
Oracle® Application Server
Application Developer's Guide

10g Release 2 (10.1.2)

Part No. B14000-01

November 2004

Oracle Application Server Application Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14000-01

Copyright © 2003, 2004, Oracle. All rights reserved.

Primary Author: Priya Darshane

Contributor: Lypp-Tek Khoo-Ellis, Deborah Steiner

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. ix

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Related Documentation... xii
Conventions .. xii

Part I Overview of Sample Applications and Concents of Database

1 Creating Applications: Overview

1.1 Overview of OracleAS ... 1-1
1.1.1 J2EE .. 1-1
1.1.2 Enterprise Portals... 1-2
1.1.3 Wireless Support.. 1-3
1.2 Sample Applications... 1-3
1.3 Database Schema... 1-4
1.4 Development Steps ... 1-5
1.5 Development Tools... 1-6
1.6 What This Guide Covers and Does Not Cover .. 1-6

2 Designing the Application

2.1 Design Goals .. 2-1
2.2 Chaining Pages.. 2-1
2.3 Using Model-View-Controller (MVC) ... 2-2
2.3.1 MVC Diagram .. 2-3
2.3.2 Controller .. 2-4
2.3.3 Model (Business Logic) ... 2-4
2.3.4 View... 2-5

Part II The First Sample Application

3 The First Sample Application: Requirements and Screenshots

3.1 Requirements for the First Sample Application ... 3-1

iv

3.2 Screenshots of the First Sample Application .. 3-1

4 Implementing Business Logic

4.1 Objects Needed by the First Sample Application .. 4-1
4.2 Other Options Considered But Not Taken.. 4-2
4.2.1 Conditions that Favor Using EJBs ... 4-2
4.2.2 Conditions that Favor Using Servlets ... 4-2
4.2.3 Conditions that Favor Using Normal Java Objects... 4-2
4.3 Controller ... 4-3
4.4 Action Handlers .. 4-5
4.5 Employee Data (Entity Bean) .. 4-5
4.5.1 Home Interface... 4-6
4.5.2 Remote Interface .. 4-7
4.5.3 Persistence... 4-7
4.5.4 Load Method .. 4-8
4.5.5 EmployeeModel Class... 4-8
4.5.6 Data Access Object for Employee Bean .. 4-9
4.5.6.1 Interface.. 4-9
4.5.6.2 Implementation.. 4-10
4.5.6.3 Load Method .. 4-10
4.6 Benefit Data (Stateless Session Bean) .. 4-12
4.6.1 Home Interface.. 4-12
4.6.2 Remote Interface ... 4-13
4.6.3 Benefit Details.. 4-13
4.7 EmployeeManager (Stateless Session Bean) .. 4-14
4.7.1 Home Interface.. 4-15
4.7.2 Remote Interface ... 4-15
4.8 Utility Classes ... 4-16

5 Creating Presentation Pages

5.1 HTML Files .. 5-1
5.2 Servlets.. 5-1
5.2.1 Automatic Compilation of Servlets... 5-2
5.2.2 Example... 5-2
5.2.3 Example: Calling an EJB ... 5-2
5.3 JSPs .. 5-3
5.3.1 Tag Libraries... 5-4
5.3.2 Minimal Coding in JSPs.. 5-4
5.3.3 Multiple Client Types.. 5-4

6 Tracing Flows Between Clients and Business Logic Objects

6.1 Client Interface to Business Tier Objects ... 6-1
6.2 Query Employee Operation .. 6-2
6.2.1 High-Level Sequence... 6-2
6.2.2 Querying the Database and Retrieving Data... 6-3
6.2.3 findByPrimaryKey Method.. 6-4

v

6.2.4 Getting Benefit Data .. 6-4
6.3 Add and Remove Benefit Operations .. 6-5
6.4 Add Benefit Operation ... 6-6
6.4.1 High-Level Sequence of Events ... 6-6
6.4.2 Getting Benefits That the User Can Add.. 6-6
6.4.3 Updating the Database.. 6-7
6.5 Remove Benefit Operation... 6-8
6.5.1 High-Level Sequence of Events ... 6-8
6.5.2 Getting Benefits That the User Can Remove ... 6-9
6.5.3 Updating the Database... 6-10

7 Configuring OracleAS Web Cache for the Application

7.1 Choosing Which Pages to Cache .. 7-1
7.2 Analyzing the Application .. 7-2
7.2.1 Specifying the Pages to Cache ... 7-2
7.2.2 Invalidating Pages ... 7-3
7.2.3 Setting up Triggers on the Underlying Tables .. 7-4

8 Supporting Wireless Clients

8.1 Changes You Need To Make To Your Application ... 8-1
8.2 Presentation Data for Wireless Clients .. 8-2
8.2.1 Screens for the Wireless Application .. 8-2
8.2.2 Differences Between the Wireless and the Browser Application 8-4
8.3 Deciding Where to Put the Presentation Data for Wireless Clients 8-4
8.3.1 Determining the Origin of a Request.. 8-4
8.3.2 Combining Presentation Data in the Same JSP File.. 8-5
8.3.3 Separating Presentation Data into Separate Files ... 8-7
8.4 Header Information in JSP Files for Wireless Clients.. 8-8
8.4.1 Setting the XML Type ... 8-8
8.4.2 Setting the Content Type .. 8-8
8.5 Operation Details .. 8-8
8.5.1 Query Operation .. 8-9
8.5.2 queryEmployeeWireless.jsp .. 8-10
8.5.3 Add and Remove Benefits Operations .. 8-11
8.6 Accessing the Application .. 8-11
8.6.1 Using a Simulator ... 8-12
8.6.2 Using an Actual Wireless Client... 8-12

9 Running in a Portal Framework

9.1 How Portal Processes Requests .. 9-1
9.2 Screenshots of the Application in a Portal .. 9-2
9.3 Changes You Need to Make to the Application... 9-4
9.3.1 Set up a Provider and a Portal Page.. 9-4
9.3.2 Edit the Application .. 9-5
9.4 Update the Links Between Pages Within a Portlet .. 9-6
9.4.1 The parameterizeLink Method .. 9-6

vi

9.4.2 The next_page Parameter ... 9-7
9.4.3 Linking to the ID Page .. 9-8
9.5 Use include instead of the forward Method ... 9-8
9.6 Protect Parameter Names .. 9-8
9.6.1 Retrieving Values... 9-9
9.6.2 Setting Values... 9-9
9.7 Make All Paths Absolute .. 9-10
9.7.1 <a> and <link> Tags... 9-10
9.7.2 <form> Tag .. 9-10

Part III The Second Sample Application

10 Updating EJBs to Use EJB 2.0 Features

10.1 Overview of the Second Sample Application .. 10-1
10.1.1 Business Operations in the Second Sample Application .. 10-1
10.1.2 Design of the Second Application .. 10-3
10.1.3 EJB 2.0 Features Used by the Entity Beans.. 10-3
10.2 Details of employeeCount Method ... 10-4
10.3 Details of listBenefits Method .. 10-5
10.4 Details of addNewBenefit Method.. 10-7
10.5 Details of listBenefitsOfEmployee Method.. 10-8
10.6 Details for countEnrollmentsForBenefit Method .. 10-9
10.7 Entity Beans and Database Tables... 10-10
10.7.1 Persistent Fields in the ejb-jar.xml File .. 10-10
10.7.2 Persistent Fields in the Local Interface .. 10-11
10.7.3 Persistent Fields in the orion-ejb-jar.xml File ... 10-11
10.8 Relationship Fields in the Entity Beans .. 10-12

11 Enabling Web Services in the Application

11.1 Enabling Web Services in the Second Sample Application ... 11-1
11.1.1 Create the Configuration File for the Web Services Assembly Tool 11-2
11.1.2 Run the Web Services Assembly Tool ... 11-3
11.1.3 Deploy the Application.. 11-7
11.1.4 Test the Exposed Methods from the Web Service's Home Page 11-7
11.2 Creating a Web Services Client Application.. 11-10
11.2.1 Design of the Web Services Client.. 11-10
11.2.2 Steps for Developing a Web Services Client... 11-11
11.2.3 Directory Structure for the Web Services Client .. 11-11
11.2.4 Request Flow in the Web Services Client .. 11-12
11.2.5 Screens for the Web Services Client ... 11-13

A Configuration Files

A.1 server.xml.. A-1
A.2 default-web-site.xml .. A-1

vii

A.3 data-sources.xml .. A-2

Index

viii

ix

Send Us Your Comments

Oracle Application Server Application Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14000-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

x

xi

Preface

This guide describes how to create modular, extensible, and maintainable J2EE
applications. It highlights how to structure your applications so that you get the
maximum benefits from the features in Oracle Application Server. You should use this
guide along with the Oracle Application Server Containers for J2EE User’s Guide.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Intended Audience
This guide is intended for developers who perform the following tasks:

■ Design and create J2EE applications

■ Enhance applications to support wireless clients

■ Enable applications to run in a portal framework

To use this document, you need to be familiar with Java and have some exposure to
J2EE technology.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

xii

Related Documentation
For more information, see these guides:

■ Oracle Application Server Concepts

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide

■ Oracle Application Server Containers for J2EE Servlet Developer’s Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

xiii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

Convention Meaning Example

xiv

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN' and
sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott
TABLES=(emp, dept)

Convention Meaning Example

xv

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory. For
Windows, the default location was
C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is C:\oracle. If you install the
latest Oracle release on a computer with no
other Oracle software installed, then the
default setting for the first Oracle home
directory is C:\oracle\orann, where nn
is the latest release number. The Oracle
home directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xvi

Part I
Overview of Sample Applications and

Concents of Database

This guide describes sample applications that access the same schemas in a database.
Part I provides an overview of the applications and the schemas.

Part I contains the following chapters:

■ Chapter 1, "Creating Applications: Overview"

■ Chapter 2, "Designing the Application"

Creating Applications: Overview 1-1

1
Creating Applications: Overview

When you create applications to be deployed on Oracle Application Server, you might
think of different ways to design them. This guide walks you through the design and
implementation of three sample applications, and in the process of doing so, it
discusses the available options and the advantages and disadvantages of each option.

The resulting applications are modular and extensible: you can easily add features,
add different client types (including wireless devices), and change the implementation
of a feature with minimal impact on other features.

The sample applications enable users to view data such as employee name, phone,
email, and job ID. Users can add or remove their benefit elections. The applications
retrieve and update data in an Oracle database. The sample applications use many
technologies, including JavaServer Pages, servlets, Enterprise JavaBeans, JDBC,
portals, wireless devices, Web cache, Web services, JNDI, and JAAS.

Contents of this chapter:

■ Overview of OracleAS

■ Sample Applications

■ Database Schema

■ Development Steps

■ Development Tools

■ What This Guide Covers and Does Not Cover

1.1 Overview of OracleAS
OracleAS supports many technologies. As a result, you have many choices when you
design and create your applications. The following sections describe some of the key
technologies.

1.1.1 J2EE
The J2EE support includes:

■ Enterprise JavaBeans, which enable applications to use entity, session, and
message-driven beans. EJB comes with an EJB container that provides services for
you. Services include transaction, persistence, and lifecycle management.

■ Servlets, which can generate dynamic responses to Web requests.

■ JavaServer Pages (JSP), which enable you to mix Java and HTML to author Web
applications easily. JSPs also enable you to generate dynamic responses to Web

Overview of OracleAS

1-2 Oracle Application Server Application Developer’s Guide

requests. Servlets and JSPs run within a "Web container", which also provides
services similar to those provided by the EJB container.

■ Java Authentication and Authorization Service (JAAS), which enables you to
authenticate users (that is, it ensures that users are who they claim to be) and
authorizes users (that is, it checks that the user has access to an object before
executing or returning the object).

■ Java Message Service (JMS), which enables you to send and receive data and
events asynchronously.

■ Java Transaction API (JTA), which enables your applications to participate in
distributed transactions and access transaction services from other components.

■ J2EE Connector Architecture, which enables you to connect and perform
operations on enterprise information systems.

For complete J2EE details (including specifications), see:

http://java.sun.com/j2ee

1.1.2 Enterprise Portals
Portals in OracleAS enable you to aggregate, or group, your applications on a single
Web page. When users visit the page, they get a centralized location where they can
see only the applications to which they have access with single sign-on capabilities.
These applications, when displayed within a portal framework, are called portlets.

Figure 1–1 shows a picture of a portal.

Figure 1–1 A Portal Page

Sample Applications

Creating Applications: Overview 1-3

1.1.3 Wireless Support
Browser clients do their rendering based on HTML tags, and there is more or less a
standard set of tags and attributes that you can use. Wireless clients, on the other hand,
understand different sets of tags and attributes, depending on the wireless device, and
speak different protocols.

To make it easy for application developers, the wireless feature in OracleAS comes
with adaptors and transformers. This enables you to write your application once, and
provide access to it from any wireless device. The way this works is that you write the
presentation data in XML according to a standard DTD (document type definition),
and the adaptors convert the XML on the fly to a markup language understood by the
client.

You can write your application such that it supports both browsers and wireless
devices. Your application can check if a request is coming from a wireless client and
return the appropriate response (HTML or XML). The first sample application shows
how to do that.

Figure 1–2 shows the application running on a cell phone:

Figure 1–2 An Application Running on a Cell Phone

1.2 Sample Applications
This guide describes three sample applications. Table 1–1 lists the operations,
technologies, and design patterns associated with each application:

See Also: Chapter 8, "Supporting Wireless Clients"

Database Schema

1-4 Oracle Application Server Application Developer’s Guide

1.3 Database Schema
The sample applications use the HR schema that comes with Oracle9i database and
OracleAS Metadata Repository. The applications use the EMPLOYEES table, plus two
additional tables (BENEFITS and EMPLOYEE_BENEFIT_ITEMS) that you need to
install. You install these tables in the default tablespace of the HR schema.

Table 1–1 Comparing the Sample Applications

First Sample Application
Second Sample
Application

Web Services Client
Sample Application

Design Pattern Used Model-View-Controller
(MVC)

Session facade MVC

Supported Operations Users can perform the
following operations:

■ Enter an employee ID
and view data such as
first name, last name,
phone, email, and
benefits for the
specified employee.

■ Add benefits for the
employee.

■ Remove benefits for
the employee.

Users can access the
following operations
through Web Services:

■ List all the existing
benefits.

■ Create a new benefit.

■ Get the total number
of employees.

■ Enter an employee ID
and view the benefits
for the specified
employee.

■ Enter a benefit ID and
get the number of
employees enrolled in
the specified benefit.

This is a client application
that invokes the operations
provided by the second
application through Web
Services.

Technologies Used ■ Servlets

■ JSPs

■ EJBs, including
bean-managed
persistence, remote
interfaces

■ Portal

■ Wireless

■ Web Cache

■ EJB 2.0, including EJB
QL,
container-managed
persistence,
container-managed
relationships, and
local interfaces

■ Web Services

■ Servlets

■ JSPs

■ Web Services

Table 1–2 Tables in the HR Schema

Table Description

EMPLOYEES Contains fields such as: employee_id, first_
name, last_name, phone, email, and
department.

BENEFITS Contains fields such as benefit_id, benefit_
name, and benefit_description.

EMPLOYEE_BENEFIT_ITEMS Maps employees with benefits. The table has
fields such as employee_id, benefit_id, and
election_date. An employee can have multiple
benefits. This is the table that the application
updates when employees update their benefit
elections.

Development Steps

Creating Applications: Overview 1-5

Figure 1–3 Database Schema

1.4 Development Steps
Designing and developing an application with all these technologies can be a little
overwhelming. Here are some high-level steps to guide you (later chapters in this
book provide the details):

1. Determine application requirements.

Be sure to separate the presentation (or client) tier requirements from the business
logic tier requirements. Separating the requirements by tier helps you design your
application in a modular fashion. Modularity promotes a clean separation of
functionality and enables you to reuse, update, or replace modules without
affecting the rest of the application.

2. In the business logic tier, determine what objects you need and the interfaces of
these objects.

It helps to draw a sketch of the design based on the interfaces. Also determine
how the client tier can invoke methods in the objects.

When you determine what objects you need, you have many implementation
choices. For example, you can use servlets, JavaBeans, Enterprise JavaBeans, or
plain Java classes to implement your business logic.

3. In the client tier, create the presentation data for the client.

The presentation data determine how the application looks to the users. Typically,
the presentation data is in HTML (for browsers) or XML (for wireless devices). The
HTML or XML tags can come from static files, JSPs, or other Java classes.

JSPs and other Java classes can output the presentation data programmatically. In
JSP files, you embed commands to invoke methods on the Java objects that

See Also: Requirements for the First Sample Application on
page 3-1

See Also: Chapter 4, "Implementing Business Logic"

EMPLOYEES

PK Employee_ID

First_name

Last_name

Email

Phone_number

Hire_date

Job_id

Salary

Commission_pct

Manager_id

Department_id

EMPLOYEE_BENEFIT_ITEMS

Employee_ID

Benefit_id

Election_date

BENEFITS

Benefit_id

Benefit_name

Benefit_description

PK

PK

PK

Development Tools

1-6 Oracle Application Server Application Developer’s Guide

implement your business logic. You can then display the values that the methods
return.

4. Implement the business logic.You can do this with EJBs, servlets, or other Java
classes.

5. Package, deploy, and run your application.

1.5 Development Tools
To create applications for OracleAS, you can use text editors such as emacs or vi, or
you can use IDEs (integrated development environment).

If you use a text editor, you also need additional tools such as a Java compiler (for
example, javac), a Java archive tool (for example, jar), and a packaging tool so that
you can compile your files and build JAR and EAR files.

If you use IDEs, they can automate the tasks listed above for you. Oracle provides an
IDE called Oracle JDeveloper. Oracle JDeveloper supports each stage in the
development lifecycle: it contains UML modelling and generation tools, debugging
tools, profiling tools, and tuning tools.

Oracle JDeveloper is closely integrated with OracleAS: you can deploy applications on
OracleAS from Oracle JDeveloper.

1.6 What This Guide Covers and Does Not Cover
This guide shows two applications, clients (browsers and wireless devices), and
database schema. It describes the logic behind the application design. It also shows
how to deploy and configure the application.

It does not describe in full the APIs that the application uses.

This guide assumes the reader has some concept of servlets, JSPs, portals, Web
services, wireless devices, and introductory knowledge of EJBs. For more information
on these topics, see the OracleAS Documentation Library, available on the
Documentation CD-ROM. The library is also available on Oracle Technology Network
(http://www.oracle.com/technology/).

To read the Java specifications, see:

http://java.sun.com

See Also: Chapter 5, "Creating Presentation Pages"

See Also: Chapter 4, "Implementing Business Logic"

See Also: Oracle Application Server Containers for J2EE User’s Guide

Designing the Application 2-1

2
Designing the Application

There are several ways to design the sample applications. One way is to "chain" the
pages, where page 1 calls page 2, page 2 calls page3, and so on. Another way is to use
the model-view-controller (MVC) design pattern. Yet another way is to use session
facade design pattern.

Contents of this chapter:

■ Design Goals

■ Chaining Pages

■ Using Model-View-Controller (MVC)

2.1 Design Goals
You want to design your application such that changes to one part of the application
has minimal or no impact on other parts. This enables you to:

■ Add features without redesigning your application

■ Add new client types (such as wireless devices)

■ Change client interfaces with minimal impact to your business logic

■ Change business logic without changing presentation data

■ Change your database schema or data source with minimal impact on your
application

■ Maximize your application performance

2.2 Chaining Pages
In the chaining pages design, pages in an application are linked sequentially. Page 1
has a link that calls page 2, page 2 has a link that calls page 3, and so on. Graphically:

Note: The session facade design pattern is described in Chapter 10,
"Updating EJBs to Use EJB 2.0 Features" on page 10-1

Using Model-View-Controller (MVC)

2-2 Oracle Application Server Application Developer’s Guide

Figure 2–1 Chaining Pages

Each page can be generated differently. For example, page 1 can be a plain HTML file,
page 2 can be generated by a servlet, while page 3 can be generated by a JSP. The
pages contain links or form elements (if the user needs to enter some values) to enable
the user to get to the next page. In any case, the link to the next page is hardcoded on
each page.

Advantages of this design are that it is straightforward and easy to understand. This
design is manageable for small applications that are unlikely to get bigger or whose
pages are unlikely to change.

Disadvantages of this design are that there is no central point to handle client requests
and it is difficult to move pages around. If pages get moved, added, or removed from
the application, the application becomes hard to maintain because you have to track
down the code that one page calls and move it to another page, or change
dependencies so that a page can be called from a different page.

2.3 Using Model-View-Controller (MVC)
A better way of designing an application is to use the MVC (model-view-controller)
design pattern. MVC enables the application to be extensible and modular by
separating the application into three parts:

■ the business logic part, which implements data retrieval and manipulation

■ the user interface part, which is what the application users see

■ the controller part, which routes requests to the proper objects.

By separating an application into these parts, the MVC design pattern enables you to
modify one part of the application without disturbing the other parts. This means that
you can have multiple developers working on different parts of the application at the
same time without getting into each other's way. Each developer knows the role that
each part plays in the application. For example, the user interface part cannot contain
any code that has to do with business logic, and vice versa.

MVC also makes it easy to transform the application into a portlet or to have wireless
devices access the application.

For more details on MVC, see:

http://java.sun.com/blueprints/patterns/MVC.html

Which Sample Applications Use MVC
The first and the Web Services client sample applications use MVC. The second
application uses the session facade design pattern.

See Also: Chapter 5, "Creating Presentation Pages" for a discussion
on generating HTML or other markup language.

/myApp/page2

page 1 page 2 page 3

/myApp/page3

Using Model-View-Controller (MVC)

Designing the Application 2-3

For a description of MVC in the first application, see the chapters in Part II, "The First
Sample Application".

For MVC in the Web Services client application, see Chapter 11, "Enabling Web
Services in the Application".

2.3.1 MVC Diagram
Figure 2–2 shows a high-level structure of an MVC application. When it receives a
request from a client, it processes the request in the following manner:

1. The client sends a request, which is handled by the controller.

2. The controller determines the action specified by the request, and looks up the
class for the action. The class must be a subclass of the
AbstractActionHandler class.

3. The controller creates an instance of the class and invokes a method on that
instance.

4. The instance processes the request. Typically, it forwards the request to a JSP page.

5. The JSP page gets an instance of the Enterprise JavaBean appropriate for the action
and invokes the method to perform the action.

6. The JSP page then extracts the data that the method returned for presentation.

Figure 2–2 Application Architecture

Controller

Controller servlet

ActionHandler interface

AbstractActionHandler class

ActionHandler implementation

Model

EJB Remote EJB Home

EJB implementation

Data Access Object interface

Data Access Object implementation

Database

Client

View
JSP page

Request

Access

Forward

Access

Response

1

2

3 4

5

6

Using Model-View-Controller (MVC)

2-4 Oracle Application Server Application Developer’s Guide

2.3.2 Controller
The controller is the first object in the application that receives requests from clients.
All requests for any page in the application must first go through the controller.

In the controller, you map each request type to a class that handles the request. For
example, the first sample application has the following mappings:

The action is a query string parameter passed to the controller. When the controller
receives a request, it looks up the value of the action parameter, determines the class
for the request, creates an instance of the class, and sends the request to that instance.

You can hardcode the mappings in the controller code itself, or you can set up the
controller to read the mapping information from a database or XML file. It is more
flexible to use a database or XML file.

In the first application, the mappings are hardcoded.

In the Web Services client application (which invokes the operations in the second
application through Web Services), the mappings are specified as initialization
parameters for the controller servlet. The second application does not use the MVC
design pattern.

By having a controller as the first point of contact in your application, you can add
functionality to your application easily. You just need to add a mapping and write the
new classes to implement the new functionality.

In the sample applications, the controller object is a servlet. The pages in the
application have links to this servlet.

Using the controller frees you from "chaining" pages in your application, where you
have to keep track of which page calls which other pages, and adding or removing
pages can be a non-trivial task.

2.3.3 Model (Business Logic)
The model refers to the objects that implement your business logic. The objects process
client data and return a response. The model also includes data from the database.
Objects in the model can include Enterprise JavaBeans, JavaBeans, and regular Java
classes. Views and controllers invoke objects in the model.

After the controller has read the request, objects in the model perform all the actual
work in processing the request. For example, the objects can extract values from the
query string and validate the request, authenticate the client, begin a transaction, and
query databases. In the first sample application, the EmployeeManager session bean
calls the Employee entity bean to query the database and get information for an
employee.

Although it is tempting to encode presentation data in your business logic, it is a better
practice to separate the presentation data into its own file. For example, if you write
the presentation data in a JSP file, you can edit the HTML markup in the file or change

Table 2–1 Mappings in the Controller for the First Sample Application

Action Class

queryEmployee empbft.mvc.handler.QueryEmployee

addBenefitToEmployee empbft.mvc.handler.AddBenefitToEmployee

removeBenefitFromEmployee empbft.mvc.handler.RemoveBenefitFromEmpl
oyee

Using Model-View-Controller (MVC)

Designing the Application 2-5

the format of the data without changing the model code. The page can then format the
data accordingly. JSP files do not care how the methods get their data.

Database Access
Typically, objects in the model read and update data in databases. If you are using
Enterprise JavaBeans objects to access the database, you have these options:

■ Use entity beans with bean-managed persistence (BMP). For BMP entity beans,
you have to write your own code to read and update data in the database.

■ Use entity beans with container-managed persistence (CMP). For CMP entity
beans, you configure the beans in the deployment descriptors.

BMP entity beans: Consider using DAO (data access object) to separate the database
access portion of your application from the BMP entity beans. The BMP entity beans
invoke methods in the DAO classes to access the database. This enables you to isolate
the SQL statements that you send to the database.

Using DAOs gives you the flexibility to change your data source. If you update your
database (for example, if you rename tables in the database or change the structure of
tables in the database), you can update your SQL statements in the data access objects
without changing the rest of your application.

The first sample application uses BMP entity beans and DAOs. The DAO sets up a
connection to the database, executes the required SQL statements on the database, and
returns the data.

For additional information on how to create a "clean" model, you might want to read
the J2EE blueprints page and the Design Patterns Catalog page on the Sun site:

http://java.sun.com/blueprints
http://java.sun.com/blueprints/patterns/catalog.html

CMP entity beans: If you want the EJB container to manage database access for you,
you can use CMP entity beans. In the deployment descriptor files, you map the entity
beans to tables in the database. The container associates fields in the entity bean with
columns in the table.

You can also define container-managed relationships (CMRs) between entity beans in
the deployment descriptor files. CMRs enable you to retrieve data for a specific entity
bean based on data from another entity bean.

The second sample application uses CMP entity beans and CMRs.

2.3.4 View
The view includes presentation data such as HTML tags along with business data
returned by the model. The presentation data and the business data are sent to the
client in response to a request. The HTML tags usually have data and form elements
(such as text fields and buttons) that the user can interact with, as well as other
presentation elements.

The presentation data and the business data should come from different sources. The
business data should come from the model, and the presentation data should come
from JSP files. This way, you have a separation between presentation and business
data.

See Also: Chapter 10, "Updating EJBs to Use EJB 2.0 Features" on
page 10-1

Using Model-View-Controller (MVC)

2-6 Oracle Application Server Application Developer’s Guide

One benefit of coding the business and presentation data separately is that it makes it
easy to extend the application to support different client types. For example, you
might need to extend your application to support wireless devices. Wireless devices
read WML or other markup language, depending on the device. If you embed your
presentation data in your business logic, it would be difficult to track which tag is for
which client type. With the separation, you can reuse the same business objects with
new presentation data.

In addition, new clients of the application might not even be graphical at all. They
might not be interested in getting display tags. They might only be interested in
getting a result, which they can process however they like.

The files for the presentation data should not contain any business logic code, other
than invoking objects on the model side of the application. This enables you to change
the implementation of the business logic and database schema without modifying the
client code.

In the sample applications, client types include browsers, different types of wireless
devices, non-Web clients (such as other applications), and SOAP clients. You can add
clients or change how the data is presented to the clients just by changing the "view."
The data can be HTML, WML, or any other markup language.

In the sample applications, all the presentation code is in JSP files. The JSP files call on
EJBs and servlets to process requests.

Part II
The First Sample Application

This part of the guide describes the first sample application. It contains the following
chapters:

■ Chapter 3, "The First Sample Application: Requirements and Screenshots"

■ Chapter 4, "Implementing Business Logic"

■ Chapter 5, "Creating Presentation Pages"

■ Chapter 6, "Tracing Flows Between Clients and Business Logic Objects"

■ Chapter 7, "Configuring OracleAS Web Cache for the Application"

■ Chapter 8, "Supporting Wireless Clients"

■ Chapter 9, "Running in a Portal Framework"

The First Sample Application: Requirements and Screenshots 3-1

3
The First Sample Application: Requirements

and Screenshots

This chapter describes the requirements and the screens in the first sample application.

Contents of this chapter:

■ Requirements for the First Sample Application

■ Screenshots of the First Sample Application

3.1 Requirements for the First Sample Application
The application enables users to view employee information (such as first name, last
name, email, and phone number), and add and remove benefits. A typical user of the
application is an employee who manages benefits for other employees in a company.

The functional requirements for the sample application are:

■ Display data from the EMPLOYEES, EMPLOYEE_BENEFIT_ITEMS, and BENEFITS
tables on the Info page (Figure 3–1).

■ Enable the user to add benefits.

■ Enable the user to remove benefits.

Miscellaneous:

■ Application must be able to run within a portal.

Clients for the application:

■ Web browsers

■ Wireless clients (mobile phones and PDAs)

3.2 Screenshots of the First Sample Application
When the user invokes the application, the first page prompts the user to enter an
employee ID.

When the user clicks the Query Employee button, the application queries the database
for the specified employee ID. If found, the application displays information for that
employee, including which benefits the employee has currently elected. This is
displayed in Figure 3–1:

See Also: "Database Schema" on page 1-4 for table details

Screenshots of the First Sample Application

3-2 Oracle Application Server Application Developer’s Guide

Figure 3–1 ID page and Info page

If the employee ID does not match an employee, the application displays an error
page, as shown in Figure 3–2:

Figure 3–2 Error page

On the Info page, the user can add or remove benefits by selecting the Add or Remove
Benefit link. The application then displays the Add or Remove Benefits page. The user
selects which benefits to add or remove, and clicks the Add Selected Benefits or
Remove Selected Benefits button. If successful, the application displays the Success

Screenshots of the First Sample Application

The First Sample Application: Requirements and Screenshots 3-3

page, and the user can click the "Query the Same Employee" link to see the updated
benefits. This is displayed in Figure 3–3:

Figure 3–3 Add Benefits Page, Remove Benefits Page, and Success Page

Note: For screenshots of the application running on a wireless
device, see Chapter 8, "Supporting Wireless Clients"

Screenshots of the First Sample Application

3-4 Oracle Application Server Application Developer’s Guide

Implementing Business Logic 4-1

4
Implementing Business Logic

Recall that the first sample application follows the MVC design pattern. This chapter
discusses the model (M) and the controller (C) in the application. The view (V) is
covered in Chapter 5, "Creating Presentation Pages".

The business logic for the first sample application consists of listing the employee
information, adding benefits, and removing benefits (see "Requirements for the First
Sample Application") for a specific employee.

The database schema for the application, which you might find useful to review, is
shown in "Database Schema".

■ Objects Needed by the First Sample Application

■ Other Options Considered But Not Taken

■ Controller

■ Action Handlers

■ Employee Data (Entity Bean)

■ Benefit Data (Stateless Session Bean)

■ EmployeeManager (Stateless Session Bean)

■ Utility Classes

4.1 Objects Needed by the First Sample Application
JSP pages contain presentation data and they also invoke business logic objects to
perform certain operations (query employee information, add benefits, and remove
benefits). These objects can be plain Java classes or EJB objects.

The first sample application uses EJBs because it might offer more functions to users in
the future. The EJB container provides services that the application might need.

The first sample application needs the following EJBs:

■ An object to manage employee data

The application needs to query the database and display the retrieved data. This
can be an entity bean.

■ An object to contain master benefit data

The application uses this object to determine which benefits a user does not have.

■ A session bean to manage the employee entity beans

■ A data access object (DAO)

Other Options Considered But Not Taken

4-2 Oracle Application Server Application Developer’s Guide

DAOs are used to connect to the data source. The EJBs do not connect to the data
source directly.

■ A Controller and ActionHandler objects

These objects are needed to implement the MVC design pattern for the
application.

■ Utility objects

The application uses utility objects to perform specific tasks. It has a class to print
debugging messages, and a class to define constants used by other classes in the
application.

4.2 Other Options Considered But Not Taken
The application could have used plain Java classes to hold data and not used EJBs at
all. But if the application grows and contains more features, it might be easier to use
EJBs because it comes with a container that provides services such as persistence and
transactions.

Another advantage of using EJB is that it is easier to find developers who are familiar
with the EJB standard. It takes longer for developers to learn a "home-grown"
proprietary system.

Here are some guidelines to help you choose among EJBs, servlets, and normal Java
objects.

4.2.1 Conditions that Favor Using EJBs
Choose EJBs when:

■ You need to model complex business logic.

■ You need to model complex relationships between business objects.

■ You need to access your component from different client types such as JSPs and
servlets.

■ You need J2EE services.

4.2.2 Conditions that Favor Using Servlets
Choose servlets when:

■ You need to maintain state but do not require J2EE services (HttpSession
object).

■ You do not need to dedicate servlet instances to individual clients. In large
deployments with thousands of concurrent users, maintaining one stateful session
bean instance for each client may be a bottleneck. Servlets provide a lighter weight
alternative.

■ You need to temporarily store state of business process within a single HTTP
request and the request involves multiple beans.

4.2.3 Conditions that Favor Using Normal Java Objects
Choose normal Java objects when:

■ You do not need built-in Web and EJB services such as transactions, security,
persistence, resource pooling.

Controller

Implementing Business Logic 4-3

■ You need the following features that are not allowed in EJBs:

■ accessing a local disk using the java.io package

■ creating threads

■ using the synchronized keyword

■ using the java.awt or javax.swing packages

■ listening to a socket or creating a socket server

■ modifying the socket factory

■ using native libraries (JNI)

■ reading or writing static variables

4.3 Controller
The Controller servlet is the first object that handles requests for the application. It
contains a mapping of actions to classes, and all it does is route requests to the
corresponding class.

The init method in the servlet defines the mappings. In this case, the application
hardcodes the mappings in the file. It would be more flexible if the mapping
information comes from a database or a file.

When the Controller gets a request, it runs the doGet or the doPost method. Both
methods call the process method, which looks up the value of the action
parameter and calls the corresponding class.

package empbft.mvc;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.HashMap;
import empbft.util.*;

/** MVC Controller servlet
*/
public class Controller extends HttpServlet
{
 /* Private static String here, not String creation out of the execution
 path and hence help to improve performance. */
 private static final String CONTENT_TYPE = "text/html";

 /** Hashtable of registered ActionHandler object. */
 private HashMap m_actionHandlers = new HashMap();

 /** ActionHandlerFactory, responsible for instantiating ActionHandlers. */
 private ActionHandlerFactory m_ahf = ActionHandlerFactory.getInstance();

 /** Servlet Initialization method.
 @param - ServletConfig
 @throws - ServletException
 */

 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);
 //Register ActionHandlers in Hashtable, Action name, implementation String

Controller

4-4 Oracle Application Server Application Developer’s Guide

 //This really ought to come from a configuration file or database etc....
 this.m_actionHandlers.put(SessionHelper.ACTION_QUERY_EMPLOYEE,
 "empbft.mvc.handler.QueryEmployee");
 this.m_actionHandlers.put(SessionHelper.ACTION_ADD_BENEFIT_TO_EMPLOYEE,
 "empbft.mvc.handler.AddBenefitToEmployee");
 this.m_actionHandlers.put(SessionHelper.ACTION_REMOVE_BENEFIT_FROM_EMPLOYEE,
 "empbft.mvc.handler.RemoveBenefitFromEmployee");
 }

 /** doGet. Handle an MVC request. This method expects a parameter "action"
 http://localhost/MVC/Controller?action=dosomething&
 aparam=data&anotherparam=moredata
 @param - HttpServletRequest request,
 @param - HttpServletResponse response,
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 process(request, response);
 }

 /** doPost. Handle an MVC request. This method expects a parameter "action"
 http://localhost/MVC/Controller?action=dosomething&
 aparam=data&anotherparam=moredata
 @param - HttpServletRequest request,
 @param - HttpServletResponse response,
 */
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 process(request, response);
 }

 private void process(HttpServletRequest request, HttpServletResponse response)
 {
 try
 {
 //Get the action from the request parameter
 String l_action = request.getParameter(SessionHelper.ACTION_PARAMETER);

 //Find the implemenation for this action
 if (l_action == null) l_action = SessionHelper.ACTION_QUERY_EMPLOYEE;
 String l_actionImpl = (String) this.m_actionHandlers.get(l_action);
 if (l_actionImpl == null) {
 throw new Exception("Action not supported.");
 }
 ActionHandler l_handler = this.m_ahf.createActionHandler(l_actionImpl);
 l_handler.performAction(request,response);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

Employee Data (Entity Bean)

Implementing Business Logic 4-5

4.4 Action Handlers
The process method of the Controller servlet looks up the class that is mapped to the
request and calls createActionHandler in the ActionHandlerFactory class to
instantiate an instance of the mapped class.

The application maps three actions to three classes. These classes must be subclasses of
the AbstractActionHandler abstract class, which implements the
ActionHandler interface, and must implement the performAction method.
Figure 4–1 shows the relationship between these classes.

The performAction method checks whether the request came from a browser or a
wireless device, and forwards the request to the appropriate JSP file. For browsers the
JSP file returns HTML, while for wireless devices the JSP file returns XML. For
example, the performAction method in QueryEmployee.java forwards requests
from browsers to the queryEmployee.jsp file, but for requests from wireless
devices the method forwards the requests to the queryEmployeeWireless.jsp file.

Figure 4–1 Action Handlers

4.5 Employee Data (Entity Bean)
Employee data can be mapped to an Employee entity bean. The home and remote
interfaces for the bean declare methods for retrieving employee data and adding and
removing benefits.

Each instance of the bean represents data for one employee and the instances can be
shared among clients. The EJB container instantiates entity beans and waits for
requests to access the beans. By sharing bean instances and instantiating them before
they are needed, the EJB container uses instances more efficiently and provides better
performance. This is important for applications with a large number of clients.

Entity beans are less useful if the employees table is very large. The reason is that you
are using a lot of fine-grained objects in your application.

Internally, the Employee bean stores employee data in a member variable called m_
emp of type EmployeeModel. This class has methods for getting individual data
items (such as email, job ID, phone).

AddBenefitToEmployee RemoveBenefitFromEmployee

AbstractActionHandler
(abstract class)

ActionHandler

(interface)

QueryEmployee

Employee Data (Entity Bean)

4-6 Oracle Application Server Application Developer’s Guide

Figure 4–2 Employee Classes

Figure 4–3 EmployeeModel Class

4.5.1 Home Interface
The Employee entity bean has the following home interface:

package empbft.component.employee.ejb;
import java.rmi.RemoteException;
import javax.ejb.*;

public interface EmployeeHome extends EJBHome
{
 public Employee findByPrimaryKey(int employeeID)
 throws RemoteException, FinderException;
}

The findByPrimaryKey method, which is required for all entity beans, enables
clients to find an Employee object. It takes an employee ID as its primary key. It is
implemented in the EmployeeBean class as ejbFindByPrimaryKey. To find an
Employee object, it uses a data access object (DAO) to connect to the database and
perform a query operation based on the employee ID.

Employee Data (Entity Bean)

Implementing Business Logic 4-7

4.5.2 Remote Interface
The Employee bean's remote interface declares the methods for executing business
logic operations:

package empbft.component.employee.ejb;
import java.rmi.RemoteException;
import javax.ejb.EJBObject;
import empbft.component.employee.helper.*;

public interface Employee extends EJBObject
{
 public void addBenefits(int benefits[]) throws RemoteException;
 public void removeBenefits(int benefits[]) throws RemoteException;
 public EmployeeModel getDetails() throws RemoteException;
}

The addBenefits and removeBenefits methods access the database using a DAO
and perform the necessary operations.

The getDetails method returns an instance of EmployeeModel, which contains
employee information. The query operation calls this method to get and display
employee data. JSP pages call the getEmployeeDetails method in
EmployeeManager, which in turn calls the getEmployee method (see Figure 4–4).
The getEmployee method returns an Employee object, and the EmployeeManager
invokes the getDetails method on this Employee object. The getDetails method
returns an EmployeeModel object to the EmployeeManager, which returns it to the
JSP.

Figure 4–4 Getting Employee Details

4.5.3 Persistence
The Employee entity bean uses bean-managed persistence (BMP), rather than
container-managed persistence. The bean controls when it updates data in the
database.

See Also: "EmployeeDAO Classes" on page 4-11 for details on
DAOs.

See Also: "Data Access Object for Employee Bean" on page 4-9

See Also: "Query Employee Operation" on page 6-2for details on
the query operation.

JSP EmployeeManager Employee

getEmployeeDetails(id)

getEmployee(id) *

Employee

EmployeeModel

EmployeeModel

getDetails()

* getEmployee(id) is described later.

Employee Data (Entity Bean)

4-8 Oracle Application Server Application Developer’s Guide

4.5.4 Load Method
The Employee entity bean implements the ejbLoad method, although the bean uses
bean-managed persistence. The ejbLoad method queries the database (using the
DAO) and updates the data in the bean with the new data from the database. This
ensures that the bean's data is synchronized with the data in the database.

ejbLoad is called after the user adds or removes benefits.

// from EmployeeBean.java
public void ejbLoad() {
 try {
 if (m_dao == null)
 m_dao = new EmployeeDAOImpl();
 Integer id = (Integer)m_ctx.getPrimaryKey();
 this.m_emp = m_dao.load(id.intValue());
 } catch (Exception e) {
 throw new EJBException("\nException in loading employee.\n"
 + e.getMessage());
 }
}

4.5.5 EmployeeModel Class
The implementation of the Employee bean uses a variable of type EmployeeModel,
which contains all the employee details such as first name, last name, job ID, and so
on. The following code snippet from EmployeeBean shows m_emp as a class variable:

public class EmployeeBean implements EntityBean
{
 private EmployeeModel m_emp;
 ...
}

Code snippet from EmployeeModel:

public class EmployeeModel implements java.io.Serializable
{
 protected int m_id;
 protected Collection m_benefits;
 private String m_firstName;
 private String m_lastName;
 private String m_email;
 private String m_phoneNumber;
 private Date m_hireDate;
 private String m_jobId;
...
}

See Also: Chapter 10, "Updating EJBs to Use EJB 2.0 Features" on
page 10-1 for examples of EJBs that use container-managed
persistence.

See Also: "Load Method" on page 4-10, which describes the load
method in the DAO.

Employee Data (Entity Bean)

Implementing Business Logic 4-9

Figure 4–5 Employee and EmployeeModel

4.5.6 Data Access Object for Employee Bean
Data access objects (DAOs) are the only classes in the application that communicate
with the database, or in general, with a data source. The entity and session beans in the
application do not communicate with the data source.

By de-coupling business logic from data access logic, you can change the data source
easily and independently. For example, if the database schema or the database vendor
changes, you only have to update the DAO.

DAOs have interfaces and implementations. EJBs access DAOs by invoking methods
declared in the interface. The implementation contains code specific for a data source.

For details on DAOs, see:

http://java.sun.com/blueprints/patterns/DAO.html

4.5.6.1 Interface
The EmployeeDAO interface declares the interface to the data source. Entity and
session beans and other objects in the application call these methods to perform
operations on the data source.

package empbft.component.employee.dao;
import empbft.component.employee.helper.EmployeeModel;

public interface EmployeeDAO {
 public EmployeeModel load(int id) throws Exception;
 public Integer findByPrimaryKey(int id) throws Exception;
 public void addBenefits(int empId, int benefits[]) throws Exception;
 public void removeBenefits(int empId, int benefits[]) throws Exception;
}

See Also: Figure 2–2, "Application Architecture" on page 2-3

EmployeeModel

Employee entity bean

EmployeeModel m_emp

int m_id

Collection m_benefits

String m_firstName

String m_lastName

String m_email

String m_phoneNumber

String m_hireDate

String m_jobId

Employee Data (Entity Bean)

4-10 Oracle Application Server Application Developer’s Guide

4.5.6.2 Implementation
The implementation of the DAO can be found in the EmployeeDAOImpl class. It uses
JDBC to connect to the database and execute SQL statements on the database. If the
data source changes, you need to update only the implementation, not the interface.

Employee and Benefit objects get an instance of the DAO and invoke the DAO's
methods. The following example shows how the addBenefits method in the
Employee bean invokes a method in the DAO.

// from EmployeeBean.java
public void addBenefits(int benefits[])
{
 try {
 if (m_dao == null) m_dao = new EmployeeDAOImpl();
 m_dao.addBenefits(m_emp.getId(), benefits);
 ejbLoad();
 } catch (Exception e) {
 throw new EJBException ("\nData access exception in adding benefits.\n"
 + e.getMessage());
 }
}

The addBenefits method in the EmployeeDAOImpl class looks like the following:

public void addBenefits(int empId, int benefits[]) throws Exception
{
 String queryStr = null;
 PreparedStatement stmt = null;
 try {
 getDBConnection();
 for (int i = 0; i < benefits.length; i ++) {
 queryStr = "INSERT INTO EMPLOYEE_BENEFIT_ITEMS "
 + " (EMPLOYEE_ID, BENEFIT_ID, ELECTION_DATE) "
 + " VALUES (" + empId + ", " + benefits[i] + ", SYSDATE)";
 stmt = dbConnection.prepareStatement(queryStr);
 int resultCount = stmt.executeUpdate();
 if (resultCount != 1) {
 throw new Exception("Insert result count error:" + resultCount);
 }
 }
 } catch (SQLException se) {
 throw new Exception(
 "\nSQL Exception while inserting employee benefits.\n"
 + se.getMessage());
 } finally {
 closeStatement(stmt);
 closeConnection();
 }
}

The methods in EmployeeDAOImpl use JDBC to access the database. Another
implementation could use a different mechanism such as SQLJ to access the data
source.

4.5.6.3 Load Method
After the Employee bean adds or removes benefits for an employee, it calls the load
method in EmployeeDAOImpl:

// from EmployeeBean.java
public void addBenefits(int benefits[])

Employee Data (Entity Bean)

Implementing Business Logic 4-11

{
 try {
 if (m_dao == null)
 m_dao = new EmployeeDAOImpl();
 m_dao.addBenefits(m_emp.getId(), benefits);
 ejbLoad();
 } catch (Exception e) {
 throw new EJBException ("\nData access exception in adding benefits.\n"
 + e.getMessage());
 }
}

// also from EmployeeBean.java
public void ejbLoad()
{
 try {
 if (m_dao == null)
 m_dao = new EmployeeDAOImpl();
 Integer id = (Integer) m_ctx.getPrimaryKey();
 this.m_emp = m_dao.load(id.intValue());
 } catch (Exception e) {
 throw new EJBException("\nException in loading employee.\n"
 + e.getMessage());
 }
}

The ejbLoad method in the Employee bean invokes load in the DAO object. By
calling the load method after adding or removing benefits, the application ensures
that the bean instance contains the same data as the database for the specified
employee.

// from EmployeeDAOImpl.java
public EmployeeModel load(int id) throws Exception
{
 EmployeeModel details = selectEmployee(id);
 details.setBenefits(selectBenefitItem(id));
 return details;
}

Note that the EJB container calls ejbLoad in the Employee bean automatically after it
runs the findByPrimaryKey method.

Figure 4–6 EmployeeDAO Classes

See Also: "Query Employee Operation" on page 6-2

Benefit Data (Stateless Session Bean)

4-12 Oracle Application Server Application Developer’s Guide

4.6 Benefit Data (Stateless Session Bean)
BenefitCatalog is a stateless session bean. It contains master benefit information
such as benefit ID, benefit name, and benefit description for each benefit in the
BENEFITS table in the database.

The application could have saved the benefit information to entity bean objects, but it
uses a session bean instead. The reason for this is that the master benefit information
does not change within the application. It is more efficient for a session bean to
retrieve the data only once when the EJB container creates the bean.

Because the benefit information does not change, the BenefitCatalog bean does not
need a data access object (DAO) to provide database access. The session bean itself
communicates with the database.

Each instance of the session bean contains all the benefit information. You can create
and pool multiple instances for improved concurrency and scalability. If the
application used entity beans and you mapped a benefit to a bean, it would have
required one instance per benefit.

The bean is stateless so that one bean can be shared among many clients.

Figure 4–7 BenefitCatalog Classes

4.6.1 Home Interface
The BenefitCatalog session bean has the following home interface:

package empbft.component.benefit.ejb;
import java.rmi.RemoteException;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;

public interface BenefitCatalogHome extends EJBHome
{
 public BenefitCatalog create() throws RemoteException, CreateException;
}

The create method, which is implemented in BenefitCatalogBean as
ejbCreate, queries the BENEFITS table in the database to get a master list of
benefits. The returned data (benefit ID, benefit name, benefit description) is saved to a

Benefit Data (Stateless Session Bean)

Implementing Business Logic 4-13

BenefitModel object. Each record (that is, each benefit) is saved to one
BenefitModel object.

The application gets a performance gain by retrieving the benefit data when the EJB
container creates the bean, instead of when it needs the data. The application can then
query the bean when it needs the data.

4.6.2 Remote Interface
The BenefitCatalog session bean has the following remote interface:

package empbft.component.benefit.ejb;
import java.rmi.RemoteException;
import javax.ejb.EJBObject;
import java.util.Collection;

public interface BenefitCatalog extends EJBObject
{
 public Collection getBenefits() throws RemoteException;
 public void refresh() throws RemoteException;
}

The getBenefits method returns a Collection of BenefitModels. This is the master
list of all benefits. This method is called by the EmployeeManager bean (by the
getUnelectedBenefitItems method) when the application needs to display a
user's unelected benefits. It compares a user's elected benefits against the master list,
and displays the benefits that are not elected. The user then selects benefits to add
from this list.

4.6.3 Benefit Details
The BenefitCatalog bean contains a Collection of BenefitModels. The
BenefitModel class contains the details (benefit ID, benefit name, and benefit
description) for each benefit.

The BenefitCatalog bean contains a class variable called m_benefits of type
Collection. Data in the Collection are of type BenefitModel. Each BenefitModel
contains information about a benefit (such as benefit ID, name, and description).
BenefitItem is a subclass of BenefitModel.

Figure 4–8 BenefitItem and BenefitModel Classes

JSPs call methods in BenefitModel to display benefit information. For example,
queryEmployee.jsp calls the getName method to display benefit name.

<%
 Collection benefits = emp.getBenefits();
 if (benefits == null || benefits.size() == 0) {
 %>

EmployeeManager (Stateless Session Bean)

4-14 Oracle Application Server Application Developer’s Guide

 <tr><td>None</td></tr>
 <%
 } else {
 Iterator it = benefits.iterator();
 while (it.hasNext()) {
 BenefitItem item = (BenefitItem)it.next();
 %>
 <tr><td><%=item.getName()%></td></tr>
 <%
 } // end of while
 } // end of if
 %>

4.7 EmployeeManager (Stateless Session Bean)
EmployeeManager is a stateless session bean that manages access to the Employee
entity bean. It is the only bean that JSPs can access directly; JSPs do not directly invoke
the other beans (Employee and BenefitCatalog). To invoke methods on these
beans, the JSPs go through EmployeeManager.

Generally, a JSP should not get an instance of an entity bean and invoke methods on
the bean directly. It needs an intermediate bean that manages session state with clients
and implements business logic that deals with multiple beans. Without this
intermediate bean, you need to write the business logic on JSPs, and JSPs should not
have any business logic at all. A JSP's sole responsibility is to present data.

It is stateless because it does not contain data specific to a client.

EmployeeManager contains methods (defined in the remote interface) that JSPs can
invoke to execute business logic operations. These methods invoke methods in the
Employee and BenefitCatalog beans.

Examples:

In addBenefitToEmployee.jsp:

<%
 int empId = Integer.parseInt(request.getParameter(
 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 Collection unelected = mgr.getUnelectedBenefitItems(empId);
 ...
%>

In removeBenefitFromEmployee.jsp:

<%
 int empId = Integer.parseInt(request.getParameter(

Table 4–1 Methods in EmployeeManager for Business Logic Operations

Operation Method

Query and display employee data getEmployeeDetails(empID)

Add benefits getUnelectedBenefitItems(empID)

Remove benefits getEmployeeDetails(empID), which returns
EmployeeModel, then getBenefits() on the
EmployeeModel

EmployeeManager (Stateless Session Bean)

Implementing Business Logic 4-15

 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 Collection elected = mgr.getEmployeeDetails(empId).getBenefits();
 ...
%>

Figure 4–9 EmployeeManager Classes

4.7.1 Home Interface
The EmployeeManager has the following home interface:

package empbft.component.employee.ejb;

import java.rmi.RemoteException;
import javax.ejb.*;

public interface EmployeeManagerHome extends EJBHome
{
 public EmployeeManager create() throws RemoteException, CreateException;
}

The create method does nothing.

4.7.2 Remote Interface
The EmployeeManager has the following remote interface:

package empbft.component.employee.ejb;
import java.rmi.RemoteException;
import javax.ejb.EJBObject;
import java.util.Collection;
import empbft.component.employee.helper.*;

public interface EmployeeManager extends EJBObject
{
 public Employee getEmployee(int id) throws RemoteException;
 public EmployeeModel getEmployeeDetails(int id) throws RemoteException;
 public Collection getUnelectedBenefitItems(int id) throws RemoteException;
}

Utility Classes

4-16 Oracle Application Server Application Developer’s Guide

getUnelectedBenefitItems in EmployeeManager invokes methods on the
BenefitCatalog bean and returns a Collection to the JSP, which iterates through
and displays the contents of the Collection.

Methods in EmployeeManager also return non-bean objects to the application. For
example, queryEmployee.jsp invokes the getEmployeeDetails method, which
returns an EmployeeModel. The JSP can then invoke methods in EmployeeModel to
extract the employee data.

// from queryEmployee.jsp
<%
 int id = Integer.parseInt(empId);
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 EmployeeModel emp = mgr.getEmployeeDetails(id);
 ...
%>
...
<table>
<tr><td>Employee ID: </td><td colspan=3><%=id%></td></tr>
<tr><td>First Name: </td><td><%=emp.getFirstName()%></td>
<td>Last Name: </td><td><%=emp.getLastName()%></td></tr>

Similarly, in removeBenefitFromEmployee.jsp, the page calls
getEmployeeDetails to get an EmployeeModel, then it calls the getBenefits
method on the EmployeeModel to list the benefits for the employee. The user can
then select which benefits should be removed.

// from removeBenefitFromEmployee.jsp
<%
 int empId = Integer.parseInt(request.getParameter(
 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 Collection elected = mgr.getEmployeeDetails(empId).getBenefits();
 ...
%>
...
<h4>Select Elected Benefits</h4>
<%
 Iterator i = elected.iterator();
 while (i.hasNext()) {
 BenefitItem b = (BenefitItem) i.next();
%>
<input type=checkbox name=benefits value=<%=b.getId()%>><%=b.getName()%>

<%
 } // end while
%>

4.8 Utility Classes
The application uses these utility classes:

■ AppJNDINames defines constants used to locate beans and classes.

■ Debug contains methods that write messages to the window where you started
OC4J.

■ SessionHelper defines constants used to identify names of parameters in the
query string.

Utility Classes

Implementing Business Logic 4-17

Figure 4–10 Utility Classes

Utility Classes

4-18 Oracle Application Server Application Developer’s Guide

Creating Presentation Pages 5-1

5
Creating Presentation Pages

You can create the presentation pages, which display data from business logic plus
presentation elements, using different methods:

Contents of this chapter:

■ HTML Files

■ Servlets

■ JSPs

5.1 HTML Files
This option is valid for static pages only. If your pages have dynamic data, you have to
generate the pages programmatically.

5.2 Servlets
Servlets enable you to generate pages programmatically. Using servlets, you can call
business logic objects to obtain data, then assemble the page by adding in presentation
elements. You can then send the completed page to the client.

Servlets can call methods in themselves and methods in other objects. Servlets can
retrieve or update data in databases using JDBC or SQLJ.

Disadvantages of using servlets:

■ Presentation elements are embedded with the business logic. This means that
when you want to change the presentation code, you have to be careful not to
change the business logic as well. In addition, the person editing the presentation
code should have some knowledge of Java and not just HTML.

■ Because presentation elements are embedded with the business logic, OracleAS
has to recompile the servlet when you change the presentation elements in the
servlet.

■ Another issue when using servlets to generate presentation elements is that you
have to use the println method frequently. This makes the code look less tidy.

Servlets are a good choice for implementing state machines or controllers. State
machines or controllers receive requests, make decisions based on parameters in the
requests, and redirect the requests to the appropriate JSP for assembling the final
display page to return to the clients. In the sample application, the controller is a
servlet.

Servlets

5-2 Oracle Application Server Application Developer’s Guide

5.2.1 Automatic Compilation of Servlets
One advantage to updating servlets is that OracleAS has an auto-compile feature for
servlets. You can place the uncompiled .java files for the servlets in the $J2EE_
HOME/default-web-apps/WEB-INF/classes directory, and OracleAS will
compile the files for you. To enable the auto-compile feature, set the development
attribute of the orion-web-app tag to "true". This tag is found in $J2EE_
HOME/home/config/global-web-application.xml.

<orion-web-app
 jsp-cache-directory="./persistence"
 servlet-webdir="/servlet"
 development="true"
>

5.2.2 Example
For example, the following doGet method in a servlet sends HTML data to the client:

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // Set the content type of the response
 res.setContentType("text/plain");

 // Get a print writer stream to write output to the response
 PrintWriter out = res.getWriter();

 // Send HTML to the output stream
 out.println("<HTML><HEAD>");
 out.println("<TITLE>Employee Benefit Application</TITLE></HEAD>");
 out.println("<BODY>");
 out.println("<p>... more data here ...");
 // Close the HTML tags
 out.println("</BODY></HTML>");
}

5.2.3 Example: Calling an EJB
Here is an example of a servlet that calls an EJB object. Note how the servlet simply
invokes methods on the EJB instance to get data. In this case, the servlet calls getName
and getPrice methods on the EJB instance and embeds the return values within the
presentation code.

import java.util.*;
import java.io.IOException;
import java.rmi.RemoteException;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

public class ProductServlet extends HttpServlet {
 ProductHome home;

See Also: "Controller" on page 4-3 and Oracle Application Server
Containers for J2EE Servlet Developer’s Guide

JSPs

Creating Presentation Pages 5-3

 public void init() throws ServletException {
 try {
 Context context = new InitialContext();
 home = (ProductHome)PortableRemoteObject.
 narrow(context.lookup("MyProduct"), ProductHome.class);
 }
 catch(NamingException e) {
 throw new ServletException("Error looking up home", e);
 }
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 try {
 Collection products = home.findAll();

 out.println("<html>");
 out.println("<head><title>My products</title></head>");
 out.println("<body>");
 out.println("<table border=\"2\">");
 out.println("<tr><td>Name</td><td>Price</td></tr>");

 Iterator iterator = products.iterator();
 while (iterator.hasNext())
 {
 Product product = (Product)PortableRemoteObject.
 narrow(iterator.next(), Product.class);
 out.println("<tr><td>" + product.getName() + "</td><td>" +
 product.getPrice() + "</td></tr>");
 }
 out.println("</table>");
 out.println("</body>");
 out.println("</html>");
 }
 catch(RemoteException e) {
 out.println("Error communicating with EJB-server: " + e.getMessage());
 }
 catch(FinderException e) {
 out.println("Error finding products: " + e.getMessage());
 }
 finally {
 out.close();
 } // finally
 } // doGet method
}

5.3 JSPs
Like servlets, JSP files enable you to combine HTML tags with Java commands. You do
not have the println statements in JSP files like you do in servlets. Instead, you write
your HTML tags as usual, but you add in special tags for JSP commands.

JSPs can do everything that servlets can do. For example, JSPs can invoke other classes
and connect to the database to retrieve data or update data in the database.

JSPs

5-4 Oracle Application Server Application Developer’s Guide

5.3.1 Tag Libraries
In addition, JSPs enable you to define custom tags in tag libraries. Tag libraries enable
you to define the behavior of your custom tags. Your JSPs can then access the tag
libraries and use the custom tags. This enables you to standardize presentation and
behavior across all your JSP files.

Here are few examples of how you can use custom tags and tag libraries. You can use
them to:

■ Send email. Tag libraries can hide the details of JavaMail API.

■ Access Web services.

■ Access UltraSearch tags.

■ Upload or download content from a file or database.

5.3.2 Minimal Coding in JSPs
Although you can use as much Java in your JSPs as you like, the file can be difficult to
read and debug if it is interleaved with JSP scriptlets and HTML. You will get a cleaner
design for your application if you place all the business logic code outside the JSP files.
The JSP scriptlets in your files can call out to Enterprise JavaBeans and other Java
classes to run business logic. These objects then return the data or status to your JSP
file, where you can extract the data and display the data using HTML or XML.

Another benefit of excluding business logic code from your JSPs is that you can have
Web page designers who might not be familiar with Java work on the JSP page. They
can design the look of the page, using placeholders for the real data. Your developers,
who might not want to bother with HTML, can be working on the business logic in
other files simultaneously.

5.3.3 Multiple Client Types
If you are supporting different client types (browsers and wireless clients), you can
have two versions of JSP files: one that returns HTML and one that returns XML. One
important note is that both files make the same calls to the same objects to perform
business logic. This is what the sample application does.

In the sample application, all the presentation code, even the pages for error
conditions, are written in JSP files, and the JSP files do not contain any business logic
code. The application uses one file for browsers (for example,
addBenefitToEmployee.jsp) and a similar file for wireless clients (for example,
addBenefitToEmployeeWireless.jsp). The wireless version of the file contains
XML instead of HTML.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guidefor details on JSPs.

See Also: Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference for details on tag libraries

Tracing Flows Between Clients and Business Logic Objects 6-1

6
Tracing Flows Between Clients and Business

Logic Objects

Previous chapters describe the JSP client files and the business logic objects. This
chapter describes how these objects interact with each other: it shows how the JSP files
access objects and retrieve data from the objects.

Contents of this chapter:

■ Client Interface to Business Tier Objects

■ Query Employee Operation

■ Add and Remove Benefit Operations

■ Add Benefit Operation

■ Remove Benefit Operation

6.1 Client Interface to Business Tier Objects
Although some methods in the business tier objects are declared public, client tier
objects (that is, the JSP files) should access only some of these objects and methods.
The methods are declared public so that other business tier objects can invoke them.

JSP files do not invoke methods on the Employee bean or the BenefitCatalog bean
directly. Instead, the files invoke methods on an EmployeeManager bean, and these
methods invoke methods on the Employee or BenefitCatalog objects. The
EmployeeManager class has methods to execute the business logic operations.

To get a reference to the EmployeeManager bean, the JSP files reference the
SessionHelper class, which is a "regular" Java class. The SessionHelper class
contains the getEmployeeManager static method which returns an instance of
EmployeeManager. The SessionHelper class instantiates and stores the session
bean in an attribute of HttpSession class. For example:

// from addBenefitToEmployee.jsp
<%
 int empId = Integer.parseInt(request.getParameter(
 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 Collection unelected = mgr.getUnelectedBenefitItems(empId);
 ...
%>

See Also: "EmployeeManager (Stateless Session Bean)" on page 4-14

Query Employee Operation

6-2 Oracle Application Server Application Developer’s Guide

6.2 Query Employee Operation
Typically, the user accesses the application through a link on an external page. The
link's URL looks like this:

http://<host>/empbft/controller?action=queryEmployee

The user then sees the ID page (Figure 3–1).

6.2.1 High-Level Sequence
Figure 6–1 diagrams the query operation. The numbers in the figure correspond to the
steps that follow the figure. This figure covers requests from browsers only.

Figure 6–1 Query Operation

B1: The Controller servlet handles the request to the application.

B2: The value of the action parameter is queryEmployee, so the Controller invokes
the performAction method in the QueryEmployee class.

B3: The performAction method forwards the request to the queryEmployee.jsp
file, which displays an ID page (Figure 3–1).

B4: The user then enters an employee ID and clicks Query. The request still has the
same value in the action parameter (queryEmployee), but it also has an employee
ID parameter. The request is again handled by the QueryEmployee class.

B5: The performAction method in the QueryEmployee class and the
queryEmployee.jsp file validate the employee ID entered by the user.

See Also: "Query Operation" on page 8-9 for requests from wireless
clients.

Controller

Request without employee ID
action=queryEmployee

No

B1

B2, B5

QueryEmployee.java (ActionHandler)

ID valid or null?

Yes

error.jsp queryEmployee.jsp

B3

ID = null

Valid IDB6

Info page

[Employee info]

Add Benefit

Remove Benefit

ID page

Query

ID: 12345

Request with employee ID
action=queryEmployee

B4

Query Employee Operation

Tracing Flows Between Clients and Business Logic Objects 6-3

B6: For valid employee IDs, the JSP file queries the database to retrieve data for the
specified employee ID.

6.2.2 Querying the Database and Retrieving Data
To get employee details, queryEmployee.jsp invokes the
getEmployeeDetails(employeeId) method in EmployeeManager. The method
returns an EmployeeModel object, which contains the data. The JSP then retrieves
values from the EmployeeModel object to display the employee data.

// from queryEmployee.jsp
<%
 ...
 int id = Integer.parseInt(empId);
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 EmployeeModel emp = mgr.getEmployeeDetails(id);
 ...
%>
...
<h4>Employee Details</h4>
<table>
<tr><td>Employee ID: </td><td colspan=3><%=id%></td></tr>
<tr><td>First Name: </td><td><%=emp.getFirstName()%></td><td>Last Name:
</td><td><%=emp.getLastName()%></td></tr>
<tr><td>Email: </td><td><%=emp.getEmail()%></td><td>Phone Number:
</td><td><%=emp.getPhoneNumber()%></td></tr>
<tr><td>Hire Date: </td><td><%=emp.getHireDate().toString()%></td><td>Job:
</td><td><%=emp.getJobId()%></td></tr>
</table>

The getEmployeeDetails method in EmployeeManager starts off the following
sequence:

1. It calls getEmployee to get an instance of the desired employee.

2. getEmployee invokes findByPrimaryKey on the Employee class. This calls
ejbFindByPrimaryKey in EmployeeBean.

3. ejbFindByPrimaryKey calls findByPrimaryKey in EmployeeDAOImpl,
which returns an int.

4. This int enables the EJB container to return an Employee bean from
findByPrimaryKey, as declared in the Employee home interface.

5. Note that findByPrimaryKey in the Employee class is a special method. When
you invoke this method, the EJB container automatically calls ejbLoad for you.
ejbLoad calls load in EmployeeDAOImpl, which returns an EmployeeModel.
This is used to populate the m_emp class variable.

6. getEmployeeDetails then calls getDetails with the Employee bean
returned from step 1.

7. getDetails returns an EmployeeModel to the JSP.

Query Employee Operation

6-4 Oracle Application Server Application Developer’s Guide

Figure 6–2 getEmployeeDetails

6.2.3 findByPrimaryKey Method
The EmployeeBean class implements the ejbFindByPrimaryKey(int empId)
method. This method calls the EmployeeDAOImpl class to retrieve data from the
database.

// from EmployeeBean.java
public Integer ejbFindByPrimaryKey(int empId) throws FinderException
{
 try {
 if (m_dao == null) m_dao = new EmployeeDAOImpl();
 Integer findReturn = m_dao.findByPrimaryKey(empId);
 return findReturn;
 } catch (Exception e) {
 throw new FinderException ("\nSQL Exception in find by primary key.\n"
 + e.getMessage());
 }
}

In the EmployeeDAOImpl class the findByPrimaryKey(int id) method queries
the database for the specified employee ID. It executes a SELECT statement on the
database and returns the employee ID if it finds an employee. If it does not find an
employee, it throws an exception.

6.2.4 Getting Benefit Data
For benefit data, where a user can have more than one benefit, the application iterates
over the Collection.

// from queryEmployee.jsp
<h4>Elected Benefits</h4>
<table>
 <%
 Collection benefits = emp.getBenefits();
 if (benefits == null || benefits.size() == 0) {
 %>
 <tr><td>None</td></tr>
 <%
 } else {
 Iterator it = benefits.iterator();

QueryEmployee.jsp

1

getEmployeeDetails

getEmployee

int

EmployeeManager Employee EmployeeDAOImpl

findByPrimaryKey
ejbFindByPrimaryKey findByPrimaryKey

Employee

ejbLoad load

EmployeeModel

(populates m_emp)

getDetails
EmployeeModel

2
3

Database5

7

6

4

Add and Remove Benefit Operations

Tracing Flows Between Clients and Business Logic Objects 6-5

 while (it.hasNext()) {
 BenefitItem item = (BenefitItem)it.next();
 %>
 <tr><td><%=item.getName()%></td></tr>
 <%
 } // end of while
 } // end of if
 %>
</table>

Figure 6–3 Sequence Diagram for Query Employee

6.3 Add and Remove Benefit Operations
For the add and remove operations, the JSPs send which benefit to add or remove,
plus the employee ID, to the EmployeeManager. The EmployeeManager adds or
removes the benefit and returns the status of the operation.

The add and remove benefits operations follow similar sequences in presenting a list
of benefits to the user, and executing the add or remove operation on the database.

■ To add benefits, the user clicks the Add Benefit link on the Info page (Figure 3–1).
The URL behind this link looks like:

<a href="/empbft/controller?empID=<%=id%>&action=addBenefitToEmployee">
Add benefits to the employee

■ To remove benefits, the user clicks the Remove Benefit link on the Info page
(Figure 3–1). The URL behind this link looks like:

<a
href="/empbft/controller?empID=<%=id%>&action=removeBenefitFromEmployee">
Remove benefits from the employee

See the following sections for details on the add and remove operations.

Add Benefit Operation

6-6 Oracle Application Server Application Developer’s Guide

6.4 Add Benefit Operation
This section contains information about the add benefit operation.

6.4.1 High-Level Sequence of Events
Figure 6–4 shows the events that occur when a user selects the add benefit option:

Figure 6–4 Add Benefits Operation

1. The Controller servlet handles the request first. It gets the value of the action
parameter (addBenefitToEmployee) and invokes the performAction method
in the corresponding class, AddBenefitToEmployee.

2. The performAction method checks the value of the benefits parameter. It is
null at first, so it forwards the request to addBenefitToEmployee.jsp (or
addBenefitToEmployeeWireless.jsp). The JSP displays a list of benefits that
the user can add.

3. The user selects the desired benefits to add and submits the request. The action
parameter in the request still has the same value (addBenefitToEmployee), but
this time, it has a benefits parameter that specifies which benefits to add.

4. The Controller invokes the AddBenefitToEmployee class to process the request.
The class sees that the benefits parameter is not null, and it calls the
addBenefits method in the Employee class to add the benefits.

6.4.2 Getting Benefits That the User Can Add
To show a list of benefits that the user can add, the addBenefitToEmployee.jsp
page gets a list of benefits that the user does not have. The JSP file gets an instance of
EmployeeManager, then invokes the getUnelectedBenefitItems method.

// from addBenefitToEmployee.jsp
<%
 int empId = Integer.parseInt(request.getParameter(
 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 Collection unelected = mgr.getUnelectedBenefitItems(empId);

See Also: "Getting Benefits That the User Can Add" on page 6-6

See Also: "Updating the Database" on page 6-7

1

benefits = null

forward

Controller AddBenefitToEmployee.java
(ActionHandler)

2

3

4

Info page

[Employee info]

Add Benefit

Remove Benefit
emp.addBenefits

addBenefitToEmployee.jsp

List of benefits to add

action=addBenefitToEmployee

Submit

1
benefits != nullaction=addBenefitToEmployee

Add Benefit Operation

Tracing Flows Between Clients and Business Logic Objects 6-7

 ...
%>

The getUnelectedBenefitItems method gets the master list of all benefits from
BenefitCatalog, then it gets a list of benefits for the employee. It compares the two
lists and returns a list of benefits that the employee does not have.

// from EmployeeManagerBean.java
public Collection getUnelectedBenefitItems(int id) throws RemoteException
{
 Collection allBenefits = null;
 InitialContext initial = new InitialContext();
 Object objref = initial.lookup(AppJNDINames.BENEFIT_CATALOG_EJBHOME);
 BenefitCatalogHome home = (BenefitCatalogHome)
 PortableRemoteObject.narrow(objref, BenefitCatalogHome.class);
 BenefitCatalog catalog = home.create();
 allBenefits = catalog.getBenefits();

 // ... exceptions omitted ...

 Collection unelected = new ArrayList();
 EmployeeModel emp = this.getEmployeeDetails(id);
 ArrayList eb = (ArrayList) emp.getBenefits();
 if (eb != null && !eb.isEmpty()) {
 Iterator i = allBenefits.iterator();
 while (i.hasNext()) {
 BenefitModel b = (BenefitModel)i.next();
 if (Collections.binarySearch(eb, b) < 0)
 unelected.add(b);
 }
 return unelected;
 }
 return allBenefits;
}

6.4.3 Updating the Database
To add the benefits the user selected, the AddBenefitToEmployee object gets the
Employee object and executes the addBenefits method:

// from AddBenefitToEmployee.java
String benefits[] = req.getParameterValues(SessionHelper.BENEFIT_PARAMETER);
...
int benefitIDs[] = new int[benefits.length];
for (int i = 0; i < benefits.length; i++) {
 benefitIDs[i] = Integer.parseInt(benefits[i]);
}
int empId = Integer.parseInt(req.getParameter(SessionHelper.EMP_ID_PARAMETER));
EmployeeManager mgr = SessionHelper.getEmployeeManager(req);
try {
 Employee emp = mgr.getEmployee(empId);
 emp.addBenefits(benefitIDs);
} catch (RemoteException e) {
 throw new ServletException (
 "\nRemote exception while getting employee and adding benefits.\n"
 + e.getMessage());
}
forward(req, res, wireless ? "/successWireless.jsp" : "/success.jsp");

Remove Benefit Operation

6-8 Oracle Application Server Application Developer’s Guide

The addBenefits method in the Employee object uses the EmployeeDAOImpl class
to connect to the database.

// from EmployeeBean.java
public void addBenefits(int benefits[])
{
 try{
 if (m_dao == null) m_dao = new EmployeeDAOImpl();
 m_dao.addBenefits(m_emp.getId(), benefits);
 ejbLoad();
 } catch (Exception e) {
 throw new EJBException ("\nData access exception in adding benefits.\n"
 + e.getMessage());
 }
}

After adding the benefits in the database, the addBenefits method calls the
ejbLoad method to synchronize the Employee bean with the data in the database.

The addBenefits method in EmployeeDAOImpl connects to the database and sends
an INSERT statement.

Figure 6–5 Sequence Diagram for Adding Benefits

6.5 Remove Benefit Operation
This section contains information about the remove benefit operation.

6.5.1 High-Level Sequence of Events
Figure 6–6 shows the events that occur when a user selects some benefits to remove
and clicks the Submit button.

Remove Benefit Operation

Tracing Flows Between Clients and Business Logic Objects 6-9

Figure 6–6 Remove Benefits Operation

1. The Controller servlet handles the request first. It gets the value of the action
parameter (removeBenefitFromEmployee) and invokes the performAction
method in the corresponding class, RemoveBenefitFromEmployee.

2. The performAction method checks the value of the benefits parameter. It is
null at first, so it forwards the request to removeBenefitFromEmployee.jsp
(or removeBenefitFromEmployeeWireless.jsp). The JSP displays a list of
benefits that the user can remove.

3. The user selects the desired benefits to remove and submits the request. The
action parameter in the request still has the same value
(removeBenefitFromEmployee), but this time, it has a benefits parameter
that specifies which benefits to remove.

4. The Controller invokes the RemoveBenefitFromEmployee class to process the
request. The class sees that the benefits parameter is not null, and it calls the
removeBenefits method in the Employee class to remove the benefits.

6.5.2 Getting Benefits That the User Can Remove
To get a list of benefits that the user can remove, the
removeBenefitFromEmployee.jsp gets an EmployeeModel, which contains all
the data for an employee, then it calls the getBenefits method in EmployeeModel.
It then iterates through the list to display each benefit.

<%
 int empId = Integer.parseInt(request.getParameter(
 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 Collection elected = mgr.getEmployeeDetails(empId).getBenefits();
 if (elected == null || elected.size() == 0) {
%>
<h4>No Benefits to Remove</h4>
<p>The employee has not elected any benefits.</p>
<h4>Actions</h4>
<a href="./controller?action=queryEmployee&empID=<%=empId%>">Query the same
employee

See Also: "Getting Benefits That the User Can Remove" on page 6-9

See Also: "Updating the Database" on page 6-7

1

benefits = null

forward

Controller RemoveBenefitFromEmployee.java
(ActionHandler)

2

3

4

Info page

[Employee info]

Add Benefit

Remove Benefit
emp.removeBenefits

removeBenefitFromEmployee.jsp

List of benefits to remove

action=removeBenefitFromEmployee
Submit

1
benefits != nullaction=removeBenefitFromEmployee

Remove Benefit Operation

6-10 Oracle Application Server Application Developer’s Guide

Query other employee

Home

<%
 } else {
%>
<h4>Select Elected Benefits</h4>
<%
 Iterator i = elected.iterator();
 while (i.hasNext()) {
 BenefitItem b = (BenefitItem) i.next();
%>
<input type=checkbox name=benefits value=<%=b.getId()%>><%=b.getName()%>

<%
 } // End of while
%>
<h4>Actions</h4>
<input type=submit value="Remove Selected Benefits">
<input type=hidden name=empID value=<%=empId%>>
<input type=hidden name=action
 value=<%=SessionHelper.ACTION_REMOVE_BENEFIT_FROM_EMPLOYEE%>>
<%
 } // End of if
%>

6.5.3 Updating the Database
To remove the benefits the user selected, the RemoveBenefitFromEmployee object
gets the Employee object and executes the removeBenefits method:

// from RemoveBenefitFromEmployee.java
String benefits[] = req.getParameterValues(SessionHelper.BENEFIT_PARAMETER);
String client = req.getParameter(SessionHelper.CLIENT_TYPE_PARAMETER);
boolean wireless = client != null &&
 client.equals(SessionHelper.CLIENT_TYPE_WIRELESS);
if(benefits == null) {
 forward(req, res, wireless ?
 "/removeBenefitFromEmployeeWireless.jsp" :
 "/removeBenefitFromEmployee.jsp");
} else {
 int benefitIDs[] = new int[benefits.length];
 for (int i = 0; i < benefits.length; i++) {
 benefitIDs[i] = Integer.parseInt(benefits[i]);
 }
 int empId = Integer.parseInt(req.getParameter(
 SessionHelper.EMP_ID_PARAMETER));
 EmployeeManager mgr = SessionHelper.getEmployeeManager(req);
 try {
 Employee emp = mgr.getEmployee(empId);
 emp.removeBenefits(benefitIDs);
 } catch (RemoteException e) {
 throw new ServletException (
 "Remote exception while getting employee and removing his/her
 benefits." + e.getMessage());
 }
 forward(req, res, wireless ? "/successWireless.jsp" : "/success.jsp");
}

Remove Benefit Operation

Tracing Flows Between Clients and Business Logic Objects 6-11

The removeBenefits method in the Employee object uses the EmployeeDAOImpl
class to connect to the database.

// from EmployeeBean.java
public void removeBenefits(int benefits[])
{
 try {
 if (m_dao == null) m_dao = new EmployeeDAOImpl();
 m_dao.removeBenefits(m_emp.getId(), benefits);
 ejbLoad();
 } catch (Exception e) {
 throw new EJBException ("\nData access exception in removing benefits.\n"
 + e.getMessage());
 }
}

After removing the benefits from the database, the removeBenefits method calls the
ejbLoad method to synchronize the Employee bean with the data in the database.

The removeBenefits method in EmployeeDAOImpl connects to the database and
sends a DELETE statement.

Figure 6–7 Sequence Diagram for Removing Benefits

Remove Benefit Operation

6-12 Oracle Application Server Application Developer’s Guide

Configuring OracleAS Web Cache for the Application 7-1

7
Configuring OracleAS Web Cache for the

Application

You can use OracleAS Web Cache to improve performance, availability, and scalability
of your applications without modifying them. You just have to specify which pages in
your applications you want to cache using the Oracle Enterprise Manager 10g
Application Server Control Console (Application Server Control Console).

This chapter contains these topics:

■ Choosing Which Pages to Cache

■ Analyzing the Application

7.1 Choosing Which Pages to Cache
Consider caching the following:

■ Objects in which the content seldom changes, such as images

■ Static objects that may be modified occasionally, such as style sheets or PDF

■ Objects that remain unchanged for a period of time, such as an inventory result

You use the Rules page of Application Server Control Console (Web Cache Home
page -> Administration tab -> Properties -> Application -> Rules) to manage cached
pages. This applies to static and dynamic elements. To cache a page, you specify the
selectors, including the URL expression, to filter through the caching rules to locate the
appropriate rule for the request. You then specify instructions for how to act on
selector matches. You can use regular expressions to match multiple URLs and to
ensure your pattern matches exactly.

The next section shows how the sample application caches static and dynamic pages.

Note: This chapter does not cover how OracleAS Web Cache works.
To learn about OracleAS Web Cache, see the Oracle Application Server
Web Cache Administrator’s Guide.

Note: Use invalidation or expiration to refresh data in the data
source when it changes. Otherwise, users may get outdated pages
from the cache.

Analyzing the Application

7-2 Oracle Application Server Application Developer’s Guide

7.2 Analyzing the Application
The only static element in the sample application is a style sheet (blaf.css).

The ID page (Figure 3–1), which prompts the user to enter an employee ID, is a static
page in the sense that it does not change over any given period of time, but it is
generated dynamically. This is a good page to cache.

The most requested pages in the application are the pages that display employee
information. Caching these pages would improve application performance. These
pages are dynamically generated, however; the application needs to invalidate them
when they are no longer valid.

There are no graphics to cache in this application.

7.2.1 Specifying the Pages to Cache
Figure 7–1 displays the Rules page of Application Server Control Console. The first
three rows apply to the sample application.

Figure 7–1 Rules Page in Application Server Control Console

Rule 1: Caching the ID Page and the Employee Information Page
The ID page and the pages that display employee information have similar URLs. The
URL for the ID page is:

/empbft/controller?action=queryEmployee

The employee information pages have URLs that look something like this:

/empbft/controller;jsessionid=489uhhjjhjkui348fslkj0982k3jlds3?action=queryEmploye
e&empID=123&submit=Query+Employee

Both URLs have action=queryEmployee. The following regular expression covers
both URLs:

^/empbft/controller.*\?.*action=queryEmployee.*

Analyzing the Application

Configuring OracleAS Web Cache for the Application 7-3

Rule 2: Caching the First Page
The second rule, ^/empbft/$, specifies an optional convenience page that provides a
link to the ID page of the application. This page is static. The ^ and $ are special
characters used in regular expressions to indicate the beginning and the end of a line.
This notation ensures that the pattern matches exactly.

Rule 3: Caching the Style Sheet
To cache the style sheet, specify its URL.

^/empbft/css/blaf.css$

OracleAS Web Cache is populated with default rules during installation. One of the
rules, .css, is reserved for style sheets. If your configuration supports this rule, it is
not necessary to configure this rule.

7.2.2 Invalidating Pages
You need to invalidate dynamic pages in the cache when they are no longer valid. To
invalidate cached pages, send an XML file with the URL of the pages that you want to
invalidate to the OracleAS Web Cache invalidation port.

The application caches the employee information page, which should be invalidated
as soon as the data in the database is updated. One way to do this is to send an
invalidation message to OracleAS Web Cache at the end of the add and remove benefit
operations. This method, however, does not invalidate the pages when other
applications update the underlying tables in the database that the application uses.

A better way is to have the database send the invalidation message when the data in
the tables changes. To do this, set up triggers on the tables to fire when data in the
tables gets updated. The triggers can call a procedure to send the invalidation message
to OracleAS Web Cache.

The procedure that the triggers invoke looks like the following:

-- Usage:
-- SQL> set serveroutput on (When debugging to see dbms_output.put_line's)
-- SQL> exec invalidate_emp('doliu-sun',4001,122);
--
create or replace procedure invalidate_emp (
 machine in varchar2,
 port in integer,
 emp in integer) is
 DQUOTE constant varchar2(1) := chr(34);
 CR constant varchar2(1) := chr(13);
 AMP constant varchar2(1) := chr(38);
 uri varchar2(100) := '/empbft/controller?action=queryEmployee' || AMP ||
 'amp;empID=' || emp;
BEGIN

Note: In addition to, or as an alternative to, creating caching rules
with Application Server Control Console, application developers can
choose to store many of the caching attributes in the
Surrogate-Control header of an HTTP response message. This
feature enables the application Web server to override the settings
configured through Application Server Control Console, as well as
allow other third-party caches to use OracleAS Web Cache caching
attributes. See the Oracle Application Server Web Cache Administrator’s
Guide for details.

Analyzing the Application

7-4 Oracle Application Server Application Developer’s Guide

 wxvutil.invalidate_reset;
 wxvutil.invalidate_uri(uri, 0, NULL);
 wxvutil.invalidate_exec(machine, port, 'inv-password');
END;

7.2.3 Setting up Triggers on the Underlying Tables
The underlying tables in the database have the following triggers. These triggers run
the invalidate procedure.

The first trigger is fired when a row is deleted from the EMPLOYEE_BENEFIT_ITEMS
table.

CREATE OR REPLACE TRIGGER AFTER_DEL_TRIG
AFTER DELETE on employee_benefit_items
FOR EACH ROW
BEGIN
invalidate_emp('doliu-sun', 4001, :old.EMPLOYEE_ID);
END;

The second trigger is fired when a row is inserted or updated in the EMPLOYEE_
BENEFIT_ITEMS table.

CREATE OR REPLACE TRIGGER AFTER_INS_UPD_TRIG
AFTER INSERT OR UPDATE on employee_benefit_items
FOR EACH ROW
BEGIN
invalidate_emp('doliu-sun', 4001, :new.EMPLOYEE_ID);
END;

Note: OracleAS Web Cache provides several mechanisms for
invaliding content from external source. In addition, OracleAS Web
Cache provides an inline invalidation mechanism for Edge Side
Includes (ESI) developers. See the Oracle Application Server Web Cache
Administrator’s Guide for further details about the available
invalidation mechanisms.

Supporting Wireless Clients 8-1

8
Supporting Wireless Clients

The wireless feature in OracleAS enables wireless clients to access your applications.
Because wireless clients use protocols different from HTTP and markup languages
other than HTML, you have to make some modifications to the sample application to
support wireless clients.

Contents of this chapter:

■ Changes You Need To Make To Your Application

■ Presentation Data for Wireless Clients

■ Deciding Where to Put the Presentation Data for Wireless Clients

■ Header Information in JSP Files for Wireless Clients

■ Operation Details

■ Accessing the Application

8.1 Changes You Need To Make To Your Application
If your application uses the MVC design, you only need to make a few changes to
your application to support wireless clients:

■ The major change you have to make to your application to support wireless clients
is to write the presentation data for the wireless clients. The business logic objects
remain unchanged. This task is simplified by the separation of the presentation
data from the business logic objects. If there were no clear separation between
presentation data and business logic objects, you would have more difficulty
merging presentation code for wireless clients with presentation code for desktop
browsers.

■ You may also have to modify the objects that subclass the ActionHandler object
(see Figure 4–1). These objects forward the request to the appropriate JSP files.
When you write your presentation data for wireless clients, you may choose to put
the data in the same JSP file that contains the presentation data for browsers, or in
different JSP files. If you choose to put the data in separate files, then you have to
edit the ActionHandler objects to forward requests from wireless clients to JSP
files that contain wireless presentation data.

See Also: "Presentation Data for Wireless Clients" on page 8-2

See Also: "Separating Presentation Data into Separate Files" on
page 8-7

Presentation Data for Wireless Clients

8-2 Oracle Application Server Application Developer’s Guide

8.2 Presentation Data for Wireless Clients
Because wireless clients do not use a standardized markup language, you have to
write presentation data for the clients in XML based on a generic DTD specification.
The wireless feature in OracleAS transforms the XML to the specific markup language
that the wireless client can process.

Like HTML, applications can generate XML from JSP files or static files. In the sample
application, the presentation data comes from JSP files because it contains dynamic
data.

The generic XML for wireless clients is based on the SimpleResult DTD.

8.2.1 Screens for the Wireless Application
Figure 8–1 to Figure 8–3 show the sample application on an OpenWave simulator. The
application on a wireless client looks similar to the application on a desktop browser.

Figure 8–1 Screens for the Wireless Application (1 of 3)

On Screen 1, the wireless client lists the applications that it can run. This is essentially
a list of the files in:

$OMSDK_HOME/oc4j_omsdk/omsdk/j2ee/applications/pmsdk/apps/

$OMSDK_HOME is the home directory for OracleAS Wireless SDK.

Screen 2 shows the sample application's starting point, which is the empbft.xml file.
The file displays a text input field where the user can enter an employee ID.

Screen 3 shows the results of the query. The wireless client has a scroll bar that enables
the user to scroll down the page to view all the information. At this screen, the user
can press the Menu button to add or remove benefits.

See Also: Chapter 5, "Creating Presentation Pages" on page 5-1

See Also: Oracle Application Server Wireless Developer’s Guide for
details on the DTD and how to use its elements.

Presentation Data for Wireless Clients

Supporting Wireless Clients 8-3

Figure 8–2 Screens for the Wireless Application (2 of 3)

Screen 4 shows the menu, which offers selections such as add benefits, remove
benefits, and query other employee.

Screen 5 shows a list of benefits that the user can add. The user selects one benefit to
add and clicks OK to submit the request. Note that on wireless clients, the user can
select only one item to add or remove at a time.

Screen 6 tells the user that the add benefit operation was completed successfully. This
screen also has a Menu option.

Figure 8–3 Screens for the Wireless Application (3 of 3)

Screen 7 shows the menu. It has four options: add more benefits, remove more
benefits, query same employee, and query other employee.

Screen 8 shows the list of benefits after the user has added a benefit.

Screen 9 is similar to Screen 3, except that it is scrolled down to show the list of
benefits for the user.

See Also: "Differences Between the Wireless and the Browser
Application" on page 8-4

Deciding Where to Put the Presentation Data for Wireless Clients

8-4 Oracle Application Server Application Developer’s Guide

8.2.2 Differences Between the Wireless and the Browser Application
In the browser version of the application, users can select multiple benefits to add or
remove. On wireless devices, however, users can select only one item at a time. To
assist users in adding/removing multiple items, the application provides options
called "Add More Benefits" and "Remove More Benefits" to enable users to select
another benefit to add or remove (screen 7). These options are not necessary, and thus
not available, for the browser version of the application.

These options are made available from successWireless.jsp, which is displayed
after the application adds or removes a benefit successfully (screen 6). This screen
displays a success message. When users click Menu on this screen, they see the "Add
More Benefits" and "Remove More Benefits" options.

// from successWireless.jsp
<SimpleText>
 <SimpleTextItem>Operation completed successfully.</SimpleTextItem>
 <Action label="Add More Benefits" type="SOFT1" task="GO"
target="/empbft/controller?action=addBenefitToEmployee&clientType=wireless&
;empID=<%=empId%>"></Action>

 <Action label="Remove More Benefits" type="SOFT1" task="GO"
target="/empbft/controller?action=removeBenefitFromEmployee&clientType=wireles
s&empID=<%=empId%>"></Action>

 <Action label="Query Same Employee" type="SOFT1" task="GO"
target="/empbft/controller?action=queryEmployee&clientType=wireless&empID=
<%=empId%>"></Action>

 <Action label="Query Other Employee" type="SOFT1" task="GO"
target="/empbft/controller?action=queryEmployee&clientType=wireless"></Action>
</SimpleText>

When the user selects the "Add More Benefits" or "Remove More Benefits" option, the
request is similar to the request to add or remove a benefit. The request contains an
action parameter, an empID parameter, and a clientType parameter. The
application requeries the database and displays an updated list of benefits (Screen 8).

8.3 Deciding Where to Put the Presentation Data for Wireless Clients
You can write the XML presentation data for wireless clients in the same JSP file as the
one that generates the HTML, or in a different JSP file. Regardless of where you put
the presentation data, you still need to determine if a request came from a wireless or
desktop client.

8.3.1 Determining the Origin of a Request
You can determine the origin of a request by inserting a parameter in the request to
identify wireless clients. You can include the parameter and its value using a hidden
input form element.

The sample application uses a parameter name of clientType and parameter value
of wireless to identify wireless clients. Each wireless client request contains this
parameter. For example, in empbft.xml, which is the first file in the application that
wireless clients see:

// empbft.xml
<?xml version = "1.0" encoding = "ISO-8859-1"?>
<SimpleResult>

Deciding Where to Put the Presentation Data for Wireless Clients

Supporting Wireless Clients 8-5

 <SimpleContainer>
 <SimpleForm title="Query Employee" target="/empbft/controller">
 <SimpleFormItem name="empID" format="*N">Enter Emp ID: </SimpleFormItem>
 <SimpleFormItem name="action" type="hidden" value="queryEmployee" />
 <SimpleFormItem name="clientType" type="hidden" value="wireless" />
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

You can then check for the clientType parameter in servlets or JSPs in the same way
that you check for other parameters.

In servlets:

String client = req.getParameter(SessionHelper.CLIENT_TYPE_PARAMETER);
boolean wireless =
 client != null && client.equals(SessionHelper.CLIENT_TYPE_WIRELESS);

In JSPs:

<%
 String client = request.getParameter(SessionHelper.CLIENT_TYPE_PARAMETER);
 boolean wireless =
 client != null && client.equals(SessionHelper.CLIENT_TYPE_WIRELESS);
%>

8.3.2 Combining Presentation Data in the Same JSP File
If you use this method, determine the origin of the request (whether it came from a
wireless or desktop client) in the JSP file itself. You can then generate HTML or XML
depending on the origin. For example:

// import classes for both wireless and browsers
<%@ page import="java.util.*" %>
<%@ page import="empbft.component.employee.ejb.*" %>
<%@ page import="empbft.component.employee.helper.*" %>
<%@ page import="empbft.util.*" %>

// check the client type that sent the request
<%
 String client = request.getParameter(SessionHelper.CLIENT_TYPE_PARAMETER);
 boolean wireless = ((client != null) &&
 client.equals(SessionHelper.CLIENT_TYPE_WIRELESS));
 if (wireless)
 {
%>
 <?xml version = "1.0" encoding = "ISO-8859-1"?>
 <%@ page contentType="text/vnd.oracle.mobilexml; charset=ISO-8859-1" %>
 <SimpleResult>
 <SimpleContainer>
 <SimpleForm title="Query Employee" target="/empbft/controller">
 <SimpleFormItem name="empID" format="*N">Enter Emp ID:
 </SimpleFormItem>
 <SimpleFormItem name="action" type="hidden" value="queryEmployee" />
 <SimpleFormItem name="clientType" type="hidden" value="wireless" />
 </SimpleForm>
 </SimpleContainer>
 </SimpleResult>
<%
 } else {

Deciding Where to Put the Presentation Data for Wireless Clients

8-6 Oracle Application Server Application Developer’s Guide

%>
 <%@ page contentType="text/html;charset=ISO-8859-1"%>
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
 <link rel="stylesheet" href="css/blaf.css" type="text/css">
 <title>Query Employee</title>
 </head>
 <body>
 <h2>Employee Benefit Application</h2>
<%
 String empId = request.getParameter(SessionHelper.EMP_ID_PARAMETER);
 if (empId == null)
 {
%>
<h4>Query Employee</h4>
<form method=get action="/empbft/controller">
<input type=hidden name=action value=queryEmployee>
<table>
 <tr>
 <td>Employee ID:</td>
 <td><input type=text name=empID size=4></td>
 <td><input type=submit value="Query Employee"></td>
 </tr>
</table>
<h4>Actions</h4>
Home

</form>
<%
 } else {
 int id = Integer.parseInt(empId);
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 EmployeeModel emp = mgr.getEmployeeDetails(id);
%>
<h4>Employee Details</h4>
<table>
<tr><td>Employee ID: </td><td colspan=3><%=id%></td></tr>
<tr><td>First Name: </td><td><%=emp.getFirstName()%></td><td>Last Name:
</td><td><%=emp.getLastName()%></td></tr>
<tr><td>Email: </td><td><%=emp.getEmail()%></td><td>Phone Number:
</td><td><%=emp.getPhoneNumber()%></td></tr>
<tr><td>Hire Date: </td><td><%=emp.getHireDate().toString()%></td><td>Job:
</td><td><%=emp.getJobId()%></td></tr>
</table>
<h4>Elected Benefits</h4>
<table>
 <%
 Collection benefits = emp.getBenefits();
 if (benefits == null || benefits.size() == 0) {
 %>
 <tr><td>None</td></tr>
 <%
 } else {
 Iterator it = benefits.iterator();
 while (it.hasNext()) {
 BenefitItem item = (BenefitItem)it.next();
 %>
 <tr><td><%=item.getName()%></td></tr>
 <%
 } // end of while

Deciding Where to Put the Presentation Data for Wireless Clients

Supporting Wireless Clients 8-7

 } // end of if
 %>
</table>
<h4>Actions</h4>
<table>
<tr><td><a
href="/empbft/controller?empID=<%=id%>&action=addBenefitToEmployee">Add
benefits to the employee</td></tr>
<tr><td><a
href="/empbft/controller?empID=<%=id%>&action=removeBenefitFromEmployee">Remov
e benefits from the employee</td></tr>
<tr><td>Query other
employee</td></tr>
<tr><td>Home
</td></tr>
</table>
<%
 } // end of else (empId != null)
%>
</body>
</html>
<%
} // end of else (wireless)
%>

8.3.3 Separating Presentation Data into Separate Files
If you are using different files, edit the subclasses of ActionHandler to check the
origin of the request, and forward the request to the proper JSP file. For example:

public void performAction(HttpServletRequest req, HttpServletResponse res)
 throws ServletException
{
 String client = req.getParameter(SessionHelper.CLIENT_TYPE_PARAMETER);
 boolean wireless =
 client != null && client.equals(SessionHelper.CLIENT_TYPE_WIRELESS);
 String empIdString = req.getParameter(SessionHelper.EMP_ID_PARAMETER);
 boolean validEmpId = true;
 if (empIdString != null) {
 int empId = Integer.parseInt(empIdString);
 validEmpId = (empId >= 100 && empId <= 206) ? true : false;
 }

 // Forward to appropriate page
 if (wireless) {
 if (validEmpId) {
 forward(req, res, "/queryEmployeeWireless.jsp");
 } else {
 forward(req, res, "/errorWireless.jsp");
 }
 } else {
 if (validEmpId) {
 forward(req, res, "/queryEmployee.jsp");
 } else {
 forward(req, res, "/error.jsp");
 }
 }
}

Header Information in JSP Files for Wireless Clients

8-8 Oracle Application Server Application Developer’s Guide

The value of CLIENT_TYPE_PARAMETER is defined in SessionHelper to be
clientType. This is the name of the parameter.

The value of CLIENT_TYPE_WIRELESS is defined in SessionHelper to be
wireless. This is the value of the parameter.

This parameter and the value of the parameter are defined in empbft.xml. This file
corresponds to the ID page for wireless. It enables users to enter a number in a text
input field.

// empbft.xml
<?xml version = "1.0" encoding = "ISO-8859-1"?>
<SimpleResult>
 <SimpleContainer>
 <SimpleForm title="Query Employee" target="/empbft/controller">
 <SimpleFormItem name="empID" format="*N">Enter Emp ID: </SimpleFormItem>
 <SimpleFormItem name="action" type="hidden" value="queryEmployee" />
 <SimpleFormItem name="clientType" type="hidden" value="wireless" />
 </SimpleForm>
 </SimpleContainer>
</SimpleResult>

8.4 Header Information in JSP Files for Wireless Clients
You have to make some changes in the header of your JSP files for wireless clients:

8.4.1 Setting the XML Type
The first line of the JSP file should specify that the file is an XML file:

<?xml version = "1.0" encoding = "ISO-8859-1"?>

8.4.2 Setting the Content Type
In the JSP files for wireless clients, you need the following line at the top of the files to
set the content type of the response and the character set.

<%@ page contentType="text/vnd.oracle.mobilexml; charset=ISO-8859-1" %>

You need to do this because the default value for contentType for JSPs is
text/html, and this is not what you want for wireless clients.

The transformer uses the text/vnd.oracle.mobilexml value when transforming
the page into data that the wireless client can understand.

8.5 Operation Details
To OracleAS, requests from wireless clients look the same as requests from desktop
browsers except that the user agent field contains the name of the wireless device.
However, the way in which wireless requests get to OracleAS is different: Wireless
requests first go through gateways (such as WAP, Voice, or SMS), which convert the
requests to the HTTP protocol. The gateways then route the requests to OracleAS
Wireless.

OracleAS Wireless processes the requests by invoking an adapter to retrieve XML from
the mobile application. The XML is based on a schema defined by OracleAS.

Operation Details

Supporting Wireless Clients 8-9

OracleAS Wireless then invokes a transformer, which takes the XML and transforms it
to a markup language appropriate for the wireless client. OracleAS sends the resulting
data to the gateway, which may encode the data (to make the data more compact)
before sending it to the client.

8.5.1 Query Operation
Figure 8–4 shows the flow of the query operation with wireless and browser clients.
This figure is a more complex form of Figure 6–1.

Figure 8–4 Query Operation

Figure 8–4 contains two sequences of events. One sequence is for requests that come
from browsers; steps in this sequence are noted in the figure with a "B". The other
sequence is for requests that come from wireless clients; steps in this sequence are
noted with a "W".

The steps for browser requests are covered in "Query Employee Operation". This
section covers the wireless steps.

W1: The server sends the request to the Controller with the action parameter set to
queryEmployee and the empID parameter set to the employee ID entered by the
user.

See Also: Oracle Application Server Wireless Developer’s Guide and
Oracle Application Server Wireless Administrator’s Guide

Controller

Request without employee ID
action=queryEmployee

No

B1

B2, B5

QueryEmployee.java (ActionHandler)

ID valid?

error.jsp queryEmployee.jsp

B3

ID = null

Valid ID B6

ID page

Query

ID: 12345

Request with employee ID
action=queryEmployee

B4

Info page

[Employee info]

Add Benefit

Remove Benefit

empbft.xml

W1

W2

clientType = wireless?

Yes

No

Yes No
W3

queryEmployeeWireless.jsp

W4

Screen 3

[Employee info]

Add Benefit

Remove Benefit

errorWireless.jsp

ID valid?
Yes

Request with employee ID
action=queryEmployee

Operation Details

8-10 Oracle Application Server Application Developer’s Guide

W2: QueryEmployee.java checks the clientType parameter to determine if the
request came from a wireless client or a browser. This parameter is set only in the XML
files that the application sends to wireless clients; requests from browsers do not have
this parameter. QueryEmployee.java also checks if the employee ID is valid.

W3: QueryEmployee.java forwards the request to
queryEmployeeWireless.jsp.

W4: queryEmployeeWireless.jsp is similar to queryEmployee.jsp. It retrieves
and displays employee data. Note that the retrieval method is the same in both files.
The only difference is in the tags used (HTML for browsers, XML for wireless clients).

8.5.2 queryEmployeeWireless.jsp
queryEmployeeWireless.jsp looks like the following:

// queryEmployeeWireless.jsp
<?xml version = "1.0" encoding = "ISO-8859-1"?>
<%@ page contentType="text/vnd.oracle.mobilexml; charset=ISO-8859-1" %>
<%@ page import="java.util.*" %>
<%@ page import="empbft.component.employee.ejb.*" %>
<%@ page import="empbft.component.employee.helper.*" %>
<%@ page import="empbft.util.*" %>
<SimpleResult>
 <SimpleContainer>
<%
 String empId = request.getParameter(SessionHelper.EMP_ID_PARAMETER);
 if (empId == null)
 {
%>
 <SimpleForm title="Query Employee" target="/empbft/controller">
 <SimpleFormItem name="empID" format="*N">Enter Emp ID: </SimpleFormItem>
 <SimpleFormItem name="action" type="hidden" value="queryEmployee" />
 <SimpleFormItem name="clientType" type="hidden" value="wireless" />
 </SimpleForm>
<%
 } else {
 int id = Integer.parseInt(empId);
 EmployeeManager mgr = SessionHelper.getEmployeeManager(request);
 EmployeeModel emp = mgr.getEmployeeDetails(id);
%>
 <SimpleText>
 <SimpleTextItem>Emp ID: <%=empId%></SimpleTextItem>
 <SimpleTextItem>First Name: <%=emp.getFirstName()%></SimpleTextItem>
 <SimpleTextItem>Last Name: <%=emp.getLastName()%></SimpleTextItem>
 <SimpleTextItem>Email: <%=emp.getEmail()%></SimpleTextItem>
 <SimpleTextItem>Phone: <%=emp.getPhoneNumber()%></SimpleTextItem>
 <SimpleTextItem>Hire: <%=emp.getHireDate()%></SimpleTextItem>
 <SimpleTextItem>Job: <%=emp.getJobId()%></SimpleTextItem>
 <SimpleTextItem>Elected Benefits: </SimpleTextItem>
<%
 Collection benefits = emp.getBenefits();
 if (benefits == null || benefits.size() == 0) {
%>
 <SimpleTextItem>None</SimpleTextItem>
<%
 } else {
 Iterator it = benefits.iterator();
 while (it.hasNext()) {
 BenefitItem item = (BenefitItem)it.next();

Accessing the Application

Supporting Wireless Clients 8-11

%>
 <SimpleTextItem><%=item.getName()%></SimpleTextItem>
<%
 } // end of while
 } // end of if
%>
 <Action label="Add Benefits" type="SOFT1" task="GO"
 target="/empbft/controller?action=addBenefitToEmployee&
 clientType=wireless&empID=<%=empId%>"></Action>
 <Action label="Remove Benefits" type="SOFT1" task="GO"
 target="/empbft/controller?action=removeBenefitFromEmployee&
 clientType=wireless&empID=<%=empId%>"></Action>
 <Action label="Query Other Employee" type="SOFT1" task="GO"
 target="/empbft/controller?action=queryEmployee&
 clientType=wireless"></Action>
 </SimpleText>
<%
 } // end of else (empId != null)
%>
 </SimpleContainer>
</SimpleResult>

The Action tag defines popup menus (Figure 8–1, Screen 4). The user presses the
Menu button to access the popup menu.

8.5.3 Add and Remove Benefits Operations
The add and remove benefits operations for wireless clients are similar to the
corresponding operations for browsers. The changes in the application needed to
support these operations for wireless clients include:

■ Modifying AddBenefitToEmployee.java and
RemoveBenefitFromEmployee.java to check if the request came from a
wireless client. The checks use the same format as in the query operation.

■ Creating addBenefitToEmployeeWireless.jsp and
removeBenefitFromEmployeeWireless.jsp to define the XML for
presentation.

■ Creating errorWireless.jsp to display an error message.

■ Creating successWireless.jsp, which the application displays when a user
successfully adds or removes a benefit. In addition to displaying a success
message, the file also defines a popup menu that enables the user to add or
remove additional benefits without having to go to the main menu. This feature is
not applicable to browsers. "Differences Between the Wireless and the Browser
Application" describes this feature in detail.

8.6 Accessing the Application
While you are developing wireless applications, you may not have access to an
environment where you can run your applications from actual wireless clients. In such
cases, you can test your applications using simulators. However, before you deploy
your applications in a production environment, it is highly recommended that you
find or set up an environment where you can test your applications with actual
wireless clients.

Accessing the Application

8-12 Oracle Application Server Application Developer’s Guide

8.6.1 Using a Simulator
To access the application from a wireless client simulator:

1. Enter the following URL in the simulator:

http://<host>:<port>/omsdk/rm

/omsdk/rm points to the wireless application. It displays a screen with two choices:

■ Go To ...

This selection displays a screen with a text field that enables you to enter a URL to
visit.

■ Samples

This selection displays a screen (Figure 8–1, Screen 1) that lists all the applications
in a certain directory.

1. Select Samples.

2. Invoke your application from the list of applications.

8.6.2 Using an Actual Wireless Client
To access the application from an actual Web-enabled wireless client such as a cell
phone or PDA, check that the application can be accessed publicly (that is, it is not
behind a firewall). Requests from wireless clients go through gateways, which can
communicate only with machines that are accessible publicly.

Your application should then appear on the list of applications when you enter the
URL and follow the steps listed in "Using a Simulator".

See Also: "Screens for the Wireless Application" on page 8-2

Running in a Portal Framework 9-1

9
Running in a Portal Framework

To make the sample application run within a portal framework, you have to make
some changes to the application. The changes that you have to make are in the
controller and the action handler objects. You also have to edit the links in the JSP files
to make them work. The model layer (that is, the Employee and Benefit EJBs)
remains the same.

Topics in this chapter:

■ How Portal Processes Requests

■ Screenshots of the Application in a Portal

■ Changes You Need to Make to the Application

■ Update the Links Between Pages Within a Portlet

■ Use include instead of the forward Method

■ Protect Parameter Names

■ Make All Paths Absolute

9.1 How Portal Processes Requests
Figure 9–1 shows how portal handles requests. This is important in understanding
why you have to use APIs in the Oracle Application Server Portal Developer Kit to
code your links and parameters.

Figure 9–1 How Portal Processes Requests

1. A client sends a request to OracleAS for a portal page.

Repository

3

5

Provider 1

Client

41 2

Portal

Provider 2

applications

applications

pages
3

4

Screenshots of the Application in a Portal

9-2 Oracle Application Server Application Developer’s Guide

2. Portal handles the request. It queries the repository to get a list of portal providers
that need to supply data to render the portal page.

3. Portal sends the request to each provider.

4. The providers process the request and return the appropriate data to portal.

5. Portal assembles the data into a page and returns the page to the client.

9.2 Screenshots of the Application in a Portal
The screens for the application in a portal look the same as if the application were
running outside of a portal. The only difference is that the portal pages contain tabs
and icons as defined by users and administrators. Users and administrators can set up
portals with different looks; see the portal documentation for details.

Figure 9–2 to Figure 9–6 show the pages of the application in a portal. You can
compare these portal pages with the non-portal pages in Figure 3–1 and Figure 3–2.

Figure 9–2 ID Page in a Portal

Screenshots of the Application in a Portal

Running in a Portal Framework 9-3

Figure 9–3 Info Page in a Portal

Figure 9–4 Add Benefits Page in a Portal

Changes You Need to Make to the Application

9-4 Oracle Application Server Application Developer’s Guide

Figure 9–5 Remove Benefits Page in a Portal

Figure 9–6 Success Page in a Portal

9.3 Changes You Need to Make to the Application
Before you can run the sample application in a portal, you have to set up a few things
outside the application as well as make some changes to the application itself.

9.3.1 Set up a Provider and a Portal Page
You need to have a portal environment in which to run the application:

■ Set up a provider, and register the sample application with the provider.

■ Set up a portal page and define one of the regions on the page to display the
sample application.

Changes You Need to Make to the Application

Running in a Portal Framework 9-5

Figure 9–7 shows a sample portal page that contains the application. The tabs at the
top of the page take you to different pages in the portal. You can have different tabs in
your portal page.

Figure 9–7 A Portal Page Containing the Sample Application

9.3.2 Edit the Application
You need to add some calls to the JPDK API to make your application run in a portal
environment.

■ Update the links where you want to display another page within the portlet. If the
file that contains the URL is an HTML page, you have to change it to a JSP page
because you need to determine the URL dynamically.

■ Invoke the include method instead of forward. You have to use include
because the portal needs to add data from other portlets. If you use forward, the
portal does not have a chance to gather data from the other portlets.

■ Use the portletParameter method in the HttpPortletRendererUtil class
to ensure that request parameters have unique names. This ensures that
applications on the portal page read only their parameters and not parameters for
other applications. This also enables applications to use the same parameter name;
the method prefixes parameter names with a unique string for each application.

See Also: "Update the Links Between Pages Within a Portlet" on
page 9-6

See Also: "Use include instead of the forward Method" on page 9-8

See Also: "Protect Parameter Names" on page 9-8

Update the Links Between Pages Within a Portlet

9-6 Oracle Application Server Application Developer’s Guide

■ Make all URL paths absolute paths using the absoluteLink or the
htmlFormActionLink method in the HttpPortalRendererUtil class,
depending on the HTML tag.

9.4 Update the Links Between Pages Within a Portlet
When you need to link from one page in your application to another page within a
portlet, you cannot simply specify the target page's URL in the href attribute of an
<a> tag. Instead you have to do the following:

■ Use the parameterizeLink method in the HttpPortletRendererUtil class.

■ Add the next_page parameter to the request's query string to specify the target
page or object.

9.4.1 The parameterizeLink Method
The parameterizeLink method enables you to add a query string to the link. (If
you do not have a query string in your link, you can just use the absoluteLink
method.)

In the application, some of the places where you have to use the parameterizeLink
method are:

■ to navigate from the ID page to the Info page

■ to navigate from the Info page to the Add Benefit or the Remove Benefit pages

The following files are affected: addBenefitToEmployee.jsp,
removeBenefitFromEmployee.jsp, queryEmployee.jsp, error.jsp, and
success.jsp.

The following example shows a link with two parameters in the query string.

■ Running outside a portal environment:

// from addBenefitsToEmployees.jsp
<a href="/empbft/controller?action=queryEmployee&empID=<%=empId%>">Query
 the same employee

■ Running within a portal environment:

// from addBenefitsToEmployees.jsp
<%
 String fAction = HttpPortletRendererUtil.portletParameter(request,
 SessionHelper.ACTION_PARAMETER);
 String fEmpId = HttpPortletRendererUtil.portletParameter(request,
 SessionHelper.EMP_ID_PARAMETER);
%>
...
<a href="<%=HttpPortletRendererUtil.parameterizeLink(request,
 PortletRendererUtil.PAGE_LINK,
 HttpPortletRendererUtil.portletParameter(request, "next_page") +

See Also: "Make All Paths Absolute" on page 9-10

See Also: "The parameterizeLink Method" on page 9-6

See Also: "The next_page Parameter" on page 9-7

See Also: "Make All Paths Absolute" on page 9-10

Update the Links Between Pages Within a Portlet

Running in a Portal Framework 9-7

 "=controller" + "&" +
 fAction + "=queryEmployee" + "&" +
 fEmpId + "=" + empId)%>">Query the same employee

9.4.2 The next_page Parameter
In the example above, you may have noticed that the target of the link, which is the
controller, is specified as the value of the next_page parameter. The reason for this is
that requests in a portal environment are always directed to the portal. The portal then
forwards the requests to providers. For the provider to send the request to a specific
target, you specify the target in the next_page parameter.

The name of the next_page parameter is specified in the provider.xml file (in the
WEB-INF/providers/empbft directory in the webapp.war file). You can define
the name of the parameter to be anything you want: it is the value of the
pageParameterName tag.

In URLs for the application, the query string contains the next_page parameter.
Portal sends the query string to the provider, which does the following:

1. The provider sees next_page as a special parameter.

2. The provider sends the request to the value of the parameter (controller).

3. The controller and other objects in the application process the request as normal.

// provider.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?providerDefinition version="3.1"?>

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
 <session>false</session>
 <useOldStyleHeaders>false</useOldStyleHeaders>

 <portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>1</id>
 <name>EmployeeBenefit</name>
 <title>Employee Benefit Portlet</title>
 <description>This portlet provides access to Employee Benefit
Application.</description>
 <timeout>10000</timeout>
 <timeoutMessage>Employee Benefit Portlet timed out</timeoutMessage>
 <showEdit>false</showEdit>
 <showEditDefault>false</showEditDefault>
 <showPreview>false</showPreview>
 <showDetails>false</showDetails>
 <hasHelp>false</hasHelp>
 <hasAbout>false</hasAbout>
 <acceptContentType>text/html</acceptContentType>
 <renderer class="oracle.portal.provider.v2.render.RenderManager">
 <renderContainer>true</renderContainer>
 <contentType>text/html</contentType>
 <showPage>index.jsp</showPage>
 <pageParameterName>next_page</pageParameterName>
 </renderer>
 </portlet>

</provider>

See Also: "How Portal Processes Requests" on page 9-1

Use include instead of the forward Method

9-8 Oracle Application Server Application Developer’s Guide

9.4.3 Linking to the ID Page
This is a special case to link to the ID page of the application. You can use this link as
the first link to the application.

To create a link to the ID page and display it in the portal page, use the following URL:

<%@ page import="oracle.portal.provider.v2.render.http.HttpPortletRendererUtil" %>
<%@ page import="oracle.portal.provider.v2.render.PortletRendererUtil" %>
...
<a href="<%=HttpPortletRendererUtil.parameterizeLink(request,
 PortletRendererUtil.PAGE_LINK,
 HttpPortletRendererUtil.portletParameter(request, "next_page") + "=controller")%>">

Note that the <a> tag uses JSP scriptlets. This means that this link has to be in a JSP
file; it cannot be in an HTML file.

The href attribute uses JPDK APIs to ensure that the portal processes the link
correctly, and that the application sends the request to the controller object. This
chapter explains why you have to set up the link this way.

After OracleAS runs the JSP scriptlet, you end up with a link that looks something like:

http://<host>/servlet/page?_pageid=58,60&_dad=portal30&_schema=PORTAL30&
 _pirefnull.next_page=controller

9.5 Use include instead of the forward Method
Call the include method instead of forward. You have to use include because the
portal needs to add data from other providers. If you use forward, the portal does
not have a chance to gather data from the other providers. See Figure 9–1.

■ Running outside a portal environment:

RequestDispatcher rq = req.getRequestDispatcher(forward);
rq.forward(req, res);

■ Running within a portal environment:

RequestDispatcher rq = req.getRequestDispatcher(forward);
rq.include(req, res);

The only class that calls forward is the AbstractActionHandler abstract class.

9.6 Protect Parameter Names
Ensure that parameter names on your page do not conflict with parameter names from
other pages in the portal. To protect your parameters, call the portletParameter
method in the HttpPortletRendererUtil class to ensure that your parameters
have unique names. The method prefixes parameter names with a unique string for
each application; this enables applications to use the same parameter name safely.

By using the method, you ensure that your applications on the portal page read only
their parameters and not parameters from other applications.

You have to use the method to protect all your field names in your HTML forms. You
have to do this when retrieving and setting values for the fields.

The following files are affected: AddBenefitToEmployee.java,
Controller.java, QueryEmployee.java,
RemoveBenefitFromEmployee.java, addBenefitToEmployee.jsp,

Protect Parameter Names

Running in a Portal Framework 9-9

removeBenefitFromEmployee.jsp, queryEmployee.jsp, error.jsp, and
success.jsp.

When you use the methods to protect the parameters, the links look something like the
following:

■ For add benefit actions:

http://<host>/servlet/page?_pageid=58%2C60&_dad=portal30&_schema=PORTAL30&
_pirefnull.action=addBenefitToEmployee&_pirefnull.next_page=controller&
_pirefnull.empID=125

■ For remove benefit actions:

http://<host>/servlet/page?_pageid=58%2C60&_dad=portal30&_schema=PORTAL30&
_pirefnull.action=removeBenefitFromEmployee&
_pirefnull.next_page=controller&_pirefnull.empID=125

■ For query employee actions:

http://<host>/servlet/page?_pageid=58%2C60&_dad=portal30&_schema=PORTAL30&
_pirefnull.action=queryEmployee&_pirefnull.next_page=controller&
_pirefnull.empID=125

The parameters used by the application are prefixed with _pirefnull. The other
parameters in the URL are required by portal. Note also that the URL does not point to
the controller directly. Instead it uses the _pirefnull.next_page parameter to
indicate that the controller should handle the request.

9.6.1 Retrieving Values
The following example retrieves the values of two parameters.

■ Running outside a portal environment:

// from AddBenefitToEmployee.java
String benefits[] = req.getParameterValues(SessionHelper.BENEFIT_PARAMETER);
String client = req.getParameter(SessionHelper.CLIENT_TYPE_PARAMETER);

■ Running within a portal environment:

// from AddBenefitToEmployee.java
import oracle.portal.provider.v2.render.http.HttpPortletRendererUtil;
...
String fBenefits = HttpPortletRendererUtil.portletParameter(req,
 SessionHelper.BENEFIT_PARAMETER);
String benefits[] = req.getParameterValues(fBenefits);
String fClient = HttpPortletRendererUtil.portletParameter(req,
 SessionHelper.CLIENT_TYPE_PARAMETER);
String client = req.getParameter(fClient);

9.6.2 Setting Values
If your parameter is a form element (for example, a checkbox or a hidden element),
you have to call the portletParameter method to protect the name before you can
use it. The following example shows how to set the BENEFIT_PARAMETER in a form:

// from addBenefitsToEmployees.jsp
String fBenefits = HttpPortletRendererUtil.portletParameter(
 request, SessionHelper.BENEFIT_PARAMETER);

See Also: "The next_page Parameter" on page 9-7

Make All Paths Absolute

9-10 Oracle Application Server Application Developer’s Guide

<form ... >
...
<input type="checkbox" name="<%=fBenefits%>" value="<%=b.getId()%>">

9.7 Make All Paths Absolute
Make all URL paths absolute paths using the absoluteLink or the
htmlFormActionLink method in the HttpPortalRendererUtil class, depending
on the HTML tag.

You cannot use paths relative to the current page because OracleAS sends requests to
portal first, and portal sends requests to providers. See Figure 9–1. When providers get
the requests, the current path is the portal, not to the current page. By using absolute
paths, you ensure that the provider can find the proper object.

The following files are affected: addBenefitToEmployee.jsp,
removeBenefitFromEmployee.jsp, queryEmployee.jsp, error.jsp, and
success.jsp.

9.7.1 <a> and <link> Tags
Use the absoluteLink method to qualify paths in <a> and <link> tags.

■ Running outside a portal environment:

// from addBenefitToEmployee.jsp
<link rel="stylesheet" type="text/css" href="css/blaf.css">

■ Running within a portal environment:

// from addBenefitToEmployee.jsp
<link rel="stylesheet" type="text/css"
 href="<%= HttpPortletRendererUtil.absoluteLink(request,
 "./css/blaf.css")%>"
>

9.7.2 <form> Tag
Use the htmlFormActionLink method to qualify paths in the <form> tag.

■ Running outside a portal environment:

// from addBenefitToEmployee.jsp
<form method="GET" action="/empbft/controller">

■ Running within a portal environment:

// from addBenefitToEmployee.jsp
<form method="GET"
 action="<%=HttpPortletRendererUtil.htmlFormActionLink(request,
 PortletRendererUtil.PAGE_LINK)%>">
<%=HttpPortletRendererUtil.htmlFormHiddenFields(request,
 PortletRendererUtil.PAGE_LINK)%>
<input type="hidden"
 name="<%=HttpPortletRendererUtil.portletParameter(request, "next_page")%>"
 value="controller">

Make All Paths Absolute

Running in a Portal Framework 9-11

Note that in the portal version the action attribute does not point to the controller.
Instead, it points to the portal. The actual target for the form is specified in a hidden
field called next_page. The value of the hidden field specifies the target.

When you use forms, you need to include additional parameters such as _dad and _
schema. These parameters are needed by portal. To include these parameters, you can
use the htmlFormHiddenFields method.

See Also: "The next_page Parameter" on page 9-7

Make All Paths Absolute

9-12 Oracle Application Server Application Developer’s Guide

Part III
The Second Sample Application

This part of the guide describes the second sample application. It contains the
following chapters:

■ Chapter 10, "Updating EJBs to Use EJB 2.0 Features"

■ Chapter 11, "Enabling Web Services in the Application"

Updating EJBs to Use EJB 2.0 Features 10-1

10
Updating EJBs to Use EJB 2.0 Features

This chapter describes the implementation details of the second sample application.
The first part of the chapter describes the business methods in the application. The
second part describes how the EJBs in the application map to database tables.

Contents of this chapter:

■ Overview of the Second Sample Application

■ Details of employeeCount Method

■ Details of listBenefits Method

■ Details of addNewBenefit Method

■ Details of listBenefitsOfEmployee Method

■ Details for countEnrollmentsForBenefit Method

■ Entity Beans and Database Tables

■ Relationship Fields in the Entity Beans

10.1 Overview of the Second Sample Application
The second sample application provides business operations that clients can invoke
through Web Services. The third sample application is an example of such a client.

The business operations involve accessing and updating data in the HR schema, which
is the same schema used in the first sample application.

The application uses EJBs to implement the business operations. The EJBs use features
such as container-managed persistence, EJB query language, local interfaces, and
container-managed relationships.

Note that the second sample application does not contain any JSPs or servlets because
it does not display any pages. The application simply contains EJBs and some
supporting Java classes. Its operations are accessed by clients through Web Services,
and it is the client applications that display the results.

10.1.1 Business Operations in the Second Sample Application
The second sample application implements these business operations:

■ List all benefits

See Also: Chapter 11, "Enabling Web Services in the Application" on
page 11-1

Overview of the Second Sample Application

10-2 Oracle Application Server Application Developer’s Guide

■ Add new benefits

■ Count the number of employees

■ List the benefits an employee has

■ Count the number of employees enrolled in a specified benefit

To implement the operations, the application uses entity beans and a session bean:

Later sections in this chapter describe each business operation in detail.

Entity beans provide a flexible model: they can create new tables and columns and
populate them, or they can work with existing tables. In the sample application, they
work with existing tables.

Figure 10–1 shows how the EJBs in the application work together. It shows:

■ business methods in the EmployeeBenefitManager session bean

■ some of the fields and methods in the Employee and Benefit entity beans

■ an employee can be associated with zero or more benefits, and a benefit can be
associated with zero or more employees

Table 10–1 EJBs in the Second Sample Application

EJB Description

Employee (entity bean) The Employee entity bean contains fields for
employee information such as employee ID, first
name, last name, address, and benefits the employee
has selected.

Benefit (entity bean) The Benefit entity bean contains fields for benefit
information such as benefit ID, benefit name, benefit
description, and employees who have that benefit.

EmployeeBenefitManager (session
bean)

The EmployeeBenefitManager EJB is a stateless
session bean that provides the interface for the
application's clients. Clients call methods in the
EmployeeBenefitManager to access the application's
business operations. These methods, in turn, invoke
methods in the Employee and Benefit entity beans.
Clients do not call the Employee and Benefit beans
directly.

Overview of the Second Sample Application

Updating EJBs to Use EJB 2.0 Features 10-3

Figure 10–1 UML Diagram for the EJBs

10.1.2 Design of the Second Application
The second sample application follows the "session facade" design pattern. This means
that the methods in the entity beans are hidden from clients. Instead, clients call
methods in the EmployeeBenefitManager session bean to invoke business
operations. Methods in the session bean invoke other methods in the entity beans.
Clients do not even know about the existence of the entity beans.

10.1.3 EJB 2.0 Features Used by the Entity Beans
The entity beans use features from the EJB 2.0 specification. In particular, they use
these features:

■ container-managed persistence (CMP) instead of bean-managed persistence (BMP)

■ container-managed relationships between employees and their benefit items

■ local interfaces instead of remote interfaces

■ EJB Query Language (QL)

Note that these features do not apply to the EmployeeBenefitManager session
bean. This session bean uses a remote interface (not local interface) so that remote
clients can invoke it. Remote clients are clients that run in a different JVM or in a
different application. If the session bean used a local interface, then only clients
running in the same application can invoke it.

Persistent Fields in the Entity Beans
The entity beans contain fields for data that are stored in database tables. Examples of
fields in the Employee entity bean are Employee ID, First Name, Last Name, and Hire

Details of employeeCount Method

10-4 Oracle Application Server Application Developer’s Guide

Date. Examples of fields in the Benefit entity bean are Benefit ID, Benefit Name, and
Description.

To enable the EmployeeBenefitManager session bean to access the fields in the
entity beans, you do these tasks for each field:

■ Declare accessor methods (get and set methods) for each field in the local interface
(EmployeeLocal.java and BenefitLocal.java).

For example, for the First Name field, you would have the getFirstName and
setFirstName methods.

■ Create abstract methods for the accessor methods in the bean implementation
class (EmployeeBean.java and BenefitBean.java).

The container takes the abstract methods and implements the code to perform the
get or set operation. The container connects to the database to get or set the values.

■ Map the fields to table columns in the orion-ejb-jar.xml file. This is required
because the field names do not match the names of the table columns in the
database.

10.2 Details of employeeCount Method
To get the number of employees, a client calls the employeeCount method in the
EmployeeBenefitManager session bean. This method calls the corresponding
method in the Employee entity bean. The client does not invoke the method in the
Employee entity bean directly.

// EmployeeBenefitManagerBean.java
public int employeeCount()
{
 try
 {
 return getEmployeeLocalHome().employeeCount();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 throw new EJBException(e);
 }
}

// The following method gets the local home object for the Employee bean.
private EmployeeLocalHome getEmployeeLocalHome() throws NamingException
{
 final InitialContext context = new InitialContext();
 return (EmployeeLocalHome)context.lookup("java:comp/env/ejb/EmployeeLocal");
}

In the EmployeeLocalHome interface, the employeeCount method executes the
ejbHomeEmployeeCount method in the EmployeeBean class:

// EmployeeBean.java
public int ejbHomeEmployeeCount()

See Also: "Persistent Fields in the Local Interface" on page 10-11

See Also: "Persistent Fields in the orion-ejb-jar.xml File" on
page 10-11

Details of listBenefits Method

Updating EJBs to Use EJB 2.0 Features 10-5

{
 try
 {
 return ejbSelectAllEmployees().size();
 }
 catch(FinderException fe)
 {
 return 0;
 }
}

public abstract Collection ejbSelectAllEmployees() throws FinderException;

The ejbSelectAllEmployees method uses EJB QL to get its results. The name of
the method and its EJB QL statement are defined in the ejb-jar.xml file:

// ejb-jar.xml
<entity>
 <description>Entity Bean (CMP)</description>
 <display-name>Employee</display-name>
 <ejb-name>Employee</ejb-name>
 ... lines omitted ...
 <abstract-schema-name>Employee</abstract-schema-name>
 ... lines omitted ...
 <query>
 <query-method>
 <method-name>ejbSelectAllEmployees</method-name>
 <method-params/>
 </query-method>
 <ejb-ql>select object(e) from Employee e</ejb-ql>
 </query>
 ... lines omitted ...
</entity>

The <method-name> element specifies the name of the method, and the <ejb-ql>
element specifies the EJB QL statement to execute when the method is invoked. The
<abstract-schema-name> element specifies the name to use in EJB QL statements
to identify entity beans.

In the EJB QL statement, the Employee reference matches the name specified in the
<abstract-schema-name> element. The statement selects all Employee entity
beans and returns a Collection of Employee beans to the
ejbHomeEmployeeCount method. The method uses the size method to determine
the number of elements in the Collection.

10.3 Details of listBenefits Method
To get a list of all benefits, a client calls the listBenefits method in the
EmployeeBenefitManager session bean. This method calls the findAll method in
the Benefit bean.

// EmployeeBenefitManagerBean.java
public BenefitModel[] listBenefits()
{
 int count = 0;
 BenefitModel[] returnBenefits;
 Collection allBenefits = null;
 BenefitLocal benefitLocal = null;
 BenefitModel benefit = null;

Details of listBenefits Method

10-6 Oracle Application Server Application Developer’s Guide

 try
 {
 allBenefits = getBenefitLocalHome().findAll();
 returnBenefits = new BenefitModel[allBenefits.size()];
 Iterator iter = allBenefits.iterator();
 while(iter.hasNext())
 {
 benefitLocal = (BenefitLocal)iter.next();
 benefit = new BenefitModel(benefitLocal.getBenefitId(),
 benefitLocal.getName(),
 benefitLocal.getDescription());
 returnBenefits[count++]=benefit;
 }
 return returnBenefits;
 }
 catch(Exception e)
 {
 e.printStackTrace();
 throw new EJBException(e);
 }
}

The findAll method is a special method. You declare the method in the
BenefitLocalHome interface, but do not implement it in the BenefitBean class.
The container implements it for you. You do not have to define a query statement for
the method in the ejb-jar.xml file (it gets generated automatically for you).

Example 10–1 BenefitLocalHome.java

// BenefitLocalHome.java
public interface BenefitLocalHome extends EJBLocalHome
{
 BenefitLocal create() throws CreateException;
 BenefitLocal findByPrimaryKey(Long primaryKey) throws FinderException;
 Collection findAll() throws FinderException;
 BenefitLocal create(Long benefitId, String name) throws CreateException;
 BenefitLocal findByName(String name) throws FinderException;
}

The findAll method returns a Collection of BenefitLocal instances. The
listBenefits method iterates through the Collection and saves the members
into an array. It then returns an array of BenefitModel instances to the client.

The BenefitModel class is a JavaBean that simply contains the fields for a Benefit
object.

// BenefitModel.java
package empbft.component.model;
import java.io.Serializable;
public class BenefitModel implements Serializable
{
 private Long _id;
 private String _name;
 private String _description;
 /**
 * No-Arg constructor required to satisfy contract as a JavaBean. Do
 * NOT use this constructor. It will throw a RuntimeException
 * when used.
 *
 * @throws RuntimeException

Details of addNewBenefit Method

Updating EJBs to Use EJB 2.0 Features 10-7

 */
 public BenefitModel()
 {
 throw new RuntimeException(getClass().getName() +
 ": This is not a valid constructor for this object.");
 }
 /**
 * Constructs a new benefit model containing the details for the benefit.
 */
 public BenefitModel(Long id, String name, String description)
 {
 this._id = id;
 this._name = name;
 this._description = description;
 }

 public String getDescription() { return _description; }
 public void setDescription(String new_description)
 {
 _description = new_description;
 }

 public Long getId() { return _id; }
 public void setId(Long new_id) { _id = new_id; }

 public String getName() { return _name; }
 public void setName(String new_name) { _name = new_name; }
}

10.4 Details of addNewBenefit Method
To add a new benefit, a client calls the addNewBenefit method in the
EmployeeBenefitManager session bean. This method calls the create method in
the BenefitLocalHome interface.

// EmployeeBenefitManagerBean.java
public void addNewBenefit(Long benefitId, String benefitName,
 String benefitDescription)
{
 try
 {
 BenefitLocal newBenefit =
 getBenefitLocalHome().create(benefitId,benefitName);
 if(benefitDescription!=null)
 newBenefit.setDescription(benefitDescription);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 throw new EJBException("Error adding new benefit item : " + e);
 }
}

The create method in the BenefitLocalHome interface executes the ejbCreate
method in the BenefitBean class. In the ejbCreate method, you populate the
benefit ID and name fields, and return null. The container does the actual work of
creating the bean and returning the bean to the caller. The return value type for the
ejbCreate method is the same as the primary key type for the entity bean.

Details of listBenefitsOfEmployee Method

10-8 Oracle Application Server Application Developer’s Guide

// BenefitBean.java
public Long ejbCreate(Long benefitId, String name)
{
 setBenefitId(benefitId);
 setName(name);
 return null;
}

The addNewBenefit method then adds a description to the new benefit if the client
provided a description.

10.5 Details of listBenefitsOfEmployee Method
To get a list of benefits for a specified employee, a client calls the
listBenefitsOfEmployee method in the EmployeeBenefitManager session
bean. This method calls the getBenefits method in the Employee bean, which
returns a Collection of Benefit local interface objects for the specified employee.

// EmployeeBenefitManagerBean.java
public BenefitModel[] listBenefitsOfEmployee(long employeeId)
{
 EmployeeLocal employee = null;
 Collection allBenefits = null;
 BenefitModel benefits[];
 BenefitLocal benefit = null;
 BenefitModel benefitModel = null;

 try
 {
 // Find the employee, then get their benefits
 employee = getEmployeeLocalHome().findByPrimaryKey(new Long(employeeId));
 allBenefits = employee.getBenefits();
 benefits = new BenefitModel[allBenefits.size()];
 Iterator iter = allBenefits.iterator();

 int count = 0;
 while(iter.hasNext())
 {
 benefit = (BenefitLocal)iter.next();
 benefitModel = new BenefitModel(
 (Long)benefit.getPrimaryKey(),
 benefit.getName(),
 benefit.getDescription());
 benefits[count++] = benefitModel;
 }
 return benefits;
 }
 catch(NamingException ne)
 {
 ne.printStackTrace();
 throw new EJBException("Could not find Employee " + employeeId);
 }
 catch(FinderException fe)
 {
 fe.printStackTrace();
 throw new EJBException("Could not find Employee " + employeeId);
 }
}

Details for countEnrollmentsForBenefit Method

Updating EJBs to Use EJB 2.0 Features 10-9

The listBenefitsOfEmployee method takes an employee ID as an input
parameter. It calls the findByPrimaryKey method in the Employee bean to get the
desired Employee instance. It then calls the getBenefits method on that instance.

Like other get and set methods, the getBenefits method is an abstract method
implemented by the EJB container.

The getBenefits method returns a Collection to the
listBenefitsOfEmployee method (in EmployeeBenefitManager), which then
extracts the contents of the Collection into an array of BenefitModel's to return
to the client.

Note that the listBenefitsOfEmployee and countEnrollmentsForBenefit
methods (described in the next section) use both the Employee and Benefit entity
beans. This requires a relationship field.

10.6 Details for countEnrollmentsForBenefit Method
To get the number of employees enrolled in a specified benefit, a client calls the
countEnrollmentsForBenefit method in the EmployeeBenefitManager
session bean. This method calls the getEmployees method in the Benefit bean.

// EmployeeBenefitManagerBean.java
public int countEnrollmentsForBenefit(long benefitId)
{
 try
 {
 BenefitLocal benefit =
 getBenefitLocalHome().findByPrimaryKey(new Long(benefitId));
 Collection employees = benefit.getEmployees();
 return employees.size();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 throw new EJBException(e);
 }
}

The EmployeeBenefitManager session bean uses the findByPrimaryKey method
to locate the Benefit bean instance that represents the benefit in question. The
findByPrimaryKey method is implemented for you by the container. You declare it
in the BenefitLocalHome interface (shown in Example 10–1), but do not define it in
the BenefitBean class.

The countEnrollmentsForBenefit method calls the getEmployees method on
the instance returned by findByPrimaryKey to get a list of employees, and then calls
the size method to get the number of employees in the list.

Note that the countEnrollmentsForBenefit method and
listBenefitsOfEmployee method (described in the previous section) use both the
Employee and Benefit entity beans. This requires a relationship field.

See Also: "Relationship Fields in the Entity Beans" on page 10-12

See Also: "Relationship Fields in the Entity Beans" on page 10-12

Entity Beans and Database Tables

10-10 Oracle Application Server Application Developer’s Guide

10.7 Entity Beans and Database Tables
The Employee and Benefit entity beans use container-managed persistence (CMP),
which means you have to map the persistent fields in the entity beans to table
columns. (You can set the container to do automatic mapping.)

Most of the fields in the Employee and the Benefit entity beans map to columns in
the EMPLOYEES and BENEFIT tables in the database. Because the beans have different
names from the tables, and the names of the fields in the beans do not match the
column names, you have to map the names manually in the ejb-jar.xml and
orion-ejb-jar.xml files.

10.7.1 Persistent Fields in the ejb-jar.xml File
In the ejb-jar.xml file, the <cmp-field><field-name> elements define the
persistent fields. For example:

// ejb-jar.xml
<entity>
 <description>Entity Bean (CMP)</description>
 <display-name>Employee</display-name>
 <ejb-name>Employee</ejb-name>

 <local-home>empbft.component.employee.ejb20.EmployeeLocalHome</local-home>
 <local>empbft.component.employee.ejb20.EmployeeLocal</local>
 <ejb-class>empbft.component.employee.ejb20.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 ... lines omitted ...
 <cmp-field><field-name>employeeId</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>emailAddress</field-name></cmp-field>
 <cmp-field><field-name>phoneNumber</field-name></cmp-field>
 <cmp-field><field-name>hireDate</field-name></cmp-field>
 ... lines omitted ...
</entity>

<entity>
 <description>Entity Bean (CMP)</description>
 <display-name>Benefit</display-name>
 <ejb-name>Benefit</ejb-name>

 <local-home>empbft.component.benefit.ejb20.BenefitLocalHome</local-home>
 <local>empbft.component.benefit.ejb20.BenefitLocal</local>
 <ejb-class>empbft.component.benefit.ejb20.BenefitBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Long</prim-key-class>
 ... lines omitted ...
 <cmp-field><field-name>benefitId</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>description</field-name></cmp-field>
 ... lines omitted ...
</entity>

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Entity Beans and Database Tables

Updating EJBs to Use EJB 2.0 Features 10-11

10.7.2 Persistent Fields in the Local Interface
In the local interfaces, EmployeeLocal and BenefitLocal, for each persistent field,
you declare a pair of accessor methods (get and set methods).

// EmployeeLocal.java
package empbft.component.employee.ejb20;
import javax.ejb.EJBLocalObject;
import java.util.Collection;
import java.sql.Timestamp;
public interface EmployeeLocal extends EJBLocalObject
{
 Long getEmployeeId();
 void setEmployeeId(Long newEmployeeId);
 String getFirstName();
 void setFirstName(String newFirstName);
 String getLastName();
 void setLastName(String newLastName);
 ... lines omitted ...
 Timestamp getHireDate();
 void setHireDate(Timestamp newHireDate);
 ... lines omitted ...
 Collection getBenefits();
 void setBenefits(Collection newBenefits);
}

// BenefitLocal.java
package empbft.component.benefit.ejb20;
import javax.ejb.EJBLocalObject;
import java.util.Collection;
public interface BenefitLocal extends EJBLocalObject
{
 Long getBenefitId();
 void setBenefitId(Long newBenefitId);
 String getName();
 void setName(String newName);
 String getDescription();
 void setDescription(String newDescription);
 Collection getEmployees();
 void setEmployees(Collection newEmployees);
}

10.7.3 Persistent Fields in the orion-ejb-jar.xml File
You map the persistent fields in the entity beans to table columns using the
orion-ejb-jar.xml file. The following lines from the orion-ejb-jar.xml file
show the mappings of some fields in the Employee entity bean.

Relationship Fields in the Entity Beans

10-12 Oracle Application Server Application Developer’s Guide

// orion-ejb-jar.xml
<entity-deployment name="Employee" copy-by-value="false"
 data-source="jdbc/OracleDS"
 exclusive-write-access="false" location="Employee"
 table="EMPLOYEES">
 <primkey-mapping>
 <cmp-field-mapping name="employeeId" persistence-name="EMPLOYEE_ID"
 persistence-type="number(6)"/>
 </primkey-mapping>
 <cmp-field-mapping name="firstName" persistence-name="FIRST_NAME"
 persistence-type="VARCHAR2(20)"/>
 <cmp-field-mapping name="lastName" persistence-name="LAST_NAME"
 persistence-type="VARCHAR2(25)"/>
 <cmp-field-mapping name="hireDate" persistence-name="HIRE_DATE"
 persistence-type="DATE"/>
 ... lines omitted ...
</entity-deployment>

Table 10–2 describes some attributes in the <entity-deployment> element.

The <cmp-field-mapping> element maps fields to columns. The name attribute
specifies the field name, and persistence-name specifies the column name.

10.8 Relationship Fields in the Entity Beans
Most of the persistent fields in the Employee and Benefit entity beans map cleanly
to corresponding columns in the EMPLOYEES and BENEFITS tables in the database.
Also, the countEmployees method accesses the Employee bean only, and the
listBenefits and the addNewBenefit methods access the Benefit bean only.

However, the listBenefitsOfEmployee and the
countEnrollmentsForBenefit methods use both beans each.

Tip: If you do not want to create the orion-ejb-jar.xml file
from scratch, let OC4J generate a version of the file. You can then
edit the generated file and enter the correct values. To do this:

1. Deploy the application without the orion-ejb-jar.xml file. OC4J
generates the orion-ejb-jar.xml file.

2. Edit the generated orion-ejb-jar.xml file, which is located in the
ORACLE_
HOME/j2ee/home/application-deployments/<app-name>/<e
jb-module-name> directory.

3. Place the edited file in the same directory as the ejb-jar.xml file,
and redeploy the application.

Table 10–2 Description of Some Attributes in the <entity-deployment> Element

Attribute Description

name Identifies the entity bean. This value matches the name specified in the
<ejb-name> element in the ejb-jar.xml file.

table Identifies the table in the database.

location Specifies the JNDI name of the entity bean.

data-source Identifies the database. This value refers to the database pointed to in the
data-sources.xml file.

Relationship Fields in the Entity Beans

Updating EJBs to Use EJB 2.0 Features 10-13

■ The listBenefitsOfEmployee method takes an employee ID and returns the
benefits selected by the employee. An employee can have zero or more benefits.

■ The countEnrollmentsForBenefit method takes a benefit ID and returns the
number of employees who are signed up for the benefit. A benefit can have zero or
more enrollees.

For these two methods to work, you need to set up a many-to-many relationship
between the Employee and Benefit entity beans. The relationship type is
many-to-many so that you can look up benefits if you know an employee ID, and you
can look up employees if you know a benefit ID.

To determine which employees have which benefits, the many-to-many relationship
needs to access the EMPLOYEE_BENEFIT_ITEMS table in the database. This is an
association table that enables an employee to have more than one benefit, and a benefit
to be associated with more than one employee.

Table 10–3 shows some sample rows in the EMPLOYEE_BENEFIT_ITEMS table. The
sample rows show that employee ID 101 has two benefits, and benefit ID 1 has two
enrollees.

You set up relationships in the ejb-jar.xml file using the <relationships>
element. Under this parent element, the <ejb-relation> element defines each
relationship.

Relationships work with fields. The names of the relationship fields are defined in the
<cmr-field-name> element. In this case, the names of the relationship fields are
"benefits" and "employees".

// ejb-jar.xml
<relationships>
 <ejb-relation>
 <ejb-relation-name>Employee-Has-Benefits</ejb-relation-name>

 <ejb-relationship-role>
 <ejb-relationship-role-name>Employee-Has-Benefits
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>Employee</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>benefits</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>

 <ejb-relationship-role>
 <ejb-relationship-role-name>Benefits-Are-For-Employees
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>

Table 10–3 Sample Data in EMPLOYEE_BENEFIT_ITEMS Table

EMPLOYEE_ID BENEFIT_ID ELECTION_DATE

101 1 1/5/2003

101 2 1/5/2003

102 1 1/6/2003

Relationship Fields in the Entity Beans

10-14 Oracle Application Server Application Developer’s Guide

 <ejb-name>Benefit</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>employees</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

Relationship fields have these features in common with persistent fields:

■ You must define get and set methods for the fields in the local interface. The
names of the methods are getBenefits and setBenefits for the Employee
entity bean, and getEmployees and setEmployees for the Benefit entity bean.

■ You map the relationship fields to table columns in the orion-ejb-jar.xml file.
Example 10–2 shows the mapping for the Employee bean; Example 10–3 shows
the mapping for the Benefit bean.

Example 10–2 <entity-deployment> Section for Employee Entity Bean

// orion-ejb-jar.xml
<entity-deployment name="Employee" copy-by-value="false"
 data-source="jdbc/OracleDS"
 exclusive-write-access="false" location="Employee"
 table="EMPLOYEES">
 ... other cmp-field-mapping elements omitted ...
 <cmp-field-mapping name="benefits">
 <collection-mapping table="EMPLOYEE_BENEFIT_ITEMS">

 <primkey-mapping>
 <cmp-field-mapping name="employeeId">
 <entity-ref>
 <cmp-field-mapping name="employeeId"
 persistence-name="EMPLOYEE_ID"
 persistence-type="NUMBER(6)"/>
 </entity-ref>
 </cmp-field-mapping>
 </primkey-mapping>

 <value-mapping type="empbft.component.benefit.ejb20.BenefitLocal">
 <cmp-field-mapping name="benefitId">
 <entity-ref>
 <cmp-field-mapping name="benefitId"
 persistence-name="BENEFIT_ID"
 persistence-type="NUMBER(6)"/>
 </entity-ref>
 </cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 </cmp-field-mapping>
</entity-deployment>

Note the following:

■ The name attribute for the <cmp-field-mapping> element is the same as the
relationship name defined in the ejb-jar.xml file.

■ The table attribute for the <collection-mapping> element specifies the name
of the association table.

Relationship Fields in the Entity Beans

Updating EJBs to Use EJB 2.0 Features 10-15

■ The persistence-name attribute for the <cmp-field-mapping> element specifies
the name of the primary key column.

■ Under the <primkey-mapping> element, the <cmp-field-mapping> element
specifies the name of the foreign key column in the association table that maps to
the primary key for the current bean (that is, the Employee bean).

■ Under the <value-mapping> element, the <cmp-field-mapping> element
specifies the name of the foreign key column in the association table that maps to
the primary key for the target bean (that is, the Benefit bean).

Example 10–3 shows the contents of the <entity-deployment> element for the
Benefit entity bean. Its contents are similar to that of the Employee bean.

Note that the values in the <primkey-mapping> and the <value-mapping>
elements are reversed from the Employee beans. The <primkey-mapping> element
for the Benefit bean specifies the BENEFIT_ID column, and the <value-mapping>
element specifies the EMPLOYEE_ID column.

Example 10–3 <entity-deployment> Section for the Benefit Entity Bean

// orion-ejb-jar.xml
<entity-deployment name="Benefit" copy-by-value="false"
 data-source="jdbc/OracleDS"
 exclusive-write-access="false" location="Benefit"
 table="BENEFITS">
 <primkey-mapping>
 <cmp-field-mapping name="benefitId"
 persistence-name="BENEFIT_ID"
 persistence-type="number(6)"/>
 </primkey-mapping>
 <cmp-field-mapping name="name"
 persistence-name="BENEFIT_NAME"
 persistence-type="varchar2(50)"/>
 <cmp-field-mapping name="description"
 persistence-name="BENEFIT_DESCRIPTION"
 persistence-type="varchar2(255)"/>

 <cmp-field-mapping name="employees">
 <collection-mapping table="EMPLOYEE_BENEFIT_ITEMS">

 <primkey-mapping>
 <cmp-field-mapping name="benefitId">
 <entity-ref home="Benefit">
 <cmp-field-mapping name="benefitId"
 persistence-name="BENEFIT_ID" />
 </entity-ref>
 </cmp-field-mapping>
 </primkey-mapping>

 <value-mapping type="empbft.component.employee.ejb20.EmployeeLocal">
 <cmp-field-mapping name="employeeId">
 <entity-ref home="Employee">
 <cmp-field-mapping name="employeeId"
 persistence-name="EMPLOYEE_ID" />
 </entity-ref>
 </cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 </cmp-field-mapping>
</entity-deployment>

Relationship Fields in the Entity Beans

10-16 Oracle Application Server Application Developer’s Guide

Enabling Web Services in the Application 11-1

11
Enabling Web Services in the Application

Business partners and other clients can access an application's business logic if you
expose the business logic as Web Services. These clients include non-Web-based
clients, such as standalone Java applications, as well as Web-based clients, such as
JSPs.

When you expose the business logic of an application as a Web Service, you specify the
methods and their parameters that clients can call. Developers of client applications
download the client-side proxy classes ("proxy stubs") for the exposed methods and
also the WSDL file, which specifies the names and parameters of the methods. The
developers then call the methods provided in the proxy classes to interact seamlessly
with the remote Web Service. The proxy classes manage all of the remote interactions
with the Web Service, including the marshalling and umarshalling of the Java objects
to and from SOAP, and the sending and receiving of the SOAP messages to and from
the exposed Web Service location.

This chapter describes how to enable Web Services for the second sample application.
It also describes how to write a JSP client application to access the Web Services. The
JSP client is part of a different application; the JSP simulates what an external business
partner can do to use the exposed Web Services.

Contents of this chapter:

■ Enabling Web Services in the Second Sample Application

■ Creating a Web Services Client Application

11.1 Enabling Web Services in the Second Sample Application
The second sample application's business logic that we want to expose as Web Services
is contained in the EmployeeBenefitManager stateless session EJB. Web Services
clients can invoke methods listed in its remote interface.

Recall that the EmployeeBenefitManager stateless session bean provides the
business logic of the sample application. The session bean follows the session facade
design pattern, and it uses other EJB components to fulfill its tasks.

The steps to enable Web Services in the sample application are:

1. Check that the data types for the parameters and the return values are valid for
Web Services.

See Also: Oracle Application Server Web Services Developer’s Guide

See Also: Oracle Application Server Web Services Developer’s Guide for
a list of the valid types.

Enabling Web Services in the Second Sample Application

11-2 Oracle Application Server Application Developer’s Guide

2. Create a JAR file containing the class files and the deployment descriptors
(ejb-jar.xml and orion-ejb-jar.xml).

This is a typical JAR file for J2EE applications; it is not different from a typical JAR
file because of Web Services.

3. Create a configuration file to provide input for the Web Services Assembly tool,
which you will run in the next step.

The configuration file provides information such as the location of the JAR file, the
URL where Web Services clients can access the exposed methods of the sample
application, and the name of the EJB that provides the business logic that you
want to expose as a Web Service.

Optionally, you can also provide an additional Java interface object that acts as a
marker to identify which methods in the EJB should be exposed in the Web
Service. If this is not provided, the Web Services Assembly tool exposes each
method in the remote interface of the EJB. The example in this application exposes
each method of the session bean, so it does not need to provide the additional Java
interface object.

4. Run the Web Services Assembly tool (WebServicesAssembler.jar) to create
an EAR file.

5. Deploy the EAR file.

6. Test the exposed methods.

11.1.1 Create the Configuration File for the Web Services Assembly Tool
The configuration file ws-assemble.xml for the second sample application contains
the following lines:

<web-service>
 <display-name>Employee Benefit Manager Web Service</display-name>
 <destination-path>build/empbft-ws.ear</destination-path>
 <temporary-directory>.</temporary-directory>
 <context>/employeebenefitmanager</context>

 <stateless-session-ejb-service>
 <path>build/empbft/empbft-ejb.jar</path>
 <uri>/Service</uri>
 <ejb-name>EmployeeBenefitManager</ejb-name>
 </stateless-session-ejb-service>
</web-service>

In this case, the file omits the wsdl-gen element so that the Web Services Assembly
tool does not generate a WSDL file to include in the EAR file. During runtime, when a

See Also: "Create the Configuration File for the Web Services
Assembly Tool" on page 11-2

See Also: Oracle Application Server Web Services Developer’s Guide for
more details on the Java interface object.

See Also: "Run the Web Services Assembly Tool" on page 11-3

See Also: "Test the Exposed Methods from the Web Service's Home
Page" on page 11-7

Enabling Web Services in the Second Sample Application

Enabling Web Services in the Application 11-3

client requests the WSDL, the OracleAS Web Services runtime generates the WSDL for
the client.

Table 11–1 describes the elements in the configuration file. For a complete description
of all elements.

11.1.2 Run the Web Services Assembly Tool
The command for running the Web Services Assembly tool is:

prompt> java -jar $ORACLE_HOME/webservices/lib/WebServicesAssembler.jar -config ws-assemble.xml

The Web Services Assembly tool does the following:

■ Generates Web Service client-side proxy classes for the exposed business logic.

■ Sets up an endpoint URL (taken from the uri element) for the Web Service.

You use this URL to access the home page for the Web Service. Developers of
client applications also use this URL, with query strings appended, to download
the WSDL file and the proxy classes for the Web Service.

■ Generates a home page for the Web Services provided by the EJB. The home page
contains links where you can test the exposed Web Services.

■ Generates the application.xml file for the EAR file.

See Also: Oracle Application Server Web Services Developer’s Guide

Table 11–1 Elements in the Configuration File For the Web Services Assembly Tool

Element Description

web-service This is the top-level element for the configuration file.

display-name The Web Services Assembly tool uses this value for the display-name
element in the application.xml file.

destination-path This element specifies the name and location of the EAR file generated
by the Web Services Assembly tool.

temporary-directory This element specifies the directory where the Web Services Assembly
tool can store its temporary files.

context The Web Services Assembly tool uses this value for the context-root
element in the application.xml file.

This element specifies the first part of the URL that clients use to
download information about the application's Web Services. The second
part of the URL is provided by the uri element.

stateless-session-ejb-service This is the parent element for a stateless session bean that is providing
Web Services.

path This element specifies the JAR file that contains the stateless session
bean.

uri The Web Services Assembly tool copies this value to the url-pattern
element in the web.xml file.

This element provides the second part of the URL that clients use to
download information about the application's Web Services. This first
part of the URL is provided by the context element.

ejb-name This element specifies the name of the stateless session bean.

Enabling Web Services in the Second Sample Application

11-4 Oracle Application Server Application Developer’s Guide

The Web Services Assembly tool populates this file with values from the context
and display-name elements. It also puts the name of the JAR file specified in the
path element to the ejb element in the application.xml file.

■ Generates the web.xml file for the WAR file.

The Web Services Assembly tool gets the endpoint URL for the Web Service from
the uri element in the configuration file and puts it in the web.xml file.

■ Generates an EAR file for the application.

Table 11–2 describes the contents of the EAR file. The file contains three main files:
empbft-ejb.jar, empbft-ws_web.war, and application.xml.

Figure 11–3 shows the contents of the EAR file.

See Also: Figure 11–1, "How the Web Services Assembly Tool
Generates the application.xml File" on page 11-5

See Also: Figure 11–2, "How the Web Services Assembly Tool
Generates the web.xml File" on page 11-6

Table 11–2 Files in the Generated EAR File

File Description

empbft-ejb.jar Contains the class files for the EJB, and two XML files that
provide information about the EJB.

empbft-ws_web.war Contains the index.html file, which is returned if you access
the application using the URL specified in the
application.xml file.

The WAR file also contains the web.xml file, which specifies the
URL for accessing the home page for the Web Services exposed
by the EJB.

application.xml Lists the files that are in the EAR file, and the context root URL
for the application.

Enabling Web Services in the Second Sample Application

Enabling Web Services in the Application 11-5

Figure 11–1 How the Web Services Assembly Tool Generates the application.xml File

<web-service>
 <display-name>Employee Benefit Manager Web
 Service</display-name>
 <destination-path>build/empbft-ws.ear
 </destination-path>
 <temporary-directory>.</temporary-directory>
 <context>/employeebenefitmanager</context>

 <stateless-session-ejb-service>
 <path>build/empbft/empbft-ejb.jar</path>
 <uri>/Service</uri>
 <ejb-name>EmployeeBenefitManager</ejb-name>
 </stateless-session-ejb-service>
</web-service>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application ... >
<application>
 <display-name>Employee Benefit Manager
 Web Service</display-name>
 <description>Oracle Web Service
 empbft-ws.ear</description>
 <module>
 <web>
 <web-uri>empbft-ws_web.war</web-uri>
 <context-root>/employeebenefitmanager
 </context-root>
 </web>
 </module>
 <module>
 <ejb>empbft-ejb.jar</ejb>
 </module>
</application>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app ,,, >

<web-app>
<servlet>
 <servlet-name>stateless session bean web service
 - EmployeeBenefitManager/Service</servlet-name>
 <servlet-class>oracle.j2ee.ws.SessionBeanRpcWebService</servlet-class>
 <init-param>
 <param-name>jndi-name</param-name>
 <param-value>EmployeeBenefitManager</param-value>
 </init-param>
</servlet>

<servlet-mapping>
 <servlet-name>stateless session bean web service
 - EmployeeBenefitManager/Service</servlet-name>
 <url-pattern>/Service</url-pattern>
</servlet-mapping>

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
</welcome-file-list>

<ejb-ref>
 <ejb-ref-name>EmployeeBenefitManager</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>empbft.component.manager.ejb20.EmployeeBenefitManagerHome</home>
 <remote>empbft.component.manager.ejb20.EmployeeBenefitManager</remote>
 <ejb-link>EmployeeBenefitManager</ejb-link>
</ejb-ref>
</web-app>

Configuration File for the Web Services Assembler Tool

web.xml File Generated by the Web Services Assembler Tool

application.xml File Generated by the
Web Services Assembler Tool

Enabling Web Services in the Second Sample Application

11-6 Oracle Application Server Application Developer’s Guide

Figure 11–2 How the Web Services Assembly Tool Generates the web.xml File

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app ... >

<web-app>

<servlet>

 <servlet-name>stateless session bean web service -

 EmployeeBenefitManager/Service</servlet-name>

 <servlet-class>oracle.j2ee.ws.SessionBeanRpcWebService</servlet-class>

 <init-param>

 <param-name>jndi-name</param-name>

 <param-value>EmployeeBenefitManager</param-value>

 </init-param>

</servlet>

<servlet-mapping>

 <servlet-name>stateless session bean web service -

 EmployeeBenefitManager/Service</servlet-name>

 <url-pattern>/Service</url-pattern>

</servlet-mapping>

<welcome-file-list><welcome-file>index.html</welcome-file></welcome-file-list>

<ejb-ref>

 <ejb-ref-name>EmployeeBenefitManager</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>empbft.component.manager.ejb20.EmployeeBenefitManagerHome</home>

 <remote>empbft.component.manager.ejb20.EmployeeBenefitManager</remote>

 <ejb-link>EmployeeBenefitManager</ejb-link>

</ejb-ref></web-app>

Configuration File for the Web Services Assembler Tool

web.xml File Generated by the Web Services Assembler Tool

<web-service>

 <display-name>Employee Benefit Manager Web Service</display-name>

 <destination-path>build/empbft-ws.ear</destination-path>

 <temporary-directory>.</temporary-directory>

 <context>/employeebenefitmanager</context>

 <stateless-session-ejb-service>

 <path>build/empbft/empbft-ejb.jar</path>

 <uri>/Service</uri>

 <ejb-name>EmployeeBenefitManager</ejb-name>

 </stateless-session-ejb-service>

</web-service>

Enabling Web Services in the Second Sample Application

Enabling Web Services in the Application 11-7

Figure 11–3 Contents of the Generated EAR File

11.1.3 Deploy the Application
After the Web Services Assembly tool has generated an EAR file, you can deploy the
application. The following command deploys the application using the dcmctl
command.

prompt> cd $ORACLE_HOME/dcm/bin
prompt> ./dcmctl deployApplication -file /home/joe/build/empbft-ws.ear -a empbft

11.1.4 Test the Exposed Methods from the Web Service's Home Page
You can test the Web Services from the home page:

1. Invoke the home page for the Web Service.

The configuration file created in "Create the Configuration File for the Web
Services Assembly Tool" specifies the URL for the home page. The URL is the
combined values of the context and uri elements. In this case, the value for
context is /employeebenefitmanager, and the value for uri is /Service,
and thus the URL for the servlet is: /employeebenefitmanager/Service.

empbft-ws.ear

empbft-ejb.jar empbft-ws_web.war META-INF

application.xml MANIFEST.MF

Contents of empbft-ejb.jar

empbft-ejb.jar

empbft META-INF

ejb-jar.xml MANIFEST.MForion-ejb-jar.xmlcomponent

employeebenefit manager model

ejb20

BenefitBean.class
BenefitLocal.class
BenefitLocalHome.class

EmployeeBean.class
EmployeeLocal.class
EmployeeLocalHome.class

EmployeeBenefitManager.class
EmployeeBenefitManagerBean.class
EmployeeBenefitManagerHome.class

BenefitModel.class
EmployeeModel.class
ModelTester.class

ejb20 ejb20

Contents of empbft-ws_web.war

empbft-ws_web.war

index.html META-INFWEB-INF

MANIFEST.MFweb.xml

Contents of empbft-ws.ear

Enabling Web Services in the Second Sample Application

11-8 Oracle Application Server Application Developer’s Guide

Figure 11–4 shows the home page:

Figure 11–4 Home Page for the Web Service

2. Click a method. This displays a page where you can enter parameter values for the
method.

3. Enter values for the method's parameters, if any.

Figure 11–5 shows the parameter page for the listBenefitsOfEmployee
method. This method requires one parameter: the employee ID. For this method,
replace the "long value" text with the actual employee ID value (for example, 188).

Figure 11–5 Page for Entering Parameter Values

4. Click Invoke on the parameter page to invoke the method.

Figure 11–6 shows the XML returned for the listBenefitsOfEmployee
method.

The home page, which is essentially a tool for testing and troubleshooting Web
Services, displays the raw XML data. When a client invokes the method, the

Enabling Web Services in the Second Sample Application

Enabling Web Services in the Application 11-9

request goes through proxy classes, which parse the XML data and return only
what the method returned. The client does not have to parse the raw XML data.

Figure 11–6 Return Value for the listBenefitsOfEmployee Method

What Happens When You Click Invoke
Figure 11–7 shows what happens when you click Invoke.

1. When you click Invoke, the browser sends an HTTP request to the home page,
which is implemented as a servlet. The request contains information on which
method to invoke and parameter values for the method, as necessary.

2. The home page servlet creates an XML document containing the information and
sends it as a SOAP message to the OracleAS Web Services servlet.

3. The OracleAS Web Services servlet reads the XML document and creates a Java
object to invoke the method.

4. The Java object invokes the method on the specified EJB.

5. The EJB returns the results to the Java object.

6. The Java object returns the results to the OracleAS Web Services servlet.

7. The OracleAS Web Services servlet creates an XML document and inserts the
results into the document. It then sends the XML document to the home page
servlet.

8. The home page servlet returns the XML document to the client.

Creating a Web Services Client Application

11-10 Oracle Application Server Application Developer’s Guide

Figure 11–7 Request Flow

11.2 Creating a Web Services Client Application
After you have tested the exposed methods in your application, you can allow other
developers to access the exposed methods through Web Services. This section
describes a client application that invokes the methods provided by the
EmployeeBenefitManager class in the second sample application.

11.2.1 Design of the Web Services Client
The sample client uses the MVC design pattern, which is described in Chapter 2,
"Designing the Application". MVC separates the model (which handles the business
logic) from the view (which determines how the data is displayed). The controller
directs requests to the proper classes.

The part of the sample client that invokes the Web Services is the model. Classes that
make up the model are called handler classes because they handle the business logic
processing of requests.

The handler classes invoke the Web Services using generated proxy classes, which are
statically bound to the host and application providing the Web Services.

Web Services Clients that Invoke Web Services Dynamically
Instead of creating clients that use the proxy classes, you can create clients that invoke
Web Services dynamically. You can even generate your own client from scratch using
the WSDL file.

See Also: Oracle Application Server Web Services Developer’s Guide for
these types of clients.

HTTP request to
invoke method

Client

- Creates XML document containing
information on which method to invoke.

- Sends XML document as a SOAP
message to Web Service servlet.

Invokes method.

Home Page (a servlet)

EmployeeBenefitManager EJB

Java Object

Web Service Servlet
Creates Java object to
invoke method.

Converts result into
XML document.

Returns result.

Returns result.

Returns XML document
to client.

1

2

3

4

5

6

7

8

Creating a Web Services Client Application

Enabling Web Services in the Application 11-11

Other Ways of Designing a Web Services Client
The sample client described in this section is a standard J2EE application. As such, it
follows the guidelines for J2EE applications. The only difference is that the client
application contains the generated proxy classes in its WAR file.

Web Services also allow for other types of clients, such as JSPs and standalone Java
applications. If you have such client applications, then you would follow the
guidelines for these types of applications.

Clients can run on the same machine as the application, or on a different machine, or
even on a machine that is on a different network.

11.2.2 Steps for Developing a Web Services Client
To develop a client using the generated proxy classes:

1. Download the proxy classes (placed in a zip file) for the
EmployeeBenefitManager bean from the host where you deployed the sample
application created in Section 11.1, "Enabling Web Services in the Second Sample
Application".

The URL to download the proxy classes is:

http://<hostname>:<port>/employeebenefitmanager/Service?proxy_jar

2. Add the ZIP file to your classpath.

3. Download the WSDL file, which describes the exposed methods and the
parameters required by the methods.

The URL to download the WSDL is:

http://<hostname>:<port>/employeebenefitmanager/Service?WSDL

4. Create handler classes to invoke methods in the proxy classes.

5. Create a WAR file that contains the JSP files, the MVC classes, and the
downloaded proxy classes. For a Web application, place the proxy classes in the
WEB-INF/lib directory of the WAR file.

6. Create an EAR file that contains the WAR file and the application.xml file.

7. Deploy the EAR file.

11.2.3 Directory Structure for the Web Services Client
Figure 11–8 shows how the files for the Web Services client are organized.

Creating a Web Services Client Application

11-12 Oracle Application Server Application Developer’s Guide

Figure 11–8 Directory Structure for the Web Services Client

11.2.4 Request Flow in the Web Services Client
The Web Services client uses the MVC design pattern described in Chapter 2,
"Designing the Application". This is how the client responds to a request:

1. A servlet in the Web Services client handles the request initially. It checks the
query string of the request to determine which class should handle the request.

2. Handler classes that handle the requests have a method called performAction.
The servlet invokes this method in the classes.

3. To invoke a method in the proxy stub, a class does the following:

a. Get an instance of the proxy stub, EmployeeBenefitManagerProxy in this
case. If an instance does not already exist, create one:

EmployeeBenefitManagerProxy proxy = new EmployeeBenefitManagerProxy();

In the Web Services client, the SessionHelper class instantiates and
maintains the proxy class for the duration of the session.

b. Invoke methods on the proxy class, which will in turn invoke corresponding
methods on the remote Web Service. For example:

Object[] model = proxy.listBenefits();

web-tier

empbft

benefitmgr benefitmgr.ear

mvcutil

web j2ee

WEB-INF

application.xml

benefitmgr-web.war

META-INF

src

addbenefit.jsp
benefitenrollment.jsp
countemployees.jsp
index.jsp
listbenefits.jsp
menu.jsp
blaf.css Debug.java

SessionHelper.java AbstractActionHandler.java
ActionHandler.java
ActionHandlerFactory.java
Controller.java

handler

AddBenefit.java
BenefitEnrollment.java
CountEmployees.java
ListBenefits.java

etc

application.xml
web.xml

lib

EmployeeBenefitManagerProxy.zip

addbenefit.jsp
benefitenrollment.jsp
countemployees.jsp
index.jsp
listbenefits.jsp
menu.jsp
blaf.css

web.xml lib classes

EmployeeBenefitManagerProxy.zip empbft

Same subdirectories as empbft above,
but with .class files instead of .java files

This is the zip file containing
the proxy classes.

build

The benefitmgr-web.war file contains all the files within the rectangle.

Creating a Web Services Client Application

Enabling Web Services in the Application 11-13

In the Web Services client, the handler class stores results of the method as an
attribute in the request. The handler class then forwards the request to a JSP,
which retrieves the JavaBean objects associated with the attribute from the
forwarded request and displays the data on a page.

11.2.5 Screens for the Web Services Client
When you invoke the client, you see the following screens:

1. Invoke the client. The URL for the client is:

http://host:port/benefitmgr

Replace host with the name of the host where you deployed the client application.
Replace port with the port number at which the Oracle HTTP Server is listening.

Figure 11–9 shows the first page of the client.

Figure 11–9 Web Services Client: First Page

2. Click an item just below the title to invoke a method via Web Services.

If a method does not require any parameters, the client invokes the method via the
proxy class. The proxy class packages the request into proper XML format and
sends it to the host. The flow is the same as when you tested the Web Services
application.

If a method requires parameters, the client displays a page where you can enter
values for the parameters. For example, if you click the "Add New Benefit" option,
the client displays the following page.

 When you enter the data and click the submit button, the proxy class then
dispatches your request.

See Also: Figure 11–7, "Request Flow" on page 11-10 for a diagram
of the flow.

See Also: Figure 11–10, "Parameter Page for Add New Benefit" on
page 11-14

See Also: Figure 11–7, "Request Flow" on page 11-10 for diagram of
the request flow.

Creating a Web Services Client Application

11-14 Oracle Application Server Application Developer’s Guide

Figure 11–10 Parameter Page for Add New Benefit

Configuration Files A-1

A
Configuration Files

This appendix shows the configuration files needed to deploy and run the first sample
application:

■ server.xml

■ default-web-site.xml

■ data-sources.xml

The server.xml and default-web-site.xml files define the application. They
also define mask, which is an application that the wireless feature in Oracle
Application Server uses.

These configuration files are located in the J2EE_HOME/config directory.

A.1 server.xml
<?xml version="1.0"?>
<!DOCTYPE application-server
 PUBLIC "-//Oracle//DTD OC4J Application-server 9.04//EN"
 "http://xmlns.oracle.com/ias/dtds/application-server-09_04.dtd">
<application-server
 application-directory="../applications"
 deployment-directory="../application-deployments"
 transaction-log="../persistence/omsdk.state" >
 <rmi-config path="./omsdk-rmi.xml" />
 <log>
 <file path="../log/omsdk-server.log" />
 </log>
 <global-application name="default" path="./application.xml" />
 <global-web-app-config path="global-web-application.xml" />
 <web-site path="./omsdk-web-site.xml" />
 <application name="omsdk"
 path="../applications/omsdk.ear" auto-start="true" />
 <application name="empbft"
 path="../applications/empbft.ear" auto-start="true" />
</application-server>

A.2 default-web-site.xml
<?xml version="1.0"?>
<!DOCTYPE web-site PUBLIC "-//Oracle/DTD OC4J Web-site 9.04//EN"

See Also: Oracle Application Server Containers for J2EE User’s Guide
for detailed description of configuration files.

data-sources.xml

A-2 Oracle Application Server Application Developer’s Guide

 "http://xmlns.oracle.com/ias/dtds/web-site-9_04.dtd">
<!-- change the host name below to your own host name. Localhost will -->
<!-- not work with clustering -->
<web-site
 port="9000"
 display-name="Default OracleAS Containers for J2EE Web Site">
 <default-web-app application="default" name="defaultWebApp" />
 <web-app application="omsdk" name="omsdk" root="/omsdk"
 load-on-startup="true"/>
 <web-app application="empbft" name="web" root="/empbft"
 load-on-startup="true"/>
 <!-- Access Log, where requests are logged to -->
 <access-log path="../log/omsdk-web-access.log" />
</web-site>

A.3 data-sources.xml
<?xml version="1.0"?>
<!DOCTYPE data-sources PUBLIC "Orion data-sources"
 "http://xmlns.oracle.com/ias/dtds/data-sources-9_04.dtd">
<data-sources>
 <data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@doliu-sun:1521:db3"
 inactivity-timeout="30"
 />
</data-sources>

Index-1

Index

A
absolute paths (for portal), 9-10
absoluteLink method (for portals), 9-6, 9-10
AbstractActionHandler abstract class, 4-5, 9-8
action handlers, 4-5

wireless support and, 8-1
Action tag (in wireless clients), 8-11
ActionHandler interface, 4-5
ActionHandlerFactory class, 4-5
add benefits, 6-5, 6-6

for wireless clients, 8-11
retrieving benefits for a user, 6-6
sequence (high-level), 6-6
sequence diagram, 6-8
updating database, 6-7

Add Benefits page, 3-3
for portal, 9-3
for wireless, 8-3

Add More Benefits page (wireless), 8-3
AddBenefitToEmployee class, 2-4, 8-11
addBenefitToEmployee.jsp, 4-14
addBenefitToEmployeeWireless.jsp, 8-11
addNewBenefit method (EmployeeBenefitManager

bean), 10-7
AppJNDINames class, 4-16
applications

designing, 2-1
development steps, 1-5
development tools, 1-6
overview, 1-1

B
Benefit bean, 10-2

BenefitLocal.java, 10-11
persistent fields, 10-4, 10-10
relationship fields in, 10-15

benefit data, retrieving, 6-4
BenefitCatalog bean, 4-12

details, 4-13
home interface, 4-12
remote interface, 4-13

BenefitItem class, 4-13
BenefitModel class, 4-13

in second sample application, 10-6

BENEFITS table, 1-4
blueprints URL on Sun site, 2-5
business logic, 2-4

objects needed for, 4-1

C
caching. See web cache.
chaining pages design, 2-1
clientType parameter, 8-4, 8-8
configuration file for Web Services Assembly

tool, 11-2
configuration files, A-1

data-sources.xml, A-2
default-web-site.xml, A-1
server.xml, A-1

container-managed persistence, 10-10
content type, for wireless clients, 8-8
controller, 2-4, 4-3

mappings to classes, 2-4
countEnrollmentsForBenefit method

(EmployeeBenefitManager bean), 10-9, 10-12
create method (Benefit bean), 10-7

D
DAOs, 2-5

employee data and, 4-9
implementation, 4-10
interface for, 4-9
JDBC, 4-10
specifications for, 4-9
SQLJ, 4-10

data access objects. See DAOs.
database schema, 1-4
data-sources.xml, A-2
Debug class, 4-16
default-web-site.xml, A-1
design of application

chaining pages, 2-1
design goals, 2-1
model-view-controller, 2-2

Design Patterns Catalog URL on Sun site, 2-5
designing applications, 2-1
development steps, 1-5
development tools, 1-6

Index-2

E
EJB 2.0 (as used in the second sample

application), 10-1
EJB QL

select all employees, 10-5
ejbCreate method (Benefit bean), 10-8
ejbHomeEmployeeCount method (Employee

bean), 10-4
ejb-jar.xml, 10-13

persistent fields in, 10-10
EJBs, 1-1

2.0 features, 10-3
employee data, 4-5
needed by application, 4-1
when to use, 4-2

ejbSelectAllEmployees method (Employee
bean), 10-5

empbft.xml, 8-2, 8-4, 8-8
Employee bean (first sample application), 4-5

DAO for, 4-9
home interface, 4-6
load method, 4-8
persistence, 4-7
remote interface, 4-7

Employee bean (second sample application), 10-2
EmployeeLocal.java, 10-11
mapping fields to table columns, 10-12
persistent fields, 10-3, 10-10
relationship fields in, 10-14

employee data, 4-5
retrieving, 6-3

EMPLOYEE_BENEFIT_ITEMS table, 1-4, 10-13
EmployeeBenefitManager session bean, 10-2, 10-4,

11-1
employeeCount method (EmployeeBenefitManager

bean), 10-4
EmployeeDAO interface, 4-9
EmployeeDAOImpl class, 4-10
EmployeeManager bean, 4-14

home interface, 4-15
JSPs and, 6-1
remote interface, 4-15

EmployeeModel class, 4-8
EMPLOYEES table, 1-4
Enterprise JavaBeans. See EJBs.
entity beans

Benefit bean, 10-2
database tables and, 10-10
Employee bean (first sample application), 4-5
Employee bean (second sample application), 10-2
JSPs and, 4-14
relationship fields in, 10-12

Error page, 3-2
errorWireless.jsp, 8-11

F
findAll method, 10-6
findByPrimaryKey method (Employee bean), 4-11,

6-4

findByPrimaryKey method (EmployeeDAOImpl
class), 6-4

first sample application
accessing from desktop browsers, 6-2
accessing from wireless clients, 8-11
add benefit operation (high-level), 6-6
caching, 7-1
clientType parameter, 8-4
configuration files, A-1
differences between wireless and desktop

versions, 8-4
EJBs, 4-1
objects needed, 4-1
portal support, 9-1
query employee operation (high-level), 6-2
remove benefit operation (high-level), 6-8
requirements, 3-1
screenshots (desktop version), 3-1
screenshots (portal version), 9-2
screenshots (wireless version), 8-2
starting URL (for desktop browsers), 6-2
starting URL (for portal), 9-8
starting URL (for wireless clients), 8-11, 8-12
updating links in a portal, 9-6
wireless support, 8-1

G
getBenefits method (Employee bean), 10-9
getEmployeeLocalHome method

(EmployeeBenefitManager bean), 10-4
getEmployees method (Benefit bean), 10-9

H
header information for wireless clients, 8-8
HR schema, 1-4
HR.BENEFITS table, 1-4
HR.EMPLOYEE_BENEFIT_ITEMS table, 1-4
HR.EMPLOYEES table, 1-4
htmlFormActionLink method, 9-10
htmlFormActionLink method (for portals), 9-6, 9-10
HttpPortletRendererUtil class, 9-5

I
ID page, 3-2

for portal, 9-2
for wireless, 8-2

IDEs
JDeveloper, 1-6

include method (for portals), 9-5, 9-8
Info page, 3-2

for portal, 9-3
for wireless, 8-2

invalidating pages in web cache, 7-3
using database triggers, 7-4

J
J2EE, 1-1

Index-3

specifications, 1-2
jar, 1-6
Java Authentication and Authorization Service

(JAAS), 1-2
Java Message Service (JMS), 1-2
Java objects

when to use, 4-2
Java Transaction API (JTA), 1-2
javac, 1-6
JavaServer Pages. See JSPs.
JDBC, 4-10
JDeveloper, 1-6
JSPs, 1-1, 5-3

advantages of, 5-4
EmployeeManager bean and, 6-1
entity beans and, 4-14
supporting different client types, 5-4
tag libraries, 5-4

L
listBenefits method (EmployeeBenefitManager

bean), 10-5
listBenefitsOfEmployee method

(EmployeeBenefitManager bean), 10-8, 10-12
load method, 4-8, 4-10
local interface

persistent fields and, 10-11

M
model (business logic), 2-4
model-view-controller (MVC) design. See MVC.
MVC, 2-2

controller, 2-4, 4-3
diagram, 2-3
model, 2-4
used by Web Services client application, 11-10
view, 2-5

N
next_page parameter, 9-7

O
objects needed by application, 4-1
OracleAS Web Cache Manager, 7-2
orion-ejb-jar.xml

persistent fields and, 10-11

P
pageParameterName tag, 9-7
parameter names and portals, 9-8
parameterizeLink method (for portals), 9-6
performance

using web cache to improve, 7-1
persistence

container-managed, 10-10
Employee bean (first sample application), 4-7

persistent fields
in Benefit bean, 10-4
in ejb-jar.xml, 10-10
in Employee bean, 10-3
in entity beans, 10-3
in local interface, 10-11
in orion-ejb-jar.xml, 10-11

portal support, 9-1
absolute paths, 9-10
absoluteLink method, 9-6, 9-10
changes to the application, 9-4
htmlFormActionLink method, 9-6, 9-10
include method, 9-5, 9-8
next_page parameter, 9-7
pageParameterName tag, 9-7
parameter names, 9-8
parameterizeLink method, 9-6
portletParameter method, 9-5, 9-8
provider.xml file, 9-7
request processing, 9-1
retrieving parameter values, 9-9
sample figure, 9-5
screenshots, 9-2
setting parameter values, 9-9
setting up provider, 9-4
updating links between pages, 9-6

portals, 1-2
portletParameter method (for portals), 9-5, 9-8
presentation data, 2-5

wireless clients, 8-2, 8-4
provider, portal, 9-4
provider.xml file (for portals), 9-7
proxy classes (for Web Services), 11-12
proxy classes (for Web Services),

downloading, 11-11

Q
query employee, 6-2

findByPrimaryKey method, 6-4
for wireless clients, 8-9
retrieving benefit data, 6-4
retrieving data, 6-3
sequence (high-level), 6-2
sequence diagram, 6-5

Query Employee button, 3-1
QueryEmployee class, 2-4
queryEmployee.jsp, 4-13, 6-3
queryEmployeeWireless.jsp, 8-10

R
references

blueprints, 2-5
DAO, 4-9
Design Patterns Catalog, 2-5
J2EE specifications, 1-2

relationship fields
in entity beans, 10-12

remove benefits, 6-5, 6-8

Index-4

for wireless clients, 8-11
getting benefits list, 6-9
sequence (high-level), 6-8
sequence diagram, 6-11
updating database, 6-10

Remove Benefits page, 3-3
for portal, 9-4

Remove More Benefits page (wireless), 8-3
RemoveBenefitFromEmployee class, 2-4, 8-11
removeBenefitFromEmployee.jsp, 4-14
removeBenefitFromEmployeeWireless.jsp, 8-11
requests

getting origin of (wireless or desktop), 8-4
requirements of first sample application, 3-1

S
sample applications. See first sample application,

second sample application, Web Services client
application

schema, database, 1-4
screenshots of application

desktop browser client, 3-1
portal version, 9-2
wireless client, 8-2

second sample application
addNewBenefit method, 10-7
business operations in, 10-1
countEnrollmentsForBenefit method, 10-9
design of, 10-3
employeeCount method, 10-4
entity beans and database tables, 10-10
listBenefits method, 10-5
listBenefitsOfEmployee method, 10-8
overview, 10-1
persistent fields, 10-3

sequence diagrams
add benefits, 6-8
query employee, 6-5
remove benefits, 6-11

server.xml, A-1
servlets, 1-1, 5-1

automatic compilation, 5-2
calling EJB, 5-2
example, 5-2
when to use, 4-2

session beans
BenefitCatalog bean, 4-12
EmployeeBenefitManager bean, 10-2
EmployeeManager bean, 4-14

session facade, 10-3
SessionHelper class, 4-16
SimpleResult DTD, 8-2
specifications

J2EE, 1-2
SQLJ, 4-10
Success page, 3-3

for portal, 9-4
successWireless.jsp, 8-4, 8-11

T
tag libraries for JSPs, 5-4
technologies used, 1-1

J2EE, 1-1
portals, 1-2
wireless support, 1-3

text/vnd.oracle.mobilexml value for
contentType, 8-8

triggers to invalidate pages in web cache, 7-4

U
utility classes

AppJNDINames class, 4-16
Debug class, 4-16
SessionHelper class, 4-16

V
view, 2-5

W
web cache, 7-1

analyzing the application, 7-2
choosing pages to cache, 7-1
invalidating pages, 7-3, 7-4
specifying pages to cache, 7-2

Web Services, 11-1
enabling, 11-1
proxy classes, 11-12
proxy classes, downloading, 11-11
testing, 11-7
WSDL, downloading, 11-11

Web Services Assembly tool
configuration file for, 11-2
running, 11-3

Web Services client application, 11-10
designing, 11-10
developing, 11-11
directory structure of, 11-11
request flow, 11-12
screens, 11-13

wireless support, 1-3, 8-1
accessing the application, 8-11
action handler objects, 8-1
add benefits operation, 8-11
changes to the application, 8-1
clientType parameter, 8-4
content type, 8-8
details, 8-8
differences from desktop application, 8-4
header information, 8-8
presentation data, 8-2, 8-4
query operation, 8-9
remove benefits, 8-11
screens, 8-2
SimpleResult DTD, 8-2
using a simulator, 8-12
using actual wireless devices, 8-12

Index-5

ws-assemble.xml, 11-2
WSDL, 11-2

downloading, 11-11

Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	Part I Overview of Sample Applications and Concents of Database
	1 Creating Applications: Overview
	1.1 Overview of OracleAS
	1.1.1 J2EE
	1.1.2 Enterprise Portals
	1.1.3 Wireless Support

	1.2 Sample Applications
	1.3 Database Schema
	1.4 Development Steps
	1.5 Development Tools
	1.6 What This Guide Covers and Does Not Cover

	2 Designing the Application
	2.1 Design Goals
	2.2 Chaining Pages
	2.3 Using Model-View-Controller (MVC)
	2.3.1 MVC Diagram
	2.3.2 Controller
	2.3.3 Model (Business Logic)
	2.3.4 View

	Part II The First Sample Application
	3 The First Sample Application: Requirements and Screenshots
	3.1 Requirements for the First Sample Application
	3.2 Screenshots of the First Sample Application

	4 Implementing Business Logic
	4.1 Objects Needed by the First Sample Application
	4.2 Other Options Considered But Not Taken
	4.2.1 Conditions that Favor Using EJBs
	4.2.2 Conditions that Favor Using Servlets
	4.2.3 Conditions that Favor Using Normal Java Objects

	4.3 Controller
	4.4 Action Handlers
	4.5 Employee Data (Entity Bean)
	4.5.1 Home Interface
	4.5.2 Remote Interface
	4.5.3 Persistence
	4.5.4 Load Method
	4.5.5 EmployeeModel Class
	4.5.6 Data Access Object for Employee Bean
	4.5.6.1 Interface
	4.5.6.2 Implementation
	4.5.6.3 Load Method

	4.6 Benefit Data (Stateless Session Bean)
	4.6.1 Home Interface
	4.6.2 Remote Interface
	4.6.3 Benefit Details

	4.7 EmployeeManager (Stateless Session Bean)
	4.7.1 Home Interface
	4.7.2 Remote Interface

	4.8 Utility Classes

	5 Creating Presentation Pages
	5.1 HTML Files
	5.2 Servlets
	5.2.1 Automatic Compilation of Servlets
	5.2.2 Example
	5.2.3 Example: Calling an EJB

	5.3 JSPs
	5.3.1 Tag Libraries
	5.3.2 Minimal Coding in JSPs
	5.3.3 Multiple Client Types

	6 Tracing Flows Between Clients and Business Logic Objects
	6.1 Client Interface to Business Tier Objects
	6.2 Query Employee Operation
	6.2.1 High-Level Sequence
	6.2.2 Querying the Database and Retrieving Data
	6.2.3 findByPrimaryKey Method
	6.2.4 Getting Benefit Data

	6.3 Add and Remove Benefit Operations
	6.4 Add Benefit Operation
	6.4.1 High-Level Sequence of Events
	6.4.2 Getting Benefits That the User Can Add
	6.4.3 Updating the Database

	6.5 Remove Benefit Operation
	6.5.1 High-Level Sequence of Events
	6.5.2 Getting Benefits That the User Can Remove
	6.5.3 Updating the Database

	7 Configuring OracleAS Web Cache for the Application
	7.1 Choosing Which Pages to Cache
	7.2 Analyzing the Application
	7.2.1 Specifying the Pages to Cache
	7.2.2 Invalidating Pages
	7.2.3 Setting up Triggers on the Underlying Tables

	8 Supporting Wireless Clients
	8.1 Changes You Need To Make To Your Application
	8.2 Presentation Data for Wireless Clients
	8.2.1 Screens for the Wireless Application
	8.2.2 Differences Between the Wireless and the Browser Application

	8.3 Deciding Where to Put the Presentation Data for Wireless Clients
	8.3.1 Determining the Origin of a Request
	8.3.2 Combining Presentation Data in the Same JSP File
	8.3.3 Separating Presentation Data into Separate Files

	8.4 Header Information in JSP Files for Wireless Clients
	8.4.1 Setting the XML Type
	8.4.2 Setting the Content Type

	8.5 Operation Details
	8.5.1 Query Operation
	8.5.2 queryEmployeeWireless.jsp
	8.5.3 Add and Remove Benefits Operations

	8.6 Accessing the Application
	8.6.1 Using a Simulator
	8.6.2 Using an Actual Wireless Client

	9 Running in a Portal Framework
	9.1 How Portal Processes Requests
	9.2 Screenshots of the Application in a Portal
	9.3 Changes You Need to Make to the Application
	9.3.1 Set up a Provider and a Portal Page
	9.3.2 Edit the Application

	9.4 Update the Links Between Pages Within a Portlet
	9.4.1 The parameterizeLink Method
	9.4.2 The next_page Parameter
	9.4.3 Linking to the ID Page

	9.5 Use include instead of the forward Method
	9.6 Protect Parameter Names
	9.6.1 Retrieving Values
	9.6.2 Setting Values

	9.7 Make All Paths Absolute
	9.7.1 <a> and <link> Tags
	9.7.2 <form> Tag

	Part III The Second Sample Application
	10 Updating EJBs to Use EJB 2.0 Features
	10.1 Overview of the Second Sample Application
	10.1.1 Business Operations in the Second Sample Application
	10.1.2 Design of the Second Application
	10.1.3 EJB 2.0 Features Used by the Entity Beans

	10.2 Details of employeeCount Method
	10.3 Details of listBenefits Method
	10.4 Details of addNewBenefit Method
	10.5 Details of listBenefitsOfEmployee Method
	10.6 Details for countEnrollmentsForBenefit Method
	10.7 Entity Beans and Database Tables
	10.7.1 Persistent Fields in the ejb-jar.xml File
	10.7.2 Persistent Fields in the Local Interface
	10.7.3 Persistent Fields in the orion-ejb-jar.xml File

	10.8 Relationship Fields in the Entity Beans

	11 Enabling Web Services in the Application
	11.1 Enabling Web Services in the Second Sample Application
	11.1.1 Create the Configuration File for the Web Services Assembly Tool
	11.1.2 Run the Web Services Assembly Tool
	11.1.3 Deploy the Application
	11.1.4 Test the Exposed Methods from the Web Service's Home Page

	11.2 Creating a Web Services Client Application
	11.2.1 Design of the Web Services Client
	11.2.2 Steps for Developing a Web Services Client
	11.2.3 Directory Structure for the Web Services Client
	11.2.4 Request Flow in the Web Services Client
	11.2.5 Screens for the Web Services Client

	A Configuration Files
	A.1 server.xml
	A.2 default-web-site.xml
	A.3 data-sources.xml

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

