skring)
] setCurrentRowwithkeyvalue(String)
} Operations
[=iig Operations
[+ {13 doBigEatchrethod()
3 Comrit
22 Rollback

1 The application module

This node represents the top-level application module itself (nested application
modules are represented by the same icon). Directly under this node, you can find
nested application modules, top-level view object instances, and application
module-level methods.

Overview of the Oracle ADF Model Layer 4-9

Creating the Oracle ADF Model Layer in JDeveloper

2 Row sets

These nodes represent row sets—usually view object instances in the data model, but
also the row sets returned by view link accessors. In this case, AllDepartments
represents a top-level view object instance, DepartmentEmployees represents a detail
instance of AllDepartments, and both DeptMgrFkLinkDetail and
EmpMgrFkLinkDetail represent the static row sets returned by view link accessors of
the same name. For more information on view links, see the JDeveloper help system.

3 Attributes
These nodes represent individual view object attributes.

4 Standard operations

These nodes represent standard row set-level operations. The application module has
similar nodes that represent transaction-level operations. The operations available for
a row set include previous set and next set, which scroll through the row set based on
range size. For more information, see Section 4.6, "Summary of Oracle ADF Data
Control Operations".

5 Special navigation operations
These nodes allow you to set the row set's current row to a particular displayed row.

6 Custom method
Exported custom service methods will appear on the Data Control Palette.

4.5.2 Oracle ADF Data Controls for EJB Components

If you use E]B technology as your business service technology, model information will
be exposed to the view and controller layers through Oracle ADF data control
interfaces implemented by thin, Oracle-provided adapter classes.

To create adapter classes and data controls:

1. In the navigator, select the Model project which contains the model objects you
want to expose to the application client.

2. In the model project, right-click a stateless session bean and choose Create Data
Control.

OR

3. Drag the session bean from the Application Navigator onto the Data Control
Palette to create the data controls.

Note: You can create data controls only from stateless session
beans. If your bean defines attributes or methods that return a

Col | ect i on type, you must specify the return type for the data
control. JDeveloper adds the data control definition file

(Dat aCont r ol s. dcx) to the model project. The . dcx file
identifies the Oracle ADF model layer adapter classes that facilitate
the interaction between the client and the available business
services.

4-10 Oracle Application Development Framework Development Guidelines Manual

Creating the Oracle ADF Model Layer in JDeveloper

To view the business services you have registered for use with your client
application:

« If the palette is not yet displayed, choose View | Data Control Palette.
OR

= If the palette is already displayed, right-click in the palette and choose Refresh
Palette.

If you use E]B technology as your business service technology, model information will
be exposed to the view and controller layers through Oracle ADF data control
interfaces implemented by thin, Oracle-provided adapter classes, as shown in the
following figure.

B Data Control Palette
(=24 SessionFacadelocalDataControl
= [E] AlDepartments

2 departmentMName
2 locationld
Q (= [E] employess_department1dDTO
=7 commissionPck
o emal
2 ampType
22 employeeld
HEZ Firsthl arme
=% hireDake
=2 hourlyRate
= jobld
22 lastName
2 phanetumber
=2 salary
=128 Operstions
i3 Execute
433 First
Q D Previous
—- 433 Previous Set
&3 Mext Set
423 Next
& Last
Q (1] setCurrentRowiithKey(String)
= f] sebCurrenitRowiwithKeyValus(String)
] f_a. Ciper stions
(=g Operations

1 The data control

This node represents the data control, which in this case is a session facade. Drag a
stateless session bean from the navigator and drop it onto the Data Control Palette to
create the Oracle ADF data control or to refresh its contents.

2 Row sets
These nodes represent collections:

= AllDepartments is a collection of the Departments DTO.

= employees_departmentIdDTO is a collection within AllDepartments, equivalent
to a master-detail relationship.

3 Attributes
These nodes represent individual attributes.

Overview of the Oracle ADF Model Layer 4-11

Creating the Oracle ADF Model Layer in JDeveloper

4 Standard operations

These nodes represent standard collection operations. The session facade has similar
nodes that represent transaction-level operations. The operations available for a
collection include previous set and next set, which scroll through the data based on
range size.

5 Special navigation operations
These nodes allow you to set the row set's current row to a particular displayed row.

6 Custom method
Custom service methods will appear on the Data Control Palette.

There are four files that are generated when you create a data control from a session
bean, two Java files and two XML files. The JDeveloper design time creates the XML
files automatically to facilitate such things as resolving accessor types in the Property
Inspector. The four generated files are:

= Sessi onEJB. xnl is a generated XML document that represents all JavaBeans
surfaced through the ADF data controls, other than built-in classes like
java.lang. String. Thecr eat e() method exposed through the session EJB
data control returns a session EJB instance. This is the XML file to represent that

Java type.

= Sessi onEJBDat aControl . j avais a generated Java class that provides a
JavaBeans wrapper to expose the stateless session bean's remote (or local, if no
remote interface is exposed) methods, delegating the method requests to a
lazily-created session bean instance.

« Sessi onEJBDat aCont rol . xm is an XML document that may be edited
through the Property Inspector, typically to assignh member type information for
collection or list methods exposed through the session bean's component interface.

« Sessi onEJBDat aCont r ol Beanl nf 0. j ava is the BeanInfo class for
Sessi onEJBDat aCont r ol . j ava. The BeanInfo class serves to filter out
noncomponent interface methods.

4.5.3 Oracle ADF Data Controls for Web Services

If you use web services as your business service technology, model information will be
exposed to the view and controller layers through Oracle ADF data control interfaces
implemented by thin, Oracle-provided adapter classes.

JDeveloper creates Oracle ADF data controls for a web service by generating a stub or
proxy to the service, and creating the data controls from the stub. Any web service is
available to be exposed as a data control in JDeveloper as long as the design time can
create a stub for that web service.

You can create data controls for web services that you have created in JDeveloper as
part of your application with just one mouse-click. The process of creating data
controls for external web services, that is web services somewhere on the Web, is
different in that you have to make the WSDL document available in the navigator first.
Creating data controls is described for both these cases below.

Finally, you can view the business services you have registered for use with your
client application.

4-12 Oracle Application Development Framework Development Guidelines Manual

Creating the Oracle ADF Model Layer in JDeveloper

4.5.3.1 Creating Data Controls for Web Services Created in JDeveloper

You can incorporate the functionality of a web service that you have created in
JDeveloper in your application. This can be either a SOAP web service or a J2EE web
service, and in either case the service should be deployed in the usual manner before
creating data controls. When you have created a web service in JDeveloper, the web
service container is listed in the navigator.

To create data controls for a web service created in JDeveloper:

= With the web service deployed, right-click the web service container in the
navigator and choose Create Data Control. Alternatively, drag the web service
container node to the Data Control Palette.

OR

= With the web service container selected in the navigator, right-click the WSDL in
the Structure window and choose Create Data Control. Alternatively, drag the
WSDL node to the Data Control Palette.

4.5.3.2 Creating Data Controls for External Web Services

When you know the URL of the WSDL document, you need to make the WSDL
available in the Application Navigator before you can create data controls for the
service. There are two ways to do this:

= By creating a new WSDL document and importing the external WSDL document
into it
= By creating a stub to the web service, and allowing the wizard to add the WSDL

document to the navigator

Another way of using an external web service in an Oracle ADF application is to locate
the service in a UDDI registry, and create the data controls from the Connection
Navigator.

These three cases are described below.

To create data controls for an external web service by creating a new WSDL
document:

1. Create a new WSDL document, accepting the defaults.

2. Inabrowser, open the WSDL document of the external web service you want to
use as the service provider. View the source of the document, and copy the XML
source of the WSDL.

3. Replace the contents of the WSDL document you have just created with the source
from the WSDL document of the web service you want to create data controls for.

4. Right-click the WSDL document and choose Create Data Control. Alternatively,
drag the WSDL node from the navigator to the Data Control Palette.

To create data controls for an external web service using a wizard:

1. Create a stub to the web service, and paste the WSDL URL into the WSDL
Document URL field on the Select Web Service Description page. On the same
page, select Import WSDL URL Into Project, and complete the wizard.

2. Right-click the WSDL document and choose Create Data Control. Alternatively,
drag the WSDL node from the navigator to the Data Control Palette.

Overview of the Oracle ADF Model Layer 4-13

Creating the Oracle ADF Model Layer in JDeveloper

To create data controls for a web service located in a UDDI registry:

1. Locate the web service in the UDDI registry. The service is listed in the Connection

Navigator under the UDDI registry node.

2. Right-click the web service and choose Create Data Control, as shown in the
following figure.

- Mavigatar LR | @Employess
(% || |package
[l UDDI Registry ;I | |import o
b T6M Public UDDT v2 Registry I |import o
3 Qﬂ;& Microsoft Public UDDI v2 Regiskry | import j
—|-- b Oracle Public UDDI vZ Registry imort o
racle JDeveloper Web Services .

. N import o

ervice Solutions z
Generate Web Service 5

rﬁ Conkacks
EIFEI Services Open

E----@QContact Weh Service Check #ML Syritax
E|=) http:/fervo.net/ Yalidate WSDL
. - » b i
4] E | WS-T Analyze WSDL...

Applications iE@Connections | (el

To view the business services you have registered for use with your client
application:

= If the palette is not yet displayed, choose View | Data Control Palette.
OR

= If the palette is already displayed, right-click in the palette and choose Refresh
Palette.

If you use web services as your business service technology, model information will be

exposed to the view and controller layers through ADF data control interfaces
implemented by thin, Oracle-provided adapter classes, as shown in the following
figure.

W& Data Control Palette
G 0 MywehService! DataContral
L& operations
{f0] addPerson(String, Person)
G-I findByStringKey(String)
T e return
& id
@ name
SHI returnAliPersons(
¥} 0«
& id
@ name
G-I returnTotalPeopled
4 return

Drag and Drop As:
| 54 Read-Only Table =

@Components E{_;.Data Controls ‘

1 Web Service Data Control

The MyWebServicelDataControl is the data control node. It is created by
right-clicking on the web service container MyWebServicel in the navigator, and
choosing Create Data Control.

4-14 Oracle Application Development Framework Development Guidelines Manual

Creating the Oracle ADF Model Layer in JDeveloper

2 Operations

Under the Operations node you can find the available web methods for the web
service.

3 Data Control Associated with Web Service Method
The returnAllPersons() node is the data control associated with the web service.

4 return Node
This node is the return from the method on the web service.

4.5.3.3 Web Services That Return Arrays

When a web service returns an array; it is important that the array node be the one
used to provide the return values in the application, as shown in the following figure.

Control Palette

=L PEmplaveeServicewsdiDat aControl
E[Zj Operations
getemplovee(BigDecimal)
E| [3] listofemployees()
I:E|---.‘. return
E 1] lookupsalary(Bighecimal)
[fi1] updateemployes{EmpInfollser)

Drag and Drop As:
| % Read-0nly Table |

@Components E;'_E'.Data Controls

The following files are created:

« DataControl s. dcx identifies the Oracle ADF model layer adapter classes that
facilitate the interaction between the client and the available business services.

= <WebServi ce>. xm , which contains metadata used by the data control.
« <WebServi ce>. | ava, which contains connection information to the service.

= <WebServi ce>Beanl nf 0. j ava, which provides the methods available in the
web service.

= <Bean>.j ava is created when you register an external web service from the
WSDL node in the Application Navigator, and it acts as a proxy to the service.

4.5.4 Oracle ADF Data Controls for JavaBeans and TopLink-Based Beans Components

If you use JavaBeans technology as your business service technology, model
information will be exposed to the view and controller layers through Oracle ADF
data control interfaces implemented by thin, Oracle-provided adapter classes.

Note: Your JavaBean may have been created based on TopLink
mappings that you specified.

Overview of the Oracle ADF Model Layer 4-15

Summary of Oracle ADF Data Control Operations

To create adapter classes and data controls:

1. In the navigator, select the Model project which contains the model objects you
want to expose to the application client.

2. In the model project, right-click the bean and choose Create Data Control.
OR

Drag the bean from the Application Navigator onto the Data Control Palette to
create the data controls.

3. If your bean defines attributes or methods that return a Col | ect i on type, you
must specify the return type for the data control.

JDeveloper adds the data control definition file (Dat aCont r ol s. dcx) to the model
project. The . dcx file identifies the Oracle ADF model layer adapter classes that
facilitate the interaction between the client and the available business services.

To view the business services you have registered for use with your client
application:

= If the palette is not yet displayed, choose View | Data Control Palette.
OR

= If the palette is already displayed, right-click in the palette and choose Refresh
Palette.

If you use JavaBeans technology as your business service technology, model
information will be exposed to the view and controller layers through ADF data
control interfaces implemented by thin, Oracle-provided adapter classes.

If you use Oracle TopLink POJO to create JavaBeans as your business service
technology, your application can also use Oracle ADF data controls to access them.

For more information, see the TopLink documentation provided by the JDeveloper
help system.

4.6 Summary of Oracle ADF Data Control Operations

When you create and register business services for an application, the Data Control
Palette displays two types of actions:

= Actions that typically operate on all data collections in the current web page's
binding context (such as commit and rollback) in the Operations folder at the root
level of the hierarchy.

= Operations on a specific data collection (for example, EmployeesView). Data
collection—specific operations (such as create and delete) appear in the Operations
folder as child nodes of the collection in the Data Control Palette.

Typical data control-level, global actions defined by business services include:

» Commit commits a transaction that updates the values of data objects from the
bound data collection to the database.

= Rollback rolls back a transaction meant to update the values of data objects in the
bound data collection. No data is sent to the database.

Typical data collection—specific operations defined by business services include:
= Create creates a new data object in the bound data collection.

= Delete deletes the current data object from the bound data collection.

4-16 Oracle Application Development Framework Development Guidelines Manual

Summary of Oracle ADF Data Control Operations

Execute executes the bound action defined by the data collection. In the case of a
JavaBean, the execute operation will refresh the data control.

Find retrieves a data object from the data collection.
First navigates to the first data object in the data collection range.
Last navigates to the last data object in the data collection range.

Next navigates to the next data object in the data collection range. If the current
range position is already on the last data object, then no action is performed.

Next Set moves the viewable range to the first data object after the current range
position defined by the bound data collection. For example, when the data
collection is a row set, next set navigates to the first row after the current range
position. If the current range position is already on the last set, then no action is
performed.

Note: This operation is available only with Oracle ADF Business
Components.

Previous navigates to the previous data object in the data collection range. If the
current position is already on the first data object, then no action is performed.

Previous Set moves the viewable range to the data objects located just before the
current range defined by the bound data collection. For example, when the data
collection is a row set, previous set navigates to the last row before the current
range position. If the current range position is already on the first set, then no
action is performed.

Note: This operation is available only with Oracle ADF Business
Components.

setCurrentRowWithKey(String) passes the row key as a String converted from
the value specified by the input field. The row key is used to set the currency of
the data object in the bound data collection. When passing the key, the URL for the
form will not display the row key value. You may use this operation when the
data collection defines a multipart attribute key.

setCurrentRowWIthKeyValue(String) passes the row key as a String specified by
the input field. The row key is used to set the currency of the data object in the
bound data collection. Use this operation only when the data collection uses a
single key attribute and does not define a multipart attribute key. When passing
the key as a value, the URL for the form will display the row key value.

Overview of the Oracle ADF Model Layer 4-17

Summary of Oracle ADF Bindings

4.7 Summary of Oracle ADF Bindings
Oracle ADF provides these types of bindings:
= Section 4.7.1, "About the Iterator Binding"
= Section 4.7.2, "About the Value Bindings"
= Section 4.7.3, "About the Action Binding"

4.7.1 About the lterator Binding

The or acl e. j bo. ui cli.binding.JU teratorBi ndi ng class implements the
iterator binding.

The iterator binding is a runtime object that your application creates to access the
Oracle ADF binding context. The iterator binding holds references to the bound data
collection, accesses it, and iterates over its data objects. The iterator binding notifies
value bindings of row currency and row state. Then, value bindings that you define
allow UI components to display or update the current data object of the collection
being iterated over. In this way, the iterator binding provides uniform access to
various collection types from different business services.

In the case of an Oracle ADF Business Components view object, the Oracle ADF
bindings for the UI components may be able to display a row currency indicator. In a
table, for example, the current row is identified at runtime by an asterisk (*) symbol
displayed in the first column of that row. The currency indicator is available through
the iterator binding only when the bound view object has a key attribute defined.
When no key attribute is defined for the bound view object, each row of the table will
display the asterisk. In this case, you can edit the UI component in the visual editor to
prevent the asterisks from displaying at runtime.

The or acl e. j bo. ui cli. binding. JUl t erat or Bi ndi ng class abstracts out the
most commonly used methods for collection and currency management:

= error returns any exception that was cached while validating the changes made to
data through the iterator or through any Oracle ADF data control associated with
the iterator.

« estimatedRowCount returns the maximum row count of the rows in the collection
with which this iterator binding is associated.

= name returns the name of this iterator binding.

= rangeSize returns the range size of an Oracle ADF Business Components row set
iterator. This property is limited to data controls registered with Oracle ADF
Business Components.

« rowAtRangelndex returns the data object at the specified index of the collection.
In the case of data controls registered with Oracle ADF Business Components, it
returns the row of the index in the current range.

4-18 Oracle Application Development Framework Development Guidelines Manual

Summary of Oracle ADF Bindings

4.7.2 About the Value Bindings

4.7.2.1 Attribute Value Binding

The or acl e. j bo. ui cli.binding. JUCt rl Val ueBi ndi ng class implements the
attribute value binding.

The attribute value binding permits the databound UI component to obtain the
attribute value of the specified collection's data object. Depending on the type of Ul
component, users may view and, in some cases, edit the value of the attribute.

The oracl e. j bo. ui cli.binding.JUCrI AttrsBi ndi ng class defines no
properties of its own.

However, you can work with these properties defined by the class hierarchy of the
attribute binding:

= attributeValue returns the value of the first attribute to which the binding is
associated.

= attributeValues returns the value of all the attributes to which the binding is
associated in an ordered array.

« attributeDef returns the attribute definition for the first attribute to which the
binding is associated.

« attributeDefs returns the attribute definitions for all the attributes to which the
binding is associated.

« displayHint returns the display hint for the first attribute to which the binding is
associated. The hint identifies whether the attribute should be displayed or not.

= inputValue returns the value of the first attribute to which the binding is
associated. If the binding was used to set the value on the attribute and the set
operation failed, this method returns the invalid value that was being set.

= label returns a map of labels keyed by attribute name for all attributes to which
the binding is associated.

= labels returns the label for the first attribute of the binding.

= labelSet returns an ordered set of labels for all the attributes to which the binding
is associated.

= mandatory returns whether the first attribute to which the binding is associated is
required.

= tooltip returns the tooltip hint for the first attribute to which the binding is
associated.

= updateable returns whether the first attribute to which the binding is associated is
updateable.

And you can work with the generic properties defined by the root class
DCCont r ol Bi ndi ng.

4.7.2.2 Boolean Value Binding

The or acl e. j bo. ui cli.bi nding. JUCt rl Bool Bi ndi ng class implements the
boolean binding.

The boolean binding obtains the attribute value of the specified collection's data object
based on the control's selection state.

Overview of the Oracle ADF Model Layer 4-19

Summary of Oracle ADF Bindings

The or acl e. j bo. ui cli.binding. JUCt r| Bool Bi ndi ng class has no properties
of its own.

However, you can work with these properties defined by the class hierarchy of the
boolean binding:

= attributeValue returns the value of the first attribute to which the binding is
associated.

= attributeValues returns the value of all the attributes to which the binding is
associated in an ordered array.

« attributeDef returns the attribute definition for the first attribute to which the
binding is associated.

« attributeDefs returns the attribute definitions for all the attributes to which the
binding is associated.

= displayData returns a list of map elements. Each map entry contains the following
elements:

= sel ect ed - A boolean TRUE if current entry should be selected.
= i ndex -The index value of the current entry.

« pronpt - A concatenated string of all display attribute values for the current
entry.

« di spl ayVal ues - The iterator of display attribute values.

= sel ect edl ndex - The index of the selected entry to which the binding is
associated.

« displayHint returns the display hint for the first attribute to which the binding is
associated. The hint identifies whether the attribute should be displayed or not.

= displayHints returns a list of name-value pairs for Ul hints for all display
attributes to which the binding is associated. The map contains the following
elements:

« | abel -Thelabel to display for the current attribute.

« tooltip-Thetooltip to display for the current attribute.

= displ ayH nt - The display hint for the current attribute.

« di spl ayHei ght - The height in lines for the current attribute.

« di spl ayW dt h - The width in characters for the current attribute.
= control Type - The control type hint for the current attribute.

« format - The format to be used for the current attribute.

= inputValue returns the value of the first attribute to which the binding is
associated. If the binding was used to set the value on the attribute and the set
operation failed, this method returns the invalid value that was being set.

= label returns a map of labels keyed by attribute name for all attributes to which
the binding is associated.

= labels returns the label for the first attribute of the binding.

= labelSet returns an ordered set of labels for all the attributes to which the binding
is associated.

« mandatory returns whether the first attribute to which the binding is associated is
required.

4-20 Oracle Application Development Framework Development Guidelines Manual

Summary of Oracle ADF Bindings

tooltip returns the tooltip hint for the first attribute to which the binding is
associated.

updateable returns whether the first attribute to which the binding is associated is
updateable.

And you can work with the generic properties defined by the root class
DCCont r ol Bi ndi ng.

4.7.2.3 List Value Binding

The oracl e.j bo. ui cli.binding.JUCtrIListBindi ng class implements the list
binding.

Depending on the type of UI component, the list binding may:

Update an attribute of a data object in the bound collection
Traverse the data objects of the bound collection

Update a target data object in one collection using the value from another
collection's data object

The or acl e. j bo. ui cli.binding.JUCtrI ListBindi ng class provides accessor
methods for these properties that you can work with:

displayData returns a list of map elements. Each map entry contains the following
elements:

= sel ect ed - A boolean TRUE if current entry should be selected.
= I ndex - The index value of the current entry.

« Prompt - A concatenated string of all display attribute values for the current
entry.

« di spl ayVal ues - The iterator of display attribute values.

= sel ect edl ndex - The index of the selected entry to which the binding is
associated.

displayHints returns a list of name-value pairs for Ul hints for all display
attributes to which the binding is associated. The map contains the following
elements:

« | abel -Thelabel to display for the current attribute.

« tooltip-Thetooltip to display for the current attribute.

= displ ayH nt - The display hint for the current attribute.

« di spl ayHei ght - The height in lines for the current attribute.

« di spl ayW dt h - The width in characters for the current attribute.
= control Type - The control type hint for the current attribute.

« format - The format to be used for the current attribute.

Additionally, you can work with these properties defined by the class hierarchy of the
list binding:

attributeValue returns the value of the first attribute to which the binding is
associated.

attributeValues returns the value of all the attributes to which the binding is
associated in an ordered array.

Overview of the Oracle ADF Model Layer 4-21

Summary of Oracle ADF Bindings

attributeDef returns the attribute definition for the first attribute to which the
binding is associated.

attributeDefs returns the attribute definitions for all the attributes to which the
binding is associated.

displayHint returns the display hint for the first attribute to which the binding is
associated. The hint identifies whether the attribute should be displayed or not.

inputValue returns the value of the first attribute to which the binding is
associated. If the binding was used to set the value on the attribute and the set
operation failed, this method returns the invalid value that was being set.

label returns a map of labels keyed by attribute name for all attributes to which
the binding is associated.

labels returns the label for the first attribute of the binding.

labelSet returns an ordered set of labels for all the attributes to which the binding
is associated.

mandatory returns whether the first attribute to which the binding is associated is
required.

tooltip returns the tooltip hint for the first attribute to which the binding is
associated.

updateable returns whether the first attribute to which the binding is associated is
updateable.

And you can work with the generic properties defined by the root class
DCCont r ol Bi ndi ng.

4.7.2.4 Range Value Binding

The or acl e. j bo. ui cli.binding. JUCt rl RangeBi ndi ng class implements the
range binding.

The range binding permits the databound UI component to obtain a range of attribute
values from the specified collection's data objects and to display the position of the
current data object relative to that range.

The or acl e. j bo. ui cli.binding. JUCt r| RangeBi ndi ng class provides accessor
methods for these properties that you can work with:

estimatedRowCount returns the maximum row count of the rows in the collection
with which this iterator binding is associated.

rangeSet returns a list of map elements over the range of rows from the associated
iterator binding. The elements in this list are wrapper objects over the indexed row
in the range that restricts access to those attributes to which the binding is bound.
The properties returned on the reference object are:

« i ndex - The range index of the row this reference is pointing to.
= key - The key of the row this reference is pointing to.
= keyStr - The String format of the key of the row this reference is pointing to.

« currencyString - The current indexed row as a String. Returns "*" if the
current entry belongs to the current row; otherwise, returns " ". This property
is useful in JSP applications to display the current row.

4-22 Oracle Application Development Framework Development Guidelines Manual

Summary of Oracle ADF Bindings

= attributeVal ues - The array of applicable attribute values from the row.

And you may also access an attribute value by name on a range set like
rangeSet . Dnane if Dnane is a bound attribute in the range binding.

Additionally, you can work with these properties defined by the class hierarchy of the

range binding:

= attributeValue returns the value of the first attribute to which the binding is
associated.

= attributeValues returns the value of all the attributes to which the binding is
associated in an ordered array.

« attributeDef returns the attribute definition for the first attribute to which the
binding is associated.

« attributeDefs returns the attribute definitions for all the attributes to which the
binding is associated.

« displayHint returns the display hint for the first attribute to which the binding is
associated. The hint identifies whether the attribute should be displayed or not.

= inputValue returns the value of the first attribute to which the binding is
associated. If the binding was used to set the value on the attribute and the set
operation failed, this method returns the invalid value that was being set.

= label returns a map of labels keyed by attribute name for all attributes to which
the binding is associated.

= labels returns the label for the first attribute of the binding.

= labelSet returns an ordered set of labels for all the attributes to which the binding
is associated.

= mandatory returns whether the first attribute to which the binding is associated is
required.

= tooltip returns the tooltip hint for the first attribute to which the binding is
associated.

= updateable returns whether the first attribute to which the binding is associated is
updateable.

And you can work with the generic properties defined by the root class
DCCont r ol Bi ndi ng.

4.7.2.5 Scroll Value Binding

The oracl e. j bo. ui cli.binding.JUCtr| Scroll Bi ndi ng class implements the
scroll binding.

The scroll binding permits the databound UI component to display the current
position of the data object in the selected collection. When the user scrolls the Ul
component, the scroll binding maintains the current position in the collection.

The oracl e. j bo. ui cli.binding.JUCrl| Scroll Bi ndi ng class defines no
runtime properties of its own.

However, you can work with the generic propertDevelopment Guidelines Manualies
defined by the root class DCCont r ol Bi ndi ng.

Overview of the Oracle ADF Model Layer 4-23

Summary of Oracle ADF Bindings

4.7.3 About the Action Binding

The oracl e. j bo. ui cli.binding.JUCtrl Acti onBi ndi ng class implements the
action binding.

The action binding is a type of binding object defined by Oracle ADF that performs
actions on the bound data collection's row set iterator. At runtime, when the user
initiates the action, using a button control, the action binding accesses the Oracle ADF
binding context and initiates the specified action on the data objects of the selected
collection. The action binding supports many predefined actions.

The or acl e. j bo. ui cli.binding. JUCrI Acti onBi ndi ng class provides
accessor methods for these properties of method-type action bindings that you can
work with:

= params returns a list of parameter values that is passed to the method to which the
action is bound.

= paramsMap returns a map of parameter values. The map is converted into an
ordered list, where the keys on the map are names of the parameters, specified at
design time as metadata.

« result returns the result of the method invocation. The method must return an
object.

And you can work with the generic properties defined by the root class
DCCont r ol Bi ndi ng.

4-24 Oracle Application Development Framework Development Guidelines Manual

D

Overview of Oracle ADF Integration with
Struts

The Oracle Application Development Framework (Oracle ADF) extends the Struts
framework to integrate with the Oracle ADF model layer. Oracle ADF provides a pure
Struts integration, completely consistent with the Struts specification, that simplifies
and speeds up web application development. JDeveloper fully supports the use of
Struts, providing both visual and XML editors for the Struts configuration file, as well
as other features that simplify building applications that use either plain Struts or
Struts integrated with the Oracle ADFE.

When you start a project using Struts technology, JDeveloper creates all of the basic
Struts components for you, including the required definitions in the web. xm file, the
Struts configuration file itself, and a resource file for use by Struts internationalization
features.

This chapter provides an overview of the integration of Oracle ADF and Struts.

5.1 Summary
= Section 5.2, "Highlights of the Struts Framework"

« Section 5.3, "Oracle ADF Extensions to Struts"
« Section 5.3.1, "Oracle ADF Data Action and Data Forward Action Classes"
= Section 5.3.2, "Oracle ADF Lifecycle"
« Section 5.3.3, "Named Events in Oracle ADF"
= Section 5.3.4, "Oracle ADF Data Action Mapping Class"
« Section 5.3.5, "Oracle ADF Data Form Bean"
= Section 5.3.6, "Oracle ADF Binding Filter"
= Section 5.4, "Struts Design Time Integration with Oracle ADF"
= Section 5.4.1, "Struts Page Flow Diagram"
« Section 5.4.2, "Source View Tab"

= Section 5.4.3, "Property Inspector Integration with the Struts Configuration
File"

= Section 5.4.4, "Design Time Rendering of Struts Tag Libraries”
= Section 5.4.5, "Interactive Code Insight for JSP Code Editing"
= Section 5.5, "Struts Runtime Integration with the Oracle ADF Model Layer"

Overview of Oracle ADF Integration with Struts 5-1

Highlights of the Struts Framework

= Section 5.6, "Data Pages and Data Actions in the Databound Struts Page Flow"
= Section 5.6.1, "Working with Data Pages"
= Section 5.6.2, "Working with Data Actions"
« Section 5.7, "Best Practices"
= Section 5.7.1, "When to Use a Data Page or Data Action"
= Section 5.7.2, "Adding Business Service Methods to a Data Action"
« Section 5.7.3, "When to Subclass the DataAction or DataForwardAction Class"
= Section 5.7.4, "When to Use an Oracle ADF Lifecycle Plugin"

= Section 5.7.5, "Summary of Best Practices in Working with Oracle ADF/Struts
Integration”

5.2 Highlights of the Struts Framework

The Apache Software Foundation's Struts framework helps web application
developers create applications that implement the Model-View-Controller (MVC)
design pattern. This design pattern allows web application developers to cleanly
separate the display code (for example, HTML and tag libraries) from flow control
logic (the Struts controller and action classes) from the data model to be displayed and
updated by the application.

The model is the repository for the application data and business logic. Part of the
model's function is to retrieve data from, and persist data to, the enterprise
information system, but it is also responsible both for exposing the data in such a way
that the view can access it and for implementing a business logic layer to validate and
consume the data entered through the view. At the application level, the model acts as
a validation and abstraction layer between the user interface and the business data
that is displayed. For more information about working with the model layer using
Oracle ADF, see Chapter 4, "Overview of the Oracle ADF Model Layer".

The view is responsible for rendering the model data. The view code itself does not
hard-code application or navigation logic, although it may contain some logic to carry
out tasks like conditional data display based on a user's role. When an end user carries
out an action within the HTML page that is eventually rendered from the view, an
event is submitted to the controller, and it is up to the controller to work out what to
do next. Struts applications typically use JSP pages for the view layer, but you can also
use other technologies. For information about working with the view layer in Oracle
ADF, see Chapter 6, "Overview of Oracle ADF Data Binding in View Technologies".

Every user action carried out in the view is submitted through the controller, which,
based on the contents of the request from the browser and the controller's own
programming or metadata, decides what to do next. In Struts, the base controller
functionality is implemented in the action servlet. The integration of Oracle ADF and
Struts includes extensions to several other controller components that provide major
benefits to developers. Here is a brief description of their base functionality:

5-2 Oracle Application Development Framework Development Guidelines Manual

Oracle ADF Extensions to Struts

Action class

The or g. apache. struts. acti on. Acti on class is an extension of the

Act i onSer vl et class that performs one or more operations in response to a client
request. The action class processes a request using its execut e() method and returns
an action forward object that identifies where control should be forwarded (a web
page or another action, for example) to supply the appropriate response. By default,
the execut e() method returns nul |, so you must always subclass the base Act i on
class in a plain Struts application.

Action mapping class

An action mapping provides the information the Struts controller servlet needs to
know about what action class to call when the controller receives a request. Struts
developers define this information as <act i on> elements in the Struts configuration
file, an XML file. The Struts framework parses this file and creates the appropriate
objects initialized to the correct default values. The

org. apache. struts. acti on. Act i onMappi ng class represents the information
specified in the <act i on> elements.

Action forward class

The or g. apache. struts. acti on. Acti onFor war d class is the destination to
which the controller sends control when an action class is executed. Like action
mappings, action forwards are defined in the Struts configuration file, typically as
<f or war d> elements within an <act i on> element.

For detailed information about the Struts architecture and base classes, see
http://struts.apache. org/index. htm .

5.3 Oracle ADF Extensions to Struts
The integration of Oracle ADF and Struts comprises the following key elements:
» Oracle ADF Data Action and Data Forward Action Classes
= Oracle ADF Lifecycle
= Named Events in Oracle ADF
= Oracle ADF Data Action Mapping Class
« Oracle ADF Data Form Bean
= Oracle ADF Binding Filter

5.3.1 Oracle ADF Data Action and Data Forward Action Classes

The Dat aAct i on and Dat aFor war dAct i on classes are core components of the
integration of Oracle ADF and Struts. They are subclasses of the base Struts Act i on
class that prepare the Oracle ADF model binding context for databound web pages.
Your databound web application works with these classes through entries in the Struts
configuration file.

Unlike the base Struts Act i on class, these classes offer a set of functionality that often
makes it possible to use them without further subclassing. When you do need to
subclass, using these classes simplifies the coding process. They implement a
pluggable request-handling lifecycle that is Oracle ADF binding container-aware and
fully customizable.

Overview of Oracle ADF Integration with Struts 5-3

Oracle ADF Extensions to Struts

The fully qualified classnames are

oracle.adf.control l er.struts. actions. Dat aActi on and

oracl e. adf.controll er.struts. acti ons. Dat aFor war dAct i on (represented
in the Page Flow Diagram as a data page) to prepare the binding context for
databound web pages. The Dat aFor war dAct i on and Dat aAct i on classes extend
org. apache. struts. action. Acti on.

Note: Dat aForwar dAct i on is a subclass of Dat aAct i on and is
different only in that it is used with the data page component, rather
than with the data action component, in the Page Flow Diagram.
For more information about these components, see Section 5.6,
"Data Pages and Data Actions in the Databound Struts Page Flow".

5.3.2 Oracle ADF Lifecycle

In the integration of Oracle ADF with Struts, the Dat aAct i on and

Dat aFor war dAct i on classes implement the Oracle ADF lifecycle interface. This
interface provides the code necessary to connect the action of a web page to the ADF
model data bindings. At runtime, the lifecycle object calls the correct binding container
needed for a web page and tells it to prepare the data to be rendered. The binding
container pools the data and stores it locally before rendering the page. By avoiding
additional round trips to the database before a web page is rendered, the lifecycle
object improves application performance during the rendering process.

The handl eLi f ecycl e() method does most of the work in the lifecycle by calling a
series of operations in a set order. The following diagram shows the steps performed
by the method in the or acl e. adf . control l er.|ifecycl e. PageLi fecycl e
class. Following the diagram is a table that describes what happens in each step.

handleLifecycle Method

1. Initialize Contesxt
Retrieve HTTP Request

Get Binding Container
Get Lifecycle

‘ 2, Bulld event list ‘

v

| 3. Prepare madel data bindings if they exist |

Bindings found Bindings not found

k4
| 4_ Check 1o see if madel updates are allowed |

Updates Updates

allowed not allowed
h 4
| 5. Process model updates |

| 6. Validate model updates |

| 7. Handle Model and Ul Events,]

| 8. Invoke Custom Methads (Struts Only) I

| 9. Refresh Binding Controls]

| 10. Dispatch to Forward]

5-4 Oracle Application Development Framework Development Guidelines Manual

Oracle ADF Extensions to Struts

The following table describes the handl eLi f ecycl e() method diagram in detail:

Step Description

1. Initialize context. The first step that the method handl| eLi f ecycl e() performs
is to initialize the lifecycle context. The context object holds the
value of the associated request, binding container, and
lifecycle objects. In a Struts application, the context is an
instance of
oracl e.adf.controller.struts. actions. DataActio
nCont ext , a subclass of Li f ecycl eCont ext . The method
handl eLi f ecycl e() calls the lifecycle context
initialize() method.

2. Build event list. Next, handl eLi f ecycl e() builds the list of events to be
performed by retrieving them from the request object with the
lifecycle method bui | dEvent Li st ().

3. Prepare model data At this point, the method handl eLi f ecycl e() checks for
bindings if they exist. model data bindings by calling
get Attri but e("bindi ngs") on the binding container
retrieved in step 1. If model data bindings do exist, this phase
of the lifecycle prepares the data model to receive possible
updates from the request. This phase also validates the state
token.

Note that a lifecycle instance may not have associated model
bindings. Instead, the lifecycle can call events that operate only
in the user interface. You may want to call custom page
navigation events that do not use data bindings. For example,
you might want to create an event associated with a help
button that would take the user to an HTML page for the web
application.

If there are no associated model bindings,
handl eLi f ecycl e() skips tostep 7.

4. Check to see if model Some events should not be allowed to update the model. If the
updates are allowed. event is performing a rollback on data changes, for example,
you do not allow model updates.

The method handl eLi f ecycl e() calls

shoul dAl | owbdel Updat e() on the lifecycle instance to
see whether model updates are allowed. If the user is allowed
to update model data from the user interface, the method
handl eLi f ecycl e() goes to the next step. If model updates
are not allowed, handl eLi f ecycl e() skips to step 7.

5. Process model updates. At this point, handl eLi f ecycl e() collects the new data
values from the request and updates the model with them.

6. Validate model updates. At this point, handl eLi f ecycl e() validates updates to the
model by calling val i dat el nput Val ues() on the binding
container associated with the current lifecycle instance.

7. Handle model and UI Next, handl eLi f ecycl e() calls
events processConponent Event s() on the lifecycle instance. This
method handles both named events, which you create and
name yourself, and events tied to the data bindings you drop
on a page (action bindings).

For more information about creating your own named events,
see Section 5.3.3, "Named Events in Oracle ADF".

Overview of Oracle ADF Integration with Struts 5-5

Oracle ADF Extensions to Struts

Step Description

8. Invoke custom methods You can drag and drop methods onto a data action or data
page without having to subclass the parent class, as described
in Section 5.7.2, "Adding Business Service Methods to a Data
Action". The method handl eLi f ecycl e() calls
i nvokeCust omvet hod() on the lifecycle instance to execute
these custom methods at this point.

9. Refresh binding controls This step notifies the binding container associated with the
current lifecycle instance that all model updates for the action
or page are complete. At this point, the method
handl eLi f ecycl e() callsrefreshControl () on the
binding container instance.

10. Dispatch to forward At this point, the method handl eLi f ecycl e() calls
findForward() on the lifecycle instance. For Struts
applications, f i ndFor war d() looks for the value of the
<f or war d> element in the st r ut s- confi g. xm file, which
it passes to the execut e() method of the data action class or
subclass.

You can override lifecycle methods to customize the behavior of your Oracle ADF
application. For a Struts-based application, you can override the main lifecycle
methods by subclassing the Dat aAct i on or Dat aFor war dAct i on class. When you
want to modify the lifecycle to perform certain behaviors across the application, or if
you want to change the behavior of a method that may be called repeatedly by a step
in the lifecycle, you must subclass the lifecycle itself. For more information, see
Section 5.7.4, "When to Use an Oracle ADF Lifecycle Plugin".

Note: You cannot change the order of the lifecycle phases listed in
the preceding table.

5.3.3 Named Events in Oracle ADF

An event is a specific operation that is executed for a specific command. An event is
typically executed by a button or link in a web page. For example, when a user clicks
the Next button, that click triggers the Next event. Next is the event name: naming an
event simplifies the process of calling events and creating event handlers. When a
command on a web page triggers an event, an event handler performs the work.
Oracle ADF provides an easy way to build commands and event handlers for working
with events in your web applications. For example, you can:

= Use events to execute action binding model operations. When you create and
register business services for an application, the Data Control Palette displays the
operations available from the business service. If you create or customize an
operation in the business service, you do not have to do any work in the controller
layer. You simply have to drag the operation to the web page or data action.

= Write a custom method that overrides an existing method in the action bindings.
For example, if you want to override the next operation to behave differently, then
you add code to the data action. The data action looks for a custom method first,
then looks to see whether the method exists in the action bindings. This way, if a
customized method exists, the data action finds it first.

5-6 Oracle Application Development Framework Development Guidelines Manual

Oracle ADF Extensions to Struts

= Develop actions that are independent of the model layer, that is, data actions that
do not need to call an action binding to perform their operations. For example, if
you want to include a help button in your web pages that takes the user to a help
topic for your web application, you can do this with a named event.

= Use events to forward to a new page without subclassing the Dat aAct i on or
Dat aFor war dAct i on class. You can use a named event to define the forward for
a data action or data forward action in a web page by making the value of the
forward narme attribute for the action identical to the name of the associated event
in the web page. When Oracle ADF action subclasses encounter an event that is
defined neither in the action subclass nor in the action bindings, they assume that
the event is the name of a forward.

Note: Both the Oracle ADF data action classes and Oracle ADF
UIX use events. In general, when you combine Oracle ADF UIX
and Struts in a single application, the data action class takes
precedence over the UIX servlet in managing events. If the data
action class does not recognize the event as one it knows how to
handle, the UIX servlet handles the event.

5.3.4 Oracle ADF Data Action Mapping Class

The Struts action mapping class represents the information configured in the

<act i on> element in the Struts configuration file. The Dat aAct i onMappi ng class
extends the basic Struts data action mapping class to support a number of custom
action properties related to ADF data binding. The Dat aAct i onMappi ng class
determines which lifecycle class should be used based on the type of page (JSP or UIX,
for example) to be rendered by the action. It also defines and handles the following
additional properties for the Dat aAct i on and Dat aFor war dAct i on classes:

= nodel Ref er ence is the name of the binding container the data action should
use.

= et hodNane is the name of an action binding with a custom method that is to be
executed in the data action during the i nvokeCust omvet hod() lifecycle phase.

= numPar ans is the number of parameters for a custom method.

= paramiNamnes is the EL expressions that retrieve the value for each method
parameter.

= resultlLocati on isthe EL expression representing the location where the
method result is to be stored.

If you want to add additional <set - pr oper t y> elements to the <act i on> element
metadata, you need to subclass the Dat aAct i onMappi ng class to handle the
additional elements.

The Dat aAct i onMappi ng class is in the
oracl e. adf.control | er. struts. acti ons package. This class extends the
org. apache. struts. action. Acti onMappi ng class.

5.3.5 Oracle ADF Data Form Bean

By default, Struts forms in an Oracle ADF web application use a data form bean. The
data form bean dynamically makes the attributes for any binding container available
to the form and saves you the work of creating the Act i onFor mbeans required by
your applications.

Overview of Oracle ADF Integration with Struts 5-7

Oracle ADF Extensions to Struts

When you drag and drop a data binding from the Data Control Palette to a JSP page,
at runtime Oracle ADF automatically refers to the data form bean for the application.
For each value binding in the associated binding container, JDeveloper dynamically
creates the get and set methods for each binding.

Note: JDeveloper does not populate the <f or m property>
element in the st rut s- confi g. xm file when it uses the data
form bean. Your application retrieves the necessary values from the
associated binding container.

At runtime, the associated action class, either a Dat aAct i on or
Dat aFor war dAct i on instance or subclass, uses the data form bean to populate the
form and submit updates, if any.

Here is a code snippet showing the <ht i : f or > tag to illustrate the data form bean
behavior:

<htm :formaction="MPDat aAction. do">
<htni:text property="dnane">
</ htm :forne

At runtime, the MyDat aAct i on class needs to resolve the dnamne property. In Oracle
ADEF the HTML form is associated with a data action, which is tied to the data form
bean. The form goes to the data form bean to resolve the property. The data form bean
in turn asks the binding container if it has a binding with that name. The binding
container returns the binding if it exists, and the data form bean populates the HTML
form with that binding's value.

Warning: Do not modify, rename, or remove the Dat aFor mclass
or the Dat aFor mentries in the st r ut s- confi g. xm file. To
work correctly throughout the application, this bean name must
not be changed in any way. DataForm is a reserved form bean
name in Oracle ADF.

The data form bean is an instance of

oracl e. adf.control |l er.struts. formns. Bi ndi ngCont ai ner Acti onFor m(a
subclass of or g. apache. struts. acti on. Acti onFor mthat implements the
apache. commons. beanut i | s. DynaBean interface).

5.3.6 Oracle ADF Binding Filter

Oracle ADF web applications use the Oracle ADF binding filter to preprocess any
HTTP requests that may require access to the binding context. The binding filter is a
servlet filter that does the following:

= Overrides the character encoding at filter initialization time with the name
specified as a filter parameter in the web. xnl file. The parameter name of the
filter <i ni t - par an® is encodi ng.

« Initializes the Oracle ADF model binding context for a user's HTTP session (for
more information about the binding context, see Section 5.5, "Struts Runtime
Integration with the Oracle ADF Model Layer").

= Serializes incoming HTTP requests from the same browser (from framesets, for
example) to prevent multithreading problems.

5-8 Oracle Application Development Framework Development Guidelines Manual

Oracle ADF Extensions to Struts

= Notifies data control instances that they are about to receive a request, allowing
them to do any necessary pre-request setup.

= Notifies data control instances after the response has been sent to the client,
allowing them to do any necessary post-request cleanup.

JDeveloper creates the ADF binding filter and automatically configures it in the
application's web. xni file the first time you add a control binding to a web page or
drag a business service method to a data action in the Page Flow Diagram.

Here is an example of the elements added when you create a data page in a
Struts-based Oracle ADF application for JSP pages and drag a control binding to its
associated web page.

Note: This configuration file is included for information only. In
most cases you do not need to modify this file.

<l--
Servl et context parameter, which determnes which CPX file the filter reads at

runtime to define the application binding context.
>

<cont ext - par an»
<par am nane>CpxFi | eNane</ par am name>
<par am val ue>Dat aBi ndi ngs</ par am val ue>
</ cont ext - par an»
<l-- ADF Binding Filter Cass Setup -->
<filter>
<filter-name>ADFBi ndi ngFilter</filter-name>
<filter-class>oracle.adf.nodel .servlet. ADFBi ndi ngFi |l ter</filter-class>
<I'-- Default |anguage encoding, which can be set in
Tool s>Pref erences dialog -->
<init-paranp
<par am nane>encodi ng</ par am name>
<par am val ue>wi ndows- 1252</ par am val ue>
</init-paranp
</filter>

<l--
A filter mapping links the filter to a static resource or servlet in the
web application. Wen a mapped resource is requested, the filter is invoked.
-->
<filter-mpping>

<filter-name>ADFBi ndingFilter</filter-nane>

<url-pattern>*. jsp</url-pattern>
</filter-mpping>

<filter-mpping>
<filter-name>ADFBi ndingFilter</filter-nane>
<servl et - nane>act i on</ ser vl et - nane>
</filter-mpping>
<filter-nmappi ng>
<filter-name>ADFBi ndingFilter</filter-nane>
<servl et - nane>j sp</ servl et - nane>
</filter-mappi ng>

Overview of Oracle ADF Integration with Struts 5-9

Struts Design Time Integration with Oracle ADF

Note: If you have multiple filters for your application, make sure
they are listed in web. xm in the order in which you want to run
them. At runtime, the filters are called in the sequence listed in that
file.

The Oracle ADF binding filter implements the j avax. servl et. Fi | t er interface
and is an example of an intercepting filter.

Where to find additional information:

« For more information about servlet filters, see
http://java. sun. com product s/ servl et/ docs. htnl .

= For more information about intercepting filters, see
http://java. sun.com bl ueprints/patterns/InterceptingFilter.ht
m .

5.4 Struts Design Time Integration with Oracle ADF

Oracle ADF provides a rich set of features that help you build Struts-based
applications quickly and easily.

5.4.1 Struts Page Flow Diagram

The main working environment you use when building Struts-based applications in
JDeveloper is the Struts Page Flow Diagram. This is a visual representation of the
Struts configuration file. Changes you make in the Page Flow Diagram are
synchronized with the file; changes you make by editing the Struts configuration file
manually are also reflected in the page flow. The Page Flow Diagram is your
workbench for:

= Creating the application's page flow
= Selecting web pages and Struts actions to edit
= Running and debugging the application

The standard objects that you require for a Struts page flow are available in the
Component Palette, along with the specialized data action and data page used to
handle databound pages that use the Oracle ADF model. The data action component
represents an Oracle ADF subclass of the Struts action class. The data page represents
a data action subclass combined with an action forward and a destination web page.
These components are described in more detail in Section 5.3.1, "Oracle ADF Data
Action and Data Forward Action Classes".

The Component Palette also includes the specialized page forward element to
represent a Struts forward action that always performs a simple forward to a specified
destination web page. Using the page forward allows you a level of indirection and
flexibility in working with web pages: you can change the name of the underlying web
page in the Struts configuration file action mapping without having to change all of
the components that forward to the page.

5-10 Oracle Application Development Framework Development Guidelines Manual

Struts Design Time Integration with Oracle ADF

By dragging components from the Component Palette onto the Page Flow Diagram,
you can create the Struts action mapping elements and action forwards required by
the application without needing to edit the file directly. You can also annotate
diagrams for documentation purposes. The following diagram shows a simple page
flow with two data pages and two data actions with page links (dashed arrows, here
representing explicit links between pages and actions) and action forwards (solid

arrows).
SUCCEeSS
| %_
| IcreateEmpAction
|
| t empReturn
=P =
| = e =
hrowsePage lcreateEmpPage
P |
SUCCEeSS %

icancelfction

The Page Flow Diagram also provides:
= Aids for creating and navigating around large page flows
= Tools to organize the layout of your flow

» Customization of diagram fonts and colors

5.4.2 Source View Tab

The Source view tab gives you access to the underlying XML in the Struts
configuration file. This XML text editor is useful for drilling down to the XML
information in the file and making more detailed additions and edits than is possible
with the Page Flow Diagram. The XML Editor also allows developers familiar with the
structure of the st r ut s- confi g. xnl file to update the file rapidly

The XML Editor is fully validated and synchronized with the Page Flow Diagram. You
can edit the Struts configuration file in either mode.

5.4.3 Property Inspector Integration with the Struts Configuration File

The Property Inspector is synchronized with the underlying Struts configuration file.
You can edit the XML metadata directly in the Property Inspector. You can also use
the Property Inspector to display the possible values for Struts tags that take a cue
from the contents of the Struts configuration file. For example, when you add an

<ht m : f or n® tag to a web page, you can display a dropdown list of all actions
currently defined in the Struts configuration file.

5.4.4 Design Time Rendering of Struts Tag Libraries

You can create web pages with HTML, JSTL, Struts, and other custom tag libraries to
implement the view of the data. You can enhance your JSP pages using a large set of
custom JSP tag libraries that work with the Struts framework. All of the Struts tag
libraries are accessible from the JDeveloper Component Palette when you open a JSP
page in the editor.

Overview of Oracle ADF Integration with Struts 5-11

Struts Runtime Integration with the Oracle ADF Model Layer

5.4.5 Interactive Code Insight for JSP Code Editing

If you prefer to hand-code your JSP pages instead of using the visual editor and the
Property Inspector, the source view of the JSP editor is still Struts-aware and provides
Code Insight to assist you. For example, if you are creating a <bean: nessage> tag to
display a value from the Struts resource bundle and enter key=", JDeveloper displays
a list of all valid keys in the resource bundle.

5.5 Struts Runtime Integration with the Oracle ADF Model Layer

In a Struts-based application integrated with the Oracle ADF model layer, data control
objects implemented for each type of business service expose model data to the
controller layer, as shown in the following diagram.

Integration of Controller and Model Layers in Qracle ADF

Controller Binding Context (ADF Model)
recjuest — -
Browser * ADF Binding Filter [«— Binding Container
response))
- Action Bindings
Data Action Business
. [> i
StrutsLifecycle Data Control 552':;;5:3
Value Bindings Object
j
O—

1. Atruntime, the HTTP request goes through a servlet filter, the Oracle ADF
Binding Filter, for preprocessing. The binding filter initializes the Oracle ADF
model binding context and notifies data control instances that they are about to
receive a request, allowing them to do any necessary pre-request setup.

The binding context contains a series of binding containers and data controls. The

binding container is a group of related control and iterator bindings used together
for a single page in a web application. A data control abstracts the implementation
of a business service, allowing the binding layer to access the data from all services
in a consistent way.

2. Next, control passes to the data action class, most of whose functionality is
encapsulated in an implementation of the Oracle ADF lifecycle. In a Struts-based
application, the lifecycle used is a subclass of St r ut sLi f ecycl e.

3. The Oracle ADF lifecycle:

= Calls the correct binding container needed for a web page and tells it to
prepare the data to be rendered

= Processes and validates any model updates submitted by the user
= Notifies the binding container when all model updates are complete

For more information about working with the model layer using Oracle ADE, see
Chapter 4, "Overview of the Oracle ADF Model Layer".

5-12 Oracle Application Development Framework Development Guidelines Manual

Data Pages and Data Actions in the Databound Struts Page Flow

5.6 Data Pages and Data Actions in the Databound Struts Page Flow

If you use ADF data controls in a page or page forward, the web page must either be
associated with a data action or it must be part of a data page. If you drag an ADF data
control from the Component Palette to a web page before associating it with an action
class, a dialog prompts you to choose a data page or data action in the current context.
You can also use the dialog to set a default choice for converting any page that needs
to be databound.

5.6.1 Working with Data Pages

When you use the Struts Page Flow Diagram to create a data page, JDeveloper updates
thestruts-config. xm file. For example, if you drag the data page icon to an
empty Page Flow Diagram and rename it / myPage, you get a data page icon with a
warning icon overlaid to show that the associated web page has not been created:

fyPage

At the same time JDeveloper creates the following entry in the st r ut s- confi g. xmi
file:

<acti on- mappi ngs>
<action path="/nyPage"
cl assName="oracl e. adf . control l er. struts. acti ons. Dat aActi onMappi ng"
type="oracl e.adf.control | er.struts. acti ons. Dat aForwar dAct i on"
name="Dat aFor ' par anet er =unknown" >
</ action>
</ act i on- mappi ngs>

The following table describes the attributes and subelements of the action mapping:

Attribute or

Element Description

action The <act i on> element describes a mapping from a request path to the
corresponding action class that is used to process the request.

pat h The name of the data page.

cl assName The fully qualified Java classname of the action mapping subclass to use
for this action mapping object. For an Oracle ADF Struts application, the
default is

oracl e.adf.controll er.struts. acti ons. Dat aActi onMappi ng.
This class determines which lifecycle class should be used, based on the
type of page to which the action forwards. For more information, see
Section 5.3.4, "Oracle ADF Data Action Mapping Class".

type Fully qualified Java classname of the action subclass that processes
requests for this action mapping. When you use a data page, the default
class name is
oracle.adf.control l er.struts. acti ons. Dat aFor war dAct i on

name Unique name of the form bean, if any, that is associated with this action
mapping. For a data page, the default form bean is Dat aFor m By
default, all data actions and data pages share a single form bean. For
more information, see Section 5.3.5, "Oracle ADF Data Form Bean".

par amet er General-purpose configuration parameter used to pass extra information
to the action object selected by this action mapping. When you specify the
associated web page, the value of this attribute changes from unknown to
the page name.

Overview of Oracle ADF Integration with Struts 5-13

Data Pages and Data Actions in the Databound Struts Page Flow

When you create the associated web page (nmyPage. j sp, in this example) in a Struts
application, the warning overlay disappears and the data page icon appears normal:

=

imyPage

At the same time, JDeveloper updates the action mapping in the
struts-config.xm file as shown in bold:

<acti on- mappi ngs>
<action path="/myPage"
cl assName="oracl e. adf. control | er. struts. actions. Dat aActi onMappi ng"
type="oracl e. adf . control | er.struts. actions. Dat aFor war dActi on"
name="Dat aForm' paranet er ="/ nyPage. j sp" >
<set-property property="nodel Ref erence" val ue="nyPageU Mdel "/>
</ action>
</ act i on- mappi ngs>

JDeveloper updates the value of the par anet er attribute in the action mapping to the
name of the associated web page file. In addition, JDeveloper adds a

<set - propert y> definition in the action with the property set to nodel Ref er ence
and the value set to the name of the binding definition (pageNaneUl Model). When
you add the first data control to the associated web page, JDeveloper also creates these
project files:

= A client binding definition file (myPageUl Model . xnl), which is specific to the
web page. JDeveloper creates a client binding definition file for each web page in
the project.

= A client project definition file (Dat aBi ndi ngs. cpx), which creates the Oracle
data controls registered with your application's business services. JDeveloper
creates only one client project definition file per project.

5.6.2 Working with Data Actions

5-14

When you use the Struts Page Flow Diagram to create a data action, JDeveloper
updates the st rut s- confi g. xm file. For example, if you drag the data action icon
to an empty Page Flow Diagram and rename it as shown here:

=

Imync?iun

JDeveloper creates the following entries in the st r ut s- conf i g. xmi file:

<f or m beans>
<f orm bean nane="Dat aFor nf
type="oracl e. adf.control | er.struts.forns. Bi ndi ngCont ai ner Acti onFor '/ >
</ f or m beans>
<acti on- mappi ngs>
<action path="/nyAction"
cl assName="or acl e. adf. control l er. struts. actions. Dat aActi onMappi ng"
type="oracle.adf.control |l er.struts. actions. Dat aActi on"
name="Dat aFor m'/ >
</acti on- mappi ngs>

Oracle Application Development Framework Development Guidelines Manual

Data Pages and Data Actions in the Databound Struts Page Flow

There are two main differences between this entry and the entry for the previously
described data page:

« Theaction typeisoracl e. adf . control | er. struts. acti ons. Dat aActi on.
» The action mapping for a data action does not use the par amet er attribute.

The data action does not have an associated web page, so you need to create a forward
that will redirect to the next page to be displayed. You can define the <f or war d>
element by dragging the Forward icon to the Page Flow Diagram. You can forward to
a data page, a page forward, a web page, or another data action. In this example, the
forward is to a web page, myPage. j sp:

SUCCESE B
%

imyAction imyPage.jsp

When you add the forward to the web page, JDeveloper updates the action mapping
for the data action as shown in bold:

<action path="/nyAction"
cl assName="or acl e. adf. control |l er.struts. actions. Dat aActi onMappi ng"
type="oracl e. adf.control | er.struts. actions. Dat aActi on"
name="Dat aFor ni' >
<set-property property="nodel Reference" val ue="nyPageU Model "/ >
<forward nanme="success" path="/nyPage.|sp"/>
</ action>

The following table describes the attributes and subelements of the complete action
mapping:

Attribute or

Element Description

action The <act i on> element describes a mapping from a request path to the
corresponding action class that is used to process the request.

Pat h The name of the data action.

cl assName The fully qualified Java classname of the action mapping subclass to use for

this action mapping object. For an Oracle ADF Struts application, the default
isoracle.adf.control | er.struts. acti ons. Dat aActi onMappi ng.
This class determines which lifecycle class should be used, based on the type
of page to which the action forwards. For more information, see Section 5.3.4,
"Oracle ADF Data Action Mapping Class".

Type Fully qualified Java classname of the action subclass that processes requests
for this action mapping. When you use a data action, the default classname is
oracl e. adf.control l er.struts. acti ons. Dat aActi on.

Narre Specifies the method name and initial value of an additional JavaBean
configuration property. When the object representing the surrounding
element is instantiated, the accessor for the indicated property is called and
passed the indicated value. In this case the property is set to
nodel Ref er ence and the value set to the name of the binding definition
(pageNameUl Model).

set-property Specifies the method name and initial value of an additional JavaBean
configuration property. When the object representing the surrounding
element is instantiated, the accessor for the indicated property is called and
passed the indicated value. In this case the property is set to
nodel Ref er ence and the value set to the name of the binding definition
(pageNameUl Model)

Overview of Oracle ADF Integration with Struts 5-15

Best Practices

Attribute or
Element Description

f orward The page or other resource to which the action forwards. In this case, the
resource is a JSP page, myPage. j sp.

For information about when to use a data page or data action, see Section 5.7.1, "When
to Use a Data Page or Data Action".

5.7 Best Practices

The integration of Oracle ADF with Struts provides you with several options for
simplifying application development, from working with individual events to
modifying behavior across a web application.

5.7.1 When to Use a Data Page or Data Action

The data page is the recommended component for adding an action that forwards to a
databound web page. Use a data page when:

= You have a data action that is forwarding directly to a web page. In the Page Flow
Diagram, a data page represents the combination of a data forward action class
instance, a forward transition, and a web page.

= You want to simplify a complex page flow diagram. Using the data page reduces
the number of elements in your page flow and makes complex application
diagrams easier to read.

Use a data action when:

= You need to perform multiple operations before rendering a web page (this
process is called chaining data actions). Use the data action to perform any
operations that do not forward directly to a web page. For example, the data
action in the following diagram sets the current row before forwarding to a data
page that prepares the data for the edit form on the next web page. In this
example, setting the current row requires a separate data action:

=t edi % success =
;—% - - %_
>

hrowseEmpPage IsetCurrency leditRowPage

Depending on the design of your application, you may also want to use a data action
that forwards to a separate page forward or page instead of using a data page. You
may consider this approach to be appropriate, for example, when you are forwarding
to a single page from multiple data actions. The page forward performs a simple
forward to a destination web page.

5-16 Oracle Application Development Framework Development Guidelines Manual

Best Practices

5.7.2 Adding Business Service Methods to a Data Action

You can use the Data Control Palette to drag methods onto data actions in your
databound Struts page flow. This option provides another way to add functionality to
your web application without subclassing the data action class. The design time
updates the action mapping for the data action like this:

<set-property property="nethodNane" val ue="M/PageU Mdel . Acti onNanme" />
<set-property property="resultLocation" val ue="${request Scope. met hodResul t}"/>
<set-property property="nunParans" val ue="1"/>

<set-property property="paramNanes[0]" val ue="${param paramNane0}"/>

At runtime, the lifecycle implemented in the data action executes the method defined
by the business service through the Oracle ADF data controls. For more information,
see step 8 in the lifecycle-handling table earlier in this chapter.

Note: There is a par amNanes[] property for each method
parameter. If the method has no parameters, the value of

nunPar ams is set to 0 and there are no par amNames properties set.
If you are using a custom method that requires parameters, you
must add the par anNanes properties using the Struts
Configuration Editor.

5.7.3 When to Subclass the DataAction or DataForwardAction Class

The integration of Oracle ADF with Struts is designed to minimize the need to
subclass the Dat aAct i on and Dat aFor war dAct i on classes. The execut e()
method is final in both classes. However, you may need to subclass when:

= You want to develop named events that are independent of the model layer, as
described in Section 5.3.3, "Named Events in Oracle ADF"

= You want to override the behavior of an existing action binding

= You want to change the behavior of one of the steps in the lifecycle (as described
in Section 5.3.2, "Oracle ADF Lifecycle") for a single action

The data action follows a general pattern of exposing the lifecycle methods and
delegates most of its functionality to the lifecycle class.

5.7.4 When to Use an Oracle ADF Lifecycle Plugin

For a Struts-based application, you can override the main lifecycle methods by
subclassing the Dat aAct i on or Dat aFor war dAct i on class. You must subclass the
lifecycle itself and register a lifecycle plugin when:

= You want to modify the lifecycle to perform certain behaviors across the
application

= You want to change the behavior of a method in the lifecycle subclass that cannot
be overwritten in the Dat aAct i on or Dat aFor war dAct i on class

Overview of Oracle ADF Integration with Struts 5-17

Best Practices

The data action follows a general pattern of exposing the lifecycle methods and
delegating most of its functionality to the lifecycle class (also known as the Decorator
Design Pattern). For example, handl eEr r or () follows this pattern, as do the lifecycle
methods described in Section 5.3.2, "Oracle ADF Lifecycle". However, some methods,
such as handl eEvent (), do not follow this pattern. When a method is not a step of
the lifecycle that is executed only once, you must subclass the lifecycle to change it.
There is a difference between the phases of the lifecycle and the individual operations
that each phase executes. handl eEvent () is in the second category because the
lifecycle calls it for each event, which means it may be called more than once. You may
want to customize the basic handl eEvent () logic for all events in your application,
to do something before, after, or instead of the default. You can override the

handl eEvent () method on the lifecycle class but not on the data action class. You
must create and register your own lifecycle implementation.

Modifying code once for all data actions in your application instead of overriding each
data action may also be an effective development strategy. JDeveloper includes a
Struts plugin implementation that allows you to specify a new Li f ecycl eFact ory
class so that you can create and use a lifecycle subclass. A Li f ecycl eFact ory class
implements St r ut sPagelLi f ecycl eFact ory, which is an abstract class.

To override the Struts lifecycle you need to specify the new Li f ecycl e class during
the data action configuration, because some of the lifecycle methods are used during
configuration. To specify the new class, you add a <pl ug- i n> element to the
struts-config. xm file. The plugin is a Struts mechanism that allows you to load
components dynamically at application startup.

The entry in the configuration file has the following syntax:

<plug-in
cl assName="or acl e. adf . control | er. struts. acti ons. PageLi f ecycl eFact or yPl ugi n" >
<set-property property="lifecycl eFactory"
val ue="nypackagel. nyStrutsLifecycl eFactory"/>
</plug-in>

The property is used to pass the name of the new Li f ecycl eFact ory class to the
application. A Li f ecycl eFact ory class implements the abstract class

St rut sPagelLi f ecycl eFact ory class. You must define the following method in the
class:

public StrutsPagelifecycle getPagelifecycle(String path)

See the javadoc for Def aul t St r ut sPageLi f ecycl eFact ory for an example.

5.7.5 Summary of Best Practices in Working with Oracle ADF/Struts Integration

If you want to... Then...

Create a custom method that accesses ~ Create a custom method in the business services
the ADF model layer. layer.

Create an action that prepares model Use a data page

data for display, forwards to a specific
databound page, and manages any
submissions from that page.

Create an action that executes a custom Use a data action.
method exposed by the business
service.

Override an existing method in the Subclass the data action.
action bindings.

5-18 Oracle Application Development Framework Development Guidelines Manual

Best Practices

If you want to... Then...

Create a custom event that does not Subclass the data action to create a named event.
access the ADF model layer

Use events to forward to a new page Use an event to define an action forward.
without subclassing the data action.

Create an operation that is called every = Subclass the data action or data forward action.
time a data action or data page is called

Modify lifecycle behavior across an Create a lifecycle plugin and register it
entire application (for example, to

modify how individual events are

handled globally).

Add extra properties to an action Subclass the data action mapping class.
mapping.

Overview of Oracle ADF Integration with Struts 5-19

Best Practices

5-20 Oracle Application Development Framework Development Guidelines Manual

S

Overview of Oracle ADF Data Binding in View
Technologies

Data binding in view technologies is the ability to create Ul components that are
bound to data in back-end business services. The Oracle Application Development
Framework (Oracle ADF) enables data binding through the objects of the Oracle ADF
model layer. These Oracle ADF binding objects are accessible to the web application
and Java client application at runtime, where they are instantiated by the data of the
business service and the metadata that defines how they will be rendered as Ul
components.

When the developer creates the view layer, the JDeveloper design time tools help to
simplify the task of creating a databound client. Without needing to write code, client
developers can assemble databound web pages and Java clients. The client-design task
is aided by the JDeveloper design time and its cooperation with the Oracle ADF model
layer.

This chapter provides an overview of the integration of Oracle ADF and various view
technologies.

6.1 Summary
= Section 6.2, "Role of the View Layer"

= Section 6.3, "JDeveloper Design Time Integration with the Oracle ADF Model
Layer"

= Section 6.3.1, "Overview of Data Control Palette Usage"
= Section 6.3.2, "Overview of the Data Control Business Objects"
= Section 6.3.3, "Overview of Oracle ADF Project Files"

= Section 6.4, "Web Application Runtime Integration with the Oracle ADF Model
Layer"

= Section 6.5, "JClient Application Runtime Integration with the Oracle ADF Model
Layer"

= Section 6.5.1, "About Data Binding in JClient"

« Section 6.5.2, "Generated JClient Containers"

= Section 6.5.3, "Process for Creating and Using the Panel Binding"
« Section 6.5.4, "About the Frame Class in JClient"

= Section 6.5.5, "About the Layout Panel in JClient"

Overview of Oracle ADF Data Binding in View Technologies 6-1

Role of the View Layer

« Section 6.5.6, "About Data Panels in JClient"

= Section 6.5.7, "About Control Binding in JClient"
« Section 6.6, "Best Practices"

= Section 6.6.1, "Customizing the Oracle ADF Iterator Binding for UI Access"

= Section 6.6.2, "Creating a Search Criteria Form Using Oracle ADF Find Mode"
= Section 6.7, "Summary of Ul Components in Oracle ADF Web Pages"

= Section 6.8, "Summary of Ul Components in Oracle ADF Java Clients"

6.2 Role of the View Layer

The view layer is that part of the J2EE application that end users of your application
interact with:

= For Web applications, the Ul is ultimately displayed as HTML rendered by a
browser, where the displayed data is pulled from business services in the model
layer.

« ForJava client applications, which run standalone, the UI consists of Swing
components, into which data from business services in the model layer is pushed.

Overall, the view layer for these applications is responsible for:

= Referencing the Oracle ADF bindings in the model layer through the Ul
components

= Rendering the data in the appropriate format for each Ul component to display

« Communicating with the controller layer to handle user interactions, including
editing data and navigating the page flow of the application

= Optionally, handling validation of data entered into the UI components (known as
client-side validation)

When you create J2EE applications in JDeveloper, the design time tools help to
simplify the task of creating a databound client. Without needing to write code, client
developers can assemble databound web pages and Java clients. The client-design task
is aided by the JDeveloper design time and its cooperation with the Oracle ADF model
layer. Without needing to understand the inner workings of the Oracle ADF model
layer, client developers can insert Ul components that access actions and data in
selected business services. The process for creating databound clients is the same in
JDeveloper for any of these supported client technologies:

= Generic JSP pages that use HTML elements and, optionally, JSP tags from JSP
custom tag libraries

= Web pages based on Oracle ADF UIX (the Oracle XML web presentation
framework available in JDeveloper)

= Java clients created with Swing components and extended by ADF JClient (the
Oracle Java client framework available in JDeveloper)

6-2 Oracle Application Development Framework Development Guidelines Manual

JDeveloper Design Time Integration with the Oracle ADF Model Layer

6.2.1 Differences Between JSP Pages and UIX XML Documents

UIX XML is an XML language for defining the user interface of a web application
using a rich set of Oracle ADF UIX components. A UIX XML document has the file
extension . ui X, and the file contains a declarative description of the UIX components
that define the layout, navigation, and content of a single web application page. At
runtime, the UIX servlet interprets the UIX XML documents and renders the
appropriate output for the browser or device that requested the page.

In JDeveloper you can use the UIX Visual Editor to visually create your UIX web pages
by adding and arranging UIX user interface components, and then test and run your
application. JDeveloper also provides wizards to help you build individual UIX pages,
and it provides UIX XML template (UIT) files for quicker development. Additionally,
because UIX is part of Oracle ADF, it supports data binding of diverse business
sources.

JavaServer Pages (JSP) technology is based on Java servlets and, like Java servlets, JSP

is a server-side technology. A key difference between JSP pages and servlets is that JSP
pages keep static page presentation and dynamic content generation separate. JSP web
page designers use:

« HTML tags to design and format the dynamically generated web page

= JSP standard tags or Java-based scriptlets to call other components that generate
the dynamic content on the page

= JSP tags from custom tag libraries that generate the dynamic content on the page

UIX JSP provides a tag library that invokes UIX components via a set of tags from a
JSP 1.2—compliant tag library. The JSP tags generate the HTML to render tabs, buttons,
tables, headers, and other layout and navigational components.

A JSP page has the extension . j sp. This extension notifies the web server that the
page should be processed by a JSP container. The JSP container interprets the JSP tags
and scriptlets, generates the content required, and sends the results back to the client
as an HTML or XML page.

JDeveloper provides data binding, tag insight, and other editing features for both
technologies.

Some of the key differences are:

= UIX XML exposes a larger set of functionality, as the UIX JSPs are a JSP interface to
a subset of the UIX UI components. The JSP tags implement only a subset of the
UIX elements and only a subset of the attributes.

« UIX XML provides more powerful templating mechanisms. You can create your
own templates in JDeveloper and then build your application pages based on
these templates.

6.3 JDeveloper Design Time Integration with the Oracle ADF Model Layer

Client developers use the Data Control Palette to create databound HTML elements
(for JSP pages), databound Oracle ADF UIX elements (for UIX XML pages), and
databound Swing UI components (for JClient panels). The Data Control Palette
comprises two selection lists:

= Hierarchical display of available business objects, methods, and data control
operations

= Dropdown list of appropriate visual elements that you can select for a given
business object and drop into your open client document

Overview of Oracle ADF Data Binding in View Technologies 6-3

JDeveloper Design Time Integration with the Oracle ADF Model Layer

Additionally, web application developers use the Data Control Palette to select
methods provided by the business services that can be dropped onto the data pages
and data actions of the Struts page flow.

6.3.1 Overview of Data Control Palette Usage

In the case of client documents, the hierarchical structure of the business services
displayed is determined by:

= Which business services you have registered with the data controls in your model
project. The palette displays a separate root node for each business service that
you register:

- Oracle Business Components application modules
— EJB session beans

- TopLink mappings-based beans

— Standard JavaBeans classes

— Web services

= Abean design time description that is generated in an . xrm definition file when
you create the data control for the bean. The bean's XML definition classifies the
bean's property accessors and methods into various categories described below.

Note: In the case of Oracle ADF BC, the Oracle ADF BC
application modules in your model project are automatically
published as a data control. Their XML metadata file already
contains the information needed by the Oracle ADF BC data control
and no additional XML definition files are required when you
create the model project. In the case of web services, no bean is
involved and the XML definition describes only methods exposed
by the web service.

At design time, the Data Control Palette provides the first step to lay out the client user
interface and prepare the Oracle ADF bindings. The task of selecting a business object,
choosing a visual element for the service, and dropping it into the page generates these
items:

= Avisual element, which is defined by source code to access the bindings in the
client document (HTML and tags for JSP pages, UIX components for UIX XML
pages, or Java method calls for JClient-generated panels and forms).

= Abinding container when one does not yet exist for the page. The binding
container is an XML file that appears in the directory corresponding to the
package currently set to the project's default package. (To modify the default
package, select the project node in the Application Navigator and display the
Property Inspector, where you can set the def aul t Package property.)

= An appropriate binding definition to support the visual element. The binding
definition is added to the binding container.

Note that, as an alternative, you can also create bindings in the JDeveloper Structure
window, which you later reference in your source code, without dragging and
dropping from the Data Control Palette.

6-4 Oracle Application Development Framework Development Guidelines Manual

JDeveloper Design Time Integration with the Oracle ADF Model Layer

The code that the Data Control Palette generates in your client document and the
bindings that it creates depend on:

= The type of document displayed in the visual editor (must be a JSP page, UIX
page, or JClient-generated panel or form)

= The combination of business service and visual element you select and drop into
the open document

After you have completed laying out the client document with the Data Control
Palette, you can view and customize the individual binding definitions.

6.3.2 Overview of the Data Control Business Objects

The root node of the Data Control Palette represents the data control registered for the
business service. While the data control itself is not an item you can select, you may
select among the operations it supports. All data control-specific operations appear in
the Operations folder of the root node. You can work with this type of operation when
you want to perform an operation that applies across the Oracle ADF binding context,
such as the commit and rollback operations provided by the data control for Oracle
ADF BC.

Proceeding down the hierarchy from the root data control node, the palette represents
bean-based business services as either:

= Attributes, such as bean properties, which can define simple scalar value objects,
structured objects (beans), or collections

OR

= Operations, such as bean methods, which may or may not return a value or take
method parameters

An exception to this hierarchy is the web services, for which the Data Control Palette
displays only operations.

In the Data Control Palette, attributes and operations are represented by the following
specific icons. Note that icons which appear more than once represent various accessor
return types and may be supported by a different set of visual elements, as shown in

the following table:
Icon Description Visual Element Choices
EE An attribute that represents a scalar The full list of attribute-bound visual
value (such as simple Integer or String elements, such as text input, checkbox,
objects). choice list, and radio buttons. These
choices vary depending on the document
type you create.
An accessor attribute that represents a The full list of collection-bound visual
E : oot
collection of scalar values (such as elements, such as table, graph, navigation
ones that provide an array of Integers buttons, and forms. These choices vary
or a list of Strings). depending on the document type you
create.
= An accessor attribute that represents a The full list of collection-bound visual
collection of structured objects that elements, such as table, graph, navigation
contain attributes and operations (such buttons, and forms. These choices vary
as a collection of employee objects) depending on the document type you
create.

Overview of Oracle ADF Data Binding in View Technologies 6-5

JDeveloper Design Time Integration with the Oracle ADF Model Layer

Icon

Description

Visual Element Choices

An accessor attribute that represents a
collection of structured objects that
contain only operations and no
attributes (such as a collection of
service beans).

Read-only dynamic table and navigation
buttons for JSP, more choices for UIX, and
the full list of collection-bound controls for
JClient.

An accessor attribute that returns a
structured object that contains
attributes and operations (such as an
address object).

The full list of collection-bound visual
elements, such as table, graph, navigation
buttons, and forms. These choices vary
depending on the document type you
create.

An accessor attribute that returns a
structured object that contains only
operations and no attributes (such as a
service bean).

Read-only dynamic table and navigation
buttons for JSP, more choices for UIX, and
the full list of collection-bound controls for
JClient.

An operation which may or may not
take parameter values (such as a Java
method on a bean).

Button or a button with form (JSP), submit
button (UIX), button (JClient).

Built-in operations (such as navigate to

row and execute).

Button or a button with form (JSP), submit
button (UIX), button (JClient).

Built-in operations to pass the primary
key value of a row set (such as set
current row with key)

Button or a button with form (JSP), submit
button (UIX), button (JClient).

In the Data Control Palette, operations that specify return values are represented by
the following specific icons. The specific object returned determines which visual
elements are available as shown in the following table:

Icon

Description

Visual Element Choices

- HOE

An operation that returns a
scalar value (such as simple

Integer or String objects).

Show result read-only visual element
for JSP and UIX. The full list of
attribute-bound controls for JClient

.'-¢

An operation that returns a
collection of scalar values (such
as ones that provide an array of
Integers or a list of Strings).

The full list of collection-bound
visual elements, such as table, graph,
navigation buttons, and forms. These
choices vary depending on the
document type you create.

.‘-‘.

An operation that returns a
collection of structured objects

that contain attributes and

operations (such as a collection

of employee objects).

The full list of collection-bound
visual elements, such as table, graph,
navigation buttons, and forms. These
choices vary depending on the
document type you create.

.'-¢

An operation that returns a
collection of structured objects

Read-only dynamic table and
navigation buttons for JSP, more

that contain only operations and choices for UIX, and the full list of

no attributes (such as a

collection of service beans).

collection-bound controls for JClient.

.‘-‘.

An operation that returns a
structured object that contains

only operations and no

attributes (such as a service

bean).

Read-only dynamic table and
navigation buttons for JSP, more
choices for UIX, and the full list of
collection-bound controls for JClient.

6-6 Oracle Application Development Framework Development Guidelines Manual

JDeveloper Design Time Integration with the Oracle ADF Model Layer

Icon Description Visual Element Choices

' An operation that returns a The full list of collection-bound
’ structured object that contains visual elements, such as table, graph,
attributes and operations (such navigation buttons, and forms. These
as an address object). choices vary depending on the
document type you create.

Note that, depending on the business service definition, method returns which appear
in the Data Control Palette may be redundant with the data control attributes defined
for the business service. When a choice is available, it is preferable to select the
attribute and accessor nodes rather than method returns. Only data control attributes
and accessors provide full support for the Oracle ADF bindings. Iterator bindings, for
example, are not available for method returns.

6.3.3 Overview of Oracle ADF Project Files

When you build an Oracle ADF-based application using the JDeveloper design time
tools, JDeveloper generates project files specific to Oracle ADEF, as shown in the
following figure:

Qracle Application Development Framewerk [ADF)
Design Time Scurce Files

d

ADF client project files
java .dox xml —
ADF Medel project files
Model data Eean
ar control definition file

description file

jsp .CpxX.
Client data
or binding

description file

uix xml
Client binding
container
definition files
Business
ADF client ADF data services
source files binding files definition files

6.3.3.1 Files in the Oracle ADF Model Project

The Dat aCont r ol s. dcx file is created when you register data controls on the
business services. Note that this file is not generated for the Oracle ADF Business
Components and Oracle ADF TopLink Mappings data controls. In those cases, the
data control obtains the metadata directly from the generated services.

The Dat aCont r ol s. dcx file specifies the factory classes for a bean registered as an
Oracle ADF data control. In the case of EJB, web services, and bean-based data
controls, you can edit this file in the Property Inspector to add or remove parameters
and to alter data control settings.

Overview of Oracle ADF Data Binding in View Technologies 6-7

JDeveloper Design Time Integration with the Oracle ADF Model Layer

Various . xm files are created when you register a bean (for example, an EJB session
bean) as an Oracle ADF data control. The definition file specifies the bean's available
attribute, accessors, and collections available for use by the client application. You will
modify this file only when an accessor method returns a collection. In this case, it is
necessary to specify the return type. Note that in the case of Oracle ADF Business
Components, all accessor return types are known and you do not need to manually
perform this step.

6.3.3.1.1 About the DataControls.dcx File Syntax In the case of bean-based and web
service-based business services, the Dat aCont r ol s. dcx file appears in the

!/ src/ package directory of the model project folder. The Application Navigator
displays the file in the model package of the Application Sources folder. When you
double-click the file node, the data control description appears in the XML code editor.
To edit the data control parameters, use the Property Inspector and select the desired
parameter in the Structure window.

The following code describes the syntax for a combination of Oracle ADF Business
Services, JavaBeans, and web service data controls:

<Dat aCont r ol Confi gs
i d="Dat aControl s"
xm ns="http://xn ns.oracl e.comadfni' >
<Cont ent s>
<Dat aCont r ol
i d="0C assNaneDat aControl | AppMdul eDataControl |
PX\WebSer vi ceNaneDat aCont r ol "

<I-- Indicates for the ADF design tine the class to use to represent
the data control on the Data Control Palette. -->
SubType="DCBC4J | DCJlavaBean | DCWbService"

<I-- Indicates whether the data control for the business service
supports query-by-exanple. This enables the find operation choice
inthe Data Control Palette for this data control and the
associ ated services. Not used by ADF. -->
Suppor t sFi ndMode="true | fal se"

<I'-- Indicates whether the data control for the business service
supports transaction semantics. This enables conmt and roll back
operations on the data control. -->

SupportsTransactions="true | fal se"
<I-- Oacle ADF Busi ness Conponents definitions, including the
package, the bc4j.xcfg configuration, and the factory class. -->
Package="nodel "
Confi gurati on="AppMdul eLocal "
Fact oryd ass="oracl e. adf . nodel . bc4j . Dat aCont r ol Fact oryl npl "

<l-- Standard Bean definitions, including the factory class,
the XML definition file, and the bean class file. -->
Fact oryd ass="or acl e. adf . nodel . generi c. Dat aCont r ol Fact oryl npl "
Definition="nodel . ass1"
BeanC ass="nodel . d ass1" >
</ Dat aControl >
</ Cont ent s>
</ Dat aCont r ol Confi gs>

6-8 Oracle Application Development Framework Development Guidelines Manual

JDeveloper Design Time Integration with the Oracle ADF Model Layer

6.3.3.2 Files in the ViewController Project

Various . j Sp, . ui X, or . j ava files are the presentation documents of the client
application. You lay out the Ul in an Oracle ADF application using a visual editor and
the Data Control Palette. When you insert a databound UI component into your
document, the page will contain binding expressions that access the Oracle ADF
binding objects at runtime. You can edit the binding expressions directly in the source
code in order to specify runtime behavior using the available properties of the Ul
component's binding object.

The Dat aBi ndi ngs. cpx file is created the first time you open a web page from the
Struts Page Flow Diagram in the visual editor. The . cpx file defines the Oracle ADF
binding context for the entire application. The . cpx file provides the metadata from
which the Oracle ADF binding objects are created at runtime. The binding context
provides access to the bindings across the entire application. You can edit this file in
the Property Inspector to add or remove parameters and to alter the binding container
settings.

The pageNanmeUl Model . xim files are created each time you design a new web page
or JClient panel using the Data Control Palette and a visual editor. These XML files
define the Oracle ADF binding container for each presentation document in the client
application. The binding container provides access to the bindings within the page.
Therefore, you will have one XML file for each databound web page or JClient panel.
You may need to edit the binding definitions in this file when you remove binding
expressions from your presentation documents.

Note: You cannot rename the pageNaneUl Model . xii file in
JDeveloper, but you can rename the file outside of JDeveloper in
your MyWor k/ Vi ewCont rol | er/ src/ vi ewfolder. If you do
rename the pageNameUl Mbdel . xml file, you must also update the
Dat aBi ndi ngs. cpx file references in the <Cont ai nee>i d and
Ful | Name attributes.

6.3.3.2.1 About the UIModel.xml File Syntax The Ul Model . xm file appears in the

/ src/ vi ewdirectory of the view-controller project folder. The Application Navigator
displays the file in the view package of the Application Sources folder. When you
double-click the file node, the binding container description appears in the XML Code
Editor. To edit the binding container parameters, use the Property Inspector and select
the desired parameter in the Structure window.

Overview of Oracle ADF Data Binding in View Technologies 6-9

JDeveloper Design Time Integration with the Oracle ADF Model Layer

The following syntax was generated for a web page that accesses business service
objects MyAt tri but el, MyAttri but e2, and MyDat aCol | ecti onl t er at or,
through their corresponding binding objects:

<DCCont ai ner
i d="PageNameU Model "
xm ns="http://xn ns. oracl e. conl adf nf
Package="vi ew'

<I-- Indicates whether find mode should be enabled for the page. -->
Fi ndMbde="fal se | true"

<I-- Indicates whether to check the currency of the bound collection.
This ensures that row updates will be applied to the correct row. -->
Enabl eTokenVal i dation="true | fal se" >

<Contents >
<DCl terat or
i d="MDat aCol | ectionllterator"
Bi nds="Busi nessServi ceDat aControl . M/Dat aCol | ecti on"
<I-- Indicates the nunber of rows to display frombound collection. -->
RangeSi ze="10"
</DCl terator>
<DCCont rol
i d="MyBusi nessServi ceName"
Subt ype="DCBi ndi ngType"
I terBi ndi ng="MDataCol | ectionllterator" >
<AttrNames>
<Item Val ue="MWAttributel" />
<Item Val ue="MWAttribute2" />
</ AttrNanes>
</ DCCont r ol >
</ DCCont ai ner >

6.3.3.2.2 About the DataBindings.cpx File Syntax The Dat aBi ndi ngs. cpx file appears in
the / sr ¢ directory of the view-controller project folder. The Application Navigator
displays the file in the Application Sources folder. When you double-click the file
node, the binding context description appears in the XML Code Editor. To edit the
binding context parameters, use the Property Inspector and select the desired
parameter in the Structure window.

The following describes the syntax for a combination of Oracle ADF Business Services,
JavaBeans, and web service data controls:

<JboPr oj ect
i d="Dat aBi ndi ngs"
xm ns="http://xn ns. oracl e. con adf nf

<I-- Indicates that the conponents of this project may appear
in separate XM_ files. Not used by ADF. -->
Separ at eXM_Fi | es="f al se"

<I-- Used by JOient applications to locate a bcdj.xcfg file. For backwards
compatibility. -->
Package=""

<I-- Indicates whether the ADF bindings use generic classes or

JCient-specific classes. -->
CientType="Ceneric | Jdient" >

6-10 Oracle Application Development Framework Development Guidelines Manual

JDeveloper Design Time Integration with the Oracle ADF Model Layer

<Cont ent s>
<Dat aCont r ol
i d="C assNanmeDat aControl | AppMdul eDat aControl |
PXWebSer vi ceNaneDat aCont rol "

<I-- Indicates for the ADF design time the class to use to
represent the data control on the Data Control Palette. -->
Subt ype="DCBC4J | DClavaBean | DCWbService"

<l-- Indicates whether the data control for the business service
supports query-by-exanple. This enables the find operation
choice in the Data Control Palette for this data control and
the associ ated services. Not used by ADF. -->
Suppor t sFi ndvbde="true | fal se"

<I-- Indicates whether the data control for the business service
supports transaction semantics. This enables conmt and
rol I back operations on the data control. -->
SupportsTransactions="true | fal se"

<I-- Oacle ADF Busi ness Conponents definitions, including the
package, the bc4j.xcfg configuration, and the factory
class.-->
Package="nodel "
Confi gurati on="AppModul eLocal " >
Fact oryd ass="oracl e. adf . nodel . bc4j . Dat aCont r ol Fact oryl npl "

<l-- Standard Bean definitions, including the factory class,
the XML definition file, and the bean class file. -->
Fact oryd ass="or acl e. adf . nodel . generi c. Dat aCont r ol Fact oryl npl "
Definition="nodel . ass1"
BeanC ass="nodel . d ass1" >

<I-- Indicates whether the Application Mdule synchronization wll
use Batch node or |mmediate node. -->
<Paraneters >
<Par anet er
name="Sync"
val ue="Batch" >
</ Par anet er >
</ Par anet er s>
</ Dat aCont r ol >

<I'-- References the binding containers to create fromthe U Model
definition files. This allows the .cpx file to create the binding
context for the application at runtine. -->
<Cont ai nee
i d="My/PagelU Mdel "
bj ect Type="Bi ndi ngCont ai ner Ref er ence"
Ful | Nane="vi ew. MyPagelUl Model " >
</ Cont ai nee>
<Cont ai nee
i d="MyPage2Ul Model "
bj ect Type="Bi ndi ngCont ai ner Ref er ence"
Ful | Nane="vi ew. MyPage2Ul Model " >
</ Cont ai nee>

</ Cont ent s>
</ JboPr oj ect >

Overview of Oracle ADF Data Binding in View Technologies 6-11

Web Application Runtime Integration with the Oracle ADF Model Layer

6.4 Web Application Runtime Integration with the Oracle ADF Model

Layer

A web application that relies on Oracle ADF model objects to perform data binding to
a back-end business service involves the interaction of several Oracle ADF-specific
components with the page's Request object. Initially, when the application is run, an
ADF-specific servlet filter specified in the application's web. xni file is executed. The
Oracle ADF filter, an instance of

oracl e. adf . nodel . servl et. ADFBi ndi ngFi | t er, reads the metadata of the
Dat aBi ndi ngs. cpx file and creates the Oracle ADF data binding objects. Next, the
page lifecycle object, which is an implementation of the

oracle. adf.controller.lifecycle. Lifecycl e interface, intervenes to place
the Oracle ADF model objects on the Request object of the page. The Oracle ADF
model objects define the binding context for the web application and become
accessible through a bi ndi ngs namespace using expression language (EL) syntax in
the web page like this:

${ bi ndi ngs. SoneBi ndi ngCont ai ner. someBi ndi ng. i nput Val ue}

This expression refers to the current value of the binding named sonmeBi ndi ng in the
SomeBi ndi ngCont ai ner binding container in the Oracle ADF model layer binding
context. The bi ndi ngs namespace is defined in the web page when you drop any
data control-bound Ul component from the Data Control Palette into the page. This
namespace makes the binding context accessible through EL expressions, where it is
identified as bi ndi ngs in the expression.

In order to render the data, a JSP or UIX page relies on tags in the Core JSTL tag library
which support the use of a standard expression language for referencing beans and
collections. For example, the rows of the Employee range binding model object are
rendered with this fragment of tags and expressions:

<c:forEach var="x" itens="${bi ndi ngs. Enpl oyees. rangeSet}" >
<tr>
<td><c:out val ue="${x. Enpno}"/></td>
<td><c:out val ue="${x. Enane}"/></td>
<td><c:out value="${x.Sal}"/></td>
</[tr>
</c:forEach>

In this example, the r angeSet property of the Employees range binding exposes the
rows in the current range of the Oracle ADF model object as a collection. The var =" x'
attribute of the <c: f or Each> tag assigns a looping variable named x and then the
tags inside the loop refer to the values of the attributes in each row bean through the
EL dot notation. The JSTL specification provides this object with the property i ndex
that tells us which row of the iteration we are on.

Note: For additional details about how the Oracle ADF model
objects manage the user's interaction with the data, see Chapter 5,
"Overview of Oracle ADF Integration with Struts". Understanding
the Oracle ADF lifecycle object, as explained in that chapter,
provides the rest of the story about how the objects of the controller
layer can validate model changes and process custom events,
before pushing the data to the page for display.

6-12 Oracle Application Development Framework Development Guidelines Manual

JClient Application Runtime Integration with the Oracle ADF Model Layer

6.5 JClient Application Runtime Integration with the Oracle ADF Model

Layer

In an Oracle ADF JClient application, data binding between the Swing controls and the
business services' data sources relies on the creation of a set of JClient objects that
closely resemble the UI containers used to assemble the JClient forms. You can see
these containers and their JClient-specific code when you use the JClient Form wizard
to generate a complete application. For example, assuming a master-detail type form,
based on a Dept and Emp view object, the wizard would generate the following
classes:

« FrameDept Vi enEmpVi ewl extends JO i ent Fr ame (a dummy implementation
of the JA i ent Panel interface)

= MDPanel Dept Vi enEnpVi ewl extends JPanel and implements JC i ent Panel
= Panel Dept Vi ewextends JPanel and implements JO i ent Panel
= Panel EnpVi ewl extends JPanel and implements JO i ent Panel

where JPanel is a Swing class, and JCl i ent Fr ame and JCl i ent Panel are part of
JClient and constitute your application's data browsing panels.

6.5.1 About Data Binding in JClient

Data binding in JClient is the ability to create Swing containers and components that
are bound to data in back-end business services. To enable data binding, JClient
provides a small API that works with the Oracle ADF model layer. The API is exposed
in the application source code through a combination of JClient bootstrap code:

« Calll oadCpx() toload the application metadata (specified in the
Dat aBi ndi ngs. cpx file), which specifies a connection to the business service
implementation instance (for example, a Business Components application
module instance) through the Oracle ADF data control and the Oracle ADF
binding context.

« Call set Bi ndi ngCont ext () to make the Oracle ADF binding context available
to the frame or panel.

« Callcreat ePanel Bi ndi ng() to create an object that will access the business
service's contained data collections through Swing component models.

« Call bi ndUl Control () on the panel binding to set the Oracle ADF model for the
individual components of the JClient form or panel.

The ADF binding context, established in the bootstrap code of the root JClient frame, is
shared among subsequent called JClient panels and sets the transactional context and
the environment for the application's classes. The panel binding itself is created from
the metadata of the Ul Model . xnl file, which exposes a subset of the data controls
available in the ADF binding context:

= If you want to create independent branches of the business services views, then
your application should open a frame that sets a new panel binding.

« If you want to maintain the same view along a continuous branch of your
application (say a master and detail branch, for example), then secondary
containers all "share" the panel binding object created by the initial frame.

Overview of Oracle ADF Data Binding in View Technologies 6-13

JClient Application Runtime Integration with the Oracle ADF Model Layer

6.5.2 Generated JClient Containers

The easiest way to create databound containers is to use the JClient wizards (see the
Swing/JClient for Oracle ADF folder in the JDeveloper New Gallery). Specifically, if
you use these two JClient wizards, then the source code will contain the bootstrap
code and constructors needed to create the panel binding;:

= Use the Create JClient Empty Form wizard to generate an empty frame that creates
a JClient panel binding with a connection to the business service used by your
application, for example ADF Business Components.

= Use the Create JClient Empty Panel wizard to generate an empty panel with
constructors to create a new panel binding or to share one from its parent frame.

An additional benefit to using these two wizards is their support for easy
drag-and-drop Ul design within JDeveloper. Because they are generated with the
bootstrap code for a specific data control object (which contains the business service's
collections, structured objects, attributes, and methods), all of the Swing components
that you insert from the Data Control Palette in JDeveloper will have access to any
business service that the data control object contains.

6.5.2.1 Standard Java Containers

If you were to start with a standard frame or panel (one generated without using the
JClient wizards) that you want to enable a JClient data binding for, you can add the
appropriate JClient bootstrap code to the main frame and then handle the panel
binding in your secondary windows this way:

= If you want to share the panel binding with the parent frame:

Busi nessConpVi ewNarre(get Panel Bi ndi ng());
frame.setVisible(true);

= If you want the new frame to define its own panel binding:

Busi nessConpVi ewNane(new
(JUPanel Bi ndi ng(get Panel Bi ndi ng() . get Appl i cati onNane(), null));
frame.setVisible(true);

The first call will create the frame object and set the panel binding. The second call
makes the frame visible.

6.5.2.2 How JClient Preserves the Data Context Between Data Panels

The JClientPanel interface implemented by JClientFrame or JPanel permits your
JClient application to:

= Maintain a consistent data context between the databound panels (also known as
chaining between data panels)

= Access data through databound Swing controls

During design time, each data browsing panel you add to the JClient application gets
its context for marshaling interactions between the Ul controls and the business
service's row set iterator from the panel binding object created in the frame or
containing panel (such as the master-detail layout panel). The capability in JClient to
chain data browsing panels is provided without the need to write additional code. For
example, the data browsing panels generated by the wizard, Panel Dept Vi ewand
Panel EnpVi ewl, share the same data context through an instance of a panel binding
(JUPanel Bi ndi ng) when each JPanel implements the set Panel Bi ndi ng() and
get Panel Bi ndi ng() methods of the JC i ent Panel interface.

6-14 Oracle Application Development Framework Development Guidelines Manual

JClient Application Runtime Integration with the Oracle ADF Model Layer

Once you have a frame or panel that creates this panel binding, JClient permits you to
assemble the application by adding new data browsing panels that either share the
existing panel binding object or create a new one.

Then you can use the Data Control Palette in JDeveloper to add databound controls
one by one to the data panel. At the level of the Swing component, this sets the data
binding by specifying a JClient control model on the control's document or model
property. At runtime, each control in the data panel becomes databound through the
panel binding object as an argument to the control's set Mbdel () or set Docunent ()
method.

6.5.3 Process for Creating and Using the Panel Binding

To understand how the panel binding is created and used by the databound panels,
consider what happens when you run the application, starting with the JClient frame,
and the following JClient code is executed:

1. The mai n() method bootstraps the application. It starts a binding context and
loads the Oracle ADF data control, based on entries in the Dat aBi ndi ngs. cpx
file. Then it passes the binding context with initialized Oracle ADF model objects
to the panel binding to create the Oracle ADF data bindings.

2. The frame is initialized (Fr ameDept Vi ewEnpVi ewl, in the example above)
through a constructor that takes an application object. Initialization of the frame
results in a panel binding object (JUPanel Bi ndi ng), based on an Oracle ADF
model definition that may have components that are bound to data from more
than one data control. The creation of the panel binding is an important part of the
JClient functionality, which enables data binding for Swing components and
chaining of data panels.

3. The frame or applet class initializes a layout panel
(MDPanel Dept Vi ewEnpVi ewl, in the example above) and sets the panel binding
on the new layout panel, using the set Bi ndi ngCont ext () method.

4. In the layout panel'sj bl ni t () method, the data browsing (children) panels are
created. For this, JClient uses the shared binding context for binding the child data
panels (Panel Dept Vi ewand Panel EnpVi ewl, in the example above).

5. A control-to-attribute data binding occurs using the control's specified JClient
model. (This binding information is stored in the binding container XML
metadata.)

6. The control binding handles events to populate and update data for the UI control.

Overview of Oracle ADF Data Binding in View Technologies 6-15

JClient Application Runtime Integration with the Oracle ADF Model Layer

6.5.4 About the Frame Class in JClient

6.5.4.1 Application Bootstrap

When you select the frame class in the navigator and choose Run, the mai n() method
"bootstraps" the application. It starts a binding context and loads data controls, based
on entries in the Dat aBi ndi ngs. cpx file. Then it passes the binding context with
initialized data controls to the panel binding to create the Oracle ADF data bindings.

The following code shows the bootstrap code created by the Create Form wizard,
using selected columns from the Employees and Departments tables from the HR
schema:

/'l bootstrap application

JUMet aChj ect Manager . set BaseErr or Handl er (new JUErr or Handl er Dl g()) ;

/1 Lookup the *.cpx file and create all data controls listed in this file.
JUMet aCbj ect Manager nmgr = JUMet aChj ect Manager . get JUMb() ;

/] Use the definition classes provided by JAient. Change only if you do not
want to use custom Def Ol asses.

mor. set JA i ent Def Factory(nul |);
/] Create a new binding context that extends java.util.Hashtable.
Bi ndi ngContext ctx = new Bindi ngContext();

/] Get user connection information if available. If not, display |ogon dialog.

ctx. put (Dat aCont r ol Fact ory. APP_PARAM ENV_I NFO, new JUEnvI nf oProvi der());
/1 Set locale to the default l|ocale of the JVM

ctx. set Local eCont ext (new Def Local eCont ext (nul l));
/] Load data binding container data binding file.

HashMap map = new HashMap(4); map. put (Dat aControl Fact ory. APP_PARAVS_BI NDI NG
_CONTEXT, ctx);

mor . | oadCpx(" Dat aBi ndi ngs. cpx", nap);

/1 Get handle to the Business Conmponents application modul e.

DCDat aControl app = (DCDat aControl)ctx. get("mdel _AppModul eDat aControl ");
app. set O i ent App(DCDat aControl . JCLI ENT) ;

/] Despite the following line of code, attribute sets and fetches are normally
Il performed in one batch operation. This requires only one network round

[l trip. Attributes that aren't needed are not |oaded to the client. The code
/1 line belowis added only when using the JOient Formw zard. Declaratively
Il creating the frame, starting with an enpty formwi zard does not add the

/] follow ng lines.

app. get Appl i cati onModul e().fetchAttributeProperties(new String[]
{"DepartmentsViewl", "EnployeesViewd"}, new String[][] {{"Departnentld",
"Department Nane" }, {"Enployeeld", "FirstName", "LastNanme" "Departrmentld" }},
null);

6-16 Oracle Application Development Framework Development Guidelines Manual

JClient Application Runtime Integration with the Oracle ADF Model Layer

[l Initialize application root class.

For mDepar t ment sVi ewlEnpl oyeesVi ew3 frane = new
For mDepar t ment sVi ewlEnpl oyeesVi ew3() ;

/] Set binding context to the frane.

frame. set Bi ndi ngCont ext (ctx);

frame. set Def aul t 0 oseQper ati on(JFrame. DO_NOTHI NG_ON_CLOSE) ;

Di nensi on screenSi ze = Tool kit. getDefaul t Tool kit (). getScreenSi ze();
Di mensi on frameSize = frane. getSi ze();

6.5.4.2 Frame Initialization

The frame is initialized by its constructor, which does not expect any arguments by
default. The binding context of the application is passed to the
set Bi ndi ngCont ext () method of the frame.

Initialization of the frame results in a panel binding object (JUPanel Bi ndi ng) based
on an Oracle ADF model definition that may have components that are bound to data
from more than one data control. The creation of the panel binding is an important
part of the JClient functionality, which enables data binding for Swing components
and chaining of data panels.

After you lay out the data panel or form, you may improve the performance of your
JClient application by defining the f et chAt t ri but ePr operti es() method in your
form. This will ensure that your form performs in batch mode to fetch attribute values.

6.5.5 About the Layout Panel in JClient

When you use the Create JClient Form wizard to generate a JClient application with
master and detail panels based on an Oracle ADF Business Components data model,
the wizard generates a container panel within a JClient frame. This panel is known as
the layout panel because it groups several data panels together. In addition to
functioning as a UI container for one or more data browsing panels, the layout panel is
able to maintain the data context for the contained data panels through its shared
binding context.

Note: While the layout panel is generated by the Create JClient
Form wizard, it is not an essential part of the JClient application. It
is described in this topic primarily to demonstrate how the JClient
application maintains a data context between data browsing panels
through a shared binding context.

Overview of Oracle ADF Data Binding in View Technologies 6-17

JClient Application Runtime Integration with the Oracle ADF Model Layer

The binding context from the application frame can be passed to its contained JClient
panels by a call to the panel's set Bi ndi ngCont ext () method:

/] get the binding context fromthe frame

Bi ndi ngContext _bctx = panel Bi ndi ng. get Bi ndi ngCont ext ();
/] pass the context to the first child panel

dat aPanel . set Bi ndi ngCont ext (_bct x) ;
/lalternatively you can use

dat aPanel . set Bi ndi ngCont ext (panel Bi ndi ng. get Bi ndi ngContext());

6.5.6 About Data Panels in JClient

A data browsing panel contains controls through which the user can view and edit
data. Thus, it has a set of controls declared and instantiated as fields. The data
browsing panel receives its panel binding from the parent frame or panel (through a
set Bi ndi ngCont ext () call):

panel . set Bi ndi ngCont ext (panel Bi ndi ng. get Bi ndi ngCont ext ());

After the parent container creates the data browsing panel and its panel binding,
j blnit() iscalled.In thej bl ni t () method, the control is bound to attributes.
Examine the following code:

t ext Fi el dDept Nane. set Docunent ((Docunent) panel Bi ndi ng. bi ndUl Cont r ol
(" Depart nent Nane, "nDepartnent Nane"));

In the above code line, mDepar t ment Nane is a JText Fi el d component that is
bound to the Depar t ment Nane attribute of the underlying business service, where
the identifier Depar t ment Narme is a reference to a definition in the Ul Model . xmi file
(the file defines the binding container). The binding container keeps a list of iterator
bindings. Each iterator binding specifies the view object instance and (optionally) the
row set iterator.

Thus, at runtime when set Docurnent () is called, JClient looks for a control binding
by the specified name (Depar t ment Nane). If one is found in the binding context for
the form, JClient uses that control binding's associated iterator binding to access the
value.

6-18 Oracle Application Development Framework Development Guidelines Manual

Best Practices

6.5.7 About Control Binding in JClient

6.5.7.1 Populating Controls with Data

After data browsing panels are initialized, the layout panel calls
execut el f Needed() on the panel binding to execute the query on the Business
Components data source.

This execut el f Needed() method determines whether the query had been executed
on the view object, and if not, the method calls execut eQuer y() on it. This executed
query brings data from the database into the cache and causes the Oracle ADF
Business Components row set listener events to fire. The first among these would be
the RowSet Li st ener . rangeRef r eshed event. This event is captured by the
iterator binding (because it implements RowSet Li st ener and has registered itself as
a listener). It retrieves the rows of the range and calls updat eVal uesFr omRows() on
the control binding. The control binding takes the data out from the rows and assigns
them to the controls using the Swing API. As a result, the Swing API updates the panel
UI with the data.

6.5.7.2 Updating Data Through Controls

The user's interaction with a JClient-bound control may cause the Oracle ADF
Business Components to update the data. For example, in the case of the text field

(t ext Fi el dDnane), if the user edits the text field's content and leaves the control
(generating f ocusLost event), JClient is notified of the event. As a result, JClient will
retrieve the updated data from the control and call set At t ri but e() on the row.

6.6 Best Practices

6.6.1 Customizing the Oracle ADF Iterator Binding for Ul Access

You can set the number of data objects in a range to fetch from the bound data
collection when you do not want to work with an entire set or when you want to
display a certain number of data objects on the page. The range defines a window you
can use to access a subset of the data objects in the collection. By default, the range size
is set to a range that fetches just ten data objects.

Tip: In general, it is recommended that all iterator bindings referred to by multiple
binding containers in one application should utilize the same range size. Utilizing the
same range size prevents the binding container from generating unnecessary fetch
operations against the same data collection. When your application requires different
range sizes and you are using Oracle ADF Business Components, you can create a
secondary row set iterator declaratively by creating an iterator binding against a given
collection and providing a unique name (within the view object's row set iterators).

To set the range size for an iterator binding;:

1. With the document open in the visual editor, choose View | Structure to open the
Structure window.

2. Click UI Model in the Structure window toolbar and expand the node to display
the list of bindings.

Overview of Oracle ADF Data Binding in View Technologies 6-19

Best Practices

3. Select the iterator binding for which you wish to set a range size and choose View
| Property Inspector to open the Property Inspector.

4. In the Range Size field of the Property Inspector, edit the value and press Enter.
The default value is 10.

Note that the values - 1 and 0 have specific meaning: the value - 1 returns all available
objects from the collection, while the value 0 will return the same number of objects as
the collection retrieves from its data source.

When you use the Data Control Palette to drop next set or previous set operations
(displayed as a button component when you work with Oracle ADF Business
Components) onto your page, the range size for the iterator will be set by default to
fetch ten data objects at a time. This behavior will override any previous setting you
may have made for the iterator. To maintain a unique range size with Oracle ADF
Business Components, you can specify a row set iterator name for the iterator binding
in the Property Inspector.

To specify a secondary row set iterator for a collection (supported by Oracle ADF
Business Components only):

1. With the UI Model icon displayed in the Structure window, select the iterator
binding for which you wish to supply a unique row set iterator name.

Supplying a unique name for the row set iterator for which the binding operates
ensures that another page's iterator binding will not reset the range size on the
binding container.

2. Locate the Rowset Iterator field of the Property Inspector, which initially has no
value.

3. Type a unique identifying name for the property of the selected iterator binding
and press Enter.

At runtime, the binding container will create a unique row set iterator corresponding
to the customized iterator binding.

6.6.2 Creating a Search Criteria Form Using Oracle ADF Find Mode

When you create Oracle ADF-enabled web pages, you can support parameterized
queries against Oracle ADF Business Components by using an input form and setting
the find mode for the page's binding container to enabled. The Oracle ADF binding
container supports find operations by executing a parameterized query using the
search criteria specified in the form against the view object specified by an Oracle ADF
iterator binding.

Once the find operation is executed, the binding container is taken out of find mode
and the web page functions as an input entry form. In this way, the binding container
toggles the find mode between enabled and disabled for a specific web page.

6.6.2.1 About Parameterized Queries

A parameterized query is a query that contains a placeholder that must be supplied at
runtime. For example, in the following PL/SQL statement, mi n_sal ary isa
placeholder for a parameter value that will be supplied at runtime:

SELECT enarme, job, ngr FROM enp WHERE sal < :min_salary

6-20 Oracle Application Development Framework Development Guidelines Manual

Summary of Ul Components in Oracle ADF Web Pages

The input form in find mode uses the Oracle ADF bindings to display fields for each
attribute in the bound Oracle ADF Business Components view object whose

Quer i abl e property is set to t r ue. The view object defines the initial query executed
by the business components.

6.6.2.2 Process for Displaying Results

In a Struts-based web application, the user interacts with an input form with find
mode as follows:

1.

The web page with input form displayed by the user runs with find mode
enabled.

For instance, a user may click a link to open a page with the find mode enabled.
The user enters search criteria to restrict the results of the data.

The user can enter comparison symbols (>, <, =) as part of the search criteria. All
values in the same view criteria participate in the search.

The user clicks an Execute button on the form, which initiates a find operation on
a Struts action to perform an anchored, wild card search.

The operation uses the first character of the search column as an anchor, where all
the strings that begin with the entered string are matched.

The Struts action forwards to another page, where a read-only table displays the
results of the parameterized query.

6.7 Summary of Ul Components in Oracle ADF Web Pages

The client developer uses the Data Control Palette to insert already databound Ul
components into their web page:

In the case of Model 1 JSP pages (which do not use the Struts page flow), visual
elements that you select will appear in the JSP page as code snippets that use a
combination of Oracle ADF tags (a custom tag library), HTML tags, and EL
(expression language) syntax.

In the case of Struts-based JSP pages, visual elements that you select will appear in
the JSP page as code snippets that use a combination of Struts tags (for
Struts-based web application), JSTL tags, and EL (expression language) syntax.

In the case of UIX pages, visual elements that you select are UIX elements, runtime
components represented in the UIX page by XML syntax.

Note: The Data Control Palette detects the type of web application
your project defines and displays the appropriate components for a
Struts-based JSP project, a Model 1 JSP project, or a UIX project.

The remainder of this section describes the visual elements that you can select from the
Data Control Palette.

Overview of Oracle ADF Data Binding in View Technologies 6-21

Summary of Ul Components in Oracle ADF Web Pages

6.7.1 Value Bindings for the Entire Collection or Row Set

The Data Control Palette provides Ul components for web pages that you can use to
bind an entire data collection (which consists of a data object that comprise a row set),
as shown in the following table:

Drag and Drop into a
JSP Page As

Drag and Drop into

a UIX Page As ADF Binding Type

Read-Only Table /
Dynamic Table (used
when the bean has no
scalar attributes)

Read-Only Table Table binding

Note that in the case of the dynamic table
(JSP page only), all attributes of the selected
collection will be displayed by the table

Read-Only Form Read-Only Form Table binding (JSP page only)

Attribute bindings for the text fields (both
JSP /UIX pages)

Action bindings for the buttons (UIX page

only)

Navigation Buttons not available Action binding
Graph not available Graph binding
Input Form Input Form Attribute bindings

not available

Input Form (with
Navigation)

Attribute bindings for the text fields
Action bindings for the buttons

not available

Search Form

Table binding for the table
Attribute bindings for the text fields
Action bindings for the buttons

not available

Master Detail (Self)

Table bindings for the table
Attribute bindings for the text fields

Selected Row Link

not available

not applicable

Navigation List

encodedparameter

List binding in navigation mode

not available

textinput (secret)

textinput (secret)

6.7.2 Value Bindings for Individual Data Object Attribute Values

The Data Control Palette provides Ul components that you can use to bind a single
data object attribute, as shown in the following table:

Drag and Drop into aJSP Drag and Drop into a UIX

Ul Component Page As Page As
Hello Value not available
For Oracle ADF Business Label not available
Compone;nts, displays labgl Note that the label can be
control hint, all other services . ..
display the attribute value as a defined by Control Hints in

play the case of Oracle ADF

label Business Components

not visible Input Render not available

Note that custom renders
can be defined in the case of
Oracle ADF Business
Components

6-22 Oracle Application Development Framework Development Guidelines Manual

Summary of Ul Components in Oracle ADF Web Pages

Ul Component

Drag and Drop into a JSP

Page As

Drag and Drop into a UIX
Page As

Displays the attribute value,
using a custom renderer

Render Value

Note that custom renders

can be defined in the case of

not available

Oracle ADF Business
Components
Label. oxtfiod Input Field TextInput
MessageTextInput
pa— Text Area MessageStyled Text
Area
Label:
Renders a hidden field bound to Hidden Field encodedparameter
a model object
not visible File Input Field not available
Password Field textinput (secret)

175)

not visible

Render Value

not available

p— Single Select List List
o Static Single Select Field MessageList (Select One),
Label [one 9| Label 3 MessageList (Select Many)
List of Values MessageLovInput
Label: v
Label O smeking Label: O non-smoking Radio Button Group RadioSet
MessageRadioSet
Label: [apples Label [oranges not available
CheckBox
MessageCheckBox

6.7.3 Action Bindings for Business Object Methods and Data Control Operations

The Data Control Palette provides Ul components that you can use to bind a method
or operation, as shown in the following table:

Drag and Drop into a JSP Page Drag and Drop into a UIX Page

Ul Component As

As

Button

Subrhit

SubmitButton

Subrhit

Button with Form

not available

Act i onRequest URI
only)

Link (Strut-based applications

not available

Overview of Oracle ADF Data Binding in View Technologies 6-23

Summary of Ul Components in Oracle ADF Java Clients

6.8 Summary of Ul Components in Oracle ADF Java Clients

The client developer uses the Data Control Palette to insert already databound Ul
components into a JClient-prepared form or panel.

6.8.1 Value Bindings for the Entire Collection or Data Object

The Data Control Palette provides Ul components that you can use to bind an entire
data collection (which consists of data objects that comprise a row set), as shown in the

following table:
Ul Component Drag and Drop As ADF Binding Type
101 fislles [Canstartin Table Table binding

105 MacGraw Mtatthias
flaylor Wanisha |¥] Combo Box List binding in navigation

Constantin mOde
Harrizan

o e o B List (inside a ScrollPane) List binding in navigation
02 Pacing Hatrizan j mode
Manizha
04 Sutherland Harrizon LI
= Spinner List binding in navigation
aylor —
I = mode
 Welles Radio Button Group List binding in navigation
 Pacing mode
= Taylor
M4 P M+ % o G NavigationBar Iterator binding
) Customers: Tree Tree binding
------ * Weles
oM Pacing
pvs Graph Graph binding
an M series 1
20 [Jseriesz
o W seriesz
Group A DSeries4
Group B [Series5
I Slider Scroll binding
= ScrollBar Scroll binding
[]
=

6-24 Oracle Application Development Framework Development Guidelines Manual

Summary of Ul Components in Oracle ADF Java Clients

6.8.2 Value Bindings for Individual Data Object Attribute Values

The Data Control Palette provides Ul components that you can use to bind a single
data object attribute, as shown in the following table:

Ul Component Drag and Drop As ADF Binding Type

Faged TextField Attribute binding

asdlfasd] Edit Pane Attribute binding

Last Narme JULabel Attribute binding

“Last Mame Label For Attribute binding
Used with Oracle ADF

Business Components to
display attribute's label
control hint

[romserers Password Field Attribute binding
The dog Text Area Attribute binding
Jumped
over the
lazy fox.

Text Pane Attribute binding

The dog jumped over the lazy
fox.|

Button LOV LOV binding
i List OF Yalues Using CustomersViewllter._.
Custlasthiame I CustFirsthlatme I
elles |C0nstantin | - |

Facing Harrizon

I status Check Box Boolean binding
— Formatted Edit Field Formatted text binding
o = Combo Box List binding in

500 enumeration mode

=00 List List binding in

1000 enumeration mode

1500

< Spinner List binding in

r. enumeration mode
& High Radio Button Group List binding in
'8 (L enumeration mode
7 Wedium

11 Progress Bar Bounded range binding

Overview of Oracle ADF Data Binding in View Technologies 6-25

Summary of Ul Components in Oracle ADF Java Clients

Ul Component Drag and Drop As ADF Binding Type
B Scroll Bar Bounded range binding
[
=1
| Slider Bounded range binding

6-26 Oracle Application Development Framework Development Guidelines Manual

A

JDeveloper Runtime Problems and Solutions

This appendix describes common problems and solutions. It contains the following
topics:

= Section A.1, "JSP Page Fails with HTTP 404-Page Not Found Error"
« Section A.2, "Browser Locates JSP File But Fails to Render with Content"

= Section A.3, "JDeveloper Unable to Establish Connection to Embedded OC4]
Server"

= Section A.4, "Unable to Specify Connection Driver Class to Use with a Web
Application in JDeveloper"

= Section A.5, "Unable to Establish Connection Upon E]JB Lookup"

A.1 JSP Page Fails with HTTP 404-Page Not Found Error

You have successfully deployed the ADF web application with JSP files in the WAR
file, but the browser displays the error HTTP 404- Page Not Found when you
attempt to run the application.

Problem

The URL of the web page does not match the context root configured for the
application server. The context root of the application may differ because JDeveloper
has picked up a default that you will have to override. If you deployed the WAR file
using Enterprise Manager, then the context root specified by Enterprise Manager is the
one picked up by Oracle Application Server.

Solution

Check that the URL for the web page follows this format:

http://<host>:<http port for i AS>/context-root/<sub-directory structure within
public_htn >/ <the page>.jsp

The context root for the application is available in the ht t p- web-si t e. xm or
def aul t - web-si te. xml file located in <nypat h>/j 2ee/ hore/ conf i g on the
Oracle Application Server installation.

For example, with a context root like / war 1, the mod_oc4j . conf file in the Oracle
Application Server installation has the following entry:

Qc4j Mount /warl hone
Qc4j Mount /war1/* home

JDeveloper Runtime Problems and Solutions A-1

Browser Locates JSP File But Fails to Render with Content

In other words, the URL you see should have only one context root, followed by any
subdirectories.

To modify the context root for your WAR file in JDeveloper:

1. In the navigator, double-click webappx.deploy and select General in the WAR
Deployment Profile Properties dialog.

2. Select Specify J2EE Web Context Root and enter the value in the field.
3. Redeploy the WAR file to the Oracle Application Server installation.

A.2 Browser Locates JSP File But Fails to Render with Content

You have successfully deployed the ADF web application with JSP files and the
Struts-Config.xnl file, yet when you attempt to run the application, the page
appears empty. Additionally, the URL of the web page is correct and the browser
displays no HTTP errors.

Problem

Your web application relies on the Struts controller to forward to a page from a Struts
action. Your application implements the Struts action class in order to prepare the data
for the page before rendering. You have attempted to run the web page without first
executing the appropriate Struts action class.

Solution 1

Do not run the Struts-based web application by supplying the URL of the JSP page.
You must run the application by invoking the Struts action. Typically this is
accomplished by displaying a web page that contains a link with the name <act i on
nane>. do. The extension . do redirects the link to the Struts controller, which
executes the corresponding action from the St r ut s- Confi g. xm file. The browser
displays the web page mapped to the action in the St r ut s- Conf i g. xnl file.

Solution 2

When you want to run your web application within JDeveloper, do not run the JSP
directly. While JDeveloper does allow you to choose Run on any JSP file in your
Strut-based web application, you must invoke the web page from the
Struts-Config. xnl file. Right-click Struts-Config.xml in the navigator and choose
Run corresponding to the desired action. The action you choose will allow the Struts
controller to execute a corresponding, mapped JSP file.

A-2 Oracle Application Development Framework Development Guidelines Manual

Unable to Specify Connection Driver Class to Use with a Web Application in JDeveloper

A.3 JDeveloper Unable to Establish Connection to Embedded OC4J
Server

You have created a web application, but the application fails to run when JDeveloper
attempts to establish a connection to the embedded OC4]J server. The error message
you get originates from your proxy server.

Problem

By default, JDeveloper uses the proxy settings from the default browser on the same
machine. However, if | ocal host and 127. 0. 0. 1 do not appear in the list of proxy
exceptions, and you have not specified these exceptions within JDeveloper, when you
attempt to connect to an application server residing on the same machine as
JDeveloper, the connection intended for your local machine may actually be opened
on the proxy server instead.

For example, if | ocal host is not excluded from the proxy list, a request in your
browser like ht t p: // | ocal host/ MyApp/ i ndex. ht m will be sent to the proxy
server, and the server will resolve | ocal host to itself, rather than to your machine.
In this case, the error message you see is actually returned by the proxy server rather
than by any server running on your local machine.

Solution

If you are connecting to an IP address behind a proxy server, and your machine is also
behind the same proxy server, then make sure that JDeveloper's web proxy preferences
exclude the IP address you are trying to connect to.

To verify and modify the proxy preferences in JDeveloper:

1. From the Tools menu, choose Preferences and select Proxy Server from the
dialog.

2. Be sure that Use HTTP Proxy Server is selected and specify the proxy port and
proxy host.

To verify that your proxy settings are being picked up, start JDeveloper and observe
the command that the console window displays to start the embedded OC4]J server.
The command will contain the proxy settings.

A.4 Unable to Specify Connection Driver Class to Use with a Web
Application in JDeveloper

You have created a web application and you want to specify custom driver classes
(such as or acl e. j dbc. pool . Oracl eConnect i onPool data source or

oracl e. j dbc. pool . Oracl eConnect i onCachel npl) for your data sources, but
the default connection details specified by the IDE connections are used instead. You
want to be able to specify the class and location parameters in a customized manner
that does not rely on IDE connection definitions.

JDeveloper Runtime Problems and Solutions A-3

Unable to Specify Connection Driver Class to Use with a Web Application in JDeveloper

Problem

The dat a- sour ces. xm file located in your project may be used to run and debug
the application in the case of embedded OC4] or to initiate deployment to standalone
Oracle Application Server installation. In JDeveloper, the dat a- sour ces. xml file is
overwritten with connections defined in the Connection Manager wizard. The action
of overwriting the dat a- sour ces. xnl file always deletes any user-defined data
sources; it also defines as data sources all database connections defined in the
Connection Manager, whether the application requires them or not.

Note that this problem does not exist at the level of the global application when you
want to define custom entries that will apply server-wide. You may edit the global
application dat a- sour ces. xm file located in the OC4J directory <ORACLE_
HOVE>/ | 2ee/ confi g/ . Unlike the project-level dat a- sour ces. xm file,
JDeveloper will not overwrite this file.

Solution for JDeveloper 9.0.4.x and Earlier

Edit the class drivers in the dat a- sour ces. xml file to specify the custom entries,
and set the file to read-only from the Windows Explorer. This will prevent J[Developer
from overwriting the file again. The file has two locations depending upon what you
want to control:

= The project-level dat a- sour ces. xni file is located in <JDEV_
HOVE>/ nywor k/ <pr oj ect >/ src/ META- | NF/ . Modify this file when you are
ready to deploy the application with your data source definitions.

« The embedded OC4] server-level dat a- sour ces. xnl file is located in <JDEV_
HOVE>/ syst enXXX/ oc4j - conf i g/ . Modify this file when you want to run the
application in JDeveloper using your custom data source definitions.

To add user-defined data sources, specify a nanme attribute in the <dat a- sour ce>
element. For example:

<dat a- source name="nyConnection" ... />
In 9.0.3.x, JDeveloper recognizes namne attribute values starting with

j dev-connect i on: and maps them to connections defined in the Connection
Manager.

In 9.0.4, the prefix used by JDeveloper changed to j dev- connect i on-, but JDev
9.0.4 will also recognize j dev- connect i on:, so both prefixes map to Connection
Manager connections.

Based on the namne attribute, three possible behaviors exist:

« If name starts with a recognized prefix, then JDeveloper will automatically update
the <dat a- sour ce> element with any changes from the Connection Manager.

« If name does not start with a recognized prefix, then JDeveloper will not touch the
<dat a- sour ce> element. This is the recommended solution when you want to
define your own data source connection information.

= If nane is not specified at all, then JDeveloper will remove the <dat a- sour ce>
element.

JDeveloper packages an or i on- appl i cati on. xm file, which in turn points to the
dat a- sour ces. xnl file in your project.

A-4 Oracle Application Development Framework Development Guidelines Manual

Unable to Specify Connection Driver Class to Use with a Web Application in JDeveloper

To ensure that your dat a- sour ces. xml file is deployed with your project, you must
configure the deployment profile for Standard J2EE:

1. In the navigator, double-click Xxx.deploy to display the Deployment Profile
Properties dialog.

2. Inthe dialog, select Platform and set Target Connection to the value <None>.

The OC4]J-specific files will no longer be deployed as a part of the archives.

Solution for JDeveloper 9.0.5.x and Later

Starting in JDeveloper 9.0.5.x, you can use the JDeveloper IDE to specify the values for
data sources and options for synchronizing these data sources with IDE connection
definitions. The dat a- sour ces. xml file that the IDE will update for you has two
locations depending upon what you want to control:

= The project-level dat a- sour ces. xml file is located in <JDEV_
HOME>/ nywor K/ <pr oj ect >/ src/ META- | NF/ . Update this file when you are
ready to deploy the application with your data source definitions.

1. In the navigator, right-click data-sources.xml and choose Properties.
2. Inthe Data Sources Properties dialog, select Data Sources.

3. Deselect the option Auto-update data-sources.xml when running or
deploying to OC4]J.

This will prevent JDeveloper from overwriting the file again. Alternatively,
you can deselect specific options to create, update, or delete definitions in the
dat a- sour ces. xml file based on the IDE connection.

4. To specify the desired connection driver class, select the desired connection
from the Data Sources list on the left.

5. In the Connection tab, specify the desired classname.

« The embedded OC4]J server-level dat a- sour ces. xnl file is located in <JDEV_
HOME>/ syst emXXX/ oc4j - conf i g/ . Update this file when you want to run the
application in JDeveloper using your custom data source definitions.

1. From the Tools menu, choose Embedded OC4J Server Preferences.
2. Inthe dialog, select Current Workspaces and Data Sources.

You must deselect each option to create, update, or delete definitions in the
dat a- sour ces. xnl file based on the IDE connection. This will prevent
JDeveloper from overwriting the file again.

3. To specify the desired connection driver class, select the desired connection
from the Data Sources list on the left.

4. In the Connection tab, specify the desired classname.

JDeveloper packages an or i on- appl i cati on. xm file, which in turn points
to the dat a- sour ces. xnl file in your project.

To ensure that your dat a- sour ces. xml file is deployed with your project, you must
configure the deployment profile for Standard J2EE:

1. In the navigator, double-click Xxx.deploy to display the Deployment Profile
Properties dialog.

2. Inthe dialog, select Platform and set Target Connection to the value <None>.

The OC4]J-specific files will no longer be deployed as a part of the archives.

JDeveloper Runtime Problems and Solutions A-5

Unable to Establish Connection Upon EJB Lookup

A.5 Unable to Establish Connection Upon EJB Lookup

You have created a J2EE application that relies on EJB lookup on Oracle Application
Server, but the connection fails when you:

= Try to connect to the server using the Create Application Server Connection
wizard

= Try to deploy the WAR file to the server using the connection

= Try to run the application and the client attempts to access a component on the
server

The error might be Connecti on refused: connect or it mightbe

j ava. net. Connect Excepti on: Connection refused: connect |lo
exception: Connection refused: connect (DESCRIPTI ON=(TMP=)
(VSNNUME135286784) (ERR=12505) (ERROR_

STACK=(ERROR=(CODE=12505) (EMFI =4)))) .

Problem 1

If the problem is not a SQL exception, and the message Connecti on ref used:
connect is displayed, then it is possible that the OC4] server is listening on a different
RMI port. Otherwise, the OC4J container is either not up or it is not listening on the
host specified.

Not being able to establish a connection is a common problem on the standalone
Oracle Application Server installation because RMI ports are not supplied as defaults
but are picked up from a specified range that you configure.

Solution for Embedded OC4J Server in JDeveloper

To obtain and verify the port that JDeveloper is using when you run or deploy your
application, view the message log window. One of the first messages to appear should
look like this:

[Starting OC4J using the follow ng ports: HITP=8988, RM =23891,
JMS=9227.]

Alternatively, you can check the rmi . xmi file to ensure that the OC4]J server is
listening on the same RMI port. You can also check for errors in the r mi . | og file in
<JDEV_HOME>/ syst enXXX/ oc4j - confi g/l og/ .

To modify the port in JDeveloper versions 9.0.2 through 9.0.4:

1. From the Tools menu, choose Preferences.

2. Inthe dialog, select Embedded OC4] to make your changes.
To modify the port in JDeveloper 9.0.5.x:

1. From the Tools menu, choose Preferences.

2. Inthe dialog, select Embedded OC4]J Server Preferences.

3. Inthe dialog, select Global and Startup to make your changes.

The new server port settings will be updated in the r mi . xm file located in <JDEV_
HOVE>/ syst emXXX/ oc4j - confi g/.

A-6 Oracle Application Development Framework Development Guidelines Manual

Unable to Establish Connection Upon EJB Lookup

Solution for Standalone OC4J on Oracle Application Server

Check the r mi . xni file to ensure that the OC4J server is listening on the same RMI
port. You can also check for errors in the r mi . | og file in <OC4J _

HOVE>/ j 2ee/ hone/ | og/ . Edit the server portin thermi . xnl file located in <OC4J_
HOVE>/ j 2ee/ hone/ confi g/ .

Alternatively, access Enterprise Manager's web site for administering the Oracle
Application Server installation (type http:/ /host:port — defaults to 1810). Click the
Ports link in the first page for the OC4]J instance. Then use the page to check and
configure the RMI ports for each of the OC4J instances.

JDeveloper Runtime Problems and Solutions A-7

Unable to Establish Connection Upon EJB Lookup

A-8 Oracle Application Development Framework Development Guidelines Manual

B

Oracle ADF Problems and Solutions

This appendix describes common problems and solutions. It contains the following
topics:

=« Section B.1, "Oracle ADF Runtime Installer Fails With Error"

= Section B.2, "Previously Working Application Using ADF Business Components
Starts Throwing JDBC Errors"

= Section B.3, "Changes to ADF Business Components Parameters Have No Effect"
= Section B.4, "ADF Business Components Throw ClassNotFoundException"

= Section B.5, "ADF Business Components Deployed with Libraries Throw
Exceptions”

B.1 Oracle ADF Runtime Installer Fails With Error

When using the Oracle ADF Runtime Installer in JDeveloper 9.0.5.x from a remote
machine to upgrade the Oracle ADF libraries on Oracle Application Server, you may
receive the error The sel ection is not an Oracle Application Server
hone directory. inthe ADF Runtime Installer wizard.

Problem

Before you deploy and run your application, you must ensure that the ADF runtime
libraries that reside on the target Oracle Application Server installation are the same
version, or later, as the libraries that were used to develop the application in
JDeveloper. While you attempt to run the ADF Runtime Installer, the ADF runtime
libraries are not available on the same machine as the target Oracle Application Server
installation. In this release, the ADF Runtime Installer is designed to run on the same
machine as the target Oracle Application Server installation. In order to run the ADF
Runtime Installer, you must be able to obtain the libraries from the correct JDeveloper
installation.

Before performing any updates, verify that your application server is supported by
JDeveloper 9.0.5. See the chart provided in the document at this link:

http://ww. oracl e. com t echnol ogy/ product s/ jdev/col |l ateral / papers
/10g/ as_supportmatri x. htnl .

Oracle ADF Problems and Solutions B-1

Oracle ADF Runtime Installer Fails With Error

Solution 1

Install JDeveloper on the same machine as the target Oracle Application Server
installation and rerun the ADF Runtime Installer. In this case, because JDeveloper
resides on the same machine as the Oracle Application Server installation, the ADF
Runtime Installer can find Oracle Home and will automatically locate the ADF
runtime libraries from JDeveloper.

It is important that the ADF runtime libraries that reside on the target Oracle
Application Server installation are the same version, or later, as the libraries that were
used to develop the application in JDeveloper. Be sure to install any maintenance
releases of JDeveloper before you upgrade the target environment libraries.

Solution 2

Install JDeveloper on any machine, and then move the required ADF runtime libraries
to the target Oracle Application Server machine.

It is important that the ADF runtime libraries that reside on the target Oracle
Application Server installation be the same version, or later, as the libraries that were
used to develop the application in JDeveloper. Be sure to install any maintenance
releases of JDeveloper before you upgrade the target environment libraries.

Note: This solution does not rely on the ADF Runtime Installer.
Instead use the following list of runtime libraries to update the
application server.

Before you install the ADF runtime libraries:

1. Optionally, create a backup directory of each directory that you plan to update (see
the list below).

2. Stop all OC4J instances, including the Enterprise Manager instance. Only after
completing the installation should you restart the server.

3. If your application works with TopLink mapping objects, you must edit the
<oracl e_honme>/j 2ee/ hone/ confi g/ appl i cati on. xnl file to include the
following library paths:

<library path="../../..[jlib/lojmsc.jar" />
<library path="../../../toplink/jlib/toplink.jar" />
<library path="../../../toplink/jlib/antrl.jar" />

Only TopLink users must edit the appl i cat i on. xnl file on the server; the other
supported business services do not require this modification.

After you have completed the above steps, you must remove these four files from the
existing Oracle Application Server installation in the OC4]J root directory:

<ORACLE_Home>/ BCAJ/ | i b/ dat at ags. j ar
<ORACLE_Home>/ BCAJ/ | i b/ bc4j ui xt ags. j ar
<ORACLE_Hone>/ BCAJ/ | i b/ bcdjhtn . jar
<ORACLE_Hore>/ BCAJ/ l'i b/ bc4j _jclient _common.jar

B-2 Oracle Application Development Framework Development Guidelines Manual

Oracle ADF Runtime Installer Fails With Error

Then you can copy the files shown in the following tables from the JDeveloper source

location to the OC4] root directory.
Copy these ADF runtime libraries:

From JDeveloper

To Server

<j dev_honme>/ BC4J/ | i b/ adf mj ar

<oracl e_home>/ BC4J/ i b/ adfmj ar

<j dev_hone>/ BC4J/ | i b/ adf mweb. j ar

<oracl e_home>/ BC4J/ | i b/ adf meb. j ar

<j dev_honme>/ BC4J/ |'i b/ bc4jct.jar

<oracl e_home>/ BC4J/ | i b/ bc4jct.jar

<j dev_home>/ BC4J/ | i b/ bc4j ctejb.jar

<or acl e_home>
[/ BCAJ/1ibl/bcdjctejb.jar

<j dev_honme>
[/ BC4J/1i b/ bc4j donorcl . jar

<or acl e_honme>
[/ BC4J/ 1i b/ bcdj donorcl . jar

<j dev_home>
/ BC4Jd/1'i b/ bc4j i ndomai ns. j ar

<or acl e_hone>/
BC4J/1i b/ bc4j i ndomai ns. j ar

<j dev_honme>/ BC4J/ |'i b/ bc4jnt.jar

<or acl e_hone>
/BCAJ/1ib/bcdjnt.jar

<j dev_home>/ BC4J/ | i b/ bc4jntejb.jar

<or acl e_home>
/BCAJ/1ibl/bcdjntejb.jar

<j dev_honme>
/BCAJ/jlibl/ladfjclient.jar

<or acl e_honme>
[BCAJ/jlibladfjclient.jar

<j dev_home>
/BC4Jd/lib/collections.jar

<or acl e_home>
[BCAJ/lib/collections.jar

<j dev_honme>
[/ BC4Jd/jli b/ bc4jdongnrec.jar

<or acl e_honme>
[/ BCA4J/jlibl/bcdjdonmgnrc.jar

<j dev_home>/jlib/jdev-cmj ar

<oracle_home>/jlib/jdev-cmjar

<j dev_hone>/ BCAJ/|i b/ adfntl.jar

<oracl e_home>/ BC4J/ | i b/ adf mt | .j ar

Copy this OJMisc runtime library:

From JDeveloper

To Server

<j dev_home>/jlib/ojmsc.jar

<oracl e_home>/jlib/ojmsc.jar

Install these interMedia Runtime Libraries:

From JDeveloper

To Server

<j dev_hone>/ord/jlib/ordhttp.jar

<oracl e_hone>/ord/jlibl/ordhttp.jar

<j dev_hone>/ord/jlib/ordimjar

<oracl e_hone>/ord/jlib/ordimjar

Copy these TopLink runtime libraries:

From JDeveloper

To Server

<j dev_home>
/toplink/jlib/toplink.jar

<or acl e_hone>/
toplink/jlib/toplink.jar

<j dev_honme>
/toplink/jlib/lantlr.jar

<or acl e_hone>
/toplink/jlib/antlr.jar

Oracle ADF Problems and Solutions B-3

Previously Working Application Using ADF Business Components Starts Throwing JDBC Errors

Copy these BC4] EAR application files:

From JDeveloper To Server

<j dev_hone>/ BC4J/ redi st/ bc4j.ear <oracle_home>/ BC4J/ redi st/ bc4j.ear

<j dev_hone>/ BC4J/ redi st/ bc4j.ear <oracl e_hone>
/'j 2eel hone/ appl i cati ons/ BCAJ. ear

Solution 3

Map a local drive from a machine that already has JDeveloper installed to the target
Oracle Application Server machine and rerun the ADF Runtime Installer. Use the
mapped drive for the JDeveloper installation.

Be sure to install any maintenance releases of JDeveloper when you want to upgrade
the target environment libraries.

B.2 Previously Working Application Using ADF Business Components
Starts Throwing JDBC Errors

An application that previously successfully retrieved data suddenly starts throwing
JDBC errors such as Connecti on Reset By Peer,Connection d osed, or
Socket Reset By Peer.

Problem

The connections in the pool have become stale. This can happen for any of the
following reasons:

« The database was shut down or restarted without a corresponding restart of the
JVM running the business components.

= The connections were timed out by a firewall.
= There were network problems.

Stale connections, when accessed, will throw errors.

Solution

If your ADF Business Components are deployed to Oracle Application Server 10g, you
can set the parameter cl ean- avai | abl e- connecti ons-t hreshol d to
periodically clean up stale connections.

B.3 Changes to ADF Business Components Parameters Have No Effect

You have changed ADF Business Components runtime parameters, but the new
parameters appear not to have taken effect.

Problem

ADF Business Components runtime parameters can be specified in several separate
locations. A location with a higher precedence is overriding your changes. Runtime
properties can be specified in the following locations, in descending order of
precedence:

« The ADF application module configuration being used by the client application
= Applet tags

B-4 Oracle Application Development Framework Development Guidelines Manual

ADF Business Components Throw ClassNotFoundException

= - Dflags passed to the JVM

= Thebc4j . properti es file in the directory holding your business components
« The/oracl e/jbo/BC4J. properti es resource

« The/oracl e/jbo/ common. j boserver. properti es resource

« The/oracl e/jbo/ common. Di agnosti c. properti es resource

» The ADF BC library's own defaults

Solution

Check the locations with higher precedence to ensure that they are not overriding your
changes.

B.4 ADF Business Components Throw ClassNotFoundException

When your application attempts to access business components, it throws a class not
found exception that mentions an ADF BC framework class. You can diagnose the
cause of this problem by searching for the JAR file which contains the class mentioned
in the exception.

Problem 1

Your application was designed against a newer version of the ADF BC libraries than is
available on the server, and the old version does not contain some of the classes your
application is expecting.

Solution 1

Use the ADF Runtime Installer to install a newer version of the ADF BC libraries on
the server.

Problem 2
A JClient application has been distributed without the required libraries in its archive.

Solution 2
Redeploy the JClient application with the missing libraries.

Problem 3

The archive containing the needed class is not on the classpath.

Solution 3
Ensure that the OC4] classpath includes the archive containing the needed class.

Oracle ADF Problems and Solutions B-5

ADF Business Components Deployed with Libraries Throw Exceptions

B.5 ADF Business Components Deployed with Libraries Throw
Exceptions

You have deployed an application with ADF Business Components to a version of
Oracle Application Server 10g with a different version of the ADF Business
Components libraries installed. Even though you deployed the appropriate version of
the libraries with your application, the application continues to throw exceptions as if
it were attempting to run against the incorrect version.

Problem

The libraries installed on the application server appear earlier in the classpath than the
appropriate libraries included in the application's EAR file.

Solution

Check the class loader hierarchy in the server.xml and orion-web.xml files to ensure
that the libraries your application needs are loaded first. Ideally, you should avoid this
problem by installing the latest version of the libraries using the ADF Runtime
Installer.

B-6 Oracle Application Development Framework Development Guidelines Manual

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Introduction to J2EE Application Development in JDeveloper
	1.1 Summary
	1.2 Introduction
	1.3 Considering the Application Architecture
	1.4 Partitioning Application Development in JDeveloper
	1.5 Speeding Development with Frameworks in JDeveloper
	1.6 Development Methodology in JDeveloper
	1.6.1 Iterative Development and Visual Tools
	1.6.2 Roles and Code Integration

	1.7 Proceeding with Application Development in JDeveloper
	1.8 Related Information

	2 Business Services and the Oracle Application Development Framework
	2.1 Summary
	2.2 The Available Business Service Technologies
	2.2.1 Oracle ADF Business Components Technology
	2.2.2 Enterprise JavaBeans Technology
	2.2.3 OracleAS TopLink Plain Old Java Objects (POJO)
	2.2.4 Enterprise JavaBeans Technology with TopLink CMP
	2.2.5 Web Services
	2.2.6 Java Objects with Hand-Coded Persistence

	2.3 Which Business Services Technology Should I Use?
	2.3.1 Do You Have Your Own Object Framework?
	2.3.2 Do You Want to Use an Existing Object Framework?
	2.3.3 Can You Use Oracle Runtime Technology?

	2.4 Business Service Layers
	2.4.1 Persistent Business Objects
	2.4.2 Data Access Components
	2.4.3 Service Objects

	2.5 Detailed Comparison of Business Service Architectures
	2.5.1 How ADF Business Components Technology Provides Persistent Business Objects
	2.5.2 How ADF Business Components Technology Provides Data Access Components
	2.5.3 How ADF Business Components Technology Provides Service Objects
	2.5.4 How Enterprise JavaBeans Technology Provides Persistent Business Objects
	2.5.5 How Enterprise JavaBeans Technology Provides Data Access Components
	2.5.6 How Enterprise JavaBeans Technology Provides Service Objects
	2.5.7 How OracleAS TopLink Technology with POJO Provides Persistent Business Objects
	2.5.8 How OracleAS TopLink Technology with POJO Provides Data Access Components
	2.5.9 How OracleAS TopLink Technology with POJO Provides Service Objects
	2.5.10 How Enterprise JavaBeans Technology with TopLink CMP Provides Persistent Business Objects
	2.5.11 How Enterprise JavaBeans Technology with TopLink CMP Provides Data Access Components
	2.5.12 How Enterprise JavaBeans Technology with TopLink CMP Provides Service Objects

	3 ADF Business Components in Depth
	3.1 Summary
	3.2 ADF Entity Object Definitions
	3.2.1 Attributes and Accessors
	3.2.2 Validators
	3.2.3 The validateEntity() Method
	3.2.4 Creation and Deletion Logic
	3.2.5 DML Customization
	3.2.6 Security

	3.3 ADF Associations
	3.3.1 Accessor Attributes
	3.3.2 Cardinality
	3.3.3 Row Iterators
	3.3.4 Compositions

	3.4 ADF Domains
	3.4.1 Predefined Domains
	3.4.2 Oracle Object Type Domains
	3.4.3 Validation Domains

	3.5 ADF View Object Definitions
	3.5.1 Attribute Mappings
	3.5.2 Navigating Through Result Sets
	3.5.3 Creating and Deleting Rows
	3.5.4 Keys
	3.5.5 View Criteria

	3.6 ADF View Link Definitions
	3.6.1 Accessor Attributes
	3.6.2 Cardinality

	3.7 ADF Application Module Definitions
	3.7.1 View Object and View Link Instances
	3.7.2 Transactions
	3.7.3 Service Methods
	3.7.4 Application Module Pooling

	3.8 ADF Business Components Design Decisions
	3.8.1 Where to Implement Business Rules
	3.8.2 Whether to Use Entity Object Definitions

	4 Overview of the Oracle ADF Model Layer
	4.1 Summary
	4.2 Role of the Model Layer
	4.2.1 About MetaData for the Oracle ADF Binding Context
	4.2.2 Oracle ADF Model API Overview

	4.3 Benefiting from the Oracle ADF Model Layer
	4.3.1 Role of the Oracle ADF Data Controls
	4.3.1.1 Business Object Access Services
	4.3.1.2 Transaction Services
	4.3.1.3 State Management Services

	4.3.2 Role of the Oracle ADF Bindings
	4.3.3 Generic Runtime Properties for All Oracle ADF Bindings

	4.4 Oracle ADF Data Control Runtime Integration with Business Services
	4.5 Creating the Oracle ADF Model Layer in JDeveloper
	4.5.1 Oracle ADF Business Components as Data Controls
	4.5.2 Oracle ADF Data Controls for EJB Components
	4.5.3 Oracle ADF Data Controls for Web Services
	4.5.3.1 Creating Data Controls for Web Services Created in JDeveloper
	4.5.3.2 Creating Data Controls for External Web Services
	4.5.3.3 Web Services That Return Arrays

	4.5.4 Oracle ADF Data Controls for JavaBeans and TopLink-Based Beans Components

	4.6 Summary of Oracle ADF Data Control Operations
	4.7 Summary of Oracle ADF Bindings
	4.7.1 About the Iterator Binding
	4.7.2 About the Value Bindings
	4.7.2.1 Attribute Value Binding
	4.7.2.2 Boolean Value Binding
	4.7.2.3 List Value Binding
	4.7.2.4 Range Value Binding
	4.7.2.5 Scroll Value Binding

	4.7.3 About the Action Binding

	5 Overview of Oracle ADF Integration with Struts
	5.1 Summary
	5.2 Highlights of the Struts Framework
	5.3 Oracle ADF Extensions to Struts
	5.3.1 Oracle ADF Data Action and Data Forward Action Classes
	5.3.2 Oracle ADF Lifecycle
	5.3.3 Named Events in Oracle ADF
	5.3.4 Oracle ADF Data Action Mapping Class
	5.3.5 Oracle ADF Data Form Bean
	5.3.6 Oracle ADF Binding Filter

	5.4 Struts Design Time Integration with Oracle ADF
	5.4.1 Struts Page Flow Diagram
	5.4.2 Source View Tab
	5.4.3 Property Inspector Integration with the Struts Configuration File
	5.4.4 Design Time Rendering of Struts Tag Libraries
	5.4.5 Interactive Code Insight for JSP Code Editing

	5.5 Struts Runtime Integration with the Oracle ADF Model Layer
	5.6 Data Pages and Data Actions in the Databound Struts Page Flow
	5.6.1 Working with Data Pages
	5.6.2 Working with Data Actions

	5.7 Best Practices
	5.7.1 When to Use a Data Page or Data Action
	5.7.2 Adding Business Service Methods to a Data Action
	5.7.3 When to Subclass the DataAction or DataForwardAction Class
	5.7.4 When to Use an Oracle ADF Lifecycle Plugin
	5.7.5 Summary of Best Practices in Working with Oracle ADF/Struts Integration

	6 Overview of Oracle ADF Data Binding in View Technologies
	6.1 Summary
	6.2 Role of the View Layer
	6.2.1 Differences Between JSP Pages and UIX XML Documents

	6.3 JDeveloper Design Time Integration with the Oracle ADF Model Layer
	6.3.1 Overview of Data Control Palette Usage
	6.3.2 Overview of the Data Control Business Objects
	6.3.3 Overview of Oracle ADF Project Files
	6.3.3.1 Files in the Oracle ADF Model Project
	6.3.3.1.1 About the DataControls.dcx File Syntax

	6.3.3.2 Files in the ViewController Project
	6.3.3.2.1 About the UIModel.xml File Syntax
	6.3.3.2.2 About the DataBindings.cpx File Syntax

	6.4 Web Application Runtime Integration with the Oracle ADF Model Layer
	6.5 JClient Application Runtime Integration with the Oracle ADF Model Layer
	6.5.1 About Data Binding in JClient
	6.5.2 Generated JClient Containers
	6.5.2.1 Standard Java Containers
	6.5.2.2 How JClient Preserves the Data Context Between Data Panels

	6.5.3 Process for Creating and Using the Panel Binding
	6.5.4 About the Frame Class in JClient
	6.5.4.1 Application Bootstrap
	6.5.4.2 Frame Initialization

	6.5.5 About the Layout Panel in JClient
	6.5.6 About Data Panels in JClient
	6.5.7 About Control Binding in JClient
	6.5.7.1 Populating Controls with Data
	6.5.7.2 Updating Data Through Controls

	6.6 Best Practices
	6.6.1 Customizing the Oracle ADF Iterator Binding for UI Access
	6.6.2 Creating a Search Criteria Form Using Oracle ADF Find Mode
	6.6.2.1 About Parameterized Queries
	6.6.2.2 Process for Displaying Results

	6.7 Summary of UI Components in Oracle ADF Web Pages
	6.7.1 Value Bindings for the Entire Collection or Row Set
	6.7.2 Value Bindings for Individual Data Object Attribute Values
	6.7.3 Action Bindings for Business Object Methods and Data Control Operations

	6.8 Summary of UI Components in Oracle ADF Java Clients
	6.8.1 Value Bindings for the Entire Collection or Data Object
	6.8.2 Value Bindings for Individual Data Object Attribute Values

	A JDeveloper Runtime Problems and Solutions
	A.1 JSP Page Fails with HTTP 404-Page Not Found Error
	A.2 Browser Locates JSP File But Fails to Render with Content
	A.3 JDeveloper Unable to Establish Connection to Embedded OC4J Server
	A.4 Unable to Specify Connection Driver Class to Use with a Web Application in JDeveloper
	A.5 Unable to Establish Connection Upon EJB Lookup

	B Oracle ADF Problems and Solutions
	B.1 Oracle ADF Runtime Installer Fails With Error
	B.2 Previously Working Application Using ADF Business Components Starts Throwing JDBC Errors
	B.3 Changes to ADF Business Components Parameters Have No Effect
	B.4 ADF Business Components Throw ClassNotFoundException
	B.5 ADF Business Components Deployed with Libraries Throw Exceptions

