
Oracle® Application Server
Performance Guide

10g Release 2 (10.1.2)

Part No. B14001-01

November 2004

Oracle Application Server Performance Guide 10g Release 2 (10.1.2)

Part No. B14001-01

Copyright © 2001, 2004, Oracle. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Eric Belden, Alice Chan, Greg Cook, Marcelo Goncalves, Helen Grembowicz, Bruce Irvin,
Pushkar Kapasi, Paul Lane, Sharon Malek, Valarie Moore, Carol Orange, Julia Pond, Leela Rao, Joan
Silverman, Cheryl Smith, Zhunquin Wang, Brian Wright

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. ix

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Organization ... xii
Related Documentation.. xiii
Conventions ... xiv

1 Performance Overview

Introduction to Oracle Application Server Performance.. 1-2
Performance Terms.. 1-2

What Is Performance Tuning? .. 1-2
Response Time.. 1-3
System Throughput ... 1-4
Wait Time .. 1-4
Critical Resources... 1-4
Effects of Excessive Demand .. 1-5
Adjustments to Relieve Problems.. 1-6

Performance Targets... 1-6
User Expectations... 1-6
Performance Evaluation.. 1-6

Performance Methodology ... 1-7

2 Monitoring Oracle Application Server

Overview of Monitoring Oracle Application Server .. 2-2
Oracle Enterprise Manager 10g Application Server Control Console.. 2-2
Oracle Application Server Built-in Performance Metrics... 2-2
Centralized Management of Oracle Application Server Instances... 2-3
Native Operating System Performance Commands... 2-4
Network Performance Monitoring Tools ... 2-4

Using Oracle Application Server Built-in Performance Metrics .. 2-4
Viewing Performance Metrics Using AggreSpy.. 2-5
Viewing Performance Metrics Using dmstool... 2-9
Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)................................. 2-13

iv

3 Monitoring Oracle HTTP Server

Monitoring Oracle HTTP Server with Application Server Control Console 3-2
Assessing the Oracle HTTP Server Load with Application Server Control Console............... 3-2
Investigating Oracle HTTP Server Errors with Application Server Control Console 3-5
Categorizing Oracle HTTP Server Problems with Application Server Control Console 3-6

Monitoring Oracle HTTP Server with Built-in Performance Metrics ... 3-9
Assessing the Oracle HTTP Server Load with Built-in Metrics .. 3-9
Investigating Oracle HTTP Server Errors with Built-in Metrics .. 3-12
Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics 3-14

4 Monitoring OC4J

Monitoring OC4J With Application Server Control Console.. 4-2
Monitoring OC4J Instances With Application Server Control Console..................................... 4-2
Monitoring J2EE Applications with Application Server Control Console 4-3

Monitoring OC4J With Built-in Performance Metrics .. 4-7

5 Optimizing Oracle HTTP Server

TCP Tuning Parameters (for UNIX) .. 5-2
Tuning Linux ... 5-3
Setting TCP Parameters... 5-4

Network Tuning for Windows ... 5-7
Network Tuning (for Windows 2000) ... 5-7
Network Tuning (for Windows 2003) ... 5-7
Network Tuning (for Windows XP).. 5-8

Configuring Oracle HTTP Server Directives.. 5-8
Configuring the MaxClients Directive ... 5-10
How Persistent Connections Can Reduce httpd Process Availability 5-10
Configuring the ThreadsPerChild Parameter (for Windows) .. 5-11

Oracle HTTP Server Logging Options .. 5-11
Access Logging.. 5-11
Configuring the HostNameLookups Directive .. 5-11
Error logging.. 5-12

Oracle HTTP Server Security Performance Considerations ... 5-12
Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues 5-12
Oracle HTTP Server Port Tunneling Performance Issues ... 5-14

Oracle HTTP Server Performance Tips ... 5-15
Analyze Static Versus Dynamic Requests ... 5-15
Analyze Time Differences Between Oracle HTTP Server and OC4J Servers 5-15
Beware of a Single Data Point Yielding Misleading Results .. 5-15

Setting mod_oc4j Load Balancing Policies... 5-16
Quick Summary for Using Load Balancing With mod_oc4j... 5-17
Using Round Robin and Random Policies With mod_oc4j Load Balancing.......................... 5-17
Using Local Affinity Option With mod_oc4j Load Balancing ... 5-18
Using Weighted Routing Option With mod_oc4j Load Balancing.. 5-18
Recommendations for Load Balancing With mod_oc4j .. 5-18

v

6 Optimizing J2EE Applications In OC4J

OC4J J2EE Application Performance Quickstart ... 6-2
Improving J2EE Application Performance by Configuring OC4J Instance.................................. 6-2
Setting Java Command Line Options (Using JVM and OC4J Performance Options) 6-3

Setting the JVM Heap Size for OC4J Processes.. 6-3
Setting the JVM Server Option for OC4J Processes... 6-4
Setting the JVM AggressiveHeap Option for OC4J Processes... 6-5
Setting the JVM Stack Size Option for OC4J Processes .. 6-5
Setting the JVM Thread Synchronization Option for OC4J Processes 6-6
Setting the JVM Permanent Generation Option for OC4J Processes.. 6-6
Setting the OC4J DMS Sensors Option ... 6-6
Setting the OC4J JDBC DMS Statement Metrics Option .. 6-7
Setting the OC4J Dedicated RMI Context Option ... 6-8
Setting the OC4J Define Column Type Option.. 6-8
Using Application Server Control Console to Change JVM Command Line Options............ 6-9

Setting Up Data Sources – Performance Issues ... 6-10
Emulated and Non-Emulated Data Sources ... 6-10
Using the EJB Aware Location Specified in Emulated Data Sources 6-11
Setting the Maximum Open Connections in Data Sources... 6-11
Setting the Minimum Open Connections in Data Sources ... 6-12
Setting the Cached Connection Inactivity Timeout in Data Sources....................................... 6-13
Setting the Wait for Free Connection Timeout in Data Sources... 6-13
Setting the Connection Retry Interval in Data Sources ... 6-14
Setting the Maximum Number of Connection Attempts in Data Sources 6-14
Setting the JDBC Statement Cache Size in Data Sources... 6-14
Setting the JDBC Prefetch Size for a CMP Entity Bean.. 6-15
Using Application Server Control to Change Data Source Configuration Options 6-15

Setting server.xml Configuration Parameters.. 6-16
Setting the OC4J Transaction Configuration Timeout in server.xml 6-17
Setting the OC4J Task Manager Granularity in server.xml .. 6-17
Setting the OC4J Options for Stateful Session Bean Passivation in server.xml 6-18
Limiting Concurrency In OC4J ... 6-18
Using Application Server Control Console to Change server.xml Configuration Options. 6-18

Improving Servlet Performance in Oracle Application Server .. 6-19
Improving Performance by Altering Servlet Configuration Parameters................................ 6-19
Servlet Performance Tips ... 6-20

Improving JSP Performance in Oracle Application Server .. 6-22
Improving Performance by Altering JSP Configuration Parameters 6-23
Improving Performance by Tuning JSP Code... 6-25

Improving EJB Performance in Oracle Application Server .. 6-28
Configuring Parameters that Apply for All EJBs (Except MDBs).. 6-28
Configuring Parameters for CMP Entity Beans.. 6-30
Configuring Parameters for BMP Entity Beans .. 6-35
Configuring Parameters for Session Beans ... 6-36
Configuring Parameters for Message Driven Beans (MDBs) ... 6-41

Improving Web Services Performance in Oracle Application Server... 6-44
Avoiding Web Services Initial Request Delay .. 6-44

vi

Using Web Services Typed Requests ... 6-44
Tuning The Web Services Stateful Session Timeout .. 6-44

Improving ADF Performance in Oracle Application Server .. 6-44
Choose the Right Deployment Configuration .. 6-45
Use Application Module Pooling for Scalability .. 6-45
Perform Global Framework Component Customization Using Custom Subclasses............ 6-45
Use SQL-Only and Forward-Only View Objects when Possible ... 6-45
Do Not Let Your Application Modules Get Too Large ... 6-46
Use the Right Failover Mode... 6-46
Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows........... 6-46
Choose the Right Style of Bind Parameters... 6-46
Implement Query Conditions at Design Time if Possible... 6-47
Use the Right JDBC Fetch Size .. 6-47
Turn off Event Listening in View Objects used in Batch Processes... 6-47

Improving JAAS (JAZN) Performance in Oracle Application Server .. 6-47
Improving JAZN Performance With an XML Provider .. 6-48
Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory).......... 6-48
Configuring JAZN Providers .. 6-48
JAZN Performance Recommendations.. 6-49

Using Multiple OC4Js, Limiting Connections and Load Balancing ... 6-49
Configuring Multiple OC4J Processes ... 6-50
Load Balancing Applications .. 6-51
Limiting Connections ... 6-53
Controlling Replication With Multiple OC4Js .. 6-55

Performance Considerations for Deploying J2EE Applications .. 6-55
Deployment Performance During the Application Development Phase 6-56
Deployment Performance During the Test and Production Phases.. 6-57

7 Optimizing OracleAS Web Cache

Use Two CPUs for OracleAS Web Cache... 7-2
Configure Enough Memory for OracleAS Web Cache ... 7-2
Make Sure You Have Sufficient Network Bandwidth.. 7-5
Set a Reasonable Number of Network Connections... 7-6

Connections on UNIX Platforms ... 7-7
Connections on Windows... 7-7

Tune Network-Related Parameters ... 7-7
Increase Cache Hit Rates... 7-9
Check Application Web Server and Web Cache Settings to Optimize Response Time 7-10

8 Optimizing PL/SQL Performance

9 Instrumenting Applications With DMS

Introducing DMS Performance Metrics .. 9-2
Instrumenting Applications With DMS Metrics.. 9-2
Monitoring DMS Metrics .. 9-2
Understanding DMS Terminology (Nouns and Sensors) .. 9-3

vii

DMS Naming Conventions... 9-7
Adding DMS Instrumentation To Java Applications.. 9-9

Including DMS Imports .. 9-9
Organizing Performance Data.. 9-9
Defining and Using Metrics for Timing... 9-10
Defining and Using Metrics for Counting... 9-12
Defining and Using Metrics for Recording Status Information (State Sensors) 9-12

Validating and Testing Applications Using DMS Metrics.. 9-13
Validating DMS Metrics... 9-14
Testing DMS Metrics For Efficiency... 9-14

Understanding DMS Security Considerations.. 9-15
Conditional Instrumentation Using DMS Sensor Weight .. 9-15
Dumping DMS Metrics To Files .. 9-16
Resetting and Destroying Sensors ... 9-16
DMS Coding Recommendations.. 9-17

Isolating Expensive Intervals Using PhaseEvent Metrics ... 9-17
Using A High Resolution Clock To Increase DMS Precision... 9-18

Configuring DMS Clocks for Reporting Time for OC4J (Java) .. 9-18
Configuring DMS Clocks for Reporting Time for Oracle HTTP Server 9-21

10 Database Tuning Considerations

Tuning init.ora Database Parameters... 10-2
Tuning Redo Logs Location and Sizing .. 10-3

A Performance Metrics

Oracle HTTP Server Metrics ... A-2
Oracle HTTP Server Child Server Metrics... A-2
Oracle HTTP Server Responses Metrics .. A-2
Oracle HTTP Server Virtual Host Metrics... A-3
Aggregate Module Metrics .. A-3
HTTP Server Module Metrics.. A-3
Oracle HTTP Server mod_oc4j Metrics.. A-3

JVM Metrics ... A-5
JVM Properties Metrics .. A-6

JDBC Metrics.. A-6
JDBC Driver Metrics ... A-6
JDBC Data Source Metrics ... A-6
JDBC Driver Specific Connection Metrics ... A-7
JDBC Data Source Specific Connection Metrics ... A-7
JDBC Driver Statement Metrics .. A-8
JDBC Data Source Statement Metrics... A-8

OC4J Metrics .. A-9
Web Module Metrics .. A-9
Web Context Metrics .. A-10
OC4J Servlet Metrics ... A-10
OC4J JSP Metrics ... A-11

viii

OC4J EJB Metrics ... A-12
OC4J OPMN Info Metrics .. A-13

OC4J JMS Metrics ... A-14
JMS Metric Tables ... A-14
JMS Stats Metric Table.. A-15
JMS Request Handler Stats .. A-16
JMS Connection Stats.. A-16
JMS Session Stats ... A-17
JMS Message Producer Stats.. A-17
JMS Message Browser Stats ... A-18
JMS Message Consumer Stats ... A-18
JMS Durable Subscription Stats .. A-19
JMS Destination Stats.. A-19
JMS Temporary Destination Stats... A-19
JMS Store Stats ... A-20
JMS Persistence Stats .. A-20

OC4J Task Manager Metrics.. A-21
mod_plsql Metrics... A-21
Portal Metrics ... A-25
Oracle Process Manager and Notification Server Metrics .. A-31

OPMN_PM Metric Table.. A-31
OPMN_HOST_STATISTICS Metric Table .. A-32
OPMN_IAS_INSTANCE Metric Table .. A-32
OPMN_IAS_COMPONENT Metrics ... A-32
OPMN ONS Metrics ... A-34

Discoverer Metrics .. A-35
DMS Internal Metrics... A-36

B Component Performance Links

Oracle Application Server Toplink Performance Information... B-2
Oracle Application Server Portal Performance Information .. B-2
Oracle Business Intelligence Discoverer Performance Information ... B-2
Oracle Application Server Wireless Performance Information ... B-2

Index

ix

Send Us Your Comments

Oracle Application Server Performance Guide, 10g Release 2 (10.1.2)

Part No. B14001-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX:650-506-7365 Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation
Oracle Application Server Performance Guide
500 Oracle Parkway M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

x

xi

Preface

This guide describes how to monitor and optimize performance, use multiple
components for optimal performance, and write highly performant applications in the
Oracle Application Server environment.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Intended Audience
Oracle Application Server Performance Guide is intended for Internet application
developers, Oracle Application Server administrators, database administrators, and
Web masters.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

xii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Organization
This document contains:

Chapter 1, "Performance Overview"
This chapter provides an overview of Oracle Application Server performance and
tuning concepts.

Chapter 2, "Monitoring Oracle Application Server"
This chapter introduces the available performance monitoring tools, including Oracle
Enterprise Manager 10g Application Server Control Console and the built-in Oracle
Application Server performance monitoring tools.

Chapter 3, "Monitoring Oracle HTTP Server"
This chapter discusses monitoring the Oracle HTTP Server using Oracle Enterprise
Manager 10g Application Server Control Console and the built-in performance tools
available with Oracle Application Server.

Chapter 4, "Monitoring OC4J"
This chapter discusses monitoring Oracle Application Server Containers for
J2EE(OC4J) using Oracle Enterprise Manager 10g Application Server Control Console
and the built-in performance tools available with Oracle Application Server.

Chapter 5, "Optimizing Oracle HTTP Server"
This chapter discusses optimizing HTTP server.

Chapter 6, "Optimizing J2EE Applications In OC4J"
This chapter discusses optimizing J2EE applications running on Oracle Application
Server Containers for J2EE.

Chapter 7, "Optimizing OracleAS Web Cache"
This chapter discusses optimizing Web Cache.

Chapter 8, "Optimizing PL/SQL Performance"
This chapter discusses optimizing code using mod_plsql.

Chapter 9, "Instrumenting Applications With DMS"
This chapter describes the Oracle Dynamic Monitoring Service (DMS) that enables
application developers, support analysts, system administrators, and others to
measure application specific performance information. The chapter also shows how to
use DMS to instrument Oracle Application Server Java applications.

Chapter 10, "Database Tuning Considerations"
This chapter describes some of the init.ora parameters that you may need to tune
in a backend Oracle Database Server.

xiii

Appendix A, "Performance Metrics"
This appendix discusses the statistics and metrics used to monitor and analyze the
performance of Oracle Application Server components.

Appendix B, "Component Performance Links"
This appendix provides links for performance information on additional Oracle
Application Server components.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Application Server Concepts

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Security Guide

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle Application Server Web Cache Administrator’s Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Application Server Containers for J2EE Servlet Developer’s Guide

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle Database Performance Tuning Guide, 10g

■ Oracle Application Server PL/SQL Web Toolkit Reference

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/admin/account/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation

For more information, see these Oracle resources:

■ For this release, see information on OracleAS Portal performance at:

http://www.oracle.com/technology

From the Oracle Technology Network main page:

xiv

■ Choose the Product link

■ Choose OracleAS Portal under Oracle Application Server

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, Recovery Manager keywords,
SQL keywords, SQL*Plus or utility
commands, packages and methods, as well
as system-supplied column names,
database objects and structures,
usernames, and roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])

{ } Braces are used for grouping items. {ENABLE | DISABLE}

| A vertical bar represents a choice of two
options.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Ellipsis points mean repetition in syntax
descriptions.

In addition, ellipsis points can mean an
omission in code examples or text.

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other symbols You must use symbols other than brackets
([]), braces ({ }), vertical bars (|), and
ellipsis points (...) exactly as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates user-defined
programmatic elements, such as names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start >
menu item

How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

xvi

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\> exp HR/HR TABLES=emp QUERY=\"WHERE
job='REP'\"

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

Convention Meaning Example

xvii

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory. The default
for Windows NT was C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is
C:\oracle\product\10.1.0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\product\10.1.0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle10i Database Installation
Guide for Windows for additional
information about OFA compliances and
for information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xviii

Performance Overview 1-1

1
Performance Overview

This chapter discusses Oracle Application Server performance and tuning concepts.

This chapter contains the following sections:

■ Introduction to Oracle Application Server Performance

■ What Is Performance Tuning?

■ Performance Targets

■ Performance Methodology

See Also: Oracle Application Server Concepts

Introduction to Oracle Application Server Performance

1-2 Oracle Application Server Performance Guide

Introduction to Oracle Application Server Performance
To maximize Oracle Application Server performance, all components need to be
monitored, analyzed, and tuned. In the chapters of this guide, the tools used to
monitor performance and the techniques for optimizing the performance of Oracle
Application Server components, such as Oracle HTTP Server and Oracle Application
Server Containers for J2EE (OC4J) are described.

Performance Terms
Following are performance terms used in this book:

concurrency The ability to handle multiple requests simultaneously. Threads and
processes are examples of concurrency mechanisms.

contention Competition for resources.

hash A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

latency The time that one system component spends waiting for another component
in order to complete the entire task. Latency can be defined as wasted time. In
networking contexts, latency is defined as the travel time of a packet from source to
destination.

response time The time between the submission of a request and the receipt of the
response.

scalability The ability of a system to provide throughput in proportion to, and
limited only by, available hardware resources. A scalable system is one that can handle
increasing numbers of requests without adversely affecting response time and
throughput.

service time The time between the receipt of a request and the completion of the
response to the request.

think time The time the user is not engaged in actual use of the processor.

throughput The number of requests processed per unit of time.

wait time The time between the submission of the request and initiation of the
request.

What Is Performance Tuning?
Performance must be built in. You must anticipate performance requirements during
application analysis and design, and balance the costs and benefits of optimal
performance. This section introduces some fundamental concepts:

■ Response Time

■ System Throughput

■ Wait Time

■ Critical Resources

What Is Performance Tuning?

Performance Overview 1-3

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

Response Time
Because response time equals service time plus wait time, you can increase
performance in this area by:

■ Reducing wait time

■ Reducing service time

Figure 1–1 illustrates ten independent sequential tasks competing for a single resource
as time elapses.

Figure 1–1 Sequential Processing of Independent Tasks

In the example shown in Figure 1–1, only task 1 runs without waiting. Task 2 must
wait until task 1 has completed; task 3 must wait until tasks 1 and 2 have completed,
and so on. Although the figure shows the independent tasks as the same size, the size
of the tasks will vary.

In parallel processing with multiple resources, more resources are available to the
tasks. Each independent task executes immediately using its own resource and no wait
time is involved.

The Oracle HTTP Server processes requests in this fashion, allocating client requests to
available httpd processes. The MaxClients directive specifies the maximum number
of httpd processes simultaneously available to handle client requests. When the
number of processes in use reaches the MaxClients value, the server refuses
connections until requests are completed and processes are freed.

See Also: "Performance Targets" on page 1-6 for a discussion on
performance requirements and determining what parts of the
system to tune.

service time

wait time

TOTAL ELAPSED TIME

SEQUENTIAL
TASKS

1

2

3

4

5

6

7

8

9

10

What Is Performance Tuning?

1-4 Oracle Application Server Performance Guide

System Throughput
System throughput is the amount of work accomplished in a given amount of time.
You can increase throughput by:

■ Reducing service time

■ Reducing overall response time by increasing the amount of scarce resources
available. For example, if the system is CPU bound, then adding CPU resources
should improve performance.

Wait Time
While the service time for a task may stay the same, wait time will lengthen with
increased contention. If many users are waiting for a service that takes one second, the
tenth user must wait 9 seconds. Figure 1–2 shows the relationship between wait time
and resource contention. In the figure, the graph illustrates that wait time increases
exponentially as contention for a resource increases.

Figure 1–2 Wait Time Rising With Increased Contention for a Resource

Critical Resources
Resources such as CPU, memory, I/O capacity, and network bandwidth are key to
reducing service time. Adding resources increases throughput and reduces response
time. Performance depends on these factors:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

See Also: Chapter 5, "Optimizing Oracle HTTP Server"

Contention for a Resource

W
ai

t
T

im
e

What Is Performance Tuning?

Performance Overview 1-5

Figure 1–3 shows the relationship between time to service completion and demand
rate. The graph in the figure illustrates that as the number of units requested rises, the
time to service completion increases.

Figure 1–3 Time to Service Completion Versus Demand Rate

To manage this situation, you have two options:

■ Limit demand rate to maintain acceptable response times

■ Add resources

Effects of Excessive Demand
Excessive demand increases response time and reduces throughput, as illustrated by
the graph in Figure 1–4.

Figure 1–4 Increased Demand/Reduced Throughput

Demand Rate

T
im

e
to

 s
er

vi
ce

 c
o

m
p

le
ti

o
n

Demand Rate

T
h

ro
u

g
h

p
u

t

Performance Targets

1-6 Oracle Application Server Performance Guide

If the demand rate exceeds the achievable throughput, then determine through
monitoring which resource is exhausted and increase the resource, if possible.

Adjustments to Relieve Problems
Performance problems can be relieved by making adjustments in the following:

■ unit consumption

Reducing the resource (CPU, memory) consumption of each request can improve
performance. This might be achieved by pooling and caching.

■ functional demand

Rescheduling or redistributing the work will relieve some problems.

■ capacity

Increasing or reallocating resources (such as CPUs) relieves some problems.

Performance Targets
Whether you are designing or maintaining a system, you should set specific
performance goals so that you know how and what to optimize. If you alter
parameters without a specific goal in mind, you can waste time tuning your system
without significant gain.

An example of a specific performance goal is an order entry response time under three
seconds. If the application does not meet that goal, identify the cause (for example,
I/O contention), and take corrective action. During development, test the application
to determine if it meets the designed performance goals.

Tuning usually involves a series of trade-offs. After you have determined the
bottlenecks, you may have to modify performance in some other areas to achieve the
desired results. For example, if I/O is a problem, you may need to purchase more
memory or more disks. If a purchase is not possible, you may have to limit the
concurrency of the system to achieve the desired performance. However, if you have
clearly defined goals for performance, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

User Expectations
Application developers, database administrators, and system administrators must be
careful to set appropriate performance expectations for users. When the system carries
out a particularly complicated operation, response time may be slower than when it is
performing a simple operation. Users should be made aware of which operations
might take longer.

Performance Evaluation
With clearly defined performance goals, you can readily determine when performance
tuning has been successful. Success depends on the functional objectives you have
established with the user community, your ability to measure whether or not the
criteria are being met, and your ability to take corrective action to overcome any
exceptions.

Ongoing performance monitoring enables you to maintain a well tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of loads,

Performance Methodology

Performance Overview 1-7

you can conduct objective scalability studies and from these predict the resource
requirements for anticipated load volumes.

Performance Methodology
Achieving optimal effectiveness in your system requires planning, monitoring, and
periodic adjustment. The first step in performance tuning is to determine the goals you
need to achieve and to design effective usage of available technology into your
applications. After implementing your system, it is necessary to periodically monitor
and adjust your system. For example, you might want to ensure that 90% of the users
experience response times no greater than 5 seconds and the maximum response time
for all users is 20 seconds. Usually, it’s not that simple. Your application may include a
variety of operations with differing characteristics and acceptable response times. You
need to set measurable goals for each of these.

You also need to determine variances in the load. For example, users might access the
system heavily between 9:00am and 10:00am and then again between 1:00pm and
2:00pm, as illustrated by the graph in Figure 1–5. If your peak load occurs on a regular
basis, for example, daily or weekly, the conventional wisdom is to configure and tune
systems to meet your peak load requirements. The lucky users who access the
application in off-time will experience better response times than your peak-time
users. If your peak load is infrequent, you may be willing to tolerate higher response
times at peak loads for the cost savings of smaller hardware configurations.

Figure 1–5 Adjusting Capacity and Functional Demand

Factors in Improving Performance
Performance spans several areas:

■ Sizing and configuration: Determining the type of hardware needed to support
your performance goals.

■ Parameter tuning: Setting configurable parameters to achieve the best
performance for your application.

■ Performance monitoring: Determining what hardware resources are being used by
your application and what response time your users are experiencing.

Time

F
u

n
ct

io
n

al
 D

em
an

d

9:00 10:30 1:00 2:30

Performance Methodology

1-8 Oracle Application Server Performance Guide

■ Troubleshooting: Diagnosing why an application is using excessive hardware
resources, or why the response time exceeds the desired limit.

Monitoring Oracle Application Server 2-1

2
Monitoring Oracle Application Server

This chapter discusses how to monitor the performance of Oracle Application Server
and its components. Monitoring Oracle Application Server and obtaining performance
data can assist you in tuning the system and debugging applications with performance
problems.

This chapter contains the following topics:

■ Overview of Monitoring Oracle Application Server

■ Using Oracle Application Server Built-in Performance Metrics

Overview of Monitoring Oracle Application Server

2-2 Oracle Application Server Performance Guide

Overview of Monitoring Oracle Application Server
This section describes how to use the Oracle Application Server tools for performance
monitoring. You can monitor the server and its components using one or more of the
following:

■ Oracle Enterprise Manager 10g Application Server Control Console

■ Oracle Application Server Built-in Performance Metrics

■ Centralized Management of Oracle Application Server Instances

■ Native Operating System Performance Commands

■ Network Performance Monitoring Tools

Oracle Enterprise Manager 10g Application Server Control Console
Oracle Enterprise Manager 10g Application Server Control Console (Application
Server Control Console) allows you to monitor Oracle Application Server and its
components. Application Server Control Console shows performance metrics for
Oracle Application Server components, including:

■ Oracle HTTP Server (OHS)

■ Oracle Application Server Containers for J2EE (OC4J) and Applications running
under OC4J

■ Oracle Application Server Web Cache

■ Oracle Application Server Portal (OracleAS Portal)

Using Application Server Control Console, you can also view performance metrics and
other status information from the Application Server Control Console All Metrics
Page.

Oracle Application Server Built-in Performance Metrics
Oracle Application Server automatically measures runtime performance and collects
metrics for the Oracle HTTP Server, including child servers, and Oracle Application
Server Containers for J2EE (OC4J) servers. The server performance metrics are
measured automatically and continuously using performance instrumentation
inserted into the implementations of Oracle Application Server components. The
performance metrics are automatically enabled; you do not need to set options or
perform any extra configuration to collect them (for performance reasons the JDBC
metrics are enabled by setting options).

The Oracle HTTP Server performance metrics enable you to do the following:

■ Monitor the duration of important phases of Oracle HTTP Server request
processing.

■ Collect status information on Oracle HTTP Server requests. For example, you can
monitor the number of requests being handled at any given moment.

See Also:

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Administrator’s Guide for information
on using metrics shown on the Application Server Control
Console All Metrics page.

■ Oracle Application Server Portal Configuration Guide

Overview of Monitoring Oracle Application Server

Monitoring Oracle Application Server 2-3

The OC4J performance metrics allow you to monitor the performance of J2EE
containers and enable you to do the following:

■ Monitor the number of active servlets, JSPs, EJBs, and EJB methods.

■ Monitor the time spent processing an individual servlet, JSP, EJB, or EJB method.

■ Monitor the sessions and JDBC connections associated with servlets, JSPs, EJBs, or
EJB methods.

■ Monitor OC4J JMS events and status.

You can use the performance metrics while troubleshooting Oracle Application Server
components to help locate bottlenecks, identify resource availability issues, or help
tune your components to improve throughput and response times.

Centralized Management of Oracle Application Server Instances
While Application Server Control Console provides standalone management for an
Application Server and its components, you can centrally manage all your Application
Servers through one tool rather than through several Application Server Control
Consoles by using the Oracle Enterprise Manager 10g Grid Control Console. For
example, say you have 10 Application Servers deployed on five hosts. By deploying a
Management Agent on each host, Enterprise Manager automatically discovers the
Application Server on those hosts and automatically begins monitoring them using
default monitoring levels, notification rules, and so on.

The Oracle Enterprise Manager 10g Grid Control Console contains an Application
Server Home page which provides easy access to key information required by
application server administrators, including the following:

■ Links to Oracle Application Server component home pages

■ Application server status, responsiveness, and performance data

■ Alerts and diagnostic drill-downs so you can identify and resolve problems
quickly

■ Resource usage for the application server and its components

■ A single view of all Java 2 Platform Enterprise Edition (J2EE) applications and web
services

■ Links to the Application Server Control Console for administration operations
such as starting and stopping components, modifying configurations, and
deploying applications.

Note: You can use the commands that access the built-in metrics
in scripts or in combination with other monitoring tools to gather
performance data or to check application performance.

See Also:

■ "Using Oracle Application Server Built-in Performance Metrics"
on page 2-4

■ Appendix A, "Performance Metrics"

Using Oracle Application Server Built-in Performance Metrics

2-4 Oracle Application Server Performance Guide

Native Operating System Performance Commands
In order to solve performance problems or to monitor your system’s activity, you can
use the available native operating system commands. Native operating system
commands allow you to gather and monitor CPU utilization, paging activity,
swapping, and other system activity information.

Network Performance Monitoring Tools
You can use network monitoring tools to verify the status of requests that access your
Oracle Application Server components. Tools are available that allow you to examine
and save network traffic information. These tools can be helpful in analyzing and
solving performance problems.

Using Oracle Application Server Built-in Performance Metrics
You can monitor performance using Application Server Control Console or by viewing
the Oracle Application Server built-in performance metrics.

This section describes how to view the built-in performance metrics using the
AggreSpy servlet or using the dmstool command.

This section covers the following:

■ Viewing Performance Metrics Using AggreSpy

■ Viewing Performance Metrics Using dmstool

■ Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)

Table 2–1 summarizes the tools that allow you to view built-in performance metrics.

See Also:

Oracle Enterprise Manager Concepts for more information on Oracle
Enterprise Manager 10g Grid Control Console

Oracle Application Server Administrator’s Guide

Oracle Enterprise Manager Grid Control Installation and Basic
Configuration

See Also: Refer to the system level documentation for
information on native operating system monitoring commands.

Table 2–1 Oracle Application Server Built-in Monitoring Commands

Command Description

AggreSpy AggreSpy is a pre-packaged servlet that reports performance metrics for an Oracle Application
Server instance. You can only run AggreSpy when the home OC4J instance is running. By
default the OC4J instance named home supports AggreSpy. In some cases, for example with an
OracleAS Infrastructure install, the home instance needs to be started to use AggreSpy, since by
default the home instance is installed but it is not started.

dmstool Allows you to monitor a specific performance metric, a set of performance metrics, or all
performance metrics. Options allow you to specify a reporting interval to report the requested
metrics. This command also allows you to show a text report listing all the built-in performance
metrics available on the site. dmstool is located in the $ORACLE_HOME/bin directory.

See Also: Appendix A, "Performance Metrics"

Using Oracle Application Server Built-in Performance Metrics

Monitoring Oracle Application Server 2-5

Viewing Performance Metrics Using AggreSpy
The AggreSpy Servlet displays metrics for Oracle Application Server processes,
including Oracle HTTP Server, OC4J, Oracle Process Manager and Notification Server,
and other Oracle Application Server component processes.

This section covers the following topics:

■ Using the AggreSpy Display

■ AggreSpy URL With a Proxy Server

■ AggreSpy URL and Access Control

■ AggreSpy Limitation When Using Load Balancing With Clusters

Using the AggreSpy Display
AggreSpy organizes metrics into two areas: DMS Spies and Metric Tables.

■ DMS Spies show the available metrics by parent process type and parent process
number. By selecting individual DMS Spies, you can view, in text form, all metrics
collected for the associated process.

■ Metric Tables show the available metrics by metric table type and when multiple
OC4Js are running include OC4J metrics from multiple OC4J instances. By
selecting individual metric tables you can view, in table form, all metrics of a
specified type. For example, metric tables allow you to view the metrics associated
with OC4J Servlets, Oracle HTTP Server Modules, and Oracle Process Manager
and Notification Server processes.

DMS metric tables are identified by a name, such as ohs_server for the Oracle HTTP
Server metrics. In AggreSpy, the term Metric Tables refers to the built-in performance
metric table names.

You can access performance metrics using AggreSpy from the following URL:

http://host:port/dms0/AggreSpy

where:

host is the Oracle HTTP Server host, for example, tv.us.oracle.com.

port is the Oracle HTTP Server listener port, for example 7778.

Note: To view DMS metrics using AggreSpy, you may need to
configure your browser to disable the use of a proxy for the
localhost, if your system is configured to use proxies. By default
Oracle Application Server only allows access for the localhost. See
"AggreSpy URL With a Proxy Server" on page 2-7 for details.

Note: You can only run AggreSpy when the home OC4J instance
is running. By default, the OC4J instance named home supports
AggreSpy. Using an OracleAS Infrastructure, the home
instance needs to be started to use AggreSpy, since by default the
home instance is installed with OracleAS Infrastructure, but
it is not started.

Using Oracle Application Server Built-in Performance Metrics

2-6 Oracle Application Server Performance Guide

Figure 2–1 shows a sample AggreSpy display. The display shows two frames, one
containing a list of DMS Spies and DMS Metric Tables, and one showing selected
values for the DMS Spies or the Metric Tables.

AggreSpy provides navigation and display options, including:

■ Access DMS Spies and Metric Tables using the links in the left frame.

■ Sort rows in metric tables by clicking on the column headings.

■ Display a table containing the descriptions of a Metric Table’s metrics by clicking
the Metric Definitions link shown on each metric table.

You need to refresh your browser to display built-in metric data after you start
AggreSpy. When you first use AggreSpy many of the fields, and the complete list of
DMS Spies may not contain all of the current Metric Tables. If you wait a short time,
and then refresh the display, the data is available and AggreSpy shows the complete
list of Metric Tables.

Note: The OC4J home instance must be running to use AggreSpy.
When the home instance is down, requests to AggreSpy,
http://<host>:<port>:/dms0/AggreSpy, report an HTTP 500
Internal Server error.

In the J2EE Web Cache install, the home instance starts up with the
command, opmnctl startall, or by selecting Startall using
Application Server Control Console. With the Infrastructure install,
the home instance starts using the command opmnctl startproc,
or with Application Server Control Console by selecting the home
component and then selecting Start.

Using Oracle Application Server Built-in Performance Metrics

Monitoring Oracle Application Server 2-7

Figure 2–1 AggreSpy Performance Metric Display

AggreSpy URL With a Proxy Server
If your browser is configured to use a proxy server, then to access AggreSpy on the
localhost, you need to configure the browser to disable the use of proxies for the
localhost. The exact steps required to disable the use of a proxy server for the localhost
depends on the browser you use.

AggreSpy URL and Access Control
By default, the dms0/AggreSpy URL is redirected and the redirect location is
protected, allowing only the localhost (127.0.0.1) to access the AggreSpy Servlet.

To view metrics from a system other than the localhost you need to change the DMS
configuration for the system that is running the Oracle Application Server that you
want to monitor by modifying the file
$ORACLE_HOME/Apache/Apache/conf/dms.conf on UNIX, or
%ORACLE_HOME%\Apache\Apache\conf\dms.conf on Windows systems.

Example 2–1 shows a sample default configuration from dms.conf. This
configuration limits AggreSpy to access metrics on the localhost (127.0.0.1). The port
shown, 7200, may differ on your installation.

Using Oracle Application Server Built-in Performance Metrics

2-8 Oracle Application Server Performance Guide

Example 2–1 Sample dms.conf File for localhost Access for DMS Metrics

proxy to DMS AggreSpy
Redirect /dms0/AggreSpy http://localhost:7200/dmsoc4j/AggreSpy
#DMS VirtualHost for access and logging control
Listen 127.0.0.1:7200
OpmnHostPort http://localhost:7200
<VirtualHost 127.0.0.1:7200>
ServerName 127.0.0.1

By changing the dms.conf configuration to specify the host that provides, or serves
DMS metrics, you can allow users on systems other than the localhost to access the
DMS metrics from the location http://host:port/dms0/AggreSpy.

To view metrics from a system other than the localhost (127.0.0.1), do the following:

1. Modify dms.conf by changing the entries with the value for localhost "127.0.0.1"
shown in Example 2–1 to the name of the server providing the metrics (obtain the
server name from the ServerName directive in the httpd.conf file, for example
tv.us.oracle.com).

2. Example 2–2 shows a sample updated dms.conf that allows access from a system
other than the localhost (127.0.0.1).

Example 2–2 Sample dms.conf File for Remote Host Access for DMS Metrics

proxy to DMS AggreSpy
Redirect /dms0/AggreSpy http://tv.us.oracle.com:7200/dmsoc4j/AggreSpy
#DMS VirtualHost for access and logging control
Listen tv.us.oracle.com:7200
OpmnHostPort http://tv.us.oracle.com:7200
<VirtualHost tv.us.oracle.com:7200>
ServerName tv.us.oracle.com

3. Restart, or stop and start the Oracle HTTP Server using Application Server Control
Console or using the Oracle Process Manager and Notification Server opmnctl
command. For example,

%opmnctl restartproc process-type=HTTP_Server

or

%opmnctl stopproc process-type=HTTP_Server
%opmnctl startproc process-type=HTTP_Server

Caution: Modifying dms.conf has security implications. Only
modify this file if you understand the security implications for your
site. By exposing metrics to systems other than the localhost, you
allow other sites to potentially view critical Oracle Application
Server internal status and runtime information.

See Also: Oracle Application Server Security Guide for information
on Oracle HTTP Server access control

Using Oracle Application Server Built-in Performance Metrics

Monitoring Oracle Application Server 2-9

AggreSpy Limitation When Using Load Balancing With Clusters
AggreSpy does not work as expected when using Oracle Application Server Clusters.
When using a cluster, the Oracle HTTP Server mod_oc4j component load balances
OC4J requests across Oracle Application Server instances. In this case, AggreSpy may
report results for systems that are not the localhost (127.0.0.1).

Viewing Performance Metrics Using dmstool
The dmstool command allows you to view a specific performance metric, a set of
performance metrics, or all performance metrics for an Oracle Application Server
instance. The dmstool command also supports an option that allows you to set a
reporting interval, specified in seconds, to report updated metrics every t seconds.

For example, you can monitor the performance of a specific servlet, JSP, EJB, EJB
method, or database connection and you can request periodic snapshots of metrics
specific to these components.

The format for using dmstool to display built-in performance metrics is:

% dmstool [options] metric metric ...

or

% dmstool [options] –list

or

% dmstool [options] –dump

Table 2–2 lists the dmstool command-line options. Following Table 2–2 this section
presents examples that show sample usage with specific performance metrics. The
dmstool command is located in the $ORACLE_HOME/bin directory on UNIX or in
%ORACLE_HOME%\bin directory on Windows.

Access Control for dmstool
By default, dmstool shows metrics only when it is run from the localhost (127.0.0.1).
If you want to view metrics from an Oracle Application Server running on a remote
host, then you need to use dmstool with the -a option, on the local host, and update
the dms.conf file of the remote Oracle Application Server instance in the $ORACLE_
HOME/Apache/Apache/conf/ directory on UNIX or %ORACLE_
HOME%\Apache\Apache\conf\ directory on Windows.

Note: It is recommended, when using Oracle Application Server
Clusters, that you use dmstool instead of AggreSpy.

Note: You can use dmstool in scripts or in combination with
other monitoring tools to gather performance data, to check
application performance, or to build tools that modify your system
based on the values of performance metrics.

See Also:

"Using dmstool to List the Names of All Metrics" on page 2-11

Appendix A, "Performance Metrics" for a list and description of the
DMS metrics

Using Oracle Application Server Built-in Performance Metrics

2-10 Oracle Application Server Performance Guide

The configuration changes required to control the access to metrics using dmstool are
the same as those for accessing dms0/AggreSpy.

See Also: "AggreSpy URL and Access Control" on page 2-7

Table 2–2 dmstool Command-line Options

Option Description

–a[ddress] opmn://
host[:port]

By default, without the -a option, dmstool gets metrics from the Oracle
Application Server instance with the same $ORACLE_HOME as dmstool.
When dmstool runs in the same $ORACLE_HOME as the Oracle Process
Manager and Notification Server, OPMN, the –a option is not required.

You can specify –a with the opmn:// prefix and the arguments shown to
monitor the Oracle Application Server processes under OPMN control that
produce DMS metrics (some OPMN controlled processes, for example Oracle
Application Server Web Cache, do not expose DMS metrics).

Where:

host is the domain name or IP address of the host on which the OPMN process
is running.

port specifies the OPMN request port that supplies metrics. The request port is
specified in $ORACLE_HOME/opmn/conf/opmn.xml.

For example, the following shows the specification in opmn.xml for a request
port (request="6003"):

<notification-server>
<port local="6100" remote="6200" request="6003"/>
.
.
</notification-server>

Note, if you use dmstool -a to request metrics from a remote system, the system
must be configured to provide metrics (by default you can access DMS metrics
on the localhost).

See Also: "AggreSpy URL and Access Control" on page 2-7

–c[ount] num Specifies the number of times to retrieve values when monitoring metrics. If not
specified, dmstool continues retrieving metric values until the process is
stopped.

The –count option is not used with the –list option.

–dump [format=xml] Using dmstool with the -dump option reports all the available metrics on the
standard output. Oracle recommends that you run with the -dump option
periodically, such as every 15 to 20 minutes, to capture and save a record of
performance data for your Oracle Application Server server.

The -dump option also supports the format=xml query. Using this query at
the end of the command line supplies the metric output in XML format.

–help List the dmstool command-line options.

–i[nterval] secs Specifies the number of seconds to wait between metric retrievals. The default
is 5 seconds. The interval argument is not used with the –list option. The
interval specified is approximate.

Note: if the system load is high, the actual interval may vary from the interval
specified using the –interval option.

Using Oracle Application Server Built-in Performance Metrics

Monitoring Oracle Application Server 2-11

Using dmstool to List the Names of All Metrics
Every Oracle Application Server performance metric has a unique name. Using
dmstool with the –list option produces a list of all metric names. The –list output
contains the metric names that you can use with dmstool to request monitoring
information for a specific metric or set of metrics.

Using the following command, dmstool displays a list of all metrics available on the
server:

% dmstool –list

This command displays a list of the available metrics.

Using dmstool to Report Values for Specific Performance Metrics
To monitor a specific metric or set of metrics, use dmstool and include the metric
name on the command-line. For example, to monitor the time the JVM has been
running, perform the following steps:

1. Use dmstool with the -list option to find the name of the metric that shows the
JVM uptime:

% dmstool -list | grep JVM/upTime.value
/system1/OC4J:3000:6004/JVM/upTime.value

2. Use dmstool and supply the full metric name as an argument to show the metric
value:

% dmstool /system1/OC4J:3000:6004/JVM/upTime.value
Mon Jul 26 16:20:05 PDT 2004
/system1/OC4J:3000:6004/JVM/upTime.value 14022008 msecs

Using dmstool, the default repeat interval is 5 seconds, so this command shows the
updated metric value every 5 seconds. Use the -count option to limit the number of
times dmstool reports values.

–l[ist] [-table] Generates a list of all metrics available. Use the –list option with the –table
option to display a list of all the metric table names.

Note, including metric names on the command-line is not valid when using the
–list option with dmstool.

–reset [-table metric_
table]

Resets the specified metrics or with the -table option, all of the metrics
contained in the specified metric table.

Event and phaseEvent metrics are reset to 0 (as if they were never updated).
State metrics are reset to the current value (as if they started with the current
value).

Note: The reset option may reset information that Application Server Control
Console uses to compute and report values.

–table metric_table Includes all the performance metrics for the specified metric table with the
name, metric_table.

See Appendix A, "Performance Metrics" or run AggreSpy for a list of metric
table names.

See Also: Appendix A, "Performance Metrics"

Table 2–2 (Cont.) dmstool Command-line Options

Option Description

Using Oracle Application Server Built-in Performance Metrics

2-12 Oracle Application Server Performance Guide

For example:

% dmstool /system1/OC4J:3000:6004/JVM/upTime.value -count 2
Mon Jul 26 11:18:33 PDT 2004
/system1/OC4J:3000:6004/JVM/upTime.value 14336273 msecs

Mon Jul 26 11:18:38 PDT 2004
/system1/OC4J:3000:6004/JVM/upTime.value 14345881 msecs

Using dmstool With the Interval and Count Options
To monitor the requests completed for an application over an interval of one minute,
use the following dmstool command, supplying metric names on the command-line:

% dmstool -i 60 -c 120 \
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed

This command reports 120 sets of output for the metric listed on the command line,
while collecting data at intervals of 60 seconds:

Tue Oct 12 14:43:43 PDT 2004
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed 8576 ops

Tue Oct 12 14:44:43 PDT 2004
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed 8581 ops

Tue Oct 12 14:45:43 PDT 2004
/system1/OC4J:3301:6003/oc4j/default/WEBs/processRequest.completed 8588 ops
.
.
.

Using dmstool to Report All Metrics with Metric Values
Using dmstool with the -dump option displays all the metrics from an Oracle
Application Server instance to the standard output.

The following command displays all available metrics:

% dmstool –dump

Oracle recommends that you run dmstool with the -dump option periodically, such
as every 15 to 20 minutes, to capture and save a record of performance data. If you
save performance data over time, this data can assist you if you need to analyze
system behavior to improve performance or when problems occur.

Using dmstool to Report All Metrics with Metric Values in XML Format
When you need to process metric data, use the format=xml query on the dmstool
command line to report all metric values in XML format.

The following command displays all available metrics using XML format:

% dmstool –dump format=xml

Using dmstool to Reset Metric Values
When you want to reset metric values, use the reset option on the dmstool
command line to reset values for a set of metrics, or for all metrics in a specified metric
table.

Using Oracle Application Server Built-in Performance Metrics

Monitoring Oracle Application Server 2-13

Using the reset option, Event and phaseEvent metrics are reset to 0, as if they were
never updated, and State metrics are reset to the current value (as if they started with
the current value).

The following command resets the specified metric:

% dmstool –reset /system1/OC4J:3000:6004/JVM/upTime.value

The following command resets the specified metric table:

% dmstool –reset /system1/OC4J:3000:6004/JVM/upTime.value

Using dmstool to View Metrics on a Remote Oracle Application Server System
Using dmstool with the -a option reports the metrics from a remote Oracle
Application Server instance.

The following command displays all available metrics and metric values on the Oracle
Application Server Instance, as specified with the –a option:

% dmstool –a opmn://system1:6003 -list

Using the dmstool -a option, supply an argument with the prefix opmn:// and
include the host name where you want to obtain metrics, and the OPMN request port
number. The port specifies the OPMN request port that supplies metrics for Oracle
Application Server which is specified the request attribute under the
<notification-server> element in $ORACLE_HOME/opmn/conf/opmn.xml on
UNIX and %ORACLE_HOME%\opmn\conf\opmn.xml on Windows.

Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)
When you are using OC4J in standalone mode, without the Oracle Application Server,
the AggreSpy Servlet allows you to access OC4J metrics.

When running OC4J standalone, access performance metrics using AggreSpy from
the following URL:

http://myhost:myport/dms0/AggreSpy

Note: The reset option may reset information that Application
Server Control Console uses to compute and report values.

Note: By default the Oracle Application Server only allows
dmstool to access metrics from the localhost. You need to modify
dms.conf to support access from systems other than the localhost.
See "AggreSpy URL and Access Control" on page 2-7 for
information on DMS access control.

See Also: "AggreSpy URL and Access Control" on page 2-7

Note: You can only run AggreSpy when OC4J is configured to
support it, and OC4J is running. By default, OC4J supports
AggreSpy.

Using Oracle Application Server Built-in Performance Metrics

2-14 Oracle Application Server Performance Guide

Table 2–3 covers the dmstool option that only applies to OC4J standalone mode. In
addition, the options shown in Table 2–2 also apply to dmstool (except the -a option
with the opmn:// prefix.

Table 2–3 dmstool Command-line Options (for Standalone OC4J only)

Option Description

–a[ddress]
host[:port][path],...

For a standalone OC4J system, use the -a option. This specifies the http://
protocol, where:

host is the domain name or IP address of the host on which the Oracle HTTP
Server is running and port specifies the associated port.

Monitoring Oracle HTTP Server 3-1

3
Monitoring Oracle HTTP Server

This chapter discusses how to monitor Oracle HTTP Server performance. Obtaining
performance data can assist you in tuning Oracle Application Server or in tuning and
debugging applications with performance problems.

This chapter covers the following topics:

■ Monitoring Oracle HTTP Server with Application Server Control Console

■ Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server with Application Server Control Console

3-2 Oracle Application Server Performance Guide

Monitoring Oracle HTTP Server with Application Server Control Console
The Oracle HTTP Server is a central and important part of most Oracle Application
Server sites. Oracle HTTP Server handles nearly every request for dynamic data and
many static data requests as well. By monitoring Oracle HTTP Server performance you
can identify and fix Oracle Application Server performance issues.

This section covers the following topics:

■ Assessing the Oracle HTTP Server Load with Application Server Control Console

■ Investigating Oracle HTTP Server Errors with Application Server Control Console

■ Categorizing Oracle HTTP Server Problems with Application Server Control
Console

While Application Server Control Console provides standalone management for an
Application Server and its components, you can centrally manage all your Application
Servers through one tool rather than through several Application Server Control
Consoles by using the Oracle Enterprise Manager 10g Grid Control Console.

Assessing the Oracle HTTP Server Load with Application Server Control Console
To monitor Oracle HTTP Server performance, the first step is to assess the workload
(load).

When assessing the Oracle HTTP Server load, note the following:

■ If you are developing or testing a new application, you need to determine how
much load your quality assurance and performance tests generate on Oracle HTTP
Server.

■ If you are monitoring Oracle HTTP Server performance, note that usage often
fluctuates depending on the time of day or day of week, with sites experiencing
times with light loads, and times with heavy loads. Your performance tests and
performance baseline should take into account the effect of time of day and day of
week variances. Whether you are developing or administering an Oracle
Application Server site, you should always design for expected load ranges and
monitor the site to ensure that usage and performance remains within the
expected range. You can use dmstool for periodic system monitoring.

■ The Oracle HTTP Server performance information provides a picture of overall
site performance; however if Oracle Application Server Web Cache or other
caching mechanisms handle requests before they reach Oracle HTTP Server, then
you need to monitor the caches as well.

Application Server Control Console provides Oracle HTTP Server performance data in
the following categories:

■ Oracle HTTP Server Status Metrics

■ Oracle HTTP Server Response and Load Metrics

■ Oracle HTTP Server Module Metrics

■ Oracle HTTP Server Error Log

See Also: "Centralized Management of Oracle Application Server
Instances" on page 2-3

Monitoring Oracle HTTP Server with Application Server Control Console

Monitoring Oracle HTTP Server 3-3

Oracle HTTP Server Status Metrics
The Application Server Control Console status metrics provide information on CPU
usage, memory usage, Oracle HTTP Server errors, and the number of active
connections.

Figure 3–1 shows the Application Server Control Console HTTP Server status metrics
page.

Figure 3–1 Application Server Control Console Status Metrics Page

See Also:

■ "Performance Methodology" on page 1-7

■ "Viewing Performance Metrics Using dmstool" on page 2-9

■ Chapter 7, "Optimizing OracleAS Web Cache"

■ Oracle Application Server Web Cache Administrator’s Guide for
further details on Oracle Application Server Web Cache

■ Oracle Application Server Administrator’s Guide for information
on using Application Server Control Console

Monitoring Oracle HTTP Server with Application Server Control Console

3-4 Oracle Application Server Performance Guide

Oracle HTTP Server Response and Load Metrics
Figure 3–2 shows the Application Server Control Console Response and Load Metrics
page. This page shows values for Oracle HTTP Server Active Requests and Request
Throughput, and reports the average, minimum, and maximum processing time for
requests. The values on the Response and Load Metrics page can help you assess the
system load.

Figure 3–2 Application Server Control Console Response and Load Metrics

Oracle HTTP Server Module Metrics
Figure 3–3 shows the Application Server Control Console Module Metrics page. The
Module Metrics page shows the active and total requests processed by Oracle HTTP
Server modules. The page only lists modules active since startup, meaning that the
module has received 1 or more requests.

Monitoring Oracle HTTP Server with Application Server Control Console

Monitoring Oracle HTTP Server 3-5

Figure 3–3 Application Server Control Console Module Metrics Page

Oracle HTTP Server Error Log
The Error Log link displays the Application Server Control Console View Logs page
and selects the HTTP Server logs.

Investigating Oracle HTTP Server Errors with Application Server Control Console
You should thoroughly investigate Oracle HTTP Server errors occurring on your site.
Oracle HTTP Server errors may indicate acceptable activity, but they may also indicate
security problems, configuration errors, or application bugs. Errors almost always
affect Oracle Application Server performance. Error handling can slow down the
normal processing for requests, or can appear to improve performance when the error
handling abbreviates the processing required to handle a valid request.

Using Application Server Control Console you can view the Error Metrics on the
HTTP Status Metrics page, as shown in Figure 3–1. Error Metrics include the current
error rate, which is the number of errors occurring in approximately the last five
minutes as a percentage of the total requests, the error rate since startup, and the count
of the total number of errors since startup. The Status Metrics page includes the Errors
by Error Type table shown in Figure 3–1 which lists more details for HTTP errors,
including the error types and error counts. This table breaks down each error into a
category based on its HTTP error response type.

The data values shown for Errors by Error Type in Figure 3–1 indicate that the errors
were due to requests for unknown URIs (404 - Not Found errors). On many Oracle
HTTP Server sites, Not Found errors are relatively common. However, you should
investigate reports showing large numbers of Not Found errors, such as a number that
is greater than 1% of the total requests (see Figure 3–2 to find the total requests
processed in the Request Throughput area on the Response and Load Metrics page).

To investigate errors in more detail, such as any reported internal errors, examine the
error log by selecting the Logs link from any page, or the Error Log link under the

See Also: Oracle Application Server Administrator’s Guide for
information on working with the View Logs page

Monitoring Oracle HTTP Server with Application Server Control Console

3-6 Oracle Application Server Performance Guide

Related Links heading on the Status Metrics page. By examining the error log file
entries, you should be able to find more information about the URIs that are causing
specific errors.

Expected Oracle HTTP Server Errors and Warnings
Certain Oracle HTTP Server errors and warnings are expected during normal Oracle
Application Server operations. For example, errors and warnings occur when the OC4J
instance is stopped or restarted when you perform certain configuration actions using
Application Server Control Console.

Example 3–1 shows some of the types of errors that you may see during an OC4J
restart operation.

Example 3–1 Expected Errors Occurring During OC4J Restart Operation

MOD_OC4J_0150: Failed to deterministicly find a failover oc4j process for session request for
island: default_island for destination: home.
MOD_OC4J_0119: Failed to get an oc4j process for destination: home
MOD_OC4J_0013: Failed to call destination: home’s service() to service the request.
MOD_OC4J_0150: Failed to deterministicly find a failover oc4j process for session request for
island: default_island for destination: home.
.
.
.
MOD_OC4J_0119: Failed to get an oc4j process for destination: home
MOD_OC4J_0013: Failed to call destination: home’s service() to service the request.
MOD_OC4J_0150: Failed to deterministicly find a failover oc4j process for session request for
island: default_island for destination: home.
MOD_OC4J_0119: Failed to get an oc4j process for destination: home
MOD_OC4J_0013: Failed to call destination: home’s service() to service the request.
(131)Connection reset by peer: MOD_OC4J_0086: Got an unexpected error while calling recv() to
receive a message from oc4j and error code is 131.
MOD_OC4J_0054: Failed to call network routine to receive an ajp13 message from oc4j.
MOD_OC4J_0033: Failed to receive an ajp13 message from oc4j.
(131)Connection reset by peer: MOD_OC4J_0086: Got an unexpected error while calling recv() to
receive a message from oc4j and error code is 131.
MOD_OC4J_0054: Failed to call network routine to receive an ajp13 message from oc4j.
MOD_OC4J_0033: Failed to receive an ajp13 message from oc4j.

Categorizing Oracle HTTP Server Problems with Application Server Control Console
If you notice a performance problem on the Oracle HTTP Server, then if possible you
should drill down and categorize the problem. By refining the performance analysis
you can learn more about the issue and direct your efforts to a component to help
identify and resolve the problem.

Application Server Control Console can help you categorize performance problems.
You can identify where requests are being processed, or where a large percentage of
request processing time is concentrated. Using Application Server Control Console
allows you to categorize performance problems as follows:

■ Categorizing Oracle HTTP Server Problems by Module

■ Categorizing Oracle HTTP Server Problems by Virtual Host

■ Categorizing Oracle HTTP Server Problems by Child Server

See Also: Oracle Application Server Administrator’s Guide for
information on working with the View Logs page

Monitoring Oracle HTTP Server with Application Server Control Console

Monitoring Oracle HTTP Server 3-7

Categorizing Oracle HTTP Server Problems by Module
Figure 3–3 shows the Module Metrics for Oracle HTTP Server modules (the report
includes information for modules that have received 1 or more requests since startup).
Using the Module Metrics, you should be able to identify the name of the module that
processed a large number of requests, or identify a module where the processing time
for an individual request is very large. By looking at the values for metrics listed in the
Module Metrics table, you should be able to categorize Oracle Application Server
performance by module.

When viewing the Module Metrics, note the following:

1. The http_core.c module handles every request for static pages. If Oracle
Application Server Web Cache is enabled, then use of http_core.c should be
reduced. When you are using Oracle Application Server Web Cache, you should
monitor requests processed by the http_core.c module to make sure that
Oracle Application Server Web Cache effectively reduces static page activity for
the Oracle HTTP Server.

2. Viewing the Module Metrics page may show you that many requests were
processed through the mod_oc4j.c module. You should then drill down to
review the information available for your OC4J instances. Application Server
Control Console provides extensive performance measurements for OC4J
instances and J2EE applications.

Categorizing Oracle HTTP Server Problems by Virtual Host
Figure 3–4 shows a display of the Virtual Host page. By viewing the Virtual Host page
you should be able to obtain information about request processing by virtual host. The
Request Throughput, Load, and Request Processing Time headings include
information that enables you to identify a virtual host on your system that is
processing a large number of requests, or that is using significant processing resources
and may be stressing the system. This information should help you to categorize
Oracle Application Server performance issues by virtual host.

See Also: Chapter 4, "Monitoring OC4J"

Monitoring Oracle HTTP Server with Application Server Control Console

3-8 Oracle Application Server Performance Guide

Figure 3–4 Application Server Control Console Virtual Host Page

Categorizing Oracle HTTP Server Problems by Child Server
Running Oracle HTTP Server, usually you do not need to worry about which child
server handles an individual request because any available child server can handle
any incoming request (each request is handled by a free child server). However, if your
Oracle Application Server system experiences delays or deadlocks, you may need to
analyze the Oracle HTTP Server child server processes.

To obtain information on Oracle HTTP Server child server processes, select Response
and Load Metrics link from the HTTP Server page, and then, under Related Links,
select Process Details. The Process Details page shows the Process ID for each active
Oracle HTTP Server child process.

Viewing the Process Details page allows you to monitor child servers to identify
runtime problems, configuration errors, or application bugs that cause either request
processing deadlocks or very long delays. In these situations analyzing the Process
Details page can help determine where the deadlock or delay is occurring.

Figure 3–5 shows a Process Details page with Oracle HTTP Server child server
information.

When viewing the Oracle HTTP Server Process Details page, note the following:

1. If necessary you can use the Process ID value to identify and terminate a
deadlocked Oracle HTTP Server child server.

2. Oracle HTTP Server terminates requests after a configurable timeout. You can use
Application Server Control Console to set the timeout for requests.

See Also: Oracle HTTP Server Administrator’s Guide for
information on the TimeOut directive

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server 3-9

Figure 3–5 Application Server Control Console HTTP Server Process Details for Child Servers Page

Monitoring Oracle HTTP Server with Built-in Performance Metrics
The Oracle HTTP Server is a central and important part of most Oracle Application
Server sites. Oracle HTTP Server handles nearly every request for dynamic data and
many static data requests as well. By monitoring Oracle HTTP Server performance,
you can identify and fix Oracle Application Server performance issues.

This section covers the following topics:

■ Assessing the Oracle HTTP Server Load with Built-in Metrics

■ Investigating Oracle HTTP Server Errors with Built-in Metrics

■ Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics

Assessing the Oracle HTTP Server Load with Built-in Metrics
To monitor Oracle HTTP Server performance, the first step is to assess workload.

When assessing the Oracle HTTP Server workload (load), note the following:

■ If you are developing or testing a new application, you need to determine how
much load your quality assurance and performance tests generate on Oracle HTTP
Server.

■ If you are monitoring Oracle HTTP Server performance, note that usage often
fluctuates depending on the time of day or day of week, with sites experiencing
times with light loads, and times with heavy loads. Your performance tests and
performance baseline should take into account the effect of time of day and day of
week variances. Whether you are developing or administering an Oracle
Application Server site, you should always design for expected load ranges and
monitor the site to ensure that usage and performance remains within the
expected range.

■ The Oracle HTTP Server performance metrics give a good picture of overall site
performance; however if Oracle Application Server Web Cache or other caching
mechanisms handle requests before they reach Oracle HTTP Server, then you need
to monitor the caches as well.

Oracle HTTP Server provides performance metrics which you can view using
AggreSpy or dmstool. You can use these built-in performance tools to help you

See Also: "Performance Methodology" on page 1-7

Monitoring Oracle HTTP Server with Built-in Performance Metrics

3-10 Oracle Application Server Performance Guide

assess Oracle HTTP Server load by viewing the ohs_server metric table. Using
AggreSpy or dmstool, you can view the ohs_server metric table.

Example 3–2 shows the dmstool command with the ohs_server metrics output.
You can also view the ohs_server metric table using AggreSpy by choosing the
ohs_server metric table in the left pane of the AggreSpy window or by selecting the
Text link next to the Apache process in the AggreSpy All DMS Spies list. If you
select the Apache process from the Spies List, you need to find the ohs_server table
within the full set of metrics shown.

Example 3–2 Overall HTTP Server Metrics Report

system1 122> dmstool -table ohs_server
Fri May 02 11:11:39 PDT 2003

ohs_server

busyChildren.value: 1
childFinish.count: 0 ops
childStart.count: 11 ops
connection.active:3 threads
connection.avg:258721053 usecs
connection.completed: 11880 ops
connection.maxTime:1002008298 usecs
connection.minTime:7254 usecs
connection.time:152386700540 usecs
error.count: 52 ops
get.count: 32769 ops
handle.active:2 threads
handle.avg:14274 usecs
handle.completed:6985
handle.maxTime:22205524 usecs
handle.minTime:2 usecs
handle.time:997159521 usecs
internalRedirect.count: 7418 ops
lastConfigChange.value: 1051724112
numChildren.value: 11
numMods.value: 47
post.count: 0 ops
readyChildren.value: 10
request.active: 1 threads
request.avg:31537 usecs
request.completed:32769
request.maxTime:22206941 usecs
request.minTime:602 usecs
request.time:1033442848 usecs
responseSize.value: 243880796
Host: system1
Name: Apache
Parent: /
Process: Apache:27885:6004

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server 3-11

First, to analyze system performance, the output shown in Example 3–2 includes three
categories of metrics to be inspected: handle, request, and connection. These
metrics describe the following:

■ handle

The phase in which a request is handled by an HTTP server module. Note that a
single request may be handled by more than one HTTP server module. The handle
metrics shown in the ohs_server metric table are summarized for all of the
HTTP server modules.

■ request

The phase during which an HTTP server daemon reads a request and sends a
response for it (first byte in, last byte out). There may be more than one request
serviced during a single connection phase. This would be the case if the HTTP
parameter KeepAlive were set and utilized by clients.

■ connection

The connection phase, starting from the time an HTTP connection is established to
the time it is closed.

Second, to determine current Oracle HTTP Server load, examine the following ohs_
server metrics:

■ request.active

■ busyChildren.value

■ readyChildren.value

■ numChildren.value

These ohs_server metrics indicate how many OHS child servers, children, are in
use, and how many of child servers are actively processing requests. The data in
Example 3–2 shows that 11 child servers are alive (numChildren.value), one of
which is currently busy handling requests (busyChildren.value).

Oracle HTTP Server needs to keep enough child servers running to handle the usual
load while allowing for normal load fluctuations. Oracle HTTP Server child servers
handle exactly one request at a time, thus Oracle HTTP Server needs to run many child
servers at once. If Oracle HTTP Server notices that the current load may exceed its
default configuration, then it automatically starts new child servers. If the load is
subsequently reduced, then Oracle HTTP Server terminates some of its child servers to
save system resources.

If the configuration settings require that the Oracle HTTP Server start and stop child
servers frequently, this can reduce system performance and may indicate that the
system configuration needs to be adjusted. To determine whether Oracle HTTP Server
child servers have been started and how many have finished, examine the following
ohs_server metrics:

■ childStart.count

■ childFinish.count

These performance metrics show how many Oracle HTTP Server child servers have
started and finished and can also provide an indication of the Oracle HTTP Server
load. For the Oracle HTTP Server shown in Example 3–2, 11 child servers have started
and 0 have finished.

The childStart.count and childFinish.count metric values could indicate
that the instantaneous load for the Oracle HTTP Server exceeded the current load and

Monitoring Oracle HTTP Server with Built-in Performance Metrics

3-12 Oracle Application Server Performance Guide

also exceeded the range assumed by the default Oracle HTTP Server configuration
parameters. When the count of child servers started and the count of child servers
finished are both large, this could indicate that the Oracle HTTP Server could benefit
by tuning configuration parameters, including:

■ MinSpareServers

■ MaxSpareServers

■ StartServers

In the ohs_server metrics, the handle.avg, request.avg, and connection.avg
metrics, and the handle.time, request.time, and connection.time values
increase for each phase. The handle time will be the shortest and the connection time
the longest. Figure 3–6 shows the relationship among these three phases for managing
a user request.

If KeepAlive is on and clients use it, the duration of a connection may be much
longer than the time required to perform a request and return a response, as illustrated
in Figure 3–6. This is because the connection may remain open while a single client
submits multiple requests.

Figure 3–6 Execution Phases in the Oracle HTTP Server

Investigating Oracle HTTP Server Errors with Built-in Metrics
You should thoroughly investigate Oracle HTTP Server errors occurring on your site.
Oracle HTTP Server errors may indicate acceptable activity, but they may also indicate
security problems, configuration errors, or application bugs. Errors almost always
affect Oracle Application Server performance. Error handling can slow down the
normal processing for requests, or can appear to improve performance when the error
handling abbreviates the processing required to handle a valid request.

See Also:

■ Chapter 5, "Optimizing Oracle HTTP Server"

■ Chapter 7, "Optimizing OracleAS Web Cache"

■ Appendix A, "Performance Metrics"

■ Oracle Application Server Web Cache Administrator’s Guide

■ Oracle HTTP Server Administrator’s Guide for information on
Oracle HTTP Server configuration parameters related to
starting and stopping child servers

Time t

User
receives
response

User
submits
request User

submits
request

Connection phase

Request phase Request phase

Handle phase Handle phaseHandle phase

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server 3-13

Using dmstool or AggreSpy, you can investigate Oracle HTTP Server errors by
viewing the ohs_server metrics. Example 3–2 includes the ohs_server metrics
that provide an overview of error activity. The error.count metric increments
whenever any request to Oracle HTTP Server results in an HTTP error response.

Use the ohs_responses metric table to investigate the details for error types and
error counts. This table breaks down the total error.count value into HTTP
response types. It also shows aggregate counts for successful HTTP requests and
HTTP redirects.

Example 3–3 shows the dmstool report for the ohs_responses metric table. You
can also view the ohs_responses metric table using AggreSpy by choosing the
ohs_responses metric table in the left pane of the AggreSpy window or by
selecting the Text link next to the Apache process in All DMS Spies list. If you select
the Apache process from the Spies List, you need to find the ohs_responses table
within the full set of metrics shown.

Example 3–3 HTTP Server Responses Metrics (ohs_responses Metric Table)

system1 125> dmstool -table ohs_responses

Fri May 02 15:19:56 PDT 2003

ohs_responses

CltErr_Authorization_Required_401.count: 0 ops
CltErr_BadRange_416.count: 0 ops
.
.
.
CltErr_Not_Found_404.count: 29 ops
.
.
.
Redirect_MultiChoice_300.count: 0 ops
Redirect_NotModified_304.count: 23 ops
Success_Accepted_202.count: 0 ops
.
.
.
SvrErr_VersionNotSupp_505.count: 0 ops
Host: system1
Name: Responses
Parent: /Apache
Process: Apache:27885:6004
ohs_server: Apache

Example 3–3 shows that most of the errors were due to requests for unknown URIs
(404 - Not Found errors). On many Oracle HTTP Server sites, Not Found errors are
relatively common. However, you should investigate reports showing many Not
Found errors, such as a number greater than 1% of the total requests.

You can examine the error_log and access_log files to determine the URIs that
are causing errors, such as any reported internal errors (SvrErr_InternalError_
500.count).

Monitoring Oracle HTTP Server with Built-in Performance Metrics

3-14 Oracle Application Server Performance Guide

Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics
If you notice a performance problem on the Oracle HTTP Server, then if possible you
should drill down and categorize the problem. By limiting your search for a
performance problem to a subset of Oracle HTTP Server, you can learn more about the
issue and direct your efforts to identifying and solving the problem. Using the built-in
performance tools you can categorize performance problems into one of several areas.
You can identify where requests are being processed, or where a large percentage of
request processing time is concentrated.

This section describes how you can categorize performance problems into different
areas, including:

■ Categorizing Oracle HTTP Server Performance Problems by Module

■ Categorizing Oracle HTTP Server Performance Problems by Virtual Host

■ Categorizing Oracle HTTP Server Performance Problems by Child Server

Categorizing Oracle HTTP Server Performance Problems by Module
Use the ohs_module metrics to refine your analysis of performance problems to one
or more modules. Showing the module metrics allows you to use the metric data to
limit the search for performance problems to a particular module.

Example 3–4 shows a section of the dmstool report for the ohs_module metric table.
You can also view the ohs_module metric table using AggreSpy by choosing the
ohs_module link in the left pane of the AggreSpy window or by selecting the Text
link next to the Apache process in the All DMS Spies list. If you select the Apache
process from the Spies List, you need to find the ohs_module table within the full set
of metrics shown.

Example 3–4 Drill Down to Investigate Oracle HTTP Server Activity per Module

system1 127> dmstool -table ohs_module -c 1
Fri May 02 15:51:01 PDT 2003

ohs_module

decline.count: 76661 ops
handle.active: 0 threads
handle.avg: 13 usecs
handle.completed: 76661 ops
handle.maxTime: 5487 usecs
handle.minTime: 11 usecs
handle.time: 1007639 usecs
Host: system1
Name: mod_actions.c
Parent: /Apache/Modules
Process: Apache:27885:6004
ohs_server: Apache

See Also:

■ "Expected Oracle HTTP Server Errors and Warnings" on
page 3-6

■ Oracle HTTP Server Administrator’s Guide for information on the
Oracle HTTP Server access_log and error_log files

■ Oracle Application Server Administrator’s Guide for
information on working with the View Logs page.

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server 3-15

.

.

.
Name: mod_plsql.c
.
.
.
decline.count: 0 ops
handle.active: 0 threads
handle.avg: 919 usecs
handle.completed: 76708 ops
handle.maxTime: 122401 usecs
handle.minTime: 351 usecs
handle.time: 70532228 usecs
Host: system1
Name: http_core.c
Parent: /Apache/Modules
Process: Apache:27885:6004
ohs_server: Apache
.
.
.
decline.count: 0 ops
handle.active: 0 threads
handle.avg: 331918 usecs
handle.completed: 440 ops
handle.maxTime: 42707927 usecs
handle.minTime: 5970 usecs
handle.time: 146044090 usecs
Host: system1
Name: mod_oc4j.c
Parent: /Apache/Modules
Process: Apache:27885:6004
ohs_server: Apache

When viewing the Module Metrics, note the following:

1. The http_core.c module handles every request for static pages. If Oracle
Application Server Web Cache is enabled, then use of http_core.c should be
reduced. If Oracle Application Server Web Cache is enabled then you should
monitor the http_core.c metrics to make sure that Oracle Application Server
Web Cache effectively prevents static page activity from reaching your Oracle
HTTP Server.

2. Typically, certain responses require process initialization, class loading or other
one-time processing that can skew the reporting of the average request processing
time. For performance reporting and analysis, you can reduce the effect of the such
one-time operations by subtracting the minimum and maximum values from the
total and recalculating the average. For example, for the mod_oc4j.c metrics
shown in Example 3–4, if you recompute the request handling average using the
following formula, you find that the recalculated average provides a more
representative indication of typical response processing time:

new average = (time - min - max) / (completed - 2)
 = (146044090 - 5970 - 42707927)/ (440 - 2)
 = 305710.6 microseconds

Monitoring Oracle HTTP Server with Built-in Performance Metrics

3-16 Oracle Application Server Performance Guide

Recalculating the average is most important when the server has been up for a
short time, and thus has handled a small number of requests. In this case, the large
overhead of the first request will have far more impact on the average.

3. Viewing the ohs_module metric table may show you that many requests were
forwarded to OC4J through the mod_oc4j.c module. Oracle Application Server
also provides extensive performance measurements for OC4J J2EE applications.

Categorizing Oracle HTTP Server Performance Problems by Virtual Host
Use the ohs_virtualHost metrics to refine your analysis of performance problems
by Oracle HTTP Server virtual host. Showing the virtual host metrics allows you to
use the metric data to limit the search for performance problems to a subset of the
Oracle HTTP Server.

Example 3–5 shows a section of the dmstool report for the ohs_virtualHost
metric table. You can also view the ohs_virtualHost metric table using AggreSpy
by choosing the ohs_virtualHost link in the left pane of the AggreSpy window or
by selecting the Text link next to the Apache process in the All DMS Spies list. If you
select the Apache process from the Spies List, you need to find the ohs_
virtualHost table within the full set of metrics shown.

Example 3–5 Drill Down to Investigate Oracle HTTP Server Activity per Virtual Host

system1 134> dmstool -table ohs_virtualHost -c 1
Mon May 05 10:35:10 PDT 2003

ohs_virtualHost

request.active: 0 threads
request.avg: 0 usecs
request.completed: 0 ops
request.maxTime: 0 usecs
request.minTime: 0 usecs
request.time: 0 usecs
responseSize.value: 0 bytes
vhostType.value: IP_DEFAULT
Host: system1
Name: system1.us.oracle.com:IP255.255.255.255,Port4444
Parent: /Apache/VHosts
Process: Apache:27885:6004
ohs_server: Apache
ohs_vhostSet: VHosts

Categorizing Oracle HTTP Server Performance Problems by Child Server
Running Oracle HTTP Server, usually you do not need to worry about which child
server handles an individual request because any available child server can handle
any incoming request (each request is handled by a free child server). However, if your
Oracle Application Server system experiences delays or deadlocks, you may need to
analyze the Oracle HTTP Server child server metrics. These metrics allow you to
monitor child servers to identify runtime problems, configuration errors, or
application bugs that cause either request processing deadlocks or very long delays. In
these situations analyzing the Oracle HTTP Server child server metrics can help
determine where the deadlock or delay is occurring.

See Also: Chapter 4, "Monitoring OC4J"

Monitoring Oracle HTTP Server with Built-in Performance Metrics

Monitoring Oracle HTTP Server 3-17

Use the ohs_child metric table to refine your analysis of performance problems to
one or more Oracle HTTP Server child servers.

Example 3–6 shows a section of the dmstool report for the ohs_child metric table.
You can also view the ohs_child metric table using AggreSpy by choosing the ohs_
child link in the left pane of the AggreSpy window or by selecting the Text link
next to the Apache process in the All DMS Spies list. If you select the Apache process
from the Spies List, you need to find the ohs_child table within the full set of metrics
shown

The ohs_child metric table shows the top ten Oracle HTTP Server child servers
sorted by time spent on current requests. For the metrics shown in Example 3–6, the
top entry has been executing for 7 microseconds. The ohs_child metrics include the
URL associated with the request and the process identifier for each Oracle HTTP
Server child server listed.

Example 3–6 Drill Down to Investigate Activity per Child Server

system1 135> dmstool -table ohs_child -c 1
Mon May 05 10:44:24 PDT 2003
userpasswd=null

ohs_child

.
.
.
pid.value: 27897
slot.value: 3
status.value: writing
time.value: 1 usecs
url.value: GET /dms0/Spy?format=tbml&operation=get&value=true&units=true&d
Host: system1
Name: Child01
Parent: /Apache/Children
Process: Apache:27885:6004
ohs_server: Apache
pid.value: 27899
slot.value: 5
status.value: keepalive
time.value: 7 usecs
url.value: GET /dmsDemo/BasicBinomial HTTP/1.1
Host: system1
Name: Child00
Parent: /Apache/Children
Process: Apache:27885:6004
ohs_server: Apache

When viewing the Oracle HTTP Server child server metrics, note the following:

1. If necessary you can use the ohs_child metric value pid.value to identify and
terminate a deadlocked Oracle HTTP Server child server.

2. Oracle HTTP Server terminates requests after a configurable timeout set with the
TimeOut directive.

See Also: Oracle HTTP Server Administrator’s Guide for
information on the TimeOut directive

Monitoring Oracle HTTP Server with Built-in Performance Metrics

3-18 Oracle Application Server Performance Guide

Monitoring OC4J 4-1

4
Monitoring OC4J

This chapter discusses how to monitor the performance of Oracle Application Server
Containers for J2EE (OC4J). Obtaining performance data can assist you in tuning
Oracle Application Server or in tuning and debugging applications with performance
problems.

This chapter contains the following topics:

■ Monitoring OC4J With Application Server Control Console

■ Monitoring OC4J With Built-in Performance Metrics

Monitoring OC4J With Application Server Control Console

4-2 Oracle Application Server Performance Guide

Monitoring OC4J With Application Server Control Console
Using Application Server Control Console, you can view information on the
performance characteristics of OC4J instances, J2EE applications, and Oracle
Application Server components running under OC4J. This section covers the
following:

■ Monitoring OC4J Instances With Application Server Control Console

■ Monitoring J2EE Applications with Application Server Control Console

Monitoring OC4J Instances With Application Server Control Console
Before analyzing OC4J performance, make sure that your OC4J instance is running.
Figure 4–1 shows Application Server Control Console with the OC4J instance
homepage. This page shows the status for a selected OC4J instance (the Up under the
heading General indicates the OC4J instance is running).

While Application Server Control Console provides standalone management for an
Application Server and its components, if you want to centrally manage multiple
Application Servers through one tool rather than through several Application Server
Control Consoles use Oracle Enterprise Manager 10g Grid Control Console.

Figure 4–1 Application Server Control Console OC4J Instance Page

See Also: "Centralized Management of Oracle Application Server
Instances" on page 2-3

Note: Application Server Control Console does not provide
information on OC4J JMS. Use the built-in performance metrics to
obtain information on OC4J JMS.

Monitoring OC4J With Application Server Control Console

Monitoring OC4J 4-3

General
The Application Server Control Console OC4J General information provides
information on up and down status for the OC4J instance, its start time, and
information on the virtual machine where the OC4J instance is running. This area also
presents buttons that allow you to stop or restart the OC4J instance.

JDBC Usage
The Application Server Control Console OC4J JDBC Usage information shows the
number of open JDBC connections, the total number of JDBC connections, the number
of active transactions, and the total number of transaction commits and transaction
rollbacks for the OC4J instance.

Status
The Application Server Control Console OC4J Status information shows the CPU
usage, memory usage, and heap usage for the OC4J instance.

Response for Servlets and JSPs
The Application Server Control Console OC4J Response information for Servlets and
JSPs shows the number of active sessions, the active requests, the average request
processing time, and the requests processed per second for active requests.The value
shown for requests processed per second is a rate that is calculated using the requests
processed over the previous 5 minutes.

Response for EJBs
The Application Server Control Console OC4J Response information for EJBs shows
the number of active EJB methods and the EJB method execution rate. The EJB method
execution rate provides the number of methods executed per second over the previous
5 minutes.

Monitoring J2EE Applications with Application Server Control Console
After you know that the OC4J instances that contain your J2EE applications are
running, check the status for your applications. If your J2EE applications are not
loaded, then deploy them and then try accessing the applications to make sure that
they work properly. Figure 4–2 shows an Application Server Control Console page for
the FAQApp sample application.

See Also: "Monitoring OC4J With Built-in Performance Metrics"
on page 4-7

Note: Application Server Control Console automatically collects a
subset of metrics approximately every five minutes. The rates
shown in the Application Server Control Console display are
computed over the period that spans from the most recent
collection to the refresh of the Application Server Control Console
display.

Monitoring OC4J With Application Server Control Console

4-4 Oracle Application Server Performance Guide

Figure 4–2 Application Server Control Console J2EE Application Metrics

Figure 4–2 shows the available Application Server Control Console J2EE application
level performance data collected in the following categories:

■ General

■ Response for Servlets and JSPs

■ Response for EJBs

■ Web Module Table

■ EJB Modules Table

General
The Application Server Control Console J2EE application General information
provides an indication of whether the application is loaded or not in the status field,
and shows if the Auto Start status is true or false. The Parent Application field
provides a link to the application parent. This area also presents buttons that allow
you to Redeploy or Undeploy the application.

Monitoring OC4J With Application Server Control Console

Monitoring OC4J 4-5

Response for Servlets and JSPs
The Application Server Control Console J2EE application Response information for
Servlets and JSPs shows the number of active sessions, the active requests, the average
request processing time, and the requests processed per second, over the previous 5
minutes, for active requests for the application. For more detail on this information or
to drill down to specific Servlets and JSPs, use the links in the Web Modules table.

Response for EJBs
The Application Server Control Console J2EE application Response information for
EJBs shows the number of active EJB methods and the EJB method execution rate over
the previous 5 minutes.

For more detail on this information or to drill down to specific Servlets and JSPs, use
the links in the EJB Modules table.

Web Module Table
The Web Modules table allows you to obtain more detailed information for Servlets
and JSPs within a J2EE application.

Figure 4–3 shows the details for the FAQApp application’s Web Module, including
General information, Response and Load information, and a table showing data values
for each of the Servlets and JSPs that are part of the application.

Note: Application Server Control Console automatically collects a
subset of metrics approximately every five minutes. The rates
shown in the Application Server Control Console display are
computed over the period that spans from the most recent
collection to the refresh of the Application Server Control Console
display.

Monitoring OC4J With Application Server Control Console

4-6 Oracle Application Server Performance Guide

Figure 4–3 Application Server Control Console J2EE Application Web Module Metrics

EJB Modules Table
The EJB Modules tables allow you to obtain more detailed information on EJB
modules and EJBs within the J2EE application.

Figure 4–4 shows a sample FAQApp EJB Module page.

Monitoring OC4J With Built-in Performance Metrics

Monitoring OC4J 4-7

Figure 4–4 Application Server Control Console EJB Module Page

Monitoring OC4J With Built-in Performance Metrics
You can use the Oracle Application Server built-in performance metrics to analyze
OC4J and J2EE application performance. Before you attempt to monitor OC4J
performance, verify that the OC4J instance named home that is installed by default
with Oracle Application Server is running by accessing the following URL:

http://myhost:port/j2ee/

The value for myhost should be the host where OC4J is installed. The port must be the
port number on which Oracle HTTP Server listens, as configured in the Oracle HTTP
Server httpd.conf file.

Be sure to include the trailing slash (/) in the URL, otherwise the page cannot be found
on the system. If your default Web site has been mapped to something other than the
default location /j2ee/, then you should access the location configured on your
system.

If the default OC4J instance is running, then accessing this URL displays the Welcome
page for Oracle Application Server Containers for J2EE (OC4J). From the OC4J
Welcome page you can access the samples for JSPs and servlets. If you do not have
active J2EE applications that you want to monitor, you can test the monitoring
facilities using your browser to request sample servlet-generated or JSP-generated Web
pages.

For example, use the following URLs:

http://myhost:myport/j2ee/servlet/SnoopServlet

Monitoring OC4J With Built-in Performance Metrics

4-8 Oracle Application Server Performance Guide

http://myhost:myport/j2ee/servlet/HelloWorldServlet

Then, use AggreSpy or dmstool to see the values of metrics for the built-in
performance metrics.

For example, to use AggreSpy, enter the following URL in your Web browser:

http://myhost:myport/dms0/AggreSpy

The resulting display from the AggreSpy provides a list of metric tables in the
left-hand pane that can be selected to display performance metrics for OC4J and
Oracle Application Server components. Alternatively, you can use dmstool on the
command line or in scripts that you write to display performance metrics.

Note the following when you are monitoring OC4J built-in metrics:

■ Oracle recommends that you monitor usage counts and service times for each of
your application’s Servlets, JSPs, EJBs, JMS applications, and other components,
checking collected metrics against your design and deployment assumptions. You
should check these assumptions with single browser client scenarios, with
simulated multiuser workloads, and in production.

■ When troubleshooting performance degradations, you can use either the
AggreSpy metric tables or the dmstool collected metrics to find the Servlets,
JSPs, EJBs, EJB methods, and JMS topics or queues that are used most often. In
many cases, heavily-used application components are responsible for system
resource utilization, so focus your troubleshooting effort on the most heavily-used
components first.

■ Select the JVM metric table to analyze overall JVM performance for the
applications in an OC4J instance. The JVM metric table provides useful
information about threads and heap memory allocation. You should check these
values to make sure that JVM resources are utilized within expected ranges.

See Also:

■ "Viewing Performance Metrics Using AggreSpy" on page 2-5

■ "Viewing Performance Metrics Using dmstool" on page 2-9

■ Chapter 6, "Optimizing J2EE Applications In OC4J"

■ Appendix A, "Performance Metrics" for descriptions of the
built-in performance metrics

Optimizing Oracle HTTP Server 5-1

5
Optimizing Oracle HTTP Server

This chapter discusses the techniques for optimizing Oracle HTTP Server performance
in Oracle Application Server.

This chapter contains:

■ TCP Tuning Parameters (for UNIX)

■ Network Tuning for Windows

■ Configuring Oracle HTTP Server Directives

■ Oracle HTTP Server Logging Options

■ Oracle HTTP Server Security Performance Considerations

■ Oracle HTTP Server Performance Tips

■ Setting mod_oc4j Load Balancing Policies

TCP Tuning Parameters (for UNIX)

5-2 Oracle Application Server Performance Guide

TCP Tuning Parameters (for UNIX)
Correctly tuned TCP parameters can improve performance dramatically. This section
contains recommendations for TCP tuning and a brief explanation of each parameter.

Table 5–1 contains recommended TCP parameter settings and includes references to
discussions of each parameter.

Table 5–1 TCP Parameter Settings for Solaris Operating System (SPARC)

Parameter Setting Comments

tcp_conn_hash_size 32768 See "Increasing TCP Connection Table Access Speed" on page 5-5

tcp_conn_req_max_q 1024 See "Increasing the Handshake Queue Length" on page 5-6

tcp_conn_req_max_q0 1024 See "Increasing the Handshake Queue Length" on page 5-6

tcp_recv_hiwat 32768 See "Changing the Data Transfer Window Size" on page 5-7

tcp_slow_start_initial 2 See "Changing the Data Transmission Rate" on page 5-6

tcp_time_wait_interval 60000 See "Specifying Retention Time for Connection Table Entries" on
page 5-5

tcp_xmit_hiwat 32768 See "Changing the Data Transfer Window Size" on page 5-7

Table 5–2 TCP Parameter Settings for HP-UX

Parameter Scope
Default
Value

Tuned
Value Comments

tcp_time_wait_interval ndd/dev/tcp 60,000 60,000 See "Specifying Retention Time for
Connection Table Entries" on
page 5-5

tcp_conn_req_max ndd/dev/tcp 20 1,024 See "Increasing the Handshake
Queue Length" on page 5-6

tcp_ip_abort_interval ndd/dev/tcp 600,000 60,000

tcp_keepalive_interval ndd/dev/tcp 7,20,00,000 900,000

tcp_rexmit_interval_
initial

ndd/dev/tcp 1,500 1,500

tcp_rexmit_interval_max ndd/dev/tcp 60,000 60,000

tcp_rexmit_interval_min ndd/dev/tcp 500 500

tcp_xmit_hiwater_def ndd/dev/tcp 32,768 32,768 See "Changing the Data Transfer
Window Size" on page 5-7

tcp_recv_hiwater_def ndd/dev/tcp 32,768 32,768 See "Changing the Data Transfer
Window Size" on page 5-7

Table 5–3 TCP Parameter Settings for Tru64

Parameter Module
Default
value

Tuned
Value Comments

tcbhashsize sysconfig -r inet 512 16,384 See "Increasing TCP Connection Table
Access Speed" on page 5-5

tcbhashnum sysconfig -r inet 1 16 (as of
5.0)

tcp_keepalive_
default

sysconfig -r inet 0 1

TCP Tuning Parameters (for UNIX)

Optimizing Oracle HTTP Server 5-3

Tuning Linux

Raising Network Limits on Linux Systems for 2.1.100 or greater
Linux only allows you to use 15 bits of the TCP window field. This means that you
have to multiply everything by 2, or recompile the kernel without this limitation.

Tuning a Running System
There is no sysctl application for changing kernel values. You can change the kernel
values with an editor such as vi.

Tuning the Default and Maximum Size
Edit the following files to change kernel values.

tcp_sendspace sysconfig -r inet 16,384 65,535

tcp_recvspace sysconfig -r inet 16,384 65,535

somaxconn sysconfig -r socket 1,024 65,535

sominconn sysconfig -r socket 0 65,535

sbcompress_
threshold

sysconfig -r socket 0 600

Table 5–4 TCP Parameter Settings for AIX

Parameter Model Default Value
Recommended
Value Comments

rfc1323 /etc/rc.net 0 1

sb_max /etc/rc.net 65,536 1,31,072

tcp_mssdflt /etc/rc.net 512 1,024

ipqmaxlen /etc/rc.net 50 100

tcp_sendspace /etc/rc.net 16,384 65,536

tcp_recvspace /etc/rc.net 16,384 65,536

xmt_que_size /etc/rc.net 30 150

See Also: "Tuning at Compile Time" on page 5-4

Table 5–5 Linux TCP Parameters

Filename Details

/proc/sys/net/core/rmem_default Default Receive Window

/proc/sys/net/core/rmem_max Maximum Receive Window

/proc/sys/net/core/wmem_default Default Send Window

/proc/sys/net/core/wmem_max Maximum Send Window

Table 5–3 (Cont.) TCP Parameter Settings for Tru64

Parameter Module
Default
value

Tuned
Value Comments

TCP Tuning Parameters (for UNIX)

5-4 Oracle Application Server Performance Guide

You will find some other possibilities to tune TCP in /proc/sys/net/ipv4/:

■ tcp_timestamps

■ tcp_windowscaling

■ tcp_sack

There is a brief description of TCP parameters in
/Documentation/networking/ip-sysctl.txt.

Tuning at Compile Time
All the preceding TCP parameter values are set by default by a header file in the Linux
kernel source directory /LINUX-SOURCE-DIR/include/linux/skbuff.h

These values are the defaults. This is run time configurable.

ifdef CONFIG_SKB_LARGE
#define SK_WMEM_MAX 65535
#define SK_RMEM_MAX 65535
else
#define SK_WMEM_MAX 32767
#define SK_RMEM_MAX 32767
#endif

You can change the MAX-WINDOW value in the Linux kernel source directory in the file
/LINUX-SOURCE-DIR/include/net/tcp.h.

#define MAX_WINDOW 32767
#define MIN_WINDOW 2048

The MIN_WINDOW definition limits you to using only 15bits of the window field in the
TCP packet header.

For example, if you use a 40kB window, set the rmem_default to 40kB. The stack
will recognize that the value is less than 64 kB, and will not negotiate a winshift. But
due to the second check, you will get only 32 kB. So, you need to set the rmem_
default value at greater than 64 kB to force a winshift=1. This lets you express the
required 40 kB in only 15 bits.

With the tuned TCP stacks, it was possible to get a maximum throughput between 1.5
and 1.8 Mbits through a 2Mbit satellite link, measured with netperf.

Setting TCP Parameters
To set the connection table hash parameter for the Solaris Operating System, you must
add the following line to the /etc/system file, and then restart the system:

set tcp:tcp_conn_hash_size=32768

On Tru64, set tcbhashsize in the /etc/sysconfigtab file.

A sample script, tcpset.sh, that changes TCP parameters to the settings
recommended here, is included in the $ORACLE_HOME/Apache/Apache/bin/
directory.

Note: Never assign values greater than 32767 to windows,
without using window scaling.

TCP Tuning Parameters (for UNIX)

Optimizing Oracle HTTP Server 5-5

Increasing TCP Connection Table Access Speed
If you have a large user population, you should increase the hash size for the TCP
connection table. The hash size is the number of hash buckets used to store the
connection data. If the buckets are very full, it takes more time to find a connection.
Increasing the hash size reduces the connection lookup time, but increases memory
consumption.

Suppose your system performs 100 connections per second. If you set tcp_time_
wait_interval to 60000, then there will be about 6000 entries in your TCP
connection table at any time. Increasing your hash size to 2048 or 4096 will improve
performance significantly.

On a system servicing 300 connections per second, changing the hash size from the
default of 256 to a number close to the number of connection table entries decreases
the average round trip time by up to three to four seconds. The maximum hash size is
262144. Ensure that you increase memory as needed.

To set the tcp_conn_hash_size for the Solaris Operating System, add the following
line to the /etc/system file. The parameter will take effect when the system is
restarted.

set tcp:tcp_conn_hash_size=32768

On Tru64, set tcbhashsize in the /etc/sysconfigtab file.

Specifying Retention Time for Connection Table Entries
As described in the previous section, when a connection is established, the data
associated with it is maintained in the TCP connection table. On a busy system, much
of TCP performance (and by extension web server performance) is governed by the
speed with which the entry for a specific TCP connection can be accessed in the
connection table. The access speed depends on the number of entries in the table, and
on how the table is structured (for example, its hash size). The number of entries in the
table depends both on the rate of incoming requests, and on the lifetime of each
connection.

For each connection, the server maintains the TCP connection table entry for some
period after the connection is closed so it can identify and properly dispose of any
leftover incoming packets from the client. The length of time that a TCP connection
table entry will be maintained after the connection is closed can be controlled with the
tcp_time_wait_interval parameter. The default for the Solaris Operating System
for this parameter is 240,000 ms in accordance with the TCP standard. The four minute
setting on this parameter is intended to prevent congestion on the Internet due to error
packets being sent in response to packets which should be ignored. In practice, 60,000
ms is sufficient, and is considered acceptable. This setting will greatly reduce the
number of entries in the TCP connection table while keeping the connection long
enough to discard most, if not all, leftover packets associated with it. We therefore
suggest you set:

Note: If your system is restarted after you run the script, the
default settings will be restored and you will have to run the script
again. To make the settings permanent, enter them in your system
startup file.

TCP Tuning Parameters (for UNIX)

5-6 Oracle Application Server Performance Guide

On HP-UX and for Solaris Operating System 2.7 and higher:

/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

Increasing the Handshake Queue Length
During the TCP connection handshake, the server, after receiving a request from a
client, sends a reply, and waits to hear back from the client. The client responds to the
server’s message and the handshake is complete. Upon receiving the first request from
the client, the server makes an entry in the listen queue. After the client responds to
the server’s message, it is moved to the queue for messages with completed
handshakes. This is where it will wait until the server has resources to service it.

The maximum length of the queue for incomplete handshakes is governed by tcp_
conn_req_max_q0, which by default is 1024. The maximum length of the queue for
requests with completed handshakes is defined by tcp_conn_req_max_q, which by
default is 128.

On most web servers, the defaults will be sufficient, but if you have several hundred
concurrent users, these settings may be too low. In that case, connections will be
dropped in the handshake state because the queues are full. You can determine
whether this is a problem on your system by inspecting the values for
tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop with netstat -s.
If either of the first two values are nonzero, you should increase the maximums.

The defaults are probably sufficient, but Oracle recommends that you increase the
value of tcp_conn_req_max_q to 1024. You can set these parameters with:

On the Solaris Operating System:

% /usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 1024
% /usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 1024

On HP-UX:

prompt>/usr/sbin/ndd-set /dev/tcp tcp_conn_req_max 1024

Changing the Data Transmission Rate
TCP implements a slow start data transfer to prevent overloading a busy segment of
the Internet. With slow start, one packet is sent, an acknowledgment is received, then
two packets are sent. The number sent to the server continues to be doubled after each
acknowledgment, until the TCP transfer window limits are reached.

Unfortunately, some operating systems do not immediately acknowledge the receipt of
a single packet during connection initiation. By default, the Solaris Operating System
sends only one packet during connection initiation, per the TCP standard. This can
increase the connection startup time significantly. We therefore recommend increasing
the number of initial packets to two when initiating a data transfer. This can be
accomplished using the following command:

% /usr/sbin/ndd -set /dev/tcp tcp_slow_start_initial 2

Note: If your user population is widely dispersed with respect to
Internet topology, you may want to set this parameter to a higher
value. You can improve access time to the TCP connection table
with the tcp_conn_hash_size parameter.

Network Tuning for Windows

Optimizing Oracle HTTP Server 5-7

Changing the Data Transfer Window Size
The size of the TCP transfer windows for sending and receiving data determine how
much data can be sent without waiting for an acknowledgment. The default window
size is 8192 bytes. Unless your system is memory constrained, these windows should
be increased to the maximum size of 32768. This can speed up large data transfers
significantly. Use these commands to enlarge the window:

On Solaris Operating System:

% /usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwat 32768
% /usr/sbin/ndd -set /dev/tcp tcp_recv_hiwat 32768

On HP-UX:

prompt>/usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwater_def 32768
prompt>/usr/sbin/ndd -set /dev/tcp tcp_recv_hiwater_def 32768

Because the client typically receives the bulk of the data, it would help to enlarge the
TCP receive windows on end users’ systems, as well.

Network Tuning for Windows
On Windows systems, to maximize network performance for the system (after
ensuring that memory is sufficient) you should:

■ Run only the TCP/IP protocol on the system

■ Use the Maximize Throughput for File Sharing setting for TCP optimization

This section covers the following:

■ Network Tuning (for Windows 2000)

■ Network Tuning (for Windows 2003)

■ Network Tuning (for Windows XP)

Network Tuning (for Windows 2000)
On Windows 2000 systems, to maximize network performance for the system set the
maximize throughput for network applications property. To do this, perform the
following steps:

1. On the Windows 2000 Desktop, right click My Network Places and select
Properties.

2. Right click on Local Area Connection and select Properties.

3. Under Components checked are used by this connection, select File and Printer
Sharing for Microsoft Networks.

4. Click the Properties button and select Maximize data throughput for network
applications.

5. Click OK, and then click OK again.

Network Tuning (for Windows 2003)
On Windows 2000 systems, to maximize network performance for the system set the
maximize throughput for network applications property. To do this, perform the
following steps:

Configuring Oracle HTTP Server Directives

5-8 Oracle Application Server Performance Guide

1. On the Windows 2000 Desktop, right click My Network Places and select
Properties.

2. Right click on Local Area Connection and select Properties.

3. Under Components checked are used by this connection, select File and Printer
Sharing for Microsoft Networks.

4. Click the Properties button and select Maximize data throughput for network
applications.

5. Click OK, and then click OK again.

Network Tuning (for Windows XP)
On Windows XP systems, to maximize network performance for the system set the
maximize throughput for network applications property. To do this, perform the
following steps:

1. Open Network Connections. To open Network Connections, click Start, click
Control Panel, click Network and Internet Connections, and then click Network
Connections.

2. Right-click a connection, and then click Properties.

3. Do one of the following:

■ If this is a local area connection, on the General tab, in Components checked
are used by this connection, click File and Printer Sharing for Microsoft
Networks, and then click Properties.

■ If this is a dial-up, VPN, or incoming connection, on the Networking tab, in
Use these components with this connection, click File and Printer Sharing for
Microsoft Networks, and then click Properties.

4. To dedicate as many resources as possible to file and print server services, click
Maximize data throughput for file sharing.

You can only configure File and Printer Sharing for Microsoft Networks on a server. To
share local folders, you must enable File and Printer Sharing for Microsoft Networks.
The File and Printer Sharing for Microsoft Networks component is the equivalent of
the Server service in Windows NT 4.0.

Configuring Oracle HTTP Server Directives
Oracle HTTP Server uses directives in httpd.conf to configure the application
server. This configuration file specifies the maximum number of HTTP requests that
can be processed simultaneously, logging details, and certain timeouts.

Table 5–6 lists directives that may be significant for performance.

Configuring Oracle HTTP Server Directives

Optimizing Oracle HTTP Server 5-9

Table 5–6 Oracle HTTP Server Configuration Properties

Directive Description

ListenBackLog Specifies the maximum length of the queue of pending connections. Generally no
tuning is needed or desired. Note that some Operating Systems do not use exactly
what is specified as the backlog, but use a number based on, but normally larger than,
what is set.

Default Value: 511

MaxClients Specifies a limit on the total number of servers running, that is, a limit on the number
of clients who can simultaneously connect. If the number of client connections reaches
this limit, then subsequent requests are queued in the TCP/IP system up to the limit
specified with the ListenBackLog directive (after the queue of pending connections
is full, new requests generate connection errors until a process becomes available).

The maximum allowed value for MaxClients is 8192 (8K).

Default Value: 150

MaxRequestsPerChild The number of requests each child process is allowed to process before the child dies.
The child will exit so as to avoid problems after prolonged use when Apache (and
maybe the libraries it uses) leak memory or other resources. On most systems, this
isn't really needed, but some UNIX systems have notable leaks in the libraries. For
these platforms, set MaxRequestsPerChild to something like 10000 or so; a setting
of 0 means unlimited.

This value does not include KeepAlive requests after the initial request per
connection. For example, if a child process handles an initial request and 10
subsequent "keep alive" requests, it would only count as 1 request toward this limit.

Note: On Windows systems MaxRequestsPerChild should always be set to 0
(unlimited). On Windows there is only one server process, so it is not a good idea to
limit this process.

MaxSpareServers

MinSpareServers

Server-pool size regulation. Rather than making you guess how many server
processes you need, Oracle HTTP Server dynamically adapts to the load it sees, that
is, it tries to maintain enough server processes to handle the current load, plus a few
spare servers to handle transient load spikes (for example, multiple simultaneous
requests from a single Netscape browser).

It does this by periodically checking how many servers are waiting for a request. If
there are fewer than MinSpareServers, it creates a new spare. If there are more
than MaxSpareServers, some of the spares die off.

The default values are probably ok for most sites.

Default Values:

MaxSpareServers: 10

MinSpareServers: 5

StartServers Number of servers to start initially. If you expect a sudden load after restart, set this
value based on the number child servers required.

Default Value: 5

Timeout The number of seconds before incoming receives and outgoing sends time out.

Default Value: 300

Configuring Oracle HTTP Server Directives

5-10 Oracle Application Server Performance Guide

Configuring the MaxClients Directive
The MaxClients directive limits the number of clients that can simultaneously
connect to your web server, and thus the number of httpd processes. You can configure
this parameter in the httpd.conf file up to a maximum of 8K (the default value is
150).

Tests on a previous release, with static page requests (average size 20K) on a 2
processor, system showed that:

■ The default MaxClients setting of 150 was sufficient to saturate the network.

■ Approximately 60 httpd processes were required to support 300 concurrent users
(no think time).

On the system described, and on 4 and 6-processor systems, there was no significant
performance improvement in increasing the MaxClients setting from 150 to 256,
based on static page and servlet tests with up to 1000 users.

Increasing MaxClients when system resources are saturated does not improve
performance. When there are no httpd processes available, connection requests are
queued in the TCP/IP system until a process becomes available, and eventually clients
terminate connections. If you are using persistent connections, you may require more
concurrent httpd server processes.

For dynamic requests, if the system is heavily loaded, it might be better to allow the
requests to queue in the network (thereby keeping the load on the system
manageable). The question for the system administrator is whether a timeout error
and retry is better than a long response time. In this case, the MaxClients setting
could be reduced, as a throttle on the number of concurrent requests on the server.

The MaxClients parameter on UNIX systems works like the ThreadsPerChild
parameter on Windows systems.

How Persistent Connections Can Reduce httpd Process Availability
The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 15

KeepAlive Whether or not to allow persistent connections (more than one request per
connection). Set to Off to deactivate.

Default Value: On

MaxKeepAliveRequests The maximum number of requests to allow during a persistent connection. Set to 0 to
allow an unlimited amount.

If you have long client sessions, you might want to increase this value.

Default Value: 100

KeepAliveTimeout Number of seconds to wait for the next request from the same client on the same
connection.

Default Value: 15 seconds

See Also: "Configuring the ThreadsPerChild Parameter (for
Windows)" on page 5-11

Table 5–6 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Oracle HTTP Server Logging Options

Optimizing Oracle HTTP Server 5-11

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks. You
should consider the size and behavior of your own user population in setting these
values on your system. For example, if you have a large user population and the users
make small infrequent requests, you may want to reduce the keepAlive directive
default settings, or even set KeepAlive to off. If you have a small population of users
that return to your site frequently, you may want to increase the settings.

Configuring the ThreadsPerChild Parameter (for Windows)
The ThreadsPerChild parameter in the httpd.conf file specifies the number of
requests that can be handled concurrently by the HTTP server. Requests in excess of
the ThreadsPerChild parameter value wait in the TCP/IP queue. Allowing the
requests to wait in the TCP/IP queue often results in the best response time and
throughput.

The ThreadsPerChild parameter on Windows systems works like the MaxClients
parameter on UNIX systems.

Configuring ThreadsPerChild for Static Page Requests
The more concurrent threads you make available to handle requests, the more requests
your server can process. But be aware that with too many threads, under high load,
requests will be handled more slowly and the server will consume more system
resources.

In in-house tests of static page requests, a setting of 20 ThreadsPerChild per CPU
produced good response time and throughput results. For example, if you have four
CPUs, set ThreadsPerChild to 80. If, with this setting, CPU utilization does not
exceed 85%, you can increase ThreadsPerChild, but ensure that the available
threads are in use.

Oracle HTTP Server Logging Options
This section discusses types of logging, log levels, and the performance implications
for using logging.

Access Logging
For static page requests, access logging of the default fields results in a 2-3%
performance cost.

Configuring the HostNameLookups Directive
By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to on,
the server queries the DNS system on the Internet to find the host name associated
with the IP address of each request, then writes the host names to the log.

Performance degraded by about 3% (best case) in Oracle in-house tests with
HostNameLookups set to on. Depending on the server load and the network
connectivity to your DNS server, the performance cost of the DNS lookup could be
high. Unless you really need to have host names in your logs in real time, it is best to
log IP addresses.

See Also: "Configuring the MaxClients Directive" on page 5-10

Oracle HTTP Server Security Performance Considerations

5-12 Oracle Application Server Performance Guide

On UNIX systems, you can resolve IP addresses to host names off-line, with the
logresolve utility found in the $ORACLE_HOME/Apache/Apache/bin/ directory.

Error logging
The server notes unusual activity in an error log. The ErrorLog and LogLevel
directives identify the log file and the level of detail of the messages recorded. The
default level is warn. There was no difference in static page performance on a loaded
system between the warn, info, and debug levels.

For requests that use dynamic resources, for example requests that use mod_osso,
mod_plsql, or mod_oc4j, there is a performance cost associated with setting higher
debugging levels, such as the debug level.

Oracle HTTP Server Security Performance Considerations
This section covers the following topics:

■ Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues

■ Oracle HTTP Server Port Tunneling Performance Issues

Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues
Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the
Internet. Conceptually, SSL resides between the application layer and the transport
layer on the protocol stack. While SSL is technically an application-independent
protocol, it has become a standard for providing security over HTTP, and all major
web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a
web-based application. Where SSL is required, the performance challenges of the
protocol should be carefully considered. Session management, in particular session
creation and initialization, is generally the most costly part of using the SSL protocol,
in terms of performance.

This section covers the following SSL Performance related information:

■ Oracle HTTP Server SSL Caching

■ SSL Application Level Data Encryption

■ SSL Performance Recommendations

Oracle HTTP Server SSL Caching
When an SSL connection is initialized, a session based handshake between client and
server occurs that involves the negotiation of a cipher suite, the exchange of a private
key for data encryption, and server and, optionally, client authentication through
digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server
can avoid the session creation handshake in subsequent SSL requests by saving and
reusing the session state. The Oracle HTTP Server caches a client’s Secure Sockets
Layer (SSL) session information by default. With session caching, only the first
connection to the server incurs high latency.

See Also: Oracle Application Server Security Guide

Oracle HTTP Server Security Performance Considerations

Optimizing Oracle HTTP Server 5-13

The SSLSessionCacheTimeout directive in httpd.conf determines how long the
server keeps a saved SSL session (the default is 300 seconds). Session state is
discarded if it is not used after the specified time period, and any subsequent SSL
request must establish a new SSL session and begin the handshake again. The
SSLSessionCache directive specifies the location for saved SSL session information,
the default location on UNIX is the $ORACLE_HOME/Apache/Apache/logs/
directory or on Windows systems, %ORACLE_HOME%\Apache\Apache\logs\.
Multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server,
the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session
state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when using HTTP
persistent connections. Oracle HTTP Server uses persistent HTTP connections by
default, assuming they are supported on the client side. In HTTP over SSL as
implemented by Oracle HTTP Server, SSL session state is kept in memory while the
associated HTTP connection is persisted, a process which essentially eliminates the
overhead of SSL session reuse (conceptually, the SSL connection is kept open along
with the HTTP connection).

SSL Application Level Data Encryption
In most applications using SSL, the data encryption cost is small compared with the
cost of SSL session management. Encryption costs can be significant where the volume
of encrypted data is large, and in such cases the data encryption algorithm and key
size chosen for an SSL session can be significant.

In general there is a trade-off between security level and performance. For example, on
a modern processor, RSA estimates its RC4 cipher to take in the vicinity of 8-16
machine operations per output byte. Standard DES encryption will incur roughly 8
times the overhead of RC4, and triple DES will take about 25 times the overhead of
DES. However, when using triple DES, the encryption costs will not be noticeable in
most applications. Oracle HTTP Server supports these three cipher suites, and other
cipher suites as well.

Oracle HTTP Server negotiates a cipher suite with a client based on the
SSLCipherSuite attribute specified in httpd.conf.

SSL Performance Recommendations
The following recommendations can assist you with determining performance
requirements when working with Oracle HTTP Server and SSL.

1. The SSL handshake is an inherently expensive process in terms of both CPU usage
and response time. Thus, use SSL only where needed. Determine the parts of the
application that require the security, and the level of security required, and protect
only those parts at the requisite security level. Attempt to minimize the need for
the SSL handshake by using SSL sparingly, and by reusing session state as much
as possible. For example, if a page contains a small amount of sensitive data and a
number of non-sensitive graphic images, use SSL to transfer the sensitive data
only, use normal HTTP to transfer the images. If the application requires server
authentication only, do not use client authentication. If the performance goals of

See Also: Oracle HTTP Server Administrator’s Guide for
information on using supported cipher suites

Oracle HTTP Server Security Performance Considerations

5-14 Oracle Application Server Performance Guide

an application cannot be met by this method alone, additional hardware may be
required.

2. Design the application to use SSL efficiently. Group secure operations together to
take advantage of SSL session reuse and SSL connection reuse.

3. Use persistent connections, if possible, to minimize cost of SSL session reuse.

4. Tune the session cache timeout value (the SSLSessionCacheTimeout attribute
in httpd.conf). A trade-off exists between the cost of maintaining an SSL session
cache and the cost of establishing a new SSL session. As a rule, any secured
business process, or conceptual grouping of SSL exchanges, should be completed
without incurring session creation more than once. The default value for the
SSLSessionCacheTimeout attribute is 300 seconds. It is a good idea to test an
application’s usability to help tune this setting.

5. If large volumes of data are being protected through SSL, pay close attention to the
cipher suite being used. The SSLCipherSuite directive specified in
httpd.conf controls the cipher suite. If lower levels of security are acceptable,
use a less-secure protocol using a smaller key size (this may improve performance
significantly). Finally, test the application using each available cipher suite for the
desired security level to find the most performant suite.

6. Having taken the preceding considerations into account, if SSL remains a
bottleneck to the performance and scalability of your application, consider
deploying multiple Oracle HTTP Server instances over a hardware cluster or
consider the use of SSL accelerator cards.

Oracle HTTP Server Port Tunneling Performance Issues
When OracleAS Port Tunneling is configured, every request processed passes through
the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can
have an impact on the overall Oracle HTTP Server request handling performance and
scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the
performance of OracleAS Port Tunneling is self tuning. The only performance control
available is to start more OracleAS Port Tunneling processes, this increases the number
of available connections and hence the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of
availability required, and the number of anticipated connections. This number can not
be automatically determined because for each additional process a new port must be
opened through the firewall between the DMZ and the intranet. You cannot start more
processes than you have open ports, and you do not want less processes than open
ports, since in this case ports would not have any process bound to them.

To measure the iasPT performance, determine the request time for servlet requests that
pass through the OracleAS Port Tunneling infrastructure. The response time of an
Oracle Application Server instance running with OracleAS Port Tunneling should be
compared with a system without OracleAS Port Tunneling to determine whether your
performance requirements can be met using OracleAS Port Tunneling.

See Also: Oracle HTTP Server Administrator’s Guide for
information on configuring OracleAS Port Tunneling

Oracle HTTP Server Performance Tips

Optimizing Oracle HTTP Server 5-15

Oracle HTTP Server Performance Tips
The following tips can enable you to avoid or debug potential Oracle HTTP Server
(OHS) performance problems:

■ Analyze Static Versus Dynamic Requests

■ Analyze Time Differences Between Oracle HTTP Server and OC4J Servers

■ Beware of a Single Data Point Yielding Misleading Results

Analyze Static Versus Dynamic Requests
It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of the incoming
requests are static and what percentage are dynamic.

Static pages can be cached by Oracle Application Server Web Cache, if it is in use.
Generally, you want to concentrate your tuning effort on dynamic pages because
dynamic pages can be costly to generate. Also, by monitoring and tuning your
application, you may find that much of the dynamically generated content, such as
catalog data, can be cached, sparing significant resource usage.

Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
In some cases, you may notice a high discrepancy between the average time to process
a request in Oracle Application Server Containers for J2EE (OC4J) and the average
response time experienced by the user. If the time is not being spent actually doing the
work in OC4J, then it is probably being spent in transport.

If you notice a large discrepancy between the request processing time in OC4J and the
average response time, consider tuning the Oracle HTTP Server directives shown in
the section, "Configuring Oracle HTTP Server Directives" on page 5-8.

Beware of a Single Data Point Yielding Misleading Results
You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello,
World" application for about 30 seconds. Examining the results, you can see that the
work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module. This
is probably because when the first request is received, a database connection must be
opened. Later requests can make use of the established connection. In this case, to

See Also:

■ Chapter 3, "Monitoring Oracle HTTP Server"

■ Chapter 7, "Optimizing OracleAS Web Cache"

Setting mod_oc4j Load Balancing Policies

5-16 Oracle Application Server Performance Guide

obtain a better estimate of the average service time for a PL/SQL module, that does
not include the database connection open time which causes the handle.maxTime to
be very large, recalculate the average as in the following:

(time - maxTime)/(completed -1)

For example, in this case this would be:

(24023499 - 859330)/(1230 -1) = 18847.98

Setting mod_oc4j Load Balancing Policies
At many sites Oracle Application Server uses the Oracle HTTP Server module mod_
oc4j to load balance incoming stateless HTTP requests. By selecting the appropriate
load balancing policy for mod_oc4j you can improve performance on your site.

The mod_oc4j module supports several configurable load balancing policies,
including the following:

■ Round robin routing (this is the default mod_oc4j load balancing policy)

■ Random routing

■ Round robin or random with local affinity routing, using the local option

■ Round robin or random with host-level weighted routing, using the weighted
option

This section covers the following topics:

■ Quick Summary for Using Load Balancing With mod_oc4j

■ Using Round Robin and Random Policies With mod_oc4j Load Balancing

■ Using Local Affinity Option With mod_oc4j Load Balancing

■ Using Weighted Routing Option With mod_oc4j Load Balancing

■ Recommendations for Load Balancing With mod_oc4j

Note: For a session based request mod_oc4j always directs the
request to the original OC4J process which created the session,
unless the original OC4J process is not available. In case of failure,
mod_oc4j sends the request to another OC4J process with the
same island name as the original request (either within same host if
available, or on a remote host).

Setting mod_oc4j Load Balancing Policies

Optimizing Oracle HTTP Server 5-17

Quick Summary for Using Load Balancing With mod_oc4j
This section provides a quick summary of the load balancing configuration you may
want to use when configuring mod_oc4j for Oracle Application Server:

■ When Oracle Application Server runs in a single host with one or more OC4J
Instances, we recommend using either the round robin or random load balancing
policy. The performance characteristics for the particular policy can depend on the
applications that run on your site; however, in many cases these two policies will
yield similar performance.

■ When Oracle Application Server is configured at a site that uses multiple hosts
with the same hardware and Oracle Application Server configurations, we
recommend using either round robin with the local affinity option or random with
the local affinity option.

■ When Oracle Application Server is configured at a site that uses multiple hosts
with different hardware and different Oracle Application Server configurations,
we recommend using either round robin with the weighted option or random
with the weighted option. For sites where it is difficult to determine how much
load each host can handle, and it is difficult to assign an accurate routing weight,
you may want to use either round robin with the local affinity option or random
with the local affinity option.

Using Round Robin and Random Policies With mod_oc4j Load Balancing
Using round robin routing or random routing, without the local or weighted
options, specifies that mod_oc4j creates a list of all the available OC4J processes
across all hosts. For incoming requests, mod_oc4j routes the requests using the list of
available OC4J processes, either selecting processes from the list randomly, or using a
round robin selection policy (with the round robin, the first request is selected
randomly, and requests after that are selected using the round robin policy.

If you use either of these load balancing policies, you need to consider the number of
OC4J processes that you run on each host. Without specifying the weighted routing
option for mod_oc4j, if you configure your site to start different numbers of OC4J
processes on each host, this causes an implicit weighting to occur where more requests
are sent to hosts with more OC4J processes. If this implicit weighting of requests by
the number of OC4J processes per host is not what you want, then you should
consider specifying a routing weight for each host and using the weighted option.

For example, if you use the default round robin load balancing policy and you start 4
OC4J processes on Host_A and 1 OC4J process on Host_B, then mod_oc4j sends 4
requests to Host_A for each 1 request that it sends to Host_B. Thus, with this
configuration you are implicitly sending 4 times as many requests to Host_A.

See Also: Oracle HTTP Server Administrator’s Guide for a
description of mod_oc4j configuration options

Note: In many cases the round robin and random policies will
yield similar performance.

See Also: "Using Weighted Routing Option With mod_oc4j Load
Balancing" on page 5-18

Setting mod_oc4j Load Balancing Policies

5-18 Oracle Application Server Performance Guide

Using Local Affinity Option With mod_oc4j Load Balancing
Selecting the local affinity option tells mod_oc4j to always try to select the local OC4J
instance to service incoming requests. When no local OC4J processes are available,
mod_oc4j selects from a list of available remote OC4J processes. You can select either
the round robin or the random policies with the local affinity option.

For example to select the round robin policy with local affinity, specify the following
directive in mod_oc4j.conf:

Oc4jSelectMethod roundrobin:local

Using Weighted Routing Option With mod_oc4j Load Balancing
Selecting the weighted routing option specifies that mod_oc4j should distribute
HTTP requests across the available hosts and use a specified routing weight to
calculate the distribution of incoming requests that are sent to each host. The routing
weight is specified with the Oc4jRoutingWeight directive. You can specify either
the round robin or the random policies with the weighted option.

For example, if the routing weight set for Host_A is 3 and the routing weight set for
Host_B is 1, this specifies that Host_A should be sent three times the number of
requests as compared to Host_B.

To configure the mod_oc4j module in Oracle HTTP Server to specify round robin
with a routing weight of 3 for Host_A and a routing weight of 1 for Host_B, add the
following directives to mod_oc4j.conf:

Oc4jSelectMethod roundrobin:weighted
Oc4jRoutingWeight Host_A 3

In this example you do not need to specify a routing weight for Host_B, since the
default routing weight is 1.

You need to determine the routing weight for each system based on what other
components are running on the systems and based on how many requests each system
can adequately handle.

Recommendations for Load Balancing With mod_oc4j
In general, when configuring the mod_oc4j load balancing policy, we recommend the
following:

1. If you have multiple systems with similar hardware configuration use round robin
with local affinity or random load balancing policy with local affinity.

For example, if you have multiple hosts with the same number of CPUs with same
speed, and the same memory, with Oracle HTTP Server running with the same
number of OC4J processes on each host, and you are using a hardware load
balancer or web cache in the front end to route the requests to Oracle HTTP Server

Note: Using weighted routing, incoming requests are routed
according the specified routing weight and without consideration
for the number of OC4J processes running on each host.

Note: An inaccurate specification for the routing weight could
have negative performance implications for your site.

Setting mod_oc4j Load Balancing Policies

Optimizing Oracle HTTP Server 5-19

on each host, then, using either round robin with local affinity or random with
local affinity is recommended.

2. If you have multiple systems, each with a similar hardware configuration, and you
want to run Oracle HTTP Server only on one host, then select either the round
robin with the weighted option or random with the weighted option.

For example, consider a site with 2 hosts, Host_A and Host_B, each with 2 CPUs.
On this site you only run Oracle HTTP Server on Host_A, and each host includes
one OC4J instance with one OC4J process. With this configuration, selecting round
robin with the weighted option or random with the weighted option, and using a
higher routing weight on Host_B will help to shift more requests to Host_B.
Since Host_B is not running Oracle HTTP Server this configuration should provide
better performance for this site.

3. If you are running Oracle HTTP Server on a separate system which routes the
HTTP web requests to multiple hosts running only OC4J and the systems use
similar hardware with the same number of OC4J processes, then use round robin
or random load balancing policy.

4. If you are running Oracle HTTP Server, OC4J and other Oracle Application Server
components on multiple systems which have different hardware configurations,
use round robin with the weighted option or random with the weighted option to
help distribute requests to each system.

You need to determine the routing weight for each system based on what other
components are running on the systems and based on how many requests each
system can adequately handle.

Setting mod_oc4j Load Balancing Policies

5-20 Oracle Application Server Performance Guide

Optimizing J2EE Applications In OC4J 6-1

6
Optimizing J2EE Applications In OC4J

This chapter provides guidelines for improving the performance of Oracle Application
Server Containers for J2EE (OC4J) applications in Oracle Application Server.

This chapter contains:

■ OC4J J2EE Application Performance Quickstart

■ Improving J2EE Application Performance by Configuring OC4J Instance

■ Setting Java Command Line Options (Using JVM and OC4J Performance Options)

■ Setting Up Data Sources – Performance Issues

■ Setting server.xml Configuration Parameters

■ Improving Servlet Performance in Oracle Application Server

■ Improving JSP Performance in Oracle Application Server

■ Improving EJB Performance in Oracle Application Server

■ Improving Web Services Performance in Oracle Application Server

■ Improving ADF Performance in Oracle Application Server

■ Improving JAAS (JAZN) Performance in Oracle Application Server

■ Using Multiple OC4Js, Limiting Connections and Load Balancing

■ Performance Considerations for Deploying J2EE Applications

Note: This chapter describes using Oracle Enterprise Manager 10g
Application Server Control Console for setting OC4J and
application configuration options. You can also use the Distributed
Configuration Management (DCM) utility, dcmctl, to set
configuration options. This utility provides a command-line
alternative to using Oracle Enterprise Manager 10g Application
Server Control Console for some Oracle Application Server
configuration and management tasks.

OC4J J2EE Application Performance Quickstart

6-2 Oracle Application Server Performance Guide

OC4J J2EE Application Performance Quickstart
This section provides a quickstart for tuning J2EE applications that run on OC4J,
providing links for information on important performance issues.

Table 6–1 lists a quick guide for performance issues for J2EE applications.

Improving J2EE Application Performance by Configuring OC4J Instance
Tuning OC4J configuration options lets you improve the performance of J2EE
applications running on an OC4J Instance. Modifying the configuration may require
balancing the available resources on your system with the performance requirements
for your applications.

This section covers configuration changes that can affect J2EE application performance
and includes the following topics:

■ Setting Java Command Line Options (Using JVM and OC4J Performance Options)

■ Setting Up Data Sources – Performance Issues

■ Setting server.xml Configuration Parameters

Table 6–1 Critical Performance Areas for J2EE Applications

Performance Area Description and Reference

Providing Adequate Memory Resources To improve the performance of your J2EE applications,
provide adequate memory resources. If the OC4J running your
J2EE applications does not have enough memory, performance
can suffer due to the overhead required to manage limited
memory

See "Setting the JVM Heap Size for OC4J Processes" on
page 6-3

Caching and Reusing Database Connections Setting up database connection pooling properly is often a
critical performance consideration for J2EE applications that
access a database. Data sources provide configuration options
that allow you to use and configure pooled database
connections.

See "Setting Up Data Sources – Performance Issues" on
page 6-10

Managing Concurrency and Limiting Connections See "Limiting Connections" on page 6-53

Load Balancing See "Configuring Multiple OC4J Processes" on page 6-50

Balancing Applications See "Load Balancing Applications" on page 6-51

Database Monitoring and Tuning See Chapter 10, "Database Tuning Considerations" on
page 10-1

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Optimizing J2EE Applications In OC4J 6-3

Setting Java Command Line Options (Using JVM and OC4J Performance
Options)

Depending on your J2EE application, you may be able to improve the application’s
performance by setting Java Performance Options for the JVM running OC4J where
your application is deployed.

This section covers the following topics:

■ Setting the JVM Heap Size for OC4J Processes

■ Setting the JVM Server Option for OC4J Processes

■ Setting the JVM AggressiveHeap Option for OC4J Processes

■ Setting the JVM Stack Size Option for OC4J Processes

■ Setting the JVM Permanent Generation Option for OC4J Processes

■ Setting the JVM Thread Synchronization Option for OC4J Processes

■ Setting the OC4J DMS Sensors Option

■ Setting the OC4J JDBC DMS Statement Metrics Option

■ Setting the OC4J Dedicated RMI Context Option

■ Setting the OC4J Define Column Type Option

■ Using Application Server Control Console to Change JVM Command Line
Options

When running Oracle Application Server, the module mod_oc4j is the connector from
Oracle HTTP Server to one or more OC4J Instances. Each OC4J process within an OC4J
Instance runs in its own Java Virtual Machine (JVM) and is responsible for parsing
J2EE requests and generating a response. When a request comes into Oracle HTTP
Server, mod_oc4j picks an OC4J process and routes the request to the selected OC4J
process. Within each OC4J Instance all of the OC4J JVM processes use the same
configuration and start with the same Java options. Likewise, unless a process dies or
there is some other problem, each OC4J process that is part of an OC4J Instance has the
same J2EE applications deployed to it.

Setting the JVM Heap Size for OC4J Processes
If you have sufficient memory available on your system and your application is
memory intensive, you can improve your application performance by increasing the
JVM heap size from the default value. While the amount of heap size required varies
based on the application and on the amount of memory available, for most OC4J
server applications, a heap size of at least 256 Megabytes is advised. If you have
sufficient memory, using a heap size of 512 Megabytes or larger is preferable.

To change the size of the heap allocated to the OC4J processes in an OC4J Instance, use
the procedures outlined in "Using Application Server Control Console to Change JVM
Command Line Options" on page 6-9, and specify the following Java options:

-Xmssizem -Xmxsizem

Where size is the desired Java heap size in megabytes.

See Also: "Using Application Server Control Console to Change
JVM Command Line Options" on page 6-9

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

6-4 Oracle Application Server Performance Guide

If you know that your application will consistently require a larger amount of heap,
you can improve performance by setting the minimum heap size equal to the
maximum heap size, by setting the JVM -Xms size to be the same as the -Xmx size.

For example, to specify a heap size of 512 megabytes, specify the following:

-Xms512m -Xmx512m

You should set your maximum Java heap size so that the total memory consumed by
all of the JVMs running on the system does not exceed the memory capacity of your
system. If you select a value for the Java heap size that is too large for your hardware
configuration, one or more of the OC4J processes within the OC4J Instance may not
start, and Oracle Enterprise Manager 10g Application Server Control Console reports
an error. Review the log files for the OC4J Instance in the directory $ORACLE_
HOME/opmn/logs, to find the error report:

Could not reserve enough space for object heap
Error occurred during initialization of VM

If you select a value for the JVM heap size that is too small, none of the OC4J processes
will be able to start, and Application Server Control Console reports an error. If you
review the log files for the OC4J Instance in the directory $ORACLE_
HOME/opmn/logs, you may find errors similar to the following:

java.lang.OutOfMemoryError

If the system runs out of memory, the OC4J process will shut down. This will happen
if references to the objects are not released. For example, if objects are stored in a hash
table or vector and never again removed.

It is of course possible that your process actually needs to use a lot of memory. In this
case, the maximum heap size for the process should be increased to avoid frequent
garbage collection.

To maximize performance, set the maximum heap size to accommodate application
requirements. To determine how much Java heap you need, use the JVM metrics
freeMemory and totalMemory. Subtracting the free memory from total memory
gives the amount of heap that was consumed. To determine how much Java heap you
need in a non-production environment, you can include calls in your program to the
Runtime.getRuntime().totalMemory() and
Runtime.getRuntime().freeMemory methods in the java.lang package
(including these calls in a production environment could have a negative performance
impact).

Setting the JVM Server Option for OC4J Processes
Oracle Application Server 10g uses the -server by default on UNIX systems (this is a
change from previous Oracle9iAS releases). On UNIX systems, Java runs in one of two

Note: There are other reasons why java.lang.OutOfMemoryError
error may occur. For example, if the application has a memory leak.

See Also:

■ Table A–9, " JVM Metrics (JVM)" on page A-5

■ You can find detailed information about JVM options and their
impact on performance on the JVM vendor’s Web sites

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Optimizing J2EE Applications In OC4J 6-5

modes set with the options: -client and -server. If you need to change this option,
use the procedures outlined in "Using Application Server Control Console to Change
JVM Command Line Options" on page 6-9, and specify the -client Java option.

Oracle Application Server 10g uses the 1.4.2 version of the Java virtual machine (JVM).
This JVM version includes an improved JIT compiler from previous JVM releases.
Many long-running applications will perform better with the improved JIT. However,
due to the increased quality of compilation, applications may experience slower
program startup times or occasional pauses in other parts of a program (as compared
with older versions of the JVM). In a multi-processor system, the compilation thread
runs concurrently with OC4Jstartup, reducing the impact on startup time.

On UNIX systems, using the –server option also changes the default heap allocation.
For a given heap size, larger allocations are made to the Eden and Survivor
generations at the expense of the Old generation. The Permanent generation is not
affected. The memory footprint of the heap is not directly affected. See the following
site for more details on heap sizes, names, and garbage collection,

http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/

Setting the JVM AggressiveHeap Option for OC4J Processes
In the 1.4.2 version of the Java virtual machine (JVM), the -XX:+AggressiveHeap
option was optimized for long-running, memory allocation-intensive applications.
Many applications will exhibit dramatically improved performance and scalability if
the -XX:+AggressiveHeap option is specified. To set this option, use the procedures
outlined in "Using Application Server Control Console to Change JVM Command Line
Options" on page 6-9.

See the following site for more details on using the -XX:+AggressiveHeap option,

http://java.sun.com/j2se/1.4.2/1.4.2_whitepaper.html#6

Setting the JVM Stack Size Option for OC4J Processes
Depending on the particular J2EE application, changing the setting of the command
line option -Xss for the JVM running OC4J may improve performance. To set this
option, use the procedures outlined in "Using Application Server Control Console to
Change JVM Command Line Options" on page 6-9, and specify the -Xss Java option.

This option sets the maximum stack size for C code in a thread to n. Every thread that
is spawned during the execution of the program passed to java has n as its C code
stack size. The default C code stack size is 512 kilobytes (-Xss512k). A value of 64
kilobytes is the smallest amount of C code stack space allowed per thread.

Note: The -server option or the –client option, when used,
must be specified first before all other Java options.

Note: If you are running 32 bit Linux with kernel version 2.4.x on
systems with large amounts of RAM, using the
-XX:+AggressiveHeap option may cause the JVM to produce a
startup error, "Could not reserve enough space for object heap". The
2.4.x Linux kernel limits the size of a single process to between 2 and
2.5 GB, depending on the kernel version. Use the JVM option
-Xmx<heapSize> to keep the JVM process size under this limit. For
example, set the -Xmx1800M option to avoid hitting the Linux process
size limitation.

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

6-6 Oracle Application Server Performance Guide

Oracle recommends that you try the following value to improve the performance of
your J2EE applications:

-Xss128k

Setting the JVM Thread Synchronization Option for OC4J Processes
In the 1.4.x version of the JVM for the Solaris Operating System 2.8, many-to-many
LWP (lightweight process) synchronization is the default thread model. With JDK 1.4
and Solaris Operating System 2.8, using the one-to-one alternate thread library may
give you some performance improvement (set the LD_LIBRARY_
PATH=/usr/lib/LWP to use this for the Solaris Operating System 2.8). With the
Solaris Operating System 2.9, this is the default thread library.

See the following site for more information,

http://java.sun.com/docs/hotspot/threads/threads.html

It is important to compare results with the various threading options, to select the
appropriate one for your applications. For more information, see the following site,

http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Setting the JVM Permanent Generation Option for OC4J Processes
The MaxPermSize option defines the size for the permanent generation in the JDK.
Since the default value is 64M (Megabytes) in JDK 1.4.x, generally you do not need to
change this value, which is used to hold reflective objects of the VM such as class
objects and method objects. However, if your applications dynamically generate and
load many classes that require a large permanent generation size, you may see
outOfMemory errors from the JDK even if you have plenty of free memory in the
heap (we found this occurs in some JSP implementations). If this occurs, you can
change the permanent generation size by setting the -XX:MaxPermSize option, as
follows:

-XX:MaxPermSize=sizem

Where size is the desired MaxPermSize value.

Setting the OC4J DMS Sensors Option
You can disable the collection of most OC4J built-in performance metrics by setting a
property for the JVM running OC4J. The default value for the property
oracle.dms.sensors is normal, which enables the collection of built-in
performance metrics. You can disable OC4J built-in performance metrics collection by
setting the oracle.dms.sensors property to the value none. For most J2EE
applications, using the default value, normal, should have minimal impact on
performance.

Table 6–2 lists the supported oracle.dms.sensors property values.

Note: Setting oracle.dms.sensors value to none causes
Oracle Enterprise Manager 10g Application Server Control Console
to report "unavailable" for some values that are based on DMS
metrics.

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Optimizing J2EE Applications In OC4J 6-7

Some Oracle Application Server components that run in OC4J do not use the
oracle.dms.sensors property to control their DMS metrics. For example, the
Portal PPE web.xml specified configuration parameter dmsLogging controls DMS
metric collection for the Portal PPE.

The JDBC drivers also do not use the oracle.dms.sensors property to control
certain JDBC metrics. To enable the collection of JDBC statement metrics, use the
properties, oracle.jdbc.DMSStatementCachingMetrics and
oracle.jdbc.DMSStatementMetrics.

Setting the OC4J JDBC DMS Statement Metrics Option
To improve performance, by default OC4J does not collect JDBC statement metrics.
The properties, oracle.jdbc.DMSStatementCachingMetrics and
oracle.jdbc.DMSStatementMetrics are by default, set to false. When these
properties are false, performance is improved since OC4J does not collect expensive
JDBC statement metrics.

Setting these properties to true may have a negative impact on performance. Only set
these to true when you need to collect JDBC statement metrics.

Table 6–2 DMS Sensor oracle.dms.sensors Property Supported Values

Property Value Description

none Disable DMS gathering metrics.

normal Enable normal level DMS metrics.

This is the default value.

heavy Enable heavy DMS metrics.

all Enable all DMS metrics.

Note: Prior to Oracle Application Server 10g, Oracle Application
Server used the property oracle.dms.gate to enable DMS
metrics. Setting this as follows, oracle.dms.gate=false is this
equivalent to setting oracle.dms.sensors=none.

Setting oracle.dms.gate=true is equivalent to setting
oracle.dms.sensors=normal.

Using oracle.dms.gate is deprecated in Oracle Application
Server 10g. This property may not be supported in upcoming
releases.

See Also:

■ "Setting the OC4J JDBC DMS Statement Metrics Option" on
page 6-7

■ "Conditional Instrumentation Using DMS Sensor Weight" on
page 9-15

■ Appendix D, "Configuring the Parallel Page Engine" in Oracle
Application Server Portal Configuration Guide

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

6-8 Oracle Application Server Performance Guide

When oracle.jdbc.DMSStatementCachingMetrics property is set to true and
JDBC statement caching is enabled the JDBC statement metrics are available.

When JDBC statement caching is disabled, make the JDBC statement metrics available
by setting the property oracle.jdbc.DMSStatementMetrics to true.

Disabling these properties by setting the values to false only affects the JDBC DMS
metrics.

Setting the OC4J Dedicated RMI Context Option
Setting the dedicated RMI context property to false using the command line option
-Ddedicated.rmicontext= false for the OC4J may improve performance when
an EJB client is doing multiple initial context lookups within the same JVM.

Setting the OC4J Define Column Type Option
Set the DefineColumnType property to true when you are using an Oracle JDBC
driver that is prior to Release 9.2 and you are not using statement caching. Setting this
option to true avoids a round-trip when executing a select over the Oracle JDBC
driver.

When the driver performs a query, it first uses a round trip to a database to determine
the types that it should use for the columns of the result set. Then, when JDBC receives
data from the query, it converts the data, as necessary, as it populates the result set.
When you specify column types for a query with the DefineColumnType option set
to true, you avoid the first round trip to the Oracle database.

The default value for DefineColumnType is false.

If the value of DefineColumnType changes, and OC4J is restarted, the updated value
only applies to applications deployed after the value is changed.

See Also: "Setting the OC4J DMS Sensors Option" on page 6-6

See Also: "Setting the OC4J Dedicated RMI Context Option for
Remote EJB Clients" on page 6-53

Note: If you are using a JDBC Driver version 9.2 or higher, and
you use statement caching, do not set DefineColumnType to
true; this is redundant, since these drivers have similar
functionality built-in.

Note: This option only applies to EJB CMP entity beans.

See Also: "Setting the JDBC Statement Cache Size in Data
Sources" on page 6-14

Setting Java Command Line Options (Using JVM and OC4J Performance Options)

Optimizing J2EE Applications In OC4J 6-9

Using Application Server Control Console to Change JVM Command Line Options
To change the Java command line options for an OC4J Instance, go to the OC4J
instance homepage and perform the following steps:

1. Stop the OC4J Instance.

2. Drill down to the Server Properties page.

3. In the Command Line Options area of the Server Properties page, under the
heading Multiple VM Configuration, set the Java Options.

For example, enter the following to set the JVM heap sizes to 512 Megabytes:

-Xmx512m

4. Use the Apply button to apply the changes.

5. Start the OC4J Instance.

Figure 6–1 shows the Server Properties page with Java Options.

Figure 6–1 Application Server Control Console Java Heap Size Multiple VM Configuration Page

Setting Up Data Sources – Performance Issues

6-10 Oracle Application Server Performance Guide

Setting Up Data Sources – Performance Issues
A data source, which is the instantiation of an object that implements the
javax.sql.DataSource interface, enables you to retrieve a connection to a
database server. This section describes data source configuration options for global
data sources. A global data source is available to all the deployed applications in an
OC4J Instance.

This section covers the following topics:

■ Emulated and Non-Emulated Data Sources

■ Using the EJB Aware Location Specified in Emulated Data Sources

■ Setting the Maximum Open Connections in Data Sources

■ Setting the Minimum Open Connections in Data Sources

■ Setting the Cached Connection Inactivity Timeout in Data Sources

■ Setting the Wait for Free Connection Timeout in Data Sources

■ Setting the Connection Retry Interval in Data Sources

■ Setting the Maximum Number of Connection Attempts in Data Sources

■ Setting the JDBC Statement Cache Size in Data Sources

■ Setting the JDBC Prefetch Size for a CMP Entity Bean

■ Using Application Server Control to Change Data Source Configuration Options

Emulated and Non-Emulated Data Sources
Some of the performance related configuration options have different affects,
depending on the type of the data source. OC4J supports two types of data sources,
emulated and non-emulated:

The pre-installed default data source is an emulated data source. Emulated data
sources are wrappers around Oracle or non-Oracle data sources. If you use these data
sources, your connections are extremely fast, because they do not provide full XA or
JTA global transactional support. We recommend that you use these data sources for
local transactions or when your application requires access or update to a single
database. You can use emulated data sources for Oracle or non-Oracle databases.

You can use the emulated data source to obtain connections to different databases by
changing the values of the url and connection-driver parameters.

Note: If your data source is provided by a third party, you may
need to set certain properties. These properties should be defined in
the third-party documentation.

See Also:

■ "Improving EJB Performance in Oracle Application Server" on
page 6-28

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle Application Server Containers for J2EE Services Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

Setting Up Data Sources – Performance Issues

Optimizing J2EE Applications In OC4J 6-11

The following is a definition of an emulated data source:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
/>

Non-emulated data sources are pure Oracle data sources. These are used by
applications that want to coordinate access to multiple sessions within the same
database or to multiple databases within a global transaction.

Using the EJB Aware Location Specified in Emulated Data Sources
The ejb-location only applies to emulated data sources. Each data source is
configured with one or more logical names that allow you to identify the data source
within J2EE applications. The ejb-location is the logical name of an EJB data
source. In addition, use the ejb-location name to identify data sources for most
J2EE applications, where possible, even when not using EJBs. You can use this option
for single phase commit transactions or emulated data sources.

The ejb-location only applies to emulated data sources. Using the
ejb-location, the data source manages opening a pool of connections, and
manages the pool. Opening a connection to a database is a time-consuming process
that can sometimes take longer than the operation of getting the data itself. Connection
pooling allows client requests to have faster response times, because the applications
do not need to wait for database connections to be created. Instead, the applications
can reuse connections that are available in the connection pool.

Setting the Maximum Open Connections in Data Sources
The max-connections option specifies the maximum number of open connections
for a pooled data source. To improve system performance, the value you specify for
the number max-connections depends on a combination of factors including the
size and configuration of your database server, and the type of SQL operations that
your application performs.

The default value for max-connections and the handling of the maximum depends
on the data source type, emulated or non-emulated.

For emulated data sources, there is no default value for max-connections, but the
database configuration limits that affect the number of connections apply. When the
maximum number of connections, as specified with max-connections, are all active,
new requests must wait for a connection to be become available. The maximum time
to wait is specified with wait-timeout.

Note: Oracle recommends that you only use the ejb-location
JNDI name in emulated data source definitions for retrieving the
data source. For non-emulated data sources, you must use the
location JNDI name.

Setting Up Data Sources – Performance Issues

6-12 Oracle Application Server Performance Guide

For non-emulated data sources, there is a property, cacheScheme, that determines
how max-connections is interpreted. Table 6–3 lists the values for the
cacheScheme property (DYNAMIC_SCHEME is the default value for cacheScheme).

The tradeoffs for changing the value of max-connections are:

■ For some applications you can improve performance by limiting the number of
connections to the database (this causes the system to queue requests in the
mid-tier). For example, for one application that performed a combination of
updates and complex parallel queries into the same database table, performance
was improved by over 35% by reducing the maximum number of open
connections to the database by limiting the value of max-connections.

Setting the Minimum Open Connections in Data Sources
The min-connections option specifies the minimum number of open connections
for a pooled data source.

For applications that use a database, performance can improve when the data source
manages opening a pool of connections, and manages the pool. This can improve
performance because incoming requests don't need to wait for a database connection
to be established; they can be given a connection from one of the available connections,
and this avoids the cost of closing and then reopening connections.

By default, the value of min-connections is set to 0. When using connection pooling
to maintain connections in the pool, specify a value for min-connections other than
0.

See Also:

■ "Setting the Wait for Free Connection Timeout in Data Sources"
on page 6-13

■ "Data Sources" in Oracle Application Server Containers for J2EE
Services Guide

Table 6–3 Non-emulated Data Source cacheScheme Values

Value Description

FIXED_WAIT_SCHEME In this scheme, when the maximum limit is reached, a request
for a new connection waits until another client releases a
connection.

FIXED_RETURN_NULL_
SCHEME

In this scheme, the maximum limit cannot be exceeded.
Requests for connections when the maximum has already been
reached return null.

DYNAMIC_SCHEME In this scheme, you can create new pooled connections above
and beyond the maximum limit, but each one is automatically
closed and freed as soon as the logical connection instance is
finished being used, where it is returned to the available cache.

DYNAMIC_SCHEME is the default value for cacheScheme.

Note: You should check to make sure that your database is
configured to allow at least the total number of open connections,
as specified by the data sources max-connections option for all
your J2EE applications.

Setting Up Data Sources – Performance Issues

Optimizing J2EE Applications In OC4J 6-13

For emulated and non-emulated data sources, the min-connections option is
treated differently.

For emulated data sources, when starting up the initial min-connections
connections, connections are opened as they are needed and once the
min-connections number of connections is established, this number is maintained.

For non-emulated data sources, after the first access to the data source, OC4J then
starts the min-connections number of connections and maintains this number of
connections.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure that
your database is configured to allow at least as large a number of open connections as
the total of the values specified for all the data sources min-connections options, as
specified in all the applications that access the database.

Setting the Cached Connection Inactivity Timeout in Data Sources
For emulated and non-emulated data sources, the inactivity-timeout specifies
the time, in seconds, to cache unused connections before closing them.

To improve performance, you can set the inactivity-timeout to a value that
allows the data source to avoid dropping and then re-acquiring connections while
your J2EE application is running.

The default value for the inactivity-timeout is 60 seconds, which is typically too
low for applications that are frequently accessed, where there may be some inactivity
between requests. For most applications, to improve performance, we recommend that
you increase the inactivity-timeout to 120 seconds.

To determine if the default inactivity-timeout is too low, monitor your system. If
you see that the number of database connections grows and then shrinks during an
idle period, and grows again soon after that, you have two options: you can increase
the inactivity-timeout, or you can increase the min-connections.

Setting the Wait for Free Connection Timeout in Data Sources
For emulated and non-emulated data sources, the wait-timeout specifies the
number of seconds to wait for a free connection if the connection pool does not contain
any available connections (that is, the number of connections has reached the limit
specified with max-connections and they are all currently in use).

If you see connection timeout errors in your application, increasing the
wait-timeout can prevent the errors. The default wait-timeout is 60 seconds.

If database resources, including memory and CPU are available and the number of
open database connections is approaching max-connections, you may have limited

Note: If the min-connections is set to a value other than zero,
the specified number of connections will be maintained; OC4J
maintains the connections when they are not in use, and they do
not time out when the specified inactivity-timeout is reached.

Once the specified connections are opened, OC4J does not provide
a way to close the connections, except by stopping OC4J.

See Also: "Setting the Minimum Open Connections in Data
Sources" on page 6-12

Setting Up Data Sources – Performance Issues

6-14 Oracle Application Server Performance Guide

max-connections too stringently. Try increasing max-connections and monitor
the impact on performance. If there are not additional machine resources available,
increasing max-connections is not likely to improve performance.

You have several options in the case of a saturated system:

■ Increase the allowable wait-timeout.

■ Evaluate the application design for potential performance improvements.

■ Increase the system resources available and then adjust these parameters.

Setting the Connection Retry Interval in Data Sources
The connection-retry-interval specifies the number of seconds to wait before
retrying a connection when a connection attempt fails.

If the connection-retry-interval is set to a small value, or a large number of
connection attempts is specified with max-connect-attempts this may degrade
performance if there are many retries performed without obtaining a connection.

The default value for the connection-retry-interval is 1 second.

Setting the Maximum Number of Connection Attempts in Data Sources
The max-connect-attempts option specifies the maximum number of times to
retry making a connection. This option is useful to control when the network is not
stable, or the environment is unstable for any reason that sometimes makes connection
attempts fail.

If the connection-retry-interval option is set to a small value, or a large
number of connection attempts is specified with max-connect-attempts this may
degrade performance if there are many retries performed without obtaining a
connection.

The default value for max-connect-attempts is 3.

Setting the JDBC Statement Cache Size in Data Sources
To lower the overhead of repeated cursor creation and repeated statement parsing and
creation, you can use statement caching with database statements. To enable JDBC
statement caching, which caches executable statements that are used repeatedly,
configure a datasource to use statement caching. A JDBC statement cache is associated
with a particular physical connection maintained by a datasource. A statement cache is
not per datasource so it is not shared across all physical connections. The JDBC
statement cache is maintained in the middle-tier (not in the database server).

You can dynamically enable and disable statement caching programmatically using
the setStmtCacheSize() method on the connection object.

To configure JDBC statement caching for a datasource, use the stmt-cache-size
attribute to set the size of the cache. This attribute sets the maximum number of
statements to be placed in the cache. If you do not specify the stmt-cache-size
attribute or set it to zero, the statement cache is disabled.

The following XML sets the statement cache size to 200 statements.

<data-source>
 ...
stmt-cache-size="200"
</data-source>

Setting Up Data Sources – Performance Issues

Optimizing J2EE Applications In OC4J 6-15

To set the stmt-cache-size attribute, first determine how many distinct statements
the application issues to the database. Then, set the size of the cache to this number. If
you do not know the number of statements that your application issues to the
database, you can use the JDBC performance metrics to assist you with determining
the statement cache size. To use the statement metrics you need to set the Java
property oracle.jdbc.DMSStatementMetrics to true for the OC4J.

Setting the JDBC Prefetch Size for a CMP Entity Bean
You can use the prefetch-size parameter to change the data source behavior for a
JDBC query from a CMP Entity bean. However, this parameter is configured in
orion-ejb-jar.xml rather than in data-sources.xml.

Using Application Server Control to Change Data Source Configuration Options
Figure 6–2 shows the Oracle Enterprise Manager 10g Application Server Control
Console configuration page that lets you view or modify a data source. This page is
available in Application Server Control Console by selecting the Edit button for a
selected data source from the Data Sources page from the application default page for
an OC4J Instance, or by selecting data sources from the administration section of a
deployed application’s description page (this is only available when the application
has its own local data source).

Application Server Control Console stores the data sources elements that you add or
modify in an XML file. This file defaults to the name data-sources.xml and is
located in /j2ee/home/config. If you want to change the name or the location of
this file, you can do this in the General Properties page off of the default application
screen or off of your specific application’s page, when the application specifies a local
data source.

See Also:

■ "JDBC Data Source Statement Metrics" on page A-8

■ Oracle Database JDBC Developer's Guide and Reference

See Also: "Configuring Parameters for CMP Entity Beans" on
page 6-30

Note: You can also use the Application Server Control Console
Advanced Properties links to create or edit data sources. This
allows you to add data sources using the XML definitions which is
useful if you have been provided the XML.

Setting server.xml Configuration Parameters

6-16 Oracle Application Server Performance Guide

Figure 6–2 Application Server Control Console Data Sources Configuration Page

Setting server.xml Configuration Parameters
This section covers parameters that you can tune for OC4J performance in the
server.xml file for an OC4J Instance.

This section covers the following topics:

■ Setting the OC4J Transaction Configuration Timeout in server.xml

■ Setting the OC4J Task Manager Granularity in server.xml

■ Setting the OC4J Options for Stateful Session Bean Passivation in server.xml

■ Limiting Concurrency In OC4J

■ Using Application Server Control Console to Change server.xml Configuration
Options

Setting server.xml Configuration Parameters

Optimizing J2EE Applications In OC4J 6-17

Setting the OC4J Transaction Configuration Timeout in server.xml
You can change the default value for the transaction configuration timeout in the
transaction-config element in the server.xml file for the OC4J Instance. This
configuration parameter specifies the maximum time taken for a transaction to finish
before it can get rolled back due to a timeout, and applies to all transactions on the
OC4J Instance.

By default server.xml sets the transaction-config to 30000 (30 seconds). You
can change the transaction-config timeout value for applications that are
getting transaction timeout errors, or if you know the transactions take longer than 30
seconds (including the time for waiting for connections set by wait-timeout in
datasources.xml).

To change the transaction-config timeout value, change the following line in
server.xml. For example, the following line in server.xml sets the
transaction-config timeout parameter to 60 seconds:

<transaction-config timeout="60000"/>

The transaction-config timeout attribute applies for all transactions running in
OC4J, and therefore must be big enough for your longest transaction. If you specify a
small transaction-config, then this value applies for all transactions running in
OC4J (the transaction-config timeout applies for all transactions at the EJB
level). Thus, set the transaction-config timeout attribute to a value greater than
or equal to other transaction related attributes (for example the data sources
wait-timeout and the EJB call-timeout).

Setting the OC4J Task Manager Granularity in server.xml
The OC4J task manager is an OC4J background process that performs cleanup
operations, including the task of timing out HttpSessions. The task manager runs at
regular intervals. Using the taskmanager-granularity attribute in server.xml,
you can manage when the task manager runs. This attribute sets how often the task
manager performs its cleanup operations. The value specified is in milliseconds and
the default value is 1000 milliseconds.

The default taskmanager-granularity interval is usually adequate. If you modify
the default value and set the value too high, such as to a value greater than 60000, one
minute, this can delay the task of timing out of HttpSessions, which could lead to an
OutOfMemory error (if you use HttpSessions).

Note: The transaction-config timeout is not an EJB specific
timeout, but affects all transactions which use EJBs. However, the
timeout specified with the transaction-config timeout
value set in server.xml does not apply to MDB transactions.

See Also:

■ "Setting the Wait for Free Connection Timeout in Data Sources"
on page 6-13

■ "Configuring Parameters that Apply for All EJBs (Except
MDBs)" on page 6-28

■ "Configuring Parameters for Message Driven Beans (MDBs)"
on page 6-41

Setting server.xml Configuration Parameters

6-18 Oracle Application Server Performance Guide

For example, the following entry in server.xml sets taskmanager-granularity
to 60000 milliseconds (1 minute).

<application-server ... taskmanager-granularity="60000" ...>

Setting the OC4J Options for Stateful Session Bean Passivation in server.xml
OC4J automatically performs passivation of stateful session beans unless you set the
enable-passivation attribute for the element <sfsb-config> to false.

The default value for the attribute enable-passivation is true, which means that
stateful session bean passivation occurs. If you have a situation where stateful session
beans are not in a state to be passivated, set this attribute to false.

Limiting Concurrency In OC4J
OC4J contains a thread pooling mechanism for use in standalone OC4J. The OC4J
server.xml global thread pool attributes control the number of threads that OC4J
uses. In an Oracle Application Server 10g environment, we recommend that you do
not specify <global-thread-pool> in server.xml. You can use this parameter to
control the number of threads when using standalone OC4J (not in an Oracle
Application Server 10g environment).

To limit concurrency in an Oracle Application Server 10g environment, we recommend
using the Oracle HTTP Server MaxClients directive. When OC4J runs in an Oracle
Application Server 10g environment, mod_oc4j works with OC4J to control OC4J
concurrency. In this environment, limiting the number of threads by specifying
<global-thread-pool> attributes in server.xml can cause resource contention
issues that may result in deadlocks.

Using Application Server Control Console to Change server.xml Configuration Options
To update and configure values for options in the server.xml file, using Application
Server Control Console, first select the OC4J instance you want to modify. Then, select
the Administration link and select the Advanced Properties link from the Instance
Properties area. On the Advanced Server Properties page, select the server.xml link.
On the edit server.xml page, select and modify the elements and attributes that you
need to change. Finally, select the Apply button to apply the changes.

Note: Changing the taskmanager-granularity can affect the
timing and accuracy for some of the EJB Entity and Session Bean
parameters. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for complete details.

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Note: If you do not specify <global-thread-pool> in
server.xml, the number of threads that OC4J can create is
unbounded (except by system resource limitations). With the
default behavior, unbounded threads, threads are created on
demand as needed.

See Also: "Configuring the MaxClients Directive" on page 5-10

Improving Servlet Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-19

If you do not use Application Server Control Console, then edit server.xml in the
$ORACLE_HOME/j2ee/instance_name/config directory, and use the dcmctl
command to update the Oracle Application Server configuration as follows:

% dcmctl updateconfig -ct oc4j
% dcmctl restart -ct oc4j

Improving Servlet Performance in Oracle Application Server
This section discusses configuration options and performance tips specific to servlets
for optimizing OC4J performance.

This section covers the following topics:

■ Improving Performance by Altering Servlet Configuration Parameters

■ Servlet Performance Tips

Improving Performance by Altering Servlet Configuration Parameters
This section covers the following:

■ Loading Servlet Classes at Startup

■ Reducing Requests for Static Pages and Images

■ Setting the Servlet Session Timeout

Loading Servlet Classes at Startup
By default, OC4J loads a servlet when the first request is made. OC4J also lets you load
servlet classes when the JVM that runs the servlet is started. To do this, add the
<load-on-startup> sub-element to the <servlet> element in the application’s
web.xml configuration file.

Using the load-on-startup facility increases the start-up time for your OC4J process,
but decreases first-request latency for servlets.

For example, add the <load-on-startup> as follows:

<servlet>
 <servlet-name>viewsrc</servlet-name>
 <servlet-class>ViewSrc</servlet-class>
 <load-on-startup> </load-on-startup>
</servlet>

Using Application Server Control Console you can specify that OC4J load an entire
Web Module on startup. To specify load on startup, select the Web site Properties page
for an OC4J Instance and then use the Load on Startup checkbox.

Reducing Requests for Static Pages and Images
This <expiration-setting> element, that can be set in either
global-web-application.xml or orion-web.xml sets the expiration for a given
set of resources. This element can reduce the requests to the server by asking the
browser to cache certain requests. If the Oracle Application Server instances uses
OracleAS Web Cache, then this element is less useful, since Web Cache should serve
such requests, when it is used. The <expiration-setting> determines how long
before resources expire in the browser. The browser reloads an expired resource upon
the next request for it.

Improving Servlet Performance in Oracle Application Server

6-20 Oracle Application Server Performance Guide

This option is useful for setting caching policies, such as for not reloading images as
frequently as documents.

To set the <expiration-setting> element, use the following attributes: expires,
url-pattern.

■ expires specifies the number of seconds before expiration, or when set to
"never" specifies no expiration. The default setting for expires is "0" (zero), for
immediate expiration.

■ url-pattern specifies a URL pattern that the expiration applies to. For example,
url-pattern="*.gif"

Setting the Servlet Session Timeout
The default servlet session timeout for OC4J is 20 minutes. You can change this for a
specific application by setting the <session-timeout> parameter in the
<session-config> element of web.xml. If this value is set too low, you may loose
your saved session before getting the chance to reuse it. If this value is set too high,
you may save too much session state and consume too much memory. The amount of
memory used in each session depends on the size of the objects the application creates
and puts into the sessions. Setting either a too small value, or a too large value for the
session timeout can have an impact on performance.

Servlet Performance Tips
The following tips can enable you to avoid or debug potential performance problems:

■ Analyze Servlet Duration

■ Understand Server Request Load

■ Find Large Servlets That Require a Long Load Time

■ Watch for Unused Sessions and Session Invalidation

■ Load Servlet Session Security Routines at Startup

Analyze Servlet Duration
It is useful to know the average duration of the servlet (and JSP) requests in your J2EE
enterprise application. By understanding how long a servlet takes when the system is
not under load, you can more easily determine the cause of a performance problem
when the system is loaded. The average duration of a given servlet is reported in the
metric service.avg for that servlet. You should only examine this value after
making many calls to the servlet so that any startup overhead such as class loading
and database connection establishment will be amortized.

As an example, suppose you have a servlet for which you notice the service.avg is
32 milliseconds. And suppose you notice a response time increase when your system
is loaded, but not CPU bound. When you examine the value of service.avg, you
might find that the value is close to 32 ms, in which case you can assume the
degradation is probably due to your system or application server configuration rather
than in your application. If on the other hand, you notice that service.avg has
increased significantly, you may look for the problem in your application. For
example, multiple users of the application may be contending for the same resources,
including but not limited to database connections.

See Also: "Web Module Metrics" on page A-9

Improving Servlet Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-21

Understand Server Request Load
In debugging servlet and JSP problems, it is often useful to know how many requests
your OC4J processes are servicing. If the problems are performance related, it is
always helpful to know if they are aggravated by a high request load. You can track
the requests for a particular OC4J Instance using Application Server Control Console,
or by viewing the application’s web module metrics.

Find Large Servlets That Require a Long Load Time
You may find that a servlet application is especially slow the first time it is used after
the server is started, or that it is intermittently slow. It is possible that when this
happens the server is heavily loaded, and the response time is suffering as a result. If
there is no indication of a high load, however, which you can detect by monitoring
your access logs, periodically monitoring CPU utilization, or by tracking the number
of users that have active requests on the HTTP server and OC4J, then you may just
have a large servlet that takes a long time to load.

You can see if you have a slow loading servlet by looking at service.maxTime,
service.minTime, and service.avg. If the time to load the servlet is much higher
than the time to service, the first user that accesses the servlet after your system is
started will feel the impact, and service.maxTime will be large. You can avoid this
by configuring the system to initialize your servlet when it is started.

Watch for Unused Sessions and Session Invalidation
You should regularly monitor your applications looking for unused sessions. It is easy
to inadvertently write servlets that do not invalidate their sessions. Without source
code for the application software, you may not know this could be a problem on your
host, but sooner or later you would notice a higher consumption of memory than
expected. You can see if there are sessions which are not utilized or sessions which are
not being properly invalidated after being used with the session metrics, including:
sessionActivation, sessionActivation.completed and
sessionActivation.active.

JSPs by default create sessions. If you do not need to use sessions in your JSPs, turn
them off.

The following example shows an application that creates sessions, but never uses
them. In this example, we show metrics from a JSP under
/oc4j/application/WEBs/context:

session.Activation.active: 500 ops
session.Activation.completed: 0 ops

This application created 500 sessions and all are still active. Possibly, this indicates that
the application makes unnecessary use of the sessions and it is just a matter of time
before this will cause memory or CPU consumption problems.

A well-tuned application shows sessionActivation.active with a value that is
less than sessionActivation.completed before the session timeout. This
indicates that the sessions are probably being used and cleaned up.

Suppose we have a servlet that uses sessions effectively and invalidates them
appropriately. Then we might see a set of metrics such as the following, under
/oc4j/application/WEBs/context:

See Also: "Web Module Metrics" on page A-9

See Also: "Loading Servlet Classes at Startup" on page 6-19

Improving JSP Performance in Oracle Application Server

6-22 Oracle Application Server Performance Guide

session.Activation.active: 2 ops
session.Activation.completed: 500 ops

The fact that two sessions are active and more than 500 have been created and
completed indicates that sessions are being invalidated after use.

Load Servlet Session Security Routines at Startup
OC4J uses the class java.security.SecureRandom for secure seed generation. The
very first call to this method is time consuming. Depending on how your system is
configured for security, this method may not be called until the very first request for a
session-based servlet is received by the Application Server. One alternative is to
configure the application to load-on-startup in the application’s web.xml
configuration file and to create an instance of SecureRandom during the class
initialization of the application. The result will be a longer startup time in lieu of a
delay in servicing the first request.

Improving JSP Performance in Oracle Application Server
OracleJSP is Oracle’s implementation of the Sun Microsystems JavaServer Pages
specification. Some of the additional features it includes are custom JavaBeans for
accessing Oracle databases, SQL support, and extended datatypes.

This section explains how you can improve OracleJSP performance. It contains the
following topics:

■ Improving Performance by Altering JSP Configuration Parameters

■ Improving Performance by Tuning JSP Code

Oracle Application Server provides JSP tag libraries that include some features that
may improve the performance of J2EE applications. For example, you may be able to
use the JSP caching features available in the tag libraries to increase the speed and
scalability for your applications:

■ The JESI tag library supports the use of Oracle Application Server Web Cache. This
supports the use of the HTTP-level cache, maintained outside the application, that
provides very fast cache operations. Oracle Application Server Web Cache is
capable of caching static data, such HTML, GIF, or JPEG files, or dynamic data,
such as servlet or JSP results.

■ The Web Object Cache tag library let you capture intermediate results of JSP and
servlet execution, and subsequently reuse these cached results in other parts of the
Java application logic.

See Also:

■ "Impact of Session Management on Performance" on page 6-25

■ "Web Context Metrics" on page A-10

See Also: "Loading Servlet Classes at Startup" on page 6-19

Note: A JSP is translated into a Java servlet before it runs,
therefore servlet performance issues also apply for JSPs.

Improving JSP Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-23

Improving Performance by Altering JSP Configuration Parameters
This section describes JSP configuration parameters that you can alter to improve and
control JSP operation. These parameters are set for each OC4J Instance by altering the
file global-web-application.xml.

This section covers the following topics:

■ Using the main_mode Parameter

■ Using the tags_reuse_default Parameter

■ Additional JSP and OC4J Configuration Parameters

Using the main_mode Parameter
The main_mode parameter determines whether classes are automatically reloaded or
JSPs are automatically recompiled, in case of changes.

Table 6–1 shows the supported settings for main_mode.

See Also:

■ Oracle Application Server Containers for J2EE Servlet Developer’s
Guide

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference

See Also:

■ Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for information on JSP
configuration parameters

■ Oracle Application Server Containers for J2EE Servlet Developer’s
Guide for information on global-web-application.xml

Table 6–4 JSP main_mode Parameter Values

Option Description

justrun The runtime dispatcher does not perform any timestamp checking, so there is no recompilation
of JSPs or reloading of Java classes. This mode is the most efficient mode for a deployment
environment, where code will not change.

If comparing timestamps is unnecessary, as is the case in a typical production deployment
environment where source code will not change, you can avoid all timestamp comparisons and
any possible retranslations and reloads by setting the main_mode parameter to the value
justrun.

Using this value can improve the performance of JSP applications.

Note: before you set main_mode to the value justrun, make sure that the JSP is compiled at
least once. You can compile the JSP by invoking it through a browser, or by running your
application (using the default value for main_mode, recompile). This assures that the JSP is
compiled before you set the justrun flag.

reload The dispatcher will check if any classes have been modified since loading, including translated
JSPs. JavaBeans invoked from pages, and any other dependency classes.

recompile This is the default value for main_mode.

The dispatcher will check the timestamp of the JSP, retranslate it if it has been modified since
loading, and execute all reload functionality as well.

Improving JSP Performance in Oracle Application Server

6-24 Oracle Application Server Performance Guide

Note the following when working with the main_mode parameter:

■ Because of the usage of in-memory values for class file last-modified times,
removing a page implementation class file from the file system will not by itself
cause retranslation of the associated JSP source.

■ The page implementation class file will be regenerated when the memory cache is
lost. This happens whenever a request is directed to this page after the server is
restarted or after another page in this application has been retranslated.

■ A page is not reloaded just because a statically included file has changed. Statically
included files, included through <%@ include ... %> syntax as opposed to
<jsp:include ... /> syntax, are included during translation-time.

Using the tags_reuse_default Parameter
Disabling or enabling the tag handler reuse to runtime or compile-time models can
improve JSP performance when you specify that tag handler instances are to be reused
within each JSP page. This is sometimes referred to as tag handler instance pooling.
There are two models for this:

■ Runtime model: The logic and patterns of tag handler reuse is determined at
runtime, during execution of the JSP pages. Tag handler reuse is within application
scope.

■ Compile-time model: The logic and patterns of tag handler reuse is determined at
compile-time, during translation of the JSP pages. Specifying this value is an
effective way to improve performance for an application with very large numbers
of tags within the same page (hundreds of tags, for example).

The JSP tags_reuse_default configuration parameter lets you specify the reuse
model.

Additional JSP and OC4J Configuration Parameters
The Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide includes information on additional configuration parameters that
affect JSP performance, including the following:

■ check_page_scope

■ precompile_check

■ reduce_tag_code

■ static_text_in_chars

■ simple-jsp-mapping

■ enable-jsp-dispatcher-shortcut

Note: Before you set main_mode to the value justrun, make
sure that the JSP is compiled at least once. You can compile the JSP
by invoking it through a browser, or by running your application.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

Improving JSP Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-25

Improving Performance by Tuning JSP Code
This section describes changes you can make to your JSP code to improve
performance.

This section covers the following topics:

■ Impact of Session Management on Performance

■ Using Static Template Text Instead of out.print for Outputting Text

■ Performance Issues for Buffering JSPs

■ Using Static Versus Dynamic Includes

Impact of Session Management on Performance
In general, sessions add performance overhead for your Web applications. Each
session is an instance of the javax.servlet.http.HttpSession class. The
amount of memory per session depends on the size of the objects the application
creates and puts into the sessions. You can turn off sessions for your JSPs if you do not
want a new session created for each request. By default, in OracleJSP sessions are
enabled. If you do not need to use sessions in your JSPs, turn them off by including the
following line at the top of the JSP:

<%@ page session="false" %>

If you use sessions, ensure that you explicitly cancel the session. If you do not cancel a
session, it remains active until it times out. Invoke the invalidate() method to
cancel a session.

The default session timeout for OC4J is 20 minutes. You can change this for a specific
application by setting the <session-timeout> parameter in the
<session-config> element of web.xml.

For example, the following code shows how you would cancel a session after you have
finished using it:

HttpSession session;
session = httpRequest.getSession(true);
.
.
.
session.invalidate();

OC4J uses the class java.security.SecureRandom for secure seed generation. The
very first call to this method is time consuming. Depending on how your system is
configured for security, this method may not be called until the very first request for a
session-based JSP is received by the Application Server. One alternative is to force this
call to be made on startup by including a call in the class initialization for some
application that is loaded on startup. The result will be a longer startup time in lieu of
a delay in servicing the first request.

Note: JSP pages by default use sessions while servlets by default
do not use sessions.

Improving JSP Performance in Oracle Application Server

6-26 Oracle Application Server Performance Guide

Using Static Template Text Instead of out.print for Outputting Text
Using the JSP code out.print("<html>") requires more resources than including
static template text. For performance reasons, it is best to reserve the use of the
out.print() command for dynamic text.

Example 6–1 and Example 6–2 are two HTML coding examples. For these JSP samples,
Example 6–2 should be more efficient and give better performance.

Example 6–1 Using out.print

<%
 out.print("<HTML> <HEAD> <TITLE>Bookstore Home Page</TITLE></HEAD>\n");
 out.print("<BODY BGCOLOR=\"#ffffff\">\n");
 out.print("<H1 ALIGN=\"center\">Book Store Web Commerce Test</H1>\n");
 out.print("<P ALIGN=\"CENTER\">\n");
 out.print("<IMG SRC=\"../bookstore/Images/booklogo.gif\" ALIGN=\"BOTTOM\""+
 "BORDER=\"0\" WIDTH=\"288\" HEIGHT=\"67\"></P>\n");
 out.print("<H2 ALIGN=\"center\">Home Page</H2>\n");
%>
<jsp:useBean id="randomid" class="bookstore.BOOKS_Util" scope="request" >
<%
 random_id = randomid.getRandomI_ID();
%>

Example 6–2 Using Static Text

<HTML> <HEAD> <TITLE>Bookstore Home Page</TITLE></HEAD>
<BODY BGCOLOR=\"#ffffff\">
<H1 ALIGN=\"center\">Bookstore Web Commerce Test </H1>
<P ALIGN=\"CENTER\">
<IMG SRC=\"../bookstore/Images/booklogo.gif\" ALIGN=\"BOTTOM\""+
 "BORDER=\"0\" WIDTH=\"288\" HEIGHT=\"67\"></P>
<H2 ALIGN=\"center\">Home Page</H2>
<jsp:useBean id="randomid" class="bookstore.BOOKS_Util" scope="request" >
<%
 random_id = randomid.getRandomI_ID();
%>

Performance Issues for Buffering JSPs
By default, a JSP uses an area of memory known as a page buffer. The page buffer, set
to 8KB by default, is required if the JSP uses dynamic globalization, contextType
settings, error pages, or forwards. If the page does not use these features, then you can
disable buffering with the following command:

<%@ page buffer="none" %>

Disabling buffering by setting the buffer value to none improves the performance of
the page by reducing memory usage and saving the processing step of copying the
buffer.

When you need buffering, it is important to select an adequate size for your buffer. If
you are writing a page that is larger than the default 8KB buffer, and you have not

See Also:

■ Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for information on sessions

■ Oracle Application Server Containers for J2EE Servlet Developer’s
Guide for information on sessions

Improving JSP Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-27

reset the buffer size, then the JSP autoflush will be activated which could have
performance implications. Therefore, if buffering is necessary for your JSP, make sure
to set the page buffer to an appropriate size. For example, to set the buffer size to
24KB, use the following command:

<%@ page buffer="24KB" %>

Using Static Versus Dynamic Includes
The include directive makes a copy of the included page and copies it into a JSP
(including page) during translation. This is known as a static include (or
translate-time include) and uses the following syntax:

<%@ include file="/jsp/userinfopage.jsp" %>

Alternatively, the jsp:include tag dynamically includes output from the included
page within the output of the including page, during runtime. This is known as a
dynamic include (or runtime include) and uses the following syntax:

<jsp:include page="/jsp/userinfopage.jsp" flush="true" />

If you have static text, that is not too large, for performance reasons, it is better to use a
static include rather than a dynamic include.

In general, when working with includes, note the following:

■ Static includes affect page size. Static includes avoid the overhead of the request
dispatcher that a dynamic include necessitates, but may be problematic where
large files are involved. Static includes are typically used to include small files
whose content is used repeatedly in multiple JSPs. For example:

– Statically include a logo or copyright message at the top or bottom of each
page in your application.

– Statically include a page with declarations or directives, such as imports of
Java classes, that are required in multiple pages.

– Statically include a central status checker page from each page of your
application.

■ Dynamic includes affect processing overhead and performance. Dynamic includes
are useful for modular programming. You may have a page that sometimes
executes on its own but sometimes is used to generate some of the output of other
pages. Dynamically included pages can be reused in multiple including pages
without increasing the size of the including pages.

Note: Both static includes and dynamic includes can be used only
between pages in the same servlet context.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

Improving EJB Performance in Oracle Application Server

6-28 Oracle Application Server Performance Guide

Performance Issues for Including Static Content
JSPs containing a large amount of static content, including large amounts of HTML
code that does not change at runtime, may result in slow translation and execution.

There are two workarounds for this issue that may improve performance:

■ Put the static HTML into a separate file and use a dynamic include command
(jsp:include) to include its output in the JSP output at runtime.

■ Put the static HTML into a Java resource file.

The JSP translator will do this for you if you enable the external_resource
configuration parameter.

For pre-translation, the -extres option of the ojspc tool also offers this
functionality.

Improving EJB Performance in Oracle Application Server
This section covers configuration parameters that you set to control how OC4J handles
EJBs. Tuning these options can improve the performance of EJBs running on OC4J.

This section includes the following topics:

■ Configuring Parameters that Apply for All EJBs (Except MDBs)

■ Configuring Parameters for CMP Entity Beans

■ Configuring Parameters for BMP Entity Beans

■ Configuring Parameters for Session Beans

■ Configuring Parameters for Message Driven Beans (MDBs)

Configuring Parameters that Apply for All EJBs (Except MDBs)
Table 6–5 lists parameters that you can tune for EJB performance that are specific to
OC4J. These parameters apply for all types of EJBs, including session and entity beans
(except MDBs).

Table 6–5 shows parameters that are specified in orion-ejb-jar.xml.

This section also covers the following topic:

■ EJB Timeouts Using a Non-default taskmanager-granularity

Note: A static <%@ include... %> command would not work.
It would result in the included file being included at translation
time, with its code being effectively copied back into the including
page. This would not solve the problem.

Note: Putting static HTML into a resource file may result in a
larger memory footprint than the preceding jsp:include
workaround mentioned, because the page implementation class
must load the resource file whenever the class is loaded.

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-29

EJB Timeouts Using a Non-default taskmanager-granularity
There are EJB administrative tasks that are run at an interval, the length of which
depends on the taskmanager granularity. Therefore, if you change the default value of
the taskmanager-granularity attribute in server.xml, this change also impacts
the interval at which EJB administrative tasks are executed.

The taskmanager-granularity specified interval affects EJB timeouts. EJB
administrative tasks associated with timeouts depend on when the task manager runs,

Table 6–5 EJB Parameters That Apply for All EJB Types (Except MDBs)

Parameter Description

call-timeout Applies for session and entity beans. This parameter specifies the maximum time to wait for
any resource that the EJB container needs, excluding database connections, before the
container calls the EJB method. The container throws a TimedOutException when the wait
time for a resource exceeds the specified call-timeout time.

Setting the call-timeout to a value <=0 specifies an unlimited call-timeout (unlimited
wait time for resources).

Note 1: if you change the default value of the taskmanager-granularity attribute in
server.xml, this causes the call-timeout to be calculated based on the new
taskmanager-granularity. See "EJB Timeouts Using a Non-default taskmanager-granularity"
on page 6-29 for details.

Note 2: When using transactions, set the call-timout value to a value less than the
transaction-config timeout, since the transaction-config timeout applies for all
transactions running in OC4J, and therefore must be big enough for your longest transaction.

Default Value: 90000 milliseconds

See Also: "Setting the OC4J Transaction Configuration Timeout in server.xml" on page 6-17

max-instances The number of bean instances allowed in memory – either instantiated or pooled. When this
value is reached, the container attempts to passivate the oldest bean instance from memory
(this passivation only applies for stateful session beans). If unsuccessful, the container waits
the number of milliseconds set in the call-timeout attribute to see if a bean instance is
removed from memory, either through passivation, using the remove() method, or by bean
expiration before a TimeoutExpiredException is thrown back to the client. To allow an
unlimited number of bean instances, set max-instances to 0.

The exception, com.evermind.server.ejb.TimeoutExpiredException: timeout
expired waiting for an instance, occurs when there is no available EJB instance. To
avoid this problem set the max-instances parameter appropriately.

Default Value: 0 (unlimited)

max-tx-retries Applies for session and entity beans. This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures.

Generally, we recommend that you start by setting max-tx-retries to 0 and adding retries
only where errors are seen that could be resolved through retries. For example, if you are
using serializable isolation and you want to retry the transaction automatically if there is a
conflict, you might want to use retries. However, if the bean wants to be notified when there
is a conflict, then in this case, you should set max-tx-retries=0.

Default Value: 0 (for session beans and entity beans)

See Also: "Setting the OC4J Transaction Configuration Timeout in server.xml" on page 6-17

See Also: "Setting the Connection Retry Interval in Data Sources" on page 6-14

min-instances The minimum number of bean implementation instances to be kept instantiated or pooled.
These instances are created when an EJB of the specified type is accessed, when the first
instance is requested, and not at OC4J startup.

Default Value: 0 (instances)

Improving EJB Performance in Oracle Application Server

6-30 Oracle Application Server Performance Guide

and a factor of 60 for EJB tasks. Thus, if the taskmanager-granularity is changed
from the default, the value specified for EJB timeouts will have a corresponding
change in granularity.

Configuring Parameters for CMP Entity Beans
This section covers parameters for entity beans using CMP. These parameters are
specified in the orion-ejb-jar.xml configuration file.

Table 6–6 lists the entity bean CMP specific parameters.

Table 6–7 describes the supported locking-mode parameter values.

This section also covers the following CMP topics:

■ Configuring Lazy-loading on CMP Entity Bean Finder Methods

■ Setting The CMP Define Column Type Option

See Also: "Setting the OC4J Task Manager Granularity in
server.xml" on page 6-17

Table 6–6 CMP Entity Bean Performance Parameters

Parameter Description

batch-size For a description, see "Setting The Batch Size Option to Batch UPDATE
statements" on page 6-34.

call-timeout For a description, see Table 6–5

delay-updates-until-commit This boolean parameter, when true, specifies that sync and persistence only
occur at the end of a transaction. If false, sync and persistence occur after
every EJB method invocation, except ejbRemove() and the finder methods.

Default Value: true

do-select-before-insert If false, you avoid executing a select before an insert. The extra select
normally checks to see if the entity already exists to avoid duplicates before
doing the insert. If a unique key constraint is defined for the entity, then we
recommend setting this to false. If there is no unique key constraint, setting
this to false leads to not detecting a duplicate insert. To prevent duplicate
inserts in this case, leave it set to true. For performance, Oracle recommends
setting this to false to avoid the extra select before insert.

Default Value: true

exclusive-write-access This parameter is only used when locking-mode=read-only. Set this to
true, the default, to specify this is the only bean that accesses its table in the
database, and that no external methods are used to update the table. This will
improve performance for the bean since any cache maintained for the bean
does not need to constantly update from the back-end database.

The decision to set this value to false is dependent on the implementation
of the Bean, and on the knowledge of how and when the table in the database
that the bean accesses is modified.

Set to false if the table is being modified externally.

Default Value: true

findByPrimaryKey-lazy-load
ing

Turns on lazy loading in the findByPrimaryKey method. For entity bean
finder methods, lazy loading can cause the select method to be invoked more
than once.

Default Value: false

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-31

isolation If your database is already configured with the isolation mode you want for
your transactions, you'll get better performance if you don't explicitly set the
isolation mode attribute in the orion-ejb-jar.xml file. Omitting the
isolation setting means to use the database default setting, and extra
processing will not be done to explicitly set isolation levels in your
transactions.

See Table 6–8 for a description of isolation options and how they relate to
locking modes.

Default Value: When omitted, use the database default setting

lazy-loading Specifies lazy loading on the finder-method element. Specifying this value to
true turns on lazy loading for a custom finder method. See "Configuring
Lazy-loading on CMP Entity Bean Finder Methods" on page 6-34 for more
information.

Default Value: false

locking-mode The locking modes, specified with the locking-mode parameter, manage
concurrency and configure when to block to manage resource contention or
when to execute in parallel.

See Table 6–7 for a description of locking-mode.

See Table 6–8 for a description of isolation options and how they relate to
locking modes.

Default Value: optimistic

max-instances See Table 6–5

max-tx-retries See Table 6–5

min-instances See Table 6–5

pool-cache-timeout This parameter specifies how long to keep CMP Entity Beans cached in the
pool.

If you specify a pool-cache-timeout, then at every
pool-cache-timeout interval, all beans in the pool of the corresponding
bean type, are removed. If the value specified is 0 or negative, then the
pool-cache-timeout is disabled and beans are not removed from the
pool. In some cases it may help performance to disable
pool-cache-timeout, or to set the pool-cache-timeout to a large
value to avoid removing beans from the pool.

Note: if min-instances is > 0, the min-instances number of
instances are kept in the pool after the pool cache timeout (that is, they are not
deleted).

Note: if you change the default value of the taskmanager-granularity
attribute in server.xml, this causes the pool-cache-timeout to be
calculated based on the new taskmanager-granularity. See "EJB Timeouts
Using a Non-default taskmanager-granularity" on page 6-29 for details.

Default Value: 60 (seconds)

Table 6–6 (Cont.) CMP Entity Bean Performance Parameters

Parameter Description

Improving EJB Performance in Oracle Application Server

6-32 Oracle Application Server Performance Guide

prefetch-size The finder-method element includes the prefetch-size attribute that
specifies how many rows to prefetch into the client while a result set is being
populated during a query. Using prefetch-size can reduce round trips to
the database by fetching multiple rows of data each time data is fetched (the
extra data is stored in client-side buffers for later access by the client).

Increasing the value for the prefetch-size increases the memory needs for
an application.

It may be useful to increase the value from the default for finder-methods that
fetch a lot of data, such as findAll on large tables, or custom finder-methods
that retrieve many rows of data.

You can see the affect of changing the prefetch-size in an application by
looking at the finder-method average time metric to see how much time it
takes for the query, and how this affects the total response time for the
application.

The number of rows to prefetch can be set as desired using prefetch-size,
however, for most applications using the default value, 10, is recommended.

See Also: Oracle Database JDBC Developer's Guide and Reference for more
information on using prefetch with a JDBC driver.

Default Value: 10

update-changed-fields-only Specifies whether the container updates only modified fields or all fields to
persistence storage for CMP entity beans when ejbStore is invoked. When
the value is set to false, this performs container updates to all fields to
persistence storage, when ejbStore is invoked. When set to false, the
container includes all fields in updates, so applications can take advantage of
SQL statement caching.

Default Value: true

validity-timeout The validity-timeout is only used when
exclusive-write-access=true and locking-mode=read-only.

The validity timeout is the maximum time in milliseconds that an entity is
valid in the cache (before being reloaded). We recommend that if the data is
never being modified externally (and therefore you've set
exclusive-write-access=true), that you can set this to 0 or -1, to
disable this option, since the data in the cache will always be valid for
read-only EJBs that are never modified externally.

If the EJB is generally not modified externally, so you're using
exclusive-write-access=true, yet occasionally the table is updated so
you need to update the cache occasionally, then set this to a value
corresponding to the interval you think the data may be changing externally.

Table 6–6 (Cont.) CMP Entity Bean Performance Parameters

Parameter Description

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-33

The locking-mode, along with isolation, assures database consistency for EJB
entity beans using CMP. Table 6–8 shows the common locking-mode and
isolation combinations. The different combinations have both functional and
performance implications, but often the functional requirements for data consistency
will lead to selecting a mode, even when it may be at the expense of performance.

In Table 6–8 the isolation setting refers to either the transaction isolation
attribute setting, if explicitly set, or to the database isolation level (if the transaction
isolation attribute is not set). Also, although locking-mode and transaction
isolation levels are set as attributes of a CMP bean, the isolation level that will be in
effect for the transaction is the isolation level of the first entity bean used in the
transaction. Therefore it is best to set all beans in the same transaction to the same
isolation level.

In general, optimistic locking with committed isolation will be faster since it allows for
more concurrency, but it may not meet your needs for data consistency. Pessimistic
locking with committed isolation, and optimistic locking with serializable isolation
will be slower, but will guarantee data consistency on updates.

Defining a bean as read-only will assure that no updates are allowed to the bean. The
performance will be similar to a bean which may not be defined as read-only, and yet
is never used to do inserts, updates, or deletes (that is, only the methods which read
are called). This is because if no fields are modified in a bean that is not defined with
read-only locking, it is already optimized to not do an ejbStore. To see a performance
advantage and avoid doing ejbLoads for read-only beans, you must also set
exclusive-write-access=true.

Table 6–7 CMP Entity Bean Locking-Mode Values

Locking Mode
Value Description

optimistic Multiple users can execute the entity bean in parallel. The optimistic locking mode does not
monitor resource contention; thus, the burden of the data consistency is placed on the
database isolation modes.

This is the default value for locking-mode.

pessimistic Manages resource contention and does not allow parallel execution. Only one user at a time
is allowed to execute the entity bean. Pessimistic locking uses "SELECT....FOR UPDATE"
to serialize access in the database.

read-only Multiple users can execute the entity bean in parallel. The container does not allow any
updates to the bean's state.

Table 6–8 CMP Entity Bean Locking-Mode and Isolation Relationships

Locking-mode Isolation When to Use

pessimistic committed If data consistency must be guaranteed, and frequent concurrent
updates to the same rows are expected.

pessimistic serializable We recommend that this combination not be used.

optimistic committed If concurrent reads and updates to the same rows with
read-committed semantics is sufficient.

optimistic serializable If data consistency must be guaranteed, but infrequent concurrent
updates to the same rows are expected.

read-only committed If repeatable read is not required.

read-only serializable If repeatable read is required.

Improving EJB Performance in Oracle Application Server

6-34 Oracle Application Server Performance Guide

Configuring Lazy-loading on CMP Entity Bean Finder Methods
Using CMP Entity Beans, each finder method retrieves one or more objects. In the
default scenario, with lazy-loading set to false, no lazy-loading, each finder
method causes a single SQL select statement to be executed against the database. For a
CMP bean, one or more objects are retrieved with all of their CMP fields. So, for
example, if you implement an ejbFindAllEmployees method, this finder retrieves
all employee objects with all of the CMP fields in each employee object.

With lazy-loading set to true, only the primary keys of the objects retrieved
within the finder are returned. Then, only when you access the object within your
implementation, the OC4J container uploads the actual object based on the primary
key. For example, with the ejbFindAllEmployees finder method, when
lazy-loading is true, all of the employee primary keys are returned in a
Collection. Then, each time you access one of the employees in the Collection, OC4J
uses the primary key to retrieve the single employee object from the database.

The lazy-loading value should be set based on the performance considerations for
your application. To determine whether lazy-loading should be set to true or
false, lazy-loading is on or off, consider the following guidelines:

■ If you use most of the retrieved objects, then you should set the lazy-loading
option to false (use the default value).

■ If you set lazy-loading to true, the first time an object is accessed within a
transaction another select statement is executed, which results in a round-trip
between the container and the database. If you only access a limited set of the
retrieved or found objects, or are doing a find only to verify existence, setting
lazy-loading to true may improve performance.

■ You may want to enable lazy-loading, set the value to true, if the finder
method returns many rows with lots of data. With large data sets where the finder
method does not return quickly, it may be better to set lazy-loading to true,
enable lazy loading, so that the finder method returns quickly. After this, the
application accesses rows as needed and the initial finder method return wait time
can be reduced, which can improve application performance.

 To turn on lazy-loading in the findByPrimaryKey method, set the
findByPrimaryKey-lazy-loading attribute to true, as follows:

<entity-deployment ... findByPrimaryKey-lazy-loading="true" ... >

To turn on lazy-loading in any custom finder method, set the lazy-loading attribute
to true in the <finder-method> element for that custom finder, as follows:

<finder-method ... lazy-loading="true" ...>
...
</finder-method>

Setting The CMP Define Column Type Option
Setting the DefineColumnType option to true in server.xml can improve
performance for CMP entity beans, depending on the version of the JDBC driver.

Setting The Batch Size Option to Batch UPDATE statements
OC4J can improve performance by sending UPDATE statements in a batch. This is
beneficial when you have a lot of updates, more than 75% in the application. You can

See Also: "Setting the OC4J Define Column Type Option" on
page 6-8

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-35

configure to how many UPDATE statements to batch together to go out to the
database in one round trip by setting the batch-size element in entity-deployment
tag for your entity bean in the orion-ejb-jar.xml. The default value for
batch-size is 1, that is, updates are not batched.

There is one exception to the use of batch-size, that is, if the application code
requires execution of a SELECT statement within several UPDATE statements, the
updates batched prior to the SELECT statement will be executed against the database
before executing the SELECT statement. This is done so that all updates are performed
before you retrieve any data. If you know that it does not matter for this SELECT
statement to be performed, then you can stop the automatic flushing by specifying
delay-updates-until-commit to true for the bean.

Configuring Parameters for BMP Entity Beans
This section covers parameters that apply to entity beans using BMP. These parameters
are specified in the orion-ejb-jar.xml configuration file.

Table 6–9 lists the entity bean BMP specific parameters.

Table 6–9 BMP Entity Bean Performance Parameters and Descriptions

Parameter Description

call-timeout See Table 6–5

locking-mode The locking modes, specified with the locking-mode parameter, manage concurrency
and configure when to block to manage resource contention or when to execute in
parallel.

BMP beans must use optimistic locking, which allows concurrent access to a bean, and
the BMP bean is responsible for managing the database access and data consistency. It
is up to the BMP bean to manage isolation as well, and therefore the isolation settings
do not apply for BMP

Default Value: optimistic

max-instances See Table 6–5

max-tx-retries See Table 6–5

min-instances See Table 6–5

pool-cache-timeout This parameter specifies how long to keep BMP Entity Beans cached in the pool.

If you specify a pool-cache-timeout, then at every pool-cache-timeout
interval, all beans in the pool of the corresponding bean type, are removed. If the value
specified is 0 or negative, then the pool-cache-timeout is disabled and beans are
not removed from the pool. In some cases it may help performance to disable
pool-cache-timeout, or to set the pool-cache-timeout to a large value to avoid
removing beans from the pool.

Note: if min-instances is > 0, the min-instances number of instances are kept
in the pool after the pool cache timeout (that is, they are not expired).

Note: if you change the default value of the taskmanager-granularity attribute in
server.xml, this causes the pool-cache-timeout to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

Default Value: 60 (seconds)

Improving EJB Performance in Oracle Application Server

6-36 Oracle Application Server Performance Guide

Configuring Parameters for Session Beans
This section covers the parameters that are specified in the orion-ejb-jar.xml
configuration file and apply for session beans.

Table 6–10 lists the stateless session bean specific parameters.

Table 6–11 lists the stateful session bean specific parameters.

This section also covers the following topic:

■ Configuring Stateful Session Bean Passivation

■ Stateful Session Bean Passivation Performance Recommendations

Table 6–10 Stateless Session Bean Parameters

Parameter Description

call-timeout See Table 6–5

pool-cache-timeout This parameter specifies how long to keep stateless session EJBs cached in the pool.

For stateless session EJBs, if you specify a pool-cache-timeout, then at every
pool-cache-timeout interval, all beans in the pool of the corresponding bean type,
are removed. If the value specified is 0 or negative, then the pool-cache-timeout is
disabled and beans are not removed from the pool. In some cases it may help
performance to disable pool-cache-timeout, or to set the pool-cache-timeout
to a large value to avoid removing beans from the pool.

Note: if min-instances is > 0, the min-instances number of instances are kept
in the pool after the pool cache timeout (that is, they are not expired).

Note: if you change the default value of the taskmanager-granularity attribute in
server.xml, this causes the pool-cache-timeout to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

Default Value: 60 (seconds)

max-instances See Table 6–5

max-tx-retries See Table 6–5

min-instances See Table 6–5

Default Value: 0 (instances)

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-37

Table 6–11 Stateful Session Bean Parameters

Parameter Description

call-timeout See Table 6–5

idletime Specifies the idle timeout for each Session Bean. When the bean has been inactive
for the specified idletime, it is passivated. .

Default Value: 300 (seconds).

Note1: If the value specified for the timeout is less than the value specified with
idletime, then the bean will never be passivated.

Note2: if you change the default value of the taskmanager-granularity
attribute in server.xml, this causes the idletime to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

To disable, specify "never"

max-instances The number of bean instances allowed in memory. When this value is reached,
the container attempts to passivate the oldest bean instance from memory. If
unsuccessful, the container waits the number of milliseconds set in the
call-timeout attribute to see if a bean instance is removed from memory,
either using passivation, the remove() method, or bean expiration, before a
TimeoutExpiredException is thrown back to the client.

To allow an unlimited number of bean instances, set max-instances to 0. To
disable passivation due to reaching max-instances, set max-instances to 0.

See Table 6–5

max-instances-threshold Defines a threshold for how many active beans exist in relation to the
max-instances attribute definition. Specify an integer that is translated as a
percentage. For example, setting the max-instances to 100 and the
max-instances-threshold to 90 (90%), specifies that when active bean
instances reach past 90, passivation of beans occurs.

The number of beans that are passivated after crossing this threshold is specified
with the passivate-count parameter.

Default Value: 90%

To disable, specify "never"

max-tx-retries Ssee Table 6–5

memory-threshold Defines a threshold for how much used JVM memory is allowed before
passivation should occur. Specify an integer that is translated as a percentage.
When the threshold is reached, beans are passivated, even if their idle timeout
has not expired.

The number of beans that are passivated after crossing this threshold is specified
with the passivate-count parameter.

Default Value: 80%

To disable, specify "never"

Improving EJB Performance in Oracle Application Server

6-38 Oracle Application Server Performance Guide

Configuring Stateful Session Bean Passivation
Passivation for a Stateful Session Bean (SFSB) is invoked based on any combination of
the following criteria:

■ The idle timeout expires for a bean instance. The idle timeout is specified with the
idletime parameter.

■ The container is determined to be out of resources, where a resource to be
monitored is specified with the following parameters.

■ memory-threshold

■ max-instances-threshold

passivate-count This attribute is an integer that defines the number of beans to be passivated if
any of the resource thresholds have been reached. Passivation of beans is
performed using the least recently used algorithm.

Default Value: one-third of the max-instances attribute (if max-instances is
> 0). If max-instances is 0, passivate-count defaults to 0 (disabled).

To disable passivate-count, set the value to 0 or to a negative number.

resource-check-interval The container checks all resources at this time interval. At this time, if any of the
thresholds have been reached, passivation occurs.

Default Value: 180 seconds (3 minutes).

To disable, specify "never"

timeout Specifies the timeout for Stateful Session EJBs in seconds. If the bean has been
inactive for the specified timeout, the bean is invalidated or removed. If the
value is set to zero (0) or to a negative value, then the timeout is disabled.

When a Stateful Session EJB is inactive, after the timeout expires, it is
invalidated and a request for the bean returns NoSuchObjectException to the
client.

When the pool clean-up logic is invoked (by default every 30 seconds), the pool
clean-up logic invalidates or removes the sessions that timed out, (sessions with
expired timeout values).

Adjust the timeout based on your applications use of Stateful Session EJBs. For
example, if your application does not explicitly remove Stateful Session EJBs, and
the application creates many Stateful Session EJBs, then you may want to lower
the timeout value.

If your application requires that a Stateful Session EJBs be available for longer
than 1800 seconds, 30 minutes, then adjust the timeout accordingly.

Note 1: if you change the default value of the taskmanager-granularity
attribute in server.xml, this causes the timeout to be calculated based on the
new taskmanager-granularity. See "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29 for details.

Note2: If the value specified for the timeout is less than the value specified with
ideltime, then the bean will never be passivated.

Default Value: 1800 (seconds)

Note: If you use either of these parameters for container resource
control, then setting the resource-check-interval, and
passivate-count parameters is mandatory.

Table 6–11 (Cont.) Stateful Session Bean Parameters

Parameter Description

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-39

■ The number of bean instances allowed is reached as defined in the
max-instances parameter in the <session-deployment> element in
orion-ejb-jar.xml (see Table 6–11 for details).

■ The OC4J instance terminates: the non passivated beans in memory are flushed to
storage when the OC4J instance shuts down.

The attributes that control the Stateful Session Bean (SFSB) passivation management
are configured in the <session-deployment> tag of the orion-ejb-jar.xml file
for the deployed application.

Enabling passivation for the entire OC4J instance is configured at the container level in
server.xml using the <sfsb-config> tag with the attribute
enable-passivation. When enable-passivation=false this disables all the
bean level settings for passivation and disables passivation at OC4J instance
termination. When enable-passivation=true applications can control bean
passivation and passivation management using the passivation control parameters
(see Table 6–11 for details).

Passivation is enabled by default and each stateful session bean is configured to
passivate when any SFSB's idletime expires, by default after 5 minutes, and when
the OC4J instance terminates. By default, resource-based and max-instances based
passivation is not enabled.

Stateful Session Bean Passivation Performance Recommendations
The Stateful Session Bean (SFSB) activation and passivation model is analogous to
using swap space at the operating system level – when certain operating
characteristics are met, the in-memory state of qualified beans is flushed to disk,
allowing more users to be served.

There is a performance overhead involved with passivation (which makes additional
memory available). The overhead occurs when the state of the SFSB is written to disk,
and when the SFSB is subsequently reused and the SFSB must be read from disk and
activated. Therefore, if the configuration specified for the passivation parameters is
"incorrect", this can cause significant passivation activity, and the "extra" passivation
activity can degrade performance. Specifying passivation parameters with "incorrect"
values can also use up disk space when a large amount of state is maintained in the
SFSBs and when the beans are not expired (or do not expire for a very long time).

When your application is not affected by memory limitations, the best performance for
SFSBs is achieved by disabling passivation completely, system wide, in server.xml,
or by setting parameters for each individual bean so that SFSB passivation is rarely
used.

If the OC4J instance has passivation enabled, it will always passivate active beans in
memory at shutdown.

To turn off all other kinds of passivation for individual beans, use the following
parameters with the following values (see Table 6–11 for details):

idletime=never
passivate-count=0
max-instances=0

See Also:

■ "Setting the OC4J Options for Stateful Session Bean Passivation
in server.xml" on page 6-18

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide for information on EJB Lifecycle Issues

Improving EJB Performance in Oracle Application Server

6-40 Oracle Application Server Performance Guide

max-instances-threshold=never
memory-threshold=never
resource-check-interval=never

When disabling passivation for an individual bean, note the following:

■ If you explicitly set passivate-count=0, this also disables
memory-threshold and max-instances-threshold.

■ If you explicitly set resource-check-interval=never, this also disables
memory-threshold and max-instances-threshold.

■ You can passivate based on max-instances with or without setting a
max-instances-threshold.

If you enable passivation to help control memory usage, you can improve performance
by limiting the use of passivation (when possible). The following options are available
to help control memory usage by SFSBs without requiring passivation:

■ Using Timeouts: specify the minimum timeout for the SFSB that your application
requirements allow (using the timeout attribute specified in
orion-ejb-jar.xml, see Table 6–11 for details). When a SFSB expires due to
timeout, it is removed and not passivated (if it reaches timeout before the idletime
timeout and before other passivation criteria are reached).

■ Using the remove() method: if you know in the application when you are done
using a particular SFSB, then you should call the bean remove() method to
release its memory rather than letting the bean timeout or be passivated.

The following are additional guidelines to help you decide if you need to use
passivation:

1. Generally, if you do not reuse SFSBs quickly, then set the timeout and the
idletime so the beans are removed without requiring passivation. To prevent
passivation, set the timeout to be short and set the idletime to a long time, or to
never, so that beans are not passivated before being removed (if you have
sufficient memory to handle the load).

For example, consider an application where you create 1000's of SFSBs within 5
minutes, and you expect most of these beans to be idle for at least 5 minutes after
first use and subsequently reused within 30 minutes. The default timeout is 30
minutes and the default idletime is 5 minutes. Then, in this case, it would be good
to either increase the idletime to 30 minutes or disable passivation based on
idletime. This guideline helps avoid having 1000's of SFSB passivated to disk,
which has a costly performance overhead (the guideline also assumes you will not
run into memory limitations by making this configuration change).

2. Consider setting max-instances, idletime, or memory resource thresholds to
limit the number of beans in memory if:

■ You cannot fit all the SFSBs your client load generates and needs over a period
of time (the timeout period of time) in memory.

■ You do want to save the state, since you know you will typically reuse it.

■ You cannot reduce the timeout for the SFSBs to reduce how many are saved.

3. You can look at the metrics for the methods create, ejbPassivate,
ejbActivate, and ejbRemove on the SFSB to see how many stateful beans are
created and how much passivation is occurring.

4. Set task-manager-granularity to 1000 to get greater accuracy on tasks
occurring near the timeout values for EJBs.

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-41

Configuring Parameters for Message Driven Beans (MDBs)
This section covers the EJB parameters specified in the orion-ejb-jar.xml
configuration file that apply for Message Driven Beans (MDBs).

Table 6–12 lists the MDB specific parameters.

See Also: "EJB Timeouts Using a Non-default
taskmanager-granularity" on page 6-29

See Also: "Java Message Service" in the Oracle Application Server
Containers for J2EE Services Guide for information on using MDBs
with OracleAS JMS and OJMS

Table 6–12 Message Driven Bean orion-ejb-jar.xml Parameters

Parameter Description

dequeue-retry-count Specifies how many times the listener thread is to try to re-acquire the JMS session
once a database failover has occurred. Setting the dequeue-retry-count can be
useful when running with a RAC-enabled database cluster.

Note: this parameter only applies to OJMS.

Default Value: 0

dequeue-retry-interval Specifies how often the listener thread is to try to re-acquire the JMS session once a
database failover has occurred. Setting the dequeue-retry-interval can be
useful when running against a RAC-enabled database cluster.

Note: this parameter only applies to OJMS.

Default Value: 60 (seconds)

listener-threads If set to a value greater than 1, listener-threads enables multiple instances of
the MDB to concurrently process messages from queues. Use
listener-threads=1 if the messages must be processed in order.

See Also: "Using The listener-threads MDB Parameter" on page 6-42 for a detailed
description of the listener-threads parameter and for limitations.

Default Value: 1

transaction-timeout Specifies the maximum time taken for a transaction to finish before it is rolled back
due to a timeout (this parameter only applies for an MDB that uses
container-managed transactions). The MDB transaction timeout timer starts when
the listener thread starts listening for a new message.

Note: the server.xml timeout value, specified with transaction-config
timeout does not apply to MDB operations.

Set the transaction-timeout to a value that is greater than the longest
expected transaction time. If the transaction-timeout is set too small, this can
cause unnecessary rollback and retry overhead. When a timeout occurs, the MDB
automatically does a rollback of the current transaction and the associated
messages will be redelivered for retry.

To check for transaction-timeouts, view the application.log for entries
containing the following:

javax.transaction.SystemException(timed out)

Default Value: 86,400 seconds (1 day)

When using OracleAS JMS, the transaction timeout cannot be altered from the
default value.

Improving EJB Performance in Oracle Application Server

6-42 Oracle Application Server Performance Guide

Using The listener-threads MDB Parameter
Setting the listener-threads parameter for an MDB can improve performance
when there are many concurrent users sending messages to an MDB’s queue, or when
the processing that occurs in the onMessage method is significant. For example, if the
onMessage method contains code to call another EJB and the EJB processing can
occur concurrently while processing other messages, then specifying a
listener-threads value greater than one can improve performance. Depending on
the underlying JMS provider and the specific MDB, some applications may see
significant performance improvements by increasing the number of listener threads.

When the listener-threads parameter is specified for an MDB, the OC4J runtime
creates the specified number of threads to service messages for the MDB and specifies
the degree of parallelism for the MDB. The listener threads are created when the MDB
starts at OC4J startup.

For example, if a queue contains 100 messages, and the listener-threads
parameter is set to the default value, 1, then only one MDB listener-thread processes
the messages, in a serial fashion. If the listener-threads parameter is set to 5,
there can be a maximum of 5 MDB instances that take messages from the queue, and
process the messages in parallel. The total time required to complete the processing for
100 messages can be shortened since OC4J uses 5 MDB threads to dequeue and
process the messages.

In a multiuser test, with 10 users, where listener-threads is set to 5, compared to
using the default value, 1, end-to-end performance improved by a factor of 2. This test
involved a Servlet sending a message to an Oracle JMS queue, and then the MDB
receiving the message from the queue and sending a reply to a reply queue.

In another test, using OracleAS JMS with listener-threads set to 5, compared to
the default value 1, throughput increased by 27%.

Notes for using listener-threads:

1. The number of listener-threads is included in the total global thread pool
thread count specified using the max thread pool parameter. Consider that the
listener-threads number of threads will be dedicated to MDB processing;
therefore, you need to allocate this number, plus sufficient additional threads in
the global thread pool to handle other OC4J processing.

2. When using OJMS, the number of listener-threads is also the number of
dedicated database connections that the MDB uses. So, the number of
listener-threads must be included in the total datasource specified
max-connections count.

3. The listener-threads parameter is not supported for topics. Thus, topics can
have at most one thread processing in an MDB.

Note: Using the listener-threads parameter, any
performance improvement depends on the application and on the
number of threads specified. Specifying a value that is too large
may cause performance to degrade due to resource contention.

See Also: "Limiting Concurrency In OC4J" on page 6-18

See Also: "Setting the Maximum Open Connections in Data
Sources" on page 6-11

Improving EJB Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-43

4. Using listener-threads with a value greater than 1, messages are still
removed from a queue serially, but the order of processing the messages cannot be
guaranteed since the MDB is processing the messages with multiple threads. Use
listener-threads=1, the default value, when the order of message processing
is important. This assumes that the MDB is solely responsible for receiving
messages from the queue.

Using Performance Metrics for MDB Messages
When MDBs use OracleAS JMS as a message provider, DMS message related metrics
are available from the Oracle Application Server performance monitoring tools.

For example, the OracleAS JMS JMSStoreStats metric table includes information
for a destination corresponding to a queue that an MDB uses:

destination.value: name
messageDequeued.count: x ops
messageEnqueued.count: x ops
messageCount.value: n
These metrics show the destination name, the total messages enqueued, the total
number of messages dequeued, and the total number currently in the queue.

Setting up JMS Connections in MDB ejbCreate or onMessage Methods
An MDB is stateless and contains no specific client state across invocations. However,
for non-client related state, an MDB instance can contain some state across the
handling of client messages. For example, state can be maintained for a JMS API
connection object. In addition, other state information that you may want to cache
across onMessage invocations, such as a reference to an EJB, can be initialized in
ejbCreate method and cached to optimize MDB performance. Depending on the
application and the message provider, you may be able to improve performance by
selecting when JMS connections, JMS sessions, and other objects are initialized, either
in the MDB ejbCreate method or in onMessage.

Table 6–13 summarizes some performance recommendations for selecting when to
create JMS connections and JMS sessions using OracleAS JMS and Oracle JMS (OJMS).

Note: When monitoring a JMS destination, other applications
besides the MDB may access the destination. Thus, when testing
your application’s performance using the metrics, make sure that
you know whether your application is responsible for message
activity reported in the metrics.

See Also: "OC4J JMS Metrics" on page A-14

Table 6–13 JMS Performance Recommendations With ejbCreate and onMessage

JMS Provider Performance Recommendation

OracleAS JMS To optimize performance initialize the JMS connection and session once in the MDBs
ejbCreate() method, and use repeatedly across onMessage invocations.

Oracle JMS You cannot cache JMS sessions to the database across onMessage invocations. So, for any
queues or Topics used in an MDB, you should set up the Queue or Topic Connection, Session,
and Sender in the onMessage method of the MDB, and close them at the end of onMessage
method. Do not create these objects in the ejbCreate() method of the MDB and then leave
them open indefinitely, since these objects open and close logical connections to the database.
The overhead of opening and closing connections and sessions in the onMessage method
should not be significant, and the physical connections can then be reused.

Improving Web Services Performance in Oracle Application Server

6-44 Oracle Application Server Performance Guide

Improving Web Services Performance in Oracle Application Server
In Oracle Application Server, the tuning guidelines for J2EE applications in general
apply to Web Services. Specifically, because Web Services use Java Servlets for entry
points, the guidelines for improving Servlet Performance apply to Oracle Application
Server Web Services. In addition, when a Web Service is implemented as an EJB, the
performance guidelines for EJBs apply.

This section covers the following topics:

■ Avoiding Web Services Initial Request Delay

■ Using Web Services Typed Requests

■ Tuning The Web Services Stateful Session Timeout

Avoiding Web Services Initial Request Delay
Oracle Application Server Web Services may experience an initial request delay due to
the work required to validate data types and to generate server skeleton code. As a
result, the initial Web Service request takes substantially longer than subsequent
requests. In our tests, we see the first test taking 5 to 10 times as long as subsequent
requests. The delay is increased when Java Beans are used to represent complex
parameter and result sets.

To prevent this delay, send a request to Web Services on the system when the system is
restarted or when the application is redeployed. You can also produce a script to send
the initial Web Service request.

Using Web Services Typed Requests
There is a performance overhead associated with using Web Services untyped
requests. When possible, develop clients that use typed requests as un-typed requests
will take more time on the first request when the SOAP Mapping registry is created for
the operation types.

Tuning The Web Services Stateful Session Timeout
When using Stateful Session based Web Services, tuning the session-timeout
property for session-scoped stateful applications can provide performance benefits.
The HTTP session timeout is specified in the web.xml configuration file as the
<session-timeout> sub-element of the <session-config> element.

Improving ADF Performance in Oracle Application Server
This section contains tips for improving the maintainability, scalability, and
performance of your Oracle Application Development Framework (ADF) applications.

See Also: "Improving Servlet Performance in Oracle Application
Server" on page 6-19

See Also: Chapter 12, "Advanced Topics for Web Services" in the
Oracle Application Server Web Services Developer’s Guide for more
information.

See Also: Chapter 2, "Servlet Development" in Oracle Application
Server Containers for J2EE Servlet Developer’s Guide

Improving ADF Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-45

Choose the Right Deployment Configuration
Your application will have the best performance and scalability if you deploy your
business components to the web module with your client. Unless you have strong
reasons (such as wanting to use distributed transactions or EJB security features), we
recommend web module deployment of business components over EJB deployment.

Note that both web module deployment and EJB deployment are fully
J2EE-compliant, and the ADF framework makes it easy to switch between them. You
can test your application in both modes to see which gives you the best performance.

Use Application Module Pooling for Scalability
A client can use application module instances from a pool, called application module
pooling. This offers these advantages:

■ It reduces the amount of time to obtain server-side resources

■ It allows a small number of instances to serve a much larger number of requests

■ It addresses the requirements of web applications that must handle thousands of
incoming requests

■ It lets you preserve session state and provides failover support

For example, in the case of a web application, you may have 1,000 users but you know
that only 100 will be using a certain application module at one time. So you use an
application module pool. When a client needs an application module instance, it takes
a free one from the pool and releases it to the pool after either committing or rolling
back the transaction. Because the instance is precreated, end users are saved the time it
takes to instantiate the application module when they want to perform a task.
Typically, web-based JSP clients use pools. If you want to make sure that the
application module pool has a maximum of 100 application module instances, you can
customize the default application module pool.

Perform Global Framework Component Customization Using Custom Subclasses
Particularly in large organizations, you may want specific functionality shared by all
components of a particular type--for example, by all view objects. An architect can
create a thin layer of classes such as MyOrgViewObjectImpl that implement the
desired behavior. Individual developers can extend MyOrgViewObjectImpl instead
of ViewObjectImpl, and you can use the "substitutes" feature to extend
MyOrgViewObjectImpl in legacy code.

Use SQL-Only and Forward-Only View Objects when Possible
Basing a view object on an entity object allows you to use the view object to insert,
update, and delete data, and helps keep view objects based on the same data
synchronized. However, if your view object is only going to be used for read-only
queries, and there is no chance that the data being queried in this view object will have
pending changes made through another view object in the same application module,
you should use a SQL-only view object that has no underlying entities. This will give
you improved performance, since rows do not need to be added to an entity cache.

If you are scrolling through data in one direction, such as formatting data for a web
page, or for batch operations that proceed linearly, you can use a forward-only view
object. Forward-only mode prevents data from entering the view cache. Using forward
only mode can save memory resources and time, because only one view row is in
memory at a time. Note that if the view object is based on one or more entity objects,

Improving ADF Performance in Oracle Application Server

6-46 Oracle Application Server Performance Guide

the data does pass to the entity cache in the normal manner, but no rows are added to
the view cache.

Do Not Let Your Application Modules Get Too Large
A root application module should correspond to one task--anything that you would
include in a single database transaction. Do not put more view objects or view links
than you will need for a particular task in a single application module.

In addition, consider deferring the creation of view links by creating them dynamically
with createViewLink(). If you include all view links at design time, the business
logic tier will automatically execute queries for all detail view objects when your client
navigates through a master view object. Deferring view link creation will prevent the
business logic tier from executing queries for detail view objects that you do not yet
need.

For example, for a form in which detail rows are displayed only on request (rather
than automatically), including a view link at design time would force the business
logic tier to automatically execute a query that might well be unnecessary. To prevent
this, you should create a view link dynamically when the detail rows are requested. By
contrast, for a form in which detail rows are displayed as soon as a master is selected,
you should use a view link created at design time to avoid the runtime overhead of
calling createViewLink().

Use the Right Failover Mode
By default, the application module pool supports failover, which saves an application
module’s state to the database as soon as the application module is checked into the
pool. If the business logic tier or the database becomes inoperable in mid-transaction
(due to a power failure or system malfunction, for example), the client will be able to
instantiate a new application module with the same state as the lost one, and no work
will be lost.

However, some applications do not require this high level of reliability. If you’re not
worried about loss of work due to server problems, you may want to disable failover.
When failover is disabled, the application module’s state exists only in memory until it
is committed to the database (at which point the application module’s state is
discarded) or recycled (at which point the state is saved so that the client can retrieve
it). By not saving the application module state every time the application module is
checked in, failover-disabled mode can improve performance.

Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows
While the business logic tier is running, it stores view rows in a cache in memory (the
Java heap). When the business logic tier needs to store many rows at once, you need to
make sure it doesn’t run out of memory. To do so, you can specify that when the
number of rows reaches a certain size, the rows "overflow" to your database to be
stored on disk. This feature is called view row spillover. If your application needs to
work with a large query result, view row spillover can help the cache operate more
efficiently.

Choose the Right Style of Bind Parameters
Oracle-style bind parameters (:1, :2, and so on) are more performant than JDBC-style
bind parameters.

Only use JDBC-style bind parameters if you may use a non-oracle JDBC driver.

Improving JAAS (JAZN) Performance in Oracle Application Server

Optimizing J2EE Applications In OC4J 6-47

Implement Query Conditions at Design Time if Possible
You should include any portion of your query condition that you know in advance in
the WHERE clause field in the View Object wizard. Only use setWhereClause() for
genuinely dynamic query conditions.

Even if your query conditions are genuinely dynamic, you may be able to use
parametrized queries instead of setWhereClause(). For example, if your view
object needs to execute a query with the WHERE clause EMPLOYEE_ID=<x> for various
values of x, use a parametrized WHERE clause such as EMPLOYEE_ID=:1. This is more
efficient than repeatedly calling setWhereClause().

Use the Right JDBC Fetch Size
The default JDBC fetch size is optimized to provide the best tradeoff between memory
usage and network usage for many applications. However, if network performance is
a more serious concern than memory, consider raising the JDBC fetch size.

Turn off Event Listening in View Objects used in Batch Processes
In non-interactive, batch processes, there is no reason for view objects to listen for
entity object events. Use ViewObject.setListenToEntityEvents(false) on
such view objects to eliminate the performance overhead of event listening.

Improving JAAS (JAZN) Performance in Oracle Application Server
The Java Authentication and Authorization Service (JAAS) is a package that supports
user and role-based authorization, authentication, and delegation. Part of JAAS is an
implementation of the standard Pluggable Authentication Module (PAM) framework
in Java, which supports the separation of an application from its underlying
authentication technologies. Oracle Application Server provides an integrated JAAS
implementation with OC4J called JAZN and provides a login module, out of the box,
that supports several common forms of authentication.

When performing authentication and authorization operations, JAZN accesses a
repository of data that defines users, roles, permissions, and related information. The
characteristics of the repository are important to the performance and scalability of
applications that use JAZN.

Oracle Application Server JAZN provides two types of repository provider for use
with OC4J:

■ XML provider – The XML provider stores repository information in an XML file

■ LDAP provider – The LDAP provider stores repository information in the Oracle
Internet Directory, which is accessed using the Lightweight Directory Access
Protocol (LDAP)

This section covers the following topics:

■ Improving JAZN Performance With an XML Provider

■ Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory)

■ Configuring JAZN Providers

■ JAZN Performance Recommendations

Improving JAAS (JAZN) Performance in Oracle Application Server

6-48 Oracle Application Server Performance Guide

Improving JAZN Performance With an XML Provider
When OC4J with JAZN is configured to use the XML provider, JAZN loads the entire
XML file into a data structure in memory for fast access. In terms of performance, this
process incurs a small start-up cost, but if the file is not too large and the data in the
file can be retained in physical memory, data access will be very efficient and JAZN
operations should incur little overhead.

Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory)
When OC4J applications using JAZN are configured to use an LDAP provider, the
LDAP repository is queried for data on demand. In this case, a single operation may
involve multiple accesses to a remote directory, and the overhead for JAZN protection
can become significant. Such overhead can be even greater if secure communications
are required between OC4J and the repository which typically requires using SSL.
When JAZN is configured to communicate with the LDAP repository using SSL, the
performance issues of the SSL protocol should be considered.

 There are several configuration choices to make when you set up SSL between OC4J,
and LDAP (Oracle Internet Directory). SSL can be configured to use encryption only,
or encryption plus client or server authentication.

To alleviate the costs of communicating with an LDAP repository, OC4J JAZN
provides caches, including the following three separate caches:

■ The Policy Cache: stores grantees and permissions

■ The Realm Cache: stores realms, users and roles

■ Session cache: stores users and roles in an HTTP session object

The JAZN-LDAP caches are implemented as a single, in-memory hashtable. Objects in
the cache are expired based on a configurable timeout value. A daemon thread runs
periodically, at the timeout interval, to clean up expired objects in the cache. Each of
the three caches can be enabled or disabled, and the initial capacity, load factor, initial
cache purge delay, and cache purge timeout value can all be specified.

By default, the JAZN LDAP Provider is configured to use caching. Caching greatly
improves the efficiency of using JAZN with an LDAP-based repository. Our
experiments have shown the default values of cache configuration often work well,
but you may need to test these values to determine how your application performs
using JAZN.

Configuring JAZN Providers
Oracle Application Server OC4J provides an integrated JAAS implementation with
OC4J. To configure the JAAS provider, you use jazn.xml to determine if the provider
is LDAP-based, uses Oracle Internet Directory as the data store, or XML based.

The file jazn.xml is the configuration file for both the XML-based and LDAP-based
JAAS providers. The JAAS Provider must locate a valid jazn.xml file before it can
begin running.

See Also: Oracle Application Server Containers for J2EE Security
Guide

See Also:

■ Oracle Application Server Containers for J2EE Security Guide

■ Oracle Internet Directory Administrator’s Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

Optimizing J2EE Applications In OC4J 6-49

When the JAAS provider starts up, it searches for jazn.xml in order through the
directories specified by:

1. oracle.security.jazn.config (system property)

2. java.security.auth.policy (system property)

3. $J2EE_HOME/config ($J2EE_HOME is specified by the system property
oracle.j2ee.home)

4. $ORACLE_HOME/j2ee/home/config ($ORACLE_HOME is specified by the
system property oracle.home)

5. . ./config

The JAAS provider stops searching after locating a jazn.xml file. If no file is found,
you receive the error message "JAZN has not been properly configured."

You can also use the <jazn> tag to configure the JAAS Provider. The <jazn> tag can
appear in any of the following locations:

■ The application’s orion-application.xml

■ The global application.xml

■ jazn.xml

Configuring Session Timeout in web.xml
The JAZN session cache can only be used by HTTP clients that have cookies enabled.
Objects in this cache are held for the duration of an HTTP session. The HTTP session
timeout is specified in the web.xml configuration file as the <session-timeout>
sub-element <session-config> element.

JAZN Performance Recommendations
The following recommendations should help you to meet the performance
requirements for applications that use JAZN for authentication and authorization:

1. If the JAZN XML file-based repository is sufficient for your needs, it is likely to
provide the best performance.

2. If an LDAP repository is required, for management, usability, or scalability
reasons, use the JAZN-LDAP caches. Configure the cache parameters as needed to
improve performance.

3. If an LDAP repository is required, and if secure communications are needed
between the LDAP repository and OC4J, configure the system to use only the level
of security required. For example, use encryption only if that is sufficient.

Using Multiple OC4Js, Limiting Connections and Load Balancing
This section outlines areas that allow you to improve performance by setting the
number of processes in an OC4J Instance, by directing requests to different OC4J
Instances, and by limiting the number of requests sent to an OC4J Instance. These
techniques spread the J2EE application load and the incoming requests among

See Also: Oracle Application Server Containers for J2EE Security
Guide

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

6-50 Oracle Application Server Performance Guide

multiple OC4J processes which generally results in higher throughput and shorter
response time. In addition, multiple OC4J processes are needed for load-balancing,
high availability, and failover.

This section provides links to other Oracle Application Server documents and sections
in this guide that show you how to configure and use multiple OC4Js.

This section covers the following topics:

■ Configuring Multiple OC4J Processes

■ Load Balancing Applications

■ Limiting Connections

■ Controlling Replication With Multiple OC4Js

Configuring Multiple OC4J Processes
This section covers the following:

■ Overview of Types of OC4J Configurations

■ Determining the Number of OC4J Processes

■ Partitioning Applications into Different OC4J Instances

■ Configuring Multiple OC4J Processes Using Application Server Control Console

Overview of Types of OC4J Configurations
Oracle Application Server supports different types of installations and configurations,
where you can run multiple OC4Js, including the following:

■ A standalone Oracle Application Server Instance with multiple OC4J Instances
(each OC4J Instance may include multiple OC4J processes).

■ Oracle Application Server Clusters, managed, where a collection of application
server instances runs with identical configurations and application deployments.

■ Oracle Application Server Clusters, non-managed, where the administrator
manually configures each instance within a cluster.

■ A single or multiple hosts running standalone OC4J.

Determining the Number of OC4J Processes
Determining the optimal ratio of OC4J processes to available CPUs is dependent on
the characteristics of the applications you run, the OC4J configuration, the hardware
configuration, and the type and number of expected incoming requests. In general, for
multi-CPU configurations with greater than two processors, you should consider
configuring multiple OC4J processes. For example, on a recent test of a J2EE
application, a single OC4J process was sufficient to use most of the CPU resources on a
2 processor system. Adding additional OC4J processes will not help improve
performance on this system. However, on a six processor system, a single OC4J
process uses only 70% of the CPU resources. Since additional CPU resources are
available on this system, adding a second OC4J process should improve performance.

Note: The replication features that provide for failover with Web
sessions and for stateful session EJBs have a performance overhead;
only use these features when failover features are needed.

Using Multiple OC4Js, Limiting Connections and Load Balancing

Optimizing J2EE Applications In OC4J 6-51

Adding processes beyond the available resources of the system will not improve
performance. For example, if one OC4J process is sufficient to saturate the CPU
resources of a system, adding additional processes is not likely to improve
performance and may, in fact, degrade it. A good starting point is to configure one
OC4J process for every 3-4 CPUs and measure the improvement from adding
additional processes.

Partitioning Applications into Different OC4J Instances
If your Oracle Application Server has many different applications deployed, each of
which has different requirements, you may want to configure different OC4J Instances
to service the different applications (and OC4J Instances may be configured with
different numbers of OC4J processes).

To deploy applications to different OC4J Instances, perform the following steps:

1. Create the multiple OC4J Instances.

2. Use the Deploy Application Wizard, by selecting the Deploy Ear File button, on
each Instance, and deploy the appropriate application and specify a unique URL
mapping for each of the applications.

After deploying the applications to different OC4J Instances, you can monitor the
performance to see if overall throughput increases, or the response time decreases.

Configuring Multiple OC4J Processes Using Application Server Control Console
Using Application Server Control Console you can specify the number of processes in
an OC4J Instance from the Server Properties page. This page is available by selecting
the Administration link from an OC4J Instance page.

Load Balancing Applications
OC4J provides load-balancing features for web-based applications with HTTP clients
and for EJB applications accessed by remote Java EJB clients.

This section covers the following topics:

■ Web Application Load Balancing

■ EJB Application Load Balancing

Web Application Load Balancing
In an Oracle Application Server environment, the Oracle HTTP Server uses mod_oc4j
to load balance requests between the available OC4J processes. In this environment
you can select mod_oc4j configuration options to choose the appropriate mod_oc4j
load balancing policies to improve performance.

See Also:

■ Oracle Application Server High Availability Guide

■ Oracle Application Server Containers for J2EE User’s Guide

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide

See Also: Oracle Application Server High Availability Guide

See Also: "Setting mod_oc4j Load Balancing Policies" on
page 5-16

Using Multiple OC4Js, Limiting Connections and Load Balancing

6-52 Oracle Application Server Performance Guide

EJB Application Load Balancing
After an EJB application is deployed to multiple OC4Js, an EJB client-side application
can load balance its requests across the available OC4Js. To use load balancing, the
client-side application configures the JNDI properties to use load balancing.

There are three ways that the EJB client-side application can set the JNDI properties,
including:

■ Setting the properties in the environment passed to the InitialContext

■ Setting the properties in the jndi.properties file

■ Setting the JVM system parameters on the client-side OC4J

This section shows the EJB client-side properties that are specified in the
jndi.properties file. This section shows the load balancing related properties, but
does not include all the available properties.

Setting the JNDI java.naming.factory.initial Property

The java.naming.factory.initial property specifies the initial context factory
to use.

Setting the JNDI java.naming.provider.url Property

Oracle Process Manager and Notification Server (OPMN) dynamically sets all ports,
including the RMI port, when each OC4J instance starts.

Using the java.naming.provider.url property in the EJB client-side JNDI
properties, the client-side OC4J retrieves a list of the available dynamic ports for the
OC4J instance, and if the OC4J instance is part of a cluster, a list of all the available
dynamic ports for that instance across the cluster. If the list includes more than one
port, the EJB client-side code randomly picks one port from the list to send your
requests to. All EJB lookups using that InitalContext will go to the selected host.

Use the following syntax for setting the URL, including the opmn:ormi: prefix for the
java.naming.provider.url property:

opmn:ormi://opmn_host:opmn_port:oc4j_instance/application-name

The OPMN host name, opmn_host, and port number, opmn_port, is retrieved from
the $ORACLE_HOME/opmn/conf/opmn.xml file.

In most cases, OPMN is located on the same machine as the OC4J instance. However,
you must specify the host name in case it is located on another machine. The OPMN
port number is optional; if excluded, the default is port 6003. The OPMN port is
specified in the file $ORACLE_HOME/opmn/conf/opmn.xml.

See Also:

■ "Setting JNDI Properties", in Chapter 2 of Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Chapter 10, in Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide for more information on
load-balancing EJBs

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

Optimizing J2EE Applications In OC4J 6-53

Setting the JNDI java.naming.provider.url Property in Standalone OC4J

For standalone OC4J, specify the java.naming.url property using a comma
separated list of URLs including the ormi: prefix and the hosts where OC4J runs. This
load-balances EJB client get InitialContext requests randomly across the hosts and
OC4J processes specified in the comma separated list. All EJB lookups using that
InitalContext will go to the selected host.

The syntax for specifying each URL for a host is as follows:

ormi://hostname:ormi_port/application-name

The ORMI port, ormi_port, can be omitted if the port is the default ORMI port
number (23791).

For example, to load balance to my_ejb_app that is running on host1, host2, and
host3, set the property java.naming.provider.url as follows:

java.naming.provider.url=ormi://host1:23791/my_ejb_app,ormi://host2:23792/my_ejb_
app,ormi://host3:23791/my_ejb_app

Setting the JNDI java.naming.security.principal Property

Setting the java.naming.security.principal property specifies the username.

Setting the JNDI java.naming.security.credentials Property

Setting the java.naming.security.credentials property specifies the password.

Setting the OC4J Dedicated RMI Context Option for Remote EJB Clients

When you set the property dedicated.rmicontext=true, then each initial context
lookup receives its own InitialContext instead of a shared context. This option is only
needed if an EJB client is doing multiple initial context lookups within the same JVM
and you want to use load balancing.

When the property dedicated.rmicontext is false, OC4J load balances only on
the first get initial context call. This dedicated.rmicontext property is set to
false by default.

Limiting Connections
This section covers the following topics:

■ Limiting Web Connections

■ Limiting Remote EJB Client Connections

■ Limiting HTTP Connections with Standalone OC4J

Limiting Web Connections
You can improve J2EE application performance by limiting the number of active HTTP
concurrent connections a given site accepts. Using Oracle HTTP Server with mod_

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Using Multiple OC4Js, Limiting Connections and Load Balancing

6-54 Oracle Application Server Performance Guide

oc4j, you can limit the number of incoming requests by setting the MaxClients
parameter in httpd.conf.

Limiting Remote EJB Client Connections
To limit remote EJB client connections, you can use the global thread pool features that
control the maximum number of threads that service incoming EJB clients. By
configuring the <global-thread-pool> in server.xml to use two thread pools,
you can set the parameter cx-max to limit remote EJB client connections.

Limiting HTTP Connections with Standalone OC4J
If you are using standalone OC4J you can limit the number of active web users an
OC4J site accepts concurrently by constraining the maximum allowable HTTP
connections. Tuning parameters on a standalone OC4J can improve performance if
there are a large number of concurrent users that the system cannot efficiently handle,
or when there are limited resources which you cannot easily constrain.

To limit the HTTP connections, use the max-http-connections configuration
element in server.xml and specify the attributes: value,
max-connections-queue-timeout, and socket-backlog. The default value is
1000000, the default max-connections-queue-timeout is 10 seconds, and the
default socket-backlog is 30.

For example, the following shows a line of server.xml that configures the maximum
number of connections:

<max-http-connections max-connections-queue-timeout="120" socket-backlog="50"
value="100"/>

When you want messages to be redirected to a different URL when the maximum
connections limit is reached, include the HTTP redirect URL.

For example, to redirect to http://example.com/page.jsp, add the following line
to server.xml:

<max-http-connections max-connections-queue-timeout="120" socket-backlog="50"
value="100"> http://example.com/page.jsp
</max-http-connections>

See Also: "Configuring Oracle HTTP Server Directives" on
page 5-8

See Also: "Limiting Concurrency In OC4J" on page 6-18

See Also: Appendix A, "Additional Information" in the Oracle
Application Server Containers for J2EE User’s Guide for
information on <max-http-connections> attributes

Performance Considerations for Deploying J2EE Applications

Optimizing J2EE Applications In OC4J 6-55

Controlling Replication With Multiple OC4Js
This section covers the following:

■ Controlling Web Application Replication

■ Controlling Stateful Session EJB Replication

Controlling Web Application Replication
The replication features that provide for failover with Web sessions have a
performance overhead. You should only use these features when their use is a
requirement for the application or for the production environment.

You can disable replication for all applications running on OC4J using Application
Server Control Console. From the OC4J Instance page select the Administration Link.
Then, select the Replication Properties Link. On the Replication Properties page,
deselecting the Replicate session state checkbox turns off Web replication for the OC4J
Instance. This removes the <cluster-config> element from
global-web-application.xml and disables OC4J Web replication for all
applications running on the OC4J Instance.

If you do not want sessions to be replicated in a particular application, then remove
the <distributable/> element from the application’s web.xml file. This disables
replication for the application even if OC4J has enabled replication.

With replication enabled, setting the <distributable/> element in web.xml can
have significant performance overhead for applications that use sessions, since this
configures the application to use session replication.

Controlling Stateful Session EJB Replication
The replication features that provide for failover with stateful session EJBs have a
performance overhead. Therefore, you should only use these features when their use is
a requirement for your application or for your production environment.

Performance Considerations for Deploying J2EE Applications
Many factors have an impact on the time it takes to deploy J2EE Applications on OC4J
running in an Oracle Application Server environment.

This section covers the following:

■ Deployment Performance During the Application Development Phase

■ Deployment Performance During the Test and Production Phases

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Performance Considerations for Deploying J2EE Applications

6-56 Oracle Application Server Performance Guide

Deployment Performance During the Application Development Phase
The following development phase choices have an impact application deployment
time for applications that are deployed to OC4J.

■ JVM flags – The JVM –server flag is recommended for production use and is the
default for OC4J when running in an Oracle Application Server environment. We
have found –server usually improves performance in server environments.
However, using the –server option increases the time required to restart a JVM
and can require more memory.

■ Heap requirements – When you deploy large applications, if the deployment
triggers JVM garbage collection, you may improve performance by increasing the
size of the heap. Increasing the heap may provide enough memory so that the
garbage collection is avoided. To increase the size of the heap, use either the –mx
JVM option or set the ++AggressiveHeap option. In addition, if the system is
constrained for physical memory you may wish to shut down unused OC4J
instances to reclaim physical memory.

■ Application Type – EJB applications require a compilation phase during
deployment, and typically take longer to deploy than other type of J2EE
applications.

■ Browser type – The default configuration of Internet Explorer uses a buffer size of
8K. This size limitation can cause a delay in transmitting large files which can
result in a significant performance degradation on deployments of large
applications. We advise changing the configuration option to increase the buffer
size. For detailed instructions on changing the buffer size, see the following site,

http://support.microsoft.com/default.aspx?scid=kb;en-us;329781

This issue is also present with Netscape 7.0 and Mozilla 1.0.2., however we are not
aware of any workarounds. If you are using these browsers, you may decide to
use a different browser or manually copy the .ear file to the local host and deploy
using a command line tools (admin.jar or dcmctl). Netscape versions 4.79 and
7.1 do not exhibit this problem.

■ File system utilization – Deploying applications involves file I/O to the local
deployment directory. File I/O speeds may be impacted by the percentage
utilization of the file system. Consult your platform documentation for
recommendations about optimal utilization levels. However, many platform
vendors recommend maintaining file system utilization below 90% for optimal
performance.

See Also: "Setting Java Command Line Options (Using JVM and
OC4J Performance Options)" on page 6-3

See Also:

■ "Setting the JVM Heap Size for OC4J Processes" on page 6-3

■ "Setting the JVM AggressiveHeap Option for OC4J Processes"
on page 6-5

Performance Considerations for Deploying J2EE Applications

Optimizing J2EE Applications In OC4J 6-57

Deployment Performance During the Test and Production Phases
The following test or production phase choices have an impact on the time it takes to
deploy an application to OC4J.

■ Deployment Tool – For production use with Oracle Application Server, you must
deploy applications using either: dcmctl, Application Server Control Console, or
JDeveloper. If you use dcmctl to deploy applications and need to perform
multiple deploys or management commands, using the dcmctl shell mode
provides a minor performance savings. Using the shell mode, the dcmctl client
maintains a single client process for all the commands you run.

■ Repository Type – If you are using an Oracle Application Server with a database
repository, where the repository runs on a remote host, you may see slightly
higher deployment times depending on the network latency at your site.
Deploying to an Oracle Application Server with a local file-based repository
usually is the most performant. Your choice of repository type should be driven by
the availability and architectural requirements for your site and by application and
deployment requirements.

■ Oracle HTTP Server Process State – As a final phase of application deployment, if
the Oracle HTTP Server is running, OPMN issues a command to restart the Oracle
HTTP Server. This action updates the routing information for the newly deployed
application. If you have a number of applications to deploy, and you are not
running in a live production environment, you may wish to leave the Oracle HTTP
Server down until after all applications are deployed. This avoids repeated restarts
for the Oracle HTTP Server. However, restarting the Oracle HTTP Server only
takes a few seconds, depending on the system speed, so the performance savings
is not dramatic unless you are deploying a large number of applications.

■ OC4J Process State – If the OC4J instance that you wish to deploy to is not started
at the time the deploy command is issued, OPMN will start the instance and then
shut it down when the deployment is complete. Again, these restart times are
primarily significant when you are deploying multiple applications.

■ Heap requirements – When you deploy large applications, the deployment may
trigger JVM garbage collection. In memory-constrained environments, where you
cannot increase the size of the heap to provide enough memory so that the
garbage collection is avoided, then, typically, the only result of a garbage collection
is an increase is the application deployment time (and an increase in response
times for requests to the OC4J instance or request timeouts). However, if the
application being deployed is extremely large, the extended duration of the
garbage collection may trigger OPMN to restart the OC4J instance.

To avoid OC4J restarts, increase the OPMN ping failure limit by setting values for
the no-reverseping-failed-ping-limit and
reverseping-failed-ping-limit parameters in opmn.xml. For example,
set these values as follows:

<category id="restart-parameters">
 <data id="no-reverseping-failed-ping-limit" value="2"/>
 <data id="reverseping-failed-ping-limit" value="10"/>
</category>

The default value for no-reverseping-failed-ping-limit is 1 and the
default value for reverseping-failed-ping-limit is 3.

See Also: Oracle Application Server High Availability Guide

Performance Considerations for Deploying J2EE Applications

6-58 Oracle Application Server Performance Guide

Optimizing OracleAS Web Cache 7-1

7
Optimizing OracleAS Web Cache

This chapter provides guidelines for improving the performance of Oracle Application
Server Web Cache (OracleAS Web Cache).

This chapter contains the following topics:

■ Use Two CPUs for OracleAS Web Cache

■ Configure Enough Memory for OracleAS Web Cache

■ Make Sure You Have Sufficient Network Bandwidth

■ Set a Reasonable Number of Network Connections

■ Tune Network-Related Parameters

■ Increase Cache Hit Rates

■ Check Application Web Server and Web Cache Settings to Optimize Response
Time

See Also: Oracle Application Server Web Cache Administrator’s Guide
for more information about using OracleAS Web Cache.

Use Two CPUs for OracleAS Web Cache

7-2 Oracle Application Server Performance Guide

Use Two CPUs for OracleAS Web Cache
OracleAS Web Cache can make best use of one or two CPUs. Because OracleAS Web
Cache is an in-memory cache, it is rarely limited by CPU cycles. Additional CPUs do
not increase performance significantly. However, the speed of the processors is
critical—use the fastest CPUs you can afford.

Note that OracleAS Web Cache is limited by the available addressable memory.
Additional memory can increase performance and scalability. See "Configure Enough
Memory for OracleAS Web Cache" on page 7-2 for information about the amount of
memory needed.

OracleAS Web Cache has two processes: one for the admin server and one for the
cache server.

■ The admin server process is used for configuring and monitoring OracleAS Web
Cache. This process consumes very little CPU time. However, when viewing the
statistics pages in OracleAS Web Cache Manager, the admin server process must
query the cache server process to obtain the relevant metrics. Accessing the
statistics pages frequently, or setting a high refresh rate on a statistics page can
affect cache server performance.

■ On UNIX, the cache server process uses two threads: one to manage incoming
connections and one to process requests. Because of this, two CPUs dedicated to
OracleAS Web Cache are optimal.

On Windows, the cache server process can take advantage of up to four CPUs
because it creates additional threads for I/O processing. However, two CPUs are
sufficient for most deployments.

For a cost-effective way to run OracleAS Web Cache, run it on a fast two-CPU
computer with lots of memory. See the Oracle Application Server Web Cache
Administrator’s Guide for information about various deployment scenarios.

For a Web site with more than one OracleAS Web Cache instance, consider installing
each instance on a separate two-CPU node, either as part of a cache cluster or as a
standalone instance. When OracleAS Web Cache instances are on separate nodes, you
are less likely to encounter operating system limitations, particularly in network
throughput. For example, two caches on two separate two-CPU nodes are less likely to
encounter operating system limitations than two caches on one four-CPU node.

Of course, if other resources are competing with OracleAS Web Cache for CPU usage,
you should take the requirements of those resources into account when determining
the number of CPUs needed. Although a separate node for OracleAS Web Cache is
optimal, you can also derive a significant performance benefit from OracleAS Web
Cache running on the same node as the rest of the application Web server.

Configure Enough Memory for OracleAS Web Cache
To avoid swapping documents in and out of the cache, it is crucial to configure enough
memory for the cache. Generally, the amount of memory (maximum cache size) for
OracleAS Web Cache should be set to at least 256 MB.

To be more precise in determining the maximum amount of memory required, you can
take the following steps:

1. Determine what documents you want to cache, how many are smaller than 2
kilobytes (KB), and how many are larger than 2 KB. Determine the average size of
the documents that are larger than 2 KB. Determine the expected peak load—the
maximum number of documents to be processed concurrently.

Configure Enough Memory for OracleAS Web Cache

Optimizing OracleAS Web Cache 7-3

One way to do this is to look at existing Web server logs for one day to see what
documents are popular. From the list of URLs in the log, decide which ones you
want to cache. Retrieve the documents and get the size of each document.

2. Calculate the amount of memory needed. The way you calculate it may differ
depending on the version of OracleAS Web Cache.

The amount of memory that OracleAS Web Cache uses to store a document
depends on the document size:

■ If a document is smaller than 2 KB, OracleAS Web Cache uses a buffer of 2 KB
to store the HTTP body.

■ If a document is 2 KB or larger, OracleAS Web Cache uses buffers of 8 KB to
store the HTTP body. For example, if a document is 42 KB, OracleAS Web
Cache uses six 8 KB buffers to store the HTTP body.

■ Regardless of the size of the body, OracleAS Web Cache uses 8 KB to store the
HTTP response header.

Use the following formula to determine an estimate of the maximum memory
needed:

(X * (2KB + 8KB)) + (Y * (([m/8] * 8KB) + 8KB)) + basemem

In the formula:

■ X is the number of documents smaller than 2 KB.

■ 2KB is the buffer size for the HTTP body for documents smaller than 2 KB.

■ 8KB is the buffer size for the HTTP response header.

■ Y is the number of documents that are 2 KB or larger.

■ [m/8] is the ceiling of m (the average size, in kilobytes, of documents 2 KB or
larger) divided by 8. A ceiling is the closest integer that is greater than or
equal to the number.

■ 8KB is the buffer size for the HTTP body for documents that are 2 KB or larger.

■ 8KB is the buffer size for the HTTP response header.

■ basemem is the base amount of memory needed by OracleAS Web Cache to
process requests. This amount includes memory for internal functions such as
lookup keys, connections to the application Web server to process cache
misses, and timestamps. The amount needed depends on the number of
concurrent requests and on whether or not the requests include Edge Side
Includes (ESI). ESI is a markup language to enable partial-page caching of
HTML fragments.

For non-ESI requests, each concurrent request needs approximately 32 KB of
memory. For example, to support 1000 concurrent requests, you need about 32
MB of memory.

For ESI requests, each concurrent request needs roughly the following amount
of memory:

32KB + (number of ESI fragments * [8KB to 16KB])

Because documents with more ESI fragments require more metadata for each
fragment, use the higher number (16) for documents with 10 or more

Configure Enough Memory for OracleAS Web Cache

7-4 Oracle Application Server Performance Guide

fragments. For example, for a document with 10 ESI fragments, use the
following calculation:

32KB + (10 * [16KB]) = 192KB

That is, you need about 192 KB of memory for one 10-fragment document. To
support 1000 concurrent requests, you need roughly 192 MB of memory.

For example, assume that you want to cache 5000 documents that are smaller than
2 KB and 2000 documents that are 2 KB or larger and that the larger documents
have an average size of 54 KB. The documents do not use ESI. You expect to
process 500 documents concurrently. Use the formula to compute the maximum
memory:

(5000 * (2KB + 8KB)) + (2000 * (([54/8] * 8KB) + 8KB)) + (500 * 32KB)

Using the formula, you need:

■ 50,000 KB for the smaller documents.

■ 128,000 KB for the larger documents. For the HTTP body, you need 56 KB
(seven 8 KB buffers) for each document, given the average size of 54 KB. For
the HTTP response header, you need 8 KB for each document.

■ Approximately 16,000 KB for the base amount of memory needed to process
500 concurrent requests.

This results in an estimate of 194,000 KB of memory needed.

3. Configure OracleAS Web Cache, specifying the result of the formula as the
maximum cache size. Remember that the result is only an estimate.

To specify the maximum cache size, take the following steps:

a. In the navigator pane, select Properties > Resource Limits.

b. On the Resource Limits page, select the cache and click Edit.

The Edit Resource Limits dialog box appears.

c. In the Maximum Cache Size field, enter the result of the formula.

d. Click Submit.

e. In the OracleAS Web Cache Manager main window, click Apply Changes.

4. Restart OracleAS Web Cache.

5. Using a simulated load or an actual load, monitor the cache to see how much
memory it really uses in practice.

Note: Even though you specify that certain documents should be
cached, not all of the documents are cached at the same time. Only
those documents that have been requested and are valid are stored
in the cache. As a result, only a certain percentage of the documents
are stored in the cache at any given time. You may not need the
maximum memory derived from the preceding formula.

Make Sure You Have Sufficient Network Bandwidth

Optimizing OracleAS Web Cache 7-5

The cache is empty when OracleAS Web Cache starts. For monitoring to be valid,
make sure that the cache is fully populated. That is, make sure that the cache has
received enough requests so that a representative number of documents are
cached.

The OracleAS Web Cache Statistics page (Monitoring > Web Cache Statistics)
provides information about the current memory use and the maximum memory
use. Note the following metrics in the Cache Overview table:

■ Size of Documents in Cache shows the current logical size of the cache, which
is the size of the valid documents in the cache. For example, if the cache
contains two documents, one 3 KB and one 50 KB, the Size of Documents in
Cache is 53 KB, the total of the two sizes.

■ Configured Maximum Cache Size indicates the maximum cache size as
specified in the Resource Limits page.

■ Current Allocated Memory displays the physical size of the cache, which is the
amount of data memory allocated by OracleAS Web Cache for cache storage
and operation. This number is always smaller than the process size shown by
operating system statistics because the OracleAS Web Cache process, like any
user process, consumes memory in other ways, such as instruction storage,
stack data, thread, and library data.

■ Current Action Limit is 95% of the Configured Maximum Cache Size. This
number is usually larger than the Current Allocated Memory.

If the Current Allocated Memory is greater than the Current Action Limit,
OracleAS Web Cache begins to use allocated but unused memory, and may begin
garbage collection to free more memory. During garbage collection, OracleAS Web
Cache removes the less popular and less valid documents from the cache in favor
of the more popular and more valid documents to obtain space for new HTTP
responses without exceeding the maximum cache size.

If the Current Allocated Memory is close to or greater than the Current Action
Limit, increase the maximum cache size to avoid swapping documents in and out
of the cache. Use the Resource Limits page (Properties > Resource Limits) to
increase the maximum cache size.

Make Sure You Have Sufficient Network Bandwidth
When you use OracleAS Web Cache, make sure that each node has sufficient network
bandwidth to accommodate the throughput load. Otherwise, the network may be
saturated but OracleAS Web Cache has additional capacity. For example, if an
application generates more than 100 megabits of data per second, 10/100 Megabit
Ethernet will likely be saturated.

If the network is saturated, consider using Gigabit Ethernet rather than 10/100
Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario to
avoid network collisions, retransmissions, and bandwidth starvations. Additionally,
consider using two separate network cards: one for incoming client requests and one
for requests from the cache to the application Web server.

If system monitoring shows that the network is underutilized and throughput is less
than expected, check whether or not the CPUs are saturated.

Set a Reasonable Number of Network Connections

7-6 Oracle Application Server Performance Guide

Set a Reasonable Number of Network Connections
It is important to specify a reasonable number for the maximum connection limit for
the OracleAS Web Cache server. If you set a number that is too high, performance can
be affected, resulting in slower response time. If you set a number that is too low,
fewer requests will be satisfied. Strike a balance between response time and the
number of requests processed concurrently.

To help determine a reasonable number, consider the following factors:

■ The maximum number of clients that you intend to serve concurrently at any
given time.

■ The average size of a document and the average number of requests per
document.

■ Network bandwidth. The amount of data that can be transferred at any one time is
limited by the network bandwidth. See "Make Sure You Have Sufficient Network
Bandwidth" on page 7-5 for further information.

■ The percentage of cache misses. Cache misses are forwarded to the application
Web server. Those requests consume additional network bandwidth, resulting in
longer response times, especially if a large percentage of requests are cache misses.

■ How quickly a document is processed. Use a network monitoring utility, such as
ttcp, to determine how quickly your system processes a document.

■ The cache cluster member capacity, if you have a cache cluster environment. The
capacity reflects the number of incoming connections from other cache cluster
members. Set the cluster member capacity using the Clustering page (Properties >
Clustering) of OracleAS Web Cache Manager.

Use various tools, such as those available with the operating system and with
OracleAS Web Cache, to help determine the maximum number of connections. For
example, the netstat -a command enables you to determine the number of
established connections; the ttcp utility enables you to determine how fast a
document is processed. The OracleAS Web Cache Manager provides statistics on hits
and misses.

To set the maximum number of incoming connections, take the following steps:

1. In the navigator pane of OracleAS Web Cache Manager, select Properties >
Resource Limits.

2. On the Resource Limits page, select the cache and click Edit.

The Edit Resource Limits dialog box appears.

3. In the Maximum Incoming Connections field, enter the new value.

4. Click Submit.

5. In the OracleAS Web Cache Manager main window, click Apply Changes.

Do not set the value to an arbitrary high value. OracleAS Web Cache sets aside some
resources for each connection, which could adversely affect performance. For many
UNIX systems, 5000 connections is usually a reasonable number.

Tune Network-Related Parameters

Optimizing OracleAS Web Cache 7-7

Connections on UNIX Platforms
On most UNIX platforms, each client connection requires a separate file descriptor.
The OracleAS Web Cache server attempts to reserve the maximum number of file
descriptors when it starts. If the webcached executable is run as root, you can
increase this number. For example, for the Solaris Operating System you can increase
the maximum number of file descriptors by setting the rlim_fd_max parameter. If
webcached is not run as root, the OracleAS Web Cache server logs an error message
and fails to start.

Connections on Windows
On Windows, the number of file handles as well as socket handles is limited only by
available kernel resources, more precisely, by the size of paged and non-paged pools.
However, the number of active TCP/IP connections is restricted by the number of TCP
ports the system can open.

Tune Network-Related Parameters
Besides the number of network connections, other network-related parameters for
OracleAS Web Cache, the application Web server, and the operating system can affect
response time. In most situations, the default settings are sufficient.

If response time is slow, you should tune OracleAS Web Cache, the application Web
server, and operating system parameters that affect connections, as explained in this
section.

For OracleAS Web Cache, check the values of the following settings:

■ Keep-Alive Timeout: The amount of time a network connection is left open after
OracleAS Web Cache sends a response to a browser. Keep-Alive allows an HTTP
client to send multiple requests to OracleAS Web Cache using the same network
connection. By default, the connection is left open for five seconds, which is
typically enough time for the browser to send subsequent requests to OracleAS
Web Cache using the same connection.

If the network between the browser and OracleAS Web Cache is slow, consider
increasing the timeout, perhaps up to 30 seconds.

If you receive the following error, either increase the maximum incoming
connections for OracleAS Web Cache or lower the Keep-Alive Timeout:

11313: The cache server reached the maximum number of allowed incoming
connections. Listening is temporarily suspended.

With a heavy load, such as during stress-testing, if clients continuously send one
request and then disconnect, set the Keep-Alive Timeout to 0. With this value,
OracleAS Web Cache closes the connection as soon as the request is completed, to
free up resources.

Set the Keep-Alive Timeout value in the Network Timeouts page (Properties >
Network Timeouts).

See Also: Oracle Application Server Web Cache Administrator’s Guide
for more information on how OracleAS Web Cache calculates the
maximum number of file descriptors to be used for client connections.

See Also: Oracle Application Server Web Cache Administrator’s Guide
for more information on OracleAS Web Cache and TCP limits.

Tune Network-Related Parameters

7-8 Oracle Application Server Performance Guide

■ Origin Server Timeout: The amount of time for the application Web server to
generate a response to OracleAS Web Cache. If the application Web server or
proxy server is unable to generate a response within that time, OracleAS Web
Cache sends a network apology page to the browser.

Usually, this value should be equal to the response time of the slowest document
served by the application Web Server. If the value is too low, long-running
requests will timeout before the response is complete. If the value is too high and
the application Web server hangs for some reason, it will take longer for OracleAS
Web Cache to failover to another application Web server.

Set this value in the Network Timeouts page (Properties > Network Timeouts).

For the application Web server, check the values of the following settings in the
application Web server’s configuration file (httpd.conf). (These particular
parameter names are specific to the Oracle HTTP Server.)

■ KeepAlive: Whether to allow persistent connections. Persistent connections
allow a client to send multiple sequential requests through the same connection.

Make sure KeepAlive is enabled. This can improve performance because the
connection is set up only once and is kept open for subsequent requests from the
same client.

■ KeepAliveTimeout: The time a connection is left open to wait for the next
request from the same client. If requests are primarily from OracleAS Web Cache,
you can set this value fairly high. A reasonable value is 30 seconds.

■ MaxKeepAliveRequests: The maximum number of requests to allow during a
persistent connection. Set to 0 to allow an unlimited number of requests.

■ MaxClients: The maximum number of clients that can connect to the application
Web server simultaneously.

If KeepAlive is enabled for the application Web server, you may require more
concurrent httpd server processes, and you may need to set the MaxClients
directive to a higher value.

If client requests have a short response time, you may be able to improve
performance by setting MaxClients to a lower value. However, when this value
is reached, no additional processes will be created, causing other requests to fail.

The MaxClients limit on the application Web server should be greater than or
equal to the application Web server capacity as set through the OracleAS Web
Cache Manager.

For the operating system, check the TCP time-wait setting. This setting controls the
amount of time that the operating system holds a port, not allowing new connections
to use the same port.

On the Solaris Operating System, for example, check the tcp_time_wait_interval
setting, using the following command:

ndd -get /dev/tcp tcp_time_wait_interval

On Windows 2000, for example, check the value of the TcpTimeWaitDelay
parameter in the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

This setting is usually only an issue during stress testing, if you continuously open
more TCP/IP connections from one client computer. In this situation, lower the TCP

Increase Cache Hit Rates

Optimizing OracleAS Web Cache 7-9

time-wait setting. In real world deployments, this is rarely an issue because it is
unlikely that a single client will generate a huge number of connections.

Increase Cache Hit Rates
A cache hit is a Web browser request that can be satisfied from documents stored in
the cache. A cache miss is a Web browser request that cannot be satisfied from
documents stored in the cache and must be forwarded to the application Web server.

If the ratio of cache hits to cache misses is low, consider the following ways to raise the
cache hit rate:

■ Use cookies and URL parameters to increase cache hit rates.

OracleAS Web Cache can cache different versions of a document with the same
URL, based on request cookies or headers. To use this feature, applications may
need to implement some simple change, such as creating a cookie or header that
differentiates the documents.

On the opposite end of the spectrum, some applications contain some insignificant
URL parameters, which can lead to different URLs representing essentially the
same content. If the documents are cached under their full URLs, the cache
hit/miss ratio becomes very low. You can configure OracleAS Web Cache to ignore
the non-differentiating URL parameter values, so that a single document is cached
for different URLs, greatly increasing cache hit rates.

Sometimes the content for a set of documents is nearly identical, but not exactly
identical. For example, the documents may contain hyperlinks composed of the
same URL parameters with different session-specific values, or they may include
some personalized strings in the document text, such as welcome greetings or
shopping cart totals. You can configure OracleAS Web Cache to store a single copy
of the document with placeholders for the embedded URL parameters or the
personalized strings, and to dynamically substitute the correct values for the
placeholders when serving the document to clients.

For more information on multiple version documents, sessions, ignoring URL
parameter values, and simple personalization, see Chapter 2, "Caching Concepts,"
of the Oracle Application Server Web Cache Administrator’s Guide.

■ Use redirection to cache entry documents.

For some popular site entry documents, such as "/", that typically require session
establishment, session establishment effectively makes the document
non-cacheable to all new users without a session. To cache these documents while
preserving session establishment, you can either:

– Create a blank document that provides session establishment for all initial
requests and redirects to the actual popular document. Subsequent redirected
requests to the popular document will specify the session, enabling the
popular document to be served from the cache.

– Use a JavaScript that sets a session cookie for the popular documents.

For more information on configuring caching rules for documents requiring
session establishment, see Chapter 9, "Creating Caching Rules," of the Oracle
Application Server Web Cache Administrator’s Guide.

■ Use partial page caching where possible.

See Also: "Configuring Oracle HTTP Server Directives" on
page 5-8

Check Application Web Server and Web Cache Settings to Optimize Response Time

7-10 Oracle Application Server Performance Guide

Many Web documents, such as pages generated by OracleAS Portal, are composed
of fragments with unique caching properties. For these pages, full-page caching is
not feasible. However, OracleAS Web Cache provides partial page caching using
Edge Side Includes (ESI). With ESI, you can divide each Web page into a template
and multiple fragments that can, in turn, be further divided into templates and
lower level fragments. Each fragment or template is stored and managed
independently; a full page is assembled from the underlying fragments upon
request. Fragments can be shared among different templates, so that common
fragments are not duplicated to waste cache space. Sharing can also greatly reduce
the number of updates required when fragments expire.

Depending on the application, updating a fragment can be cheaper than updating
a full page. In addition, each template or fragment can have its own unique
caching policies such as expiration, validation, and invalidation, so that each
fragment in a full Web page can be cached as long as possible, even when some
fragments are not cached or are cached for a much shorter period of time.

■ Use ESI variables for improved cache hit/miss ratio for personalized pages.

Personalized information often appears in Web pages, making them unique for
each user. For example, many Web pages contain tens or hundreds of hyperlinks
embedding application session IDs. To resolve this, create your ESI pages with
variables. Because variables can resolve to different pieces of request information
or response information, the uniqueness of templates and fragments can be
significantly reduced. This, in turn, results in better cache hit/miss ratios.

Check Application Web Server and Web Cache Settings to Optimize
Response Time

If you have not configured the application Web server or the cache correctly, response
time may be slower than anticipated. This section summarizes much of the
information presented in this chapter.

If the application Web server is responding more slowly than expected or if the
application Web server is not responding to requests from the cache because it has
reached its capacity, check the application Web server and OracleAS Web Cache
settings.

First, check the following:

■ Caching rules: Make sure that you are caching the appropriate objects. Are there
popular objects that you should cache but are not caching? Use the Popular
Requests page (Monitoring > Popular Requests) to see a list of the most popular
requests and to check that those objects are being cached. Also, see "Increase Cache
Hit Rates" on page 7-9 for information on increasing the ratio of cache hits to cache
misses.

■ Priority rankings of the caching rules: Give frequently accessed non-cacheable
documents a higher priority than cacheable documents. Give frequently accessed
cacheable documents the lowest priority. Note that parsing of caching rules may
be expensive if a large number of rules are defined.

■ Compression: If the network is a bottleneck for the client, compressing documents
as they are cached will relieve some of the congestion on the network because
compressed documents are smaller.

Check Application Web Server and Web Cache Settings to Optimize Response Time

Optimizing OracleAS Web Cache 7-11

Then, check the following:

■ The application Web server configuration, particularly the MaxClients,
KeepAlive, KeepAliveTimeout, and MaxKeepAliveRequests settings.

The MaxClients limit on the application Web server should be greater than or
equal to the application Web server capacity as set through the OracleAS Web
Cache Manager.

See "Tune Network-Related Parameters" on page 7-7 for more information.

■ The application Web server capacity as set using the Origin Servers page (Origin
Servers, Sites, and Load Balancing > Origin Servers) of the OracleAS Web Cache
Manager. See the Oracle Application Server Web Cache Administrator’s Guide for
information about setting application Web server capacity.

Then, if the application Web server is still busier than anticipated, it may mean that the
cache cannot process the requests and is routing more requests to the application Web
server. Check the following OracleAS Web Cache settings in the OracleAS Web Cache
Manager:

■ The number of cache connections. Check Maximum Incoming Connections in the
Resource Limits page (Properties > Resource Limits). See "Set a Reasonable
Number of Network Connections" on page 7-6 for more information.

■ The memory size for the cache. Check Maximum Cache Size in the Resource
Limits page (Properties > Resource Limits). See Configure Enough Memory for
OracleAS Web Cache on page 7-2 for more information.

■ The cache cluster capacity. In a cache cluster, if cluster capacity is too low, a cache
may not receive a response for owned content from a peer cache in the specified
interval. As a result, the request is sent to the application Web server. Check
Capacity in the Clustering page (Properties > Clustering). See the Oracle
Application Server Web Cache Administrator’s Guide for more information.

If the settings for the application Web server and OracleAS Web Cache are set correctly,
but the response times are still higher than expected, check system resources,
especially:

■ Network bandwidth. See "Make Sure You Have Sufficient Network Bandwidth"
on page 7-5 for more information.

■ CPU usage. See "Use Two CPUs for OracleAS Web Cache" on page 7-2 for more
information.

Check Application Web Server and Web Cache Settings to Optimize Response Time

7-12 Oracle Application Server Performance Guide

Optimizing PL/SQL Performance 8-1

8
Optimizing PL/SQL Performance

This chapter provides references to the information that describes improving PL/SQL
performance for web applications. Most of this information is in the Oracle
Application Server mod_plsql User’s Guide.

See Also:

■ Oracle Application Server mod_plsql User’s Guide for information
on optimizing PL/SQL performance

■ Appendix A, "Performance Metrics" for information on mod_
plsql metrics

■ Oracle HTTP Server Administrator’s Guide for details on DAD
Parameters

■ Oracle Application Server PL/SQL Web Toolkit Reference for
information on the PL/SQL Web Toolkit that enables you to
develop Web applications as PL/SQL procedures stored in an
Oracle database server

8-2 Oracle Application Server Performance Guide

Instrumenting Applications With DMS 9-1

9
Instrumenting Applications With DMS

The Oracle Dynamic Monitoring Service (DMS) enables application developers,
support analysts, system administrators, and others to measure application specific
performance information. This chapter describes DMS and shows a sample application
that demonstrates how to instrument Oracle Application Server Java applications
using DMS.

This chapter covers the following topics:

■ Introducing DMS Performance Metrics

■ Adding DMS Instrumentation To Java Applications

■ Validating and Testing Applications Using DMS Metrics

■ Understanding DMS Security Considerations

■ Conditional Instrumentation Using DMS Sensor Weight

■ Dumping DMS Metrics To Files

■ Resetting and Destroying Sensors

■ DMS Coding Recommendations

■ Using A High Resolution Clock To Increase DMS Precision

Note: Oracle Application Server provides a number of built-in
metrics. Using DMS to instrument applications adds new metrics to
the set of built-in metrics.

See Also: Appendix A, "Performance Metrics"

Introducing DMS Performance Metrics

9-2 Oracle Application Server Performance Guide

Introducing DMS Performance Metrics
The Dynamic Monitoring Service (DMS) API allows you to add performance
instrumentation to Oracle Application Server applications. During runtime DMS
collects performance information, called DMS metrics, that developers, system
administrators, and support analysts use to help analyze system performance or
monitor system status.

This section covers the following topics:

■ Instrumenting Applications With DMS Metrics

■ Monitoring DMS Metrics

■ Understanding DMS Terminology (Nouns and Sensors)

■ DMS Naming Conventions

Instrumenting Applications With DMS Metrics
DMS Instrumentation refers to the process of inserting DMS calls into application
code. Using the DMS API is a simple and efficient way to enable your application to
measure, collect, and save performance information.

To create DMS metrics developers add calls that notify DMS when events occur, when
important intervals begin and end, or when pre-computed values change their state.
At runtime, DMS stores metrics in memory and allows you to save or view the
metrics.

Oracle Application Server includes built-in DMS metrics. By adding DMS calls to your
applications you can expand the set of built-in metrics. When you instrument your
applications with DMS calls, you use the same API that the built-in metrics use. In
addition, to save and display your metrics, you use the same monitoring tools that you
use with built-in metrics.

Monitoring DMS Metrics
Monitoring DMS metrics refers to the process of retrieving performance metrics. When
an application runs, DMS stores metrics in memory and allows you to show metrics on
the console or to view metrics using a web browser.

Oracle Application Server provides several runtime tools for viewing and saving DMS
metrics, including dmstool and the AggreSpy Servlet.

Example 9–1 shows a set of metrics output using dmstool.

Note: Oracle Application Server components, including OC4J,
provide a number of predefined metrics. For a listing of the
predefined metrics see Appendix A, "Performance Metrics".

See Also: "Adding DMS Instrumentation To Java Applications"
on page 9-9

Introducing DMS Performance Metrics

Instrumenting Applications With DMS 9-3

Example 9–1 Set of Sample dmsDemo Metrics Using dmstool

computeSeries.active: 0 threads
computeSeries.avg: 5931.7 msecs
computeSeries.completed: 20 ops
computeSeries.maxActive: 1 threads
computeSeries.maxTime: 57086 msecs
computeSeries.minTime: 2 msecs
computeSeries.time: 118634 msecs
lastComputed.value: 184756
loops.count: 4325 ops
timeStamp.ts: 1091035411174 milliseconds

Host: system1
Name: BasicBinomial
Parent: /dmsDemo
Process: home:OC4J:3301:6004
iasInstance: 10g2.tv.us.oracle.com
uid: 2109472775

Understanding DMS Terminology (Nouns and Sensors)
This section introduces the terminology you need to understand to use DMS.
Figure 9–1 illustrates the organization of a set of DMS metrics corresponding to the
metrics in the demo application described in this chapter and the metrics shown in
Example 9–1.

This section covers the following topics:

■ DMS Metrics

■ DMS Sensors

■ DMS Nouns

■ DMS Object Relationships

See Also: Chapter 2, "Monitoring Oracle Application Server"

Introducing DMS Performance Metrics

9-4 Oracle Application Server Performance Guide

Figure 9–1 Organization of Sample Metrics From dmsDemo Application

DMS Metrics
DMS Metrics track performance information that developers, system administrators,
and support analysts use to help analyze system performance or monitor system
status.

DMS Sensors
DMS Sensors measure performance data and allow DMS to define and collect a set of
metrics. Certain metrics are always included with a Sensor and other metrics are
optionally included with a Sensor.

DMS PhaseEvent Sensors A DMS PhaseEvent Sensor measures the time spent in a
specific section of code that has a beginning and an end. Use a PhaseEvent Sensor to
track time in a method or in a block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including: the
average, maximum, and minimum time that is spent in the PhaseEvent Sensor.

Table 9–1 describes metrics available with a PhaseEvent Sensor.

Table 9–1 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.time Specifies the total time spent in the phase sensor_name.

Default metric: time is a default PhaseEvent Sensor metric.

sensor_name.completed Specifies the number of times the phase sensor_name, has
completed since the process was started.

Optional metric

Sensor:
computeSeries

Noun:
BasicBinomial

Noun: dmsDemo

Sensor:
loops

Sensor:
lastComputed

Noun Type:
Parent: /

Sensor Type: PhaseEvent
Description: Time to
 Compute a Binomial
 Series

Sensor Type: Event
Description: Iterations
to compute series

Sensor Type: State
Description: Value of
 last computed series
 element

computeSeries.active
computeSeries.avg
computeSeries.completed
computeSeries.maxActive
computeSeries.maxTime
computeSeries.minTime
computeSeries.time

loops.countlastComputed.value

Metrics MetricsMetrics

Noun Type: MathSeries
Parent: /dmsDemo

Introducing DMS Performance Metrics

Instrumenting Applications With DMS 9-5

DMS Event Sensors A DMS Event Sensor is a Sensor that counts system events. Use a
DMS Event Sensor to track system events that have a short duration, or where the
duration of the event is not of interest but the occurrence of the event is of interest.

Table 9–2 describes the metric that is associated with an Event Sensor.

DMS State Sensors A DMS State Sensor is a Sensor to which you assign a precomputed
value. State Sensors track the value of Java primitives or the content of a Java Object.
The supported types include integer, double, long, and object. Use a State Sensor when
you want to track system status information or when you need a performance metric
that is not associated with an event. For example, use State Sensors to represent queue
lengths, pool sizes, buffer sizes, or host names.

Table 9–3 describes the State Sensor metrics. State Sensors support a default metric
value, as well as optional metrics. The optional minValue and maxValue metrics
only apply for State Sensors if the State Sensor represents a numeric Java primitive (of
type integer, double, or long).

sensor_name.minTime Specifies the minimum time spent in the phase sensor_name,
for all the times the phase completed.

Optional metric

sensor_name.maxTime Specifies the maximum time spent in the phase sensor_name,
over all the times the sensor_name phase completed.

Optional metric

sensor_name.avg Specifies the average time spent in the phase sensor_name,
computed as the (time total)/(number of times the phase
completed).

Optional metric

sensor_name.active Specifies the number of threads in the phase sensor_name, at
the time the DMS statistics are gathered (the value may change
over time).

Optional metric

sensor_name.maxActive Specifies the maximum number of concurrent threads in the
phase sensor_name, since the process started.

Optional metric

Table 9–2 DMS Event Sensor Metrics

Metric Description

sensor_name.count Specifies the number of times the event has occurred since the
process started, where sensor_name is the name of the Event
Sensor as specified in the DMS instrumentation API.

Default: count is the default metric for an Event Sensor. No other
metrics are available for an Event Sensor.

Table 9–1 (Cont.) DMS PhaseEvent Sensor Metrics

Metric Description

Introducing DMS Performance Metrics

9-6 Oracle Application Server Performance Guide

DMS Nouns
DMS Nouns (Nouns) organize performance data. Each Sensor, with its associated
metrics is organized in a hierarchy according to Nouns. Nouns allow you to organize
DMS metrics in a manner comparable to a directory structure in a file system. For
example, Nouns can represent classes, methods, objects, queues, connections,
applications, databases, or other objects that you want to measure.

A Noun type is a name that reflects the set of metrics being collected. For example, in
the built-in metrics the Noun type oc4j_servlet represents the metrics collected for
each servlet in each Web module within each J2EE application. And the Noun type
JVM represents the set of metrics for each Java process (OC4J) currently running in the
site.

The Noun naming scheme uses a '/' as the root of the hierarchy, with each Noun acting
as a container under the root, or under its parent Noun.

DMS Object Relationships
This section describes the object relationships and attributes for DMS metrics, Sensors,
and Nouns.

Table 9–4 describes the relationships between DMS objects. Figure 9–1 illustrates the
relationships shown in Table 9–4 using a sample set of metrics.

Table 9–3 DMS State Sensor Metrics

Metric Description

sensor_name.value Specifies the metric value for sensor_name, using the type
assigned when sensor_name is created.

Default: value is the default State metric.

sensor_name.count Specifies the number of times sensor_name is updated.

Optional metric

sensor_name.minValue Specifies the minimum value for sensor_name since startup.

Optional metric

sensor_name.maxValue Specifies the maximum value this sensor_name since startup.

Optional metric

Note: In Appendix A, "Performance Metrics", the Noun type is
called the metric table name.

See Also: Appendix A, "Performance Metrics"

Table 9–4 DMS Object Relationships and Attributes

Object Contains Attributes

Noun Sensors or other Nouns Name, Noun Type, Parent

Sensor Metrics Name, Description, Sensor Type, Parent

There are three Sensor Types: PhaseEvent, Event, and State.

Metric Value Name, Units designation

Introducing DMS Performance Metrics

Instrumenting Applications With DMS 9-7

DMS Naming Conventions
Certain guidelines apply for defining DMS names. By following these guidelines,
people viewing DMS metric reports can easily understand metrics across applications
and across Oracle Application Server components.

This section covers the following topics:

■ General DMS Naming

■ General DMS Naming Conventions and Character Sets

■ Noun and Noun Type Naming Conventions

■ Sensor Naming Conventions

General DMS Naming
DMS metric names consist of a Sensor name plus the "." character plus the metric. For
example, the names: computeSeries.time, loops.count, and
lastComputed.value are valid DMS metric names.

A Sensor name is a simple string, not including the "." or the derivation. For example
computeSeries, loops, and lastComputed are Sensor names. A Sensor full name
consists of the Sensor name, preceded by the name of its associated Noun, and a
delimiter. For example, /dmsDemo/BasicBinomial/computeSeries,
/dmsDemo/BasicBinomial/loops, and
/dmsDemo/BasicBinomial/lastComputed.

A Noun name is a simple string, not including a delimiter. For example
BasicBinomial is a Noun name. A Noun full name consists of the Noun name,
preceded by the full name of its parent, and a delimiter. For example
/dmsDemo/BasicBinomial is a full Noun name.

General DMS Naming Conventions and Character Sets
DMS names should be as compact as possible. Whenever possible, when you define
Noun and Sensor names, avoid special characters such as white space, slashes,
periods, parenthesis, commas, and control characters.

Table 9–5 shows DMS replacement for special characters in names.

Note: View the naming conventions as guidelines; for each
convention there may be an exception. Try to be as clear as possible,
if there is a conflict, you may need to make an exception.

Table 9–5 DMS Naming Special Character Replacement

Character DMS Replacement Character

Space " " or Period "." Underscore "_"

Control Character Underscore "_"

"<" "("

 ">" ")"

"&" "^"

"" (double quote) "‘" (backquote)

’’ (single quote) " (backquote)

Introducing DMS Performance Metrics

9-8 Oracle Application Server Performance Guide

Noun and Noun Type Naming Conventions
A Noun name should be a name which identifies a specific entity of interest.

Noun types should have names which clearly reflect the set of metrics being collected.
For example, Servlet is the type for a Noun under which the metrics that are specific to
a given servlet fall.

Noun type names should start with a capitol letter to distinguish them from other
DMS names. All Nouns of a given type should contain the same set of sensors.

Sensor Naming Conventions
The following list outlines DMS Sensor naming conventions.

1. Sensor names should be descriptive, but not redundant. Sensor names should not
contain any part of the Noun name hierarchy, or type, as this is redundant.

2. Sensor names should avoid containing the specification of the units for the
individual metrics.

3. Where multiple words are required to describe a Sensor, the first word should start
with a lowercase letter, and the following words should start with uppercase
letters. For example computeSeries.

4. In general, using a "/" in a Sensor name should be avoided. However, there are
cases where it makes sense to use a name that contains "/" . If a "/" is used in a
Noun or Sensor name, then when you use the Sensor in a string with DMS
methods, you need to use an alternative delimiter, such as "," or "_", which does
not appear anywhere in the path; this allows the "/" to be properly understood as
part of the Noun or Sensor name rather than as a delimiter.

For example, a child Noun can have a name such as:

examples/jsp/num/numguess.jsp

and you can look this up using the string:

,oc4j,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

Where the delimiter is the "," character.

5. Event Sensor and PhaseEvent Sensor names should have the form verbNoun where
verb and Noun are interpreted as defined by English grammar. For example,
activateInstance and runMethod. When a PhaseEvent monitors a function,
method, or code block, it should be named to reflect the task performed as clearly
as possible.

6. The name of a State Sensor should be a Noun, possibly preceded by an adjective,
which describes the semantics of the value which is tracked with this State. For
example, lastComputed, totalMemory, port, availableThreads,
activeInstances.

7. To avoid confusion, do not name Sensors with strings such as: ".time", ".value", or
".avg", that are the same as the default metrics or optional derivations for a Sensor,
as shown in Table 9–1, Table 9–2, and Table 9–3.

Note: Oracle Application Server includes a number of built-in
metrics. The Oracle Application Server built-in metrics do not
always follow the DMS naming conventions.

Adding DMS Instrumentation To Java Applications

Instrumenting Applications With DMS 9-9

Adding DMS Instrumentation To Java Applications
You can collect performance information in Java applications by adding DMS
instrumentation to existing applications or by creating new applications that include
DMS instrumentation.

The DMS samples shown in this chapter are supplied on the Oracle Technology
Network Web site,

http://www.oracle.com/technology/tech/java/oc4j/demos/index.html

The DMS demo.zip file includes a ready to deploy .ear file and source code with
build instructions. The demo includes two servlets, BasicBinomial.java and
ImprovedBinomial.java.

The BasicBinomial servlet shows how to use the DMS API to add DMS Sensors.

The ImprovedBinomial servlet expands on the BasicBinomial and illustrates
measuring the improved code, as compared with the BasicBinomial.
ImprovedBinomial servlet also shows how to add more costly metrics that gather
more detailed information.

Refer to the sample code for full details on the examples in this chapter.

To use DMS instrumentation, add DMS calls by performing the following steps:

■ Including DMS Imports

■ Organizing Performance Data

■ Defining and Using Metrics for Timing

■ Defining and Using Metrics for Counting

■ Defining and Using Metrics for Recording Status Information (State Sensors)

Including DMS Imports
To use DMS you need to add DMS imports. The following example shows the imports
that the sample application BasicBinomial.java requires.

import oracle.dms.instrument.DMSConsole;
import oracle.dms.instrument.Event;
import oracle.dms.instrument.Noun;
import oracle.dms.instrument.PhaseEvent;
import oracle.dms.instrument.State;
import oracle.dms.instrument.Sensor;

Organizing Performance Data
Define DMS Nouns to organize Sensors and their associated metrics. DMS Nouns
organize Sensors in a tree hierarchy in a manner comparable to a directory structure in
a file system, starting with a root at the top of the tree.

Example 9–2 shows a section of code using Noun.create() from the
BasicBinomial.java.

In Example 9–2, MathSeries specifies the Noun type. The Noun type is a name that
reflects the set of metrics being collected. For example, MathSeries represents the
metrics collected for the sample application containing a Binomial series computation.
AggreSpy displays Sensors using the same Noun type together.

It is good practice to only use Noun types for Nouns that directly contain Sensors.
When a Noun contains only Nouns, as in the Noun dmsDemo, and does not directly

Adding DMS Instrumentation To Java Applications

9-10 Oracle Application Server Performance Guide

contain Sensors, AggreSpy displays the Noun type as a metric table, with no metrics.
Example 9–2 shows the dmsDemo Noun that includes a Noun, BasicBinomial, but
no Sensors. When the Noun type is not included for such a Noun, AggreSpy does not
display a metric table associated with the Noun.

Example 9–2 Using Noun.create To Organize Sensors

private Noun binRoot; // Container for Binomial series DMS metrics.
Noun base = Noun.create("/dmsDemo");
binRoot = Noun.create(base, "BasicBinomial", "MathSeries");

Defining and Using Metrics for Timing
To create metrics that measure the duration of a segment of code, define and use a
PhaseEvent Sensor using the following steps:

■ Defining PhaseEvent Sensors

■ Using PhaseEvent Sensors

Defining PhaseEvent Sensors
Example 9–3 shows the DMS calls that declare and create the computeSeries
PhaseEvent Sensor. This code defines a DMS metric named
/dmsDemo/BasicBinomial/computeSeries.time.

PhaseEvent Sensors support a set of optional metrics, along with the default metric
.time (representing the time, as measured between the PhaseEvent start() and
the PhaseEvent stop() calls). You can derive optional metrics with PhaseEvent
Sensors individually or as a complete set. Table 9–1 shows the available metrics for a
PhaseEvent Sensor. The binComp.deriveMetric(Sensor.all) call in
Example 9–3 causes all the supported optional metrics to be computed and reported.

Example 9–3 Defining PhaseEvent Sensors

private PhaseEvent binComp; // Time to compute Binomial series.
.
.
.
binComp = PhaseEvent.create(binRoot, "computeSeries",
 "Time to compute a Binomial series");
binComp.deriveMetric(Sensor.all);

Note: Start Noun type names with a capital letter to distinguish
them from other DMS names.

See Also: "DMS Naming Conventions" on page 9-7

Note: Using the method deriveMetric(Sensor.all) is
recommended for adding optional metrics. Using this method with
Sensor.all adds all metrics; this is good practice since the list of
optional metrics could change in a future Oracle Application Server
release. In addition, the metrics are efficient to compute and are
often useful in evaluating performance.

Adding DMS Instrumentation To Java Applications

Instrumenting Applications With DMS 9-11

Using PhaseEvent Sensors
To use a PhaseEvent Sensor, an application calls the start() method to indicate the
beginning of a phase and subsequently calls the stop() method to indicate the
completion of the phase.

Example 9–4 shows a code segment from BasicBinomial.java that uses the
start() and stop() methods for the
/dmsDemo/BasicBinomial/computeSeries.time metric. The long value
named token that is returned from the PhaseEvent start() method must be passed
to the corresponding PhaseEvent stop() method. This value is a timestamp
representing the start time. Passing this value to the stop() method allows DMS to
compute the PhaseEvent duration.

Example 9–4 Using start() and stop() With PhaseEvent Sensors

long token = 0; // DMS
try {
 token = binComp.start(); // DMS
 BigInteger bins[] = bin(length);
 out.println("<H2>Binomial series for " + length + "</H2>");
 for (int i = 0; i < length; i++)
 out.println("
" + bins[i]);
 }
 finally {
 binComp.stop(token); // DMS
 out.close();
 }

Example 9–4 shows code instrumented such that each time a phase starts, it is stopped
(since the stop method is placed in the finally clause). This prevents runaway Phase
Sensors; however, this can result in the time required to throw an exception possibly
contributing to phase statistics. To prevent exception handling from impacting a
PhaseEvent, use the abort() method, as shown in Example 9–5.

Example 9–5 shows a code sample where a Phase that is not successfully stopped will
be aborted. The abort call removes the statistics corresponding to the corresponding
start, and these statistics do not contribute to metric calculations.

Example 9–5 Using abort() with PhaseEvent Sensors

PhaseEvent pe = heavyPhase(param);
 long token1 = 0;
 long token2 = 0;
 boolean stopped = false;
 try {
 token1 = binComp.start();
 if (pe != null) token2 = pe.start();
 BigInteger bins[] = bin(length);
 out.println("<H2>ImprovedBinomial series for " + length + "</H2>");
 for (int i = 0; i < length; i++)
 out.println("
" + bins[i]);
 if (pe != null) pe.stop(token2);
 binComp.stop(token1);

Note: To assure that PhaseEvents are stopped, each PhaseEvent
start() method, together with the code to be measured should be
in a try block with the PhaseEvent stop() method in a
corresponding finally block, as shown in Example 9–4.

Adding DMS Instrumentation To Java Applications

9-12 Oracle Application Server Performance Guide

 stopped = true;
 }
 finally {
 if (!stopped) {
 if (pe != null) pe.abort(token2);
 binComp.abort(token1);
 }

Defining and Using Metrics for Counting
To create metrics that count the occurrences of an event, define and use an Event
Sensor as follows:

■ Defining Event Sensors

■ Using Event Sensors

Defining Event Sensors
Example 9–6 shows the DMS calls that define an Event Sensor. This code allocates a
counter and defines a DMS metric named
/dmsDemo/BasicBinomial/loops.count.

Example 9–6 Defining Event Sensors

private Event binLoop; // Loops needed for Binomial series.
.
.
.

binLoop = Event.create(binRoot, "loops", "Iterations to compute series");

Using Event Sensors
DMS increments a counter when an application calls the occurred() method for an
Event Sensor. Example 9–7 shows the occurred() call for an Event Sensor that
increments the /dmsDemo/BasicBinomial/loops.count metric.

Example 9–7 Using occurred() With Event Sensors

binLoop.occurred();

Defining and Using Metrics for Recording Status Information (State Sensors)
DMS captures status information with State Sensors. State Sensors track the value of
Java primitives or the content of a Java Object. The supported types include integer,
double, long, and object, as specified in the third argument to the create() method.
When a Java primitive State Sensor is updated with the wrong type, DMS attempts to
convert the supplied value to the correct type. For Object type State Sensors, DMS
stores a reference to the Object and by default and calls toString() on the object
when the DMS value is sampled.

To create metrics that record status information, define and use a State Sensor as
follows:

■ Defining State Sensors

■ Using State Sensors

Validating and Testing Applications Using DMS Metrics

Instrumenting Applications With DMS 9-13

Defining State Sensors
State Sensors support a default metric value, as well as optional metrics. You can
define the minValue and maxValue optional metrics with State Sensors only if the
State Sensor represents a numeric Java primitive (of type integer, double, or long).
Table 9–3 shows the available metrics for a State Sensor. Example 9–3 shows how to
enable optional metrics.

Example 9–8 shows the DMS calls that declare and create a State Sensor. This code
defines a DMS metric named /dmsDemo/BasicBinomial/lastComputed.value.

Example 9–8 Defining State Sensors

private State binLast; // Value of the last computed element in series.
.
.
.
binLast = State.create(binRoot, "lastComputed", State.OBJECT, "",
 "Value of last computed series element");

When you define a State Sensor, use an empty string in the fourth argument to the
create() method if no units are associated with the State Sensor, otherwise use a
string listing the appropriate units (see Example 9–8). State Sensors are created
without an initial value. If you need to check whether a State Sensor has been
initialized, use the isInitialized() method.

If you want your State Sensor to store the string value of an object, and not store a
reference to the object, use the setCopy() method with the value TRUE. This tells the
State Sensor to store the result of calling toString() on an object rather than using a
reference to the object for the metric value.

Using State Sensors
When an application calls a State Sensor’s update() method, DMS updates the value
of the State Sensor. Example 9–9 shows the update() call for a State Sensor that
updates the /dmsDemo/BasicBinomial/lastComputed.value metric.

Example 9–9 Using update() With State Sensors

binLast.update(bins[k-1].toString());

Validating and Testing Applications Using DMS Metrics
You should test and verify the accuracy of the metrics that you add to Java
applications.

This section covers the following topics:

■ Validating DMS Metrics

■ Testing DMS Metrics For Efficiency

Validating and Testing Applications Using DMS Metrics

9-14 Oracle Application Server Performance Guide

Validating DMS Metrics
Use the dmstool and the other available DMS monitoring tools to verify and test new
metrics.

Try to validate the following for new metrics:

■ Do expected metrics appear in the display? Test this by examining the code to
make sure that all the metric names added using DMS instrumentation appear in
your display or saved set of metrics.

■ Do unexpected metrics appear in the display? Verify that you have only added the
metrics that you planned to add.

■ Are the metric values you see within reasonable ranges? Usually, upper and lower
bounds for metrics can be established. You then test that the reported values for
metrics do not exceed the expected bounds.

For example, a "size of pool" metric should never report a negative value.

■ Make sure that new metrics are needed. For example, if you add a PhaseEvent that
always measures an event of very short duration, consider changing the metric to
an Event metric, or remove the metric.

■ Make sure that new metrics are accurate. For most applications using DMS
metrics, accuracy is more important than the performance cost of adding the DMS
instrumentation. New DMS metrics should provide reliable and useful
information.

Testing for accuracy can be difficult; however, if an alternate means of measuring a
particular metric is available then use it to verify metric values. For example, if
you submit a known number of requests to a server and measure total time for the
experiment, then you predict correct values for the relevant metrics and compare
them with the actual monitored values. As another example, you can verify an
Event Sensor count metric by examining records that you write to a log file or to
the console.

Check for timing inaccuracies that may apply for the metrics. Timing inaccuracies
may be caused when low-resolution clocks time metrics for an interval of short
duration. For example on Windows systems, the default Java clock advances only
once every 15 milliseconds. DMS metrics reported for brief events on these
systems must be analyzed with care. Consider using the high resolution clock to
address this issue.

Testing DMS Metrics For Efficiency
The use of DMS metrics has some influence on application performance. When adding
metrics, note the following:

■ The processing required for computing and storing metrics can slow down the
execution of an application. DMS is fast, but it does have some required overhead
cost. In addition, DMS cannot prevent developers from using the DMS API
inefficiently. Therefore, before adding DMS instrumentation, establish reasonable
expectations. After completing the implementation, measure the actual costs and
compare them to your expectations. Be prepared to make changes to the
instrumentation to reduce overhead costs until the measurements agree with
expectations.

See Also: "Using A High Resolution Clock To Increase DMS
Precision" on page 9-18

Conditional Instrumentation Using DMS Sensor Weight

Instrumenting Applications With DMS 9-15

■ DMS provides the DMSConsole.getSensorWeight() method to help you
control the use of metrics. The central setting is an advisory measurement level
that DMS does not enforce. To control which metrics to include, at runtime, the
code must test the value for SensorWeight to determine whether to make DMS
calls.

■ When integrating DMS instrumentation with an existing package or when
implementing a new feature, you should consider insulating a previously working
system. For example, you could include an option to enable and disable new DMS
metrics.

■ Worrying about performance too soon often leads to costly design and
implementation errors. According to Donald Knuth, "Premature optimization is
the root of all evil".

■ You should run your performance tests with and without DMS enabled. If your
tests show unacceptable results with DMS enabled, then you may want to
re-design or re-implement metrics.

Understanding DMS Security Considerations
DMS metrics do not support user based access to DMS reports. When you define and
use a DMS metric, the metric is available to any administrator that has access to DMS
metrics. This means when you add DMS metrics, it is good practice to avoid placing
customer sensitive information in the metrics.

When you add DMS instrumentation, the following users have access to the DMS
metrics that you create:

■ Applications running in the same OC4J instance can access the DMS metrics.

■ All users that have access to the dmstool command, or the AggreSpy Servlet
have access to the metrics (by default this is limited to Administrators).

Conditional Instrumentation Using DMS Sensor Weight
Use the DMS Sensor weight feature to conditionally limit your instrumentation. With
Sensor weight, you specify that applications execute expensive instrumentation only
when the Sensor weight is set to a particular value. Using this feature enables you to
include expensive metrics that you may only need for debugging.

Example 9–10 shows how to use DMSConsole.getSensorWeight() to test the
value of the Sensor weight, and optionally define and use a metric.

The Sensor weight is set globally using the oracle.dms.sensors property on the
command-line. Set this property using the OC4J startup options. Supported values for
this property include: none, normal, heavy, and all.

See Also:

■ "AggreSpy URL and Access Control" on page 2-7

■ "Access Control for dmstool" on page 2-9

Dumping DMS Metrics To Files

9-16 Oracle Application Server Performance Guide

Example 9–10 Using SensorWeight for Conditional Instrumentation

 /* DMS Method
 *
 * If the SensorWeight is high enough, return a phase with the
 * parameter in the name. Otherwise, return null.
 */
PhaseEvent heavyPhase(String param) {
PhaseEvent pe = null;
if (DMSConsole.getSensorWeight() > DMSConsole.NORMAL) {
 Noun base = Noun.create(binRoot, param, "MathSeries");
 pe = PhaseEvent.create(base, "computeSeries",
 "Time to compute a Binomial series");
 pe.deriveMetric(Sensor.all);
 }
return pe;

Dumping DMS Metrics To Files
In a Java application, use the following method to dump DMS metrics to a file.

The following code allows you to append or replace the contents of the specified file
with the current metrics:

DMSConsole cons2 = new DMSConsole();
DMSConsole.dump("dmsmathseries.log", true, true);

The first argument specifies the file pathname, the second argument specifies the
output format, and the third argument specifies if the output is appended to the file or
replaces the contents of the file.

Resetting and Destroying Sensors
The Sensor abstract class provides methods to control PhaseEvent, Event, and State
Sensors. The reset() method resets a Sensor’s metrics to initial values. The
getResetTime() method determines if a Sensor has been reset. The destroy()
method removes a Sensor from DMS and releases references to its underlying
resources.

See Also: "Setting Java Command Line Options (Using JVM and
OC4J Performance Options)" on page 6-3

Note: Do not use these methods to reset or destroy built-in metrics.
The reset() and destroy() methods are intended for use with
metrics that you create. Application Server Control Console, and other
Oracle Application Server administrative facilities could report
unexpected values or have unexpected behavior if you use these
methods on internal, built-in metrics.

DMS Coding Recommendations

Instrumenting Applications With DMS 9-17

DMS Coding Recommendations
The following list includes coding recommendations for working with DMS.

1. There is a global name space for DMS metrics. When you create a new Noun
Sensor (PhaseEvent, Event, or State), its full name must not conflict with names in
use by Oracle built-in metrics, or by other applications. It is therefore a good idea
to have a root Noun for your application that contains the application’s full name.
This prevents name space collisions.

2. Be sure all PhaseEvents are stopped. If the code block to be measured is not in a
try block, then put it in a try block that includes PhaseEvent’s start(). Put the
PhaseEvent’s stop() in a finally block. Alternatively, make use of the
abort() method in the finally block, as shown in Example 9–5.

3. Use the DMS naming conventions.

4. Avoid creating any DMS Sensor or Noun more than once. The DMS API allows
this, and avoids creation of multiple objects, but DMS performs lookups for each
subsequent creation attempt. Thus, whenever possible, you should define Sensors
and Nouns during static initialization, or in the case of a Servlet, in the init()
method.

5. Assign a type for each Noun that contains Sensors. If no type is assigned, the type
is given the value "n/a" (not available). Nouns with the type specified as "n/a" are
not shown in the AggreSpy display.

6. Only use PhaseEvents to measure a section of code that is expensive to execute,
and takes a significant time to execute under some conditions. In the case where
the code never takes significant time to execute, use an Event metric, or remove
the PhaseEvent.

7. The DMS API calls are threadsafe; they provide sufficient synchronization to
prevent races and access bugs.

Isolating Expensive Intervals Using PhaseEvent Metrics
Carefully consider the requirements for new metrics when you add DMS
instrumentation. It is important to add a sufficient number of metrics to validate that
your code is behaving as desired.

Try to observe the following guidelines when you add DMS metrics:

1. Add PhaseEvent Sensors only to provide an overview of the time the system
spends in your block of code or module. You do not need to collect performance
data for every method call, or for every distinct phase of your code or module.

2. When your code calls external code that you do not control, and that you expect
could take a significant amount of time, add a PhaseEvent Sensor to track the start
and the completion of the external code.

See Also: "General DMS Naming" on page 9-7

See Also: "Using PhaseEvent Sensors" on page 9-11

See Also: "DMS Naming Conventions" on page 9-7

Using A High Resolution Clock To Increase DMS Precision

9-18 Oracle Application Server Performance Guide

Following these guidelines for adding PhaseEvent metrics provides the following
benefits:

■ Helps to limit the amount of information that DMS collects.

■ Allows those analyzing the system to prove that a module gives the expected
runtime performance.

■ Ensures that people viewing DMS metrics can validate runtime performance
without seeing an overwhelming amount of data.

■ Allows those analyzing system performance to separate and track your module
from other system modules that are either expensive or failure prone.

Using A High Resolution Clock To Increase DMS Precision
By default DMS uses the system clock for measuring time intervals during a
PhaseEvent. The default clock reports microsecond precision in C processes such as
Apache and reports millisecond precision in Java processes such as OC4J. Optionally,
DMS supports a high resolution clock to increase the precision of performance
measurements and lets you select the units for reporting time intervals. You can use a
high resolution clock when you need to time phase events more accurately than is
possible using the default clock or when the system's default clock does not provide
the resolution needed for your requirements.

This section covers the following topics:

■ Configuring DMS Clocks for Reporting Time for OC4J (Java)

■ Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

Configuring DMS Clocks for Reporting Time for OC4J (Java)
For Java processes, the default clock uses
java.lang.System.currentTimeMillis(). Selecting the high resolution clock
changes this call for all applications running on the process where the clock is
changed. You set the DMS clock and the reporting units globally using the
oracle.dms.clock and oracle.dms.clock.units properties, which control
process startup options.

For example, to use the high resolution clock with the default units, set the following
property on the Java command line for OC4J.

-Doracle.dms.clock=highres

Note: The resolution of the default clock and of the high resolution
clock is system dependent. On some systems the default clock may
not provide sufficient resolution for timing requirements. In
particular, on Windows platforms, many users request greater
precision than the default clock provides, because it advances only
once every 15 milliseconds. DMS metrics reported for brief events on
these systems must be analyzed with care. Consider using the high
resolution clock to address this issue.

Using A High Resolution Clock To Increase DMS Precision

Instrumenting Applications With DMS 9-19

Table 9–6 shows supported values for the oracle.dms.clock property.

Table 9–7 shows supported values for the oracle.dms.clock.units property.

Caution: Using the high resolution clock, the default units are
different than the value that Application Server Control Console
expects (msecs). If you need the Application Server Control Console
displays to be correct when using the high resolution clock, then you
need to set the units property as follows:

-Doracle.dms.clock.units=msecs

See Also: "Setting Java Command Line Options (Using JVM and
OC4J Performance Options)" on page 6-3

Table 9–6 oracle.dms.clock Property Values

Value Description

DEFAULT Specifies that DMS use the default clock. With the default clock, DMS uses
the Java call java.lang.System.currentTimeMillis() to obtain
times for PhaseEvents.

The default value for the units for the default clock is MSECS.

HIGHRES Specifies that DMS use the high resolution clock. DMS accesses the high
resolution clock using JNI (the JNI calls depend on the clocks available on
the underlying operating system).

The default value for the units for the HIGHRES clock is NSECS.

Note: On Windows platforms the high resolution clock available
with the HIGHRES setting uses the QueryPerformanceCounter
function. If this function is not available, for example, on systems
without a Pentium processor, then the HIGHRES clock uses the DMS
C clock, which has microsecond precision. This still offers a significant
improvement over the default clock available on this platform
through System.currentTimeMillis().

Table 9–7 oracle.dms.clock.units Property Values

Value Description

MSECS Specifies that the time be converted to milliseconds and reported as
"msecs".

Note: This is the default value for the default clock.

NSECS Specifies that the time be converted to nanoseconds and reported as "nsecs".

Note: This is the default value for the high resolution clock.

USECS Specifies that the time be converted to microseconds and reported as
"usecs".

Using A High Resolution Clock To Increase DMS Precision

9-20 Oracle Application Server Performance Guide

Note the following when using the high resolution DMS clock:

■ When you set the oracle.dms.clock and the oracle.dms.clock.units
properties, any combination of upper and lower case characters is valid for the
value that you select (case is not significant). For example, any of the following
values are valid to select the high resolution clock: highres, HIGHRES, HighRes.

■ DMS checks the property values at startup. When you set the clock with a value
that does not match those listed in Table 9–6, then DMS uses the default clock. If
the oracle.dms.clock property is not set, DMS also uses the default clock.

■ If the specified clock units property value does not match those listed in Table 9–7,
then DMS uses the default units for the specified clock. If the
oracle.dms.clock.units property is not set, DMS uses the default units for
the specified the clock.

Table 9–8 lists the platform specific environment variables settings for supported
platforms. To use the high resolution DMS clock, the environment variables need to be
set appropriately. The high resolution clock uses the DMS C library. On UNIX systems,
this requires libdms2.so to be in the specified environment variable path. On Windows
systems this requires yod.dll to be in the PATH environment. If a nanosecond clock is
not available, high resolution timings use a microsecond clock.

Table 9–8 Library Path Environment Variables for Supported Platforms

Platform Environment Variable

AIX LIBPATH

$ORACLE_HOME/lib/libdms2.so is required in the path

LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

HP-UX SHLIB_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Linux LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Tru64 UNIX LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Solaris LD_LIBRARY_PATH

$ORACLE_HOME/lib/libdms2.so is required in the path

Windows 2000 %ORACLE_HOME%\Apache\Apache\yod.dll must be in the PATH

Windows 2003 %ORACLE_HOME%\Apache\Apache\yod.dll must be in the PATH

Windows XP %ORACLE_HOME%\Apache\Apache\yod.dll must be in the PATH

See Also: ""Setting Java Command Line Options (Using JVM and
OC4J Performance Options)" on page 6-3

Using A High Resolution Clock To Increase DMS Precision

Instrumenting Applications With DMS 9-21

Configuring DMS Clocks for Reporting Time for Oracle HTTP Server
The default clock for measuring Oracle HTTP Server performance has a resolution of
microseconds (usecs). You can optionally select a higher resolution clock to monitor C
processes running under Oracle HTTP Server. To use the High Resolution clock under
Oracle HTTP Server, you need to set configuration options in httpd.conf, or specify
environment variables on the command line.

Table 9–9 lists the environment variables that control the Oracle HTTP Server DMS
clock. Table 9–10 describes the httpd.conf configuration options that control the Oracle
HTTP Server DMS clock. If you set both the command line options and the httpd.conf
configuration options, the configuration options override the values set on the
command line.

For example, if you want to use the high resolution clock and use the same units to
show times for Java processes running under OC4J and for mod_oc4j running under
Oracle HTTP Server, update the Oracle HTTP Server httpd.conf file to include the
following parameters and values:

DmsClock=HIGHRES
DmsClockUnits=MSECS

Also, include the following values as startup options for the OC4J process:

-Doracle.dms.clock=HIGHRES
-Doracle.dms.clock.units=MSECS

Table 9–9 OHS DMS Clock Environment Variables

Environment Variable Description

DMS_CLOCK Specifies the clock to use for DMS timing. The values are interpreted
the same as with oracle.dms.clock.

Valid Values: DEFAULT, HIGHRES

DMS_CLOCK_UNITS Specifies the units for reporting DMS timing values. The values are
Interpreted the same as with oracle.dms.clock.units.

Valid Values: MSECS, NSECS, USECS

Default Value: USECS

Table 9–10 OHS DMS Clock Configuration Parameters

Parameter Description

DmsClock Specifies the clock for HTTP listener processes started by OHS, as
the oracle.dms.clock property does for Java processes.

Valid Values: DEFAULT, HIGHRES

DmsClockUnits Specifies the time units for HTTP listener processes started by OHS,
exactly as the oracle.dms.clock.units property is for Java processes.

Valid Values: MSECS, NSECS, USECS

Default Value: USECS

Note: On Windows platforms the high resolution clock available
with the HIGHRES setting uses the QueryPerformanceCounter
function. If this function is not available, for example, on systems with
a Pentium processor, then the HIGHRES clock uses the DMS C clock,
which has microsecond precision.

Using A High Resolution Clock To Increase DMS Precision

9-22 Oracle Application Server Performance Guide

Using these options DMS uses a high resolution clock for all the Oracle HTTP Server
processes that it monitors, for the Java OC4J processes that it monitors, and DMS
reports values using the milliseconds units (msecs).

Caution: Using the high resolution clock for the Oracle HTTP
Server, the default units for the high resolution clock are NSECS on
most platforms. If you need to use Application Server Control
Console, it expects USECS for the units. If you need the Application
Server Control Console displays to be correct when using the high
resolution clock, then you need to set the units property as follows:

DmsClock=HIGHRES
DmsClockUnits=USECS

Database Tuning Considerations 10-1

10
Database Tuning Considerations

To achieve optimal performance in Oracle Application Server, for applications that use
the database, the database tables you access need to be designed with performance in
mind, and you need to monitor and tune the database server to assure that the system
is performant. This chapter describes some of the init.ora parameters that you may
need to tune in a backend Oracle Database Server.

This chapter covers the following:

■ Tuning init.ora Database Parameters

■ Tuning Redo Logs Location and Sizing

See Also: Oracle Database Performance Tuning Guide

Tuning init.ora Database Parameters

10-2 Oracle Application Server Performance Guide

Tuning init.ora Database Parameters
Table 10–1 shows tuning information for several the init.ora database initialization
parameters.

Table 10–1 Important init.ora Tuning Parameters

init.ora Parameter Description

DB_BLOCK_SIZE Sets the database block size. OLTP applications usually benefit from smaller block
sizes, DSS applications usually benefit from larger block sizes. This parameter can
only be set when the database is created, and defaults to the minimum value of 2K.

See Also: table 8-3, "Block Size Advantages and Disadvantages" in the Oracle Database
Performance Tuning Guide.

PGA_AGGREGATE_TARGET Specifies the target aggregate PGA memory available to all server processes attached
to the instance.

See Also: the chapter, "Memory Configuration and Use" in the Oracle Database
Performance Tuning Guide for information on PGA memory management.

PROCESSES Sets the maximum number of operating system processes that can be connected to
Oracle concurrently. The value of this parameter must be 6 or greater (5 for the
background processes plus 1 for each user process). For example, if you plan to have
50 concurrent users, set this parameter to at least 55. Many other initialization
parameter values are deduced from this value.

SGA_TARGET Setting this parameter to a nonzero value enables Automatic Shared Memory
Management. Set this parameter to the amount of memory that you want dedicated
for the SGA. In response to the workload on the system, the automatic SGA
management distributes the memory appropriately for the following memory pools:

■ Database buffer cache

■ Shared pool

■ Large pool

■ Java pool

Oracle strongly recommends the use of automatic memory management, both to
simplify configuration and to improve performance. Automatic Shared Memory
Management was introduced with the Oracle Database 10g (10.1). For prior versions,
you must manually configure the SGA memory pools.

See Also: The section, "Automatic Shared Memory Management" in the
Chapter,"Memory Configuration and Use" in the Oracle Database Performance Tuning
Guide for additional information on SGA management.

STREAMS_POOL_SIZE Specifies (in bytes) the size of the Streams pool. The Streams pool contains captured
events. In addition, the Streams pool is used for internal communications during
parallel capture and apply.

If the size of the Streams pool is greater than zero, then any SGA memory used by
Streams is allocated from the Streams pool. If the Streams pool size is set to zero, then
SGA memory used by Streams is allocated from the shared pool and may use up to
10% of the shared pool.

See Also Oracle Streams Concepts and Administration for detailed information on
setting this parameter.

UNDO_TABLESPACE,
UNDO_MANAGEMENT

Undo space can be managed with either rollback segments or undo tablespaces.
Good performance can be achieved by either method, however, the use of rollback
segments for managing undo space will be deprecated in a future release. Oracle
strongly recommends that you use automatic undo management (UNDO_
MANAGEMENT = AUTO) and manage undo space using an UNDO_TABLESPACE. For
backward compatibility reasons, the default value of UNDO_MANAGEMENT is MANUAL.

See Also: Oracle Database Performance Tuning Guide for additional information on
undo space management.

Tuning Redo Logs Location and Sizing

Database Tuning Considerations 10-3

Tuning Redo Logs Location and Sizing
Managing the database I/O load balancing is a non-trivial task. However, tuning the
redo log options can provide performance improvement for applications running in an
Oracle Application Server environment, and in some cases, you can significantly
improve I/O throughput by moving the redo logs to a separate disk.

The size of the redo log files can also influence performance, because the behavior of
the database writer and archiver processes depend on the redo log sizes. Generally,
larger redo log files provide better performance. Small log files can increase checkpoint
activity and reduce performance. Because the recommendation on I/O distribution for
high performance is to use separate disks for the redo log files, there is no reason not
to make them large. A potential problem with large redo log files is that these are a
single point of failure if redo log mirroring is not in effect.

It is not possible to provide a specific size recommendation for redo log files, but redo
log files in the range of a hundred megabytes to a few gigabytes are considered
reasonable. Size your online redo log files according to the amount of redo your
system generates. A rough guide is to switch logs at most once every twenty minutes.
Set the initialization parameter LOG_CHECKPOINTS_TO_ALERT = true to have
checkpoint times written to the alert file.

The complete set of required redo log files can be created during database creation.
After they are created, the size of a redo log size cannot be changed. However, new,
larger files can be added later, and the original (smaller) ones can subsequently be
dropped.

See Also: The chapters, "Configuring a Database for
Performance" and "I/O Configuration and Design" in the Oracle
Database Performance Tuning Guide

Tuning Redo Logs Location and Sizing

10-4 Oracle Application Server Performance Guide

Performance Metrics A-1

A
Performance Metrics

This appendix lists built-in metrics that can help you analyze Oracle Application
Server performance. The metrics fall into several distinct areas, such as Oracle HTTP
Server, Oracle Application Server Containers for J2EE (OC4J), and Portal. Each table in
this chapter lists the metrics that are included in a corresponding Dynamic Monitoring
Services metric table.

This appendix contains:

■ Oracle HTTP Server Metrics

■ JVM Metrics

■ JDBC Metrics

■ OC4J Metrics

■ OC4J JMS Metrics

■ OC4J Task Manager Metrics

■ mod_plsql Metrics

■ Portal Metrics

■ Oracle Process Manager and Notification Server Metrics

■ Discoverer Metrics

■ DMS Internal Metrics

Oracle HTTP Server Metrics

A-2 Oracle Application Server Performance Guide

Oracle HTTP Server Metrics
The tables, Table A–1, Table A–4, Table A–5 describe the Oracle HTTP Server metrics.

The metric table name is ohs_server.

Oracle HTTP Server Child Server Metrics
Table A–2 describes the child server metrics.

The metric table name is ohs_child.

Oracle HTTP Server Responses Metrics
The Oracle HTTP Server responses metrics are included in the metric table named
ohs_responses. This metric table includes one metric containing the count, number
of times the response was generated, for each HTTP response type.

For example, Success_OK_200.count: 28 ops.

Table A–1 HTTP Server Metrics (ohs_server)

Metric Description Unit

connection.active Number of connections currently open threads

connection.avg Average time spent servicing HTTP connections usecs

connection.maxTime Maximum time spent servicing any HTTP connection usecs

connection.minTime Minimum time spent servicing any HTTP connection usecs

connection.time Total time spent servicing HTTP connections usecs

handle.active Child servers currently in the handle processing phase threads

handle.avg Average time spent in module handler usecs

handle.completed Number of times the handle processing phase has completed ops

handle.maxTime Maximum time spent in module handler usecs

handle.minTime Minimum time spent in module handler usecs

handle.time Total time spent in module handler usecs

request.active Child servers currently in the request processing phase threads

request.avg Average time required to service an HTTP request usecs

request.completed Number of HTTP request completed ops

request.maxTime Maximum time required to service an HTTP request usecs

request.minTime Minimum time required to service an HTTP request usecs

request.time Total time required to service HTTP requests usecs

Table A–2 Oracle HTTP Server Child Server Metrics (ohs_child)

Metric Description Unit

pid.value Process ID

slot.value Slot

status.value

time.value

url.value

Oracle HTTP Server Metrics

Performance Metrics A-3

Oracle HTTP Server Virtual Host Metrics
The Oracle HTTP Server ohs_vhostSet and ohs_virtualHost metric tables
contain information on virtual host names and locations, and request and response
metrics.

Aggregate Module Metrics

HTTP Server Module Metrics
There is one set of metrics for each module loaded into the server.

The metric table name is ohs_module.

Oracle HTTP Server mod_oc4j Metrics
Table A–6 shows the mod_oc4j Failure Causes metrics. This table represents the
categorization of errors that return an INTERNAL_SERVER_ERROR to the client.

The metric table name is mod_oc4j_request_failure_causes.

Table A–3 Oracle HTTP Server Virtual Host Metrics (ohs_virtualHost)

Metric Description Unit

request.active Active requests threads

request.avg Average time for request processing usecs

request.completed Number of completed requests ops

request.maxTime Maximum time to complete a request usecs

request.minTime Minimum time to complete a request usecs

request.time usecs

responseSize.value bytes

vhostType.value

Table A–4 HTTP Server Apache/Modules Metrics

Metric Description Unit

numMods.value Number of loaded modules

Table A–5 HTTP Server Apache/Modules/mod_*.c Metrics (ohs_module)

Metric Description Unit

decline.count Number of requests declined ops

handle.active Number of requests currently being handled by this module requests

handle.avg Average time required for this module usecs

handle.completed Number of requests handled by this module ops

handle.maxTime Maximum time required for this module usecs

handle.minTime Minimum time required for this module usecs

handle.time Total time required for this module usecs

Oracle HTTP Server Metrics

A-4 Oracle Application Server Performance Guide

Table A–7 shows the mod_oc4j Mount Point metrics. There is one mount point metric
table for each mount point specified in mod_oc4j.conf. This table includes a set of
metrics for each mount point specified, with each set grouped under the mntPtid.
Where id is an integer that is automatically generated during module initialization.

The metric table name is mod_oc4J_mount_pt_metrics.

Table A–8 shows the mod_oc4j Destination Metrics. This table includes a set of metrics
for a specific destination. Each destination can have multiple mount points. There is
one mntPts subtree for each mount point specified in mod_oc4j.conf.

Table A–6 HTTP Server mod_oc4j Request Failure Causes Metrics

Metric Description Unit

IncorrectReqInit.count The total number of times an internal error occurred. There could be a
number of reasons, including: mod_oc4j not finding a connection
endpoint, configuration errors, and others.

ops

Oc4jUnavailable.count The total number of times that an oc4j JVM could not be found to
service requests.

ops

UnableToHandleReq.count The total number of times mod_oc4j declined to handle a request. ops

Table A–7 HTTP Server mod_oc4j Mount Point Metrics

Metric Description Unit

Destination.value Specifies the destination name. For example, with:

 Oc4jMount /j2ee/* home

The Destination.value would be home

String

ErrReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
failed to route to an OC4J.

ops

ErrReqNonSess.count Specifies the total number of non session requests that mod_oc4j failed to route to an
oc4j process.

ops

ErrReqSess.count Specifies the total number of session requests that mod_oc4j failed to route to an OC4J
process.

ops

Failover.count Specifies the total number of failovers for both nonsession and session requests. ops

Name.value Specifies the echo of the value specified as the path for Oc4jMount directive in mod_
oc4j.conf. DMS changes certain characters, including: ’/’ and ’*’ to ’_’ . To preserve the
actual path names specified, an internal table containing a mapping between mntPtid
and the actual path name is created during mod_oc4j initialization. For example,
with: Oc4jMount /j2ee/* home Name.value would be /j2ee/*

String

NonSessFailover.count Specifies the total number of failovers for nonsession requests. For example,

Assume that this mount point was serviced by an OC4J Island with three JVM’s
(JVM1, JVM2 and JVM3). A new non session request is routed to JVM1. JVM1 fails to
service the request, and the request is failed over to JVM2. JVM2 fails to service the
request, and so the request is failed over to JVM3. At this point the
NonSessFailover.count is incremented by 2.

ops

SessFailover.count Specifies the total number of failovers for session requests. For example,

Let us assume that this mount point was serviced by an OC4J Island with three JVM’s
(JVM1, JVM2 and JVM3). A session request is routed to JVM1. JVM1 fails to service the
request. So, the request is failed over to JVM2. At this point the SessFailover.count is
incremented by 1. JVM2 fails to service the request, and so the request is failed over to
JVM3. At this point the SessFailover.count is incremented by 2.

ops

SucReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
successfully routed to an OC4J instance.

ops

SucReqNonSess.count Specifies the total number of non session requests that mod_oc4j successfully routed
to an OC4J process.

ops

SucReqSess.count Specifies the total number of session requests that mod_oc4j successfully routed to an
OC4J process.

ops

JVM Metrics

Performance Metrics A-5

The metric table name is mod_oc4J_destination_metrics.

JVM Metrics
There is one set of metrics for each Java process (OC4J) currently running in the site.
The metric table name is JVM.

Table A–8 HTTP Server mod_oc4j Destination Metrics

Metric Description Unit

ErrReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
failed to route to an OC4J.

ops

ErrReqNonSess.count Specifies the total number of non session requests that mod_oc4j failed to route to
an OC4J process.

ops

ErrReqSess.count Specifies the total number of session requests that mod_oc4j failed to route to an
OC4J process.

ops

Failover.count Specifies the total number of failovers for both nonsession and session requests. ops

JVMCnt.value Specifies the total number of routable OC4J JVMs that belong to this destination. Number of
JVMs

Name.value Specifies the echo of the value specified as destination for Oc4jMount directive in
mod_oc4j.conf, a single destination may appear several times in mod_oc4j.conf.

Example: Oc4jMount /j2ee/* home,oc4jinstance2

Name.value would be home,oc4jinstance2

String

NonSessFailover.count Specifies the total number of failovers for non session requests. ops

SessFailover.count Specifies the total number of failovers. ops

SucReq.count Specifies the total number of requests, both session and non-session, that mod_oc4j
successfully routed to an OC4J.

ops

SucReqNonSess.count Specifies the total number of non session requests that mod_oc4j successfully
routed to an OC4J process.

ops

SucReqSess.count Specifies the total number of session requests that mod_oc4j successfully routed to
an OC4J process.

ops

Table A–9 JVM Metrics (JVM)

Metric Description Unit

activeThreadGroups.value The number of active thread groups in the JVM integer

activeThreadGroups.minValue The minimum number of active thread groups in the JVM integer

activeThreadGroups.maxValue The maximum number of active thread groups in the JVM integer

activeThreads.value The number of active threads in the JVM threads

activeThreads.minValue The minimum number of active threads in the JVM threads

activeThreads.maxValue The maximum number of active threads in the JVM threads

upTime.value Up time for the JVM msecs

freeMemory.value The amount of heap space free in the JVM KB

freeMemory.minValue The minimum amount of heap space free in the JVM KB

freeMemory.maxValue The maximum amount of heap space free in the JVM KB

totalMemory.value The total amount of heap space in the JVM KB

totalMemory.minValue The minimum amount of total heap space in the JVM KB

totalMemory.maxValue The maximum amount of total heap space in the JVM KB

JDBC Metrics

A-6 Oracle Application Server Performance Guide

JVM Properties Metrics
Oracle Application Server creates a metric to track the value of each Java Property
available through a call to System.getProperties() on any Java process. For each
Java Property, a metric is created under the /JVM/Properties noun.

For example, each process should have a metric that contains the value of the
java.version system property named, /JVM/Properties/java_
version.value. The system converts property name components with a period, '.' to
'_'.

If, during the life of a process, a property is deleted from the JVM system properties,
the corresponding metric is deleted. If the value changes, this is reflected in the metric
value the next time it is accessed. If a new property is added to the system properties,
a new metric is created.

JDBC Metrics
The following tables list the Oracle Application Server JDBC metrics.

JDBC Driver Metrics
There is one set of JDBC Driver metrics per JVM.

The metric table name is JDBC_Driver.

JDBC Data Source Metrics
The metric table name is JDBC_DataSource.

There is one set of data source metrics per data source.

Note: the JDBC data source metrics are only available for non-emulated data sources.

Note: The JVM Properties metrics are only available for viewing
using the Spies text link in AggreSpy, or using the dmstool
command to display metrics.

Table A–10 JVM/Properties - JVM System Properties Metrics

Metric Description Unit

A metric is created for each system
property. Each property name has any
of the "." characters in the name
replaced with "_".

Contains the value of the Java system property. String

Table A–11 /JDBC/Driver - JDBC_Driver Metrics

Metric Description Unit

ConnectionCloseCount.count Total number of connections that have been closed. ops

ConnectionCreate.active Current number of threads creating connections. ops

ConnectionCreate.avg Average time spent creating connections. msecs

ConnectionCreate.completed Number of times this PhaseEvent has started and ended. ops

ConnectionCreate.maxTime Maximum time spent creating connections. msecs

ConnectionCreate.minTime Minimum time spent creating connections. msecs

ConnectionCreate.time Time spent creating connections. msecs

ConnectionOpenCount.count Total number of connections that have been opened. ops

JDBC Metrics

Performance Metrics A-7

JDBC Driver Specific Connection Metrics
There is one set of JDBC Connection metrics per connection.

The metric table name is JDBC_Connection.

JDBC Data Source Specific Connection Metrics
There is one set of JDBC data source specific connection metrics per data source per
connection. The metric table name is JDBC_Connection.

Table A–12 /JDBC/data-source-name - JDBC_Data Source Metrics

Metric Description Unit

CacheFreeSize.value Number of free slots in the connection cache.

CacheGetConnection.avg Average time spent getting a connection from the cache. msecs

CacheGetConnection.completed Number of times this PhaseEvent has started and ended. ops

CacheGetConnection.maxTime Maximum time spent getting a connection from the cache. msecs

CacheGetConnection.minTime Minimum time spent getting a connection from the cache. msecs

CacheGetConnection.time Time spent getting a connection from the cache or not. msecs

CacheHit.count Number of times a request for a connection has been satisfied from the cache.

CacheMiss.count Number of times a request for a connection failed to be satisfied from the
cache.

CacheSize.value Total size of the connection cache.

Table A–13 /JDBC/Driver/CONNECTION - JDBC Driver Connection Metrics

Metric Description Unit

CreateNewStatement.avg Average time spent creating a new statement. msecs

CreateNewStatement.completed Number of times a request for a statement failed to be satisfied from the
cache.

ops

CreateNewStatement.maxTime Maximum time spent creating a new statement. msecs

CreateNewStatement.minTime Minimum time spent creating a new statement. msecs

CreateNewStatement.time Time spent creating a new statement (this does not include the time required
to parse the statement. For information on the metric that includes the parse
time see Execute.Time in Table A–15).

msecs

CreateStatement.avg Average time spent getting a statement from the statement cache. msecs

CreateStatement.completed Number of times a request for a statement was satisfied from the cache. ops

CreateStatement.maxTime Maximum time spent getting a statement from the statement cache. msecs

CreateStatement.minTime Minimum time spent getting a statement from the statement cache. msecs

CreateStatement.time Time spent getting a statement from the statement cache. msecs

LogicalConnection.value If this is a physical connection, then this refers to its logical connection, if any.

Table A–14 /JDBC/data-source-name/CONNECTION - JDBC Datasource Connection Metrics

Metric Description Unit

CreateNewStatement.avg Average time spent creating a new statement. msecs

CreateNewStatement.completed Number of times a request for a statement failed to be satisfied from the
cache.

ops

CreateNewStatement.maxTime Maximum time spent creating a new statement. msecs

CreateNewStatement.minTime Minimum time spent creating a new statement. msecs

JDBC Metrics

A-8 Oracle Application Server Performance Guide

JDBC Driver Statement Metrics
There is a set of statement metrics per connection per statement. The metric table name
is JDBC_Statement.

JDBC Data Source Statement Metrics
The metric table name is JDBC_Statement. There is a set of statement metrics per
data source per connection per statement.

Note: the JDBC data source metrics are only available for non-emulated data sources.

CreateNewStatement.time Time spent creating a new statement (this time does not include the time
required to parse the statement. For information on the metric that includes
the parse time see Execute.Time in Table A–16).

msecs

CreateStatement.avg Average time spent getting a statement from the statement cache. msecs

CreateStatement.completed Number of times a request for a statement was satisfied from the cache. ops

CreateStatement.maxTime Maximum time spent getting a statement from the statement cache. msecs

CreateStatement.minTime Minimum time spent getting a statement from the statement cache. msecs

CreateStatement.time Time spent getting a statement from the statement cache. msecs

LogicalConnection.value If this is a physical connection, then this refers to its logical connection, if any.

Note: The JDBC statement metrics are only available for JDBC
connections that have enabled statement caching, and set the
property oracle.jdbc.DMSStatementCachingMetrics to the
value true. When JDBC statement caching is disabled, you can
make the JDBC statement metrics available by setting the property
oracle.jdbc.DMSStatementMetrics to true. To improve
performance and to avoid collecting expensive metrics, by default
these properties are both set to false.

Table A–15 /JDBC/Driver/CONNECTION/STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute.time The time this statement has spent executing the SQL including the first fetch and the
time required to parse the statement.

msecs

Fetch.time The time this statement has spent in other fetches. msecs

SQLText.value The SQL being executed.

See Also: "Setting the OC4J JDBC DMS Statement Metrics
Option" on page 6-7

Note: The JDBC statement metrics are only available for JDBC
connections that have enabled statement caching and set the
property oracle.jdbc.DMSStatementCachingMetrics to the
value true. When JDBC statement caching is disabled, you can
make the JDBC statement metrics available by setting the property
oracle.jdbc.DMSStatementMetrics to true. To improve
performance and to avoid collecting expensive metrics, by default
these properties are set to false.

Table A–14 (Cont.) /JDBC/data-source-name/CONNECTION - JDBC Datasource Connection Metrics

Metric Description Unit

OC4J Metrics

Performance Metrics A-9

OC4J Metrics
This section lists the OC4J J2EE application related metrics.

This section covers the following metrics:

■ Web Module Metrics

■ Web Context Metrics

■ OC4J Servlet Metrics

■ OC4J JSP Metrics

■ OC4J EJB Metrics

■ OC4J OPMN Info Metrics

Web Module Metrics
There is one set of metrics for each Web module within each J2EE application.

The metric table name is oc4j_web_module.

Table A–16 /JDBC/data-source-name/CONNECTION/STATEMENT JDBC Statement Metrics

Metric Description Unit

Execute.time The time this statement has spent executing the SQL including the first fetch and the
time required to parse the statement.

msecs

Fetch.time The time this statement has spent in other fetches. msecs

SQLText.value The SQL being executed.

See Also: "Setting the OC4J JDBC DMS Statement Metrics
Option" on page 6-7

Table A–17 OC4J/application/WEBs Metrics

Metric Description Unit

parseRequest.active Current number of threads trying to read/parse AJP or HTTP requests

parseRequest.avg Average time spent to read/parse requests msecs

parseRequest.completed Number of web requests that have been parsed ops

parseRequest.maxActive Maximum number of threads trying to read/parse AJP or HTTP
requests

threads

parseRequest.maxTime Maximum time spent to read/parse requests msecs

parseRequest.minTime Minimum time spent to read/parse requests msecs

parseRequest.time Total time spent to read/parse requests from the socket msecs

processRequest.active Current number of threads servicing web requests

processRequest.avg Average time spent servicing web requests msecs

processRequest.completed Number of web requests processed by this application ops

processRequest.maxActive Maximum number of threads servicing web requests threads

processRequest.maxTime Maximum time spent servicing a web request msecs

processRequest.minTime Minimum time spent servicing a web request msecs

processRequest.time Total time spent servicing this application’s web requests msecs

OC4J Metrics

A-10 Oracle Application Server Performance Guide

Web Context Metrics
There is one set of metrics for each Web context module within each J2EE application.

The metric table name is oc4j_context.

OC4J Servlet Metrics
There is one set of metrics for each servlet in each Web module within each J2EE
application.

The metric table name is oc4j_servlet.

resolveContext.active Current number of threads trying to create/find the servlet context

resolveContext.avg Average time spent to create/find the servlet context msecs

resolveContext.completed Count of completed context resolves ops

resolveContext.maxActive Maximum number of threads trying to create/find the servlet context threads

resolveContext.maxTime Maximum time spent to create/find the servlet context msecs

resolveContext.minTime Minimum time spent to create/find the servlet context msecs

resolveContext.time Total time spent to create/find the servlet context. Each web module
(WAR) maps to a servlet context

msecs

Table A–18 OC4J/application/WEBs/context Metrics

Metric Description Unit

resolveServlet.time Total time spent to create/locate servlet instances (within the servlet
context). This includes the time for any required authentication.

msecs

resolveServlet.completed Total Number of lookups for a servlet by OC4J ops

resolveServlet.minTime Minimum time spent to create/locate the servlet instance (within the
servlet context)

msecs

resolveServlet.maxTime Maximum time spent to create/locate the servlet instance (within the
servlet context)

msecs

resolveServlet.avg Average time spent to create/locate the servlet instance (within the servlet
context)

msecs

sessionActivation.active Number of active sessions ops

sessionActivation.time Total time in which sessions have been active msecs

sessionActivation.completed Number of session activations ops

sessionActivation.minTime Minimum time a session was active ops

sessionActivation.maxTime Maximum time a session was active msecs

sessionActivation.avg Average session lifetime msecs

service.time Total time spent servicing requests msecs

service.completed Total number of requests serviced ops

service.minTime Minimum time spent servicing requests msecs

service.maxTime Maximum time spent servicing requests ops

service.avg Average time spent in servicing the servlet msecs

service.active Current number of requests active msecs

Table A–17 (Cont.) OC4J/application/WEBs Metrics

Metric Description Unit

OC4J Metrics

Performance Metrics A-11

OC4J JSP Metrics

JSP Runtime Metrics
There is one set of metrics for each Web context for each J2EE application.

The metric table name is oc4j_jspExec.

JSP Metrics
There is one set of metrics for each JSP in each Web module.

The metric table names are oc4j_jsp(threadsafe=true) and oc4j_
jsp(threadsafe=false).

To list these metrics using dmstool, enclose the metric table name in quotation marks.

For example:

dmstool -table "oc4j_jsp(threadsafe=true)"

Table A–19 OC4J/application/WEBs/context /SERVLETS/servlet Metrics

Metric Description Unit

service.active Current number of threads servicing this servlet threads

service.avg Average time spent in servicing the servlet msecs

service.completed Total number of calls to service()

service.maxActive Maximum number of threads servicing this servlet threads

service.maxTime Maximum time spent on a servlet’s service() call ops

service.minTime Minimum time spent on a servlet’s service() call msecs

service.time Total time spent on the servlet’s service() call msecs

Table A–20 OC4J/application/WEBs/context /JSP Metrics

Metric Description Unit

processRequest.time Time spent processing requests for JSPs

Only used for Context/Application name

msecs

processRequest.completed Number of requests for JSPs processed by this application ops

processRequest.minTime Minimum time spent processing requests for JSPs msecs

processRequest.maxTime Maximum time spent processing requests for JSPs msecs

processRequest.avg Average time spent processing requests for JSPs msecs

processRequest.active Current number of active requests for JSPs ops

Table A–21 OC4J/application/WEBs/context /JSPjsp_name Metrics

Metric Description Unit

activeInstances.value Number of active instances. Only used when threadsafe=false instances

availableInstances.value Number of available (that is, created) instances.

This value is only provided when threadsafe=false.

instances

service.active Current number of active requests for the JSP

service.avg Average time spent servicing the JSP msecs

service.completed Number of requests for JSPs processed by this JSP ops

OC4J Metrics

A-12 Oracle Application Server Performance Guide

OC4J EJB Metrics

OC4J EJB Session Bean Metrics
The oc4j_ejb_session_bean metric table includes information on a session bean.

EJB Bean Metrics
Oracle Application Server provides a set of these metrics for each type of bean in each
EJB jar file in each J2EE application.

The metric table name is oc4j_ejb_entity_bean.

EJB Method Metrics
There is one set of metrics for each method within each type of EJB bean.

The metric table name is oc4j_ejb_method.

The client.* metrics show values for the actual implementation of the method. The
wrapper.* metrics show values for the wrapper that was automatically generated for
the method.

service.maxTime Maximum time spent servicing the JSP msecs

service.minTime Minimum time spent servicing the JSP msecs

service.time Time to serve a JSP (that is, actual execution time of the JSP) msecs

Table A–22 OC4J EJB Session Bean Metrics

Metric Description Unit

session-type.value Provides information on the session type: Stateless or Stateful String

transaction-type.value Provides information on the transaction type: Container or Bean String

Table A–23 OC4J/application/EJBs/ejb-jar-module/ejb-name Metrics

Metric Description Unit

transaction-type.value Possible values: container or bean

session-type.value Possible values: stateful or stateless

bean-type.value Possible values: session or entity bean

exclusive-write-access.value Possible values: true or false

isolation.value Possible values: serializable, uncommitted, committed,
repeatable_read, none, DB-determined

The value is DB-determined when the isolation attribute is omitted.

persistence-type.value Possible values: container or bean or

Table A–21 (Cont.) OC4J/application/WEBs/context /JSPjsp_name Metrics

Metric Description Unit

OC4J Metrics

Performance Metrics A-13

OC4J OPMN Info Metrics
Table A–25 shows the OC4J OPMN information metrics. The metric table type is
oc4J_opmn.

See Also: Chapter 6, "Advanced EJB Subjects" in Oracle
Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide for information on automatically generated
wrappers.

Table A–24 OC4J/application/EJBs/ejb-jar-module/ejb-name/method-name Metrics

Metric Description Unit

client.active Current number of threads accessing the actual implementation of this method ops

client.avg Average time spent inside the actual implementation of this method msecs

client.completed Number of requests for beans processed by this application ops

client.maxActive Maximum number of threads accessing the actual implementation of this
method

ops

client.maxTime Maximum time spent inside the actual implementation of this method msecs

client.minTime Minimum time spent inside the actual implementation of this method msecs

client.time Time spent inside the actual implementation of this method msecs

ejbPostCreate.active Current number of threads executing ejbPostCreate ops

ejbPostCreate.avg Average time spent in ejbPostCreate msecs

ejbPostCreate.completed Number of times this ejbPostCreate has been called ops

ejbPostCreate.maxTime Maximum time spent in ejbPostCreate msecs

ejbPostCreate.minTime Minimum time spent in ejbPostCreate msecs

ejbPostCreate.time Time spent in the ejbPostCreate method (entity beans) msecs

trans-attribute.value Transaction attribute. Possible values: NotSupported, Supports,
RequiresNew, Mandatory, and Never

wrapper.active Current number of threads accessing the automatically generated wrapper
method

wrapper.avg Average time spent inside the automatically generated wrapper method msecs

wrapper.completed Number of requests for beans processed by this application ops

wrapper.maxActive Maximum number of threads that access the wrapper ops

wrapper.maxTime Maximum time spent inside the automatically generated wrapper method msecs

wrapper.minTime Minimum time spent inside the automatically generated wrapper method msecs

wrapper.time Time spent inside the automatically generated wrapper method. Note: Not all
the wrapper methods invoke the actual bean implementation at runtime (for
example, create method in a stateless bean). This means that the time spent in
the wrapper code could be less than the time spent in the bean implementation

msecs

Table A–25 OC4J OPMN Information Metrics

Metric Description Unit

default_application_log.value Specifies the default application log file path.

ias_cluster.value Specifies the Oracle Application Server cluster name. String

ias_instance.value Specifies the Oracle Application Server instance name. String

jms_log.value Specifies the JMS log file path. String

oc4j_instance.value Specifies the OC4J instance ID. String

OC4J JMS Metrics

A-14 Oracle Application Server Performance Guide

OC4J JMS Metrics
OC4J JMS metrics are organized into metric tables and fall into two categories:

■ JMS API-level metrics: collected on objects visible to the JMS API (for example,
connections, sessions, producers, consumers, and browsers). JMS API-level metrics
are collected and maintained only for Web and EJB clients (application clients also
collect API-level metrics, but do so in their own JVM; these metrics are not
available on the OC4J JMS server).

■ JMS Server-level metrics: collected by the OC4J JMS server and maintained
independent of client-state. JMS Server-level metrics are collected and maintained
for all types of clients: Application, Web, and EJB.

Each OC4J JMS metric table (metric table type) contains metrics for instances of the
same type; different instances have unique names. For each instance in a metric table,
a set of metrics is collected. The names for metrics in each instance are unique IDs that
OC4J JMS generates.

Instances may have one or more metrics whose value is the name of another metric
instance. For example, the JMS session instances contain metrics that point to the
parent containing JMS connection instance. You can use the pointers to navigate
through the metrics.

A parent metric instance usually includes a counter metric indicating the number of
child metrics of a certain type that have been created. Child metric instances may
appear and disappear as the underlying objects are created and destroyed; the counter
keeps track of the total number of such instances that were created during the lifetime
of the parent.

JMS Metric Tables
OC4J JMS metrics are divided into three types, based on how they are updated:

1. CTOR Metrics: Metrics that are set in the constructor or initialization routine of
the associated JMS object, and are never changed during the lifetime of the object.

2. Normal Metrics: Object level state metrics that are updated as soon as the
associated state of the JMS object changes.

3. Lazy Metrics: these state metrics are updated lazily, that is, not as soon as the
underlying metric value changes, but only periodically (these are typically server
store metrics and are updated each time the store is cleaned up of expired
messages).

oc4j_island.value Specifies the OC4J island ID. String

opmn_group.value Specifies the OPMN group ID. String

opmn_sequence.value Specifies the OPMN sequence ID. String

rmi_log.value Specifies the RMI log file path name. String

server_log.value Specifies the application server log file path. String

See Also: Oracle Application Server Containers for J2EE Services Guide
for more information on OC4J JMS

Table A–25 (Cont.) OC4J OPMN Information Metrics

Metric Description Unit

OC4J JMS Metrics

Performance Metrics A-15

Table A–26 shows a summary of the organization of the OC4J JMS metric tables.

JMS Stats Metric Table
Table A–27 shows the JMS Stats metrics.

The metric table type is JMSStats.

Table A–26 OC4J JMS Metric Tables

JMS Metric Table Type Parent Table Type
Number of
Instances Description

JMSStats none 1 Statistics for the OC4J JMS Server

JMSRequestHandlerStats JMSStats 1 per remote JMS
connection

Statistics for the request handler thread servicing
a remote JMS connection.

JMSConnectionStats JMSStats 1 per JMS
connection

Statistics for the JMS connections active in this
server

JMSSessionStats JMSConnectionStats 1 per JMS session Statistics for the JMS sessions active in this
server

JMSMessageProducerStats JMSSessionStats 1 per JMS message
producer

Statistics for the JMS producers active in this
server

JMSMessageBrowserStats JMSSessionStats 1 per JMS queue
browser

 Statistics for the JMS queue browsers in this
server

JMSMessageConsumerStats JMSSessionStats 1 per JMS message
consumer

Statistics for the JMS consumers active in this
server

JMSDurableSubscriberStats JMSStats 1 per JMS durable
subscriber

Statistics for each JMS durable subscription
known to this server

JMSDestinationStats JMSStats 1 per permanent
JMS destination

Statistics for each permanent JMS destination
known to the OC4J JMS server

JMSTemporaryDestinationStats JMSStats 1 per temporary
JMS destination

Statistics for each temporary JMS destination
known to the OC4J JMS server

JMSStoreStats JMSDestinationStats
JMSTemporaryDestin
ationStats

1 per server-side
message store

Statistics for each message store (one per queue,
one per subscription per topic) on the OC4J JMS
server

JMSPersistenceStats JMSDestinationStats 1 per server-side
persistent
destination

Statistics for operations on the persistence file for
each persistent destination

Table A–27 JMSStats Metric Table

Metric Description Update Unit

address.value The hostname(s) from which the JMS server accepts remote
connections

ctor string

connections.count The number of JMS connections (local and remote) created by
the JMS server

normal ops

host.value The explicit hostname on which the OC4J JMS server is
running.

ctor string

oc4j.jms.debug.value Value of the oc4j.jms.debug OC4J JMS control knob ctor bool

oc4j.jms.forceRecovery.value Value of the oc4j.jms.forceRecovery OC4J JMS control
knob

ctor bool

oc4j.jms.listenerAttempts. Value of the oc4j.jms.listenerAttempts OC4J JMS
control knob

ctor int

oc4j.jms.maxOpenFiles.value Value of the oc4j.jms.maxOpenFiles OC4J JMS control
knob

ctor int

OC4J JMS Metrics

A-16 Oracle Application Server Performance Guide

JMS Request Handler Stats
Table A–28 shows the JMS Request Handler Stats.

The metric table name is JMSRequestHandlerStats.

JMS Connection Stats

Table A–29 shows the JMS Connection Stats.

The metric table name is JMSConnectionStats.

oc4j.jms.messagePoll.value Value of the oc4j.jms.messagePoll OC4J JMS control
knob

ctor msecs

oc4j.jms.noDms.value Value of the oc4j.jms.noDms OC4J JMS control knob ctor bool

oc4j.jms.saveAllExpired.val Value of the oc4j.jms.saveAllExpired OC4J JMS control
knob

ctor bool

oc4j.jms.serverPoll.value Value of the oc4j.jms.serverPoll OC4J JMS control
knob

ctor msecs

oc4j.jms.socketBufsize.val Value of the oc4j.jms.socketBufsize OC4J JMS control
knob

ctor int

oc4j.jms.usePersistence.val Value of the oc4j.jms.usePersistence OC4J JMS control
knob

ctor bool

oc4j.jms.useUUID.value Value of the oc4j.jms.useUUID OC4J JMS control knob ctor bool

port.value The TCP/IP port on which the JMS server listens for incoming
connections

ctor int

requestHandlers.count The number of request handlers created by the JMS server normal int

startTime.value System.currentTimeMillis() when the OC4J JMS server
was started

ctor msecs

taskManagerInterval.value The scheduling interval of the OC4J task manager (and the
scheduling interval for the OC4J JMS expiration task)

ctor msecs

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in the OC4J JMS server

normal

Table A–28 JMSRequestHandlerStats Metrics

Metric Description Update Unit

address.value The hostname from which the remote connection originates (may be an
implicit, special address)

ctor string

connectionID.value The ID of the JMSConnectionStats instance ctor string

host.value The explicit hostname from which the remote connection originates ctor string

port.value The TCP/IP port from which the remote connection originates ctor int

startTime.value System.currentTimeMillis() when the request handler was started ctor string

Table A–27 (Cont.) JMSStats Metric Table

Metric Description Update Unit

OC4J JMS Metrics

Performance Metrics A-17

JMS Session Stats
Table A–30 shows the JMS Session Stats.

The metric table name is JMSSessionStats.

JMS Message Producer Stats
Table A–31 shows the JMS Producer Stats.

The metric table name is JMSProducerStats.

Table A–29 JMSConnectionStats Metrics

Metric Description Update Unit

address.value The implicit hostname of the remote JMS server host for this connection
as specified in the connection factory used to create this connection; set
only for non-local connections.

ctor string

clientID.value The administratively configured (for ctor) or programmatically set (for
normal) clientID for this connection

ctor/normal string

domain.value The JMS domain ("queue", "topic", or "unified") of this connection ctor string

exceptionListener
.value

The stringified name of the current exception listener for this connection normal string

host.value The explicit hostname of the remote JMS server host for this connection;
set only for non-local connections

ctor string

isLocal.value "true" if and only if the JMS connection is local to the OC4J JMS server in
the same JVM

ctor boolean

isXA.value "true" if and only if the connection is in XA mode ctor boolean

port.value The remote JMS server port for this connection; set only for non-local
connections

ctor int

startTime.value System.currentTimeMillis() when this connection was created ctor msecs

user.value The user identity for this connection ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in this connection object.

normal

Table A–30 JMSSessionStats Metrics

Metric Description Update Unit

acknowledgeMode.value The acknowledge mode of this session. The valid modes are: AUTO_
ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE,
and SESSION_TRANSACTED.

ctor string

domain.value The JMS domain ("queue", "topic", or "unified") of this session ctor string

isXA.value "true" if and only if the session is in XA mode ctor boolean

sessionListener.value The stringified name of the current distinguished listener for this
session

normal string

startTime.value System.currentTimeMillis() when this session was created ctor msecs

transacted.value "true" if and only if the session is transacted ctor boolean

txid.value The integer count of the current local transaction associated with this
session; the counter is increment each time a local transaction is
committed/rolledback; not set for non-transacted session

normal int

xid.value The Xid of the current distributed transaction associated with this
session; set to a null/empty string when in a local transaction mode;
not set if the session never participates in a global transaction

normal string

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in this session object

normal

OC4J JMS Metrics

A-18 Oracle Application Server Performance Guide

JMS Message Browser Stats
Table A–32 shows the JMS Browser Stats.

The metric table name is JMSBrowserStats.

JMS Message Consumer Stats
Table A–33 shows the JMS Message Consumer Stats.

The metric table name is JMSMessageConsumerStats.

Table A–31 JMSProducerStats Metrics

Metric Description Update Unit

deliveryMode.value The current delivery mode of this producer. The valid delivery
mode values are: PERSISTENT and NON_PERSISTENT.

normal string

destination.value The name of the identified destination for this producer;
null/empty for an unidentified producer

ctor string

disableMessageID.value The value is true when message IDs are disabled for the producer normal boolean

disableMessageTimestamp
.value

The value is true when message timestamps are disabled for the
producer

normal boolean

domain.value The JMS domain ("queue", "topic", or "unified") of this producer ctor string

priority.value The current priority of this producer normal int

startTime.value System.currentTimeMillis() when this producer was created ctor msecs

timeToLive.value The current timeToLive of this producer normal msecs

method-name A phase timer (PhaseEvent Sensor) metric for every major method
call in this producer object

normal

Table A–32 JMSBrowserStats Metrics

Metric Description Update Unit

destination.value The name of the destination for this browser ctor string

selector.value The message selector for this browser; null/empty string if unspecified ctor string

startTime.value System.currentTimeMillis() when this browser was created ctor msecs

method-name An interval timer metric (PhaseEvent Sensor) for every major method call in
this browser object; calls to "hasMoreElements" and "nextElement" are made
on individual enumeration objects, but counted as PhaseEvents in the
browser object to simplify data collection, multiple enumerations can be
active on the same browser

normal

Table A–33 JMSMessageConsumerStats

Metric Description Update Unit

destination.value The name of the destination for this consumer ctor string

domain.value The JMS domain ("queue", "topic", or "unified") of this consumer ctor string

messageListener.value The stringified name of the current message listener for this
consumer

normal string

name.value The name of the durable subscriber for this consumer; set only for
durable topic subscriptions

ctor string

noLocal.value The noLocal setting of a subscription; set only for topic consumers ctor boolean

OC4J JMS Metrics

Performance Metrics A-19

JMS Durable Subscription Stats
Table A–34 shows the JMS Durable Subscription Stats.

The metric table name is JMSDurableSubscriptionStats.

JMS Destination Stats
Table A–35 shows the JMS Destination Stats metrics

The metric table name is JMSDestinationStats.

JMS Temporary Destination Stats
Table A–36 shows the JMS Temporary Destination Stats.

The metric table name is JMSTempoaryDestinationStats.

selector.value The message selector for this consumer; null/empty string if
unspecified

ctor string

startTime.value System.currentTimeMillis() when this consumer was
created

ctor msecs

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in this consumer object

normal

Table A–34 JMSDurableSubscriptionStats Metrics

Metric Description Update Unit

clientID.value The clientID associated with this durable subscriptions ctor string

destination.value The name of the topic for this durable subscription ctor string

isActive.value "true" if and only if the durable subscription is currently active (being
used by a consumer)

normal boolean

name.value The user-provided name of the durable subscription ctor string

noLocal.value The noLocal flag for this durable subscription ctor boolean

selector.value The JMS message selector for this durable subscription ctor string

Table A–35 JMSDestinationStats Metrics

Metric Description Update Unit

domain.value JMS domain, "queue"or "topic", of the destination ctor string

name.value The configured name of the destination. As defined in jms.xml ctor string

locations.value A comma-delimited list of JNDI names bound to the destination.
As defined in jms.xml

ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in the destination object

normal

Table A–36 JMSTemporaryDestinationStats Metrics

Metric Description Update Unit

connectionID.value The ID of the JMSConnectionStats instance from which this temporary
destination was created

ctor string

domain.value JMS domain, for example "queue" or "topic", of the destination ctor string

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in the destination object

normal

Table A–33 (Cont.) JMSMessageConsumerStats

Metric Description Update Unit

OC4J JMS Metrics

A-20 Oracle Application Server Performance Guide

JMS Store Stats
Table A–37 shows the JMS StoreStats metric table.

The metric table name is JMSStoreStats.

 The following identity holds:

messageCount = messageRecovered + messageEnqueued -
messageDequeued - messageDiscarded - messageExpired

If a message is both enqueued and dequeued in the same transaction, the
messageEnqueued and messageDequeued events occur, but the
messageRecovered and messageDiscarded events do not.

JMS Persistence Stats
Table A–38 shows the JMS Persistence Stats.

The metric table name is JMSPersistenceStats.

Table A–37 JMSStoreStats Metric

Metric Description Update Unit

destination.value A pretty-printed name of the JMS destination associated with this
message store

ctor string

messageCount.value Total number of messages contained in this store lazy int

messageDequeued.count Total number of message dequeues (transacted or otherwise) normal ops

messageDiscarded.count Total number of message discarded after the rollback of an enqueue normal ops

messageEnqueued.count Total number of message enqueues (transacted or otherwise) normal ops

messageExpired.count Total number of message expirations normal ops

messagePagedIn.count Total number of message bodies paged in normal ops

messagePagedOut.count Total number of message bodies paged out normal ops

messageRecovered.count Total number of messages recovered (either from a persistence file,
or after the rollback of a dequeue)

normal ops

pendingMessageCount.value Total number of messages part of an enqueue/dequeue of an active
transaction

lazy int

storeSize.value Total size, in bytes, of the message store. lazy bytes

method-name An interval timer metric (PhaseEvent Sensor) for every major
method call in the message store object

normal

Table A–38 JMSPersistenceStats Metrics

Metric Description Update Unit

destination.value A pretty-printed name for the JMS destination associated with this
persistence file

ctor string

holePageCount.value The number of 512b pages currently free in this file normal int

isOpen.value "true" iff the persistence file descriptor is currently open (for LRU
caching)

normal boolean

lastUsed.value System.currentTimeMillis() when this persistence file was last
used (for LRUcaching)

normal msecs

mod_plsql Metrics

Performance Metrics A-21

OC4J Task Manager Metrics
The metric table type is oc4j_task.

mod_plsql Metrics
This section describes the Oracle Application Server mod_plsql metrics.

Figure A–1, "mod_plsql Metric Tree" shows the structure of the mod_plsql metrics. The
tables in this section describe the relevant metrics.

persistenceFile.value The absolute path name of the persistence file used for this persistent
destination. This value differs depending on the operating system where
OC4J is running.

ctor string

usedPageCount.value The number of 512b pages currently in use in this file normal int

method-name An interval timer metric (PhaseEvent Sensor) for every major method
call in the persistence file object

normal

Table A–39 OC4J_taskManager Metrics

Metric Description Unit

interval.value Shows how often the task should run. The task manager executes all the tasks
in a round-robin fashion. If the interval is zero, then the task manager executes
the task when it is selected in the round robin.

msecs (Milliseconds)

run().active Number of active threads. threads

run().avg Average time for the taskmanager to run the task msecs

run().completed Number of times the taskmanager has run the task. ops

run().maxActive Maximum number of active tasks. threads

run().maxTime Maximum time for the task to run. msecs

run().minTime Minimum time for the task to run. msecs

run().time Total time spent running the task manager msecs

Table A–38 (Cont.) JMSPersistenceStats Metrics

Metric Description Update Unit

mod_plsql Metrics

A-22 Oracle Application Server Performance Guide

Figure A–1 mod_plsql Metric Tree

The /modplsql/HTTPResponseCodes Metrics lists the response codes returned by
mod_plsql.

The metric table name is modplsql_HTTPResponseCodes. This metric table
includes one metric containing the count, number of times the response was
generated, for each HTTP response type.

 [type=modplsql_HTTPResponseCodes]

For example, the http404.count metric holds a count of the "HTTP 404: Not found"
response codes.

Table A–40 lists the set of metrics for the mod_plsql session cache.

The metric table name is modplsql_Cache.

Table A–40 mod_plsql/SessionCache Metrics

Metric Description Unit

cacheStatus.value Status of the cache. This can be either enabled or disabled. status

newMisses.count Number of session cache misses (new) ops

modplsql

ContentCache

SQLError2

SQLError1

SQLError10

HTTPResponseCodes

SQLGroup2

SQLGroup1

SQLGroupX

LastNSQLErrors

SessionCache

SQLErrorGroups

SuperUserConnectionPool

RequestOwnerConnectionPool

NonSSOConnectionPool

...

...

mod_plsql Metrics

Performance Metrics A-23

Table A–41 lists the set of metrics for the mod_plsql content cache.

The metric table name is modplsql_ContentCache.

The SQLErrorGroups metrics show the predefined groupings of SQL errors. For each
group, the metrics in Table A–42 are recorded.

The metric table name is modplsql_SQLErrorGroup:

/modplsql/SQLErrorGroups/group [type=modplsql_SQLErrorGroup]

The group is based on the groupings in the Oracle Database Error Messages guide. For
example, the metric name Ora24280Ora29249 represents the grouping Ora-24280 to
Ora-29249. Each SQL error that occurs as a result of executing a request is put into the
appropriate group based on its error code. If you are getting a high number of the
same errors, you should investigate what is causing the problem, using the Oracle
Database Error Messages guide for further details on the error message.

The LastNSQLErrors statistics show the last 10 SQL errors that have occurred while
executing requests. These are updated in a round robin fashion. For each error, the
metrics in Table A–43 are recorded.

The metric table name is modplsql_LastNSQLError:

/modplsql/LastNSQLErrors/<SQL Error Slot> [type=modplsql_LastNSQLError]

If you are getting a large number of the same errors, you should investigate what is
causing the problem. Refer to the Oracle Database Error Messages guide for further
details of the error represented by the errorText.value metric.

staleMisses.count Number of session cache misses (stale) ops

hits.count Number of session cache hits ops

requests.count Number of requests to the session cache ops

Table A–41 mod_plsql/ContentCache Metrics

Metric Description Unit

cacheStatus.value Status of the cache, either enabled or disabled.

newMisses.count Number of content cache misses (new) ops

staleMisses.count Number of content cache misses (stale) ops

hits.count Number of content cache hits ops

requests.count Number of requests to the content cache ops

Table A–42 mod_plsql/SQLErrorGroups Metrics

Metric Description Unit

lastErrorDate.value Date of the last request to cause the SQL error date

lastErrorRequest.value Last request to cause the SQL error url

lastErrorText.value SQL error text of the last error error

error.count Number of errors that have occurred within the group ops

Table A–40 (Cont.) mod_plsql/SessionCache Metrics

Metric Description Unit

mod_plsql Metrics

A-24 Oracle Application Server Performance Guide

Table A–44 lists the set of metrics for the Non-SSO connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/NonSSOConnectionPool [type=modplsql_DatabaseConnectionPool]

Table A–45 lists the set of metrics for the request owner connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/RequestOwnerConnectionPool [type=modplsql_DatabaseConnectionPool]

Table A–46 lists the set of metrics for the super user connection pool.

The metric table name is modplsql_DatabaseConnectionPool:

/modplsql/SuperUserConnectionPool [type=modplsql_DatabaseConnectionPool]

Table A–43 mod_plsql/LastNSQLErrors Metrics

Metric Description Unit

errorDate.value Date the request caused the SQL error date

errorRequest.value Request causing the SQL error url

errorText.value SQL error text error

Table A–44 mod_plsql/NonSSOConnectionPool Metrics

 Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Child servers currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

Table A–45 mod_plsql/RequestOwnerConnectionPool Metrics

Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Child servers currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

Portal Metrics

Performance Metrics A-25

Portal Metrics
This section shows the Portal Metrics. Figure A–2, "Parallel Page Engine Metric Tree"
shows the structure of the Portal Parallel Page Engine metrics. The tables in this
section describe the relevant metrics.

Figure A–2 Parallel Page Engine Metric Tree

The set of metrics can be broken down into static and dynamic types. Static metrics are
those that are always available and dynamic being those metrics that only appear if a
specific event occurs, such as when a specific portlet is requested. All of the

Table A–46 mod_plsql/SuperUserConnectionPool Metrics

Metric Description Unit

connFetch.maxTime Maximum time to fetch a connection from the pool usecs

connFetch.minTime Minimum time to fetch a connection from the pool usecs

connFetch.avg Average time to fetch a connection from the pool usecs

connFetch.active Threads currently in the pool fetch phase threads

connFetch.time Total time spent fetching connections from the pool usecs

connFetch.completed Number of times a connection has been requested from the pool ops

newMisses.count Number of connection pool misses (new) ops

staleMisses.count Number of connection pool misses (stale) ops

hits.count Number of connection pool hits ops

web Provider* Portlet*

plsql Provider* Portlet*

PageEngine ResponseCodes

page URL*

login URL*

version URL*

XSL URL*

Witness

Portal Metrics

A-26 Oracle Application Server Performance Guide

PageEngine and ResponseCodes metrics are static, the remaining metrics are
dynamic.

Table A–47 lists the set of metrics for the Parallel Page Engine. The metric table type is
modplsql_PageEngine. This set represents the general performance of the Parallel
Page Engine. If you intend to use the cache you should ensure that the
cacheEnabled.value metric is set 1. To turn the cache on, refer to the mod_plsql
cache and Parallel Page Engine configuration documentation.

Table A–47 Witness/PageEngine Metrics

Metric Description Unit

pageRequests.value Total number of requests for Portal pages. count

cacheEnabled.value The PPE makes use of the mid tier cache as controlled by mod_plsql, and is
accessed using a JNI layer. This flag indicates whether this JNI cache as accessed
from the PPE is enabled or not. This flag will be zero if the cache is either
configured to be off or there was a problem loading the JNI layer DLL.

status

cachePageHits.value Number of requests for cacheable fully assembled pages that have resulted in a
cache hit.

count

cachePageRequests.value Number of requests for cacheable fully assembled pages. count

pageMetadataWaitTimeAvg.v
alue

Average time spent in the PPE internal request queue waiting for page metadata,
for all requests. To obtain the average you should divide the value metric by the
count metric. The value being the accumulative time for all requests and the count
being the number of requests made.

msecs

pageMetadataWaitTimeAvg.c
ount

Number of requests made for page metadata. This metric should be used in
conjunction with pageMetadataWaitTimeAvg.value to calculate the average time
spent in the PPE internal request queue.

ops

pageMetadataWaitTime.valu
e

Time the last page metadata request spent in the PPE internal request queue. msecs

pageMetadataWaitTime.coun
t

Number of requests for page metadata. ops

pageMetadataWaitTime.minV
alue

Minimum time spent in the PPE internal request queue waiting for page metadata
to be requested.

msecs

pageMetadataWaitTime.maxV
alue

Maximum time spent in the PPE internal request queue waiting for page metadata
to be requested.

msecs

pageElapsedTimeAvg.value Average time to generate pages, including fetching the page metadata. To obtain
the average you should divide the value metric by the count metric. The value
being the accumulative time for all requests and the count being the number of
requests made.

msecs

pageElapsedTimeAvg.count Number of pages that had to be generated (that is, not cached). This metric should
be used in conjunction with pageElapsedTimeAvg.value to calculate the average
time to generate pages, including fetching the page metadata.

ops

pageElapsedTime.value Time to generate the last page requested, including fetching the page metadata. msecs

pageElapsedTime.count Number of pages that had to be generated (that is, not cached). ops

pageElapsedTime.minValue Minimum time to generate a page, including fetching the page metadata. msecs

pageElapsedTime.maxValue Maximum time to generate a page, including fetching the page metadata. msecs

pageMetadataFetchTimeAvg.
value

Average time to fetch page metadata, for all requests. To obtain the average you
should divide the value metric by the count metric. The value being the
accumulative time for all requests and the count being the number of requests
made.

msecs

pageMetadataFetchTimeAvg.
count

Number of requests for page metadata. This metric should be used in conjunction
with pageMetadataFetchTimeAvg.value to calculate the average time to fetch page
metadata.

ops

pageMetadataFetchTime.val
ue

Time to fetch page metadata, for the last request. msecs

pageMetadataFetchTime.cou
nt

Number of requests for page metadata. ops

Portal Metrics

Performance Metrics A-27

The set of metrics for the response codes returned by internal requests, such as
portlets, page, or metadata, made by the Parallel Page Engine are in the metric table is
modplsql_PageEngine_ResponseCodes.

This table contains a count for each HTTP response type.

For example, http100.count, contains a count of the HTTP:100 Continue response
codes.

In addition, the metric httpUnresolvedRedirect.value contains a count of
requests that were not resolved after returning a redirect HTTP response code and
httpTimeout.value contains a count of requests that timed out in the PPE internal
request queue.

Table A–48 lists the set of metrics for the internal Parallel Page Engine page metadata
requests. The metric table name is dynamic in that it includes the URL used to request
the page metadata. If you are encountering a large number of failed requests, check the
HTTPD error_log for details of why the requests are failing. The mod_plsql
metrics may also provide further details.

pageMetadataFetchTime.min
Value

Minimum time to fetch page metadata. msecs

pageMetadataFetchTime.max
Value

Maximum time to fetch page metadata. msecs

queueTimeout.value Number of requests for Portal data that have timed out in the PPE internal request
queue.

msecs

queueStayAvg.value Average time all internal PPE requests spent in the PPE internal request queue. To
obtain the average you should divide the value metric by the count metric. The
value being the accumulative time for all requests and the count being the number
of requests made.

msecs

queueStayAvg.count Number of requests added to the internal PPE request queue. This metric should
be used in conjunction with queueStayAvg.value to calculate the average time
requests spent in the internal PPE request queue.

ops

queueStay.value Time the last internal PPE request spent in the PPE internal request queue. msecs

queueStay.count Number of requests added to the internal PPE request queue. ops

queueStay.minValue Minimum time a request spent in the internal PPE request queue. msecs

queueStay.maxValue Maximum time a request spent in the internal PPE request queue. msecs

queueLengthAvg.value Average length of the PPE internal request queue. To obtain the average you
should divide the value metric by the count metric.

msecs

queueLengthAvg.count Number of requests added to the PPE internal request queue. This metric should
be used in conjunction with queueLengthAvg.value to calculate the average length
of the PPE internal request queue.

ops

queueLength.value Current length of the PPE internal request queue. msecs

queueLength.count Number of requests added to the PPE internal request queue. ops

queueLength.minValue Minimum number of requests in the PPE internal request queue. msecs

queueLength.maxValue Maximum number of requests in the PPE internal request queue. msecs

Table A–48 Witness/page/url Metrics

Metric Description Unit

lastResponseDate.value Last time the response was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

Table A–47 (Cont.) Witness/PageEngine Metrics

Metric Description Unit

Portal Metrics

A-28 Oracle Application Server Performance Guide

Table A–49 lists the set of metrics for the internal Parallel Page Engine login metadata
requests. The metric table name is dynamic in that it includes the URL used to request
the login metadata. If you are encountering a large number of failed requests, check
the HTTPD error_log for details of why the requests are failing. The mod_plsql
metrics may also provide further details.

The following table lists the set of metrics for the internal Parallel Page Engine Portal
version requests. The metric table name is dynamic in that it includes the URL used to
request the version of the Portal repository. If you are encountering a large number of
failed requests, check the HTTPD error_log for details of why the requests are
failing. The mod_plsql metrics may also provide further details.

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently being processed threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–49 Witness/login/url Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–50 Witness/version/url Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

Table A–48 (Cont.) Witness/page/url Metrics

Metric Description Unit

Portal Metrics

Performance Metrics A-29

Table A–51 lists the set of metrics for the internal Parallel Page Engine Portal XSL
requests. The metric table name is dynamic in that it includes the URL used to request
the XSL document. If you are encountering a large number of failed requests, check the
HTTPD error_log for details of why the requests are failing. The mod_plsql
metrics may also provide further details.

Table A–52 lists the set of metrics for the internal Parallel Page Engine PL/SQL
provider requests, holding a metric summary of all the requested portlets owned by a
specific provider. The metric table name is dynamic in that it includes the provider
name. dad-provider indicates the name of the DAD that the named provider is
registered and accessed through. If you are encountering a large number of failed
requests, check the HTTPD error_log for details of why the requests are failing. The
mod_plsql metrics may also provide further details.

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–51 Witness/XSL/url Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP
response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–52 Witness/plsql/dad-provider Metrics

Metric Description Unit

cacheHits.value Number of cache hits for this request ops

offline.value Flag to indicate whether the provider is offline. A value of 1 indicates that the
provider is offline and a value of 0 indicates that the provider is online.

state

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–50 (Cont.) Witness/version/url Metrics

Metric Description Unit

Portal Metrics

A-30 Oracle Application Server Performance Guide

Table A–53 lists the set of metrics for the internal Parallel Page Engine Portal PL/SQL
portlet requests. The metric table name is dynamic in that it includes both the provider
and portlet names. Table A–52 contains metrics summarizing all of the portlets
requested that are owned by a specific PL/SQL provider.

 If you are encountering a large number of failed requests, check the HTTPD error_
log for details of why the requests are failing. The mod_plsql metrics may also
provide further details.

Table A–54 lists the set of metrics for the internal Parallel Page Engine Web provider
requests, holding a metric summary of all the requested portlets owned by a specific
provider. The metric table name is dynamic in that it includes the provider name. If
you are encountering a large number of failed requests, check the HTTPD error_log
for details of why the requests are failing. The mod_plsql metrics may also provide
further details.

Table A–55 lists the set of metrics for the internal Parallel Page Engine Portal Web
portlet requests. The metric name is dynamic in that it includes both the provider and
portlet names. Table A–54 contains metrics summarizing all of the portlets requested
that are owned by a specific Web provider.

 If you are encountering a large number of failed requests, check the HTTPD error_
log for details of why the requests are failing. The mod_plsql metrics may also
provide further details. If you are seeing a large number of HTTP redirects (302),

Table A–53 Witness/plsql/dad-provider/portlet Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Table A–54 Witness/Web/dad-provider Metrics

Metric Description Unit

cacheHits.value Number of cache hits for this request ops

offline.value Flag to indicate whether the provider is offline. A value of 1 indicates that the
provider is offline and a value of 0 indicates that the provider is online.

state

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Oracle Process Manager and Notification Server Metrics

Performance Metrics A-31

consider coding the portlet to avoid the redirect as this helps performance. If you have
coded you portlet to be cacheable and the number of cache hits is low, check the mod_
plsql cache settings to ensure they are set to the appropriate levels for your system.

Oracle Process Manager and Notification Server Metrics
This sections lists the Oracle Process Manager and Notification Server (opmn) metrics.

This section includes the following:

■ OPMN_PM Metric Table

■ OPMN_HOST_STATISTICS Metric Table

■ OPMN_IAS_INSTANCE Metric Table

■ OPMN_IAS_COMPONENT Metrics

■ OPMN ONS Metrics

OPMN_PM Metric Table
The opmn_pm metric table is the root of the process manager subtree for the OPMN
DMS metrics. The metrics in this metric table contain statistics about OPMN requests.
An OPMN request is a command that has been issued to OPMN from a client, for
example DCM, to perform an operation on one or more OPMN managed processes.

Requests can have one of three possible results:

■ Success – success means OPMN handles the request successfully.

■ Partial Success – partial Success means OPMN only handles part of the request
successfully. For example, if a client wants OPMN to start three OC4J processes,
and only two are successfully started, the request result is partial success.

■ Failure – failure means the request fails.

Table A–56 shows the metric table type opmn_pm.

Table A–55 Witness/Web/dad-provider/portlet Metrics

Metric Description Unit

lastResponseDate.value Last time the request was made Date

lastResponseCode.value Last response code returned for this request HTTP response
code

cacheHits.value Number of cache hits for this request ops

httpXXX.value Count of specific HTTP response codes for this request. ops

executeTime.maxTime Maximum time to make the request usecs

executeTime.minTime Minimum time to make the request usecs

executeTime.avg Average time to make the request usecs

executeTime.active Threads currently in the make request phase threads

executeTime.time Total time spent making requests usecs

connFetch.completed Number of requests made ops

Oracle Process Manager and Notification Server Metrics

A-32 Oracle Application Server Performance Guide

OPMN_HOST_STATISTICS Metric Table
The OPMN host statistics metric table provides information on the host running the
OPMN process.

Appendix A–57 shows the metric table type opmn_host_statistics.

OPMN_IAS_INSTANCE Metric Table
The OPMN IAS instance subtree shows the Oracle Application Server instance node
name.

Table A–58 shows the metric table type opmn_ias_instance.

OPMN_IAS_COMPONENT Metrics
The OPMN IAS component subtree represents an Oracle Application Server
component. The OPMN IAS component subtree includes several metric tables
containing component information.

Table A–59 shows the metric table type opmn_process_type.

Table A–56 OPMN_PM Metrics

Metric Description Unit

jobWorkerQueue.value Specifies the number of jobs in the OPMN worker queue ops

lReq.count Specifies the number of local HTTP requests which OPMN handles ops

procDeath.count Specifies the number of processes which die after the process manager starts
them

ops

procDeathReplace.count Specifies the number of processes which are restarted after the process
manager detects they are dead

ops

reqFail.count Specifies the number of HTTP requests which fail ops

reqPartialSucc.count Specifies the number of HTTP requests which partially succeed ops

reqSucc.count Specifies the number of HTTP requests which succeed ops

rReq.count Specifies the number of remote HTTP requests which OPMN handles ops

workerThread.value Specifies the number of worker threads threads

Table A–57 OPMN_HOST_STATISTICS Metrics

Metric Description Unit

cpuIdle.value Specifies the number of milliseconds the cpu(s) have been idle since an
unspecified time.

milliseconds

freePhysicalMem.value Specifies the amount of free physical memory on the host machine. kilobytes

numProcessors.value Specifies the number of processors available on the host machine. integer

timestamp.value Specifies the time that host statistics are taken. The timestamp is the
number of milliseconds from an unspecified time.

milliseconds from
an unspecified time

totalPhysicalMem.value Specifies the total physical memory available on the host machine. kilobytes

Table A–58 OPMN_IAS_INSTANCE Metrics

Metric Description Unit

iasCluster.value Specifies the Oracle Application Server cluster name for the Oracle
Application Server instance.

String

Oracle Process Manager and Notification Server Metrics

Performance Metrics A-33

Table A–60 shows the metric table type opmn_process_set.

Table A–61 shows the metric table type opmn_process.

Table A–59 OPMN_PROCESS_TYPE Metrics

Metric Description Unit

moduleId.value Specifies the values of attribute module-IDs, as specified in the
process-type tag in the opmn.xml configuration file.

String

Table A–60 OPMN_PROCESS_SET Metrics

Metric Description Unit

numProcConf.value Specifies the number, or maximum number, of processes configured for this
process set.

String (integer)

reqFail.count Specifies the number of HTTP requests which fail for this process set. ops

reqPartialSucc.count Specifies the number of HTTP requests which partially succeed for this
process set.

ops

reqSucc.count Specifies the number of HTTP requests which succeed for this process set ops

restartOnDeath.value Specifies whether, when a process dies, OPMN should restart the process. String (boolean)

Table A–61 OPMN_PROCESS Metrics

Metric Description Unit

cpuTime.value Shows the amount of CPU time used by the process. CPU msecs

heapSize.value Shows the heap size of the process. Kilobytes

iasCluster.value Shows the Oracle Application Server cluster name for the process String

iasInstance.value Shows the Oracle Application Server instance name for the process String

indexInSet.value Shows the process index in the process set. This value is only valid for OPMN
managed processes, for OPMN unmanaged processes, this value has no meaning,
and the value is always 0.

String
(integer)

memoryUsed.value The amount of memory used by the process.

This metric is calculated in an operating system specific manner.

On UNIX, this is the process image memory used value. This is all the memory in
use by the process.

On Windows, this is the working set memory used value. This is the same value that
is reported by the Task Manager under the mem usage column. The working set is
the set of memory pages touched recently by the threads in the process. If free
memory in the system is over a certain threshold, pages are left in the working set of
a process, even if they are not in use. When free memory falls below a certain
threshold, pages are trimmed from the working sets. If needed, pages are
soft-faulted back into the working set before they leave main memory.

pid.value The process ID for the process.

privateMemory.value The private memory of the process. Kilobytes

sharedMemory.value The shared memory for the process Kilobytes

startTime.value The start time of the process. msecs

Oracle Process Manager and Notification Server Metrics

A-34 Oracle Application Server Performance Guide

Table A–62 shows the metric table type opmn_connect.

OPMN ONS Metrics
The Oracle Process Manager and Notification Server ONS subtree contains Oracle
Notification System (ONS) information.

Table A–63 shows the metric table type opmn_ons.

Table A–64 shows the local_port metrics. The ../ons/local_port subtree shows
information about the ONS local port.

The metric table type is opmn_connect

status.value The status of the process. The status can have the following values:

■ NONE – New process slot, no operations have been applied yet (no status).

■ Init – process has been started, opmn is waiting for initialization to complete.

■ Alive – process is fully started.

■ Stop – process stop operation is in progress.

■ Stopped – process has been fully stopped.

■ Bounce – non-terminating process restart is in progress.

■ Restart – process stop operation is in progress, prior to a new start being
issued.

■ InitFail – failure before init timeout reached, a stop and start will be
attempted in the retry limit has not been reached.

■ BounceFail – non-terminating process restart failed, as stop and start will be
attempted if the retry limit has not been reached.

String

type.value The type of the process. See Table A–59 for information on process types.

uid.value The OPMN assigned ID for the process.

upTime.value The uptime for the process. msecs

Table A–62 OPMN_CONNECT Metrics

Metric Description Unit

desc.value Shows the port description, if available String

host.value Shows the host name String (host name)

port.value Shows the port number String (port number)

Table A–63 OPMN_ONS Metrics

Metric Description Unit

notifProcessed.value The number of notifications processed by ONS. ops

notifProcessQueue.value The number of notifications in the process queue. ops

notifReceived.value The number of notifications received by ONS. ops

notifReceiveQueue.value The number of notifications in the receive queue. ops

workerThread.value The number of worker threads. String (threads)

Table A–61 (Cont.) OPMN_PROCESS Metrics

Metric Description Unit

Discoverer Metrics

Performance Metrics A-35

Table A–65 shows the remote_port metrics. The ../ons/remote_port subtree
shows information about the ONS remote port.

The metric table type is opmn_connect

Table A–66 shows the request_port metrics. The ../ons/request_port subtree
shows information about the ONS request port.

 The metric table type is opmn_connect

Discoverer Metrics
Oracle Application Server Discoverer is deployed inside OC4J as a J2EE application.
The metrics that apply to a J2EE application, Web Module, Web Context, and Servlet
apply to Discoverer.

The node name subtee includes the value of the attribute ID specified as part of the
process-set tag in opmn.xml. This subtree includes all the OPMN managed and
unmanaged processes which belong to this process set.

Table A–64 OPMN ONS LOCAL_PORT Metrics

Metric Description Unit

desc.value Port description String

host.value Host name String

port.value Port number String

Table A–65 OPMN ONS REMOTE_PORT Metrics

Metric Description Unit

desc.value Port description String

host.value Host name String

port.value Port number String

Table A–66 OPMN ONS REQUEST_PORT Metrics

Metric Description Unit

desc.value Port description String

host.value Host name String

port.value Port number String

See Also: "OC4J Metrics" on page A-9

DMS Internal Metrics

A-36 Oracle Application Server Performance Guide

DMS Internal Metrics

Table A–67 DMS-Internal Clock Metrics

Metric Description Unit

logicalTime.value The current time as measured with the DMS clock. ticks

measuredFrequency.value Number of clock ticks per second - measured. ticks

measuredResolution.value Time between ticks as measured with this clock.

name.value

overheadPerCall.value The average duration of a call to get the time with this clock.

reportedFrequency.value The number of ticks per second the clock time is reported in. ticks

requestedUnits.value The string description of the units that times are reported in.

Table A–68 DMS-Internal Log Metrics

Metric Description Unit

initLogging.count ops

messagesLogged.count ops

status.value

Table A–69 DMS-Internal Measurement Metrics

Metric Description Unit

createNoun.count ops

createSensor.count ops

destroyNoun.count ops

destroySensor.count ops

lastTreeNodeID.value

sampleMetric.count ops

sensorWeight.value

treeNodes.maxValue

treeNodes.value

Table A–70 DMS-Internal Collector Metrics

Metric Description Unit

logger.count ops

logger.logged ops

responseGenerateTime.active threads

responseGenerateTime.avg

responseGenerateTime.completed

responseGenerateTime.maxActive

DMS Internal Metrics

Performance Metrics A-37

responseGenerateTime.maxTime

responseGenerateTime.minTime

responseGenerateTime.time

Table A–71 DMS-Internal Transtrace Metrics

Metric Description Unit

expireMessages.avg

expireMessages.completed

expireMessages.maxActive

expireMessages.maxTime

expireMessages.minTime

expireMessages.time

messageCount.value

pendingMessageCount.value

s_debugEnabled.value

s_dumpEnabled.value

s_ecidEnabled.value

s_transTraceEnabled.value

storeSize.value

Table A–70 (Cont.) DMS-Internal Collector Metrics

Metric Description Unit

DMS Internal Metrics

A-38 Oracle Application Server Performance Guide

Component Performance Links B-1

B
Component Performance Links

This Appendix includes references to the Oracle Application Server Components that
include performance information in their component level documentation.

This Appendix includes the following topics:

■ Oracle Application Server Toplink Performance Information

■ Oracle Application Server Portal Performance Information

■ Oracle Business Intelligence Discoverer Performance Information

■ Oracle Application Server Wireless Performance Information

Oracle Application Server Toplink Performance Information

B-2 Oracle Application Server Performance Guide

Oracle Application Server Toplink Performance Information
For information on Oracle Application Server Toplink performance tuning, refer to the
chapter, "Tuning for Performance", in the Oracle Application Server TopLink
Application Developer’s Guide.

Oracle Application Server Portal Performance Information
For information on OracleAS Portal, refer to the chapter, "Tuning Performance in
OracleAS Portal", in the Oracle Application Server Portal Configuration Guide.

Oracle Business Intelligence Discoverer Performance Information
For information on Oracle Business Intelligence Discoverer performance and
scalability, refer to the chapter, "Optimizing Oracle Business Intelligence Discoverer
performance and scalability", in the Oracle Business Intelligence Discoverer
Configuration Guide.

Oracle Application Server Wireless Performance Information
For information on Oracle Application Server Wireless performance and scalability,
refer to Chapter 13, "Optimizing Transport", in the Oracle Application Server Wireless
Administrator’s Guide.

See Also: Oracle Application Server TopLink Application Developer’s
Guide

See Also: Oracle Application Server Portal Configuration Guide

See Also: Oracle Business Intelligence Discoverer Configuration Guide

See Also: Oracle Application Server Wireless Administrator’s Guide

Index-1

Index

A
access logging, 5-11
ADF

deployment configuration, 6-45
failover mode, 6-46
performance, 6-44
SQL-only view object, 6-45

AggreSpy
access control, 2-7
performance monitoring, 2-5
URL, 2-7
using, 2-5
using with standalone OC4J, 2-13

Application Server Control
module metrics, 3-4
monitoring OC4J, 4-2
monitoring OHS performance, 3-2
monitoring Oracle Application Server with, 2-2
response and load metrics, 3-4

B
batch-size attribute, 6-34
built-in performance metrics, 2-2

C
cache hits

increasing rate of, 7-9
cache misses, 7-9
cache size

calculating for Web Cache, 7-3
maximum for Web Cache, 7-2

cacheScheme datasources option, 6-12
caching rules

priority rankings, 7-10
response time and, 7-10

call-timeout orion-ejb-jar.xml parameter, 6-29
capacity, 1-6

of origin servers with Web Cache, 7-11
of Web Cache clusters, 7-11

cluster-config element, 6-55
CMP entity beans

lazy-loading, 6-34
com.evermind.server.ejb.TimeoutExpiredException

from EJB, 6-29
command line options, 6-3
compression

for cached documents, 7-10
concurrency

defined, 1-2
limiting, 1-6

concurrent users, 5-6
connection limit

on UNIX with Web Cache, 7-7
on Windows with Web Cache, 7-7
Web Cache, 7-6

connection-retry-interval datasources option, 6-14
contention, 1-4

defined, 1-2
cookies

JAZN session cache and, 6-49
Web Cache and, 7-9

CPUs
insufficient, 1-4
performance and Web Cache, 7-2

D
database monitoring, 10-1
database tuning, 10-1
data-source

stmt-cache-size attribute, 6-14
datasources

cacheScheme option, 6-12
configuring, 6-10
connection-retry-interval option, 6-14
ejb aware, 6-11
emulated, 6-10
inactivity-timeout option, 6-13
max-connect-attempts option, 6-14
max-connections option, 6-11
min-connections option, 6-12
non-emulated, 6-10
stmt-cache-size option, 6-14
wait-timeout option, 6-13

dedicated.rmicontext property, 6-8
DefineColumnType property, 6-8
delay-updates-until-commit attribute, 6-34
delay-updates-until-commit orion-ejb-jar.xml

parameter, 6-30

Index-2

deployment
application, 6-55
OC4J, 6-55
performance, 6-56

dequeue-retry-count orion-ejb-jar.xml
parameter, 6-41

dequeue-retry-interval orion-ejb-jar.xml
parameter, 6-41

directives
See also httpd.conf directives

distributable element
web.xml, 6-55

DMS
coding tips, 9-17
conditional instrumentation, 9-15
Event sensors, 9-5

using, 9-11
getSensorWeight, 9-15
instrumentation

definition of, 9-2
using, 9-9

metrics
definition of, 9-4
dumping to files, 9-16

monitoring metrics, 9-2
naming conventions, 9-7
nouns, 9-3, 9-6

naming conventions, 9-8
using, 9-9

oracle.dms.gate property, 6-7
oracle.dms.sensors property, 6-6
oracle.jdbc.DMSstatementCachingMetrics

property, 6-7
oracle.jdbc.DMSStatementMetrics property, 6-7
PhaseEvent sensors, 9-4

using, 9-10
security, 9-15
sensors, 9-3

definition of, 9-4
destroying, 9-16
resetting, 9-16

State sensors, 9-5
using, 9-12

terminology, 9-3
testing metrics, 9-14
validating metrics, 9-13

dmstool
access control, 2-9
address option, 2-10, 2-13
count option, 2-10
dump option, 2-10, 2-12
format=xml option, 2-10
interval option, 2-10
list option, 2-11
options, 2-9
reset option, 2-11
table option, 2-11
using, 2-9

DNS
domain name server, 5-11

do-select-before-insert orion-ejb-jar.xml
parameter, 6-30

dynamic include
vs. static include, 6-27

DYNAMIC_SCHEME cacheScheme value, 6-12

E
Edge Side Includes (ESI)

memory for, 7-3
response time and, 7-9

ejb-location
datasources, 6-11

EJBs
CMP

lazy-loading attribute, 6-34
enable-passivation, 6-18
metrics, A-12
monitoring, 4-3
orion-ejb-jar.xml parameters

call-timeout, 6-29
delay-updates-until-commit, 6-30
dequeue-retry-count, 6-41
dequeue-retry-interval, 6-41
do-select-before-insert, 6-30
exclusive-write-access, 6-30
findByPrimaryKey-lazy-loading

, 6-30
idletime, 6-37
isolation, 6-31
lazy-loading, 6-31
listener-threads, 6-41
locking-mode, 6-31, 6-35
max-instances, 6-29, 6-36, 6-37
max-instances-threshold, 6-37
max-tx-retries, 6-29, 6-31
memory-threshold, 6-37
min-instances, 6-29
passivate-count, 6-38
pool-cache-timeout, 6-31, 6-35, 6-36
prefetch-size, 6-32
resource-check-interval, 6-38
timeout, 6-38
transaction-timeout, 6-41
update-changed-fields-only, 6-32
validity-timeout, 6-32

performance on OC4J, 6-28
server.xml

transaction-config element, 6-17
stateful session bean passivation, 6-38

enable-passivation, 6-18
entity bean, 6-34
ErrorLog

directive, 5-12
Event sensors, 9-5
exclusive-write-access orion-ejb-jar.xml

parameter, 6-30
expiration-setting element, 6-19
external resource file

for static text, 6-28

Index-3

F
failover

ADF, 6-46
findByPrimaryKey-lazy-loading orion-ejb-jar.xml

parameter, 6-30
finder method

lazy loading, 6-34
FIXED_RETURN_NULL_SCHEME cacheScheme

value, 6-12
FIXED_WAIT_SCHEME cacheScheme value, 6-12
functional demand, 1-6

G
garbage collection

application deployment and, 6-57
OC4J applications and, 6-4, 6-5
Web Cache and, 7-5

global-web-application.xml
cluster-config element, 6-55
expiration-setting element, 6-19
parameters, 6-23

H
hash

defined, 1-2
parameter, 5-4

heap size
setting, 6-3

hits
cache, 7-9

HostNameLookups
directive, 5-11

HTTP connections
limiting for standalone OC4J, 6-54

HTTP Server
monitoring, 3-2

httpd.conf
directives

ErrorLog, 5-12
HostNameLookups, 5-11
KeepAlive, 3-12, 5-10
KeepAliveTimeout, 5-10
ListenBacklog, 5-9
LogLevel, 5-12
MaxClients, 5-9, 5-10
MaxKeepAliveRequests, 5-10
MaxRequestsPerChild, 5-9
MaxSpareServers, 5-9
MinSpareServers, 5-9
StartServers, 5-9
ThreadsPerChild, 5-11
Timeout, 5-9

port numbers, 4-7

I
idletime orion-ejb-jar.xml parameter, 6-37
inactivity-timeout datasources option, 6-13

include directive use with JSPs, 6-27
incoming connections

Web Cache, 7-6
isolation orion-ejb-jar.xml parameter, 6-31

J
J2EE

applications monitoring, 4-3
deployment, 6-55
guidelines for performance, 6-1
identifying data sources, 6-11
improving performance, 6-1
metrics, A-9

JAAS performance, 6-47
Java options

changing for OC4J, 6-9
-client, 6-4
-server, 6-4
-Xms, 6-3
-Xmx, 6-3
-Xss, 6-5
-XX+AggressiveHeap, 6-5
-XXMaxPermSize, 6-6

java.naming.factory.initial property, 6-52
java.naming.provider.url property, 6-52
java.naming.security.credentials property, 6-53
java.naming.security.principal property, 6-53
java.security.auth.policy property, 6-48
javax.sql.DataSource, 6-10
JAZN performance, 6-47
jazn.xml configuration file, 6-48
JDBC

DefineColumnType option, 6-8
metrics, 6-7, A-6
oracle.jdbc.DMSStatementCachingMetrics

property, 6-7
oracle.jdbc.DMSStatementMetrics property, 6-7
prefetch-size parameter, 6-15
statement cache size attribute, 6-14
stmt-cache-size, 6-14

JSPs
configuration

main_mode, 6-23
tags_reuse_default parameter, 6-24

dynamic include, 6-27
include directives, 6-27
justrun main_mode parameter, 6-23
metrics, A-11
monitoring, 4-3
page buffer, 6-26
page sessions, 6-25
performance, 6-22
recompile main_mode parameter, 6-23
reload main_mode parameter, 6-23
runtime include, 6-27
static include, 6-27
tags_reuse_default parameter, 6-24
translate-time includes, 6-27

justrun main_mode parameter, 6-23

Index-4

JVM
command line options, 6-3
metrics, A-5
setting heap size, 6-3

JVM metrics
Properties metrics, A-6

JVM system properties metrics, A-6

K
KeepAlive httpd.conf directive, 3-12, 5-10

Web Cache and, 7-8
Keep-Alive timeout

Web Cache setting, 7-7
KeepAliveTimeout httpd.conf directive, 5-10

Web Cache and, 7-8

L
latency

defined, 1-2
first-request, 6-19

lazy-loading attribute, 6-34
lazy-loading orion-ejb-jar.xml parameter, 6-31
ListenBacklog httpd.conf directive, 5-9
listener-threads orion-ejb-jar.xml parameter, 6-41
load variances, 1-7
load-on-startup web.xml parameter, 6-19
locking-mode orion-ejb-jar.xml parameter, 6-31, 6-35
locking-mode values

optimistic, 6-33
pessimistic, 6-33
read-only, 6-33

logging
access, 5-11
error, 5-12
performance and, 5-11
performance implications of, 5-11

LogLevel directive, 5-12
logresolve utility, 5-11

M
main_mode parameter, 6-23
MaxClients httpd.conf directive, 5-9, 5-10

Web Cache and, 7-8, 7-11
max-connect-attempts datasources option, 6-14
max-connections datasources option, 6-11
max-connections-queue-timeout attribute, 6-54
max-http-connections element, 6-54
maximum cache size

configuring for Web Cache, 7-2
maximum network connections

Web Cache and, 7-6
max-instances orion-ejb-jar.xml parameter, 6-29,

6-36, 6-37
max-instances-threshold orion-ejb-jar.xml

parameter, 6-37
MaxKeepAliveRequests httpd.conf directive, 5-10

Web Cache and, 7-8
MaxRequestsPerChild httpd.conf directive, 5-9

MaxSpareServers httpd.conf directive, 5-9
max-tx-retries orion-ejb-jar.xml parameter, 6-29, 6-31
memory

calculating for Web Cache, 7-3
configuring for Web Cache, 7-2
ESI and Web Cache, 7-3
JVM heap size, 6-3

memory-threshold orion-ejb-jar.xml parameter, 6-37
metric table types

JDBC_Connection, A-7
JDBC_DataSource, A-6
JDBC_Driver, A-6
JDBC_Statement, A-8
JMSBrowserStats, A-18
JMSConnectionStats, A-16
JMSDestinationStats, A-19
JMSDurableSubscriptionStats, A-19
JMSMessageConsumerStats, A-18
JMSPersistenceStats, A-20
JMSProducerStats, A-17
JMSRequestHandlerStats, A-16
JMSSessionStats, A-17
JMSStats, A-15
JMSStoreStats, A-20
JMSTempoaryDestinationStats, A-19
JVM, A-5
mod_oc4J_destination_metrics, A-5
mod_oc4J_mount_pt_metrics, A-4
mod_oc4j_request_failure_causes, A-3
modplsql_Cache, A-22, A-23
modplsql_DatabaseConnectionPool, A-24
modplsql_HTTPResponseCodes, A-2, A-22
modplsql_LastNSQLError, A-23
modplsql_PageEngine, A-26
modplsql_PageEngine_ResponseCodes, A-27
modplsql_SQLErrorGroup, A-23
oc4j_context, A-10
oc4j_ejb_entity_bean, A-12
oc4j_ejb_method, A-12
oc4j_jsp(threadsafe=false), A-11
oc4j_jsp(threadsafe=true), A-11
oc4j_jspExec, A-11
oc4J_opmn, A-13
oc4j_servlet, A-10
oc4j_task, A-21
oc4j_web_module, A-9
ohs_module, A-3
ohs_server, A-2
opmn_connect, A-34, A-35
opmn_host_statistics, A-32
opmn_ias_instance, A-32
opmn_ons, A-34
opmn_pm, A-31
opmn_process, A-33
opmn_process_set, A-33
opmn_process_type, A-32

metric tables, 2-5
metrics

acknowledgeMode.value, A-17
activeInstances.value, A-11

Index-5

activeThreadGroups.maxValue, A-5
activeThreadGroups.minValue, A-5
activeThreadGroups.value, A-5
activeThreads.maxValue, A-5
activeThreads.minValue, A-5
activeThreads.value, A-5
address.value, A-15, A-16, A-17
availableInstances.value, A-11
bean-type.value, A-12
cacheEnabled.value, A-26
CacheFreeSize.value, A-7
CacheGetConnection.avg, A-7
CacheGetConnection.completed, A-7
CacheGetConnection.maxTime, A-7
CacheGetConnection.minTime, A-7
CacheGetConnection.time, A-7
CacheHit.count, A-7
cacheHits.value, A-27, A-28, A-29, A-30, A-31
CacheMiss.count, A-7
cachePageHits.value, A-26
cachePageRequests.value, A-26
CacheSize.value, A-7
cacheStatus.value, A-22, A-23
client.active, A-13
client.avg, A-13
client.completed, A-13
clientID.value, A-17, A-19
client.maxTime, A-13
client.minTime, A-13
client.time, A-13
connection.active, A-2
connection.avg, A-2
ConnectionCloseCount.count, A-6
ConnectionCreate.active, A-6
ConnectionCreate.avg, A-6
ConnectionCreate.completed, A-6
ConnectionCreate.maxTime, A-6
ConnectionCreate.minTime, A-6
ConnectionCreate.time, A-6
connectionID.value, A-16, A-19
connection.maxTime, A-2
connection.minTime, A-2
ConnectionOpenCount.count, A-6
connections.count, A-15
connection.time, A-2
connFetch.active, A-24, A-25
connFetch.avg, A-24, A-25
connFetch.completed, A-24, A-25, A-28, A-29,

A-30, A-31
connFetch.maxTime, A-24, A-25
connFetch.minTime, A-24, A-25
connFetch.time, A-24, A-25
cpuIdle.value, A-32
cpuTime.value, A-33
CreateNewStatement.avg, A-7
CreateNewStatement.completed, A-7
CreateNewStatement.maxTime, A-7
CreateNewStatement.minTime, A-7
CreateNewStatement.time, A-7, A-8
CreateStatement.avg, A-7, A-8

CreateStatement.completed, A-7, A-8
CreateStatement.maxTime, A-7, A-8
CreateStatement.minTime, A-7, A-8
CreateStatement.time, A-7, A-8
default_application_log.value, A-13
deliveryMode.value, A-18
desc.value, A-35
Destination.value, A-4
destination.value, A-18, A-19, A-20
disableMessageID.value, A-18
disableMessageTimestamp.value, A-18
domain.value, A-17, A-18, A-19
EJB, A-12
ejbPostCreate.active, A-13
ejbPostCreate.avg, A-13
ejbPostCreate.completed, A-13
ejbPostCreate.maxTime, A-13
ejbPostCreate.minTime, A-13
ejbPostCreate.time, A-13
error.count, A-23
errorDate.value, A-24
errorRequest.value, A-24
errorText.value, A-24
ErrReq.count, A-4, A-5
ErrReqNonSess.count, A-4, A-5
ErrReqSess.count, A-4, A-5
exceptionListener.value, A-17
exclusive-write-access.value, A-12
Execute.time, A-8, A-9
executeTime.active, A-28, A-29, A-30, A-31
executeTime.avg, A-28, A-29, A-30, A-31
executeTime.maxTime, A-28, A-29, A-30, A-31
executeTime.minTime, A-28, A-29, A-30, A-31
executeTime.time, A-28, A-29, A-30, A-31
Failover.count, A-4, A-5
Fetch.time, A-8, A-9
freeMemory.maxValue, A-5
freeMemory.minValue, A-5
freeMemory.value, A-5
freePhysicalMem.value, A-32
handle.active, A-2, A-3
handle.avg, A-2, A-3
handle.completed, A-2, A-3
handle.maxTime, A-2, A-3
handle.minTime, A-2, A-3
handle.time, A-2, A-3
heapSize.value, A-33
hits.count, A-23, A-24, A-25
holePageCount.value, A-20
host.value, A-15, A-16, A-17, A-35
httpTimeout.value, A-27
httpUnresolvedRedirect.value, A-27
httpXXX.value, A-28, A-29, A-30, A-31
ias_cluster.value, A-13
ias_instance.value, A-13
iasCluster.value, A-32, A-33
iasInstance.value, A-33
IncorrectReqInit.count, A-4
indexInSet.value, A-33
interval.value, A-21

Index-6

isActive.value, A-19
isLocal.value, A-17
isolation.value, A-12
isOpen.value, A-20
isXA.value, A-17
J2EE, A-9
jms_log.value, A-13
jobWorkerQueue.value, A-32
JSP, A-11
JVM, A-5
JVMCnt.value, A-5
lastErrorDate.value, A-23
lastErrorRequest.value, A-23
lastErrorText.value, A-23
lastResponseCode.value, A-27, A-28, A-29, A-30,

A-31
lastResponseDate.value, A-27, A-28, A-29, A-30,

A-31
lastUsed.value, A-20
locations.value, A-19
LogicalConnection.value, A-7, A-8
lReq.count, A-32
memoryUsed.value, A-33
messageCount.value, A-20
messageDequeued.count, A-20
messageDiscarded.count, A-20
messageEnqueued.count, A-20
messageExpired.count, A-20
messageListener.value, A-18
messagePagedIn.count, A-20
messagePagedOut.count, A-20
messageRecovered.count, A-20
moduleId.value, A-33
Name.value, A-4, A-5
name.value, A-18, A-19
newMisses.count, A-22, A-23, A-24, A-25
noLocal.value, A-18, A-19
NonSessFailover.count, A-4, A-5
notifProcessed.value, A-34
notifProcessQueue.value, A-34
notifReceived.value, A-34
numMods.value, A-3
numProcConf.value, A-33
numProcessors.value, A-32
oc4j_instance.value, A-13
oc4j_island.value, A-14
oc4j.jms.debug.value, A-15
oc4j.jms.forceRecovery.value, A-15
oc4j.jms.listenerAttempts.value, A-15
oc4j.jms.maxOpenFiles.value, A-15
oc4j.jms.messagePoll.value, A-16
oc4j.jms.noDms.value, A-16
oc4j.jms.saveAllExpired.value, A-16
oc4j.jms.serverPoll.value, A-16
oc4j.jms.socketBufsize.value, A-16
oc4j.jms.usePersistence.value, A-16
oc4j.jms.useUUID.value, A-16
Oc4jUnavailable.count, A-4
offline.value, A-29, A-30
opmn_group.value, A-14

opmn_sequence.value, A-14
Oracle Application Server performance, A-1
pageElapsedTimeAvg.count, A-26
pageElapsedTimeAvg.value, A-26
pageElapsedTime.count, A-26
pageElapsedTime.maxValue, A-26
pageElapsedTime.minValue, A-26
pageElapsedTime.value, A-26
pageMetadataFetchTimeAvg.count, A-26
pageMetadataFetchTimeAvg.value, A-26
pageMetadataFetchTime.count, A-26
pageMetadataFetchTime.maxValue, A-27
pageMetadataFetchTime.minValue, A-27
pageMetadataFetchTime.value, A-26
pageMetadataWaitTimeAvg.count, A-26
pageMetadataWaitTimeAvg.value, A-26
pageMetadataWaitTime.count, A-26
pageMetadataWaitTime.maxValue, A-26
pageMetadataWaitTime.minValue, A-26
pageMetadataWaitTime.value, A-26
pageRequests.value, A-26
parseRequest.active, A-9
parseRequest.avg, A-9
parseRequest.completed, A-9
parseRequest.maxTime, A-9
parseRequest.minTime, A-9
parseRequest.time, A-9
pendingMessageCount.value, A-20
persistenceFile.value, A-21
persistence-type.value, A-12
pid.value, A-33
portal, A-21
port.value, A-16, A-17, A-35
priority.value, A-18
privateMemory.value, A-33
procDeath.count, A-32
procDeathReplace.count, A-32
processRequest.active, A-9, A-11
processRequest.avg, A-9, A-11
processRequest.completed, A-9, A-11
processRequest.maxTime, A-9, A-11
processRequest.minTime, A-9, A-11
processRequest.time, A-9, A-11
queueLengthAvg.count, A-27
queueLengthAvg.value, A-27
queueLength.count, A-27
queueLength.maxValue, A-27
queueLength.minValue, A-27
queueLength.value, A-27
queueStayAvg.count, A-27
queueStayAvg.value, A-27
queueStay.count, A-27
queueStay.maxValue, A-27
queueStay.minValue, A-27
queueStay.value, A-27
queueTimeout.value, A-27
reqFail.count, A-32, A-33
reqPartialSucc.count, A-32, A-33
reqSucc.count, A-32, A-33
request.active, A-2

Index-7

request.avg, A-2
request.completed, A-2
requestHandlers.count, A-16
request.maxTime, A-2
request.minTime, A-2
requests.count, A-23
request.time, A-2
resolveContext.active, A-10
resolveContext.avg, A-10
resolveContext.completed, A-10
resolveContext.maxTime, A-10
resolveContext.minTime, A-10
resolveContext.time, A-10
resolveServlet.avg, A-10
resolveServlet.completed, A-10
resolveServlet.maxTime, A-10
resolveServlet.minTime, A-10
resolveServlet.time, A-10
restartOnDeath.value, A-33
rmi_log.value, A-14
rReq.count, A-32
run().active, A-21
run().avg, A-21
run().completed, A-21
run().maxActive, A-21
run().maxTime, A-21
run().minTime, A-21
run().time, A-21
selector.value, A-18, A-19
server_log.value, A-14
service.active, A-10, A-11
service.avg, A-10, A-11
service.completed, A-10, A-11
service.maxTime, A-10, A-11, A-12
service.minTime, A-10, A-11, A-12
service.time, A-10, A-11, A-12
SessFailover.count, A-4, A-5
sessionActivation.avg, A-10
sessionActivation.completed, A-10
sessionActivation.maxTime, A-10
sessionActivation.minTime, A-10
sessionActivation.time, A-10
sessionListener.value, A-17
session-type.value, A-12
sharedMemory.value, A-33
SQLText.value, A-8, A-9
staleMisses.count, A-23, A-24, A-25
startTime.value, A-16, A-17, A-18, A-19

opmn_process, A-33
status.value, A-34
storeSize.value, A-20
SucReq.count, A-4, A-5
SucReqNonSess.count, A-4, A-5
SucReqSess.count, A-4, A-5
taskManagerInterval.value, A-16
timestamp.value, A-32
timeToLive.value, A-18
totalMemory.maxValue, A-5
totalMemory.minValue, A-5
totalMemory.value, A-5

totalPhysicalMem.value, A-32
transacted.value, A-17
transaction-type.value, A-12
trans-attribute.value, A-13
txid.value, A-17
type.value, A-34
uid.value, A-34
UnableToHandleReq.count, A-4
upTime.value, A-5, A-34
usedPageCount.value, A-21
user.value, A-17
workerThread.value, A-32, A-34
wrapper.active, A-13
wrapper.avg, A-13
wrapper.completed, A-13
wrapper.maxTime, A-13
wrapper.minTime, A-13
wrapper.time, A-13
xid.value, A-17

min-connections datasources option, 6-12
min-instances orion-ejb-jar.xml parameter, 6-29
MinSpareServers httpd.conf directive, 5-9
misses

cache, 7-9
modplsql_Cache

metric table type, A-22, A-23
modplsql_DatabaseConnectionPool

metric table type, A-24
modplsql_HTTPResponseCodes

metric table type, A-2, A-22
modplsql_LastNSQLError

metric table type, A-23
modplsql_PageEngine

metric table type, A-26
modplsql_PageEngine_ResponseCodes

metric table type, A-27
modplsql_SQLErrorGroup

metric table type, A-23
monitoring

EJBs, 4-3
JSPs, 4-3
OC4J

J2EE applications monitoring, 4-3
Oracle HTTP Server, 3-9
performance statistics, 2-2
servlets, 4-3

N
naming conventions

DMS, 9-7
network

bandwidth and Web Cache, 7-5
connections and Web Cache, 7-6

on UNIX, 7-7
on Windows, 7-7

network parameters
setting for Web Cache, 7-7
tuning, 5-2

network performance, 5-7, 5-8

Index-8

no-reverseping-failed-ping-limit parameter, 6-57
nouns

creating, 9-9
DMS, 9-6
naming conventions, 9-8
type, 9-6

O
OC4J

applications monitoring, 4-3
Instance monitoring, 4-2
monitoring performance statistics, 2-2
process monitoring, 4-2
properties

dedicated.rmicontext, 6-8, 6-53
DefineColumnType, 6-8
oracle.dms.sensors, 6-6
oracle.jdbc.DMSStatementCachingMetrics, 6-7
oracle.jdbc.DMSStatementMetrics, 6-7

oc4j_context
metric table type, A-10

oc4j_ejb_entity_bean
metric table type, A-12

oc4j_ejb_method
metric table type, A-12

oc4j_jspExec
metric table type, A-11

oc4j_servlet
metric table type, A-10

oc4j_web_module
metric table type, A-9

opmn.xml parameter
no-reverseping-failed-ping-limit, 6-57
reverseping-failed-ping-limit, 6-57

optimistic locking-mode value, 6-33
Oracle Application Server Web Cache. See Web Cache
Oracle Business Components for Java. See ADF
Oracle HTTP Server

configuring with directives, 5-8
monitoring, 3-9

oracle.dms.gate property, 6-7
oracle.dms.sensors property, 6-6
oracle.jdbc.DMSStatementCachingMetrics

property, 6-7
oracle.jdbc.DMSStatementMetrics property, 6-7
oracle.security.jazn.config property, 6-48
origin server timeout

Web Cache setting, 7-8

P
page buffers with JSPs, 6-26
parameters

hash, 5-4
KeepAlive, 3-11, 5-10
KeepAliveTimeout, 5-10
ListenBacklog, 5-9
MaxClients, 5-9, 5-10
MaxKeepAliveRequests, 5-10

MaxRequestsPerChild, 5-9
MaxSpareServers, 5-9
MinSpareServers, 5-9
StartServers, 5-9
TCP, 5-2
tcp_conn_hash_size, 5-2, 5-5
tcp_conn_req_max_q, 5-2, 5-6
tcp_conn_req_max_q0, 5-2, 5-6
tcp_recv_hiwat, 5-2
tcp_slow_start_initial, 5-2
tcp_time_wait_interval, 5-2, 5-5
tcp_xmit_hiwat, 5-2
ThreadsPerChild, 5-11
Timeout, 5-9

partial page caching
Web Cache and, 7-9

passivate-count orion-ejb-jar.xml parameter, 6-38
passivation

sfsb-config enable-passivation attribute, 6-18
stateful session bean, 6-38

performance
application deployment, 6-56
goals, 1-6
monitoring

native operating system, 2-4
network monitoring tools, 2-4

Web Cache and, 7-1
Web Cache and CPUs, 7-2

persistent connections
KeepAlive directive, 5-10

pessimistic locking-mode value, 6-33
PhaseEvent sensors, 9-4
pool-cache-timeout orion-ejb-jar.xml

parameter, 6-31, 6-35, 6-36
portal

metrics, A-21
prefetch-size orion-ejb-jar.xml parameter, 6-15, 6-32
processes used

Web Cache, 7-2

R
read-only locking-mode value, 6-33
recompile main_mode parameter, 6-23
redirection

Web Cache and, 7-9
reload main_mode parameter, 6-23
resource-check-interval orion-ejb-jar.xml

parameter, 6-38
response time, 1-4

defined, 1-2
goal, 1-6
improving, 1-3
optimizing for Web Cache, 7-10
peak load, 1-7

reverseping-failed-ping-limit parameter, 6-57

Index-9

S
scalability

defined, 1-2
server.xml

global-thread-pool element, 6-18
max-http-connections, 6-54
parameters, 6-16
sfsb-config element, 6-18
taskmanager-granularity element, 6-17

service time, 1-3, 1-4
defined, 1-2

servlets
loading on startup, 6-19
monitoring, 4-3
unused sessions, 6-21

sessions
use with JSPs, 6-25

session-timeout attribute, 6-20, 6-49
sfsb-config

element, 6-18
passivation control, 6-39

sock-backlog attribute, 6-54
StartServers httpd.conf directive, 5-9
State sensors, 9-5
static include

vs. dynamic include, 6-27
static text

external resource file, 6-28
statistics

cache size for Web Cache, 7-5
memory for Web Cache, 7-5

stmt-cache-size attribute, 6-14
system properties

DMS metrics, A-6

T
tags_reuse_default JSP parameter, 6-24
taskmanager-granularity, 6-17
TCP

parameters, 5-2
setting parameters, 5-4

think time
defined, 1-2

ThreadsPerChild directive, 5-11
throughput

defined, 1-2
demand limiter and, 1-6
increasing, 1-4

Timeout httpd.conf directive, 5-9
timeout orion-ejb-jar.xml parameter, 6-38
TimeoutExpiredException

from EJB, 6-29
time-wait settings

Web Cache and, 7-8
transaction-config server.xml parameter, 6-17
transaction-timeout orion-ejb-jar.xml

parameter, 6-41

U
unit consumption, 1-6
unused sessions

servlets, 6-21
update-changed-fields-only orion-ejb-jar.xml

parameter, 6-32
URL parameters

Web Cache and, 7-9

V
validity-timeout orion-ejb-jar.xml parameter, 6-32

W
wait time

contention and, 1-4
defined, 1-2
parallel processing and, 1-3

wait-timeout datasources option, 6-13
Web Cache

cache hit rates, 7-9
calculating memory and cache size, 7-3
configuring memory and cache size, 7-2
Edge Side Includes (ESI), 7-3
garbage collection, 7-5
guidelines for performance, 7-1
improving performance, 7-1
network bandwidth, 7-5
network connections, 7-6

on UNIX, 7-7
on Windows, 7-7

network parameters, 7-7
partial page caching, 7-9
performance and CPUs, 7-2
processes used, 7-2
response time, 7-10
statistics for memory and cache size, 7-5

Web Services
performance issues, 6-44

web.xml
distributable element, 6-55
dmsLogging parameter, 6-7
load-on-startup parameter, 6-19
session-config element, 6-20, 6-49

X
xml format output for dmstool, 2-10

Index-10

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Performance Overview
	Introduction to Oracle Application Server Performance
	Performance Terms

	What Is Performance Tuning?
	Response Time
	System Throughput
	Wait Time
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Performance Targets
	User Expectations
	Performance Evaluation

	Performance Methodology
	Factors in Improving Performance

	2 Monitoring Oracle Application Server
	Overview of Monitoring Oracle Application Server
	Oracle Enterprise Manager 10g Application Server Control Console
	Oracle Application Server Built-in Performance Metrics
	Centralized Management of Oracle Application Server Instances
	Native Operating System Performance Commands
	Network Performance Monitoring Tools

	Using Oracle Application Server Built-in Performance Metrics
	Viewing Performance Metrics Using AggreSpy
	Using the AggreSpy Display
	AggreSpy URL With a Proxy Server
	AggreSpy URL and Access Control
	AggreSpy Limitation When Using Load Balancing With Clusters

	Viewing Performance Metrics Using dmstool
	Access Control for dmstool
	Using dmstool to List the Names of All Metrics
	Using dmstool to Report Values for Specific Performance Metrics
	Using dmstool With the Interval and Count Options
	Using dmstool to Report All Metrics with Metric Values
	Using dmstool to Report All Metrics with Metric Values in XML Format
	Using dmstool to Reset Metric Values
	Using dmstool to View Metrics on a Remote Oracle Application Server System

	Viewing Performance Metrics Using AggreSpy (for Standalone OC4J)

	3 Monitoring Oracle HTTP Server
	Monitoring Oracle HTTP Server with Application Server Control Console
	Assessing the Oracle HTTP Server Load with Application Server Control Console
	Oracle HTTP Server Status Metrics
	Oracle HTTP Server Response and Load Metrics
	Oracle HTTP Server Module Metrics
	Oracle HTTP Server Error Log

	Investigating Oracle HTTP Server Errors with Application Server Control Console
	Expected Oracle HTTP Server Errors and Warnings

	Categorizing Oracle HTTP Server Problems with Application Server Control Console
	Categorizing Oracle HTTP Server Problems by Module
	Categorizing Oracle HTTP Server Problems by Virtual Host
	Categorizing Oracle HTTP Server Problems by Child Server

	Monitoring Oracle HTTP Server with Built-in Performance Metrics
	Assessing the Oracle HTTP Server Load with Built-in Metrics
	Investigating Oracle HTTP Server Errors with Built-in Metrics
	Categorizing Oracle HTTP Server Performance Problems with Built-in Metrics
	Categorizing Oracle HTTP Server Performance Problems by Module
	Categorizing Oracle HTTP Server Performance Problems by Virtual Host
	Categorizing Oracle HTTP Server Performance Problems by Child Server

	4 Monitoring OC4J
	Monitoring OC4J With Application Server Control Console
	Monitoring OC4J Instances With Application Server Control Console
	General
	JDBC Usage
	Status
	Response for Servlets and JSPs
	Response for EJBs

	Monitoring J2EE Applications with Application Server Control Console
	General
	Response for Servlets and JSPs
	Response for EJBs
	Web Module Table
	EJB Modules Table

	Monitoring OC4J With Built-in Performance Metrics

	5 Optimizing Oracle HTTP Server
	TCP Tuning Parameters (for UNIX)
	Tuning Linux
	Raising Network Limits on Linux Systems for 2.1.100 or greater
	Tuning a Running System
	Tuning the Default and Maximum Size
	Tuning at Compile Time

	Setting TCP Parameters
	Increasing TCP Connection Table Access Speed
	Specifying Retention Time for Connection Table Entries
	Increasing the Handshake Queue Length
	Changing the Data Transmission Rate
	Changing the Data Transfer Window Size

	Network Tuning for Windows
	Network Tuning (for Windows 2000)
	Network Tuning (for Windows 2003)
	Network Tuning (for Windows XP)

	Configuring Oracle HTTP Server Directives
	Configuring the MaxClients Directive
	How Persistent Connections Can Reduce httpd Process Availability
	Configuring the ThreadsPerChild Parameter (for Windows)
	Configuring ThreadsPerChild for Static Page Requests

	Oracle HTTP Server Logging Options
	Access Logging
	Configuring the HostNameLookups Directive
	Error logging

	Oracle HTTP Server Security Performance Considerations
	Oracle HTTP Server Secure Sockets Layer (SSL) Performance Issues
	Oracle HTTP Server SSL Caching
	SSL Application Level Data Encryption
	SSL Performance Recommendations

	Oracle HTTP Server Port Tunneling Performance Issues

	Oracle HTTP Server Performance Tips
	Analyze Static Versus Dynamic Requests
	Analyze Time Differences Between Oracle HTTP Server and OC4J Servers
	Beware of a Single Data Point Yielding Misleading Results

	Setting mod_oc4j Load Balancing Policies
	Quick Summary for Using Load Balancing With mod_oc4j
	Using Round Robin and Random Policies With mod_oc4j Load Balancing
	Using Local Affinity Option With mod_oc4j Load Balancing
	Using Weighted Routing Option With mod_oc4j Load Balancing
	Recommendations for Load Balancing With mod_oc4j

	6 Optimizing J2EE Applications In OC4J
	OC4J J2EE Application Performance Quickstart
	Improving J2EE Application Performance by Configuring OC4J Instance
	Setting Java Command Line Options (Using JVM and OC4J Performance Options)
	Setting the JVM Heap Size for OC4J Processes
	Setting the JVM Server Option for OC4J Processes
	Setting the JVM AggressiveHeap Option for OC4J Processes
	Setting the JVM Stack Size Option for OC4J Processes
	Setting the JVM Thread Synchronization Option for OC4J Processes
	Setting the JVM Permanent Generation Option for OC4J Processes
	Setting the OC4J DMS Sensors Option
	Setting the OC4J JDBC DMS Statement Metrics Option
	Setting the OC4J Dedicated RMI Context Option
	Setting the OC4J Define Column Type Option
	Using Application Server Control Console to Change JVM Command Line Options

	Setting Up Data Sources - Performance Issues
	Emulated and Non-Emulated Data Sources
	Using the EJB Aware Location Specified in Emulated Data Sources
	Setting the Maximum Open Connections in Data Sources
	Setting the Minimum Open Connections in Data Sources
	Setting the Cached Connection Inactivity Timeout in Data Sources
	Setting the Wait for Free Connection Timeout in Data Sources
	Setting the Connection Retry Interval in Data Sources
	Setting the Maximum Number of Connection Attempts in Data Sources
	Setting the JDBC Statement Cache Size in Data Sources
	Setting the JDBC Prefetch Size for a CMP Entity Bean
	Using Application Server Control to Change Data Source Configuration Options

	Setting server.xml Configuration Parameters
	Setting the OC4J Transaction Configuration Timeout in server.xml
	Setting the OC4J Task Manager Granularity in server.xml
	Setting the OC4J Options for Stateful Session Bean Passivation in server.xml
	Limiting Concurrency In OC4J
	Using Application Server Control Console to Change server.xml Configuration Options

	Improving Servlet Performance in Oracle Application Server
	Improving Performance by Altering Servlet Configuration Parameters
	Loading Servlet Classes at Startup
	Reducing Requests for Static Pages and Images
	Setting the Servlet Session Timeout

	Servlet Performance Tips
	Analyze Servlet Duration
	Understand Server Request Load
	Find Large Servlets That Require a Long Load Time
	Watch for Unused Sessions and Session Invalidation
	Load Servlet Session Security Routines at Startup

	Improving JSP Performance in Oracle Application Server
	Improving Performance by Altering JSP Configuration Parameters
	Using the main_mode Parameter
	Using the tags_reuse_default Parameter
	Additional JSP and OC4J Configuration Parameters

	Improving Performance by Tuning JSP Code
	Impact of Session Management on Performance
	Using Static Template Text Instead of out.print for Outputting Text
	Performance Issues for Buffering JSPs
	Using Static Versus Dynamic Includes
	Performance Issues for Including Static Content

	Improving EJB Performance in Oracle Application Server
	Configuring Parameters that Apply for All EJBs (Except MDBs)
	EJB Timeouts Using a Non-default taskmanager-granularity

	Configuring Parameters for CMP Entity Beans
	Configuring Lazy-loading on CMP Entity Bean Finder Methods
	Setting The CMP Define Column Type Option
	Setting The Batch Size Option to Batch UPDATE statements

	Configuring Parameters for BMP Entity Beans
	Configuring Parameters for Session Beans
	Configuring Stateful Session Bean Passivation
	Stateful Session Bean Passivation Performance Recommendations

	Configuring Parameters for Message Driven Beans (MDBs)
	Using The listener-threads MDB Parameter
	Using Performance Metrics for MDB Messages
	Setting up JMS Connections in MDB ejbCreate or onMessage Methods

	Improving Web Services Performance in Oracle Application Server
	Avoiding Web Services Initial Request Delay
	Using Web Services Typed Requests
	Tuning The Web Services Stateful Session Timeout

	Improving ADF Performance in Oracle Application Server
	Choose the Right Deployment Configuration
	Use Application Module Pooling for Scalability
	Perform Global Framework Component Customization Using Custom Subclasses
	Use SQL-Only and Forward-Only View Objects when Possible
	Do Not Let Your Application Modules Get Too Large
	Use the Right Failover Mode
	Use View Row Spillover to Lower the Memory to Cache a Large Number of Rows
	Choose the Right Style of Bind Parameters
	Implement Query Conditions at Design Time if Possible
	Use the Right JDBC Fetch Size
	Turn off Event Listening in View Objects used in Batch Processes

	Improving JAAS (JAZN) Performance in Oracle Application Server
	Improving JAZN Performance With an XML Provider
	Improving JAZN Performance With an LDAP Provider (Oracle Internet Directory)
	Configuring JAZN Providers
	Configuring Session Timeout in web.xml

	JAZN Performance Recommendations

	Using Multiple OC4Js, Limiting Connections and Load Balancing
	Configuring Multiple OC4J Processes
	Overview of Types of OC4J Configurations
	Determining the Number of OC4J Processes
	Partitioning Applications into Different OC4J Instances
	Configuring Multiple OC4J Processes Using Application Server Control Console

	Load Balancing Applications
	Web Application Load Balancing
	EJB Application Load Balancing

	Limiting Connections
	Limiting Web Connections
	Limiting Remote EJB Client Connections
	Limiting HTTP Connections with Standalone OC4J

	Controlling Replication With Multiple OC4Js
	Controlling Web Application Replication
	Controlling Stateful Session EJB Replication

	Performance Considerations for Deploying J2EE Applications
	Deployment Performance During the Application Development Phase
	Deployment Performance During the Test and Production Phases

	7 Optimizing OracleAS Web Cache
	Use Two CPUs for OracleAS Web Cache
	Configure Enough Memory for OracleAS Web Cache
	Make Sure You Have Sufficient Network Bandwidth
	Set a Reasonable Number of Network Connections
	Connections on UNIX Platforms
	Connections on Windows

	Tune Network-Related Parameters
	Increase Cache Hit Rates
	Check Application Web Server and Web Cache Settings to Optimize Response Time

	8 Optimizing PL/SQL Performance
	9 Instrumenting Applications With DMS
	Introducing DMS Performance Metrics
	Instrumenting Applications With DMS Metrics
	Monitoring DMS Metrics
	Understanding DMS Terminology (Nouns and Sensors)
	DMS Metrics
	DMS Sensors
	DMS Nouns
	DMS Object Relationships

	DMS Naming Conventions
	General DMS Naming
	General DMS Naming Conventions and Character Sets
	Noun and Noun Type Naming Conventions
	Sensor Naming Conventions

	Adding DMS Instrumentation To Java Applications
	Including DMS Imports
	Organizing Performance Data
	Defining and Using Metrics for Timing
	Defining PhaseEvent Sensors
	Using PhaseEvent Sensors

	Defining and Using Metrics for Counting
	Defining Event Sensors
	Using Event Sensors

	Defining and Using Metrics for Recording Status Information (State Sensors)
	Defining State Sensors
	Using State Sensors

	Validating and Testing Applications Using DMS Metrics
	Validating DMS Metrics
	Testing DMS Metrics For Efficiency

	Understanding DMS Security Considerations
	Conditional Instrumentation Using DMS Sensor Weight
	Dumping DMS Metrics To Files
	Resetting and Destroying Sensors
	DMS Coding Recommendations
	Isolating Expensive Intervals Using PhaseEvent Metrics

	Using A High Resolution Clock To Increase DMS Precision
	Configuring DMS Clocks for Reporting Time for OC4J (Java)
	Configuring DMS Clocks for Reporting Time for Oracle HTTP Server

	10 Database Tuning Considerations
	Tuning init.ora Database Parameters
	Tuning Redo Logs Location and Sizing

	A Performance Metrics
	Oracle HTTP Server Metrics
	Oracle HTTP Server Child Server Metrics
	Oracle HTTP Server Responses Metrics
	Oracle HTTP Server Virtual Host Metrics
	Aggregate Module Metrics
	HTTP Server Module Metrics
	Oracle HTTP Server mod_oc4j Metrics

	JVM Metrics
	JVM Properties Metrics

	JDBC Metrics
	JDBC Driver Metrics
	JDBC Data Source Metrics
	JDBC Driver Specific Connection Metrics
	JDBC Data Source Specific Connection Metrics
	JDBC Driver Statement Metrics
	JDBC Data Source Statement Metrics

	OC4J Metrics
	Web Module Metrics
	Web Context Metrics
	OC4J Servlet Metrics
	OC4J JSP Metrics
	JSP Runtime Metrics
	JSP Metrics

	OC4J EJB Metrics
	OC4J EJB Session Bean Metrics
	EJB Bean Metrics
	EJB Method Metrics

	OC4J OPMN Info Metrics

	OC4J JMS Metrics
	JMS Metric Tables
	JMS Stats Metric Table
	JMS Request Handler Stats
	JMS Connection Stats
	JMS Session Stats
	JMS Message Producer Stats
	JMS Message Browser Stats
	JMS Message Consumer Stats
	JMS Durable Subscription Stats
	JMS Destination Stats
	JMS Temporary Destination Stats
	JMS Store Stats
	JMS Persistence Stats

	OC4J Task Manager Metrics
	mod_plsql Metrics
	Portal Metrics
	Oracle Process Manager and Notification Server Metrics
	OPMN_PM Metric Table
	OPMN_HOST_STATISTICS Metric Table
	OPMN_IAS_INSTANCE Metric Table
	OPMN_IAS_COMPONENT Metrics
	OPMN ONS Metrics

	Discoverer Metrics
	DMS Internal Metrics

	B Component Performance Links
	Oracle Application Server Toplink Performance Information
	Oracle Application Server Portal Performance Information
	Oracle Business Intelligence Discoverer Performance Information
	Oracle Application Server Wireless Performance Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

