ORACLE

Oracle® Application Server
Performance Guide

10g Release 2 (10.1.2)
Part No. B14001-01

November 2004

Oracle Application Server Performance Guide 10g Release 2 (10.1.2)
Part No. B14001-01

Copyright © 2001, 2004, Oracle. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Eric Belden, Alice Chan, Greg Cook, Marcelo Goncalves, Helen Grembowicz, Bruce Irvin,
Pushkar Kapasi, Paul Lane, Sharon Malek, Valarie Moore, Carol Orange, Julia Pond, Leela Rao, Joan
Silverman, Cheryl Smith, Zhunquin Wang, Brian Wright

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SENA US YOUT COMMEBNTS ..ottt ees s ees s eene s iX
PlrOIACE ...ttt eenaeen Xi
| gk gl (<o NN E T KL< a Lol <P Xi
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiiii e Xi
OIZaNIZATION ...ttt Xii
J RTEI EX LYo I B JTelb N0 <) X 7= Te) s HUUR PR Xiii
CONMVEIIEIONS ..ooietieieee ettt ettt e e ee ettt e e e e et e e e e s eaae et e seseaaateeeesansseeeesesasseessessaseeeesssnastaessssnssseesssnnsaneeessnn Xiv

1 Performance Overview

Introduction to Oracle Application Server Performance...............cccccccceuvviiiiiinniiiincniccee, 1-2
Performance TEITNSccviiiiiiiiiiiiii e 1-2
What Is Performance TUNING?..........ccccccooiiiiiiiiiiiiiiii s 1-2
ReSPONSE TIME......viiiiiiiiiiicic s 1-3
System TRrOUGNPULc.ciuiiiiiii e 1-4
WaAIE TIIME ..o 1-4
CritiCal RESOUITESvveiiiiiiiiiietecte ettt et 1-4
Effects of Excessive Demand ... 1-5
Adjustments to Relieve Problems.............ccccoiiiiiiiiiicc e 1-6
Performance Targets............cccccooiiiiiiiiiiiii s 1-6
USer EXPECtatiOnS.......ccoiieiiiieiiietccicc s 1-6
Performance Evaluation...........cccccccviiiiiiiiiiiiiiic s 1-6
Performance Methodology ... s 1-7

2 Monitoring Oracle Application Server

Overview of Monitoring Oracle Application Server ... 2-2
Oracle Enterprise Manager 10g Application Server Control Console...........c.cccoeueveeiriiiiienennas 2-2
Oracle Application Server Built-in Performance Metrics...........ccooeuoiiiiiiiniiiieee, 2-2
Centralized Management of Oracle Application Server Instances...........cccccocoeevenreiiieereinnnne. 2-3
Native Operating System Performance Commands..........ccccceueiimieiiiiiciciiiineece, 2-4
Network Performance Monitoring TOOISccooueieiiiiiiiiiiceic e 2-4

Using Oracle Application Server Built-in Performance Metricsccccoeeueinvieeicinncccecnnnee 2-4
Viewing Performance Metrics Using AggreSpy.......ccoceuiiruriiiinicieiiccieeei s 2-5
Viewing Performance Metrics Using dmstool............ccoouevoiiiciiiiiii e, 2-9
Viewing Performance Metrics Using AggreSpy (for Standalone OC4]).......cccovvvereiricnnnn. 2-13

Monitoring Oracle HTTP Server

Monitoring Oracle HTTP Server with Application Server Control Console................ccccocueuee. 3-2
Assessing the Oracle HTTP Server Load with Application Server Control Console............... 3-2
Investigating Oracle HTTP Server Errors with Application Server Control Console 3-5
Categorizing Oracle HTTP Server Problems with Application Server Control Console......... 3-6

Monitoring Oracle HTTP Server with Built-in Performance Metricsccccoeeiviniiiiinnnn. 3-9
Assessing the Oracle HTTP Server Load with Built-in Metrics ..o, 3-9
Investigating Oracle HTTP Server Errors with Built-in Metricscoooiiiiiiiiienn, 3-12
Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics 3-14

Monitoring OC4J

Monitoring OC4J With Application Server Control Console.............ccccoeviiiinnniinniiiinn, 4-2
Monitoring OC4]J Instances With Application Server Control Console............cccccecevvvriiirinnnnnee. 4-2
Monitoring J2EE Applications with Application Server Control Console..............ccccevvvriinnee. 4-3

Monitoring OC4]J With Built-in Performance Metrics............cccccoeviiiniiiiiniiiiiccs 4-7

Optimizing Oracle HTTP Server

TCP Tuning Parameters (for UNIX)ccccocoiiiiiiiiiiicces 5-2
TUNINEG LINUX ottt 5-3
Setting TCP Parameters........c.ccccuiuiieiiiiiiiiiiei s 5-4

Network Tuning for Windows.............cccccoiiiiiiiiiic e 5-7
Network Tuning (for Windows 2000)ccccceeuiiiriiiiiiiiiiiiiiiieeee e, 5-7
Network Tuning (for Windows 2003)cccceuiirieiiiicieeiiecieeecie i 5-7
Network Tuning (for Windows XP)........ccccceiiiiiiiiiiiiccceeeeeeeeeeeeeeeee e 5-8

Configuring Oracle HTTP Server Directives.............ccccccviiiiiiiiiiiiiiiiiiiccicccccnas 5-8
Configuring the MaxClients Directiveccocouoiiiiiiiiiiiecc s 5-10
How Persistent Connections Can Reduce httpd Process Availabilitycccccccocevceennne 5-10
Configuring the ThreadsPerChild Parameter (for Windows)ccooeveirciiiiiiciciecnnnen, 5-11

Oracle HTTP Server Logging Options ... 5-11
ACCESS LOGGINE ...t s 5-11
Configuring the HostNameLookups Directive ... 5-11
EITOT LOZ@INE ...ttt 5-12

Oracle HTTP Server Security Performance Considerations...............ccccocoovvviiniiinninn, 5-12
Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issuesc.cccceveiviunnennne. 5-12
Oracle HTTP Server Port Tunneling Performance ISsues............ccccocevuviiiiivvninnnninininnne, 5-14

Oracle HTTP Server Performance TiPs.......c.ccccoeoreiririninineinieeeneeeneeereeeeeeseene e 5-15
Analyze Static Versus Dynamic ReqQUEeSEScoooeuiiiiiiiiiiii e, 5-15
Analyze Time Differences Between Oracle HTTP Server and OC4] Servers..............cc........ 5-15
Beware of a Single Data Point Yielding Misleading Resultsccccccoeevvviicnnnnnnenenes 5-15

Setting mod_oc4j Load Balancing Policies..............cccccoooiiniiiiininiiiiniiiicccce 5-16
Quick Summary for Using Load Balancing With mod_oc4j........ccccovevemiiiiinniniiiiiccnn, 5-17
Using Round Robin and Random Policies With mod_oc4j Load Balancing.......................... 5-17
Using Local Affinity Option With mod_oc4j Load Balancingccccccoeveeiiiiiiininiciicnnns 5-18
Using Weighted Routing Option With mod_oc4j Load Balancing...........ccccccccuveivivinninnnnn 5-18
Recommendations for Load Balancing With mod_oc4jccccceeiiiiiiiiiiiiiiccceenee 5-18

Optimizing J2EE Applications In OC4J

OC4] J2EE Application Performance Quickstartcccocoooiiiiiiiiinii 6-2
Improving J2EE Application Performance by Configuring OC4J Instance.............c.cccceurennne. 6-2
Setting Java Command Line Options (Using JVM and OC4J Performance Options)................ 6-3
Setting the JVM Heap Size for OC4] Processes............cooceueieiimurieiiiicicieieiccicieece e 6-3
Setting the JVM Server Option for OC4] ProCeSSeS.........ccoccueueurueuemeueueieieieicieieieieneieeeneeeneneneeenenes 6-4
Setting the JVM AggressiveHeap Option for OC4] Processes............cooveueviiirieieiiecicieinicnnen, 6-5
Setting the JVM Stack Size Option for OC4J Processesccoceuriirieieiiicicieiiccieieeeieeeeaaa 6-5
Setting the JVM Thread Synchronization Option for OC4] Processesccccccccucueuvucueueunuennns 6-6
Setting the JVM Permanent Generation Option for OC4] Processes..........cccccoveuevrvierruruenenenenes 6-6
Setting the OC4] DMS Sensors OPHONcuoiceieieiiiieiecc e 6-6
Setting the OC4]J JDBC DMS Statement Metrics Optioncccccceeueueuevveriinvnerrrreeeereenene 6-7
Setting the OC4] Dedicated RMI Context Option ... 6-8
Setting the OC4] Define Column Type Option..........ccooeeieieiiiiieiiiiiic e 6-8
Using Application Server Control Console to Change JVM Command Line Options............ 6-9
Setting Up Data Sources — Performance ISSues............cccccciiiiniiiiininiiiiiiicicccene 6-10
Emulated and Non-Emulated Data SOUICESccceuiiiiiiiiiiiiec e, 6-10
Using the EJB Aware Location Specified in Emulated Data Sources............cccceeviiincnnne. 6-11
Setting the Maximum Open Connections in Data Sources..........c.cccococcveviiinciiiiiciciccnnen, 6-11
Setting the Minimum Open Connections in Data Sourcesccccccevvvininnnnnnnnnnne 6-12
Setting the Cached Connection Inactivity Timeout in Data Sources..........cccccceevevevrirernenne. 6-13
Setting the Wait for Free Connection Timeout in Data Sources...........cccoovreieiiiicieiecnnnen, 6-13
Setting the Connection Retry Interval in Data SOUIcescoooueveiiriiiiiiiciccicccc 6-14
Setting the Maximum Number of Connection Attempts in Data Sourcescccccceueueenee. 6-14
Setting the JDBC Statement Cache Size in Data Sources...........ooooueveiiiieieiicciciiicce, 6-14
Setting the JDBC Prefetch Size for a CMP Entity Bean..........ccocoooiiiiii 6-15
Using Application Server Control to Change Data Source Configuration Options 6-15
Setting server.xml Configuration Parameters................ccccooeiiiiiiininniiiiniice, 6-16
Setting the OC4] Transaction Configuration Timeout in server.xmlc.c.cccoooeininnnnn. 6-17
Setting the OC4J Task Manager Granularity in server.Xmlcccococveiiiicciieenccennne. 6-17
Setting the OC4] Options for Stateful Session Bean Passivation in server.xml 6-18
Limiting Concurrency IN OCA]coooiiiiiiiic s 6-18
Using Application Server Control Console to Change server.xml Configuration Options. 6-18
Improving Servlet Performance in Oracle Application Server..............cccoviiiiniiinnccnne. 6-19
Improving Performance by Altering Servlet Configuration Parameters..............ccccevurenncne. 6-19
Servlet Performance TIPScccocciiuiiiiiiiiicceieiceeee e 6-20
Improving JSP Performance in Oracle Application Serverccccooeiinniiiniiinicnn, 6-22
Improving Performance by Altering JSP Configuration Parameters............c.cccoevvivninnnne. 6-23
Improving Performance by Tuning JSP Code........ccccoeueuiuirnninnrrriirrrcncreeeeeeeeeeeeaes 6-25
Improving EJB Performance in Oracle Application Servercccccoeiinniiiiniinnnicnnn, 6-28
Configuring Parameters that Apply for All E]Bs (Except MDBS).......cccccoevuvivvinnivninnininnnnnes 6-28
Configuring Parameters for CMP Entity Beans...........cccccccccieiiiiineiiiiecceceeceeeenes 6-30
Configuring Parameters for BMP Entity Beans..........ccoooovviiiiiiiiiicn, 6-35
Configuring Parameters for Session Beans ... 6-36
Configuring Parameters for Message Driven Beans (MDBS)cccccoevvvvnvnnrvvnennenes 6-41
Improving Web Services Performance in Oracle Application Server.............cccovviiinnnnnne. 6-44
Avoiding Web Services Initial Request Delaycccooviiiiiiiiiiicce, 6-44

vi

Using Web Services Typed ReqUESESccouiviiiiiiiiiiic 6-44

Tuning The Web Services Stateful Session Timeoutcccooeoiriiiiiiiiiiiie, 6-44
Improving ADF Performance in Oracle Application Server............cccccooeivniiiniinninn 6-44
Choose the Right Deployment Configurationccceeeiiiiiiieiniicicc 6-45
Use Application Module Pooling for Scalabilityccoooiiiiiiiiiii 6-45
Perform Global Framework Component Customization Using Custom Subclasses............ 6-45
Use SQL-Only and Forward-Only View Objects when Possible..............ccoooceiniiiiinnnan, 6-45
Do Not Let Your Application Modules Get TOO Largecccoocueueieiciieiniiceecccece, 6-46
Use the Right Failover Mode ... 6-46
Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows........... 6-46
Choose the Right Style of Bind Parameters.............ccooeuoiiiiiiiiiiiiecc 6-46
Implement Query Conditions at Design Time if Possible..........c.cccccceeiiiiniiiiiiiiccene 6-47
Use the Right JDBC Fetch SiZe ..o 6-47
Turn off Event Listening in View Objects used in Batch Processes...........ccccooeiiriiieiinnnan. 6-47
Improving JAAS (JAZN) Performance in Oracle Application Servercccocvrininnnnnn 6-47
Improving JAZN Performance With an XML Providerc.ccccocoeiiiiiiniiniiniee 6-48
Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory).......... 6-48
Configuring JAZN Providersc.cccocciiiiiiiiiieeeeeieeeeieiee et nenees 6-48
JAZN Performance Recommendations........c.ceeeereruinienienienieieieeeesieniesies et 6-49
Using Multiple OC4Js, Limiting Connections and Load Balancing...............c.cccccociiiiinne. 6-49
Configuring Multiple OC4] PTOCESSESc.ccueuruiuriiuiiciiieieicieiciciieeeieeeeee e 6-50
Load Balancing AppliCationscceiviiiiiiiiiiiiiiiciciici s 6-51
Limiting CONNECHONSc.ouiviiiiiiiiiiiiitiicicictcc s 6-53
Controlling Replication With Multiple OC4JScccorvriiiiriiiirrricreeeeeee s 6-55
Performance Considerations for Deploying J2EE Applications............cccoeviiiniiiiinnccnnnes 6-55
Deployment Performance During the Application Development Phaseccccccoeeeeee.. 6-56
Deployment Performance During the Test and Production Phases.........c.ccccccceueuevirnicnnene. 6-57

Optimizing OracleAS Web Cache

Use Two CPUs for Oracle AS Web Cache..........cooveiirieiiiieeceeeeeeeeee et 7-2
Configure Enough Memory for OracleAS Web Cacheccccccoociiiniiiiiis 7-2
Make Sure You Have Sufficient Network Bandwidth...............c..cccooooiiiiiiiniii e, 7-5
Set a Reasonable Number of Network Connections.............cccocveveriircieninienenreneeieeeeeeeee s 7-6

Connections on UNIX PlatfOrmscccvevirieniiieiciesieeieieeeesreetesie ettt sae st sreesseseessesseesseneas 7-7

ConnNections 0N WINAOWScc.eiiiiuiiiiiiciece ettt ettt ettt e eae e be e e ebeersesbeesseseesseneas 7-7
Tune Network-Related Parameterscccovieiirieniieieieeierie sttt eseeteseeae e se e essesseesesnnens 7-7
Increase Cache Hit RAteS........cccooioiiiiieiieiciececc ettt ettt sr e et ae s e s aeesb e e essassaessenseenes 7-9
Check Application Web Server and Web Cache Settings to Optimize Response Time.......... 7-10

Optimizing PL/SQL Performance

Instrumenting Applications With DMS

Introducing DMS Performance Metricscccccoeiiiiiiiiiiiiiiiiiiee s 9-2
Instrumenting Applications With DMS MEetrics.........ccovvivirrrerirnninnncrrrreeee e 9-2
Monitoring DMS MEtIiCSc.oviuiieiiiiiieieiicie e 9-2
Understanding DMS Terminology (Nouns and Sensors)c..coceeeueveiereriincceeeeeeieeeenes 9-3

10

DMS Naming CONVENHIONS.........ccuiiimiieieiiitcie ettt 9-7

Adding DMS Instrumentation To Java Applications.............ccccooviviinnnnninnnnie, 9-9
Including DMS IMPOTESc.cucuiuiiiiiiiiiiiiciiiiciccecee e 9-9
Organizing Performance Data..........ccoouoviiiiiiiiicii 9-9
Defining and Using Metrics for Timing.........cccoooerieiiiiiiiiiceeccc e 9-10
Defining and Using Metrics for COUNtING........ccccceururirieiiiiiriririiiereeeereeeeesecsee e 9-12
Defining and Using Metrics for Recording Status Information (State Sensors) 9-12

Validating and Testing Applications Using DMS Metrics............cccccovvvninnnnnnnniiinin, 9-13
Validating DIMS MELTICS.......cooviuiuiuiiiiiciiiiicceeieeice ettt seeees 9-14
Testing DMS Metrics For Bfficiencycoooeueieiiiiii 9-14

Understanding DMS Security Considerations..............cccccocovvniiiiiniini, 9-15

Conditional Instrumentation Using DMS Sensor Weight.............cccocoiininnnnin 9-15

Dumping DMS Metrics To Files ..o 9-16

Resetting and Destroying Sensors.............ccoiiiiiiiiiiii e 9-16

DMS Coding Recommendations...............ccccccoviiiiiiiniiiiiiiiics 9-17
Isolating Expensive Intervals Using PhaseEvent Metricsocooeviiiiiiiiicieiniccicc 9-17

Using A High Resolution Clock To Increase DMS Precision.............cccccoovvnvninninnnnnnnnn 9-18
Configuring DMS Clocks for Reporting Time for OC4] (Java)cccceeveveevveverirverrncerereenes 9-18
Configuring DMS Clocks for Reporting Time for Oracle HTTP Serverccccceuiennenen. 9-21

Database Tuning Considerations

Tuning init.ora Database Parameters..............cccccocoiiiiiiiiininiiiiiis 10-2

Tuning Redo Logs Location and Sizing ... 10-3

Performance Metrics

Oracle HTTP Server IMELTICScccceieieuiiieiiitiietetete ettt ettt et sttt s et ettt eseebeebesbesbensensenean A-2
Oracle HTTP Server Child Server MetriCS......ccoveerieerierinieriniererieesteiesieientee sttt A-2
Oracle HTTP Server ReSponses MEtriCSscccuiiieiiiimiiiieiiiiiiiiiiieeeeeee s A-2
Oracle HTTP Server Virtual HOSt MEtriCS......ccoerieiiiiiieieiiesiesieeie et A-3
Aggregate Module MEtriCSccoeiuiiiiiiiiiiiicicccceeceee e A-3
HTTP Server Module MEtTiCS. . ..co.coiriirerieieieieeteteteeetee sttt ettt s A-3
Oracle HTTP Server mod_0c4j MEtTiCs.......c.cccoiuimiiiiiiiiiiiiiiiiiiicicceeeeieeee s A-3

JVIM I IMIEEEACS -.nveeeveiieieeiteteettete ettt et e st s e st e et e s e et e s st esse st eenseesaenseeseansesseensesneessesnsenseensenseensanseensenseensennes A-5
JVM Properties MEtTiCs ...ttt A-6

JDBEC IMELTICS.....cuvineiiiiieieeeitete ettt ettt ettt et et b et st ettt ettt et et s bt s bt e besbesae st ensennens A-6
JDBEC DIV IMELTICS ..euvieieiieieiieteieeteteet et ete st e e te st esseeseesaesseessesssenseensensesssenseensesseensessesnsessens A-6
JDBC Data SOUTCE MELTICS «..c.veieieieieieiteiteieeie sttt ettt sttt sttt ettt be b saenbenaene A-6
JDBC Driver Specific Connection Metricscccccccciiiiiiiiiiiiininiiiiicnicnneneesss A-7
JDBC Data Source Specific Connection MetriCscccevueueuiuririririiirrrrrrrrrrsre e A-7
JDBC Driver Statement IMELTICSc.covevieieiririiniinierierieieietet ettt ettt sttt ettt et ebe e saene A-8
JDBC Data Source Statement MeEtriCS.coouereeieririenieieeieeieseere sttt sttt A-8

O CAJ IMELTICS ..enveeeeieeieeie ettt ettt et et et et e st e st e st e aesseessenseessenseessensaenseaseansesseessesseessesnsensesssensenssensenns A-9
WED MOAUIE IMIELTICS ..eveviiiiiiiiesiesteet ettt sttt ettt ettt st sttt ettt sbe b e A-9
WED CONEEXE MELTICS ..veveviiiiiiiieiesieietestet et et et ete et steste e ste e esteseeseeseesessessessessensensensensensesessesas A-10
OCA] SEIVIEt MELTICS c.vvveeveeieeietieiieiietietese e ste e ste et et et e e esteseesessessessessessessessessassessasesssnsansensensenses A-10
OCAT JSP IMELTICS ..ttt ettt sttt ettt et et be et st be bt e b et et estes e e st ebeebeebesbestenaan A-11

Vii

OCAT EJB MELTICS ..ttt sttt sttt ettt ettt ettt et st sbe bbb e st et e st et e bt ea b e st ebeebeebesbesbennen A-12

OC4] OPMN INLO MELLICS ..vvevevvrrereieieiereieieieieieieteteiereteseseseueseseaesesesesesesesesesesesssesesesesesssesesssssssnes A-13
O CAJ JIMS IMELTICS ..veevvenveeiieieeietieieeeetesseete st e sesstesseestessesssesseassesseessesseassessesnsesssensesseensenssesenssensennes A-14
JIMIS MELTIC TADIES .ttt b bbbttt ettt s b A-14
JMS Stats Metric Table.......coiiiiiiiieeeee ettt sttt s A-15
JMS Request Handler Statsccccccciririiiiiniriicceeeecseeee e A-16
JIMS CONNECHON SEALS......eiuiiiieiiiiitiieie ettt ettt b bbbttt ettt ebesbe b e A-16
JIMIS SESSIOMN SEALS ..ottt ettt ettt ettt st s bt e b et e b e bt et e e st e be e bt enbe e A-17
JMS Message Producer Stats..........cccccuiviriiiiiiiririricercecrree e A-17
JMS Message Browser Statscocieueiiiciciiiiici A-18
JMS Message Consumer Statsccceeieieieiiiiiiiiiiie s A-18
JMS Durable SUbSCIiption SEatsccoeviviririririnirir e A-19
JIMS DeStINAtiON STALS......coueruieiiriiriiietetetete ettt b ettt ettt ettt sbe b e A-19
JMS Temporary Destination Stats............ccocciiiiii A-19
JIVIS SEOTE SEALS ..cuvereieiieiesiieeieeee ettt ettt ettt et et et e st e sse e seeneessesssesseensensesssensennsensesnsensennes A-20
JIMIS PerSiStENCE STALS ...c.veiviiiieieieiieie ettt ettt b bbbttt ettt b bbb b e A-20
OC4]J Task Manager Metrics.........ccocoiiiiiiiiiiii e A-21
MOA_PISGL IMEETICS ...t A-21
POrtal IMEtTiCSocoviiiiiiiiii s A-25
Oracle Process Manager and Notification Server Metricsccccoviiviiniiiiinicicncce, A-31
OPMN _PM MetTIC TaDL...oeoeeeeeeeeeeeeeeeeeeeee ettt e eeeaeeseeeeeeeateeseaeeeeeseesessesessneessesaeessnees A-31
OPMN_HOST_STATISTICS Metric Tableccccccoiiiniiiiiiiiiiiiiiciccccccceas A-32
OPMN_IAS_INSTANCE Metric Tablecccccoiiiiiiiiiiiiiicciiccce s A-32
OPMN_TAS_COMPONENT MELIICScocueuimimimimiieiiiiieicicieieieicicieieieie e seeenes A-32
OPMIN OINS MELTICS ...ttt A-34
DiSCOVETEr IMIELIICSc.ooviiiiiiiiiiiicii s A-35
DMS Internal Metrics.........ccocoiiiiiiiiiiiiiiiicc s A-36
B Component Performance Links
Oracle Application Server Toplink Performance Information.............cccocccveenicninncnnccnnnne. B-2
Oracle Application Server Portal Performance Information ... B-2
Oracle Business Intelligence Discoverer Performance Information............c.coccccceeenneicinnncnae. B-2
Oracle Application Server Wireless Performance Informationccccooeenicninncnnccnnnnne. B-2
Index

viii

Send Us Your Comments

Oracle Application Server Performance Guide, 10g Release 2 (10.1.2)
Part No. B14001-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Isthe information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserverdocs_us@oracle.com
« FAX:650-506-7365 Attn: Oracle Application Server Documentation Manager
= Postal service:

Oracle Corporation

Oracle Application Server Performance Guide
500 Oracle Parkway M/S lop6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Preface

This guide describes how to monitor and optimize performance, use multiple
components for optimal performance, and write highly performant applications in the
Oracle Application Server environment.

This preface contains these topics:
= Intended Audience

= Documentation Accessibility
= Organization

= Related Documentation

« Conventions

Intended Audience

Oracle Application Server Performance Guide is intended for Internet application
developers, Oracle Application Server administrators, database administrators, and
Web masters.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. conf accessibility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

xi

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Organization

Xii

This document contains:

Chapter 1, "Performance Overview"

This chapter provides an overview of Oracle Application Server performance and
tuning concepts.

Chapter 2, "Monitoring Oracle Application Server"

This chapter introduces the available performance monitoring tools, including Oracle
Enterprise Manager 10g Application Server Control Console and the built-in Oracle
Application Server performance monitoring tools.

Chapter 3, "Monitoring Oracle HTTP Server"

This chapter discusses monitoring the Oracle HTTP Server using Oracle Enterprise
Manager 10g Application Server Control Console and the built-in performance tools
available with Oracle Application Server.

Chapter 4, "Monitoring OC4J"

This chapter discusses monitoring Oracle Application Server Containers for
J2EE(OC4]J) using Oracle Enterprise Manager 10g Application Server Control Console
and the built-in performance tools available with Oracle Application Server.

Chapter 5, "Optimizing Oracle HTTP Server"
This chapter discusses optimizing HTTP server.

Chapter 6, "Optimizing J2EE Applications In OC4J"

This chapter discusses optimizing J2EE applications running on Oracle Application
Server Containers for J2EE.

Chapter 7, "Optimizing OracleAS Web Cache"
This chapter discusses optimizing Web Cache.

Chapter 8, "Optimizing PL/SQL Performance”
This chapter discusses optimizing code using nod_pl sql .

Chapter 9, "Instrumenting Applications With DMS"

This chapter describes the Oracle Dynamic Monitoring Service (DMS) that enables
application developers, support analysts, system administrators, and others to
measure application specific performance information. The chapter also shows how to
use DMS to instrument Oracle Application Server Java applications.

Chapter 10, "Database Tuning Considerations"

This chapter describes some of the i ni t. or a parameters that you may need to tune
in a backend Oracle Database Server.

Appendix A, "Performance Metrics"

This appendix discusses the statistics and metrics used to monitor and analyze the
performance of Oracle Application Server components.

Appendix B, "Component Performance Links"

This appendix provides links for performance information on additional Oracle
Application Server components.

Related Documentation
For more information, see these Oracle resources:
= Oracle Application Server Concepts
= Oracle Application Server Administrator’s Guide
= Oracle Application Server Security Guide
« Oracle HTTP Server Administrator’s Guide
= Oracle Application Server Containers for [2EE User’s Guide
« Oracle Application Server Web Cache Administrator’s Guide
= Oracle Application Server Containers for [2EE Enterprise JavaBeans Developer’s Guide
= Oracle Application Server Containers for [2EE Servlet Developer’s Guide
= Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference
= Oracle Database Performance Tuning Guide, 10g
« Oracle Application Server PL/SQL Web Toolkit Reference
In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracle.conl
Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:// www. or acl ebookshop. conl

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http:// ww. oracl e. coni adni n/ account /i ndex. ht ni

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http:// ww. or acl e. coni t echnol ogy/ docunent ati on

For more information, see these Oracle resources:
= For this release, see information on OracleAS Portal performance at:

http:// ww. oracl e. conl t echnol ogy

From the Oracle Technology Network main page:

Xiii

« Choose the Product link

= Choose OracleAS Portal under Oracle Application Server

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
« Conventions in Text

= Conventions in Code Examples

= Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUVBER
nonospace elements supplied by the system. Such column.

(fixed-wi dth)
font

| ower case
nonospace
(fixed-wi dth)
font

| ower case
italic
nonospace
(fixed-w dth)
font

elements include parameters, privileges,
datatypes, Recovery Manager keywords,
SQL keywords, SQL*Plus or utility
commands, packages and methods, as well
as system-supplied column names,
database objects and structures,
usernames, and roles.

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font represents
placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBM5_STATS.GENERATE_STATS
procedure.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depar t nent _nane, and
| ocati on_i d columns are in the
hr . depart nent s table.

Set the QUERY_REWRI TE_ENABLED initialization
parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these methods.

You can specify the par al | el _cl ause.

Run ol d_rel ease. SQL where ol d_r el ease
refers to the release you installed prior to
upgrading.

Xiv

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT usernane FROM dba_users WHERE username = 'M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])
{1} Braces are used for grouping items. {ENABLE | DI SABLE}
| A vertical bar represents a choice of two {ENABLE | DI SABLE}
options. [COWPRESS | NOCOMPRESS]
Ellipsis points mean repetition in syntax CREATE TABLE ... AS subquery;
descriptions.
In addition, ellipsis points can mean an SELECT col 1, col 2, , coln FROM
omission in code examples or text. enpl oyees;
Other symbols You must use symbols other than brackets acctbal NUMVBER(11, 2);
([D, braces ({ }), vertical bars (1), and acct OONSTANT NUMBER(4) : = 3;
ellipsis points (...) exactly as shown.
Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em password
variables for which you must supply DB_NAME = dat abase_nane
particular values.
UPPERCASE Uppercase typeface indicates elements SELECT | ast_nane, enpl oyee_i d FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish ~ SE[ECT * FROM USER TABLES;
them from terms you define. Unless terms ppop TABLE hr. enpl ayees;
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.
| over case Lowercase typeface indicates user-defined SELECT | ast _name, enpl oyee_i d FROM
programmatic elements, such as names of enpl oyees;
tables, columns, or files. sql plus hr/hr
Note: Some programmatic elements usea ~ CREATE USER nj ones | DENTI FI ED BY ty3MU9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example

Choose Start >
menu item

How to start a program.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_

NAME > Configuration and Migration Tools >

Database Configuration Assistant.

XV

Convention

Meaning

Example

File and directory
names

C\>

Special characters

HOVE_NAVE

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (*). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

c:\winnt"\"system32 is the same as
CAWINNT\SYSTEM32

C:\oracl e\ or adat a>

C\> exp HR HR TABLES=enp QUERY=\"WHERE
j ob=" REP' "

C\> net start O acl eHOVE_NAMETNSLI st ener

XVi

Convention Meaning Example

ORACLE_HOVE In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASE\ ORACLE _
and ORACLE when you installed Oracle components, all HOVE\ r dbrrs\ adnmi n directory.
BASE subdirectories were located under a top

level ORACLE_HOME directory. The default
for Windows NT was C: \ or ant .

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is

C:\oracl e\ product\ 10. 1. 0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:\oracl e\ product\10. 1. 0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oraclel0i Database Installation
Guide for Windows for additional
information about OFA compliances and
for information about installing Oracle
products in non-OFA compliant
directories.

XVii

XViii

1

Performance Overview

This chapter discusses Oracle Application Server performance and tuning concepts.

This chapter contains the following sections:

Introduction to Oracle Application Server Performance
What Is Performance Tuning?
Performance Targets

Performance Methodology

See Also: Oracle Application Server Concepts

Performance Overview 1-1

Introduction to Oracle Application Server Performance

Introduction to Oracle Application Server Performance

To maximize Oracle Application Server performance, all components need to be
monitored, analyzed, and tuned. In the chapters of this guide, the tools used to
monitor performance and the techniques for optimizing the performance of Oracle
Application Server components, such as Oracle HTTP Server and Oracle Application
Server Containers for J2EE (OC4]J) are described.

Performance Terms

Following are performance terms used in this book:

concurrency The ability to handle multiple requests simultaneously. Threads and
processes are examples of concurrency mechanisms.

contention Competition for resources.

hash A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

latency The time that one system component spends waiting for another component
in order to complete the entire task. Latency can be defined as wasted time. In
networking contexts, latency is defined as the travel time of a packet from source to
destination.

response time The time between the submission of a request and the receipt of the
response.

scalability The ability of a system to provide throughput in proportion to, and
limited only by, available hardware resources. A scalable system is one that can handle
increasing numbers of requests without adversely affecting response time and
throughput.

service time The time between the receipt of a request and the completion of the
response to the request.

think time The time the user is not engaged in actual use of the processor.
throughput The number of requests processed per unit of time.

wait time The time between the submission of the request and initiation of the
request.

What Is Performance Tuning?

Performance must be built in. You must anticipate performance requirements during
application analysis and design, and balance the costs and benefits of optimal
performance. This section introduces some fundamental concepts:

= Response Time
= System Throughput
= Wait Time

« Critical Resources

1-2 Oracle Application Server Performance Guide

What Is Performance Tuning?

« Effects of Excessive Demand

= Adjustments to Relieve Problems

See Also: "Performance Targets" on page 1-6 for a discussion on
performance requirements and determining what parts of the
system to tune.

Response Time

Because response time equals service time plus wait time, you can increase
performance in this area by:

= Reducing wait time
= Reducing service time

Figure 1-1 illustrates ten independent sequential tasks competing for a single resource
as time elapses.

Figure 1-1 Sequential Processing of Independent Tasks

TOTAL ELAPSED TIME

SEQUENTIAL 1 @

TASKS) - @
3 = @
4---.
5 oo @ o o @
6-----.
7 o> o> o o ®» o @
S oo > e m™eow @
9--------.
10 a0 o0 P 0 > o @ @ @

@ service time
e Wwaittime

In the example shown in Figure 1-1, only task 1 runs without waiting. Task 2 must
wait until task 1 has completed; task 3 must wait until tasks 1 and 2 have completed,
and so on. Although the figure shows the independent tasks as the same size, the size
of the tasks will vary.

In parallel processing with multiple resources, more resources are available to the
tasks. Each independent task executes immediately using its own resource and no wait
time is involved.

The Oracle HTTP Server processes requests in this fashion, allocating client requests to
available ht t pd processes. The MaxCl i ent s directive specifies the maximum number
of ht t pd processes simultaneously available to handle client requests. When the
number of processes in use reaches the MaxCl i ent s value, the server refuses
connections until requests are completed and processes are freed.

Performance Overview 1-3

What Is Performance Tuning?

See Also: Chapter 5, "Optimizing Oracle HTTP Server"

System Throughput

System throughput is the amount of work accomplished in a given amount of time.
You can increase throughput by:

= Reducing service time

= Reducing overall response time by increasing the amount of scarce resources
available. For example, if the system is CPU bound, then adding CPU resources
should improve performance.

Wait Time

While the service time for a task may stay the same, wait time will lengthen with
increased contention. If many users are waiting for a service that takes one second, the
tenth user must wait 9 seconds. Figure 1-2 shows the relationship between wait time
and resource contention. In the figure, the graph illustrates that wait time increases
exponentially as contention for a resource increases.

Figure 1-2 Wait Time Rising With Increased Contention for a Resource

Wait Time

Contention for a Resource

Critical Resources

Resources such as CPU, memory, I/O capacity, and network bandwidth are key to
reducing service time. Adding resources increases throughput and reduces response
time. Performance depends on these factors:

= How many resources are available?
= How many clients need the resource?
= How long must they wait for the resource?

= How long do they hold the resource?

1-4 Oracle Application Server Performance Guide

What Is Performance Tuning?

Figure 1-3 shows the relationship between time to service completion and demand
rate. The graph in the figure illustrates that as the number of units requested rises, the
time to service completion increases.

Figure 1-3 Time to Service Completion Versus Demand Rate

Time to service completion

Demand Rate —m™ —_—er . .. o —>

To manage this situation, you have two options:
« Limit demand rate to maintain acceptable response times

« Add resources

Effects of Excessive Demand

Excessive demand increases response time and reduces throughput, as illustrated by
the graph in Figure 1-4.

Figure 1-4 Increased Demand/Reduced Throughput

Throughput

Demand Rate

Performance Overview 1-5

Performance Targets

If the demand rate exceeds the achievable throughput, then determine through
monitoring which resource is exhausted and increase the resource, if possible.

Adjustments to Relieve Problems

Performance problems can be relieved by making adjustments in the following;:
= unit consumption

Reducing the resource (CPU, memory) consumption of each request can improve
performance. This might be achieved by pooling and caching.

= functional demand
Rescheduling or redistributing the work will relieve some problems.
= capacity

Increasing or reallocating resources (such as CPUs) relieves some problems.

Performance Targets

Whether you are designing or maintaining a system, you should set specific
performance goals so that you know how and what to optimize. If you alter
parameters without a specific goal in mind, you can waste time tuning your system
without significant gain.

An example of a specific performance goal is an order entry response time under three
seconds. If the application does not meet that goal, identify the cause (for example,
I/0O contention), and take corrective action. During development, test the application
to determine if it meets the designed performance goals.

Tuning usually involves a series of trade-offs. After you have determined the
bottlenecks, you may have to modify performance in some other areas to achieve the
desired results. For example, if /O is a problem, you may need to purchase more
memory or more disks. If a purchase is not possible, you may have to limit the
concurrency of the system to achieve the desired performance. However, if you have
clearly defined goals for performance, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

User Expectations

Application developers, database administrators, and system administrators must be
careful to set appropriate performance expectations for users. When the system carries
out a particularly complicated operation, response time may be slower than when it is
performing a simple operation. Users should be made aware of which operations
might take longer.

Performance Evaluation

With clearly defined performance goals, you can readily determine when performance
tuning has been successful. Success depends on the functional objectives you have
established with the user community, your ability to measure whether or not the
criteria are being met, and your ability to take corrective action to overcome any
exceptions.

Ongoing performance monitoring enables you to maintain a well tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of loads,

1-6 Oracle Application Server Performance Guide

Performance Methodology

you can conduct objective scalability studies and from these predict the resource
requirements for anticipated load volumes.

Performance Methodology

Achieving optimal effectiveness in your system requires planning, monitoring, and
periodic adjustment. The first step in performance tuning is to determine the goals you
need to achieve and to design effective usage of available technology into your
applications. After implementing your system, it is necessary to periodically monitor
and adjust your system. For example, you might want to ensure that 90% of the users
experience response times no greater than 5 seconds and the maximum response time
for all users is 20 seconds. Usually, it’s not that simple. Your application may include a
variety of operations with differing characteristics and acceptable response times. You
need to set measurable goals for each of these.

You also need to determine variances in the load. For example, users might access the
system heavily between 9:00am and 10:00am and then again between 1:00pm and
2:00pm, as illustrated by the graph in Figure 1-5. If your peak load occurs on a regular
basis, for example, daily or weekly, the conventional wisdom is to configure and tune
systems to meet your peak load requirements. The lucky users who access the
application in off-time will experience better response times than your peak-time
users. If your peak load is infrequent, you may be willing to tolerate higher response
times at peak loads for the cost savings of smaller hardware configurations.

Figure 1-5 Adjusting Capacity and Functional Demand

Functional Demand

Factors in Improving Performance

Performance spans several areas:

= Sizing and configuration: Determining the type of hardware needed to support
your performance goals.

= Parameter tuning: Setting configurable parameters to achieve the best
performance for your application.

= Performance monitoring: Determining what hardware resources are being used by
your application and what response time your users are experiencing.

Performance Overview 1-7

Performance Methodology

= Troubleshooting: Diagnosing why an application is using excessive hardware
resources, or why the response time exceeds the desired limit.

1-8 Oracle Application Server Performance Guide

2

Monitoring Oracle Application Server

This chapter discusses how to monitor the performance of Oracle Application Server
and its components. Monitoring Oracle Application Server and obtaining performance
data can assist you in tuning the system and debugging applications with performance
problems.

This chapter contains the following topics:
=« Overview of Monitoring Oracle Application Server

= Using Oracle Application Server Built-in Performance Metrics

Monitoring Oracle Application Server 2-1

Overview of Monitoring Oracle Application Server

Overview of Monitoring Oracle Application Server

This section describes how to use the Oracle Application Server tools for performance
monitoring. You can monitor the server and its components using one or more of the
following:

= Oracle Enterprise Manager 10g Application Server Control Console
= Oracle Application Server Built-in Performance Metrics

= Centralized Management of Oracle Application Server Instances

= Native Operating System Performance Commands

= Network Performance Monitoring Tools

Oracle Enterprise Manager 10g Application Server Control Console

Oracle Enterprise Manager 10¢ Application Server Control Console (Application
Server Control Console) allows you to monitor Oracle Application Server and its
components. Application Server Control Console shows performance metrics for
Oracle Application Server components, including:

« Oracle HTTP Server (OHS)

= Oracle Application Server Containers for J2EE (OC4]) and Applications running
under OC4]

= Oracle Application Server Web Cache
= Oracle Application Server Portal (OracleAS Portal)

Using Application Server Control Console, you can also view performance metrics and
other status information from the Application Server Control Console All Metrics
Page.

See Also:
= Oracle Application Server Administrator’s Guide

= Oracle Application Server Administrator’s Guide for information
on using metrics shown on the Application Server Control
Console All Metrics page.

« Oracle Application Server Portal Configuration Guide

Oracle Application Server Built-in Performance Metrics

Oracle Application Server automatically measures runtime performance and collects
metrics for the Oracle HTTP Server, including child servers, and Oracle Application
Server Containers for J2EE (OC4]J) servers. The server performance metrics are
measured automatically and continuously using performance instrumentation
inserted into the implementations of Oracle Application Server components. The
performance metrics are automatically enabled; you do not need to set options or
perform any extra configuration to collect them (for performance reasons the JDBC
metrics are enabled by setting options).

The Oracle HTTP Server performance metrics enable you to do the following:

= Monitor the duration of important phases of Oracle HTTP Server request
processing.

= Collect status information on Oracle HTTP Server requests. For example, you can
monitor the number of requests being handled at any given moment.

2-2 Oracle Application Server Performance Guide

Overview of Monitoring Oracle Application Server

The OC4] performance metrics allow you to monitor the performance of J2EE
containers and enable you to do the following:

« Monitor the number of active servlets, JSPs, E]Bs, and EJB methods.
= Monitor the time spent processing an individual servlet, JSP, EJB, or EJB method.

« Monitor the sessions and JDBC connections associated with servlets, JSPs, EJBs, or
EJB methods.

» Monitor OC4J JMS events and status.

You can use the performance metrics while troubleshooting Oracle Application Server
components to help locate bottlenecks, identify resource availability issues, or help
tune your components to improve throughput and response times.

Note: You can use the commands that access the built-in metrics
in scripts or in combination with other monitoring tools to gather
performance data or to check application performance.

See Also:

= "Using Oracle Application Server Built-in Performance Metrics"
on page 2-4

= Appendix A, "Performance Metrics"

Centralized Management of Oracle Application Server Instances

While Application Server Control Console provides standalone management for an
Application Server and its components, you can centrally manage all your Application
Servers through one tool rather than through several Application Server Control
Consoles by using the Oracle Enterprise Manager 10g Grid Control Console. For
example, say you have 10 Application Servers deployed on five hosts. By deploying a
Management Agent on each host, Enterprise Manager automatically discovers the
Application Server on those hosts and automatically begins monitoring them using
default monitoring levels, notification rules, and so on.

The Oracle Enterprise Manager 10g Grid Control Console contains an Application
Server Home page which provides easy access to key information required by
application server administrators, including the following:

= Links to Oracle Application Server component home pages
= Application server status, responsiveness, and performance data

= Alerts and diagnostic drill-downs so you can identify and resolve problems
quickly

= Resource usage for the application server and its components

= Asingle view of all Java 2 Platform Enterprise Edition (J2EE) applications and web
services

= Links to the Application Server Control Console for administration operations
such as starting and stopping components, modifying configurations, and
deploying applications.

Monitoring Oracle Application Server 2-3

Using Oracle Application Server Built-in Performance Metrics

See Also:

Oracle Enterprise Manager Concepts for more information on Oracle
Enterprise Manager 10g Grid Control Console

Oracle Application Server Administrator’s Guide

Oracle Enterprise Manager Grid Control Installation and Basic
Configuration

Native Operating System Performance Commands

In order to solve performance problems or to monitor your system’s activity, you can
use the available native operating system commands. Native operating system
commands allow you to gather and monitor CPU utilization, paging activity,
swapping, and other system activity information.

See Also: Refer to the system level documentation for
information on native operating system monitoring commands.

Network Performance Monitoring Tools

You can use network monitoring tools to verify the status of requests that access your
Oracle Application Server components. Tools are available that allow you to examine
and save network traffic information. These tools can be helpful in analyzing and
solving performance problems.

Using Oracle Application Server Built-in Performance Metrics

You can monitor performance using Application Server Control Console or by viewing
the Oracle Application Server built-in performance metrics.

This section describes how to view the built-in performance metrics using the
Aggr eSpy servlet or using the dnst 0ol command.

This section covers the following:

= Viewing Performance Metrics Using AggreSpy

= Viewing Performance Metrics Using dmstool

= Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)

Table 2-1 summarizes the tools that allow you to view built-in performance metrics.

Table 2-1 Oracle Application Server Built-in Monitoring Commands

Command

Description

Aggr eSpy

dnst ool

Aggr eSpy is a pre-packaged servlet that reports performance metrics for an Oracle Application
Server instance. You can only run Aggr eSpy when the home OC4J instance is running. By
default the OC4J instance named home supports Aggr eSpy. In some cases, for example with an
OracleAS Infrastructure install, the home instance needs to be started to use Aggr eSpy, since by
default the home instance is installed but it is not started.

Allows you to monitor a specific performance metric, a set of performance metrics, or all
performance metrics. Options allow you to specify a reporting interval to report the requested
metrics. This command also allows you to show a text report listing all the built-in performance
metrics available on the site. dnst ool is located in the $ORACLE_HOME/ bi n directory.

See Also: Appendix A, "Performance Metrics"

2-4 Oracle Application Server Performance Guide

Using Oracle Application Server Built-in Performance Metrics

Viewing Performance Metrics Using AggreSpy

The Aggr eSpy Servlet displays metrics for Oracle Application Server processes,
including Oracle HTTP Server, OC4J, Oracle Process Manager and Notification Server,
and other Oracle Application Server component processes.

This section covers the following topics:

= Using the AggreSpy Display

= AggreSpy URL With a Proxy Server

= AggreSpy URL and Access Control

= AggreSpy Limitation When Using Load Balancing With Clusters

Using the AggreSpy Display
Aggr eSpy organizes metrics into two areas: DMS Spies and Metric Tables.

« DMS Spies show the available metrics by parent process type and parent process
number. By selecting individual DMS Spies, you can view, in text form, all metrics
collected for the associated process.

= Metric Tables show the available metrics by metric table type and when multiple
OC4Js are running include OC4J metrics from multiple OC4] instances. By
selecting individual metric tables you can view, in table form, all metrics of a
specified type. For example, metric tables allow you to view the metrics associated
with OC4J Servlets, Oracle HTTP Server Modules, and Oracle Process Manager
and Notification Server processes.

Note: To view DMS metrics using Aggr eSpy, you may need to
configure your browser to disable the use of a proxy for the
localhost, if your system is configured to use proxies. By default
Oracle Application Server only allows access for the localhost. See
"AggreSpy URL With a Proxy Server" on page 2-7 for details.

DMS metric tables are identified by a name, such as ohs_ser ver for the Oracle HTTP
Server metrics. In Aggr eSpy, the term Metric Tables refers to the built-in performance
metric table names.

You can access performance metrics using Aggr eSpy from the following URL:

http://host: port/dms0/ Aggr eSpy

where:
host is the Oracle HTTP Server host, for example, t v. us. or acl e. com

port is the Oracle HTTP Server listener port, for example 7778.

Note: You can only run Aggr eSpy when the home OC4] instance
is running. By default, the OC4] instance named home supports
Aggr eSpy. Using an Or acl eAS | nfrastructure, thehome
instance needs to be started to use Aggr eSpy, since by default the
home instance is installed with Or acl eAS | nfrastruct ure, but
it is not started.

Monitoring Oracle Application Server 2-5

Using Oracle Application Server Built-in Performance Metrics

Figure 2-1 shows a sample Aggr eSpy display. The display shows two frames, one
containing a list of DMS Spies and DMS Metric Tables, and one showing selected
values for the DMS Spies or the Metric Tables.

Aggr eSpy provides navigation and display options, including;
= Access DMS Spies and Metric Tables using the links in the left frame.
= Sort rows in metric tables by clicking on the column headings.

= Display a table containing the descriptions of a Metric Table’s metrics by clicking
the Metric Definitions link shown on each metric table.

You need to refresh your browser to display built-in metric data after you start

Aggr eSpy. When you first use Aggr eSpy many of the fields, and the complete list of
DMS Spies may not contain all of the current Metric Tables. If you wait a short time,
and then refresh the display, the data is available and Aggr eSpy shows the complete
list of Metric Tables.

Note: The OC4] home instance must be running to use Aggr eSpy.
When the home instance is down, requests to Aggr eSpy,

http:/ /<host >:<por t >:/dms0/AggreSpy, report an HTTP 500
Internal Server error.

In the J2EE Web Cache install, the home instance starts up with the
command, opmmct | startal |, or by selecting Startall using
Application Server Control Console. With the Infrastructure install,
the home instance starts using the command opmmct| start proc,
or with Application Server Control Console by selecting the home
component and then selecting Start.

2-6 Oracle Application Server Performance Guide

Using Oracle Application Server Built-in Performance Metrics

Figure 2-1 AggreSpy Performance Metric Display

I . R = .
DMS Sl)]es Table of Contents myserver.mycompany.com ;720 1/dmeecdifbgoreSpy OC4T:2301:6004
Al DWE Spies 1. Spies
2. Tables
HTTP_ServerApache 826 1.6(
| Text
home:OC4T:3301:6004 | Spies
Text
optar:29092:6004 Process Format $pyType Host ~ Port Path uid iasInstance
Metric Tables HTTP Serverfpache: Text chs 138.2.142. 7201 fdms0fSpy 2109472779 myserer.mycompany.cam
etric Lables 8261:6004 203
Al Metric Tables hotne: D C4T:3301: Text apl3 138.2.142. 7201 fdmsocdy’ 2108472775 myserver.mycompany.cam
6004 203 Spy
T SDestinationStats optnn:29092:6004 optnn system] 6004 fconnect
WIS Stats Tep
TS StoreStats
LV Tables
dms cProcessInfo
mod 0041: destination met.rics Name numRows nmnSensors numProperties
mod och) mount pt melrics IMSDestinationStats 0 6 3
mod ocd) request falure caw —
modocdy M5 Stats 0 16 2
medplsgl T3 Store Stats 0 [4
modplsgl Cache T] 8 2
modplsgl DatabaseConnectior, dms cProcessInfo 0 7 9
modplsgl HTTPResponseCod i o .
modplsal LastiSOLEror mod 0041. destination met.ncs 0 12 3
modplsal SOLErrorGroup mod ocd{ mount pt metrics 0 12 3
ocd context mod ocdy recquest falure causes 0 4 3
ocd] ear modocd] 0 1 2
ocdi efb modpls] 0 1 2
oot eib method modplsal Cache 0 6 3
—
ocd] et pke

AggreSpy URL With a Proxy Server

If your browser is configured to use a proxy server, then to access Aggr eSpy on the
localhost, you need to configure the browser to disable the use of proxies for the
localhost. The exact steps required to disable the use of a proxy server for the localhost
depends on the browser you use.

AggreSpy URL and Access Control

By default, the dnms0/ Aggr eSpy URL is redirected and the redirect location is
protected, allowing only the localhost (127.0.0.1) to access the Aggr eSpy Servlet.

To view metrics from a system other than the localhost you need to change the DMS
configuration for the system that is running the Oracle Application Server that you
want to monitor by modifying the file

$ORACLE_HOVE/ Apache/ Apache/ conf/ dns. conf on UNIX, or
YORACLE_HOVE% Apache\ Apache\ conf\ dnms. conf on Windows systems.

Example 2-1 shows a sample default configuration from dms. conf . This
configuration limits Aggr e Spy to access metrics on the localhost (127.0.0.1). The port
shown, 7200, may differ on your installation.

Monitoring Oracle Application Server 2-7

Using Oracle Application Server Built-in Performance Metrics

Example 2-1 Sample dms.conf File for localhost Access for DMS Metrics

proxy to DVS AggreSpy

Redi rect /dms0/ AggreSpy http://1ocal host: 7200/ dmsoc4j / Aggr eSpy
#DMS Virtual Host for access and | ogging control

Li sten 127.0.0.1: 7200

OpmHost Port http:// 1 ocal host: 7200

<Mirtual Host 127.0.0. 1: 7200>

ServerName 127.0.0.1

By changing the dims. conf configuration to specify the host that provides, or serves
DMS metrics, you can allow users on systems other than the localhost to access the
DMS metrics from the location http:/ /host:port /dms0/ AggreSpy.

Caution: Modifying dms. conf has security implications. Only
modify this file if you understand the security implications for your
site. By exposing metrics to systems other than the localhost, you
allow other sites to potentially view critical Oracle Application
Server internal status and runtime information.

To view metrics from a system other than the localhost (127.0.0.1), do the following:

1. Modify dnms. conf by changing the entries with the value for localhost "127.0.0.1"
shown in Example 2-1 to the name of the server providing the metrics (obtain the
server name from the Ser ver Namne directive in the ht t pd. conf file, for example
tv.us.oracle.com.

2. Example 2-2 shows a sample updated dirs. conf that allows access from a system
other than the localhost (127.0.0.1).

Example 2-2 Sample dms.conf File for Remote Host Access for DMS Metrics

proxy to DMS AggreSpy

Redi rect /dmsO/ AggreSpy http://tv.us.oracl e.com 7200/ dnmsoc4j / Aggr eSpy
#DMVS Virtual Host for access and | ogging control

Li sten tv.us. oracl e.com 7200

OpmHost Port http://tv.us.oracle.com 7200

<Virtual Host tv.us.oracle.com 7200>

ServerNane tv.us.oracle.com

3. Restart, or stop and start the Oracle HTTP Server using Application Server Control
Console or using the Oracle Process Manager and Notification Server opnmct |
command. For example,

Y%opmct| restartproc process-type=HTTP_Server

or

Y%opmct| stopproc process-type=HTTP_Server
Y%opmct| startproc process-type=HTTP_Server

See Also: Oracle Application Server Security Guide for information
on Oracle HTTP Server access control

2-8 Oracle Application Server Performance Guide

Using Oracle Application Server Built-in Performance Metrics

AggreSpy Limitation When Using Load Balancing With Clusters

Aggr eSpy does not work as expected when using Oracle Application Server Clusters.
When using a cluster, the Oracle HTTP Server nod_oc4j component load balances
OC4J requests across Oracle Application Server instances. In this case, Aggr eSpy may
report results for systems that are not the localhost (127.0.0.1).

Note: It is recommended, when using Oracle Application Server
Clusters, that you use dist ool instead of Aggr eSpy.

Viewing Performance Metrics Using dmstool

The dirst 0ol command allows you to view a specific performance metric, a set of
performance metrics, or all performance metrics for an Oracle Application Server
instance. The dmst ool command also supports an option that allows you to set a
reporting interval, specified in seconds, to report updated metrics every t seconds.

For example, you can monitor the performance of a specific servlet, JSP, EJB, E]B
method, or database connection and you can request periodic snapshots of metrics
specific to these components.

The format for using dnst ool to display built-in performance metrics is:

% dnst ool [options] netric metric ...

or

% dnst ool [options] —list

or

% dnst ool [options] —dunp

Table 2-2 lists the dnst 00l command-line opt i ons. Following Table 2-2 this section
presents examples that show sample usage with specific performance metrics. The
dmst ool command is located in the $ORACLE_HOVE/ bi n directory on UNIX or in
YORACLE_HOVE% bi n directory on Windows.

Note: You can use dist 0ol in scripts or in combination with
other monitoring tools to gather performance data, to check
application performance, or to build tools that modify your system
based on the values of performance metrics.

See Also:
"Using dmstool to List the Names of All Metrics" on page 2-11

Appendix A, "Performance Metrics" for a list and description of the
DMS metrics

Access Control for dmstool

By default, dnst 0ol shows metrics only when it is run from the localhost (127.0.0.1).
If you want to view metrics from an Oracle Application Server running on a remote
host, then you need to use dnst ool with the - a option, on the local host, and update
the dns. conf file of the remote Oracle Application Server instance in the $ORACLE_
HOVE/ Apache/ Apache/ conf/ directory on UNIX or “ORACLE

HOVE% Apache\ Apache\ conf\ directory on Windows.

Monitoring Oracle Application Server 2-9

Using Oracle Application Server Built-in Performance Metrics

The configuration changes required to control the access to metrics using dnst ool are
the same as those for accessing dims0/ Aggr eSpy.

See Also: "AggreSpy URL and Access Control" on page 2-7

Table 2-2 dmstool Command-line Options

Option Description
—a[ddress] opm:// By default, without the -a option, dnst 0ol gets metrics from the Oracle
host [: port] Application Server instance with the same $ORACLE_HOME as dst ool .

When dnst 0ol runs in the same $ORACLE_HOME as the Oracle Process
Manager and Notification Server, OPMN, the —a option is not required.

You can specify —a with the oprm: / / prefix and the arguments shown to
monitor the Oracle Application Server processes under OPMN control that
produce DMS metrics (some OPMN controlled processes, for example Oracle
Application Server Web Cache, do not expose DMS metrics).

Where:

host is the domain name or IP address of the host on which the OPMN process
is running.

por t specifies the OPMN request port that supplies metrics. The request port is
specified in $ORACLE_HOVE/ opmm/ conf / opm. xmi .

For example, the following shows the specification in opmm. xni for a request
port (request="6003"):

<notification-server>
<port |ocal ="6100" renote="6200" request="6003"/>

</notification-server>

Note, if you use dmstool -a to request metrics from a remote system, the system
must be configured to provide metrics (by default you can access DMS metrics
on the localhost).

See Also: "AggreSpy URL and Access Control" on page 2-7

—c[ount] num Specifies the number of times to retrieve values when monitoring metrics. If not
specified, dmst 00l continues retrieving metric values until the process is
stopped.

The —count option is not used with the -| i st option.

—dunp [format=xm] Using dimst ool with the -dunp option reports all the available metrics on the
standard output. Oracle recommends that you run with the -dunp option
periodically, such as every 15 to 20 minutes, to capture and save a record of
performance data for your Oracle Application Server server.

The -dump option also supports the f or mat =xml query. Using this query at
the end of the command line supplies the metric output in XML format.

—hel p List the dnst 0ol command-line options.

—i[nterval] secs Specifies the number of seconds to wait between metric retrievals. The default
is 5 seconds. The i nt er val argument is not used with the —I i st option. The
interval specified is approximate.

Note: if the system load is high, the actual interval may vary from the interval
specified using the —i nt er val option.

2-10 Oracle Application Server Performance Guide

Using Oracle Application Server Built-in Performance Metrics

Table 2-2 (Cont.) dmstool Command-line Options

Option

Description

—I[ist] [-table] Generates a list of all metrics available. Use the —| i St option with the —t abl e

—reset
t abl e]

option to display a list of all the metric table names.

Note, including metric names on the command-line is not valid when using the
-l i st option with dnst ool .

[-tablenetric_ Resets the specified metrics or with the -table option, all of the metrics

contained in the specified metric table.

Event and phaseEvent metrics are reset to 0 (as if they were never updated).
State metrics are reset to the current value (as if they started with the current
value).

Note: The r eset option may reset information that Application Server Control
Console uses to compute and report values.

—table metric_table Includes all the performance metrics for the specified metric table with the

name, metri c_tabl e.

See Appendix A, "Performance Metrics" or run Aggr eSpy for a list of metric
table names.

Using dmstool to List the Names of All Metrics

Every Oracle Application Server performance metric has a unique name. Using

dnst ool with the -l i st option produces a list of all metric names. The -I i St output
contains the metric names that you can use with dirst 0ol to request monitoring
information for a specific metric or set of metrics.

Using the following command, dirst ool displays a list of all metrics available on the
server:

% dnst ool -l i st
This command displays a list of the available metrics.

See Also: Appendix A, "Performance Metrics"

Using dmstool to Report Values for Specific Performance Metrics

To monitor a specific metric or set of metrics, use dnst ool and include the metric
name on the command-line. For example, to monitor the time the JVM has been
running, perform the following steps:

1. Usednst ool withthe-1|i st option to find the name of the metric that shows the
JVM uptime:

% dnstool -list | grep JVM upTine. val ue
/ syst eml/ OCAJ: 3000: 6004/ JVM upTi ne. val ue

2. Usednst ool and supply the full metric name as an argument to show the metric
value:

% dnst ool /systeml/ OC4J: 3000: 6004/ JVM upTi ne. val ue
Mon Jul 26 16:20:05 PDT 2004
/ systeml/ OC4J: 3000: 6004/ JVM upTi ne. val ue 14022008 msecs

Using dnst ool , the default repeat interval is 5 seconds, so this command shows the

updated metric value every 5 seconds. Use the - count option to limit the number of
times dist ool reports values.

Monitoring Oracle Application Server 2-11

Using Oracle Application Server Built-in Performance Metrics

For example:

% dnst ool /systeml/ OC4J: 3000: 6004/ JVM upTi me. val ue -count 2
Mon Jul 26 11:18:33 PDT 2004
/ syst eml/ OC4J: 3000: 6004/ JVM upTi ne. val ue 14336273 nmsecs

Mon Jul 26 11:18:38 PDT 2004
/ systeml/ OCAJ: 3000: 6004/ JVM upTi ne. val ue 14345881 msecs

Using dmstool With the Interval and Count Options

To monitor the requests completed for an application over an interval of one minute,
use the following dnst 0ol command, supplying metric names on the command-line:

% dmstool -i 60 -c¢ 120 \
/ systeml/ CCAJ: 3301: 6003/ oc4j / def aul t/ WEBs/ pr ocessRequest . conpl et ed

This command reports 120 sets of output for the metric listed on the command line,
while collecting data at intervals of 60 seconds:

Tue Cct 12 14:43:43 PDT 2004
/ systeml/ OC4J: 3301: 6003/ oc4j / def aul t/ WEBs/ pr ocessRequest . conpl et ed 8576 ops

Tue Cct 12 14:44:43 PDT 2004
/ systeml/ CCAJ: 3301: 6003/ oc4j / def aul t/ WEBs/ pr ocessRequest . conpl et ed 8581 ops

Tue Cct 12 14:45:43 PDT 2004
/ systeml/ OC4J: 3301: 6003/ oc4j / def aul t/ WEBs/ pr ocessRequest . conpl et ed 8588 ops

Using dmstool to Report All Metrics with Metric Values

Using dirst ool with the - dunp option displays all the metrics from an Oracle
Application Server instance to the standard output.

The following command displays all available metrics:

% dnst ool —dunp

Oracle recommends that you run dnst ool with the - dunp option periodically, such
as every 15 to 20 minutes, to capture and save a record of performance data. If you

save performance data over time, this data can assist you if you need to analyze
system behavior to improve performance or when problems occur.

Using dmstool to Report All Metrics with Metric Values in XML Format

When you need to process metric data, use the f or mat =xm query on the dirst ool
command line to report all metric values in XML format.

The following command displays all available metrics using XML format:

% dnst ool —dunp format=xni

Using dmstool to Reset Metric Values

When you want to reset metric values, use the r eset option on the dnst ool
command line to reset values for a set of metrics, or for all metrics in a specified metric
table.

2-12 Oracle Application Server Performance Guide

Using Oracle Application Server Built-in Performance Metrics

Using the reset option, Event and phaseEvent metrics are reset to 0, as if they were
never updated, and State metrics are reset to the current value (as if they started with
the current value).

The following command resets the specified metric:

% dnst ool —reset /systeml/ OC4J: 3000: 6004/ JVM upTi ne. val ue

The following command resets the specified metric table:

% dnst ool -reset /systenml/ OC4J: 3000: 6004/ JVM upTi ne. val ue

Note: Thereset option may reset information that Application
Server Control Console uses to compute and report values.

Using dmstool to View Metrics on a Remote Oracle Application Server System

Using dnst ool with the - a option reports the metrics from a remote Oracle
Application Server instance.

Note: By default the Oracle Application Server only allows

dnst ool to access metrics from the localhost. You need to modify
dns. conf to support access from systems other than the localhost.
See "AggreSpy URL and Access Control" on page 2-7 for
information on DMS access control.

The following command displays all available metrics and metric values on the Oracle
Application Server Instance, as specified with the —a option:

% dnst ool —a opmn: //systenl: 6003 -1i st

Using the dirst ool -a option, supply an argument with the prefix opmm: // and
include the host name where you want to obtain metrics, and the OPMN request port
number. The port specifies the OPMN request port that supplies metrics for Oracle
Application Server which is specified the r equest attribute under the

<notification-server>elementin $ORACLE_HOVE/ opm/ conf/ opmm. xn on
UNIX and %0RACLE_HOVE% opmm\ conf\ opm. xm on Windows.

See Also: "AggreSpy URL and Access Control" on page 2-7

Viewing Performance Metrics Using AggreSpy (for Standalone 0C4J)

When you are using OC4] in standalone mode, without the Oracle Application Server,
the Aggr eSpy Servlet allows you to access OC4] metrics.

When running OC4J standalone, access performance metrics using Aggr eSpy from
the following URL:

http://myhost: nyport/dns0/ Aggr eSpy

Note: You can only run Aggr eSpy when OC4J is configured to
support it, and OC4J is running. By default, OC4] supports

Aggr eSpy.

Monitoring Oracle Application Server 2-13

Using Oracle Application Server Built-in Performance Metrics

Table 2-3 covers the dmstool option that only applies to OC4] standalone mode. In
addition, the options shown in Table 2-2 also apply to dmstool (except the -a option
with the opmm: // prefix.

Table 2-3 dmstool Command-line Options (for Standalone OC4J only)

Option Description
—a[ddr ess] For a standalone OC4J system, use the -a option. This specifies the http://
host [: port][pat h],... protocol, where:

host is the domain name or IP address of the host on which the Oracle HTTP
Server is running and port specifies the associated port.

2-14 Oracle Application Server Performance Guide

3

Monitoring Oracle HTTP Server

This chapter discusses how to monitor Oracle HTTP Server performance. Obtaining
performance data can assist you in tuning Oracle Application Server or in tuning and
debugging applications with performance problems.

This chapter covers the following topics:
= Monitoring Oracle HTTP Server with Application Server Control Console

= Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server 3-1

Monitoring Oracle HTTP Server with Application Server Control Console

Monitoring Oracle HTTP Server with Application Server Control Console

The Oracle HTTP Server is a central and important part of most Oracle Application
Server sites. Oracle HTTP Server handles nearly every request for dynamic data and
many static data requests as well. By monitoring Oracle HTTP Server performance you
can identify and fix Oracle Application Server performance issues.

This section covers the following topics:
= Assessing the Oracle HTTP Server Load with Application Server Control Console
= Investigating Oracle HTTP Server Errors with Application Server Control Console

= Categorizing Oracle HTTP Server Problems with Application Server Control
Console

While Application Server Control Console provides standalone management for an
Application Server and its components, you can centrally manage all your Application
Servers through one tool rather than through several Application Server Control
Consoles by using the Oracle Enterprise Manager 10g Grid Control Console.

See Also: "Centralized Management of Oracle Application Server
Instances" on page 2-3

Assessing the Oracle HTTP Server Load with Application Server Control Console

To monitor Oracle HTTP Server performance, the first step is to assess the workload
(load).

When assessing the Oracle HTTP Server load, note the following:

= If you are developing or testing a new application, you need to determine how
much load your quality assurance and performance tests generate on Oracle HTTP
Server.

= If you are monitoring Oracle HTTP Server performance, note that usage often
fluctuates depending on the time of day or day of week, with sites experiencing
times with light loads, and times with heavy loads. Your performance tests and
performance baseline should take into account the effect of time of day and day of
week variances. Whether you are developing or administering an Oracle
Application Server site, you should always design for expected load ranges and
monitor the site to ensure that usage and performance remains within the
expected range. You can use dmstool for periodic system monitoring.

= The Oracle HTTP Server performance information provides a picture of overall
site performance; however if Oracle Application Server Web Cache or other
caching mechanisms handle requests before they reach Oracle HTTP Server, then
you need to monitor the caches as well.

Application Server Control Console provides Oracle HTTP Server performance data in
the following categories:

= Oracle HTTP Server Status Metrics

= Oracle HTTP Server Response and Load Metrics
= Oracle HTTP Server Module Metrics

= Oracle HTTP Server Error Log

3-2 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Application Server Control Console

See Also:

= "Performance Methodology" on page 1-7

= "Viewing Performance Metrics Using dmstool" on page 2-9

= Chapter 7, "Optimizing OracleAS Web Cache"

= Oracle Application Server Web Cache Administrator’s Guide for
further details on Oracle Application Server Web Cache

= Oracle Application Server Administrator’s Guide for information
on using Application Server Control Console

Oracle HTTP Server Status Metrics

The Application Server Control Console status metrics provide information on CPU
usage, memory usage, Oracle HTTP Server errors, and the number of active

connections.

Figure 3-1 shows the Application Server Control Console HTTP Server status metrics

page.

Figure 3-1 Application Server Control Console Status Metrics Page

ORACLE Enterprise Manager 10g
Application Server Control

Logs Topology Preferences Help
R

Application Serer MySener mycompany.com = HTTP Server =
Status Metrics

System Usage Metrics

CPU Usage Memory Usage

\

Error Metrics

General
Current Error Rate (%) 0.00
Error Rate Since Startup (%) 0.00
Errars Since Startup 0

Errors by Error Type

Error Count
Error Type Since Startup
Mo non-zero errars found.

Connection Metrics

Active Connections 4
Current Connection Duration (seconds) 1015
Average Connection Duration (seconds) 2.71
Minimum Connection Duration (seconds) 0.001
Maxirmum Connection Duration (seconds) 170.05
Connections Completed Since Startup 22,911

Logs | Topology | Preferences | Help
Copyright © 1996, 2004, Sracle. Al rights reserved.

Ahout Cracle Enterprize Manager 10g Application Server Contral

Page Refreshed Jul 26, 2004 2:45:57 PM

W HTTP Server (4% 37ME)
W HTTP Server (0%) [ldle (78%) O Free (31% 320ME)
I Other (22%) [Other (65% BEEME)

Related Links

Error Log
Logging Properties

Related Links
Client Connection Handling
Properties

Monitoring Oracle HTTP Server 3-3

Monitoring Oracle HTTP Server with Application Server Control Console

Oracle HTTP Server Response and Load Metrics

Figure 3-2 shows the Application Server Control Console Response and Load Metrics
page. This page shows values for Oracle HTTP Server Active Requests and Request
Throughput, and reports the average, minimum, and maximum processing time for
requests. The values on the Response and Load Metrics page can help you assess the
system load.

Figure 3-2 Application Server Control Console Response and Load Metrics

ORACLE Enterprise Manager 10¢
Logs Topology Preferences Help
R

Application Server MyServermycompany.com:; = HTTP Server =
Response and Load Metrics

Page Refreshed Jul 26, 2004 2:59:23 PMIES

Response Metrics

Request Throughput Request Processing Time

Active Feguests 3 Current Processing 0.95
Current Throughput (requests per second) 0.41 Time (seconds) "
Throughput Since Startup (requests per second) 017 Average Processing
Total Requests Processed Since Startup 45,224 Time Since Startup 0.03
(seconds)

Minimum Processing 0.0009
Time (seconds)
Maximum Processing
Time (seconds) S

Related Links
Process Details
Client Request Handling

B Active Processes() Properties
O Idle Processes()

Process Usage

Load Metrics
Current Data Throughput (KB per second) 11.80

Data Throughput Since Startup (KB per second) 0.28
Current Response Size (KE) 28.63

Average Response Size Since Startup (KB) 1.6
Total Data Since Startup (ME) 72.98

Logs | Topology | Preferences | Help
Copyright € 1996, 2004, Oracle. All rights reserved.
About Oracle Enterprize Manaoer 100 Application Server Cortral

Oracle HTTP Server Module Metrics

Figure 3-3 shows the Application Server Control Console Module Metrics page. The
Module Metrics page shows the active and total requests processed by Oracle HTTP
Server modules. The page only lists modules active since startup, meaning that the
module has received 1 or more requests.

3-4 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Application Server Control Console

Figure 3-3 Application Server Control Console Module Metrics Page

ORACLE Enterprise Manager 10g
Logs Topology Preferences Help
—_—

Application Server. MySENVEFITIYCOMDANY.COM > HTTP Server =
Module Metrics
Page Refreshed Jul 26, 2004 3:03:30 PMEE?:.

Current Request
Requests Throughput Current Request

Processed (requests per Processing
Name Active Requests Since Startup second) Time {seconds)
mod_ocdj.c 1 G002 0.05 16.76
mod_mmap_static.c 1 40 327 0.25 0.00002
mod_dir.c] 1,104 0.006 0.04
mod_actions.c 2 40 826 0.2a 0.00003
http_core.c u] 40 528 0.25 0.01
mod_dms.c 1 3522 018 0.04
mad_include.c 1 18,742 013 0.00004
mod_perl.c] 1,104 0.006 0.003

Logs | Topology | Preferences | Help
Copyright @ 1996, 2004, Oracle. All rights reserved.

About Oracle Erterprize Manaoer 100 Application Setver Cortrol

Oracle HTTP Server Error Log

The Error Log link displays the Application Server Control Console View Logs page
and selects the HTTP Server logs.

See Also: Oracle Application Server Administrator’s Guide for
information on working with the View Logs page

Investigating Oracle HTTP Server Errors with Application Server Control Console

You should thoroughly investigate Oracle HTTP Server errors occurring on your site.
Oracle HTTP Server errors may indicate acceptable activity, but they may also indicate
security problems, configuration errors, or application bugs. Errors almost always
affect Oracle Application Server performance. Error handling can slow down the
normal processing for requests, or can appear to improve performance when the error
handling abbreviates the processing required to handle a valid request.

Using Application Server Control Console you can view the Error Metrics on the
HTTP Status Metrics page, as shown in Figure 3-1. Error Metrics include the current
error rate, which is the number of errors occurring in approximately the last five
minutes as a percentage of the total requests, the error rate since startup, and the count
of the total number of errors since startup. The Status Metrics page includes the Errors
by Error Type table shown in Figure 3—-1 which lists more details for HTTP errors,
including the error types and error counts. This table breaks down each error into a
category based on its HTTP error response type.

The data values shown for Errors by Error Type in Figure 3-1 indicate that the errors
were due to requests for unknown URIs (404 - Not Found errors). On many Oracle
HTTP Server sites, Not Found errors are relatively common. However, you should
investigate reports showing large numbers of Not Found errors, such as a number that
is greater than 1% of the total requests (see Figure 3-2 to find the total requests
processed in the Request Throughput area on the Response and Load Metrics page).

To investigate errors in more detail, such as any reported internal errors, examine the
error log by selecting the Logs link from any page, or the Error Log link under the

Monitoring Oracle HTTP Server 3-5

Monitoring Oracle HTTP Server with Application Server Control Console

Related Links heading on the Status Metrics page. By examining the error log file
entries, you should be able to find more information about the URIs that are causing
specific errors.

See Also: Oracle Application Server Administrator’s Guide for
information on working with the View Logs page

Expected Oracle HTTP Server Errors and Warnings

Certain Oracle HTTP Server errors and warnings are expected during normal Oracle
Application Server operations. For example, errors and warnings occur when the OC4]J
instance is stopped or restarted when you perform certain configuration actions using
Application Server Control Console.

Example 3-1 shows some of the types of errors that you may see during an OC4J
restart operation.

Example 3-1 Expected Errors Occurring During OC4J Restart Operation

MOD_OC4J_0150: Failed to deterninisticly find a failover oc4j process for session request for
island: default_island for destination: hone.

MDD _OCAJ_0119: Failed to get an oc4j process for destination: hone

MOD_OC4J_0013: Failed to call destination: hone's service() to service the request.
MOD_OC4J_0150: Failed to deterninisticly find a failover oc4j process for session request for
island: default_island for destination: hone.

MOD_OC4J_0119: Failed to get an oc4j process for destination: hone

MOD_OC4J_0013: Failed to call destination: hone’s service() to service the request.
MOD_OCAJ_0150: Failed to deterninisticly find a failover oc4j process for session request for
island: default _island for destination: home.

MDD _OCAJ_0119: Failed to get an oc4j process for destination: hone

MOD_OC4J_0013: Failed to call destination: hone's service() to service the request.

(131) Connection reset by peer: MOD OCAJ_0086: Got an unexpected error while calling recv() to
receive a message fromoc4j and error code is 131.

MOD_OCAJ_0054: Failed to call network routine to receive an ajpl3 nessage from oc4j.
MOD_0C4J_0033: Failed to receive an ajpl3 nessage fromoc4j.

(131) Connection reset by peer: MOD OCAJ_0086: Got an unexpected error while calling recv() to
receive a message fromoc4j and error code is 131.

MOD_OCAJ_0054: Failed to call network routine to receive an ajpl3 nessage fromoc4j.
MOD_OC4J_0033: Failed to receive an ajpl3 nessage fromoc4j.

Categorizing Oracle HTTP Server Problems with Application Server Control Console

If you notice a performance problem on the Oracle HTTP Server, then if possible you
should drill down and categorize the problem. By refining the performance analysis
you can learn more about the issue and direct your efforts to a component to help
identify and resolve the problem.

Application Server Control Console can help you categorize performance problems.
You can identify where requests are being processed, or where a large percentage of
request processing time is concentrated. Using Application Server Control Console
allows you to categorize performance problems as follows:

= Categorizing Oracle HTTP Server Problems by Module
« Categorizing Oracle HTTP Server Problems by Virtual Host
« Categorizing Oracle HTTP Server Problems by Child Server

3-6 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Application Server Control Console

Categorizing Oracle HTTP Server Problems by Module

Figure 3-3 shows the Module Metrics for Oracle HTTP Server modules (the report
includes information for modules that have received 1 or more requests since startup).
Using the Module Metrics, you should be able to identify the name of the module that
processed a large number of requests, or identify a module where the processing time
for an individual request is very large. By looking at the values for metrics listed in the
Module Metrics table, you should be able to categorize Oracle Application Server
performance by module.

When viewing the Module Metrics, note the following:

1. Thehttp_core. c module handles every request for static pages. If Oracle
Application Server Web Cache is enabled, then use of ht t p_cor e. ¢ should be
reduced. When you are using Oracle Application Server Web Cache, you should
monitor requests processed by the ht t p_cor e. ¢ module to make sure that
Oracle Application Server Web Cache effectively reduces static page activity for
the Oracle HTTP Server.

2. Viewing the Module Metrics page may show you that many requests were
processed through the mod_oc4j . ¢ module. You should then drill down to
review the information available for your OC4]J instances. Application Server
Control Console provides extensive performance measurements for OC4]
instances and J2EE applications.

See Also: Chapter 4, "Monitoring OC4]J"

Categorizing Oracle HTTP Server Problems by Virtual Host

Figure 3—4 shows a display of the Virtual Host page. By viewing the Virtual Host page
you should be able to obtain information about request processing by virtual host. The
Request Throughput, Load, and Request Processing Time headings include
information that enables you to identify a virtual host on your system that is
processing a large number of requests, or that is using significant processing resources
and may be stressing the system. This information should help you to categorize
Oracle Application Server performance issues by virtual host.

Monitoring Oracle HTTP Server 3-7

Monitoring Oracle HTTP Server with Application Server Control Console

Figure 3—-4 Application Server Control Console Virtual Host Page

ORACLE Enterprise Manager 10g
Logs Topolodgy Preferences Help
—_— —— ————

Application Server mMysener mycompany.com = HTTP Server =
Virtual Host: 127.0.0.1

Page Refreshed Jul 26, 2004 3:13:30 PM 5

Configuration Request Throughput
Type IP-hased Active Reguests 1
IP Address 127.0.0.1 Current Throughput (reguests per second) 10.81
Paort 7201 Throughput Since Startup (requests per second) 0.007
Protocol hitp Total Reguests Processed Since Startup 1,897

Document Roat /private/10g2/Apache/Apache/htdocs
Request Processing Time

Load Current Pracessing Time (seconds) 0.004
Current Diata Throughput (KB per second) 3.58 Average Processing Time Since Startup (seconds) 0.004
Data Throughput Since Startup (KB per second) 0.003
Current Response Size (KB) 0.33

)

)

Average Response Size Since Startup (KB 0.38
Total Data Since Startup (MB) 0.69
Administration
Wirtual Host Properties Wirtual Host MIME Languages
Wirtual Host MIME Encodings Wirtual Host MIME Types

Logs | Topology | Preferences | Help
Copyright & 1996, 2004, Oracle. Al rights reserved.
About Oracle Enterprize Manager 100 Application Server Control

Categorizing Oracle HTTP Server Problems by Child Server

Running Oracle HTTP Server, usually you do not need to worry about which child
server handles an individual request because any available child server can handle
any incoming request (each request is handled by a free child server). However, if your
Oracle Application Server system experiences delays or deadlocks, you may need to
analyze the Oracle HTTP Server child server processes.

To obtain information on Oracle HTTP Server child server processes, select Response
and Load Metrics link from the HTTP Server page, and then, under Related Links,
select Process Details. The Process Details page shows the Process ID for each active
Oracle HTTP Server child process.

Viewing the Process Details page allows you to monitor child servers to identify
runtime problems, configuration errors, or application bugs that cause either request
processing deadlocks or very long delays. In these situations analyzing the Process
Details page can help determine where the deadlock or delay is occurring.

Figure 3-5 shows a Process Details page with Oracle HTTP Server child server
information.

When viewing the Oracle HTTP Server Process Details page, note the following:

1. If necessary you can use the Process ID value to identify and terminate a
deadlocked Oracle HTTP Server child server.

2. Oracle HTTP Server terminates requests after a configurable timeout. You can use
Application Server Control Console to set the timeout for requests.

See Also: Oracle HI'TP Server Administrator’s Guide for
information on the Ti meQut directive

3-8 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Figure 3-5 Application Server Control Console HTTP Server Process Details for Child Servers Page

ORACLE Enterprise Manager 10g

Logs Topology Preferences Help
—

Process Details

Process ID
14155
14158
28251
14260

Application Server: MySErer.mycompany.com = HTTP Server > Eesponse and Load Metrics =

Copyright @ 1996, 2004, Oracle. All rights reserved.
About Oracle Erterprize Manadger 109 SApplication Server Control

Page Refreshed Jul 26, 2004 4:31:14 PM@.
Processing Time

URL (seconds)
GET /dmsDemo/improvedBinomial?length=2500 HTTP/ .1 0.000002
GET /dms0/Spy Marmat=thml &operation=getfvalue=true &units=false & 0.000003
GET /dms0/Spy ?format=tbml&operation=get&value=falsedunits=true & 0.000007
GET /dms0/Spy?format=thml&operation=get&value=true &units=false & 0.0003

Logs | Topology | Preferences | Help

Monitoring Oracle HTTP Server with Built-in Performance Metrics

The Oracle HTTP Server is a central and important part of most Oracle Application
Server sites. Oracle HTTP Server handles nearly every request for dynamic data and
many static data requests as well. By monitoring Oracle HTTP Server performance,
you can identify and fix Oracle Application Server performance issues.

This section covers the following topics:
= Assessing the Oracle HTTP Server Load with Built-in Metrics
« Investigating Oracle HTTP Server Errors with Built-in Metrics

« Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics

Assessing the Oracle HTTP Server Load with Built-in Metrics

To monitor Oracle HTTP Server performance, the first step is to assess workload.
When assessing the Oracle HTTP Server workload (load), note the following:

« If you are developing or testing a new application, you need to determine how

much load your quality assurance and performance tests generate on Oracle HTTP

Server.

= If you are monitoring Oracle HTTP Server performance, note that usage often
fluctuates depending on the time of day or day of week, with sites experiencing
times with light loads, and times with heavy loads. Your performance tests and

performance baseline should take into account the effect of time of day and day of

week variances. Whether you are developing or administering an Oracle
Application Server site, you should always design for expected load ranges and
monitor the site to ensure that usage and performance remains within the
expected range.

= The Oracle HTTP Server performance metrics give a good picture of overall site
performance; however if Oracle Application Server Web Cache or other caching

mechanisms handle requests before they reach Oracle HTTP Server, then you need

to monitor the caches as well.

See Also: "Performance Methodology" on page 1-7

Oracle HTTP Server provides performance metrics which you can view using
Aggr eSpy or dnst 0ol . You can use these built-in performance tools to help you

Monitoring Oracle HTTP Server

3-9

Monitoring Oracle HTTP Server with Built-in Performance Metrics

assess Oracle HTTP Server load by viewing the ohs_ser ver metric table. Using
Aggr eSpy or dnst 0ol , you can view the ohs_ser ver metric table.

Example 3-2 shows the dnst 0ol command with the ohs_ser ver metrics output.
You can also view the ohs_ser ver metric table using Aggr eSpy by choosing the
ohs_ser ver metric table in the left pane of the Aggr eSpy window or by selecting the
Text link next to the Apache process in the Aggr eSpy All DMS Spies list. If you
select the Apache process from the Spies List, you need to find the ohs_ser ver table
within the full set of metrics shown.

Example 3-2 Overall HTTP Server Metrics Report

systeml 122> dmstool -table ohs_server
Fri May 02 11:11:39 PDT 2003

ohs_server

busyChi | dren. val ue: 1

chi | dFi ni sh. count: 0 ops
childStart. count: 11 ops

connection.active: 3 threads
connecti on. avg: 258721053 usecs
connecti on. conpl et ed: 11880 ops
connection. maxTi me: 1002008298 usecs
connection. m nTi me: 7254 usecs
connection.tinme: 152386700540 usecs
error.count: 52 ops

get. count: 32769 ops
handl e. active: 2 threads
handl e. avg: 14274 usecs

handl e. conpl et ed: 6985

handl e. maxTi me: 22205524 usecs
handl e. m nTi me: 2 usecs

handl e. tine: 997159521 usecs
internal Redirect.count: 7418 ops
| ast Confi gChange. val ue: 1051724112

nunChi | dren. val ue: 11
numvbds. val ue: 47

post . count: 0 ops
readyChi | dren. val ue: 10
request.active: 1 t hreads

request . avg: 31537 usecs
request . conpl et ed: 32769
request . maxTi me: 22206941 usecs
request. m nTi me: 602 usecs
request.time: 1033442848 usecs

responseSi ze. val ue: 243880796
Host : systent

Name: Apache

Parent: /

Process: Apache: 27885: 6004

3-10 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics

First, to analyze system performance, the output shown in Example 3-2 includes three
categories of metrics to be inspected: handl e, r equest , and connect i on. These
metrics describe the following:

« handl e

The phase in which a request is handled by an HTTP server module. Note that a
single request may be handled by more than one HTTP server module. The handle
metrics shown in the ohs_ser ver metric table are summarized for all of the
HTTP server modules.

. request

The phase during which an HTTP server daemon reads a request and sends a
response for it (first byte in, last byte out). There may be more than one request
serviced during a single connection phase. This would be the case if the HTTP
parameter KeepAl i ve were set and utilized by clients.

« connection

The connection phase, starting from the time an HITP connection is established to
the time it is closed.

Second, to determine current Oracle HTTP Server load, examine the following ohs_
server metrics:

« reguest.active

« busyChildren. val ue
« readyChildren. val ue
« nunChil dren. val ue

These ohs_ser ver metrics indicate how many OHS child servers, children, are in
use, and how many of child servers are actively processing requests. The data in
Example 3-2 shows that 11 child servers are alive (nunChi | dr en. val ue), one of
which is currently busy handling requests (ousyChi | dr en. val ue).

Oracle HTTP Server needs to keep enough child servers running to handle the usual
load while allowing for normal load fluctuations. Oracle HTTP Server child servers
handle exactly one request at a time, thus Oracle HTTP Server needs to run many child
servers at once. If Oracle HT'TP Server notices that the current load may exceed its
default configuration, then it automatically starts new child servers. If the load is
subsequently reduced, then Oracle HTTP Server terminates some of its child servers to
save system resources.

If the configuration settings require that the Oracle HTTP Server start and stop child
servers frequently, this can reduce system performance and may indicate that the
system configuration needs to be adjusted. To determine whether Oracle HTTP Server
child servers have been started and how many have finished, examine the following
ohs_ser ver metrics

« childStart. count
« chil dFini sh. count

These performance metrics show how many Oracle HTTP Server child servers have
started and finished and can also provide an indication of the Oracle HTTP Server
load. For the Oracle HTTP Server shown in Example 3-2, 11 child servers have started
and 0 have finished.

The chi | dSt art . count and chi | dFi ni sh. count metric values could indicate
that the instantaneous load for the Oracle HTTP Server exceeded the current load and

Monitoring Oracle HTTP Server 3-11

Monitoring Oracle HTTP Server with Built-in Performance Metrics

also exceeded the range assumed by the default Oracle HTTP Server configuration
parameters. When the count of child servers started and the count of child servers
finished are both large, this could indicate that the Oracle HTTP Server could benefit
by tuning configuration parameters, including:

« M nSpareServers
« MaxSpareServers
« StartServers

In the ohs_ser ver metrics, the handl e. avg, r equest . avg, and connecti on. avg
metrics, and the handl e. ti ne,request. ti me,and connecti on. ti ne values
increase for each phase. The handle time will be the shortest and the connection time
the longest. Figure 3-6 shows the relationship among these three phases for managing
a user request.

If KeepAl i ve is on and clients use it, the duration of a connection may be much
longer than the time required to perform a request and return a response, as illustrated
in Figure 3-6. This is because the connection may remain open while a single client
submits multiple requests.

Figure 3-6 Execution Phases in the Oracle HTTP Server

User Connection phase >
submits
HeRES User User
o Request phase receives submits Reguest phase
— > response request
hs o'W M
—_ Handle phase > Handle phase > q‘ i P mumm Handle phase
nu U -

| Time t

See Also:

= Chapter 5, "Optimizing Oracle HTTP Server"

= Chapter 7, "Optimizing OracleAS Web Cache"

« Appendix A, "Performance Metrics"

= Oracle Application Server Web Cache Administrator’s Guide

« Oracle HTTP Server Administrator’s Guide for information on
Oracle HTTP Server configuration parameters related to
starting and stopping child servers

Investigating Oracle HTTP Server Errors with Built-in Metrics

You should thoroughly investigate Oracle HTTP Server errors occurring on your site.
Oracle HTTP Server errors may indicate acceptable activity, but they may also indicate
security problems, configuration errors, or application bugs. Errors almost always
affect Oracle Application Server performance. Error handling can slow down the
normal processing for requests, or can appear to improve performance when the error
handling abbreviates the processing required to handle a valid request.

3-12 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Using dnst ool or Aggr eSpy, you can investigate Oracle HTTP Server errors by
viewing the ohs_ser ver metrics. Example 3-2 includes the ohs_ser ver metrics
that provide an overview of error activity. The er r or . count metric increments
whenever any request to Oracle HTTP Server results in an HTTP error response.

Use the ohs_r esponses metric table to investigate the details for error types and
error counts. This table breaks down the total er r or . count value into HTTP
response types. It also shows aggregate counts for successful HTTP requests and
HTTP redirects.

Example 3-3 shows the dnst ool report for the ohs_r esponses metric table. You
can also view the ohs_r esponses metric table using Aggr eSpy by choosing the
ohs_r esponses metric table in the left pane of the Aggr eSpy window or by
selecting the Text link next to the Apache process in All DMS Spies list. If you select
the Apache process from the Spies List, you need to find the ohs_r esponses table
within the full set of metrics shown.

Example 3-3 HTTP Server Responses Metrics (ohs_responses Metric Table)
systeml 125> dnstool -table ohs_responses

Fri May 02 15:19:56 PDT 2003

C tErr_Authorization_Required_401. count: 0 ops
C t Err_BadRange_416. count: 0 ops

C t Err_Not _Found_404. count : 29 ops

Redirect _Mil ti Choi ce_300.count: 0 ops

Redi rect _Not Modi fied_304. count: 23 ops

Success_Accept ed_202. count : 0 ops

Svr Err_Ver si onNot Supp_505. count : 0 ops

Host : systentd

Name: Responses

Parent: /Apache

Process: Apache: 27885: 6004
ohs_server: Apache

Example 3-3 shows that most of the errors were due to requests for unknown URIs
(404 - Not Found errors). On many Oracle HTTP Server sites, Not Found errors are
relatively common. However, you should investigate reports showing many Not
Found errors, such as a number greater than 1% of the total requests.

You can examine the err or _| og and access_| og files to determine the URIs that
are causing errors, such as any reported internal errors (Svr Err _I nt er nal Error _
500. count).

Monitoring Oracle HTTP Server 3-13

Monitoring Oracle HTTP Server with Built-in Performance Metrics

See Also:

= "Expected Oracle HTTP Server Errors and Warnings" on
page 3-6

« Oracle HTTP Server Administrator’s Guide for information on the
Oracle HTTP Server access_| og and err or _| og files

= Oracle Application Server Administrator’s Guide for
information on working with the View Logs page.

Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics

If you notice a performance problem on the Oracle HTTP Server, then if possible you
should drill down and categorize the problem. By limiting your search for a
performance problem to a subset of Oracle HTTP Server, you can learn more about the
issue and direct your efforts to identifying and solving the problem. Using the built-in
performance tools you can categorize performance problems into one of several areas.
You can identify where requests are being processed, or where a large percentage of
request processing time is concentrated.

This section describes how you can categorize performance problems into different
areas, including;:

= Categorizing Oracle HTTP Server Performance Problems by Module
« Categorizing Oracle HTTP Server Performance Problems by Virtual Host
« Categorizing Oracle HTTP Server Performance Problems by Child Server

Categorizing Oracle HTTP Server Performance Problems by Module

Use the ohs_nodul e metrics to refine your analysis of performance problems to one
or more modules. Showing the module metrics allows you to use the metric data to
limit the search for performance problems to a particular module.

Example 3—4 shows a section of the dnst 00l report for the ohs_nodul e metric table.
You can also view the ohs_nodul e metric table using Aggr eSpy by choosing the
ohs_nodul e link in the left pane of the Aggr eSpy window or by selecting the Text
link next to the Apache process in the All DMS Spies list. If you select the Apache
process from the Spies List, you need to find the ohs_nodul e table within the full set
of metrics shown.

Example 3—4 Drill Down to Investigate Oracle HTTP Server Activity per Module

systeml 127> dnstool -table ohs_module -c¢ 1
Fri May 02 15:51:01 PDT 2003

decline.count: 76661 ops

handl e.active: 0 t hr eads
handl e. avg: 13 usecs

handl e. conpl et ed: 76661 ops
handl e. maxTi ne: 5487 usecs

handl e. m nTine: 11 usecs

handl e. ti ne: 1007639 usecs
Host : systent

Nane: mod_actions. c

Parent: /Apache/ Modul es

Process: Apache: 27885: 6004
ohs_server: Apache

3-14 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Nane: mod_plsql.c

decl

ine.count: O ops
handl e. active: 0 t hr eads
handl e. avg: 919 usecs
handl e. conpl et ed: 76708 ops
handl e. maxTi ne: 122401 usecs
handl e. m nTi ne: 351 usecs
handl e. ti ne: 70532228 usecs
Host : systent

Nane: http_core.c
Parent: /Apache/ Modul es

Process: Apache: 27885: 6004
ohs_server: Apache

decline.count: 0 ops
handl e. active: 0 t hr eads

handl e. avg: 331918 usecs

handl e. conpl et ed: 440 ops
handl e. maxTi me: 42707927 usecs
handl e. m nTi me: 5970 usecs

handl e. ti me: 146044090 usecs
Host : systent

Nane: mod_oc4j . ¢

Parent: [Apache/ Modul es

Process: Apache: 27885: 6004
ohs_server: Apache

When viewing the Module Metrics, note the following;:

1.

The ht t p_cor e. ¢ module handles every request for static pages. If Oracle
Application Server Web Cache is enabled, then use of ht t p_cor e. ¢ should be
reduced. If Oracle Application Server Web Cache is enabled then you should
monitor the ht t p_cor e. ¢ metrics to make sure that Oracle Application Server
Web Cache effectively prevents static page activity from reaching your Oracle
HTTP Server.

Typically, certain responses require process initialization, class loading or other
one-time processing that can skew the reporting of the average request processing
time. For performance reporting and analysis, you can reduce the effect of the such
one-time operations by subtracting the minimum and maximum values from the
total and recalculating the average. For example, for the nod_oc4j . ¢ metrics
shown in Example 34, if you recompute the request handling average using the
following formula, you find that the recalculated average provides a more
representative indication of typical response processing time:

new average = (time - min - max) / (conpleted - 2)
(146044090 - 5970 - 42707927)/ (440 - 2)
305710. 6 ni croseconds

Monitoring Oracle HTTP Server 3-15

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Recalculating the average is most important when the server has been up for a
short time, and thus has handled a small number of requests. In this case, the large
overhead of the first request will have far more impact on the average.

3. Viewing the ohs_nodul e metric table may show you that many requests were
forwarded to OC4J through the nod_oc4j . ¢ module. Oracle Application Server
also provides extensive performance measurements for OC4] J2EE applications.

See Also: Chapter 4, "Monitoring OC4]J"

Categorizing Oracle HTTP Server Performance Problems by Virtual Host

Use the ohs_vi rt ual Host metrics to refine your analysis of performance problems
by Oracle HTTP Server virtual host. Showing the virtual host metrics allows you to
use the metric data to limit the search for performance problems to a subset of the
Oracle HTTP Server.

Example 3-5 shows a section of the dnst 0ol report for the ohs_vi rt ual Host
metric table. You can also view the ohs_vi rt ual Host metric table using Aggr eSpy
by choosing the ohs_vi rt ual Host link in the left pane of the Aggr eSpy window or
by selecting the Text link next to the Apache process in the All DMS Spies list. If you
select the Apache process from the Spies List, you need to find the ohs_

vi rtual Host table within the full set of metrics shown.

Example 3-5 Drill Down to Investigate Oracle HTTP Server Activity per Virtual Host

systeml 134> dnstool -table ohs_virtual Host -c 1
Mon May 05 10:35:10 PDT 2003

request.active: 0 t hr eads
request . avg: 0 usecs

request . conmpl et ed: 0 ops
request . maxTi ne: 0 usecs
request. m nTi ne: 0 usecs
request.time: 0 usecs
responseSi ze. val ue: 0 byt es
vhost Type. val ue: | P_DEFAULT

Host : systent

Name: systent. us. oracl e. com | P255. 255. 255. 255, Por t 4444
Parent: /Apache/ VHosts

Process: Apache: 27885: 6004

ohs_server: Apache

ohs_vhost Set : VHost s

Categorizing Oracle HTTP Server Performance Problems by Child Server

Running Oracle HTTP Server, usually you do not need to worry about which child
server handles an individual request because any available child server can handle
any incoming request (each request is handled by a free child server). However, if your
Oracle Application Server system experiences delays or deadlocks, you may need to
analyze the Oracle HTTP Server child server metrics. These metrics allow you to
monitor child servers to identify runtime problems, configuration errors, or
application bugs that cause either request processing deadlocks or very long delays. In
these situations analyzing the Oracle HTTP Server child server metrics can help
determine where the deadlock or delay is occurring.

3-16 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Use the ohs_chi | d metric table to refine your analysis of performance problems to
one or more Oracle HTTP Server child servers.

Example 3-6 shows a section of the dnst 00l report for the ohs_chi | d metric table.
You can also view the ohs_chi | d metric table using Aggr eSpy by choosing the ohs_
chi | d link in the left pane of the Aggr eSpy window or by selecting the Text link
next to the Apache process in the All DMS Spies list. If you select the Apache process
from the Spies List, you need to find the ohs_chi | d table within the full set of metrics
shown

The ohs_chi | d metric table shows the top ten Oracle HTTP Server child servers
sorted by time spent on current requests. For the metrics shown in Example 3-6, the
top entry has been executing for 7 microseconds. The ohs_chi | d metrics include the
URL associated with the request and the process identifier for each Oracle HTTP
Server child server listed.

Example 3-6 Drill Down to Investigate Activity per Child Server

systeml 135> dmstool -table ohs_child -c 1
Mon May 05 10:44:24 PDT 2003
user passwd=nul |

ohs_child

pi d. val ue: 27897

sl ot. val ue: 3

status.value: witing

time. val ue: 1 usecs

url.val ue: CGET / dns0/ Spy?f or mat =t bni &oper at i on=get &val ue=t r ue&uni t s=t r ue&d

Host : systent
Nane: Chi | d01
Parent: /Apache/ Children

Process: Apache: 27885: 6004

ohs_server: Apache

pi d. val ue: 27899

sl ot. val ue: 5

status. val ue: keepal i ve

time. val ue: 7 usecs

url.val ue: CET / dnsDenv/ Basi ¢Bi nomi al HTTP/ 1.1

Host : systent

Nane: Chi | dOO

Parent: /Apache/ Children

Process: Apache: 27885: 6004
ohs_server: Apache

When viewing the Oracle HTTP Server child server metrics, note the following:

1. Ifnecessary you can use the ohs_chi | d metric value pi d. val ue to identify and
terminate a deadlocked Oracle HTTP Server child server.

2. Oracle HTTP Server terminates requests after a configurable timeout set with the
Ti meQut directive.

See Also: Oracle HI'TP Server Administrator’s Guide for
information on the Ti meQut directive

Monitoring Oracle HTTP Server 3-17

Monitoring Oracle HTTP Server with Built-in Performance Metrics

3-18 Oracle Application Server Performance Guide

A

Monitoring OC4J

This chapter discusses how to monitor the performance of Oracle Application Server
Containers for J2EE (OC4J). Obtaining performance data can assist you in tuning
Oracle Application Server or in tuning and debugging applications with performance
problems.

This chapter contains the following topics:
= Monitoring OC4J With Application Server Control Console
= Monitoring OC4J With Built-in Performance Metrics

Monitoring OC4J 4-1

Monitoring OC4J With Application Server Control Console

Monitoring OC4J With Application Server Control Console

Using Application Server Control Console, you can view information on the
performance characteristics of OC4] instances, J2EE applications, and Oracle
Application Server components running under OC4J. This section covers the
following:

= Monitoring OC4J Instances With Application Server Control Console
= Monitoring J2EE Applications with Application Server Control Console

Monitoring OC4J Instances With Application Server Control Console

Before analyzing OC4J performance, make sure that your OC4J instance is running.
Figure 4-1 shows Application Server Control Console with the OC4] instance
homepage. This page shows the status for a selected OC4]J instance (the Up under the
heading General indicates the OC4] instance is running).

While Application Server Control Console provides standalone management for an
Application Server and its components, if you want to centrally manage multiple
Application Servers through one tool rather than through several Application Server
Control Consoles use Oracle Enterprise Manager 10g Grid Control Console.

See Also: "Centralized Management of Oracle Application Server
Instances" on page 2-3

Figure 4-1 Application Server Control Console OC4J Instance Page

ORACLE Enterprise Manager 10g

Logs Topology Preferences Help
S —

Application Server: MYSENVEF.MYCOMPpany. =
0C4J: home
Home Applications Adrinistration

Page Refreshed Aug 11, 2004 10:48:32 Mv'l@.

General Status
Status Up (stop) [Restart) CPU Usage (%) 2.32
b >) Aug 10, 2004 femary Usage (MB) 15189
9 Start Time 3.15.26 pu Heap Usage (MB) 15.61
Wirtual
Machines — Response - Servlets and JSPs

Active Sessions 4

JDBC Usage Active Requests 1

Open JDBC Connections 1 Request Processing Time (seconds) 0.32
Total JOBC Connections 13 Requests per Second 0.31
Active Transactions 0
Transaction Commits 36 Response - EJBs
Transaction Rollbacks 0 Active EJB Methaods 0

Method Execution Time (seconds) 0.05
fethod Execution Rate (per second) 0.48

Related Link All Metrics

Home Applications Administration

Logs | Topology | Preferences | Help
Copyright 1996, 2004, Oracle. All rights reserved.

About Oracle Enterprize Manager 100 Application Server Control

Note: Application Server Control Console does not provide

information on OC4J JMS. Use the built-in performance metrics to

obtain information on OC4J JMS.

4-2 Oracle Application Server Performance Guide

Monitoring OC4J With Application Server Control Console

See Also: "Monitoring OC4] With Built-in Performance Metrics"
on page 4-7

General

The Application Server Control Console OC4] General information provides
information on up and down status for the OC4]J instance, its start time, and
information on the virtual machine where the OC4J instance is running. This area also
presents buttons that allow you to stop or restart the OC4J instance.

JDBC Usage

The Application Server Control Console OC4] JDBC Usage information shows the
number of open JDBC connections, the total number of JDBC connections, the number
of active transactions, and the total number of transaction commits and transaction
rollbacks for the OC4]J instance.

Status

The Application Server Control Console OC4] Status information shows the CPU
usage, memory usage, and heap usage for the OC4] instance.

Response for Servlets and JSPs

The Application Server Control Console OC4] Response information for Servlets and
JSPs shows the number of active sessions, the active requests, the average request
processing time, and the requests processed per second for active requests.The value
shown for requests processed per second is a rate that is calculated using the requests
processed over the previous 5 minutes.

Response for EJBs

The Application Server Control Console OC4] Response information for EJBs shows
the number of active EJB methods and the EJB method execution rate. The EJB method
execution rate provides the number of methods executed per second over the previous
5 minutes.

Note: Application Server Control Console automatically collects a
subset of metrics approximately every five minutes. The rates
shown in the Application Server Control Console display are
computed over the period that spans from the most recent
collection to the refresh of the Application Server Control Console
display.

Monitoring J2EE Applications with Application Server Control Console

After you know that the OC4J instances that contain your J2EE applications are
running, check the status for your applications. If your J2EE applications are not
loaded, then deploy them and then try accessing the applications to make sure that
they work properly. Figure 4-2 shows an Application Server Control Console page for
the FAQApp sample application.

Monitoring OC4J 4-3

Monitoring OC4J With Application Server Control Console

Figure 4-2 Application Server Control Console J2EE Application Metrics

ORACLE Enterprise Manager 10g
Application Server Control

Logs Topolodgy Preferences Help
e

Application Server: MySENVENMYCOMPanY.com

Application: FAQApp

General
| Redeploy] | Undeploy)

Status Loaded
Auto Start true
Parent Application default

» QC4) home =

Response - Servlets and
J5Ps

Active Sessions

Active Reguests

Request Processing Time
(seconds)

Reguests per Second

Page Refreshed Aug 11, 2004 11:25:58 AM@.

Response - EJBs
Active EJB Methods 0
1 Method Execution Time

0 (seconds) L
Method Execution Rate

0.28 (per second) L

0.02

Web Modules

Request
Processing Time
Name Path Active Requests (seconds) Active Sessions|
FAQAppYYeb FAQAppWeb war] 0.00]
FAQAppWYebSerice FAQAppWYebService war 0 0.00 0
EJB Modules
Method Execution
Name Path Active EJB Methods Time ({seconds)
FAQAppEIE FAQApPEE jar] 0.00
Administration
Properties Resources Security
General Data Sources Security

Advanced Properties JWE Providers

Logs | Topology | Preferences | Help
Copyright © 1996, 2004, Oracle. Al rights reserved.

Kabout Oracle Enterprise Manacer 10y Spplication Server Cordrol

Figure 4-2 shows the available Application Server Control Console J2EE application
level performance data collected in the following categories:

= General

= Response for Servlets and JSPs
= Response for E]Bs

= Web Module Table

« EJB Modules Table

General

The Application Server Control Console J2EE application General information
provides an indication of whether the application is loaded or not in the status field,
and shows if the Auto Start status is true or false. The Parent Application field
provides a link to the application parent. This area also presents buttons that allow
you to Redeploy or Undeploy the application.

4-4 Oracle Application Server Performance Guide

Monitoring OC4J With Application Server Control Console

Response for Servlets and JSPs

The Application Server Control Console J2EE application Response information for
Servlets and JSPs shows the number of active sessions, the active requests, the average
request processing time, and the requests processed per second, over the previous 5
minutes, for active requests for the application. For more detail on this information or
to drill down to specific Servlets and JSPs, use the links in the Web Modules table.

Response for EJBs

The Application Server Control Console J2EE application Response information for
EJBs shows the number of active EJB methods and the EJB method execution rate over
the previous 5 minutes.

For more detail on this information or to drill down to specific Servlets and JSPs, use
the links in the EJB Modules table.

Note: Application Server Control Console automatically collects a
subset of metrics approximately every five minutes. The rates
shown in the Application Server Control Console display are
computed over the period that spans from the most recent
collection to the refresh of the Application Server Control Console
display.

Web Module Table

The Web Modules table allows you to obtain more detailed information for Servlets
and JSPs within a J2EE application.

Figure 4-3 shows the details for the FAQApp application’s Web Module, including
General information, Response and Load information, and a table showing data values
for each of the Servlets and JSPs that are part of the application.

Monitoring OC4J 4-5

Monitoring OC4J With Application Server Control Console

Figure 4-3 Application Server Control Console J2EE Application Web Module Metrics

ORACLE Enterprise Manager 10g

Application Server Control Logs Topology Preferences Help
Application Server: MYSEMVMERIMYCOMPANY.com = 0C4l home = Application: FAGADD =

Web Module: FAQAppWeb
Page Refreshed Aug 11, 2004 11:37:57 AN

General Response and Load
Status Loaded Active Sessions 1
URL Mapping /FAQApp Active Requests 0
Referenced EJBs 1 Request Client Time (seconds) 0.33

Request Load Time (seconds) 0.008
Requests per Second 0.005
Requests Processed 98

Servlets/JSPs

0 Previous | 1210 0f 12 % | Mext 2 &

Request

Client| Requests|

Active Time per|Startup

Name / Status (Type |Source Requests|{seconds)| Second|Priority|

StrutsActionSerlet Loaded Servlet org.apache.struts action ActionServlet] 0.33 00050 2
FAQGQuery.jsp Loaded JSP 0 1] 1]
Warning. jsp Loaded JSP] 0 0
Tapic.jsp Loaded JSP 0 0.03 0.00a0
Home.jsp Loaded JSP] 0 0
Areajsp Loaded JSF 0 1] 1]
WiebServicesFooterjsp Loaded JSP 0 1] 1]
isp Loaded Serviet 0 0.03 00050
WehServicesHeader jsp Loaded JSP 0 1] 1]
TopicQuery jsp Loaded JSP] 0 0

& Previous | 1-10 of 12 || Next 2 &

EJB Modules Table

The EJB Modules tables allow you to obtain more detailed information on EJB
modules and E]Bs within the J2EE application.

Figure 4-4 shows a sample FAQApp EJB Module page.

4-6 Oracle Application Server Performance Guide

Monitoring OC4J With Built-in Performance Metrics

Figure 4-4 Application Server Control Console EJB Module Page

ORACLE Enterpris

e Manager 10g

Logs Topology Preferences Help

Application Server: MySEMVELIMYTOMPAaNY.com = QG4 home = Application: FAQApp =

Administration
Advanced Properties

EJB Module: FAQAppEJB.jar

General Response and Load
Status Loaded Active EJB Methods 0
EJB Jar File FAQAppEJB.jar Method Execution Time (seconds) 0.04
EJBs Deployed 4 Wethod Execution Rate (per second) 0.14
Application FAQApp
EJBs
Active EJB Method Execution Method Execution
Name Type Class Methods Time {seconds) Rate {per second)
AppSessionFacade Stateless fagapp. AppSessionFacadeBean 1] 0.22 0.0
Session
Area CMP Entity fagapp.AreaBean 1] 0.02 012
FAQ CMP Entity fagapp.FAGEBean 1] 0.00 0.00
Topic CMP Entity fagapp. TopicBean 1] 0.001 0.0

Copyright & 1996, 2004, Cracle. Al rights reserved.
Ahout Oracle Erterprize Manager 10g SApplication Server Cantral

Page Refreshed Aug 11, 2004 11:51:15 Mv'IEEj:.

Logs | Topology | Preferences | Help

Monitoring OC4J With Built-in Performance Metrics

You can use the Oracle Application Server built-in performance metrics to analyze
OC4J and J2EE application performance. Before you attempt to monitor OC4J
performance, verify that the OC4J instance named home that is installed by default
with Oracle Application Server is running by accessing the following URL:

http://myhost: port/j2eel

The value for myhost should be the host where OC4] is installed. The port must be the
port number on which Oracle HTTP Server listens, as configured in the Oracle HTTP
Server ht t pd. conf file.

Be sure to include the trailing slash (/) in the URL, otherwise the page cannot be found
on the system. If your default Web site has been mapped to something other than the
default location / j 2ee/ , then you should access the location configured on your
system.

If the default OC4] instance is running, then accessing this URL displays the Welcome
page for Oracle Application Server Containers for J2EE (OC4J). From the OC4]J
Welcome page you can access the samples for JSPs and servlets. If you do not have
active J2EE applications that you want to monitor, you can test the monitoring
facilities using your browser to request sample servlet-generated or JSP-generated Web

pages.
For example, use the following URLs:

http://nyhost: nyport/j2eel servl et/ SnoopSer vl et

Monitoring OC4J 4-7

Monitoring OC4J With Built-in Performance Metrics

http://myhost: nyport/j2eel/ servl et/ Hel | oWor | dSer vl et

Then, use Aggr eSpy or dnst 00l to see the values of metrics for the built-in
performance metrics.

For example, to use Aggr eSpy, enter the following URL in your Web browser:

http://nyhost: nyport/dns0/ Aggr eSpy

The resulting display from the Aggr eSpy provides a list of metric tables in the
left-hand pane that can be selected to display performance metrics for OC4] and
Oracle Application Server components. Alternatively, you can use dnst 0ol on the
command line or in scripts that you write to display performance metrics.

Note the following when you are monitoring OC4J built-in metrics:

Oracle recommends that you monitor usage counts and service times for each of
your application’s Servlets, JSPs, E]Bs, JMS applications, and other components,
checking collected metrics against your design and deployment assumptions. You
should check these assumptions with single browser client scenarios, with
simulated multiuser workloads, and in production.

When troubleshooting performance degradations, you can use either the

Aggr eSpy metric tables or the dist 0ol collected metrics to find the Servlets,
JSPs, E]Bs, EJB methods, and JMS topics or queues that are used most often. In
many cases, heavily-used application components are responsible for system
resource utilization, so focus your troubleshooting effort on the most heavily-used
components first.

Select the JVM metric table to analyze overall JVM performance for the
applications in an OC4J instance. The JVM metric table provides useful
information about threads and heap memory allocation. You should check these
values to make sure that JVM resources are utilized within expected ranges.

See Also:

= "Viewing Performance Metrics Using AggreSpy" on page 2-5

= "Viewing Performance Metrics Using dmstool" on page 2-9

= Chapter 6, "Optimizing J2EE Applications In OC4]"

= Appendix A, "Performance Metrics" for descriptions of the
built-in performance metrics

4-8 Oracle Application Server Performance Guide

D

Optimizing Oracle HTTP Server

This chapter discusses the techniques for optimizing Oracle HTTP Server performance
in Oracle Application Server.

This chapter contains:

« TCP Tuning Parameters (for UNIX)

« Network Tuning for Windows

« Configuring Oracle HTTP Server Directives

« Oracle HTTP Server Logging Options

« Oracle HTTP Server Security Performance Considerations
« Oracle HTTP Server Performance Tips

= Setting mod_oc4j Load Balancing Policies

Optimizing Oracle HTTP Server 5-1

TCP Tuning Parameters (for UNIX)

TCP Tuning Parameters (for UNIX)

Correctly tuned TCP parameters can improve performance dramatically. This section
contains recommendations for TCP tuning and a brief explanation of each parameter.

Table 5-1 contains recommended TCP parameter settings and includes references to
discussions of each parameter.

Table 5-1 TCP Parameter Settings for Solaris Operating System (SPARC)

Parameter Setting Comments

t cp_conn_hash_si ze 32768 See "Increasing TCP Connection Table Access Speed" on page 5-5

tcp_conn_req_max_q 1024 See "Increasing the Handshake Queue Length" on page 5-6

tcp_conn_req_nmax_qg0 1024 See "Increasing the Handshake Queue Length" on page 5-6

tcp_recv_hi wat 32768 See "Changing the Data Transfer Window Size" on page 5-7

tcp_slow start_initial 2 See "Changing the Data Transmission Rate" on page 5-6

tcp_time_wait_interval 60000 See "Specifying Retention Time for Connection Table Entries"” on
page 5-5

tcp_xm t _hi wat 32768 See "Changing the Data Transfer Window Size" on page 5-7

Table 5-2 TCP Parameter Settings for HP-UX

Default Tuned

Parameter Scope Value Value Comments

tcp_time_wait_interval ndd/ dev/tcp 60,000 60,000 See "Specifying Retention Time for
Connection Table Entries" on
page 5-5

t cp_conn_r eq_nax ndd/ dev/tcp 20 1,024 See "Increasing the Handshake
Queue Length" on page 5-6

tcp_i p_abort _interval ndd/ dev/tcp 600,000 60,000

tcp_keepal i ve_i nterval ndd/ dev/tcp 7,20,00,000 900,000

tcp_rexmt _interval _ ndd/dev/tcp 1,500 1,500

initial

tcp_rexmt_interval _max ndd/ dev/tcp 60,000 60,000

tcp_rexmt_interval _mn ndd/ dev/tcp 500 500

tcp_xmt_hiwater_def ndd/ dev/tcp 32,768 32,768 See "Changing the Data Transfer
Window Size" on page 5-7

t cp_recv_hi wat er _def ndd/ dev/tcp 32,768 32,768 See "Changing the Data Transfer

Window Size" on page 5-7

Table 5-3 TCP Parameter Settings for Tru64

Default Tuned

Parameter Module value Value Comments
t cbhashsi ze sysconfig -r inet 512 16,384 See "Increasing TCP Connection Table
Access Speed" on page 5-5
t cbhashnum sysconfig -r inet 1 16 (as of
5.0)
tcp_keepalive_ sysconfig -r inet 0 1
def aul t

5-2 Oracle Application Server Performance Guide

TCP Tuning Parameters (for UNIX)

Table 5-3 (Cont.) TCP Parameter Settings for Tru64

Default Tuned
Parameter Module value Value Comments
t cp_sendspace sysconfig -r inet 16,384 65,535
t cp_recvspace sysconfig -r inet 16,384 65,535
somaxconn sysconfig -r socket 1,024 65,535
som nconn sysconfig -r socket 0 65,535
sbconpress_ sysconfig -r socket 0 600
threshol d
Table 5-4 TCP Parameter Settings for AlX

Recommended

Parameter Model Default Value Value Comments
rfcl323 letc/rc.net 0 1
sb_max /etc/rc.net 65536 1,31,072
tcp_nmssdflt /etc/rc.net 512 1,024
i pgmax! en /etc/rc.net 50 100
tcp_sendspace /etc/rc.net 16,384 65,536
tcp_recvspace /etc/rc.net 16,384 65,536
xnt _que_si ze /etc/rc.net 30 150

Tuning Linux

Raising Network Limits on Linux Systems for 2.1.100 or greater

Linux only allows you to use 15 bits of the TCP window field. This means that you

have to multiply everything by 2, or recompile the kernel without this limitation.

See Also:

Tuning a Running System

"Tuning at Compile Time" on page 5-4

There is no sysct | application for changing kernel values. You can change the kernel
values with an editor such as vi .

Tuning the Default and Maximum Size
Edit the following files to change kernel values.

Table 5-5 Linux TCP Parameters

Filename

Details

[proc/ sys/ net/core/ rmem def aul t

[proc/ sys/ net/core/ rmem max

/ proc/ sys/ net/ core/ wrem def aul t

[proc/ sys/ net/ core/ wrem max

Default Receive Window
Maximum Receive Window
Default Send Window

Maximum Send Window

Optimizing Oracle HTTP Server

5-3

TCP Tuning Parameters (for UNIX)

You will find some other possibilities to tune TCP in/ pr oc/ sys/ net /i pvé4/:
= tcp_timestamps

= tcp_windowscaling

« tcp_sack

There is a brief description of TCP parameters in
/ Docurent at i on/ net wor ki ng/ i p-sysctl.txt.

Tuning at Compile Time

All the preceding TCP parameter values are set by default by a header file in the Linux
kernel source directory / LI NUX- SOURCE- DI R/i ncl ude/ | i nux/ skbuff. h

These values are the defaults. This is run time configurable.

ifdef CONFI G_SKB _LARGE
#define SK_ WVEM MAX 65535
#define SK_RVEM MAX 65535
el se

#define SK_ WVEM MAX 32767
#def i ne SK_RVEM MAX 32767
#endi f

You can change the MAX- W NDOWvalue in the Linux kernel source directory in the file
/ LI NUX- SOURCE- DI R/'i ncl ude/ net/tcp. h.

#define MAX_W NDOW 32767
#define M N_W NDOW 2048

Note: Never assign values greater than 32767 to windows,
without using window scaling.

The M N_W NDOWdefinition limits you to using only 15bits of the window field in the
TCP packet header.

For example, if you use a 40kB window, set the r mem_def aul t to 40kB. The stack
will recognize that the value is less than 64 kB, and will not negotiate a winshift. But
due to the second check, you will get only 32 kB. So, you need to set the r mem_

def aul t value at greater than 64 kB to force a winshift=1. This lets you express the
required 40 kB in only 15 bits.

With the tuned TCP stacks, it was possible to get a maximum throughput between 1.5
and 1.8 Mbits through a 2Mbit satellite link, measured with netperf.

Setting TCP Parameters

To set the connection table hash parameter for the Solaris Operating System, you must
add the following line to the / et ¢/ syst emfile, and then restart the system:

set tcp:tcp_conn_hash_size=32768

On Tru64, sett cbhashsi ze in the / et ¢/ sysconf i gt ab file.

A sample script, t cpset . sh, that changes TCP parameters to the settings
recommended here, is included in the $ORACLE HOVE/ Apache/ Apache/ bi n/
directory.

5-4 Oracle Application Server Performance Guide

TCP Tuning Parameters (for UNIX)

Note: If your system is restarted after you run the script, the
default settings will be restored and you will have to run the script
again. To make the settings permanent, enter them in your system
startup file.

Increasing TCP Connection Table Access Speed

If you have a large user population, you should increase the hash size for the TCP
connection table. The hash size is the number of hash buckets used to store the
connection data. If the buckets are very full, it takes more time to find a connection.
Increasing the hash size reduces the connection lookup time, but increases memory
consumption.

Suppose your system performs 100 connections per second. If you sett cp_ti me_
wai t _i nt erval to 60000, then there will be about 6000 entries in your TCP
connection table at any time. Increasing your hash size to 2048 or 4096 will improve
performance significantly.

On a system servicing 300 connections per second, changing the hash size from the
default of 256 to a number close to the number of connection table entries decreases
the average round trip time by up to three to four seconds. The maximum hash size is
262144. Ensure that you increase memory as needed.

To set the t cp_conn_hash_si ze for the Solaris Operating System, add the following
line to the / et ¢/ syst emfile. The parameter will take effect when the system is
restarted.

set tcp:tcp_conn_hash_size=32768

On Trué4, sett cbhashsi ze in the / et ¢/ sysconf i gt ab file.

Specifying Retention Time for Connection Table Entries

As described in the previous section, when a connection is established, the data
associated with it is maintained in the TCP connection table. On a busy system, much
of TCP performance (and by extension web server performance) is governed by the
speed with which the entry for a specific TCP connection can be accessed in the
connection table. The access speed depends on the number of entries in the table, and
on how the table is structured (for example, its hash size). The number of entries in the
table depends both on the rate of incoming requests, and on the lifetime of each
connection.

For each connection, the server maintains the TCP connection table entry for some
period after the connection is closed so it can identify and properly dispose of any
leftover incoming packets from the client. The length of time that a TCP connection
table entry will be maintained after the connection is closed can be controlled with the
tcp_time_wait_interval parameter. The default for the Solaris Operating System
for this parameter is 240,000 ms in accordance with the TCP standard. The four minute
setting on this parameter is intended to prevent congestion on the Internet due to error
packets being sent in response to packets which should be ignored. In practice, 60,000
ms is sufficient, and is considered acceptable. This setting will greatly reduce the
number of entries in the TCP connection table while keeping the connection long
enough to discard most, if not all, leftover packets associated with it. We therefore
suggest you set:

Optimizing Oracle HTTP Server 5-5

TCP Tuning Parameters (for UNIX)

On HP-UX and for Solaris Operating System 2.7 and higher:

[usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

Note: If your user population is widely dispersed with respect to
Internet topology, you may want to set this parameter to a higher
value. You can improve access time to the TCP connection table
with the t cp_conn_hash_si ze parameter.

Increasing the Handshake Queue Length

During the TCP connection handshake, the server, after receiving a request from a
client, sends a reply, and waits to hear back from the client. The client responds to the
server’s message and the handshake is complete. Upon receiving the first request from
the client, the server makes an entry in the listen queue. After the client responds to
the server’s message, it is moved to the queue for messages with completed
handshakes. This is where it will wait until the server has resources to service it.

The maximum length of the queue for incomplete handshakes is governed by t cp_
conn_r eq_max_q0, which by default is 1024. The maximum length of the queue for
requests with completed handshakes is defined by t cp_conn_r eq_max_q, which by
default is 128.

On most web servers, the defaults will be sufficient, but if you have several hundred
concurrent users, these settings may be too low. In that case, connections will be
dropped in the handshake state because the queues are full. You can determine
whether this is a problem on your system by inspecting the values for

t cpLi stenDrop, tcpLi st enDr opQ0, and t cpHal f OpenDr op with net stat -s.
If either of the first two values are nonzero, you should increase the maximums.

The defaults are probably sufficient, but Oracle recommends that you increase the
value of t cp_conn_r eq_max_(d to 1024. You can set these parameters with:

On the Solaris Operating System:

% /usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 1024
% /usr/shin/ndd -set /dev/tcp tcp_conn_req_max_q0 1024

On HP-UX:
pronpt >/ usr/ shi n/ ndd-set /dev/tcp tcp_conn_req_nax 1024

Changing the Data Transmission Rate

TCP implements a slow start data transfer to prevent overloading a busy segment of
the Internet. With slow start, one packet is sent, an acknowledgment is received, then
two packets are sent. The number sent to the server continues to be doubled after each
acknowledgment, until the TCP transfer window limits are reached.

Unfortunately, some operating systems do not immediately acknowledge the receipt of
a single packet during connection initiation. By default, the Solaris Operating System
sends only one packet during connection initiation, per the TCP standard. This can
increase the connection startup time significantly. We therefore recommend increasing
the number of initial packets to two when initiating a data transfer. This can be
accomplished using the following command:

% /usr/sbin/ndd -set /dev/itcp tcp_slowstart_initial 2

5-6 Oracle Application Server Performance Guide

Network Tuning for Windows

Changing the Data Transfer Window Size

The size of the TCP transfer windows for sending and receiving data determine how
much data can be sent without waiting for an acknowledgment. The default window
size is 8192 bytes. Unless your system is memory constrained, these windows should
be increased to the maximum size of 32768. This can speed up large data transfers
significantly. Use these commands to enlarge the window:

On Solaris Operating System:

% /usr/shin/ndd -set /dev/tcp tcp_xmt_hiwat 32768
% [usr/shin/ndd -set /dev/tcp tcp_recv_hiwat 32768

On HP-UX:

pronpt >/ usr/shin/ndd -set /dev/tcp tcp_xmt_hiwater_def 32768
pronpt >/ usr/shin/ndd -set /dev/tcp tcp_recv_hiwater_def 32768

Because the client typically receives the bulk of the data, it would help to enlarge the
TCP receive windows on end users’ systems, as well.

Network Tuning for Windows

On Windows systems, to maximize network performance for the system (after
ensuring that memory is sufficient) you should:

= Run only the TCP/IP protocol on the system

= Use the Maximize Throughput for File Sharing setting for TCP optimization
This section covers the following:

= Network Tuning (for Windows 2000)

= Network Tuning (for Windows 2003)

« Network Tuning (for Windows XP)

Network Tuning (for Windows 2000)

On Windows 2000 systems, to maximize network performance for the system set the
maximize throughput for network applications property. To do this, perform the
following steps:

1. On the Windows 2000 Desktop, right click My Network Places and select
Properties.

2. Right click on Local Area Connection and select Properties.

3. Under Components checked are used by this connection, select File and Printer
Sharing for Microsoft Networks.

4. Click the Properties button and select Maximize data throughput for network
applications.

5. Click OK, and then click OK again.

Network Tuning (for Windows 2003)

On Windows 2000 systems, to maximize network performance for the system set the
maximize throughput for network applications property. To do this, perform the
following steps:

Optimizing Oracle HTTP Server 5-7

Configuring Oracle HTTP Server Directives

1. On the Windows 2000 Desktop, right click My Network Places and select
Properties.

2. Right click on Local Area Connection and select Properties.

3. Under Components checked are used by this connection, select File and Printer
Sharing for Microsoft Networks.

4. Click the Properties button and select Maximize data throughput for network
applications.

5. Click OK, and then click OK again.

Network Tuning (for Windows XP)

On Windows XP systems, to maximize network performance for the system set the
maximize throughput for network applications property. To do this, perform the
following steps:

1. Open Network Connections. To open Network Connections, click Start, click
Control Panel, click Network and Internet Connections, and then click Network
Connections.

2. Right-click a connection, and then click Properties.
3. Do one of the following:

« If this is a local area connection, on the General tab, in Components checked
are used by this connection, click File and Printer Sharing for Microsoft
Networks, and then click Properties.

« If thisis a dial-up, VPN, or incoming connection, on the Networking tab, in
Use these components with this connection, click File and Printer Sharing for
Microsoft Networks, and then click Properties.

4. To dedicate as many resources as possible to file and print server services, click
Maximize data throughput for file sharing.

You can only configure File and Printer Sharing for Microsoft Networks on a server. To
share local folders, you must enable File and Printer Sharing for Microsoft Networks.
The File and Printer Sharing for Microsoft Networks component is the equivalent of
the Server service in Windows NT 4.0.

Configuring Oracle HTTP Server Directives

Oracle HTTP Server uses directives in ht t pd. conf to configure the application
server. This configuration file specifies the maximum number of HTTP requests that
can be processed simultaneously, logging details, and certain timeouts.

Table 5-6 lists directives that may be significant for performance.

5-8 Oracle Application Server Performance Guide

Configuring Oracle HTTP Server Directives

Table 5-6 Oracle HTTP Server Configuration Properties

Directive Description

Li st enBackLog Specifies the maximum length of the queue of pending connections. Generally no
tuning is needed or desired. Note that some Operating Systems do not use exactly
what is specified as the backlog, but use a number based on, but normally larger than,
what is set.

Default Value: 511

MaxCl i ents Specifies a limit on the total number of servers running, that is, a limit on the number
of clients who can simultaneously connect. If the number of client connections reaches
this limit, then subsequent requests are queued in the TCP/IP system up to the limit
specified with the Li st enBackLog directive (after the queue of pending connections
is full, new requests generate connection errors until a process becomes available).

The maximum allowed value for Maxd i ent s is 8192 (8K).
Default Value: 150

MaxRequest sPer Chil d The number of requests each child process is allowed to process before the child dies.
The child will exit so as to avoid problems after prolonged use when Apache (and
maybe the libraries it uses) leak memory or other resources. On most systems, this
isn't really needed, but some UNIX systems have notable leaks in the libraries. For
these platforms, set MaxRequest sPer Chi | d to something like 10000 or so; a setting
of 0 means unlimited.

This value does not include KeepAl i ve requests after the initial request per
connection. For example, if a child process handles an initial request and 10
subsequent "keep alive" requests, it would only count as 1 request toward this limit.

Note: On Windows systems MaxRequest sPer Chi | d should always be set to 0
(unlimited). On Windows there is only one server process, so it is not a good idea to
limit this process.

MaxSpar eSer ver s Server-pool size regulation. Rather than making you guess how many server
processes you need, Oracle HTTP Server dynamically adapts to the load it sees, that
is, it tries to maintain enough server processes to handle the current load, plus a few
spare servers to handle transient load spikes (for example, multiple simultaneous
requests from a single Netscape browser).

M nSpar eServers

It does this by periodically checking how many servers are waiting for a request. If
there are fewer than M nSpar eSer ver s, it creates a new spare. If there are more
than MaxSpar eSer ver s, some of the spares die off.

The default values are probably ok for most sites.
Default Values:

MaxSpar eSer ver s: 10

M nSpar eServers:5

Start Servers Number of servers to start initially. If you expect a sudden load after restart, set this
value based on the number child servers required.

Default Value: 5

Ti meout The number of seconds before incoming receives and outgoing sends time out.
Default Value: 300

Optimizing Oracle HTTP Server 5-9

Configuring Oracle HTTP Server Directives

Table 5-6 (Cont.) Oracle HTTP Server Configuration Properties

Directive

Description

KeepAl i ve

Whether or not to allow persistent connections (more than one request per
connection). Set to O f to deactivate.

Default Value: On

MaxKeepAl i veRequest s The maximum number of requests to allow during a persistent connection. Set to 0 to

allow an unlimited amount.
If you have long client sessions, you might want to increase this value.
Default Value: 100

KeepAl i veTi meout Number of seconds to wait for the next request from the same client on the same

connection.

Default Value: 15 seconds

Configuring the MaxClients Directive

The MaxC i ent s directive limits the number of clients that can simultaneously
connect to your web server, and thus the number of httpd processes. You can configure
this parameter in the ht t pd. conf file up to a maximum of 8K (the default value is
150).

Tests on a previous release, with static page requests (average size 20K) on a 2
processor, system showed that:

= The default MaxCl i ent s setting of 150 was sufficient to saturate the network.

= Approximately 60 httpd processes were required to support 300 concurrent users
(no think time).

On the system described, and on 4 and 6-processor systems, there was no significant
performance improvement in increasing the Maxd i ent s setting from 150 to 256,
based on static page and servlet tests with up to 1000 users.

Increasing MaxCl i ent s when system resources are saturated does not improve
performance. When there are no httpd processes available, connection requests are
queued in the TCP/IP system until a process becomes available, and eventually clients
terminate connections. If you are using persistent connections, you may require more
concurrent httpd server processes.

For dynamic requests, if the system is heavily loaded, it might be better to allow the
requests to queue in the network (thereby keeping the load on the system
manageable). The question for the system administrator is whether a timeout error
and retry is better than a long response time. In this case, the Maxd i ent s setting
could be reduced, as a throttle on the number of concurrent requests on the server.

The MaxC i ent s parameter on UNIX systems works like the Thr eadsPer Chi | d

parameter on Windows systems.

See Also: "Configuring the ThreadsPerChild Parameter (for
Windows)" on page 5-11

How Persistent Connections Can Reduce httpd Process Availability

The default settings for the KeepAl i ve directives are:

KeepAlive on
MaxKeepAl i veRequest's 100
KeepAl i veTi meQut 15

5-10 Oracle Application Server Performance Guide

Oracle HTTP Server Logging Options

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks. You
should consider the size and behavior of your own user population in setting these
values on your system. For example, if you have a large user population and the users
make small infrequent requests, you may want to reduce the keepAl i ve directive
default settings, or even set KeepAl i ve to off. If you have a small population of users
that return to your site frequently, you may want to increase the settings.

Configuring the ThreadsPerChild Parameter (for Windows)

The Thr eadsPer Chi | d parameter in the ht t pd. conf file specifies the number of
requests that can be handled concurrently by the HTTP server. Requests in excess of
the Thr eadsPer Chi | d parameter value wait in the TCP/IP queue. Allowing the
requests to wait in the TCP/IP queue often results in the best response time and
throughput.

The Thr eadsPer Chi | d parameter on Windows systems works like the MaxC i ent s
parameter on UNIX systems.

See Also: "Configuring the MaxClients Directive" on page 5-10

Configuring ThreadsPerChild for Static Page Requests

The more concurrent threads you make available to handle requests, the more requests
your server can process. But be aware that with too many threads, under high load,
requests will be handled more slowly and the server will consume more system
resources.

In in-house tests of static page requests, a setting of 20 Thr eadsPer Chi | d per CPU
produced good response time and throughput results. For example, if you have four
CPUs, set Thr eadsPer Chi | d to 80. If, with this setting, CPU utilization does not
exceed 85%, you can increase Thr eadsPer Chi | d, but ensure that the available
threads are in use.

Oracle HTTP Server Logging Options

This section discusses types of logging, log levels, and the performance implications
for using logging.

Access Logging

For static page requests, access logging of the default fields results in a 2-3%
performance cost.

Configuring the HostNameLookups Directive

By default, the Host NameLookups directive is set to OF f . The server writes the IP
addresses of incoming requests to the log files. When Host NameLookups is set to on,
the server queries the DNS system on the Internet to find the host name associated
with the IP address of each request, then writes the host names to the log.

Performance degraded by about 3% (best case) in Oracle in-house tests with

Host NaneLookups set to on. Depending on the server load and the network
connectivity to your DNS server, the performance cost of the DNS lookup could be
high. Unless you really need to have host names in your logs in real time, it is best to
log IP addresses.

Optimizing Oracle HTTP Server 5-11

Oracle HTTP Server Security Performance Considerations

Error logging

On UNIX systems, you can resolve IP addresses to host names off-line, with the
| ogr esol ve utility found in the $ORACLE_HOVE/ Apache/ Apache/ bi n/ directory.

The server notes unusual activity in an error log. The Er r or Log and LogLevel
directives identify the log file and the level of detail of the messages recorded. The
default level is war n. There was no difference in static page performance on a loaded
system between the war n, i nf 0, and debug levels.

For requests that use dynamic resources, for example requests that use nod_osso,
mod_pl sql , or nod_oc4j , there is a performance cost associated with setting higher
debugging levels, such as the debug level.

Oracle HTTP Server Security Performance Considerations

This section covers the following topics:
= Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues

= Oracle HTTP Server Port Tunneling Performance Issues

Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues

Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the
Internet. Conceptually, SSL resides between the application layer and the transport
layer on the protocol stack. While SSL is technically an application-independent
protocol, it has become a standard for providing security over HTTP, and all major
web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a
web-based application. Where SSL is required, the performance challenges of the
protocol should be carefully considered. Session management, in particular session
creation and initialization, is generally the most costly part of using the SSL protocol,
in terms of performance.

This section covers the following SSL Performance related information:
= Oracle HTTP Server SSL Caching
= SSL Application Level Data Encryption

=« SSL Performance Recommendations

See Also: Oracle Application Server Security Guide

Oracle HTTP Server SSL Caching

When an SSL connection is initialized, a session based handshake between client and
server occurs that involves the negotiation of a cipher suite, the exchange of a private
key for data encryption, and server and, optionally, client authentication through
digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server
can avoid the session creation handshake in subsequent SSL requests by saving and
reusing the session state. The Oracle HTTP Server caches a client’s Secure Sockets
Layer (SSL) session information by default. With session caching, only the first
connection to the server incurs high latency.

5-12 Oracle Application Server Performance Guide

Oracle HTTP Server Security Performance Considerations

The SSLSessi onCacheTi meout directive in ht t pd. conf determines how long the
server keeps a saved SSL session (the default is 300 seconds). Session state is
discarded if it is not used after the specified time period, and any subsequent SSL
request must establish a new SSL session and begin the handshake again. The
SSLSessi onCache directive specifies the location for saved SSL session information,
the default location on UNIX is the $ORACLE_HOVE/ Apache/ Apache/ | ogs/
directory or on Windows systems, %0RACLE_HOVE% Apache\ Apache\ | ogs\.
Multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server,
the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session
state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when using HTTP
persistent connections. Oracle HTTP Server uses persistent HI'TP connections by
default, assuming they are supported on the client side. In HTTP over SSL as
implemented by Oracle HTTP Server, SSL session state is kept in memory while the
associated HTTP connection is persisted, a process which essentially eliminates the
overhead of SSL session reuse (conceptually, the SSL connection is kept open along
with the HTTP connection).

SSL Application Level Data Encryption

In most applications using SSL, the data encryption cost is small compared with the
cost of SSL session management. Encryption costs can be significant where the volume
of encrypted data is large, and in such cases the data encryption algorithm and key
size chosen for an SSL session can be significant.

In general there is a trade-off between security level and performance. For example, on
a modern processor, RSA estimates its RC4 cipher to take in the vicinity of 8-16
machine operations per output byte. Standard DES encryption will incur roughly 8
times the overhead of RC4, and triple DES will take about 25 times the overhead of
DES. However, when using triple DES, the encryption costs will not be noticeable in
most applications. Oracle HTTP Server supports these three cipher suites, and other
cipher suites as well.

Oracle HTTP Server negotiates a cipher suite with a client based on the
SSLCi pher Sui t e attribute specified in ht t pd. conf .

See Also: Oracle HTTP Server Administrator’s Guide for
information on using supported cipher suites

SSL Performance Recommendations

The following recommendations can assist you with determining performance
requirements when working with Oracle HTTP Server and SSL.

1. The SSL handshake is an inherently expensive process in terms of both CPU usage
and response time. Thus, use SSL only where needed. Determine the parts of the
application that require the security, and the level of security required, and protect
only those parts at the requisite security level. Attempt to minimize the need for
the SSL handshake by using SSL sparingly, and by reusing session state as much
as possible. For example, if a page contains a small amount of sensitive data and a
number of non-sensitive graphic images, use SSL to transfer the sensitive data
only, use normal HTTP to transfer the images. If the application requires server
authentication only, do not use client authentication. If the performance goals of

Optimizing Oracle HTTP Server 5-13

Oracle HTTP Server Security Performance Considerations

an application cannot be met by this method alone, additional hardware may be
required.

2. Design the application to use SSL efficiently. Group secure operations together to
take advantage of SSL session reuse and SSL connection reuse.

3. Use persistent connections, if possible, to minimize cost of SSL session reuse.

4. Tune the session cache timeout value (the SSLSessi onCacheTi nmeout attribute
in ht t pd. conf). A trade-off exists between the cost of maintaining an SSL session
cache and the cost of establishing a new SSL session. As a rule, any secured
business process, or conceptual grouping of SSL exchanges, should be completed
without incurring session creation more than once. The default value for the
SSLSessi onCacheTi meout attribute is 300 seconds. It is a good idea to test an
application’s usability to help tune this setting.

5. Iflarge volumes of data are being protected through SSL, pay close attention to the
cipher suite being used. The SSLCi pher Sui t e directive specified in
ht t pd. conf controls the cipher suite. If lower levels of security are acceptable,
use a less-secure protocol using a smaller key size (this may improve performance
significantly). Finally, test the application using each available cipher suite for the
desired security level to find the most performant suite.

6. Having taken the preceding considerations into account, if SSL remains a
bottleneck to the performance and scalability of your application, consider
deploying multiple Oracle HTTP Server instances over a hardware cluster or
consider the use of SSL accelerator cards.

Oracle HTTP Server Port Tunneling Performance Issues

When OracleAS Port Tunneling is configured, every request processed passes through
the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can
have an impact on the overall Oracle HI'TP Server request handling performance and
scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the
performance of OracleAS Port Tunneling is self tuning. The only performance control
available is to start more OracleAS Port Tunneling processes, this increases the number
of available connections and hence the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of
availability required, and the number of anticipated connections. This number can not
be automatically determined because for each additional process a new port must be
opened through the firewall between the DMZ and the intranet. You cannot start more
processes than you have open ports, and you do not want less processes than open
ports, since in this case ports would not have any process bound to them.

To measure the iasPT performance, determine the request time for servlet requests that
pass through the OracleAS Port Tunneling infrastructure. The response time of an
Oracle Application Server instance running with OracleAS Port Tunneling should be
compared with a system without OracleAS Port Tunneling to determine whether your
performance requirements can be met using OracleAS Port Tunneling.

See Also: Oracle HT'TP Server Administrator’s Guide for
information on configuring OracleAS Port Tunneling

5-14 Oracle Application Server Performance Guide

Oracle HTTP Server Performance Tips

Oracle HTTP Server Performance Tips

The following tips can enable you to avoid or debug potential Oracle HTTP Server
(OHS) performance problems:

= Analyze Static Versus Dynamic Requests
= Analyze Time Differences Between Oracle HTTP Server and OC4] Servers
= Beware of a Single Data Point Yielding Misleading Results

Analyze Static Versus Dynamic Requests

It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of the incoming
requests are static and what percentage are dynamic.

Static pages can be cached by Oracle Application Server Web Cache, if it is in use.
Generally, you want to concentrate your tuning effort on dynamic pages because
dynamic pages can be costly to generate. Also, by monitoring and tuning your
application, you may find that much of the dynamically generated content, such as
catalog data, can be cached, sparing significant resource usage.

See Also:
» Chapter 3, "Monitoring Oracle HTTP Server"
= Chapter 7, "Optimizing OracleAS Web Cache"

Analyze Time Differences Between Oracle HTTP Server and OC4J Servers

In some cases, you may notice a high discrepancy between the average time to process
a request in Oracle Application Server Containers for J2EE (OC4]) and the average
response time experienced by the user. If the time is not being spent actually doing the
work in OC4J, then it is probably being spent in transport.

If you notice a large discrepancy between the request processing time in OC4J and the
average response time, consider tuning the Oracle HTTP Server directives shown in
the section, "Configuring Oracle HTTP Server Directives" on page 5-8.

Beware of a Single Data Point Yielding Misleading Results

You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello,
World" application for about 30 seconds. Examining the results, you can see that the
work was all done in nod_pl sql . c:

/ ohs_server/ohs_modul e/ nod_pl sgl . ¢

handl e. maxTi ne: 859330
handl e. m nTi ne: 17099
handl e. avg: 19531
handl e. acti ve: 0
handl e. ti ne: 24023499
handl e. conpl et ed: 1230

Note that handl e. maxTi me is much higher than handl e. avg for this module. This
is probably because when the first request is received, a database connection must be
opened. Later requests can make use of the established connection. In this case, to

Optimizing Oracle HTTP Server 5-15

Setting mod_oc4j Load Balancing Policies

obtain a better estimate of the average service time for a PL/SQL module, that does
not include the database connection open time which causes the hand| e. maxTi e to
be very large, recalculate the average as in the following:

(time - maxTinme)/(conpleted -1)

For example, in this case this would be:

(24023499 - 859330)/(1230 -1) = 18847.98

Setting mod_oc4j Load Balancing Policies

At many sites Oracle Application Server uses the Oracle HI'TP Server module nod_
oc4j toload balance incoming stateless HI'TP requests. By selecting the appropriate
load balancing policy for nod_oc4j you can improve performance on your site.

The nod_oc4j module supports several configurable load balancing policies,
including the following:

= Round robin routing (this is the default nod_oc4j load balancing policy)
= Random routing
= Round robin or random with local affinity routing, using the | ocal option

= Round robin or random with host-level weighted routing, using the wei ght ed
option

Note: For a session based request mod_oc4j always directs the
request to the original OC4] process which created the session,
unless the original OC4]J process is not available. In case of failure,
nmod_oc4j sends the request to another OC4J process with the
same island name as the original request (either within same host if
available, or on a remote host).

This section covers the following topics:

= Quick Summary for Using Load Balancing With mod_oc4;

= Using Round Robin and Random Policies With mod_oc4j Load Balancing
= Using Local Affinity Option With mod_oc4j Load Balancing

= Using Weighted Routing Option With mod_oc4j Load Balancing

= Recommendations for Load Balancing With mod_oc4j

5-16 Oracle Application Server Performance Guide

Setting mod_oc4j Load Balancing Policies

Quick Summary for Using Load Balancing With mod_oc4j

This section provides a quick summary of the load balancing configuration you may
want to use when configuring mod_oc4j for Oracle Application Server:

= When Oracle Application Server runs in a single host with one or more OC4]J
Instances, we recommend using either the round robin or random load balancing
policy. The performance characteristics for the particular policy can depend on the
applications that run on your site; however, in many cases these two policies will
yield similar performance.

= When Oracle Application Server is configured at a site that uses multiple hosts
with the same hardware and Oracle Application Server configurations, we
recommend using either round robin with the local affinity option or random with
the local affinity option.

= When Oracle Application Server is configured at a site that uses multiple hosts
with different hardware and different Oracle Application Server configurations,
we recommend using either round robin with the weighted option or random
with the weighted option. For sites where it is difficult to determine how much
load each host can handle, and it is difficult to assign an accurate routing weight,
you may want to use either round robin with the local affinity option or random
with the local affinity option.

See Also: Oracle HTTP Server Administrator’s Guide for a
description of mod_oc4j configuration options

Using Round Robin and Random Policies With mod_oc4j Load Balancing

Using round robin routing or random routing, without the | ocal or wei ght ed
options, specifies that mbd_oc4j creates a list of all the available OC4] processes
across all hosts. For incoming requests, mod_oc4j routes the requests using the list of
available OC4]J processes, either selecting processes from the list randomly, or using a
round robin selection policy (with the round robin, the first request is selected
randomly, and requests after that are selected using the round robin policy.

If you use either of these load balancing policies, you need to consider the number of
OC4J processes that you run on each host. Without specifying the weighted routing
option for nbd_oc4j , if you configure your site to start different numbers of OC4]
processes on each host, this causes an implicit weighting to occur where more requests
are sent to hosts with more OC4]J processes. If this implicit weighting of requests by
the number of OC4]J processes per host is not what you want, then you should
consider specifying a routing weight for each host and using the weighted option.

Note: In many cases the round robin and random policies will
yield similar performance.

For example, if you use the default round robin load balancing policy and you start 4
OC4] processes on Host _A and 1 OC4J process on Host _B, then nbd_oc4j sends 4
requests to Host _A for each 1 request that it sends to Host _B. Thus, with this
configuration you are implicitly sending 4 times as many requests to Host _A.

See Also: "Using Weighted Routing Option With mod_oc4j Load
Balancing" on page 5-18

Optimizing Oracle HTTP Server 5-17

Setting mod_oc4j Load Balancing Policies

Using Local Affinity Option With mod_oc4j Load Balancing

Selecting the local affinity option tells nbd_oc4j to always try to select the local OC4J
instance to service incoming requests. When no local OC4]J processes are available,
nod_oc4j selects from a list of available remote OC4]J processes. You can select either
the round robin or the random policies with the local affinity option.

For example to select the round robin policy with local affinity, specify the following
directive in nod_oc4j . conf:

Qc4j Sel ect Met hod roundr obi n: | ocal

Using Weighted Routing Option With mod_oc4j Load Balancing

Selecting the weighted routing option specifies that mod_oc4j should distribute
HTTP requests across the available hosts and use a specified routing weight to
calculate the distribution of incoming requests that are sent to each host. The routing
weight is specified with the Oc4j Rout i ngWei ght directive. You can specify either
the round robin or the random policies with the weighted option.

For example, if the routing weight set for Host _Ais 3 and the routing weight set for
Host _Bis 1, this specifies that Host _A should be sent three times the number of
requests as compared to Host _B.

Note: Using weighted routing, incoming requests are routed
according the specified routing weight and without consideration
for the number of OC4] processes running on each host.

To configure the mod_oc4j module in Oracle HTTP Server to specify round robin
with a routing weight of 3 for Host _A and a routing weight of 1 for Host _B, add the
following directives to nod_oc4j . conf:

QOc4j Sel ect Method roundr obi n: wei ght ed
Cc4j Routi ng\Wei ght Host _A 3

In this example you do not need to specify a routing weight for Host _B, since the
default routing weight is 1.

You need to determine the routing weight for each system based on what other
components are running on the systems and based on how many requests each system
can adequately handle.

Note: An inaccurate specification for the routing weight could
have negative performance implications for your site.

Recommendations for Load Balancing With mod_oc4j

In general, when configuring the mod_oc4j load balancing policy, we recommend the
following:

1. If you have multiple systems with similar hardware configuration use round robin
with local affinity or random load balancing policy with local affinity.

For example, if you have multiple hosts with the same number of CPUs with same
speed, and the same memory, with Oracle HTTP Server running with the same
number of OC4]J processes on each host, and you are using a hardware load
balancer or web cache in the front end to route the requests to Oracle HTTP Server

5-18 Oracle Application Server Performance Guide

Setting mod_oc4j Load Balancing Policies

on each host, then, using either round robin with local affinity or random with
local affinity is recommended.

If you have multiple systems, each with a similar hardware configuration, and you
want to run Oracle HTTP Server only on one host, then select either the round
robin with the weighted option or random with the weighted option.

For example, consider a site with 2 hosts, Host _A and Host _B, each with 2 CPUs.
On this site you only run Oracle HTTP Server on Host _A, and each host includes
one OC4J instance with one OC4] process. With this configuration, selecting round
robin with the weighted option or random with the weighted option, and using a
higher routing weight on Host _B will help to shift more requests to Host _B.
Since Host_B is not running Oracle HTTP Server this configuration should provide
better performance for this site.

If you are running Oracle HTTP Server on a separate system which routes the
HTTP web requests to multiple hosts running only OC4J and the systems use
similar hardware with the same number of OC4] processes, then use round robin
or random load balancing policy.

If you are running Oracle HTTP Server, OC4J and other Oracle Application Server
components on multiple systems which have different hardware configurations,
use round robin with the weighted option or random with the weighted option to
help distribute requests to each system.

You need to determine the routing weight for each system based on what other
components are running on the systems and based on how many requests each
system can adequately handle.

Optimizing Oracle HTTP Server 5-19

Setting mod_oc4j Load Balancing Policies

5-20 Oracle Application Server Performance Guide

6

Optimizing J2EE Applications In OC4J

This chapter provides guidelines for improving the performance of Oracle Application
Server Containers for J2EE (OC4]J) applications in Oracle Application Server.

This chapter contains:

= OC4] J2EE Application Performance Quickstart

= Improving J2EE Application Performance by Configuring OC4] Instance
« Setting Java Command Line Options (Using JVM and OC4] Performance Options)
= Setting Up Data Sources — Performance Issues

= Setting server.xml Configuration Parameters

« Improving Servlet Performance in Oracle Application Server

« Improving JSP Performance in Oracle Application Server

« Improving EJB Performance in Oracle Application Server

= Improving Web Services Performance in Oracle Application Server

« Improving ADF Performance in Oracle Application Server

« Improving JAAS (JAZN) Performance in Oracle Application Server

= Using Multiple OC4Js, Limiting Connections and Load Balancing

« Performance Considerations for Deploying J2EE Applications

Note: This chapter describes using Oracle Enterprise Manager 10g
Application Server Control Console for setting OC4J and
application configuration options. You can also use the Distributed
Configuration Management (DCM) utility, dcnct |, to set
configuration options. This utility provides a command-line
alternative to using Oracle Enterprise Manager 10g Application
Server Control Console for some Oracle Application Server
configuration and management tasks.

Optimizing J2EE Applications In OC4J 6-1

0C4J J2EE Application Performance Quickstart

0C4J J2EE Application Performance Quickstart

This section provides a quickstart for tuning J2EE applications that run on OC4J,
providing links for information on important performance issues.

Table 6-1 lists a quick guide for performance issues for J2EE applications.

Table 6-1 Critical Performance Areas for J2EE Applications

Performance Area Description and Reference

Providing Adequate Memory Resources To improve the performance of your J2EE applications,
provide adequate memory resources. If the OC4] running your
J2EE applications does not have enough memory, performance
can suffer due to the overhead required to manage limited
memory

See "Setting the JVM Heap Size for OC4] Processes" on
page 6-3

Caching and Reusing Database Connections Setting up database connection pooling properly is often a
critical performance consideration for J2EE applications that
access a database. Data sources provide configuration options
that allow you to use and configure pooled database
connections.

See "Setting Up Data Sources — Performance Issues" on

page 6-10
Managing Concurrency and Limiting Connections See "Limiting Connections” on page 6-53
Load Balancing See "Configuring Multiple OC4] Processes" on page 6-50
Balancing Applications See "Load Balancing Applications" on page 6-51
Database Monitoring and Tuning See C?gl:iter 10, "Database Tuning Considerations" on
page 1\~

Improving J2EE Application Performance by Configuring OC4J Instance

Tuning OC4] configuration options lets you improve the performance of J2EE
applications running on an OC4J Instance. Modifying the configuration may require
balancing the available resources on your system with the performance requirements
for your applications.

This section covers configuration changes that can affect J2EE application performance
and includes the following topics:

= Setting Java Command Line Options (Using JVM and OC4] Performance Options)
= Setting Up Data Sources — Performance Issues

= Setting server.xml Configuration Parameters

6-2 Oracle Application Server Performance Guide

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Setting Java Command Line Options (Using JVM and OC4J Performance

Options)

Depending on your J2EE application, you may be able to improve the application’s
performance by setting Java Performance Options for the JVM running OC4J where
your application is deployed.

This section covers the following topics:

« Setting the JVM Heap Size for OC4] Processes

= Setting the JVM Server Option for OC4J Processes

= Setting the JVM AggressiveHeap Option for OC4J Processes

= Setting the JVM Stack Size Option for OC4]J Processes

= Setting the JVM Permanent Generation Option for OC4J Processes
« Setting the JVM Thread Synchronization Option for OC4J Processes
= Setting the OC4J DMS Sensors Option

« Setting the OC4] JDBC DMS Statement Metrics Option

= Setting the OC4] Dedicated RMI Context Option

= Setting the OC4J Define Column Type Option

= Using Application Server Control Console to Change JVM Command Line
Options

When running Oracle Application Server, the module nod_oc4j is the connector from
Oracle HTTP Server to one or more OC4J Instances. Each OC4]J process within an OC4]
Instance runs in its own Java Virtual Machine (JVM) and is responsible for parsing
J2EE requests and generating a response. When a request comes into Oracle HTTP
Server, mod_oc4j picks an OC4J process and routes the request to the selected OC4]
process. Within each OC4] Instance all of the OC4] JVM processes use the same
configuration and start with the same Java options. Likewise, unless a process dies or
there is some other problem, each OC4] process that is part of an OC4] Instance has the
same]2EE applications deployed to it.

See Also: "Using Application Server Control Console to Change
JVM Command Line Options" on page 6-9

Setting the JVM Heap Size for OC4J Processes

If you have sufficient memory available on your system and your application is
memory intensive, you can improve your application performance by increasing the
JVM heap size from the default value. While the amount of heap size required varies
based on the application and on the amount of memory available, for most OC4]J
server applications, a heap size of at least 256 Megabytes is advised. If you have
sufficient memory, using a heap size of 512 Megabytes or larger is preferable.

To change the size of the heap allocated to the OC4] processes in an OC4]J Instance, use
the procedures outlined in "Using Application Server Control Console to Change JVM
Command Line Options" on page 6-9, and specify the following Java options:

- Xmssi zem - Xnxsi zem

Where size is the desired Java heap size in megabytes.

Optimizing J2EE Applications In OC4J 6-3

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

If you know that your application will consistently require a larger amount of heap,
you can improve performance by setting the minimum heap size equal to the
maximum heap size, by setting the JVM - X5 size to be the same as the - Xnx size.

For example, to specify a heap size of 512 megabytes, specify the following:
- Xns512m - Xmx512m

You should set your maximum Java heap size so that the total memory consumed by
all of the JVMs running on the system does not exceed the memory capacity of your
system. If you select a value for the Java heap size that is too large for your hardware
configuration, one or more of the OC4] processes within the OC4] Instance may not
start, and Oracle Enterprise Manager 10g Application Server Control Console reports
an error. Review the log files for the OC4] Instance in the directory $ORACLE_

HOVE/ opmm/ | ogs, to find the error report:

Coul d not reserve enough space for object heap
Error occurred during initialization of VM

If you select a value for the JVM heap size that is too small, none of the OC4] processes
will be able to start, and Application Server Control Console reports an error. If you
review the log files for the OC4] Instance in the directory $ORACLE_

HOVE/ opmm/ | 0gs, you may find errors similar to the following:

java. | ang. Qut O Menor yError

Note: There are other reasons why j ava.lang.OutOfMemoryError
error may occur. For example, if the application has a memory leak.

If the system runs out of memory, the OC4J process will shut down. This will happen
if references to the objects are not released. For example, if objects are stored in a hash
table or vector and never again removed.

It is of course possible that your process actually needs to use a lot of memory. In this
case, the maximum heap size for the process should be increased to avoid frequent
garbage collection.

To maximize performance, set the maximum heap size to accommodate application
requirements. To determine how much Java heap you need, use the JVM metrics
freeMenory and t ot al Menor y. Subtracting the free memory from total memory
gives the amount of heap that was consumed. To determine how much Java heap you
need in a non-production environment, you can include calls in your program to the
Runti ne. get Runti ne().total Menory() and

Runti me. get Runti me() . f r eeMenor y methods in the j ava. | ang package
(including these calls in a production environment could have a negative performance
impact).

See Also:
= Table A-9, " JVM Metrics (JVM)" on page A-5
= You can find detailed information about JVM options and their

impact on performance on the JVM vendor’s Web sites

Setting the JVM Server Option for OC4J Processes

Oracle Application Server 10g uses the - ser ver by default on UNIX systems (this is a
change from previous Oracle9iAS releases). On UNIX systems, Java runs in one of two

6-4 Oracle Application Server Performance Guide

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

modes set with the options: - ¢l i ent and - ser ver . If you need to change this option,
use the procedures outlined in "Using Application Server Control Console to Change
JVM Command Line Options" on page 6-9, and specify the - cl i ent Java option.

Oracle Application Server 10g uses the 1.4.2 version of the Java virtual machine (JVM).
This JVM version includes an improved JIT compiler from previous JVM releases.
Many long-running applications will perform better with the improved JIT. However,
due to the increased quality of compilation, applications may experience slower
program startup times or occasional pauses in other parts of a program (as compared
with older versions of the JVM). In a multi-processor system, the compilation thread
runs concurrently with OC4Jstartup, reducing the impact on startup time.

On UNIX systems, using the —ser ver option also changes the default heap allocation.
For a given heap size, larger allocations are made to the Eden and Survivor
generations at the expense of the Old generation. The Permanent generation is not
affected. The memory footprint of the heap is not directly affected. See the following
site for more details on heap sizes, names, and garbage collection,

http://devel opers. sun. conitechtopi cs/ nobility/ mdp/articles/garbagecol | ection2/

Note: The-server option or the —cl i ent option, when used,
must be specified first before all other Java options.

Setting the JVM AggressiveHeap Option for OC4J Processes

In the 1.4.2 version of the Java virtual machine (JVM), the - XX: +Aggr essi veHeap
option was optimized for long-running, memory allocation-intensive applications.
Many applications will exhibit dramatically improved performance and scalability if
the - XX: +Aggr essi veHeap option is specified. To set this option, use the procedures
outlined in "Using Application Server Control Console to Change JVM Command Line
Options" on page 6-9.

See the following site for more details on using the - XX: +Aggr essi veHeap option,
http://java.sun.conlj2se/ 1. 4.2/ 1. 4.2 whitepaper.htnl #6

Note: If you are running 32 bit Linux with kernel version 2.4.x on
systems with large amounts of RAM, using the

- XX: +Aggr essi veHeap option may cause the JVM to produce a
startup error, "Could not reserve enough space for object heap". The
2.4.x Linux kernel limits the size of a single process to between 2 and
2.5 GB, depending on the kernel version. Use the JVM option

- Xmx <heapSize> to keep the JVM process size under this limit. For
example, set the - Xmx1800Moption to avoid hitting the Linux process
size limitation.

Setting the JVM Stack Size Option for OC4J Processes

Depending on the particular J2EE application, changing the setting of the command
line option - Xss for the JVM running OC4] may improve performance. To set this
option, use the procedures outlined in "Using Application Server Control Console to
Change JVM Command Line Options" on page 6-9, and specify the - Xss Java option.

This option sets the maximum stack size for C code in a thread to n. Every thread that
is spawned during the execution of the program passed to java has n as its C code
stack size. The default C code stack size is 512 kilobytes (- Xss512k). A value of 64
kilobytes is the smallest amount of C code stack space allowed per thread.

Optimizing J2EE Applications In OC4J 6-5

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Oracle recommends that you try the following value to improve the performance of
your J2EE applications:

- Xss128k

Setting the JVM Thread Synchronization Option for OC4J Processes

In the 1.4.x version of the JVM for the Solaris Operating System 2.8, many-to-many
LWP (lightweight process) synchronization is the default thread model. With JDK 1.4
and Solaris Operating System 2.8, using the one-to-one alternate thread library may
give you some performance improvement (set the LD LI BRARY_

PATH=/ usr /| i b/ LWP to use this for the Solaris Operating System 2.8). With the
Solaris Operating System 2.9, this is the default thread library.

See the following site for more information,

http://java. sun. conf docs/ hot spot/threads/threads. htm

It is important to compare results with the various threading options, to select the
appropriate one for your applications. For more information, see the following site,

http://java. sun. conf docs/ hot spot/ Per f or manceFAQ ht ni

Setting the JVM Permanent Generation Option for OC4J Processes

The MaxPer ni ze option defines the size for the permanent generation in the JDK.
Since the default value is 64M (Megabytes) in JDK 1.4.x, generally you do not need to
change this value, which is used to hold reflective objects of the VM such as class
objects and method objects. However, if your applications dynamically generate and
load many classes that require a large permanent generation size, you may see

out O Menor y errors from the JDK even if you have plenty of free memory in the
heap (we found this occurs in some JSP implementations). If this occurs, you can
change the permanent generation size by setting the - XX: MaxPer ni ze option, as
follows:

- XX: MaxPer ni ze=si zem

Where size is the desired MaxPer nSi ze value.

Setting the OC4J DMS Sensors Option

You can disable the collection of most OC4] built-in performance metrics by setting a
property for the JVM running OC4]J. The default value for the property

or acl e. dns. sensor s is nor nal , which enables the collection of built-in
performance metrics. You can disable OC4J built-in performance metrics collection by
setting the or acl e. dns. sensor s property to the value none. For most J2EE
applications, using the default value, nor mal , should have minimal impact on
performance.

Note: Setting or acl e. dis. sensor s value to none causes
Oracle Enterprise Manager 10g Application Server Control Console
to report "unavailable" for some values that are based on DMS
metrics.

Table 6-2 lists the supported or acl e. dis. sensor s property values.

6-6 Oracle Application Server Performance Guide

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Table 6-2 DMS Sensor oracle.dms.sensors Property Supported Values

Property Value Description
none Disable DMS gathering metrics.
nor mal Enable normal level DMS metrics.

This is the default value.
heavy Enable heavy DMS metrics.
al | Enable all DMS metrics.

Note: Prior to Oracle Application Server 10g, Oracle Application
Server used the property or acl e. dirs. gat e to enable DMS
metrics. Setting this as follows, or acl e. dns. gat e=f al se is this
equivalent to setting or acl e. dims. sensor s=none.

Setting or acl e. dirs. gat e=t r ue is equivalent to setting
oracl e. dns. sensor s=nor nal .

Using or acl e. dirs. gat e is deprecated in Oracle Application
Server 10g. This property may not be supported in upcoming
releases.

Some Oracle Application Server components that run in OC4J do not use the

or acl e. dnms. sensor s property to control their DMS metrics. For example, the
Portal PPE web. xm specified configuration parameter dnsLoggi ng controls DMS
metric collection for the Portal PPE.

The JDBC drivers also do not use the or acl e. dirs. sensor s property to control
certain JDBC metrics. To enable the collection of JDBC statement metrics, use the
properties, or acl e. j dbc. DMSSt at erent Cachi ngMet ri ¢s and

oracl e. jdbc. DVMSSt at enent Metri cs.

See Also:
= "Setting the OC4] JDBC DMS Statement Metrics Option" on
page 6-7

« "Conditional Instrumentation Using DMS Sensor Weight" on
page 9-15

= Appendix D, "Configuring the Parallel Page Engine" in Oracle
Application Server Portal Configuration Guide

Setting the OC4J JDBC DMS Statement Metrics Option

To improve performance, by default OC4J does not collect JDBC statement metrics.
The properties, or acl e. j dbc. DMSSt at ement Cachi ngMetri cs and

oracl e. j dbc. DV5St at emrent Met ri ¢cs are by default, set to f al se. When these
properties are f al se, performance is improved since OC4J does not collect expensive
JDBC statement metrics.

Setting these properties to t r ue may have a negative impact on performance. Only set
these to t r ue when you need to collect JDBC statement metrics.

Optimizing J2EE Applications In OC4J 6-7

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

When or acl e. j dbc. DVSSt at ement Cachi ngMet ri cs property is set to t r ue and
JDBC statement caching is enabled the JDBC statement metrics are available.

When JDBC statement caching is disabled, make the JDBC statement metrics available
by setting the property or acl e. j doc. DVSSt at ement Metrics totrue.

Disabling these properties by setting the values to f al se only affects the JDBC DMS
metrics.

See Also: "Setting the OC4] DMS Sensors Option" on page 6-6

Setting the OC4J Dedicated RMI Context Option

Setting the dedicated RMI context property to f al se using the command line option
- Ddedi cat ed. r mi cont ext =f al se for the OC4J] may improve performance when
an EJB client is doing multiple initial context lookups within the same JVM.

See Also: "Setting the OC4] Dedicated RMI Context Option for
Remote EJB Clients" on page 6-53

Setting the OC4J Define Column Type Option

Set the Def i neCol urmType property to t r ue when you are using an Oracle JDBC
driver that is prior to Release 9.2 and you are not using statement caching. Setting this
option to t r ue avoids a round-trip when executing a select over the Oracle JDBC
driver.

Note: If you are using a JDBC Driver version 9.2 or higher, and
you use statement caching, do not set Def i neCol umType to

t r ue; this is redundant, since these drivers have similar
functionality built-in.

When the driver performs a query, it first uses a round trip to a database to determine
the types that it should use for the columns of the result set. Then, when JDBC receives
data from the query, it converts the data, as necessary, as it populates the result set.
When you specify column types for a query with the Def i neCol uimType option set
to t r ue, you avoid the first round trip to the Oracle database.

The default value for Def i neCol umType isf al se.

Note: This option only applies to EJB CMP entity beans.

If the value of Def i neCol uimType changes, and OC4] is restarted, the updated value
only applies to applications deployed after the value is changed.

See Also: "Setting the JDBC Statement Cache Size in Data
Sources" on page 6-14

6-8 Oracle Application Server Performance Guide

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Using Application Server Control Console to Change JVM Command Line Options

To change the Java command line options for an OC4]J Instance, go to the OC4]
instance homepage and perform the following steps:

1. Stop the OC4]J Instance.
2. Drill down to the Server Properties page.

3. Inthe Command Line Options area of the Server Properties page, under the
heading Multiple VM Configuration, set the Java Options.

For example, enter the following to set the JVM heap sizes to 512 Megabytes:
- Xmx512m

4. Use the Apply button to apply the changes.
5. Start the OC4]J Instance.

Figure 6-1 shows the Server Properties page with Java Options.

Figure 6-1 Application Server Control Console Java Heap Size Multiple VM Configuration Page

Multiple ¥M Configuration

Islands
R) R_elated Lmks _
Virtual Machine Metrics

Selectlsland ID Number of Processes

& [defalt_island [2

& |tester | 2

Add Another Row)
Ports

RMI Ports [3101-3200
JMS Ports [3201-3300
AJP Ports [3001-3100

Command Line Options

Java Executable |
OC4J Options |—properties
Jdava Options |—Xms128m -rmx128m

Configuration File Paths
BEMI Configuration File |..-frmi.xml

JMS Configuration File |..-fjms.xml

Revert) (Apply '}

Targets | Preferences | Help
Copyright & 1996, 2002, Cracle Corporstion. &A1 rights reserved.

Optimizing J2EE Applications In OC4J 6-9

Setting Up Data Sources — Performance Issues

Setting Up Data Sources — Performance Issues

A data source, which is the instantiation of an object that implements the

j avax. sql . Dat aSour ce interface, enables you to retrieve a connection to a
database server. This section describes data source configuration options for global
data sources. A global data source is available to all the deployed applications in an
OC4]J Instance.

This section covers the following topics:

= Emulated and Non-Emulated Data Sources

= Using the EJB Aware Location Specified in Emulated Data Sources
= Setting the Maximum Open Connections in Data Sources

= Setting the Minimum Open Connections in Data Sources

= Setting the Cached Connection Inactivity Timeout in Data Sources
= Setting the Wait for Free Connection Timeout in Data Sources

= Setting the Connection Retry Interval in Data Sources

= Setting the Maximum Number of Connection Attempts in Data Sources
= Setting the JDBC Statement Cache Size in Data Sources

= Setting the JDBC Prefetch Size for a CMP Entity Bean

= Using Application Server Control to Change Data Source Configuration Options

Note: If your data source is provided by a third party, you may
need to set certain properties. These properties should be defined in
the third-party documentation.

See Also:

« "Improving E]JB Performance in Oracle Application Server" on
page 6-28

« Oracle Application Server Containers for J2EE User’s Guide
« Oracle Application Server Containers for J2EE Services Guide

« Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

Emulated and Non-Emulated Data Sources

Some of the performance related configuration options have different affects,
depending on the type of the data source. OC4]J supports two types of data sources,
emulated and non-emulated:

The pre-installed default data source is an emulated data source. Emulated data
sources are wrappers around Oracle or non-Oracle data sources. If you use these data
sources, your connections are extremely fast, because they do not provide full XA or
JTA global transactional support. We recommend that you use these data sources for
local transactions or when your application requires access or update to a single
database. You can use emulated data sources for Oracle or non-Oracle databases.

You can use the emulated data source to obtain connections to different databases by
changing the values of the ur| and connecti on-dri ver parameters.

6-10 Oracle Application Server Performance Guide

Setting Up Data Sources — Performance Issues

The following is a definition of an emulated data source:

<dat a- sour ce
cl ass="com everni nd. sql . Dri ver Manager Dat aSour ce”
name="0r acl eDS"
| ocati on="j dbc/ Oracl eCor eDS"
xa- | ocation="j dbc/ xal Oracl eXADS"
ej b-1ocation="j dbc/ Oracl eDS"
connection-driver="oracl e.jdbc.driver.OacleDriver"
user name="scott"
password="tiger"
url ="j dbc: oracl e:thin: @ocal host: 5521: oracl e"
i nactivity-timeout="30"
/>

Non-emulated data sources are pure Oracle data sources. These are used by
applications that want to coordinate access to multiple sessions within the same
database or to multiple databases within a global transaction.

Using the EJB Aware Location Specified in Emulated Data Sources

The ej b-1 ocat i on only applies to emulated data sources. Each data source is
configured with one or more logical names that allow you to identify the data source
within J2EE applications. The ej b- | ocat i on is the logical name of an E]JB data
source. In addition, use the ej b- | ocat i on name to identify data sources for most
J2EE applications, where possible, even when not using E]JBs. You can use this option
for single phase commit transactions or emulated data sources.

The ej b-1 ocat i on only applies to emulated data sources. Using the

ej b-1 ocat i on, the data source manages opening a pool of connections, and
manages the pool. Opening a connection to a database is a time-consuming process
that can sometimes take longer than the operation of getting the data itself. Connection
pooling allows client requests to have faster response times, because the applications
do not need to wait for database connections to be created. Instead, the applications
can reuse connections that are available in the connection pool.

Note: Oracle recommends that you only use the ej b-1 ocat i on
JNDI name in emulated data source definitions for retrieving the
data source. For non-emulated data sources, you must use the

| ocat i on JNDI name.

Setting the Maximum Open Connections in Data Sources

The max- connect i ons option specifies the maximum number of open connections
for a pooled data source. To improve system performance, the value you specify for
the number max- connect i ons depends on a combination of factors including the
size and configuration of your database server, and the type of SQL operations that
your application performs.

The default value for max- connect i ons and the handling of the maximum depends
on the data source type, emulated or non-emulated.

For emulated data sources, there is no default value for max- connect i ons, but the
database configuration limits that affect the number of connections apply. When the
maximum number of connections, as specified with max- connect i ons, are all active,
new requests must wait for a connection to be become available. The maximum time
to wait is specified with wai t - t i meout .

Optimizing J2EE Applications In OC4J 6-11

Setting Up Data Sources — Performance Issues

For non-emulated data sources, there is a property, cacheSchene, that determines

how max- connect i ons is interpreted. Table 6-3 lists the values for the

cacheSchene property (DYNAM C_SCHEME is the default value for cacheSchene).
See Also:

= "Setting the Wait for Free Connection Timeout in Data Sources"
on page 6-13

= "Data Sources" in Oracle Application Server Containers for [2EE
Services Guide

Table 6-3 Non-emulated Data Source cacheScheme Values

Value Description

FI XED_WAI T_SCHEME In this scheme, when the maximum limit is reached, a request
for a new connection waits until another client releases a
connection.

FI XED_RETURN_NULL_ In this scheme, the maximum limit cannot be exceeded.
SCHEME Requests for connections when the maximum has already been
reached return null.

DYNAM C_SCHEME In this scheme, you can create new pooled connections above
and beyond the maximum limit, but each one is automatically
closed and freed as soon as the logical connection instance is
finished being used, where it is returned to the available cache.

DYNAM C_SCHEME is the default value for cacheSchene.

The tradeoffs for changing the value of max- connect i ons are:

= For some applications you can improve performance by limiting the number of
connections to the database (this causes the system to queue requests in the
mid-tier). For example, for one application that performed a combination of
updates and complex parallel queries into the same database table, performance
was improved by over 35% by reducing the maximum number of open
connections to the database by limiting the value of max- connect i ons.

Note: You should check to make sure that your database is
configured to allow at least the total number of open connections,
as specified by the data sources max- connect i ons option for all
your J2EE applications.

Setting the Minimum Open Connections in Data Sources

The m n- connect i ons option specifies the minimum number of open connections
for a pooled data source.

For applications that use a database, performance can improve when the data source
manages opening a pool of connections, and manages the pool. This can improve
performance because incoming requests don't need to wait for a database connection
to be established; they can be given a connection from one of the available connections,
and this avoids the cost of closing and then reopening connections.

By default, the value of mi n- connect i ons is set to 0. When using connection pooling
to maintain connections in the pool, specify a value for m n- connect i ons other than
0.

6-12 Oracle Application Server Performance Guide

Setting Up Data Sources — Performance Issues

For emulated and non-emulated data sources, the m n- connect i ons option is
treated differently.

For emulated data sources, when starting up the initial m n- connecti ons
connections, connections are opened as they are needed and once the
m n- connect i ons number of connections is established, this number is maintained.

For non-emulated data sources, after the first access to the data source, OC4] then
starts the m n- connect i ons number of connections and maintains this number of
connections.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure that
your database is configured to allow at least as large a number of open connections as
the total of the values specified for all the data sources i n- connect i ons options, as
specified in all the applications that access the database.

Note: If the m n- connecti ons is set to a value other than zero,
the specified number of connections will be maintained; OC4]J
maintains the connections when they are not in use, and they do
not time out when the specified i nacti vi t y-ti meout is reached.

Once the specified connections are opened, OC4] does not provide
a way to close the connections, except by stopping OC4]J.

Setting the Cached Connection Inactivity Timeout in Data Sources

For emulated and non-emulated data sources, the i nacti vi ty-ti meout specifies
the time, in seconds, to cache unused connections before closing them.

To improve performance, you can set thei nacti vi ty-ti meout to a value that
allows the data source to avoid dropping and then re-acquiring connections while
your J2EE application is running.

The default value for the i nacti vi ty-ti meout is 60 seconds, which is typically too
low for applications that are frequently accessed, where there may be some inactivity
between requests. For most applications, to improve performance, we recommend that
you increase the i nacti vity-ti meout to 120 seconds.

To determine if the defaulti nacti vi ty-ti nmeout is too low, monitor your system. If
you see that the number of database connections grows and then shrinks during an
idle period, and grows again soon after that, you have two options: you can increase
thei nacti vi ty-ti meout, or you can increase the i n- connecti ons.

See Also: "Setting the Minimum Open Connections in Data
Sources" on page 6-12

Setting the Wait for Free Connection Timeout in Data Sources

For emulated and non-emulated data sources, the wai t - t i meout specifies the
number of seconds to wait for a free connection if the connection pool does not contain
any available connections (that is, the number of connections has reached the limit
specified with max- connect i ons and they are all currently in use).

If you see connection timeout errors in your application, increasing the
wai t -ti meout can prevent the errors. The default wai t - t i meout is 60 seconds.

If database resources, including memory and CPU are available and the number of
open database connections is approaching max- connect i ons, you may have limited

Optimizing J2EE Applications In OC4J 6-13

Setting Up Data Sources — Performance Issues

max- connect i ons too stringently. Try increasing max- connect i ons and monitor
the impact on performance. If there are not additional machine resources available,
increasing max- connect i ons is not likely to improve performance.

You have several options in the case of a saturated system:
= Increase the allowablewai t -t i meout .
= Evaluate the application design for potential performance improvements.

= Increase the system resources available and then adjust these parameters.

Setting the Connection Retry Interval in Data Sources

The connection-retry-interval specifies the number of seconds to wait before
retrying a connection when a connection attempt fails.

If the connection-retry-interval issettoasmall value, or a large number of
connection attempts is specified with max- connect - at t enpt s this may degrade
performance if there are many retries performed without obtaining a connection.

The default value for the connecti on-retry-interval is1second.

Setting the Maximum Number of Connection Attempts in Data Sources

The max- connect - at t enpt s option specifies the maximum number of times to
retry making a connection. This option is useful to control when the network is not
stable, or the environment is unstable for any reason that sometimes makes connection
attempts fail.

If the connecti on-retry-interval option is set to a small value, or a large
number of connection attempts is specified with max- connect - at t enpt s this may
degrade performance if there are many retries performed without obtaining a
connection.

The default value for max- connect - att enpt s is 3.

Setting the JDBC Statement Cache Size in Data Sources

To lower the overhead of repeated cursor creation and repeated statement parsing and
creation, you can use statement caching with database statements. To enable JDBC
statement caching, which caches executable statements that are used repeatedly,
configure a datasource to use statement caching. A JDBC statement cache is associated
with a particular physical connection maintained by a datasource. A statement cache is
not per datasource so it is not shared across all physical connections. The JDBC
statement cache is maintained in the middle-tier (not in the database server).

You can dynamically enable and disable statement caching programmatically using
the set St mt CacheSi ze() method on the connection object.

To configure JDBC statement caching for a datasource, use the st nt - cache- si ze
attribute to set the size of the cache. This attribute sets the maximum number of
statements to be placed in the cache. If you do not specify the st nt - cache- si ze
attribute or set it to zero, the statement cache is disabled.

The following XML sets the statement cache size to 200 statements.

<dat a- sour ce>

st nt - cache-si ze="200"
</ dat a- sour ce>

6-14 Oracle Application Server Performance Guide

Setting Up Data Sources — Performance Issues

To set the st mt - cache- si ze attribute, first determine how many distinct statements
the application issues to the database. Then, set the size of the cache to this number. If
you do not know the number of statements that your application issues to the
database, you can use the JDBC performance metrics to assist you with determining
the statement cache size. To use the statement metrics you need to set the Java
property or acl e. j dbc. DMSSt at ement Met ri cs tot r ue for the OC4J.

See Also:
= "JDBC Data Source Statement Metrics" on page A-8
= Oracle Database [DBC Developer’s Guide and Reference

Setting the JDBC Prefetch Size for a CMP Entity Bean

You can use the pr ef et ch- si ze parameter to change the data source behavior for a
JDBC query from a CMP Entity bean. However, this parameter is configured in
orion-ejb-jar.xm rather than in dat a- sour ces. xm .

See Also: "Configuring Parameters for CMP Entity Beans" on
page 6-30

Using Application Server Control to Change Data Source Configuration Options

Figure 6-2 shows the Oracle Enterprise Manager 10g Application Server Control
Console configuration page that lets you view or modify a data source. This page is
available in Application Server Control Console by selecting the Edit button for a
selected data source from the Data Sources page from the application default page for
an OC4] Instance, or by selecting data sources from the administration section of a
deployed application’s description page (this is only available when the application
has its own local data source).

Application Server Control Console stores the data sources elements that you add or
modify in an XML file. This file defaults to the name dat a- sour ces. xim and is
located in/ j 2ee/ hone/ conf i g. If you want to change the name or the location of
this file, you can do this in the General Properties page off of the default application
screen or off of your specific application’s page, when the application specifies a local
data source.

Note: You can also use the Application Server Control Console
Advanced Properties links to create or edit data sources. This
allows you to add data sources using the XML definitions which is
useful if you have been provided the XML.

Optimizing J2EE Applications In OC4J 6-15

Setting server.xml Configuration Parameters

Figure 6-2 Application Server Control Console Data Sources Configuration Page

Edit Data Source

Page Refreshed Oct 21, 2003 11:30:59 AM 3:.

Use this page to configure a data source to connect to Oracle or non-Oracle databases. To connect to Oracle databases, configure either a non-
ermulated (pure Oracle) Data Source or an emulated (wrappers around Oracle Data Sources) Data Source. To connect to non-Oracle databases, use
the com.evermind.sgl.DriverManagerDataSource with the Merant JOBC drivers. Please refer to the online help for additional information.

General

MNarne IOracIeDS

Description I

Data Source Class Icom.evermind.Sql.DriverManagerDataSource

JOBC URL debc:oracle:thin:@localhost:1521:oracle

JOBC Driver Ioracle.jdbc.driver.OracIeDriver

Thiz field i required if you are using a generic Orion Data Source Class.

Schema |

Datasource Username and Password A Return to Tap

Cleartext passwaords may pose a security risk, especially if the permissions on the data-sources.xml configuration
file allows it to be read by any user. You can specify an indirect password to avoid this risk. An indirect password is
used to do a look up in the User Manager to get the passwaord.

Usernarme |scott

© Use Cleartext Password

Passward |

& Use Indirect Password

Indirect Password IprorScott
example: Scott, customersiSoott

JNDI Locations A Return to Top

For an emulated Data Source, please specify all three location attributes. It is recornmended that you reference the
EJB Location attribute in your code to look up this Data Source. For a non-emulated Data Source, the location
attribute is all that is needed.

Location dehchracIeCoreDS
Transactional(¥A) Location dehcfxafOracIeXADS
EJB Location [idbc/OracleDS

For emulsted data sources, retrieve the data source using the JMDI value in this figld.

Setting server.xml Configuration Parameters

This section covers parameters that you can tune for OC4J performance in the
server . xm file for an OC4J Instance.

This section covers the following topics:

= Setting the OC4] Transaction Configuration Timeout in server.xml

= Setting the OC4J Task Manager Granularity in server.xml

= Setting the OC4] Options for Stateful Session Bean Passivation in server.xml
« Limiting Concurrency In OC4]

= Using Application Server Control Console to Change server.xml Configuration
Options

6-16 Oracle Application Server Performance Guide

Setting server.xml Configuration Parameters

Setting the OC4J Transaction Configuration Timeout in server.xml

You can change the default value for the transaction configuration timeout in the
transacti on-confi g element in the server. xm file for the OC4J Instance. This
configuration parameter specifies the maximum time taken for a transaction to finish
before it can get rolled back due to a timeout, and applies to all transactions on the
OC4J Instance.

By default server. xnl sets thet ransacti on-confi g to 30000 (30 seconds). You
can change the t ransact i on-confi g ti meout value for applications that are
getting transaction timeout errors, or if you know the transactions take longer than 30
seconds (including the time for waiting for connections set by wai t - t i meout in

dat asour ces. xm).

To change the t ransacti on-confi gti meout value, change the following line in
server . xm . For example, the following line in ser ver . xm sets the
transaction-configtimeout parameter to 60 seconds:

<transaction-config timeout="60000"/>

Note: Thetransacti on-confi g timeout is not an EJB specific
timeout, but affects all transactions which use EJBs. However, the
timeout specified with the t r ansact i on-confi g ti meout
value setin server. xm does not apply to MDB transactions.

Thetransaction-configtinmeout attribute applies for all transactions running in
OC4J, and therefore must be big enough for your longest transaction. If you specify a
small t ransact i on- confi g, then this value applies for all transactions running in
OC4J (thetransacti on-confi gti meout applies for all transactions at the EJB
level). Thus, set thet ransacti on-confi gti meout attribute to a value greater than
or equal to other transaction related attributes (for example the data sources

wai t-ti meout and the EJBcal | -ti meout).

See Also:

= "Setting the Wait for Free Connection Timeout in Data Sources"
on page 6-13

= "Configuring Parameters that Apply for All EJBs (Except
MDBs)" on page 6-28

= "Configuring Parameters for Message Driven Beans (MDBs)"
on page 6-41

Setting the OC4J Task Manager Granularity in server.xml

The OC4]J task manager is an OC4J background process that performs cleanup
operations, including the task of timing out HttpSessions. The task manager runs at
regular intervals. Using the t askrmanager - gr anul ari ty attribute in server. xm ,
you can manage when the task manager runs. This attribute sets how often the task
manager performs its cleanup operations. The value specified is in milliseconds and
the default value is 1000 milliseconds.

The default t askrmanager - gr anul ari t y interval is usually adequate. If you modify
the default value and set the value too high, such as to a value greater than 60000, one
minute, this can delay the task of timing out of HttpSessions, which could lead to an
Qut OF Menor y error (if you use HttpSessions).

Optimizing J2EE Applications In OC4J 6-17

Setting server.xml Configuration Parameters

For example, the following entry in ser ver. xnl setst askmanager - granul arity
to 60000 milliseconds (1 minute).

<application-server ... taskmanager-granul arity="60000" ...>

Note: Changing the t askrmanager - gr anul ari ty can affect the
timing and accuracy for some of the EJB Entity and Session Bean
parameters. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for complete details.

Setting the OC4J Options for Stateful Session Bean Passivation in server.xml

OC4] automatically performs passivation of stateful session beans unless you set the
enabl e- passi vat i on attribute for the element <sf sb- confi g>tof al se.

The default value for the attribute enabl e- passi vati onist r ue, which means that
stateful session bean passivation occurs. If you have a situation where stateful session
beans are not in a state to be passivated, set this attribute to f al se.

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Limiting Concurrency In OC4J

OC4J contains a thread pooling mechanism for use in standalone OC4J. The OC4]J
server . xm global thread pool attributes control the number of threads that OC4]
uses. In an Oracle Application Server 10g environment, we recommend that you do
not specify <gl obal -t hr ead- pool >in server. xm . You can use this parameter to
control the number of threads when using standalone OC4]J (not in an Oracle
Application Server 10g environment).

Note: If you do not specify <gl obal -t hr ead- pool >in
server. xm , the number of threads that OC4]J can create is
unbounded (except by system resource limitations). With the
default behavior, unbounded threads, threads are created on
demand as needed.

To limit concurrency in an Oracle Application Server 10g environment, we recommend
using the Oracle HTTP Server Maxd i ent s directive. When OC4J runs in an Oracle
Application Server 10g environment, mod_oc4j works with OC4] to control OC4]J
concurrency. In this environment, limiting the number of threads by specifying

<gl obal -t hr ead- pool > attributes in ser ver . xm can cause resource contention
issues that may result in deadlocks.

See Also: "Configuring the MaxClients Directive" on page 5-10

Using Application Server Control Console to Change server.xml Configuration Options

To update and configure values for options in the server . xmi file, using Application
Server Control Console, first select the OC4] instance you want to modify. Then, select
the Administration link and select the Advanced Properties link from the Instance
Properties area. On the Advanced Server Properties page, select the ser ver . xnl link.
On the edit ser ver. xm page, select and modify the elements and attributes that you
need to change. Finally, select the Apply button to apply the changes.

6-18 Oracle Application Server Performance Guide

Improving Servlet Performance in Oracle Application Server

If you do not use Application Server Control Console, then edit ser ver. xm in the
$ORACLE_HOMWE/ j 2ee/ instance_namel conf i g directory, and use the dcntt |
command to update the Oracle Application Server configuration as follows:

% dcnect| updateconfig -ct océj
%dcnct] restart -ct océj

Improving Servlet Performance in Oracle Application Server

This section discusses configuration options and performance tips specific to servlets
for optimizing OC4]J performance.

This section covers the following topics:
= Improving Performance by Altering Servlet Configuration Parameters

= Servlet Performance Tips

Improving Performance by Altering Servlet Configuration Parameters

This section covers the following;:
= Loading Servlet Classes at Startup
= Reducing Requests for Static Pages and Images

= Setting the Servlet Session Timeout

Loading Servlet Classes at Startup

By default, OC4] loads a servlet when the first request is made. OC4]J also lets you load
servlet classes when the JVM that runs the servlet is started. To do this, add the

<| oad- on- st ar t up> sub-element to the <ser vl et > element in the application’s
web. xm configuration file.

Using the load-on-startup facility increases the start-up time for your OC4J process,
but decreases first-request latency for servlets.

For example, add the <I| oad- on- st ar t up> as follows:

<servlet>
<servl et - name>vi ewsr c</ servl et - nane>
<servl et-cl ass>Vi ewSrc</ servl et -cl ass>
<| oad- on-startup> </ oad- on-startup>
</servlet>

Using Application Server Control Console you can specify that OC4J load an entire
Web Module on startup. To specify load on startup, select the Web site Properties page
for an OC4J Instance and then use the Load on Startup checkbox.

Reducing Requests for Static Pages and Images

This <expi rati on- setti ng> element, that can be set in either

gl obal - web- appl i cation.xm ororion-web. xm sets the expiration for a given
set of resources. This element can reduce the requests to the server by asking the
browser to cache certain requests. If the Oracle Application Server instances uses
OracleAS Web Cache, then this element is less useful, since Web Cache should serve
such requests, when it is used. The <expi r at i on- set t i ng> determines how long
before resources expire in the browser. The browser reloads an expired resource upon
the next request for it.

Optimizing J2EE Applications In OC4J 6-19

Improving Servlet Performance in Oracle Application Server

This option is useful for setting caching policies, such as for not reloading images as
frequently as documents.

To set the <expi rati on-set ti ng> element, use the following attributes: expi r es,
url -pattern.

= expires specifies the number of seconds before expiration, or when set to
"never " specifies no expiration. The default setting for expi r es is "0" (zero), for
immediate expiration.

= url-pattern specifies a URL pattern that the expiration applies to. For example,
url -pattern="*.gif"

Setting the Servlet Session Timeout

The default servlet session timeout for OC4] is 20 minutes. You can change this for a
specific application by setting the <sessi on-t i meout > parameter in the

<sessi on- confi g> element of web. xni . If this value is set too low, you may loose
your saved session before getting the chance to reuse it. If this value is set too high,
you may save too much session state and consume too much memory. The amount of
memory used in each session depends on the size of the objects the application creates
and puts into the sessions. Setting either a too small value, or a too large value for the
session timeout can have an impact on performance.

Servlet Performance Tips

The following tips can enable you to avoid or debug potential performance problems:
= Analyze Servlet Duration

« Understand Server Request Load

= Find Large Servlets That Require a Long Load Time

= Watch for Unused Sessions and Session Invalidation

= Load Servlet Session Security Routines at Startup

Analyze Servlet Duration

It is useful to know the average duration of the servlet (and JSP) requests in your J2EE
enterprise application. By understanding how long a servlet takes when the system is
not under load, you can more easily determine the cause of a performance problem
when the system is loaded. The average duration of a given servlet is reported in the
metric ser vi ce. avg for that servlet. You should only examine this value after
making many calls to the servlet so that any startup overhead such as class loading
and database connection establishment will be amortized.

As an example, suppose you have a servlet for which you notice the ser vi ce. avg is
32 milliseconds. And suppose you notice a response time increase when your system
is loaded, but not CPU bound. When you examine the value of ser vi ce. avg, you
might find that the value is close to 32 ms, in which case you can assume the
degradation is probably due to your system or application server configuration rather
than in your application. If on the other hand, you notice that ser vi ce. avg has
increased significantly, you may look for the problem in your application. For
example, multiple users of the application may be contending for the same resources,
including but not limited to database connections.

See Also: "Web Module Metrics" on page A-9

6-20 Oracle Application Server Performance Guide

Improving Servlet Performance in Oracle Application Server

Understand Server Request Load

In debugging servlet and JSP problem:s, it is often useful to know how many requests
your OC4] processes are servicing. If the problems are performance related, it is
always helpful to know if they are aggravated by a high request load. You can track
the requests for a particular OC4J Instance using Application Server Control Console,
or by viewing the application’s web module metrics.

See Also: "Web Module Metrics" on page A-9

Find Large Servlets That Require a Long Load Time

You may find that a servlet application is especially slow the first time it is used after
the server is started, or that it is intermittently slow. It is possible that when this
happens the server is heavily loaded, and the response time is suffering as a result. If
there is no indication of a high load, however, which you can detect by monitoring
your access logs, periodically monitoring CPU utilization, or by tracking the number
of users that have active requests on the HTTP server and OC4]J, then you may just
have a large servlet that takes a long time to load.

You can see if you have a slow loading servlet by looking at ser vi ce. maxTi ne,
servi ce. m nTi me, and ser vi ce. avg. If the time to load the servlet is much higher
than the time to service, the first user that accesses the servlet after your system is
started will feel the impact, and ser vi ce. maxTi me will be large. You can avoid this
by configuring the system to initialize your servlet when it is started.

See Also: "Loading Servlet Classes at Startup” on page 6-19

Watch for Unused Sessions and Session Invalidation

You should regularly monitor your applications looking for unused sessions. It is easy
to inadvertently write servlets that do not invalidate their sessions. Without source
code for the application software, you may not know this could be a problem on your
host, but sooner or later you would notice a higher consumption of memory than
expected. You can see if there are sessions which are not utilized or sessions which are
not being properly invalidated after being used with the session metrics, including:
sessi onActivation,sessi onActi vati on. conpl et ed and

sessi onActivation. acti ve.

JSPs by default create sessions. If you do not need to use sessions in your JSPs, turn
them off.

The following example shows an application that creates sessions, but never uses
them. In this example, we show metrics from a JSP under
/oc4j /[application/VWEBs/cont ext:

session. Activation. active: 500 ops
session. Acti vati on. conpl et ed: 0 ops

This application created 500 sessions and all are still active. Possibly, this indicates that
the application makes unnecessary use of the sessions and it is just a matter of time
before this will cause memory or CPU consumption problems.

A well-tuned application shows sessi onActi vati on. acti ve with a value that is
less than sessi onAct i vati on. conpl et ed before the session timeout. This
indicates that the sessions are probably being used and cleaned up.

Suppose we have a servlet that uses sessions effectively and invalidates them
appropriately. Then we might see a set of metrics such as the following, under
[oc4j [application/WEBs/context:

Optimizing J2EE Applications In OC4J 6-21

Improving JSP Performance in Oracle Application Server

session. Activation. active: 2 ops
session. Acti vati on. conpl et ed: 500 ops

The fact that two sessions are active and more than 500 have been created and
completed indicates that sessions are being invalidated after use.

See Also:
= '"Impact of Session Management on Performance" on page 6-25

= "Web Context Metrics" on page A-10

Load Servlet Session Security Routines at Startup

OC4]J uses the class j ava. securi ty. Secur eRandomfor secure seed generation. The
very first call to this method is time consuming. Depending on how your system is
configured for security, this method may not be called until the very first request for a
session-based servlet is received by the Application Server. One alternative is to
configure the application to load-on-startup in the application’s web. xni
configuration file and to create an instance of Secur eRandomduring the class
initialization of the application. The result will be a longer startup time in lieu of a
delay in servicing the first request.

See Also: "Loading Servlet Classes at Startup" on page 6-19

Improving JSP Performance in Oracle Application Server

OracleJSP is Oracle’s implementation of the Sun Microsystems JavaServer Pages
specification. Some of the additional features it includes are custom JavaBeans for
accessing Oracle databases, SQL support, and extended datatypes.

This section explains how you can improve Oracle]SP performance. It contains the
following topics:

= Improving Performance by Altering JSP Configuration Parameters

« Improving Performance by Tuning JSP Code

Note: A JSP is translated into a Java servlet before it runs,
therefore servlet performance issues also apply for JSPs.

Oracle Application Server provides JSP tag libraries that include some features that
may improve the performance of J2EE applications. For example, you may be able to
use the JSP caching features available in the tag libraries to increase the speed and
scalability for your applications:

= TheJESI tag library supports the use of Oracle Application Server Web Cache. This
supports the use of the HTTP-level cache, maintained outside the application, that
provides very fast cache operations. Oracle Application Server Web Cache is
capable of caching static data, such HTML, GIF, or JPEG files, or dynamic data,
such as servlet or JSP results.

= The Web Object Cache tag library let you capture intermediate results of JSP and
servlet execution, and subsequently reuse these cached results in other parts of the
Java application logic.

6-22 Oracle Application Server Performance Guide

Improving JSP Performance in Oracle Application Server

See Also:

= Oracle Application Server Containers for J2EE Servlet Developer’s
Guide

= Oracle Application Server Containers for [2EE JSP Tag Libraries and
Utilities Reference

Improving Performance by Altering JSP Configuration Parameters

Table 6-4

This section describes JSP configuration parameters that you can alter to improve and
control JSP operation. These parameters are set for each OC4] Instance by altering the
file gl obal - web- appl i cati on. xnm .

This section covers the following topics:
= Using the main_mode Parameter
= Using the tags_reuse_default Parameter

= Additional JSP and OC4] Configuration Parameters

See Also:

= Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for information on JSP
configuration parameters

= Oracle Application Server Containers for J2EE Servlet Developer’s
Guide for information on gl obal - web- appl i cati on. xm

Using the main_mode Parameter

The mai n_node parameter determines whether classes are automatically reloaded or
JSPs are automatically recompiled, in case of changes.

Table 6-1 shows the supported settings for mai n_node.

JSP main_mode Parameter Values

Option

Description

justrun

rel oad

reconpil e

The runtime dispatcher does not perform any timestamp checking, so there is no recompilation
of JSPs or reloading of Java classes. This mode is the most efficient mode for a deployment
environment, where code will not change.

If comparing timestamps is unnecessary, as is the case in a typical production deployment
environment where source code will not change, you can avoid all timestamp comparisons and
any possible retranslations and reloads by setting the mai n_npde parameter to the value
justrun.

Using this value can improve the performance of JSP applications.

Note: before you set mai n_node to the value j ust r un, make sure that the JSP is compiled at
least once. You can compile the JSP by invoking it through a browser, or by running your
application (using the default value for mai n_node, r econpi |). This assures that the JSP is
compiled before you set the j ust r un flag.

The dispatcher will check if any classes have been modified since loading, including translated
JSPs. JavaBeans invoked from pages, and any other dependency classes.

This is the default value for mai n_node.

The dispatcher will check the timestamp of the JSP, retranslate it if it has been modified since
loading, and execute all r el oad functionality as well.

Optimizing J2EE Applications In OC4J 6-23

Improving JSP Performance in Oracle Application Server

Note the following when working with the mai n_node parameter:

= Because of the usage of in-memory values for class file last-modified times,
removing a page implementation class file from the file system will not by itself
cause retranslation of the associated JSP source.

= The page implementation class file will be regenerated when the memory cache is
lost. This happens whenever a request is directed to this page after the server is
restarted or after another page in this application has been retranslated.

= A pageis not reloaded just because a statically included file has changed. Statically
included files, included through <%@ i ncl ude ... % syntax as opposed to
<jsp:include ... />syntax, are included during translation-time.

Note: Before you set mai n_node to the value j ust r un, make
sure that the JSP is compiled at least once. You can compile the JSP
by invoking it through a browser, or by running your application.

Using the tags_reuse_default Parameter

Disabling or enabling the tag handler reuse to runtime or compile-time models can
improve JSP performance when you specify that tag handler instances are to be reused
within each JSP page. This is sometimes referred to as tag handler instance pooling.
There are two models for this:

= Runtime model: The logic and patterns of tag handler reuse is determined at
runtime, during execution of the JSP pages. Tag handler reuse is within application
scope.

« Compile-time model: The logic and patterns of tag handler reuse is determined at
compile-time, during translation of the JSP pages. Specifying this value is an
effective way to improve performance for an application with very large numbers
of tags within the same page (hundreds of tags, for example).

The JSP t ags_r euse_def aul t configuration parameter lets you specify the reuse

model.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

Additional JSP and OC4J Configuration Parameters

The Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide includes information on additional configuration parameters that
affect JSP performance, including the following:

« check _page_scope

« precompil e _check

« reduce_tag code

« sStatic_text_in_chars

« Sinple-jsp-napping

« enabl e-j sp-di spat cher-shortcut

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

6-24 Oracle Application Server Performance Guide

Improving JSP Performance in Oracle Application Server

Improving Performance by Tuning JSP Code

This section describes changes you can make to your JSP code to improve
performance.

This section covers the following topics:

= Impact of Session Management on Performance

= Using Static Template Text Instead of out.print for Outputting Text
» Performance Issues for Buffering JSPs

= Using Static Versus Dynamic Includes

Impact of Session Management on Performance

In general, sessions add performance overhead for your Web applications. Each
session is an instance of the j avax. servl et. http. Ht t pSessi on class. The
amount of memory per session depends on the size of the objects the application
creates and puts into the sessions. You can turn off sessions for your JSPs if you do not
want a new session created for each request. By default, in OracleJSP sessions are
enabled. If you do not need to use sessions in your JSPs, turn them off by including the
following line at the top of the JSP:

<Y@ page session="fal se" %

If you use sessions, ensure that you explicitly cancel the session. If you do not cancel a
session, it remains active until it times out. Invoke the i nval i dat e() method to
cancel a session.

The default session timeout for OC4] is 20 minutes. You can change this for a specific
application by setting the <sessi on-t i neout > parameter in the
<sessi on- conf i g> element of web. xni .

For example, the following code shows how you would cancel a session after you have
finished using it:

Ht t pSessi on sessi on;

session = httpRequest. get Session(true);

session.invalidate();

OC4J uses the class j ava. securi ty. Secur eRandomfor secure seed generation. The
very first call to this method is time consuming. Depending on how your system is
configured for security, this method may not be called until the very first request for a
session-based JSP is received by the Application Server. One alternative is to force this
call to be made on startup by including a call in the class initialization for some
application that is loaded on startup. The result will be a longer startup time in lieu of
a delay in servicing the first request.

Note: JSP pages by default use sessions while servlets by default
do not use sessions.

Optimizing J2EE Applications In OC4J 6-25

Improving JSP Performance in Oracle Application Server

See Also:

= Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for information on sessions

= Oracle Application Server Containers for J2EE Servlet Developer’s
Guide for information on sessions

Using Static Template Text Instead of out.print for Outputting Text

Using the JSP code out . pri nt (" <ht ml >") requires more resources than including
static template text. For performance reasons, it is best to reserve the use of the
out. print () command for dynamic text.

Example 6-1 and Example 6-2 are two HTML coding examples. For these JSP samples,
Example 6-2 should be more efficient and give better performance.

Example 6-1 Using out.print

<%
out. print("<HTM.> <HEAD> <TI| TLE>Bookst ore Honme Page</ Tl TLE></ HEAD>\n");
out. print("<BODY BGCOLOR=\"#ffffff\">\n");
out.print("<HL ALI G\=\"center\">Book Store Web Commerce Test</H1>\n");
out.print("<P ALI G\=\"CENTER ">\n");
out.print("<IMs SRC=\"../bookstore/ | mages/ bookl ogo. gi f\" ALI G\N=\"BOTTOM "" +

"BORDER=\"0\" WDTH=\"288\" HEI GHT=\"67\"></P>\n");

out.print("<H2 ALI G\=\"center\">Hone Page</H2>\n");

%
<j sp:useBean id="random d" class="bookstore.BOOKS Wil" scope="request" >
<%
random i d = randomi d. get Randonl _I () ;
%

Example 6-2 Using Static Text

<HTML> <HEAD> <TI TLE>Bookst ore Home Page</ Tl TLE></ HEAD>

<BODY BGCOLOR=\"#ffffff\">

<HL ALI G\=\"center\">Bookstore Wb Conmerce Test </HL>

<P ALl G\=\ " CENTER " >

<I M5 SRC=\". . /bookst or e/ | mages/ bookl ogo. gi f\" ALI G\=\"BOTTOM " " +
"BORDER=\"0\" WDTH=\"288\" HElI GHT=\"67\"></ P>

<H2 ALI GN\=\"center\">Home Page</H2>

<j sp:useBean id="random d" class="bookstore.BOOKS Wil" scope="request" >
<%

random id = randomi d. get Randoml _I () ;
%

Performance Issues for Buffering JSPs

By default, a JSP uses an area of memory known as a page buffer. The page buffer, set
to 8KB by default, is required if the JSP uses dynamic globalization, cont ext Type
settings, error pages, or forwards. If the page does not use these features, then you can
disable buffering with the following command:

<Y%@ page buffer="none" %
Disabling buffering by setting the buffer value to none improves the performance of

the page by reducing memory usage and saving the processing step of copying the
buffer.

When you need buffering, it is important to select an adequate size for your buffer. If
you are writing a page that is larger than the default 8KB buffer, and you have not

6-26 Oracle Application Server Performance Guide

Improving JSP Performance in Oracle Application Server

reset the buffer size, then the JSP aut of | ush will be activated which could have
performance implications. Therefore, if buffering is necessary for your JSP, make sure
to set the page buffer to an appropriate size. For example, to set the buffer size to
24KB, use the following command:

<@ page buffer="24KB" %

Using Static Versus Dynamic Includes

The i ncl ude directive makes a copy of the included page and copies it into a JSP
(i ncl udi ng page) during translation. This is known as a static include (or
translate-time include) and uses the following syntax:

<Y@include file="/jsp/userinfopage.jsp" %

Alternatively, the j sp: i ncl ude tag dynamically includes output from the included
page within the output of the including page, during runtime. This is known as a
dynamic include (or runtime include) and uses the following syntax:

<j sp:include page="/jsp/userinfopage.jsp" flush="true" />

If you have static text, that is not too large, for performance reasons, it is better to use a
static include rather than a dynamic include.

In general, when working with includes, note the following:

= Static includes affect page size. Static includes avoid the overhead of the request
dispatcher that a dynamic include necessitates, but may be problematic where
large files are involved. Static includes are typically used to include small files
whose content is used repeatedly in multiple JSPs. For example:

— Statically include a logo or copyright message at the top or bottom of each
page in your application.

- Statically include a page with declarations or directives, such as imports of
Java classes, that are required in multiple pages.

- Statically include a central st at us checker page from each page of your
application.

= Dynamic includes affect processing overhead and performance. Dynamic includes
are useful for modular programming. You may have a page that sometimes
executes on its own but sometimes is used to generate some of the output of other
pages. Dynamically included pages can be reused in multiple including pages
without increasing the size of the including pages.

Note: Both static includes and dynamic includes can be used only
between pages in the same servlet context.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

Optimizing J2EE Applications In OC4J 6-27

Improving EJB Performance in Oracle Application Server

Performance Issues for Including Static Content

JSPs containing a large amount of static content, including large amounts of HTML
code that does not change at runtime, may result in slow translation and execution.

There are two workarounds for this issue that may improve performance:

= Put the static HTML into a separate file and use a dynamic i ncl ude command
(j sp: i ncl ude) to include its output in the JSP output at runtime.

Note: A static<%@ i ncl ude... % command would not work.
It would result in the included file being included at translation
time, with its code being effectively copied back into the including
page. This would not solve the problem.

« Put the static HTML into a Java resource file.

The JSP translator will do this for you if you enable the ext er nal _r esour ce
configuration parameter.

For pre-translation, the - ext r es option of the 0j spc tool also offers this
functionality.

Note: Putting static HTML into a resource file may result in a
larger memory footprint than the preceding j sp: i ncl ude
workaround mentioned, because the page implementation class
must load the resource file whenever the class is loaded.

Improving EJB Performance in Oracle Application Server

This section covers configuration parameters that you set to control how OC4J handles
EJBs. Tuning these options can improve the performance of EJBs running on OC4].

This section includes the following topics:

= Configuring Parameters that Apply for All EJBs (Except MDBs)
= Configuring Parameters for CMP Entity Beans

= Configuring Parameters for BMP Entity Beans

= Configuring Parameters for Session Beans

« Configuring Parameters for Message Driven Beans (MDBs)

Configuring Parameters that Apply for All EJBs (Except MDBSs)

Table 6-5 lists parameters that you can tune for E]B performance that are specific to
OC4]. These parameters apply for all types of EJBs, including session and entity beans
(except MDBs).

Table 6-5 shows parameters that are specified in ori on-ej b-j ar. xni .
This section also covers the following topic:

= EJB Timeouts Using a Non-default taskmanager-granularity

6-28 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

Table 6-5 EJB Parameters That Apply for All EJB Types (Except MDBS)

Parameter

Description

cal |l -ti meout

max-i nstances

max-tx-retries

m n-i nst ances

Applies for session and entity beans. This parameter specifies the maximum time to wait for
any resource that the EJB container needs, excluding database connections, before the
container calls the EJB method. The container throws a Ti nedQut Except i on when the wait
time for a resource exceeds the specified cal | - ti meout time.

Setting the cal | -t i meout to a value <=0 specifies an unlimited cal | - ti meout (unlimited
wait time for resources).

Note 1: if you change the default value of the t askrmanager - gr anul ari t y attribute in
server. xm , this causes the cal | -t i meout to be calculated based on the new
taskmanager-granularity. See "EJB Timeouts Using a Non-default taskmanager-granularity"
on page 6-29 for details.

Note 2: When using transactions, set the cal | -t i nout value to a value less than the
transacti on-confi g timeout, since the t ransact i on- conf i g timeout applies for all
transactions running in OC4J, and therefore must be big enough for your longest transaction.

Default Value: 90000 milliseconds

See Also: "Setting the OC4] Transaction Configuration Timeout in server.xml" on page 6-17

The number of bean instances allowed in memory — either instantiated or pooled. When this
value is reached, the container attempts to passivate the oldest bean instance from memory
(this passivation only applies for stateful session beans). If unsuccessful, the container waits
the number of milliseconds set in the cal | -t i meout attribute to see if a bean instance is
removed from memory, either through passivation, using the r enbve() method, or by bean
expiration before a Ti meout Expi r edExcept i on is thrown back to the client. To allow an
unlimited number of bean instances, set max- i nst ances to 0.

The exception, com ever m nd. server. ej b. Ti meout Expi redExcept i on:ti meout
expired waiting for an instance, occurs when there is no available EJB instance. To
avoid this problem set the max- i nst ances parameter appropriately.

Default Value: 0 (unlimited)

Applies for session and entity beans. This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures.

Generally, we recommend that you start by setting max-t x-ret ri es to 0 and adding retries
only where errors are seen that could be resolved through retries. For example, if you are
using serializable isolation and you want to retry the transaction automatically if there is a
conflict, you might want to use retries. However, if the bean wants to be notified when there
is a conflict, then in this case, you should set max-t x-retri es=0.

Default Value: 0 (for session beans and entity beans)
See Also: "Setting the OC4] Transaction Configuration Timeout in server.xml" on page 6-17

See Also: "Setting the Connection Retry Interval in Data Sources" on page 6-14

The minimum number of bean implementation instances to be kept instantiated or pooled.
These instances are created when an EJB of the specified type is accessed, when the first
instance is requested, and not at OC4]J startup.

Default Value: 0 (instances)

EJB Timeouts Using a Non-default taskmanager-granularity

There are EJB administrative tasks that are run at an interval, the length of which
depends on the taskmanager granularity. Therefore, if you change the default value of
the t askmanager - gr anul ari ty attribute in ser ver . xni , this change also impacts
the interval at which EJB administrative tasks are executed.

The t askmanager - gr anul ar i ty specified interval affects EJB timeouts. EJB
administrative tasks associated with timeouts depend on when the task manager runs,

Optimizing J2EE Applications In OC4J 6-29

Improving EJB Performance in Oracle Application Server

and a factor of 60 for EJB tasks. Thus, if the t askmanager - gr anul ari ty is changed
from the default, the value specified for EJB timeouts will have a corresponding
change in granularity.

See Also: "Setting the OC4] Task Manager Granularity in
server.xml" on page 6-17

Configuring Parameters for CMP Entity Beans

This section covers parameters for entity beans using CMP. These parameters are
specified in the ori on- ej b-j ar. xm configuration file.

Table 6-6 lists the entity bean CMP specific parameters.

Table 6-7 describes the supported | ocki ng- node parameter values.
This section also covers the following CMP topics:

= Configuring Lazy-loading on CMP Entity Bean Finder Methods
« Setting The CMP Define Column Type Option

Table 6-6 CMP Entity Bean Performance Parameters

Parameter Description

bat ch-si ze For a description, see "Setting The Batch Size Option to Batch UPDATE
statements” on page 6-34.

cal | -ti meout For a description, see Table 6-5

del ay- updat es-until -commit This boolean parameter, when t r ue, specifies that sync and persistence only
occur at the end of a transaction. If f al se, sync and persistence occur after
every EJB method invocation, except ej bRenove() and the finder methods.

Default Value: t r ue

do-sel ect-before-insert If f al se, you avoid executing a select before an insert. The extra select
normally checks to see if the entity already exists to avoid duplicates before
doing the insert. If a unique key constraint is defined for the entity, then we
recommend setting this to f al se. If there is no unique key constraint, setting
this to f al se leads to not detecting a duplicate insert. To prevent duplicate
inserts in this case, leave it set to t r ue. For performance, Oracle recommends
setting this to f al se to avoid the extra select before insert.

Default Value: t r ue

excl usive-write-access This parameter is only used when | ocki ng- node=r ead- onl y. Set this to
t r ue, the default, to specify this is the only bean that accesses its table in the
database, and that no external methods are used to update the table. This will
improve performance for the bean since any cache maintained for the bean
does not need to constantly update from the back-end database.

The decision to set this value to f al se is dependent on the implementation
of the Bean, and on the knowledge of how and when the table in the database
that the bean accesses is modified.

Set to f al se if the table is being modified externally.
Default Value: t r ue

findByPri maryKey-1| azy-1 oad Turns onlazy loading in the f i ndByPr i mar yKey method. For entity bean
ing finder methods, lazy loading can cause the select method to be invoked more
than once.

Default Value: f al se

6-30 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

Table 6-6 (Cont.) CMP Entity Bean Performance Parameters

Parameter Description

i solation If your database is already configured with the isolation mode you want for
your transactions, you'll get better performance if you don't explicitly set the
isolation mode attribute in the ori on-ej b-j ar. xm fil e. Omitting the
isolation setting means to use the database default setting, and extra
processing will not be done to explicitly set isolation levels in your
transactions.

See Table 6-8 for a description of i sol at i on options and how they relate to
locking modes.

Default Value: When omitted, use the database default setting

| azy-1 oadi ng Specifies lazy loading on the finder-method element. Specifying this value to
t r ue turns on lazy loading for a custom finder method. See "Configuring
Lazy-loading on CMP Entity Bean Finder Methods" on page 6-34 for more
information.

Default Value: f al se

| ocki ng- node The locking modes, specified with the | ocki ng- nbde parameter, manage
concurrency and configure when to block to manage resource contention or
when to execute in parallel.

See Table 6-7 for a description of | ocki ng- node.

See Table 6-8 for a description of i sol at i on options and how they relate to
locking modes.

Default Value: opti m stic

max- i nstances See Table 6-5

max-tx-retries See Table 6-5

m n-instances See Table 6-5

pool - cache-ti neout This1 parameter specifies how long to keep CMP Entity Beans cached in the
pool.

If you specify a pool - cache-ti meout, then at every

pool - cache-ti neout interval, all beans in the pool of the corresponding
bean type, are removed. If the value specified is 0 or negative, then the
pool - cache-ti neout is disabled and beans are not removed from the
pool. In some cases it may help performance to disable

pool - cache-ti nmeout, or to set the pool - cache-ti meout to alarge
value to avoid removing beans from the pool.

Note: if M n-i nstances is > 0, then n-i nst ances number of
instances are kept in the pool after the pool cache timeout (that is, they are not
deleted).

Note: if you change the default value of the t askmanager - granul arity
attribute in ser ver . xm , this causes the pool - cache-ti meout to be
calculated based on the new taskmanager-granularity. See "EJB Timeouts
Using a Non-default taskmanager-granularity" on page 6-29 for details.

Default Value: 60 (seconds)

Optimizing J2EE Applications In OC4J 6-31

Improving EJB Performance in Oracle Application Server

Table 6-6 (Cont.) CMP Entity Bean Performance Parameters

Parameter

Description

prefetch-size

updat e- changed-fi el ds-only

validity-tineout

The f i nder - net hod element includes the pr ef et ch- si ze attribute that
specifies how many rows to prefetch into the client while a result set is being
populated during a query. Using pr ef et ch- si ze can reduce round trips to
the database by fetching multiple rows of data each time data is fetched (the
extra data is stored in client-side buffers for later access by the client).

Increasing the value for the pr ef et ch- si ze increases the memory needs for
an application.

It may be useful to increase the value from the default for finder-methods that
fetch a lot of data, such as findAll on large tables, or custom finder-methods
that retrieve many rows of data.

You can see the affect of changing the pr ef et ch- si ze in an application by
looking at the finder-method average time metric to see how much time it
takes for the query, and how this affects the total response time for the
application.

The number of rows to prefetch can be set as desired using pr ef et ch- si ze,
however, for most applications using the default value, 10, is recommended.

See Also: Oracle Database JDBC Developer’s Guide and Reference for more
information on using prefetch with a JDBC driver.

Default Value: 10

Specifies whether the container updates only modified fields or all fields to
persistence storage for CMP entity beans when ej bSt or e is invoked. When
the value is set to f al se, this performs container updates to all fields to
persistence storage, when ej bSt or e is invoked. When set to f al se, the
container includes all fields in updates, so applications can take advantage of
SQL statement caching.

Default Value: t r ue

Theval i di ty-ti meout is only used when
excl usive-write-access=true and| ocki ng- node=r ead- onl y.

The validity timeout is the maximum time in milliseconds that an entity is
valid in the cache (before being reloaded). We recommend that if the data is
never being modified externally (and therefore you've set

excl usi ve-wite-access=true), that you can set this to 0 or -1, to
disable this option, since the data in the cache will always be valid for
read-only E]Bs that are never modified externally.

If the EJB is generally not modified externally, so you're using

excl usive-wite-access=true,yetoccasionally the table is updated so
you need to update the cache occasionally, then set this to a value
corresponding to the interval you think the data may be changing externally.

6-32 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

Table 6-7 CMP Entity Bean Locking-Mode Values

Locking Mode
Value

Description

optimstic

pessim stic

read-only

Multiple users can execute the entity bean in parallel. The optimistic locking mode does not
monitor resource contention; thus, the burden of the data consistency is placed on the
database isolation modes.

This is the default value for | ocki ng- node.
Manages resource contention and does not allow parallel execution. Only one user at a time

is allowed to execute the entity bean. Pessimistic locking uses "SELECT. . . . FOR UPDATE"
to serialize access in the database.

Multiple users can execute the entity bean in parallel. The container does not allow any
updates to the bean's state.

The | ocki ng- node, along with i sol at i on, assures database consistency for EJB
entity beans using CMP. Table 6-8 shows the common | ocki ng- node and

i sol ati on combinations. The different combinations have both functional and
performance implications, but often the functional requirements for data consistency
will lead to selecting a mode, even when it may be at the expense of performance.

Table 6-8 CMP Entity Bean Locking-Mode and Isolation Relationships

Locking-mode Isolation When to Use

pessimstic commtted If data consistency must be guaranteed, and frequent concurrent
updates to the same rows are expected.

pessim stic serializable We recommend that this combination not be used.

optimstic conmi tted If concurrent reads and updates to the same rows with
read-committed semantics is sufficient.

optimstic serializable If data consistency must be guaranteed, but infrequent concurrent
updates to the same rows are expected.

read-only conmitted If repeatable read is not required.

read-only serializable If repeatable read is required.

In Table 6-8 the i sol at i on setting refers to either the transaction i sol ati on
attribute setting, if explicitly set, or to the database isolation level (if the transaction
i sol at i on attribute is not set). Also, although | ocki ng- nbde and transaction
isolation levels are set as attributes of a CMP bean, the isolation level that will be in
effect for the transaction is the isolation level of the first entity bean used in the
transaction. Therefore it is best to set all beans in the same transaction to the same
isolation level.

In general, optimistic locking with committed isolation will be faster since it allows for
more concurrency, but it may not meet your needs for data consistency. Pessimistic
locking with committed isolation, and optimistic locking with serializable isolation
will be slower, but will guarantee data consistency on updates.

Defining a bean as read-only will assure that no updates are allowed to the bean. The
performance will be similar to a bean which may not be defined as read-only, and yet
is never used to do inserts, updates, or deletes (that is, only the methods which read
are called). This is because if no fields are modified in a bean that is not defined with
read-only locking, it is already optimized to not do an ejbStore. To see a performance
advantage and avoid doing ejbLoads for read-only beans, you must also set

excl usive-write-access=true.

Optimizing J2EE Applications In OC4J 6-33

Improving EJB Performance in Oracle Application Server

Configuring Lazy-loading on CMP Entity Bean Finder Methods

Using CMP Entity Beans, each finder method retrieves one or more objects. In the
default scenario, with | azy- | oadi ng set to f al se, no lazy-loading, each finder
method causes a single SQL select statement to be executed against the database. For a
CMP bean, one or more objects are retrieved with all of their CMP fields. So, for
example, if you implement an ej bFi ndAl | Enpl oyees method, this finder retrieves
all employee objects with all of the CMP fields in each employee object.

With | azy- | oadi ng set to t r ue, only the primary keys of the objects retrieved
within the finder are returned. Then, only when you access the object within your
implementation, the OC4J container uploads the actual object based on the primary
key. For example, with the ej bFi ndAl | Enpl oyees finder method, when

| azy- | oadi ng istrue, all of the employee primary keys are returned in a
Collection. Then, each time you access one of the employees in the Collection, OC4]
uses the primary key to retrieve the single employee object from the database.

The | azy- | oadi ng value should be set based on the performance considerations for
your application. To determine whether | azy- | oadi ng should be set to t r ue or
f al se, lazy-loading is on or off, consider the following guidelines:

= If you use most of the retrieved objects, then you should set the | azy- | oadi ng
option to f al se (use the default value).

=« Ifyousetl azy-I oadi ng totr ue, the first time an object is accessed within a
transaction another select statement is executed, which results in a round-trip
between the container and the database. If you only access a limited set of the
retrieved or found objects, or are doing a find only to verify existence, setting
| azy- | oadi ng to t r ue may improve performance.

= Youmay want to enable | azy- | oadi ng, set the value to t r ue, if the finder
method returns many rows with lots of data. With large data sets where the finder
method does not return quickly, it may be better to set | azy- | oadi ngtotr ue,
enable lazy loading, so that the finder method returns quickly. After this, the
application accesses rows as needed and the initial finder method return wait time
can be reduced, which can improve application performance.

To turn on lazy-loading in the f i ndByPr i mar yKey method, set the
fi ndByPri mar yKey- | azy- | oadi ng attribute to t r ue, as follows:

<entity-deploynent ... findByPrinaryKey-lazy-loading="true" ... >
To turn on lazy-loading in any custom finder method, set the | azy- | oadi ng attribute
totr ue in the <f i nder - met hod> element for that custom finder, as follows:

<finder-nmethod ... lazy-loading="true" ...>

</ finder - net hod>

Setting The CMP Define Column Type Option

Setting the Def i neCol umType option tot r ue in server. xnl can improve
performance for CMP entity beans, depending on the version of the JDBC driver.

See Also: "Setting the OC4J Define Column Type Option" on
page 6-8

Setting The Batch Size Option to Batch UPDATE statements

OC4] can improve performance by sending UPDATE statements in a batch. This is
beneficial when you have a lot of updates, more than 75% in the application. You can

6-34 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

configure to how many UPDATE statements to batch together to go out to the
database in one round trip by setting the bat ch- si ze element in entity-deployment
tag for your entity bean in the ori on- ej b-j ar. xnl . The default value for

bat ch- si ze is 1, that is, updates are not batched.

There is one exception to the use of bat ch- si ze, that is, if the application code
requires execution of a SELECT statement within several UPDATE statements, the
updates batched prior to the SELECT statement will be executed against the database
before executing the SELECT statement. This is done so that all updates are performed
before you retrieve any data. If you know that it does not matter for this SELECT

statement to be performed, then you can stop the automatic flushing by specifying
del ay- updat es-until-comit totr ue for the bean.

Configuring Parameters for BMP Entity Beans

This section covers parameters that apply to entity beans using BMP. These parameters
are specified in the ori on- ej b-j ar. xm configuration file.

Table 6-9 lists the entity bean BMP specific parameters.

Table 6-9 BMP Entity Bean Performance Parameters and Descriptions

Parameter

Description

call -ti meout

| ocki ng- node

max- i nst ances
max-tx-retries
m n-i nstances

pool - cache-ti neout

See Table 6-5

The locking modes, specified with the | ocki ng- mbde parameter, manage concurrency
and configure when to block to manage resource contention or when to execute in
parallel.

BMP beans must use optimistic locking, which allows concurrent access to a bean, and
the BMP bean is responsible for managing the database access and data consistency. It
is up to the BMP bean to manage isolation as well, and therefore the isolation settings
do not apply for BMP

Default Value: opt i mi stic

See Table 6-5
See Table 6-5
See Table 6-5

This parameter specifies how long to keep BMP Entity Beans cached in the pool.

If you specify a pool - cache-t i meout, then at every pool - cache-ti meout
interval, all beans in the pool of the corresponding bean type, are removed. If the value
specified is 0 or negative, then the pool - cache-ti meout is disabled and beans are
not removed from the pool. In some cases it may help performance to disable

pool - cache-ti meout, or to set the pool - cache-t i neout to alarge value to avoid
removing beans from the pool.

Note: if m n-i nstances is > 0, them n-i nst ances number of instances are kept
in the pool after the pool cache timeout (that is, they are not expired).

Note: if you change the default value of the t askmanager - gr anul ari ty attribute in
server . xm , this causes the pool - cache-ti meout to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

Default Value: 60 (seconds)

Optimizing J2EE Applications In OC4J 6-35

Improving EJB Performance in Oracle Application Server

Configuring Parameters for Session Beans

This section covers the parameters that are specified in the or i on- ej b-j ar. xni
configuration file and apply for session beans.

Table 6-10 lists the stateless session bean specific parameters.
Table 6-11 lists the stateful session bean specific parameters.
This section also covers the following topic:

« Configuring Stateful Session Bean Passivation

« Stateful Session Bean Passivation Performance Recommendations

Table 6-10 Stateless Session Bean Parameters

Parameter Description

cal | -ti meout See Table 6-5

pool - cache-ti meout This parameter specifies how long to keep stateless session E]JBs cached in the pool.

For stateless session E]Bs, if you specify a pool - cache-t i meout, then at every

pool - cache-ti meout interval, all beans in the pool of the corresponding bean type,
are removed. If the value specified is 0 or negative, then the pool - cache-ti meout is
disabled and beans are not removed from the pool. In some cases it may help
performance to disable pool - cache-ti meout, or to set the pool - cache-ti neout
to a large value to avoid removing beans from the pool.

Note: if mi n-i nstances i s > 0, them n-i nst ances number of instances are kept
in the pool after the pool cache timeout (that is, they are not expired).

Note: if you change the default value of the t asknmanager - gr anul ari ty attribute in
server . xm , this causes the pool - cache-ti meout to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity” on page 6-29 for details.

Default Value: 60 (seconds)

max- i nst ances See Table 6-5
max-tx-retries See Table 6-5
m n-i nst ances See Table 6-5

Default Value: 0 (instances)

6-36 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

Table 6-11 Stateful Session Bean Parameters

Parameter

Description

cal |l -ti meout

idletine

max-i nst ances

max-i nst ances-t hreshol d

max-tx-retries

menory-threshol d

See Table 6-5

Specifies the idle timeout for each Session Bean. When the bean has been inactive
for the specified i dl et i ne, it is passivated. .

Default Value: 300 (seconds).

Notel: If the value specified for the t i meout is less than the value specified with
i dl eti ne, then the bean will never be passivated.

Note2: if you change the default value of the t askmanager - granul arity
attribute in ser ver . xm , this causes the i dl et i me to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

To disable, specify "never"

The number of bean instances allowed in memory. When this value is reached,
the container attempts to passivate the oldest bean instance from memory. If
unsuccessful, the container waits the number of milliseconds set in the

cal I -ti meout attribute to see if a bean instance is removed from memory,
either using passivation, the r enove() method, or bean expiration, before a
Ti meout Expi r edExcept i on is thrown back to the client.

To allow an unlimited number of bean instances, set max- i nst ances to 0. To
disable passivation due to reaching max- i nst ances, set max- i nst ances to 0.

See Table 6-5

Defines a threshold for how many active beans exist in relation to the

max- i nst ances attribute definition. Specify an integer that is translated as a
percentage. For example, setting the max-i nst ances to 100 and the

max- i nst ances-t hr eshol d to 90 (90%), specifies that when active bean
instances reach past 90, passivation of beans occurs.

The number of beans that are passivated after crossing this threshold is specified
with the passi vat e- count parameter.

Default Value: 90%

To disable, specify "never"
Ssee Table 6-5

Defines a threshold for how much used JVM memory is allowed before
passivation should occur. Specify an integer that is translated as a percentage.
When the threshold is reached, beans are passivated, even if their idle timeout
has not expired.

The number of beans that are passivated after crossing this threshold is specified
with the passi vat e- count parameter.

Default Value: 80%

To disable, specify "never"

Optimizing J2EE Applications In OC4J 6-37

Improving EJB Performance in Oracle Application Server

Table 6-11 (Cont.) Stateful Session Bean Parameters

Parameter Description

passi vat e- count This attribute is an integer that defines the number of beans to be passivated if
any of the resource thresholds have been reached. Passivation of beans is
performed using the least recently used algorithm.

Default Value: one-third of the max- i nst ances attribute (if max- i nst ances is
> 0). If max- i nst ances is 0, passi vat e- count defaults to 0 (disabled).

To disable passi vat e- count, set the value to 0 or to a negative number.

resour ce-check-interval The container checks all resources at this time interval. At this time, if any of the
thresholds have been reached, passivation occurs.

Default Value: 180 seconds (3 minutes).

To disable, specify "never"

ti meout Specifies the t i meout for Stateful Session E]Bs in seconds. If the bean has been
inactive for the specified t i meout , the bean is invalidated or removed. If the
value is set to zero (0) or to a negative value, then the t i meout is disabled.

When a Stateful Session EJB is inactive, after the t i neout expires, it is
invalidated and a request for the bean returns NoSuchQbj ect Except i on to the
client.

When the pool clean-up logic is invoked (by default every 30 seconds), the pool
clean-up logic invalidates or removes the sessions that timed out, (sessions with
expired t i meout values).

Adjust the t i meout based on your applications use of Stateful Session E]JBs. For
example, if your application does not explicitly remove Stateful Session EJBs, and
the application creates many Stateful Session EJBs, then you may want to lower
thet i meout value.

If your application requires that a Stateful Session EJBs be available for longer
than 1800 seconds, 30 minutes, then adjust the t i meout accordingly.

Note 1: if you change the default value of the t askmanager - granul arity
attribute in ser ver . xm , this causes the t i meout to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

Note2: If the value specified for the t i meout is less than the value specified with
i del ti me, then the bean will never be passivated.

Default Value: 1800 (seconds)

Configuring Stateful Session Bean Passivation

Passivation for a Stateful Session Bean (SFSB) is invoked based on any combination of
the following criteria:

= The idle timeout expires for a bean instance. The idle timeout is specified with the
i dl eti me parameter.

« The container is determined to be out of resources, where a resource to be
monitored is specified with the following parameters.

« nenory-threshold

« max-instances-threshol d

Note: If you use either of these parameters for container resource
control, then setting the r esour ce- check-i nt erval , and
passi vat e- count parameters is mandatory.

6-38 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

« The number of bean instances allowed is reached as defined in the
max- i nst ances parameter in the <sessi on- depl oynent > element in
orion-ejb-jar.xn (see Table 6-11 for details).

= The OC4]J instance terminates: the non passivated beans in memory are flushed to
storage when the OC4]J instance shuts down.

The attributes that control the Stateful Session Bean (SFSB) passivation management
are configured in the <sessi on- depl oynment > tag of the ori on-ej b-j ar. xnl file
for the deployed application.

Enabling passivation for the entire OC4] instance is configured at the container level in
server. xm using the <sf sh- confi g> tag with the attribute

enabl e- passi vati on. When enabl e- passi vat i on=f al se this disables all the
bean level settings for passivation and disables passivation at OC4]J instance
termination. When enabl e- passi vat i on=t r ue applications can control bean
passivation and passivation management using the passivation control parameters
(see Table 6-11 for details).

Passivation is enabled by default and each stateful session bean is configured to
passivate when any SFSB's i dl et i me expires, by default after 5 minutes, and when
the OC4J instance terminates. By default, resource-based and max-instances based
passivation is not enabled.

See Also:

= "Setting the OC4] Options for Stateful Session Bean Passivation
in server.xml" on page 6-18

= Oracle Application Server Containers for [2EE Enterprise JavaBeans
Developer’s Guide for information on EJB Lifecycle Issues

Stateful Session Bean Passivation Performance Recommendations

The Stateful Session Bean (SFSB) activation and passivation model is analogous to
using swap space at the operating system level — when certain operating
characteristics are met, the in-memory state of qualified beans is flushed to disk,
allowing more users to be served.

There is a performance overhead involved with passivation (which makes additional
memory available). The overhead occurs when the state of the SFSB is written to disk,
and when the SFSB is subsequently reused and the SFSB must be read from disk and
activated. Therefore, if the configuration specified for the passivation parameters is
"incorrect”, this can cause significant passivation activity, and the "extra" passivation
activity can degrade performance. Specifying passivation parameters with "incorrect”
values can also use up disk space when a large amount of state is maintained in the
SFSBs and when the beans are not expired (or do not expire for a very long time).

When your application is not affected by memory limitations, the best performance for
SFSBs is achieved by disabling passivation completely, system wide, in ser ver . xmi ,
or by setting parameters for each individual bean so that SFSB passivation is rarely
used.

If the OC4] instance has passivation enabled, it will always passivate active beans in
memory at shutdown.

To turn off all other kinds of passivation for individual beans, use the following
parameters with the following values (see Table 6-11 for details):

i dl etime=never
passi vat e- count =0
max-i nst ances=0

Optimizing J2EE Applications In OC4J 6-39

Improving EJB Performance in Oracle Application Server

max- i nst ances-t hreshol d=never
menor y- t hr eshol d=never
resour ce- check-i nt erval =never

When disabling passivation for an individual bean, note the following:

= If you explicitly set passi vat e- count =0, this also disables
menor y-t hr eshol d and nax-i nst ances-t hr eshol d.

= If you explicitly set r esour ce- check- i nt er val =never, this also disables
menory-t hr eshol d and max-i nst ances-t hreshol d.

= You can passivate based on max- i nst ances with or without setting a
mex-i nst ances-t hr eshol d.

If you enable passivation to help control memory usage, you can improve performance
by limiting the use of passivation (when possible). The following options are available
to help control memory usage by SFSBs without requiring passivation:

= Using Timeouts: specify the minimum timeout for the SFSB that your application
requirements allow (using the t i meout attribute specified in
orion-ejb-jar.xm, see Table 6-11 for details). When a SFSB expires due to
timeout, it is removed and not passivated (if it reaches timeout before the idletime
timeout and before other passivation criteria are reached).

« Using ther enpve() method: if you know in the application when you are done
using a particular SFSB, then you should call the bean r enmove() method to
release its memory rather than letting the bean timeout or be passivated.

The following are additional guidelines to help you decide if you need to use
passivation:

1. Generally, if you do not reuse SFSBs quickly, then set the t i meout and the
i dl eti me so the beans are removed without requiring passivation. To prevent
passivation, set the timeout to be short and set the i dl et i me to a long time, or to
never, so that beans are not passivated before being removed (if you have
sufficient memory to handle the load).

For example, consider an application where you create 1000's of SFSBs within 5
minutes, and you expect most of these beans to be idle for at least 5 minutes after
first use and subsequently reused within 30 minutes. The default timeout is 30
minutes and the default idletime is 5 minutes. Then, in this case, it would be good
to either increase the i dl et i me to 30 minutes or disable passivation based on

i dl eti me. This guideline helps avoid having 1000's of SFSB passivated to disk,
which has a costly performance overhead (the guideline also assumes you will not
run into memory limitations by making this configuration change).

2. Consider setting max- i nst ances, i dl et i me, or memory resource thresholds to
limit the number of beans in memory if:

= You cannot fit all the SFSBs your client load generates and needs over a period
of time (the timeout period of time) in memory.

= You do want to save the state, since you know you will typically reuse it.
= You cannot reduce the timeout for the SFSBs to reduce how many are saved.

3. You can look at the metrics for the methods cr eat e, ej bPassi vat e,
ej bAct i vat e, and ej bRenpve on the SFSB to see how many stateful beans are
created and how much passivation is occurring.

4. Settask-manager - granul arity to 1000 to get greater accuracy on tasks
occurring near the timeout values for EJBs.

6-40 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

See Also: "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29

Configuring Parameters for Message Driven Beans (MDBs)

This section covers the EJB parameters specified in the ori on- ej b-j ar . xmnl
configuration file that apply for Message Driven Beans (MDBs).

Table 6-12 lists the MDB specific parameters.

See Also: "Java Message Service" in the Oracle Application Server
Containers for J2EE Services Guide for information on using MDBs
with OracleAS JMS and OJMS

Table 6-12 Message Driven Bean orion-ejb-jar.xml Parameters

Parameter

Description

dequeue-retry-count

dequeue-retry-interval

| i stener-threads

transacti on-ti meout

Specifies how many times the listener thread is to try to re-acquire the JMS session
once a database failover has occurred. Setting the dequeue-retry-count can be
useful when running with a RAC-enabled database cluster.

Note: this parameter only applies to OJMS.
Default Value: 0
Specifies how often the listener thread is to try to re-acquire the JMS session once a

database failover has occurred. Setting the dequeue-retry-i nt erval canbe
useful when running against a RAC-enabled database cluster.

Note: this parameter only applies to OJMS.
Default Value: 60 (seconds)

If set to a value greater than 1, | i st ener - t hr eads enables multiple instances of
the MDB to concurrently process messages from queues. Use
|'i stener-threads=1 if the messages must be processed in order.

See Also: "Using The listener-threads MDB Parameter" on page 6-42 for a detailed
description of the | i st ener - t hr eads parameter and for limitations.

Default Value: 1

Specifies the maximum time taken for a transaction to finish before it is rolled back
due to a timeout (this parameter only applies for an MDB that uses
container-managed transactions). The MDB transaction timeout timer starts when
the listener thread starts listening for a new message.

Note: the server. xm timeout value, specified with t r ansact i on-confi g
ti meout does not apply to MDB operations.

Set thetransacti on-ti meout to a value that is greater than the longest
expected transaction time. If the t r ansact i on- t i neout is set too small, this can
cause unnecessary rollback and retry overhead. When a timeout occurs, the MDB
automatically does a rollback of the current transaction and the associated
messages will be redelivered for retry.

To check for transaction-timeouts, view the appl i cat i on. | og for entries
containing the following;:

j avax. transaction. Syst enExcepti on(ti ned out)
Default Value: 86,400 seconds (1 day)

When using OracleAS JMS, the transaction timeout cannot be altered from the
default value.

Optimizing J2EE Applications In OC4J 6-41

Improving EJB Performance in Oracle Application Server

Using The listener-threads MDB Parameter

Setting the | i st ener -t hr eads parameter for an MDB can improve performance
when there are many concurrent users sending messages to an MDB'’s queue, or when
the processing that occurs in the onMessage method is significant. For example, if the
onMessage method contains code to call another EJB and the EJB processing can
occur concurrently while processing other messages, then specifying a

|'i st ener -t hreads value greater than one can improve performance. Depending on
the underlying JMS provider and the specific MDB, some applications may see
significant performance improvements by increasing the number of listener threads.

When the | i st ener -t hr eads parameter is specified for an MDB, the OC4]J runtime
creates the specified number of threads to service messages for the MDB and specifies
the degree of parallelism for the MDB. The listener threads are created when the MDB
starts at OC4]J startup.

For example, if a queue contains 100 messages, and the | i st ener -t hr eads
parameter is set to the default value, 1, then only one MDB listener-thread processes
the messages, in a serial fashion. If the | i st ener -t hr eads parameter is set to 5,
there can be a maximum of 5 MDB instances that take messages from the queue, and
process the messages in parallel. The total time required to complete the processing for
100 messages can be shortened since OC4J uses 5 MDB threads to dequeue and
process the messages.

In a multiuser test, with 10 users, where | i st ener -t hr eads is set to 5, compared to
using the default value, 1, end-to-end performance improved by a factor of 2. This test
involved a Servlet sending a message to an Oracle JMS queue, and then the MDB
receiving the message from the queue and sending a reply to a reply queue.

In another test, using OracleAS JMS with | i st ener -t hr eads set to 5, compared to
the default value 1, throughput increased by 27%.

Note: Using thel i st ener -t hr eads parameter, any
performance improvement depends on the application and on the
number of threads specified. Specifying a value that is too large
may cause performance to degrade due to resource contention.

Notes for using | i st ener -t hr eads:

1. Thenumber of | i st ener -t hr eads is included in the total global thread pool
thread count specified using the max thread pool parameter. Consider that the
l'i st ener -t hr eads number of threads will be dedicated to MDB processing;
therefore, you need to allocate this number, plus sufficient additional threads in
the global thread pool to handle other OC4]J processing.

See Also: "Limiting Concurrency In OC4]" on page 6-18

2. When using OJMS, the number of | i st ener -t hr eads is also the number of
dedicated database connections that the MDB uses. So, the number of
l'i st ener -t hr eads must be included in the total datasource specified
max- connect i ons count.

See Also: "Setting the Maximum Open Connections in Data
Sources" on page 6-11

3. Thel i stener-threads parameter is not supported for topics. Thus, topics can
have at most one thread processing in an MDB.

6-42 Oracle Application Server Performance Guide

Improving EJB Performance in Oracle Application Server

4. Using | i st ener -t hr eads with a value greater than 1, messages are still
removed from a queue serially, but the order of processing the messages cannot be
guaranteed since the MDB is processing the messages with multiple threads. Use
|'i stener -t hreads=1, the default value, when the order of message processing
is important. This assumes that the MDB is solely responsible for receiving
messages from the queue.

Using Performance Metrics for MDB Messages
When MDBs use OracleAS JMS as a message provider, DMS message related metrics
are available from the Oracle Application Server performance monitoring tools.

For example, the OracleAS JMS JMSSt or eSt at s metric table includes information
for a destination corresponding to a queue that an MDB uses:

desti nation. val ue: nane
messageDequeued. count : X 0ops
messageEnqueued. count : X 0ops

messageCount . val ue: n
These metrics show the destination name, the total messages enqueued, the total
number of messages dequeued, and the total number currently in the queue.

Note: When monitoring a JMS destination, other applications
besides the MDB may access the destination. Thus, when testing
your application’s performance using the metrics, make sure that
you know whether your application is responsible for message
activity reported in the metrics.

See Also: "OC4] JMS Metrics" on page A-14

Setting up JMS Connections in MDB ejbCreate or onMessage Methods

An MDB is stateless and contains no specific client state across invocations. However,
for non-client related state, an MDB instance can contain some state across the
handling of client messages. For example, state can be maintained for a JMS API
connection object. In addition, other state information that you may want to cache
across onMessage invocations, such as a reference to an EJB, can be initialized in

ej bCr eat e method and cached to optimize MDB performance. Depending on the
application and the message provider, you may be able to improve performance by
selecting when JMS connections, JMS sessions, and other objects are initialized, either
in the MDB ej bCr eat e method or in onMessage.

Table 6-13 summarizes some performance recommendations for selecting when to
create JMS connections and JMS sessions using OracleAS JMS and Oracle JMS (OJMS).

Table 6-13 JMS Performance Recommendations With ejbCreate and onMessage
JMS Provider Performance Recommendation
OracleAS JMS To optimize performance initialize the JMS connection and session once in the MDBs
ej bCr eat e() method, and use repeatedly across onMessage invocations.
Oracle]MS You cannot cache JMS sessions to the database across onMessage invocations. So, for any

queues or Topics used in an MDB, you should set up the Queue or Topic Connection, Session,
and Sender in the onMessage method of the MDB, and close them at the end of onMessage
method. Do not create these objects in the ej bCr eat e() method of the MDB and then leave
them open indefinitely, since these objects open and close logical connections to the database.
The overhead of opening and closing connections and sessions in the onMessage method
should not be significant, and the physical connections can then be reused.

Optimizing J2EE Applications In OC4J 6-43

Improving Web Services Performance in Oracle Application Server

Improving Web Services Performance in Oracle Application Server

In Oracle Application Server, the tuning guidelines for J2EE applications in general
apply to Web Services. Specifically, because Web Services use Java Servlets for entry
points, the guidelines for improving Servlet Performance apply to Oracle Application
Server Web Services. In addition, when a Web Service is implemented as an E]B, the
performance guidelines for EJBs apply.

This section covers the following topics:
= Avoiding Web Services Initial Request Delay
= Using Web Services Typed Requests

= Tuning The Web Services Stateful Session Timeout

See Also: "Improving Servlet Performance in Oracle Application
Server" on page 6-19

Avoiding Web Services Initial Request Delay

Oracle Application Server Web Services may experience an initial request delay due to
the work required to validate data types and to generate server skeleton code. As a
result, the initial Web Service request takes substantially longer than subsequent
requests. In our tests, we see the first test taking 5 to 10 times as long as subsequent
requests. The delay is increased when Java Beans are used to represent complex
parameter and result sets.

To prevent this delay, send a request to Web Services on the system when the system is
restarted or when the application is redeployed. You can also produce a script to send
the initial Web Service request.

Using Web Services Typed Requests

There is a performance overhead associated with using Web Services untyped
requests. When possible, develop clients that use typed requests as un-typed requests
will take more time on the first request when the SOAP Mapping registry is created for
the operation types.

See Also: Chapter 12, "Advanced Topics for Web Services" in the
Oracle Application Server Web Services Developer’s Guide for more
information.

Tuning The Web Services Stateful Session Timeout

When using Stateful Session based Web Services, tuning the sessi on-t i meout
property for session-scoped stateful applications can provide performance benefits.
The HTTP session timeout is specified in the web. xm configuration file as the
<sessi on-ti meout > sub-element of the <sessi on- conf i g> element.

See Also: Chapter 2, "Servlet Development" in Oracle Application
Server Containers for [2EE Servlet Developer’s Guide

Improving ADF Performance in Oracle Application Server

This section contains tips for improving the maintainability, scalability, and
performance of your Oracle Application Development Framework (ADF) applications.

6-44 Oracle Application Server Performance Guide

Improving ADF Performance in Oracle Application Server

Choose the Right Deployment Configuration

Your application will have the best performance and scalability if you deploy your
business components to the web module with your client. Unless you have strong
reasons (such as wanting to use distributed transactions or E]B security features), we
recommend web module deployment of business components over EJB deployment.

Note that both web module deployment and EJB deployment are fully
J2EE-compliant, and the ADF framework makes it easy to switch between them. You
can test your application in both modes to see which gives you the best performance.

Use Application Module Pooling for Scalability

A client can use application module instances from a pool, called application module
pooling. This offers these advantages:

= It reduces the amount of time to obtain server-side resources
« It allows a small number of instances to serve a much larger number of requests

« It addresses the requirements of web applications that must handle thousands of
incoming requests

= It lets you preserve session state and provides failover support

For example, in the case of a web application, you may have 1,000 users but you know
that only 100 will be using a certain application module at one time. So you use an
application module pool. When a client needs an application module instance, it takes
a free one from the pool and releases it to the pool after either committing or rolling
back the transaction. Because the instance is precreated, end users are saved the time it
takes to instantiate the application module when they want to perform a task.
Typically, web-based JSP clients use pools. If you want to make sure that the
application module pool has a maximum of 100 application module instances, you can
customize the default application module pool.

Perform Global Framework Component Customization Using Custom Subclasses

Particularly in large organizations, you may want specific functionality shared by all
components of a particular type--for example, by all view objects. An architect can
create a thin layer of classes such as MyQr gVi ewChj ect | npl that implement the
desired behavior. Individual developers can extend MyOr gVi ewQbj ect | npl instead
of Vi ewChj ect | npl , and you can use the "substitutes” feature to extend

My Or gVi ewQbj ect | npl in legacy code.

Use SQL-Only and Forward-Only View Objects when Possible

Basing a view object on an entity object allows you to use the view object to insert,
update, and delete data, and helps keep view objects based on the same data
synchronized. However, if your view object is only going to be used for read-only
queries, and there is no chance that the data being queried in this view object will have
pending changes made through another view object in the same application module,
you should use a SQL-only view object that has no underlying entities. This will give
you improved performance, since rows do not need to be added to an entity cache.

If you are scrolling through data in one direction, such as formatting data for a web
page, or for batch operations that proceed linearly, you can use a forward-only view
object. Forward-only mode prevents data from entering the view cache. Using forward
only mode can save memory resources and time, because only one view row is in
memory at a time. Note that if the view object is based on one or more entity objects,

Optimizing J2EE Applications In OC4J 6-45

Improving ADF Performance in Oracle Application Server

the data does pass to the entity cache in the normal manner, but no rows are added to
the view cache.

Do Not Let Your Application Modules Get Too Large

A root application module should correspond to one task--anything that you would
include in a single database transaction. Do not put more view objects or view links
than you will need for a particular task in a single application module.

In addition, consider deferring the creation of view links by creating them dynamically
with cr eat eVi ewLi nk() . If you include all view links at design time, the business
logic tier will automatically execute queries for all detail view objects when your client
navigates through a master view object. Deferring view link creation will prevent the
business logic tier from executing queries for detail view objects that you do not yet
need.

For example, for a form in which detail rows are displayed only on request (rather
than automatically), including a view link at design time would force the business
logic tier to automatically execute a query that might well be unnecessary. To prevent
this, you should create a view link dynamically when the detail rows are requested. By
contrast, for a form in which detail rows are displayed as soon as a master is selected,
you should use a view link created at design time to avoid the runtime overhead of
calling cr eat eVi ewLi nk() .

Use the Right Failover Mode

By default, the application module pool supports failover, which saves an application
module’s state to the database as soon as the application module is checked into the
pool. If the business logic tier or the database becomes inoperable in mid-transaction
(due to a power failure or system malfunction, for example), the client will be able to
instantiate a new application module with the same state as the lost one, and no work
will be lost.

However, some applications do not require this high level of reliability. If you're not
worried about loss of work due to server problems, you may want to disable failover.
When failover is disabled, the application module’s state exists only in memory until it
is committed to the database (at which point the application module’s state is
discarded) or recycled (at which point the state is saved so that the client can retrieve
it). By not saving the application module state every time the application module is
checked in, failover-disabled mode can improve performance.

Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows

While the business logic tier is running, it stores view rows in a cache in memory (the
Java heap). When the business logic tier needs to store many rows at once, you need to
make sure it doesn’t run out of memory. To do so, you can specify that when the
number of rows reaches a certain size, the rows "overflow" to your database to be
stored on disk. This feature is called view row spillover. If your application needs to
work with a large query result, view row spillover can help the cache operate more
efficiently.

Choose the Right Style of Bind Parameters

Oracle-style bind parameters (:1, :2, and so on) are more performant than JDBC-style
bind parameters.

Only use JDBC-style bind parameters if you may use a non-oracle JDBC driver.

6-46 Oracle Application Server Performance Guide

Improving JAAS (JAZN) Performance in Oracle Application Server

Implement Query Conditions at Design Time if Possible

You should include any portion of your query condition that you know in advance in
the WHERE clause field in the View Object wizard. Only use set Wher eCl ause() for
genuinely dynamic query conditions.

Even if your query conditions are genuinely dynamic, you may be able to use
parametrized queries instead of set Wher eCl ause() . For example, if your view
object needs to execute a query with the WHERE clause EMPLOYEE_| D=<x> for various
values of X, use a parametrized WHERE clause such as EMPLOYEE_| D=: 1. This is more
efficient than repeatedly calling set Wher eCl ause() .

Use the Right JDBC Fetch Size

The default JDBC fetch size is optimized to provide the best tradeoff between memory
usage and network usage for many applications. However, if network performance is
a more serious concern than memory, consider raising the JDBC fetch size.

Turn off Event Listening in View Objects used in Batch Processes

In non-interactive, batch processes, there is no reason for view objects to listen for
entity object events. Use Vi ew(bj ect . set Li stenToEntityEvents(fal se) on
such view objects to eliminate the performance overhead of event listening.

Improving JAAS (JAZN) Performance in Oracle Application Server

The Java Authentication and Authorization Service (JAAS) is a package that supports
user and role-based authorization, authentication, and delegation. Part of JAAS is an
implementation of the standard Pluggable Authentication Module (PAM) framework
in Java, which supports the separation of an application from its underlying
authentication technologies. Oracle Application Server provides an integrated JAAS
implementation with OC4J called JAZN and provides a login module, out of the box,
that supports several common forms of authentication.

When performing authentication and authorization operations, JAZN accesses a
repository of data that defines users, roles, permissions, and related information. The
characteristics of the repository are important to the performance and scalability of
applications that use JAZN.

Oracle Application Server JAZN provides two types of repository provider for use
with OC4]J:

= XML provider — The XML provider stores repository information in an XML file

= LDAP provider — The LDAP provider stores repository information in the Oracle
Internet Directory, which is accessed using the Lightweight Directory Access
Protocol (LDAP)

This section covers the following topics:

= Improving JAZN Performance With an XML Provider

= Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory)
= Configuring JAZN Providers

« JAZN Performance Recommendations

Optimizing J2EE Applications In OC4J 6-47

Improving JAAS (JAZN) Performance in Oracle Application Server

Improving JAZN Performance With an XML Provider

When OC4J with JAZN is configured to use the XML provider, JAZN loads the entire
XML file into a data structure in memory for fast access. In terms of performance, this
process incurs a small start-up cost, but if the file is not too large and the data in the
file can be retained in physical memory, data access will be very efficient and JAZN
operations should incur little overhead.

See Also: Oracle Application Server Containers for [2EE Security
Guide

Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory)

When OC4J applications using JAZN are configured to use an LDAP provider, the
LDAP repository is queried for data on demand. In this case, a single operation may
involve multiple accesses to a remote directory, and the overhead for JAZN protection
can become significant. Such overhead can be even greater if secure communications
are required between OC4] and the repository which typically requires using SSL.
When JAZN is configured to communicate with the LDAP repository using SSL, the
performance issues of the SSL protocol should be considered.

There are several configuration choices to make when you set up SSL between OC4]J,
and LDAP (Oracle Internet Directory). SSL can be configured to use encryption only,
or encryption plus client or server authentication.

To alleviate the costs of communicating with an LDAP repository, OC4] JAZN
provides caches, including the following three separate caches:

= The Policy Cache: stores grantees and permissions
« The Realm Cache: stores realms, users and roles
= Session cache: stores users and roles in an HTTP session object

The JAZN-LDAP caches are implemented as a single, in-memory hashtable. Objects in
the cache are expired based on a configurable timeout value. A daemon thread runs
periodically, at the timeout interval, to clean up expired objects in the cache. Each of
the three caches can be enabled or disabled, and the initial capacity, load factor, initial
cache purge delay, and cache purge timeout value can all be specified.

By default, the JAZN LDAP Provider is configured to use caching. Caching greatly
improves the efficiency of using JAZN with an LDAP-based repository. Our
experiments have shown the default values of cache configuration often work well,
but you may need to test these values to determine how your application performs
using JAZN.

See Also:
= Oracle Application Server Containers for [2EE Security Guide

= Oracle Internet Directory Administrator’s Guide

Configuring JAZN Providers

Oracle Application Server OC4] provides an integrated JAAS implementation with
OC4J. To configure the JAAS provider, you use j azn. xml to determine if the provider
is LDAP-based, uses Oracle Internet Directory as the data store, or XML based.

The file j azn. xm is the configuration file for both the XML-based and LDAP-based
JAAS providers. The JAAS Provider must locate a valid j azn. xm file before it can
begin running.

6-48 Oracle Application Server Performance Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

When the JAAS provider starts up, it searches for j azn. xm in order through the
directories specified by:

1. oracle.security.jazn.config (system property)
2. java.security. auth. policy (system property)

3. $J2EE_HOME/ confi g ($J2EE_HOVE is specified by the system property
oracl e. j 2ee. hone)

4. $ORACLE_HOME/ j 2ee/ horre/ conf i g ($ORACLE_HOME is specified by the
system property or acl e. hone)

5. . ./lconfig

The JAAS provider stops searching after locating aj azn. xnl file. If no file is found,
you receive the error message "JAZN has not been properly configured."

You can also use the <j azn> tag to configure the JAAS Provider. The <j azn> tag can
appear in any of the following locations:

« Theapplication’s ori on-appl i cati on. xni
= Theglobal appl i cati on. xm

« jazn.xnl

See Also: Oracle Application Server Containers for [2EE Security
Guide

Configuring Session Timeout in web.xml

The JAZN session cache can only be used by HTTP clients that have cookies enabled.
Objects in this cache are held for the duration of an HTTP session. The HTTP session
timeout is specified in the web. xm configuration file as the <sessi on-t i neout >
sub-element <sessi on- conf i g> element.

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide

JAZN Performance Recommendations

The following recommendations should help you to meet the performance
requirements for applications that use JAZN for authentication and authorization:

1. If the JAZN XML file-based repository is sufficient for your needs, it is likely to
provide the best performance.

2. If an LDAP repository is required, for management, usability, or scalability
reasons, use the JAZN-LDAP caches. Configure the cache parameters as needed to
improve performance.

3. If an LDAP repository is required, and if secure communications are needed
between the LDAP repository and OC4]J, configure the system to use only the level
of security required. For example, use encryption only if that is sufficient.

Using Multiple OC4Js, Limiting Connections and Load Balancing

This section outlines areas that allow you to improve performance by setting the
number of processes in an OC4]J Instance, by directing requests to different OC4]J
Instances, and by limiting the number of requests sent to an OC4]J Instance. These
techniques spread the J2EE application load and the incoming requests among

Optimizing J2EE Applications In OC4J 6-49

Using Multiple OC4Js, Limiting Connections and Load Balancing

multiple OC4]J processes which generally results in higher throughput and shorter
response time. In addition, multiple OC4] processes are needed for load-balancing,
high availability, and failover.

This section provides links to other Oracle Application Server documents and sections
in this guide that show you how to configure and use multiple OC4Js.

Note: The replication features that provide for failover with Web
sessions and for stateful session EJBs have a performance overhead;
only use these features when failover features are needed.

This section covers the following topics:

= Configuring Multiple OC4J Processes
= Load Balancing Applications

= Limiting Connections

= Controlling Replication With Multiple OC4Js

Configuring Multiple OC4J Processes

This section covers the following;:

= Overview of Types of OC4] Configurations

= Determining the Number of OC4] Processes

= Partitioning Applications into Different OC4] Instances

= Configuring Multiple OC4] Processes Using Application Server Control Console

Overview of Types of 0C4J Configurations

Oracle Application Server supports different types of installations and configurations,
where you can run multiple OC4Js, including the following;:

= A standalone Oracle Application Server Instance with multiple OC4] Instances
(each OC4J Instance may include multiple OC4] processes).

= Oracle Application Server Clusters, managed, where a collection of application
server instances runs with identical configurations and application deployments.

= Oracle Application Server Clusters, non-managed, where the administrator
manually configures each instance within a cluster.

= A single or multiple hosts running standalone OC4J.

Determining the Number of OC4J Processes

Determining the optimal ratio of OC4] processes to available CPUs is dependent on
the characteristics of the applications you run, the OC4] configuration, the hardware
configuration, and the type and number of expected incoming requests. In general, for
multi-CPU configurations with greater than two processors, you should consider
configuring multiple OC4] processes. For example, on a recent test of a J2EE
application, a single OC4J process was sufficient to use most of the CPU resources on a
2 processor system. Adding additional OC4]J processes will not help improve
performance on this system. However, on a six processor system, a single OC4]J
process uses only 70% of the CPU resources. Since additional CPU resources are
available on this system, adding a second OC4] process should improve performance.

6-50 Oracle Application Server Performance Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

Adding processes beyond the available resources of the system will not improve
performance. For example, if one OC4]J process is sufficient to saturate the CPU
resources of a system, adding additional processes is not likely to improve
performance and may, in fact, degrade it. A good starting point is to configure one
OC4] process for every 3-4 CPUs and measure the improvement from adding
additional processes.

See Also:
= Oracle Application Server High Availability Guide
= Oracle Application Server Containers for J2EE User’s Guide

Partitioning Applications into Different OC4J Instances

If your Oracle Application Server has many different applications deployed, each of
which has different requirements, you may want to configure different OC4J Instances
to service the different applications (and OC4] Instances may be configured with
different numbers of OC4] processes).

To deploy applications to different OC4] Instances, perform the following steps:
1. Create the multiple OC4J Instances.

2. Use the Deploy Application Wizard, by selecting the Deploy Ear File button, on
each Instance, and deploy the appropriate application and specify a unique URL
mapping for each of the applications.

After deploying the applications to different OC4] Instances, you can monitor the
performance to see if overall throughput increases, or the response time decreases.

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide

Configuring Multiple OC4J Processes Using Application Server Control Console

Using Application Server Control Console you can specify the number of processes in
an OC4J Instance from the Server Properties page. This page is available by selecting
the Administration link from an OC4J Instance page.

See Also: Oracle Application Server High Availability Guide

Load Balancing Applications

OC4]J provides load-balancing features for web-based applications with HTTP clients
and for E]JB applications accessed by remote Java E]JB clients.

This section covers the following topics:
= Web Application Load Balancing
= EJB Application Load Balancing

Web Application Load Balancing

In an Oracle Application Server environment, the Oracle HTTP Server uses nbd_oc4]
to load balance requests between the available OC4] processes. In this environment
you can select nbd_oc4j configuration options to choose the appropriate nbd_oc4;j
load balancing policies to improve performance.

See Also: "Setting mod_oc4j Load Balancing Policies" on
page 5-16

Optimizing J2EE Applications In OC4J 6-51

Using Multiple OC4Js, Limiting Connections and Load Balancing

EJB Application Load Balancing

After an EJB application is deployed to multiple OC4Js, an EJB client-side application
can load balance its requests across the available OC4Js. To use load balancing, the
client-side application configures the JNDI properties to use load balancing.

There are three ways that the E]B client-side application can set the JNDI properties,
including:

= Setting the properties in the environment passed to the InitialContext

= Setting the properties in the j ndi . properti es file

= Setting the JVM system parameters on the client-side OC4]J

This section shows the EJB client-side properties that are specified in the
j ndi . properti es file. This section shows the load balancing related properties, but
does not include all the available properties.

See Also:

= "Setting JNDI Properties", in Chapter 2 of Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

= Chapter 10, in Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide for more information on
load-balancing E]Bs

Setting the JNDI java.naming.factory.initial Property

Thej ava. nami ng. factory.initial property specifies the initial context factory
to use.

See Also: Oracle Application Server Containers for [2EE Enterprise
JavaBeans Developer’s Guide

Setting the JNDI java.naming.provider.url Property

Oracle Process Manager and Notification Server (OPMN) dynamically sets all ports,
including the RMI port, when each OC4J instance starts.

Using the j ava. nami ng. provi der . ur| property in the EJB client-side JNDI
properties, the client-side OC4J retrieves a list of the available dynamic ports for the
OC4J instance, and if the OC4] instance is part of a cluster, a list of all the available
dynamic ports for that instance across the cluster. If the list includes more than one
port, the EJB client-side code randomly picks one port from the list to send your
requests to. All EJB lookups using that InitalContext will go to the selected host.

Use the following syntax for setting the URL, including the opmm: or mi : prefix for the
j ava. nami ng. provi der. ur| property:

opm: orm : // opm_host : oprm_port: oc4j _i nst ance/ appl i cati on- nane

The OPMN host name, opmm_host, and port number, oprm_por t, is retrieved from
the $ORACLE_HOVE/ opmm/ conf / opmm. xnd file.

In most cases, OPMN is located on the same machine as the OC4J instance. However,
you must specify the host name in case it is located on another machine. The OPMN
port number is optional; if excluded, the default is port 6003. The OPMN port is
specified in the file $ORACLE_HOVE/ opmm/ conf/ opmm. xni .

6-52 Oracle Application Server Performance Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

Setting the JNDI java.naming.provider.url Property in Standalone 0C4J

For standalone OC4]J, specify the j ava. nam ng. ur | property using a comma
separated list of URLs including the or m : prefix and the hosts where OC4] runs. This
load-balances E]B client get Initial Context requests randomly across the hosts and
OC4J processes specified in the comma separated list. All EJB lookups using that
InitalContext will go to the selected host.

The syntax for specifying each URL for a host is as follows:

orm ://hostnane: orni _port/application-name

The ORMI port, or mi _port, can be omitted if the port is the default ORMI port
number (23791).

For example, to load balance to my_ej b_app that is running on hostl, host2, and
host3, set the property j ava. nami ng. provi der . url as follows:

j ava. nam ng. provi der. url =orni://host1:23791/ nmy_ej b_app, orm ://host2: 23792/ ny_ej b_
app, orm ://host3:23791/ ny_ej b_app

Setting the JNDI java.naming.security.principal Property

Setting the j ava. nam ng. security. princi pal property specifies the username.
See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Setting the JNDI java.naming.security.credentials Property

Setting the java. nami ng. security. credenti al s property specifies the password.
See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Setting the OC4J Dedicated RMI Context Option for Remote EJB Clients

When you set the property dedi cat ed. r mi cont ext =t r ue, then each initial context
lookup receives its own Initial Context instead of a shared context. This option is only
needed if an E]B client is doing multiple initial context lookups within the same JVM
and you want to use load balancing.

When the property dedi cat ed. r mi cont ext isf al se, OC4]J load balances only on
the first get initial context call. This dedi cat ed. r mi cont ext property is set to
f al se by default.

Limiting Connections

This section covers the following topics:
= Limiting Web Connections
= Limiting Remote EJB Client Connections

« Limiting HTTP Connections with Standalone OC4]

Limiting Web Connections

You can improve J2EE application performance by limiting the number of active HTTP
concurrent connections a given site accepts. Using Oracle HTTP Server with nod_

Optimizing J2EE Applications In OC4J 6-53

Using Multiple OC4Js, Limiting Connections and Load Balancing

oc4j , you can limit the number of incoming requests by setting the Maxd i ent s
parameter in ht t pd. conf .

See Also: "Configuring Oracle HTTP Server Directives" on
page 5-8

Limiting Remote EJB Client Connections

To limit remote EJB client connections, you can use the global thread pool features that
control the maximum number of threads that service incoming EJB clients. By
configuring the <gl obal -t hr ead- pool >inserver. xm to use two thread pools,
you can set the parameter cx- max to limit remote EJB client connections.

See Also: "Limiting Concurrency In OC4]" on page 6-18

Limiting HTTP Connections with Standalone 0C4J

If you are using standalone OC4] you can limit the number of active web users an
OC4J site accepts concurrently by constraining the maximum allowable HTTP
connections. Tuning parameters on a standalone OC4J can improve performance if
there are a large number of concurrent users that the system cannot efficiently handle,
or when there are limited resources which you cannot easily constrain.

To limit the HTTP connections, use the max- ht t p- connect i ons configuration
element in server. xm and specify the attributes: val ue,

max- connecti ons- queue-ti neout, and socket - backl og. The default val ue is
1000000, the default max- connect i ons- queue-ti meout is 10 seconds, and the
default socket - backl og is 30.

For example, the following shows a line of ser ver . xml that configures the maximum
number of connections:

<max- htt p- connecti ons max-connecti ons- queue-ti meout ="120" socket - backl og="50"
val ue="100"/>

When you want messages to be redirected to a different URL when the maximum
connections limit is reached, include the HTTP redirect URL.

For example, to redirect to ht t p: / / exanpl e. conl page. j sp, add the following line
toserver. xm :

<max- htt p- connecti ons max-connecti ons- queue-ti meout ="120" socket - backl og="50"
val ue="100"> http://exanpl e. cont page. j sp
</ max- htt p- connecti ons>

See Also: Appendix A, "Additional Information" in the Oracle
Application Server Containers for J2EE User’s Guide for
information on <max- ht t p- connect i ons> attributes

6-54 Oracle Application Server Performance Guide

Performance Considerations for Deploying J2EE Applications

Controlling Replication With Multiple OC4Js

This section covers the following;:
= Controlling Web Application Replication
= Controlling Stateful Session EJB Replication

Controlling Web Application Replication

The replication features that provide for failover with Web sessions have a
performance overhead. You should only use these features when their use is a
requirement for the application or for the production environment.

You can disable replication for all applications running on OC4J using Application
Server Control Console. From the OC4]J Instance page select the Administration Link.
Then, select the Replication Properties Link. On the Replication Properties page,
deselecting the Replicate session state checkbox turns off Web replication for the OC4]J
Instance. This removes the <cl ust er - conf i g> element from

gl obal - web- appl i cati on. xm and disables OC4J] Web replication for all
applications running on the OC4J Instance.

If you do not want sessions to be replicated in a particular application, then remove
the <di st ri but abl e/ > element from the application’s web. xm file. This disables
replication for the application even if OC4J has enabled replication.

With replication enabled, setting the <di st ri but abl e/ > element in web. xm can
have significant performance overhead for applications that use sessions, since this
configures the application to use session replication.

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide

Controlling Stateful Session EJB Replication

The replication features that provide for failover with stateful session EJBs have a
performance overhead. Therefore, you should only use these features when their use is
a requirement for your application or for your production environment.

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Performance Considerations for Deploying J2EE Applications

Many factors have an impact on the time it takes to deploy J2EE Applications on OC4]
running in an Oracle Application Server environment.

This section covers the following:
= Deployment Performance During the Application Development Phase

= Deployment Performance During the Test and Production Phases

Optimizing J2EE Applications In OC4J 6-55

Performance Considerations for Deploying J2EE Applications

Deployment Performance During the Application Development Phase

The following development phase choices have an impact application deployment
time for applications that are deployed to OC4].

JVM flags — The JVM —ser ver flag is recommended for production use and is the
default for OC4J] when running in an Oracle Application Server environment. We
have found —ser ver usually improves performance in server environments.
However, using the —ser ver option increases the time required to restart a JVM
and can require more memory.

See Also: "Setting Java Command Line Options (Using JVM and
OC4]J Performance Options)" on page 6-3

Heap requirements — When you deploy large applications, if the deployment
triggers JVM garbage collection, you may improve performance by increasing the
size of the heap. Increasing the heap may provide enough memory so that the
garbage collection is avoided. To increase the size of the heap, use either the —nx
JVM option or set the ++Aggr essi veHeap option. In addition, if the system is
constrained for physical memory you may wish to shut down unused OC4]J
instances to reclaim physical memory.

See Also:
= "Setting the JVM Heap Size for OC4J Processes" on page 6-3

= "Setting the JVM AggressiveHeap Option for OC4] Processes"
on page 6-5

Application Type — EJB applications require a compilation phase during
deployment, and typically take longer to deploy than other type of]2EE
applications.

Browser type — The default configuration of Internet Explorer uses a buffer size of
8K. This size limitation can cause a delay in transmitting large files which can
result in a significant performance degradation on deployments of large
applications. We advise changing the configuration option to increase the buffer
size. For detailed instructions on changing the buffer size, see the following site,

http:/ /support.microsoft.com/default.aspx?scid=kb;en-us;329781

This issue is also present with Netscape 7.0 and Mozilla 1.0.2., however we are not
aware of any workarounds. If you are using these browsers, you may decide to
use a different browser or manually copy the . ear file to the local host and deploy
using a command line tools (admi n. j ar or dcnct |). Netscape versions 4.79 and
7.1 do not exhibit this problem.

File system utilization — Deploying applications involves file I/O to the local
deployment directory. File I/ O speeds may be impacted by the percentage
utilization of the file system. Consult your platform documentation for
recommendations about optimal utilization levels. However, many platform
vendors recommend maintaining file system utilization below 90% for optimal
performance.

6-56 Oracle Application Server Performance Guide

Performance Considerations for Deploying J2EE Applications

Deployment Performance During the Test and Production Phases

The following test or production phase choices have an impact on the time it takes to
deploy an application to OC4J.

Deployment Tool — For production use with Oracle Application Server, you must
deploy applications using either: dcrct |, Application Server Control Console, or
JDeveloper. If you use dcnet | to deploy applications and need to perform
multiple deploys or management commands, using the decntt | shell mode
provides a minor performance savings. Using the shell mode, the dcntt | client
maintains a single client process for all the commands you run.

Repository Type — If you are using an Oracle Application Server with a database
repository, where the repository runs on a remote host, you may see slightly
higher deployment times depending on the network latency at your site.
Deploying to an Oracle Application Server with a local file-based repository
usually is the most performant. Your choice of repository type should be driven by
the availability and architectural requirements for your site and by application and
deployment requirements.

See Also: Oracle Application Server High Availability Guide

Oracle HTTP Server Process State — As a final phase of application deployment, if
the Oracle HTTP Server is running, OPMN issues a command to restart the Oracle
HTTP Server. This action updates the routing information for the newly deployed
application. If you have a number of applications to deploy, and you are not
running in a live production environment, you may wish to leave the Oracle HTTP
Server down until after all applications are deployed. This avoids repeated restarts
for the Oracle HTTP Server. However, restarting the Oracle HTTP Server only
takes a few seconds, depending on the system speed, so the performance savings
is not dramatic unless you are deploying a large number of applications.

OC4]J Process State — If the OC4] instance that you wish to deploy to is not started
at the time the deploy command is issued, OPMN will start the instance and then
shut it down when the deployment is complete. Again, these restart times are
primarily significant when you are deploying multiple applications.

Heap requirements — When you deploy large applications, the deployment may
trigger JVM garbage collection. In memory-constrained environments, where you
cannot increase the size of the heap to provide enough memory so that the
garbage collection is avoided, then, typically, the only result of a garbage collection
is an increase is the application deployment time (and an increase in response
times for requests to the OC4J instance or request timeouts). However, if the
application being deployed is extremely large, the extended duration of the
garbage collection may trigger OPMN to restart the OC4] instance.

To avoid OC4] restarts, increase the OPMN ping failure limit by setting values for
the no-reverseping-failed-ping-linmt and

reversepi ng-fail ed-ping-1imt parametersinopm. xm . For example,
set these values as follows:

<category id="restart-paraneters">
<data id="no-reverseping-failed-ping-limt" value="2"/>
<data id="reverseping-failed-ping-limt" value="10"/>
</ cat egory>

The default value for no- r ever sepi ng-fail ed-ping-1inmt is1and the
default value for r ever sepi ng-fail ed-ping-limt is3.

Optimizing J2EE Applications In OC4J 6-57

Performance Considerations for Deploying J2EE Applications

6-58 Oracle Application Server Performance Guide

v

Optimizing OracleAS Web Cache

This chapter provides guidelines for improving the performance of Oracle Application
Server Web Cache (OracleAS Web Cache).

This chapter contains the following topics:

Use Two CPUs for OracleAS Web Cache

Configure Enough Memory for OracleAS Web Cache
Make Sure You Have Sufficient Network Bandwidth
Set a Reasonable Number of Network Connections
Tune Network-Related Parameters

Increase Cache Hit Rates

Check Application Web Server and Web Cache Settings to Optimize Response
Time

See Also: Oracle Application Server Web Cache Administrator’s Guide
for more information about using OracleAS Web Cache.

Optimizing OracleAS Web Cache 7-1

Use Two CPUs for OracleAS Web Cache

Use Two CPUs for OracleAS Web Cache

OracleAS Web Cache can make best use of one or two CPUs. Because OracleAS Web
Cache is an in-memory cache, it is rarely limited by CPU cycles. Additional CPUs do
not increase performance significantly. However, the speed of the processors is
critical—use the fastest CPUs you can afford.

Note that OracleAS Web Cache is limited by the available addressable memory.
Additional memory can increase performance and scalability. See "Configure Enough
Memory for OracleAS Web Cache" on page 7-2 for information about the amount of
memory needed.

OracleAS Web Cache has two processes: one for the admin server and one for the
cache server.

= The admin server process is used for configuring and monitoring OracleAS Web
Cache. This process consumes very little CPU time. However, when viewing the
statistics pages in OracleAS Web Cache Manager, the admin server process must
query the cache server process to obtain the relevant metrics. Accessing the
statistics pages frequently, or setting a high refresh rate on a statistics page can
affect cache server performance.

= On UNIX, the cache server process uses two threads: one to manage incoming
connections and one to process requests. Because of this, two CPUs dedicated to
OracleAS Web Cache are optimal.

On Windows, the cache server process can take advantage of up to four CPUs
because it creates additional threads for I/O processing. However, two CPUs are
sufficient for most deployments.

For a cost-effective way to run OracleAS Web Cache, run it on a fast two-CPU
computer with lots of memory. See the Oracle Application Server Web Cache
Administrator’s Guide for information about various deployment scenarios.

For a Web site with more than one OracleAS Web Cache instance, consider installing
each instance on a separate two-CPU node, either as part of a cache cluster or as a
standalone instance. When OracleAS Web Cache instances are on separate nodes, you
are less likely to encounter operating system limitations, particularly in network
throughput. For example, two caches on two separate two-CPU nodes are less likely to
encounter operating system limitations than two caches on one four-CPU node.

Of course, if other resources are competing with OracleAS Web Cache for CPU usage,
you should take the requirements of those resources into account when determining
the number of CPUs needed. Although a separate node for OracleAS Web Cache is
optimal, you can also derive a significant performance benefit from OracleAS Web
Cache running on the same node as the rest of the application Web server.

Configure Enough Memory for OracleAS Web Cache

To avoid swapping documents in and out of the cache, it is crucial to configure enough
memory for the cache. Generally, the amount of memory (maximum cache size) for
OracleAS Web Cache should be set to at least 256 MB.

To be more precise in determining the maximum amount of memory required, you can
take the following steps:

1. Determine what documents you want to cache, how many are smaller than 2
kilobytes (KB), and how many are larger than 2 KB. Determine the average size of
the documents that are larger than 2 KB. Determine the expected peak load—the
maximum number of documents to be processed concurrently.

7-2 Oracle Application Server Performance Guide

Configure Enough Memory for OracleAS Web Cache

One way to do this is to look at existing Web server logs for one day to see what
documents are popular. From the list of URLs in the log, decide which ones you
want to cache. Retrieve the documents and get the size of each document.

Calculate the amount of memory needed. The way you calculate it may differ
depending on the version of OracleAS Web Cache.

The amount of memory that OracleAS Web Cache uses to store a document
depends on the document size:

« If a document is smaller than 2 KB, OracleAS Web Cache uses a buffer of 2 KB
to store the HTTP body.

= Ifadocumentis 2 KB or larger, OracleAS Web Cache uses buffers of 8 KB to
store the HTTP body. For example, if a document is 42 KB, OracleAS Web
Cache uses six 8 KB bulffers to store the HTTP body.

= Regardless of the size of the body, OracleAS Web Cache uses 8 KB to store the
HTTP response header.

Use the following formula to determine an estimate of the maximum memory
needed:

(X* (2kB+8KB)) +(Y* (([m8 * 8KB) + 8KB)) + basenem

In the formula:

= Xis the number of documents smaller than 2 KB.

= 2KBis the buffer size for the HTTP body for documents smaller than 2 KB.
= 8KBis the bulffer size for the HTTP response header.

= Yis the number of documents that are 2 KB or larger.

= [8] is the ceiling of m(the average size, in kilobytes, of documents 2 KB or
larger) divided by 8. A ceiling is the closest integer that is greater than or
equal to the number.

= BKBis the buffer size for the HTTP body for documents that are 2 KB or larger.
= 8KBis the buffer size for the HTTP response header.

= basemnemis the base amount of memory needed by OracleAS Web Cache to
process requests. This amount includes memory for internal functions such as
lookup keys, connections to the application Web server to process cache
misses, and timestamps. The amount needed depends on the number of
concurrent requests and on whether or not the requests include Edge Side
Includes (ESI). ESI is a markup language to enable partial-page caching of
HTML fragments.

For non-ESI requests, each concurrent request needs approximately 32 KB of
memory. For example, to support 1000 concurrent requests, you need about 32
MB of memory.

For ESI requests, each concurrent request needs roughly the following amount
of memory:

32KB + (nunber of ESI fragnents * [8KB to 16KB])

Because documents with more ESI fragments require more metadata for each
fragment, use the higher number (16) for documents with 10 or more

Optimizing OracleAS Web Cache 7-3

Configure Enough Memory for OracleAS Web Cache

fragments. For example, for a document with 10 ESI fragments, use the
following calculation:

32KB + (10 * [16KB]) = 192KB

That is, you need about 192 KB of memory for one 10-fragment document. To
support 1000 concurrent requests, you need roughly 192 MB of memory.

For example, assume that you want to cache 5000 documents that are smaller than
2 KB and 2000 documents that are 2 KB or larger and that the larger documents
have an average size of 54 KB. The documents do not use ESI. You expect to
process 500 documents concurrently. Use the formula to compute the maximum
memory:

(5000 * (2KB + 8KB)) + (2000 * (([54/8] * 8KB) + 8KB)) + (500 * 32KB)

Using the formula, you need:
« 50,000 KB for the smaller documents.

= 128,000 KB for the larger documents. For the HTTP body, you need 56 KB
(seven 8 KB buffers) for each document, given the average size of 54 KB. For
the HTTP response header, you need 8 KB for each document.

= Approximately 16,000 KB for the base amount of memory needed to process
500 concurrent requests.

This results in an estimate of 194,000 KB of memory needed.

Note: Even though you specify that certain documents should be
cached, not all of the documents are cached at the same time. Only
those documents that have been requested and are valid are stored
in the cache. As a result, only a certain percentage of the documents
are stored in the cache at any given time. You may not need the
maximum memory derived from the preceding formula.

3. Configure OracleAS Web Cache, specifying the result of the formula as the
maximum cache size. Remember that the result is only an estimate.

To specify the maximum cache size, take the following steps:

a. Inthenavigator pane, select Properties > Resource Limits.

b. On the Resource Limits page, select the cache and click Edit.

The Edit Resource Limits dialog box appears.

c. Inthe Maximum Cache Size field, enter the result of the formula.

d. Click Submit.

e. Inthe OracleAS Web Cache Manager main window, click Apply Changes.
4. Restart OracleAS Web Cache.

5. Using a simulated load or an actual load, monitor the cache to see how much
memory it really uses in practice.

7-4 Oracle Application Server Performance Guide

Make Sure You Have Sufficient Network Bandwidth

The cache is empty when OracleAS Web Cache starts. For monitoring to be valid,
make sure that the cache is fully populated. That is, make sure that the cache has
received enough requests so that a representative number of documents are
cached.

The OracleAS Web Cache Statistics page (Monitoring > Web Cache Statistics)
provides information about the current memory use and the maximum memory
use. Note the following metrics in the Cache Overview table:

» Size of Documents in Cache shows the current logical size of the cache, which
is the size of the valid documents in the cache. For example, if the cache
contains two documents, one 3 KB and one 50 KB, the Size of Documents in
Cache is 53 KB, the total of the two sizes.

« Configured Maximum Cache Size indicates the maximum cache size as
specified in the Resource Limits page.

« Current Allocated Memory displays the physical size of the cache, which is the
amount of data memory allocated by OracleAS Web Cache for cache storage
and operation. This number is always smaller than the process size shown by
operating system statistics because the OracleAS Web Cache process, like any
user process, consumes memory in other ways, such as instruction storage,
stack data, thread, and library data.

« Current Action Limit is 95% of the Configured Maximum Cache Size. This
number is usually larger than the Current Allocated Memory.

If the Current Allocated Memory is greater than the Current Action Limit,
OracleAS Web Cache begins to use allocated but unused memory, and may begin
garbage collection to free more memory. During garbage collection, OracleAS Web
Cache removes the less popular and less valid documents from the cache in favor
of the more popular and more valid documents to obtain space for new HTTP
responses without exceeding the maximum cache size.

If the Current Allocated Memory is close to or greater than the Current Action
Limit, increase the maximum cache size to avoid swapping documents in and out
of the cache. Use the Resource Limits page (Properties > Resource Limits) to
increase the maximum cache size.

Make Sure You Have Sufficient Network Bandwidth

When you use OracleAS Web Cache, make sure that each node has sufficient network
bandwidth to accommodate the throughput load. Otherwise, the network may be
saturated but OracleAS Web Cache has additional capacity. For example, if an
application generates more than 100 megabits of data per second, 10/100 Megabit
Ethernet will likely be saturated.

If the network is saturated, consider using Gigabit Ethernet rather than 10/100
Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario to
avoid network collisions, retransmissions, and bandwidth starvations. Additionally,
consider using two separate network cards: one for incoming client requests and one
for requests from the cache to the application Web server.

If system monitoring shows that the network is underutilized and throughput is less
than expected, check whether or not the CPUs are saturated.

Optimizing OracleAS Web Cache 7-5

Set a Reasonable Number of Network Connections

Set a Reasonable Number of Network Connections

It is important to specify a reasonable number for the maximum connection limit for
the OracleAS Web Cache server. If you set a number that is too high, performance can
be affected, resulting in slower response time. If you set a number that is too low,
fewer requests will be satisfied. Strike a balance between response time and the
number of requests processed concurrently.

To help determine a reasonable number, consider the following factors:

= The maximum number of clients that you intend to serve concurrently at any
given time.

= The average size of a document and the average number of requests per
document.

= Network bandwidth. The amount of data that can be transferred at any one time is
limited by the network bandwidth. See "Make Sure You Have Sufficient Network
Bandwidth" on page 7-5 for further information.

« The percentage of cache misses. Cache misses are forwarded to the application
Web server. Those requests consume additional network bandwidth, resulting in
longer response times, especially if a large percentage of requests are cache misses.

= How quickly a document is processed. Use a network monitoring utility, such as
t t cp, to determine how quickly your system processes a document.

= The cache cluster member capacity, if you have a cache cluster environment. The
capacity reflects the number of incoming connections from other cache cluster
members. Set the cluster member capacity using the Clustering page (Properties >
Clustering) of OracleAS Web Cache Manager.

Use various tools, such as those available with the operating system and with
OracleAS Web Cache, to help determine the maximum number of connections. For
example, the net st at - a command enables you to determine the number of
established connections; the t t cp utility enables you to determine how fast a
document is processed. The OracleAS Web Cache Manager provides statistics on hits
and misses.

To set the maximum number of incoming connections, take the following steps:

1. In the navigator pane of OracleAS Web Cache Manager, select Properties >
Resource Limits.

2. On the Resource Limits page, select the cache and click Edit.
The Edit Resource Limits dialog box appears.
3. Inthe Maximum Incoming Connections field, enter the new value.
4. Click Submit.
5. In the OracleAS Web Cache Manager main window, click Apply Changes.

Do not set the value to an arbitrary high value. OracleAS Web Cache sets aside some
resources for each connection, which could adversely affect performance. For many
UNIX systems, 5000 connections is usually a reasonable number.

7-6 Oracle Application Server Performance Guide

Tune Network-Related Parameters

Connections on UNIX Platforms

On most UNIX platforms, each client connection requires a separate file descriptor.
The OracleAS Web Cache server attempts to reserve the maximum number of file
descriptors when it starts. If the webcached executable is run as r oot , you can
increase this number. For example, for the Solaris Operating System you can increase
the maximum number of file descriptors by setting the r | i m_f d_nax parameter. If
webcached is not run as r oot , the OracleAS Web Cache server logs an error message
and fails to start.

See Also: Oracle Application Server Web Cache Administrator’s Guide
for more information on how OracleAS Web Cache calculates the
maximum number of file descriptors to be used for client connections.

Connections on Windows

On Windows, the number of file handles as well as socket handles is limited only by
available kernel resources, more precisely, by the size of paged and non-paged pools.
However, the number of active TCP/IP connections is restricted by the number of TCP
ports the system can open.

See Also: Oracle Application Server Web Cache Administrator’s Guide
for more information on OracleAS Web Cache and TCP limits.

Tune Network-Related Parameters

Besides the number of network connections, other network-related parameters for
OracleAS Web Cache, the application Web server, and the operating system can affect
response time. In most situations, the default settings are sufficient.

If response time is slow, you should tune OracleAS Web Cache, the application Web
server, and operating system parameters that affect connections, as explained in this
section.

For OracleAS Web Cache, check the values of the following settings:

= Keep-Alive Timeout: The amount of time a network connection is left open after
OracleAS Web Cache sends a response to a browser. Keep-Alive allows an HTTP
client to send multiple requests to OracleAS Web Cache using the same network
connection. By default, the connection is left open for five seconds, which is
typically enough time for the browser to send subsequent requests to OracleAS
Web Cache using the same connection.

If the network between the browser and OracleAS Web Cache is slow, consider
increasing the timeout, perhaps up to 30 seconds.

If you receive the following error, either increase the maximum incoming
connections for OracleAS Web Cache or lower the Keep-Alive Timeout:

11313: The cache server reached the maxi mum number of allowed i ncom ng
connections. Listening is tenporarily suspended.

With a heavy load, such as during stress-testing, if clients continuously send one
request and then disconnect, set the Keep-Alive Timeout to 0. With this value,
OracleAS Web Cache closes the connection as soon as the request is completed, to
free up resources.

Set the Keep-Alive Timeout value in the Network Timeouts page (Properties >
Network Timeouts).

Optimizing OracleAS Web Cache 7-7

Tune Network-Related Parameters

= Origin Server Timeout: The amount of time for the application Web server to
generate a response to OracleAS Web Cache. If the application Web server or
proxy server is unable to generate a response within that time, OracleAS Web
Cache sends a network apology page to the browser.

Usually, this value should be equal to the response time of the slowest document
served by the application Web Server. If the value is too low, long-running
requests will timeout before the response is complete. If the value is too high and
the application Web server hangs for some reason, it will take longer for OracleAS
Web Cache to failover to another application Web server.

Set this value in the Network Timeouts page (Properties > Network Timeouts).

For the application Web server, check the values of the following settings in the
application Web server’s configuration file (ht t pd. conf). (These particular
parameter names are specific to the Oracle HTTP Server.)

=« KeepAl i ve: Whether to allow persistent connections. Persistent connections
allow a client to send multiple sequential requests through the same connection.

Make sure KeepAl i ve is enabled. This can improve performance because the
connection is set up only once and is kept open for subsequent requests from the
same client.

= KeepAliveTi meout : The time a connection is left open to wait for the next
request from the same client. If requests are primarily from OracleAS Web Cache,
you can set this value fairly high. A reasonable value is 30 seconds.

= MaxKeepAl i veRequest s: The maximum number of requests to allow during a
persistent connection. Set to 0 to allow an unlimited number of requests.

« Maxd i ent s: The maximum number of clients that can connect to the application
Web server simultaneously.

If KeepAl i ve is enabled for the application Web server, you may require more
concurrent httpd server processes, and you may need to set the MaxCl i ent s
directive to a higher value.

If client requests have a short response time, you may be able to improve
performance by setting Maxd i ent s to a lower value. However, when this value
is reached, no additional processes will be created, causing other requests to fail.

The MaxC i ent s limit on the application Web server should be greater than or
equal to the application Web server capacity as set through the OracleAS Web
Cache Manager.

For the operating system, check the TCP time-wait setting. This setting controls the
amount of time that the operating system holds a port, not allowing new connections
to use the same port.

On the Solaris Operating System, for example, check thet cp_ti nme_wai t _i nt er val
setting, using the following command:

ndd -get /dev/tcp tcp_tinme_wait_interval

On Windows 2000, for example, check the value of the TcpTi meVi t Del ay
parameter in the following key in the registry:

HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Servi ces\ Tcpi p\ Par anet er s

This setting is usually only an issue during stress testing, if you continuously open
more TCP/IP connections from one client computer. In this situation, lower the TCP

7-8 Oracle Application Server Performance Guide

Increase Cache Hit Rates

time-wait setting. In real world deployments, this is rarely an issue because it is
unlikely that a single client will generate a huge number of connections.

See Also: "Configuring Oracle HTTP Server Directives" on
page 5-8

Increase Cache Hit Rates

A cache hit is a Web browser request that can be satisfied from documents stored in
the cache. A cache miss is a Web browser request that cannot be satisfied from
documents stored in the cache and must be forwarded to the application Web server.

If the ratio of cache hits to cache misses is low, consider the following ways to raise the
cache hit rate:

Use cookies and URL parameters to increase cache hit rates.

OracleAS Web Cache can cache different versions of a document with the same
URL, based on request cookies or headers. To use this feature, applications may
need to implement some simple change, such as creating a cookie or header that
differentiates the documents.

On the opposite end of the spectrum, some applications contain some insignificant
URL parameters, which can lead to different URLs representing essentially the
same content. If the documents are cached under their full URLSs, the cache
hit/miss ratio becomes very low. You can configure OracleAS Web Cache to ignore
the non-differentiating URL parameter values, so that a single document is cached
for different URLSs, greatly increasing cache hit rates.

Sometimes the content for a set of documents is nearly identical, but not exactly
identical. For example, the documents may contain hyperlinks composed of the
same URL parameters with different session-specific values, or they may include
some personalized strings in the document text, such as welcome greetings or
shopping cart totals. You can configure OracleAS Web Cache to store a single copy
of the document with placeholders for the embedded URL parameters or the
personalized strings, and to dynamically substitute the correct values for the
placeholders when serving the document to clients.

For more information on multiple version documents, sessions, ignoring URL
parameter values, and simple personalization, see Chapter 2, "Caching Concepts,"
of the Oracle Application Server Web Cache Administrator’s Guide.

Use redirection to cache entry documents.

For some popular site entry documents, such as "/", that typically require session
establishment, session establishment effectively makes the document
non-cacheable to all new users without a session. To cache these documents while
preserving session establishment, you can either:

— Create a blank document that provides session establishment for all initial
requests and redirects to the actual popular document. Subsequent redirected
requests to the popular document will specify the session, enabling the
popular document to be served from the cache.

— Use a JavaScript that sets a session cookie for the popular documents.

For more information on configuring caching rules for documents requiring
session establishment, see Chapter 9, "Creating Caching Rules," of the Oracle
Application Server Web Cache Administrator’s Guide.

Use partial page caching where possible.

Optimizing OracleAS Web Cache 7-9

Check Application Web Server and Web Cache Settings to Optimize Response Time

Many Web documents, such as pages generated by OracleAS Portal, are composed
of fragments with unique caching properties. For these pages, full-page caching is
not feasible. However, OracleAS Web Cache provides partial page caching using
Edge Side Includes (ESI). With ESI, you can divide each Web page into a template
and multiple fragments that can, in turn, be further divided into templates and
lower level fragments. Each fragment or template is stored and managed
independently; a full page is assembled from the underlying fragments upon
request. Fragments can be shared among different templates, so that common
fragments are not duplicated to waste cache space. Sharing can also greatly reduce
the number of updates required when fragments expire.

Depending on the application, updating a fragment can be cheaper than updating
a full page. In addition, each template or fragment can have its own unique
caching policies such as expiration, validation, and invalidation, so that each
fragment in a full Web page can be cached as long as possible, even when some
fragments are not cached or are cached for a much shorter period of time.

Use ESI variables for improved cache hit/miss ratio for personalized pages.

Personalized information often appears in Web pages, making them unique for
each user. For example, many Web pages contain tens or hundreds of hyperlinks
embedding application session IDs. To resolve this, create your ESI pages with
variables. Because variables can resolve to different pieces of request information
or response information, the uniqueness of templates and fragments can be
significantly reduced. This, in turn, results in better cache hit/miss ratios.

Check Application Web Server and Web Cache Settings to Optimize
Response Time

If you have not configured the application Web server or the cache correctly, response
time may be slower than anticipated. This section summarizes much of the
information presented in this chapter.

If the application Web server is responding more slowly than expected or if the
application Web server is not responding to requests from the cache because it has
reached its capacity, check the application Web server and OracleAS Web Cache
settings.

First, check the following;:

Caching rules: Make sure that you are caching the appropriate objects. Are there
popular objects that you should cache but are not caching? Use the Popular
Requests page (Monitoring > Popular Requests) to see a list of the most popular
requests and to check that those objects are being cached. Also, see "Increase Cache
Hit Rates" on page 7-9 for information on increasing the ratio of cache hits to cache
misses.

Priority rankings of the caching rules: Give frequently accessed non-cacheable
documents a higher priority than cacheable documents. Give frequently accessed
cacheable documents the lowest priority. Note that parsing of caching rules may
be expensive if a large number of rules are defined.

Compression: If the network is a bottleneck for the client, compressing documents
as they are cached will relieve some of the congestion on the network because
compressed documents are smaller.

7-10 Oracle Application Server Performance Guide

Check Application Web Server and Web Cache Settings to Optimize Response Time

Then, check the following;:

The application Web server configuration, particularly the MaxCl i ent s,
KeepAl i ve, KeepAl i veTi meout , and MaxKeepAl i veRequest s settings.

The MaxC i ent s limit on the application Web server should be greater than or
equal to the application Web server capacity as set through the OracleAS Web
Cache Manager.

See "Tune Network-Related Parameters" on page 7-7 for more information.

The application Web server capacity as set using the Origin Servers page (Origin
Servers, Sites, and Load Balancing > Origin Servers) of the OracleAS Web Cache
Manager. See the Oracle Application Server Web Cache Administrator’s Guide for
information about setting application Web server capacity.

Then, if the application Web server is still busier than anticipated, it may mean that the
cache cannot process the requests and is routing more requests to the application Web
server. Check the following OracleAS Web Cache settings in the OracleAS Web Cache
Manager:

The number of cache connections. Check Maximum Incoming Connections in the
Resource Limits page (Properties > Resource Limits). See "Set a Reasonable
Number of Network Connections" on page 7-6 for more information.

The memory size for the cache. Check Maximum Cache Size in the Resource
Limits page (Properties > Resource Limits). See Configure Enough Memory for
OracleAS Web Cache on page 7-2 for more information.

The cache cluster capacity. In a cache cluster, if cluster capacity is too low, a cache
may not receive a response for owned content from a peer cache in the specified
interval. As a result, the request is sent to the application Web server. Check
Capacity in the Clustering page (Properties > Clustering). See the Oracle
Application Server Web Cache Administrator’s Guide for more information.

If the settings for the application Web server and OracleAS Web Cache are set correctly,
but the response times are still higher than expected, check system resources,
especially:

Network bandwidth. See "Make Sure You Have Sufficient Network Bandwidth"
on page 7-5 for more information.

CPU usage. See "Use Two CPUs for OracleAS Web Cache" on page 7-2 for more
information.

Optimizing OracleAS Web Cache 7-11

Check Application Web Server and Web Cache Settings to Optimize Response Time

7-12 Oracle Application Server Performance Guide

8

Optimizing PL/SQL Performance

This chapter provides references to the information that describes improving PL/SQL
performance for web applications. Most of this information is in the Oracle
Application Server mod_plsql User’s Guide.

See Also:

= Oracle Application Server mod_plsql User’s Guide for information
on optimizing PL/SQL performance

= Appendix A, "Performance Metrics" for information on nmod_
pl sgql metrics

« Oracle HTTP Server Administrator’s Guide for details on DAD
Parameters

= Oracle Application Server PL/SQL Web Toolkit Reference for
information on the PL/SQL Web Toolkit that enables you to
develop Web applications as PL/SQL procedures stored in an
Oracle database server

Optimizing PL/SQL Performance 8-1

8-2 Oracle Application Server Performance Guide

9

Instrumenting Applications With DMS

The Oracle Dynamic Monitoring Service (DMS) enables application developers,
support analysts, system administrators, and others to measure application specific
performance information. This chapter describes DMS and shows a sample application
that demonstrates how to instrument Oracle Application Server Java applications
using DMS.

Note: Oracle Application Server provides a number of built-in
metrics. Using DMS to instrument applications adds new metrics to
the set of built-in metrics.

This chapter covers the following topics:

= Introducing DMS Performance Metrics

= Adding DMS Instrumentation To Java Applications

= Validating and Testing Applications Using DMS Metrics

= Understanding DMS Security Considerations

= Conditional Instrumentation Using DMS Sensor Weight

= Dumping DMS Metrics To Files

= Resetting and Destroying Sensors

= DMS Coding Recommendations

= Using A High Resolution Clock To Increase DMS Precision

See Also: Appendix A, "Performance Metrics"

Instrumenting Applications With DMS 9-1

Introducing DMS Performance Metrics

Introducing DMS Performance Metrics

The Dynamic Monitoring Service (DMS) API allows you to add performance
instrumentation to Oracle Application Server applications. During runtime DMS
collects performance information, called DMS metrics, that developers, system
administrators, and support analysts use to help analyze system performance or
monitor system status.

This section covers the following topics:

= Instrumenting Applications With DMS Metrics

= Monitoring DMS Metrics

= Understanding DMS Terminology (Nouns and Sensors)
= DMS Naming Conventions

Note: Oracle Application Server components, including OC4]J,
provide a number of predefined metrics. For a listing of the
predefined metrics see Appendix A, "Performance Metrics".

Instrumenting Applications With DMS Metrics

DMS Instrumentation refers to the process of inserting DMS calls into application
code. Using the DMS APl is a simple and efficient way to enable your application to
measure, collect, and save performance information.

To create DMS metrics developers add calls that notify DMS when events occur, when
important intervals begin and end, or when pre-computed values change their state.
At runtime, DMS stores metrics in memory and allows you to save or view the
metrics.

Oracle Application Server includes built-in DMS metrics. By adding DMS calls to your
applications you can expand the set of built-in metrics. When you instrument your
applications with DMS calls, you use the same API that the built-in metrics use. In
addition, to save and display your metrics, you use the same monitoring tools that you
use with built-in metrics.

See Also: "Adding DMS Instrumentation To Java Applications"
on page 9-9

Monitoring DMS Metrics

Monitoring DMS metrics refers to the process of retrieving performance metrics. When
an application runs, DMS stores metrics in memory and allows you to show metrics on
the console or to view metrics using a web browser.

Oracle Application Server provides several runtime tools for viewing and saving DMS
metrics, including dnst ool and the Aggr eSpy Servlet.

Example 9-1 shows a set of metrics output using dirst ool .

9-2 Oracle Application Server Performance Guide

Introducing DMS Performance Metrics

Example 9-1 Set of Sample dmsDemo Metrics Using dmstool

conput eSeri es. acti ve: 0 t hreads
conput eSeri es. avg: 5931.7 nsecs
conput eSeri es. conpl et ed: 20 ops
conput eSeri es. maxActi ve: 1 t hreads
conput eSeri es. maxTi ne: 57086 msecs
conput eSeri es. m nTi ne: 2 nsecs
conput eSeri es. tine: 118634 nmsecs

| ast Conput ed. val ue: 184756

| oops. count : 4325 ops

tinmeStanp.ts: 1091035411174 m | 1iseconds

Host : systent

Narre: Basi cBi noni al

Parent : / dsDeno

Process: hone: OCA4J: 3301: 6004

i asl nstance: 10g2.tv.us. oracl e.com

ui d: 2109472775

See Also: Chapter 2, "Monitoring Oracle Application Server"

Understanding DMS Terminology (Nouns and Sensors)

This section introduces the terminology you need to understand to use DMS.
Figure 9-1 illustrates the organization of a set of DMS metrics corresponding to the
metrics in the demo application described in this chapter and the metrics shown in
Example 9-1.

This section covers the following topics:
= DMS Metrics

= DMS Sensors

= DMS Nouns

= DMS Object Relationships

Instrumenting Applications With DMS 9-3

Introducing DMS Performance Metrics

Figure 9-1 Organization of Sample Metrics From dmsDemo Application

Noun: dmsDemo

Noun Type:
Parent: /

Noun:)
BasicBinomial

Noun Type: MathSeries
Parent: /dmsDemo

Sensor: Sensor: Sensor:
lastComputed computeSeries loops
Sensor Type: State Sensor Type: PhaseEvent Sensor Type: Event
Description: Value of Description: Time to Description: Iterations
last computed series Compute a Binomial to compute series
element Series
Metrics Metrics Metrics
lastComputed.value computeSeries.active loops.count
computeSeries.avg
computeSeries.completed

computeSeries.maxActive
computeSeries.maxTime
computeSeries.minTime
computeSeries.time

DMS Metrics

DMS Metrics track performance information that developers, system administrators,
and support analysts use to help analyze system performance or monitor system
status.

DMS Sensors

DMS Sensors measure performance data and allow DMS to define and collect a set of
metrics. Certain metrics are always included with a Sensor and other metrics are
optionally included with a Sensor.

DMS PhaseEvent Sensors A DMS PhaseEvent Sensor measures the time spent in a
specific section of code that has a beginning and an end. Use a PhaseEvent Sensor to
track time in a method or in a block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including: the
average, maximum, and minimum time that is spent in the PhaseEvent Sensor.

Table 9-1 describes metrics available with a PhaseEvent Sensor.

Table 9-1 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_nane.tine Specifies the total time spent in the phase sensor _narre.

Default metric: t i ne is a default PhaseEvent Sensor metric.

sensor _nane.conpl et ed Specifies the number of times the phase sensor _naneg, has
completed since the process was started.

Optional metric

9-4 Oracle Application Server Performance Guide

Introducing DMS Performance Metrics

Table 9-1 (Cont.) DMS PhaseEvent Sensor Metrics

Metric Description

sensor _nane.m nTi e Specifies the minimum time spent in the phase sensor _nare,
for all the times the phase completed.

Optional metric

sensor _nane.naxTi e Specifies the maximum time spent in the phase sensor _nane,
over all the times the sensor _nane phase completed.

Optional metric

sensor_nane.avg Specifies the average time spent in the phase sensor _nane,
computed as the (time total)/(number of times the phase
completed).

Optional metric

sensor _nane.active Specifies the number of threads in the phase sensor _nane, at
the time the DMS statistics are gathered (the value may change
over time).

Optional metric

sensor _nane.maxActive Specifies the maximum number of concurrent threads in the
phase sensor _nane, since the process started.

Optional metric

DMS Event Sensors A DMS Event Sensor is a Sensor that counts system events. Use a
DMS Event Sensor to track system events that have a short duration, or where the
duration of the event is not of interest but the occurrence of the event is of interest.

Table 9-2 describes the metric that is associated with an Event Sensor.

Table 9-2 DMS Event Sensor Metrics

Metric Description

sensor _nane.count Specifies the number of times the event has occurred since the
process started, where sensor _nane is the name of the Event
Sensor as specified in the DMS instrumentation APL

Default: count is the default metric for an Event Sensor. No other
metrics are available for an Event Sensor.

DMS State Sensors A DMS State Sensor is a Sensor to which you assign a precomputed
value. State Sensors track the value of Java primitives or the content of a Java Object.
The supported types include integer, double, long, and object. Use a State Sensor when
you want to track system status information or when you need a performance metric
that is not associated with an event. For example, use State Sensors to represent queue
lengths, pool sizes, buffer sizes, or host names.

Table 9-3 describes the State Sensor metrics. State Sensors support a default metric
val ue, as well as optional metrics. The optional i nVal ue and maxVal ue metrics
only apply for State Sensors if the State Sensor represents a numeric Java primitive (of
type integer, double, or long).

Instrumenting Applications With DMS 9-5

Introducing DMS Performance Metrics

Table 9-3 DMS State Sensor Metrics

Metric Description

sensor _nane.val ue Specifies the metric value for sensor _namne, using the type
assigned when sensor _nane is created.

Default: val ue is the default State metric.

sensor _nane.count Specifies the number of times sensor _nane is updated.
Optional metric

sensor _nane.nm nVal ue Specifies the minimum value for sensor _nane since startup.
Optional metric

sensor _nane.maxVal ue Specifies the maximum value this sensor _name since startup.

Optional metric

DMS Nouns

DMS Nouns (Nouns) organize performance data. Each Sensor, with its associated
metrics is organized in a hierarchy according to Nouns. Nouns allow you to organize
DMS metrics in a manner comparable to a directory structure in a file system. For
example, Nouns can represent classes, methods, objects, queues, connections,
applications, databases, or other objects that you want to measure.

A Noun t ype is a name that reflects the set of metrics being collected. For example, in
the built-in metrics the Noun type 0c4j _ser vl et represents the metrics collected for
each servlet in each Web module within each J2EE application. And the Noun type
JVMrepresents the set of metrics for each Java process (OC4J]) currently running in the
site.

Note: In Appendix A, "Performance Metrics", the Noun type is
called the metric table name.

The Noun naming scheme uses a '/' as the root of the hierarchy, with each Noun acting
as a container under the root, or under its parent Noun.

See Also: Appendix A, "Performance Metrics"

DMS Object Relationships
This section describes the object relationships and attributes for DMS metrics, Sensors,
and Nouns.

Table 9—4 describes the relationships between DMS objects. Figure 9-1 illustrates the
relationships shown in Table 94 using a sample set of metrics.

Table 9-4 DMS Object Relationships and Attributes
Object Contains Attributes
Noun Sensors or other Nouns Name, Noun Type, Parent
Sensor Metrics Name, Description, Sensor Type, Parent
There are three Sensor Types: PhaseEvent, Event, and State.
Metric Value Name, Units designation

9-6 Oracle Application Server Performance Guide

Introducing DMS Performance Metrics

DMS Naming Conventions

Certain guidelines apply for defining DMS names. By following these guidelines,
people viewing DMS metric reports can easily understand metrics across applications
and across Oracle Application Server components.

Note: View the naming conventions as guidelines; for each
convention there may be an exception. Try to be as clear as possible,
if there is a conflict, you may need to make an exception.

This section covers the following topics:

= General DMS Naming

= General DMS Naming Conventions and Character Sets
= Noun and Noun Type Naming Conventions

= Sensor Naming Conventions

General DMS Naming

DMS metric names consist of a Sensor name plus the ". " character plus the metric. For
example, the names: conput eSeri es. ti nme, | oops. count, and
| ast Conput ed. val ue are valid DMS metric names.

"non

A Sensor name is a simple string, not including the ". " or the derivation. For example
conput eSeri es, | oops, and | ast Conput ed are Sensor names. A Sensor full name
consists of the Sensor name, preceded by the name of its associated Noun, and a
delimiter. For example, / dnsDenp/ Basi cBi nomi al / conput eSeri es,

/ dms Deno/ Basi ¢Bi nomi al / | oops, and

/ dmsDeno/ Basi ¢Bi nomi al / | ast Conput ed.

A Noun name is a simple string, not including a delimiter. For example

Basi cBi noni al is a Noun name. A Noun full name consists of the Noun name,
preceded by the full name of its parent, and a delimiter. For example

/ dmsDeno/ Basi ¢Bi nomi al is a full Noun name.

General DMS Naming Conventions and Character Sets

DMS names should be as compact as possible. Whenever possible, when you define
Noun and Sensor names, avoid special characters such as white space, slashes,
periods, parenthesis, commas, and control characters.

Table 9-5 shows DMS replacement for special characters in names.

Table 9-5 DMS Naming Special Character Replacement

Character DMS Replacement Character
Space " " or Period "." Underscore "_"

Control Character Underscore "_"

nen "

nen nyr

g AN

" (double quote) """ (backquote)

" (single quote) " (backquote)

Instrumenting Applications With DMS 9-7

Introducing DMS Performance Metrics

Note: Oracle Application Server includes a number of built-in
metrics. The Oracle Application Server built-in metrics do not
always follow the DMS naming conventions.

Noun and Noun Type Naming Conventions
A Noun name should be a name which identifies a specific entity of interest.

Noun types should have names which clearly reflect the set of metrics being collected.
For example, Servlet is the type for a Noun under which the metrics that are specific to
a given servlet fall.

Noun type names should start with a capitol letter to distinguish them from other
DMS names. All Nouns of a given type should contain the same set of sensors.

Sensor Naming Conventions
The following list outlines DMS Sensor naming conventions.

1. Sensor names should be descriptive, but not redundant. Sensor names should not
contain any part of the Noun name hierarchy, or type, as this is redundant.

2. Sensor names should avoid containing the specification of the units for the
individual metrics.

3. Where multiple words are required to describe a Sensor, the first word should start
with a lowercase letter, and the following words should start with uppercase
letters. For example conput eSeri es.

4. In general, using a "/ " in a Sensor name should be avoided. However, there are
cases where it makes sense to use a name that contains "/ " . Ifa"/" is used in a
Noun or Sensor name, then when you use the Sensor in a string with DMS
methods, you need to use an alternative delimiter, such as "," or "_", which does
not appear anywhere in the path; this allows the "/" to be properly understood as

part of the Noun or Sensor name rather than as a delimiter.
For example, a child Noun can have a name such as:

exanpl es/ j sp/ nunf nunguess. j sp

and you can look this up using the string:

,0c4j , defaul t, VEBs, def aul t WebApp, JSPs, exanpl e/ j sp/ nuni nunguess. j sp, servi ce

Where the delimiter is the "," character.

5. Event Sensor and PhaseEvent Sensor names should have the form verbNoun where
verb and Noun are interpreted as defined by English grammar. For example,
acti vat el nst ance and r unMet hod. When a PhaseEvent monitors a function,
method, or code block, it should be named to reflect the task performed as clearly
as possible.

6. The name of a State Sensor should be a Noun, possibly preceded by an adjective,
which describes the semantics of the value which is tracked with this State. For
example, | ast Conput ed, total Menory, port,avail abl eThr eads,
acti vel nst ances.

7. To avoid confusion, do not name Sensors with strings such as: ".time", ".value", or
".avg", that are the same as the default metrics or optional derivations for a Sensor,
as shown in Table 9-1, Table 9-2, and Table 9-3.

9-8 Oracle Application Server Performance Guide

Adding DMS Instrumentation To Java Applications

Adding DMS Instrumentation To Java Applications

You can collect performance information in Java applications by adding DMS
instrumentation to existing applications or by creating new applications that include
DMS instrumentation.

The DMS samples shown in this chapter are supplied on the Oracle Technology
Network Web site,

http://ww. oracl e. com t echnol ogy/tech/javal/ oc4j/denos/i ndex. ht m

The DMS denm. zi p file includes a ready to deploy .ear file and source code with
build instructions. The demo includes two servlets, Basi ¢cBi noni al . j ava and
| npr ovedBi nomi al . j ava.

The BasicBinomial servlet shows how to use the DMS API to add DMS Sensors.

The ImprovedBinomial servlet expands on the BasicBinomial and illustrates
measuring the improved code, as compared with the BasicBinomial.
ImprovedBinomial servlet also shows how to add more costly metrics that gather
more detailed information.

Refer to the sample code for full details on the examples in this chapter.

To use DMS instrumentation, add DMS calls by performing the following steps:
= Including DMS Imports

« Organizing Performance Data

= Defining and Using Metrics for Timing

« Defining and Using Metrics for Counting

= Defining and Using Metrics for Recording Status Information (State Sensors)

Including DMS Imports

To use DMS you need to add DMS imports. The following example shows the imports
that the sample application Basi cBi nomi al . j ava requires.

inport oracle.dns.instrunent. DMSConsol e;
inport oracle.dms.instrunent.Event;
inport oracle.dns.instrunent. Noun;
inport oracle.dns.instrunent.PhaseEvent;
inport oracle.dms.instrunent. State;
inport oracle.dns.instrunent. Sensor;

Organizing Performance Data

Define DMS Nouns to organize Sensors and their associated metrics. DMS Nouns
organize Sensors in a tree hierarchy in a manner comparable to a directory structure in
a file system, starting with a root at the top of the tree.

Example 9-2 shows a section of code using Noun. cr eat e() from the
Basi cBi nomi al . j ava.

In Example 9-2, Mat hSer i es specifies the Noun type. The Noun type is a name that
reflects the set of metrics being collected. For example, Mat hSer i es represents the
metrics collected for the sample application containing a Binomial series computation.
Aggr eSpy displays Sensors using the same Noun type together.

It is good practice to only use Noun types for Nouns that directly contain Sensors.
When a Noun contains only Nouns, as in the Noun dims Denp, and does not directly

Instrumenting Applications With DMS 9-9

Adding DMS Instrumentation To Java Applications

contain Sensors, Aggr eSpy displays the Noun type as a metric table, with no metrics.
Example 9-2 shows the dnms Dend Noun that includes a Noun, Basi ¢cBi nom al , but
no Sensors. When the Noun type is not included for such a Noun, Aggr eSpy does not
display a metric table associated with the Noun.

Note: Start Noun type names with a capital letter to distinguish
them from other DMS names.

Example 9-2 Using Noun.create To Organize Sensors

private Noun binRoot; /1l Container for Binomal series DVS netrics.
Noun base = Noun. create("/dnsDem");
bi nRoot = Noun. creat e(base, "BasicBinomal", "MthSeries");

See Also: "DMS Naming Conventions" on page 9-7

Defining and Using Metrics for Timing

To create metrics that measure the duration of a segment of code, define and use a
PhaseEvent Sensor using the following steps:

= Defining PhaseEvent Sensors

= Using PhaseEvent Sensors

Defining PhaseEvent Sensors

Example 9-3 shows the DMS calls that declare and create the conput eSer i es
PhaseEvent Sensor. This code defines a DMS metric named
/ dmsDenp/ Basi ¢Bi nom al / conput eSeri es. tine.

PhaseEvent Sensors support a set of optional metrics, along with the default metric

. ti me (representing the time, as measured between the PhaseEvent start () and
the PhaseEvent st op() calls). You can derive optional metrics with PhaseEvent
Sensors individually or as a complete set. Table 9-1 shows the available metrics for a
PhaseEvent Sensor. The bi nConp. deri veMetri c(Sensor. all) callin

Example 9-3 causes all the supported optional metrics to be computed and reported.

Note: Using the method deri veMetri c(Sensor. all) is
recommended for adding optional metrics. Using this method with
Sensor . al | adds all metrics; this is good practice since the list of
optional metrics could change in a future Oracle Application Server
release. In addition, the metrics are efficient to compute and are
often useful in evaluating performance.

Example 9-3 Defining PhaseEvent Sensors
private PhaseEvent binConp; // Time to compute Binomal series.

bi nConp = PhaseEvent. creat e(bi nRoot, "conputeSeries",
“Time to conpute a Binom al series");
bi nConp. deri veMetric(Sensor.all);

9-10 Oracle Application Server Performance Guide

Adding DMS Instrumentation To Java Applications

Using PhaseEvent Sensors

To use a PhaseEvent Sensor, an application calls the st art () method to indicate the
beginning of a phase and subsequently calls the st op() method to indicate the
completion of the phase.

Example 94 shows a code segment from Basi ¢Bi noni al . j ava that uses the
start () and st op() methods for the

/dmsDeno/ Basi c¢Bi nomi al / conput eSeri es. ti me metric. The | ong value
named t oken that is returned from the PhaseEvent st ar t () method must be passed
to the corresponding PhaseEvent st op() method. This value is a timestamp
representing the start time. Passing this value to the st op() method allows DMS to
compute the PhaseEvent duration.

Note: To assure that PhaseEvents are stopped, each PhaseEvent
st art () method, together with the code to be measured should be
in atry block with the PhaseEvent st op() method in a
corresponding f i nal | y block, as shown in Example 9-4.

Example 9-4 Using start() and stop() With PhaseEvent Sensors

long token = 0; // DVB
try {
token = binConp.start(); // DVS
Bi gl nteger bins[] = bin(length);
out.println("<H2>Binomi al series for " + length + "</H2>");
for (int i =0; i <length; i++)
out.println("
" + bins[i]);

}

finally {
bi nConp. st op(t oken); // DMB
out. cl ose();

}

Example 9-4 shows code instrumented such that each time a phase starts, it is stopped
(since the stop method is placed in the finally clause). This prevents runaway Phase
Sensors; however, this can result in the time required to throw an exception possibly
contributing to phase statistics. To prevent exception handling from impacting a
PhaseEvent, use the abor t () method, as shown in Example 9-5.

Example 9-5 shows a code sample where a Phase that is not successfully stopped will
be aborted. The abort call removes the statistics corresponding to the corresponding
start, and these statistics do not contribute to metric calculations.

Example 9-5 Using abort() with PhaseEvent Sensors

PhaseEvent pe = heavyPhase(param;

I ong tokenl = 0;

| ong token2 = 0;

bool ean stopped = fal se;

try {
tokenl = binConp.start();
if (pe !=null) token2 = pe.start();
Bi gl nteger bins[] = bin(length);
out. println("<H2>I nprovedBi normi al series for " + length + "</ H2>");
for (int i =0; i <length; i+4)

out.println("
" + bins[i]);

if (pe !=null) pe.stop(token2);
bi nConp. st op(t okenl);

Instrumenting Applications With DMS 9-11

Adding DMS Instrumentation To Java Applications

stopped = true;

}
finally {

if (!stopped) {
if (pe !=null) pe.abort(token2);
bi nConp. abort (tokenl);

}

Defining and Using Metrics for Counting
To create metrics that count the occurrences of an event, define and use an Event
Sensor as follows:

= Defining Event Sensors

= Using Event Sensors

Defining Event Sensors

Example 9-6 shows the DMS calls that define an Event Sensor. This code allocates a
counter and defines a DMS metric named
/ dmsDenp/ Basi ¢Bi nom al /| oops. count.

Example 9-6 Defining Event Sensors
private Event binLoop; /'l Loops needed for Binomal series.

bi nLoop = Event.create(binRoot, "loops", "lterations to conpute series");

Using Event Sensors

DMS increments a counter when an application calls the occur r ed() method for an
Event Sensor. Example 9-7 shows the occurr ed() call for an Event Sensor that
increments the / dnmsDenp/ Basi cBi nom al / | oops. count metric.

Example 9-7 Using occurred() With Event Sensors
bi nLoop. occurred();

Defining and Using Metrics for Recording Status Information (State Sensors)

DMS captures status information with State Sensors. State Sensors track the value of
Java primitives or the content of a Java Object. The supported types include integer,
double, long, and object, as specified in the third argument to the cr eat e() method.
When a Java primitive State Sensor is updated with the wrong type, DMS attempts to
convert the supplied value to the correct type. For Object type State Sensors, DMS
stores a reference to the Object and by default and callst oSt ri ng() on the object
when the DMS value is sampled.

To create metrics that record status information, define and use a State Sensor as
follows:

= Defining State Sensors

= Using State Sensors

9-12 Oracle Application Server Performance Guide

Validating and Testing Applications Using DMS Metrics

Defining State Sensors

State Sensors support a default metric val ue, as well as optional metrics. You can
define the mi nVal ue and maxVal ue optional metrics with State Sensors only if the
State Sensor represents a numeric Java primitive (of type integer, double, or long).
Table 9-3 shows the available metrics for a State Sensor. Example 9-3 shows how to
enable optional metrics.

Example 9-8 shows the DMS calls that declare and create a State Sensor. This code
defines a DMS metric named / dnmsDeno/ Basi ¢Bi nomi al / | ast Conput ed. val ue.

Example 9-8 Defining State Sensors
private State binLast; Il Value of the |ast conputed elenment in series.

binLast = State.create(binRoot, "lastConputed", State.OBJECT, "",
“Val ue of last conputed series elenent");

When you define a State Sensor, use an empty string in the fourth argument to the
cr eat e() method if no units are associated with the State Sensor, otherwise use a
string listing the appropriate units (see Example 9-8). State Sensors are created
without an initial value. If you need to check whether a State Sensor has been
initialized, use thei sl niti al i zed() method.

If you want your State Sensor to store the string value of an object, and not store a
reference to the object, use the set Copy() method with the value TRUE. This tells the
State Sensor to store the result of calling t 0St ri ng() on an object rather than using a
reference to the object for the metric value.

Using State Sensors

When an application calls a State Sensor’s updat e() method, DMS updates the value
of the State Sensor. Example 9-9 shows the updat e() call for a State Sensor that
updates the / dmsDenp/ Basi ¢Bi nomi al / | ast Conput ed. val ue metric.

Example 9-9 Using update() With State Sensors
bi nLast . updat e(bi ns[k-1].toString());

Validating and Testing Applications Using DMS Metrics

You should test and verify the accuracy of the metrics that you add to Java
applications.

This section covers the following topics:
= Validating DMS Metrics
= Testing DMS Metrics For Efficiency

Instrumenting Applications With DMS 9-13

Validating and Testing Applications Using DMS Metrics

Validating DMS Metrics

Use the dist 0ol and the other available DMS monitoring tools to verify and test new
metrics.

Try to validate the following for new metrics:

Do expected metrics appear in the display? Test this by examining the code to
make sure that all the metric names added using DMS instrumentation appear in
your display or saved set of metrics.

Do unexpected metrics appear in the display? Verify that you have only added the
metrics that you planned to add.

Are the metric values you see within reasonable ranges? Usually, upper and lower
bounds for metrics can be established. You then test that the reported values for
metrics do not exceed the expected bounds.

For example, a "size of pool" metric should never report a negative value.

Make sure that new metrics are needed. For example, if you add a PhaseEvent that
always measures an event of very short duration, consider changing the metric to
an Event metric, or remove the metric.

Make sure that new metrics are accurate. For most applications using DMS
metrics, accuracy is more important than the performance cost of adding the DMS
instrumentation. New DMS metrics should provide reliable and useful
information.

Testing for accuracy can be difficult; however, if an alternate means of measuring a
particular metric is available then use it to verify metric values. For example, if
you submit a known number of requests to a server and measure total time for the
experiment, then you predict correct values for the relevant metrics and compare
them with the actual monitored values. As another example, you can verify an
Event Sensor count metric by examining records that you write to a log file or to
the console.

Check for timing inaccuracies that may apply for the metrics. Timing inaccuracies
may be caused when low-resolution clocks time metrics for an interval of short
duration. For example on Windows systems, the default Java clock advances only
once every 15 milliseconds. DMS metrics reported for brief events on these
systems must be analyzed with care. Consider using the high resolution clock to
address this issue.

See Also: "Using A High Resolution Clock To Increase DMS
Precision" on page 9-18

Testing DMS Metrics For Efficiency

The use of DMS metrics has some influence on application performance. When adding
metrics, note the following:

The processing required for computing and storing metrics can slow down the
execution of an application. DMS is fast, but it does have some required overhead
cost. In addition, DMS cannot prevent developers from using the DMS API
inefficiently. Therefore, before adding DMS instrumentation, establish reasonable
expectations. After completing the implementation, measure the actual costs and
compare them to your expectations. Be prepared to make changes to the
instrumentation to reduce overhead costs until the measurements agree with
expectations.

9-14 Oracle Application Server Performance Guide

Conditional Instrumentation Using DMS Sensor Weight

=« DMS provides the DM5Consol e. get Sensor Vi ght () method to help you
control the use of metrics. The central setting is an advisory measurement level
that DMS does not enforce. To control which metrics to include, at runtime, the
code must test the value for Sensor Wi ght to determine whether to make DMS
calls.

= When integrating DMS instrumentation with an existing package or when
implementing a new feature, you should consider insulating a previously working
system. For example, you could include an option to enable and disable new DMS
metrics.

= Worrying about performance too soon often leads to costly design and
implementation errors. According to Donald Knuth, "Premature optimization is
the root of all evil".

= You should run your performance tests with and without DMS enabled. If your
tests show unacceptable results with DMS enabled, then you may want to
re-design or re-implement metrics.

Understanding DMS Security Considerations

DMS metrics do not support user based access to DMS reports. When you define and
use a DMS metric, the metric is available to any administrator that has access to DMS
metrics. This means when you add DMS metrics, it is good practice to avoid placing
customer sensitive information in the metrics.

When you add DMS instrumentation, the following users have access to the DMS
metrics that you create:

= Applications running in the same OC4] instance can access the DMS metrics.
» All users that have access to the dnst 0ol command, or the Aggr eSpy Servlet
have access to the metrics (by default this is limited to Administrators).
See Also:
« "AggreSpy URL and Access Control" on page 2-7

= "Access Control for dmstool" on page 2-9

Conditional Instrumentation Using DMS Sensor Weight

Use the DMS Sensor weight feature to conditionally limit your instrumentation. With
Sensor weight, you specify that applications execute expensive instrumentation only

when the Sensor weight is set to a particular value. Using this feature enables you to

include expensive metrics that you may only need for debugging.

Example 9-10 shows how to use DMSConsol e. get Sensor Wi ght () to test the
value of the Sensor weight, and optionally define and use a metric.

The Sensor weight is set globally using the or acl e. dns. sensor s property on the
command-line. Set this property using the OC4] startup options. Supported values for
this property include: none, nor mal , heavy,and al | .

Instrumenting Applications With DMS 9-15

Dumping DMS Metrics To Files

Example 9-10 Using SensorWeight for Conditional Instrumentation
/* DVS Met hod

*
* |f the SensorWeight is high enough, return a phase with the
* parameter in the name. Qtherwise, return null.
*/
PhaseEvent heavyPhase(String param {
PhaseEvent pe = null;
i f (DVSConsol e. get Sensor Wi ght () > DMSConsol e. NORMAL) {
Noun base = Noun. create(bi nRoot, param "MathSeries");
pe = PhaseEvent.create(base, "conputeSeries",
"Time to conpute a Binom al series");
pe. deriveMetric(Sensor.all);

}

return pe;

See Also: "Setting Java Command Line Options (Using JVM and
OC4]J Performance Options)" on page 6-3

Dumping DMS Metrics To Files
In a Java application, use the following method to dump DMS metrics to a file.

The following code allows you to append or replace the contents of the specified file
with the current metrics:

DVSConsol e cons2 = new DVSConsol e();
D\VBConsol e. dunp("dnmsnat hseri es. | og”, true, true);

The first argument specifies the file pathname, the second argument specifies the
output format, and the third argument specifies if the output is appended to the file or
replaces the contents of the file.

Resetting and Destroying Sensors

The Sensor abstract class provides methods to control PhaseEvent, Event, and State
Sensors. The r eset () method resets a Sensor’s metrics to initial values. The

get Reset Ti me() method determines if a Sensor has been reset. The dest r oy ()
method removes a Sensor from DMS and releases references to its underlying
resources.

Note: Do not use these methods to reset or destroy built-in metrics.
Thereset () and dest r oy() methods are intended for use with
metrics that you create. Application Server Control Console, and other
Oracle Application Server administrative facilities could report
unexpected values or have unexpected behavior if you use these
methods on internal, built-in metrics.

9-16 Oracle Application Server Performance Guide

DMS Coding Recommendations

DMS Coding Recommendations

The following list includes coding recommendations for working with DMS.

1.

There is a global name space for DMS metrics. When you create a new Noun
Sensor (PhaseEvent, Event, or State), its full name must not conflict with names in
use by Oracle built-in metrics, or by other applications. It is therefore a good idea
to have a root Noun for your application that contains the application’s full name.
This prevents name space collisions.

See Also: "General DMS Naming" on page 9-7

Be sure all PhaseEvents are stopped. If the code block to be measured is not in a

t ry block, then putitinatry block that includes PhaseEvent’s st art () . Put the
PhaseEvent’s st op() inafi nal | y block. Alternatively, make use of the

abort () method in the fi nal | y block, as shown in Example 9-5.

See Also: "Using PhaseEvent Sensors" on page 9-11

Use the DMS naming conventions.

See Also: "DMS Naming Conventions" on page 9-7

Avoid creating any DMS Sensor or Noun more than once. The DMS API allows
this, and avoids creation of multiple objects, but DMS performs lookups for each
subsequent creation attempt. Thus, whenever possible, you should define Sensors
and Nouns during static initialization, or in the case of a Servlet, in the i ni t ()
method.

Assign a type for each Noun that contains Sensors. If no type is assigned, the type
is given the value "n/a" (not available). Nouns with the type specified as "'n/a" are
not shown in the Aggr eSpy display.

Only use PhaseEvents to measure a section of code that is expensive to execute,
and takes a significant time to execute under some conditions. In the case where
the code never takes significant time to execute, use an Event metric, or remove
the PhaseEvent.

The DMS API calls are threadsafe; they provide sufficient synchronization to
prevent races and access bugs.

Isolating Expensive Intervals Using PhaseEvent Metrics

Carefully consider the requirements for new metrics when you add DMS
instrumentation. It is important to add a sufficient number of metrics to validate that
your code is behaving as desired.

Try to observe the following guidelines when you add DMS metrics:

1.

Add PhaseEvent Sensors only to provide an overview of the time the system
spends in your block of code or module. You do not need to collect performance
data for every method call, or for every distinct phase of your code or module.

When your code calls external code that you do not control, and that you expect
could take a significant amount of time, add a PhaseEvent Sensor to track the start
and the completion of the external code.

Instrumenting Applications With DMS 9-17

Using A High Resolution Clock To Increase DMS Precision

Following these guidelines for adding PhaseEvent metrics provides the following
benefits:

= Helps to limit the amount of information that DMS collects.

= Allows those analyzing the system to prove that a module gives the expected
runtime performance.

= Ensures that people viewing DMS metrics can validate runtime performance
without seeing an overwhelming amount of data.

= Allows those analyzing system performance to separate and track your module
from other system modules that are either expensive or failure prone.

Using A High Resolution Clock To Increase DMS Precision

By default DMS uses the system clock for measuring time intervals during a
PhaseEvent. The default clock reports microsecond precision in C processes such as
Apache and reports millisecond precision in Java processes such as OC4]J. Optionally,
DMS supports a high resolution clock to increase the precision of performance
measurements and lets you select the units for reporting time intervals. You can use a
high resolution clock when you need to time phase events more accurately than is
possible using the default clock or when the system's default clock does not provide
the resolution needed for your requirements.

Note: The resolution of the default clock and of the high resolution
clock is system dependent. On some systems the default clock may
not provide sufficient resolution for timing requirements. In
particular, on Windows platforms, many users request greater
precision than the default clock provides, because it advances only
once every 15 milliseconds. DMS metrics reported for brief events on
these systems must be analyzed with care. Consider using the high
resolution clock to address this issue.

This section covers the following topics:
= Configuring DMS Clocks for Reporting Time for OC4]J (Java)
» Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

Configuring DMS Clocks for Reporting Time for OC4J (Java)

For Java processes, the default clock uses

java.lang. System current Ti meM | | i s() . Selecting the high resolution clock
changes this call for all applications running on the process where the clock is
changed. You set the DMS clock and the reporting units globally using the

oracl e. dns. cl ock and or acl e. dms. cl ock. uni t s properties, which control
process startup options.

For example, to use the high resolution clock with the default units, set the following
property on the Java command line for OC4J.

- Dor acl e. dns. cl ock=hi ghres

9-18 Oracle Application Server Performance Guide

Using A High Resolution Clock To Increase DMS Precision

Caution: Using the high resolution clock, the default units are
different than the value that Application Server Control Console
expects (msecs). If you need the Application Server Control Console
displays to be correct when using the high resolution clock, then you
need to set the units property as follows:

- Dor acl e. dns. cl ock. uni t s=nsecs

Table 9-6 shows supported values for the or acl e. dis. ¢l ock property.

Table 9-7 shows supported values for the or acl e. dns. ¢l ock. uni t s property.

See Also: "Setting Java Command Line Options (Using JVM and
OC4]J Performance Options)" on page 6-3

Table 9-6 oracle.dms.clock Property Values

Value Description
DEFAULT Specifies that DMS use the default clock. With the default clock, DMS uses
theJavacall java.l ang. System currentTimeM | i s() to obtain

times for PhaseEvents.
The default value for the units for the default clock is MSECS.
HIGHRES Specifies that DMS use the high resolution clock. DMS accesses the high

resolution clock using JNI (the JNI calls depend on the clocks available on
the underlying operating system).

The default value for the units for the HIGHRES clock is NSECS.

Note: On Windows platforms the high resolution clock available
with the HIGHRES setting uses the Quer yPer f or manceCount er
function. If this function is not available, for example, on systems
without a Pentium processor, then the HIGHRES clock uses the DMS
C clock, which has microsecond precision. This still offers a significant
improvement over the default clock available on this platform
through System current TimeM | i s().

Table 9-7 oracle.dms.clock.units Property Values

Value Description
MSECS Specifies that the time be converted to milliseconds and reported as
"msecs".

Note: This is the default value for the default clock.

NSECS Specifies that the time be converted to nanoseconds and reported as "nsecs".

Note: This is the default value for the high resolution clock.

USECS Specifies that the time be converted to microseconds and reported as
"usecs".

Instrumenting Applications With DMS 9-19

Using A High Resolution Clock To Increase DMS Precision

Note the following when using the high resolution DMS clock:

When you set the or acl e. dns. cl ock and the or acl e. dns. cl ock. units
properties, any combination of upper and lower case characters is valid for the
value that you select (case is not significant). For example, any of the following
values are valid to select the high resolution clock: highres, HIGHRES, HighRes.

DMS checks the property values at startup. When you set the clock with a value
that does not match those listed in Table 9-6, then DMS uses the default clock. If
the or acl e. dis. cl ock property is not set, DMS also uses the default clock.

If the specified clock units property value does not match those listed in Table 9-7,
then DMS uses the default units for the specified clock. If the

oracl e. dns. cl ock. uni t s property is not set, DMS uses the default units for
the specified the clock.

Table 9-8 lists the platform specific environment variables settings for supported
platforms. To use the high resolution DMS clock, the environment variables need to be
set appropriately. The high resolution clock uses the DMS C library. On UNIX systems,
this requires libdms2.so to be in the specified environment variable path. On Windows
systems this requires yod.dll to be in the PATH environment. If a nanosecond clock is
not available, high resolution timings use a microsecond clock.

Table 9-8 Library Path Environment Variables for Supported Platforms

Platform Environment Variable

AIX

LIBPATH

$ORACLE_HOME/ | i b/ 1'i bdns2. so is required in the path
LD_LIBRARY_PATH

$ORACLE_HOME/ | i b/ 1'i bdns2. so is required in the path

HP-UX SHLIB_PATH

$ORACLE_HOVE/ | i b/ |'i bdns2. so is required in the path
LD_LIBRARY_PATH
$ORACLE_HOVE/ | i b/ |'i bdns2. so is required in the path

Linux LD_LIBRARY_PATH

$ORACLE_HOME/ |'i b/ 1'i bdns2. so is required in the path

Tru64 UNIX LD_LIBRARY_PATH

$ORACLE_HOME/ | i b/ 1'i bdns2. so is required in the path

Solaris LD_LIBRARY_PATH

$ORACLE_HOVE/ | i b/ |'i bdnms2. so is required in the path

Windows 2000 YORACLE_HOVE% Apache\ Apache\ yod. dl | must be in the PATH

Windows 2003 YORACLE_HOVE% Apache\ Apache\ yod. dl | must be in the PATH

Windows XP YORACLE_HOVE% Apache\ Apache\yod. dl | must be in the PATH
See Also: ""Setting Java Command Line Options (Using JVM and

OC4]J Performance Options)" on page 6-3

9-20 Oracle Application Server Performance Guide

Using A High Resolution Clock To Increase DMS Precision

Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

The default clock for measuring Oracle HTTP Server performance has a resolution of
microseconds (usecs). You can optionally select a higher resolution clock to monitor C
processes running under Oracle HTTP Server. To use the High Resolution clock under
Oracle HTTP Server, you need to set configuration options in httpd.conf, or specify
environment variables on the command line.

Table 9-9 lists the environment variables that control the Oracle HTTP Server DMS
clock. Table 9-10 describes the httpd.conf configuration options that control the Oracle
HTTP Server DMS clock. If you set both the command line options and the httpd.conf
configuration options, the configuration options override the values set on the
command line.

Table 9-9 OHS DMS Clock Environment Variables

Environment Variable Description

DMS_CLOCK Specifies the clock to use for DMS timing. The values are interpreted
the same as with oracle.dms.clock.

Valid Values: DEFAULT, HIGHRES

DMS_CLOCK_UNITS Specifies the units for reporting DMS timing values. The values are
Interpreted the same as with oracle.dms.clock.units.

Valid Values: MSECS, NSECS, USECS
Default Value: USECS

Table 9-10 OHS DMS Clock Configuration Parameters

Parameter Description

DnsC ock Specifies the clock for HTTP listener processes started by OHS, as
the oracle.dms.clock property does for Java processes.

Valid Values: DEFAULT, HIGHRES

DnsCl ockUni ts Specifies the time units for HTTP listener processes started by OHS,
exactly as the oracle.dms.clock.units property is for Java processes.

Valid Values: MSECS, NSECS, USECS
Default Value: USECS

Note: On Windows platforms the high resolution clock available
with the HIGHRES setting uses the Quer yPer f or manceCount er
function. If this function is not available, for example, on systems with
a Pentium processor, then the HIGHRES clock uses the DMS C clock,
which has microsecond precision.

For example, if you want to use the high resolution clock and use the same units to
show times for Java processes running under OC4] and for mod_oc4j running under
Oracle HTTP Server, update the Oracle HTTP Server httpd.conf file to include the
following parameters and values:

DrsC ock=H GHRES
D ockUni t s=MBECS
Also, include the following values as startup options for the OC4] process:

- Dor acl e. dns. ¢l ock=H GHRES
- Dor acl e. dms. ¢l ock. uni t s=MSECS

Instrumenting Applications With DMS 9-21

Using A High Resolution Clock To Increase DMS Precision

Using these options DMS uses a high resolution clock for all the Oracle HTTP Server
processes that it monitors, for the Java OC4J processes that it monitors, and DMS
reports values using the milliseconds units (msecs).

Caution: Using the high resolution clock for the Oracle HTTP
Server, the default units for the high resolution clock are NSECS on
most platforms. If you need to use Application Server Control
Console, it expects USECS for the units. If you need the Application
Server Control Console displays to be correct when using the high
resolution clock, then you need to set the units property as follows:

Dmsd ock=H GHRES
Dnsd ockUni t s=USECS

9-22 Oracle Application Server Performance Guide

10

Database Tuning Considerations

To achieve optimal performance in Oracle Application Server, for applications that use
the database, the database tables you access need to be designed with performance in
mind, and you need to monitor and tune the database server to assure that the system
is performant. This chapter describes some of the i ni t. or a parameters that you may
need to tune in a backend Oracle Database Server.

This chapter covers the following:
« Tuning init.ora Database Parameters

« Tuning Redo Logs Location and Sizing

See Also: Oracle Database Performance Tuning Guide

Database Tuning Considerations 10-1

Tuning init.ora Database Parameters

Tuning init.ora Database Parameters

Table 10-1 shows tuning information for several the i ni t . or a database initialization
parameters.

Table 10-1 Importantinit.ora Tuning Parameters

init.ora Parameter Description

DB_BLOCK_SI ZE Sets the database block size. OLTP applications usually benefit from smaller block
sizes, DSS applications usually benefit from larger block sizes. This parameter can
only be set when the database is created, and defaults to the minimum value of 2K.

See Also: table 8-3, "Block Size Advantages and Disadvantages" in the Oracle Database
Performance Tuning Guide.

PGA_AGCGREGATE_TARGET Specifies the target aggregate PGA memory available to all server processes attached
to the instance.

See Also: the chapter, "Memory Configuration and Use" in the Oracle Database
Performance Tuning Guide for information on PGA memory management.

PROCESSES Sets the maximum number of operating system processes that can be connected to
Oracle concurrently. The value of this parameter must be 6 or greater (5 for the
background processes plus 1 for each user process). For example, if you plan to have
50 concurrent users, set this parameter to at least 55. Many other initialization
parameter values are deduced from this value.

SGA_TARGET Setting this parameter to a nonzero value enables Automatic Shared Memory
Management. Set this parameter to the amount of memory that you want dedicated
for the SGA. In response to the workload on the system, the automatic SGA
management distributes the memory appropriately for the following memory pools:

» Database buffer cache
= Shared pool

« Large pool

= Javapool

Oracle strongly recommends the use of automatic memory management, both to
simplify configuration and to improve performance. Automatic Shared Memory
Management was introduced with the Oracle Database 10g (10.1). For prior versions,
you must manually configure the SGA memory pools.

See Also: The section, "Automatic Shared Memory Management" in the
Chapter,"Memory Configuration and Use" in the Oracle Database Performance Tuning
Guide for additional information on SGA management.

STREAMS_POCL_SI ZE Specifies (in bytes) the size of the Streams pool. The Streams pool contains captured
events. In addition, the Streams pool is used for internal communications during
parallel capture and apply.

If the size of the Streams pool is greater than zero, then any SGA memory used by
Streams is allocated from the Streams pool. If the Streams pool size is set to zero, then
SGA memory used by Streams is allocated from the shared pool and may use up to
10% of the shared pool.

See Also Oracle Streams Concepts and Administration for detailed information on
setting this parameter.

UNDO_TABLESPACE, Undo space can be managed with either rollback segments or undo tablespaces.

UNDO_MANAGEMENT Good performance can be achieved by either method, however, the use of rollback
segments for managing undo space will be deprecated in a future release. Oracle
strongly recommends that you use automatic undo management (UNDO_
MANAGEMENT = AUTO) and manage undo space using an UNDO_TABLESPACE. For
backward compatibility reasons, the default value of UNDO_MANAGEMENT is MANUAL.

See Also: Oracle Database Performance Tuning Guide for additional information on
undo space management.

10-2 Oracle Application Server Performance Guide

Tuning Redo Logs Location and Sizing

Tuning Redo Logs Location and Sizing

Managing the database I/O load balancing is a non-trivial task. However, tuning the
redo log options can provide performance improvement for applications running in an
Oracle Application Server environment, and in some cases, you can significantly
improve I/O throughput by moving the redo logs to a separate disk.

The size of the redo log files can also influence performance, because the behavior of
the database writer and archiver processes depend on the redo log sizes. Generally,
larger redo log files provide better performance. Small log files can increase checkpoint
activity and reduce performance. Because the recommendation on I/O distribution for
high performance is to use separate disks for the redo log files, there is no reason not
to make them large. A potential problem with large redo log files is that these are a
single point of failure if redo log mirroring is not in effect.

It is not possible to provide a specific size recommendation for redo log files, but redo
log files in the range of a hundred megabytes to a few gigabytes are considered
reasonable. Size your online redo log files according to the amount of redo your
system generates. A rough guide is to switch logs at most once every twenty minutes.
Set the initialization parameter LOG_CHECKPO NTS_TO ALERT = true to have
checkpoint times written to the alert file.

The complete set of required redo log files can be created during database creation.
After they are created, the size of a redo log size cannot be changed. However, new,
larger files can be added later, and the original (smaller) ones can subsequently be
dropped.

See Also: The chapters, "Configuring a Database for
Performance" and "I/O Configuration and Design" in the Oracle
Database Performance Tuning Guide

Database Tuning Considerations 10-3

Tuning Redo Logs Location and Sizing

10-4 Oracle Application Server Performance Guide

A

Performance Metrics

This appendix lists built-in metrics that can help you analyze Oracle Application
Server performance. The metrics fall into several distinct areas, such as Oracle HTTP
Server, Oracle Application Server Containers for J2EE (OC4J), and Portal. Each table in
this chapter lists the metrics that are included in a corresponding Dynamic Monitoring
Services metric table.

This appendix contains:

Oracle HTTP Server Metrics

JVM Metrics

JDBC Metrics

OC4] Metrics

OC4] JMS Metrics

OC4J Task Manager Metrics

mod_plsql Metrics

Portal Metrics

Oracle Process Manager and Notification Server Metrics
Discoverer Metrics

DMS Internal Metrics

Performance Metrics A-1

Oracle HTTP Server Metrics

Oracle HTTP Server Metrics
The tables, Table A-1, Table A—4, Table A-5 describe the Oracle HTTP Server metrics.

The metric table name is ohs_server.

Table A-1 HTTP Server Metrics (ohs_server)

Metric Description Unit
connection. active Number of connections currently open threads
connecti on. avg Average time spent servicing HTTP connections usecs
connection. maxTi ne Maximum time spent servicing any HTTP connection usecs
connection. m nTi e Minimum time spent servicing any HTTP connection usecs
connection.time Total time spent servicing HTTP connections usecs
handl e. acti ve Child servers currently in the handle processing phase threads
handl e. avg Average time spent in module handler usecs
handl e. conpl et ed Number of times the handle processing phase has completed ops
handl e. maxTi ne Maximum time spent in module handler usecs
handl e. m nTi e Minimum time spent in module handler usecs
handl e. ti me Total time spent in module handler usecs
request. active Child servers currently in the request processing phase threads
request. avg Average time required to service an HTTP request usecs
request. conpl et ed Number of HTTP request completed ops
request. maxTi ne Maximum time required to service an HTTP request usecs
request. m nTi me Minimum time required to service an HTTP request usecs
request.time Total time required to service HTTP requests usecs

Oracle HTTP Server Child Server Metrics

Table A-2 describes the child server metrics.

The metric table name is ohs_chi | d.

Table A—2 Oracle HTTP Server Child Server Metrics (ohs_child)

Metric Description Unit
pid.value Process ID
slot.value Slot

status.value
time.value

url.value

Oracle HTTP Server Responses Metrics

The Oracle HTTP Server responses metrics are included in the metric table named
ohs_r esponses. This metric table includes one metric containing the count, number
of times the response was generated, for each HTTP response type.

For example, Success_COK_200. count: 28 ops.

A-2 Oracle Application Server Performance Guide

Oracle HTTP Server Metrics

Oracle HTTP Server Virtual Host Metrics

The Oracle HTTP Server ohs_vhost Set and ohs_vi rt ual Host metric tables
contain information on virtual host names and locations, and request and response
metrics.

Table A—3 Oracle HTTP Server Virtual Host Metrics (ohs_virtualHost)

Metric Description Unit
request. active Active requests threads
request. avg Average time for request processing usecs
request. conpl et ed Number of completed requests ops
request. maxTi ne Maximum time to complete a request usecs
request. m nTi me Minimum time to complete a request usecs
request.time usecs
responsesSi ze. val ue bytes

vhost Type. val ue

Aggregate Module Metrics

Table A—4 HTTP Server Apache/Modules Metrics

Metric Description Unit

numvbds. val ue Number of loaded modules

HTTP Server Module Metrics

There is one set of metrics for each module loaded into the server.

The metric table name is ohs_nodul e.

Table A~5 HTTP Server Apache/Modules/mod_*.c Metrics (ohs_module)

Metric Description Unit
decl i ne. count Number of requests declined ops
handl e. acti ve Number of requests currently being handled by this module requests
handl e. avg Average time required for this module usecs
handl e. conpl et ed Number of requests handled by this module ops
handl e. maxTi e Maximum time required for this module usecs
handl e. mi nTi ne Minimum time required for this module usecs
handl e. time Total time required for this module usecs

Oracle HTTP Server mod_oc4j Metrics

Table A—6 shows the mod_oc4j Failure Causes metrics. This table represents the
categorization of errors that return an | NTERNAL_SERVER_ERRCR to the client.

The metric table name is nod_oc4j _request _fail ure_causes.

Performance Metrics A-3

Oracle HTTP Server Metrics

Table A—=6 HTTP Server mod_oc4j Request Failure Causes Metrics

Metric Description Unit

I ncorrect Reql ni t. count The total number of times an internal error occurred. There could bea ops
number of reasons, including: mod_oc4j not finding a connection
endpoint, configuration errors, and others.

Cc4j Unavai | abl e. count The total number of times that an oc4j JVM could not be found to ops
service requests.

Unabl eToHandl eReq. count The total number of times mod_oc4j declined to handle a request. ops

Table A-7 shows the mod_oc4j Mount Point metrics. There is one mount point metric
table for each mount point specified in mod_oc4j.conf. This table includes a set of
metrics for each mount point specified, with each set grouped under the mntPtid.
Where id is an integer that is automatically generated during module initialization.

The metric table name is nod_oc4J_nount _pt_netri cs.

Table A—7 HTTP Server mod_oc4j Mount Point Metrics

Metric

Description

Unit

Desti nati on. val ue

Err Req. count

Er r ReqNonSess. count

Er r ReqSess. count

Fai | over. count

Nane. val ue

NonSessFai | over. count

SessFai | over. count

SucReq. count

SucRegNonSess. count

SucReqSess. count

Specifies the destination name. For example, with:
Oc4j Mount /j 2eel/* home
The Dest i nati on. val ue would be hore

Specifies the total number of requests, both session and non-session, that mod_oc4j
failed to route to an OC4J.

Specifies the total number of non session requests that mod_oc4j failed to route to an
oc4j process.

Specifies the total number of session requests that mod_oc4j failed to route to an OC4]
process.

Specifies the total number of failovers for both nonsession and session requests.

Specifies the echo of the value specified as the path for Oc4jMount directive in mod_
ocdj.conf. DMS changes certain characters, including: '/” and "* to ’_" . To preserve the
actual path names specified, an internal table containing a mapping between mntPtid
and the actual path name is created during nod_oc4j initialization. For example,
with: Oc4j Mount /j 2ee/* hone Nane. val ue would be/ j 2ee/ *

Specifies the total number of failovers for nonsession requests. For example,

Assume that this mount point was serviced by an OC4]J Island with three JVM'’s
(JVM1, JVM2 and JVM3). A new non session request is routed to JVM1. JVM1 fails to
service the request, and the request is failed over to JVM2. JVM2 fails to service the
request, and so the request is failed over to JVM3. At this point the

NonSessFai | over. count is incremented by 2.

Specifies the total number of failovers for session requests. For example,

Let us assume that this mount point was serviced by an OC4]J Island with three JVM’s
(JVM1, JVM2 and JVM3). A session request is routed to JVM1. JVML1 fails to service the
request. So, the request is failed over to JVM2. At this point the SessFailover.count is
incremented by 1. JVM2 fails to service the request, and so the request is failed over to
JVMB3. At this point the SessFailover.count is incremented by 2.

Specifies the total number of requests, both session and non-session, that mod_oc4j
successfully routed to an OC4] instance.

Specifies the total number of non session requests that mod_oc4j successfully routed
to an OC4] process.

Specifies the total number of session requests that mod_oc4j successfully routed to an
OC4] process.

String

ops

ops

ops

ops
String

ops

ops

ops

ops

ops

Table A-8 shows the mod_oc4j Destination Metrics. This table includes a set of metrics
for a specific destination. Each destination can have multiple mount points. There is
one mntPts subtree for each mount point specified in mod_oc4j.conf.

A-4 Oracle Application Server Performance Guide

JVM Metrics

The metric table name is nbd_oc4J_destinati on_netrics.

Table A-8 HTTP Server mod_oc4j Destination Metrics

Metric Description Unit

Err Req. count Specifies the total number of requests, both session and non-session, that mod_oc4j ops
failed to route to an OC4].

Er r RegNonSess. count Specifies the total number of non session requests that mod_oc4j failed to route to ops
an OC4] process.

Er r ReqSess. count Specifies the total number of session requests that mod_oc4j failed to route to an ops
OC4] process.

Fai | over. count Specifies the total number of failovers for both nonsession and session requests. ops

JVMCnt . val ue Specifies the total number of routable OC4] JVMs that belong to this destination. Number of

JVMs

Narre. val ue Specifies the echo of the value specified as destination for Oc4jMount directivein String
mod_oc4j.conf, a single destination may appear several times in mod_oc4j.conf.
Example: Oc4jMount /j2ee/* home,oc4jinstance2
Name.value would be home,oc4jinstance2

NonSessFai | over. count Specifies the total number of failovers for non session requests. ops

SessFai | over. count Specifies the total number of failovers. ops

SucReq. count Specifies the total number of requests, both session and non-session, that mod_oc4j ops
successfully routed to an OC4J.

SucRegNonSess. count Specifies the total number of non session requests that mod_oc4j successfully ops
routed to an OC4] process.

SucReqgSess. count Specifies the total number of session requests that mod_oc4j successfully routed to ops

an OC4] process.

JVM Metrics

There is one set of metrics for each Java process (OC4J) currently running in the site.
The metric table name is JVM

Table A-9 JVM Metrics (JVM)

Metric Description Unit
activeThreadG oups. val ue The number of active thread groups in the JVM integer
activeThreadG oups. mi nVal ue The minimum number of active thread groups in the JVM integer
activeThr eadG oups. maxVal ue The maximum number of active thread groups in the JVM integer
activeThreads. val ue The number of active threads in the JVM threads
acti veThreads. m nVal ue The minimum number of active threads in the JVM threads
acti veThr eads. maxVal ue The maximum number of active threads in the JVM threads
upTi ne. val ue Up time for the JVM msecs
freeMenory. val ue The amount of heap space free in the JVM KB
freeMenory. m nVal ue The minimum amount of heap space free in the JVM KB
freeMenory. maxVal ue The maximum amount of heap space free in the JVM KB
total Menory. val ue The total amount of heap space in the JVM KB
total Mermory. mi nVal ue The minimum amount of total heap space in the JVM KB
total Merory. maxVal ue The maximum amount of total heap space in the JVM KB

Performance Metrics A-5

JDBC Metrics

JVM Properties Metrics

Oracle Application Server creates a metric to track the value of each Java Property
available through a call to Syst em get Properti es() on any Java process. For each
Java Property, a metric is created under the / JVM Pr operti es noun.

For example, each process should have a metric that contains the value of the
j ava. ver si on system property named, / JVM Properties/java_
ver si on. val ue. The system converts property name components with a period, " to

(]

If, during the life of a process, a property is deleted from the JVM system properties,
the corresponding metric is deleted. If the value changes, this is reflected in the metric
value the next time it is accessed. If a new property is added to the system properties,
a new metric is created.

Note: The JVM Properties metrics are only available for viewing
using the Spies t ext link in AggreSpy, or using the dnst ool
command to display metrics.

Table A-10 JVM/Properties - JVM System Properties Metrics

Metric

Description Unit

A metric is created for each system Contains the value of the Java system property. String
property. Each property name has any
of the "." characters in the name

replaced with "_".

JDBC Metrics

The following tables list the Oracle Application Server JDBC metrics.

JDBC Driver Metrics

There is one set of JDBC Driver metrics per JVM.

The metric table name is JDBC Dri ver.

Table A-11 /JDBC/Driver - JDBC_Driver Metrics

Metric Description Unit
Connect i onCl oseCount . count Total number of connections that have been closed. ops
ConnectionCreate. active Current number of threads creating connections. ops
Connect i onCreat e. avg Average time spent creating connections. msecs
Connecti onCreat e. conpl et ed Number of times this PhaseEvent has started and ended. ops
Connect i onCreat e. maxTi me Maximum time spent creating connections. msecs
ConnectionCreate. m nTi me Minimum time spent creating connections. msecs
ConnectionCreate. tine Time spent creating connections. msecs
Connect i onOpenCount . count Total number of connections that have been opened. ops
JDBC Data Source Metrics

The metric table name is JDBC_Dat aSour ce.
There is one set of data source metrics per data source.

Note: the JDBC data source metrics are only available for non-emulated data sources.

A-6 Oracle Application Server Performance Guide

JDBC Metrics

Table A-12 /JDBC/dat a- sour ce- nane - JDBC_Data Source Metrics
Metric Description Unit
CacheFr eeSi ze. val ue Number of free slots in the connection cache.
CacheGet Connecti on. avg Average time spent getting a connection from the cache. msecs
CacheGet Connecti on. conpl eted Number of times this PhaseEvent has started and ended. ops
CacheGet Connecti on. maxTi ne Maximum time spent getting a connection from the cache. msecs
CacheGet Connecti on. m nTi me Minimum time spent getting a connection from the cache. msecs
CacheGet Connection. tine Time spent getting a connection from the cache or not. msecs
CacheHi t . count Number of times a request for a connection has been satisfied from the cache.
CacheM ss. count Number of times a request for a connection failed to be satisfied from the

cache.
CacheSi ze. val ue Total size of the connection cache.
JDBC Driver Specific Connection Metrics

There is one set of JDBC Connection metrics per connection.
The metric table name is JDBC_Connect i on.

Table A-13 /JDBC/Driver/CONNECTI ON - JDBC Driver Connection Metrics
Metric Description Unit
Cr eat eNewSt at enent . avg Average time spent creating a new statement. msecs
Cr eat eNewsSt at enent . conpl et ed Number of times a request for a statement failed to be satisfied from the ops

cache.
Cr eat eNewsSt at enent . maxTi ne Maximum time spent creating a new statement. msecs
Cr eat eNewSt at enent . mi nTi me Minimum time spent creating a new statement. msecs
Cr eat eNewSt at enent . ti ne Time spent creating a new statement (this does not include the time required msecs

to parse the statement. For information on the metric that includes the parse

time see Execut e. Ti ne in Table A-15).
Cr eat eSt at ement . avg Average time spent getting a statement from the statement cache. msecs
Cr eat eSt at ement . conpl et ed Number of times a request for a statement was satisfied from the cache. ops
Cr eat eSt at emrent . maxTi ne Maximum time spent getting a statement from the statement cache. msecs
Creat eStat enent . mi nTi ne Minimum time spent getting a statement from the statement cache. msecs
CreateStatement.time Time spent getting a statement from the statement cache. msecs

Logi cal Connecti on. val ue

If this is a physical connection, then this refers to its logical connection, if any.

JDBC Data Source Specific Connection Metrics

There is one set of JDBC data source specific connection metrics per data source per
connection. The metric table name is JDBC_Connect i on.

Table A-14 /JDBC/dat a- sour ce- name/CONNECTI ON - JDBC Datasource Connection Metrics

Metric Description Unit

Cr eat eNewSt at enent . avg Average time spent creating a new statement. msecs

Cr eat eNewSt at enent . conpl et ed Number of times a request for a statement failed to be satisfied from the ops
cache.

Cr eat eNewSt at enent . maxTi me Maximum time spent creating a new statement. msecs

Cr eat eNewSt at enent . mi nTi ne Minimum time spent creating a new statement. msecs

Performance Metrics A-7

JDBC Metrics

Table A—14 (Cont.) /JDBC/dat a- sour ce- nanme/CONNECTI ON - JDBC Datasource Connection Metrics

Metric Description Unit

Cr eat eNewSt at enent . ti ne Time spent creating a new statement (this time does not include the time msecs
required to parse the statement. For information on the metric that includes
the parse time see Execut e. Ti ne in Table A-16).

Cr eat eSt at ement . avg Average time spent getting a statement from the statement cache. msecs
Cr eat eSt at ement . conpl et ed Number of times a request for a statement was satisfied from the cache. ops
Cr eat eSt at ement . maxTi ne Maximum time spent getting a statement from the statement cache. msecs
Creat eSt at enent . mi nTi ne Minimum time spent getting a statement from the statement cache. msecs
CreateStatement. time Time spent getting a statement from the statement cache. msecs
Logi cal Connecti on. val ue If this is a physical connection, then this refers to its logical connection, if any.

JDBC Driver Statement Metrics

There is a set of statement metrics per connection per statement. The metric table name
is JDBC_St at enent .

Note: The JDBC statement metrics are only available for JDBC
connections that have enabled statement caching, and set the
property or acl e. j dbc. DMSSt at enent Cachi nghetri cs to the
value t r ue. When JDBC statement caching is disabled, you can
make the JDBC statement metrics available by setting the property
oracl e. j dbc. DVMSSt at ement Metri cs tot r ue. To improve
performance and to avoid collecting expensive metrics, by default
these properties are both set to f al se.

Table A-15 /JDBC/Driver/CONNECTI ON'STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute. time The time this statement has spent executing the SQL including the first fetch and the msecs
time required to parse the statement.

Fetch.tinme The time this statement has spent in other fetches. msecs

SQLText . val ue The SQL being executed.

See Also: "Setting the OC4] JDBC DMS Statement Metrics
Option" on page 6-7

JDBC Data Source Statement Metrics

The metric table name is JDBC_St at enent . There is a set of statement metrics per
data source per connection per statement.

Note: the JDBC data source metrics are only available for non-emulated data sources.

Note: The JDBC statement metrics are only available for JDBC
connections that have enabled statement caching and set the
property or acl e. j dbc. DMSSt at ement Cachi ngMetri cs to the
value t r ue. When JDBC statement caching is disabled, you can
make the JDBC statement metrics available by setting the property
oracl e. j dbc. DMSSt at ement Metri cs tot r ue. To improve
performance and to avoid collecting expensive metrics, by default
these properties are set to f al se.

A-8 Oracle Application Server Performance Guide

0OC4J Metrics

Table A-16 /JDBC/dat a- sour ce- nanme/CONNECTI ONVSTATEMENT JDBC Statement Metrics

Metric

Description

Unit

Execute.tine

The time this statement has spent executing the SQL including the first fetch and the msecs
time required to parse the statement.

Fetch.tinme The time this statement has spent in other fetches. msecs
SQ.Text . val ue The SQL being executed.
See Also: "Setting the OC4J JDBC DMS Statement Metrics

Option" on page 6-7

0C4J Metrics

This section lists the OC4] J2EE application related metrics.

This section covers the following metrics:
= Web Module Metrics

= Web Context Metrics

« OC4] Servlet Metrics

« OC4J JSP Metrics

« OC4] E]B Metrics

« OC4] OPMN Info Metrics

Web Module Metrics

There is one set of metrics for each Web module within each J2EE application.

The metric table name is oc4j _web_nodul e.

Table A—17 0OC4J/appl i cati on/WEBs Metrics

Metric Description Unit
par seRequest . acti ve Current number of threads trying to read/parse AJP or HTTP requests
par seRequest . avg Average time spent to read / parse requests msecs
par seRequest . conpl et ed Number of web requests that have been parsed ops
par seRequest . maxActi ve Maximum number of threads trying to read/parse AJP or HTTP threads
requests
par seRequest . maxTi e Maximum time spent to read / parse requests msecs
par seRequest. m nTi me Minimum time spent to read /parse requests msecs
par seRequest . ti me Total time spent to read /parse requests from the socket msecs
processRequest . active Current number of threads servicing web requests
processRequest . avg Average time spent servicing web requests msecs
processRequest . conpl et ed Number of web requests processed by this application ops
processRequest . maxActive Maximum number of threads servicing web requests threads
processRequest . maxTi ne Maximum time spent servicing a web request msecs
processRequest . m nTi e Minimum time spent servicing a web request msecs
processRequest . tine Total time spent servicing this application’s web requests msecs

Performance Metrics A-9

0C4J Metrics

Table A—17 (Cont.) OC4J/appl i cati on/WEBs Metrics

Metric Description Unit
resol veCont ext . active Current number of threads trying to create/find the servlet context

resol veCont ext . avg Average time spent to create/find the servlet context msecs
resol veCont ext . conpl et ed Count of completed context resolves ops
resol veCont ext . maxActive Maximum number of threads trying to create/find the servlet context threads
resol veCont ext . maxTi me Maximum time spent to create/find the servlet context msecs
resol veCont ext. m nTi ne Minimum time spent to create/find the servlet context msecs
resol veContext.tine Total time spent to create/find the servlet context. Each web module msecs

(WAR) maps to a servlet context

Web Context Metrics

There is one set of metrics for each Web context module within each J2EE application.

The metric table name is 0c4j _cont ext .

Table A—18 0OC4J/appl i cati on/WEBs/cont ext Metrics

Metric Description Unit
resol veServlet.tine Total time spent to create/locate servlet instances (within the servlet msecs
context). This includes the time for any required authentication.
resol veServl et. conpl et ed Total Number of lookups for a servlet by OC4J ops
resol veServl et. m nTi ne Minimum time spent to create /locate the servlet instance (within the msecs
servlet context)
resol veServl et . maxTi ne Maximum time spent to create/locate the servlet instance (within the msecs
servlet context)
resol veServl et. avg Average time spent to create/locate the servlet instance (within the servlet msecs
context)
sessi onActivation. active Number of active sessions ops
sessi onActivation.time Total time in which sessions have been active msecs
sessi onActi vation. conpl eted Number of session activations ops
sessi onActivation. minTi ne Minimum time a session was active ops
sessi onActi vation. maxTi me Maximum time a session was active msecs
sessi onActi vation. avg Average session lifetime msecs
service.tine Total time spent servicing requests msecs
servi ce. conpl et ed Total number of requests serviced ops
servi ce. m nTi me Minimum time spent servicing requests msecs
servi ce. maxTi me Maximum time spent servicing requests ops
service. avg Average time spent in servicing the servlet msecs
service. active Current number of requests active msecs

0C4J Servlet Metrics

There is one set of metrics for each servlet in each Web module within each J2EE
application.

The metric table name is 0c4j _servl et.

A-10 Oracle Application Server Performance Guide

0OC4J Metrics

Table A-19 0OC4J/appl i cati on/WEBs/cont ext /SERVLETS/ser vl et Metrics

Metric Description Unit
service. active Current number of threads servicing this servlet threads
service. avg Average time spent in servicing the servlet msecs
servi ce. conpl et ed Total number of calls to service()

servi ce. maxActive Maximum number of threads servicing this servlet threads
servi ce. maxTi me Maximum time spent on a servlet’s service() call ops
servi ce. mnTi me Minimum time spent on a servlet’s service() call msecs
service.tine Total time spent on the servlet’s service() call msecs

0C4J JSP Metrics

JSP Runtime Metrics

There is one set of metrics for each Web context for each J2EE application.

The metric table name is 0c4j _j spExec.

Table A—20 OC4J/appl i cati on/WEBs/cont ext /JSP Metrics

Metric Description Unit
processRequest . tine Time spent processing requests for JSPs msecs
Only used for Context/Application name

processRequest. conpl eted Number of requests for JSPs processed by this application ops
processRequest . m nTi me Minimum time spent processing requests for JSPs msecs
processRequest . maxTi ne Maximum time spent processing requests for JSPs msecs
processRequest . avg Average time spent processing requests for JSPs msecs
processRequest . acti ve Current number of active requests for JSPs ops

JSP Metrics

There is one set of metrics for each JSP in each Web module.

The metric table names are oc4j _j sp(t hr eadsaf e=true) and oc4j _
j sp(t hreadsaf e=fal se).

To list these metrics using dist 0ol , enclose the metric table name in quotation marks.
For example:

dnstool -table "oc4j jsp(threadsafe=true)"

Table A—21 OC4J/appl i cati on/WEBs/cont ext /JSPj sp_name Metrics

Metric Description Unit

activel nstances. val ue Number of active instances. Only used when threadsafe=false instances

avai | abl el nst ances. val ue Number of available (that is, created) instances. instances
This value is only provided when threadsafe=false.

service. active Current number of active requests for the JSP

service. avg Average time spent servicing the JSP msecs

servi ce. conpl et ed Number of requests for JSPs processed by this JSP ops

Performance Metrics A-11

0C4J Metrics

Table A—21 (Cont.) OC4J/appl i cati on/WEBs/cont ext /JSPj sp_namne Metrics

Metric Description Unit
servi ce. maxTi e Maximum time spent servicing the JSP msecs
service. m nTi me Minimum time spent servicing the JSP msecs
service.tine Time to serve a JSP (that is, actual execution time of the JSP) msecs
0C4J EJB Metrics

0C4J EJB Session Bean Metrics

The oc4j _ej b_sessi on_bean metric table includes information on a session bean.

Table A—22 0OC4J EJB Session Bean Metrics

Metric Description Unit

sessi on-type. val ue Provides information on the session type: St at el ess or St at ef ul String

transaction-type.value Provides information on the transaction type: Cont ai ner or Bean String

EJB Bean Metrics

Oracle Application Server provides a set of these metrics for each type of bean in each
EJB jar file in each J2EE application.

The metric table name isoc4j _ejb_entity bean.

Table A—23 OC4J/appl i cati on/EJBs/ej b-j ar - nodul e/ej b- nane Metrics

Metric Description Unit
transaction-type. val ue Possible values: cont ai ner or bean

sessi on-type. val ue Possible values: st at ef ul or st at el ess

bean-type. val ue Possible values: sessi onorentity bean

excl usi ve-write-access. val ue Possible values: t rue or f al se

i sol ati on. val ue Possible values: serializable, uncomi tt ed, comi tt ed,
r epeat abl e_r ead, none, DB- det er mi ned

The value is DB-determined when the isolation attribute is omitted.

persi stence-type. val ue Possible values: cont ai ner or bean or

EJB Method Metrics

There is one set of metrics for each method within each type of EJB bean.
The metric table name is 0c4j _ej b_mnet hod.

The cl i ent . * metrics show values for the actual implementation of the method. The
wr apper . * metrics show values for the wrapper that was automatically generated for
the method.

A-12 Oracle Application Server Performance Guide

0OC4J Metrics

See Also: Chapter 6, "Advanced EJB Subjects" in Oracle
Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide for information on automatically generated
wrappers.

Table A—24 OC4J/appl i cati on/EJBs/ej b-j ar - nodul e/ej b- name/net hod- nane Metrics

Metric Description Unit
client.active Current number of threads accessing the actual implementation of this method ops
client.avg Average time spent inside the actual implementation of this method msecs
client.conpleted Number of requests for beans processed by this application ops
client. mxActive Maximum number of threads accessing the actual implementation of this ops

method
client. maxTi me Maximum time spent inside the actual implementation of this method msecs
client.mnTime Minimum time spent inside the actual implementation of this method msecs
client.time Time spent inside the actual implementation of this method msecs
ej bPost Create. active Current number of threads executing ej bPost Cr eat e ops
ej bPost Creat e. avg Average time spent in ej bPost Cr eat e msecs
ej bPost Creat e. conpl eted Number of times this ej bPost Cr eat e has been called ops
ej bPost Cr eat e. maxTi me Maximum time spent in ej bPost Cr eat e msecs
ej bPost Creat e. mi nTi e Minimum time spent in ej bPost Cr eat e msecs
ej bPost Create. tine Time spent in the ej bPost Cr eat e method (entity beans) msecs
trans-attribute. val ue Transaction attribute. Possible values: Not Support ed, Supports,

Requi r esNew, Mandat or y, and Never
wr apper . active Current number of threads accessing the automatically generated wrapper

method
wWr apper. avg Average time spent inside the automatically generated wrapper method msecs
wr apper . conpl et ed Number of requests for beans processed by this application ops
wr apper . maxActive Maximum number of threads that access the wrapper ops
wr apper . nexTi ne Maximum time spent inside the automatically generated wrapper method msecs
wr apper. m nTi me Minimum time spent inside the automatically generated wrapper method msecs
wr apper.tine Time spent inside the automatically generated wrapper method. Note: Notall =~ msecs

the wrapper methods invoke the actual bean implementation at runtime (for
example, create method in a stateless bean). This means that the time spent in
the wrapper code could be less than the time spent in the bean implementation

0C4J OPMN Info Metrics

Table A-25 shows the OC4] OPMN information metrics. The metric table type is
oc4J_opmn.

Table A-25 0OC4J OPMN Information Metrics

Metric Description Unit
defaul t _application_|l og.val ue Specifies the default application log file path.

ias_cluster.val ue Specifies the Oracle Application Server cluster name. String
i as_i nstance. val ue Specifies the Oracle Application Server instance name. String
j ms_l og. val ue Specifies the JMS log file path. String
oc4j _i nstance. val ue Specifies the OC4] instance ID. String

Performance Metrics A-13

0C4J JMS Metrics

Table A—25 (Cont.) OC4J OPMN Information Metrics

Metric Description Unit

oc4j _i sl and. val ue Specifies the OC4J island ID. String
opnm_gr oup. val ue Specifies the OPMN group ID. String
opm_sequence. val ue Specifies the OPMN sequence ID. String
rm _|l og. val ue Specifies the RMI log file path name. String
server_| og. val ue Specifies the application server log file path. String

0C4J JMS Metrics

OC4]J JMS metrics are organized into metric tables and fall into two categories:

= JMS API-level metrics: collected on objects visible to the JMS API (for example,
connections, sessions, producers, consumers, and browsers). JMS API-level metrics
are collected and maintained only for Web and EJB clients (application clients also
collect API-level metrics, but do so in their own JVM; these metrics are not
available on the OC4J JMS server).

= JMS Server-level metrics: collected by the OC4] JMS server and maintained
independent of client-state. JMS Server-level metrics are collected and maintained
for all types of clients: Application, Web, and EJB.

Each OC4J JMS metric table (metric table type) contains metrics for instances of the
same type; different instances have unique names. For each instance in a metric table,
a set of metrics is collected. The names for metrics in each instance are unique IDs that
OC4] JMS generates.

Instances may have one or more metrics whose value is the name of another metric
instance. For example, the JMS session instances contain metrics that point to the
parent containing JMS connection instance. You can use the pointers to navigate
through the metrics.

A parent metric instance usually includes a counter metric indicating the number of
child metrics of a certain type that have been created. Child metric instances may
appear and disappear as the underlying objects are created and destroyed; the counter
keeps track of the total number of such instances that were created during the lifetime
of the parent.

See Also: Oracle Application Server Containers for [2EE Services Guide
for more information on OC4J JMS

JMS Metric Tables

OC4]J JMS metrics are divided into three types, based on how they are updated:

1. CTOR Metrics: Metrics that are set in the constructor or initialization routine of
the associated JMS object, and are never changed during the lifetime of the object.

2. Normal Metrics: Object level state metrics that are updated as soon as the
associated state of the JMS object changes.

3. Lazy Metrics: these state metrics are updated lazily, that is, not as soon as the
underlying metric value changes, but only periodically (these are typically server
store metrics and are updated each time the store is cleaned up of expired
messages).

A-14 Oracle Application Server Performance Guide

0C4J JMS Metrics

Table A-26 shows a summary of the organization of the OC4] JMS metric tables.

Table A-26 0OC4J JMS Metric Tables

Number of
JMS Metric Table Type Parent Table Type Instances Description
JMSStats none 1 Statistics for the OC4J JMS Server
JMSRequestHandlerStats JMSStats 1 per remote JMS Statistics for the request handler thread servicing
connection a remote JMS connection.
JMSConnectionStats JMSStats 1 per JMS Statistics for the JMS connections active in this
connection server
JMSSessionStats JMSConnectionStats 1 per JMS session Statistics for the JMS sessions active in this
server
JMSMessageProducerStats JMSSessionStats 1 per JMS message Statistics for the JMS producers active in this
producer server
JMSMessageBrowserStats JMSSessionStats 1 per JMS queue Statistics for the JMS queue browsers in this
browser server
JMSMessageConsumerStats JMSSessionStats 1 per JMS message Statistics for the JMS consumers active in this
consumer server
JMSDurableSubscriberStats JMSStats 1 per JMS durable Statistics for each JMS durable subscription
subscriber known to this server
JMSDestinationStats JMSStats 1 per permanent Statistics for each permanent JMS destination
JMS destination known to the OC4J JMS server
JMSTemporaryDestinationStats JMSStats 1 per temporary Statistics for each temporary JMS destination
JMS destination known to the OC4] JMS server
JMSStoreStats JMSDestinationStats 1 per server-side Statistics for each message store (one per queue,
JMSTemporaryDestin message store one per subscription per topic) on the OC4] JMS
ationStats server
JMSPersistenceStats JMSDestinationStats 1 per server-side Statistics for operations on the persistence file for
persistent each persistent destination
destination

JMS Stats Metric Table
Table A-27 shows the JMS Stats metrics.

The metric table type is JIMSSt at s.

Table A—27 JMSStats Metric Table

Metric Description Update Unit

addr ess. val ue The hostname(s) from which the JMS server accepts remote ctor string
connections

connections. count The number of JMS connections (local and remote) created by normal ops
the JMS server

host . val ue The explicit hostname on which the OC4] JMS server is ctor string
running.

oc4j . j ms. debug. val ue Value of the oc4j . j ms. debug OC4J JMS control knob ctor bool

oc4j .jms. forceRecovery. val ue Value of the oc4j .| ns. f orceRecovery OC4J JMS control ctor bool
knob

oc4dj.jms.listenerAttenpts. Value of the oc4j . j ms. | i st ener Att enpt s OC4J JMS ctor int
control knob

oc4j . j ms. maxQpenFi | es. val ue Value of the oc4j . j ms. maxQpenFi | es OC4J JMS control ctor int

knob

Performance Metrics A-15

0C4J JMS Metrics

Table A—27 (Cont.) JMSStats Metric Table

Metric Description Update Unit
oc4j . j ms. nessagePol | . val ue Value of the oc4j . j ms. nessagePol | OC4J JMS control ctor msecs
knob
oc4j . j ms. noDns. val ue Value of the oc4j . j ms. noDnms OC4J JMS control knob ctor bool
oc4j . jms. saveAl | Expired. val Value of the oc4j . j ns. saveAl | Expi r ed OC4] JMS control ctor bool
knob
oc4j .jms. serverPol | . val ue Value of the oc4j . j ns. server Pol | OC4J JMS control ctor msecs
knob
oc4j . j ms. socket Buf si ze. val Value of the oc4j . j ns. socket Buf si ze OC4] JMS control ctor int
knob
oc4j . j ms. usePer si st ence. val Value of the oc4j . j ns. usePer si st ence OC4] JMS control ctor bool
knob
oc4j . jms. useUUl D. val ue Value of the oc4j . j ms. useUUl D OC4J JMS control knob ctor bool
port.val ue The TCP/IP port on which the JMS server listens for incoming ctor int
connections
request Handl er s. count The number of request handlers created by the JMS server normal int
start Ti me. val ue System current Ti meM | | i s() when the OC4] JMS server ctor msecs
was started
t askManager | nt erval . val ue The scheduling interval of the OC4J task manager (and the ctor msecs
scheduling interval for the OC4J JMS expiration task)
method-name An interval timer metric (PhaseEvent Sensor) for every major ~ normal
method call in the OC4J JMS server
JMS Request Handler Stats
Table A-28 shows the J]MS Request Handler Stats.
The metric table name is JMSRequest Handl er St at s.
Table A—28 JMSRequestHandlerStats Metrics
Metric Description Update Unit
addr ess. val ue The hostname from which the remote connection originates (may be an ctor string
implicit, special address)
connectionl D. val ue The ID of the JMSConnect i onSt at s instance ctor string
host . val ue The explicit hostname from which the remote connection originates ctor string
port.val ue The TCP/IP port from which the remote connection originates ctor int
start Ti nme. val ue System current Ti meM | | i s() when the request handler was started ctor string

JMS Connection Stats

Table A-29 shows the JMS Connection Stats.

The metric table name is JMSConnect i onSt at s.

A-16 Oracle Application Server Performance Guide

0C4J JMS Metrics

Table A-29 JMSConnectionStats Metrics
Metric Description Update Unit
addr ess. val ue The implicit hostname of the remote JMS server host for this connection ctor string
as specified in the connection factory used to create this connection; set
only for non-local connections.
clientlD. val ue The administratively configured (for ctor) or programmatically set (for ~ ctor/normal string
normal) clientID for this connection
domai n. val ue The JMS domain ("queue", "topic”, or "unified") of this connection ctor string
exceptionLi st ener The stringified name of the current exception listener for this connection normal string
.val ue
host . val ue The explicit hostname of the remote JMS server host for this connection; ctor string
set only for non-local connections
i sLocal . val ue "true" if and only if the JMS connection is local to the OC4] JMS server in ctor boolean
the same JVM
i sXA. val ue "true" if and only if the connection is in XA mode ctor boolean
port.val ue The remote JMS server port for this connection; set only for non-local ctor int
connections
startTi ne. val ue System current Ti meM | | i s() when this connection was created ctor msecs
user.val ue The user identity for this connection ctor string
method-name An interval timer metric (PhaseEvent Sensor) for every major method normal
call in this connection object.
JMS Session Stats
Table A-30 shows the JMS Session Stats.
The metric table name is JM5Sessi onSt at s.
Table A-30 JMSSessionStats Metrics
Metric Description Update Unit
acknow edgeMbde. val ue The acknowledge mode of this session. The valid modes are: AUTO _ ctor string
ACKNOW_EDGE, CLI ENT_ACKNOW.EDGE, DUPS_OK_ACKNOW_EDGE,
and SESSI ON_TRANSACTED.
donmi n. val ue The JMS domain ("queue", "topic", or "unified") of this session ctor string
i XA val ue "true” if and only if the session is in XA mode ctor boolean
sessi onlLi st ener. val ue The stringified name of the current distinguished listener for this normal string
session
startTi me. val ue System current Ti meM | | i s() when this session was created ctor msecs
transact ed. val ue "true" if and only if the session is transacted ctor boolean
txi d. val ue The integer count of the current local transaction associated with this ~ normal int
session; the counter is increment each time a local transaction is
committed /rolledback; not set for non-transacted session
Xi d.val ue The Xid of the current distributed transaction associated with this normal string

method-name

session; set to a null/empty string when in a local transaction mode;

not set if the session never participates in a global transaction

An interval timer metric (PhaseEvent Sensor) for every major method

call in this session object

normal

JMS Message Producer Stats
Table A-31 shows the JMS Producer Stats.

The metric table name is JMSPr oducer St at s.

Performance Metrics A-17

0C4J JMS Metrics

Table A-31 JMSProducerStats Metrics

Metric Description Update Unit
del i ver yMbde. val ue The current delivery mode of this producer. The valid delivery normal string
mode values are: PERSI STENT and NON_PERSI STENT.
destination. val ue The name of the identified destination for this producer; ctor string
null/empty for an unidentified producer
di sabl eMessagel D. val ue The value is t r ue when message IDs are disabled for the producer normal boolean
di sabl eMessageTi mest anp The value is t r ue when message timestamps are disabled for the ~ normal boolean
.val ue producer
domai n. val ue The JMS domain ("queue”, "topic”, or "unified") of this producer ctor string
priority.val ue The current priority of this producer normal int
startTi ne. val ue System current Ti meM | | i s() when this producer was created ctor msecs
tinmeTolive. val ue The current timeToLive of this producer normal msecs
method-name A phase timer (PhaseEvent Sensor) metric for every major method = normal
call in this producer object
JMS Message Browser Stats
Table A-32 shows the JMS Browser Stats.
The metric table name is JMSBr owser St at s.
Table A-32 JMSBrowserStats Metrics
Metric Description Update Unit
destination.val ue The name of the destination for this browser ctor string
sel ector. val ue The message selector for this browser; null/empty string if unspecified ctor string
startTi ne. val ue System current Ti meM | | i s() when this browser was created ctor msecs
method-name An interval timer metric (PhaseEvent Sensor) for every major method callin ~ normal
this browser object; calls to "hasMoreElements" and "nextElement” are made
on individual enumeration objects, but counted as PhaseEvents in the
browser object to simplify data collection, multiple enumerations can be
active on the same browser
JMS Message Consumer Stats
Table A-33 shows the J]MS Message Consumer Stats.
The metric table name is JMSMessageConsumerStats.
Table A-33 JMSMessageConsumerStats
Metric Description Update Unit
desti nation. val ue The name of the destination for this consumer ctor string
domai n. val ue The JMS domain ("queue”, "topic”, or "unified") of this consumer ctor string
nmessageli st ener.val ue The stringified name of the current message listener for this normal string
consumer
name. val ue The name of the durable subscriber for this consumer; set only for ctor string
durable topic subscriptions
nolLocal . val ue The noLocal setting of a subscription; set only for topic consumers ctor boolean

A-18 Oracle Application Server Performance Guide

0C4J JMS Metrics

Table A—33 (Cont.) JMSMessageConsumerStats

Metric Description Update Unit

sel ector. val ue The message selector for this consumer; null/empty string if ctor string
unspecified

startTi ne. val ue System current Ti meM | | i s() when this consumer was ctor msecs
created

method-name An interval timer metric (PhaseEvent Sensor) for every major normal

method call in this consumer object

JMS Durable Subscription Stats
Table A-34 shows the J]MS Durable Subscription Stats.

The metric table name is JMSDur abl eSubscri pti onSt at s.

Table A-34 JMSDurableSubscriptionStats Metrics

Metric Description Update Unit

clientlD. val ue The clientID associated with this durable subscriptions ctor string

destination.value Thename of the topic for this durable subscription ctor string

i sActive. val ue "true" if and only if the durable subscription is currently active (being normal boolean
used by a consumer)

name. val ue The user-provided name of the durable subscription ctor string

noLocal . val ue The noLocal flag for this durable subscription ctor boolean

sel ector. val ue The JMS message selector for this durable subscription ctor string

JMS Destination Stats

Table A-35 shows the JMS Destination Stats metrics

The metric table name is JIMSDest i nati onSt at s.

Table A-35 JMSDestinationStats Metrics

Metric Description Update Unit

domai n. val ue JMS domain, "queue"or "topic", of the destination ctor string
name. val ue The configured name of the destination. As defined in j ms. xm ctor string
| ocations. val ue A comma-delimited list of JNDI names bound to the destination. ctor string

As defined in j nms. xm

method-name An interval timer metric (PhaseEvent Sensor) for every major normal
method call in the destination object

JMS Temporary Destination Stats
Table A-36 shows the J]MS Temporary Destination Stats.

The metric table name is JMSTenpoar yDest i nat i onSt at s.

Table A-36 JMSTemporaryDestinationStats Metrics

Metric Description Update Unit

connectionl D. val ue The ID of the JMSConnectionStats instance from which this temporary ctor string
destination was created

domai n. val ue JMS domain, for example "queue"” or "topic", of the destination ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major method normal

call in the destination object

Performance Metrics A-19

0C4J JMS Metrics

JMS Store Stats

Table A-37 shows the JMS StoreStats metric table.

The metric table name is JIMSSt or eSt at s.

Table A-37 JMSStoreStats Metric

Metric Description Update Unit
desti nation. val ue A pretty-printed name of the JMS destination associated with this ~ ctor string
message store
messageCount . val ue Total number of messages contained in this store lazy int
messageDequeued. count Total number of message dequeues (transacted or otherwise) normal ops
nmessageDi scar ded. count Total number of message discarded after the rollback of an enqueue normal ops
messageEnqueued. count Total number of message enqueues (transacted or otherwise) normal ops
nmessageExpi red. count Total number of message expirations normal ops
nmessagePaged| n. count Total number of message bodies paged in normal ops
nmessagePagedQut . count Total number of message bodies paged out normal ops
nessageRecover ed. count Total number of messages recovered (either from a persistence file, normal ops
or after the rollback of a dequeue)
pendi ngMessageCount . val ue Total number of messages part of an enqueue/dequeue of an active lazy int
transaction
storeSi ze. val ue Total size, in bytes, of the message store. lazy bytes
method-name An interval timer metric (PhaseEvent Sensor) for every major normal
method call in the message store object
The following identity holds:
messageCount = nessageRecovered + nessageEnqueued -
nmessageDequeued - nessageDi scarded - messageExpired
If a message is both enqueued and dequeued in the same transaction, the
nmessageEnqueued and nessageDequeued events occur, but the
messageRecover ed and nessageDi scar ded events do not.
JMS Persistence Stats
Table A-38 shows the JMS Persistence Stats.
The metric table name is JMSPer si st enceSt at s.
Table A-38 JMSPersistenceStats Metrics
Metric Description Update Unit
desti nation. val ue A pretty-printed name for the JMS destination associated with this ctor string
persistence file
hol ePageCount . val ue The number of 512b pages currently free in this file normal int
i sOpen. val ue "true" iff the persistence file descriptor is currently open (for LRU normal boolean
caching)
| ast Used. val ue System current Ti meM | | i s() when this persistence file was last normal msecs

used (for LRUcaching)

A-20 Oracle Application Server Performance Guide

mod_plsql Metrics

Table A—38 (Cont.) JMSPersistenceStats Metrics

Metric Description Update Unit
per si stenceFi | e. val ue The absolute path name of the persistence file used for this persistent ctor string
destination. This value differs depending on the operating system where
OC4] is running.
usedPageCount . val ue The number of 512b pages currently in use in this file normal int
method-name An interval timer metric (PhaseEvent Sensor) for every major method normal

call in the persistence file object

0C4J Task Manager Metrics

The metric table type is oc4j _t ask.

Table A—39 0C4J_taskManager Metrics

Metric Description Unit

interval.val ue Shows how often the task should run. The task manager executes all the tasks ~ msecs (Milliseconds)
in a round-robin fashion. If the interval is zero, then the task manager executes
the task when it is selected in the round robin.

run().active Number of active threads. threads
run() . avg Average time for the taskmanager to run the task msecs
run().conpl eted Number of times the taskmanager has run the task. ops
run().maxActive Maximum number of active tasks. threads
run() . maxTi ne Maximum time for the task to run. msecs
run(). mnTi ne Minimum time for the task to run. msecs
run().time Total time spent running the task manager msecs

mod_plsql Metrics
This section describes the Oracle Application Server mod_plsql metrics.

Figure A-1, "mod_plsql Metric Tree" shows the structure of the mod_plsql metrics. The
tables in this section describe the relevant metrics.

Performance Metrics A-21

mod_plsql Metrics

Figure A-1 mod_plsql Metric Tree

SQLErrorl

e | | aStNSQLEFFOrS)| SQLError2

| SesssionCache \ SQLError10
p—]| ContentCache

modplsql 3| HTTPResponseCodes SQLGroupl

—-| SQLErrorGroups)| SQLGroup2

—) SuperUserConnectionPooI\ SQLGroupX

—| RequestOwnerConnectionPool

— NONSSOCoNnectionPool

The / modpl sql / HTTPResponseCodes Metrics lists the response codes returned by

nod_pl sql .

The metric table name is nodpl sql _HTTPResponseCodes. This metric table
includes one metric containing the count, number of times the response was

generated, for each HTTP response type.
[type=nodpl sql _HTTPResponseCodes]

For example, the ht t p404. count metric holds a count of the "HTTP 404: Not found"

response codes.

Table A—40 lists the set of metrics for the mod_pl sql session cache.

The metric table name is nodpl sgl _Cache.

Table A-40 mod_plsql/SessionCache Metrics

Metric Description
cacheSt at us. val ue Status of the cache. This can be either enabled or disabled.
newM sses. count Number of session cache misses (new)

A-22 Oracle Application Server Performance Guide

mod_plsql Metrics

Table A—40 (Cont.) mod_plsql/SessionCache Metrics

Metric Description Unit
stal eM sses. count Number of session cache misses (stale) ops
hi ts. count Number of session cache hits ops
requests. count Number of requests to the session cache ops

Table A—41 lists the set of metrics for the nod_pl sql content cache.

The metric table name is nodpl sgl _Cont ent Cache.

Table A-41 mod_plsql/ContentCache Metrics

Metric Description Unit
cacheSt at us. val ue Status of the cache, either enabled or disabled.

newM sses. count Number of content cache misses (new) ops
stal eM sses. count Number of content cache misses (stale) ops
hi ts. count Number of content cache hits ops
requests. count Number of requests to the content cache ops

The SQLEr r or G- oups metrics show the predefined groupings of SQL errors. For each
group, the metrics in Table A—42 are recorded.

The metric table name is nodpl sgl _SQLEr r or G oup:
[modpl sql / SQLEr r or G- oups/ group [type=modpl sql _SQLErr or G oup]

The group is based on the groupings in the Oracle Database Error Messages guide. For
example, the metric name Or a242800r 229249 represents the grouping Ora-24280 to
Ora-29249. Each SQL error that occurs as a result of executing a request is put into the
appropriate group based on its error code. If you are getting a high number of the
same errors, you should investigate what is causing the problem, using the Oracle
Database Error Messages guide for further details on the error message.

Table A—42 mod_plsql/SQLErrorGroups Metrics

Metric Description Unit
| ast Error Dat e. val ue Date of the last request to cause the SQL error date
| ast Error Request . val ue Last request to cause the SQL error url
| ast Error Text . val ue SQL error text of the last error error
error.count Number of errors that have occurred within the group ops

The Last NSQLEr r or s statistics show the last 10 SQL errors that have occurred while
executing requests. These are updated in a round robin fashion. For each error, the
metrics in Table A—43 are recorded.

The metric table name is nodpl sql _Last NSQLEr r or :
[modpl sql / Last NSQLErrors/ <SQL Error Slot> [type=nodpl sql _Last NSQLError]
If you are getting a large number of the same errors, you should investigate what is

causing the problem. Refer to the Oracle Database Error Messages guide for further
details of the error represented by the er r or Text . val ue metric.

Performance Metrics A-23

mod_plsql Metrics

Table A-43 mod_plsql/LastNSQLErrors Metrics

Metric Description Unit
errorDate. val ue Date the request caused the SQL error date
error Request . val ue Request causing the SQL error url

error Text . val ue SQL error text error

Table A—44 lists the set of metrics for the Non-SSO connection pool.
The metric table name is nodpl sgl _Dat abaseConnect i onPool :

/ modpl sql / NonSSQConnect i onPool [type=modpl sql _Dat abaseConnecti onPool]

Table A-44 mod_plsql/NonSSOConnectionPool Metrics

Metric Description Unit
connFet ch. maxTi ne Maximum time to fetch a connection from the pool usecs
connFet ch. mi nTi ne Minimum time to fetch a connection from the pool usecs
connFet ch. avg Average time to fetch a connection from the pool usecs
connFet ch. active Child servers currently in the pool fetch phase threads
connFetch. time Total time spent fetching connections from the pool usecs
connFet ch. conpl et ed Number of times a connection has been requested from the pool ops
newM sses. count Number of connection pool misses (new) ops
stal eM sses. count Number of connection pool misses (stale) ops
hi ts. count Number of connection pool hits ops

Table A—45 lists the set of metrics for the request owner connection pool.
The metric table name is nodpl sgl _Dat abaseConnect i onPool :

/ modpl sql / Request Oaner Connect i onPool [type=nodpl sql _Dat abaseConnecti onPool]

Table A—-45 mod_plsql/RequestOwnerConnectionPool Metrics

Metric Description Unit
connFet ch. maxTi ne Maximum time to fetch a connection from the pool usecs
connFet ch. mi nTi ne Minimum time to fetch a connection from the pool usecs
connFet ch. avg Average time to fetch a connection from the pool usecs
connFet ch. active Child servers currently in the pool fetch phase threads
connFetch. time Total time spent fetching connections from the pool usecs
connFet ch. conpl et ed Number of times a connection has been requested from the pool ops
newM sses. count Number of connection pool misses (new) ops
stal eM sses. count Number of connection pool misses (stale) ops

hi ts. count Number of connection pool hits ops

Table A—46 lists the set of metrics for the super user connection pool.
The metric table name is modpl sql _Dat abaseConnect i onPool :

/ modpl sql / Super User Connect i onPool [type=nodpl sql _Dat abaseConnecti onPool]

A-24 Oracle Application Server Performance Guide

Portal Metrics

Table A-46 mod_plsql/SuperUserConnectionPool Metrics

Metric Description Unit
connFet ch. maxTi ne Maximum time to fetch a connection from the pool usecs
connFet ch. m nTi ne Minimum time to fetch a connection from the pool usecs
connFet ch. avg Average time to fetch a connection from the pool usecs
connFet ch. active Threads currently in the pool fetch phase threads
connFetch. time Total time spent fetching connections from the pool usecs
connFet ch. conpl et ed Number of times a connection has been requested from the pool ops
newM sses. count Number of connection pool misses (new) ops

st al eM sses. count Number of connection pool misses (stale) ops
hits. count Number of connection pool hits ops

Portal Metrics

This section shows the Portal Metrics. Figure A-2, "Parallel Page Engine Metric Tree"
shows the structure of the Portal Parallel Page Engine metrics. The tables in this

section describe the relevant metrics.

Figure A—2 Parallel Page Engine Metric Tree

—

Witness

>
—

PageEngine =P ResponseCodes

page | URL*

web =—Pp-| Provider* | Portlet*
plsql | Provider* —pp| Portlet*
login | URL*

version | URL*

XSL | URL*

B R R R R R R R R R R R R R e s 2

The set of metrics can be broken down into static and dynamic types. Static metrics are
those that are always available and dynamic being those metrics that only appear if a
specific event occurs, such as when a specific portlet is requested. All of the

Performance Metrics A-25

Portal Metrics

PageEngi ne and ResponseCodes metrics are static, the remaining metrics are
dynamic.

Table A—47 lists the set of metrics for the Parallel Page Engine. The metric table type is
nmodpl sql _PageEngi ne. This set represents the general performance of the Parallel
Page Engine. If you intend to use the cache you should ensure that the

cacheEnabl ed. val ue metric is set 1. To turn the cache on, refer to the nod_pl sql
cache and Parallel Page Engine configuration documentation.

Table A—47 Witness/PageEngine Metrics

Metric Description Unit
pageRequest s. val ue Total number of requests for Portal pages. count
cacheEnabl ed. val ue The PPE makes use of the mid tier cache as controlled by mod_plsql, and is status

accessed using a JNI layer. This flag indicates whether this JNI cache as accessed
from the PPE is enabled or not. This flag will be zero if the cache is either
configured to be off or there was a problem loading the JNI layer DLL.

cachePageHi ts. val ue Number of requests for cacheable fully assembled pages that have resulted in a count
cache hit.
cachePageRequest s. val ue Number of requests for cacheable fully assembled pages. count

pageMet adat aWai t Ti meAvg. v Average time spent in the PPE internal request queue waiting for page metadata, = msecs
al ue for all requests. To obtain the average you should divide the value metric by the

count metric. The value being the accumulative time for all requests and the count

being the number of requests made.

pageMet adat aWai t Ti meAvg. ¢ Number of requests made for page metadata. This metric should be used in ops
ount conjunction with pageMetadataWaitTimeAvg.value to calculate the average time

spent in the PPE internal request queue.
pageMet adat aWai t Ti me. val u Time the last page metadata request spent in the PPE internal request queue. msecs
e
pageMet adat aWai t Ti me. coun Number of requests for page metadata. ops
t

pageMet adat aWai t Ti me. mi nV Minimum time spent in the PPE internal request queue waiting for page metadata msecs
al ue to be requested.

pageMet adat aWai t Ti me. maxV Maximum time spent in the PPE internal request queue waiting for page metadata msecs
al ue to be requested.

pageEl apsedTi neAvg. val ue Average time to generate pages, including fetching the page metadata. To obtain msecs
the average you should divide the value metric by the count metric. The value
being the accumulative time for all requests and the count being the number of
requests made.

pageEl apsedTi neAvg. count Number of pages that had to be generated (that is, not cached). This metric should ops
be used in conjunction with pageElapsedTimeAvg.value to calculate the average
time to generate pages, including fetching the page metadata.

pageEl apsedTi ne. val ue Time to generate the last page requested, including fetching the page metadata. msecs
pageEl apsedTi me. count Number of pages that had to be generated (that is, not cached). ops
pageEl apsedTi ne. mi nVal ue Minimum time to generate a page, including fetching the page metadata. msecs
pageEl apsedTi ne. maxVal ue Maximum time to generate a page, including fetching the page metadata. msecs
pageMet adat aFet chTi meAvg. Average time to fetch page metadata, for all requests. To obtain the average you msecs
val ue should divide the value metric by the count metric. The value being the

accumulative time for all requests and the count being the number of requests

made.

pageMet adat aFet chTi meAvg. Number of requests for page metadata. This metric should be used in conjunction ops

count with pageMetadataFetchTimeAvg.value to calculate the average time to fetch page
metadata.

pageMet adat aFet chTi me. val Time to fetch page metadata, for the last request. msecs

ue

pageMet adat aFet chTi me. cou Number of requests for page metadata. ops

nt

A-26 Oracle Application Server Performance Guide

Portal Metrics

Table A—47 (Cont.) Witness/PageEngine Metrics

Metric Description Unit
pageMet adat aFet chTi me. mi N Minimum time to fetch page metadata. msecs
Val ue
pageMet adat aFet chTi me. max Maximum time to fetch page metadata. msecs
Val ue
queueTi neout . val ue Number of requests for Portal data that have timed out in the PPE internal request msecs
queue.
queueSt ayAvg. val ue Average time all internal PPE requests spent in the PPE internal request queue. To msecs
obtain the average you should divide the value metric by the count metric. The
value being the accumulative time for all requests and the count being the number
of requests made.
queueSt ayAvg. count Number of requests added to the internal PPE request queue. This metric should ops

be used in conjunction with queueStayAvg.value to calculate the average time
requests spent in the internal PPE request queue.

queueSt ay. val ue Time the last internal PPE request spent in the PPE internal request queue. msecs
queueSt ay. count Number of requests added to the internal PPE request queue. ops

queueSt ay. mi nVal ue Minimum time a request spent in the internal PPE request queue. msecs
queueSt ay. maxVal ue Maximum time a request spent in the internal PPE request queue. msecs
queuelLengt hAvg. val ue Average length of the PPE internal request queue. To obtain the average you msecs

should divide the value metric by the count metric.

queuelengt hAvg. count Number of requests added to the PPE internal request queue. This metric should ops

be used in conjunction with queueLengthAvg.value to calculate the average length
of the PPE internal request queue.

queuelengt h. val ue Current length of the PPE internal request queue. msecs
queuelengt h. count Number of requests added to the PPE internal request queue. ops

queuelengt h. m nVal ue Minimum number of requests in the PPE internal request queue. msecs
queuelLengt h. maxVal ue Maximum number of requests in the PPE internal request queue. msecs

The set of metrics for the response codes returned by internal requests, such as
portlets, page, or metadata, made by the Parallel Page Engine are in the metric table is
nodpl sgl _PageEngi ne_ResponseCodes.

This table contains a count for each HTTP response type.

For example, ht t p100. count , contains a count of the HTTP:100 Continue response
codes.

In addition, the metric htt pUnr esol vedRedi r ect . val ue contains a count of
requests that were not resolved after returning a redirect HTTP response code and

ht t pTi meout . val ue contains a count of requests that timed out in the PPE internal
request queue.

Table A—48 lists the set of metrics for the internal Parallel Page Engine page metadata
requests. The metric table name is dynamic in that it includes the URL used to request
the page metadata. If you are encountering a large number of failed requests, check the
HTTPD er r or _| og for details of why the requests are failing. The nod_pl sql
metrics may also provide further details.

Table A—48 Witness/page/ur| Metrics

Metric Description Unit

| ast ResponseDat e. val ue Last time the response was made Date

| ast ResponseCode. val ue Last response code returned for this request HTTP response
code

cacheHi ts. val ue Number of cache hits for this request ops

Performance Metrics A-27

Portal Metrics

Table A—48 (Cont.) Witness/page/ur| Metrics

Metric Description Unit

ht t pXXX. val ue Count of specific HTTP response codes for this request. ops
execut eTi me. maxTi me Maximum time to make the request usecs
execut eTi me. mi nTi e Minimum time to make the request usecs
execut eTi ne. avg Average time to make the request usecs
execut eTi me. active Threads currently being processed threads
executeTine. tine Total time spent making requests usecs
connFet ch. conpl et ed Number of requests made ops

Table A—49 lists the set of metrics for the internal Parallel Page Engine login metadata
requests. The metric table name is dynamic in that it includes the URL used to request
the login metadata. If you are encountering a large number of failed requests, check
the HTTPD er r or _| og for details of why the requests are failing. The nod_pl sql
metrics may also provide further details.

Table A—49 Witness/login/ur| Metrics

Metric Description Unit

| ast ResponseDat e. val ue Last time the request was made Date

| ast ResponseCode. val ue Last response code returned for this request HTTP response
code

cacheH ts. val ue Number of cache hits for this request ops

ht t pXXX. val ue Count of specific HTTP response codes for this request. ops

execut eTi me. maxTi me Maximum time to make the request usecs

execut eTi me. mi nTi e Minimum time to make the request usecs

execut eTi me. avg Average time to make the request usecs

execut eTi me. active Threads currently in the make request phase threads

executeTine. tine Total time spent making requests usecs

connFet ch. conpl et ed Number of requests made ops

The following table lists the set of metrics for the internal Parallel Page Engine Portal
version requests. The metric table name is dynamic in that it includes the URL used to
request the version of the Portal repository. If you are encountering a large number of
failed requests, check the HTTPD er r or _| og for details of why the requests are

failing. The nod_pl sql metrics may also provide further details.

Table A-50 Witness/version/ur| Metrics

Metric Description Unit

| ast ResponseDat e. val ue Last time the request was made Date

| ast ResponseCode. val ue Last response code returned for this request HTTP response
code

cacheHits. val ue Number of cache hits for this request ops

ht t pXXX. val ue Count of specific HTTP response codes for this request. ops

execut eTi me. maxTi me Maximum time to make the request usecs

execut eTi me. mi nTi e Minimum time to make the request usecs

execut eTi me. avg Average time to make the request usecs

A-28 Oracle Application Server Performance Guide

Portal Metrics

Table A-50 (Cont.) Witness/version/url Metrics

Metric Description Unit
execut eTi me. active Threads currently in the make request phase threads
executeTine. tine Total time spent making requests usecs
connFet ch. conpl et ed Number of requests made ops

Table A-51 lists the set of metrics for the internal Parallel Page Engine Portal XSL
requests. The metric table name is dynamic in that it includes the URL used to request
the XSL document. If you are encountering a large number of failed requests, check the
HTTPD er r or _| og for details of why the requests are failing. The nod_pl sql
metrics may also provide further details.

Table A-51 Witness/XSL/ur| Metrics

Metric Description Unit

| ast ResponseDat e. val ue Last time the request was made Date

| ast ResponseCode. val ue Last response code returned for this request HTTP
response
code

cacheHi ts. val ue Number of cache hits for this request ops

ht t pXXX. val ue Count of specific HTTP response codes for this request. ops

execut eTi me. maxTi me Maximum time to make the request usecs

execut eTi ne. mi nTi e Minimum time to make the request usecs

execut eTi me. avg Average time to make the request usecs

execut eTi me. active Threads currently in the make request phase threads

executeTi me. tinme Total time spent making requests usecs

connFet ch. conpl et ed Number of requests made ops

Table A-52 lists the set of metrics for the internal Parallel Page Engine PL/SQL
provider requests, holding a metric summary of all the requested portlets owned by a
specific provider. The metric table name is dynamic in that it includes the provider
name. dad- pr ovi der indicates the name of the DAD that the named provider is
registered and accessed through. If you are encountering a large number of failed
requests, check the HTTPD er r or _| og for details of why the requests are failing. The
nmod_pl sqgl metrics may also provide further details.

Table A-52 Witness/plsql/dad- pr ovi der Metrics

Metric Description Unit
cacheHits. val ue Number of cache hits for this request ops
of fline.val ue Flag to indicate whether the provider is offline. A value of 1 indicates that the state
provider is offline and a value of 0 indicates that the provider is online.
ht t pXXX. val ue Count of specific HTTP response codes for this request. ops
execut eTi me. maxTi me Maximum time to make the request usecs
execut eTi me. mi nTi e Minimum time to make the request usecs
execut eTi me. avg Average time to make the request usecs
execut eTi me. active Threads currently in the make request phase threads
executeTi me. tinme Total time spent making requests usecs
connFet ch. conpl et ed Number of requests made ops

Performance Metrics A-29

Portal Metrics

Table A-53 Witn

Table A-53 lists the set of metrics for the internal Parallel Page Engine Portal PL/SQL
portlet requests. The metric table name is dynamic in that it includes both the provider
and portlet names. Table A-52 contains metrics summarizing all of the portlets
requested that are owned by a specific PL/SQL provider.

If you are encountering a large number of failed requests, check the HTTPD er r or _
| og for details of why the requests are failing. The nod_pl sqgl metrics may also
provide further details.

ess/plsql/dad- pr ovi der/port| et Metrics

Metric Description Unit

| ast ResponseDat e. val ue Last time the request was made Date

| ast ResponseCode. val ue Last response code returned for this request HTTP response
code

cacheHi ts. val ue Number of cache hits for this request ops

ht t pXXX. val ue Count of specific HTTP response codes for this request. ops

execut eTi me. maxTi me Maximum time to make the request usecs

execut eTi me. mi nTi e Minimum time to make the request usecs

execut eTi ne. avg Average time to make the request usecs

execut eTi me. active Threads currently in the make request phase threads

executeTi me. tinme Total time spent making requests usecs

connFet ch. conpl et ed Number of requests made ops

Table A-54 lists the set of metrics for the internal Parallel Page Engine Web provider
requests, holding a metric summary of all the requested portlets owned by a specific
provider. The metric table name is dynamic in that it includes the provider name. If
you are encountering a large number of failed requests, check the HTTPD er r or _| og
for details of why the requests are failing. The nod_pl sql metrics may also provide
further details.

Table A-54 Witness/Web/dad- pr ovi der Metrics

Metric Description Unit
cacheHi ts. val ue Number of cache hits for this request ops
of fline.val ue Flag to indicate whether the provider is offline. A value of 1 indicates that the state
provider is offline and a value of 0 indicates that the provider is online.
ht t pXXX. val ue Count of specific HTTP response codes for this request. ops
execut eTi me. maxTi me Maximum time to make the request usecs
execut eTi ne. mi nTi e Minimum time to make the request usecs
execut eTi me. avg Average time to make the request usecs
execut eTi me. active Threads currently in the make request phase threads
executeTime. time Total time spent making requests usecs
connFet ch. conpl et ed Number of requests made ops

Table A-55 lists the set of metrics for the internal Parallel Page Engine Portal Web
portlet requests. The metric name is dynamic in that it includes both the provider and
portlet names. Table A-54 contains metrics summarizing all of the portlets requested
that are owned by a specific Web provider.

If you are encountering a large number of failed requests, check the HTTPD er r or _
| og for details of why the requests are failing. The npd_pl sql metrics may also
provide further details. If you are seeing a large number of HTTP redirects (302),

A-30 Oracle Application Server Performance Guide

Oracle Process Manager and Notification Server Metrics

consider coding the portlet to avoid the redirect as this helps performance. If you have
coded you portlet to be cacheable and the number of cache hits is low, check the nod_
pl sql cache settings to ensure they are set to the appropriate levels for your system.

Table A-55 Witness/Web/dad- pr ovi der /port | et Metrics

Metric Description Unit

| ast ResponseDat e. val ue Last time the request was made Date

| ast ResponseCode. val ue Last response code returned for this request HTTP response
code

cacheHi ts. val ue Number of cache hits for this request ops

ht t pXXX. val ue Count of specific HTTP response codes for this request. ops

execut eTi me. maxTi me Maximum time to make the request usecs

execut eTi me. mi nTi ne Minimum time to make the request usecs

execut eTi ne. avg Average time to make the request usecs

execut eTi me. active Threads currently in the make request phase threads

executeTine. tine Total time spent making requests usecs

connFet ch. conpl et ed Number of requests made ops

Oracle Process Manager and Notification Server Metrics

This sections lists the Oracle Process Manager and Notification Server (opmn) metrics.

This section includes the following:

OPMN_PM Metric Table
OPMN_HOST_STATISTICS Metric Table
OPMN_IAS_INSTANCE Metric Table
OPMN_IAS_COMPONENT Metrics
OPMN ONS Metrics

OPMN_PM Metric Table

The opm_pmmetric table is the root of the process manager subtree for the OPMN
DMS metrics. The metrics in this metric table contain statistics about OPMN requests.
An OPMN request is a command that has been issued to OPMN from a client, for
example DCM, to perform an operation on one or more OPMN managed processes.

Requests can have one of three possible results:

Success — success means OPMN handles the request successfully.

Partial Success — partial Success means OPMN only handles part of the request
successfully. For example, if a client wants OPMN to start three OC4] processes,
and only two are successfully started, the request result is partial success.

Failure — failure means the request fails.

Table A-56 shows the metric table type opmm_pm

Performance Metrics A-31

Oracle Process Manager and Notification Server Metrics

Table A-56 OPMN_PM Metrics

Metric Description Unit
j obvr ker Queue. val ue Specifies the number of jobs in the OPMN worker queue ops
| Req. count Specifies the number of local HTTP requests which OPMN handles ops
procDeat h. count Specifies the number of processes which die after the process manager starts ops
them
pr ocDeat hRepl ace. count Specifies the number of processes which are restarted after the process ops
manager detects they are dead
regFail . count Specifies the number of HTTP requests which fail ops
regPartial Succ. count Specifies the number of HTTP requests which partially succeed ops
regsucc. count Specifies the number of HTTP requests which succeed ops
r Req. count Specifies the number of remote HTTP requests which OPMN handles ops
wor ker Thr ead. val ue Specifies the number of worker threads threads

OPMN_HOST_STATISTICS Metric Table

The OPMN host statistics metric table provides information on the host running the
OPMN process.

Appendix A-57 shows the metric table type opmrm_host _stati sti cs.

Table A-57 OPMN_HOST_STATISTICS Metrics

Metric Description Unit

cpul dl e. val ue Specifies the number of milliseconds the cpu(s) have been idle since an ~ milliseconds
unspecified time.

freePhysi cal Mem val ue Specifies the amount of free physical memory on the host machine. kilobytes

nunProcessors. val ue Specifies the number of processors available on the host machine. integer

tinmestanp. val ue Specifies the time that host statistics are taken. The timestamp is the milliseconds from
number of milliseconds from an unspecified time. an unspecified time

tot al Physi cal Mem val ue Specifies the total physical memory available on the host machine. kilobytes

OPMN_IAS_INSTANCE Metric Table

The OPMN IAS instance subtree shows the Oracle Application Server instance node
name.

Table A-58 shows the metric table type opmm_i as_i nst ance.

Table A-58 OPMN_IAS_INSTANCE Metrics

Metric Description Unit

i asC uster.val ue Specifies the Oracle Application Server cluster name for the Oracle String
Application Server instance.

OPMN_IAS_COMPONENT Metrics

The OPMN IAS component subtree represents an Oracle Application Server
component. The OPMN IAS component subtree includes several metric tables
containing component information.

Table A-59 shows the metric table type opmm_pr ocess_t ype.

A-32 Oracle Application Server Performance Guide

Oracle Process Manager and Notification Server Metrics

Table A-59 OPMN_PROCESS_TYPE Metrics

Metric Description Unit

nodul el d. val ue Specifies the values of attribute module-IDs, as specified in the String
process-type tag in the opmm. xm configuration file.

Table A—60 shows the metric table type oprm_pr ocess_set .

Table A-60 OPMN_PROCESS_SET Metrics

Metric Description Unit

nunPr ocConf . val ue Specifies the number, or maximum number, of processes configured for this String (integer)
process set.

regFai | . count Specifies the number of HTTP requests which fail for this process set. ops

regPartial Succ. count Specifies the number of HTTP requests which partially succeed for this ops

process set.
regsSucc. count Specifies the number of HTTP requests which succeed for this process set ops

restartOnDeat h. val ue Specifies whether, when a process dies, OPMN should restart the process. String (boolean)

Table A—61 shows the metric table type opmrm_pr ocess.

Table A—-61 OPMN_PROCESS Metrics

Metric Description Unit

cpuTi rme. val ue Shows the amount of CPU time used by the process. CPU msecs

heapSi ze. val ue Shows the heap size of the process. Kilobytes

i asCl uster.val ue Shows the Oracle Application Server cluster name for the process String

i asl nstance. val ue Shows the Oracle Application Server instance name for the process String

i ndex| nSet . val ue Shows the process index in the process set. This value is only valid for OPMN String
managed processes, for OPMN unmanaged processes, this value has no meaning, (integer)

and the value is always 0.

menor yUsed. val ue The amount of memory used by the process.
This metric is calculated in an operating system specific manner.

On UNIX, this is the process image memory used value. This is all the memory in
use by the process.

On Windows, this is the working set memory used value. This is the same value that
is reported by the Task Manager under the mem usage column. The working set is
the set of memory pages touched recently by the threads in the process. If free
memory in the system is over a certain threshold, pages are left in the working set of
a process, even if they are not in use. When free memory falls below a certain
threshold, pages are trimmed from the working sets. If needed, pages are
soft-faulted back into the working set before they leave main memory.

pi d. val ue The process ID for the process.

privateMenory. val ue The private memory of the process. Kilobytes
shar edMenory. val ue The shared memory for the process Kilobytes
startTi me. val ue The start time of the process. msecs

Performance Metrics A-33

Oracle Process Manager and Notification Server Metrics

Table A—61 (Cont.) OPMN_PROCESS Metrics

Metric Description Unit

st at us. val ue The status of the process. The status can have the following values: String

NONE — New process slot, no operations have been applied yet (no status).

I ni t — process has been started, opmn is waiting for initialization to complete.
Al'i ve — process is fully started.

St op - process stop operation is in progress.

St opped - process has been fully stopped.

Bounce — non-terminating process restart is in progress.

Rest art — process stop operation is in progress, prior to a new start being
issued.

I ni t Fai | —failure before init timeout reached, a stop and start will be
attempted in the retry limit has not been reached.

BounceFai | —non-terminating process restart failed, as stop and start will be
attempted if the retry limit has not been reached.

type. val ue The type of the process. See Table A-59 for information on process types.

ui d. val ue The OPMN assigned ID for the process.

upTi rre. val ue The uptime for the process. msecs

Table A-62 shows the metric table type opmrm_connect .

Table A—-62 OPMN_CONNECT Metrics

Metric Description Unit

desc. val ue Shows the port description, if available String

host . val ue Shows the host name String (host name)
port.val ue Shows the port number String (port number)

OPMN ONS Metrics

The Oracle Process Manager and Notification Server ONS subtree contains Oracle
Notification System (ONS) information.

Table A—63 shows the metric table type opmm_ons.

Table A—63 OPMN_ONS Metrics

Metric Description Unit

noti f Processed. val ue The number of notifications processed by ONS. ops

noti f ProcessQueue. val ue The number of notifications in the process queue. ops

not i f Recei ved. val ue The number of notifications received by ONS. ops

not i f Recei veQueue. val ue The number of notifications in the receive queue. ops

wor ker Thr ead. val ue The number of worker threads. String (threads)

Table A-64 shows the local_port metrics. The . . / ons/ | ocal _port subtree shows
information about the ONS local port.

The metric table type is oprm_connect

A-34 Oracle Application Server Performance Guide

Discoverer Metrics

Table A—-64 OPMN ONS LOCAL_PORT Metrics

Metric Description Unit
desc. val ue Port description String
host . val ue Host name String
port.val ue Port number String

Table A-65 shows the remote_port metrics. The . . / ons/ r endt e_port subtree

shows information about the ONS remote port.

The metric table type is oprm_connect

Table A-65 OPMN ONS REMOTE_PORT Metrics

Metric Description Unit
desc. val ue Port description String
host . val ue Host name String
port.val ue Port number String

Table A-66 shows the request_port metrics. The . ./ ons/ request _port subtree

shows information about the ONS request port.

The metric table type is oprm_connect

Table A—66 OPMN ONS REQUEST_PORT Metrics

Metric Description Unit
desc. val ue Port description String
host . val ue Host name String
port.val ue Port number String

Discoverer Metrics

Oracle Application Server Discoverer is deployed inside OC4] as a J2EE application.
The metrics that apply to a J2EE application, Web Module, Web Context, and Servlet

apply to Discoverer.

See Also: "OC4] Metrics" on page A-9

The node name subtee includes the value of the attribute ID specified as part of the
process-set tag in opmm. xM . This subtree includes all the OPMN managed and

unmanaged processes which belong to this process set.

Performance Metrics A-35

DMS Internal Metrics

DMS Internal Metrics

Table A—67 DMS-Internal Clock Metrics

Metric Description Unit
| ogi cal Ti me. val ue The current time as measured with the DMS clock. ticks
measur edFr equency. val ue Number of clock ticks per second - measured. ticks
measur edResol uti on. val ue Time between ticks as measured with this clock.

name. val ue

over headPer Cal | . val ue The average duration of a call to get the time with this clock.

report edFr equency. val ue The number of ticks per second the clock time is reported in. ticks
request edUni ts. val ue The string description of the units that times are reported in.

Table A—68 DMS-Internal Log Metrics

Metric Description Unit
i ni t Loggi ng. count ops
nmessagesLogged. count ops
status. val ue

Table A—69 DMS-Internal Measurement Metrics

Metric Description Unit
creat eNoun. count ops
creat eSensor. count ops
dest r oyNoun. count ops
dest roySensor . count ops
| ast Tr eeNodel D. val ue

sanpl eMetri c. count ops
sensor Wi ght . val ue

treeNodes. maxVal ue

treeNodes. val ue

Table A-70 DMS-Internal Collector Metrics

Metric Description Unit
| ogger . count ops
| ogger . | ogged ops
responseGener at eTi ne. acti ve threads

responseGCener at eTi ne. avg
responseGener at eTi ne. conpl et ed

responseGener at eTi ne. maxActi ve

A-36 Oracle Application Server Performance Guide

DMS Internal Metrics

Table A—70 (Cont.) DMS-Internal Collector Metrics

Metric Description Unit
responseGener at eTi ne. maxTi me

responseGener at eTi ne. ni nTi e

responseGenerateTine.tinme

Table A—71 DMS-Internal Transtrace Metrics

Metric Description Unit

expi reMessages. avg

expi reMessages. conpl et ed
expi reMessages. maxActive
expi reMessages. naxTi me
expi reMessages. m nTi e
expi reMessages. ti ne
messageCount . val ue

pendi ngMessageCount . val ue
s_debugEnabl ed. val ue
s_dunpEnabl ed. val ue

s_eci dEnabl ed. val ue
s_transTraceEnabl ed. val ue

storeSi ze. val ue

Performance Metrics A-37

DMS Internal Metrics

A-38 Oracle Application Server Performance Guide

B

Component Performance Links

This Appendix includes references to the Oracle Application Server Components that
include performance information in their component level documentation.

This Appendix includes the following topics:

« Oracle Application Server Toplink Performance Information

= Oracle Application Server Portal Performance Information

= Oracle Business Intelligence Discoverer Performance Information

= Oracle Application Server Wireless Performance Information

Component Performance Links B-1

Oracle Application Server Toplink Performance Information

Oracle Application Server Toplink Performance Information

For information on Oracle Application Server Toplink performance tuning, refer to the
chapter, "Tuning for Performance", in the Oracle Application Server TopLink
Application Developer’s Guide.

See Also: Oracle Application Server TopLink Application Developer’s
Guide

Oracle Application Server Portal Performance Information

For information on OracleAS Portal, refer to the chapter, "Tuning Performance in
OracleAS Portal", in the Oracle Application Server Portal Configuration Guide.

See Also: Oracle Application Server Portal Configuration Guide

Oracle Business Intelligence Discoverer Performance Information

For information on Oracle Business Intelligence Discoverer performance and
scalability, refer to the chapter, "Optimizing Oracle Business Intelligence Discoverer
performance and scalability”, in the Oracle Business Intelligence Discoverer
Configuration Guide.

See Also: Oracle Business Intelligence Discoverer Configuration Guide

Oracle Application Server Wireless Performance Information

For information on Oracle Application Server Wireless performance and scalability,
refer to Chapter 13, "Optimizing Transport”, in the Oracle Application Server Wireless
Administrator’s Guide.

See Also: Oracle Application Server Wireless Administrator’s Guide

B-2 Oracle Application Server Performance Guide

A

access logging, 5-11
ADF
deployment configuration, 6-45
failover mode, 6-46
performance, 6-44
SQL-only view object, 6-45
AggreSpy
access control, 2-7
performance monitoring, 2-5
URL, 2-7
using, 2-5
using with standalone OC4J, 2-13
Application Server Control
module metrics, 3-4
monitoring OC4J, 4-2
monitoring OHS performance, 3-2
monitoring Oracle Application Server with, 2-2
response and load metrics, 3-4

B

batch-size attribute, 6-34
built-in performance metrics, 2-2

C

cache hits

increasing rate of, 7-9
cache misses, 7-9
cache size

calculating for Web Cache, 7-3

maximum for Web Cache, 7-2
cacheScheme datasources option, 6-12
caching rules

priority rankings, 7-10

response time and, 7-10
call-timeout orion-ejb-jar.xml parameter, 6-29
capacity, 1-6

of origin servers with Web Cache, 7-11

of Web Cache clusters, 7-11
cluster-config element, 6-55
CMP entity beans

lazy-loading, 6-34
com.evermind.server.ejb. TimeoutExpiredException

Index

from EJB, 6-29
command line options, 6-3
compression
for cached documents, 7-10
concurrency
defined, 1-2
limiting, 1-6
concurrent users, 5-6
connection limit
on UNIX with Web Cache, 7-7
on Windows with Web Cache, 7-7
Web Cache, 7-6
connection-retry-interval datasources option, 6-14
contention, 1-4
defined, 1-2
cookies
JAZN session cache and, 6-49
Web Cache and, 7-9
CPUs
insufficient, 1-4
performance and Web Cache, 7-2

D

database monitoring, 10-1
database tuning, 10-1
data-source
stmt-cache-size attribute, 6-14
datasources
cacheScheme option, 6-12
configuring, 6-10
connection-retry-interval option, 6-14
ejb aware, 6-11
emulated, 6-10
inactivity-timeout option, 6-13
max-connect-attempts option, 6-14
max-connections option, 6-11
min-connections option, 6-12
non-emulated, 6-10
stmt-cache-size option, 6-14
wait-timeout option, 6-13
dedicated.rmicontext property, 6-8
DefineColumnType property, 6-8
delay-updates-until-commit attribute, 6-34
delay-updates-until-commit orion-ejb-jar.xml
parameter, 6-30

Index-1

deployment
application, 6-55
OC4], 6-55
performance, 6-56
dequeue-retry-count orion-ejb-jar.xml
parameter, 6-41
dequeue-retry-interval orion-ejb-jar.xml
parameter, 6-41
directives
See also httpd.conf directives
distributable element
web.xml, 6-55
DMS
coding tips, 9-17
conditional instrumentation, 9-15
Event sensors, 9-5
using, 9-11
getSensorWeight, 9-15
instrumentation
definition of, 9-2
using, 9-9
metrics
definition of, 9-4
dumping to files, 9-16
monitoring metrics, 9-2
naming conventions, 9-7
nouns, 9-3,9-6
naming conventions, 9-8
using, 9-9
oracle.dms.gate property, 6-7
oracle.dms.sensors property, 6-6
oracle.jdbc. DMSstatementCachingMetrics
property, 6-7
oracle.jdbc. DMSStatementMetrics property, 6-7
PhaseEvent sensors, 9-4
using, 9-10
security, 9-15
sensors, 9-3
definition of, 9-4
destroying, 9-16
resetting, 9-16
State sensors, 9-5
using, 9-12
terminology, 9-3
testing metrics, 9-14
validating metrics, 9-13
dmstool
access control, 2-9
address option, 2-10,2-13
count option, 2-10
dump option, 2-10, 2-12
format=xml option, 2-10
interval option, 2-10
list option, 2-11
options, 2-9
reset option, 2-11
table option, 2-11
using, 2-9
DNS
domain name server, 5-11

Index-2

do-select-before-insert orion-ejb-jar.xml
parameter, 6-30
dynamic include
vs. static include, 6-27
DYNAMIC_SCHEME cacheScheme value,

E

6-12

Edge Side Includes (ESI)
memory for, 7-3
response time and, 7-9
ejb-location
datasources, 6-11
EJBs
CMP
lazy-loading attribute, 6-34
enable-passivation, 6-18
metrics, A-12
monitoring, 4-3
orion-ejb-jar.xml parameters
call-timeout, 6-29
delay-updates-until-commit, 6-30
dequeue-retry-count, 6-41
dequeue-retry-interval, 6-41
do-select-before-insert, 6-30
exclusive-write-access, 6-30
findByPrimaryKey-lazy-loading
, 6-30
idletime, 6-37
isolation, 6-31
lazy-loading, 6-31
listener-threads, 6-41
locking-mode, 6-31, 6-35
max-instances, 6-29, 6-36, 6-37
max-instances-threshold, 6-37
max-tx-retries, 6-29, 6-31
memory-threshold, 6-37
min-instances, 6-29
passivate-count, 6-38
pool-cache-timeout, 6-31, 6-35, 6-36
prefetch-size, 6-32
resource-check-interval, 6-38
timeout, 6-38
transaction-timeout, 6-41
update-changed-fields-only, 6-32
validity-timeout, 6-32
performance on OC4J, 6-28
server.xml
transaction-config element, 6-17
stateful session bean passivation, 6-38
enable-passivation, 6-18
entity bean, 6-34
ErrorLog
directive, 5-12
Event sensors, 9-5
exclusive-write-access orion-ejb-jar.xml
parameter, 6-30
expiration-setting element, 6-19
external resource file
for static text, 6-28

F

failover
ADF, 6-46
findByPrimaryKey-lazy-loading orion-ejb-jar.xml
parameter, 6-30
finder method
lazy loading, 6-34
FIXED_RETURN_NULL_SCHEME cacheScheme
value, 6-12
FIXED_WAIT_SCHEME cacheScheme value, 6-12
functional demand, 1-6

G

garbage collection
application deployment and, 6-57
OC4] applications and, 6-4, 6-5
Web Cache and, 7-5

global-web-application.xml
cluster-config element, 6-55
expiration-setting element, 6-19
parameters, 6-23

H

hash
defined, 1-2
parameter, 5-4
heap size
setting, 6-3
hits
cache, 7-9
HostNameLookups
directive, 5-11
HTTP connections
limiting for standalone OC4J, 6-54
HTTP Server
monitoring, 3-2
httpd.conf
directives
ErrorLog, 5-12
HostNameLookups, 5-11
KeepAlive, 3-12,5-10
KeepAliveTimeout, 5-10
ListenBacklog, 5-9
LogLevel, 5-12
MaxClients, 5-9,5-10
MaxKeepAliveRequests, 5-10
MaxRequestsPerChild, 5-9
MaxSpareServers, 5-9
MinSpareServers, 5-9
StartServers, 5-9
ThreadsPerChild, 5-11
Timeout, 5-9
port numbers, 4-7

idletime orion-ejb-jar.xml parameter, 6-37
inactivity-timeout datasources option, 6-13

include directive use with JSPs, 6-27
incoming connections

Web Cache, 7-6
isolation orion-ejb-jar.xml parameter, 6-31

J

J2EE
applications monitoring, 4-3
deployment, 6-55
guidelines for performance, 6-1
identifying data sources, 6-11
improving performance, 6-1
metrics, A-9
JAAS performance, 6-47
Java options
changing for OC4J, 6-9
-client, 6-4
-server, 6-4
-Xms, 6-3
-Xmx, 6-3
-Xss, 6-5
-XX+AggressiveHeap, 6-5
-XXMaxPermSize, 6-6
java.naming.factory.initial property, 6-52
java.naming.provider.url property, 6-52
java.naming.security.credentials property, 6-53
java.naming.security.principal property, 6-53
java.security.auth.policy property, 6-48
javax.sql.DataSource, 6-10
JAZN performance, 6-47
jazn.xml configuration file, 6-48
JDBC
DefineColumnType option, 6-8
metrics, 6-7, A-6
oracle.jdbc. DMSStatementCachingMetrics
property, 6-7
oracle.jdbc. DMSStatementMetrics property, 6-7
prefetch-size parameter, 6-15
statement cache size attribute, 6-14
stmt-cache-size, 6-14
JSPs
configuration
main_mode, 6-23
tags_reuse_default parameter, 6-24
dynamic include, 6-27
include directives, 6-27
justrun main_mode parameter, 6-23
metrics, A-11
monitoring, 4-3
page buffer, 6-26
page sessions, 6-25
performance, 6-22
recompile main_mode parameter, 6-23
reload main_mode parameter, 6-23
runtime include, 6-27
static include, 6-27
tags_reuse_default parameter, 6-24
translate-time includes, 6-27
justrun main_mode parameter, 6-23

Index-3

JVM
command line options, 6-3
metrics, A-5
setting heap size, 6-3
JVM metrics
Properties metrics, A-6
JVM system properties metrics, A-6

K

KeepAlive httpd.conf directive, 3-12,5-10
Web Cache and, 7-8

Keep-Alive timeout
Web Cache setting, 7-7

KeepAliveTimeout httpd.conf directive, 5-10
Web Cache and, 7-8

L

latency

defined, 1-2

first-request, 6-19
lazy-loading attribute, 6-34
lazy-loading orion-ejb-jar.xml parameter, 6-31
ListenBacklog httpd.conf directive, 5-9
listener-threads orion-ejb-jar.xml parameter, 6-41
load variances, 1-7
load-on-startup web.xml parameter, 6-19

locking-mode orion-ejb-jar.xml parameter, 6-31, 6-35

locking-mode values
optimistic, 6-33
pessimistic, 6-33
read-only, 6-33

logging
access, b5-11
error, 5-12

performance and, 5-11
performance implications of, 5-11
LogLevel directive, 5-12
logresolve utility, 5-11

M

main_mode parameter, 6-23
MaxClients httpd.conf directive, 5-9, 5-10
Web Cache and, 7-8,7-11
max-connect-attempts datasources option, 6-14
max-connections datasources option, 6-11
max-connections-queue-timeout attribute, 6-54
max-http-connections element, 6-54
maximum cache size
configuring for Web Cache, 7-2
maximum network connections
Web Cache and, 7-6
max-instances orion-ejb-jar.xml parameter, 6-29,
6-36, 6-37
max-instances-threshold orion-ejb-jar.xml
parameter, 6-37

MaxKeepAliveRequests httpd.conf directive, 5-10

Web Cache and, 7-8
MaxRequestsPerChild httpd.conf directive, 5-9

Index-4

MaxSpareServers httpd.conf directive, 5-9
max-tx-retries orion-ejb-jar.xml parameter, 6-29, 6-31
memory

calculating for Web Cache, 7-3
configuring for Web Cache, 7-2
ESI and Web Cache, 7-3

JVM heap size, 6-3

memory-threshold orion-ejb-jar.xml parameter, 6-37
metric table types

JDBC_Connection, A-7
JDBC_DataSource, A-6
JDBC_Driver, A-6
JDBC_Statement, A-8
JMSBrowserStats, A-18
JMSConnectionStats, A-16
JMSDestinationStats, A-19
JMSDurableSubscriptionStats, A-19
JMSMessageConsumerStats, A-18
JMSPersistenceStats, A-20
JMSProducerStats, A-17
JMSRequestHandlerStats, A-16
JMSSessionStats, A-17

JMSStats, A-15

JMSStoreStats, A-20
JMSTempoaryDestinationStats, A-19
JVM, A-5
mod_oc4]_destination_metrics, A-5
mod_oc4]_mount_pt_metrics, A-4
mod_oc4j_request_failure_causes, A-3
modplsql_Cache, A-22, A-23
modplsql_DatabaseConnectionPool, A-24
modplsql_HTTPResponseCodes, A-2, A-22
modplsql_LastNSQLError, A-23
modplsql_PageEngine, A-26
modplsql_PageEngine_ResponseCodes, A-27
modplsql_SQLErrorGroup, A-23
oc4j_context, A-10
oc4j_ejb_entity_bean, A-12
oc4j_ejb_method, A-12
oc4j_jsp(threadsafe=false), A-11
oc4j_jsp(threadsafe=true), A-11
oc4j_jspExec, A-11

oc4]_opmn, A-13

oc4j_servlet, A-10

oc4j_task, A-21

oc4j_web_module, A-9
ohs_module, A-3

ohs_server, A-2

opmn_connect, A-34, A-35
opmn_host_statistics, A-32
opmn_ias_instance, A-32
opmn_ons, A-34

opmn_pm, A-31

opmn_process, A-33
opmn_process_set, A-33
opmn_process_type, A-32

metric tables, 2-5
metrics

acknowledgeMode.value, A-17
activelnstances.value, A-11

activeThreadGroups.maxValue, A-5
activeThreadGroups.minValue, A-5
activeThreadGroups.value, A-5
activeThreads.maxValue, A-5
activeThreads.minValue, A-5
activeThreads.value, A-5
address.value, A-15, A-16, A-17
availablelnstances.value, A-11
bean-type.value, A-12
cacheEnabled.value, A-26
CacheFreeSize.value, A-7
CacheGetConnection.avg, A-7
CacheGetConnection.completed, A-7
CacheGetConnection.maxTime, A-7
CacheGetConnection.minTime, A-7
CacheGetConnection.time, A-7
CacheHit.count, A-7
cacheHits.value, A-27, A-28, A-29, A-30, A-31
CacheMiss.count, A-7
cachePageHits.value, A-26
cachePageRequests.value, A-26
CacheSize.value, A-7
cacheStatus.value, A-22, A-23
client.active, A-13
clientavg, A-13
client.completed, A-13
clientID.value, A-17, A-19
client.maxTime, A-13
clientminTime, A-13
client.time, A-13
connection.active, A-2
connection.avg, A-2
ConnectionCloseCount.count, A-6
ConnectionCreate.active, A-6
ConnectionCreate.avg, A-6
ConnectionCreate.completed, A-6
ConnectionCreate.maxTime, A-6
ConnectionCreate.minTime, A-6
ConnectionCreate.time, A-6
connectionID.value, A-16, A-19
connection.maxTime, A-2
connection.minTime, A-2
ConnectionOpenCount.count, A-6
connections.count, A-15
connection.time, A-2
connFetch.active, A-24, A-25
connFetch.avg, A-24, A-25
connFetch.completed, A-24, A-25, A-28, A-29,
A-30, A-31
connFetch.maxTime, A-24, A-25
connFetch.minTime, A-24, A-25
connFetch.time, A-24, A-25
cpuldle.value, A-32
cpuTime.value, A-33
CreateNewStatement.avg, A-7
CreateNewStatement.completed, A-7
CreateNewStatement.maxTime, A-7
CreateNewStatement.minTime, A-7
CreateNewStatement.time, A-7, A-8
CreateStatement.avg, A-7, A-8

CreateStatement.completed, A-7, A-8
CreateStatement.maxTime, A-7, A-8
CreateStatement.minTime, A-7, A-8
CreateStatement.time, A-7, A-8
default_application_log.value, A-13
deliveryMode.value, A-18
desc.value, A-35

Destination.value, A-4
destination.value, A-18, A-19, A-20
disableMessagelD.value, A-18
disableMessageTimestamp.value, A-18
domain.value, A-17, A-18, A-19

EJB, A-12

ejbPostCreate.active, A-13
ejpbPostCreate.avg, A-13
ejpPostCreate.completed, A-13
ejpPostCreate.maxTime, A-13
ejpPostCreate.minTime, A-13
ejpPostCreate.time, A-13

error.count, A-23

errorDate.value, A-24
errorRequest.value, A-24
errorText.value, A-24

ErrReq.count, A-4, A-5
ErrReqNonSess.count, A-4, A-5
ErrReqSess.count, A-4, A-5
exceptionListener.value, A-17
exclusive-write-access.value, A-12
Execute.time, A-8, A-9
executeTime.active, A-28, A-29, A-30, A-31
executeTime.avg, A-28, A-29, A-30, A-31
executeTime.maxTime, A-28, A-29, A-30, A-31
executeTime.minTime, A-28, A-29, A-30, A-31
executeTime.time, A-28, A-29, A-30, A-31
Failover.count, A-4, A-5

Fetch.time, A-8, A-9
freeMemory.maxValue, A-5
freeMemory.minValue, A-5
freeMemory.value, A-5
freePhysicalMem.value, A-32
handle.active, A-2, A-3

handle.avg, A-2,A-3
handle.completed, A-2, A-3
handle.maxTime, A-2, A-3
handle.minTime, A-2, A-3
handle.time, A-2, A-3
heapSize.value, A-33

hits.count, A-23, A-24, A-25
holePageCount.value, A-20
host.value, A-15, A-16, A-17, A-35
httpTimeout.value, A-27
httpUnresolvedRedirect.value, A-27
httpXXX.value, A-28, A-29, A-30, A-31
ias_cluster.value, A-13
ias_instance.value, A-13
iasCluster.value, A-32, A-33
iasInstance.value, A-33
IncorrectReqlnit.count, A-4
indexInSet.value, A-33
interval.value, A-21

Index-5

isActive.value, A-19
isLocal.value, A-17
isolation.value, A-12
isOpen.value, A-20
isXA.value, A-17
J2EE, A-9
jms_log.value, A-13
jobWorkerQueue.value, A-32
JSp, A-11
JVM, A-5
JVMCnt.value, A-5
lastErrorDate.value, A-23
lastErrorRequest.value, A-23
lastErrorText.value, A-23
lastResponseCode.value, A-27, A-28, A-29, A-30,
A-31
lastResponseDate.value, A-27, A-28, A-29, A-30,
A-31
lastUsed.value, A-20
locations.value, A-19
LogicalConnection.value, A-7, A-8
IReq.count, A-32
memoryUsed.value, A-33
messageCount.value, A-20
messageDequeued.count, A-20
messageDiscarded.count, A-20
messageEnqueued.count, A-20
messageExpired.count, A-20
messageListener.value, A-18
messagePagedIn.count, A-20
messagePagedOut.count, A-20
messageRecovered.count, A-20
moduleld.value, A-33
Name.value, A-4, A-5
name.value, A-18, A-19
newMisses.count, A-22, A-23, A-24, A-25
nolLocal.value, A-18, A-19
NonSessFailover.count, A-4, A-5
notifProcessed.value, A-34
notifProcessQueue.value, A-34
notifReceived.value, A-34
numMods.value, A-3
numProcConf.value, A-33
numProcessors.value, A-32
oc4j_instance.value, A-13
oc4j_island.value, A-14
oc4jjms.debug.value, A-15
oc4jjms.forceRecovery.value, A-15
oc4j.jms.listenerAttempts.value, A-15
oc4j.jms.maxOpenFiles.value, A-15
oc4j.jms.messagePoll.value, A-16
oc4jjms.noDms.value, A-16
oc4jjms.saveAllExpired.value, A-16
oc4jjms.serverPoll.value, A-16
oc4j.jms.socketBufsize.value, A-16
oc4j.jms.usePersistence.value, A-16
oc4j.jms.useUUID.value, A-16
Oc4jUnavailable.count, A-4
offline.value, A-29, A-30
opmn_group.value, A-14

Index-6

opmn_sequence.value, A-14

Oracle Application Server performance, A-1
pageElapsedTimeAvg.count, A-26
pageElapsedTimeAvg.value, A-26
pageElapsedTime.count, A-26
pageElapsedTime.maxValue, A-26
pageElapsedTime.minValue, A-26
pageElapsedTime.value, A-26
pageMetadataFetchTimeAvg.count, A-26
pageMetadataFetchTimeAvg.value, A-26
pageMetadataFetchTime.count, A-26
pageMetadataFetchTime.maxValue, A-27
pageMetadataFetchTime.minValue, A-27
pageMetadataFetchTime.value, A-26
pageMetadataWaitTimeAvg.count, A-26
pageMetadataWaitTimeAvg.value, A-26
pageMetadataWaitTime.count, A-26
pageMetadataWaitTime.maxValue, A-26
pageMetadataWaitTime.minValue, A-26
pageMetadataWaitTime.value, A-26
pageRequests.value, A-26
parseRequest.active, A-9
parseRequest.avg, A-9
parseRequest.completed, A-9
parseRequest.maxTime, A-9
parseRequest.minTime, A-9
parseRequest.time, A-9
pendingMessageCount.value, A-20
persistenceFile.value, A-21
persistence-type.value, A-12

pid.value, A-33

portal, A-21

port.value, A-16, A-17, A-35
priority.value, A-18
privateMemory.value, A-33
procDeath.count, A-32
procDeathReplace.count, A-32
processRequest.active, A-9, A-11
processRequest.avg, A-9, A-11
processRequest.completed, A-9, A-11
processRequest.maxTime, A-9, A-11
processRequest.minTime, A-9, A-11
processRequest.time, A-9, A-11
queueLengthAvg.count, A-27
queueLengthAvg.value, A-27
queueLength.count, A-27
queueLength.maxValue, A-27
queueLength.minValue, A-27
queueLength.value, A-27
queueStayAvg.count, A-27
queueStayAvg.value, A-27
queueStay.count, A-27
queueStay.maxValue, A-27
queueStay.minValue, A-27
queueStay.value, A-27
queueTimeout.value, A-27
reqFail.count, A-32, A-33
reqPartialSucc.count, A-32, A-33
reqSucc.count, A-32, A-33
request.active, A-2

request.avg, A-2
request.completed, A-2
requestHandlers.count, A-16
request.maxTime, A-2
request.minTime, A-2
requests.count, A-23
request.time, A-2
resolveContext.active, A-10
resolveContext.avg, A-10
resolveContext.completed, A-10
resolveContext.maxTime, A-10
resolveContext.minTime, A-10
resolveContext.time, A-10
resolveServlet.avg, A-10
resolveServlet.completed, A-10
resolveServlet. maxTime, A-10
resolveServlet minTime, A-10
resolveServlet.time, A-10
restartOnDeath.value, A-33
rmi_log.value, A-14
rReq.count, A-32
run().active, A-21
run().avg, A-21
run().completed, A-21
run().maxActive, A-21
run().maxTime, A-21
run().minTime, A-21
run().time, A-21
selector.value, A-18, A-19
server_log.value, A-14
service.active, A-10, A-11
service.avg, A-10, A-11
service.completed, A-10, A-11
service.maxTime, A-10, A-11, A-12
service.minTime, A-10, A-11, A-12
service.time, A-10, A-11, A-12
SessFailover.count, A-4, A-5
sessionActivation.avg, A-10
sessionActivation.completed, A-10
sessionActivation.maxTime, A-10
sessionActivation.minTime, A-10
sessionActivation.time, A-10
sessionListener.value, A-17
session-type.value, A-12
sharedMemory.value, A-33
SQLText.value, A-8, A-9
staleMisses.count, A-23, A-24, A-25
startTime.value, A-16, A-17, A-18, A-19
opmn_process, A-33
status.value, A-34
storeSize.value, A-20
SucReq.count, A-4, A-5
SucReqNonSess.count, A-4, A-5
SucReqSess.count, A-4, A-5
taskManagerInterval.value, A-16
timestamp.value, A-32
timeToLive.value, A-18
totalMemory.maxValue, A-5
totalMemory.minValue, A-5
totalMemory.value, A-5

totalPhysicalMem.value, A-32

transacted.value, A-17

transaction-type.value, A-12

trans-attribute.value, A-13

txid.value, A-17

type.value, A-34

uid.value, A-34

UnableToHandleReq.count, A-4

upTime.value, A-5, A-34

usedPageCount.value, A-21

user.value, A-17

workerThread.value, A-32, A-34

wrapper.active, A-13

wrapper.avg, A-13

wrapper.completed, A-13

wrapper.maxTime, A-13

wrapper.minTime, A-13

wrapper.time, A-13

xid.value, A-17
min-connections datasources option, 6-12
min-instances orion-ejb-jar.xml parameter, 6-29
MinSpareServers httpd.conf directive, 5-9
misses

cache, 7-9
modplsql_Cache

metric table type, A-22, A-23
modplsql_DatabaseConnectionPool

metric table type, A-24
modplsql_HTTPResponseCodes

metric table type, A-2, A-22
modplsql_LastNSQLError

metric table type, A-23
modplsql_PageEngine

metric table type, A-26
modplsql_PageEngine_ResponseCodes

metric table type, A-27
modplsql_SQLErrorGroup

metric table type, A-23
monitoring

EJBs, 4-3

JSPs, 4-3

0ocC4]

J2EE applications monitoring, 4-3
Oracle HTTP Server, 3-9
performance statistics, 2-2
servlets, 4-3

N

naming conventions
DMS, 9-7

network

bandwidth and Web Cache, 7-5
connections and Web Cache, 7-6
on UNIX, 7-7
on Windows, 7-7
network parameters
setting for Web Cache, 7-7
tuning, 5-2
network performance, 5-7,5-8

Index-7

no-reverseping-failed-ping-limit parameter, 6-57
nouns

creating, 9-9

DMS, 9-6

naming conventions, 9-8

type, 9-6

o

OocC4]
applications monitoring, 4-3
Instance monitoring, 4-2
monitoring performance statistics, 2-2
process monitoring, 4-2
properties
dedicated.rmicontext, 6-8, 6-53
DefineColumnType, 6-8
oracle.dms.sensors, 6-6
oracle.jdbc. DMSStatementCachingMetrics,
oracle.jdbc. DMSStatementMetrics, 6-7
oc4j_context
metric table type, A-10
oc4j_ejb_entity_bean
metric table type, A-12
oc4j_ejb_method
metric table type, A-12
oc4j_jspExec
metric table type, A-11
oc4j_servlet
metric table type, A-10
oc4j_web_module
metric table type, A-9
opmn.xml parameter
no-reverseping-failed-ping-limit, 6-57
reverseping-failed-ping-limit, 6-57
optimistic locking-mode value, 6-33

Oracle Application Server Web Cache. See Web Cache

Oracle Business Components for Java. See ADF
Oracle HTTP Server
configuring with directives, 5-8
monitoring, 3-9
oracle.dms.gate property, 6-7
oracle.dms.sensors property, 6-6
oracle.jdbc. DMSStatementCachingMetrics
property, 6-7
oracle.jdbc. DMSStatementMetrics property, 6-7
oracle.security jazn.config property, 6-48
origin server timeout
Web Cache setting, 7-8

P

page buffers with JSPs, 6-26
parameters
hash, 5-4
KeepAlive, 3-11,5-10
KeepAliveTimeout, 5-10
ListenBacklog, 5-9
MaxClients, 5-9,5-10
MaxKeepAliveRequests, 5-10

Index-8

MaxRequestsPerChild, 5-9

MaxSpareServers, 5-9

MinSpareServers, 5-9

StartServers, 5-9

TCP, 5-2

tcp_conn_hash_size, 5-2,5-5

tcp_conn_req_max_q, 5-2,5-6

tcp_conn_req_max_q0, 5-2,5-6

tcp_recv_hiwat, 5-2

tep_slow_start_initial, 5-2

tcp_time_wait_interval, 5-2,5-5

tep_xmit_hiwat, 5-2

ThreadsPerChild, 5-11

Timeout, 5-9
partial page caching

Web Cache and, 7-9
passivate-count orion-ejb-jar.xml parameter, 6-38
passivation

sfsb-config enable-passivation attribute, 6-18

stateful session bean, 6-38
performance

application deployment, 6-56

goals, 1-6

monitoring

native operating system, 2-4
network monitoring tools, 2-4

Web Cache and, 7-1

Web Cache and CPUs, 7-2
persistent connections

KeepAlive directive, 5-10
pessimistic locking-mode value, 6-33
PhaseEvent sensors, 9-4
pool-cache-timeout orion-ejb-jar.xml

parameter, 6-31, 6-35, 6-36
portal

metrics, A-21

prefetch-size orion-ejb-jar.xml parameter, 6-15, 6-32

processes used
Web Cache, 7-2

R

read-only locking-mode value, 6-33
recompile main_mode parameter, 6-23
redirection
Web Cache and, 7-9
reload main_mode parameter, 6-23
resource-check-interval orion-ejb-jar.xml
parameter, 6-38
response time, 1-4
defined, 1-2
goal, 1-6
improving, 1-3
optimizing for Web Cache, 7-10
peakload, 1-7
reverseping-failed-ping-limit parameter, 6-57

S U

scalability unit consumption, 1-6
defined, 1-2 unused sessions
server.xml servlets, 6-21
global-thread-pool element, 6-18 update-changed-fields-only orion-ejb-jar.xml
max-http-connections, 6-54 parameter, 6-32
parameters, 6-16 URL parameters
sfsb-config element, 6-18 Web Cache and, 7-9
taskmanager-granularity element, 6-17
service time, 1-3,1-4 V
defined, 1-2
servlets validity-timeout orion-ejb-jar.xml parameter, 6-32
loading on startup, 6-19
monitoring, 4-3 w
unused sessions, 6-21 —
sessions wait time
use with JSPs, 6-25 contention and, 1-4

defined, 1-2
parallel processing and, 1-3
element, 6-18 wait-timeout datasources option, 6-13

passivation control, 6-39 Web Cache
sock-backlog attribute, 6-54 cache hit rates, 7-9

StartServers httpd.conf directive, 5-9 calculating memory and cache size, 7-3
State sensors, 9-5 configuring memory and cache size, 7-2

static include Edge Side Includes (ESI), 7-3

vs. dynamic include, 6-27 garbage collection, 7-5
static text guidelines for performance, 7-1

external resource file, 6-28 improving performance, 7-1
statistics network bandwidth, 7-5

cache size for Web Cache, 7-5 network connections, 7-6

session-timeout attribute, 6-20, 6-49
sfsb-config

memory for Web Cache, 7-5 on UNIX, 7-7
stmt-cache-size attribute, 6-14 on Windows, 7-7
system properties network parameters, 7-7

DMS metrics, A-6 partial page caching, 7-9

performance and CPUs, 7-2
processes used, 7-2

T response time, 7-10
tags_reuse_default JSP parameter, 6-24 statistics for memory and cache size, 7-5
taskmanager-granularity, 6-17 Web Services
TCP performance issues, 6-44
parameters, 5-2 web.xml
setting parameters, 5-4 distributable element, 6-55
think time dmsLogging parameter, 6-7
defined, 1-2 load-on-startup parameter, 6-19
ThreadsPerChild directive, 5-11 session-config element, 6-20, 6-49
throughput
defined, 1-2 X

demand limiter and, 1-6

increasing, 1-4
Timeout httpd.conf directive, 5-9
timeout orion-ejb-jar.xml parameter, 6-38
TimeoutExpiredException

from EJB, 6-29
time-wait settings

Web Cache and, 7-8
transaction-config server.xml parameter, 6-17
transaction-timeout orion-ejb-jar.xml

parameter, 6-41

xml format output for dmstool, 2-10

Index-9

Index-10

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Performance Overview
	Introduction to Oracle Application Server Performance
	Performance Terms

	What Is Performance Tuning?
	Response Time
	System Throughput
	Wait Time
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Performance Targets
	User Expectations
	Performance Evaluation

	Performance Methodology
	Factors in Improving Performance

	2 Monitoring Oracle Application Server
	Overview of Monitoring Oracle Application Server
	Oracle Enterprise Manager 10g Application Server Control Console
	Oracle Application Server Built-in Performance Metrics
	Centralized Management of Oracle Application Server Instances
	Native Operating System Performance Commands
	Network Performance Monitoring Tools

	Using Oracle Application Server Built-in Performance Metrics
	Viewing Performance Metrics Using AggreSpy
	Using the AggreSpy Display
	AggreSpy URL With a Proxy Server
	AggreSpy URL and Access Control
	AggreSpy Limitation When Using Load Balancing With Clusters

	Viewing Performance Metrics Using dmstool
	Access Control for dmstool
	Using dmstool to List the Names of All Metrics
	Using dmstool to Report Values for Specific Performance Metrics
	Using dmstool With the Interval and Count Options
	Using dmstool to Report All Metrics with Metric Values
	Using dmstool to Report All Metrics with Metric Values in XML Format
	Using dmstool to Reset Metric Values
	Using dmstool to View Metrics on a Remote Oracle Application Server System

	Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)

	3 Monitoring Oracle HTTP Server
	Monitoring Oracle HTTP Server with Application Server Control Console
	Assessing the Oracle HTTP Server Load with Application Server Control Console
	Oracle HTTP Server Status Metrics
	Oracle HTTP Server Response and Load Metrics
	Oracle HTTP Server Module Metrics
	Oracle HTTP Server Error Log

	Investigating Oracle HTTP Server Errors with Application Server Control Console
	Expected Oracle HTTP Server Errors and Warnings

	Categorizing Oracle HTTP Server Problems with Application Server Control Console
	Categorizing Oracle HTTP Server Problems by Module
	Categorizing Oracle HTTP Server Problems by Virtual Host
	Categorizing Oracle HTTP Server Problems by Child Server

	Monitoring Oracle HTTP Server with Built-in Performance Metrics
	Assessing the Oracle HTTP Server Load with Built-in Metrics
	Investigating Oracle HTTP Server Errors with Built-in Metrics
	Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics
	Categorizing Oracle HTTP Server Performance Problems by Module
	Categorizing Oracle HTTP Server Performance Problems by Virtual Host
	Categorizing Oracle HTTP Server Performance Problems by Child Server

	4 Monitoring OC4J
	Monitoring OC4J With Application Server Control Console
	Monitoring OC4J Instances With Application Server Control Console
	General
	JDBC Usage
	Status
	Response for Servlets and JSPs
	Response for EJBs

	Monitoring J2EE Applications with Application Server Control Console
	General
	Response for Servlets and JSPs
	Response for EJBs
	Web Module Table
	EJB Modules Table

	Monitoring OC4J With Built-in Performance Metrics

	5 Optimizing Oracle HTTP Server
	TCP Tuning Parameters (for UNIX)
	Tuning Linux
	Raising Network Limits on Linux Systems for 2.1.100 or greater
	Tuning a Running System
	Tuning the Default and Maximum Size
	Tuning at Compile Time

	Setting TCP Parameters
	Increasing TCP Connection Table Access Speed
	Specifying Retention Time for Connection Table Entries
	Increasing the Handshake Queue Length
	Changing the Data Transmission Rate
	Changing the Data Transfer Window Size

	Network Tuning for Windows
	Network Tuning (for Windows 2000)
	Network Tuning (for Windows 2003)
	Network Tuning (for Windows XP)

	Configuring Oracle HTTP Server Directives
	Configuring the MaxClients Directive
	How Persistent Connections Can Reduce httpd Process Availability
	Configuring the ThreadsPerChild Parameter (for Windows)
	Configuring ThreadsPerChild for Static Page Requests

	Oracle HTTP Server Logging Options
	Access Logging
	Configuring the HostNameLookups Directive
	Error logging

	Oracle HTTP Server Security Performance Considerations
	Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues
	Oracle HTTP Server SSL Caching
	SSL Application Level Data Encryption
	SSL Performance Recommendations

	Oracle HTTP Server Port Tunneling Performance Issues

	Oracle HTTP Server Performance Tips
	Analyze Static Versus Dynamic Requests
	Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
	Beware of a Single Data Point Yielding Misleading Results

	Setting mod_oc4j Load Balancing Policies
	Quick Summary for Using Load Balancing With mod_oc4j
	Using Round Robin and Random Policies With mod_oc4j Load Balancing
	Using Local Affinity Option With mod_oc4j Load Balancing
	Using Weighted Routing Option With mod_oc4j Load Balancing
	Recommendations for Load Balancing With mod_oc4j

	6 Optimizing J2EE Applications In OC4J
	OC4J J2EE Application Performance Quickstart
	Improving J2EE Application Performance by Configuring OC4J Instance
	Setting Java Command Line Options (Using JVM and OC4J Performance Options)
	Setting the JVM Heap Size for OC4J Processes
	Setting the JVM Server Option for OC4J Processes
	Setting the JVM AggressiveHeap Option for OC4J Processes
	Setting the JVM Stack Size Option for OC4J Processes
	Setting the JVM Thread Synchronization Option for OC4J Processes
	Setting the JVM Permanent Generation Option for OC4J Processes
	Setting the OC4J DMS Sensors Option
	Setting the OC4J JDBC DMS Statement Metrics Option
	Setting the OC4J Dedicated RMI Context Option
	Setting the OC4J Define Column Type Option
	Using Application Server Control Console to Change JVM Command Line Options

	Setting Up Data Sources - Performance Issues
	Emulated and Non-Emulated Data Sources
	Using the EJB Aware Location Specified in Emulated Data Sources
	Setting the Maximum Open Connections in Data Sources
	Setting the Minimum Open Connections in Data Sources
	Setting the Cached Connection Inactivity Timeout in Data Sources
	Setting the Wait for Free Connection Timeout in Data Sources
	Setting the Connection Retry Interval in Data Sources
	Setting the Maximum Number of Connection Attempts in Data Sources
	Setting the JDBC Statement Cache Size in Data Sources
	Setting the JDBC Prefetch Size for a CMP Entity Bean
	Using Application Server Control to Change Data Source Configuration Options

	Setting server.xml Configuration Parameters
	Setting the OC4J Transaction Configuration Timeout in server.xml
	Setting the OC4J Task Manager Granularity in server.xml
	Setting the OC4J Options for Stateful Session Bean Passivation in server.xml
	Limiting Concurrency In OC4J
	Using Application Server Control Console to Change server.xml Configuration Options

	Improving Servlet Performance in Oracle Application Server
	Improving Performance by Altering Servlet Configuration Parameters
	Loading Servlet Classes at Startup
	Reducing Requests for Static Pages and Images
	Setting the Servlet Session Timeout

	Servlet Performance Tips
	Analyze Servlet Duration
	Understand Server Request Load
	Find Large Servlets That Require a Long Load Time
	Watch for Unused Sessions and Session Invalidation
	Load Servlet Session Security Routines at Startup

	Improving JSP Performance in Oracle Application Server
	Improving Performance by Altering JSP Configuration Parameters
	Using the main_mode Parameter
	Using the tags_reuse_default Parameter
	Additional JSP and OC4J Configuration Parameters

	Improving Performance by Tuning JSP Code
	Impact of Session Management on Performance
	Using Static Template Text Instead of out.print for Outputting Text
	Performance Issues for Buffering JSPs
	Using Static Versus Dynamic Includes
	Performance Issues for Including Static Content

	Improving EJB Performance in Oracle Application Server
	Configuring Parameters that Apply for All EJBs (Except MDBs)
	EJB Timeouts Using a Non-default taskmanager-granularity

	Configuring Parameters for CMP Entity Beans
	Configuring Lazy-loading on CMP Entity Bean Finder Methods
	Setting The CMP Define Column Type Option
	Setting The Batch Size Option to Batch UPDATE statements

	Configuring Parameters for BMP Entity Beans
	Configuring Parameters for Session Beans
	Configuring Stateful Session Bean Passivation
	Stateful Session Bean Passivation Performance Recommendations

	Configuring Parameters for Message Driven Beans (MDBs)
	Using The listener-threads MDB Parameter
	Using Performance Metrics for MDB Messages
	Setting up JMS Connections in MDB ejbCreate or onMessage Methods

	Improving Web Services Performance in Oracle Application Server
	Avoiding Web Services Initial Request Delay
	Using Web Services Typed Requests
	Tuning The Web Services Stateful Session Timeout

	Improving ADF Performance in Oracle Application Server
	Choose the Right Deployment Configuration
	Use Application Module Pooling for Scalability
	Perform Global Framework Component Customization Using Custom Subclasses
	Use SQL-Only and Forward-Only View Objects when Possible
	Do Not Let Your Application Modules Get Too Large
	Use the Right Failover Mode
	Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows
	Choose the Right Style of Bind Parameters
	Implement Query Conditions at Design Time if Possible
	Use the Right JDBC Fetch Size
	Turn off Event Listening in View Objects used in Batch Processes

	Improving JAAS (JAZN) Performance in Oracle Application Server
	Improving JAZN Performance With an XML Provider
	Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory)
	Configuring JAZN Providers
	Configuring Session Timeout in web.xml

	JAZN Performance Recommendations

	Using Multiple OC4Js, Limiting Connections and Load Balancing
	Configuring Multiple OC4J Processes
	Overview of Types of OC4J Configurations
	Determining the Number of OC4J Processes
	Partitioning Applications into Different OC4J Instances
	Configuring Multiple OC4J Processes Using Application Server Control Console

	Load Balancing Applications
	Web Application Load Balancing
	EJB Application Load Balancing

	Limiting Connections
	Limiting Web Connections
	Limiting Remote EJB Client Connections
	Limiting HTTP Connections with Standalone OC4J

	Controlling Replication With Multiple OC4Js
	Controlling Web Application Replication
	Controlling Stateful Session EJB Replication

	Performance Considerations for Deploying J2EE Applications
	Deployment Performance During the Application Development Phase
	Deployment Performance During the Test and Production Phases

	7 Optimizing OracleAS Web Cache
	Use Two CPUs for OracleAS Web Cache
	Configure Enough Memory for OracleAS Web Cache
	Make Sure You Have Sufficient Network Bandwidth
	Set a Reasonable Number of Network Connections
	Connections on UNIX Platforms
	Connections on Windows

	Tune Network-Related Parameters
	Increase Cache Hit Rates
	Check Application Web Server and Web Cache Settings to Optimize Response Time

	8 Optimizing PL/SQL Performance
	9 Instrumenting Applications With DMS
	Introducing DMS Performance Metrics
	Instrumenting Applications With DMS Metrics
	Monitoring DMS Metrics
	Understanding DMS Terminology (Nouns and Sensors)
	DMS Metrics
	DMS Sensors
	DMS Nouns
	DMS Object Relationships

	DMS Naming Conventions
	General DMS Naming
	General DMS Naming Conventions and Character Sets
	Noun and Noun Type Naming Conventions
	Sensor Naming Conventions

	Adding DMS Instrumentation To Java Applications
	Including DMS Imports
	Organizing Performance Data
	Defining and Using Metrics for Timing
	Defining PhaseEvent Sensors
	Using PhaseEvent Sensors

	Defining and Using Metrics for Counting
	Defining Event Sensors
	Using Event Sensors

	Defining and Using Metrics for Recording Status Information (State Sensors)
	Defining State Sensors
	Using State Sensors

	Validating and Testing Applications Using DMS Metrics
	Validating DMS Metrics
	Testing DMS Metrics For Efficiency

	Understanding DMS Security Considerations
	Conditional Instrumentation Using DMS Sensor Weight
	Dumping DMS Metrics To Files
	Resetting and Destroying Sensors
	DMS Coding Recommendations
	Isolating Expensive Intervals Using PhaseEvent Metrics

	Using A High Resolution Clock To Increase DMS Precision
	Configuring DMS Clocks for Reporting Time for OC4J (Java)
	Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

	10 Database Tuning Considerations
	Tuning init.ora Database Parameters
	Tuning Redo Logs Location and Sizing

	A Performance Metrics
	Oracle HTTP Server Metrics
	Oracle HTTP Server Child Server Metrics
	Oracle HTTP Server Responses Metrics
	Oracle HTTP Server Virtual Host Metrics
	Aggregate Module Metrics
	HTTP Server Module Metrics
	Oracle HTTP Server mod_oc4j Metrics

	JVM Metrics
	JVM Properties Metrics

	JDBC Metrics
	JDBC Driver Metrics
	JDBC Data Source Metrics
	JDBC Driver Specific Connection Metrics
	JDBC Data Source Specific Connection Metrics
	JDBC Driver Statement Metrics
	JDBC Data Source Statement Metrics

	OC4J Metrics
	Web Module Metrics
	Web Context Metrics
	OC4J Servlet Metrics
	OC4J JSP Metrics
	JSP Runtime Metrics
	JSP Metrics

	OC4J EJB Metrics
	OC4J EJB Session Bean Metrics
	EJB Bean Metrics
	EJB Method Metrics

	OC4J OPMN Info Metrics

	OC4J JMS Metrics
	JMS Metric Tables
	JMS Stats Metric Table
	JMS Request Handler Stats
	JMS Connection Stats
	JMS Session Stats
	JMS Message Producer Stats
	JMS Message Browser Stats
	JMS Message Consumer Stats
	JMS Durable Subscription Stats
	JMS Destination Stats
	JMS Temporary Destination Stats
	JMS Store Stats
	JMS Persistence Stats

	OC4J Task Manager Metrics
	mod_plsql Metrics
	Portal Metrics
	Oracle Process Manager and Notification Server Metrics
	OPMN_PM Metric Table
	OPMN_HOST_STATISTICS Metric Table
	OPMN_IAS_INSTANCE Metric Table
	OPMN_IAS_COMPONENT Metrics
	OPMN ONS Metrics

	Discoverer Metrics
	DMS Internal Metrics

	B Component Performance Links
	Oracle Application Server Toplink Performance Information
	Oracle Application Server Portal Performance Information
	Oracle Business Intelligence Discoverer Performance Information
	Oracle Application Server Wireless Performance Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

