ORACLE

Oracle® Identity Management
Application Developer’s Guide

10g Release 2 (10.1.2)

Part No. B14087-01

December 2004

Oracle Identity Management Application Developer’s Guide, 10g Release 2 (10.1.2)
Part No. B14087-01

Copyright © 1996, 2004, Oracle. All rights reserved.

Primary Author: Henry Abrecht

Contributing Author: Jennifer Polk, Richard Smith

Contributor: Kamalendu Biswas, Ramakrishna Bollu, Saheli Dey, Bruce Ernst, Rajinder Gupta, Ashish
Kolli, Stephen Lee, David Lin, Radhika Moolky, Samit Roy, David Saslav

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which
case the procedures for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English."

=g ™
A ns‘ saclllla RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle
Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

Oracle Directory Manager requires the JavaTM Runtime Environment. The JavaTM Runtime Environment,
Version JRE 1.1.6. ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain
View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

This product contains SSLPlus Integration SuiteTM version 1.2, from Consensus Development Corporation.

iPlanet is a registered trademark of Sun Microsystems, Inc.

Contents

SeNAd US YOUT COMMEBNTS ...t XXiii
PUrEIACE ...ttt s s s s XXV
AN Lo 1<) VLT TSSRRRN XXV
Documentation ACCeSSIDILIEYcceuiuiiiiiiiiiiiiiiiiiiiicicccc e XXV
o5 b a1 10 o < TS OORUOO R PRRRRRRTO XXVi
J RS X Yo B D 1o Tl b s 1<) o\ v TSRS XXVil
CONMVEIIEIONS .eoiieeeiiee ettt e eeeeete et eeeeetee et e e sesaaeeeseeseaaeteeessssaseeessasssssesssssasseeessssnnseseeessasssseeessssaseeessssnns XXVili
WHhat'S NEW 1N ThE SDK? ...ttt XXXiii
New Features in the Release 10.1.2 SDKooo ittt et esevteeesareeseaeeessveeessaneesenneas XXXili
New Features in the Release 9.0.4 SDK ..ottt sttt sressnaessaeesnaeeaeean XXXiii

Part| Programming for Oracle Identity Management

1 Developing Applications for Oracle Identity Management

Benefits of Integrating with Oracle Identity Management.................cccccooviiiiniiinniinninnnns 1-1
Oracle Identity Management Services Available for Application Integration............................ 1-2
Integrating Existing Applications with Oracle Identity Management...............cccccccocvreecnnnne. 1-2
Integrating New Applications with Oracle Identity Managementccccccoceeniinninnnn. 1-3
Integrating J2EE Applications with Oracle Identity Managementccccccoevvininnnnnnns 1-4
Directory Programming: An OVervVieW ... 1-4
Programming Languages Supported by the SDK.........c.cccccceiiiiinnniiieeccceeeeeeeenes 1-4
SDK COMPONENES ..ottt a st 1-4
Application Development in the Directory Environmentcccccoceeeivnviiinnnnninnnnns 1-4
Architecture of a Directory-Enabled Applicationccccceeeuriieieicieinniniicereeeeeeeens 1-5
Directory Interactions During the Application Life Cycle........ccccocooiriiiiiiiiii 1-5
Services and APIs for Integrating Applications with Oracle Internet Directory............... 1-6
Integrating Existing Applications with Oracle Internet Directorycccceceeuvueueurnnnnns 1-8
Integrating New Applications with Oracle Internet Directorycccoooirieiiiiniennne. 1-8

Other Components of Oracle Internet Directoryococveueivienininiieeeiceec s 1-9

2 Developing Applications with Standard LDAP APIs
History 0f LDAP ..o 2-1

I D YN LY oY <Y RS 2-1

NamMING MOEL.......oouiiiiii s 2-2
INformation MoOdel ... 2-3
Functional Model ..o 2-3
SeCUIILY MOdEL.......oviiiiiiiiii s 2-4
AUhentiCatioNcoiviiiii s 2-4

Access Control and Authorization ... 2-5

Data INteGIItY ...c.cvivitiietiicicicece s 2-6

Data PrIVACYc.cioiiiiiiiiict e 2-6
Password POLICIES..........couiuiiiiiiiiiiiiicicicicit e 2-6

About the Standard LDAP APIs.........cccccooiiiiiiiiicccci e 2-7
APIUSAZE MOMEL ... 2-7
Getting Started with the C APccooiiii 2-7
Getting Started with the DBMS_LDAP Package..........ccoocoeueieiiiiniiiiccieieceeec e 2-8
Getting Started with the Java APL.......ccccooiiiiicccccee e 2-8
Initializing an LDAP SeSSiONccccccovviiiiiiiiiiiiiiiiiiiic s 2-8
Initializing the Session by Using the C APIccccccoviiiiiiiiiiniiiiiiiiiicieas 2-8
Initializing the Session by Using DBMS_LDAPcccccccoeiiiiiiiiniicccrcieceeeeeeeeeeenes 2-9
Initializing the Session by Using JINDL...........ccccouiiiiiiiiii e 2-10
Authenticating an LDAP SeSSiON..........ccccccoiiiiiiiiiiiiiiiiiiiiiii s 2-10
Authenticating an LDAP Session by Using the C APIcccccciiiiiiinniiccrceceeee 2-11
Authenticating an LDAP Session by Using DBMS_LDAPc.cccoooiiiiiiiiicce, 2-11
Searching the DIrectory...........ccocoviiiiiiiiiiiiiii s 2-12
Program Flow for Search Operations..........cccccceucuiuiiririciiiiinininicicciceeececeeeeeeeeeeeee s 2-12
S@ATCI SCOPE.....viiiiitcte s 2-13
FIIEETS ..ttt 2-14
Searching the Directory by Using the C APL..........cccccoiiiiiiiiicccccceeeees 2-15
Searching the Directory by Using DBMS_LDAPccccooiiiiiiiiiic e, 2-16
Terminating the Session.............cccccoiiiiiiiiii s 2-17
Terminating the Session by Using the C APL.........cccccoiiiiiiiiiccceeeeeees 2-17
Terminating the Session by Using DBMS_LDAP.........cccooooiiiiiiiiiiieeec e, 2-17

3 Developing Applications with Oracle Extensions to the Standard APIs

Using Oracle Extensions to the Standard APISs ..o 3-1
Using the API Extensions in PL/SQLcccccocoiiiiiiiiniiiiiiiiiceenas 3-3
Using the AP EXteNnSions i JAVa. ... eecscesenenes 3-3

The oraclejava.util PACKagecooviuiueiiiiiicic e 3-3
PropertySetCollection, PropertySet, and Property Classesc.cccoooeeueiriicrninieiccnenne. 3-3
How the Standard APIs and The Oracle Extensions Are Installedcccooovviniiininnnnn 3-4

Creating an Application Identity in the Directoryccccooviiiiiii, 3-4
Creating an Application Identity ... 3-4
Assigning Privileges to an Application Identitycccccceeiiiiiiiiiiiccceeceeeees 3-5

User Management Functionality ... 3-5
User Operations Performed by Directory-Enabled Applications............cccooooeiieiiiiiiniinnnnnn 3-5
User Management APIS ... 3-6

Java API for User Managementcccoueueiruniiieicieicieicieceicess s 3-6
C API for User Managementccceeuvuriiiiiiiniiiiiiiiiiiiiiniieensesesssssssss s 3-6

vi

PL/SQL API for User Management...........cccoueuriviiiniininiiiimiiiiiissssscsessssssssssssssssens 3-6

User AUthentiCation..........cceiiiiiiiiiiiiccicee et 3-6
Java API for User AUthenticationccccieuiriirierierieieieieeeeeteeee et et ss s seaennens 3-7
PL/SQL API for User AUthentiCation..........cvevvierieivierieiiereereeeeereee ettt eaeereas 3-7
C API for User AUthentiCation..........ccccciviriiiininiiiiiiiccirrcececceeee e 3-7

USET CIEATION ...evee s ananas 3-7
Java APT fOr USET CrEatiOncoveivueirieieiiietiieeirtesisteeteteteteteseseetesesessesessesessesesesessesessensesenes 3-7
PL/SQL API fOr USEr CrEatiON ...ccveeeueeeerieeteeeeeeeteeeeeeereeeeeeeteeeeeeeseeeseeenseeesesenseeesseeseessseeseens 3-8
C API for User Creationccoveueviiiimiieiiiieieeiciiescn s 3-8

User Object Retrieval ... 3-8
Java API for User Object Retrievalcccccciiiiiiiiiiiiiiiccccceees 3-8
PL/SQL API for User Object Retrieval..........ccccooiiiiiiiiniiiiiiciccreeeeeeeeeeeeeeeenas 39
C API for User Object Retrieval ..o 3-9

Group Management Functionality ..., 3-9
Identity Management Realm Functionalitycccoviiiiiiices 3-9

Realm Object Retrieval for the Java API ..o 3-9
Server Discovery Functionality ..o 3-10

Benefits of Oracle Internet Directory Discovery Interfaces..........cccccceeccuvvniicncnvnncenenes 3-10

Usage Model for Discovery Interfaces...........coccoeunimieiiiniciniicicicecccee e 3-11

Determining Server Name and Port Number From DNS..........c.cooooii, 3-12
Mapping the DN of the Naming Context........cccccceeuiuiuiririiiiirniicceececceeeceeeeeeees 3-12
Search by Domain Component of Local Machine..........c..ccccooeiniiiiiiiniccc 3-12
Search by Default SRV Record in DNS.........cccooiiiiiic 3-12

Environment Variables for DNS Server DisCOVEry ... 3-13

Programming Interfaces for DNS Server DiSCOVETYcocovimuiiiuniiieiiieiieieescee s 3-13

Java APISs fOr Server DISCOVEIYcccoiiiiiiiiiiiiiiiiciciciciicc e 3-13

Examples: Java API for Directory Server DiSCOVErY ... 3-14

SASL Authentication Functionalityccocoooviii 3-15

SASL Authentication by Using the DIGEST-MD5 Mechanism............cccccccevviiinniniininininnnnne. 3-15
Steps Involved in SASL Authentication by Using DIGEST-MD5...........ccccccccvviiicnnnne. 3-15
JAVA APIs for SASL Authentication by Using DIGEST-MDS5cccccooviniiinininninnnne. 3-16

SASL Authentication by Using External Mechanismcccooooiiiiiniiiieiicece, 3-16

Proxying on Behalf of ENd USErScocoiiiiiiiiiiiiiiiiccrec s 3-17
Creating Dynamic Password Verifiers..............cccooviiiiiiiiiiiiics 3-18

Request Control for Dynamic Password Verifiers ..o, 3-18

Syntax for DynamicVerifierRequestControlcccccceeieiiiiiiinniicceccceeeeeeeeees 3-18

Parameters Required by the Hashing Algorithms ..o, 3-19

Configuring the Authentication APISccccccoiiiiiiiiiiiii 3-19
Parameters Passed If Idap_search Is Usedccccccceiriiiiinniiiicicccccceeees 3-20
Parameters Passed If ldap_compare Is Used.cccoourinirininiiiniiincccc 3-20

Response Control for Dynamic Password Verifiers.........c.ccooeeeiiiiiiniiicccce, 3-20

Obtaining Privileges for the Dynamic Verifier Framework ... 3-20

Dependencies and Limitations for the PL/SQ LDAP APL............ccccccocovnninininiiiii, 3-20

Developing Provisioning-Integrated Applications

Introduction to the Oracle Directory Provisioning Integration Service................cccccccevinnnnnn. 4-1
Developing Provisioning-Integrated Applications..............cccccooeiiiiiiiiiiiiiiines 4-2

Vii

viii

Example of a Provisioning-Integrated Applicationccccooevomiiiiniiniiccec 4-2

Requirements of the Employee Self Service Application..........ccccooeueiiiiiiiiiiiiniiiccene. 4-2
Registering the Employee Self Service Application in Oracle Internet Directory............. 4-3
Identifying the Management Context for the Employee Self Service Application 4-4
Determining Provisioning Mode for the Employee Self Service Application 4-4
Determining Events for the Employee Self Service Applicationccccccevuvuveviiicuvnnnnns 4-4
Provisioning the Employee Self Service Application for an Identity Management
REAIM .. 4-5
Determining Scheduling Parameters for the Employee Self Service Application 4-9
Determining the Interface Connection Information for the Employee Self Service
APPLCALION ... 4-10
Implementing the Interface Specification for the Employee Self Service
APPLICATION ..o s 4-11
Creating the Provisioning Subscription Profile for the Employee Self Service
APPLHCALION ... 4-11
Provisioning Integration Prerequisites..............ccccocooiiiniiiiiiiii 4-12
Development Usage Model for Provisioning Integration...............ccccocovvniiiiiinniinnnnn, 4-12
Initiating Provisioning Integration ... 4-12
Returning Provisioning Information to the Directorycccccccoceeeiriiiinnincccriccceee 4-13
Development Tasks for Provisioning Integrationcccocooviiiiiinniii 4-14
Application Installation.........ccccccciiiiiiiiiiiiiii 4-15
User Creation and Enrollmentc.cooiiiiiiiiiicc e 4-15
USer DeLtionovvviiiiiiciiiiciicc s 4-15
Extensible Event Definitions..........cccccocoiiiiiiiiniiiiiiiiics 4-16
Application Deinstallationccocociiiiiiiiiiiiiicccecceeee e 4-17
LDAP_NTFY FUunction Definitions.......c.oooviiuiiiiiiiiiiiieceiecee ettt ettt sae e saveenaee e 4-17
FUNCTION USET_EXISES «eeeiieuieiieiiiiiiieeeeeeiteteeeeeeiaeeeeeeesaareeseessateeseesssassseesssesssssessssssnsseseesns 4-17
FUNCTION group_eXiStscccvuiuiiiiiiiiiiiiiiiiiiiicnicessccs e 4-17
FUNCTION eVENt_NELY ..c.cvviiiiniiiiiiiiiciiiic s 4-18

Developing Directory Plug-ins

Plug-in Prerequisites ..o 5-1
Plug-in Benefits..........ccooiiiiiiiiiiiiiiii s 5-1
What Is the Plug-in Framework? ..o 5-2
Operation-Based Plug-ins Supported by the Directory.............cccccoovvviiiiiiiiiiiiii, 5-2
Pre-Operation PIUG-iNS.......ccccoiiiiiiiiiiiii e 5-2
Post-Operation PIUG-INSc.ccciiiiiiiiiiiiccceecccceeeeeee e 5-3
When-Operation PIUZ-INSccoviiiiiiii e 5-3
Designing, Creating, and Using PIug-ins..............ccccocoiiiiiiiiiiiiiiccccccccnnas 5-3
Designing PIUG-INSc.c.cuiiiuiiiiiiiiciciccccceeccee e 5-4
Types of Plug-in Operations...........c.cceuiueiririnirinicieicie e 5-4
NamMiNg PIUG-INSoucuiiiiicieic e 5-4
Creating PIUG-INS.ccoiuiiiiiiicccceeeeece e 5-4
Package Specifications for Plug-in Module Interfacesccccooooveiniiiniiiniincice 5-4
Compiling PIUG-INSc.cuiuiiiiiiiiiiiiiiiiii s 5-6
DEPENAENCIES ...ttt 5-6
Recompiling PIUZ-INScoooueiiiiiieiiic e 5-6
Granting PermiSSiOn.........ccciiiiiiiiiiiciciciccctccct s 5-6

Registering PIUZ-INS.........coouiiiiiiiiiiicice et 5-6

The orclPluginConfig Object Class..........cccccciiiiviriiiiiiiiiiiiiiiiies 5-7
Adding a Plug-in Configuration Entry by Using Command-Line Tools..............cccccceece... 5-8
EXAMPLE Lo e 5-8
EXQMIPLE 2 .. 5-9
Managing PIUG-INSc.c.cueuiuiuiuiiiiiieiccccee e 5-9
Modifying PIUG-INScovuiiiiiiiiiieice e 5-9
Debugging PIUG-INSccccoccuiiiiiiiiiiiiiiiiiiiiic s 5-10
Enabling and Disabling PIUG-INSc.ccccciiiiiiiiiiiiiiiicccccceeeee s 5-10
Exception HandIINg ..ot 5-10
Error Handling ... 5-10
Program Control Handling between Oracle Internet Directory and Plug-ins................ 5-10

Plug-in LDAP APL.....coiiiiiiiiiiiii s 5-11
Plug-ins and Replicationccccccuiiiiiiiiiiiiiiniiiiiiic s 5-11
Plug-in and Database TOOISc.cccceiuiiiiiiiiiriiiicccceee e 5-12
SOCUIILY 1ovteece et 5-12
Plug-in DebUGEZINGc.ccviiiiiiiiiiiiiiiiii s 5-12
Plug-in LDAP API SpecifiCationscccccoceurieiiiiiiiiiririeiccieericceieeeee e 5-13
Examples of PIUG-ins ..o 5-13
Example 1: Search Query LOGZINgcccccceuiiiiiiiiiiiiiiniiiiiiiciiiiis 5-13
Example 2: Synchronizing TWo DITS........cccccoiiiiiiiiiiiicceeeeeeeeeeeeeeeeeeeeeeeees 5-15
Binary Support in the Plug-in Framework..............cccocoviiiiii 5-18
Binary Operations with Idapmodifycccccoviiiiiiiiiii 5-18
Binary Operations with Idapaddcccccoiiiiiiic s 5-20
Binary Operations with Idapcompare...........ccooiiiiiiiii e, 5-22
Database Object Types Definedccccccoooiiiiiiiiiiiiiiiiniiiiiiiis 5-25
Specifications for Plug-in Procedurescccocovviiniiiiiiiinicicrcccceeeeeeeeeeeeees 5-26

Integrating with Oracle Delegated Administration Services

What Is Oracle Delegated Administration Services?ccocooiivrrniinnvnieeeeeeeeeeenne 6-1
How Applications Benefit from Oracle Delegated Administration Services...........c.c.cceuue... 6-2
Integrating Applications with the Delegated Administration Services.............c.cccccccevrieninnnnes 6-2
Integration Profilecccciiiiiiiccccce e 6-2
Oracle Delegated Administration Services Integration Methodology and
CONSIAETATIONSvvviiiitiicc e 6-2
Java APIs Used t0 AcCeSS URLS.......ccccoiruiririiniiiiiinieenteerteerteest ettt 6-5

Developing Applications for Single Sign-On

WHRAL IS INOA_0SS07? ...ttt et ettt e ettt e st e e s eaaeeseaaeeseaaeeesrateesanteesenseeesnseeesseeesnnes 7-1
Protecting Applications Using mod_osso: Two Methods ... 7-2
Protecting URLS Staticallyccooeuiiiiieiiiiicie i 7-2
Protecting URLs with Dynamic Directivesccooooiiiiiiiiiicccc e 7-2
Developing Applications Using mod_08S0.............ccccoeuiiiniiiiiiiiiic 7-3
Developing Statically Protected PL/SQL Applicationscccccocevemueiiieiieinieinieeee 7-3
Developing Statically Protected Java Applications..........ccceueiirinininiinieieiceeeec e 7-5
Developing Java Applications That Use Dynamic Directives..........ccccccoevururrvuirrnicicnnnnnns 7-6

Java Example #1: Simple Authenticationcccoeoiiiiiiiii e, 7-6

Java Example #2: Single Sign-Off..........cccccoooiiii 7-8

Java Example #3: Forced Authentication..........c.c.ccccciiiiiiiiiiiiiiccecceeececennens 7-8

A Word About Non-GET Authenticationcccceviviiiiiiiiiiniiiiiccceeees 7-9
Security Issues: Single Sign-Off and Application Logout..............cccccocvvnninnnnnnnnninnne, 7-9
Application Login: Code EXamples.........ccccccuiiiiiiiiiriniiiiiiniccceeeeeeeeeeeeeeeeeeeeeeee s 7-10
Bad Code Example #1.........coooiiiiii s 7-10

Bad Code Example #2.........cooiiiiiici s 7-10
Recommended Code ... 7-11
Application Logout: Recommended Code..........cooiioiiiiiiiiiiiic e, 7-11

Part Il Oracle Internet Directory Programming Reference

8 C API Reference

About the Oracle Internet Directory C APL..........ccccccooiiiiiiniiiicas 8-1
Oracle Internet Directory SDK C API SSL EXteNSIONS........cooeviurueviiiicieieicceie e 8-1
SSL INEIACE CaAllS ..eoevieeieeieiieiiierierieieteet ettt ettt ettt tesseetessessessessessessessessessessessessessaseesenses 8-2
Wallet SUPPOTLt.....iuiiiiei e 8-2
Functions in the C APo ottt ettt et a e e be e b e sbeeseereebeessesbeessesessnens 8-2
The FUNCHONS @t @ GLANCEovvevieeieiieieiieiieseeet ettt ettt st se bbb e saessesseseessesesas 8-3
Initializing an LDAP SeSSION.........coiiiiiiiiiicict s 8-5
ldap_init and 1dap_0pen ..o e 8-5
LDARP Session Handle Optionsc.coccciiiiiiiiiiiiiciicccecceeeeeeeeseee e 8-6
ldap_get_option and Idap_set_Optioncccccueiiiiiiiiiiiiie 8-6
Authenticating to the DIirectoryccccccciiiiiiiiiiiiiiiiiiiiiiics 8-10
ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and Idap_simple_bind_s.......... 8-10
SASL Authentication Using Oracle EXtenSionscooeueioiiiiieiiicccccc e, 8-12
ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl...........cccccccciiiiniiiiiiiiiiii 8-13
SASL AUTNENTICALION ...vvevieiieiieiieietieire sttt ettt teeteesessestessessessessessessessessessesseseesessessenses 8-14
ora_ldap_init_SASL ... 8-14
Working With CONIOlS........cccoeiiiiiiiiiiiiiiiiiiiiiii s 8-14
ClLOSING the SESSIONvuviiiiiiiiicicciciee e 8-16
ldap_unbind, Idap_unbind_ext, and ldap_unbind_s..........ccccceviiiiiinnnniininnnn, 8-16
Performing LDAP Operations..........ccccccveiiiiiiininiiiiiiiiiiiiiiiiciciiieieesiessssssssssesssssssssssssesssens 8-16
ldap_search_ext, Idap_search_ext_s, Idap_search, and ldap_search_s...........ccccccoce...... 8-17
Reading an ENETY.......ccoiiii s 8-20
Listing the Children of an ENtryccccccoeiiiiiiniiiis 8-20
ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s........... 8-20
ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s........c............ 8-22
ldap_rename and ldap_rename_scccoceeivininiiiiiiiiininiii s 8-24
ldap_add_ext, Idap_add_ext_s, Idap_add, and ldap_add_scccccceeuruecrivvvrncnnnnn. 8-26
ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s............ccccceuevnenen. 8-27
ldap_extended_operation and Idap_extended_operation_s...........cccccevvirivivinininnnnn. 8-29
Abandoning an OPerationc.cccccieiiiiiiiiririiiieeeeeeee e 8-30
ldap_abandon_ext and ldap_abandon ... 8-30
Obtaining Results and Peeking Inside LDAP MeSSagesccceeuviiurieieiiicieieieiccieeicennee. 8-31

ldap_result, ldap_msgtype, and ldap_msgidccceeuvirriiiiiiriiiii 8-31

Handling Errors and Parsing Results...........cccccccoiiiiiiiiiiiiiininiiiiiiccs 8-33
ldap_parse_result, Idap_parse_sasl_bind_result, Idap_parse_extended_result,
and 1dap_err2StIiNgc.ccoeuriiiiiiiiiiccccec s 8-33
Stepping Through a List of ReSULLScoveiiiiiiiiiiicc s 8-35
ldap_first_message and ldap_next_messagecccevururiririiiiininiiiiiinne 8-35
Parsing Search RESUILS.........ccccoiuiiiiiiiiiiiiiiccccc s 8-36
ldap_first_entry, ldap_next_entry, Idap_first_reference, Idap_next_reference,
ldap_count_entries, and ldap_count_references............cccoovievivniiniiniiiniinieinnns 8-36
ldap_first_attribute and Idap_next_attribute..........ccocoooeriii 8-37
ldap_get_values, Idap_get_values_len, ldap_count_values,
ldap_count_values_len, Idap_value_free, and ldap_value_free_lenccccccccucueee. 8-38
ldap_get_dn, Idap_explode_dn, ldap_explode_rdn, and ldap_dn2ufncccceeuunee 8-39
ldap_get_entry_CONtrolsccccovuiiiiiiiiiiiiniiiiciii s 8-40
ldap_parse_referenCe...... ..o 8-40
Sample C APTUSAGE ..ot 8-41
C API Usage With SSLcccccviiiiiiiiiiiiiiiiiii s 8-42
C API Usage WIthout SSL.....c.cccciiiiiiiiiiiiciciccceeceee e 8-42
C API Usage for SASL-Based DIGEST-MD5 Authentication..........cccccocoieiiinininininicicne, 8-43
Required Header Files and Libraries for the C APIccccooviiiiniini 8-45
Dependencies and Limitations of the C APIc.cccooeiiiiieinnecinecceneeceenreeeeseene e 8-46

DBMS_LDAP PL/SQL Reference

SumMmMmary of SUDPIOGIAIMS ..o 9-1
EXCeption SUMMALYccoiiiiiiiiiiii s 9-3
Data Type SUIMIMATYcooouiiiiiitiiiicc st 9-5
SUDPIOGIAMS ... 9-5
FUNCTTION 1L 1etitiiiiieieietieeteee ettt et e ste st st estess et e s essesseseessesseseesassessessessessessassessessessessessessesesses 9-5
FUNCTION Simple_bind_Sccccooiiiiiiiiiiiiiiiiiiiciiiiiiicessssssse e 9-7
FUNCTTION DINA_S vevvevveuierieiieiieiieeieisestestistestestestessestessessestessessassssessessessessessessessessessessessessesssssesenses 9-7
FUNCTION UNDINA_S «oiiotviiieeieeeeeeeeeee ettt eate e e et seaaeeseavesssnaesssnsaessnaeessnsesessnnessreeeas 9-8
FUNCTION COMPATE_S....cvivimiiiiiriniiiiiietiniiitetcscestetesese et ss st s st sess s s ssnsassnenes 9-9
FUNCTION SEATCI S .evveieeeeeeeeeeeeeeee ettt et e et e eeeaeeeeeaaeeseateessaeeseseesssseessanseesssseesasseesssseesannees 9-10
FUNCTION SEATCI_St...ccuvviiieiiiiieiie ettt ettt et e et e e st e s s eav e e ssaaeessnaeesssteeesanessssseesenseesnnnees 9-12
FUNCTION firSt_eNtIV......cceiviiiiiiiiiciiiiiiiiiiiciic s 9-13
FUNCTION NEXE_ENEIY ..ovviiiiiiiiiiiiicicic s s 9-14
FUNCTION COUNE_ENELICS ..vvveeeeeeieeeeeee ettt ettt e eenee e s saeeeseaeeeseaaeessnseessnseesssasessnneeessnsesesnnees 9-15
FUNCTION first_attrIDULC.....eeeiieeiiieeeeeeee ettt ettt s e s aae e s e e e esnaaessnnees 9-16
FUNCTION NeXt_attTIDULE c..eveeeeeeeeeeeee ettt ettt et e e et e eeeaeeeseateeseaneeseneeseseeesnnaeesnees 9-17
FUNCTION Get_d....cocviiiiiiiiiiiniiiiniiiiii s 9-18
FUNCTION get_valUesccccovuiiiiiiiiiiiiiiiiiiiiiiii s 9-19
FUNCTION get_values_Len........c.cccoeuiiiiiiiiiiiiiiiieiciciieieeeeeeeeeieee e 9-20
FUNCTION AELEEE_S...eeiieieeiieiiiieeeie ettt ettt ete s et s st eseaae e s saaeessnteeesaaessnneeessneeessnnees 9-21
FUNCTION MOAIAN2_S...uviviiiiiriiiietietieeeeteeeeeteeeesveetesteeaesteessesseesesseessasssesesssessesssessesssessessees 9-22
FUNCTION IT2StIING. c.c.civiviuiiiiiiiiiiiiiiciciic s 9-23
FUNCTION create_mMoOd_aITaycccceeiiiiiiieiiiniiieiiieiiiiieieieieieieeesese s 9-24
PROCEDURE populate_mod_array (String Version)cccccceevviriivininninininninniiieenens 9-25

Xi

PROCEDURE populate_mod_array (Binary Version)cccceeeereieiiicieiniicciceecen, 9-25

PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)..................... 9-26
FUNCTION get_values_bBlObccccciiiiiiiiiiiiiiiciiceceeeieeeeee e 9-27
FUNCTION coUunt_valtues_Dlobcoueiiiiiiiiiiceee ettt 9-28
FUNCTION ValUe_free DIOD ...ccoueiiieieieeeeeeeeeeeee ettt et eav e s eaae e s enaeeesaaaeesnnees 9-29
FUNCTION IMOGIY_S ..eevviiiiieiciiicieieieieicieeeeeieeeeeeeeeeeese et eees 9-29
FUNCTION QAA_S c.viuveuieeieiieiieiieiietieieeie ettt estetesseseesseseeseesessessessessessessassessessessessesseseesesssssenses 9-30
PROCEDURE free_mod_array........cccccceiiiiiiniiiiiiiiiiiiieeiiiiisesieessessesssssssssssssssssssssssnns 9-31
FUNCTION COUNE_VAIUES .evveeeeieeeeeeeeeeee ettt eeeeeeeeeeeeeeseeeseeaeesseaeessesseesesneesesaeessnseeesnnees 9-32
FUNCTION cOUNt_VAIUES_LOIc...uviiieeieeiie ettt st 9-32
FUNCTION FONAINIE_S...uvveiiiiiiiieiieeeeeiiieeeeeeeiteeeeeeesateeeeeessaeeseessessasseessesiasseessesssssesssssssseseessssnnes 9-33
FUNCTION eXPlode_dn.....c.couiuiiiiiiiiiiiiiiiicieeeceeeeeee e 9-34
FUNCTION OPEN_SSL...ocviiiiiiiiiiiiiiiiiiiiciciciieee s 9-35
FUNCTION MSGETEE......viiiiiiiiiiici s 9-36
FUNCTION DT _FTC oottt eee et e e eeaaeeseteessaeeseeaeessaatessanreeseaseesasseessaseesannees 9-37
FUNCTION NIS_CONVETIt_tO_ UL ...cnviiieiiieeiiiieeeeeeeee ettt ettt ettt eaaessaeesaveenaee e 9-38
FUNCTION NlIS_CONVEIt_tO_ U ...coueeiiiiiiieeiieeeeee ettt ettt eaae e st eesaa e snaees 9-38
FUNCTION nNls_CONVEIt IO UEES...ccoeeieieiieeeeee ettt ettt eeeaeeeeeae e e e e seeneeseseeeesesaeesnnes 9-39
FUNCTION nls_convert_from UH8........cccoiuiiiiiiiiiiiiieiecee ettt ettt saveesaee e 9-40
FUNCTION nls_get_dbcharset_name...........cccccceviviriiiiiiiininininiiiiincs 9-41

10 Java API Reference

11 DBMS_LDAP_UTL PL/SQL Reference

Summary of SUDPIOGIamS...........ccciviiiiiiiiiiiiiiiii s 11-1
SUDPIOGIAMS ..o s 11-3
User-Related SUbPrograms............coirueiiiiiciiiiccci 11-3
FUNCHON QUTNENTICATE_USET c.evveiieeeeeeeeeeeeeee ettt ettt e e e e e st e e s eaaeesenaaeesaneeeas 11-4
Function create_USer handle. ... oeeeoeeeeeeeeeeeeeeeeeeee et seteeeeereeeeeaaesseneeeas 11-5
Function set_user_handle_properties............ccccevviieiiiiiiiiiiiiiieees 11-6
Function get_user_properties..........cooiiiinininiciiiccc e 11-7
Function set_user_properties ...t 11-8
Function get_user_extended_propertiesccccovveniiiiiciiiiiiiiiicc 11-9
Function get_user_din........ccccoiiiiiiiiiiiiiiii s 11-11
Function check_group_membershipccccccceiiiiiiiiiiiicccceeceeeeeeceees 11-12
Function locate_subscriber fOr USEToooioiiiiiiiiiiiiieeeeeeeeeeee ettt 11-12
Function get_group_membershipcccccceiiiiiiiiiiiininiiiiies 11-14
Group-Related SUDPIOGramsccccccuciiiiiiiiiiiiiiicccccce s 11-15
Function create_group_handle ... 11-16
Function set_group_handle_properties...........cccccooueriiiiiirniiiiiicicccce 11-16
Function get_group_properties ... 11-17
Function get_group_di........cccoiiii e 11-18
Subscriber-Related SUDPIOZIamMSccouoviueiiiiiiiieicee e 11-19
Function create_subscriber handleoooeeoveiiieeieeeeeeeeee e eeeae e e 11-20
Function get_subscriber_properties ... 11-21
Function get_subscriber_dncccccciiiiiiiiiiiiiiic 11-22
Function get_subscriber_ext_properties...........cccccccieeiiiieiiicceeececeeeeceeens 11-23

Xii

Property-Related SUbDProgramsccouiiiiiiiiiciic e 11-24

Miscellaneous SUbPIOgrams...........ccccccuiiiiiiiiiiiiiiiiiiii s 11-25
Function Nnormalize A WiIth CASE....ccuviieuieeeeeieeeeeeeeeee ettt ee e e esereeeesreesennes 11-25
Function get_property_Names ... 11-26
Function get_property_values ... 11-27
Function get_property_values_len ... 11-27
Procedure free_propertyset_collectionccccorueirieiiiniiiniiieee 11-28
Function create_mod_propertyset..........cccoooeeeiiiiiiiiiiceecee s 11-29
Function populate_mod_propertysetc.ccccceeueceuieiiieeeeiecceeeeeeeeeeeeeneneees 11-30
Procedure free_mod_propertyset...........cccooeuririeirieiiieiiieiiee s 11-31
Procedure free Nandle ...ttt 11-31
Function check INterface VEISION «...coccueeeeeueeeeeeieeeeee et et e eeeeee e et e eeeaeeserreeesereeeesreesennes 11-31
Function get_property_values_blob...........c.ccccooiiriiiiiii 11-32
Procedure property_value_free_blobccccooiiiiiiiiiiiiiiiiiiices 11-33

Function Return Code SUMmMATry..........ccccocoiiiiiiiiiinii e 11-33
Data Type SUMIATYc.coooiiiiiiiiicc et 11-35

12 DAS_URL Interface Reference

Directory Entries for the Service Units ..o 12-1
DAS Units and Corresponding URL Parameters.............cccccccoviviiiiininininiiiinnnics 12-2
DAS URL API Parameter Descriptions...........cccocooueiieiriciniiniiiieeeeneeeeeeee e 12-4
Search-and-Select Service Units for Users or GIroups.............ccccoevvivivininiinininiininiciins 12-5
Invoking Search-and-Select Service Units for Users or GIoups.........cccccoeeeceueinieccieieieccncnnn. 12-5
Receiving Data from the User or Group Search-and-Select Service Unitsccccceuvueunneee. 12-6

13 Provisioning Integration API Reference

Versioning of Provisioning Files and Interfaces................cccccccoeiiiiiniiinnnicccccccee 13-1
Extensible Event Definition Configuration...............cccococoiiiiiiiii, 13-1
Inbound and Outbound Events...............cccooviniiiiiiiiiis 13-3
PL/SQL Bidirectional Interface (Version 2.0)cccoevvevvieeeiriereeieeeeenreeeeereeeeereeseeseeseereeseeseenns 13-4
Provisioning Event Interface (Version 1.1)ccccccoviiiiiiiiiiiiiiiiccs 13-6
Predefined EVent TYPEScccocciiiiiiiiiiiiiiiiiiiiiiic s 13-7
ATTIDULE TYPE oot 13-8
Attribute Modification TYPe.......cccouieiiieiiieiicccc e 13-8
Event Dispositions CONStANtS...........cceuiuiiiiiiiiiiiiiccc s 13-8
CAllDACKS. ...ttt 13-8
GEtAPPEVEN() vt s 13-8
PUtAPpEvVEntStatus()......ccooeveviiiiiiiniiiiiciciiiii s 13-9
PULOIDEVENT() c.vvvetreeierietiiteeteeieiesteteteteteseteseesassassessessessessessessessessessessessessessessessesessessessenses 13-9

Part Il Appendixes

A Syntax for LDIF and Command-Line Tools

LDAP Data Interchange Format (LDIF) SYyntaX...........c.cccocovviirrnninnnnnnnrrrceceeeeeeeeeeeeeeeens A-1
Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers.................. A-3
The OID Monitor (0idmomn) SYNtaxccccceviiiiiiiiniiiiiis A-3

Xiii

Starting the OID MONItOTcocuiiiiiiiicieetci e A-3

Stopping the OID MONILOTccccoviiiiiiiiiiiiiiii s A-4
Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration............... A-4
The OID Control Utility (0idctl) SyntaX......cooceeiicieiiiicieiec A-4
Starting and Stopping an Oracle Directory Server Instance............cccccevvvvvviiiininnnenn A-5
Troubleshooting Directory Server Instance Startupccccceceveveeevivrvvnivnrneceeene A-6
Starting and Stopping an Oracle Directory Replication Server Instance...............c........... A-7
Starting the Oracle Directory Integration and Provisioning Servercccccevvivvinnnne A-8
Stopping the Oracle Directory Integration and Provisioning Server............cccccceueueueneee. A-11
Restarting Oracle Internet Directory Server InStancescooceueviieieiiiiciciciiccienes A-11
Starting and Stopping Directory Servers on a Virtual Host or an Oracle
Application Server Cluster (Identity Management)cooeeinieiiininiineeiccceee A-12
Entry and Attribute Management Command-Line Tools Syntaxccccoviiiinniininnnn. A-13
The Catalog Management Tool (catalog.sh) Syntax........ccccooeieiiiiiiiie, A-13
ldapadd SYNEaXccoceveiiicii e A-15
ldapaddmt SYNEAXcceuiiiiiiiiiicc s A-16
1dapbind SYNtaX.......ccceiiiieic A-18
ldapcompare SYNLAXcccccciiiiiiiiiiiiiiiii s A-19
ldapdelete SYINEAXcceuiiiiiiiiiiiicicecceee s A-20
1dapmOddn SYNEAX.....cucveiiecieiceci A-21
1dapmOdify SYNtAX.....covoiiecieiiici e A-23
1dapmOodifymt SYNEAXc.ceuiueiiiiiiicieeicicccc s A-26
ldapsearch SYNtaX ... A-28
Examples of ldapsearch Filters ... A-30
Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax........ A-32
The Directory Integration and Provisioning Assistant (dipassistant) Syntax........................ A-32
Creating, Modifying, and Deleting Synchronization Profilescccccccevvniinninnnnn. A-33
Listing All Synchronization Profiles in Oracle Internet Directoryccccccccevuvueuennene A-35
Viewing the Details of a Specific Synchronization Profile ..o, A-36
Performing an Express Configuration of the Active Directory Connector Profiles....... A-37
Bootstrapping a Directory by Using the Directory Integration and Provisioning
ASSISTANE ...t s A-37
Properties Expected by the Bootstrapping Command............cccoeeuiiiieiiiniiieiiiiicis A-39
Setting the Wallet Password for the Oracle Directory Integration and
Provisioning Server A-41
Changing the Password of the Administrator of Oracle Directory Integration and
Provisioning PIatfOrmmc.cccccciiiiiiiiiiiiiiicccec s A-41
Moving an Integration Profile to a Different Identity Management Node...................... A-42
Limitations of the Directory Integration and Provisioning Assistant in Oracle
Internet Directory 10g Release 2 (10.1.2)......ccccevuviriiiiiiinininiiiiiiicininiiennnseeees A-43
The schemasync TOOL SYNEAX........ccoeiuiiiiiiiiiiicceceeee s A-44
The Oracle Directory Integration and Provisioning Server Registration Tool
(OAISIVIEE) ..ottt s A-45
Syntax for Provisioning Subscription Tool (0idprovtool)........cccccoeeeriieiiiiiiinicce, A-45

B DSML Syntax

Capabilities 0f DSML..........ccoiiiiiiiic ettt B-1
Benefits 0f DSIMLc.c.coiiiiiiiiiieccecc ettt ettt ettt B-1

Xiv

DSML SYNEAX ..ottt et B-1

TOP-LeVel SLTUCLUTEcvoviiiiiiiiiiii s B-2

Directory ENtrIes ..o B-2

T TSy 0 0 T= 10 25 L o (<Y< J R B-3

To0lS ENADled FOr DSIML ...ttt e e ettt e s et e e seaaeeesnteesssseeessseessnteessnns B-3
Glossary

Index

XV

XVi

List of Figures

TEPERYReYYrT
PNRPODMONRENPR

T
N

T
w

4-4

A Directory-Enabled Application........cccccoviiiiiiiiiiiiiiiiiiiiiiiiiiiics
An Application Leveraging APIs and Servicesccccoviiivvininiiiiiininiiniiinnns
A Directory INformation TIeecccccueiiiiiiiiiiiiiiiiiiiiiiic e
Attributes of the Entry for Anne Smith ...
Steps in Typical DBMS_LDAP USage.......cccccevuviriiiiiiiiiiiiiiiiiiiiiriiicteisisisesssssessnsnnnes
Flow of Search-Related Operations.............ccceueioiiiiiiiiiiciicceec
The Three Scope OPHIONSccccvviiiiiiiiiiniiiii s
Oracle AP EXEENSIONScoviieviieiieeteeete et et eete e et et e eeeeeeteseeteeeteseveeeseeeseesteeeseeeseseseeeseeenrens
Programmatic Flow for API EXteNSIONScccccoviiiiiiiiiiiniiiiiiiciiiniicicccccces
How an Application Obtains Provisioning Information by Using the Oracle

Directory Provisioning Integration Service.............cooveeiinniiiiniiiiicccecns
How an Application Returns Provisioning Information to Oracle Internet

Directory Provisioning Service ...
Provisioning Services and Their Subscribed Applications in a Typical

DEPLOYINENL ..ottt
PL/SQL Callback INEEITACE.covievieeeeeete ettt ettt et er e e eaeeeveeeaeenaeeens
Overview of Delegated Administration Services...........cocooeueveiieceieiniicciniicceecee e

XVii

List of Tables

1-1 Interactions During Application Lifecycleccccooeiiiiiinininiiice 1-6
1-2 Services and APIs for Integrating with Oracle Internet Directoryc.ccoooveveiiinininns 1-7
1-3 Services for Modifying Existing Applicationsccooeueiriniciniciniicicce e 1-8
14 Application Integration POINts...........coeiiiiiiiiiiiii 1-9
2-1 LDAP FUNCHONSvvitiiiieiciciinii ittt 2-4
2-2 SSL Authentication MOdes ..ot 2-5
2-3 Parameters for Idap_init()........ccovevviiniiiiiiiiii 2-9
2-4 Arguments for ldap_simple_bind_s()cccooevviiiiiniiiiiiii 2-11
2-5 Options for search_s() or search_st() FUNCHONScccccovviiiviiiiiiiiiiiic, 2-13
2-6 S€ArCh FIlEerS......ovviei 2-14
2-7 Boolean OPerators ...ttt 2-15
2-8 Arguments for Idap_search_s().........cccouovviiiiniiiiiii s 2-16
2-9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()...........ccccoeuue.. 2-16
3-1 How the APIs are Installed.............ccooiiiiiiii 3-4
3-2 Environment Variables for DNS DiSCOVEIYccviriniiiniiiiiciecicc e 3-13
3-3 Methods for Directory Server DiSCOVeIY ...t 3-14
3-4 Parameters in DynamicVerifierRequestControl.............ccoocevrniiiniciiiniice, 3-19
3-5 Parameters Required by the Hashing Algorithms...........ccoooi, 3-19
4-1 Extensible Event Definitionsc.coouvieiiiiiiiiiniiicccc 4-17
4-2 Function user_exXists Paramieterscoovviiiiiiiiiiiiceciieee et eearaee e 4-17
4-3 Function group_exists Parametersccooiiiiiiiiiiiiiiiiinss 4-18
4-4 Parameters for FUNCTION event ntfy ..., 4-18
5-1 Plug-in Module INterfaceccooeuevriiiiiiiiiice s 5-4
5-2 Operation-Based and Attribute-Based Plug-in Procedure Signatures............cccccvununenee 5-5
5-3 Plug-in Attribute Names and Values...........cooeeioiiiiiiiniiii e 5-7
54 Valid Values for the Plugin-in Return Code.........c.cccooeviiiiiiiiniiii e, 5-10
5-5 Program Control Handling when a Plug-in Exception Occurs.........cccoooveiirieiiinnnnnen. 5-10
5-6 Program Control Handling when an LDAP Operation Fails...........ccoooiiiiinni, 5-11
6-1 Considerations for Integrating an Application with Oracle Delegated

Administration SEIVICES.........oiiiiueieiiiicieieecc 6-3
6-2 URL Parameters for Oracle Delegated Administration Services...........ccccocoeveieieiniiininnns 6-4
7-1 User Attributes Passed to Partner Applications...........cccooooeeieiiiinciciiiiccca 7-1
7-2 Commonly Requested Dynamic Directives...........cccoeueviiiiiiiiiinciccce 7-3
8-1 Arguments for SSL Interface Callscccooeuriiiiiiiiiiiiicccc 8-2
8-2 Functions and Procedures in the C APL.........ccccooiiiiiiiiiiccc e 8-3
8-3 Parameters for Initializing an LDAP SeSSION.........c.ccccoeiriniriiiciniiiiccic e 8-5
8-4 Parameters for LDAP Session Handle Options.............ccoueuiiriniiinicniicnicecececns 8-7
8-5 CONSTANES ...ttt 8-7
8-6 Parameters for Authenticating to the Directoryc.ccoooeeivceiiieiciiccce, 8-11
8-7 Parameters for Managing SASL Credentialsccccooruniiiniiniiniicc e, 8-13
8-8 Parameters for Managing SASL Credentialsccccooruniriniiiniiiniiice, 8-14
8-9 Fields in Idapcontrol SErUCUIEcoovivriiiiciie e 8-15
8-10 Parameters for Closing the SeSSiONccccocueiiuiiciciciciicc e 8-16
8-11 Parameters for Search Operations...........cccoocueiiueiiiieiicieiiceie e 8-18
8-12 Parameters for Compare Operationscccceueueviueiiiieiiiniieie s 8-21
8-13 Parameters for Modify Operations...........cccocuevrueiiiniiiieiiceicce s 8-23
8-14 Fields in LDAPMOd SHIUCHUTE........cuoviiiiciiicict e 8-23
8-15 Parameters for Rename Operationscccocceueueiiieiicieiiieiiece e 8-25
8-16 Parameters for Add Operations...........ccooeueieueiiiniicieiicieicee e 8-27
8-17 Parameters for Delete Operationsccooeueimuriiieiiiieiiieiec e 8-28
8-18 Parameters for Extended Operations............ccccoeeviueiiiiniiiciiiciiccee s 8-29
8-19 Parameters for Abandoning an Operation..........c.ccceveevieiieiiiciniccc s 8-30
8-20 Parameters for Obtaining Results and Peeking Inside LDAP Messages............cccc....... 8-32

XViii

Parameters for Handling Errors and Parsing Resultsccccoooveiiiiiiiiiiniiiniie, 8-34

Parameters for Stepping Through a List of Resultsccccooeeviiniiiiiiciiie, 8-35
Parameters for Retrieving Entries and Continuation References from a Search

Result Chain, and for Counting Entries Returned............c.ccccooceiiiniiiniiniicicce, 8-36
Parameters for Stepping Through Attribute Types Returned with an Entry 8-37
Parameters for Retrieving and Counting Attribute Values...........c..ccccocoevviiinininnnen, 8-38
Parameters for Retrieving, Exploding, and Converting Entry Namesc..cc......... 8-39
Parameters for Extracting LDAP Controls from an Entryc.coooviiieiiciiinininine, 8-40
Parameters for Extracting Referrals and Controls from a SearchResultReference

IMESSAZE ...evrvrviiviiiinieiitci ittt ettt aeas 8-41
DBMS_LDAP API SUDPIOZIAMSovieiiiiiiicieieci i 9-1
DBMS_LDAP Exception SUMMATYccooueiiirieieiiicie e 9-4
DBMS_LDAP Data Type SUMMATYccceueiiiirieieiiinie et 9-5
INIT FUNCHON PArameterscc..eiiciiiiiiieeeiee et eete e et e et e e e e s etaeeeeveeeeaveeesasaaeensseaenes 9-6
INIT Function RetUIN VAIUEScooviieuiieiiieee ettt ettt et e ve et eaeeneas 9-6
INIT Function EXCEPHONSccuiuiiiiiiiiiiiiiiiiciciicici e 9-6
SIMPLE_BIND_S Function ParametersScccueooueeeieieeiiieeeeieeeeeeee e eiee e senaeeeens 9-7
SIMPLE_BIND_S Function Return Values..........ooouveeioiiiioieiiiieeeeee e 9-7
SIMPLE_BIND_S Function EXCeptions..........cceiiuiiiiiiiiiiiiiiiiiincccccceenes 9-7
BIND_S FUNCHON ParametersS.......ccuveiieeiieeiiieeeeeeeee ettt eie e et eae e eaneesenaeeeens 9-8
BIND_S Function Return ValUesoouveeeeiiiieieeeeeeee et 9-8
BIND_S Function EXCEPLIONSc.cuevivimimiiiiiiiiiiiiiiciciiciiciss s 9-8
UNBIND _S FUNCHON PATamEterScovveeeeieiieeeeeeceeeeeeteee et eie e et e et saaeesenaeeeens 9-9
UNBIND_S Function RetUrn VAlUES.......ccc.vviieiviiiiiieeeie et 9-9
UNBIND_S Function EXCEPHIONS.........ccvuiuivimimiiiiiiiiiiiiiciciciiicecssss s 9-9
COMPARE_S FUuNction Parametersocuevoveeeeiieeieeiee e et et eaeeeeeaaeesenaeeeens 9-9
COMPARE_S Function Return ValuesS.........ooouviiiiiiicieieeeeeee et 9-10
COMPARE_S Function EXCEPHONScouivimimiiiiiiiiiiicccicicctsssena 9-10
SEARCH_S FUNCHON PaArameEterscoouvviieiiiiieieie ettt eeae e e e s e snnees 9-11
SEARCH_S Function Return ValUe..........ocouveieuiiiiiiiicieceeee e 9-11
SEARCH_S Function EXCEPHONScouiiiiviuiiiiiiiiiitiicivsissssna 9-11
SEARCH_ST FUNCHON ParameterS......c..oeivuveiieieieeeeeeeeeeeee ettt eeae et s e e 9-12
SEARCH_ST Function Return ValUescooouviiieiiiiiiiiieeee e 9-13
SEARCH_ST Function EXCEPHONSccoiuiuiuimiiiiiiiiiiicicicccttsssnna 9-13
FIRST_ENTRY FUuNnction Parametersc.eeoveuviiiiieiiceeeeeeee et 9-13
FIRST _ENTRY REtUIN VAIUESooooeeviiieeeeeee ettt et 9-14
FIRST_ENTRY EXCEPLIONS......corviviuiiiiiiiiiiiiiiitititciictttitttsss st sessane 9-14
NEXT_ENTRY FUNCHON Parametersooveeeeveieieeeeeeeieeeeeeee et eeeee e ssveeeenaee s 9-14
NEXT_ENTRY Function Return VAIUEScoouvviieviiiiiiiiieeee e 9-15
NEXT_ENTRY Function EXCEPIONSccvuiuiiiiiiiiiiiiiiiiiiicccccccnnnines 9-15
COUNT_ENTRY Function Parametersooouveeoeveiicieiieeieeeeee et 9-15
COUNT_ENTRY Function Return ValUescooveiieiiiieiiieeeeeeee e 9-16
COUNT_ENTRY Function EXCePiONScovvuiviiimimiiiiiiiiiiiiccciccciceveinnnes 9-16
FIRST _ATTRIBUTE FUunction Parameters...........ooveiieveeieeeieeeeeeeeee et 9-16
FIRST _ATTRIBUTE Function Return VAlUesc..ooovvviivviieceieieeeeeeeeeeee e 9-17
FIRST_ATTRIBUTE Function EXCEPiONScccvuivivimiiiiiiiiiiiiiiiiciciccccicicicccnsninan 9-17
NEXT_ATTRIBUTE Function Parameterscccuueeiieiiieeieiieiieeec e eeesneeeeeeens 9-17
NEXT_ATTRIBUTE Function Return Valuesooovvveeeiiiciieiieeceeeeeee e 9-18
NEXT_ATTRIBUTE Function EXCeptionSccoevvveieieiiiieiiiiiccccc e, 9-18
GET_DN FUNCHON PaArameEterscccuvevieeiiiiceieeieeeee ettt ettt eeae e s e ssaaeesssaeessnnes 9-18
GET_DN Function RetUrn VAlUESc..ooovviiieiiiiieeiieeee et 9-19
GET_DN Function EXCEePtIONScccciiiiiiiiiiiiiiiiiiiiiciicccsssssssesssanes 9-19
GET_VALUES FUNCHON ParameterS........ocouveieeviiieieeeceeeeeeeee ettt eaeee e eesaeessnnees 9-19
GET_VALUES Function RetUrn VaAlUEScoouvevoeueiiiciiiieeieeeee et 9-20
GET_VALUES Function EXCEPLIONScccouvvimimiiiiiiiiiiiiiiiiiicttcsvsaanes 9-20

Xix

GET_VALUES_LEN FUuNction Parameters..........cooveiieveeieeeeeeeeeeeeeeeeeeeee e 9-20

GET_VALUES_LEN Function Return Valuescooouvvoeviiicieeieieeeeeecee e 9-21
GET_VALUES_LEN Function EXCeptiONSccovvimiiiiiiiiiiiiiiiicciccnceicicnenas 9-21
DELETE_S FUNCHON PArameterscocvviveviiieieie ettt eeaee e saeee v e eenanessnnees 9-21
DELETE_S Function RetUrn VAIUEScoovviieeiiiiieeeeeeeeeee et 9-22
DELETE_S Function EXCePHiONScoiiuiiiiiiiiiiiiiiicciccisssna 9-22
MODRDN2_S FUunction ParametersS..........cc.eeovuviiieeeeiiieieeeeeeeieee et eeeaeessnnees 9-22
MODRDNZ2_S Function Return Valuescooouviiieiiiciiiieeieeeeeeeeeeee e 9-23
MODRDN2_S Function EXCEPIONSccvuiviviuiiiiiiiiiiiiiiiciicicticiisnnnnnan 9-23
ERR2STRING FUNnction Parametersc..ooveevieorieeieecieeceeeeieecee ettt eaeeeveeeveeeveeeane s 9-23
ERR2STRING Function Return Values..........coueoiieiieiiiiiieceeeeeeteeee et 9-24
CREATE_MOD_ARRAY Function Parameters.........ccooevveeeveeeeeeeeieeeeeeee e 9-24
CREATE_MOD_ARRAY Function Return Valuesccoovvvveeeiieiieieeieceee e 9-24
POPULATE_MOD_ARRAY (String Version) Procedure Parametersccccccoueunees 9-25
POPULATE_MOD_ARRAY (String Version) Procedure Exceptions..........cccccevuruinines 9-25
POPULATE_MOD_ARRAY (Binary Version) Procedure Parametersccccoeucuee. 9-26
POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions...........ccccccovueuees 9-26
POPULATE_MOD_ARRAY (Binary) Parametersccccoeveeiiiiiniiiiccicinincnnns 9-27
POPULATE_MOD_ARRAY (Binary) EXCeptions..........ccccceviuiiiiiiiiiiiciniiiiiccicicnnnes 9-27
GET_VALUES_BLOB Paramieterscc.uoeoeveiieieieeeeieeeceeeeeieeeeeteeeeeveeeeaveesaeeessaveesssaeessnnees 9-27
get_values_blob Return Values............ccccoovvvniniiiniiinniiiii, 9-28
get_values_blob EXCEPHIONS........cccccoviviviviiiiiiiiiiiii 9-28
COUNT_VALUES_BLOB ParametersSccoeeuviiieueieicieeeeeeeeeeieee e et eaeeessrveeessaeessnnees 9-28
COUNT_VALUES_BLOB Return ValUues......ccouviioeuiiiieieiieeieeee e 9-29
VALUE_FREE_BLOB Parametersc.ecovueiiiieiiiieieeeeieeeeieeeeeieeeeeeeeeesaveesaeesssavessssanessnnes 9-29
MODIFY_S FUNCHON PArametersocvvevviiiieiiieeeeeee ettt et e e 9-30
MODIFY_S Function RetUrn VAlUEScocvvvieeiiiiieieeeeeeee et 9-30
MODIFY_S Function EXCEPHIONSccviuivimiiiiiiiiiiiiiiiiiccctssssnnsnnna 9-30
FAND) DT P TaTeinte) o) A=V = Ve s L] 1<) o< PR 9-31
ADD_S FUNction RetUIN VAIUESoooouvviiieieee e 9-31
ADD_S Function EXCEPHIONSccvuiviiiiiiiiiiiiiiiriictsssssnane 9-31
FREE_MOD_ARRAY Procedure Parameterscccocuveeveevieeeeeeeeeieeeeeee e eevee e 9-32
COUNT_VALUES Function Parameters.........c.ooovveeieueeieeiieeeeeeeeeeeeeeee e 9-32
COUNT_VALUES Function Return Values..........cooovviiiiviiieieeeeeeeeeeeeee e 9-32
COUNT_VALUES_LEN Function Parameters.........ccccooovvveeeeeeeeeeieieeeeeeee e 9-33
COUNT_VALUES_LEN Function Return Valuesccoovveeeeiieiiiieeieeeee e 9-33
RENAME_S FUNCHON ParametersSc.ueeovvieieieieeeeiee et eaee e s e e e 9-33
RENAME_S Function RetUrn VAIUES.cvvvieiviiieieeeceeeeeeeeee et 9-34
RENAME_S Function EXCEPHiONS.cviuiiivimiiiiiiiiitiiiccictsvsnnna 9-34
EXPLODE_DN FUunction Parameters........c.uoovueiiieiieiiieeieeee et e eenaeeesnnees 9-34
EXPLODE_DN Function Return ValUescc.eoooveiiiciiiieeieeeeeeeeeeeeeeeee e 9-35
EXPLODE_DN Function EXCEPHIONSccvuiuimimiiiiiiiiiiiiiiiiccciiicicesneevssennan 9-35
OPEN_SSL FUNCHON ParametersS........ocveeveveiieeiiiieeieeeeee ettt eeae e et eeeaaee s snaees 9-35
OPEN_SSL Function Return ValUes........coovvvieeiiiieieieeeeeeeeeeee et 9-36
OPEN_SSL Function EXCeptions. ..ot 9-36
MSGFREE FUNCHON ParameterScoviiviiiiieeieeieeeee ettt eve et eaeeeveesneeeseeeane s 9-36
MSGEFREE REtUIT VAIUESoocvvieiiiicieeeeeeetee ettt ettt ettt et eaae e veeeneeeveeseveeevaeeane s 9-37
BER_FREE FUuNCtion Parameterscooouriiiiiiiiieeececeitieeee et ettt eeeavee e e eearaneeeeens 9-37
Parameters for Nls_coONVert_tO_ U8cuoivuiieiiiiiiceeceeeeeeeeee et 9-38
Return Values for nls_convert_to_Utf8c..oouiiuiiiiiiiiiceeeeeeeeeeeee et 9-38
Parameters for Nls_coONVert_tO_ U8cuoiiuiieiiiiiiceeeeeeeee et 9-39
Return Values for nls_convert_to_Utf8c..oouiiuiiiiiiiiiceeieeeeeeeeeee et 9-39
Parameter for nls_convert_from_Utf8cooouiiiiiiiiiiiceeceee et 9-39
Return Value for nls_convert_from_Utf8...........cooviviiiiiiiiiiieeeeeeeeee et 9-39

Parameter for nls_convert_from_Utf8ccoooiiiiiiiiiiiiiceceeeeeeeeee et 9-40

9-101
9-102
11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53

Return Value for nls_convert_from_Utf8.........ccooviviiiiiiiiiiiiieeeceeeeee e 9-40

Return Value for nls_get_dbcharset_name............cooooevviiiiiininin, 9-41
DBMS_LDAP_UTL User-Related SUbPrograms...........cccoceeeeeiiriviniiiiiiniecenininennns 11-1
DBMS_LDAP_UTL Group-Related Subprograms............ccceueverueieiiicnieeiiciececnen, 11-2
DBMS_LDAP_UTL Subscriber-Related Subprograms...........c.ccceiiiieiiniiiicinincnnns 11-2
DBMS_LDAP_UTL Miscellaneous SUbPrograms...........ccceeeeeuevivimiieiiiieeneninnnenenns 11-2
AUTHENTICATE_USER Function Parametersccccoveveeeeeeeeeieeeeeeeeeee e 11-4
AUTHENTICATE_USER Function Return Values........ccocvvevveeeeiiiieeieceeeeeeeeeee e 11-4
CREATE_USER_HANDLE Function ParametersS..........ccoeveeeeuveeeeeeeeeeeeeeeee e e 11-5
CREATE_USER_HANDLE Function Return Valuesccocccevvvviiieveiiieeeeeeeeeee e 11-5
SET_USER_HANDLE_PROPERTIES Function Parameters..........cccoeveeveveeevveeecneeeennee. 11-6
SET_USER_HANDLE_PROPERTIES Function Return Valuesccccccooevevvvvveieneeennee. 11-6
GET_USER_PROPERTIES Function Parametersccoeveeeeueeeeeeeeieeeeceee e 11-7
GET_USER_PROPERTIES Function Return Valuescccccoovveeeeiiiieeiiceeeeeeeeeee e 11-7
SET_USER_PROPERTIES Function Parameterscc.ccooeveeeeueeeeeeeeeeeeeeeee e 11-8
SET_USER_PROPERTIES Function Return Valuescccoovvveeeeiieieciieceee e 11-9
GET_USER_EXTENDED_PROPERTIES Function Parameterscccccoevvveveuveeeneennn. 11-10
GET_USER_EXTENDED_PROPERTIES Function Return Values........cccocoveveuveveennnenne. 11-10
GET_USER_DN Function Parametersc...oooviiiveeiiiieeeeeeee ettt esveeesnveee e 11-11
GET_USER_DN Function Return Values........c..ooovvviiiieeiieeieceeeeeeeeee e 11-11
CHECK_GROUP_MEMBERSHIP Function Parameterscccoeveeevveeeeveeeieeeeeieeeenns 11-12
CHECK_GROUP_MEMBERSHIP Function Return Values.......cccccccovvvveevvvvivceeeeieene 11-12
LOCATE_SUBSCRIBER_FOR_USER Function Parameters.........c..ccooovveeevvrivcveeennenne 11-13
LOCATE SUBSCRIBER FOR USER Function Return Values.........ccccccveeveeeiiicreennnens 11-13
GET_GROUP_MEMBERSHIP Function Parameters...........ccoeeveeveeveeiveeeeeeeeeeee e 11-14
GET_GROUP_MEMBERSHIP Function Return Valuescccccovvevevieiicieiieieeeeeene 11-14
CREATE_GROUP_HANDLE Function Parameters........c.cccoeeveeveeveeeeeeeeeeeeeeeeee e 11-16
CREATE_GROUP_HANDLE Function Return Valuescccccovvveeivveeicceieceeeeeeeene 11-16
SET_GROUP_HANDLE_PROPERTIES Function Parameters.........ccccccceevvveveuvevennennn. 11-17
SET_GROUP_HANDLE_PROPERTIES Function Return Values..........cccocvvveuvevennnenne. 11-17
GET_GROUP_PROPERTIES Function Parametersccccceevveeeveeeeeeeieeeeeeeeeeee e 11-17
GET_GROUP_PROPERTIES Function Return Values.........ccocvevvveveeivieeiceieceee e 11-18
GET_GROUP_DN FUunction Parameterscoc.eeoveeeiieeeeeeeieceeeeeeeeeeeeeeeeeeeeesveeessveee e 11-19
GET_GROUP_DN Function Return ValUesS.........cccveovueeiieiiiieeiieeeeeeeeeee e 11-19
CREATE_SUBSCRIBER_HANDLE Function Parameters.........cccocueeevveeeevveevceeeeieeeenne 11-20
CREATE_SUBSCRIBER_HANDLE Function Return Values..........cccocvveevvviveveeinnenn. 11-20
GET_SUBSCRIBER_PROPERTIES Function Parameters..........ccoeveeevveeeeieeeceeeeeieeeenne 11-21
GET_SUBSCRIBER_PROPERTIES Function Return Valuescccccoevvveeevevivceeeeineene 11-21
GET_SUBSCRIBER_DN Function Parametersccueeevveeieeeeiiieeeeeee e eeeeeeesieeeenns 11-22
GET_SUBSCRIBER_DN Function Return Values..........ccoovvvevviivceeiiieeeeeeeeee e 11-22
GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters.........ccccceevvveveuveeenneenn. 11-23
GET_USER_EXTENDED_PROPERTIES Function Return Values........cccocveveuvevennnenne. 11-24
NORMALIZE_DN_WITH_CASE Function Parameters.......cc.cccoeveevvveeieveeeceeeeeeeeenne 11-25
NORMALIZE _DN_WITH_CASE Function Return Values........cccccoevvviveveiivveeiieeens 11-26
GET_PROPERTY_NAMES Function Parameterscccccoeveeeeveeeeeeeeeeeeeeeeeeeeeeee e 11-26
GET_PROPERTY_NAMES Function Return Values........cccccoevuveeveeveeiiieiieeeeeee e 11-26
GET_PROPERTY_VALUES Function Parameters..........cooovveevueeeveeeeeeeeeeeeeeeeeeeeeeveeens 11-27
GET_PROPERTY_VALUES Function Return Values..........cccoevevveuveiiveeeeeeeeee e 11-27
GET_PROPERTY_VALUES_LEN Function Parameters.......cccccooeveeevvveeieveeeeeee e 11-28
GET_PROPERTY_VALUES_LEN Function Return Valuescccccccovvvveevvvvivceeeeiieens 11-28
FREE_PROPERTYSET COLLECTION Procedure Parameterscccccoeevveveuveeevnneenn. 11-29
CREATE_MOD_PROPERTYSET Function Parameters........ccocceevvveeeeveeieeeeeceeeeeeeeenns 11-29
CREATE_MOD_PROPERTYSET Function Return Values........ccccceevvvvveeevvrivieeeeieene 11-29
POPULATE_MOD_PROPERTYSET Function Parameterscccceeevvveeeevvvevcveeeineeens 11-30
POPULATE_MOD_PROPERTYSET Function Return Values.........ccoceeeevveveveeinnennn. 11-30

XXi

XXii

11-54
11-55
11-56
11-57
11-58
11-59
11-60
11-61
11-62
12-1
12-2
12-3
12-4
12-5
13-1
13-2
A-1
A-2
A-3

A-5

A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17

A-18

A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28

A-29
A-30

FREE_MOD_PROPERTYSET Procedure Parameters..........ccooeuveeveeveeeeeeeeeieeeeeeeeeveeenns
FREE_HANDLE Procedure ParametersS........cooueiieeiiiieeeeeeieeeeeeeeeeee e eeneeeesveeesnaeeeenns
CHECK_INTERFACE_VERSION Function Parameters.......ccccovvveeevveeieceeeeeee e
CHECK_VERSION_INTERFACE Function Return Valuescccccccovvvvvevvvviveeeeeiieene
GET_PROPERTY_VALUES_BLOB Function Parametersccocueeevvveeeevereeceeeeeeeeenne
GET_PROPERTY_VALUES_BLOB Return Values.........ccoocvovviivcveeeieeeeeeeeeee e
PROPERTY_VALUE_FREE_BLOB Function Parameters...........cccoeeevvveeeeverivceeeeeneene
Function Return Codesooiiiiiiiiii e
DBMS_LDAP_UTL Data TYPeS......ccocviiiiiiiiniiiiiiitiniciciticicscisscscsssscssesssssesssnnes
Service Units and Corresponding Entriesoooceieiiiiiiiiiicccce,
DAS Units and Corresponding URL Parameters............cocoeueviirieieininicieieiccieeecnen,
DAS URL Parameter DesScriptionscccouoeiurieiiiiicieieiicicieeecie i
User Search and Select.............c.oiriiioiiiiiiict
Group Search and Select ...
Predefined Event Definitionsc.coouoieiiiiiiiiiiccc
Attributes of the Provisioning Subscription Profile...........ccccocoeviniiiiiniiiie,
Arguments for Starting OID MONItOTccoviueiiieiiieiieieee e
Arguments for Stopping OID MONItOTcccovueviieiiieiieieee e
Arguments for Starting a Directory Server by Using OIDCTL..........ccccoooevviiiinniiininnnnn.
Arguments for Starting a Directory Replication Server by Using OIDCTL.....................
Description of Arguments for Starting the Oracle Directory Integration and
Provisioning SEIVETcooiuiiiiiiiciei
Arguments for the Catalog Management Tool (catalog.sh)ccccooeiiiiiiiinnnn,
Arguments for Idapadd ..o,
Arguments for Idapaddmt.........c..ccooiiii
Arguments for Idapbind ..o,
Optional ATZUMENES.........coiuiiiiiieie
Arguments for Idapcompare..........c..cceuieiiiiiiniii e
Arguments for Idapdelete..........c..ccooviiiiiiiiii
Arguments for Idapmoddn ...
Arguments for IdapmOodifyc.cooeuoiiiiiiiii
Arguments for Idapmodifymt........c.coouoiiiiiiiii
Arguments for Idapsearchc..ccooeviiiiii e
Summary of Functionality of the Directory Integration and Provisioning

ASSISTANE ..ot
Parameters for Creating, Modifying, and Deleting Synchronization Profiles

by Using the Directory Integration and Provisioning Assistant............c.ccccoeevvineiennes
Properties Expected by createprofile and modifyprofile Commandsccccoevuee.
Parameters of the listprofiles Command..........c.ccooovriniiniiiniiicc e,
Parameters of the showprofile Commandcccooeeiiiiiniini e,
Parameters of the expressconfig Commandc.ccocevriniriniiniinicc e,
Parameters of the bootstrap Command...........cccooeeiiiiiiii e,
Bootstrapping Configuration File Properties............cccococviiniiiniiiniiiiiccce,
Parameters of the chgpasswd Command.........c..ccccovoriiiiiiiiinicc e,
Scenarios for Reassociating Directory Integration Profiles...........cccccooveeiiiiiiiiinininnen,
Parameters of the reassociate Commandc.ccocovriiiiiniiinicnic e,
Limitations of Bootstrapping in the Directory Integration and Provisioning

ASSISTANE ..ot
Descriptions of ODISRVREG Argumentsccccoueunirinininicinicsice e
Provisioning Subscription Tool Parameters...........cccceueviiiieiiiiciciiiiccece,

Send Us Your Comments

Oracle Identity Management Application Developer’s Guide, 10g Release 2
(10.1.2)

Part No. B14087-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

» Did you find any errors?

« Isthe information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

= Electronic mail: appserverdocs_us@oracle.com
= FAX: (650) 506-7375. Atin: Oracle Application Server Documentation Manager
= Postal service:

Oracle Corporation

Oracle Application Server Documentation
500 Oracle Parkway, M/S lop6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XXiii

XXV

Audience

Preface

Oracle Identity Management Application Developer’s Guide explains how to modify
applications to work with the Oracle Identity Management infrastructure. For the
purposes of this book, this infrastructure consists of Oracle Application Server Single
Sign-On, Oracle Internet Directory, Oracle Delegated Administration Services, and the
Directory Integration Platform.

This preface contains these topics:
= Audience

= Documentation Accessibility
= Structure

= Related Documents

« Conventions

The following readers can benefit from this book:

= Developers who want to integrate applications with the Oracle Identity
Management infrastructure. This process involves storing and updating
information in an Oracle Internet Directory server. It also involves modifying
applications to work with mod_osso, an authentication module on the Oracle
HTTP Server.

= Anyone who wants to learn about the LDAP APIs and Oracle extensions to these
APIs.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessibility/

XXV

Structure

XXVi

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Part I, Programming for Oracle Identity Management

Chapter 1, "Developing Applications for Oracle Identity Management”

Takes a high level look at how to integrate applications with the Oracle Identity
Management infrastructure. Introduces the reader to the Oracle Internet Directory
Software Developer’s Kit 10g Release 2 (10.1.2). Provides an overview of how an
application can use the kit to integrate with the directory.

Chapter 2, "Developing Applications with Standard LDAP APIs"

Provides a brief overview of all of the major operations available in the C API and the
PL/SQL API Provides developers a general understanding of Lightweight Directory
Access Protocol (LDAP) from a perspective independent of the APL

Chapter 3, "Developing Applications with Oracle Extensions to the Standard APIs"

Explains the concepts behind Oracle extensions to LDAP APIs. Describes the abstract
entities that are modeled by the extensions as well as the usage model of the Oracle
extensions.

Chapter 4, "Developing Provisioning-Integrated Applications"

Explains how to develop applications that can use the Oracle Directory Provisioning
Integration Service in the Oracle Directory Integration and Provisioning platform.
These applications can be either legacy applications or third-party applications that are
based on the Oracle platform.

Chapter 5, "Developing Directory Plug-ins"

Explains how to use the plug-in framework for Oracle Internet Directory to facilitate
custom development.

Chapter 6, "Integrating with Oracle Delegated Administration Services"

Explains how developers can use the DAS URL to integrate with Oracle Delegated
Administration Services.

Chapter 7, "Developing Applications for Single Sign-On*"

Explains how the HTTP authentication module mod_osso protects applications
enabled by OracleAS Single Sign-On. Provides code that demonstrates how
applications are integrated with mod_osso.

Part 1l Oracle Internet Directory API Reference

Chapter 8, "C API Reference"
Introduces the standard C API. Provides examples of how to use it.

Chapter 9, "DBMS_LDAP PL/SQL Reference”

Introduces the DBM5_LDAP package, which enables PL/SQL programmers to access
data from LDAP servers. Provides examples of how to use DBVM5_LDAP.

Chapter 10, "Java APl Reference"

Directs readers to the Java APIs for Oracle Internet Directory. Provides a link to the
standard API and a link to the Oracle extensions.

Chapter 11, "DBMS_LDAP_UTL PL/SQL Reference"

Contains reference material for the DBMS_LDAP_UTL package, which extends the
DBMS_LDAP package.

Chapter 12, "DAS_URL Interface Reference"
Describes the Oracle extensions to the DAS_URL APL

Chapter 13, "Provisioning Integration APl Reference"

Contains reference information for the Directory Integration and Provisioning
Platform APL

Part lll Appendixes

Appendix A, "Syntax for LDIF and Command-Line Tools"

Provides syntax, usage notes, and examples for using LDAP Data Interchange Format
(LDIF) and LDAP command line tools

Appendix B, "DSML Syntax"
Provides syntax and usage notes for DSML (XML) integration.

Glossary
Defines terms used in this book.

Related Documents
For more information, see these Oracle resources:
= Oracle Identity Management Concepts and Deployment Planning Guide
= Oracle Internet Directory Administrator’s Guide
= Oracle Identity Management Integration Guide
« Oracle Identity Management Guide to Delegated Administration
= Oracle Application Server Single Sign-On Administrator’s Guide
= PL/SQL User's Guide and Reference
= Oracle Database Application Developer’s Guide - Fundamentals

In North America, printed documentation is available for sale in the Oracle Store at

XXVil

http://oracl estore. oracl e. conf

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http: // wwmv. or acl ebookshop. com

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracl e.com adm n/ account/ menber shi p. ht m

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.con docs/index. htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

For additional information, see:

« Chadwick, David. Understanding X.500—The Directory. Thomson Computer Press,
1996.

= Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

= Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

= Internet Assigned Numbers Authority home page, ht t p: / / www. i ana. or g, for
information about object identifiers

= Internet Engineering Task Force (IETF) documentation available at:
http://ww.ietf.org, especially:

= The LDAPEXT charter and LDAP drafts
» The LDUP charter and drafts
= RFC 2254, "The String Representation of LDAP Search Filters"
= RFC 1823, "The LDAP Application Program Interface"
« The OpenLDAP Community, ht t p: / / www. openl dap. or g

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
= Conventions in Code Examples

= Conventions for Windows Operating Systems

XXviii

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

| ower case
nonospace
(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-w dth)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font represents
placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NANE column in the
USER_TABLES data dictionary view.

Use the DBM5_STATS.GENERATE_STATS
procedure.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nent _i d, depart ment _nane, and
| ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED initialization
parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these methods.

You can specify the par al | el _cl ause.

Run ol d_r el ease. SQL where ol d_r el ease
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT usernanme FROM dba_users WHERE usernane =

"M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])
{1} Braces are used for grouping items. {ENABLE | DI SABLE}
| A V.ertical bar represents a choice of two {ENABLE | DI SABLE}
options. [COVPRESS | NOCOMPRESS]

XXiX

Convention Meaning Example
Ellipsis points mean repetition in syntax CREATE TABLE ... AS subquery;
descriptions.
In addition, ellipsis points can mean an SELECT col 1, col2, ... , coln FROM
omission in code examples or text. enpl oyees;

Other symbols You must use symbols other than brackets acctbal NUVBER(11, 2);
([1), braces ({ }), vertical bars (1), and acct CONSTANT NUMBER(4) := 3;
ellipsis points (...) exactly as shown.

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em password
variables for which you must supply DB_NAME = dat abase_nane
particular values.

UPPERCASE Uppercase typeface indicates elements SELECT | ast _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish SE| ECT * FROM USER TABLES;
them from terms you define. Unless terms prop TABLE hr. enpl Byees;
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

| ower case Lowercase typeface indicates user-defined SELECT | ast _name, enpl oyee_id FROM
programmatic elements, such as names of enpl oyees;
tables, columns, or files. sql plus hr/hr
Note: Some programmatic elements usea ~ CREATE USER nj ones | DENTI FI ED BY ty3mU9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start >
menu item

File and directory
names

C\>

XXX

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (*). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"system32 is the same as
CAWINNT\SYSTEM32

C:\oracl e\ or adat a>

Convention

Meaning

Example

Special characters

HOVE_NAME

ORACLE_HOME
and
ORACLE_BASE

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HQVE directory. The default
for Windows NT was C: \ or ant .

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is

C:\oracl e\ product\ 10. 1. 0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C.\oracl e\ product\10. 1. 0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

C.\>exp HR/ HR TABLES=enpl oyees
QUERY=\ "WHERE j ob_i d=' SA REP' and
sal ary<8000\ "

C\> net start Oracl eHOVE_NAMETNSLI st ener

Go to the
ORACLE_BASE\ ORACLE_HQVE\ r dbns\ admni n

directory.

XXXI

XXX

What's New in the SDK?

This document acquaints you with new features in the Oracle Internet Directory
Software Developer’s Kit—both in the present release and in the last release. Use the
links provided to learn more about each feature.

New Features in the Release 10.1.2 SDK
The release 10.1.2 SDK adds these features:
= Dynamic password verifiers

This feature addresses the needs of applications that provide parameters for
password verifiers only at runtime. To learn more, see "Creating Dynamic
Password Verifiers" in Chapter 3.

= Binary support for | dapnodi fy, | dapadd, and | dapconpar e plug-ins

Directory plug-ins can now access binary attributes in the directory database. To
learn more, see "Binary Support in the Plug-in Framework" in Chapter 5.

New Features in the Release 9.0.4 SDK
The following features made their debut in the release 9.0.4 SDK:
= URL API for Oracle Delegated Administration Services

This API enables you to build administrative and self-service consoles that
delegated administrators can use to perform directory operations. To learn more,
see Chapter 6.

« PL/SQL API Enhancements:

= New functions in the LDAP v3 standard. Previously available only in the C
API, these functions are now available in PL/SQL.

= Functions that enable proxied access to middle-tier applications.

= Functions that create and manage provisioning profiles in the directory
integration and provisioning platform.

To learn more, see Chapter 4.
= Plug-in support for external authentication

This feature enables administrators to use Microsoft Active Directory to store and
manage security credentials for Oracle components. To learn more, see Chapter 5.

XXXiii

XXXIV

Server discovery using DNS

This feature enables directory clients to discover the host name and port number
of a directory server. It reduces the cost of maintaining directory clients in large
deployments. To learn more, see "Server Discovery Functionality" in Chapter 2.

XML support for the directory SDK and directory tools

This feature enables LDAP tools to process XML as well as LDIF notation.
Directory APIs can manipulate data in a DSML 1.0 format.

Caching for client-side referrals

This feature enables clients to cache referral information, speeding up referral
processing. To learn more, see "LDAP Session Handle Options" in Chapter 6.

Part |

Programming for Oracle Identity
Management

Part I shows you how to modify your applications to work with the different
components of Oracle Identity Management. This section begins with an introduction
to the Oracle Internet Directory SDK and to LDAP programming concepts. You then
learn how to use the three LDAP APIs and their extensions to enable applications for
Oracle Internet Directory. The section ends with the tasks required to enable an
application for single sign-on.

Part I contains these chapters:

Chapter 1, "Developing Applications for Oracle Identity Management"

Chapter 2, "Developing Applications with Standard LDAP APIs"

Chapter 3, "Developing Applications with Oracle Extensions to the Standard APIs"
Chapter 4, "Developing Provisioning-Integrated Applications”

Chapter 5, "Developing Directory Plug-ins"

Chapter 6, "Integrating with Oracle Delegated Administration Services"

Chapter 7, "Developing Applications for Single Sign-On"

1

Developing Applications for Oracle Identity

Management

Oracle Identity Management provides a shared infrastructure for all Oracle
applications. It also provides services and interfaces that facilitate third-party
enterprise application development. These interfaces are useful for application
developers who need to incorporate identity management into their applications.

This chapter discusses these interfaces and recommends application development best
practices in the Oracle Identity Management environment.

There are two types of applications that can be integrated with Oracle Identity
Management:

Existing applications already used in the enterprise. The enterprise might have
already invested in such applications and would benefit from their integration
with the Oracle Identity Management infrastructure.

New applications being developed by corporate IT departments or Slavs that are
based on the Oracle technology stack

This chapter contains the following topics:

Benefits of Integrating with Oracle Identity Management

Oracle Identity Management Services Available for Application Integration
Integrating Existing Applications with Oracle Identity Management
Integrating New Applications with Oracle Identity Management
Integrating J2EE Applications with Oracle Identity Management

Directory Programming: An Overview

Benefits of Integrating with Oracle Identity Management

Enterprise applications integrating with the Oracle Identity Management
infrastructure receive the following benefits:

Integration facilitates faster application deployment with lower costs:
Enterprises (primarily Oracle customers) already using an existing Oracle Identity
Management infrastructure can deploy new applications using the self-service
console of Oracle Delegated Administration Services. Delegating application
administration to users reduces the deployment cost of the application.

Seamless integration with Oracle applications: Because all Oracle applications
rely on the Oracle Identity Management infrastructure, new enterprise
applications can use all the features Oracle Identity Management offers.

Developing Applications for Oracle Identity Management 1-1

Oracle Identity Management Services Available for Application Integration

Seamless integration with third-party identity management solutions: Because
the Oracle Identity Management infrastructure already has built-in capabilities for
integrating with third-party identity management solutions, application
developers can take advantage of the identity management features.

Oracle Identity Management Services Available for Application Integration

Custom applications can use Oracle Identity Management through a set of
documented and supported services and Opes. For example:

Oracle Internet Directory provides LDAP APIs for C, Java, and PL/SQL, and is
compatible with other LDAP SDKs.

Oracle Delegated Administration Services provides a core self-service console that
can be customized to support third-party applications. In addition, they provide a
number of services for building customized administration interfaces that
manipulate directory data.

Oracle Directory Integration Services facilitate the development and deployment
of custom solutions for synchronizing Oracle Internet Directory with third-party
directories and other user repositories.

Oracle Provisioning Integration Services provide a mechanism for provisioning
third-party applications, as well as a means of integrating the Oracle environment
with other provisioning systems.

OracleAS Single Sign-On provides APIs for developing and deploying partner
applications that share a single sign-on session with other Oracle Web
applications.

JAZN is the Oracle implementation of the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Support standard that allows
applications developed for the Web using the Oracle J2EE environment to use the
identity management infrastructure for authentication and authorization.

Integrating Existing Applications with Oracle Identity Management

An enterprise may have already deployed certain applications to perform critical
business functions. The Oracle Identity Management infrastructure provides the
following services that can be leveraged by the deployment to modify existing
applications:

Automated User Provisioning: The deployment can develop a custom
provisioning agent that automates the provisioning of users in the existing
application in response to provisioning events in the Oracle Identity Management
infrastructure. This agent must be developed using the interfaces of Oracle
Provisioning Integration Service.

See Also: Oracle Internet Directory Administrator’s Guide for more
information about developing automated user provisioning

User Authentication Services: If the user interface of the existing application is
based on HTTDP, integrating it with Oracle HTTP Server and protecting its URL
using mod_osso will authenticate all incoming user requests using the OracleAS
Single Sign-On service.

Centralized User Profile Management: If the user interface of the existing
application is based on HTTP, and it is integrated with OracleAS Single Sign-On
for authentication, the application can use the self-service console of Oracle

1-2 Oracle Identity Management Application Developer's Guide

Integrating New Applications with Oracle Identity Management

Delegated Administration Services to enable centralized user profile management.
The self-service console can be customized by the deployment to address the
specific needs of the application.

Integrating New Applications with Oracle Identity Management

Application developers can use the services provided by the Oracle Identity
Management infrastructure more extensively if they are developing a new application
or planning a new release of an existing application. Application developers should
consider the following integration points:

User Authentication Services: The application developer has the following
options:

If the application is based on J2EE, it can use the services provided by the
Oracle Application Server Java Authentication and Authorization Service
(JAAS) Support interface.

If the application relies on Oracle Application Server Containers for J2EE, it
can use the services provided by nbd_osso to authenticate users and obtain
important information about the user in the HTTP headers.

If the application is a standalone Web-based application, it can use OracleAS
Single Sign-On as a partner application using the OracleAS Single Sign-On
APIs.

If the application provides an interface that is not Web-based, it can use the
Oracle Internet Directory LDAP APIs (available in C, PL/SQL and Java) to
authenticate users.

Centralized Profile Management: The application developer has the following
options available:

The application developer can model application-specific profiles and user
preferences as attributes in Oracle Internet Directory.

If the user interface of the application is based on HTTP, and it is integrated
with OracleAS Single Sign-On for authentication, the application can leverage
the self-service console of Oracle Delegated Administration Services to enable
centralized user profile management. The self-service console can be
customized by the deployment to address the specific needs of the application.

The application can also retrieve user profiles at run time using the Oracle
Internet Directory LDAP APIs (available in C, PL/SQL and Java).

Automated User Provisioning: Application developers should consider the
following options:

If the user interface of the application is based on HTTP and it is integrated
with OracleAS Single Sign-On for authentication, then the application
developer can implement automated user provisioning the first time a user
accesses the application

The application can also be integrated with the Oracle Internet Directory
Provisioning Integration Service, which enables it to automatically provision
or de-provision user accounts in response to administrative actions, such as
adding an identity, modifying the properties of an existing identity, or deleting
an existing identity in the Oracle Identity Management infrastructure

See Also: Oracle Identity Management Integration Guide

Developing Applications for Oracle Identity Management 1-3

Integrating J2EE Applications with Oracle Identity Management

Integrating J2EE Applications with Oracle Identity Management

Oracle Application Server Containers for J2EE (OC4J) provides standards-based J2EE
security support. Furthermore, J2EE applications deployed within OC4J can be
authenticated and authorized against Oracle Identity Management.

J2EE security provides standard APIs such as get User Pri nci pal and

i sUser | nRol e that enable applications to obtain information about the authenticated
user. If an application requires additional user information (or attributes), it can use
Oracle Internet Directory LDAP APIs to retrieve this information from the directory.

To learn more about J2EE and JAAS security, see Oracle Application Server Containers for
J2EE Security Guide.

Directory Programming: An Overview

This section introduces you to the Oracle Internet Directory Software Developer’s Kit.
It provides an overview of how an application can use the kit to integrate with the
directory. You are also acquainted with the rest of the directory product suite.

The section contains these topics:

= Programming Languages Supported by the SDK

« SDK Components

= Application Development in the Directory Environment

= Other Components of Oracle Internet Directory

Programming Languages Supported by the SDK

The SDK is for application developers who use C, C++, and PL/SQL. Java developers
must use the JNDI provider from Sun Microsystems to integrate with the directory.

SDK Components

Oracle Internet Directory Software Developer’s Kit 10g Release 2 (10.1.2) consists of
the following:

= A CAPI compliant with LDAP Version 3

=« APL/SQL API contained in a PL/SQL package called DBM5_LDAP

= Sample programs

« Oracle Identity Management Application Developer’s Guide (this document)

« Command-line tools

Application Development in the Directory Environment

This section contains these topics:

= Architecture of a Directory-Enabled Application

« Directory Interactions During the Application Life Cycle

= Services and APIs for Integrating Applications with Oracle Internet Directory
= Integrating Existing Applications with Oracle Internet Directory

« Integrating New Applications with Oracle Internet Directory

1-4 Oracle Identity Management Application Developer's Guide

Directory Programming: An Overview

Architecture of a Directory-Enabled Application

Most directory-enabled applications are backend programs that simultaneously
handle multiple requests from multiple users. Figure 1-1 shows how a directory is
used by such applications.

Figure 1-1 A Directory-Enabled Application

User 1
[4
\ q‘ !
User 2
[4
B
| I Multiple
_ Connections Few
Connections
LDAP-Enabled Oracle
Application Internet
User 3 Directory
e B
i m— User, Group,
Subscriber and
—_ [] Application Data
User N

o BPB—

‘ q‘ —

This illustration shows four hypothetical users connecting to a middle tier. Each user
has a connection, for a total of four connections. The middle tier then connects to

Oracle Internet Directory by using only two connections. The directory contains data
for groups, subscribers, and applications.

S 34 3438 36 36 36 3 36 3 3 3 3 3 o o e A4 6 6K 36 36 36 3 3 3 3 3 3 o S o A A 3436 6 3 3 3 3 3 3 3 o S o o o A e 36366 3 3 3 3 3 S A A S A A K K KK KA AN NN

As Figure 1-1 shows, when a user request involves an LDAP-enabled operation, the
application processes the request using a smaller set of pre-created directory
connections.

Directory Interactions During the Application Life Cycle

Table 1-1 on page 1-6 walks you through the directory operations that an application
typically performs during its lifecycle.

Developing Applications for Oracle Identity Management 1-5

Directory Programming: An Overview

Table 1-1 Interactions During Application Lifecycle

Point in Application Lifecycle

Logic

Application Installation

Application Startup and Bootstrap

Application Runtime

Application Shutdown

Application Deinstallation

1. Create an application identity in the directory.
The application uses this identity to perform
most of its LDAP operations.

2. Give the application identity LDAP
authorizations by making it part of the correct
LDAP groups. These authorizations enable the
application to accept user credentials and
authenticate them against the directory. The
directory can also use application authorizations
to proxy for the user when LDAP operations
must be performed on the user’s behalf.

The application must retrieve credentials that enable
it to authenticate itself to the directory.

If the application stores configuration metadata in
Oracle Internet Directory, it can retrieve that
metadata and initialize other parts of the application.

The application can then establish a pool of
connections to serve user requests.

For every end-user request that needs an LDAP
operation, the application can:

= Pick a connection from the pool of LDAP
connections

= Switch the user to the end-user identity if the
LDAP operation needs to be performed with the
effective rights of the end-user

= Perform the LDAP operation by using either the
regular API or the API enhancements described
in this chapter

= Ensure that the effective user is now the
application identity once the LDAP operation is
complete

= Return the LDAP connection back to the pool of
connections

Abandon any outstanding LDAP operations and
close all LDAP connections.

Remove the application identity and the LDAP
authorizations granted to it.

Services and APIs for Integrating Applications with Oracle Internet Directory

Application developers can integrate with Oracle Internet Directory by using the
services and APIs listed and described in Table 1-2 on page 1-7.

1-6 Oracle Identity Management Application Developer's Guide

Directory Programming: An Overview

Table 1-2 Services and APIs for Integrating with Oracle Internet Directory

Service/API

Description

More Information

Standard LDAP APIs in C, PL/SQL
and Java

Oracle Extensions to Standard C,
PL/SQL and Java APIs

Oracle Delegated Administration
Services

Oracle Directory Provisioning
Integration Service

Oracle Internet Directory Plug-ins

These provide basic LDAP
operations. The standard LDAP API
used in Java is the JNDI API with the
LDAP service provider from Sun
Microsystems.

These APIs provide programmatic
interfaces that model various
concepts related to identity
management.

Oracle Delegated Administration
Services consists of a self-service
console and administrative
interfaces. You can modify the
administrative interfaces to support
third-party applications.

You can use the Oracle Provisioning
Integration System to provision
third-party applications and

integrate other provisioning systems.

You can use plug-ins to customize
directory behavior in certain
deployments.

Chapter 2, "Developing Applications
with Standard LDAP APIs"

Chapter 3, "Developing Applications
with Oracle Extensions to the
Standard APIs"

= Chapter 6, "Integrating with
Oracle Delegated
Administration Services"

= The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

= Chapter 4, "Developing
Provisioning-Integrated
Applications”

« The introductory chapter in
Oracle Identity Management
Integration Guide

= Chapter 5, "Developing
Directory Plug-ins"

« The chapter about plug-ins in
Oracle Internet Directory
Administrator’s Guide

Figure 1-2 shows an application leveraging some of the services illustrated in
Table 1-2 on page 1-7.

Figure 1-2 An Application Leveraging APIs and Services

DAS
URL
Application APls | DAS
Provisoning C, PL/SQL,
APIs Java APlIs
Directory Oracle
Integration Internet
Platform Directory

As Figure 1-2 shows, the application integrates with Oracle Internet Directory as

follows:

« Using PL/SQL, C, or Java APIs, it performs LDAP operations directly against the

directory.

Developing Applications for Oracle Identity Management

1-7

Directory Programming: An Overview

= Insome cases, it directs users to self-service features of Oracle Delegated
Administration Services.

« Itis notified of changes to entries for users or groups in Oracle Internet Directory.
The Oracle Directory Provisioning Integration Service provides this notification.

Integrating Existing Applications with Oracle Internet Directory

Your enterprise may already have deployed applications that you may have wanted to
integrate with the Oracle identity management infrastructure. You can still integrate
these applications using the services presented in Table 1-3.

Table 1-3 Services for Modifying Existing Applications

Service Description More Information

Automated User Provisioning You can develop an agent that Chapter 4, "Developing
automatically provisions users when Provisioning-Integrated
provisioning events occur in the Applications"

Oracle identity management
infrastructure. You use interfaces of
the Oracle Directory Provisioning
Integration Service to develop this
agent.

User Authentication Services If your user interface is based on Oracle Application Server Single
HTTP, you can integrate it with the Sign-On Administrator’s Guide
Oracle HTTP Server. This enables
you to use mod_osso and OracleAS
Single Sign-On to protect the

application URL.
Centralized User Profile If your user interface is based on « Chapter 6, "Integrating with
Management HTTP and is integrated with Oracle Delegated

OracleAS Single Sign-On, you can Administration Services"

use the Oracle Internet Directory
Self-Service Console to manage user
profiles centrally. You can tailor the
console to the needs of your
application.

The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

Integrating New Applications with Oracle Internet Directory

If you are developing a new application or planning a new release of an existing
application, you have many directory integration options at your disposal. Table 1-4
on page 1-9 lists and describes these.

1-8 Oracle Identity Management Application Developer's Guide

Directory Programming: An Overview

Table 1-4 Application Integration Points

Integration Point

Available Options

More Information

User Authentication Services

User Authorization Services

Centralized Profile
Management

Automated User
Provisioning

If your application is based on J2EE, it can use
the JAZN interface to authenticate users. If it
relies on OC4J, it can use mod_osso for the same
purpose. The second option enables the
application to obtain information about the user
from HTTP headers.

If your application is Web based and standalone,
it can still integrate with OracleAS Single
Sign-On, then it can still leverage Oracle
Application Server Single Sign-On by becoming a
partner application using the single sign-on APIs.

Finally, if the application provides a non-Web
user interface, it can use the Oracle Internet
Directory LDAP APIs to integrate users.

If your application is based on J2EE, it can use
the JAZN interface to implement and enforce
user authorizations for application resources. The
application can define authorizations as groups
in Oracle Internet Directory and can then check
the authorizations of a user by checking his or
her group membership. It can use the Oracle
Internet Directory LDAP APIs for this purpose.

You can define application-specific profiles and
user preferences as attributes in Oracle Internet
Directory.

If your user interface is based on HTTP and is
integrated with OracleAS Single Sign-On, you
can use the Oracle Internet Directory Self-Service
Console to manage user profiles centrally. You
can tailor the console to the needs of your
application.

Additionally, you can use the Oracle Internet
Directory LDAP APIs to retrieve user profiles at
runtime.

If your user interface is based on HTTP and it is
integrated with OracleAS Single Sign-On, you
can implement automated user provisioning the
very first time a user accesses the application.

You use the Oracle Directory Provisioning
Integration Service to integrate the application
with the Oracle identity management
infrastructure. Once integrated, the application
can provision or deprovision user accounts
automatically when an administrator adds,
modifies, or deletes an identity.

Oracle Application Server
Containers for [2EE User’s
Guide

Oracle Application Server
Single Sign-On
Administrator’s Guide

Part II, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

Oracle Application Server
Containers for J2EE User’s
Guide

Part II, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

The chapter about
deployment considerations
in Oracle Internet Directory
Administrator’s Guide

Chapter 6, "Integrating with
Oracle Delegated
Administration Services"

Oracle Identity Management
Guide to Delegated
Administration

Part II of this guide, which
is devoted to the various
LDAP APIs

Chapter 4, "Developing
Provisioning-Integrated
Applications"

Other Components of Oracle Internet Directory

The SDK is just one component in the directory suite. Here are the others:

« Oracle directory server, LDAP Version 3

« Oracle directory replication server

= Oracle Directory Manager, a Java-based graphical user interface

Developing Applications for Oracle Identity Management

1-9

Directory Programming: An Overview

= Oracle Internet Directory bulk tools

« Oracle Internet Directory Administrator’s Guide

1-10 Oracle Identity Management Application Developer's Guide

2

Developing Applications with Standard LDAP

APIs

This chapter takes a high-level look at the operations that the standard LDAP API
enables. It explains how to integrate your applications with the API. Before presenting
these topics, the chapter revisits the Lightweight Directory Access Protocol (LDAP).

This chapter contains these topics:

History of LDAP

LDAP Models

About the Standard LDAP APIs
Initializing an LDAP Session
Authenticating an LDAP Session
Searching the Directory

Terminating the Session

History of LDAP

LDAP began as a lightweight front end to the X.500 Directory Access Protocol. LDAP
simplifies the X.500 Directory Access Protocol in the following ways:

LDAP Models

It uses TCP/IP connections. These are lightweight compared to the OSI
communication stack required by X.500 implementations

It eliminates little-used and redundant features of the X.500 Directory Access
Protocol

It uses simple formats to represent data elements. These formats are easier to
process than the complicated and highly structured representations in X.500.

It uses a simplified version of the X.500 encoding rules used to transport data over
networks.

LDAP uses four basic models to define its operations:

Naming Model

Information Model

Developing Applications with Standard LDAP APIs 2-1

LDAP Models

Naming Model

« Functional Model

= Security Model

The LDAP naming model enables directory information to be referenced and
organized. Each entry in a directory is uniquely identified by a distinguished name
(DN). The DN tells you exactly where an entry resides in the directory hierarchy. A
directory information tree (DIT) is used to represent this hierarchy.

Figure 2-1 illustrates the relationship between a distinguished name and a directory
information tree.

Figure 2-1 A Directory Information Tree

ou=Sales ou=Server Development

cn=Anne Smith cn=Anne Smith

The DIT in Figure 2-1 shows entries for two employees of Acme Corporation who are
both named Anne Smith. It is structured along geographical and organizational lines.
The Anne Smith represented by the left branch works in the Sales division in the
United States. Her counterpart works in the Server Development division in the
United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne
Smith. She works in an organizational unit (ou) named Server Development, in the
country (c) of Great Britain (uk), in the organization (0) Acme. The DN for this Anne
Smith entry looks like this:

cn=Anne Smith, ou=Server Devel opnment, c=uk, o=acne

Note that the conventional format for a distinguished name places the lowest DIT
component at the left. The next highest component follows, on up to the root.

Within a distinguished name, the lowest component is called the relative
distinguished name (RDN). In the DN just presented, the RDN is cn=Anne Smi t h.
The RDN for the entry immediately above Anne Smith’s RDN is ou=Ser ver

Devel opnent . And the RDN for the entry immediately above ou=Ser ver

Devel opnent is c=uk, and so on. A DN is thus a sequence of RDNs separated by
commas.

To locate a particular entry within the overall DIT, a client uniquely identifies that
entry by using the full DN—not simply the RDN—of that entry. To avoid confusion
between the two Anne Smiths in the global organization depicted in Figure 2-1, you
use the full DN for each. If there are two employees with the same name in the same
organizational unit, you can use other mechanisms. You may, for example, use a
unique identification number to identify these employees.

2-2 Oracle Identity Management Application Developer’'s Guide

LDAP Models

Information Model

The LDAP information model determines the form and character of information in the
directory. This model uses the concept of entries as its defining characteristic. In a
directory, an entry is a collection of information about an object. A telephone directory,
for example, contains entries for people. A library card catalog contains entries for
books. An online directory may contain entries for employees, conference rooms,
e-commerce partners, or shared network resources such as printers.

In a typical telephone directory, a person entry contains an address and a phone
number. In an online directory, each of these pieces of information is called an
attribute. A typical employee entry contains attributes for a job title, an e-mail address,
and a phone number.

In Figure 2-2, the entry for Anne Smith in Great Britain (uk) has several attributes.
Each provides specific information about her. Those listed in the balloon to the right of
the tree are emai | addr s, pri nt er nane, j pegPhot o, and app pr ef er ences. Note
that the rest of the bullets in Figure 2-2 are also entries with attributes, although these
attributes are not shown.

Figure 2-2 Attributes of the Entry for Anne Smith

chn=Anne Smith

emailaddrs=
— printemame=

ipeqPhoto=
app Preferen-:ify

ou=5erver Dewvelopment

cn=Anne Smith

ch=Anne Smith

Each attribute consists of an attribute type and one or more attribute values. The
attribute type is the kind of information that the attribute contains—j obTi t | e, for
instance. The attribute value is the actual information. The value for the j obTi t | e
attribute, for example, might be manager .

Functional Model

The LDAP functional model determines what operations can be performed on
directory entries. Table 2-1 on page 2-4 lists and describes the three types of functions:

Developing Applications with Standard LDAP APIs 2-3

LDAP Models

Table 2-1 LDAP Functions

Function Description

Search and read The read operation retrieves the attributes of an entry whose

name is known. The list operation enumerates the children of a
given entry. The search operation selects entries from a defined
area of the tree based on some selection criteria known as a
search filter. For each matching entry, a requested set of
attributes (with or without values) is returned. The searched
entries can span a single entry, an entry's children, or an entire
subtree. Alias entries can be followed automatically during a
search, even if they cross server boundaries. An abandon
operation is also defined, allowing an operation in progress to
be canceled.

Modify This category defines four operations that modify the

directory:

. Modify—change existing entries. You can add and delete
values.

= Add—insert entries into the directory
« Delete—remove entries from the directory

= Modify RDN—change the name of an entry

Authenticate This category defines a bind operation. A bind enables a client

to initiate a session and prove its identity to the directory.
Oracle Internet Directory supports several authentication
methods, from simple clear-text passwords to public keys. The
unbind operation is used to terminate a directory session.

Security Model

The LDAP security model enables directory information to be secured. This model has
several parts:

Authentication
Ensuring that the identities of users, hosts, and clients are correctly validated
Access Control and Authorization

Ensuring that a user reads or updates only the information for which that user has
privileges

Data Integrity: Ensuring that data is not modified during transmission
Data Privacy

Ensuring that data is not disclosed during transmission

Password Policies

Setting rules that govern how passwords are used

Authentication

Authentication is the process by which the directory server establishes the identity of
the user connecting to the directory. Directory authentication occurs when an LDAP
bind operation establishes an LDAP session. Every session has an associated user
identity, also referred to as an authorization ID.

Oracle Internet Directory provides three authentication options: anonymous, simple,
and SSL.

2-4 Oracle Identity Management Application Developer’'s Guide

LDAP Models

Anonymous Authentication If your directory is available to everyone, users may log in
anonymously. In anonymous authentication, users leave the user name and password
fields blank when they log in. They then exercise whatever privileges are specified for
anonymous users.

Simple Authentication In simple authentication, the client uses an unencrypted DN and
password to identify itself to the server. The server verifies that the client’s DN and
password match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Socket Layer (SSL) is an industry
standard protocol for securing network connections. It uses a certificate exchange to
authenticate users. These certificates are verified by trusted certificate authorities. A
certificate ensures that an entity’s identity information is correct. An entity can be an
end user, a database, an administrator, a client, or a server. A certificate authority (CA)
is an application that creates public key certificates that are given a high level of trust
by all parties involved.

You can use SSL in one of the three authentication modes presented in Table 2-2.

Table 2-2 SSL Authentication Modes

SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption and decryption are used.

One-way authentication =~ Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and server authenticate themselves to each other,
exchanging certificates.

In an Oracle Internet Directory environment, SSL authentication between a client and
a directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on an
SSL port. The default SSL port is 636.

2. SSL performs the handshake between the client and the directory server.

3. If the handshake is successful, the directory server verifies that the user has the
appropriate authorization to access the directory.

See Also: Oracle Advanced Security Administrator’s Guide for more
information about SSL

Access Control and Authorization

The authorization process ensures that a user reads or updates only the information
for which he or she has privileges. The directory server ensures that the user—
identified by the authorization ID associated with the session—has the requisite
permissions to perform a given directory operation. Absent these permissions, the
operation is disallowed.

The mechanism that the directory server uses to ensure that the proper authorizations
are in place is called access control. And an access control information item (ACI) is
the directory metadata that captures the administrative policies relating to access
control.

Developing Applications with Standard LDAP APIs 2-5

LDAP Models

An ACl s stored in Oracle Internet Directory as user-modifiable operational attributes.
Typically a whole list of these ACI attribute values is associated with a directory
object. This list is called an access control list (ACL). The attribute values on that list
govern the access policies for the directory object.

AClIs are stored as text strings in the directory. These strings must conform to a
well-defined format. Each valid value of an ACI attribute represents a distinct access
control policy. These individual policy components are referred to as ACI Directives or
AClIs and their format is called the ACI Directive format.

Access control policies can be prescriptive: their security directives can be set to apply
downward to all entries at lower positions in the directory information tree (DIT). The
point from which an access control policy applies is called an access control policy
point (ACP).

Data Integrity

Oracle Internet Directory uses SSL to ensure that data is not modified, deleted, or
replayed during transmission. This feature uses cryptographic checksums to generate
a secure message digest. The checksums are created using either the MD5 algorithm or
the Secure Hash Algorithm (SHA). The message digest is included in each network
packet.

Data Privacy

Oracle Internet Directory uses public-key encryption over SSL to ensure that data is
not disclosed during transmission. In public-key encryption, the sender of a message
encrypts the message with the public key of the recipient. Upon delivery, the recipient
decrypts the message using his or her private key. The directory supports two levels of
encryption:

« DES40

The DES40 algorithm, available internationally, is a DES variant in which the
secret key is preprocessed to provide forty effective key bits. It is designed for use
by customers outside the USA and Canada who want to use a DES-based
encryption algorithm.

« RC4.40

Oracle is licensed to export the RC4 data encryption algorithm with a 40-bit key
size to virtually all destinations where Oracle products are available. This makes it
possible for international corporations to safeguard their entire operations with
fast cryptography.

Password Policies

A password policy is a set of rules that govern how passwords are used. When a user
attempts to bind to the directory, the directory server uses the password policy to
ensure that the password provided meets the various requirements set in that policy.

When you establish a password policy, you set the following types of rules, to mention
just a few:

« The maximum length of time a given password is valid
« The minimum number of characters a password must contain

= The ability of users to change their passwords

2-6 Oracle Identity Management Application Developer’'s Guide

About the Standard LDAP APIs

About the Standard LDAP APIs

The standard LDAP APIs enable you to perform the fundamental LDAP operations
described in "LDAP Models". These APIs are available in C, PL/SQL, and Java. The
first two are part of the directory SDK. The last is part of the JNDI package provided
by Sun Microsystems. All three use TCP/IP connections. They are based on LDAP
Version 3, and they support SSL connections to Oracle Internet Directory.

This section contains these topics:

= API Usage Model

= Getting Started with the C API

= Getting Started with the Java API

= Getting Started with the DBMS_LDAP Package

API Usage Model

Typically, an application uses the functions in the API in four steps:

1. Initialize the library and obtain an LDAP session handle.

2. Authenticate to the LDAP server if necessary.

3. Perform some LDAP operations and obtain results and errors, if any.
4. Close the session.

Figure 2-3 illustrates these steps.

Figure 2-3 Steps in Typical DBMS_LDAP Usage

Initialize Session

v

Authenticate Session

v

Perform LDAP
Operations

v

Terminate Session

Getting Started with the C API

When you build applications with the C API, you must include the header file
| dap. h, located at ORACLE_HOME/ | dap/ publ i c. In addition, you must dynamically
link to the library located at ORACLE_HOME/ | i b/ I'i bcl nt sh. so. 10. 1.

See Also: "Sample C API Usage" on page 8-41 to learn how to use
the SSL and non-SSL modes

Developing Applications with Standard LDAP APIs 2-7

Initializing an LDAP Session

Getting Started with the DBMS_LDAP Package

The DBMS_LDAP package enables PL/SQL applications to access data located in
enterprise-wide LDAP servers. The names and syntax of the function calls are similar
to those of the C APL These functions comply with current recommendations of the
Internet Engineering Task Force (IETF) for the C API. Note though that the PL/SQL
API contains only a subset of the functions available in the C API. Most notably, only
synchronous calls to the LDAP server are available in the PL/SQL APIL

To begin using the PL/SQL LDAP API, use this command sequence to load DBMS_
LDAP into the database:

1. Log in to the database, using SQL*Plus. Run the tool in the Oracle home in which
your database is present. Connect as SYSUSER.

SQL> CONNECT / AS SYSDBA

2. Load the APl into the database, using this command:
SQL> @/ rdbns/ admi n/ cat | adap. sql

Getting Started with the Java API

Java developers can use the Java Naming and Directory Interface (JNDI) from Sun
Microsystems to gain access to information in Oracle Internet Directory. The JNDI is
found at this link:

http://java. sun. conl product s/ ndi
Although no Java APIs are provided in this chapter, the section immediately

following, "Initializing the Session by Using JNDI", shows you how to use wrapper
methods for the Sun JNDI to establish a basic connection.

Initializing an LDAP Session

All LDAP operations based on the C API require clients to establish an LDAP session
with the LDAP server. For LDAP operations based on the PL/SQL AP], a database
session must first initialize and open an LDAP session. Most Java operations require a
Java Naming and Directory Interface (JNDI) connection. The
oracle.ldap.util.jndi package, provided here, simplifies the work involved in
achieving this connection.

The section contains the following topics:

= Initializing the Session by Using the C API

» Initializing the Session by Using DBMS_LDAP
» Initializing the Session by Using JNDI

Initializing the Session by Using the C API

The C function | dap_i ni t () initializes a session with an LDAP server. The server is
not actually contacted until an operation is performed that requires it, allowing
various options to be set after initialization.

2-8 Oracle Identity Management Application Developer’'s Guide

Initializing an LDAP Session

| dap_i ni t has the following syntax:

LDAP *| dap_init
(

const char *host nane,
i nt portno

)i
Table 2-3 lists and defines the function parameters.

Table 2-3 Parameters for Idap_init()

Parameter Description

host nane Contains a space-separated list of directory host names or IP addresses
represented by dotted strings. You can pair each host name with a port
number as long as you use a colon to separate the two.

The hosts are tried in the order listed until a successful connection is
made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number of the directory you would like to connect
to. The default LDAP port of 389 can be obtained by supplying the
constant LDAP_PORT. If a host includes a port number, this parameter is
ignored.

[dap_i nit() and | dap_open() both return a session handle, or pointer, to an
opaque structure that must be passed to subsequent calls to the session. These routines
return NULL if the session cannot be initialized. You can check the error reporting
mechanism for your operating system to determine why the call failed.

Initializing the Session by Using DBMS_LDAP

In the PL/SQL API, the function DBMS_LDAP. i ni t () initiates an LDAP session. This
function has the following syntax:

FUNCTION init (hostname |N VARCHAR2, portnum |N PLS_ | NTEGER)
RETURN SESSI ON,

The function i ni t requires a valid host name and port number to establish an LDAP
session. It allocates a data structure for this purpose and returns a handle of the type
DBMS_LDAP. SESSI ONto the caller. The handle returned from the call should be used
in all subsequent LDAP operations defined by DBMS_LDAP for the session. The API
uses these session handles to maintain state about open connections, outstanding
requests, and other information.

A single database session can obtain as many LDAP sessions as required, although the
number of simultaneous active connections is limited to 64. One database session
typically has multiple LDAP sessions when data must be obtained from multiple
servers simultaneously or when open sessions that use multiple LDAP identities are
required.

Note: The handles returned from calls to DBMS_LDAP. i ni t () are
dynamic constructs: They do not persist across multiple database
sessions. Attempting to store their values in a persistent form, and to
reuse stored values at a later stage, can yield unpredictable results.

Developing Applications with Standard LDAP APIs 2-9

Authenticating an LDAP Session

Initializing the Session by Using JNDI

The oracl e. | dap. util.jndi package supports basic connections by providing
wrapper methods for the JNDI implementation from Sun Microsystems. If you want to
use the JNDI to establish a connection, see the following link:

http://java. sun. conl products/j ndi

Here is an implementation of or acl e. | dap. uti | . j ndi that establishes a non-SSL
connection:

inport oracle.ldap.util.jndi

i nport javax.nam ng.*;

public static void main(String args[])

{
try{

Initial DirContext ctx = ConnectionUtil.getDefaultDirCtx(args[0], // host
args[1], [/ port
args[2], // DN
args[3]; // password)

/1 Do work

}
cat ch(Nani ngException ne)
{
/'l javax.nam ng. Nam ngException is thrown when an error occurs
}
}
Note:

= DNand passwor d represent the bind DN and password. For

anonymous binds, set these to " " .

« Youcanuse ConnectionUtil.getSSLD rCtx() toestablish a
no-authentication SSL connection.

Authenticating an LDAP Session

Individuals or applications seeking to perform operations against an LDAP server
must first be authenticated. If the dn and passwd parameters of these entities are null,
the LDAP server assigns a special identity, called anonymous, to these users. Typically,
the anonymous user is the least privileged user of the directory.

Once a bind operation is complete, the directory server remembers the new identity
until another bind occurs or the LDAP session terminates (unbi nd_s). The LDAP
server uses the identity to enforce the security model specified by the enterprise in
which it is deployed. The identity helps the LDAP server determine whether the user
or application identified has sufficient privileges to perform search, update, or
compare operations in the directory.

Note that the password for the bind operation is sent over the network in clear text. If
your network is not secure, consider using SSL for authentication and other LDAP
operations that involve data transfer.

This section contains these topics:
= Authenticating an LDAP Session by Using the C API
= Authenticating an LDAP Session by Using DBMS_LDAP

2-10 Oracle Identity Management Application Developer’'s Guide

Authenticating an LDAP Session

Authenticating an LDAP Session by Using the C API

The C function | dap_si npl e_bi nd_s() enables users and applications to
authenticate to the directory server using a DN and password.

The function | dap_si npl e_bi nd_s() has this syntax:

int |dap_sinple_bind_s

(
LDAP* | d,

char*dn,
char * passwd,

)i

Table 2—4 lists and describes the parameters for this function.

Table 2-4 Arguments for Idap_simple_bind_s()

Argument Description

Id A valid LDAP session handle.

dn The identity that the application uses for authentication.
passwd The password for the authentication identity.

If the dn and passwd parameters for are NULL, the LDAP server assigns a special
identity, called anonymous, to the user or application.

Authenticating an LDAP Session by Using DBMS_LDAP

The PL/SQL function si npl e_bi nd_s enables users and applications to use a DN
and password to authenticate to the directory. si npl e_bi nd_s has this syntax:

FUNCTI ON sinple_bind_s (Id IN SESSION, dn IN VARCHAR2, passwd | N VARCHAR2)
RETURN PLS_| NTEGER;

Note that this function requires as its first parameter the LDAP session handle
obtained fromi ni t.

The following PL/SQL code snippet shows how the PL/SQL initialization and
authentication functions just described might be implemented.

DECLARE
retval PLS_| NTEGER;
my_sessi onDBVS_LDAP. sessi on;

BEG N
retval ;= -1;

- Initialize the LDAP session
my_session: = DBVS_LDAP. i nit(’' yow. acre. coni, 389);
--Authenticate to the directory
retval : =DBVS_LDAP. si npl e_bi nd_s(my_session, 'cn=orcladnin’,
"wel cone’);

In the previous example, an LDAP session is initialized on the LDAP server

yow. acrre. com This server listens for requests at TCP/IP port number 389. The
identity cn=or cl admi n, whose password is wel coneg, is then authenticated. Once
authentication is complete, regular LDAP operations can begin.

Developing Applications with Standard LDAP APIs 2-11

Searching the Directory

Searching the Directory

Searches are the most common LDAP operations. Applications can use complex search
criteria to select and retrieve entries from the directory.

This section contains these topics:

= Program Flow for Search Operations

= Search Scope

= Filters

= Searching the Directory by Using the C API

= Searching the Directory by Using DBMS_LDAP

Note: This release of the DBMS_LDAP API provides only
synchronous search capability. This means that the caller of the search
functions is blocked until the LDAP server returns the entire result set.

Program Flow for Search Operations

The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

1. Decide what attributes must be returned; then place them into an array.
2. Initiate the search, using the scope options and filters of your choice.

3. Obtain an entry from result set.

4. Obtain an attribute from the entry obtained in step 3.

5

Obtain the values of the attributes obtained in step 4; then copy these values into
local variables.

6. Repeat step 4 until all attributes of the entry are examined.
7. Repeat Step 3 until there are no more entries

Figure 2—4 on page 2-13 uses a flow chart to represent these steps.

2-12 Oracle Identity Management Application Developer’'s Guide

Searching the Directory

Figure 2-4 Flow of Search-Related Operations

Collect Required Attributes

6 v

Issue Search

4

No

Entry Count > 0

—}T Get First / Next Entry

v

Entry Valid

No

T Get First / Next Attribute <=

Attribute Valid

vy

T Get Attribute Values Ho End of Search

Search Scope

The scope of a search determines how many entries the directory server examines
relative to the search base. You can choose one of the three options described in
Table 2-5 and illustrated in Figure 2-5 on page 2-14.

Table 2-5 Options for search_s() or search_st() Functions

Option Description

SCOPE_BASE The directory server looks only for the entry corresponding to
the search base.

The directory server confines its search to the entries that are

SCOPE_ ONELEVEL the immediate children of the search base entry.

The directory server looks at the search base entry and the

SOOPE SUBTREE entire subtree beneath it.

Developing Applications with Standard LDAP APIs 2-13

Searching the Directory

Filters

Figure 2-5 The Three Scope Options

SCOPE_BASE

o @?\O U/E;D%

SCOPE_ONELEVEL SCOPE_SUBTREE

Base of
Search

In Figure 2-5, the search base is the shaded circle. The shaded rectangle identifies the
entries that are searched.

A search filter is an expression that enables you to confine your search to certain types
of entries. The search filter required by the sear ch_s() and sear ch_st () functions
follows the string format defined in RFC 1960 of the Internet Engineering Task Force
(IETF). As Table 2—6 shows, there are six kinds of search filters. These are entered in
the formatattri but e operator val ue.

Table 2-6 Search Filters

Filter Type Format Example Matches

Equality (att=val ue) (sn=Keat on) Surnames exactly equal
to Keat on.

Approximate (att~=val ue) (sn~=Ket an) Surnames
approximately equal to
Ket an.

Substring (attr=[leading]*[any]*[tr (sn=*keaton*) Surnames containing

Greater than or
equal

Less than or
equal

Presence

ai ling]

attr>=val ue

(attr<=val ue)

(attr=*)

(sn=keat on*)

(sn=*keat on)

(sn=ke*at *on)

(sn>=Keat on)

(sn<=Keat on)

(sn=*)

the string keat on.

Surnames starting with
keat on.

Surnames ending with
keat on.

Surnames starting with
ke, containing at and
ending with on.

Surnames
lexicographically
greater than or equal to
Keat on.

Surnames
lexicographically less
than or equal to

Keat on.

All entries having the
sn attribute.

You can use boolean operators and prefix notation to combine these filters to form
more complex filters. Table 2-7 on page 2-15 provides examples. In these examples, the

2-14 Oracle Identity Management Application Developer’'s Guide

Searching the Directory

& character represents AND, the | character represents OR, and the ! character
represents NOT.

Table 2-7 Boolean Operators

Filter Type Format Example Matches
AND (&filterl)(filter2 (& sn=keaton)(objec Entries with surname
).) tcl ass=i net OrgPerso of Keat on and object
n)) class of

I net Or gPer son.

OR (J(filterl)(filter2 (]| (sn~=ketan)(cn=*k Entries with surname

).) eaton)) approximately equal
to ket an or common
name ending in

keat on.

NOT ('(filter)) ('(mail=*)) Entries without a mail
attribute.

The complex filters in Table 2-7 can themselves be combined to create even more
complex, nested filters.

Searching the Directory by Using the C API

The C function | dap_sear ch_s() performs a synchronous search of the directory.
The syntax for | dap_sear ch_s() looks like this:

int |dap_search_s

(
LDAP*1 d,

char *base,

i nt scope,
char*filter,
intattrsonly,
LDAPMessage* *res,

)i

| dap_sear ch_s works with several supporting functions to refine the search. The
steps that follow show how all of these C functions fit into the program flow of a
search operation. Chapter 8, "C API Reference", examines all of these functions in
depth.

1. Decide what attributes must be returned; then place them into an array of strings.
The array must be null terminated.

2. Initiate the search, using | dap_sear ch_s() . Refine your search with scope
options and filters.

3. Obtain an entry from the result set, using either the | dap_first_entry()
function or the | dap_next _entry() function.

4. Obtain an attribute from the entry obtained in step 3. Use either the | dap_fi rst _
attribute() function or thel dap_next _attri bute() function for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use the | dap_get _val ues() function or the | dap_get _
val ues_| en() function for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

Developing Applications with Standard LDAP APIs 2-15

Searching the Directory

7. Repeat step 3 until there are no more entries.

Table 2-8 Arguments for Idap_search_s()

Argument Description

Id A valid LDAP session handle

base The DN of the search base.

scope The breadth and depth of the DIT to be searched.
filter The filter used to select entries of interest.

attrs The attributes of interest in the entries returned.
attrso If set to 1, only returns attributes.

res This argument returns the search results.

Searching the Directory by Using DBMS_LDAP

You use the function DBMS_LDAP. sear ch_s() to performs directory searches if you
use the PL/SQL APIL

Here is the syntax for DBM5_LDAP. sear ch_s():

FUNCTI ON search_s

(

Id IN SESSION,

base IN VARCHAR2,

scope IN PLS_I NTEGER,
filter IN VARCHAR?,

attrs IN STRI NG COLLECTI QN,
attronly IN PLS_ I NTEGER

res QUT MESSAGE

)
RETURN PLS | NTEGER,

The function takes the arguments listed and described in Table 2-9 on page 2-16.

Table 2-9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()

Argument Description

Id A valid session handle

The DN of the base entry in the LDAP server where search should start

base

scope The breadth and depth of the DIT that needs to be searched
filter The filter used to select entries of interest

attrs The attributes of interest in the entries returned

attronly If set to 1, only returns the attributes

res An QUT parameter that returns the result set for further processing

sear ch_s works with several supporting functions to refine the search. The steps that
follow show how all of these PL/SQL functions fit into the program flow of a search
operation.

1. Decide what attributes need to be returned; then place them into the DBV5_
LDAP. STRI NG_COLLECTI ON data-type.

2-16 Oracle Identity Management Application Developer’'s Guide

Terminating the Session

2. Perform the search, using either DBMS_LDAP. sear ch_s() or DBM5_
LDAP. sear ch_st () . Refine your search with scope options and filters.

3. Obtain an entry from the result set, using eitherDBMS_LDAP. first _entry() or
DBMS_LDAP. next _entry().

4. Obtain an attribute from the entry obtained in step 3. Use either DBM5_
LDAP.first_attribute() or DBMS_LDAP. next _attri bute() for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use either DBMS_LDAP. get _val ues() or DBMS_LDAP. get _
val ues_| en() for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat step 3 until there are no more entries.

Terminating the Session
This section contains these topics:
= Terminating the Session by Using the C API
= Terminating the Session by Using DBMS_LDAP

Terminating the Session by Using the C API

Once an LDAP session handle is obtained and all directory-related work is complete,
the LDAP session must be destroyed. In the C API, the | dap_unbi nd_s() function is
used for this purpose.

| dap_unbi nd_s() has this syntax:

int |dap_unbind_s

(
LDAP* | d

)i

A successful call to | dap_unbi nd_s() closes the TCP/IP connection to the directory.
It de-allocates system resources consumed by the LDAP session. Finally it returns the
integer LDAP_SUCCESS to its callers. Once | dap_unbi nd_s() is invoked, no other
LDAP operations are possible. A new session must be started with | dap_i ni t ().

Terminating the Session by Using DBMS_LDAP

The DBMS_LDAP. unbi nd_s() function destroys an LDAP session if the PL/SQL API
is used. unbi nd_s has the following syntax:

FUNCTI ON unbind_s (Id IN SESSION) RETURN PLS_ | NTEGER;

unbi nd_s closes the TCP/IP connection to the directory. It de-allocates system
resources consumed by the LDAP session. Finally it returns the integer DBMS_
LDAP. SUCCESS to its callers. Once the unbi nd_s is invoked, no other LDAP
operations are possible. A new session must be initiated with the i ni t function.

Developing Applications with Standard LDAP APIs 2-17

Terminating the Session

2-18 Oracle Identity Management Application Developer’'s Guide

3

Developing Applications with Oracle
Extensions to the Standard APIs

This chapter presents the Oracle extensions to the LDAP APIs. It includes sample use
cases.

This chapter contains these topics:

= Using Oracle Extensions to the Standard APIs

= Creating an Application Identity in the Directory
= User Management Functionality

= Group Management Functionality

= Identity Management Realm Functionality

= Server Discovery Functionality

= SASL Authentication Functionality

= Proxying on Behalf of End Users

= Creating Dynamic Password Verifiers

= Dependencies and Limitations for the PL/SQ LDAP API

Using Oracle Extensions to the Standard APIs
The APIs that Oracle has added to the existing APIs fulfill these functions:
= User management
Applications can set or retrieve various user properties
« Group management
Applications can query group properties
= Realm management
Applications can set or retrieve properties about identity management realms
= Server discovery management
Applications can locate a directory server in the Domain Name System (DNS)
= SASL management
Applications can authenticate to the directory using SASL Digest-MD5

Developing Applications with Oracle Extensions to the Standard APIs 3-1

Using Oracle Extensions to the Standard APIs

The primary users of the Oracle extensions are backend applications that must
perform LDAP lookups for users, groups, applications, or hosted companies. This
section explains how these applications integrate these API extensions into their
program logic. The section contains these topics:

« Using the API Extensions in PL/SQL

= Using the API Extensions in Java

« How the Standard APIs and The Oracle Extensions Are Installed

Figure 3-1 shows the placement of the API extensions in relation to existing APIs:

Figure 3-1 Oracle API Extensions

Oracle Application Server Oracle Application Server Oracle Application Server
C Program Java Program PL/SQL Program
C API Java PL/SQL
Extensions Extensions Extensions
(ora_ldap) (oracle.ldap.util) (DBMS_LDAP_UTL)
Oracle LDAP SUN JNDI Oracle DBMS_LDAP
C-API Interface pkg.

As Figure 3-1 shows, in the C, PL/SQL, and Java languages, the API extensions are
layers that sit on top of existing APISs:

Applications must use the underlying APIs for such common tasks as establishing and
closing connections and looking up directory entries not searchable with the API
extensions.

Figure 3-2 shows what program flow looks like when the API extensions are used.

Figure 3-2 Programmatic Flow for API Extensions

Established Connection
to OID

v

Use Regular =——pp| Use Oracle
API FUNCHONS | g EXteNsion API

v

Close OID Connection

Connected State

As Figure 3-2 shows, an application first establishes a connection to Oracle Internet
Directory. It can then use the standard API functions and the API extensions
interchangeably.

3-2 Oracle Identity Management Application Developer’'s Guide

Using Oracle Extensions to the Standard APIs

Using the API Extensions in PL/SQL

Most of the extensions described in this chapter are helper functions. They access data
about specific LDAP entities such as users, groups, realms, and applications. In many
cases, these functions must pass a reference to one of these entities to the standard API
functions. To do this, the API extensions use opaque data structures called handles.
The steps that follow show an extension creating a user handle:

1. Establish an LDAP connection or get one from a pool of connections.

2. Create a user handle from user input. This could be a DN, a GUID, or a single
sign-on user ID.

3. Authenticate the user with the LDAP connection handle, user handle, or
credentials.

4. Free the user handle.

5. Close the LDAP connection, or return the connection back to the connection pool.

Using the API Extensions in Java

This section describes:
« Theoracle.java.util package

« ThePropertySetCol | ection,PropertySet,and Property classes

The oracle.java.util Package

In Java, LDAP entities—users, groups, realms, and applications—are modeled as Java
objects instead of as handles. This modeling is done in the or acl e. j ava. uti |
package. All other utility functionality is modeled either as individual objects—as, for
example, GUJI D—or as static member functions of a utility class.

For example, to authenticate a user, an application must follow these steps:
1. Createoracl e. |l dap. util.user object, given the user DN.

2. Create a Di r Cont ext JNDI object with all of the required properties, or get one
from a pool of Di r Cont ext objects.

3. Invoke the User.authenticate function, passing in a reference to the Di r Cont ext
object and the user credentials.

4. If the Di r Cont ext object was retrieved from a pool of existing Di r Cont ext
objects, return it to that pool.

Unlike their C and PL/SQL counterparts, Java programmers do not have to explicitly
free objects. The Java garbage collection mechanism performs this task.

PropertySetCollection, PropertySet, and Property Classes

Many of the methods in the user, subscriber, and group classes return a
PropertySet Col | ecti on object. The object represents a collection of one or more
LDAP entries. Each of these entries is represented by a Pr oper t ySet object,
identified by a DN. A property set can contain attributes, each represented as a
property. A property is a collection of one or more values for the particular attribute it
represents. An example of the use of these classes follows:

PropertySet Col | ection psc = Uil.getG oupMenbership(ctx,
myuser,
nul I,
true);

Developing Applications with Oracle Extensions to the Standard APIs 3-3

Creating an Application Identity in the Directory

Il for loop to go through each PropertySet
for (int i =0; i <psc.size(); i++) {

PropertySet ps = psc.getPropertySet(i);

[l Print the DN of each PropertySet
Systemout.printin("dn: " + ps .getDN());

/1 Get the values for the "objectclass" Property
Property objectclass = ps.getProperty("objectclass");

[l for loop to go through each value of Property "objectclass"
for (int j =0; j< objectclass.size(); j++) {

Il Print each "objectclass" value
System out. println("objectclass:

+ obj ectcl ass. get Val ue(j));

}

The entity myuser is a user object. The psc object contains all the nested groups that
myuser belongs to. The code loops through the resulting entries and prints out all the
object class values of each entry.

See Also: "Java Sample Code" on page B-23 for more sample uses of

the PropertySet Col | ecti on, PropertySet,and Property
classes

How the Standard APIs and The Oracle Extensions Are Installed

Table 3-1 explains how the APIs and their extensions are installed.

Table 3-1 How the APIs are Installed

Language Installation Method
Java API Installed as part of the LDAP client installation. The file,
| dapj cl nt 10. j ar, is found at ORACLE_HOVE/ j | i b.
PL/SQL API Installed as part of the Oracle database server. Load it by using a

script called cat | dap. sql , located at ORACLE_
HOVE/ r dbrs/ admi n.

C API To build applications with the C API, include the header file
located at ORACLE_HOME/ | dap/ publ i ¢/ | dap. h; then link
dynamically to the library located at ORACLE_

HOVE/ |'i b/ 1'i bcl ntsh. so. 10. 1.

Creating an Application Identity in the Directory

Before an application can use the LDAP APIs and their extensions, it must establish an
LDAP connection. Once it establishes a connection, it must have permission to
perform operations. But neither task can be completed if the application lacks an
identity in the directory.

Creating an Application Identity

Creating an application identity in the directory is relatively simple. Such an entry
requires only two object classes: or cl Appl i cati onEntity andt op. You can use

3-4 Oracle Identity Management Application Developer’'s Guide

User Management Functionality

either Oracle Directory Manager or an LDIF file to create the entry. In LDIF notation,
the entry looks like this:

dn: orclapplicationcomonname=appl i cation_name
changetype: add

obj ectcl ass: top

obj ectclass: orcl ApplicationEntity

user password: password

The value provided for user passwor d is the value that the application uses to bind
to the directory.

Assigning Privileges to an Application Identity

To learn about the privileges available to an application, see the chapter about
delegating privileges for an Oracle technology deployment in Oracle Internet Directory
Administrator’s Guide. After identifying the right set of privileges, add the application
entity DN to the appropriate directory groups. The link just provided explains how to
perform this task using either Oracle Directory Manager or the | dapnodi fy
command.

User Management Functionality

This section explains how the Java, PL/SQL, and C LDAP APIs are used to manage
end users. It contains these topics:

= User Operations Performed by Directory-Enabled Applications
= User Management APIs

= User Authentication

= User Creation

= User Object Retrieval

User Operations Performed by Directory-Enabled Applications

Directory-enabled applications need to perform the following operations:
= Retrieve properties of user entries

These properties are stored as attributes of the user entry itself—in the same way,
for example, that a surname or a home address is stored.

= Retrieve extended user preferences

These preferences apply to a user but are stored in a DIT different from the DIT
containing user entries. Extended user preferences are either user properties
common to all applications or user properties specific to an application. Those of
the first type are stored in a common location in the Oracle Context. Those of the
second type are stored in the application-specific DIT.

= Query the group membership of a user
= Authenticate a user given a simple name and credential

Typically an application uses a fully qualified DN, GUID, or simple user name to
identify a user. In a hosted environment, the application may use both a user name
and a realm name for identification.

Developing Applications with Oracle Extensions to the Standard APIs 3-5

User Management Functionality

User Management APIs

This section looks at the user management features of the APIs.

Java API for User Management

As stated earlier, all user-related functionality is abstracted in a Java class called
oracl e. | dap. util. User. The process works like this:

1.

Constructa or acl e. | dap. uti | . User object based on a DN, GUID, or simple
name.

Invoke User . aut henti cat e(Di r Context, Credenti al s) to authenticate
the user if necessary.

Invoke User . get Properti es(Di r Cont ext) to get the attributes of the user
entry.

Invoke User . get Ext endedPr operti es(Di r Cont ext, PropCategory,
PropType) to get the extended properties of the user. Pr opCat egor y is either
shared or application-specific. Pr opType is the object that represents the type of
property desired. If Pr opType is null, all properties in a given category are
retrieved.

Invoke PropertyType. get Defi ni ti on(Di r Cont ext) to get the metadata
required to parse the properties returned in step 4.

Parse the extended properties and continue with application-specific logic. This
parsing is also performed by application-specific logic.

C API for User Management
Oracle Internet Directory does not support the C API for user management.

PL/SQL API for User Management

The steps that follow show how the DBMS_LDAP_UTL package is used to create and
use a handle that retrieves user properties from the directory.

1.

Invoke DBMS_LDAP_UTL. creat e_user _handl e(user _hd, user_type,
user _i d) to create a user handle from user input. The input can be a DN, a
GUID, or a single sign-on user ID.

Invoke DBMS_LDAP_UTL. set _user _handl e_properties(user_hd,
property type, property) toassociate a realm with the user handle.

Invoke DBMS_LDAP_UTL. get _user _properties(ld, user_handl e,
attrs, ptype, ret_pset_coll) to place the attributes of a user entry into a
result handle.

Invoke DBMS_LDAP_UTL. get _property_names(pset, property_nanes)
and DBMS_LDAP_UTL. get _property_val ues(pset, property_nane,
property_val ues) to extract user attributes from the result handle that you
obtained in step 3.

User Authentication

This section looks at the user authentication features of the APIs.

3-6 Oracle Identity Management Application Developer’'s Guide

User Management Functionality

User Creation

Java API for User Authentication

User authentication is a common LDAP operation that compares the credentials that a
user provides at login with the user’s credentials in the directory. Oracle Internet
Directory supports the following;:

= Arbitrary attributes can be used during authentication

= Appropriate password policy exceptions are returned by the authentication
method. Note, however, that the password policy applies only to the
user passwor d attribute.

The following is a piece code that shows how the APl is used to authenticate a user:
Il User userl - is a valid User Object
try

{
userl. authenti cat eUser(ctx,
User . CREDTYPE_PASSWD, "wel cone");

Il or
/'l userl.authenticateUser(ctx, <any
attribute> <attribute value>);

}
catch (Uil Exception ue)
{
/] Handl e the password policy error
accordingly
if (ue instanceof PasswordExpiredException)
/'l do somnet hing
el se if (ue instanceof G acelogi nException)
/1 do sonet hing
}

PL/SQL API for User Authentication

Use DBM5S_LDAP_UTL. aut henti cat e_user (session, user_handl e, auth_
type, cred, binary_cred) toauthenticate a user to the directory. This function
compares the password provided by the user with the password attribute in the user’s
directory entry.

C API for User Authentication

Oracle Internet Directory does not support the C API for user authentication.

This section looks at the user creation features of the APIs.

Java API for User Creation

The subscriber class uses the cr eat eUser () method to programmatically create
users. The object classes required by a user entry are configurable through Oracle
Delegated Administration Services. The cr eat eUser () method assumes that the
client understands the requirement and supplies the values for the mandatory
attributes during user creation. If the programmer does not supply the required
information the server will return an error.

The following snippet of sample code demonstrates the usage.

/1 Subscriber sub is a valid Subscriber object
/I DirContext ctx is a valid DirContext

Developing Applications with Oracle Extensions to the Standard APIs 3-7

User Management Functionality

/] Create MbdPropertySet object to define all the attributes and their val ues.
MbdPropertySet nps = new MbdPropertySet();

nps. addPr opert y(LDl F. ATTRI BUTE_CHANGE_TYPE_ADD, "cn", "Anika");

mps. addPr operty(LDI F. ATTRI BUTE_CHANGE_TYPE_ADD, "sn", "Anika");

mps. addPr operty(LDI F. ATTRI BUTE_CHANGE_TYPE_ADD, "mai | ",

" Ani ka@r acl e. cont') ;

/1 Create user by specifying the nicknane and the MbdPropertySet just defined
User newUser = sub.createUser(ctx, nps);

Il Print the newy created user DN
Systemout. println(newdser.getDN(ctx));

/1 Performother operations with this new user

PL/SQL API for User Creation
Oracle Internet Directory does not support the PL/SQL API for user creation.

C API for User Creation
Oracle Internet Directory does not support the PL/SQL API for user creation.

User Object Retrieval

This section describes user object retrieval features of the Java, PL/SQL, and C LDAP
APIs.

Java API for User Object Retrieval

The subscriber class offers the get User () method to replace the public constructors
of the User class. A user object is returned based on the specified information.

The following is a piece of sample code demonstrating the usage:

Il DirContext ctx is contains a valid directory connection with
sufficient privilege to performthe operations

/1 Creating Root Oracl eContext object
Root Or acl eCont ext roc = new Root Oracl eCont ext (ctx);

/] Obtain a Subscriber object representing the default
subscri ber

Subscri ber sub = roc. get Subscri ber(ctx,
Wil.lDTYPE_DEFAULT, null, null);

/] Obtain a User object representing the user whose

ni cknane is "Ani ka"

User userl = sub.getUser(ctx, Uil.IDTYPE_SIMLE, "Anika",
null);

/1 Do work with this user

The getUser() method can retrieve users based on DN, GUD
and sinple nanme. A getUsers() nethod is also available to
performa filtered search to return nore than one user at a
tinme. The returned object is an array of User objects.

For exanpl e,

/] Obtain an array of User object where the user’s nicknane
starts with "Ani"

3-8 Oracle Identity Management Application Developer’'s Guide

Identity Management Realm Functionality

User[] userArr = sub.getUsers(ctx, Uil.IDTYPE_SIMPLE,
“Ani", null);
/1 Do work with the User array

PL/SQL API for User Object Retrieval
Oracle Internet Directory does not support the PL/SQL API for user object retrieval.

C API for User Object Retrieval

Oracle Internet Directory does not support the C API for user object retrieval.

Group Management Functionality

This section describes the group management features of the Java, PL/SQL, and C
LDAP APIs.

Groups are modeled in Oracle Internet Directory as a collection of distinguished
names. Directory-enabled applications must access Oracle Internet Directory to obtain
the properties of a group and to verify that a given user is a member of that group.

A group is typically identified by one of the following:
= A fully qualified LDAP distinguished name
= A global unique identifier

= A simple group name along with a subscriber name

Identity Management Realm Functionality

This section describes the identity management realm features of the Java, PL/SQL,
and C LDAP APIs.

An identity management realm is an entity or organization that subscribes to the
services offered in the Oracle product stack. Directory-enabled applications must
access Oracle Internet Directory to obtain realm properties such as user search base or
password policy.

A realm is typically identified by one of the following:
= A fully qualified LDAP distinguished name
= A global unique identifier

= A simple enterprise name

Realm Object Retrieval for the Java API

This section describes how the Java API can be used to retrieve objects in identity
management realms.

The Root Or acl eCont ext class represents the root Oracle Context. Much of the
information needed for identity management realm creation is stored within the root
Oracle Context. The Root Or acl eCont ext class offers the get Subscri ber ()
method. It replaces the public constructors of the subscriber class and returns an
identity management realm object based on the specified information.

The following is a piece of sample code demonstrating the usage:

/1 DirContext ctx contains a valid directory
/] connection with sufficient privilege to performthe

Developing Applications with Oracle Extensions to the Standard APIs 3-9

Server Discovery Functionality

/'l operations

/1 Creating RootOracl eContext object
Root Oracl eCont ext roc = new Root Oracl eCont ext (ctx);

/1 Obtain a Subscriber object representing the
/1 Subscriber with sinple name "Oracle"
Subscriber sub = roc. get Subscri ber(ctx,
Util.IDTYPE_SIMPLE, "Oracle", null);

/1 Do work with the Subscriber object

Server Discovery Functionality

Directory server discovery (DSD) enables automatic discovery of the Oracle directory
server by directory clients. It enables deployments to manage the directory host name
and port number information in the central DNS server. All directory clients perform a
DNS query at runtime and connect to the directory server. Directory server location
information is stored in a DNS service location record (SRV).

An SRV contains:
« The DNS name of the server providing LDAP service
= The port number of the corresponding port

= Any parameters that enable the client to choose an appropriate server from
multiple servers

DSD also allows clients to discover the directory host name information from the
| dap. or a file itself.

This section contains these topics:

= Benefits of Oracle Internet Directory Discovery Interfaces
= Usage Model for Discovery Interfaces

= Determining Server Name and Port Number From DNS
= Environment Variables for DNS Server Discovery

= Programming Interfaces for DNS Server Discovery

= Java APIs for Server Discovery

= Examples: Java API for Directory Server Discovery

See Also:
= "Discovering LDAP Services with DNS" by Michael P. Armijo at
this URL:

http://ww.ietf.org/

= "A DNSRR for specifying the location of services (DNS SRV)",
Internet RFC 2782 at the same URL.

Benefits of Oracle Internet Directory Discovery Interfaces

Typically, the LDAP host name and port information is provided statically in a file
called | dap. or a which is located on the client in ORACLE_HOVE/ net wor k/ adni n.
For large deployments with many clients, this information becomes very cumbersome

3-10 Oracle Identity Management Application Developer’'s Guide

Server Discovery Functionality

to manage. For example, each time the host name or port number of a directory server
is changed, the | dap. or a file on each client must be modified.

Directory server discovery eliminates the need to manage the host name and port
number in the | dap. or a file. Because the host name information resides on one
central DNS server, the information must be updated only once. All clients can then
discover the new host name information dynamically from the DNS when they
connect to it.

DSD provides a single interface to obtain directory server information without regard
to the mechanism or standard used to obtain it. Currently, Oracle directory server
information can be obtained either from DNS or from | dap. or a using a single
interface.

Usage Model for Discovery Interfaces

The first step in discovering host name information is to create a discovery handle. A
discovery handle specifies the source from which host name information will be
discovered. In case of the Java AP the discovery handle is created by creating an
instance of the or acl e. | dap. uti | . di scovery. Di scover yHel per class.

Di scover yHel per disco = new Di scoveryHel per (Di scoveryHel per. DNS_DI SCOVER) ;

The argument Di scover yHel per. DNS_DI SCOVER specifies the source. In this case
the source is DNS.

Each source may require some inputs to be specified for discovery of host name
information. In the case of DNS these inputs are:

« domain name
« discover method
« SSL mode

Detailed explanation of these options is given in Determining Server Name and Port
Number From DNS.

/] Set the property for the DNS_DN
di sco. set Property(Di scoveryHel per.DNS DN, "dc=us, dc=fi ction, dc=con');
/1 Set the property for the DNS_DI SCOVER_METHOD
di sco. set Property(Di scoveryHel per. DNS_DI SCOVER_METHOD
, Di scoveryHel per. USE_I NPUT_DN_METHOD) ;
/] Set the property for the SSLMODE
di sco. set Property(Di scoveryHel per. SSLMXDE, "0");

Now the information can be discovered.

/1 Call the discover method

di sco. di scover (reshdl);

The discovered information is returned in a result handle (r eshdl). Now the results

can be extracted from the result handle.

ArraylList result =
(ArrayList)reshdl . get (Di scoveryHel per. DI R_SERVERS) ;

if (result !'= null)
{
if (result.size() == 0) return;
Systemout. println("The hostnanes are :-");
for (int i =0; i<result.size();i++)
{

String host = (String)result.get(i);

Developing Applications with Oracle Extensions to the Standard APIs 3-11

Server Discovery Functionality

Systemout. println((i+1)+".
""+host+"'");

}
}

Determining Server Name and Port Number From DNS

Determining a host name and port number from a DNS lookup involves obtaining a
domain and then searching for SRV resource records based on that domain. If there is
more than one SRV resource record, they are sorted by weight and priority. The SRV
resource records contain host names and port numbers required for connection. This
information is retrieved from the resourcerecords and returned to the user.

There are three approaches for determining the domain name required for lookup:
= Mapping the distinguished name (DN) of the naming context
« Using the domain component of local machine

= Looking up the default SRV record in the DNS

Mapping the DN of the Naming Context

The first approach is to map the distinguished name (DN) of naming context into
domain name using the algorithm given here.

The output domain name is initially empty. The DN is processed sequentially from
right to left. An RDN is able to be converted if it meets the following conditions:

« It consists of a single attribute type and value
= The attribute type is dc
= The attribute value is non-null

If the RDN can be converted, then the attribute value is used as a domain name
component (label).

The first such value becomes the rightmost, and the most significant, domain name
component. Successive converted RDN values extend to the left. If an RDN cannot be
converted, then processing stops. If the output domain name is empty when
processing stops, then the DN cannot be converted into a domain name.

For the DN cn=John Doe, ou=accounti ng, dc=exanpl e, dc=net, the client
converts the dc components into the DNS name exanpl e. net .

Search by Domain Component of Local Machine

Sometimes a DN cannot be mapped to a domain name. For example, the DN

0=0r acl e | DC, Bangal or e cannot be mapped to a domain name. In this case, the
second approach uses the domain component of the local machine on which the client
is running. For example, if the client machine domain name is nc1. acre. com the
domain name for the lookup is acnme. com

Search by Default SRV Record in DNS

The third approach looks for a default SRV record in the DNS. This record points to the
default server in the deployment. The domain component for this default record is _
defaul t.

Once the domain name has been determined, it is used to send a query to DNS. The
DNS is queried for SRV records specified in Oracle Internet Directory-specific format.
For example, if the domain name obtained is exanpl e. net , the query for non-SSL

3-12 Oracle Identity Management Application Developer’'s Guide

Server Discovery Functionality

LDAP servers is for SRV resource records having the owner name _| dap. _tcp. _
oi d. exanpl e. net.

It is possible that no SRV resource records are returned from the DNS. In such a case
the DNS lookup is performed for the SRV resource records specified in standard
format. For example, the owner name would be _| dap. _t cp. exanpl e. net .

See Also: The chapter about directory administration in Oracle
Internet Directory Administrator’s Guide

The result of the query is a set of SRV records. These records are then sorted and the
host information is extracted from them. This information is then returned to the user.

Note: The approaches mentioned here can also be tried in
succession, stopping when the query lookup of DNS is successful. Try
the approaches in the order as described in this section. DNS is
queried only for SRV records in Oracle Internet Directory-specific
format. If none of the approaches is successful, then all the approaches
are tried again, but this time DNS is queried for SRV records in
standard format.

Environment Variables for DNS Server Discovery

The following environment variables override default behavior for discovering a DNS
server.

Table 3-2 Environment Variables for DNS Discovery

Environment Variable Description

ORA_LDAP_DNS IP address of the DNS server containing the SRV records. If the
variable is not defined, then the DNS server address is obtained
from the host machine.

ORA_LDAP_DNSPORT Port number on which the DNS server listens for queries. If the
variable is not defined, then the DNS server is assumed to be
listening at standard port number 53.

ORA_LDAP_DOVAI N Domain of the host machine. If the variable is not defined, then
the domain is obtained from the host machine itself.

Programming Interfaces for DNS Server Discovery

The programming interface provided is a single interface to discover directory server
information without regard to the mechanism or standard used to obtain it.
Information can be discovered from various sources. Each source can use its own
mechanism to discover the information. For example, the LDAP host and port
information can be discovered from the DNS acting as the source. Here DSD is used to
discover host name information from the DNS.

See Also: For detailed reference information and class descriptions,
refer to the Javadoc located on the product CD.

Java APIs for Server Discovery

A new Java class, the public class, has been introduced:

public cl ass oracle.ldap.util.discovery.DiscoveryHel per

Developing Applications with Oracle Extensions to the Standard APIs 3-13

Server Discovery Functionality

This class provides a method for discovering specific information from the specified
source.

Table 3-3 Methods for Directory Server Discovery

Method Description

di scover Discovers the specific information from a given source
set Property Sets the properties required for discovery

get Property Accesses the value of properties

Two new methods are added to the existing Java class
oracle.ldap.util.jndi.ConnectionUtil:

getDefaultDirCtx: This overloaded function determines the host name and port
information of non-SSL ldap servers by making an internal call to
oracl e.ldap. util.discovery. D scoveryHel per.di scover().

get SSLDi r O x: This overloaded function determines the host name and port
information of SSL ldap servers by making an internal call to
oracl e.ldap. util.discovery. D scoveryHel per.di scover().

Examples: Java API for Directory Server Discovery

The following is a sample Java program for directory server discovery:

inport java.util.?*;

inport java.lang.*;

inport oracle.ldap.util.discovery.?*;
inport oracle.ldap.util.jndi.*;

public class dsdtest

{

public static void main(String s[]) throws Exception

HashMap reshdl = new HashMap();
String result = new String();
oj ect resultj = new hject();
Di scoveryHel per disco = new

Di scover yHel per (Di scover yHel per. DNS_DI SCOVER) ;

/] Set the property for the DNS_DN
di sco. set Property(Di scoveryHel per. DNS_DN, "dc=us, dc=fi cti on, dc=conl')

/1 Set the property for the DNS_DI SCOVER_METHOD
di sco. set Property(Di scoveryHel per. DNS_DI SCOVER_METHOD

, Di scoveryHel per. USE_I NPUT_DN_METHOD) ;

/1 Set the property for the SSLMDE
di sco. set Property(Di scoveryHel per. SSLMOXDE, "0");

[l Call the discover method
int res=disco. di scover(reshdl);
if (res!=0)

Systemout.printin("Error Code returned by the discover nethod is :"+res) ;

[l Print the results
print Reshdl (reshdl);

}

3-14 Oracle Identity Management Application Developer’'s Guide

SASL Authentication Functionality

public static void printReshdl (HashMap reshdl)

{
ArrayList result = (ArrayList)reshdl.get (D scoveryHel per. DI R_SERVERS);

if (result !'=null)
{
if (result.size() == 0) return;
Systemout. println("The hostnanes are :-");
for (int i =0; i<result.size();i++
{

String host = (String)result.get(i);
Systemout. println((i+1)+".
""bhost + ") ;

}
}
}
}

SASL Authentication Functionality

Oracle Internet Directory supports two mechanisms for SASL-based authentication.
This section describes the two methods. It contains these topics:

= SASL Authentication by Using the DIGEST-MD5 Mechanism
= SASL Authentication by Using External Mechanism

SASL Authentication by Using the DIGEST-MD5 Mechanism

SASL Digest-MD5 authentication is the required authentication mechanism for LDAP
Version 3 servers (RFC 2829). LDAP Version 2 does not support Digest-MD?5.

The Digest-MD5 mechanism is described in RFC 2831 of the Internet Engineering Task
Force. It is based on the HTTP Digest Authentication (RFC 2617).

See Also: Internet Engineering Task Force Web site:

http://ww.ietf.org

This section contains these topics:

= Steps Involved in SASL Authentication by Using DIGEST-MD5
= JAVA APIs for SASL Authentication by Using DIGEST-MD5

= C APIs for SASL authentication using DIGEST-MD5

= SASL Authentication by Using External Mechanism

Steps Involved in SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authenticates a user as follows:

1. The directory server sends data that includes various authentication options that it
supports and a special token to the LDAP client.

2. The client responds by sending an encrypted response that indicates the
authentication options that it has selected. The response is encrypted in such a
way that proves that the client knows its password.

3. The directory server then decrypts and verifies the client’s response.

Developing Applications with Oracle Extensions to the Standard APIs 3-15

SASL Authentication Functionality

To use the Digest-MD5 authentication mechanism, you can use either the Java API or
the C API to set up the authentication.

JAVA APIs for SASL Authentication by Using DIGEST-MD5

When using JNDI to create a SASL connection, you must set these
j avax. nam ng. Cont ext properties:

« Context.SECURI TY_AUTHENTI CATI ON = " DI GEST- MD5"
« Context.SECURI TY_PRI NCI PAL

The latter sets the principal name. This name is a server-specific format. It can be either

of the following;:
= The DN—that is, dn: —followed by the fully qualified DN of the entity being
authenticated

= The string u: followed by the user identifier.

The Oracle directory server accepts just a fully qualified DN such as
cn=user, ou=ny department, o=ny conpany.

Note: The SASL DN must be normalized before it is passed to the C
or Java API that calls the SASL bind. To generate SASL verifiers,
Oracle Internet Directory supports only normalized DNs.

See Also:

= "Authenticating to the Directory” on page 8-10

= "C API Usage for SASL-Based DIGEST-MD5 Authentication” on
page 8-43

= JNDL
http://java. sun. con products/jndi/

SASL Authentication by Using External Mechanism
The following is from section 7.4 of RFC 2222 of the Internet Engineering Task Force.

The mechanism name associated with external authentication is "EXTERNAL". The
client sends an initial response with the authorization identity. The server uses
information, external to SASL, to determine whether the client is authorized to
authenticate as the authorization identity. If the client is so authorized, the server
indicates successful completion of the authentication exchange; otherwise the server
indicates failure.

The system providing this external information may be, for example, IPsec or
SSL/TLS.

If the client sends the empty string as the authorization identity (thus requesting the
authorization identity be derived from the client’s authentication credentials), the
authorization identity is to be derived from authentication credentials that exist in the
system which is providing the external authentication.

Oracle Internet Directory provides the SASL external mechanism over an SSL mutual
connection. The authorization identity (DN) is derived from the client certificate
during the SSL network negotiation.

3-16 Oracle Identity Management Application Developer’'s Guide

Proxying on Behalf of End Users

Proxying on Behalf of End Users

Often applications must perform operations that require impersonating an end user.
An application may, for example, want to retrieve resource access descriptors for an

end user. (Resource access descriptors are discussed in the concepts chapter of Oracle
Internet Directory Administrator’s Guide.)

A proxy switch occurs at run time on the JNDI context. An LDAP v3 feature, proxying
can only be performed using | ni ti al LdapCont ext, a subclass of

I ni tial Oi r Cont ext . If you use the Oracle extension

oracl e.ldap. util.jndi.ConnectionUil toestablish a connection (the
example following), | ni ti al LdapCont ext is always returned. If you use JNDI to
establish the connection, make sure that it returns | ni ti al LdapCont ext .

To perform the proxy switch to an end user, the user DN must be available. To learn
how to obtain the DN, see the sample implementation of the
oracl e.l dap. util. User class at this URL:

http://ww. oracl e. com t echnol ogy/ sanpl e_code/ i d_ngnt

This code shows how the proxy switch occurs:

inport oracle.ldap.util.jndi.*;
i nport javax.nam ng.directory.*;
i nport javax.nam ng. | dap. *;
inport javax.nam ng.*;

public static void main(String args[])

{
tryf
Initial LdapContext appCtx=ConnectionUtil.getDefaultDirCx(args[0], // host
args[1], // port
args[2], // DN
args[3]; // pass)
/1 Do work as application
. ..
String user DN=nul | ;
/'l assuming userDN has the end user DN val ue
/1 Now switch to end user
ctx. addToEnvi r onnment (Cont ext . SECURI TY_PRI NCl PAL, userDN);
ctx. addToEnvi ronnent ("] ava. nani ng. security.credentials", "");
Control ctls[] ={
new ProxyControl ()
¥
((LdapContext)ctx).reconnect(ctls);
/1 Do work on behal f of end user
1.
}
cat ch(Nani ngException ne)
{
/'l javax.nanming. Nani ngException is thrown when an error occurs
}
}

The ProxyContr ol class in the code immediately preceding implements a

j avax. nam ng. | dap. Cont r ol . To learn more about LDAP controls, see the section
about supported controls in the schema appendix of Oracle Internet Directory
Administrator’s Guide. Here is an example of what the Pr oxyCont r ol class might look
like:

Developing Applications with Oracle Extensions to the Standard APIs 3-17

Creating Dynamic Password Verifiers

inport javax.nam ng.*;
i nport javax.nam ng.|dap.Control;
inport java.lang.*;

public class ProxyControl inplenents Control {

public byte[] getEncodedVal ue() {
return nul | ;
}

public String getID() {
return "2.16.840.1.113894.1.8.1";

}

public boolean isCritical () {
return fal se;

}
}

Creating Dynamic Password Verifiers

You can modify standard APIs to generate application passwords dynamically—that
is, when users log in to an application. This feature has been designed to meet the
needs of applications that provide parameters for password verifiers only at runtime.

This section contains the following topics:

= Request Control for Dynamic Password Verifiers

= Syntax for DynamicVerifierRequestControl

= Parameters Required by the Hashing Algorithms
= Configuring the Authentication APIs

= Response Control for Dynamic Password Verifiers

= Obtaining Privileges for the Dynamic Verifier Framework

Request Control for Dynamic Password Verifiers

Creating a password verifier dynamically involves modifying the LDAP
authentication APIs | dap_sear ch or | dap_nodi f y to include parameters for
password verifiers. An LDAP control called Dynani cVeri f i er Request Cont rol is
the mechanism for transmitting these parameters. It takes the place of the password
verifier profile used to create password verifiers statically. Nevertheless, dynamic
verifiers, like static verifiers, require that the directory attributes or cl r evpwd
(synchronized case) and or cl unsyncr evpwd (unsynchronized case) be present and
that these attributes be populated.

Note that the or cl pwdencr ypt i onenabl e attribute of the password policy entry in
the user’s realm must be set to 1 if or cl r evpwd is to be generated. If you fail to set
this attribute, an exception is thrown when the user tries to authenticate. To generate
or cl unsyncr evpwd, you must add the crypto type 3DES to the entry

cn=def aul t Shar edPI NPr of i | eEnt ry, cn=common, ch=pr oduct s, cn=or acl e
cont ext .

Syntax for DynamicVerifierRequestControl

The request control looks like this:

3-18 Oracle Identity Management Application Developer’'s Guide

Creating Dynamic Password Verifiers

Dynani cVeri fi er Request Cont r ol

control O d: 2.16.840.1.113894.1.8.14

criticality: FALSE

control Val ue: an OCTET STRI NG whose value is the BER encoding of the follow ng
type:

Control Val ue ::= SEQUENCE {

version [0]

crypto [1] CHO CE OPTI ONAL {
SASL/MD5 [0] LDAPString,
SyncM.1.0 [1] LDAPString,
SyncM.1.1 [2] LDAPString,
CRAM MD5 [3] LDAPString },

usernane [1] OPTIONAL LDAPStri ng,

realm [2] OPTIONAL LDAPStri ng,

nonce [3] OPTIONAL LDAPStri ng,

}

Note that the parameters in the control structure must be passed in the order in which
they appear. Table 34 defines these parameters.

Table 3-4 Parameters in DynamicVerifierRequestControl

Parameter Description
control O D The string that uniquely identifies the control structure.
crypto The hashing algorithm. Choose one of the four identified in the

control structure.

user nane The distinguished name (DN) of the user. This value must
always be included.

real m A randomly chosen realm. It may be the identity management
realm that the user belongs to. It may even be an application
realm. Required only by the SASL/MD5 algorithm.

nonce An arbitrary, randomly chosen value. Required by SYNCML1.0
and SYNCML1.1.

Parameters Required by the Hashing Algorithms

Table 3-5 lists the four hashing algorithms that are used to create dynamic password
verifiers. The table also lists the parameters that each algorithm uses as building
blocks. Note that, although all algorithms use the user name and password
parameters, they differ in their use of the r eal mand nonce parameters.

Table 3-5 Parameters Required by the Hashing Algorithms

Algorithm Parameters Required
SASL/MD5 user nane, r eal m passwor d
SYNCML1.0 user nane, passwor d, nonce
SYNCML1.1 user nane, passwor d, nonce
CRAM-MD5 user nane, passwor d

Configuring the Authentication APIs

Applications that require password verifiers to be generated dynamically must include
Dynam cVeri fi er Request Cont r ol in their authentication APIs. Either | dap_

Developing Applications with Oracle Extensions to the Standard APIs 3-19

Dependencies and Limitations for the PL/SQ LDAP API

sear ch or | dap_conpar e must incorporate the cont r ol O Dand the control values
as parameters. They must BER-encode the control values as shown in "Syntax for
DynamicVerifierRequestControl"; then they must send both cont r ol O Dand the
control values to the directory server.

Parameters Passed If Idap_search Is Used
If you want the application to authenticate the user, use | dap_sear ch to pass the

control structure. If | dap_sear ch is used, the directory passes the password verifier
that it creates to the client.

| dap_sear ch must include the DN of the user, the cont r ol O D, and the control
values. If the user’s password is a single sign-on password, the attribute passed is
aut hpasswor d. If the password is a numeric pin or another type of unsynchronized
password, the attribute passed is or cl passwor dveri fi er; orcl commonpi n.

Parameters Passed If Idap_compare Is Used

If you want Oracle Internet Directory to authenticate the user, use | dap_conpar e to
pass the control structure. In this case, the directory retains the verifier and
authenticates the user itself.

Like | dap_sear ch, | dap_conpar e must include the DN of the user, the

cont r ol O D, the control values, and the user’s password attribute. For | dap_
conpar e, the password attribute is or cl passwor dveri fi er; orcl commonpin
(unsynchronized case).

Response Control for Dynamic Password Verifiers

When it encounters an error, the directory sends the LDAP control

Dynam cVeri fi er ResponseControl to the client. This response control contains
the error code. To learn about the error codes that the response control sends, see the
troubleshooting chapter in Oracle Internet Directory Administrator’s Guide.

Obtaining Privileges for the Dynamic Verifier Framework

If you want the directory to create password verifiers dynamically, you must add your
application identity to the VerifierServices group of directory administrators. If you
fail to perform this task, the directory returns an LDAP_I NSUFFI Cl ENT_ACCESS
error.

Dependencies and Limitations for the PL/SQ LDAP API

The PL/SQL LDAP API for this release has the following limitations:

= The LDAP session handles obtained from the API are valid only for the duration
of the database session. The LDAP session handles cannot be written to a table
and reused in other database sessions.

= Only synchronous versions of LDAP API functions are supported in this release.

The PL/SQL LDAP API requires a database connection to work. It cannot be used
in client-side PL/SQL engines (like Oracle Forms) without a valid database
connection.

3-20 Oracle Identity Management Application Developer’'s Guide

A

Developing Provisioning-integrated
Applications

This chapter explains how to develop applications that can use the Oracle Directory
Provisioning Integration Service, a component of Oracle Directory Integration and
Provisioning. These applications can be either legacy or third-party applications that
are based on the Oracle platform.

This chapter contains these topics:

= Introduction to the Oracle Directory Provisioning Integration Service
» Provisioning Integration Prerequisites

= Development Usage Model for Provisioning Integration

= Development Tasks for Provisioning Integration

See Also: The chapter on the Oracle Directory Provisioning
Integration Service in Oracle Identity Management Integration Guide

Introduction to the Oracle Directory Provisioning Integration Service

A big challenge in directory administration is managing provisioning information for
the myriad accounts and applications that each user may need. For example, adding a
user to an information system typically requires a substantial amount of application
provisioning. It can include setting up an e-mail account, which in turn has specific
settings for a mail quota, some default folders, and perhaps some distribution lists. If
there are other connectivity applications that the user needs, then managing that
user’s accounts and personal profile can be overwhelming for a large enterprise. To
meet this challenge, the Oracle Directory Provisioning Integration Service provides a
platform for integrating applications. It enables you to add a user seamlessly to many
key systems in just one step.

The Oracle Directory Provisioning Integration Service serves as a passthrough for user
account information. Rather than provisioning a user with each individual application,
you simply register applications with the provisioning service. This enables them to
send provisioning information directly to Oracle Internet Directory and receive
information from it. Users can then be provisioned at once for a default set of
integrated applications. In this way, the Oracle Directory Provisioning Integration
Service eliminates redundant processing for each individual application.

In addition to a default set of provisioning events defined during installation, Oracle
Internet Directory can define new events and propagate them appropriately to
applications that subscribe to those events. The ability to both send and receive these
provisioning events provides for seamless management of user accounts.

Developing Provisioning-Integrated Applications 4-1

Developing Provisioning-Integrated Applications

Developing Provisioning-Integrated Applications

Applications integrated with the Oracle Directory Provisioning Integration Service can
be either legacy or third-party applications based on the Oracle platform. Once it has
registered with Oracle Internet Directory, an application can send and receive
provisioning information to and from the directory.

To integrate an application with the directory provisioning integration service, you
follow these general steps, each of which is explained more fully later in this chapter:

= Register the application in Oracle Internet Directory.

= Identify the identity management realm under which events are to be propagated
or to be applied.

= Determine whether the application needs to receive events, send events, or both.
« List the events that need to be sent or received.
« List attributes of interest that an event should contain.

= Assign proper privileges to the application identity in the identity management
realm. This enables the application to read events from Oracle Internet Directory
and propagate events to it.

= Determine the interface name, interface type, and interface connection. This is
required by the provisioning server to propagate events to the application and
consume events from it.

= Determine the other provisioning scheduling interval, maximum number of
events per schedule, and so on.

= Implement the interface specifications inside the application.

= Create the provisioning profile in Oracle Internet Directory so that event
propagation can start. Create this profile by using the provisioning subscription
tool (oi dpr ovt ool).

The section that follows uses a sample application to show how these steps are
implemented.

Example of a Provisioning-Integrated Application

This example of a provisioning-integrated application is called Employee Self Service
Application (ESSA). In this discussion, the terms "user" and "identity" are used
interchangeably.

Requirements of the Employee Self Service Application

This application requires that its entire user base be managed from Oracle Internet
Directory. The application administrator creates, modifies, and deletes identities in
Oracle Internet Directory. The identity information is propagated to the application as
an event, namely, | DENTI TY_ADD.

Although the application creates the identity as user data, this is not sufficient to
authorize the employee to access the application. The presence of the identity in
Oracle Internet Directory only facilitates a global login. The application must discover
whether a particular identity is authorized to access the application. This is achieved
by subscribing the identity for that application, a task that the application
administrator can do. This subscribing triggers another event from Oracle Internet
Directory to the application—namely, SUBSCRI PTI ON_ADD—indicating that the
identity has now been subscribed in Oracle Internet Directory to use that application.

4-2 Oracle Identity Management Application Developer’s Guide

Developing Provisioning-Integrated Applications

The application can then query the directory to check whether a particular user is
present in the application subscription lists before allowing the user access to the
application.

In this example, the events for this application are received from Oracle Internet
Directory. The application itself does not send any events to the directory. It could,
however, also send events to Oracle Internet Directory. To do this, the application
identity needs more directory privileges for the various operations that it wants to
perform on the directory. This is explained in "Determining Provisioning Mode for the
Employee Self Service Application" on page 4-4.

The steps are as follows:

1. A user is added in Oracle Internet Directory through either the Oracle Internet
Directory Self-Service Console or some other means such as synchronization from
third party sources or through command-line tools. The user information must be
placed in the appropriate identity management realm.

2. The | DENTI TY_ADD event is propagated from Oracle Internet Directory to the
application. This assumes that the application subscribed to the | DENTI TY_ADD
event during creation of the provisioning subscription profile.

3. On receiving the event, the application adds this identity to its database. In this
example, however, this does not mean that the user is authorized to access the
application. An additional event is required to subscribe the user as an authorized
user of that application.

4. In Oracle Internet Directory, the user is subscribed to the application by using
Oracle Delegated Administration Services.

5. The SUBSCRI PTI ON_ADD event is propagated from Oracle Internet Directory to
the application. This assumes that the application subscribed to the
SUBSCRI PTI ON_ADD event during creation of the provisioning subscription
profile.

6. On receiving this event, the application updates the identity record in its database
indicating that this is also an authorized user.

Registering the Employee Self Service Application in Oracle Internet Directory

The application must register itself as an application entity with its own identity entry
in Oracle Internet Directory. You can decide which realm to create the application
identity in, as long as that realm is a well-known location in the DIT. To create the
necessary DIT elements in Oracle Internet Directory, you must follow a template
described in this chapter.

The Oracle Context of the identity management realm has a container for the various
application footprints. That container is:
cn=product s, cn=or acl econt ext, i dentity_nanagenent _real m DN

If the application is meant for only one realm, then Oracle Corporation recommends
that you create the application identity DN in this form:

orcl Appl i cati onNane=appl i cati on_ nane, cn=application_

type, cn=product s, cn=or acl econt ext, i dentity_managenent _real m DN.
The cn=appl i cati on_t ype element is called the application container.

If the application is meant for multiple realms, you can create the application identity
in the root Oracle Context, namely, cn=pr oduct s, cn=or acl econt ext .

In this example, the location and the content of the entry are as follows:

Developing Provisioning-Integrated Applications 4-3

Developing Provisioning-Integrated Applications

dn: \
orcl Appl i cati onConmonNane=ESSA, cn=denmpApps, cn=Product s, cn=Cr acl eCont ext , 0=ACME,
dc=com

orcl appl i cati onconmonnane: ESSA

orcl appful | nane: Enpl oyee Sel f Service Application

user password: wel come123

description: This is an sanple application for demonstrati on.

orclaci: access to entry by group="cn=odi sgroup, cn=odi, cn=oracl e internet direct

ory" (proxy)
obj ectclass: orcl ApplicationEntity

In this example, the application type or application container is denoApps. The
application name is ESSA.

All directory operations must be done on the behalf of the application by the
provisioning server. Because the server does not have privileges to send or consume
events under the domain, it must process events by impersonating the application
identity. This, in turn, requires that the server be given the proxy privilege. In this
example, it is assumed that the application identity already has the necessary
privileges.

Identifying the Management Context for the Employee Self Service Application

All identity management realms are generally present under the identity management
realm base in the root Oracle Context. The application must be provisioned for the
appropriate realm—that is, proper privileges must be assigned to this application
identity so that it can administer its information under this realm. In this example, let
us assume that the appropriate realm is 0=ACVME, dc=com

Determining Provisioning Mode for the Employee Self Service Application

You must decide whether the application only receives events or whether it also sends
them to Oracle Internet Directory. The mode can be one of the following:

= | NBOUND: from the application to Oracle Internet Directory

« OUTBOUND: from Oracle Internet Directory to the application
- BOTH

The default mode is QUTBOUND.

In this example, because the application is interested in only receiving events from
Oracle Internet Directory, we specify the events as QUTBOUND only.

Determining Events for the Employee Self Service Application

During installation, a fixed set of events is predefined. You can define new events at
runtime, but they can be propagated in the outbound mode only. The Oracle Directory
Provisioning Integration Service can process only a fixed set of predefined events for
the inbound mode.

In this example, we do not need to define any new events. The following events in
Oracle Internet Directory must be propagated to our sample application:

= Identity creation (I DENTI TY_ADD)

= Identity modification (I DENTI TY_MODI FY)

= Identity employee deletion (I DENTI TY_DELETE)

= Identity subscription addition (SUBSCRI PTI ON_ADD)

4-4 Oracle Identity Management Application Developer’s Guide

Developing Provisioning-Integrated Applications

= Identity subscription modification (SUBSCRI PTI ON_MODI FY)
= Identity subscription deletion (SUBSCRI PTI ON_DELETE)

Provisioning the Employee Self Service Application for an Identity Management
Realm

This is the most important step. It involves assigning the proper privileges to the
application identity in the identity management realm. These privileges enable the
application to read and apply the various events from Oracle Internet Directory and to
send change events to Oracle Internet Directory. Inbound events, which result in
modifying Oracle Internet Directory, require more privileges.

Generally, predefined groups are created when the identity management realm is
created. The groups have different privileges as described in this section.

The following template describes all the appropriate ACLs required for an application
to send or receive provisioning events.

The application identity must be added to the appropriate group, but this, in turn,
depends on the privileges it requires. For example, if an application is interested only
in receiving events from Oracle Internet Directory, then it does not need to be added to
groups that can create or modify entries in this realm.

The template accepts a few variables. Once the variables are instantiated, the template
becomes a proper LDIF file that can be executed against Oracle Internet Directory. You
can adjust the variables according to the needs of your deployment.

In this example, the identity management realm is 0=ACME, dc=com The template of
the LDIF file looks like this:

This creates The Application ldentity subtree

The following variables are used :
(Some of themare OPTIONAL where the values oidprov tool can get default
val ues if not supplied.)

% | dentityReal n?%: ldentity Real m DN:
(MANDATORY: This is the domain in which all the related users and groups are
present. |f Default Identity Real mneeds to be used,
it can be queried in a directory install.
This value is stored in the root Oracle Context of the directory.
The value is stored in the 'orcldefaultsubscriber’
attribute in 'dn: cn=Common, cn=Product s, cn=Cr acl eCont ext ")
9% _AppType% : Application Type (e.g EBusiness)
(MANDATORY : Nane of the suite)
% _AppNanme% : Application Name (e.g HRMS, Financi al s, Manuf act uring)
(MANDATORY: Name of the Application in the suite.)
% _SvcType% : Service Type (e.g Ebusiness)
(MANDATORY : Alias for name of suite.
This value can be be same as %_AppType%
% _SvcName% : Service Name (e.g HRMS, Financi al s, Manuf act uri ng)
(MANDATORY : Alias for nanme of Application.
This value can be sane as %_AppNane%
% _AppURL% : Application URL if any. (set it to 'NULL' if there is nothing.)

Apart fromthese variables this LDIF tenplates would al so need the following
information to load this data to Oracle Internet Directory:

LDAP_HOST : directory server hostnane
LDAP_PCRT : directory server port nunber
Bl NDDN . cn=orcladmn

HoH o H OH H R H H H OH H R HH O HHHHHHHHHHHHHHH

Developing Provisioning-Integrated Applications 4-5

Developing Provisioning-Integrated Applications

Bl NDPASSWD: Password for orcladmn

#

#

After replacing the variables in the tenplate this data can be |oaded into the
directory by running the follow ng conmand:

|dapnodify -h %.DAP_HOST%-p %.DAP_PORT% - D 9B NDDN% \

-w 9BINDPWD% -f <this_tenplate_file_name>

#
#

First we create the Application container. This needs to be created just once
initially. If this container is existing because some application was
already created using this tenplate, please remove this entry

fromthe tenplate/LDIF file.

H o H R

dn: cn=%_AppType% cn=Product s, cn=0r acl eCont ext, %_I dent i t yReal n?
changet ype: add

cn: % _AppType%

obj ectcl ass: orcl Cont ai ner

The application identity needs to created next. This is under the Applications
container. This object is of type "orcl ApplicationEntity"

dn: orcl Appli cati onCormonNane=%_AppNanme% cn=%_
AppType% cn=Pr oduct s, cn=Cr acl eCont ext,
% _| dentityReal n%
changetype: add
orcl applicationconmonnane: % _AppNane%
orclaci: access to entry by group="cn=odi sgroup, cn=odi, cn=oracl e internet
directory"
(add, browse, del et e, proxy)
obj ectclass: orcl ApplicationEntity

The following ACLs are for giving privileges to the application entities for
addi ng/ nodi fyi ng/ del eting users in the relevant realm

Al menbers of the group represented by this DN are allowed to create users
#in the relevant realm

dn: cn=0r acl eDASCr eat eUser, cn=G oups, cn=0r acl eCont ext, % _| denti t yReal nbo
changetype: nodify
add: uni quenenber
uni quenenber: orcl Appl i cati onCommonName=%_AppNane% cn=%_
AppType% cn=Pr oduct s, cn=Cr acl eCont ext,
% _I| dentityReal n%

Al menbers of the group represented by this DN are allowed to delete users in
the relevant realm

dn: cn=0r acl eDASDel et eUser, cn=G oups, ch=Cr acl eCont ext , % _| dent i t yReal nbo
changetype: nodify
add: uni quenenber
uni quenenber: orcl Appl i cati onCommonName=% _AppNane% cn=% _
AppType% cn=Product s, cn=Cr acl eCont ext,
Y% _| dent it yReal n%

Al menbers of the group represented by this DN are allowed to edit users in the
relevant realm

dn: cn=0racl eDASEdi t User, cn=Goups, cn=0r acl eCont ext , %_I denti t yReal nto
changetype: nodify

4-6 Oracle Identity Management Application Developer’s Guide

Developing Provisioning-Integrated Applications

add: uni quenenber
uni quenenber: orcl Appl i cati onConmmonName=%_AppNane% cn=%s_
AppType% cn=Pr oduct s, cn=0r acl eCont ext,

% _| dentityReal n%

Al menbers of the group represented by this DN are allowed to create groups in
the relevant realm

dn: cn=0racl eDASCr eat eG oup, cn=G oups, cn=0r acl eCont ext, %_| dent i t yReal nP
changetype: nodify
add: uni quenenber
uni quenenber: orcl Appl i cati onCommonName=%_AppNane% cn=%s_
AppType% cn=Pr oduct s, cn=Cr acl eCont ext,
% _I| dentityReal n%

Al menbers of the group represented by this DN are allowed to delete groups in
the relevant realm

dn: cn=0r acl eDASDel et eG oup, cn=G oups, cn=0r acl eCont ext, %_| dent i t yReal n%
changetype: nodify
add: uni quenenber
uni quenenber: orcl Appl i cati onCommonName=% _AppNane% cn=% _
AppType% cn=Product s, cn=Cr acl eCont ext,
Y% _| dent it yReal n%

Al menbers of the group represented by this DN are allowed to edit groups in
the relevant realm

dn: cn=0r acl eDASEdi t G oup, cn=G oups, cn=0r acl eCont ext, %_I| dent i t yReal nP
changetype: nodify
add: uni quenmenber
uni quenenber: orcl Appl i cati onConmmonName=%_AppNane% cn=%_
AppType% cn=Product s, cn=Cr acl eCont ext,
% _| dentityReal n%

The container is being created to hold the various subscription lists of the
application for this realm This container will hold lots of subscription
information and resides just under the application identity.

dn: cn=subscriptions, orcl Appl i cati onCommonName=%_AppNane% cn=% _
AppType% cn=Product s,
cn=0racl eCont ext, %_| denti t yReal nfo
changet ype: add
cn: subscriptions
obj ectcl ass: orcl Contai ner

The following is the group that will hold adnministrators DNs for managi ng
subscription lists for this application. The application identity should also be
#in this list and will be added here.

dn: cn=Subscri ption_Adn ns, cn=Subscri ptions, orcl Appl i cati onCommonName=% _AppNane%
cn=%_AppType% cn=product s, cn=Cr acl eCont ext, % _| denti t yReal nbo
changet ype: add
cn: Subscription_Adm ns
uni quenenber: orcl Appl i cati onCommonName=%_AppNane% cn=%s_
AppType% cn=Pr oduct s, cn=0r acl eCont ext,
% | dentityReal n%
obj ectcl ass: groupCf Uni queNanes
obj ectcl ass: orcl ACPG oup
obj ectclass: orclprivil egegroup

Developing Provisioning-Integrated Applications 4-7

Developing Provisioning-Integrated Applications

The following is the group that will hold DNs of users who can just view the
subscription lists for this application. The application identity should al so be
#in this list and will be added here.

dn: cn=Subscription_Vi ewers, cn=Subscri ptions, orcl Applicati onCommonNane=%_
AppName%

cn=%_AppType% cn=product s, cn=Cr acl eCont ext, %6 _| dent i t yReal nbo
changet ype: add

cn: Subscription_Viewers

uni quenenber: orcl Appl i cati onCommonName=%_AppNane% cn=%_
AppType% cn=Pr oduct s, cn=Cr acl eCont ext,

% _| dentityReal n%

obj ectcl ass: groupOf Uni queNanes

obj ectcl ass: orcl ACPG oup

obj ectclass: orclprivilegegroup

The following is just a container for the actual subscription lists.

dn: cn=subscription_data, cn=subscri ptions, orcl Appl i cati onCommonNane=%_AppName%
cn=%_AppType% cn=Pr oduct s, cn=0r acl eCont ext, %_| dent i t yReal n?b

changet ype: add

cn: subscription_data

obj ectcl ass: orcl Cont ai ner

The following is a sanple subscription list. W are calling it "cn=ACCOUNTS"
since it signifies accounts in the application.

dn: cn=ACCOUNTS, cn=subscri ption_

dat a, cn=subscri ptions, orcl Appl i cati onCormonNane=%_AppNanme% cn=%_
AppType% cn=Pr oduct s, cn=Cr acl eCont ext, % _| denti t yReal nf
changetype: add

cn: ¢cn=ACCOUNTS

uni quenenber: cn=orcl adnin

obj ectclass: groupCf Uni queNanes

obj ectclass: orcl Goup

The following is a container for the service instance entries in the Root Oracle
Context. An application publishes itself as a service by creating

a service instance entry under this container. These service

instance entries are created outside any realmand in the root Oracle Context.

dn: cn=%_SvcType% cn=Servi ces, cn=0r acl eCont ext
changetype: add

cn: %_SvcType%

obj ectcl ass: orcl Contai ner

The following is a container for the service instance entries in the Root Oracle
Context for that service type.

dn: cn=Servicel nstances, cn=%_SvcType% cn=Servi ces, cn=0 acl eCont ext
changet ype: add

cn: Servicel nstances

obj ectcl ass: orcl Cont ai ner

The following is a service instance entry. An application publishes itself as a
service by creating this service instance.

dn: cn=%_SvcNane, cn=Servi cel nst ances, % cn=%_
SvcType% cn=Servi ces, cn=0r acl eCont ext

4-8 Oracle Identity Management Application Developer’s Guide

Developing Provisioning-Integrated Applications

changet ype: add

cn: Y% _SvcName%

orcl Servi ceType: %_SvcType%
presentati onAddress: % _AppURL%
obj ectclass: orcl Servicel nstance

The following is a container for service instance reference entry that resides
#inthe relevant realm

dn: cn=%_SvcType% cn=Servi ces, cn=0r acl eCont ext, %_| denti t yReal n?
changet ype: add

cn: % _SvcType%

obj ectcl ass: orcl Cont ai ner

1t is areference entry which actually points to the actual service instance
entry as well as to the subscription list container for the application.

dn: cn=%_SvcNane% cn=%_SvcType% cn=Servi ces, cn=0r acl eCont ext, %_| denti t yReal nPo
changet ype: add
cn: Y% _SvcName%
description: Link To the Actual Subscription Location for the Application and the
actual Service instance.
orcl Servi cel nstancelLocation: cn=%_SvcNane% cn=%_
SvcType% cn=Servi ces, cn=0r acl eCont ext
orcl Servi ceSubscri ptionLocation: cn=subscription_data, cn=subscriptions,
orcl Appl i cati onCormonNane=%_AppNane% cn=%_
AppType% cn=Product s, cn=Cr acl eCont ext,
% _| dentityReal n%
obj ectclass: orcl Servicel nstanceRef erence

This LD F operation gives appropriate privileges to the subscription admn and
subscription viewers group. The groups have al ready been created.

dn: cn=subscri ptions, orcl Appl i cati onConmonNane=%_AppNane% cn=%_

AppType% cn=Product s,
cn=Cr acl eCont ext, % _| denti t yReal nf

changetype: nodify

repl ace: orclaci

orclaci: access to entry by group="cn=Subscription_

Admi ns, cn=Subscri ptions, or cl Appl i cati onConmonNane=% _AppNane%
cn=%_AppType% cn=product s, cn=0r acl eCont ext, %_| dent i t yReal n¥4

(browse, add, del ete) by group="cn=Subscription_

Vi ewer s, cn=Subscri pti ons, or cl Appl i cat i onConmonNanme=%_AppNane%
cn=%_AppType% cn=product s, cn=Cr acl eCont ext, %_| dentityReal n#6 (browse)

orclaci: access to attr=(*) by group="cn=Subscription_

Admi ns, cn=Subscri ptions, or cl Appl i cati onConmonNane=% _AppNane%
cn=%_AppType% cn=product s, cn=0Cr acl eCont ext, %_| dent i t yReal n¥4

(search,read, wite,conpare) by group="cn=Subscription_

Vi ewer s, cn=Subscri pti ons, or cl Appl i cat i onConmonNanme=%_AppNane%
cn=%_AppType% cn=product s, cn=0r acl eCont ext, %_| denti t yReal n#6

(search, read, conpare)

Determining Scheduling Parameters for the Employee Self Service Application

The scheduling interval determines how often the provisioning servers send or receive
events. The server sends or receives events, and, when it has finished sending or
receiving all of them, it sleeps for a period specified in seconds in the scheduling
interval. The number of events it can send or receive at one time is dictated by the
“Maximum Events per Schedule” parameter.

Developing Provisioning-Integrated Applications 4-9

Developing Provisioning-Integrated Applications

Let us assume that we need events to be propagated every two minutes, and a
maximum of 100 events each time.

Use the following to determine the interface connection information:

» Interface Type: This is the event propagation medium. Currently, only PL/SQL is
supported.

» Interface Name: This is the name of the PL/SQL package that the application must
implement and that the provisioning server invokes to send and receive events.
For our sample application. let us assume ESSA_| NTF to be the interface name.

» Interface Connection information: This is used by the server to connect to the
application database to invoke the PL/SQL interface.

The connection information is in this format:

Dat abase Host: Listener Port: Database SID. DB Account: Password

For a high-availability, RAC-enabled database, the connection information should be
in this format:

Dat abase Host: Listener Port: Service Nane: DB Account: Password; Database Host:
Li stener Port: Service Name: DB Account: Password; Database Host: Listener Port:
Service Name: DB Account: Password

The entire string should be specified in one line as a single value.

For our sample application, the connection information is:

| ocal host: 1521: iasdb : scott : tiger

The Oracle directory integration and provisioning server uses JDBC to connect to the

application database using the connect information provided, and then invokes the
PL/SQL APIs to propagate or receive events.

Determining the Interface Connection Information for the Employee Self Service
Application

Use the following to determine the interface connection information:

» Interface Type: This is the event propagation medium. Currently only PL/SQL is
supported.

» Interface Name: This is the name of the PL/SQL package that the application must
implement and that the provisioning server invokes to send and receive events.
For our sample application, let us assume that ESSA_INTF is the interface name.

» Interface Connection information: This is used by the server to connect to the
application database to invoke the PL/SQL interface.

The following types of Database connection formats are supported:

= Database Host: Listener Port: Database SID: DB Account: Password. This is the old
format, which is still supported. Nevertheless, do not use it because SID support
might soon be obsolete. In this case, the provisioning server uses JDBC thin driver
to connect. For example:

| ocal host: 1521: iasdb: scott: tiger

= Database Host: Listener Port: DB Service Name: DB Account: Password. This is
recommended. In this case, the provisioning server uses JDBC thin driver to
connect. For example:

4-10 Oracle Identity Management Application Developer’'s Guide

Developing Provisioning-Integrated Applications

| ocal host: 1521: iasdb: scott: tiger
= For a database configured for active failover clusters, the connection information
should be in one of the following two formats:

DBSVC=net Ser vi ceNare: User : Passwor d

In this case, the provisioning server uses JDBC OCI (thick) driver to connect. The
net service name needs to be defined in the local tnsnames.ora file on which the
provisioning server is running.

DBURL=| dap: // | dap_host : | dap_port/ DBServi ceNane: User Name: Passwor d

In this case, the provisioning server uses JDBC thin driver to connect. Database
Registration should already have occurred in the directory. the driver connects to
the directory using the directory host and port. It retrieves the database connect
information and then connects to the database.

Implementing the Interface Specification for the Employee Self Service Application

The interface is described in detail in Chapter 13, "Provisioning Integration API
Reference".

For outbound events—that is, events from Oracle Internet Directory to the
application—the following interfaces must be implemented:

PROCEDURE Put O DEvent (event I'N LDAP_EVENT,
event _status OUT LDAP_EVENT_STATUS);

For inbound events—that is, events from application to Oracle Internet Directory—the
following interfaces must be implemented:

FUNCTI ON Get AppEvent (event OUT LDAP_EVENT) RETURNI NG NUMBER,
PROCEDURE Put AppEvent St at us(event _status | N LDAP_EVENT_STATUS)

For our sample application, because we are handling only outbound events, we
implement all interfaces concerning those events.

Creating the Provisioning Subscription Profile for the Employee Self Service
Application

To create the provisioning subscription profile, use the following settings:

ORACLE_HOME/ hi n/ oi dprovt ool operation=create |dap_host =l ocal host \

| dap_port =389 | dap_user_dn=cn=orcl adm n | dap_user _passwor d=wel come \
organi zat i on_dn="0=ACME, dc=com' \

appl i cation_dn="orcl Appl i cati onConmonName=ESSA, cn=denpApps, cn=Pr oduct s, \
cn=0r acl eCont ext, 0=ACVE, dc=cont' \

interface_name=ESSA I NTF interface_type=PLSQ \

i nterface_connect i nfo="l| ocal host: 1521: i asdb: scott:tiger" \

event _subscri ption="1DENTI TY: o=or acl e, dc=com ADD(cn, sn, mai | , descri pti on,
t el ephonenunber) " \

Developing Provisioning-Integrated Applications 4-11

Provisioning Integration Prerequisites

event _subscri ption="1DENTI TY: o=or acl e, dc=com MODI FY(cn, sn, mai | , descri ption,

t el ephonenunber) ™ \

event _subscri ption="1DENTI TY: o=or acl e, dc=com DELETE" \

event _subscri ption="SUBSCRI PTI ON: cn=ESSA, cn=product s, cn=or acl econt ext, o=or acl e,
dc=com ADD(orcl activestartdate, orcl activeenddate, cn) \

event _subscri pti on="SUBSCRI PTI ON: cn=ESSA, cn=pr duct s, cn=or acl econt ext, o=or acl e,
dc=com MODI FY(orcl activestartdate, orclactiveenddate, cn) \

event _subscri ption="SUBSCRI PTI ON: cn=ESSA, cn=pr duct s, cn=or acl econt ext, o=or acl e,
dc=com DELETE"

Provisioning Integration Prerequisites

To use the Oracle Directory Provisioning Integration Service, an application must be
Oracle RDBMS-based, and it must be enabled for Oracle Application Server Single
Sign-On.

As an application developer, you should be familiar with:

= General LDAP concepts

« Oracle Internet Directory

= Oracle Internet Directory integration with Oracle Application Server
= Oracle Delegated Administration Services

= The user provisioning model described in the chapter on the Oracle Directory
Provisioning Integration Service in Oracle Identity Management Integration Guide.

= The Oracle Directory Integration and Provisioning platform
=« Knowledge of SQL, PL/SQL, and database RPCs

In addition, Oracle Corporation recommends that you understand single sign-on
concepts.

Development Usage Model for Provisioning Integration

This section shows how an application interacts with the Oracle Directory
Provisioning Integration Service. It contains these topics:

» Initiating Provisioning Integration

= Returning Provisioning Information to the Directory

Initiating Provisioning Integration

When an application is installed, the Oracle Directory Provisioning Integration Service
is provided with three kinds of information:

= Information that enables an application entry to be registered in the directory
= database connect information, which is also registered in the directory

= Information that enables the Oracle Directory Provisioning Integration Service to
service the application

Database connect information for the application is also registered.

Figure 4-1 on page 4-13 shows the first phase of provisioning—namely, passing user
events from Oracle Internet Directory through the Oracle Directory Integration and
Provisioning platform provisioning filter to the application.

4-12 Oracle Identity Management Application Developer’'s Guide

Development Usage Model for Provisioning Integration

Figure 4-1 How an Application Obtains Provisioning Information by Using the Oracle Directory
Provisioning Integration Service

Application

Provisioning-Integrated

Oracle Directory Integration

Application Repository

Send and Provisioning Platform Get
Provisioning Provisioning Oracl
Events . Events racie
——— Filter —— Internet
Directory

Change

e Make Application-Specific

In Figure 4-1:

1.

The Oracle Directory Provisioning Integration Service retrieves the changes to
users and groups from the Oracle Internet Directory change log. It determines
which changes to send to the application.

The Oracle Directory Provisioning Integration Service sends the changes to the
application—using database connect information—by invoking a generic
provisioning interface.

The generic provisioning interface invokes application-specific logic. The
application-specific logic translates the generic provisioning event to one that is
application-specific. It then makes the necessary changes in the application
repository.

Returning Provisioning Information to the Directory

It is now possible to return provisioning information to Oracle Internet Directory.
Figure 4-2 shows the steps involved in this process, which is essentially the reverse of
the provisioning process.

1.

3.

The application repository generates the application event data and sends it to the
Oracle Directory Integration and Provisioning platform.

The Oracle Directory Integration and Provisioning platform filters the event data
and returns the change information to the directory server.

The change is applied in Oracle Internet Directory.

The updated information is stored in Oracle Internet Directory, ready to be accessed by
other applications.

Figure 4-2 How an Application Returns Provisioning Information to Oracle Internet Directory Provisioning

Service

Application

Provisioning-Integrated

Oracle Directory Integration

Application Repository

Consume and Provisioning Platform 9 Make change in
Application Oracle Internet Oracle
_>Event Filter %’ Internet
Directory

Application

o Make Change in

Figure 4-3 on page 4-14 shows the relationship between the services and the
subscribed applications in a provisioning-integrated deployment.

Developing Provisioning-Integrated Applications 4-13

Development Tasks for Provisioning Integration

Figure 4-3 Provisioning Services and Their Subscribed Applications in a Typical Deployment

cn=OracleContext

@dc=acme cn=Products

cn=Users cn=EBusiness

[]
cn= cn= c¢n=

&= Mary Joe Adam

Services

cn=
EBusiness

orclapplicationcommonname=

orclapplicationcommonname=
HRMS

FINANCIALS |

cn= cn= Reference Entries Application
HRMS Financials Identities

Subscription Lists/ \ . — Subscription
LocationPointV cn=subscription_data @ cn=subscription_data ListConptainers

— Service Instance
cn=subscriptions @ cn=subscriptions

cn=Accounts @ cn=Accounts — Subscription
member:Jon member:Jon Lists
member:Mary member:Mary

member:Joe member:Joe

member:Adam member:Adam

Figure 4-3 shows a DIT in which the entries for two services—Oracle Human
Resources and Oracle Financials—point to their corresponding subscription list
containers.

« Oracle Human Resources is represented as
cn=HRNMS, cn=EBusi ness, cn=Ser vi ces, dc=com

It points to its subscription list: cn=Account s, cn=subscri pti on_dat a,
cn=subscri ptions, orcl appl i cat i oncormmpnnane=HRNVS,
cn=EBusi ness, cn=Pr oduct s, cn=0Or acl eCont ext .

« Oracle Financials is represented as
cn=Fi nanci al s, cn=EBusi ness, cn=Ser vi ces, dc=com

It points to its subscription list: cn=Account s, cn=subscri pti on_
dat a, cn=subscri pti ons, or cl appl i cat i oncomonnanme=FI NANCI ALS,
cn=EBusi ness, cn=Pr oduct s, cn=0Or acl eCont ext .

Development Tasks for Provisioning Integration

To develop applications for synchronized provisioning, you perform these general
tasks:

1. Develop application-specific logic to perform provisioning activities in response to
events from the provisioning system.

4-14 Oracle Identity Management Application Developer’'s Guide

Development Tasks for Provisioning Integration

2. Modify application installation procedures to enable the applications to subscribe
to provisioning events.

This section contains these topics:
= Application Installation

« User Creation and Enrollment
« User Deletion

» Extensible Event Definitions

= Application Deinstallation

Application Installation

Modify the installation logic for each application to run a post-installation
configuration tool.

During application installation, the application invokes the Provisioning Subscription
Tool (oi dprovt ool). The general pattern of invoking this tool is:

oi dprovt ool paranil=pl_val ue paranl=p2_val ue paranB=p3_val ue ...

See Also: "Development Usage Model for Provisioning Integration"
on page 4-12 for details of what the post-installation tool should do

User Creation and Enroliment

User Deletion

First, create users in Oracle Internet Directory; then enroll them in the application.

When using either of these interfaces, you must enable the Oracle Directory
Provisioning Integration Service to identify users presently enrolled in the application.
This way, the delete events it sends correspond only to users enrolled in the
application.

Implement the application logic so that the user _exi st s function verifies that a
given user in Oracle Internet Directory is enrolled in the application.

The Oracle Directory Provisioning Integration Service primarily propagates the user
deletion events from Oracle Internet Directory to the various provisioning-integrated
applications.

Using the PL/SQL callback interface, the application registers with the Oracle
Directory Provisioning Integration Service and provides:

« The name of a PL/SQL package the application is using
= The connect string to access that package

The Oracle Directory Provisioning Integration Service in turn connects to the
application database and invokes the necessary PL/SQL procedures.

Figure 4—4 on page 4-16 illustrates system interactions for the PL/SQL callback
interface.

Developing Provisioning-Integrated Applications 4-15

Development Tasks for Provisioning Integration

Figure 4-4 PL/SQL Callback Interface

o

Delete
User
@ Oracle
Oracle Get Changes Directory
Internet P | Provisioning
Directory Integration
Service

(3] (4]

Invoke Invoke
PKG.user_exists() PKG.user_delete()

Provisioning-Integrated
Application

Generic PL/SQL Interface (ProvPkg)

| i Application-Specific PL/SQL Logic

Delete User
from
Application

As Figure 4-4 shows, deleting a user from an application comprises these steps:

1.

The administrator deletes the user in Oracle Internet Directory by using Oracle
Directory Manager or a similar tool.

The Oracle Directory Provisioning Integration Service retrieves that change from
the Oracle Internet Directory change-log interface.

To see if the user deleted from the directory was enrolled for this application, the
Oracle Directory Provisioning Integration Service invokes the user _exi st s()
function of the provisioning event interface of the application.

If the user is enrolled, the Oracle Directory Provisioning Integration Service
invokes the user _del et e() function of the provisioning event interface.

The application-specific PL/SQL logic deletes the user and the related footprint
from the application-specific repository. This step is the responsibility of the
developer.

Extensible Event Definitions

This feature enables you to extend the abilities of the Oracle Directory Provisioning
Integration Service to return predefined sets of provisioning information to
applications. Configure the following events at installation to propagate them to the
appropriate applications.

4-16 Oracle Identity Management Application Developer’'s Guide

Development Tasks for Provisioning Integration

Table 4-1 Extensible Event Definitions

Event Definition

Attribute

Event Object Type
(or cl ODI PPr ovEvent Ohj ect Type)

LDAP Change Type
(or cl ODI PPr ovEvent ChangeType)

Event Criteria
(orcl ODI PProvEventCriteria)

Specifies the type of object the event is associated with—for
example, USER, GROUP, or | DENTI TY.

Indicates what kinds of LDAP operations can generate an
event for this type of object—for example, ADD, MODI FY, or
DELETE)

The additional selection criteria that qualifies an LDAP entry
to be of a specific object type. For example,

Qoj ect cl ass=or cl User V2 means that any LDAP entry
that satisfies this criteria can be qualified as this object type,
and any change to this entry can generate appropriate
event(s).

Application Deinstallation

You must enable the deinstallation logic for each provisioning-integrated application
to run the Provisioning Subscription Tool (oi dpr ovt ool) that unsubscribes the
application from the Oracle Directory Provisioning Integration Service.

LDAP_NTFY Function Definitions

The Oracle Directory Provisioning Integration Service invokes the following callback

functions.

FUNCTION user_exists

A callback function invoked by the Oracle Directory Provisioning Integration Service
to check if a user is enrolled with the application.

Syntax

FUNCTI ON user _exi sts (user_nane I N VARCHAR?,
user _guid I N VARCHAR?,
user _dn I N VARCHAR?2)

Parameters

Table 4-2 Function user_exists Parameters

Parameter Description

user _name User identifier

user _gui d Global user identifier
user_dn DN attribute of the user entry

Return Value

Returns a positive number if the user exists

FUNCTION group_exists

A callback function invoked by the Oracle Directory Provisioning Integration Service
to check whether a group exists in the application.

Syntax

FUNCTI ON group_exi sts (group_nane | N VARCHAR?,

Developing Provisioning-Integrated Applications 4-17

Development Tasks for Provisioning Integration

group_guid I N VARCHAR?,
group_dn IN VARCHAR?2)
RETURN NUMBER;

Parameters

Table 4-3 Function group_exists Parameters

Parameter Description
group_nane Group simple name
group_gui d GUID of the group
group_dn DN of the group entry

Return value
Returns a positive number if the group exists. Returns zero if the group does not exist.

FUNCTION event_ntfy

A callback function invoked by the Oracle Directory Provisioning Integration Service
to deliver change notification events for objects modeled in Oracle Internet Directory.
Currently modify and delete change notification events are delivered for users and
groups in Oracle Internet Directory. While delivering events for an object (represented
in Oracle Internet Directory), the related attributes are also sent along with other
details. The attributes are delivered as a collection (array) of attribute containers,
which are in un-normalized form. This means that, if an attribute has two values, two
rows are sent in the collection.

Syntax

FUNCTI ON event _ntfy (event_type |N VARCHARZ,
event _id I'N VARCHAR?,
event_src | N VARCHAR?,

event _time | N VARCHAR?,

obj ect _name | N VARCHAR?,

obj ect _guid I N VARCHAR?,
object_dn I N VARCHAR?,
profile_id |IN VARCHAR?,
attr_list IN LDAP_ATTR LI ST)
RETURN NUMBER;

Parameters

Table 4-4 Parameters for FUNCTION event_ntfy

Parameter Description

event _type Type of event. Possible values: USER_DELETE, USER_MCDI FY,
GROUP_DELETE, GROUP_MODI FY.

event _id Event id (change log number).

event _src DN of the modifier responsible for this event.

event _tine Time when this event occurred.

obj ect _nane Simple name of the entry.

obj ect _gui d GUID of the entry.

obj ect _dn DN of the entry

4-18 Oracle Identity Management Application Developer’'s Guide

Development Tasks for Provisioning Integration

Table 4-4 (Cont.) Parameters for FUNCTION event_ntfy

Parameter Description
profile_id Name of the Provisioning Agent
attr_|ist Collection of 1dap attributes of the entry

Return Values
Success returns a positive number. Failure returns zero.

Developing Provisioning-Integrated Applications 4-19

Development Tasks for Provisioning Integration

4-20 Oracle Identity Management Application Developer’'s Guide

D

Developing Directory Plug-ins

This chapter explains how to use the plug-in framework for Oracle Internet Directory
to extend LDAP operations.

This chapter contains these topics:

Plug-in Prerequisites

Plug-in Benefits

What Is the Plug-in Framework?
Designing, Creating, and Using Plug-ins
Examples of Plug-ins

Binary Support in the Plug-in Framework
Database Object Types Defined

Specifications for Plug-in Procedures

Plug-in Prerequisites

To develop Oracle Internet Directory plug-ins, you should be familiar with the
following:

Generic LDAP concepts
Oracle Internet Directory
Oracle Internet Directory integration with Oracle Application Server

SQL, PL/SQL, and database RPCs

Plug-in Benefits

To extend the capabilities of the Oracle Internet Directory server, you can write your
own server plug-in. A server plug-in is a PL/SQL package, shared object or library, or
a dynamic link library on Windows NT that contains your own functions. Oracle
supports only PL/SQL plug-ins.

You can extend LDAP operations in the following ways:

You can validate data before the server performs an LDAP operation on the data

You can perform actions (that you define) after the server successfully completes
an LDAP operation

You can define extended operations

Developing Directory Plug-ins 5-1

What Is the Plug-in Framework?

= You can be authenticated through external credential stores
= You can replace an existing server module by defining your own server module

For the last one, you may, for example, implement your own password value checking
and place it into the Oracle Internet Directory server.

On startup, the directory server loads your plug-in configuration and library. It calls
your plug-in functions while processing various LDAP requests.

See Also: The chapter about the password policy plug-in in Oracle
Internet Directory Administrator’s Guide. The chapter contains an
example of how to implement your own password value checking
and place it into the Oracle Internet Directory server.

What Is the Plug-in Framework?

The plug-in framework is the environment in which the plug-in user can develop,
configure, and apply the plug-ins. Each individual plug-in instance is called a plug-in
module.

The plug-in framework includes the following:

= Plug-in configuration tools

» Plug-in module interface

« Plug-in LDAP API (CDS. LDAP_PLUG Npackage)
Follow these steps to use the server plug-in framework:

1. Write a user-defined plug-in procedure. This plug-in module must be written in
PL/SQL.

2. Compile the plug-in module against the same database that serves as the Oracle
Internet Directory backend database.

3. Grant execute permission of the plug-in module to ods_server.

4. Register the plug-in module through the configuration entry interface.

Operation-Based Plug-ins Supported by the Directory

For operation-based plug-ins, there are pre-operation, post-operation, and
when-operation plug-ins.

Pre-Operation Plug-ins

The server calls pre-operation plug-in modules before performing the LDAP
operation. The main purpose of this type of plug-in is to validate data before the data
can be used in the LDAP operation.

When an exception occurs in the pre-operation plug-in, one of the following occurs:

= When the return error code indicates warning status, the associated LDAP request
proceeds.

= When the return code indicates failure status, the request does not proceed.

If the associated LDAP request fails later on, the directory does not roll back the
committed code in the plug-in modules.

5-2 Oracle Identity Management Application Developer’'s Guide

Designing, Creating, and Using Plug-ins

Post-Operation Plug-ins

The Oracle Internet Directory server calls post-operation plug-in modules after
performing an LDAP operation. The main purpose of this type of plug-in is to invoke
a function after a particular LDAP operation is executed. For example, logging and
notification are post-operation plug-in functions.

When an exception occurs in the post-operation plug-in, the associated LDAP
operation is not rolled back.

If the associated LDAP request fails, the post plug-in is still executed.

When-Operation Plug-ins

The directory calls when-operation plug-in modules while performing standard LDAP
operations. The main purpose of this type of plug-in is to augment existing operations
within the same LDAP transaction. If either the LDAP request or the plug-in program

fails, all the changes are rolled back.

There are different types of When-operation plug-ins.
= Add-on
= Replace

You can, for example, use both add-on and replace plug-ins with the Idapcompare
operation. If you use the first type, the directory executes its server compare code and
executes the plug-in module defined by the plug-in developer. If you use the second
type, the directory does not execute its compare code. Instead it relies on the plug-in
module to perform the comparison.

Replace plug-ins are supported only in | dapadd, | dapconpar e, | dapdel et e,
| dapnodi fy, and | dapbi nd. Add-on plug-ins are supported in | dapadd,
| dapdel et e, and | dapnodi fy.

Designing, Creating, and Using Plug-ins

This section contains these topics:
= Designing Plug-ins

= Creating Plug-ins

= Compiling Plug-ins

= Registering Plug-ins

= Managing Plug-ins

= Enabling and Disabling Plug-ins
= Exception Handling

= Plug-in LDAP API

= Plug-ins and Replication

= Plug-in and Database Tools

= Security

= Plug-in Debugging

Developing Directory Plug-ins 5-3

Designing, Creating, and Using Plug-ins

Designing Plug-ins
Use the following guidelines when designing plug-ins:

= Use plug-ins to guarantee that when a specific LDAP operation is performed,
related actions are also performed.

= Use plug-ins only for centralized, global operations that should be invoked for the
program body statement, regardless of which user or LDAP application issues the
statement.

= Do not create recursive plug-ins. For example, creating a PRE_LDAP_BI ND plug-in
that itself issues an | dapbi nd (through the DBMS_LDAP PL/SQL API) statement,
causes the plug-in to execute recursively until it has run out of resources.

Note: Use plug-ins on the LDAP PL/SQL API judiciously. They are
executed for every LDAP request every time the event occurs on
which the plug-in is created.

Types of Plug-in Operations

A plug-in can be associated with | dapbi nd, | dapadd, | dapnodi fy, | dapconpar e,
| dapsear ch, and | dapdel et e operations.

Naming Plug-ins

Plug-in names (PL/SQL package names) must be unique if they share the same
database schema with other plug-ins or stored procedures. But plug-ins can share
names with other database schema objects such as tables and views. This kind of
sharing is not, however, recommended.

Creating Plug-ins

Creating a plug-in module is like creating a PL./SQL package. Both have a
specification part and a body part. The directory, not the plug-in, defines the plug-in
specification because the specification serves as the interface between Oracle Internet
Directory and the custom plug-in.

For security reasons and for the integrity of the LDAP server, you can compile plug-ins
only in the ODS database schema. You must compile them in the database that serves
as the backend database of Oracle Internet Directory.

Package Specifications for Plug-in Module Interfaces

Different plug-ins have different package specifications. As Table 5-1 shows, you can
name the plug-in package. You must, however, follow the signatures defined for each
type of plug-in procedure. See "Specifications for Plug-in Procedures" for details.

Table 5-1 Plug-in Module Interface

Oracle Internet
Plug-in Item User Defined Directory-Defined

Plug-in Package Name X
Plug-in Procedure Name

Plug-in Procedure Signature X

5-4 Oracle Identity Management Application Developer’'s Guide

Designing, Creating, and Using Plug-ins

Table 5-2 names the different plug-in procedures. In addition, it lists and describes the

parameters that these procedures use.

Table 5-2 Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context

Procedure Name

IN Parameters

OUT Parameters

Before | dapbi nd

With | dapbi nd but
replacing the default
server behavior

After | dapbi nd

Before | dapnodi fy
With | dapnodi fy

With | dapnodi fy but
replacing the default
server behavior

After | dapnodi fy

Before | dapconpar e

With | dapconpar e
but replacing the
default server behavior

After | dapconpar e

Before | dapadd
With | dapadd

With | dapadd but
replacing the default
server behavior

After | dapadd
Before | dapdel et e

With | dapdel et e

With | dapdel et e but
replacing the default
server behavior

After | dapdel ete

Before | dapsear ch

PRE_BI ND

WHEN_BI ND_REPLACE

PCST_BI ND

PRE_MODI FY

VWHEN_MODI FY

WHEN_MODI FY_REPLACE

POST_MODI FY

PRE_COMPARE

WHEN_COVPARE
REPLACE

POST_COMPARE

PRE_ADD

WHEN_ADD

WHEN_ADD REPLACE

POST_ADD

PRE_DELETE

WHEN DELETE

WHEN_DELETE

POST_DELETE

PRE_SEARCH

ldapcontext, Bind DN,
Password

ldapcontext, bind
result, DN,
userpassword

ldapcontext, Bind
result, Bind DN,
Password

ldapcontext, DN, Mod
structure

ldapcontext, DN, Mod
structure

ldapcontext, DN, Mod
structure

ldapcontext, Modify
result, DN, Mod
structure

ldapcontext, DN,
attribute, value

ldapcontext, Compare
result, DN, attribute,
value

ldapcontext, Compare
result, DN, attribute,
value

ldapcontext, Entry

ldapcontext, Entry

ldapcontext, Entry

ldapcontext, Add
result, Entry

ldapcontext, DN
ldapcontext, DN

ldapcontext, DN

ldapcontext, Delete
result, DN

ldapcontext, Base DN,
scope, filter

Developing Directory Plug-ins 5-5

return code, error
message

bind result,
return code, error
message

return code, error
message

return code, error
message

return code, error
message

return COde, error
message

return code, error
message

return code, error
message

compare result,
return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return code, error
message

return COde, error
message

return code, error
message

Designing, Creating, and Using Plug-ins

Table 5-2 (Cont.) Operation-Based and Attribute-Based Plug-in Procedure Signhatures

Invocation Context Procedure Name IN Parameters OUT Parameters
After | dapsearch PCOST_SEARCH Ldap context, Search return code, error
result, Base DN, message

scope, filter

See Also:

« "Error Handling" on page 5-10 for valid values for the return code
and error message

= "Specifications for Plug-in Procedures" on page 5-26 for complete
supported procedure signatures

Compiling Plug-ins

Plug-ins are exactly the same as PL/SQL stored procedures. A PL/SQL anonymous
block is compiled each time it is loaded into memory. Compilation consists of these
stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.
2. Semantic checking: Type checking and further processing on the parse tree.
3. Code generation: The pcode is generated.

If errors occur during the compilation of a plug-in, the plug-in is not created. You can
use the SHOW ERRORS statement in SQL*Plus or Enterprise Manager to see any
compilation errors when you create a plug-in, or you can SELECT the errors from the
USER_ERRCRS view.

All plug-in modules must be compiled in the ODS database schema.

Dependencies

Compiled plug-ins have dependencies. They become invalid if an object depended
upon, such as a stored procedure or function called from the plug-in body, is modified.
Plug-ins that are invalidated for dependency reasons must be recompiled before the
next invocation.

Recompiling Plug-ins
Use the ALTER PACKAGE statement to manually recompile a plug-in. For example, the
following statement recompiles the my_plugin plug-in:

ALTER PACKAGE ny_pl ugi n COVPI LE PACKAGE;

Granting Permission

Use the GRANT EXECUTE statement to grant execute permission to ods_server for the
plug-in modules.

Registering Plug-ins

To enable the directory server to call a plug-in at the right moment, you must register
the plug-in with the directory server. Do this by creating an entry for the plug-in under
cn=pl ugi n, cn=subconfi gsubentry.

5-6 Oracle Identity Management Application Developer’'s Guide

Designing, Creating, and Using Plug-ins

The orclPluginConfig Object Class

A plug-in must have or cl Pl ugi nConf i g as one of its object classes. This is a
structural object class, and its super class is t op. Table 5-3 lists and describes its
attributes.

Table 5-3 Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?
cn Plug-in entry name Yes
orcl Pl ugi nAttributeLi st A semicolon-separated list of attribute names ~ No

that controls whether the plug-in takes effect. If
the target attribute is included in the list, then
the plug-in is invoked.

(only for | dapconpar e and
| daprodi fy plug-ins.)

orcl Pl ugi nEnabl e 0 = disable (default) No
1 = enable
orcl Pl ugi nEntryProperties An | dapsear ch filter type value must be No

specified. For example, if we specify

orcl Pl ugi nEntryProperti es:

(&(obj ect cl ass=i net or gper son) (sn=Ce
zanne)), the plug-in is not invoked if the
target entry has obj ect cl ass equal to

i net or gper son and sn equal to Cezanne.

orcl Pl ugi nl sRepl ace 0 = disable (default) No
1 = enable

For WHEN timing plug-in only
orcl Pl ugi nKi nd PL/SQL No

or cl Pl ugi nLDAPQper at i on One of the following values: Yes

| dapconpare
| dapmodi fy
| dapbi nd

| dapadd

| dapdel ete
| dapsearch

orcl Pl ugi nNane Plug-in package name Yes

orcl Pl ugi nRequest G oup A semicolon-separated group list that controls if No
the plug-in takes effect. You can use this group
to specify who can actually invoke the plug-in.

For example, if you specify

orcl pl ugi nrequest group: cn=security,
cn=gr oups, dc=or acl e, dc=comwhen you
register the plug-in, the plug-in will not be
invoked unless the ldap request comes from the
person who belongs to the group
cn=security, cn=groups, dc=oracl e, dc=
com

Developing Directory Plug-ins 5-7

Designing, Creating, and Using Plug-ins

Table 5-3 (Cont.) Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?

orcl Pl ugi nRequest NegG oup A semicolon-separated group list that controls if No
the plug-in takes effect. You can use this group
to specify who cannot invoke the plug-in. For
example, if you specify
or cl pl ugi nrequest gr oup:
cn=security, cn=groups, dc=oracl e, dc=
com when you register the plug-in, the plug-in
is not invoked if the LDAP request comes from
the person who belongs to the group
cn=security, cn=groups, dc=or acl e, dc=
com

orcl Pl ugi nResul t Code An integer value to specify the ldap result code. No
If this value is specified, then plug-in will be
invoked only if the LDAP operation is in that
result code scenario.

This is only for the post plug-in type.

orcl Pl ugi nShar eLi bLocation File location of the dynamic linking library. If No
this value is not present, then Oracle Internet
Directory server assumes the plug-in language
is PL/SQL.

orcl Pl ugi nSubscri ber DNLi st~ A semicolon separated DN list that controls if ~ No
the plug-in takes effect. If the target DN of an
LDAP operation is included in the list, then the
plug-in is invoked.

orcl Pl ugi nTi m ng One of the following values: No

pre
when
post

orcl Pl ugi nType One of the following values: Yes

oper ati onal

attribute

passwor d_pol i cy

synt ax

mat chi ngrul e

See Also: Operation-Based Plug-ins Supported
by the Directory on page 5-2

orcl Pl ugi nVer si on Supported plug-in version number No

Adding a Plug-in Configuration Entry by Using Command-Line Tools

Plug-ins must be added to Oracle Internet Directory server so that the server is aware
of additional operations that must be performed at the correct time.

When the plug-in successfully compiles against the Oracle Internet Directory backend
database, create a new entry and place it under
cn=pl ugi n, cn=subconfi gsubentry.

In the following examples, an entry is created for an operation-based plug-in called
my_pl ugi n1. The LDIF file, my_I di f _fil e.|dif,is as follows:

Example 1
The following is an example LDIF file to create such an object:

cn=when_conp, cn=pl ugi n, cn=subconfi gsubentry

5-8 Oracle Identity Management Application Developer’'s Guide

Designing, Creating, and Using Plug-ins

obj ect cl ass=or cl Pl ugi nConfi g

obj ect cl ass=t op

or ¢l Pl ugi nName=ny_pl ugi nl

orcl Pl ugi nType=oper ati onal

orcl Pl ugi nTi mi ng=when

or ¢l Pl ugi nLDAPOper at i on=| dapconpar e
orcl Pl ugi nEnabl e=1

orcl Pl ugi nVersion=1.0.1

orcl Pl ugi nl sRepl ace=1

cn=when_conp

or ¢l Pl ugi nKi nd=PLSQL

or ¢l Pl ugi nSubscri ber DNLi st =dc=COM c=us; dc=us, dc=or acl e, dc=com dc=or g, dc=us; o=I MC
, c=US

orcl Plugi nAttri but eLi st =user password

Example 2

cn=post _nmod_pl ugi n, cn=pl ugi n, cn=subconfigsubentry
obj ect cl ass=orcl Pl ugi nConfi g

obj ect cl ass=t op

or ¢l Pl ugi nNanme=ny_pl ugi nl1

orcl Pl ugi nType=oper ati onal

orcl Pl ugi nTi m ng=post

or cl Pl ugi nLDAPQper at i on=| dapnodi fy
orcl Pl ugi nEnabl e=1

orcl Pl ugi nVersion=1.0.1

cn=post _nmod_pl ugi n

orcl Pl ugi nKi nd=PLSQL

Add this file to the directory with the following command:
| dapadd -p 389 -h nyhost -D binddn -w password -f ny_Idif _file.ldif

Note: To avoid creating an inconsistent state, the plug-in
configuration entry is not replicated.

Managing Plug-ins

This section explains how to modify and debug plug-ins.

Modifying Plug-ins
Like a stored procedure, a plug-in cannot be explicitly altered. It must be replaced with
a new definition.

When replacing a plug-in, you must include the OR REPLACE option in the CREATE
PACKAGE statement. The OR REPLACE option enables a new version of an existing
plug-in to replace an older version without having an effect on grants made for the
original version of the plug-in.

Alternatively, the plug-in can be dropped using the DROP PACKAGE statement, and
you can rerun the CREATE PACKAGE statement.

If the plug-in name (the package name) is changed, you must register the new plug-in
again.

Developing Directory Plug-ins 5-9

Designing, Creating, and Using Plug-ins

Debugging Plug-ins
You can debug a plug-in using the same facilities available for PL/SQL stored
procedures.

Enabling and Disabling Plug-ins

To turn the plug-in on or off, modify the value of or cl Pl ugi nEnabl e in the plug-in
configuration object. For example, modify the value of or cl Pl ugi nEnabl e in
cn=post _nod_pl ugi n, cn=pl ugi ns, cn=subconfi gsubentry tobe 1 or 0.

Exception Handling

Each of the procedures in a PL/SQL plug-in must have an exception handling block
that handles errors intelligently and, if possible, recovers from them.

Error Handling

Oracle Internet Directory requires that the return code (r ¢) and error message
(er r meQ) be set correctly in the plug-in procedures.

Table 54 provides the values that are valid for the return code.

Table 5-4 Valid Values for the Plugin-in Return Code

Error Code Description
0 Success
Any number greater than Failure

Zero

-1 Warning

The er r nsg parameter is a string value that can pass a user’s custom error message
back to Oracle Internet Directory server. The size limit for er r msg is 1024 bytes. Each
time Oracle Internet Directory runs the plug-in program, it examines the return code
to determine if it must display the error message.

If, for example, the value for the return code is 0, the error message value is ignored. If
the value of the return code is - 1 or greater than zero, the following message is either
logged in the log file or displayed in standard output if the request came from LDAP
command-line tools:

| dap addition info: custom zed error

Program Control Handling between Oracle Internet Directory and Plug-ins
Table 5-5 shows where plug-in exceptions occur and how the directory handles them.

Table 5-5 Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

PRE_BI ND, PRE_MODI FY, Depends on return code. If the return code is:
PRE_ADD, PRE_SEARCH,
PRE_COVPARE, PRE_
DELETE

= Greater than zero (error), then no LDAP operation is
performed

. - 1 (warning), then proceed with the LDAP operation

5-10 Oracle Identity Management Application Developer’'s Guide

Designing, Creating, and Using Plug-ins

Table 5-5 (Cont.) Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

POST_BI ND, POST_ LDAP operation is completed. There is no rollback.
MODI FY, POST_ADD,

POST_SEARCH, WHEN _

DELETE

VWHEN_MODI FY, WHEN_ Rollback the LDAP operation
ADD, WHEN_DELETE

Table 5-6 shows how the directory responds when an LDAP operation fails.

Table 5-6 Program Control Handling when an LDAP Operation Fails

LDAP Operation Fails in Oracle Internet Directory Server Handling

PRE_BI ND, PRE_MODI FY, Pre-operation plug-in is completed. There is no rollback.
PRE_ADD, PRE_SEARCH,
VWHEN_DELETE

POST_BI ND, POST_ Proceed with post-operation plug-in. The LDAP operation
MODI FY, POST_ADD, result is one of the | N parameters.

POST_SEARCH, WHEN

DELETE

WHEN_MCDI FY, WHEN When types of plug-in changes are rolled back.
ADD, WHEN_DELETE

VHEN Changes made in the plug-in program body are rolled back.

Plug-in LDAP API

There are different methods for providing API access:

= Enable a user to utilize the standard LDAP PL/SQL APIs. Note though that, if
program logic is not carefully planned, an infinite loop in plug-in execution can
result.

= Oracle Internet Directory provides the Plug-in LDAP APIL. This plug-in does not
cause a series of plug-in actions in the directory server if there are plug-ins
configured and associated with the LDAP request.

In the Plug-in LDAP API, the directory provides APIs for connecting back to the
directory server designated in the plug-in module. You must use this API if you want
to connect to the server that is executing the plug-in. If you want to connect to an
external server, you can use the DBMS_LDAP APIL

Within each plug-in module, an | dapcont ext is passed from the Oracle directory
server. When the Plug-in LDAP APl is called, | dapcont ext is passed for security and
binding purposes. When binding with this | dapcont ext, Oracle Internet Directory
recognizes that the LDAP request is coming from a plug-in module. For this type of
plug-in bind, the directory does not trigger any subsequent plug-ins. It handles the
plug-in bind as a super-user bind. Use this plug-in bind with discretion.

See Also: "Plug-in LDAP API Specifications" on page 5-13

Plug-ins and Replication

These cases can cause an inconsistent state in a replication environment:

= Plug-in metadata replicated to other nodes

Developing Directory Plug-ins 5-11

Designing, Creating, and Using Plug-ins

Changes to directory entries by plug-in programs or other LDAP operations
Plug-in installation on only some of the participating nodes

Implementation in the plug-in of extra checking that depends on the directory
data

Plug-in and Database Tools

Bulk tools do not support server plug-ins.

Security

Some Oracle Internet Directory server plug-ins require that you supply the code that
preserves tight security. For example, if you replace the directory’s | dapconpar e or
| dapbi nd operation with your own plug-in module, you must ensure that your
implementation of this operation does not omit any functionality on which security
relies.

To ensure tight security, the following must be done:

Create the plug-in packages
Only the LDAP administrator can restrict the database user

Use the access control list (ACL) to set the plug-in configuration entries to be
accessed only by the LDAP administrator

Be aware of the program relationship between different plug-ins

Plug-in Debugging

Use the plug-in debugging mechanism for Oracle Internet Directory to examine the
process and content of plug-ins.The following commands control the operation of the
server debugging process.

To set up plug-in debugging, run this command:

% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdsu. pl s

To enable plug-in debugging, run this command:

% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdon. pl s

After enabling plug-in debugging, you can use this command in the plug-in
module code:

pl g_debug(’ debuggi ngnessage’) ;

The resulting debug message is stored in the plug-in debugging table.
To disable debugging, run this command:

% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdof. pl s

To display the debug messages that you put in the plug-in module, run this
command:

% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdsh. pl s

To delete all of the debug messages from the debug table, run this command:

% sql pl us ods/ password @ORACLE/ | dap/ adni n/ oi dspdde. pl s

5-12 Oracle Identity Management Application Developer’'s Guide

Examples of Plug-ins

Plug-in LDAP API Specifications

Here is the package specification that Oracle Internet Directory provides for the
Plug-in LDAP APIL:

CREATE OR REPLACE PACKAGE LDAP_PLUG N AS
SUBTYPE SESSION |'S RAW 32);

- Initializes the LDAP library and return a session handl er
- for use in subsequent calls.
FUNCTI ON i nit (Idappluginctx I N ODS. pl ugi ncont ext)

RETURN SESSI ON,

-- Synchronously authenticates to the directory server using
- a Distingui shed Nane and password.
FUNCTI ON si npl e_bi nd_s (I dappl ugi nctx I N ODS. pl ugi ncont ext,
I d I N SESSI ON)
RETURN PLS | NTEGER;

- Get requester info fromthe plugin context
FUNCTI ON get _requester (I dappluginctx I N ODS. pl ugi ncont ext)
RETURN VARCHAR?;
END LDAP_PLUG N,

Examples of Plug-ins

This section presents two sample plug-ins. One logs all | dapsear ch commands. The
other synchronizes two directory information trees (DITs).

Example 1: Search Query Logging

Situation: A user wants to know if it is possible to log all of the | dapsear ch
commands.

Solution: Yes. The user can use the post | dapsear ch operational plug-in for this
purpose. They can either log all of the requests or only those that occur under the DNs
being searched.

To log all the | dapsear ch commands:

1. Logall of the | dapsear ch results into a database table. This log table has these
columns:

= timestamp

= baseDN

= search scope

= search filter

= required attribute

= search result

Use this SQL script to create the table:

drop table search_l og;
create table search_log
(tinmestanp varchar2(50),
basedn varchar2(256)
sear chscope nunber (1
r

)
searchfilter varchar2(256);

Developing Directory Plug-ins 5-13

Examples of Plug-ins

searchresult nunber(1));

drop tabl e sinple_tab;

create table sinple_tab (id NUMBER(7), dunp varchar?2(256));
DROP sequence seq;

CREATE sequence seq START W TH 10000;

commi t;

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUG N _EXAVPLELl AS
PROCEDURE post _sear ch
(1 dappl ugi ncontext IN CDS. pl ugi ncont ext,

resul t IN | NTEGER,
baseDN IN VARCHAR2,
scope IN | NTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc QUT | NTEGER,

errormsg QUT VARCHAR2
);
END LDAP_PLUG N_EXAMPLEL;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUG N_EXAMPLE1 AS
PROCEDURE post _sear ch
(1 dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER,
baseDN IN VARCHAR?,
scope IN | NTEGER,

filterStr IN VARCHARZ,
requi redAttr IN ODS.strCollection,
rc QUT | NTEGER
errormsg QUT VARCHAR2

)

BEG N

I NSERT | NTO sinple_tab VALUES
(to_char(sysdate, 'Mnth DD, YYYY HH24:M:SS'), baseDN, scope, filterStr,
result);

-- The follow ng code segnent denonstrate how to iterate

-- the ODS.strColl ection

FOR | _counterl IN 1..requiredAttr. COUNT LOOP

I NSERT | NTO si npl e_tab
val ues (seq.NEXTVAL, 'req attr ' || |_counterl || ' =" |]
requiredAttr(l _counterl));

IS

END LOOP;
rc :=0;
errornsg : = 'no post_search plugin error nsg';
COW T,
EXCEPTI ON
WHEN ot hers THEN
rc .= 1,
errornsg : = 'exception: post_search plguin';
END;
END LDAP_PLUG N_EXAMPLEL;
/

4. Grant permission to ods_ser ver.

5-14 Oracle Identity Management Application Developer’'s Guide

Examples of Plug-ins

GRANT EXECUTE ON LDAP_PLUG N_EXAMPLE1 TO ods_server;

5. Register the plug-in entry in Oracle Internet Directory.

cn=post _sear ch, cn=pl ugi n, cn=subconfi gsubentry
obj ect cl ass=orcl Pl ugi nConfi g

obj ect cl ass=t op

orcl Pl ugi nName=I dap_pl ugi n_exanpl el
orcl Pl ugi nType=oper at i onal

orcl Pl ugi nTi m ng=post

or cl Pl ugi nLDAPQper at i on=| dapsear ch
orcl Pl ugi nEnabl e=1

orcl Pl ugi nVersion=1.0.1

cn=post _search

orcl Pl ugi nKi nd=PLSQL

Using the | dapadd command-line tool to add this entry:

% | dapadd —p port_nunber -h host_name -D bind_dn —-w passwd —-v —f register_
post _search.|dif

Example 2: Synchronizing Two DITs

Situation: There are two interdependent products under cn=Pr oduct s,

cn=or acl econt ext . This interdependency extends down to the users in these
products’ containers. If a user in the first DIT (product 1) is deleted, the corresponding
user in the other DIT (product 2) must be deleted.

Is it possible to set a trigger that, when the user in the first DIT is deleted, calls or
passes a trigger to delete the user in the second DIT?

Solution: Yes, we can use the post | dapdel et e operation plug-in to handle the
second deletion occurring in the second DIT.

If the first DIT has the naming context of

cn=DI T1, cn=pr oduct s, cn=or acl econt ext and the second DIT has the naming
context of cn=DI T2, cn=pr oduct s, ch=or acl econt ext, the two users share the
same ID attribute. Inside of the post | dapdel et e plug-in module, we can use LDAP_
PLUGQ Nand DBMS_LDAP APIs to delete the user in the second DIT.

We must set or ¢l Pl ugi nSubscri ber DNLi st to

cn=Dl T1, cn=pr oduct s, cn=or acl econt ext, so that whenever we delete entries
under cn=DI T1, cn=pr oduct s, cn=or acl econt ext, the plug-in module is
invoked.

Developing Directory Plug-ins 5-15

Examples of Plug-ins

Note: When you use a post | dapnodi fy plug-in to synchronize
changes between two Oracle Internet Directory nodes, you cannot
push all the attributes from one node to the other. This is because the
changes (mod structure) captured in the plug-in module include
operational attributes. These operational attributes are generated on
each node and cannot be modified by using the standard LDAP
methods.

When writing your plug-in program, exclude the following
operational attributes from synchronization: aut hPasswor d,
creat orsnamne, creat eti mest anp, nodi fi er snane,

nodi fyti mest anp, pwdchangedt i me, pwdf ai | ureti ne,
pwdaccount | ockedti ne, pwdexpi rat i onwar ned, pwdr eset,
pwdhi st ory, pwdgr aceuseti ne.

The following attributes are used the most in the deployment
environment and should be excluded from synchronization first:
pwdchangedt i me, pwdf ai | ur et i me, aut hpassword,
pwdaccount | ockedti ne.

1. Assume that the entries under both DITs have been added to the directory. For
example, the entry i d=12345, cn=DI T1, cn=pr oduct s, cn=or acl econt ext is
in DI T1, and i d=12345, cn=DI T2, cn=pr oduct s, cn=or acl econt ext isin
Dl T2.

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUG N_EXAMPLE2 AS
PROCEDURE post _del ete

(1 dappl ugi ncontext IN CDS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHARZ,

rc OUT | NTEGER,

errornmsg OUT VARCHAR2

)
END LDAP_PLUG N_EXAMPLE2;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUG N_EXAMPLE2 AS
PROCEDURE post _del ete

(1 dappl ugi ncontext IN CDS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHARZ,

re OUT | NTEGER,

errormsg OUT VARCHAR2

)

IS
retval PLS | NTECER;
my_session DBMS_LDAP. sessi on;
newDN VARCHAR2(256) ;
BEG N
retval = -1

my_session := LDAP_PLUG N.init (I dappl ugi ncontext);
- bind to the directory

retval := LDAP_PLUG N. si npl e_bi nd_s(| dappl ugi ncontext, ny_session);
- if retval is not 0, then raise exception

newbN : = REPLACE(dn, ‘DITl', ‘DIT2");

5-16 Oracle Identity Management Application Developer’'s Guide

Examples of Plug-ins

retval := DBMS_LDAP. del ete_s(my_session, newDN);
-- if retval is not 0, then raise exception

rc :=0;
errornsg := 'no post_delete plguin error nsg';
EXCEPTI ON
WHEN ot hers THEN
rc :=1;
errornsg : = 'exception: post_delete plguin';
END;

END LDAP_PLUG N_EXAMPLE2;
/
(1 dappl ugi ncontext IN ODS. pl ugi ncont ext,
resul t IN | NTEGER,
dn IN VARCHAR?,
rc OUT | NTEGER,
errornmsg OUT VARCHAR2
)
IS
retval PLS | NTEGER;
my_session DBMS_LDAP. sessi on;
newDN VARCHAR2(256) ;
BEG N
retval = -1
my_session := LDAP_PLUG N. i nit (I dappl ugi ncont ext);
-- bind to the directory
retval := LDAP_PLUGQ N. si npl e_bi nd_s(| dappl ugi ncont ext, my_session);
-- if retval is not 0, then raise exception
newDN : = REPLACE(dn, ‘DIT1l", ‘DIT2");
retval := DBMS_LDAP. del ete_s(my_session, newDN);
-- if retval is not 0, then raise exception

rc :=0;
errornsg : = 'no post_delete plguin error nsg';
EXCEPTI ON
VHEN ot hers THEN
rc :=1;
errormsg : = 'exception: post_delete plguin';
END;

END LDAP_PLUG N_EXAMPLEZ;
/

Register the plug-in entry with Oracle Internet Directory.
Construct the LDIF filer egi st er _post _del ete. | dif:

cn=post _del et e, cn=pl ugi n, cn=subconfi gsubentry
obj ect cl ass=or cl Pl ugi nConfi g

obj ect cl ass=t op

or cl Pl ugi nName=I dap_pl ugi n_exanpl e2

orcl Pl ugi nType=oper at i onal

orcl Pl ugi nTi m ng=post

orcl Pl ugi nLDAPQper at i on=| dapdel et e

orcl Pl ugi nEnabl e=1

orcl Pl ugi nSubscri ber DNLi st =cn=DI T1, cn=or acl econt ext, cn=pr oduct s
orcl Pl ugi nVersion=1.0.1

cn=post _del ete

orcl Pl ugi nKi nd=PLSQL

Use the | dapadd command-line tool to add this entry:

% | dapadd —p port_nunber -h host_nane -D bind_dn -w passwd —-v —f register_
post _del ete.ldif

Developing Directory Plug-ins 5-17

Binary Support in the Plug-in Framework

Binary Support in the Plug-in Framework

Starting with release 10.1.2, object definitions in the Plug-in LDAP API enable

| dapnodi fy, | dapadd, and | dapconpar e plug-ins to access binary attributes in the
directory database. Formerly, only attributes of type VARCHAR2 could be accessed.
These object definitions do not invalidate plug-in code that precedes release 10.1.2. No
change to this code is required. The new definitions appear in the section "Database
Object Types Defined".

The section that you are reading now examines binary operations involving the three
types of plug-ins. It includes examples of these plug-ins. The new object definitions
apply to pre, post, and when versions of all three.

Note that the three examples use RAW functions and variables in place of LOBs.

Binary Operations with Idapmodify

The modobj object that the plug-in framework passes to an | daprodi f y plug-in now
holds the values of binary attributes as bi nval s. This variable is a table of
bi nval obj objects.

The plug-in determines whether a binary operation is being performed by examining
the oper at i on field of nodobj . It checks whether any of the values DBMS_

LDAP. MOD_ADD, DBMS_LDAP. MOD_DELETE, and DBMS_LDAP. MOD_REPLACE are
paired with DBM5S_LDAP. MOD_BVALUES. The pairing DBM5_LDAP. MOD_ADD+DBMS
LDAP. MOD_BVALUES, for example, signifies a binary add in the modify operation.

The example that follows shows a post | dapnodi f y plug-in modifying an entry in
another directory. The plug-in is invoked after | dapnodi f y applies the same change
to the same entry in the plug-in directory. The entry in the other directory appears
under the DIT cn=user s, dc=us, dc=acne, dc=com

create or replace package noduser as
procedure post_modi fy(| dappl ugi ncontext I N ODS. pl ugi ncont ext,

result INinteger,
dn IN varchar2,
nods | N ODS. nodl i st,
rc QUT integer,
errornsg OUT varchar?2);

end noduser;

/

show error

CREATE OR REPLACE PACKAGE BODY noduser AS
procedure post_nodi fy(| dappl ugi ncontext I N ODS. pl ugi ncont ext,
result INinteger,
dn I N varchar2,
nods | N ODS. nmodl i st,
rc QUT integer,
errornsg QUT varchar2)

counterl pls_integer;

counter2 pls_integer;

retval pls_integer := -1;

user _sessi on DBVS_LDAP. sessi on;

user _dn var char (256);

user_array DBMS_LDAP. nod_array;

user_val s DBVS_LDAP. string_col | ection;
user _binval s DBVS_LDAP. bl ob_col | ecti on;
| dap_host varchar (256);

5-18 Oracle Identity Management Application Developer’'s Guide

Binary Support in the Plug-in Framework

| dap_port varchar (256);
| dap_user varchar (256);
| dap_passwd var char (256);

begin
| dap_host := '"backup. us.oracle.coni;
| dap_port := '4000";
| dap_user :='cn=orcladnin’;
| dap_passwd : = 'wel cone’;

pl g_debug(’ START MODI FYI NG THE ENTRY');

-- CGet a session
user_session := dbns_| dap.init(ldap_host, |dap_port);

-- Bind to the directory
retval := dbns_| dap. sinpl e_bind_s(user_session, |dap_user,
| dap_passwd) ;

-- Create a nod_array
user _array := dbns_| dap. create_nod_array(nods. count);

-- Create a user_dn
user _dn := substr(dn,1,instr(dn,’,’,1,1))|| cn=users, dc=us, dc=acne,
dc=comi ;

pl g_debug(’ THE CREATED DN IS ’ || user_dn);

-- Iterate through the nodlist
for counterl in 1..nods.count |oop

-- Log the attribute name and operation
if (mods(counterl).operation > DBVS_LDAP. MOD BVALUES) then
pl g_debug(’ THE NAME OF THE BI NARY ATTR. IS '||nods(counterl).type);
el se
pl g_debug(’ THE NAVE OF THE NORMAL ATTR IS ' || nods(counterl).type);
end if;
pl g_debug(’ THE OPERATION IS ' | | nods(count er1). operation);

-- Add the attribute values to the collection
for counter2 in 1..nmods(counterl).vals.count |oop
user _val s(counter2) := nods(counterl).val s(counter2).val;
end | oop;

-- Add the attribute values to the collection
for counter2 in 1..nmods(counterl). binvals.count |oop
pl g_debug(’ THE NO. OF BYTES OF THE BI NARY ATTR. VALUE IS’
| | mods(counterl).binval s(counter?2).length);
user _binval s(counter2) := nods(counterl).binval s(counter?2).binval;
end | oop;

-- Populate the nod_array accordingly with binary/normal attributes

if (mods(counterl).operation >= DBVS_LDAP. MOD BVALUES) then
dbns_| dap. popul ate_nmod_array(user _array, nods(counter1).operation -
DBVS_LDAP. MOD_BVALUES, nods(count er1).type, user _binval s);
user _binval s. del et e;

el se
dbns_| dap. popul ate_nmod_array(user_array, nods(counter1). operation,
mods(counterl).type, user_vals);
user _val s. del ete;

end if;

Developing Directory Plug-ins 5-19

Binary Support in the Plug-in Framework

end | oop;

- Mdify the entry

retval := dbms_| dap. nodi fy_s(user_session, user_dn, user_array);
if retval = 0 then

rc :=0;

errornsg: = 'No error occured while nodifying the entry’;
el se

rc :=retval;

errornsg := 'Error code '||rc||’ while nmodifying the entry’;
end if;

- Free the mod_array
dbns_| dap. free_nod_array(user_array);

pl g_debug(’ FI NI SHED MODI FYI NG THE ENTRY') ;

exception
VWHEN ot hers THEN
pl g_debug (SQLERRM;
end;
end noduser;
/
show error

exit;

Binary Operations with Idapadd

The ent r yobj object that the plug-in framework passes to an | dapadd plug-in now
holds binary attributes as bi nat t r . This variable is a table of bi nat t r obj objects.
The example that follows shows a post-add plug-in propagating a change (an added
user) in the plug-in directory to another directory. In the latter directory, the entry
appears under the DIT cn=user s, dc=us, dc=acne, dc=com

create or replace package adduser as
procedure post_add(| dappl ugi ncontext IN ODS. pl ugi ncont ext,

result INinteger,
dn IN varchar2,
entry IN ODS. entryobj,
rc QUT integer,
errornsg OUT varchar?2);

end adduser;

/

show error

CREATE OR REPLACE PACKAGE BODY adduser AS
procedure post_add(| dappl ugi ncontext IN ODS. pl ugi ncont ext,
result INinteger,
dn I N varchar2,
entry IN ODS. entryobj,
rc QUT integer,
errornsg QUT varchar2)

counterl pls_integer;

counter2 pls_integer;

retval pls_integer := -1;

s integer;

user _sessi on DBVS_LDAP. sessi on;

5-20 Oracle Identity Management Application Developer’'s Guide

Binary Support in the Plug-in Framework

us
us
us
us
I d
I d
I d
| d
begin
I d
I d
I d
I d

pl

er_dn varchar (256);

er_array DBMS_LDAP. mod_array;

er_vals DBVS_LDAP. string_collection;
er_binval s DBVS_LDAP. bl ob_col | ecti on;
ap_host varchar (256);

ap_port varchar(256);

ap_user varchar (256);

ap_passwd var char (256);

ap_host := 'backup. us.oracle.con;
ap_port :="'4000";

ap_user :='cn=orcladmn’;
ap_passwd : = 'wel cone’;

g_debug(’ START ADDI NG THE ENTRY');

CGet a session
user_session := dbns_| dap.init(ldap_host, |dap_port);

Bind to the directory
retval := dbns_| dap. sinple_bind_s(user_session, |dap_user, |dap_passwd);

Create a nod_array
user _array := dbns_| dap.create_nod_array(entry. binattr.count +
entry.attr.count);

Create a user_dn

user_dn := substr(dn,1,instr(dn,’,’,1,1))|| cn=users, dc=us, dc=acne,
dc=coni ;

pl g_debug(’ THE CREATED DN IS ' | | user_dn);

Popul ate the nmod_array with binary attributes
for counterl in 1..entry.binattr.count |oop
for counter2 in 1..entry.binattr(counterl).binattrval.count |oop
pl g_debug(’ THE NAME OF THE BI NARY ATTR IS ']
entry.binattr(counterl).binattrnane);
s .= dbms_| ob. getl ength(entry. binattr(counterl).
binattrval (counter2));
pl g_debug(’ THE NO. OF BYTES OF THE BINARY ATTR. VALUE IS '|]|s);
user _binval s(counter2) := entry.binattr(counterl).
binattrval (counter2);
end | oop;
dbns_| dap. popul ate_rmod_ar ray(user_array, DBVMS_LDAP. MOD_ADD,
entry. binattr(counterl).binattrname, user_binvals);
user _binval s. del ete;
end | oop;

Popul ate the mod_array with attributes
for counterl in 1..entry.attr.count |oop
for counter2 in 1..entry.attr(counterl).attrval.count |oop
pl g_debug(’ THE NORMAL ATTRIBUTE '||entry.attr(counterl).attrnanme||’
HAS THE VALUE '||entry.attr(counterl).attrval (counter2));
user _val s(counter2) := entry.attr(counterl).attrval (counter2);
end | oop;
dbns_| dap. popul at e_nmod_ar ray(user _array, DBVS_LDAP. MOD_ADD,
entry.attr(counterl).attrnane, user_vals);
user _val s. del ete;
end | oop;

Add the entry

Developing Directory Plug-ins 5-21

Binary Support in the Plug-in Framework

retval := dbms_| dap. add_s(user_session, user_dn, user_array);
pl g_debug(’ THE RETURN VALUE IS ' ||retval);
if retval = 0 then

rc :=0;

errornmsg: = 'No error occured while adding the entry’;
el se

rc :=retval;

errornmsg : = 'Error code "||rc||’ while adding the entry’;
end if;

- Free the mod_array
dbns_| dap. free_nod_array(user_array);
retval := dbms_| dap. unbi nd_s(user_session);

pl g_debug(’ FI NI SHED ADDI NG THE ENTRY');

exception
VWHEN ot hers THEN
pl g_debug (SQLERRM;
end;
end adduser;
/
show error

exit;

Binary Operations with Idapcompare

The | dapconpar e plug-in can use three new overloaded module interfaces to
compare binary attributes. If you want to use these interfaces to develop a plug-in
package that handles both binary and nonbinary attributes, you must include two
separate procedures in the package. The package name for both procedures is the
same because only one or ¢l Pl ugi nNanme can be registered in the plug-in entry.

After updating an existing plug-in package to include a procedure that compares
binary attributes, reinstall the package. Recompile packages that depend on the
plug-in package.

The three new interfaces look like this:

PROCEDURE pre_conpare (I dappl ugi ncontext I N ODS. plugi ncontext,

dn | N VARCHAR2,
attrnane I' N VARCHAR2,
attrval I'N BLOB,

re QUT | NTEGER,

errornsg QUT VARCHAR?);

PROCEDURE when_conpar e_repl ace (| dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t QUT | NTEGER,
dn I N VARCHAR?,
attrnane I'N VARCHARZ,
attrval I N BLOB,

rc QUT | NTEGER,

errornmsg QUT VARCHARZ);

PROCEDURE post _conpare (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t I N | NTEGER,
dn I N VARCHAR2,
attrnane I N VARCHAR2,
attrval I N BLOB,

5-22 Oracle Identity Management Application Developer’'s Guide

Binary Support in the Plug-in Framework

rc QUT | NTEGER
errormsg QUT VARCHARZ);

The example that follows compares a binary attribute of an entry in the plug-in
directory with a binary attribute of an entry in another directory. This package replaces
the compare code of the server with the compare code of the plug-in. The package
handles both binary and nonbinary attributes. As such it contains two separate
procedures.

create or replace package conpareattr as
procedure when_conpare_repl ace(l dappl ugi ncontext |N ODS. pl ugi ncont ext,
result OUT integer,
dn I N varchar2,
attrname | N VARCHAR2,
attrval | N BLOB,
rc QUT integer,
errornsg OUT varchar?2);
procedure when_conpare_repl ace(l dappl ugi ncontext I'N ODS. pl ugi ncont ext,
result OUT integer,
dn IN varchar2,
attrname | N VARCHAR2,
attrval IN varchar2,
rc QUT integer,
errornmsg OUT varchar?2);
end conpareattr;
/
show error

CREATE OR REPLACE PACKAGE BODY conpareattr AS
procedure when_conpare_repl ace(l dappl ugi ncontext I'N ODS. pl ugi ncont ext,
result OUT integer,
dn IN varchar2,
attrname | N VARCHAR2,
attrval IN varchar2,
rc QUT integer,
errornmsg OUT varchar2)
is
pos I NTEGER : = 2147483647,
begin
pl g_debug(’ START");
pl g_debug(’ THE ATTRNAME IS '||attrnane||’ AND THE VALUE IS '||attrval);
pl g_debug(’ END);
rc :=0;
errormsg := "No error!!!’;
exception
VHEN ot hers THEN
pl g_debug (' Unknown UTL_FILE Error’);
end;

procedure when_conpar e_repl ace(l dappl ugi ncontext I'N ODS. pl ugi ncont ext,
result QUT integer,
dn I'N varchar2,
attrname IN VARCHAR2,
attrval I'N BLOB,
rc QUT integer,
errornsg OUT varchar2)
is
counter pls_integer;
retval pls_integer := -1;
cnp_result integer;

Developing Directory Plug-ins 5-23

Binary Support in the Plug-in Framework

s integer;

user_sessi on DBMS_LDAP. sessi on;
user_entry DBMS_LDAP. nessage;

user _nessage DBMS_LDAP. nessage;

user _dn var char (256);

user_attrs DBMS_LDAP. string_col | ection;
user _attr_name VARCHAR2(256);

user _ber_elnt DBMS_LDAP. ber el ement;
user _val s DBMS_LDAP. bl ob_col | ecti on;
| dap_host varchar (256);

| dap_port varchar(256);

| dap_user varchar (256);

| dap_passwd varchar (256) ;

| dap_base varchar (256);

begin
| dap_host := "backup. us.oracle.coni;
| dap_port := '4000";
| dap_user := 'cn=orcladnin’;
| dap_passwd : = 'wel cone’;

| dap_base : = dn;
pl g_debug(’ STARTI NG COVMPARI SON | N WHEN REPLACE PLUG IN);

s := dbms_| ob. getlength(attrval);
pl g_debug(’ THE NUMBER OF BYTES OF ATTRVAL '||s);

-- Get a session
user_session := dbns_|l dap.init(ldap_host, Idap_port);

-- Bind to the directory
retval := dbms_| dap. sinpl e_bind_s(user_session, |dap_user, |dap_passwd);

-- issue the search

user _attrs(1l) := attrnane;

retval := DBMS_LDAP. search_s(user_session, |dap_base,
DBVS_LDAP. SCOPE_BASE,
" obj ectcl ass=*",
user_attrs,
0,
user _message) ;

-- Get the entry in the other QD server
user_entry := DBMS_LDAP.first_entry(user_session, user_nessage);

-- Log the DN and the Attribute name
user _dn := DBMS_LDAP. get _dn(user_sessi on, user_entry);
pl g_debug(’ THE DN IS ' || user_dn);
user_attr_nane := DBMS_LDAP.first_attribute(user_session,user_entry,
user_ber_elnt);

-- Get the values of the attribute
user _val s := DBMS_LDAP. get _val ues_bl ob(user_session, user_entry,
user _attr_name);

-- Start the binary conparison between the ATTRVAL and the attribute
-- val ues
if user_vals.count > 0 then
for counter in user_vals.first..user_vals.last |oop
cnp_result := dbns_| ob. conpare(user _val s(counter),attrval,
dbns_| ob. getl engt h(user_val s(counter)), 1,1);

5-24 Oracle Identity Management Application Developer’'s Guide

Database Object Types Defined

if cnp_result =0 then
rc :=0;
- Return LDAP_COVPARE_TRUE
result := 6;
pl g_debug(’ THE LENGTH OF THE ATTR. '||user_attr_name||’ IN THE
ENTRY IS ' || dbis_| ob. get | engt h(user _val s(counter)));
errormsg := 'NO ERROR. THE COVPARI SON HAS SUCCEEDED. ' ;
pl g_debug(errormsg);
pl g_debug(’ FI Nl SHED COVPARI SON) ;
return;

end if;

end | oop;
end if;

rc .= 1,
-- Return LDAP_COVPARE_FALSE
result :=5;
errormsg : = 'ERROR. THE COVPARI SON HAS FAI LED.’;
pl g_debug(’ THE LENGTH OF THE ATTR ' ||user_attr_name||’ IN THE ENTRY IS’
| | dbns_I ob. get | engt h(user _val s(user _val s.last)));
pl g_debug(errornsg);
pl g_debug(’ FI Nl SHED COVPARI SON) ;

- Free user_vals
dbns_| dap. val ue_free_bl ob(user_val s);
exception
VHEN ot hers THEN
pl g_debug (SQERRM;
end;
end conpareattr;
/
show error

exit;

Database Object Types Defined

This section defines the object types introduced in the Plug-in LDAP API. All of these
definitions are in Oracle Directory Server database schema. Note that the API includes
object types that enable plug-ins to extract binary data from the database.

create or replace type strCollection as TABLE of VARCHAR2(512);
/

create or replace type pluginContext as TABLE of VARCHAR2(512);
/

create or replace type attrval Type as TABLE OF VARCHAR2(4000);
/

create or replace type attrobj as object (

attrname var char 2(2000),

attrval attrval Type

)

/

create or replace type attrlist as table of attrobj;

/

create or replace type binattrval Type as TABLE OF BLCB;

/

create or replace type binattrobj as object (

bi nattrname var char 2(2000),

bi nattrval bi nattrval Type

)

Developing Directory Plug-ins 5-25

Specifications for Plug-in Procedures

/

create or replace type binattrlist as table of binattrobj;
/

create or replace type entryobj as object (

entrynane var char 2(2000),
attr attrlist,
binattr binattrlist

);
/
create or replace type entrylist as table of entryobj;
/

create or replace type bval obj as object (

I ength i nt eger,

val var char 2(4000)

)

/

create or replace type bvallist as table of bval obj;
/

create or replace type binval obj as object (

| ength i nteger,

bi nval bl ob

)

/

create or replace type binvallist as table of binvalobj;
/

create or replace type nodobj as object (

operation i nteger,

type var char 2(256),
val s bval | i st,

bi nval s bi nval I'i st

);
/
create or replace type nodlist as table of modobj;

Specifications for Plug-in Procedures

When you use the plug-ins, you must adhere to the signature defined for each of them.
Each signature is provided here.

PROCEDURE pre_add (I dappl ugi ncontext IN CDS. pl ugi ncont ext,

dn IN VARCHARZ,
entry IN ODS. entryobj,
re OUT | NTECER,
errornsg OUT VARCHAR?) ;

PROCEDURE when_add (| dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHAR?,
entry IN ODS.entryobj,
rc QUT | NTEGER,
errormsg OUT VARCHAR?) ;

PROCEDURE when_add_repl ace (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHARZ,
entry IN ODS.entryobj,
rc OUT | NTECGER,
errornsg QUT VARCHAR?) ;

5-26 Oracle Identity Management Application Developer’'s Guide

Specifications for Plug-in Procedures

PROCEDURE post _add (| dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHARZ,
entry IN ODS.entryobj,
rc OUT | NTECER,
errornsg QOUT VARCHAR?) ;

PROCEDURE pre_nodi fy (Idapplugincontext IN ODS. plugi ncontext,

dn IN VARCHARZ,
mods IN ODS. nodl i st,
rc OUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE when_nodi fy (I dappl ugi ncontext IN QDS. pl ugi ncont ext,

dn IN VARCHAR?,
nods IN ODS. nodlist,
rc OUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE when_nodi fy_repl ace (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
dn IN VARCHAR2,

nods IN ODS. nodlist,
rc OUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE post _nodi fy (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHARZ,
mods IN ODS. nmodli st,
rc OUT | NTEGER,
errormsg OUT VARCHAR?) ;
PROCEDURE pre_conpare (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
dn IN VARCHARZ,
attrname IN VARCHARZ,
attrval IN VARCHAR2,

rc OUT | NTECGER,
errormsg QUT VARCHAR2

)

PROCEDURE pre_conpare (I dappl ugi ncontext I N ODS. pl ugi ncont ext,

dn I N VARCHARZ,
attrnane I'N VARCHAR2,
attrval I N BLOB,

re QUT | NTEGER,
errornsg QUT VARCHARZ);

PROCEDURE when_conpar e_repl ace (| dappl ugi ncontext IN ODS. pl ugi ncont ext,
resul t QUT | NTEGER,

dn IN VARCHAR2,
attrname IN VARCHARZ2,
attrval IN VARCHAR?,
rc QUT | NTEGER,

errornsg QUT VARCHAR2

)

Developing Directory Plug-ins 5-27

Specifications for Plug-in Procedures

PROCEDURE when_conpar e_repl ace (| dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t QUT | NTEGER,

dn I'N VARCHAR2,

attrnane I N VARCHAR2,

attrval I'N BLOB,

rc QUT | NTEGER,

errornsg QUT VARCHAR2);

PROCEDURE post _conpare (I dappl ugi ncontext IN CDS. pl ugi ncont ext,
resul t IN | NTEGER

dn IN VARCHAR?,

attrname IN VARCHAR?2,

attrval IN VARCHAR2,

rc OUT | NTEGER,

errormsg QUT VARCHAR2

);

PROCEDURE post _conpare (| dappl ugi ncontext IN ODS. pl ugi ncont ext,
resul t I N | NTEGER,

dn I'N VARCHAR?,

attrnane I N VARCHAR2,

attrval I N BLOB,

rc OUT | NTECGER,

errornsg QUT VARCHAR?);

PROCEDURE pre_del ete (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
dn IN VARCHAR?,

rc QUT | NTEGER,

errornsg QUT VARCHAR2

)

PROCEDURE when_del ete (I dappl ugi ncontext IN QDS. pl ugi ncont ext,

dn IN VARCHARZ,

rc OUT | NTEGER,

errornsg OUT VARCHAR2

)

PROCEDURE when_del ete_repl ace (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
dn IN VARCHARZ,

rec OUT | NTECER,

errornsg OUT VARCHAR2

)

PROCEDURE post _del ete (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER,
dn IN VARCHAR2,
rc QOUT | NTEGER,
errormsg QUT VARCHAR?

)

PROCEDURE pre_search (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

baseDN IN VARCHARZ,
scope IN | NTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc QUT | NTEGER,
errormsg QUT VARCHAR2

)

5-28 Oracle Identity Management Application Developer’'s Guide

Specifications for Plug-in Procedures

PROCEDURE post _search (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
resul t IN | NTEGER,

baseDN IN VARCHARZ,
scope IN | NTECER,
filterStr IN VARCHAR?,
requi redAttr IN ODS. strCollection,
re OUT | NTECER,
errormsg QUT VARCHAR2

)

PROCEDURE pre_bi nd (I dappl ugi ncontext |IN ODS. pl ugi ncont ext,
dn IN VARCHARZ,

passwd IN VARCHAR2,
rc OUT | NTEGER,
errormsg QUT VARCHAR2

)

PROCEDURE when_bi nd_repl ace (| dappl ugi ncontext |N ODS. pl ugi ncont ext,
resul t QUT | NTEGER,

dn IN VARCHARZ,
passwd IN VARCHAR?,
rc QUT | NTEGER,
errormsg QUT VARCHAR2

)

PROCEDURE post _bi nd (| dappl ugi ncontext I N ODS. pl ugi ncont ext,
resul t IN | NTEGER,

dn IN VARCHARZ,
passwd IN VARCHAR2,
rc OUT | NTECGER,
errormsg QUT VARCHAR2

E

Developing Directory Plug-ins 5-29

Specifications for Plug-in Procedures

5-30 Oracle Identity Management Application Developer’'s Guide

6

Integrating with Oracle Delegated
Administration Services

This chapter explains how to integrate applications with Oracle Delegated
Administration Services. This Web tool enables you to more easily develop tools for
administering application data in the directory.

It contains the following sections:
= What Is Oracle Delegated Administration Services?
= Integrating Applications with the Delegated Administration Services

« Java APIs Used to Access URLs

What Is Oracle Delegated Administration Services?

Oracle Delegated Administration Services consists of a set of pre-defined, Web-based
service units for performing directory operations on behalf of users. These units enable
directory users to update their own information.

The delegated administration services provide most of the functionality that
directory-enabled applications require. You can use the service units to create user and
group entries, search for entries, and change user passwords.

You can embed delegated administration service units in your applications. If, for
example, you are building a Web portal, you can add service units that enable users to
change application passwords stored in the directory. Each service unit has a
corresponding URL stored in the directory. At runtime, an application can find the
URL by querying the directory.

Figure 6-1 Overview of Delegated Administration Services

User

- . Authenticati
— DAS-Integrated uthentication Single
_qQU__ > Application [F=====*" > Sign-on

.®
Url Authgntication
Redirection A \e

. User / Group
DAS Services Information Igtrearﬂgt
Units <—> "
Directory

Integrating with Oracle Delegated Administration Services 6-1

Integrating Applications with the Delegated Administration Services

How Applications Benefit from Oracle Delegated Administration Services

An application based on Oracle Delegated Administration Services is more advanced
than one based on earlier types of APIs. First, an application developed using the
service units is language independent because the units are Web based. This means
that the application can handle input and requests from any type of user or
application, eliminating the need for a costly custom solution or configuration. Second,
Oracle Delegated Administration Services comes with the Oracle Internet Directory
Self-Service Console, a GUI development tool that automates many of the
directory-oriented application requirements (such as Create, Edit, and Delete). Third,
Oracle Delegated Administration Services is integrated with Oracle Application Server
Single Sign-On. The application is automatically authenticated by the single sign-on
server. This means that the application can query the directory on a user’s behalf.

Integrating Applications with the Delegated Administration Services
This section contains these topics:
= Integration Profile

= Oracle Delegated Administration Services Integration Methodology and
Considerations

Integration Profile

An application integrated with Oracle Delegated Administration Services has the
following characteristics:

« Itis a Web-based GUI
= Itis integrated with Oracle Application Server Single Sign-On through mod_osso.

= It has operations that it must perform by way of a signed-on user. It can perform
these operations using Oracle Delegated Administration Services.

= It has users or groups stored in Oracle Internet Directory and can use Oracle
Delegated Administration Services for user and group management.

= It runs on the Oracle Application Server infrastructure or middle-tier. The
discovery mechanism for the service URLs is inaccessible otherwise.

Oracle Delegated Administration Services Integration Methodology and Considerations

Table 6-1 on page 6-3 identifies the tasks that are required to integrate an application
with Oracle Delegated Administration Services.

6-2 Oracle Identity Management Application Developer’'s Guide

Integrating Applications with the Delegated Administration Services

Table 6-1 Considerations for Integrating an Application with Oracle Delegated
Administration Services

Point in Application
Lifecycle Considerations

Application design time Examine the various services that Oracle Delegated
Administration Services provides. Identify integration points
within the application GUIL

Make code changes to pass parameters to the Oracle Delegated
Administration Services self-service units and to process return
parameters from Oracle Delegated Administration Services.

Introduce code in the bootstrap and installation logic to
dynamically discover the location of Oracle Delegated
Administration Services units from configuration information
in Oracle Internet Directory. To do this, use Oracle Internet
Directory Service Discovery APIs.

Application installation Determine the location of Oracle Delegated Administration
time Services units and store them in local repository.
Application runtime Display Oracle Delegated Administration Services URLs in

application GUI shown to users.

Pass the appropriate parameters to the Oracle Delegated
Administration Services by using URL encoding.

Process return codes from Oracle Delegated Administration
Services through the URL return.

Ongoing administrative Provide the capability to refresh the location of Oracle

activities Delegated Administration Services and its URLs in the
administrator screens. Do this in case the deployment moves
the location of Oracle Delegated Administration Services after
the application has been installed.

Use Case 1: Create User

This use case shows how to integrate the Create User unit with a custom application.
In the custom application page, Create User is shown as a link.

1. Identify the base URL for Oracle Delegated Administration Services by using this
Java API string:

baseUr| = Util.get DASUrl (ctx, DASURL_BASE).

This API returns the base URL in this form: ht t p: / / host _nane: port/
2. Get the URL for the Cr eat e User unit by using this string:
relUl = Uil.getDASUrl (ctx , DASURL_CREATE USER)

The return value is the relative URL to access the Create User unit.

The specific URL is the information needed to generate the link dynamically for
the application.

You can customize the parameters in Table 6-2 on page 6-4 for this unit.

Integrating with Oracle Delegated Administration Services 6-3

Integrating Applications with the Delegated Administration Services

Table 6-2 URL Parameters for Oracle Delegated Administration Services

Parameter Description

honeURL The URL that is linked to the global button Home in the Oracle
Delegated Administration Services unit. When the calling
application specifies this value, you can click Home to redirect
the Oracle Delegated Administration Services unit to the URL
specified by this parameter.

doneURL This URL is used by Oracle Delegated Administration Services
to redirect the Oracle Delegated Administration Services page
at the end of each operation. In the case of Create User, once
the user is created, clicking OK redirects the URL to this
location.

cancel URL This URL is linked with all the Cancel buttons shown in Oracle
Delegated Administration Services units. Any time the user
clicks Cancel, the page is redirected to the URL specified by
this parameter.

enabl ePA This parameter takes a Boolean value of true or false. This will
enable the Assign Privileges section in a User or Group
operation. If enabl ePAis passed with value of true in the
Create User page, then the Assign Privileges to User section
will also appear on the Create User Page.

3. Build the link with the parameters set to the following values:

baseUrl = http://acme. mydonai n. com 7777/

rel Url = oiddas/ui/oracl e/l dap/ das/adni n/ AppCr eat eUser | nf oAdni n
homeURL = http://acne. mydomai n. cont nyapp

cancel URL = http://acne. mydonai n. cont nyapp

doneURL = http://acme. nydomai n. cont nyapp

enabl ePA = true

The complete URL looks like this:

http://acme. mydonai n. com 7777/ oi ddas/ ui / or acl e/ | dap/ das/ adni n/
AppCr eat eUser | nf oAdmi n?homeURL=ht t p: / / acne. nydonai n. conf myappé&
cancel URL=htt p: // acme. nydomai n. cont nyapp&

doneURL=htt p: // acne. nydomai n. con nyapp&

enabl ePA=t rue

4. You can now embed this URL in the application.

Use Case 2: User LOV

List of Values (LOV) is implemented using JavaScript to invoke and pass values
between the LOV calling window and the LOV page. The application invoking the
LOV needs to open a popup window using JavaScript. Because Java scripts have
security restrictions, no data may cross domains. Due to this limitation, only pages in
the same domain can access the LOV units.

Base and relative URLs can be invoked the same way as they are for Create User.
Sample files are located at:

ORACLE_HOME/ | dap/ das/ sanpl es/ | ov
The samples illustrate how the LOV can be invoked and data can be passed between

the calling application and the Oracle Delegated Administration Services unit. A
Complete illustration of the LOV invocation is beyond the scope of this chapter.

6-4 Oracle Identity Management Application Developer’'s Guide

Java APIs Used to Access URLs

Java APIs Used to Access URLs

Java APIs can be used to discover URLs for Oracle Delegated Administration Services.
More details about these APIs are provided in Chapter 3, "Developing Applications
with Oracle Extensions to the Standard APIs" and in Chapter 12, "DAS_URL Interface
Reference". The API functions that address URL discovery are

get DASUr | (Di r Context ctx, String url TypeDN) and

get Al | DASUr | (Di r Cont ext ctx).

Integrating with Oracle Delegated Administration Services 6-5

Java APIs Used to Access URLs

6-6 Oracle Identity Management Application Developer’'s Guide

v

Developing Applications for Single Sign-On

This chapter explains how to develop applications to work with mod_osso. The
chapter contains the following topics:

= What Is mod_osso?
= Protecting Applications Using mod_osso: Two Methods
= Developing Applications Using mod_osso

= Security Issues: Single Sign-Off and Application Logout

What Is mod_osso?

In OracleAS release 10.1.2, you use mod_osso, an authentication module on the Oracle
HTTP Server, to enable applications for single sign-on. mod_osso is a simple
alternative to the single sign-on SDK, used in earlier releases to integrate partner
applications. mod_osso simplifies the authentication process by serving as the sole
partner application to the single sign-on server. By doing so, it renders authentication
transparent for OracleAS applications.

After authenticating users, mod_osso transmits the simple header values that
applications need to validate them. These include the following:

= User name
« User GUID
= Language and territory

Table 7-1 lists all of the user attributes that mod_osso passes to applications. The table
also recommends attributes to use as keys, or handles, to retrieve additional user
attributes from Oracle Internet Directory.

Table 7-1 User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?
Osso- User-Quid Single sign-on user’s Single sign-on user’s Recommended.
globally unique user ID globally unique user ID
(GUID). (GUID).
Osso- Subscri ber - Gui d Realm GUID. Realm entry in Oracle Recommended.

Internet Directory.

Developing Applications for Single Sign-On 7-1

Protecting Applications Using mod_osso: Two Methods

Table 7-1 (Cont.) User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?
Renot e- User User nickname as entered ~ Single sign-on login page. = Recommended for
by user on the login page. pre-9.0.4 applications only.
Gsso- Subscri ber User-friendly name fora Realm entry in Oracle Not recommended. Use
realm. Internet Directory. GUID headers to perform

Accept - Language

user searches in Oracle
Internet Directory.

Language and territory in ~ Single sign-on server. Not applicable.
ISO format.

mod_osso interoperates only with the Oracle HTTP listener. You can use OracleAS
SSO Plug-in to protect applications that work with third-party listeners such as Sun
One and IIS. To learn how to use OracleAS SSO Plug-in, see the appendix about this
tool in Oracle HTTP Server Administrator’s Guide.

Protecting Applications Using mod_osso: Two Methods

mod_osso redirects the user to the single sign-on server only if the URL you request is
configured to be protected. You can secure URLs in one of two ways: statically or
dynamically. Static directives simply protect the application, ceding control over user
interaction to mod_osso. Dynamic directives not only protect the application, they also
enable it to regulate user access.

This section contains the following topics:
= Protecting URLs Statically
= Protecting URLs with Dynamic Directives

Protecting URLs Statically

You can statically protect URLs with mod_osso by applying directives to the mod_
0sso0. conf file. This file is found at ORACLE_HQOVE/ Apache/ Apache/ conf . In the
example that follows, a directory named / pri vat e, located just below the Oracle
HTTP Server document root, is protected by this directive:

<| f Modul e mod_osso. ¢>

<Location /private>
Aut hType Basic
require valid-user
</ Locati on>

</ | f Modul e>

After making the entry, restart the Oracle HTTP Server:
ORACLE_HOVE/ opmm/ bi n/ oprmct| restartproc type=ohs

Finally, populate the directory with pages and then test them. For example:
http://host:port/private/helloworld. htn

Protecting URLs with Dynamic Directives

Dynamic directives are HTTP response headers that have special error codes that
enable an application to request granular functionality from the single sign-on system

7-2 Oracle Identity Management Application Developer’'s Guide

Developing Applications Using mod_osso

without having to implement the intricacies of the single sign-on protocol. Upon
receiving a directive as part of a simple HTTP response from the application, mod_
0sso creates the appropriate single sign-on protocol message and communicates it to
the single sign-on server.

OracleAS supports dynamic directives for Java servlets and JSPs. The product does not
currently support dynamic directives for PL/SQL applications.

Table 7-2 lists commonly requested dynamic directives.

Table 7-2 Commonly Requested Dynamic Directives

Directive Status Code Headers

Request Authentication 401,499 -

Request Forced 499 Osso- Paranoi d: true
Authentication

Single Sign-Off 470 Gsso- Ret urn- URL

This is the URL to return to
after single sign-off is
complete

Developing Applications Using mod_osso

This section explains how to write and enable applications using mod_osso. The
section contains the following topics:

Developing Statically Protected PL/SQL Applications
Developing Statically Protected Java Applications
Developing Java Applications That Use Dynamic Directives
A Word About Non-GET Authentication

Developing Statically Protected PL/SQL Applications

What follows is an example of a simple mod_osso-protected application. This
application logs the user in to the single sign-on server, displays user information, and
then logs the user out of both the application and the single sign-on server.

Use the following steps to write and enable a PL/SQL application using mod_osso.

1.

Create the schema where application procedure will be loaded.

sql pl us sys/sys_password as sysdba
create user schema_nane identified by schema_password;
grant connect, resource to schema_nane;

Load the following procedure into the schema and grant the public access to the
procedure:

create or replace procedure show user_info

is
begi n
begi n
htp.init;
exception
when others then null;
end;
ht p. ht ml Open;

ht p. bodyQpen;

Developing Applications for Single Sign-On 7-3

Developing Applications Using mod_osso

htp.print(’<h2>Wel come to Oracle Single Sign-On</h2>");
htp.print(’'<pre>);
htp.print(’ Renote user: '

|| owa_util.get_cgi_env(’ REMOTE_USER));
htp.print(’'User DN: ’

|| owa_util.get_cgi_env(’ Gsso-User-Dn'));
htp.print(’User Guid: '

|| owa_util.get_cgi_env(’ Csso-User-Guid));
htp. print (' Subscri ber:

|| owa_util.get_cgi_env(’ Gsso-Subscriber’));
htp. print(’ Subscriber DN '

|| owa_util.get_cgi_env(’ Gsso-Subscriber-Dn"));
htp. print(’ Subscriber Guid: '

|| owa_util.get_cgi_env(’ Csso-Subscriber-cuid));
htp.print('</pre>');
htp.print(’<a href=/osso_l ogout?’

||" p_done_url=http://ny.oracle.conmpLogout </ a>");

ht p. bodyd ose;
htp. ht m C ose;
end show_user _info;
/
show errors;

grant execute on show_user_info to public;

3. Create a database access descriptor (DAD) for the application in the dads. conf
file, located at ORACLE_HOVE/ Apache/ nodpl sql / conf:

<Location /pl s/ DAD_nane>
Set Handl er pl s_handl er
O der deny, al | ow
Al l owOverride None
Pl sql Dat abaseConnect Stri ng host nane: port: SI D

Pl sql Dat abasePasswor d schema_passwor d

Pl sql Dat abaseUser nane schenma_nane

Pl sql Def aul t Page schema_nane. show_user _i nfo

Pl sql Docunent Tabl enanme schema_name. wwdoc_docunent

Pl sgl Docunent Pat h docs

Pl sql Docunent Procedur e schema_name. wwdoc_pr ocess. process_
downl oad

Pl sgl Aut henti cati onMode Basi ¢

Pl sql Pat hAl i as url

Pl sql Pat hAl i asProcedure schema_name. wwpt h_api _al i as. process_
downl oad

Pl sql Sessi onCooki eNane schema_narme

Pl sql Cd Envi r onnent Li st OSSO USER- DN

Pl sql Cd Envi ronnent Li st OSSO USER- QUI D

Pl sql Cd Envi ronnent Li st OSSO SUBSCRI BER

Pl sql Cd Envi ronnent Li st OSSO SUBSCRI BER- DN

Pl sql Cd Envi ronnent Li st OSSO SUBSCRI BER- GUI D

</ Locati on>

4. Protect the application DAD by entering the following lines in the nmod_
0sso0. conf file:

<Location /pl s/ DAD nanme>
require valid-user
aut hType Basic

</ Locati on>

7-4 Oracle Identity Management Application Developer’'s Guide

Developing Applications Using mod_osso

Note: The assumption here is that mod_osso is already configured
for single sign-on. This step is performed when OracleAS is installed.

Restart the Oracle HTTP Server:

http://host:port/private/helloworld. htn

To test whether the newly created functions and procedures are protected by
mod_osso, try to access them from a browser:

http://host:port/pls/DAD schema_name. show_user _info

Selecting the URL should invoke the single sign-on login page if nod_osso. conf

has been configured properly and mod_osso is registered with the single sign-on
server.

Developing Statically Protected Java Applications

Use the following steps to write and enable a servlet or JSP application using mod_
0550:

1.

Write the JSP or servlet. Like the PL/SQL application example immediately
preceding, the simple servlet that follows logs the user in, displays user
information, and then logs the user out.

inport java.io.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**

* Exanpl e servlet showing howto get the SSO User infornation
*|

public class SSOProtected extends HttpServlet
{

public void service(HtpServlet Request request,
Ht t pSer vl et Response response)
throws | CException, ServletException

response. set Cont ent Type("text/htm");

/1 Show aut henticated user informationsingle sign-on
PrintWiter out = response.getWiter();
out. println("<h2>Wel cone to Oracle Single Sign-On</h2>");
out.println("<pre>");
out.println("Renote user: "

+ request . get Renot eUser ()) ;
out.println("Osso-User-Dn: "

+ request. get Header (" Gsso-User-Dn"));
out.println("Osso-User-Guid: "

+ request. get Header (" Osso-User-Quid"));
out. println("Osso-Subscriber: "

+ request. get Header (" Osso- Subscriber"));
out.println("Osso-User-Dn: "

+ request. get Header (" Gsso-User-Dn"));
out.println("Osso-Subscriber-Dn: "

+ request. get Header (" Osso- Subscri ber-Dn"));
out. println("Osso-Subscriber-Guid: "

Developing Applications for Single Sign-On 7-5

Developing Applications Using mod_osso

+ request. get Header (" Osso- Subscri ber-Qui d"));
out.println("Lang/ Territory: "

+ request . get Header (" Accept - Language")) ;
out.println("</pre>");
out.println("<a href=/o0sso_| ogout ?"

+"p_done_url =http://ny. oracl e. compLogout </ a>") ;

2. Protect the servlet by entering the following lines in the nbd_osso. conf file:

<Location /servlet>
require valid-user
aut hType Basic

</ Location>

3. Deploy the servlet. If you need help, see the overview chapter in Oracle Application
Server Containers for J2EE Servlet Developer’s Guide. This chapter provides an
example of a servlet and shows how to deploy it.

4. Restart the Oracle HTTP Server and OC4]J:

ORACLE_HOVE/ opmm/ bi n/ opmmct| restartproc type=ohs
ORACLE_HOVE/ opmm/ bi n/ oprmct| st opproc type=oc4j
ORACLE_HOVE/ opnm/ bi n/ opmmct| startproc type=oc4j

5. Test the servlet by trying to access it from the browser. Selecting the URL should
invoke the login page.

The process is this: when you try to access the servlet from the browser, you are
redirected to the single sign-on server for authentication. Next you are redirected
back to the servlet, which displays user information. You may then select the
logout link to log out of the application as well as the single sign-on server.

Developing Java Applications That Use Dynamic Directives

Applications that use dynamic directives require no entry in mod_o0sso. conf because
mod_osso protection is written directly into the application as one or more dynamic
directives. The servlets that follow show how such directives are incorporated. Like
their "static" counterparts, these sample "dynamic" applications generate user
information.

This section covers the following topics:
= Java Example #1: Simple Authentication
= Java Example #2: Single Sign-Off

« Java Example #3: Forced Authentication

Java Example #1: Simple Authentication

This servlet uses the r equest . get Renpt eUser () method to check the mod_osso
cookie for the user name. If the user name is absent, the servlet issues dynamic
directive 499, a request for simple authentication. The key lines are in boldface.
inport java.io.*;

inport javax.servlet.*,;

inport javax.servlet.http.*;

/**

* Exanpl e servlet showi ng how to use
* Dynanmic Directive for login
*/

7-6 Oracle Identity Management Application Developer’'s Guide

Developing Applications Using mod_osso

public class SSODynLogin extends HttpServl et
{

public void service(HtpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException

{
String | _user = null;
Il Try to get the authenticate user name
try
{
| _user = request. get RenoteUser();
}
cat ch(Exception e)
{
| _user = null;
}
/1 1f user is not authenticated then generate
/1 dynanic directive for authentication
if((l_user == null) || (I_user.length() <= 0))
{
response. sendError (499, "Oracle SSO');
}
el se
{
/1 Show aut henticated user information
response. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();
out.println("<h2>Wel come to Oracle Single Sign-On</h2>");
out.println("<pre>");
out.println("Renote user: "
+ request . get Renot eUser ()) ;
out.println("GOsso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out.println("Csso-User-cuid: "
+ request. get Header (" Osso- User-Quid"));
out. println("Osso-Subscriber: "
+ request. get Header (" Osso- Subscriber"));
out.println("GOsso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out.println("Csso-Subscriber-Dn: "
+ request. get Header (" Gsso- Subscri ber-Dn"));
out.println("Osso-Subscriber-Guid: "
+ request. get Header (" Gsso- Subscri ber-Qui d"));
out.println("Lang/ Territory: "
+ request . get Header (" Accept - Language")) ;
out.println("</pre>");
}
}

Note: If Oracle JAAS Provider is used, the directive code 401 may be
substituted for 499.

Developing Applications for Single Sign-On 7-7

Developing Applications Using mod_osso

Java Example #2: Single Sign-Off

This servlet is invoked when users select the login link within an application. The
application sets the URL to return to when sign-off is complete; then it issues a
directive that sends users to the single sign-off page. The key lines are in boldface.

inport java.io.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**
* Exanpl e servlet showi ng how to use

* Dynamic Directive for |ogout
*
/

public class SSODynLogout extends HttpServl et
{
public void service (HttpServletRequest request,
Ht t pSer vl et Response response)
throws ServletException, |COException

/] Set the return URL

response. set Header (" Csso- Return-Url ",
“http://ny.oracle.com);

/1 Send Dynanic Directive for |ogout

response. sendError (470, "Oracle SSO');

Note: Alternatively, you can redirect to the 0sso_| ogout URL on
that computer.

Java Example #3: Forced Authentication

If logged-in users have exceeded a timeout, an application can force them to
reauthenticate. The directive for reauthentication is written into the servlet that
follows. The key lines are in boldface.

inport java.io.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**
* Exanpl e servlet showi ng how to use

* Dynamic Directive for forced |ogin
*/

public class SSODynForcedLogi n extends HttpServl et
{

public void service(HtpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException

String | _user = null;

[l Try to get the authenticate user name
try

{

}

| _user = request. get RenoteUser();

7-8 Oracle Identity Management Application Developer’'s Guide

Security Issues: Single Sign-Off and Application Logout

cat ch(Exception e)
{

}

| user = null;

Il 1f the user is authenticated then show
/] user information; otherw se generate Dynamc
/] Directive for forced | ogin

if(l_user I'=null)
{
/1 Show aut henticated user information
PrintWiter out = response.getWiter();
response. set Content Type("text/htm");
out.println("<h2>Wel come to Oracle Single Sign-On. </ h2>");
out.println("<pre>");
out.println("Renote user: "
+ request . get Renot eUser ()) ;
out.println("GOsso-User-Dn: "
+ request. get Header (" OCsso- User-Dn"));
out.println("Csso-User-Quid: "
+ request. get Header (" Osso- User-Quid"));
out. println("Osso-Subscriber: "
+ request. get Header (" Osso- Subscriber"));
out.println("GOsso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out.println("Csso-Subscriber-Dn: "
+ request. get Header (" Gsso- Subscri ber-Dn"));
out.println("Osso-Subscriber-Guid: "
+ request. get Header (" Gsso- Subscri ber-Qui d"));
out.println("Lang/ Territory: "
+ request . get Header (" Accept - Language")) ;
out.println("</pre>");
}
el se
{
response. set Header (" Osso- Paranoi d", "true");
response. sendError (499, "Oracle SSO');
}

A Word About Non-GET Authentication

The first page of a mod_osso-protected application must be a URL that uses the GET
authentication method. If the POST method is used, the data that the user provides
when logging in is lost during redirection to the single sign-on server. When deciding
whether to enable the global user inactivity timeout, please note that users are
redirected after timing out and logging in again.

Security Issues: Single Sign-Off and Application Logout

If you build custom applications using OracleAS, note the following: when global
logout, or single sign-off, is invoked, only the single sign-on and mod_osso cookies are
cleared. This means that an OracleAS application must be coded to store single sign-on
user and realm names in either the OC4] session or in the application session. The
application must then compare these values to those passed by mod_osso. If a match
occurs, the application must show personalized content. If no match occurs, which

Developing Applications for Single Sign-On 7-9

Security Issues: Single Sign-Off and Application Logout

means that the mod_osso cookie is absent, the application must clear the application
session and force the user to log in.

This section covers the following topics:
= Application Login: Code Examples
= Application Logout: Recommended Code

Application Login: Code Examples

The first two code examples in this section do not incorporate the logic prescribed in
the section immediately preceding. The third example does incorporate this logic.
Although these are Java examples, they could be examples written in other languages
such as Perl, PL/SQL, and CGI.

Bad Code Example #1

[l Get user name from application session. This session was
/'l established by the application cookie or OC4J session cookie
String username = request.get Session().getAttribute(’ USER NAMVE);

/1 Get subscriber name from application session. This session was
/'l established by the application cookie or OC4J session cooki e.
String subscriber = request.getSession().getAttribute(’ SUBSCRI BER NAME');

/1 Get user security information fromapplication session. This session was
established by the application cookie or OC4J session cookie
String user_sec_info = request.getSession().getAttribute(’ USER APP_SEC);

if((username !'= null) && (subscriber!= null))

/'l Show personal i zed user content
show_personal i zed_page(usernanme, subscriber, user_sec_info);

}
el se
{
/1 Send Dynanic Directive for login
response. sendError(499, "Oracle SSO');
Bad Code Example #2

/1 Get SSO usernane fromhttp header
String usernane = request.get RenoteUser();

/1 Cet subscriber name from SSO http header
String subscriber = request. get Header (' OSSO SUBSCRI BER') ;

/1 Get user security information fromapplication session.
Il This session was established by the application or OC4J session.
String user_sec_info =request.getSession().getAttribute(’ USER_APP_SEC);

i f((ssousernanme != null)&&(subscriber!= null))

{

/'l Show personal i zed user content
show_personal i zed_page(user name, subscriber, user_sec_info);

}
el se

/1 Send Dynanic Directive for login
response. sendError(499, "Oracle SSO');

7-10 Oracle Identity Management Application Developer’'s Guide

Security Issues: Single Sign-Off and Application Logout

Recommended Code

[l Get user name from application session. This session was
/'] established by the application or OC4J session
String usernane = request.getSession().getAttribute(’ USER NAME');

/] Get subscriber name from application session. This session was
/1 established by the application or OCAJ session
String subscriber = request.getSession().getAttribute(’ SUBSCRI BER NAME');

Il Get user security information fromapplication session.
Il This session was established by the application or OC4J session.
String user_sec_info = request.getSession().getAttribute(’ USER APP_SEC);

[l Get username and subscriber name from JAZN APl */

JAZNUser Adapt or jaznuser = (JAZNUser Adaptor)requset.getUserPrincipal ();
String ssousername = jaznuser.get Nane();
String ssosubscriber = jaznuser.getReal n(). get Nane();

/1 1f you are not using JAZN api then you can also get the usernane and
/1 subscriber name from nod_osso headers

String ssousernane = request. get RenoteUser();

String ssosubscriber = request. get Header (' OSSO SUBSCRI BER') ;

/1 Check for application session. Create it if necessary.
if((username == null) || (subscriber == null))
{
...Code to create application session. Get the user informtion from
JAZN api (or nod_osso headers if you are not using JAZN api) and popul ate the
application session with user, subscriber, and user security info.

}
i f((username != null)&&(subscriber !'= null)
&&(ssousernane != null)&&(ssosubscriber = null)
&&(user nane. equal sl gnor eCase(ssousernane) == 0)
&&(subscri ber. equal sl gnor eCase(ssosubscriber) == 0))

{

/'l Show personal i zed user content
show_personal i zed_page(user name, subscriber, user_sec_info);

}

el se

{

...Code to Wpe-out application session, followed by...

/1 Send Dynanic Directive for login
/1 1f you are using JAZN then you should use fol | owi ng code
/'l response. sendError(401);

[l 1f you are not using JAZN api then you should use foll owi ng code
/'l response.sendError(499, "Oacle SSO');

}

Application Logout: Recommended Code

Most applications that authenticate users have a logout link. In a
single-sign-on-enabled application, the user invokes the dynamic directive for logout
in addition to other code in the logout handler of the application. Invoking the logout

Developing Applications for Single Sign-On 7-11

Security Issues: Single Sign-Off and Application Logout

directive initiates single sign-off, or global logout. The example that follows shows
what single sign-off code should look like in Java.

/I Clear application session, if any

String | _return_url :=return url to your application
response. set Header ("GOsso-Return-Url", | _return_url);
response. sendError(470, "Oracle SSO');

7-12 Oracle Identity Management Application Developer’'s Guide

Part I

Oracle Internet Directory Programming

Reference

Part II presents the standard APIs and the Oracle extensions to these APIs. It contains
these chapters:

Chapter 8, "C API Reference"

Chapter 9, "DBMS_LDAP PL/SQL Reference"
Chapter 10, "Java API Reference"

Chapter 11, "'DBMS_LDAP_UTL PL/SQL Reference"
Chapter 12, "DAS_URL Interface Reference"

Chapter 13, "Provisioning Integration API Reference"

38

C API Reference

This chapter introduces the Oracle Internet Directory C API and provides examples of
how to use it.

The chapter contains these topics:

= About the Oracle Internet Directory C API

= Functions in the C API

= Sample C API Usage

« Required Header Files and Libraries for the C API
= Dependencies and Limitations of the C API

About the Oracle Internet Directory C API

The Oracle Internet Directory SDK C API is based on LDAP Version 3 C API and
Oracle extensions to support SSL.

You can use the Oracle Internet Directory API 10g Release 2 (10.1.2) in the following
modes:

= SSL—AIl communication secured by using SSL
« Non-SSL—Client/server communication not secure

The API uses TCP/IP to connect to a directory server. When it does this, it uses, by
default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL
call interface. You determine which mode you are using by the presence or absence of
the SSL calls in the API usage. You can easily switch between SSL and non-SSL modes.

See Also: "Sample C API Usage" on page 8-41 for more details on
how to use the two modes

This section contains these topics:

= Oracle Internet Directory SDK C API SSL Extensions

« The Functions at a Glance

Oracle Internet Directory SDK C API SSL Extensions

Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The SSL
extensions provide encryption and decryption of data over the wire and
authentication.

There are three modes of authentication:

C API Reference 8-1

Functions in the C API

None—Neither client nor server is authenticated, and only SSL encryption is used
One-way—Only the server is authenticated by the client

Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

SSL Interface Calls

There is only one call required to enable SSL:

int |dap_init_SSL(Sockbuf *sb, text *sslwallet, text *sslwalletpasswd, int
ssl aut hnode)

The | dap_i ni t _SSL call performs the necessary handshake between client and
server using the standard SSL protocol. If the call is successful, then all subsequent
communication happens over a secure connection.

Table 8-1 Arguments for SSL Interface Calls

Argument Description

sb Socket buffer handle returned by the | dap_open call as part of LDAP
handle.

sslwal | et Location of the user wallet.

ssl wal | et passwd Password required to use the wallet.

ssl aut hnode SSL authentication mode user wants to use. Possible values are:

« GSLC_SSL_NO AUTH—No authentication required
« GSLC_SSL_ONEVAY_AUTH—Only server authentication required.

« GSLC SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A nonzero return value
indicates an error. The error code can be decoded by using the
function | dap_err 2stri ng.

Tip: "Sample C API Usage" on page 8-41

Wallet Support

depending on which authentication mode is being used, both the server and the client
may require wallets to use the SSL feature. 10g Release 2 (10.1.2) of the API supports
only the Oracle Wallet. You can create wallets by using Oracle Wallet Manager.

Functions in the C API

This section examines each of the functions and procedures in the C APL. It explains
their purpose and syntax. It also provides tips for using them.

The section contains the following topics:

The Functions at a Glance
Initializing an LDAP Session
LDAP Session Handle Options
Authenticating to the Directory

8-2 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

= SASL Authentication Using Oracle Extensions

« SASL Authentication

= Working With Controls

« Closing the Session

« Performing LDAP Operations

= Abandoning an Operation

= Obtaining Results and Peeking Inside LDAP Messages

= Handling Errors and Parsing Results

= Stepping Through a List of Results

= Parsing Search Results

The Functions at a Glance

Table 8-2 lists all of the functions and procedures in the C API and briefly explains

their purpose.

Table 82 Functions and Procedures in the C API

Function or Procedure

Description

ber _free

Free the memory allocated for a BerElement structure

| dap_abandon_ext
| dap_abandon

Cancel an asynchronous operation

| dap_add_ext

| dap_add_ext _s
| dap_add

| dap_add_s

Add a new entry to the directory

| dap_conpar e_ext

| dap_conpare_ext _s
| dap_conpare

| dap_conpare_s

Compare entries in the directory

| dap_count _entries

Count the number of entries in a chain of search results

| dap_count _val ues

Count the string values of an attribute

| dap_count _val ues_| en

Count the binary values of an attribute

ora_l dap_create_clientctx

Create a client context and returns a handle to it.

ora_| dap_create_cred_hdl

Create a credential handle.

| dap_del et e_ext

| dap_del ete_ext_s
| dap_del ete

| dap_del ete_s

Delete an entry from the directory

ora_| dap_destroy_clientctx

Destroy the client context.

ora_l dap_free_cred_hdl

Destroy the credential handle.

| dap_dn2uf n

Converts the name into a more user friendly format

| dap_err2string

Get the error message for a specific error code

| dap_expl ode_dn
| dap_expl ode_rdn

Split up a distinguished name into its components

C API Reference 8-3

Functions in the C API

Table 8-2 (Cont.) Functions and Procedures in the C API

Function or Procedure

Description

| dap_first_attribute

Get the name of the first attribute in an entry

| dap_first_entry

Get the first entry in a chain of search results

ora_| dap_get _cred_props

Retrieve properties associated with credential handle.

| dap_get _dn

Get the distinguished name for an entry

| dap_get _option

Access the current value of various session-wide
parameters

| dap_get _val ues

Get the string values of an attribute

| dap_get _val ues_l en

Get the binary values of an attribute

| dap_init
| dap_open

Open a connection to an LDAP server

ora_l dap_init_SASL

Perform SASL authentication

| dap_nenfree

Free memory allocated by an LDAP API function call

| dap_modi fy_ext

| dap_nodi fy_ext_s
| dap_nodi fy

| dap_nodify_s

Modify an entry in the directory

| dap_nsgfree

Free the memory allocated for search results or other
LDAP operation results

| dap_first_attribute
| dap_next _attribute

Get the name of the next attribute in an entry

| dap_next _entry

Get the next entry in a chain of search results

| dap_perror Prints the message supplied in message.
(Deprecated)
| dap_r enane Modify the RDN of an entry in the directory

| dap_rename_s

| dap_result2error
(Deprecated)

Return the error code from result message.

| dap_resul t

| dap_nsgfree
| dap_nsgt ype
| dap_msgi d

Check the results of an asynchronous operation

| dap_sasl _bind
| dap_sasl _bind_s

General authentication to an LDAP server

| dap_sear ch_ext

| dap_search_ext _s
| dap_search

| dap_search_s

Search the directory

| dap_sear ch_st

Search the directory with a timeout value

| dap_get _option
| dap_set _option

Set the value of these parameters

ora_l dap_set _clientctx Add properties to the client context handle.

ora_| dap_set _cred_props Add properties to credential handle.

8-4 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 8-2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description

| dap_si npl e_bi nd Simple authentication to an LDAP server

| dap_si mpl e_bind_s

| dap_sasl _bi nd

| dap_sasl _bind_s

| dap_unbi nd_ext End an LDAP session

| dap_unbi nd

| dap_unbi nd_s

| dap_val ue_free Free the memory allocated for the string values of an
attribute

| dap_val ue_free Free the memory allocated for the binary values of an

| dap_val ue_free_l en attribute

This section lists all the calls available in the LDAP C API found in RFC 1823.

See Also: The following URL for a more detailed explanation of
these calls:

http://ww.ietf.org

Initializing an LDAP Session

The calls in this section initialize a session with an LDAP server.

Idap_init and Idap_open

I dap_i ni t () initializes a session with an LDAP server, but does not open a
connection. The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization. | dap_open()
initializes a session and opens a connection. The two fulfill the same purpose and have
the same syntax, but the first is preferred.

Syntax

LDAP *| dap_init

(
const char *host nane,
i nt portno

)

Parameters

Table 8-3 Parameters for Initializing an LDAP Session

Parameter Description

host nane Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to
connect to. Each host name in the list may include a port
number. The two must be separated by a colon. The hosts are
tried in the order listed until a successful connection occurs.

Note: A suitable representation for including a literal IPv6[10]
address in the host name parameter is desired, but has not yet
been determined or implemented in practice.

C API Reference 8-5

Functions in the C API

Table 8-3 (Cont.) Parameters for Initializing an LDAP Session

Parameter Description

portno Contains the TCP port number to connect to. The default LDAP
port of 389 can be obtained by supplying the constant LDAP_
PORT. If host name includes a port number, por t no is ignored.

Usage Notes

[dap_i nit() and | dap_open() both return a session handle. This is a pointer to an
opaque structure that must be passed to subsequent calls pertaining to the session.
These routines return NULL if the session cannot be initialized. If the session cannot be

initialized, check the error reporting mechanism for the operating system to see why
the call failed.

Note that if you connect to an LDAPv?2 server, one of the LDAP bind calls described
later SHOULD be completed before other operations can be performed on the session.
LDAPv3 does not require that a bind operation be completed before other operations
are performed.

The calling program can set various attributes of the session by calling the routines
described in the next section.

LDAP Session Handle Options

The LDAP session handle returned by | dap_i ni t () is a pointer to an opaque data
type representing an LDAP session. In RFC 1823 this data type was a structure
exposed to the caller, and various fields in the structure could be set to control aspects
of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these
aspects of the session are now accessed through a pair of accessor functions, described
in this section.

Idap_get_option and Idap_set_option

| dap_get _option() is used to access the current value of various session-wide
parameters. | dap_set _opti on() is used to set the value of these parameters. Note
that some options are read only and cannot be set; it is an error to call | dap_set _
option() and attempt to set a read only option.

Note that if automatic referral following is enabled (the default), any connections
created during the course of following referrals will inherit the options associated with
the session that sent the original request that caused the referrals to be returned.

Syntax

int |dap_get_option

(

LDAP *1d,

i nt option,
voi d *out val ue

)

int |dap_set_option

(

LDAP *1d,
int option,
const void *inval ue

8-6 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

#define LDAP_OPT_ON ((void *)1)
#define LDAP_OPT_OFF ((void *)0)

Parameters
Table 84 lists and describes the parameters for LDAP session handle options.

Table 8-4 Parameters for LDAP Session Handle Options

Parameters Description

| d The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with | dap_i ni t () or| dap_open()
inherit their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter should be
one of the constants listed and described in Table 8-5 on page 8-7. The
hexadecimal value of the constant is listed in parentheses after the
constant.

outval ue The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPCont rol **,a copy of the data that is associated
with the LDAP session | d is returned. Callers should dispose of the
memory by calling | dap_renfree() orl dap_controls_free(),
depending on the type of data returned.

i nval ue A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the API implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to | dap_set _opti on() . If a value passed for
invalue is invalid or cannot be accepted by the implementation, | dap_
set _opti on() should return - 1 to indicate an error.

Constants

Table 8-5 on page 8-7 lists and describes the constants for LDAP session handle
options.

Table 8-5 Constants

Type for invalue Type for outvalue

Constant parameter parameter Description

LDAP_OPT_API _ Not applicable. LDAPAPI | nf o* Used to retrieve some basic information

| NFQ(0x00) Option is read about the LDAP API implementation at
only. execution time. Applications need to be

able to determine information about the
particular API implementation they are
using both at compile time and during
execution. This option is read only and
cannot be set.

ORA_LDAP_OPT_RFRL_ void* (LDAP_OPT_ int * This option determines whether referral
CACHE N cache is enabled or not. If this option is set
voi d* (LDAP_CPT to LDAP_OPT_ON, the cache is enabled;
OFF) T otherwise, the cache is disabled.
ORA LDAP_OPT_RFRL_ int * int * This option sets the size of referral cache.
CACHE_SZ The size is maximum size in terms of
number of bytes the cache can grow to. Itis
set to IMB by default.

C API Reference 8-7

Functions in the C API

Table 8-5 (Cont.) Constants

Type for invalue Type for outvalue
Constant parameter parameter

Description

LDAP_OPT_ int * int *
DEREF(0x02)

LDAP_CPT_ int * int *
SI ZELI M T(0x03)

LDAP_OPT_ int * int *
TI MELI M T(0x04)

LDAP_OPT_ voi d *(LDAP_OPT_ int *
REFERRALS(0x08) ON)
voi d *(LDAP_OPT_

OFF)
LDAP_OPT_ void * (LDAP_ int *
RESTART(0X09) OPT_ON)

void * (LDAP_

OPT_OFF)

8-8 Oracle Identity Management Application Developer’'s Guide

Determines how aliases are handled
during search. It should have one of the
following values: LDAP_DEREF_NEVER
(0x00) , LDAP_DEREF SEARCHI NG
(0x01) , LDAP_DEREF_FI NDI NG
(0x02), or LDAP_DEREF_ALWAYS
(0x03) . The LDAP_DEREF_SEARCHI NG
value means aliases are dereferenced
during the search but not when locating
the base object of the search. The LDAP_
DEREF_FI NDI NGvalue means aliases are
dereferenced when locating the base object
but not during the search. The default
value for this option is LDAP_DEREF_
NEVER.

A limit on the number of entries to return

from a search. A value of LDAP_NO LIM T
(0) means no limit. The default value for

this option is LDAP_NO LIM T.

A limit on the number of seconds to spend
on a search. A value of LDAP_NO LIM T
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself will wait locally for
search results. The timeout parameter
passed to | dap_sear ch_ext _s() or

| dap_resul t () —both of which are
described later in this document—can be
used to specify both a local and server side
time limit. The default value for this option
is LDAP_NO LIMT.

Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It may be set to one
of the constants LDAP_OPT_ONor LDAP_
OPT_CFF. Any non-null pointer value
passed to | dap_set _opti on() enables
this option. When the current setting is
read using | dap_get _opti on(), a zero
value means off and any nonzero value
means on. By default, this option is turned
on.

Determines whether LDAP input and
output operations are automatically
restarted if they stop prematurely. It may
be set to either LDAP_OPT_ONor LDAP_
OPT_CFF. Any non-null pointer value
passed to | dap_set _opti on() enables
this option. When the current setting is
read using | dap_get _opti on(), a zero
value means off and any nonzero value
means on. This option is useful if an input
or output operation can be interrupted
prematurely—by a timer going off, for
example. By default, this option is turned
off.

Functions in the C API

Table 8-5 (Cont.) Constants

Constant

Type for invalue
parameter

Type for outvalue

parameter Description

LDAP_OPT_PROTOCOL_

VERSI ON(0x11)

LDAP_CPT_SERVER_
CONTROLS(0x12)

LDAP_CPT_CLI ENT_
CONTROLS(0x13)

LDAP_OPT_API _

FEATURE_| NFQ(0x15)

LDAP_CPT_HOST_
NANE(0x30)

LDAP_CPT_ERROR_
NUMBER(0x31)

LDAP_CPT_ERRCR_
STRI NG(0x32)

LDAP_OPT_MATCHED_

DN(0x33)

int * int * This option indicates the version of the

LDAP protocol used when communicating
with the primary LDAP server. The option
should be either LDAP_VERSI ON2 (2) or
LDAP_VERSI ON3 (3) . If no version is set,

the default is LDAP_VERSI ON2 (2).

A default list of LDAP server controls to be
sent with each request.

See Also: "Working With Controls" on
page 8-14

LDAPCont r ol ** LDAPCont r ol ***

LDAPCont rol ** LDAPCont r ol *** A default list of client controls that affect

the LDAP session.

See Also: "Working With Controls" on

page 8-14
LDAPAPI Feat urel nfo * Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This
option is read only. It cannot be set.

Not applicable.
Option is read
only.

char * char ** The host name (or list of hosts) for the
primary LDAP server. See the definition of
the host name parameter for | dap_

i nit() todetermine the syntax.

The code of the most recent LDAP error
during this session.

int * int *

char * - The message returned with the most recent

LDAP error during this session.

The matched DN value returned with the
most recent LDAP error during this
session.

char * char **

Usage Notes

Both | dap_get _option() and | dap_set _opti on() return O if successful and - 1
if an error occurs. If - 1 is returned by either function, a specific error code may be
retrieved by calling | dap_get _opti on() with an option value of LDAP_OPT_
ERROR_NUMBER. Note that there is no way to retrieve a more specific error code if a
call to | dap_get _opti on() with an option value of LDAP_OPT_ERROR_NUMBER
fails.

When a call to | dap_get _opti on() succeeds, the API implementation MUST NOT
change the state of the LDAP session handle or the state of the underlying
implementation in a way that affects the behavior of future LDAP API calls. When a
callto| dap_get _opti on() fails, the only session handle change permitted is setting
the LDAP error code (as returned by the LDAP_CPT_ERRCR_NUMBER option).

When a call to | dap_set _opti on() fails, it must not change the state of the LDAP
session handle or the state of the underlying implementation in a way that affects the
behavior of future LDAP API calls.

C API Reference 8-9

Functions in the C API

Standards track documents that extend this specification and specify new options
should use values for option macros that are between 0x1000 and 0x3FFF inclusive.
Private and experimental extensions should use values for the option macros that are
between 0x4000 and 0x7FFF inclusive. All values less than 0x1000 and greater than
Ox7FFF that are not defined in this document are reserved and should not be used. The
following macro must be defined by C LDAP API implementations to aid extension
implementers:

#define LDAP_OPT_PRI VATE_EXTENSI ON_BASE 0x4000 /* to Ox7FFF inclusive */

Authenticating to the Directory

The functions in this section are used to authenticate an LDAP client to an LDAP
directory server.

Idap_sasl_bind, Idap_sasl_bind_s, Idap_simple_bind, and Idap_simple_bind_s
The | dap_sasl _bi nd() and | dap_sasl _bi nd_s() functions can be used to do
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the DN to bind as, the method
to use, as a dotted-string representation of an object identifier identifying the method,
and astruct berval holding the credentials. The special constant value LDAP_
SASL_SI MPLE (NULL) can be passed to request simple authentication, or the
simplified routines | dap_si npl e_bi nd() or | dap_si npl e_bi nd_s() canbe
used.

Syntax
int |dap_sasl_bind

(

LDAP *ld,

const char *dn,

const char *mechani sm
const struct berval *cred,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
int *nmsgi dp

)

int |dap_sasl _bind_s(

LDAP *|d,

const char *dn,

const char *nmechani sm
const struct berval *cred,
LDAPCont r ol **serverctrl s,
LDAPCont r ol **clientctrls,
struct berval **servercredp

)

int | dap_sinpl e_bind(

LDAP *| d,
const char *dn,
const char *passwd

)

8-10 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

int |dap_sinple_bind_s(

LDAP *| d,
const char *dn,
const char *passwd

);
The use of the following routines is deprecated and more complete descriptions can be

found in RFC 1823:

« int |dap_bind(LDAP *1d, const char *dn, const char *cred,
int method);

« int |dap_bind_s(LDAP *1d, const char *dn, const char *cred,
int method);

« int |dap_kerberos_bind(LDAP *Id, const char *dn);
« int |dap_kerberos_bind_s(LDAP *Id, const char *dn);

Parameters
Table 8-6 lists and describes the parameters for authenticating to the directory.

Table 8-6 Parameters for Authenticating to the Directory

Parameter Description

Id The session handle

dn The name of the entry to bind as

mechani sm Either LDAP_SASL_SI MPLE (NULL) to get simple authentication, or

a text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For | dap_si npl e_bi nd(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

nsgi dp This result parameter will be set to the message id of the request if the

| dap_sasl _bi nd() call succeeds

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated ber val
structure is returned that should be disposed of by calling
ber _bvfree().NULL should be passed to ignore this field.

Usage Notes

Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

The | dap_sasl _bi nd() function initiates an asynchronous bind operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_sas| _bi nd() places the message id of
the request in * negi dp. A subsequent call to | dap_r esul t () can be used to obtain
the result of the bind.

The | dap_si npl e_bi nd() function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to | dap_
resul t (), described in, can be used to obtain the result of the bind. In case of error,

C API Reference 8-11

Functions in the C API

| dap_si npl e_bi nd() will return - 1, setting the session error parameters in the
LDAP structure appropriately.

The synchronous | dap_sas! _bi nd_s() and | dap_si npl e_bi nd_s() functions
both return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

Note that if an LDAPV2 server is contacted, no other operations over the connection
can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and
multistep SASL sequences can be accomplished through a sequence of calls to | dap_
sasl _bind() orl dap_sasl _bind_s().

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

SASL Authentication Using Oracle Extensions

The function or a_| dap_i ni t _SASL() can be used for SASL based authentication. It
accepts these arguments:

DN of the entity to be authenticated.

SASL credential handle for the entity. (This handle can be managed using or a_
| dap_create_cred_hdl (),ora_| dap_set_cred_props() andora_| dap_
free_cred_hdl () functions).

SASL mechanism to be used.

This function encapsulates the SASL handshake between the client and the directory
server for various standard SASL mechanisms thereby reducing the coding effort
involved in establishing a SASL-based connection to the directory server.

Supported SASL mechanisms:

DIGEST-MD5

The SASL API supports the authentication only mode of DIGEST-MD5. The other
two authentication modes addressing data privacy and data integrity are yet to be
supported.

While authenticating against Oracle Internet Directory, the DN of the user has to
be normalized before it is sent across to the server. This can be done either outside
the SASL API using the or a_| dap_normal i ze_dn() function before the DN is
passed on to the SASL API or with the SASL API by setting the ORA_LDAP_CRED _
SASL_NORM_AUTHDN option in SASL credentials handle using or a_| dap_set _
cred_handl e() .

EXTERNAL:

The SASL API and SASL implementation in Oracle Internet Directory use SSL
authentication as one of the external authentication mechanisms.

Using this mechanism requires that the SSL connection (mutual authentication
mode) be established to the directory server by using the or a_| dap_i ni t _
SSL() function. The ora_I dap_i nit _SASL() function can then be invoked
with the mechani smargument as EXTERNAL. The directory server would then
authenticate the user based on the user credentials in SSL connection.

8-12 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl

Use these functions to create and manage SASL credential handles. The or a_| dap_
create_cred_hdl function should be used to create a SASL credential handle of
certain type based on the type of mechanism used for SASL authentication. The or a_
| dap_set _cred_props() function can be used to add relevant credentials to the
handle needed for SASL authentication. The ora_| dap_get cred_props()
function can be used for retrieving the properties stored in the credential handle, and
theora_| dap_free_cred_hdl () function should be used to destroy the handle
after its use.

Syntax

OralLdapHandl e ora_| dap_create_cred_hdl

(
OraldapCientCx * clientCtx,

int credType
)

OralLdapHandl e ora_| dap_set _cred_props

(
OraldapClientCx * clientCix,

OraLdapHandl e cred,
i nt String[],
voi d * inProperty

);
OraldapHandl e ora_| dap_get _cred_props

(
OraLdapCientCx * clientCix,

OraLdapHandl e cred,
int String[],
voi d * outProperty

);
OraLdapHandl e ora_| dap_free_cred_hdl

(
OraLdapClientCtx * clientCx,

OraLdapHandle cred

Parameters

Table 8-7 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using or a_| dap_
init_clientctx() andora_|l dap_free_clientctx()
functions.

credType Type of credential handle specific to SASL mechanism.

cred Credential handle containing SASL credentials needed for a
specific SASL mechanism for SASL authentication.

String[] Type of credential, which needs to be added to credential
handle.

i nProperty One of the SASL Credentials to be stored in credential handle.

out Property One of the SASL credentials stored in credential handle.

C API Reference 8-13

Functions in the C API

SASL Authentication
ora_| dap_i ni t _SASL, the lone function in this section, performs SASL
authentication.

ora_ldap_init_SASL
ora_| dap_i ni t _SASL performs authentication based on the mechanism specified as
one of its input arguments.

Syntax

int ora_ldap_init_SASL

(

OraldapdientCtx * clientCx,
LDAP*| d,

char* dn,

char* mechani sm

OraLdapHandl e cred,

LDAPCont rol **serverctrls,
LDAPControl **clientctrls

)i

Parameters

Table 8-8 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using or a_| dap_
init_clientctx() andora_|l dap_free_clientctx()
functions.

Id Ldap session handle.

dn User DN that requires authentication.

mechani sm SASL mechanism.

cred Credentials needed for SASL authentication.

serverctrls List of LDAP server controls

clientctrls List of client controls

Working With Controls

LDAPv3 operations can be extended through the use of controls. Controls can be sent
to a server or returned to the client with any LDAP message. These controls are
referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of
client controls. These controls affect the behavior of the LDAP API only and are never
sent to a server. A common data structure is used to represent both types of controls:

typedef struct |dapcontrol

{

char *[dctl _oid;
struct berval [dct! _val ue;

char [dctl _iscritical;
} LDAPControl ;

8-14 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

The fields in the | dapcont r ol structure are described in Table 8-9.

Table 8-9 Fields in Idapcontrol Structure

Field Description
Idctl_oid The control type, represented as a string.
[dctl _val ue The data associated with the control (if any). To specify a

zero-length value, set | dct | _val ue. bv_| en to zero and
I dctl _val ue. bv_val to a zero-length string. To indicate
that no data is associated with the control, set| dct | _

val ue. bv_val to NULL.

I detl _iscritical Indicates whether the control is critical of not. If this field is
nonzero, the operation will only be carried out if the control is
recognized by the server or the client. Note that the LDAP
unbind and abandon operations have no server response.
Clients should not mark server controls critical when used
with these two operations.

Some LDAP API calls allocate an | dapcontr ol structure or a NULL-terminated array
of | dapcontrol structures. The following routines can be used to dispose of a single
control or an array of controls:

voi d | dap_control _free(LDAPControl *ctrl);
voi d | dap_controls_free(LDAPControl **ctrls);

If thectrl orctrls parameter is NULL, these calls do nothing.

A set of controls that affect the entire session can be set using the | dap_set _
option() function described in "ldap_get_option and ldap_set_option" on page 8-6.
A list of controls can also be passed directly to some LDAP API calls such as | dap_
sear ch_ext (), in which case any controls set for the session through the use of

| dap_set _option() areignored. Control lists are represented as a NULL-terminated
array of pointers to | dapcont r ol structures.

Server controls are defined by LDAPv3 protocol extension documents; for example, a
control has been proposed to support server-side sorting of search results.

One client control is defined in this document (described in the following section).
Other client controls may be defined in future revisions of this document or in
documents that extend this API.

Client-Controlled Referral Processing As described previously in "LDAP Session
Handle Options" on page 8-6, applications can enable and disable automatic chasing of
referrals on a session-wide basic by using the | dap_set _opti on() function with the
LDAP_OPT_REFERRALS option. It is also useful to govern automatic referral chasing
on per-request basis. A client control with an OID of 1. 2. 840. 113556. 1. 4. 616
exists to provide this functionality.

/* ODfor referrals client control */
#defi ne LDAP_CONTROL_REFERRALS "1.2.840.113556.1. 4. 616"

/* Flags for referrals client control value */
#define LDAP_CHASE SUBORDI NATE REFERRALS 0x00000020U
#define LDAP_CHASE_EXTERNAL_REFERRALS 0x00000040U

To create a referrals client control, the | dct | _oi d field of an LDAPCont r ol structure
must be set to LDAP_CONTROL_REFERRALS (" 1. 2.840. 113556. 1. 4. 616") and
thel dct | _val ue field must be set to a four-octet value that contains a set of flags.

C API Reference 8-15

Functions in the C API

The | dct | _val ue. bv_| en field must always be set to 4. The | dct | _val ue. bv_
val field must point to a four-octet integer flags value. This flags value can be set to
zero to disable automatic chasing of referrals and LDAPv3 references altogether.
Alternatively, the flags value can be set to the value LDAP_CHASE_SUBORDI NATE_
REFERRALS (0x00000020U) to indicate that only LDAPv3 search continuation
references are to be automatically chased by the API implementation, to the value
LDAP_CHASE_EXTERNAL_REFERRALS (0x00000040U) to indicate that only
LDAPv3 referrals are to be automatically chased, or the logical OR of the two flag
values (0x00000060U) to indicate that both referrals and references are to be
automatically chased.

Closing the Session

Use the functions in this section to unbind from the directory, to close open
connections, and to dispose of the session handle.

Idap_unbind, Idap_unbind_ext, and Idap_unbind_s

| dap_unbi nd_ext (), | dap_unbi nd(),and | dap_unbi nd_s() all work
synchronously in the sense that they send an unbind request to the server, close all
open connections associated with the LDAP session handle, and dispose of all
resources associated with the session handle before returning. Note, however, that
there is no server response to an LDAP unbind operation. All three of the unbind
functions return LDAP_SUCCESS (or another LDAP error code if the request cannot be
sent to the LDAP server). After a call to one of the unbind functions, the session
handle | d is invalid and it is illegal to make any further LDAP API calls using | d.

The | dap_unbi nd() and | dap_unbi nd_s() functions behave identically. The

| dap_unbi nd_ext () function allows server and client controls to be included
explicitly, but note that since there is no server response to an unbind request there is
no way to receive a response to a server control sent with an unbind request.

Syntax

int |dap_unbind_ext(LDAP *|d, LDAPControl **serverctrls,
LDAPControl **clientctrls);

int | dap_unbind(LDAP *Id);

int |dap_unbind_s(LDAP *Id);

Parameters

Table 8-10 Parameters for Closing the Session

Parameter Description

Id The session handle
serverctrls List of LDAP server controls
clientctrls List of client controls
clientctrls

Performing LDAP Operations

Use the functions in this section to search the LDAP directory and to return a
requested set of attributes for each entry matched.

8-16 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Idap_search_ext, Idap_search_ext_s, Idap_search, and Idap_search_s

The | dap_sear ch_ext () function initiates an asynchronous search operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_sear ch_ext () places the message id of
the request in * nsgi dp. A subsequent call to | dap_r esul t () can be used to obtain
the results from the search. These results can be parsed using the result parsing
routines described in detail later.

Similar to | dap_sear ch_ext (), thel dap_sear ch() function initiates an
asynchronous search operation and returns the message id of the operation initiated.
As for | dap_sear ch_ext (), a subsequent call to| dap_resul t () can be used to
obtain the result of the bind. In case of error, | dap_sear ch() will return - 1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous | dap_sear ch_ext _s(),| dap_search_s(),and | dap_search_
st () functions all return the result of the operation, either the constant LDAP_
SUCCESS if the operation was successful, or another LDAP error code if it was not.
Entries returned from the search, if any, are contained in the r es parameter. This
parameter is opaque to the caller. Entries, attributes, values, and so on, can be
extracted by calling the parsing routines described in this section. The results
contained in r es should be freed when no longer in use by calling | dap_mnsgf ree(),
which is described later.

The | dap_search_ext () and | dap_sear ch_ext _s() functions support LDAPv3
server controls, client controls, and allow varying size and time limits to be easily
specified for each search operation. The | dap_sear ch_st () function is identical to

| dap_sear ch_s() except that it takes an additional parameter specifying a local
timeout for the search. The local search timeout is used to limit the amount of time the
API implementation will wait for a search to complete. After the local search timeout
expires, the API implementation will send an abandon operation to stop the search
operation.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

int |dap_search_ext

(

LDAP *1d,

const char *hase,

i nt scope,

const char *filter,

char **attrs,

i nt attrsonly,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
struct tineval *tineout,

int sizelimt,

i nt *megi dp

K

int |dap_search_ext_s

(

LDAP *| d,
const char *bhase,

i nt scope,
const char *filter,
char **attrs,

C API Reference 8-17

Functions in the C API

i nt attrsonly,
LDAPCont r ol **gserverctrl s,
LDAPCont r ol **clientctrls,
struct tinmeval *tineout,
int sizelimt,

LDAPMessage **res
)

int |dap_search

(

LDAP *ld,

const char *hase,

i nt scope,
const char *filter,
char **attrs,

i nt attrsonly
E

int |dap_search_s

(

LDAP *|d,

const char *hase,

i nt scope,
const char *filter,
char **attrs,

i nt attrsonly,

LDAPMessage **res
)

int |dap_search_st

)i

LDAP *|d,

const char *hase,

i nt scope,
const char *filter,
char **attrs,

i nt attrsonly,

struct timeval *tineout,
LDAPMessage **res
);

Parameters
Table 8-11 lists and describes the parameters for search operations.

Table 8-11 Parameters for Search Operations

Parameter Description

I d The session handle.

base The DN of the entry at which to start the search.
scope One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_

ONELEVEL (0x01), or LDAP_SCOPE_SUBTREE (0x02),
indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
"(objectclass=*)" which matches all entries is to be used.
Note that if the caller of the API is using LDAPv2, only a
subset of the filter functionality can be successfully used.

8-18 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 8-11 (Cont.) Parameters for Search Operations

Parameter

Description

attrs

attrsonly

ti meout

sizelimt

res

serverctrls

clientctrls

A NULL-terminated array of strings indicating which attributes
to return for each matching entry. Passing NULL for this
parameter causes all available user attributes to be retrieved.
The special constant string LDAP_NO_ATTRS ("1.1") may
be used as the only string in the array to indicate that no
attribute types are to be returned by the server. The special
constant string LDAP_ALL_USER_ATTRS ("*") can be used
in the at t r s array along with the names of some operational
attributes to indicate that all user attributes plus the listed
operational attributes are to be returned.

A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

For the | dap_sear ch_st () function, this specifies the local
search timeout value (if it is NULL, the timeout is infinite). If a
zero timeout (wheret v_sec and t v_usec ar e both zero) is
passed, API implementations should return LDAP_PARAM_
ERROR. For the | dap_search_ext () and | dap_search_
ext _s() functions, the timeout parameter specifies both the
local search timeout value and the operation time limit that is
sent to the server within the search request. Passing a NULL
value for timeout causes the global default timeout stored in
the LDAP session handle (set by using | dap_set _opti on()
with the LDAP_OPT_TI MELI M T parameter) to be sent to the
server with the request but an infinite local search timeout to
be used. If a zero timeout (wheret v_sec and t v_usec are
both zero) is passed in, API implementations should return
LDAP_PARAM ERROR If a zero value for t v_sec is used but
t v_usec is nonzero, an operation time limit of 1 should be
passed to the LDAP server as the operation time limit. For
other values of t v_sec, the t v_sec value itself should be
passed to the LDAP server.

For the | dap_sear ch_ext () and | dap_search_ext _s()
calls, this is a limit on the number of entries to return from the
search. A value of LDAP_NO LI M T (0) means no limit.

For the synchronous calls, this is a result parameter which will
contain the results of the search upon completion of the call. If
no results are returned, *r es is set to NULL.

List of LDAP server controls.

List of client controls.

C API Reference 8-19

Functions in the C API

Table 8-11 (Cont.) Parameters for Search Operations

Parameter Description

msgi dp This result parameter will be set to the message id of the
request if the | dap_sear ch_ext () call succeeds.There are
three options in the session handle | d which potentially affect
how the search is performed. They are:

« LDAP_OPT_SI ZELI M T—A limit on the number of
entries to return from the search. A value of LDAP_NO_
LI M T (0) means no limit. Note that the value from the
session handle is ignored when using the | dap_sear ch_
ext () orl dap_search_ext _s() functions.

« LDAP_OPT_TI MELI M T—A limit on the number of
seconds to spend on the search. A value of LDAP_NO _
LI M T (0) means no limit. Note that the value from the
session handle is ignored when using the | dap_sear ch_
ext () orl dap_search_ext _s() functions.

= LDAP_OPT_DEREF—One of LDAP_DEREF_NEVER
(0x00), LDAP_DEREF_SEARCHI NG (0x01), LDAP_
DEREF_FI NDI NG (0x02), or LDAP_DEREF_ALWAYS
(0x03), specifying how aliases are handled during the
search. The LDAP_DEREF_SEARCHI NGvalue means
aliases are dereferenced during the search but not when
locating the base object of the search. The LDAP_DEREF_
FI NDI NGvalue means aliases are dereferenced when
locating the base object but not during the search.

Reading an Entry

LDAP does not support a read operation directly. Instead, this operation is emulated
by a search with base set to the DN of the entry to read, scope set to LDAP_SCOPE_
BASE, and filter set to " (obj ect cl ass=*)" or NULL. The at t r s parameter contains
the list of attributes to return.

Listing the Children of an Entry

LDAP does not support a list operation directly. Instead, this operation is emulated by
a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_
ONELEVEL, and filter set to " (obj ect cl ass=*)" or NULL. The parameter attrs
contains the list of attributes to return for each child entry.

Idap_compare_ext, Idap_compare_ext_s, Idap_compare, and Idap_compare_s
Use these routines to compare an attribute value assertion against an LDAP entry.

The | dap_conpar e_ext () function initiates an asynchronous compare operation
and returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, | dap_conpar e_ext () places the
message id of the request in * msgi dp. A subsequent call to | dap_resul t () canbe
used to obtain the result of the compare.

Similar to | dap_conpare_ext (), thel dap_conpar e() function initiates an
asynchronous compare operation and returns the message id of the operation
initiated. As for | dap_conpar e_ext (), a subsequent call to| dap_r esul t () canbe
used to obtain the result of the bind. In case of error, | dap_conpar e() will return

- 1, setting the session error parameters in the LDAP structure appropriately.

The synchronous | dap_conpar e_ext_s() and | dap_conpar e_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

8-20 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

The | dap_conpar e_ext () and | dap_conpar e_ext _s() functions support
LDAPv3 server controls and client controls.

See Also:

"Handling Errors and Parsing Results" for more

information about possible errors and how to interpret them.

Syntax

int | dap_conpare_ext

(
LDAP

const char
const char

const struct berval

LDAPCont r ol
LDAPCont r ol
int

)

int |dap_conpare_ext_s

(
LDAP

const char
const char

const struct berval

LDAPCont r ol
LDAPCont r ol

)i

int | dap_conpare

(
LDAP

const char
const char
const char

)

int |dap_conpare_s

(
LDAP

const char
const char
const char

);

Parameters

*| d,

*dn,

*attr,

*hval ue,
**serverctrls,
**clientctrls,
*msgi dp

*| d,

*dn,

*attr,

*bval ue,
**serverctrls,
**clientctrls

*|d,
*dn,
*attr,
*val ue

*d,
*dn,
*attr,
*val ue

Table 8-12 lists and describes the parameters for compare operations.

Table 8-12 Parameters for Compare Operations

Parameter Description

Id The session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

bval ue The attribute value to compare against those found in the

given entry. This parameter is used in the extended routines
and is a pointer to a st ruct berval so it is possible to
compare binary values.

C API Reference

8-21

Functions in the C API

Table 8-12 (Cont.) Parameters for Compare Operations

Parameter Description

val ue A string attribute value to compare against, used by the | dap_
conpare() and | dap_conpare_s() functions. Use | dap_
conpar e_ext () orl dap_conpare_ext_s() if youneed to
compare binary values.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgi dp This result parameter will be set to the message id of the

request if the | dap_conpar e_ext () call succeeds.

Idap_modify_ext, Idap_modify_ext_s, Idap_modify, and Idap_modify_s

Use these routines to modify an existing LDAP entry.

The | dap_nodi fy_ext () function initiates an asynchronous modify operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_nodi fy_ext () places the message id of
the request in * negi dp. A subsequent call to | dap_r esul t () can be used to obtain
the result of the modify.

Similar to | dap_nodi fy_ext (), thel dap_nodi f y() function initiates an
asynchronous modify operation and returns the message id of the operation initiated.
As for | dap_nodi fy_ext (), asubsequent call to| dap_resul t () can be used to
obtain the result of the modify. In case of error, | dap_nodi fy() will return- 1,
setting the session error parameters in the LDAP structure appropriately.

The synchronous | dap_nodi fy_ext _s() and | dap_nodi fy_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The | dap_nodi fy_ext () and | dap_nodi fy_ext _s() functions support LDAPv3

server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax
typedef struct |dapnod
{
i nt mod_op;
char *mod_t ype;
uni on nod_val s_u
{
char **modv_strval s;
struct berval **npdv_bval s;
} nod_val s;
} LDAPMbd;
#def i ne nod_val ues mod_val s. nodv_strval s
#define mod_bval ues mod_val s. modv_bval s

int |dap_nodify_ext
(

LDAP *|d,

const char *dn,

LDAPMd **nods,
LDAPCont r ol **serverctrl s,

8-22 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

LDAPCont r ol **clientctrls,
i nt *megi dp
);

int |dap_modify_ext_s

(

LDAP *|d,

const char *dn,

LDAPMd **nods,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls
);

int |dap_nodify

(

LDAP *|d,

const char *dn,

LDAPMbd **mods
)

int |dap_modify s
(

LDAP *d,
const char *dn,
LDAPMbd **npds
)

Parameters

Table 8-13 lists and describes the parameters for modify operations.

Table 8-13 Parameters for Modify Operations

Parameter Description

Id The session handle

dn The name of the entry to modify

nods A NULL-terminated array of modifications to make to the entry
serverctrls List of LDAP server controls

clientctrls List of client controls

msgi dp This result parameter will be set to the message id of the

request if the | dap_nodi fy_ext () call succeeds

Table 8-14 lists and describes the fields in the LDAPMod structure.

Table 8-14 Fields in LDAPMod Structure

Field Description

mod_op The modification operation to perform. It must be one of
LDAP_MOD_ADD (0x00), LDAP_MOD_DELETE (0x01), or
LDAP_MOD_REPLACE (0x02) . This field also indicates the
type of values included in the mod_vals union. It is logically
ORed with LDAP_MOD_BVALUES (0x80) to select the
nmod_bval ues form. Otherwise, the nod_val ues form is
used.

mod_t ype The type of the attribute to modify.

C API Reference 8-23

Functions in the C API

Table 8-14 (Cont.) Fields in LDAPMod Structure

Field Description

mod_val s The values (if any) to add, delete, or replace. Only one of the
nod_val ues or nbd_bval ues variants can be used, selected
by ORing the nod_op field with the constant LDAP_MOD _
BVALUES. nod_val ues is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a
NULL-terminated array of ber val structures that can be used
to pass binary values such as images.

Usage Notes

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating
the attribute if necessary.

For LDAP_MOD_DEL ETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_vals field can be set to NULL.

For LDAP_MOD REPLACE modifications, the attribute will have the listed values after
the modification, having been created if necessary, or removed if the mod_val s field is
NULL. All modifications are performed in the order in which they are listed.

Idap_rename and Idap_rename_s
Use these routines to change the name of an entry.

The | dap_r enanme() function initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_r ename() places the DN message id of
the request in * megi dp. A subsequent call to | dap_r esul t () can be used to obtain
the result of the rename.

The synchronous | dap_r ename_s() returns the result of the operation, either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error code
if it was not.

The | dap_r enane() and | dap_rename_s() functions both support LDAPv3 server
controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax
int |dap_renane

(

LDAP *| d,

const char *dn,

const char *new dn,

const char *newpar ent ,

i nt del et eol drdn,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
i nt *megi dp

)

int |dap_renane_s

(
LDAP *| d,
const char *dn,

8-24 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

const char *new dn,

const char *newpar ent ,
int del et eol drdn,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls
E

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

int | dap_nodrdn

(

LDAP *d,
const char *dn,
const char *newr dn

)

int |dap_nodrdn_s

(

LDAP *|d,
const char *dn,
const char *newr dn

)

int | dap_nodrdn2
(

LDAP *| d,

const char *dn,

const char *new dn,

i nt del et eol drdn

)

int |dap_nodrdn2_s

(

LDAP * d,

const char *dn,

const char *new dn,

int del et eol drdn
);

Parameters

Table 8-15 lists and describes the parameters for rename operations.

Table 8-15 Parameters for Rename Operations

Parameter Description

Id The session handle.

dn The name of the entry whose DN is to be changed.

new dn The new RDN to give the entry.

newpar ent The new parent, or superior entry. If this parameter is NULL,

only the RDN of the entry is changed. The root DN should be
specified by passing a zero length string, " " . The newparent
parameter should always be NULL when using version 2 of the
LDAP protocol; otherwise the server's behavior is undefined.

C API Reference 8-25

Functions in the C API

Table 8-15 (Cont.) Parameters for Rename Operations

Parameter Description

del et eol drdn This parameter only has meaning on the rename routines if
newrdn is different than the old RDN. It is a boolean value, if
nonzero indicating that the old RDN value is to be removed, if
zero indicating that the old RDN value is to be retained as
non-distinguished values of the entry.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
nsgi dp This result parameter will be set to the message id of the

request if the | dap_r enane() call succeeds.

Idap_add_ext, Idap_add_ext_s, Idap_add, and Idap_add_s
Use these functions to add entries to the LDAP directory.

The | dap_add_ext () function initiates an asynchronous add operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, | dap_add_ext () places the message id of the request
in*msgi dp. A subsequent call to| dap_r esul t () can be used to obtain the result of
the add.

Similar to | dap_add_ext (), the | dap_add() function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for | dap_
add_ext (), a subsequent call to| dap_r esul t () can be used to obtain the result of
the add. In case of error, | dap_add() will return - 1, setting the session error
parameters in the LDAP structure appropriately.

The synchronous | dap_add_ext _s() and | dap_add_s() functions both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

The | dap_add_ext () and | dap_add_ext _s() functions support LDAPv3 server
controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

int |dap_add_ext
(

LDAP *|d,

const char *dn,

LDAPMbd **attrs,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
int *msgi dp

)

int |dap_add_ext_s
(

LDAP *1 d,

const char *dn,

LDAPMbd **attrs,
LDAPCont r ol **gserverctrl s,

LDAPCont r ol **clientctrls
);

8-26 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

int |dap_add

(

LDAP *1d,
const char *dn,
LDAPMbd **attrs
);

int |dap_add_s

(

LDAP *|d,
const char *dn,
LDAPMbd **attrs
);

Parameters

Table 8-16 lists and describes the parameters for add operations.

Table 8-16 Parameters for Add Operations

Parameter Description

I d The session handle.

dn The name of the entry to add.

attrs The entry attributes, specified using the LDAPMbd structure

defined for | dap_nodi f y() . The mod_type and nod_val s
fields must be filled in. The nod_op field is ignored unless
ORed with the constant LDAP_MOD_BVALUES, used to select
the nod_bval ues case of the nod_val s union.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgi dp This result parameter will be set to the message id of the

request if the | dap_add_ext () call succeeds.

Usage Notes

Note that the parent of the entry being added must already exist or the parent must be
empty—that is, equal to the root DN—for an add to succeed.

Idap_delete_ext, Idap_delete_ext_s, Idap_delete, and Idap_delete_s
Use these functions to delete a leaf entry from the LDAP directory.

The | dap_del et e_ext () function initiates an asynchronous delete operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_del et e_ext () places the message id of
the request in * megi dp. A subsequent call to | dap_r esul t () can be used to obtain
the result of the delete.

Similar to | dap_del et e_ext (), thel dap_del et e() function initiates an
asynchronous delete operation and returns the message id of the operation initiated.
As for | dap_del et e_ext (), asubsequent call to| dap_r esul t () can be used to
obtain the result of the delete. In case of error, | dap_del et e() will return - 1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous | dap_del et e_ext _s() and | dap_del et e_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

C API Reference 8-27

Functions in the C API

The | dap_del et e_ext () and | dap_del et e_ext _s() functions support LDAPv3
server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax
int |dap_del ete_ext

(

LDAP *| d,

const char *dn,

LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
int *msgi dp

)

int |dap_delete_ext_s

(

LDAP *d,
const char *dn,
LDAPCont r ol **serverctrls,

LDAPCont r ol **clientctrls
);

int Idap_delete

(
LDAP *d,
const char *dn

)

int |dap_delete_s

(

LDAP *d,
const char *dn
)

Parameters

Table 8-17 lists and describes the parameters for delete operations.

Table 8-17 Parameters for Delete Operations

Parameter Description

Id The session handle.

dn The name of the entry to delete.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgi dp This result parameter will be set to the message id of the

request if the | dap_del et e_ext () call succeeds.

Usage Notes

Note that the entry to delete must be a leaf entry—that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

8-28 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Idap_extended_operation and Idap_extended_operation_s

These routines enable extended LDAP operations to be passed to the server, providing
a general protocol extensibility mechanism.

The | dap_ext ended_oper at i on() function initiates an asynchronous extended
operation and returns the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. If successful, | dap_ext ended_

oper ati on() places the message id of the request in * m8gi dp. A subsequent call to

[dap_resul t () canbe used to obtain the result of the extended operation which can
be passed to | dap_par se_ext ended_r esul t () to obtain the OID and data
contained in the response.

The synchronous | dap_ext ended_oper ati on_s() function returns the result of
the operation, either the constant LDAP_SUCCESS if the operation was successful, or
another LDAP error code if it was not. The r et 0i d and r et dat a parameters are
filled in with the OID and data from the response. If no OID or data was returned,
these parameters are set to NULL.

The | dap_ext ended_operati on() and | dap_ext ended_operation_s()

functions both support LDAPv3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int | dap_extended_operation

(

LDAP *| d,

const char *requestoi d,
const struct berval *request dat a,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
i nt *megi dp

)

int | dap_extended_operation_s

(

LDAP *| d,

const char *request oi d,
const struct berval *request dat a,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
char **retoidp,
struct berval **retdatap

);

Parameters

Table 8-18 lists and describes the parameters for extended operations.

Table 8-18 Parameters for Extended Operations

Parameter Description

Id The session handle

requestoid The dotted-OID text string naming the request

requestdat a The arbitrary data needed by the operation (if NULL, no data is

sent to the server)

C API Reference 8-29

Functions in the C API

Table 8-18 (Cont.) Parameters for Extended Operations

Parameter Description

serverctrls List of LDAP server controls

clientctrls List of client controls

megi dp This result parameter will be set to the message id of the

request if the | dap_ext ended_oper ati on() call succeeds.

retoidp Pointer to a character string that will be set to an allocated,
dotted-OID text string returned by the server. This string
should be disposed of using the | dap_nenf r ee() function. If
no OID was returned, *r et oi dp is set to NULL.

ret dat ap Pointer to a ber val structure pointer that will be set an
allocated copy of the data returned by the server. This st r uct
ber val should be disposed of using ber _bvfree().Ifno
data is returned, * r et dat ap is set to NULL.

Abandoning an Operation

Use the functions in this section to abandon an operation in progress:

Idap_abandon_ext and Idap_abandon

| dap_abandon_ext () abandons the operation with message id msgi d and returns
the constant LDAP_SUCCESS if the abandon was successful or another LDAP error
code if not.

| dap_abandon() is identical to | dap_abandon_ext () except that it does not
accept client or server controls and it returns zero if the abandon was successful, - 1
otherwise.

After a successful call to | dap_abandon() or | dap_abandon_ext (), results with
the given message id are never returned from a subsequent call to | dap_resul t ().
There is no server response to LDAP abandon operations.

Syntax
int | dap_abandon_ext

(

LDAP *| d,
i nt msgi d,
LDAPCont r ol **gserverctrl s,

LDAPCont r ol **clientctrls
)

int | dap_abandon

(

LDAP *d,

i nt megi d
)

Parameters

Table 8-19 lists and describes the parameters for abandoning an operation.

Table 8-19 Parameters for Abandoning an Operation

Parameter Description

Id The session handle.

8-30 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 8-19 (Cont.) Parameters for Abandoning an Operation

Parameter Description

msgi d The message id of the request to be abandoned.
serverctrls List of LDAP server controls.

clientctrls List of client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Obtaining Results and Peeking Inside LDAP Messages

Use the functions in this section to return the result of an operation initiated
asynchronously. They identify messages by type and by ID.

Idap_result, Idap_msgtype, and Idap_msgid

| dap_resul t () isused to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, | dap_r esul t () can actually
return a list or "chain" of result messages. The | dap_r esul t () function only returns
messages for a single request, so for all LDAP operations other than search only one
result message is expected; that is, the only time the "result chain" can contain more
than one message is if results from a search operation are returned.

Once a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain of messages
returned by calling | dap_r esul t () or by calling a synchronous search routine will
never be affected by subsequent LDAP API calls (except for | dap_nsgf r ee() which
is used to dispose of a chain of messages).

| dap_nsgfree() frees the result messages (possibly an entire chain of messages)
obtained from a previous call to | dap_resul t () or from a call to a synchronous
search routine.

| dap_nsgt ype() returns the type of an LDAP message. | dap_nsgi d() returns the
message ID of an LDAP message.

Syntax

int |dap_result

(

LDAP *1d,
int negi d,
int all,

struct tineval *tineout,
LDAPMessage **res

)i
int |dap_nsgfree(LDAPMessage *res);
int |dap_nsgtype(LDAPMessage *res);
int |dap_nsgid(LDAPMessage *res);

Parameters

Table 8-20 on page 8-32 lists and describes the parameters for obtaining results and
peeling inside LDAP messages.

C API Reference 8-31

Functions in the C API

Table 8-20 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter Description
Id The session handle.
msgi d The message id of the operation whose results are to be

returned, the constant LDAP_RES_UNSOLI Cl TED (0) if an
unsolicited result is desired, or the constant LDAP_RES ANY
(-1) if any result is desired.

all Specifies how many messages will be retrieved in a single call
tol dap_resul t (). This parameter only has meaning for
search results. Pass the constant LDAP_MSG_ONE (0x00) to
retrieve one message at a time. Pass LDAP_M5G_ALL (0x01)
to request that all results of a search be received before
returning all results in a single chain. Pass LDAP_MSG_
RECEI VED (0x02) to indicate that all messages retrieved so
far are to be returned in the result chain.

ti meout A timeout specifying how long to wait for results to be
returned. A NULL value causes | dap_resul t () to block until
results are available. A timeout value of zero seconds specifies
a polling behavior.

res For | dap_resul t (), aresult parameter that will contain the
result of the operation. If no results are returned, *r es is set to
NULL. For | dap_nsgf r ee(), the result chain to be freed,
obtained from a previous call to | dap_resul t (),| dap_
search_s(),orl dap_search_st().Ifres isNULL,
nothing is done and | dap_nsgf r ee() returns zero.

Usage Notes

Upon successful completion, | dap_r esul t () returns the type of the first result
returned in the r es parameter. This will be one of the following constants.

LDAP_RES BI ND (0x61)

LDAP_RES SEARCH ENTRY (0x64)
LDAP_RES SEARCH REFERENCE (0x73) -- new in LDAPv3
LDAP_RES SEARCH RESULT (0x65)

LDAP_RES MODI FY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (Ox6F)

LDAP_RES EXTENDED (0x78) -- new in LDAPv3

| dap_resul t () returns O if the timeout expired and - 1 if an error occurs, in which
case the error parameters of the LDAP session handle will be set accordingly.

| dap_nsgfree() frees each message in the result chain pointed to by r es and
returns the type of the last message in the chain. If r es is NULL, then nothing is done
and the value zero is returned.

| dap_nsgt ype() returns the type of the LDAP message it is passed as a parameter.
The type will be one of the types listed previously, or - 1 on error.

| dap_msgi d() returns the message ID associated with the LDAP message passed as
a parameter, or - 1 on error.

8-32 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Handling Errors and Parsing Results

Use the functions in this section to extract information from results and to handle
errors returned by other LDAP API routines.

Idap_parse_result, Idap_parse_sasl_bind_result, Idap_parse_extended_result, and
Idap_err2string

Note that | dap_par se_sasl _bind_result() and| dap_parse_ext ended_
resul t () must typically be used in addition to | dap_par se_resul t () to retrieve
all the result information from SASL Bind and Extended Operations respectively.

The |l dap_parse_result(),l dap_parse_sasl _bind result(),and| dap_
par se_ext ended_r esul t () functions all skip over messages of type LDAP_RES_
SEARCH _ENTRY and LDAP_RES SEARCH REFERENCE when looking for a result
message to parse. They return the constant LDAP_SUCCESS if the result was
successfully parsed and another LDAP error code if not. Note that the LDAP error
code that indicates the outcome of the operation performed by the server is placed in
the errcodep | dap_par se_r esul t () parameter. If a chain of messages that contains
more than one result message is passed to these routines they always operate on the
first result in the chain.

[dap_err2string() isused to convert a numeric LDAP error code, as returned by
| dap_parse_result(),l dap_parse_sasl _bind result(),|dap_parse_
ext ended_r esul t () or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It returns a
pointer to static data.

Syntax

int |dap_parse_result

(

LDAP *|d,
LDAPMessage *res,

i nt *errcodep,
char **mat cheddnp,
char **errnsgp,
char ***referral sp,
LDAPCont r ol ***gserverctrlsp,
i nt freeit

)

int | dap_parse_sasl _bind_result
(

LDAP *|d,
LDAPMessage *res,

struct berval **servercredp,
int freeit

)

int | dap_parse_extended_result

(

LDAP *|d,
LDAPMessage *res,

char **retoidp,
struct berval **r et dat ap,
i nt freeit

)
#define LDAP_NOTI CE_OF DI SCONNECTION "1.3.6. 1. 4. 1. 1466. 20036"

C API Reference 8-33

Functions in the C API

char *ldap_err2string(int err);

The routines immediately following are deprecated. To learn more about them, see
RFC 1823.

int |dap_result2error

(

LDAP *|d,
LDAPMessage *res,
i nt freeit

);
voi d | dap_perror(LDAP *Id, const char *nsg);

Parameters
Table 8-21 lists and describes parameters for handling errors and parsing results.

Table 8-21 Parameters for Handling Errors and Parsing Results

Parameter Description
Id The session handle.
res The result of an LDAP operation as returned by | dap_

resul t () or one of the synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error
code field from the LDAPMessage message. This is the
indication from the server of the outcome of the operation.
NULL should be passed to ignore this field.

mat cheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this result
parameter will be filled in with a DN indicating how much of
the name in the request was recognized. NULL should be
passed to ignore this field. The matched DN string should be
freed by calling | dap_nenf r ee() which is described later in
this document.

errmsgp This result parameter will be filled in with the contents of the
error message field from the LDAPMessage message. The error
message string should be freed by calling | dap_ment r ee()
which is described later in this document. NULL should be
passed to ignore this field.

referral sp This result parameter will be filled in with the contents of the
referrals field from the LDAPMessage message, indicating zero
or more alternate LDAP servers where the request is to be
retried. The referrals array should be freed by calling | dap_
val ue_free() which is described later in this document.
NULL should be passed to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage message. The control
array should be freed by calling | dap_control s_free()
which was described earlier.

freeit A Boolean that determines whether the r es parameter is
disposed of or not. Pass any nonzero value to have these
routines free r s after extracting the requested information.
This is provided as a convenience; you can also use | dap_
nmegfree() to free the result later. If f r eei t is nonzero, the
entire chain of messages represented by res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in
with the credentials passed back by the server for mutual
authentication, if given. An allocated ber val structure is
returned that should be disposed of by calling ber _
bvfree().NULL should be passed to ignore this field.

8-34 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 8-21 (Cont.) Parameters for Handling Errors and Parsing Results

Parameter Description

retoi dp For extended results, this result parameter will be filled in with
the dotted-OID text representation of the name of the extended
operation response. This string should be disposed of by
calling | dap_nenf r ee() . NULL should be passed to ignore
this field. The LDAP_NOTI CE_OF_DI SCONNECTI ON macro is
defined as a convenience for clients that wish to check an OID
to see if it matches the one used for the unsolicited Notice of
Disconnection (defined in RFC 2251[2] section 4.4.1).

ret dat ap For extended results, this result parameter will be filled in with
a pointer toastruct berval containing the data in the
extended operation response. It should be disposed of by
calling ber _bvfree().NULL should be passed to ignore this
field.

err For | dap_err 2string(),an LDAP error code, as returned
by | dap_parse_resul t () or another LDAP API call.

Usage Notes
See RFC 1823 for a description of parameters peculiar to the deprecated routines.

Stepping Through a List of Results

Use the routines in this section to step through the list of messages in a result chain
returned by | dap_resul t ().

Idap_first_message and Idap_next_message
The result chain for search operations can include referral messages, entry messages,
and result messages.

| dap_count _nessages() is used to count the number of messages returned. The
| dap_nsgt ype() function, described previously, can be used to distinguish between
the different message types.

LDAPMessage *|dap_first_nessage(LDAP *|d, LDAPMessage *res);
LDAPMessage *| dap_next _message(LDAP *Id, LDAPMessage *nsg);
int |dap_count_messages(LDAP *|d, LDAPMessage *res);

Parameters
Table 8-22 lists and describes the parameters for stepping through a list of results.

Table 8-22 Parameters for Stepping Through a List of Results

Parameter Description
Id The session handle.
res The result chain, as obtained by a call to one of the

synchronous search routines or | dap_resul t ().

1130) The message returned by a previous call to | dap_first _
nmessage() orl dap_next _nessage().

Usage Notes

| dap_first_nessage() and | dap_next _nmessage() will return NULL when no
more messages exist in the result set to be returned. NULL is also returned if an error

C API Reference 8-35

Functions in the C API

occurs while stepping through the entries, in which case the error parameters in the
session handle 1d will be set to indicate the error.

If successful, | dap_count _messages() returns the number of messages contained
in a chain of results; if an error occurs such as the res parameter being invalid, - 1 is
returned. The | dap_count _nmessages() call can also be used to count the number
of messages that remain in a chain if called with a message, entry, or reference
returned by | dap_first_nessage(),| dap_next _nmessage(), | dap_first_
entry(),l dap_next_entry(),l dap_first_reference(),| dap_next _
reference().

Parsing Search Results

Use the functions in this section to parse the entries and references returned by | dap_
sear ch functions. These results are returned in an opaque structure that may be
accessed by calling the routines described in this section. Routines are provided to step
through the entries and references returned, step through the attributes of an entry,
retrieve the name of an entry, and retrieve the values associated with a given attribute
in an entry.

Idap_first_entry, Idap_next_entry, Idap_first_reference, Idap_next_reference, Idap_
count_entries, and Idap_count_references

Thel dap_first_entry() and| dap_next _entry() routines are used to step
through and retrieve the list of entries from a search result chain. The | dap_first _
reference() and | dap_next _ref erence() routines are used to step through
and retrieve the list of continuation references from a search result chain. | dap_
count _entri es() isused to count the number of entries returned. | dap_count _
ref erences() is used to count the number of references returned.

LDAPMessage *Idap_first_entry(LDAP *ld, LDAPMessage *res);
LDAPMessage *| dap_next _entry(LDAP *Id, LDAPMessage *entry);
LDAPMessage *|dap_first_reference(LDAP *|d, LDAPMessage *res);
LDAPMessage *| dap_next _reference(LDAP *|d, LDAPMessage *ref);
int |dap_count_entries(LDAP *|d, LDAPMessage *res);

int |dap_count _references(LDAP *|d, LDAPMessage *res);

Parameters

Table 8-23 lists and describes the parameters or retrieving entries and continuation
references from a search result chain, and for counting entries returned.

Table 8-23 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description
Id The session handle.
res The search result, as obtained by a call to one of the synchronous search

routines or | dap_resul t ().

entry The entry returned by a previous call to | dap_first_entry() or
| dap_next _entry().

ref The reference returned by a previous call to | dap_first_reference()
or | dap_next _reference().

Usage Notes

I dap_first_entry(),| dap_next_entry(),l dap_first_reference(),and
| dap_next _reference() all return NULL when no more entries or references exist

8-36 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

in the result set to be returned. NULL is also returned if an error occurs while stepping
through the entries or references, in which case the error parameters in the session
handle | d will be set to indicate the error.

| dap_count _entri es() returns the number of entries contained in a chain of
entries; if an error occurs such as the r es parameter being invalid, - 1 is returned. The
| dap_count _entri es() call can also be used to count the number of entries that
remain in a chain if called with a message, entry or reference returned by | dap_
first_nessage(),| dap_next _mnessage(),l dap_first_entry(),|dap_
next _entry(),ldap_first_reference(),| dap_next_reference().

| dap_count _references() returns the number of references contained in a chain
of search results; if an error occurs such as the r es parameter being invalid, - 1 is
returned. The | dap_count _r ef er ences() call can also be used to count the
number of references that remain in a chain.

Idap_first_attribute and Idap_next_attribute

Use the functions in this section to step through the list of attribute types returned
with an entry.

Syntax

char *ldap_first_attribute
(

LDAP *|d,
LDAPMessage *entry,

Ber El ement **ptr

)

char *|dap_next_attribute

(

LDAP *1d,
LDAPMessage *entry,
Ber El enent *ptr

)

voi d | dap_nenfree(char *mem);

Parameters

Table 8-24 lists and describes the parameters for stepping through attribute types
returned with an entry.

Table 8-24 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

Id The session handle.

entry The entry whose attributes are to be stepped through, as
returned by | dap_first_entry() or | dap_next _
entry().

ptr Inldap_first_attribute(),the address of a pointer used

internally to keep track of the current position in the entry. In
| dap_next _attribute(), the pointer returned by a
previous call to | dap_first_attribute().The

Ber El enent type itself is an opaque structure.

mem A pointer to memory allocated by the LDAP library, such as
the attribute type names returned by | dap_first _
attribute() and| dap_next _attri bute, or the DN
returned by | dap_get _dn() . If memis NULL, the | dap_
menf ree() call does nothing.

C API Reference 8-37

Functions in the C API

Usage Notes

I dap_first_attribute() and| dap_next _attri bute() returns NULL when
the end of the attributes is reached, or if there is an error. In the latter case, the error
parameters in the session handle | d are set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute
name. This should be freed when no longer in use by calling | dap_nmenfree().

[dap_first_attribute() will allocate and return in pt r a pointer to a

Ber El enent used to keep track of the current position. This pointer may be passed in
subsequent calls to | dap_next _attri but e() to step through the entry's attributes.
Afterasetofcallstol dap_first_attribute() and| dap_next_attri bute(),if
pt r is non-null, it should be freed by calling ber _free(ptr, 0).Note thatitis very
important to pass the second parameter as O (zero) in this call, since the buffer
associated with the Ber El enent does not point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to | dap_get _
val ues() and friends to retrieve the associated values.

Idap_get_values, Idap_get_values_len, Idap_count_values, Idap_count_values_len,
Idap_value_free, and Idap_value_free_len
| dap_get val ues() and | dap_get val ues_| en() are used to retrieve the

values of a given attribute from an entry. | dap_count _val ues() and | dap_
count _val ues_I| en() are used to count the returned values.

| dap_val ue_free() and| dap_val ue_free_ | en() are used to free the values.

Syntax
char **| dap_get _val ues

(

LDAP *| d,
LDAPMessage *entry,
const char *attr

)

struct berval **|dap_get_values_|en

(

LDAP *| d,
LDAPMessage *entry,
const char *attr

)

int |dap_count_val ues(char **vals);
int |dap_count_val ues_len(struct berval **vals);
voi d | dap_value_free(char **vals);
voi d | dap_val ue_free_len(struct berval **vals);

Parameters

Table 8-25 lists and describes the parameters for retrieving and counting attribute
values.

Table 8-25 Parameters for Retrieving and Counting Attribute Values

Parameter Description
Id The session handle.
entry The entry from which to retrieve values, as returned by | dap_

first_entry() orl dap_next_entry().

8-38 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 8-25 (Cont.) Parameters for Retrieving and Counting Attribute Values

Parameter Description

attr The attribute whose values are to be retrieved, as returned by
I dap_first_attribute() orl dap_next_attribute(),
or a caller-supplied string (for example, "mail").

val s The values returned by a previous call to | dap_get _
val ues() orl dap_get _val ues_l en().

Usage Notes

Two forms of the various calls are provided. The first form is only suitable for use with
non-binary character string data. The second _| en form is used with any kind of data.

| dap_get val ues() and | dap_get val ues_I| en() return NULL if no values are
found for at t r or if an error occurs.

| dap_count _val ues() and | dap_count _val ues_| en() return - 1 if an error
occurs such as the val s parameter being invalid.

If a NULL val s parameter is passed to | dap_val ue_free() orl dap_val ue_free_
I en(), nothing is done.

Note that the values returned are dynamically allocated and should be freed by calling
either | dap_val ue_free() orl dap_val ue_free_| en() when no longer in use.

Idap_get_dn, Idap_explode_dn, Idap_explode_rdn, and Idap_dn2ufn

| dap_get _dn() is used to retrieve the name of an entry. | dap_expl ode_dn() and
| dap_expl ode_rdn() are used to break up a name into its component parts. | dap_
dn2uf n() is used to convert the name into a more user friendly format.

Syntax

char *|dap_get _dn(LDAP *ld, LDAPMessage *entry);

char **| dap_expl ode_dn(const char *dn, int notypes);
char **| dap_expl ode_rdn(const char *rdn, int notypes);
char *|dap_dn2ufn(const char *dn);

Parameters

Table 8-26 lists and describes the parameters for retrieving, exploding, and converting
entry names.

Table 8-26 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description

Id The session handle.

entry The entry whose name is to be retrieved, as returned by | dap_
first_entry() orl dap_next_entry().

dn The DN to explode, such as returned by | dap_get _dn().

rdn The RDN to explode, such as returned in the components of

the array returned by | dap_expl ode_dn() .

not ypes A Boolean parameter, if nonzero indicating that the DN or
RDN components are to have their type information stripped
off: cn=Babs would become Babs.

C API Reference 8-39

Functions in the C API

Usage Notes

| dap_get _dn() returns NULL if a DN parsing error occurs. The function sets error
parameters in the session handle | d to indicate the error. It returns a pointer to newly
allocated space that the caller should free by calling | dap_ment r ee() when it is no
longer in use.

| dap_expl ode_dn() returns a NULL-terminated char * array containing the RDN
components of the DN supplied, with or without types as indicated by the not ypes
parameter. The components are returned in the order they appear in the DN. The array
returned should be freed when it is no longer in use by calling | dap_val ue_free().

| dap_expl ode_r dn() returns a NULL-terminated char * array containing the
components of the RDN supplied, with or without types as indicated by the not ypes
parameter. The components are returned in the order they appear in the rdn. The array
returned should be freed when it is no longer in use by calling | dap_val ue_free().

[dap_dn2uf n() converts the DN into a user friendly format. The UEN returned is
newly allocated space that should be freed by a call to | dap_nmenf r ee() when no
longer in use.

Idap_get_entry_controls
| dap_get _entry_control s() is used to extract LDAP controls from an entry.

Syntax

int |dap_get_entry _controls

(

LDAP *1d,

LDAPMessage *entry,

LDAPCont r ol ***serverctrlsp

);

Parameters

Table 8-27 lists and describes the parameters for extracting LDAP control from an
entry.

Table 8-27 Parameters for Extracting LDAP Controls from an Entry

Parameters Description
Id The session handle.
entry The entry to extract controls from, as returned by | dap_

first_entry() orl dap_next_entry().

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of entry. The control array should be freed
by calling | dap_control s_free().Ifserverctrlspis
NULL, no controls are returned.

Usage Notes

| dap_get _entry_control s() returns an LDAP error code that indicates whether
the reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Idap_parse_reference

Use | dap_parse_ref erence() to extract referrals and controls from a
Sear chResul t Ref er ence message.

8-40 Oracle Identity Management Application Developer’'s Guide

Sample C APl Usage

Syntax
int |dap_parse_reference

(

LDAP *d,

LDAPMessage *ref,

char ***referral sp,
LDAPCont r ol ***serverctrlsp,
int freeit

E

Parameters

Table 8-28 lists and describes parameters for extracting referrals and controls from a
Sear chResul t Ref er ence message.

Table 8-28 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description
Id The session handle.
r ef The reference to parse, as returned by | dap_resul t (),

I dap_first_reference(),orl dap_next_reference().

referral sp This result parameter will be filled in with an allocated array of
character strings. The elements of the array are the referrals
(typically LDAP URLSs) contained in ref. The array should be
freed when no longer in used by calling | dap_val ue_
free().Ifreferral spis NULL, the referral URLs are not
returned.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of r ef . The control array shouldbe freed
by calling | dap_controls_free().Ifserverctrlspis
NULL, no controls are returned.

freeit A Boolean that determines whether the r ef parameter is
disposed of or not. Pass any nonzero value to have this routine
freer ef after extracting the requested information. This is
provided as a convenience. You can also use | dap_
negf ree() to free the result later.

Usage Notes

| dap_par se_reference() returns an LDAP error code that indicates whether the
reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Sample C API Usage

The following examples show how to use the C API both with and without SSL and
for SASL authentication. More complete examples are given in RFC 1823. The sample
code for the command-line tool to perform an LDAP search also demonstrates use of
the API in both the SSL and the non-SSL mode.

This section contains these topics:

= CAPI Usage with SSL

« C API Usage Without SSL

= C API Usage for SASL-Based DIGEST-MD5 Authentication

C API Reference 8-41

Sample C APl Usage

C API Usage with SSL

#incl ude <stdio. h>
#incl ude <l dap. h>

mai n()

{

LDAP *| d;

i nt ret = 0;

/* open a connection */
if ((Id = 1dap_open("MHost", 636)) == NULL)
exit(1);

/[* SSL initialization */
ret = ldap_init_SSL(& d->Id_sb, "file:/sslwallet", "welcome",
GSLC_SSL_ONEWAY_AUTH);

if(ret 1=0)

{

printf(" % \n", |dap_err2string(ret));
exit(1);

}

/* authenticate as nobody */

if (Idap_bind_s(I'd, NULL, NULL) != LDAP_SUCCESS) {
| dap_perror(Id, "ldap_bhind_s");
exit(1);

}
Because the user is making the | dap_i ni t _SSL call, the client/server
communication in the previous example is secured by using SSL.

C APl Usage Without SSL

#include <stdio. h>
#i ncl ude <l dap. h>

mai n()

{

LDAP *| d;

int ret =0;

/* open a connection */
if ((Id=1dap_open("MHost", LDAP_PORT
)) == NULL)

exit(1);

/* authenticate as nobody */

if (ldap_bind_s(Id, NULL, NULL) != LDAP_SUCCESS) {
| dap_perror(1d, "ldap_bind_s");
exit(1);

8-42 Oracle Identity Management Application Developer’'s Guide

Sample C APl Usage

}
In the previous example, the user is not making the | dap_i ni t _SSL call, and the
client-to-server communication is therefore not secure.

C API Usage for SASL-Based DIGEST-MD5 Authentication

This sample program illustrates the usage of LDAP SASL C-API for SASL-based
DIGEST-MD?5 authentication to a directory server.

/*
EXPORT FUNCTI ON(S)
NONE
| NTERNAL FUNCTI O\(S)
NONE
STATI C FUNCTI ON(S)
NONE
NOTES
Usage:
sasl bind -h | dap_host -p Idap_port -D authentication_identity_dn \
-w <password >
options
-h LDAP host
-p LDAP port
-D DN of the identity for authentication
-p Password
Default SASL authentication paraneters used by the denp program
SASL Security Property : Currenty only "auth" security property
is supported by the C-API. This denp
program uses this security property.
SASL Mechani sm : Supported mechani sns by O D
"Dl GEST- MD5" - This denmp program
illustrates it's usage.
"EXTERNAL" - SSL authentication is used.
(This deno program does
not illustrate it's usage.)
Aut hori zation identity : This deno program does not use any
authorization identity.
MODI FIED (MM DD/ YY)
e 06/12/03 - Creation
*|
2
PRI VATE TYPES AND CONSTANTS
___ * |
2
STATI C FUNCTI ON DECLARATI ONS
___ %/

#include <stdio. h>

C API Reference 8-43

Sample C APl Usage

#include <stdlib.h>
#incl ude <l dap. h>

static int |dap_version = LDAP_VERSI ON3;

main (int argc, char **argv)

{
LDAP* I d;
extern char* optarg;
char* | dap_host = NULL;
char* | dap_bi nd_dn = NULL;
char* | dap_bi nd_pw = NULL;
i nt aut hmet hod = 0;
char | dap_l ocal _host[256] = "local host";
i nt | dap_port = 389;
char* authcid = (char *)NULL;
char* mech = "DI GEST-MD5"; /* SASL mechanism */
char* authzid = (char *)NULL;
char* sasl _secprops = "auth";
char* realm= (char *)NULL;
i nt status = LDAP_SUCCESS;,
OraLdapHandl e sasl_cred = (OraLdapHandl e) NULL;
OraldapCientCx *cctx = (OraLdapCientCtx *)NULL;
i nt i =0;
while ((i = getopt(argc, argv,
"DhipwEPUVWORXY:Z
)) = EGF) {
switch(i) {

case 'h':/* |dap host */
| dap_host = (char *)strdup(optarg);
break;

case 'D:/* bind DN */
authcid = (char *)strdup(optarg);
br eak;

case 'p':/* |dap port */
| dap_port = atoi(optarg);
break;
case 'W:/* Password */
| dap_bi nd_pw = (char *)strdup(optarg);
break;

defaul t:
printf("Invalid Argunents passed\n");

}

/* Get the connection to the LDAP server */
if (Idap_host == NULL)
| dap_host = | dap_| ocal _host;

if ((Id = Idap_open (ldap_host, |dap_port)) == NULL)

{
| dap_perror (1d, "ldap_init");
exit (1);

8-44 Oracle Identity Management Application Developer’'s Guide

Required Header Files and Libraries for the C API

}

/* Create the client context needed by LDAP C-API Oracle Extension functions*/
status = ora_ldap_init_clientctx(&cctx);

i f (LDAP_SUCCESS ! = status) {
printf("Failed during creation of client context \n");
exit(1);

}

/* Create SASL credentials */
sasl _cred = ora_ldap_create_cred_hdl (cctx, ORA LDAP_CRED HANDLE SASL_MD5);

ora_| dap_set_cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_REALM (void
*)realnj;

ora_l dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_AUTH PASSWORD, (void
*) 1 dap_bi nd_pw) ;

ora_l dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_AUTHORI ZATI ON_
I D, (void *)authzid);

ora_| dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_SECURI TY_PROPERTI ES,
(void *)sasl _secprops);

[* |f connecting to the directory using SASL DI GEST-MD5, the Authentication ID
has to be nornalized before it's sent to the server,
the LDAP C- APl does this normalization based on the following flag set in
SASL credential properties */
ora_l dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_NORM AUTHDN, (void
*)NULL) ;

/* SASL Authetication to LDAP Server */
status = (int)ora_ldap_init_SASL(cctx, |d, (char *)authcid, (char *)ORA_LDAP_
SASL_MECH_DI GEST_MD5,
sasl _cred, NULL, NULL);

i f (LDAP_SUCCESS == status) {
printf("SASL bind successful \n");

}else {
printf("SASL bind failed with status : %\ n", status);

}

/* Free SASL Credentials */
ora_|l dap_free_cred_hdl (cctx, sasl_cred);

status = ora_l dap_free_clientctx(cctx);

[* Unbind from LDAP server */
| dap_unbind (1d);

return (0);

/* end of file saslbind.c */

Required Header Files and Libraries for the C API

To build applications with the C API, you need to:
« Include the header file located at ORACLE_HOME/ | dap/ publ i c/ | dap. h.

C API Reference 8-45

Dependencies and Limitations of the C API

= Dynamically link to the library located at
- $ORACLE_HOVE/ l'i b/ I'i bcl nt sh. so. 10. 1 on UNIX operating systems

- 9%ORACLE_HOMVE% bi n\ or al dapcl nt 10. dl | on Windows operating
systems

Dependencies and Limitations of the C API

This API can work against any release of Oracle Internet Directory. It requires either
an Oracle environment or, at minimum, globalization support and other core libraries.

To use the different authentication modes in SSL, the directory server requires
corresponding configuration settings.

See Also: Oracle Internet Directory Administrator’s Guide for details
about how to set the directory server in various SSL authentication
modes

Oracle Wallet Manager is required for creating wallets if you are using the C APl in
SSL mode.

TCP/1IP Socket Library is required.

The following Oracle libraries are required:

= Oracle SSL-related libraries

= Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You
should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP SDK
specifications (RFC 1823).

8-46 Oracle Identity Management Application Developer’'s Guide

9

DBMS LDAP PL/SQL Reference

DBMS_LDAP contains the functions and procedures that enable PL/SQL programmers
to access data from LDAP servers. This chapter examines all of the API functions in
detail.

The chapter contains these topics:
= Summary of Subprograms

= Exception Summary

= Data Type Summary

= Subprograms

Note: Sample code for the DBMS_LDAP package is available at this
URL:

http://ww. oracl e. com t echnol ogy/ sanpl e_code/ i d_ngnt

Summary of Subprograms
Table 9-1 DBMS_LDAP API Subprograms
Function or Procedure Description
FUNCTION init i nit() initializes a session with an LDAP server. This

actually establishes a connection with the LDAP server.

FUNCTION simple_bind_s The function si npl e_bi nd_s() can be used to perform
simple user name and password authentication to the
directory server.

FUNCTION bind_s The function bi nd_s() can be used to perform complex
authentication to the directory server.

FUNCTION unbind_s The function unbi nd_s() is used for closing an active
LDAP session.

FUNCTION compare_s The function conpar e_s() can be used to test if a
particular attribute in a particular entry has a particular
value.

FUNCTION search_s The function sear ch_s() performs a synchronous search

in the LDAP server. It returns control to the PL/SQL
environment only after all of the search results have been
sent by the server or if the search request is 'timed-out by
the server.

DBMS_LDAP PL/SQL Reference 9-1

Summary of Subprograms

Table 9-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION search_st

FUNCTION first_entry
FUNCTION next_entry

FUNCTION count_entries

FUNCTION first_attribute
FUNCTION next_attribute
FUNCTION get_dn

FUNCTION get_values

FUNCTION get_values_len
FUNCTION delete_s
FUNCTION modrdn2_s

FUNCTION err2string

FUNCTION create_mod_array

PROCEDURE populate_mod_
array (String Version)

PROCEDURE populate_mod_
array (Binary Version)

PROCEDURE populate_mod_
array (Binary Version. Uses
BLOB Data Type)

FUNCTION get_values_blob

FUNCTION count_values_blob

The function sear ch_st () performs a synchronous
search in the LDAP server with a client side time out. It
returns control to the PL/SQL environment only after all
of the search results have been sent by the server or if the
search request is 'timed-out' by the client or the server.

The function first_entry is used to retrieve the first entry in
the result set returned by either sear ch_s() or search_st.

The function next _ent ry() is used to iterate to the next
entry in the result set of a search operation.

This function is used to count the number of entries in the
result set. It can also be used to count the number of
entries remaining during a traversal of the result set using
a combination of the functionsfirst_entry() and
next _entry.

The functionfirst_attribute() fetches the first
attribute of a given entry in the result set.

The function next _at t ri but e() fetches the next
attribute of a given entry in the result set.

The function get _dn() retrieves the X.500 distinguished
name of a given entry in the result set.

The function get _val ues() can be used to retrieve all of
the values associated with a given attribute in a given
entry.

The function get _val ues_I| en() can be used to retrieve
values of attributes that have a 'Binary' syntax.

This function can be used to remove a leaf entry in the
LDAP Directory Information Tree.

The function modr dn2_s() can be used to rename the
relative distinguished name of an entry.

The function err 2st ri ng() can be used to convert an
LDAP error code to a string in the local language in which
the APl is operating.

The function cr eat e_nod_array() allocates memory
for array modification entries that will be applied to an
entry using the nodi fy_s() functions.

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP. creat e_nod_array() is called.

Populates one set of attribute information for add or
modify operations. This procedure call has to occur after
DBMS_LDAP. creat e_nod_array() is called.

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP. creat e_nod_array() is called.

The function get _val ues_bl ob() can be used to
retrieve larger values of attributes that have a binary
syntax.

Counts the number of values returned by DBVS_
LDAP. get _val ues_bl ob().

9-2 Oracle Identity Management Application Developer’'s Guide

Exception Summary

Table 9-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION value_free_blob

FUNCTION modify_s

FUNCTION add_s

PROCEDURE free_mod_array
FUNCTION count_values
FUNCTION count_values_len

FUNCTION rename_s
FUNCTION explode_dn
FUNCTION open_ssl

FUNCTION msgfree

FUNCTION ber_free

FUNCTION nls_convert_to_
utf8

FUNCTION nls_convert_from_
utf8

FUNCTION nls_get_
dbcharset_name

Frees the memory associated with the BLOB_COLLECTI ON
returned by DBM5_LDAP. get _val ues_bl ob() .

Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s, you must call DBV5_
LDAP. creat _nod_array() and DBMS_

LDAP. popul at e_nod_array().

Adds a new entry to the LDAP directory synchronously.
Before calling add_s, you must call DBM5_LDAP. cr eat _
nod_array() and DBMS_LDAP. popul at e_nod_

array().

Frees the memory allocated by DBMS_LDAP. creat e_
nod_array().

Counts the number of values returned by DBM5_
LDAP. get _val ues().

Counts the number of values returned by DBV5_
LDAP. get _values_len ().

Renames an LDAP entry synchronously.
Breaks a DN up into its components.

Establishes an SSL (Secure Sockets Layer) connection over
an existing LDAP connection.

This function frees the chain of messages associated with
the message handle returned by synchronous search
functions.

This function frees the memory associated with a handle
to BER_ELEMENT.

The nl s_convert _t o_ut f 8 function converts the input
string containing database character set data to UTF8
character set data and returns it.

The nl s_convert _f rom ut f 8 function converts the
input string containing UTF8 character set data to
database character set data and returns it.

The nl s_get _dbchar set _nane function returns a
string containing the database character set name.

See Also:

= "Searching the Directory" in Chapter 3 for more about DBM5_
LDAP. sear ch_s() and DBVM5S_LDAP. sear ch_st ()

= "Terminating the Session by Using DBMS_LDAP" in Chapter 3 for
more about DBMS_LDAP. unbi nd_s()

Exception Summary

DBM5_LDAP can generate the exceptions described in Table 9-2 on page 9-4.

DBMS_LDAP PL/SQL Reference 9-3

Exception Summary

Table 9-2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

general _error

init_failed

inval i d_session

i nval i d_aut h_net hod

inval i d_search_scope

invalid search_tine val

i nval i d_nessage

count _entry_error

get _dn_error

invalid_entry_dn

inval i d_nod_array

invalid_nod_option

invalid_nod_type

invalid _nod val ue

invalid_rdn

i nval i d_newpar ent

invalid_del eteol drdn

i nval i d_notypes

31202 Raised anytime an error is encountered that does
not have a specific PL/SQL exception associated
with it. The error string contains the description
of the problem in the user’s language.

31203 Raised by DBMS_LDAP. i ni t () if there are
problems.

31204 Raised by all functions and procedures in the
DBMS_LDAP package if they are passed an invalid
session handle.

31205 Raised by DBMS_LDAP. bi nd_s() if the
authentication method requested is not
supported.

31206 Raised by all search functions if the scope of the
search is invalid.

31207 Raised by DBMS_LDAP. sear ch_st () if itis
given an invalid value for a time limit.

31208 Raised by all functions that iterate through a
result-set for getting entries from a search
operation if the message handle given to them is
invalid.

31209 Raised by DBM5_LDAP. count _entri es if it
cannot count the entries in a given result set.

31210 Raised by DBMS_LDAP. get _dn if the DN of the
entry it is retrieving is NULL.

31211 Raised by all functions that modify, add, or
rename an entry if they are presented with an
invalid entry DN.

31212 Raised by all functions that take a modification
array as an argument if they are given an invalid
modification array.

31213 Raised by DBMS_LDAP. popul at e_rod_arr ay
if the modification option given is anything other
than MOD_ADD, MOD_DELETE or MOD_REPLACE.

31214 Raised by DBMS_LDAP. popul at e_rod_arr ay
if the attribute type that is being modified is
NULL.

31215 Raised by DBMS_LDAP. popul at e_nod_array
if the modification value parameter for a given
attribute is NULL.

31216 Raised by all functions and procedures that
expect a valid RDN and are provided with an
invalid one.

31217 Raised by DBM5_LDAP. r ename_s if the new
parent of an entry being renamed is NULL.

31218 Raised by DBMS_LDAP. r enamne_s if the
del et eol dr dn parameter is invalid.

31219 Raised by DBMS_LDAP. expl ode_dn if the
not ypes parameter is invalid.

9-4 Oracle Identity Management Application Developer’'s Guide

Subprograms

Table 9-2 (Cont.) DBMS_LDAP Exception Summary

Oracle
Error
Exception Name Number Cause of Exception

invalid_ssl_wallet_|oc 31220 Raised by DBMS_LDAP. open_ssl if the wallet
location is NULL but the SSL authentication mode
requires a valid wallet.

invalid_ssl_wallet_ 31221 Raised by DBMS_LDAP. open_ssl if the wallet
passwor d password given is NULL.
invalid ssl_auth_node 31222 Raised by DBMS_LDAP. open_ssl if the SSL

authentication mode isnot 1, 2 or 3.

Data Type Summary

The DBMS_LDAP package uses the data types described in Table 9-3.

Table 9-3 DBMS_LDAP Data Type Summary

Data-Type Purpose

SESSI ON Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSACGE Used to hold a handle to the message retrieved from the result
set. This is used by all functions that work with entry attributes
and values.

MOD_ARRAY Used to hold a handle to the array of modifications being passed
to either modi fy_s() oradd_s().

TI MEVAL Used to pass time limit information to the LDAP API functions
that require a time limit.

BER_ELEMENT Used to hold a handle to a BER structure used for decoding
incoming messages.

STRI NG_COLLECTI ON Used to hold a list of VARCHAR?Z strings that can be passed on to
the LDAP server.

BI NVAL_COLLECTI ON Used to hold a list of RAWdata, which represent binary data.

BERVAL_COLLECTI ON Used to hold a list of BERVAL values that are used for
populating a modification array.

BLOB_COLLECTI ON Used to hold a list of BLOB data, which represent binary data.

Subprograms

This section takes a closer look at each of the DBM5_LDAP subprograms.

FUNCTION init

i nit() initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

DBMS_LDAP PL/SQL Reference 9-5

Subprograms

Syntax
FUNCTI ON i ni t

(
host name | N VARCHAR?,

portnum | N PLS | NTEGER

)
RETURN SESSI ON;

Parameters

Table 9-4 INIT Function Parameters

Parameter Description

host name Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server
to connect to. Each host name in the list may include a port
number, which is separated from the host by a colon. The hosts
are tried in the order listed, stopping with the first one to
which a successful connection is made.

portnum Contains the TCP port number to connect to. If the port
number is included with the host name, this parameter is
ignored. If the parameter is not specified, and the host name
does not contain the port number, a default port number of
389 is assumed.

Return Values

Table 9-5 INIT Function Return Values

Value Description

SESSI ON A handle to an LDAP session that can be used for further calls
to the APIL.

Exceptions

Table 9-6 INIT Function Exceptions

Exception Description
init_failed Raised when there is a problem contacting the LDAP server.
general _error For all other errors. The error string associated with the

exception describes the error in detail.

Usage Notes

DBMS_LDAP. i ni t () is the first function that should be called because it establishes a
session with the LDAP server. Function DBMS_LDAP. i ni t () returns a session
handle, a pointer to an opaque structure that must be passed to subsequent calls
pertaining to the session. This routine will return NULL and raise the | NI T_FAI LED
exception if the session cannot be initialized. Afteri ni t () has been called, the
connection has to be authenticated using DBMS_LDAP. bi nd_s or DBM5_

LDAP. si npl e_bi nd_s().

See Also
DBVS _LDAP. si npl e_bi nd_s(),DBVM5_LDAP. bi nd_s().

9-6 Oracle Identity Management Application Developer’'s Guide

Subprograms

FUNCTION simple_bind_s

The function si npl e_bi nd_s can be used to perform simple user name and
password authentication to the directory server.

Syntax

FUNCTI ON si npl e_bi nd_s
(

Id I N SESSI ON,

dn I'N VARCHAR2,
passwd | N VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 9-7 SIMPLE_BIND_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Return Values

Table 9-8 SIMPLE_BIND_S Function Return Values

Value Description

PLS | NTEGER DBM5S_LDAP. SUCCESS on a successful completion. If there was
a problem, one of the following exceptions will be raised.

Exceptions

Table 9-9 SIMPLE_BIND_S Function Exceptions

Exception Description
i nval i d_session Raised if the session handle | d is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

DBMS_LDAP. si npl e_bi nd_s() can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP. i ni t ().

FUNCTION bind_s

The function bi nd_s can be used to perform complex authentication to the directory
server.

Syntax

FUNCTI ON bind_s
(

DBMS_LDAP PL/SQL Reference 9-7

Subprograms

| d I N SESSI ON,
dn I' N VARCHARZ,
cred I N VARCHAR?,
meth I N PLS_| NTEGER

)
RETURN PLS | NTEGER,

Parameters

Table 9-10 BIND_S Function Parameters

Parameter Description

I d A valid LDAP session handle.

dn The distinguished name of the user.

cred A text string containing the credentials used for authentication.
met h The authentication method.

Return Values

Table 9-11 BIND_S Function Return Values

Value Description

PLS_I NTEGER DBM5_LDAP. SUCCESS upon successful completion. One of the
following exceptions is raised if there is a problem.

Exceptions

Table 9-12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle | d is invalid.

inval i d_auth_nethod Raised if the authentication method requested is not
supported.

general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

DBMS_LDAP. bi nd_s() can be used to authenticate a user. It can be called only after a
valid LDAP session handle is obtained from a call to DBM5S_LDAP. i ni t ().

See Also
DBVS _LDAP. init(),DBMS_LDAP. sinpl e _bind s().

FUNCTION unbind_s

The function unbi nd_s is used for closing an active LDAP session.

Syntax
FUNCTI ON unbi nd_s

(
I'd IN QUT SESSI ON

)
RETURN PLS_| NTEGER,

9-8 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 9-13 UNBIND_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

Return Values

Table 9-14 UNBIND_S Function Return Values

Value Description

PLS_I NTEGER DBMS_LDAP. SUCCESS on proper completion. One of the
following exceptions is raised otherwise.

Exceptions

Table 9-15 UNBIND_S Function Exceptions

Exception Description
inval i d_session Raised if the sessions handle | d is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes
The unbi nd_s() function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources associated

with the session handle before returning. After a call to this function, the session
handle I d is invalid.

See Also
DBMS_LDAP. bi nd_s(), DBMS_LDAP. si npl e_bi nd_s().

FUNCTION compare_s

The function conpar e_s can be used to test if a particular attribute in a particular
entry has a particular value.

Syntax

FUNCTI ON conpare_s
(

Id | N SESSI ON,
dn I N VARCHARZ,
attr |N VARCHARZ,
val ue I'N VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 9-16 COMPARE_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

DBMS_LDAP PL/SQL Reference 9-9

Subprograms

Table 9-16 (Cont.) COMPARE_S Function Parameters

Parameter Description

dn The name of the entry to compare against.
attr The attribute to compare against.

val ue A string attribute value to compare against.

Return Values

Table 9-17 COMPARE_S Function Return Values

Value Description

PLS | NTEGER COVPARE_TRUE if the given attribute has a matching value.

COVPARE_FALSE if the given attribute does not have a
matching value.

Exceptions

Table 9-18 COMPARE_S Function Exceptions

Exception Description
i nval i d_session Raised if the session handle | d is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function conpar e_s can be used to assert that an attribute in the directory has a
certain value. This operation can be performed only on attributes whose syntax
enables them to be compared. The conpar e_s function can be called only after a valid
LDAP session handle has been obtained from the i ni t () function and authenticated
by the bi nd_s() or si npl e_bi nd_s() functions.

See Also
DBVS_LDAP. bi nd_s()

FUNCTION search_s

The function sear ch_s performs a synchronous search in the directory. It returns
control to the PL/SQL environment only after all of the search results have been sent
by the server or if the search request is timed out by the server.

Syntax

FUNCTI ON search_s

(

I d IN SESSION,
base IN VARCHARZ,

scope IN PLS_INTEGER
filter IN VARCHAR2,

attrs IN STRI NG _COLLECTI ON,
attronly IN PLS_| NTEGER

res QUT MESSAGE

)
RETURN PLS_| NTEGER;

9-10 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 9-19 SEARCH_S Function Parameters

Parameter Description

I d A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00) , SCOPE_ONELEVEL (0x01),or

SCOPE_SUBTREE (0x02) , indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be
passed to indicate that the filter " (obj ect cl ass=*)", which
matches all entries, is to be used.

attrs A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") may be used as the only string in the array to indicate that
no attribute types are to be returned by the server. The special constant
string ALL_USER_ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and values
are to be returned, and nonzero if only types are wanted.

res This is a result parameter that contains the results of the search upon
completion of the call. If no results are returned, * r es is set to NULL.

Return Values

Table 9-20 SEARCH_S Function Return Value

Value Description

PLS_I NTEGER DBMS_LDAP. SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Exceptions

Table 9-21 SEARCH_S Function Exceptions

Exception Description

i nval i d_session Raised if the session handle | d is invalid.

i nval i d_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE _
ONELEVEL, or SCOPE_SUBTREE.

general _error For all other errors. The error string associated with this
exception will explain the error in detail.

Usage Notes

The function sear ch_s() issues a search operation and does not return control to the
user environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the r es parameter. This parameter is
opaque to the caller. Entries, attributes, and values can be extracted by calling the
parsing routines described in this chapter.

DBMS_LDAP PL/SQL Reference 9-11

Subprograms

See Also

DBVS _LDAP. search_st (), DBMS_LDAP. first _entry(), DBMS_LDAP. next _
entry.

FUNCTION search_st

The function sear ch_st () performs a synchronous search in the LDAP server with a
client-side time out. It returns control to the PL/SQL environment only after all of the
search results have been sent by the server or if the search request is timed out by the
client or the server.

Syntax

FUNCTI ON search_st

(

Id IN SESSI ON,
base IN VARCHAR?,

scope IN PLS_I NTEGER,
filter IN VARCHAR?,

attrs IN STRING COLLECTI QN,
attronly IN PLS_| NTEGER

tv IN TI MEVAL,
res QUT MESSAGE
)

RETURN PLS_| NTEGER;

Parameters

Table 9-22 SEARCH_ST Function Parameters

Parameter Description

Id A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00) , SCOPE_ONELEVEL (0x01),or

SCOPE_SUBTREE (0x02) , indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
"(obj ectcl ass=*)", which matches all entries, is to be
used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS ("1.1") may be used as the only
string in the array to indicate that no attribute types are to be
returned by the server. The special constant string ALL_USER _
ATTRS ("*") canbe used in the attrs array along with the
names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be

returned.

attrsonly A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

tv The time out value, expressed in seconds and microseconds,

that should be used for this search.

res This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*resissetto NULL.

9-12 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-23 SEARCH_ST Function Return Values

Value Description

PLS | NTEGER DBM5S_LDAP. SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Exceptions

Table 9-24 SEARCH_ST Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.

i nval i d_sear ch_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_tinme_ Raised if the time value specified for the time out is invalid.
val ue
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes
This function is very similar to DBM5_LDAP. sear ch_s() except that it requires a
time out value to be given.

See Also

DBMS_LDAP. search_s(),DBM._LDAP. first_entry(), DBMS_LDAP. next _
entry.

FUNCTION first_entry

The function fi r st _entry() is used to retrieve the first entry in the result set
returned by either sear ch_s() orsearch_st ().

Syntax
FUNCTI ON first_entry

(
I'd IN SESSIQN,

msg | N MESSAGE

)
RETURN MESSAGE;

Parameters

Table 9-25 FIRST_ENTRY Function Parameters

Parameter Description
Id A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

DBMS_LDAP PL/SQL Reference 9-13

Subprograms

Return Values

Table 9-26 FIRST_ENTRY Return Values

Value Description

MESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Exceptions

Table 9-27 FIRST_ENTRY Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
i nval i d_nessage Raised if the incoming msg handle is invalid.

Usage Notes

The functionfi rst _entry() should always be the first function used to retrieve the
results from a search operation.

See Also
DBVS _LDAP. next _entry(),DBMS LDAP. search_s(), DBMS_LDAP. search_
st()

FUNCTION next_entry

The function next _ent ry() is used to iterate to the next entry in the result set of a
search operation.

Syntax
FUNCTI ON next_entry

(
I'd IN SESSION,

meg | N MESSAGE

)
RETURN MESSAGE;

Parameters

Table 9-28 NEXT_ENTRY Function Parameters

Parameter Description
| d A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

9-14 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-29 NEXT_ENTRY Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Exceptions

Table 9-30 NEXT_ENTRY Function Exceptions

Exception Description
invalid _session Raised if the session handle, | d is invalid.
i nval i d_nessage Raised if the incoming msg handle is invalid.

Usage Notes

The function next _ent ry() should always be called after a call to the function
first_entry(). Also, the return value of a successful call to next _ent ry() should
be used as nBg argument used in a subsequent call to the function next _entry() to
fetch the next entry in the list.

See Also
DBVS LDAP. first_entry(),DBVMS _LDAP. search_s(),DBMs LDAP. search_
st ()

FUNCTION count_entries

This function is used to count the number of entries in the result set. It can also be used
to count the number of entries remaining during a traversal of the result set using a
combination of the functionsfirst _entry() and next _entry().

Syntax
FUNCTI ON count _entries

(
I'd IN SESSION,

meg | N MESSAGE

)
RETURN PLS_| NTEGER;

Parameters

Table 9-31 COUNT_ENTRY Function Parameters

Parameter Description
| d A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

DBMS_LDAP PL/SQL Reference 9-15

Subprograms

Return Values

Table 9-32 COUNT_ENTRY Function Return Values

Value Description

PLS | NTEGER Nonzero if there are entries in the result set. - 1 if there was a
problem.

Exceptions

Table 9-33 COUNT_ENTRY Function Exceptions

Exception Description

i nval i d_session Raised if the session handle | d is invalid.

i nval i d_message Raised if the incoming ms g handle is invalid.

count _entry_error Raised if there was a problem in counting the entries.

Usage Notes

count _entri es() returns the number of entries contained in a chain of entries; if an
error occurs such as the r es parameter being invalid, - 1 is returned. The count _
entries() call can also be used to count the number of entries that remain in a chain
if called with a message, entry, or reference returned by f i r st _nmessage(), next _
message(),first_entry(),next_entry(),first_reference(), next _
reference().

See Also
DBVS _LDAP. first_entry(),DBVS _LDAP. next _entry().

FUNCTION first_attribute

The functionfirst_attri bute() fetches the first attribute of a given entry in the
result set.

Syntax
FUNCTION first_attribute

(

I d IN SESSION,

| dapentry IN MESSAGE,

ber _elem QUT BER_ELEMENT

)
RETURN VARCHAR?;

Parameters

Table 9-34 FIRST_ATTRIBUTE Function Parameters

Parameter Description

Id A valid LDAP session handle.

| dapentry The entry whose attributes are to be stepped through, as
returned by first _entry() ornext_entry().

ber_el em A handle to a BER_ELEMENT that is used to keep track of

attributes in the entry that have already been read.

9-16 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-35 FIRST_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBM5_LDAP. next _attri bute() toiterate
over all of the attributes

Exceptions

Table 9-36 FIRST_ATTRIBUTE Function Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
i nval i d_message Raised if the incoming msg handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parameter to fi r st _
attri but e() should be used in the next call to next _attri but e() to iterate
through the various attributes of an entry. The name of the attribute returned from a
calltofirst _attribute() canin turnbe used in calls to the functions get _

val ues() orget _val ues_I| en() to get the values of that particular attribute.

See Also

DBMS_LDAP. next _attri bute(), DBMS_LDAP. get _val ues(), DBMS_LDAP. get _
val ues_l en(),DBMS_LDAP.first_entry(),DBMS_LDAP. next _entry().

FUNCTION next_attribute

The function next _attri but e() retrieves the next attribute of a given entry in the
result set.

Syntax
FUNCTI ON next _attribute

(

I d IN SESSI ON,

| dapentry I N MESSAGE,
ber_el em IN BER_ELEMENT

)
RETURN VARCHAR?;

Parameters

Table 9-37 NEXT_ATTRIBUTE Function Parameters

Parameter Description

I d A valid LDAP session handle.

| dapentry The entry whose attributes are to be stepped through, as
returned by fi rst _entry() ornext_entry().

ber _el em A handle to a BER_ELEMENT that is used to keep track of

attributes in the entry that have been read.

DBMS_LDAP PL/SQL Reference 9-17

Subprograms

Return Values

Table 9-38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

(function return)

Exceptions

Table 9-39 NEXT_ATTRIBUTE Function Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
i nval i d_nessage Raised if the incoming msg handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parameter to fi r st _
attri but e() should be used in the next call to next _attri but e() to iterate
through the various attributes of an entry. The name of the attribute returned from a
call tonext _attri bute() can in turn be used in calls to the functions get _

val ues() orget_val ues_| en() to get the values of that particular attribute.

See Also

DBVS LDAP. first_attribute(),DBVS LDAP. get val ues(), DBMS
LDAP. get _val ues_|l en(),DBMS LDAP.first _entry(), DBMS_LDAP. next _
entry().

FUNCTION get_dn

The function get _dn() retrieves the X.500 distinguished name of given entry in the
result set.

Syntax
FUNCTI ON get _dn

(
I'd IN SESSION,

| dapentrynmsg | N MESSAGE

)
RETURN VARCHAR?;

Parameters

Table 9-40 GET_DN Function Parameters

Parameter Description
Id A valid LDAP session handle.
| dapentry The entry whose DN is to be returned.

9-18 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-41 GET_DN Function Return Values

Value Description

VARCHAR? The X.500 Distinguished name of the entry as a PL/SQL string.
NULL if there was a problem.

Exceptions

Table 9-42 GET_DN Function Exceptions

Exception Description

i nval i d_session Raised if the session handle | d is invalid.

i nval i d_message Raised if the incoming nsg handle is invalid.

get _dn_error Raised if there was a problem in determining the DN.

Usage Notes

The function get _dn() can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This can in turn be used as an input to
expl ode_dn() to retrieve the individual components of the DN.

See Also
DBM5_LDAP. expl ode_dn() .

FUNCTION get_values

The function get _val ues() can be used to retrieve all of the values associated with a
given attribute in a given entry.

Syntax
FUNCTI ON get _val ues

(

Id IN SESSION

| dapentry I N MESSAGE,
attr I'N VARCHAR2

)
RETURN STRI NG_COLLECTI ON;

Parameters

Table 9-43 GET_VALUES Function Parameters

Parameter Description

Id A valid LDAP session handle.

| dapentry A valid handle to an entry returned from a search result.
attr The name of the attribute for which values are being sought.

DBMS_LDAP PL/SQL Reference 9-19

Subprograms

Return Values

Table 9-44 GET_VALUES Function Return Values

Value Description

STRI NG_COLLECTI ON A PL/SQL string collection containing all of the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Exceptions

Table 9-45 GET_VALUES Function Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
i nval i d_message Raised if the incoming entry handle is invalid.

Usage Notes

The function get _val ues() can only be called after the handle to entry has been first
retrieved by call to either fi r st _entry() or next _entry().The name of the
attribute may be known beforehand or can be determined by a call tofi r st _
attribute() ornext _attribute().The function get _val ues() always assumes
that the data type of the attribute it is retrieving is a string. For retrieving binary data
types, get _val ues_| en() should be used.

See Also

DBMS_LDAP. first _entry(),DBMS_LDAP. next _entry(), DBMS_LDAP. count _
val ues(),DBMS_LDAP. get _val ues_l en().

FUNCTION get_values_len

The function get _val ues_| en() can be used to retrieve values of attributes that
have a binary syntax.

Syntax
FUNCTI ON get _val ues_l en

(

Id IN SESSIQN,

| dapentry I N MESSAGE,
attr I N VARCHAR2

)
RETURN BI NVAL_COLLECTI ON;

Parameters

Table 9-46 GET_VALUES_LEN Function Parameters

Parameter Description

Id A valid LDAP session handle.

| dapentrynsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

9-20 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-47 GET_VALUES_LEN Function Return Values

Value Description

BI NVAL_COLLECTI ON A PL/SQL 'Raw' collection containing all the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Exceptions

Table 9-48 GET_VALUES_LEN Function Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
i nval i d_message Raised if the incoming entry handle is invalid.

Usage Notes

The function get _val ues_| en() can only be called after the handle to an entry has
been retrieved by a call to either f i r st _entry() or next_entry().The name of the
attribute may be known beforehand or can also be determined by a call to first_
attribute() or next_attribute().This function can be used to retrieve both binary and
non-binary attribute values.

See Also

DBMS_LDAP. first _entry(),DBMS_LDAP. next _entry(), DBMS_LDAP. count _
val ues_l en(), DBMS_LDAP. get _val ues().

FUNCTION delete s

The function del et e_s() can be used to remove a leaf entry in the DIT.

Syntax
FUNCTI ON del ete_s

(
Id I N SESSI ON,

entrydn |N VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 9-49 DELETE_S Function Parameters

Parameter Name Description
Id A valid LDAP session.
entrydn The X.500 distinguished name of the entry to delete.

DBMS_LDAP PL/SQL Reference 9-21

Subprograms

Return Values

Table 9-50 DELETE_S Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS if the delete operation was successful.
An exception is raised otherwise.

Exceptions

Table 9-51 DELETE_S Function Exceptions

Exception Description

i nval i d_session Raised if the session handle | d is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function del et e_s() can be used to remove only leaf entries in the DIT. A leaf
entry is an entry that does not have any entries under it. This function cannot be used
to delete non-leaf entries.

See Also
DBMS_LDAP. modr dn2_s() .

FUNCTION modrdn2_s

The function modr dn2_s() can be used to rename the relative distinguished name of
an entry.

Syntax

FUNCTI ON nodr dn2_s

(

Id I'N SESSI ON,

entrydn in VARCHAR2

new dn in VARCHAR2

del eteol drdn I N PLS_I NTEGER

)
RETURN PLS_| NTEGER,

Parameters

Table 9-52 MODRDNZ2_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newr dn The new relative distinguished name of the entry.

del et eol drdn A boolean value that, if nonzero, indicates that the attribute

values from the old name should be removed from the entry.

9-22 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-53 MODRDNZ2_S Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS if the operation was successful. An
exception is raised otherwise.

Exceptions

Table 9-54 MODRDNZ2_S Function Exceptions

Exception Description

i nval i d_session Raised if the session handle | d is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid.
invalid rdn Invalid LDAP RDN.

inval i d_del eteol drdn Invalid LDAP deleteoldrdn.

general _error For all other errors. The error string associated with this
exception will explain the error in detail.

Usage Notes

The function nodr dn2_s() can be used to rename the leaf nodes of a DIT. It simply
changes the relative distinguished name by which they are known. The use of this
function is being deprecated in the LDAP v3 standard. Please use r enanme_s(), which
fulfills the same purpose.

See Also
DBVS_LDAP. renanme_s() .

FUNCTION err2string

The function er r 2st ri ng() can be used to convert an LDAP error code to a string in
the local language in which the APl is operating.

Syntax
FUNCTI ON err2string

(
| dap_err IN PLS_I NTEGER

)
RETURN VARCHARZ;

Parameters

Table 9-55 ERR2STRING Function Parameters

Parameter Description

| dap_err An error number returned from one of the API calls.

DBMS_LDAP PL/SQL Reference 9-23

Subprograms

Return Values

Table 9-56 ERR2STRING Function Return Values

Value Description

VARCHAR2 A character string translated to the local language. The string
describes the error in detail.

Exceptions
err2string() raises no exceptions.

Usage Notes

In this release, the exception handling mechanism automatically invokes this function
if any of the API calls encounter an error.

FUNCTION create_mod_array

The function cr eat e_nod_ar r ay() allocates memory for array modification entries
that are applied to an entry using the modi fy_s() oradd_s() functions.

Syntax
FUNCTI ON creat e_nod_array

(
num I N PLS_| NTEGER

)
RETURN MOD_ARRAY;

Parameters

Table 9-57 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add or modify.

Return Values

Table 9-58 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.
Returns NULL if there was a problem.

Exceptions
create_nod_array() raises no exceptions.

Usage Notes

This function is one of the preparation steps for DBM5_LDAP. add_s and DBM5_
LDAP. nodi fy_s. It calls DBMS_LDAP. fr ee_nod_ar r ay to free memory after the
calls to add_s or nodi f y_s have completed.

See Also

DBVS_LDAP. popul ate_nod_array(), DBM5S_LDAP. nodi fy_s(), DBM5_
LDAP. add_s(),and DBMS_LDAP. free_nod_array().

9-24 Oracle Identity Management Application Developer’'s Guide

Subprograms

PROCEDURE populate_mod_array (String Version)

Populates one set of attribute information for add or modify operations.

Syntax
PROCEDURE popul ate_nod_array

(

modptr | N DBMS_LDAP. MCD_ARRAY,

mod_op | N PLS_I NTEGER,

mod_type |N VARCHAR?,

modval I N DBMS_LDAP. STRI NG_COLLECTI ON

K

Parameters

Table 9-59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description

nmodpt r The data structure holds a pointer to an LDAP mod array.
mod_op This field specifies the type of modification to perform.

mod_t ype This field indicates the name of the attribute type to which the

modification applies.

nodval This field specifies the attribute values to add, delete, or
replace. It is for string values only.

Exceptions

Table 9-60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description

inval i d_nod_array Invalid LDAP mod array
inval i d_nod_option Invalid LDAP mod option
i nval i d_nod_t ype Invalid LDAP mod type
invalid _nod_val ue Invalid LDAP mod value

Usage Notes

This function is one of the preparation steps for DBMS_LDAP. add_s and DBM5_
LDAP. nodi f y_s. It has to happen after DBMS_LDAP. cr eat e_nod_ar r ay is called.

See Also

DBVS _LDAP. create_nod_array(),DBVS _LDAP. nodi fy_s(), DBVS_LDAP. add_
s(),and DBMS_LDAP. free_nod_array().

PROCEDURE populate_mod_array (Binary Version)

Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP. cr eat e_nod_array() is called.

Syntax
PROCEDURE popul ate_nod_array

(
nodptr | N DBMVS_LDAP. MOD_ARRAY,

mod_op N PLS | NTEGER

DBMS_LDAP PL/SQL Reference 9-25

Subprograms

mod_type |N VARCHAR?,

nodbval | N DBMS_LDAP. BERVAL_COLLECTI ON
)

Parameters

Table 9-61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description

modpt r This data structure holds a pointer to an LDAP mod array.
mod_op This field specifies the type of modification to perform.

mod_t ype This field indicates the name of the attribute type to which the

modification applies.

modbval This field specifies the attribute values to add, delete, or
replace. It is for the binary values.

Exceptions

Table 9-62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description

i nval i d_nod_array Invalid LDAP mod array.

i nval i d_nod_option Invalid LDAP mod option.
inval i d_nod_type Invalid LDAP mod type.
invalid_nod_val ue Invalid LDAP mod value.

Usage Notes

This function is one of the preparation steps for DBM5_LDAP. add_s and DBMS_
LDAP. nodi fy_s. Itis invoked after DBMS_LDAP. cr eat e_nod_arr ay is called.

See Also

DBMS _LDAP. create _nmod_array(), DBVMS _LDAP. nodi fy_s(), DBVMS _LDAP. add_
s(),and DBMS_LDAP. free_nod_array().

PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)

Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP. cr eat e_nod_array() is called.

Syntax

PROCEDURE popul ate_nod_array

(

modpt r | N DBMS_LDAP. MOD_ARRAY,

mod_op | N PLS | NTEGER,

mod_type |N VARCHAR?,

modbval | N DBMS_LDAP. BLOB_COLLECTI ON

)

9-26 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 9-63 POPULATE_MOD_ARRAY (Binary) Parameters

Parameter Description

modpt r This data structure holds a pointer to an LDAP mod array.

nmod_op This field specifies the type of modification to perform.

mod_t ype This field indicates the name of the attribute type to which the
modification applies.

nodbval This field specifies the binary attribute values to add, delete, or
replace.

Exceptions

Table 9-64 POPULATE_MOD_ARRAY (Binary) Exceptions

Exception Description

inval i d_nod_array Invalid LDAP mod array.

i nval i d_mod_opti on Invalid LDAP mod option.
inval i d_nod_type Invalid LDAP mod type.
invalid _nod val ue Invalid LDAP mod value.

Usage Notes

This function is one of the preparation steps for DBMS_LDAP. add_s and DBM5_
LDAP. nodi fy_s. Itis invoked after DBMS_LDAP. cr eat e_nod_ar r ay is called.

See Also

DBVS _LDAP. create_nod_array(), DBVS _LDAP. nodi fy_s(), DBVS_LDAP. add_
s(),and DBMS_LDAP. free_nod_array().

FUNCTION get_values_blob

The function get _val ues_Dbl ob() can be used to retrieve larger values of attributes
that have a binary syntax.

Syntax

Synt ax

FUNCTI ON get _val ues_bl ob
(

Id I'N SESSI ON,

| dapentry I N MESSAGE,
attr I'N VARCHAR2

)
RETURN BLOB_COLLECTI ON;

Parameters

Table 9-65 GET_VALUES_BLOB Parameters

Parameter Description
I d A valid LDAP session handle.
| dapent rynsg A valid handle to an entry returned from a search result.

DBMS_LDAP PL/SQL Reference 9-27

Subprograms

Table 9-65 (Cont.) GET_VALUES_BLOB Parameters

Parameter Description
attr The string name of the attribute for which values are being
sought.

Return Values

Table 9-66 get_values_blob Return Values

Value Description

BLOB_COLLECTI ON A PL/SQL BLOB collection containing all the values of the given
attribute.

NULL No values are associated with the given attribute.

Exceptions

Table 9-67 get_values_blob Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
invalid message Raised if the incoming entry handle is invalid.

Usage Notes

The function get _val ues_bl ob() can only be called after the handle to an entry has
been retrieved by a call to either fi rst _entry() or next_entry(). The name of
the attribute may be known beforehand or can also be determined by acall tofi rst _
attribute() ornext _attribute().This function can be used to retrieve both
binary and nonbinary attribute values.

See Also

DBVS _LDAP. first_entry(),DBVS_LDAP. next _entry(),DBVMS_LDAP. count _
val ues_bl ob(), DBVM5S_LDAP. get _val ues().

FUNCTION count_values_blob

Counts the number of values returned by DBMS_LDAP. get _val ues_bl ob().

Syntax
FUNCTI ON count _val ues_bl ob

(
val ues | N DBVS_LDAP. BLOB_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 9-68 COUNT_VALUES_BLOB Parameters

Parameter Description

val ues The collection of large binary values.

9-28 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-69 COUNT_VALUES_BLOB Return Values

Values Description
PLS_I NTEGER Indicates the success or failure of the operation.
Exceptions

The function count _val ues_bl ob() raises no exceptions.

See Also
DBVS_LDAP. count _val ues(), DBMS_LDAP. get _val ues_bl ob().

FUNCTION value free blob

Frees the memory associated with BLOB_COLLECT| ONreturned by DBM5_LDAP. get _
val ues_bl ob().

Syntax
PROCEDURE val ue_free_bl ob
(

vals N OUT DBMS_LDAP. BLOB_COLLECTI ON
K
Parameters

Table 9-70 VALUE_FREE_BLOB Parameters

Parameter Description

val s The collection of large binary values returned by DBVS_
LDAP. get _val ues_bl ob().

Exceptions
val ue_free_bl ob() raises no exceptions.

See Also
DBVS_LDAP. get _val ues_bl ob().

FUNCTION modify_s

Performs a synchronous modification of an existing LDAP directory entry.

Syntax

FUNCTI ON nodi fy_s

(

Id I N DBMS_LDAP. SESSI ON,
entrydn IN VARCHAR?,

modptr | N DBVS_LDAP. MOD_ARRAY

)
RETURN PLS_| NTEGER,

DBMS_LDAP PL/SQL Reference 9-29

Subprograms

Parameters

Table 9-71 MODIFY_S Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP. i nit ().

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modpt r This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP. cr eat e_nod_
array().

Return Values

Table 9-72 MODIFY_S Function Return Values

Value Description
PLS | NTEGER Indicates the success or failure of the modification operation.
Exceptions

Table 9-73 MODIFY_S Function Exceptions

Exception Description

inval i d_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
inval i d_nod_array Invalid LDAP mod array.

Usage Notes

This function call has to follow successful calls of DBMS_LDAP. creat e_nod_
array() and DBMS_LDAP. popul ate_nod_array().

See Also

DBMS_LDAP. creat e_nod_array() ,DBMS_LDAP. popul at e_nod_array(),
DBMS_LDAP. add_s(), and DBMS_LDAP. free_nod_array() .

FUNCTION add_s

Adds a new entry to the LDAP directory synchronously. Before calling add_s, DBM5_
LDAP. create_nod_array() and DBVM5S_LDAP. popul at e_nod_array() must be
called.

Syntax
FUNCTI ON add_s

(

I d I N DBVS_LDAP. SESSI ON,
entrydn IN VARCHARZ,

modptr | N DBMS_LDAP. MOD_ARRAY

)
RETURN PLS_| NTEGER,

9-30 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 9-74 ADD_S Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP. init ().

entrydn This parameter specifies the name of the directory entry to be
created.

modpt r This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP. cr eat e_nod_
array().

Return Values

Table 9-75 ADD_S Function Return Values

Value Description
PLS | NTEGER Indicates the success or failure of the modification operation.
Exceptions

Table 9-76 ADD_S Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
inval i d_nod_array Invalid LDAP mod array.

Usage Notes

The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls to DBMS_LDAP. creat e_nod_array()
and DBVS_LDAP. popul ate_nod_array().

See Also

DBVS_LDAP. creat e_nod_array(), DBM5S_LDAP. popul ate_mnod_array(),
DBMS_LDAP. nodi fy_s(),and DBMS_LDAP. free_nod_array().

PROCEDURE free_mod_array
Frees the memory allocated by DBM5_LDAP. cr eat e_nod_array() .

Syntax
PROCEDURE free_nod_array

(
nodptr | N DBVS_LDAP. MOD_ARRAY

)

DBMS_LDAP PL/SQL Reference 9-31

Subprograms

Parameters

Table 9-77 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

nmodpt r This parameter is the handle to an LDAP mod structure
returned by a successful call to DBM5S_LDAP. cr eat e_nod_
array().

Exceptions

f ree_nod_ar r ay raises no exceptions.

See Also

DBVS_LDAP. popul at e_nod_array(), DBM5S_LDAP. nodi fy_s(), DBM5_
LDAP. add_s(),and DBMS_LDAP. create_nod_array() .

FUNCTION count_values
Counts the number of values returned by DBM5S_LDAP. get _val ues().

Syntax
FUNCTI ON count _val ues

(
val ues | N DBVS_LDAP. STRI NG COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 9-78 COUNT_VALUES Function Parameters

Parameter Description

val ues The collection of string values.

Return Values

Table 9-79 COUNT_VALUES Function Return Values

Value Description
PLS_I NTEGER Indicates the success or failure of the operation.
Exceptions

count _val ues raises no exceptions.

See Also
DBVS _LDAP. count _val ues_| en(), DBMS_LDAP. get _val ues().

FUNCTION count_values_len

Counts the number of values returned by DBMS_LDAP. get _val ues_| en().
Syntax

FUNCTI ON count _val ues_| en
(

9-32 Oracle Identity Management Application Developer’'s Guide

Subprograms

val ues | N DBVS_LDAP. Bl NVAL_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 9-80 COUNT_VALUES_LEN Function Parameters

Parameter Description

val ues The collection of binary values.

Return Values

Table 9-81 COUNT_VALUES_LEN Function Return Values

Value Description
PLS_I NTEGER Indicates the success or failure of the operation.
Exceptions

count _val ues_| en raises no exceptions.

See Also

DBVS_LDAP. count _val ues(), DBMS_LDAP. get _val ues_l en().

FUNCTION rename_s

Renames an LDAP entry synchronously.

Syntax

FUNCTI ON renane_s

(

Id I N SESSI ON,
dn I'N VARCHARZ,
new dn I'N VARCHAR2,
newpar ent I N VARCHAR?,

del eteol drdn I N PLS | NTEGER,
serverctrls | N LDAPCONTRQOL,
clientctrls | N LDAPCONTROL

)
RETURN PLS_| NTEGER,

Parameters

Table 9-82 RENAME_S Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP. i ni t ().

dn This parameter specifies the name of the directory entry to be
renamed or moved.

new dn This parameter specifies the new RDN.

newpar ent This parameter specifies the DN of the new parent.

del et eol drdn This parameter specifies whether the old RDN should be

retained. If this value is 1, the old RDN is removed.

DBMS_LDAP PL/SQL Reference 9-33

Subprograms

Table 9-82 (Cont.) RENAME_S Function Parameters

Parameter Description
serverctrls Currently not supported.
clientctrls Currently not supported.

Return Values

Table 9-83 RENAME_S Function Return Values

Value Description
PLS_I NTEGER The indication of the success or failure of the operation.
Exceptions

Table 9-84 RENAME_S Function Exceptions

Exception Description

invalid _session Invalid LDAP Session.
invalid_entry_dn Invalid LDAP DN.
invalid_rdn Invalid LDAP RDN.

i nval i d_newpar ent Invalid LDAP newparent.

i nval i d_del et eol drdn Invalid LDAP deleteoldrdn.

See Also
DBVS_LDAP. nodrdn2_s().

FUNCTION explode_dn

Breaks a DN up into its components.

Syntax
FUNCTI ON expl ode_dn

(
dn I N VARCHAR?,

notypes I N PLS_| NTECER

)
RETURN STRI NG_COLLECTI ON;

Parameters

Table 9-85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

not ypes This parameter specifies whether the attribute tags will be

returned. If this value is not 0, no attribute tags are returned.

9-34 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-86 EXPLODE_DN Function Return Values

Value Description

STRING_COLLECTI ON An array of strings. If the DN cannot be broken up, NULL will
be returned.

Exceptions

Table 9-87 EXPLODE_DN Function Exceptions

Exception Description
invalid_entry_dn Invalid LDAP DN.

i nval i d_not ypes Invalid LDAP notypes value.
See Also

DBMS_LDAP. get _dn() .

FUNCTION open_ssl

Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP

connection.

Syntax

FUNCTI ON open_ssl

(

Id I N SESSI QN,
sslwrl I N VARCHAR2,
sslwal | et passwd | N VARCHAR?,
sslauth IN PLS_| NTEGER

)
RETURN PLS_| NTEGER,

Parameters

Table 9-88 OPEN_SSL Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session that is returned
by a successful call to DBM5_LDAP. i nit ().

sslwrl This parameter specifies the wallet location. Required for
one-way or two-way SSL connections.

ssl wal | et passwd This parameter specifies the wallet password. Required for
one-way or two-way SSL connections.

sslauth This parameter specifies the SSL. Authentication Mode. (1 for no
authentication, 2 for one-way authentication required, 3 for
two-way authentication).

DBMS_LDAP PL/SQL Reference 9-35

Subprograms

Return Values

Table 9-89 OPEN_SSL Function Return Values

Value Description
PLS_I NTEGER Indicates the success or failure of the operation.
Exceptions

Table 9-90 OPEN_SSL Function Exceptions

Exception

Description

inval i d_session

invalid_ssl_wallet_
| oc

invalid_ssl _wallet_
passwd

invalid_ssl_auth_node

Invalid LDAP Session.
Invalid LDAP SSL wallet location.

Invalid LDAP SSL wallet password.

Invalid LDAP SSL authentication mode.

Usage Notes

Need to call DBM5_LDAP. i ni t () first to acquire a valid ldap session.

See Also
DBVMS LDAP.init().

FUNCTION msgfree

This function frees the chain of messages associated with the message handle returned

by synchronous search functions.

Syntax
FUNCTI ON nsgfree
(

res I N MESSAGE

)
RETURN PLS_| NTEGER,

Parameters

Table 9-91 MSGFREE Function Parameters

Parameter

Description

res

The message handle obtained by a call to one of the synchronous
search routines.

9-36 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 9-92 MSGFREE Return Values

Value Description

PLS_I NTEGER Indicates the type of the last message in the chain.

The function might return any of the following values:

DBVS_LDAP

DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.

. LDAP_RES_BI ND

LDAP_RES SEARCH ENTRY
LDAP_RES_SEARCH_ REFERENCE
LDAP_RES SEARCH RESULT
LDAP_RES_MODI FY

LDAP_RES ADD
LDAP_RES_DELETE
LDAP_RES_MODDN
LDAP_RES_COVPARE
LDAP_RES_EXTENDED

Exceptions

nmsgf r ee raises no exceptions.

See Also

DBVS_LDAP. search_s(),DBM5_LDAP. search_st ().

FUNCTION ber_free

This function frees the memory associated with a handle to BER ELEMENT.

Syntax
FUNCTI ON ber _free

(
ber _el em I N BER_ELEMENT,
freebuf I N PLS_I NTEGER

)

Parameters

Table 9-93 BER_FREE Function Parameters

Parameter Description
ber_elem A handle to BER ELEMENT.
freebuf The value of this flag should be O while the BER ELEMENT

returned from DBMS_LDAP. first _attri bute() is being
freed. For any other case, the value of this flag should be 1.

The default value of this parameter is zero.

Return Values

ber free returns no values.

Exceptions

ber _f r ee raises no exceptions.

DBMS_LDAP PL/SQL Reference 9-37

Subprograms

See Also
DBMS_LDAP.first_attri bute() DBMS_LDAP. next _attri bute().

FUNCTION nls_convert_to_utf8

The nl s_convert _to_utf8() function converts the input string containing
database character set data to UTFS8 character set data and returns it.

Syntax
Function nl's_convert to utf8

(
data_l ocal IN VARCHAR2

)
RETURN VARCHAR?;

Parameters

Table 9-94 Parameters for nls_convert_to_utf8

Parameter Description

dat a_| ocal Contains the database character set data.

Return Values

Table 9-95 Return Values for nls_convert_to_utf8

Value Description

VARCHAR? UTE8 character set data string.

Usage Notes

The functions in DBMS_LDAP package expect the input data to be UTFS character set
data if the UTF8_CONVERSI ON package variable is set to FALSE. The nl s_convert _
to_utf8() function converts database character set data to UTFS8 character set data.

If the UTF8_CONVERSI ON package variable of the DBM5_L DAP package is set to TRUE,
functions in the DBMS_LDAP package expect input data to be database character set
data.

See Also

DBVS _LDAP. nl s_convert fromutf8(),DBMs LDAP. nl s_get dbcharset _
nanme() .

FUNCTION nls_convert _to utf8

Thenl s_convert _to_utf8() function converts the input string collection
containing database character set data to UTF8 character set data. It then returns the
converted data.

Syntax
Function nls_convert _to_utf8

(
data_l ocal I N STRI NG COLLECTI ON

)
RETURN STRI NG_COLLECTI ON;

9-38 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 9-96 Parameters for nls_convert_to_utf8

Parameter Description

data_| ocal Collection of strings containing database character set data.

Return Values

Table 9-97 Return Values for nls_convert_to_utf8

Value Description

STRING_COLLECTI ON Collection of strings containing UTFS8 character set data.

Usage Notes

The functions in the DBMS_LDAP package expect the input data to be in the UTF8
character set if the UTF8_CONVERSI ON package variable is set to FALSE. The nl s_
convert _to_utf8() function converts the input data from the database character
set to the UTFS character set.

If the UTF8_CONVERSI ON package variable of the DBM5_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect the input data to be in the database
character set.

See Also

DBMS _LDAP. nl s_convert _from utf8(),DBM5 LDAP. nl s_get dbcharset _
name() .

FUNCTION nls_convert_from_utf8

Thenl s_convert _from utf8() function converts the input string containing
UTFS8 character set to database character set data. It then returns this data.

Syntax
Function nls_convert _fromutf8

(
data_utf8 IN VARCHAR?

)
RETURN VARCHAR?;

Parameters

Table 9-98 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Contains UTF8 character set data.

Return Values

Table 9-99 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Data string in the database character set.

DBMS_LDAP PL/SQL Reference 9-39

Subprograms

Usage Notes

The functions in the DBMS_LDAP package return UTFS8 character set data if the UTF8_
CONVERSI ON package variable is set to FALSE. The nl s_convert _from utf 8()
function converts the output data from the UTES character set to the database
character set.

If the UTF8_CONVERSI ON package variable of the DBM5_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also

DBMS _LDAP. nl s_convert _to_utf8(),DBMs _LDAP. nl s_get dbcharset _
name() .

FUNCTION nls_convert_from_utf8

Thenl s_convert _from utf8() function converts the input string collection
containing UTF8 character set data to database character set data. It then returns this
data.

Syntax
Function nls_convert _fromutf8

(
data_utf8 IN STRING COLLECTI ON

)
RETURN STRI NG_COLLECTI ON;

Parameters

Table 9-100 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Collection of strings containing UTF8 character set data.

Return Values

Table 9-101 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Collection of strings containing database character set data.

Usage Notes

The functions in the DBMS_LDAP package return UTFS8 character set data if the UTF8_
CONVERSI ON package variable is set to FALSE. nl s_convert_from utf8()
converts the output data from the UTF8 character set to the database character set. If
the UTF8_CONVERSI ON package variable of the DBM5S_LDAP package is set to TRUE,
functions in the DBMBS_LDAP package return database character set data.

See Also

DBMS _LDAP. nl's_convert to utf8(),DBVS LDAP.nl s _get dbcharset
nane() .

9-40 Oracle Identity Management Application Developer’'s Guide

Subprograms

FUNCTION nis_get_dbcharset_name

The nl s_get _dbchar set _name() function returns a string containing the database
character set name.

Syntax
Function nls_get_dbcharset _nane

RETURN VARCHARZ;
Parameters
None.

Return Values

Table 9-102 Return Value for nls_get_dbcharset_name

Value Description

VARCHAR? String containing the database character set name.

See Also

DBMS_LDAP. nl s_convert _to_utf8(),DBMS_LDAP. nl s_convert _from_
utf8().

DBMS_LDAP PL/SQL Reference 9-41

Subprograms

9-42 Oracle Identity Management Application Developer’'s Guide

10

Java API Reference

The standard Java APIs for Oracle Internet Directory are available as the Java Naming
and Directory Interface (JNDI) from Sun Microsystems. The JNDI is found at this link:

http://java. sun. coni product s/ j ndi

The Oracle extensions to the standard APIs are found in Oracle Internet Directory API
Reference.

Sample code for the Java APIs is available at this URL:

http://ww. oracl e. com t echnol ogy/ sanpl e_code/ i d_ngnt

Java API Reference 10-1

10-2 Oracle Identity Management Application Developer's Guide

11

DBMS LDAP_UTL PL/SQL Reference

This chapter contains reference material for the DBMS_LDAP_UTL package, which
contains Oracle Extension utility functions. The chapter contains these topics:

= Summary of Subprograms

= Subprograms

= Function Return Code Summary

= Data Type Summary

Note: Sample code for the DBM5_LDAP_UTL package is available at
this URL:

http://ww. oracl e. com t echnol ogy/ sanpl e_code/ i d_ngnt

Summary of Subprograms

Table 11-1 DBMS_LDAP_UTL User-Related Subprograms

Function or Procedure

Purpose

Function authenticate_
user

Function create_user_
handle

Function set_user_
handle_properties

Function get_user_
properties

Function set_user_
properties

Function get_user_
extended_properties

Function get_user_dn

Function check_group_

membership

Function locate_
subscriber_for_user

Function get_group_
membership

Authenticates a user against an LDAP server.
Creates a user handle.

Associates the given properties to the user handle.
Retrieves user properties from an LDAP server.
Modifies the properties of a user.

Retrieves user extended properties.

Retrieves a user DN.

Checks whether a user is member of a given group.
Retrieves the subscriber for the given user.

Retrieves a list of groups of which the user is a member.

DBMS_LDAP_UTL PL/SQL Reference 11-1

Summary of Subprograms

Table 11-2 DBMS_LDAP_UTL Group-Related Subprograms

Function or Procedure Purpose

Function create_group_ Creates a group handle.

handle

Function set_group_ Associates the given properties with the group handle.
handle_properties

Function get_group_ Retrieves group properties from an LDAP server.
properties

Function get_group_dn Retrieves a group DN.

Table 11-3 DBMS_LDAP_UTL Subscriber-Related Subprograms

Function or Procedure Purpose

Function create_ Creates a subscriber handle.
subscriber_handle

Function get_subscriber_ Retrieves subscriber properties from an LDAP server.
properties

Function get_subscriber_ Retrieves a subscriber DN.
dn

Table 11-4 DBMS_LDAP_UTL Miscellaneous Subprograms

Function or Procedure Purpose

Function normalize_dn_ Normalizes the DN string.
with_case

Function get_property_ Retrieves a list of property names in a PROPERTY_SET.

names

Function get_property_ Retrieves a list of values for a property name.

values

Function get_property_ Retrieves a list of large binary values for a property name.
values_blob

Procedure property_ Frees the memory associated with BLOB_COLLECTI ONreturned
value_free_blob by DBMS_LDAP_UTL. get _property_val ues_bl ob().
Function get_property_ Retrieves a list of binary values for a property name.

values_len

Procedure free_ Frees PROPERTY_SET_COLLECTI ON.

propertyset_collection

Function create_mod_ Creates a MOD_PROPERTY_SET.

propertyset

Function populate_mod_ Populates a MOD_PROPERTY_SET structure.
propertyset

Procedure free_mod_ Frees a MOD_PROPERTY_SET.

propertyset

Procedure free_handle Frees handles.

Function check_ Checks for support of the interface version.

interface_version

11-2 Oracle Identity Management Application Developer's Guide

Subprograms

Subprograms
This section contains the following topics:
= User-Related Subprograms
= Group-Related Subprograms
= Subscriber-Related Subprograms
= Property-Related Subprograms

= Miscellaneous Subprograms

User-Related Subprograms

A user is represented by the DBMS_LDAP_UTL. HANDLE data type. You can create a
user handle by using a DN, GUID, or simple name, along with the appropriate
subscriber handle. When a simple name is used, additional information from the root
Oracle Context and the subscriber Oracle Context is used to identify the user. This
example shows a user handle being created:

retval := DBMS_LDAP_UTL. create_user _handl e(
user _handl e,

DBMS_LDAP_UTL. TYPE_DN,

"cn=user 1, cn=users, o=acne, dc=cont

)i

This user handle must be associated with an appropriate subscriber handle. If, for
example, subscri ber _handl e is o=acne, dc=com the subscriber handle can be
associated in the following way:

retval := DBMS_LDAP_UTL. set _user _handl e_properties(
user _handl e,

DBVS_LDAP_UTL. SUBSCRI BER_HANDLE,

subscri ber _handl e

K

Common uses of user handles include setting and getting user properties and
authenticating the user. Here is a handle that authenticates a user:

retval := DBVS_LDAP_UTL. aut henti cate_user (
my_session

user _handl e

DBVS_LDAP_UTL. AUTH_SI MPLE,

"wel come”

NULL

)

In this example, the user is authenticated using a clear text password wel come.
Here is a handle that retrieves a user’s telephone number:

--ny_attrs is of type DBMS_LDAP. STRI NG COLLECTI ON

nmy_attrs(1) := ‘tel ephonenunber’;

retval := DBMS_LDAP_UTL. get _user _properties(
my_session,

my_attrs,

DBMS_LDAP_UTL. ENTRY_PROPERTI ES,

nmy_pset _col |

)

DBMS_LDAP_UTL PL/SQL Reference 11-3

Subprograms

See Also: "DBMS_LDAP_UTL Sample Code" on page B-9 for more
examples of user handles

Function authenticate_user

The function aut hent i cat e_user () authenticates the user against Oracle Internet
Directory.

Syntax
FUNCTI ON aut henti cat e_user

(

Id I'N SESSION,

user _handl e | N HANDLE,
auth_type IN PLS_I NTEGER
credentials | N VARCHAR2,
binary_credentials IN RAW

)
RETURN PLS_| NTEGER,

Parameters

Table 11-5 AUTHENTICATE_USER Function Parameters

Parameter Name Parameter Type Parameter Description

I d SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

aut h_type PLS_I NTEGER Type of authentication. The only valid
value is DBMS_LDAP_UTL. AUTH_SI MPLE

credentials VARCHAR2 The user credentials.

binary_credentials RAW The binary credentials. This parameter is

optional. It can be NULL by default.

Return Values

Table 11-6 AUTHENTICATE_USER Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERRCR Invalid input parameters.
DBMVS_LDAP_UTL. GENERAL_ERROR Authentication failed.
DBMS_LDAP_UTL. NO_SUCH_USER User does not exist.
DBMS_LDAP_UTL. MULTI PLE_USER ENTRIES The user has multiple DN entries.
DBMS_LDAP_UTL. | NVALI D_SUBSCRI BER_ Invalid Subscriber Oracle Context.
ORCL_CTX

DBMS_LDAP_UTL. NO_SUCH SUBSCRI BER Subscriber doesn't exist.
DBMVS_LDAP_UTL. MULTI PLE_SUBSCRI BER _ The subscriber has multiple DN entries.
ENTRI ES

DBMS_LDAP_UTL. I NVALI D_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL. ACCT_TOTALLY_LOCKED User account is locked.
EXCP

11-4 Oracle Identity Management Application Developer's Guide

Subprograms

Table 11-6 (Cont.) AUTHENTICATE_USER Function Return Values

Value Description

DBMS_LDAP_UTL. AUTH_PASSVD CHANGE_WARN This return value is deprecated.
DBVS_LDAP_UTL. AUTH _FAI LURE_EXCP Authentication failed.
DBMS_LDAP_UTL. PM\D_EXPI RED_EXCP User password has expired.

DBMVS_LDAP_UTL. PAD_GRACELOG N_WARN Grace login for user.

DBMS_LDAP error codes Return proper DBM5_LDAP error codes for
unconditional failures that occurred when LDAP
operations were carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBVS_LDAP. init().

See Also
DBVS _LDAP.init(),DBMS LDAP_UTL. create_user _handl e().

Function create_user_handle
The function cr eat e_user _handl e() creates a user handle.

Syntax
FUNCTI ON creat e_user _handl e

(
user _hd OUT HANDLE,

user _type IN PLS_| NTEGER
user _id I N VARCHARZ,

)
RETURN PLS_| NTEGER,

Parameters

Table 11-7 CREATE_USER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

user _hd HANDLE A pointer to a handle to a user.

user_type PLS_I NTEGER The type of user ID that is passed. Valid values for
this argument are as follows:

. DBVS_LDAP_UTL. TYPE DN
. DBVS_LDAP_UTL. TYPE_GUI D
. DBVS_LDAP_UTL. TYPE NI CKNAVE

user_id VARCHAR? The user ID representing the user entry.

Return Values

Table 11-8 CREATE_USER_HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_UTL PL/SQL Reference 11-5

Subprograms

Table 11-8 (Cont.) CREATE_USER_HANDLE Function Return Values

Value Description

DBMS_LDAP_ Other error.
UTL. GENERAL_ERRCR

See Also

DBVS _LDAP_UTL. get _user _properties(),DBVS LDAP_UTL. set _user _
handl e_properties().

Function set_user_handle_properties

The function set _user _handl e_properties() configures the user handle
properties.

Syntax

FUNCTI ON set _user _handl e_properties

(
user _hd I N HANDLE,

property_type IN PLS_ | NTEGER
property | N HANDLE

)
RETURN PLS_| NTEGER,

Parameters

Table 11-9 SET_USER_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
user _hd HANDLE A pointer to a handle to a user.
property_type PLS | NTEGER The type of property that is passed. Valid values

for this argument are as follows: - DBM5S_LDAP_
UTL. SUBSCRI BER_HANDLE.

property HANDLE The property describing the user entry.

Return Values

Table 11-10 SET_USER_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_UTL. RESET_ When a caller tries to reset the existing handle properties.
HANDLE

DBMS_LDAP_ Other error.
UTL. GENERAL_ERROR

Usage Notes

The subscriber handle does not have to be set in User Handle Properties if the user
handle is created with TYPE_DNor TYPE_GUI D as the user type.

11-6 Oracle Identity Management Application Developer's Guide

Subprograms

See Also
DBMS_LDAP_UTL. get _user _properties().

Function get_user_properties
The function get _user _properti es() retrieves the user properties.

Syntax

FUNCTI ON get _user_properties

(

|'d I'N SESSI ON,

user _handl e I N HANDLE,

attrs IN STRI NG COLLECTI ON,

ptype I N PLS_ | NTEGER

ret_pset_coll OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-11 GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

attrs STRI NG_COLLECTI ON The list of user attributes to retrieve.
ptype PLS_| NTEGER Type of properties to return. These

are valid values:
. DBVS_LDAP_UTL. ENTRY_

PROPERTI ES
. DBMS_LDAP_UTL. NI CKNAME
PROPERTY
ret-pset_ PROPERTY_SET_COLLECTI ON User details contained in attributes
col lection requested by the caller.

Return Values

Table 11-12 GET_USER_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_UTL. NO_ User does not exist.
SUCH_USER

DBMVS_LDAP_ The user has multiple DN entries.
UTL. MULTI PLE_USER_
ENTRI ES

DBMS_LDAP_ Invalid root Oracle Context.
UTL. | NVALI D_ROOT _
ORCL_CTX

DBMS_LDAP_UTL PL/SQL Reference 11-7

Subprograms

Table 11-12 (Cont.) GET_USER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_ Other error.
UTL. GENERAL_ERRCR

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for unconditional failures
that occur when LDAP operations are carried out.

Usage Notes
This function requires the following:

« A valid LDAP session handle, which must be obtained from the DBMS _
LDAP. i ni t () function.

= Avalid subscriber handle to be set in the group handle properties if the user type
is of DBM5_LDAP_UTL. TYPE_N CKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS _LDAP_UTL. cr eat e_subscri ber _
handl e(), where a NULL subscri ber _i d is passed as an argument.

If the group type is either DBMS_LDAP_UTL. TYPE_GUI Dor DBMS_LDAP_UTL. TYPE_
DN, the subscriber handle need not be set in the user handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS _LDAP. i nit(),DBMS_LDAP_UTL. creat e_user _handl e().

Function set_user_properties
The function set _user _properti es() modifies the properties of a user.

Syntax

FUNCTI ON set _user _properties
(

Id I'N SESSI ON,

user _handl e I N HANDLE,

pset _type IN PLS_I NTECER,
mod_pset | N PROPERTY_SET,
mod_op | N PLS_I NTEGER

)
RETURN PLS_| NTEGER;

Parameters

Table 11-13 SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

I d SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

pset _type PLS_| NTEGER The type of property set being modified. A

valid value is ENTRY_PROPERTI ES.

mod_pset PROPERTY_SET Data structure containing modify
operations to perform on the property set.

11-8 Oracle Identity Management Application Developer's Guide

Subprograms

Table 11-13 (Cont.) SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

nmod_op PLS_I NTEGER The type of modify operation to be
performed on the property set. Here are
valid values:

« ADD PROPERTYSET
« MODI FY_PROPERTYSET
« DELETE_PROPERTYSET

Return Values

Table 11-14 SET_USER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. NO_ User does not exist.

SUCH_USER

DBVS_LDAP_ The user has multiple DN entries.

UTL. MULTI PLE_USER_

ENTRI ES

DBMS_LDAP_ Invalid root Oracle Context.

UTL. | NVALI D_ROOT _

ORCL_CTX

DBMS_LDAP_UTL. PWD_ Password length is less than the minimum required length.
M N_LENGTH_ERROR

DBMVS_LDAP_UTL. PWD_ Password must contain numeric characters.
NUMERI C_ERROR

DBMVS_LDAP_UTL. PWD_ Password cannot be NULL.

NULL_ERROR

DBVS_LDAP_UTL. PWD_ Password cannot be the same as the one that is being replaced.
| NH STORY_ERRCR

DBVS_LDAP_UTL. PWD_ Password contains illegal characters.

| LLEGALVALUE_ERRCR

DBMS_LDAP_ Other error.

UTL. GENERAL_ERRCOR

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for unconditional failures
while carrying out LDAP operations by the LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMVS_LDAP.init().

See Also
DBVS _LDAP.init(),DBMS LDAP_UTL. get _user _properties().

Function get_user_extended_properties

The function get _user _ext ended_properti es() retrieves user extended
properties.

DBMS_LDAP_UTL PL/SQL Reference 11-9

Subprograms

Syntax

FUNCTI ON get _user_ext ended_properties

(

Id IN SESSI ON,

user _handl e I N HANDLE,

attrs IN STRING COLLECTI ON

ptype IN PLS_ | NTEGER

filter I N VARCHARZ,

rep_pset_col | OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-15 GET_USER_EXTENDED_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

attrs STRI NG_COLLECTI ON A list of attributes to fetch for the
user.

pt ype PLS_I NTEGER The type of properties to return.
Here is a valid value: - DBMS_
LDAP_UTL. EXTPROPTYPE_RAD

filter VARCHAR2 An LDAP filter to further refine the
user properties returned by the
function.

ret_pset_ PROPERTY_SET_COLLECTI ON The user details containing the

collection attributes requested by the caller.

Return Values

Table 11-16 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERRCR Invalid input parameters.

DBMS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL. MULTI PLE_USER ENTRIES The user has multiple DN entries.
USER_PRCPERTY_NOT_FOUND User extended property does not exist.
DBMS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERRCR Other error.

DBMS_LDAP error codes Return proper DBM5S_LDAP error codes for

unconditional failures that occur when LDAP
operations are carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to

DBMVS_LDAP. i nit ().

11-10 Oracle Identity Management Application Developer’s Guide

Subprograms

See Also
DBVS _LDAP.init(),DBMS LDAP_UTL. get _user _properties().

Function get_user_dn
The f uncti on get_user_dn() returns the user DN.

Syntax
FUNCTI ON get _user _dn

(

Id I'N SESSI ON,

user _handl e I N HANDLE,
dn QUT VARCHAR?

)
RETURN PLS_| NTEGER,

Parameters

Table 11-17 GET_USER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.
user _handl e HANDLE The user handle.

dn VARCHAR2 The user DN.

Return Values

Table 11-18 GET_USER_DN Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_ Authentication failed.
UTL. GENERAL_ERRCR

DBVS_LDAP_UTL. NO_ User does not exist.
SUCH_USER

DBMS_LDAP_ The user has multiple DN entries.
UTL. MULTI PLE_USER
ENTRI ES

DBVS_LDAP_ Invalid root Oracle Context.
UTL. | NVALI D_ROOT_
ORCL_CTX

DBMS_LDAP_ Other error.
UTL. GENERAL_ERRCR

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for unconditional failures
that occur when LDAP operations are carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP. init ().

DBMS_LDAP_UTL PL/SQL Reference 11-11

Subprograms

See Also
DBVS _LDAP.init ().

Function check_group_membership
The function check_gr oup_mnenber shi p() checks whether the user belongs to a
group.

Syntax

FUNCTI ON check_gr oup_nmenber shi p
(

Id I'N SESSI ON,

user _handl e I N HANDLE,
group_handl e | N HANDLE,

nested I N PLS_| NTEGER

)
RETURN PLS_| NTEGER,

Parameters

Table 11-19 CHECK_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

group_handl e HANDLE The group handle.

nest ed PLS | NTEGER The type of membership the user holds in groups.

Here are valid values:
. DBMS_LDAP_UTL. NESTED MEMBERSHI P
. DBMS_LDAP_UTL. DI RECT _MEMBERSHI P

Return Values

Table 11-20 CHECK_GROUP_MEMBERSHIP Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS If user is a member.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. GROUP_MEMBERSH P If user is not a member.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMVS_LDAP.init().

See Also
DBMS_LDAP. get _gr oup_nenber shi p().

Function locate_subscriber_for_user

The function | ocat e_subscri ber _for _user () retrieves the subscriber for the
given user and returns a handle to it.

11-12 Oracle Identity Management Application Developer’s Guide

Subprograms

Syntax

FUNCTI ON | ocat e_subscri ber _for_user
(

Id IN SESSI ON,

user _handl e I N HANDLE,

subscriber _handl e OUT HANDLE

)
RETURN PLS_| NTEGER,

Parameters

Table 11-21 LOCATE_SUBSCRIBER_FOR_USER Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.
user _handl e HANDLE The user handle.

subscri ber_handl e HANDLE The subscriber handle.

Return Values

Table 11-22 LOCATE SUBSCRIBER FOR USER Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. NO_SUCH_SUBSCRI BER Subscriber doesn't exist.
DBMS_LDAP_UTL. MULTI PLE_SUBSCRI BER_ENTRI ES Multiple number of subscriber

DN entries exist in the directory
for the given subscriber.

DBMS_LDAP_UTL. NO_SUCH_USER User doesn'’t exist.

DBMS_LDAP_UTL. MULTI PLE_USER_ENTRI ES Multiple number of user DN
entries exist in the directory for
the given user.

DBMS_LDAP_UTL. SUBSCRI BER_NOT_FOUND Unable to locate subscriber for
the given user.

DBMS_LDAP_UTL. | NVALI D_ROOT_CRCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL. ACCT_TOTALLY_LOCKED EXCP User account is locked.

DBMVS_LDAP_UTL. GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBM5_LDAP error
codes for unconditional failures
while carrying out LDAP

operations by the LDAP server.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBVS_LDAP.init().

See Also
DBMS_LDAP. i nit(),DBMS_LDAP_UTL. create_user _handl e().

DBMS_LDAP_UTL PL/SQL Reference 11-13

Subprograms

Function get_group_membership

The function get _gr oup_nenber shi p() returns the list of groups to which the user
is a member.

Syntax

FUNCTI ON get _group_nenber shi p

(

user _handl e I N HANDLE,

nested IN PLS | NTEGER

attr_list I N STRING COLLECTI ON,
ret_groups OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-23 GET_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

nest ed PLS_|I NTEGER The type of membership the user holds in

groups. Here are valid values:
. DBMS LDAP_UTL. NESTED

VEMBERSH P
«» DBMS_LDAP_UTL. DI RECT_
MEMBERSHI P
attr_list STRI NG_COLLECTI ON A list of attributes to be returned.
ret_groups PROPERTY_SET_ A pointer to a pointer to an array of group
COLLECTI ON entries.

Return Values

Table 11-24 GET_GROUP_MEMBERSHIP Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.

DBVS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_ Other error.
UTL. GENERAL_ERROR

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBVS_LDAP. i nit ().

See Also
DBMS _LDAP.init().

11-14 Oracle Identity Management Application Developer’s Guide

Subprograms

Group-Related Subprograms

A group is represented using by using the DBM5_LDAP_UTL. HANDLE data type. A
group handle represents a valid group entry. You can create a group handle by using a
DN, GUID or a simple name, along with the appropriate subscriber handle. When a
simple name is used, additional information from the Root Oracle Context and the
Subscriber Oracle Context is used to identify the group. Here is an example of a group
handle creation:

retval := DBMS_LDAP_UTL. create_group_handl e(
group_handl e,

DBVS_LDAP_UTL. TYPE_DN,

"cn=groupl, cn=G oups, o=acne, dc=conf

)i

This group handle has to be associated with an appropriate subscriber handle. For
example, given a subscriber handle: subscri ber _handl e representing
o=acme, dc=com the subscriber handle can be associated in the following way:

retval := DBMS_LDAP_UTL. set _group_handl e_properties(
group_handl e,

DBVS_LDAP_UTL. SUBSCRI BER_HANDLE,

subscri ber _handl e

);
A sample use of group handle is getting group properties. Here is an example:

my_attrs is of type DBMS_LDAP. STRI NG COLLECTI ON

nmy_attrs(1) := ‘uniquemenber’;

retval := DBMS_LDAP_UTL. get _group_properties(
my_session,

my_attrs,

DBMS_LDAP_UTL. ENTRY_PROPERTI ES,

nmy_pset _col |

)

The group-related subprograms also support membership-related functionality. Given
a user handle, you can find out if it is a direct or a nested member of a group by using
the DBMS_LDAP_UTL. check_gr oup_menber shi p() function. Here is an example:

retval := DBMS_LDAP_UTL. check_group_nenber shi p(
Sessi on,

user _handl e,

group_handl e,

DBVS_LDAP_UTL. DI RECT_MEMBERSHI P

You can also obtain a list of groups that a particular group belongs to, using the DBMS_
LDAP_UTL. get _gr oup_nenber shi p() function. For example:

my_attrs is of type DBVMS_LDAP. STRI NG COLLECTI ON
my_attrs(1l) := ‘cn’;

retval := DBMS_LDAP_UTL. get _gr oup_nenber shi p(
my_session,

user _handl e,

DBVS_LDAP_UTL. DI RECT_MEMBERSHI P,

my_attrs

my_pset _col |

)

See Also: Example: User-Related Functions on page B-9 for more
examples of group handles

DBMS_LDAP_UTL PL/SQL Reference 11-15

Subprograms

Function create_group_handle
The function cr eat e_gr oup_handl e() creates a group handle.

Syntax
FUNCTI ON creat e_group_handl e

(
group_hd OUT HANDLE,

group_type I N PLS_| NTEGER,
group_id I N VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 11-25 CREATE_GROUP_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
group_hd HANDLE A pointer to a handle to a group.
group_type PLS I NTEGER The type of group ID that is passed. Valid

values for this argument are as follows:

. DBMS_LDAP_UTL. TYPE_DN

. DBVS_LDAP_UTL. TYPE_GUI D

. DBMS_LDAP_UTL. TYPE_NI CKNANE

group_id VARCHAR? The group ID representing the group entry.

Return Values

Table 11-26 CREATE_GROUP_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM Invalid input parameters.
ERROR

DBMS_LDAP_ Other error.
UTL. GENERAL_ERRCR

See Also

DBVS _LDAP_UTL. get _group_properties(),DBVS LDAP _UTL. set _group_
handl e_properties().

Function set_group_handle_properties

The function set _gr oup_handl e_properti es() configures the group handle
properties.

Syntax

FUNCTI ON set _group_handl e_properties
(

group_hd | N HANDLE,

property_type IN PLS | NTEGER,
property IN HANDLE

)
RETURN PLS | NTEGER,

11-16 Oracle Identity Management Application Developer’s Guide

Subprograms

Parameters

Table 11-27 SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to the handle to the group.

property_type PLS | NTEGER The type of property that is passed. Valid values
for this argument are as follows: DBMS_LDAP_
UTL. GROUP_HANDLE

property HANDLE The property describing the group entry.

Return Values

Table 11-28 SET_GROUP_HANDLE_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM Invalid input parameters.
ERROR

DBMS_LDAP_UTL. RESET_~ When a caller tries to reset the existing handle properties.
HANDLE

DBVS_LDAP_ Other error.
UTL. GENERAL_ERRCR

Usage Notes

The subscriber handle doesn’t need to be set in Group Handle Properties if the group
handle is created with TYPE_DNor TYPE_GUI Das the group type.

See Also
DBMS_LDAP_UTL. get _group_properties().

Function get_group_properties
The functi on get_group_properties() retrieves the group properties.

Syntax

FUNCTI ON get _group_properties

(

Id I'N SESSI ON,

group_handl e I N HANDLE,

attrs I N STRI NG COLLECTI ON,

ptype I N PLS | NTEGER,

ret_pset_col | OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-29 GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
Id SESSI ON A valid LDAP session handle.
group_handl e HANDLE The group handle.

DBMS_LDAP_UTL PL/SQL Reference 11-17

Subprograms

Table 11-29 (Cont.) GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

attrs STRI NG_COLLECTI ON A list of attributes that must be fetched for
the group.

ptype PLS_I NTEGER The type of properties to be returned. The
valid value is DBMS_LDAP_UTL. ENTRY_
PROPERTI ES

ret_pset_coll PROPERTY_SET_ The group details containing the attributes

COLLECTI ON requested by the caller.

Return Values

Table 11-30 GET_GROUP_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERRCR Invalid input parameters.
DBMVS_LDAP_UTL. NO_SUCH_GROUP Group doesn’t exist.
DBMS_LDAP_UTL. MULTI PLE_GROUP_ENTRI ES Multiple number of group DN

entries exist in the directory for the
given group.

DBVS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERRCR Other error.
DBMS_LDAP error codes Return proper DBM5_LDAP error

codes for unconditional failures
while carrying out LDAP operations
by the LDAP server.

Usage Notes
This function requires the following:

« A valid LDAP session handle which must be obtained from the DBMS
LDAP. i ni t () function.

= Avalid subscriber handle to be set in the group handle properties if the group
type is of: DBMS_LDAP_UTL. TYPE_NI CKNAME.

This function doe not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained fromDBVMS_LDAP_UTL. cr eat e_subscri ber _
handl e() , where a NULL subscriber_id is passed as an argument.

If the group type is either DBVM5_LDAP_UTL. TYPE_GUI Dor DBMS_LDAP_UTL. TYPE_
DN, the subscriber handle does not have to be set in the group handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP. i nit (), DBMS_LDAP_UTL. creat e_group_handl e().

Function get_group_dn
The function get _gr oup_dn() returns the group DN.

11-18 Oracle Identity Management Application Developer’s Guide

Subprograms

Syntax
FUNCTI ON get _group_dn

(

Id I'N SESSI ON,
group_handl e | N HANDLE
dn OQUT VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 11-31 GET_GROUP_DN Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.
group_handl e HANDLE The group handle.

dn VARCHAR? The group DN.

Return Values

Table 11-32 GET_GROUP_DN Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. NO_SUCH_GROUP Group doesn’t exist.
DBMS_LDAP_UTL. MULTI PLE_GROUP_ENTRI ES Multiple number of group DN

entries exist in the directory for
the given group.

DBMS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERROR Other error.
DBMS_LDAP error codes Return proper DBM5_LDAP error

codes for unconditional failures
that are encountered when LDAP
operations are carried out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBVS_LDAP.init().

See Also
DBVMS LDAP.init().

Subscriber-Related Subprograms

A subscriber is represented by using dbns_| dap_ut | . handl e data type. You can
create a subscriber handle by using a DN, GUID or simple name. When a simple name
is used, additional information from the root Oracle Context is used to identify the
subscriber. This example shows a subscriber handle being created:

retval := DBMS_LDAP_UTL. create_subscriber_handl e(
subscri ber _handl e,
DBMS_LDAP_UTL. TYPE_DN,

DBMS_LDAP_UTL PL/SQL Reference 11-19

Subprograms

"o=acne, dc=cont

)i
subscri ber_handl e is created by it's DN: o=or acl e, dc=com

Getting subscriber properties is one common use of a subscriber handle. Here is an
example:

my_attrs is of type DBVMS_LDAP. STRI NG COLLECTI ON
my_attrs(l) := ‘orclguid;
retval := DBMS_LDAP_UTL. get _subscriber_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL. ENTRY_PRCOPERTI ES,
my_pset _col |

)

See Also: "DBMS_LDAP_UTL Sample Code" on page B-9 for
examples of subscriber handles

Function create_subscriber_handle
The function cr eat e_subscri ber _handl e() creates a subscriber handle.

Syntax
FUNCTI ON creat e_subscri ber_handl e

subscriber_hd OUT HANDLE,
subscriber_type IN PLS | NTEGER,
subscriber _id IN VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 11-33 CREATE_SUBSCRIBER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
subscri ber _hd HANDLE A pointer to a handle to a subscriber.
subscri ber_type PLS | NTEGER The type of subscriber ID that is passed. Valid

values for this argument are:

« DBMS_LDAP_UTL. TYPE_DN

« DBMS_LDAP_UTL. TYPE_GUI D

« DBMS_LDAP_UTL. TYPE_NI CKNAME
« DBMS_LDAP_UTL. TYPE_DEFAULT

subscri ber _id VARCHAR2 The subscriber ID representing the subscriber
entry. This can be NULL if subscri ber _
type is DBMS_LDAP_UTL. TYPE_DEFAULT.
In this case, the default subscriber is retrieved
from the root Oracle Context.

Return Values

Table 11-34 CREATE_SUBSCRIBER_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.

11-20 Oracle Identity Management Application Developer’s Guide

Subprograms

Table 11-34 (Cont.) CREATE_SUBSCRIBER_HANDLE Function Return Values

Value Description
DBVS_LDAP_UTL. PARAM ERRCR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERROR Other error.

See Also

DBVS _LDAP_UTL. get _subscri ber _properties().

Function get_subscriber_properties

The function get _subscri ber _properti es() retrieves the subscriber properties
for the given subscriber handle.

Syntax

FUNCTI ON get _subscri ber _properties

(

Id I N SESSI ON,

subscri ber_handl e I N HANDLE,

attrs IN STRING COLLECTI ON,

ptype IN PLS_| NTECER,

ret_pset_coll OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-35 GET_SUBSCRIBER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
Id SESSI ON A valid LDAP session handle.
subscri ber_handl e HANDLE The subscriber handle.
attrs STRI NG_COLLECTI ON A list of attributes that must be
retrieved for the subscriber.
ptype PLS | NTEGER Properties of the subscriber’s Oracle
Context to return. These are valid
values:
« DBM5_LDAP_UTL. ENTRY_
PROPERTI ES
« DBVMS_LDAP_UTL. COWON _
PROPERTI ES
ret_pset_coll PROPERTY_SET_COLLECTI ON The subscriber details containing the

attributes requested by the caller.

Return Values

Table 11-36 GET_SUBSCRIBER_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. NO_SUCH_SUBSCRI BER Subscriber doesn't exist.

DBMS_LDAP_UTL PL/SQL Reference 11-21

Subprograms

Table 11-36 (Cont.) GET_SUBSCRIBER_PROPERTIES Function Return Values

Value Description

DBVS_LDAP_UTL. MULTI PLE_SUBSCRI BER_ENTRI ES Subscriber has a multiple
number of DN entries.

DBMS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL. GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBV5_LDAP error
codes for unconditional failures
encountered while LDAP

operations are carried out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBVS_LDAP.init().

See Also
DBVS _LDAP.init(),DBMS _LDAP_UTL. create_subscri ber _handl e().

Function get_subscriber_dn
The function get _subscri ber _dn() returns the subscriber DN.

Syntax
FUNCTI ON get _subscri ber _dn

(

Id IN SESSI ON,

subscri ber_handl e I N HANDLE,
dn OUT VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 11-37 GET_SUBSCRIBER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.
subscri ber_handl e HANDLE The subscriber handle.

dn VARCHAR2 The subscriber DN.

Return Values

Table 11-38 GET_SUBSCRIBER_DN Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERRCR Invalid input parameters.
DBVS_LDAP_UTL. NO_SUCH_SUBSCRI BER Subscriber doesn’t exist.

DBMS_LDAP_UTL. MULTI PLE_SUBSCRI BER_ENTRI ES Multiple number of subscriber DN
entries exist in the directory for the
given subscriber.

11-22 Oracle Identity Management Application Developer’s Guide

Subprograms

Table 11-38 (Cont.) GET_SUBSCRIBER_DN Function Return Values

Value Description
DBVS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX
DBMVS_LDAP_UTL. GENERAL_ERROR
DBMS_LDAP error codes

Invalid root Oracle Context.
Other error.

Return proper DBMS_LDAP error codes
for unconditional failures encountered
when LDAP operations are carried
out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBVS_LDAP. init().

See Also
DBVS _LDAP.init ().

Function get_subscriber_ext_properties

The function get _subscri ber _ext _properties() retrieves the subscriber
extended properties. Currently this can be used to retrieve the subscriber-wide default
Resource Access Descriptors.

Syntax

FUNCTI ON get _subscri ber _ext _properties

(

Id IN SESSI ON,

subscri ber_handl e I N HANDLE,

attrs IN STRI NG COLLECTI ON,

ptype IN PLS_ | NTEGER

filter I N VARCHAR?,

rep_pset _col | OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-39 GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters

Parameter Name

Parameter Type

Parameter Description

I d

subscri ber _handl e

attrs

ptype

filter

SESSI ON

HANDLE
STRI NG_COLLECTI ON

PLS_I NTEGER

VARCHAR2

A valid LDAP session
handle.

The subscriber handle.

A list of subscriber attributes
to retrieve.

The type of properties to
return. A valid value is -
DBVS_LDAP_

UTL. DEFAULT_RAD _
PROPERTI ES

An LDAP filter to further
refine the subscriber
properties returned by the
function.

DBMS_LDAP_UTL PL/SQL Reference 11-23

Subprograms

Table 11-39 (Cont.) GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ret_pset_collection PROPERTY_SET_COLLECTI ON The subscriber details
containing the attributes
requested by the caller.

Return Values

Table 11-40 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBMS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBM5_LDAP error codes for

unconditional failures encountered when
LDAP operations are carried out.

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBVS_LDAP. i nit ().

See Also DBMS_LDAP. i nit (), DBVMS_LDAP_UTL. get _subscri ber _
properties().

Property-Related Subprograms

Many of the user-related, subscriber-related, and group-related subprograms return
DBMS_LDAP_UTL. PROPERTY_SET_COLLECTI ON, which is a collection of one or more
LDAP entries representing results. Each of these entries is represented by a DBV5_
LDAP_UTL. PROPERTY_SET. A PROPERTY_SET may contain attributes—that is,
properties—and its values. Here is an example that illustrates the retrieval of
properties from DBVM5_LDAP_UTL. PROPERTY_SET_COLLECTI ON:

my_attrs is of type DBVMS_LDAP. STRI NG_COLLECTI ON
my_attrs(1l) := ‘cn’;

retval := DBMS_LDAP_UTL. get _group_nenber shi p(
nmy_session,

user _handl e,

DBVS_LDAP_UTL. DI RECT_MEMBERSHI P,

my_attrs,

nmy_pset _col |

)

| F ny_pset_coll.count > 0 THEN
FORi in ny_pset_coll.first .. ny_pset_coll.last LOOP
my_property_names is of type DBMS_LDAP. STRI NG _COLLECTI ON
retval := DBMS_LDAP_UTL. get _property_nanes(
pset _col I (i),
property_names
I F my_property_nanes.count > 0 THEN
FORj in nmy_property nanes.first .. ny_property_nanes.|ast LOOP

11-24 Oracle Identity Management Application Developer’s Guide

Subprograms

retval := DBMS_LDAP_UTL. get _property_val ues(
pset _col I (i),
property_names(j),
property_val ues

if my_property_values. COUNT > 0 then

FOR k in ny_property_val ues. FIRST. . ny_property_val ues. LAST LOOP
DBMS_QUTPUT. PUT_LI NE(ny_property_names(j) || ‘: °
[1my_
property_val ues(k));
END LOOP; -- For each val ue

el se
DBMS_QUTPUT. PUT_LI NE(' NO VALUES FOR * || ny_property_nanmes(j));
end if;
END LOOP; -- For each property nane
END I F; -- |F ny_property_nanmes.count > 0
END LOOP; -- For each propertyset
END IF; -- If ny_pset_coll.count >0

use_handl e is a user handle. my_pset _col | contains all the nested groups that
user _handl e belongs to. The code loops through the resulting entries and prints out
the cn of each entry.

See Also: Example: User-Related Functions on page B-9 for more
usage samples of the Property-related subpropgrams

Miscellaneous Subprograms

The miscellaneous subprograms in the DBV5_LDAP_UTL package perform a variety of
different functions.

Function normalize_dn_with_case

The function nor mal i ze_dn_wi t h_case() removes unnecessary white space
characters from a DN and converts all characters to lower case based on a flag.

Syntax
FUNCTI ON normal i ze_dn_wi t h_case

(

dn I'N VARCHAR?,

| ower _case IN PLS_ | NTEGER
normdn OUT VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 11-41 NORMALIZE_DN_WITH_CASE Function Parameters

Parameter Name Parameter Type Parameter Description
dn VARCHAR2 The DN.
| ower _case PLS | NTEGER If set to 1: The normalized DN returns in

lower case. If set to 0: The case is preserved in
the normalized DN string.

norm.dn VARCHAR2 The normalized DN.

DBMS_LDAP_UTL PL/SQL Reference 11-25

Subprograms

Return Values

Table 11-42 NORMALIZE_DN_WITH_CASE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. GENERAL_ERROR On failure.

Usage Notes
This function can be used while comparing two DNs.

Function get_property_names

The function get _property_nanes() retrieves the list of property names in the
property set.

Syntax

FUNCTI ON get _property_nanes

(
pset | N PROPERTY_SET,

property_names OUT STRI NG COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-43 GET_PROPERTY_NAMES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection returned from any of the
following functions:

« DBVS_LDAP_UTL. get _group_
menber shi p()

. DBMS_LDAP_UTL. get _
subscri ber _properties()

« DBVMS_LDAP_UTL. get _user _
properties()

. DBVS_LDAP_UTL. get _group_
properties()

property_nanes STRI NG_COLLECTI ON A list of property names associated
with the property set.

Return Values

Table 11-44 GET_PROPERTY_NAMES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. GENERAL_ERRCR On error.

11-26 Oracle Identity Management Application Developer’s Guide

Subprograms

See Also
DBMS_LDAP_UTL. get _property val ues().

Function get_property_values

The function get _property_val ues() retrieves the property values (the strings)
for a given property name and property.

Syntax

FUNCTI ON get _property_val ues

(
pset | N PROPERTY_SET,

property_name | N VARCHARZ,
property_val ues OUT STRI NG_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 11-45 GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description
property_nane VARCHAR2 The property name.
pset PROPERTY_SET The property set in the property set

collection obtained from any of the
following function returns:

« DBVS_LDAP_UTL. get _group_
nmenber shi p()

. DBVS_LDAP_UTL. get _
subscri ber _properties()

. DBVS_LDAP_UTL. get _user _
properties()

« DBVS_LDAP_UTL. get _group_
properties()

property_val ues STRI NG_COLLECTI ON A list of property values (strings).

Return Values

Table 11-46 GET_PROPERTY_VALUES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERROR On failure.

See Also

DBMS_LDAP_UTL. get _property_val ues_len().

Function get_property_values_len

The function get _property_val ues_| en() retrieves the binary property values
for a given property name and property.

DBMS_LDAP_UTL PL/SQL Reference 11-27

Subprograms

Syntax

FUNCTI ON get _property_val ues_l en

(

pset | N PROPERTY_SET,

property_name | N VARCHARZ,

auth_type IN PLS_| NTEGER

property_val ues OUT Bl NVAL_COLLECTI ON

)
RETURN PLS | NTEGER,

Parameters

Table 11-47 GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description
property_nanme VARCHAR2 A property name.
pset PROPERTY_SET The property set in the property set

collection obtained from any of the
following function returns:

« DBMS_LDAP_UTL. get _group_
nmenber shi p()

. DBVS_LDAP_UTL. get _
subscri ber _properties()

« DBMS_LDAP_UTL. get _user _
properties()

« DBVS_LDAP_UTL. get _group_
properties()

property_val ues BI NVAL_COLLECTI ON A list of binary property values.

Return Values

Table 11-48 GET_PROPERTY_VALUES_ LEN Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_ On failure.
UTL. GENERAL_ERRCR

See Also
DBVS _LDAP_UTL. get _property_val ues().

Procedure free_propertyset_collection

The procedure f r ee_propertyset_col | ecti on() frees the memory associated
with property set collection.

Syntax

PROCEDURE free_propertyset_col | ection

(
pset _collection IN OQUT PROPERTY_SET_COLLECTI ON

)

11-28 Oracle Identity Management Application Developer’s Guide

Subprograms

Parameters

Table 11-49 FREE_PROPERTYSET_COLLECTION Procedure Parameters

Parameter Name Parameter Type Parameter Description
pset _col | ection PROPERTY_SET_ The property set collection returned from one
COLLECTI ON of the following functions:
. DBVS_LDAP_UTL. get _group_
nmenber shi p()

« DBMS_LDAP_UTL. get _subscri ber _
properties()

« DBMS_LDAP_UTL. get _user _
properties()

« DBVS_LDAP_UTL. get _group_
properties()

See Also

DBMS_LDAP_UTL. get _gr oup_nenber shi p(), DBMS_LDAP_UTL. get _
subscri ber _properties(),DBMS LDAP_UTL. get _user_properties(),
DBVS _LDAP_UTL. get _group_properties().

Function create_mod_propertyset

The function cr eat e_nod_propertyset () createsa MOD_PROPERTY_SET data
structure.

Syntax

FUNCTI ON creat e_nod_propertyset
(

pset _type IN PLS_I NTECER

pset _name | N VARCHAR?,

mod_pset OUT MOD_PROPERTY_SET

)
RETURN PLS | NTEGER,

Parameters

Table 11-50 CREATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

pset _type PLS_| NTEGER The type of property set being modified.
Here is a valid value: ENTRY_PROPERTI ES

pset _nane VARCHAR2 The name of the property set. This can be
NULL if ENTRY_PROPERTI ES are being
modified.

mod_pset MOD_PROPERTY_SET The data structure to contain modify
operations to be performed on the property
set.

Return Values

Table 11-51 CREATE_MOD_PROPERTYSET Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL PL/SQL Reference 11-29

Subprograms

Table 11-51 (Cont.) CREATE_MOD_PROPERTYSET Function Return Values

Value Description

DBMS_LDAP_ Other error.
UTL. GENERAL_ERRCR

See Also
DBVS _LDAP_UTL. popul ate_nbd_propertyset ().

Function populate_mod_propertyset

The function popul at e_nod_pr opertyset () populates the MOD PROPERTY_SET
data structure.

Syntax

FUNCTI ON popul at e_nod_pr opertyset

(

mod_pset | N MOD_PROPERTY_SET,
property_mod_op | N PLS_| NTEGER
property_name | N VARCHARZ,
property_val ues | N STRING COLLECTI ON

)
RETURN PLS_| NTEGER;

Parameters

Table 11-52 POPULATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description
mod_pset MOD_PROPERTY_ Mod-PropertySet data structure.
SET
property_nmod_op PLS_| NTEGER The type of modify operation to perform on

a property. These are valid values:
= ADD PROPERTY

=« REPLACE_PROPERTY

=« DELETE_PROPERTY

property_nane VARCHAR2 The name of the property
property_val ues STRING_ Values associated with the property.
COLLECTION

Return Values

Table 11-53 POPULATE_MOD_PROPERTYSET Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. GENERAL_ERROR Authentication failed.
DBMS_LDAP_UTL. PAD_GRACELOG N_WARN Grace login for user.

See Also

DBVS _LDAP_UTL. creat e_nod_propertyset ().

11-30 Oracle Identity Management Application Developer’s Guide

Subprograms

Procedure free_mod_propertyset

The procedure f r ee_npd_propertyset () frees the MOD_PROPERTY_SET data
structure.

Syntax
PROCEDURE free_mod_propertyset
(

nmod_pset | N MOD_PROPERTY_SET
K
Parameters

Table 11-54 FREE_MOD_PROPERTYSET Procedure Parameters

Parameter Name Parameter Type Parameter Description
mod_pset PROPERTY_SET Mod_Pr oper t ySet data structure.
See Also

DBVS_LDAP_UTL. creat e_nod_propertyset ().

Procedure free_handle
The procedure f r ee_handl e() frees the memory associated with the handle.

Syntax
PROCEDURE free_handl e
(

handl e | N QUT HANDLE
)

Parameters

Table 11-55 FREE_HANDLE Procedure Parameters

Parameter Name Parameter Type Parameter Description

handl e HANDLE A pointer to a handle.

See Also

DBVS_LDAP_UTL. creat e_user _handl e(), DBVMS_LDAP_UTL. create_
subscri ber _handl e(), DBVMS_LDAP_UTL. creat e_group_handl e().

Function check_interface_version
The function check i nt erface_versi on() checks the interface version.

Syntax
FUNCTI ON check_i nterface_version

(
interface version |N VARCHAR2

)
RETURN PLS_| NTEGER,

DBMS_LDAP_UTL PL/SQL Reference 11-31

Subprograms

Parameters

Table 11-56 CHECK_INTERFACE_VERSION Function Parameters

Parameter Name Parameter Type Parameter Description

interface_version VARCHAR2 Version of the interface.

Return Values

Table 11-57 CHECK_VERSION_INTERFACE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS Interface version is supported.
DBMS_LDAP_UTL. GENERAL_ERROR Interface version is not supported.

Function get_property_values_blob

The function get _pr operty_val ues_bl ob() retrieves large binary property values
for a given property name and property.

Syntax

FUNCTI ON get _property_val ues_bl ob

(

pset | N PROPERTY_SET,

property_name | N VARCHARZ,
auth_type I N PLS_| NTEGER
property_val ues OUT BLOB_COLLECTI ON

)
RETURN PLS_| NTEGER;

Parameters

Table 11-58 GET_PROPERTY_VALUES_BLOB Function Parameters

Parameters Parameter Type Description

property_nane VARCHAR2 A property name.

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

. DBVS_LDAP_UTL. get _group_
menber shi p()

. DBMS_LDAP_UTL. get _subscri ber _
properties()

« DBMS_LDAP_UTL. get _user _
properties()

« DBVS_LDAP_UTL. get _group_
properties()

property_val ues BLOB_COLLECTI ON A list of binary property values.

11-32 Oracle Identity Management Application Developer’s Guide

Function Return Code Summary

Return Values

Table 11-59 GET_PROPERTY_VALUES_BLOB Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBMVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMVS_LDAP_UTL. GENERAL_ERROR On failure.

See Also

DBVS _LDAP_UTL. get _property_val ues().

Procedure property_value_free_blob

Frees the memory associated with BLOB_COLLECT| ONreturned by DBM5_LDAP. get _
property val ues_bl ob().

Syntax

Synt ax

PROCEDURE property_val ue_free_bl ob
(

vals N OUT DBMS_LDAP. BLOB_COLLECTI ON
)
Parameters

Table 11-60 PROPERTY_VALUE_FREE_BLOB Function Parameters

Parameter Description

val s The collection of large binary values returned by DBVS_
LDAP. get _property_val ues_bl ob().

See Also
DBVS _LDAP. get _property val ues_bl ob().

Function Return Code Summary
The DBMS_LDAP_UTL functions can return the values in the following table

Table 11-61 Function Return Codes

Return

Name Code Description

SUCCESS 0 Operation successful.

CGENERAL_ERROR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM ERRCR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_MEMBERSHI P -3 Returned by user-related functions and group
functions when the user is not a member of a group.

NO_SUCH_SUBSCRI BER -4 Returned by subscriber-related functions when the

subscriber does not exist in the directory.

DBMS_LDAP_UTL PL/SQL Reference 11-33

Function Return Code Summary

Table 11-61 (Cont.) Function Return Codes

Return

Name Code Description

NO_SUCH_USER -5 Returned by user-related functions when the user
does not exist in the directory.

NO ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context does not exist in the directory.

MULTI PLE_SUBSCRI BER_ -7 Returned by subscriber-related functions when

ENTRI ES multiple subscriber entries are found for the given
subscriber nickname.

I NVALI D_ ROOT_ORCL_CTX -8 Root Oracle Context does not contain all the required
information needed by the function.

NO_SUBSCRI BER_ ORCL_CTX -9 Oracle Context does not exist for the subscriber.

| NVALI D_SUBSCRI BER _ -10 Oracle Context for the subscriber is invalid.

ORCL_CTX

MULTI PLE_USER ENTRIES -11 Returned by user-related functions when multiple
user entries exist for the given user nickname.

NO_SUCH_GROUP -12 Returned by group related functions when a group
does not exist in the directory.

MULTI PLE_GROUP_ENTRIES -13 Multiple group entries exist for the given group
nickname in the directory.

ACCT_TOTALLY_LOCKED -14 Returned by DBMS_LDAP_UTL. aut henti cat e_

EXCEPTI ON

AUTH_PASSWD_CHANGE_ WARN - 15

AUTH_FAI LURE_EXCEPTION - 16
PVD _EXPI RED EXCEPTION - 17
RESET_HANDLE -18
SUBSCRI BER NOT_FOUND - 19
PVD_EXPI RE_WARN -20
PVD M NLENGTH_ERROR -21
PVD_NUMERI C_ERROR 222

user () function when a user account is locked. This
error is based on the password policy set in the
subscriber oracle context.

This return code is deprecated.

Returned by DBMS_LDAP_UTL. aut henti cat e_
user () function when user authentication fails.

Returned by DBM5_LDAP_UTL. aut henti cat e_
user () function when the user password has
expired. This is a password policy error.

Returned when entity handle properties are being
reset by the caller.

Returned by DBM5_LDAP- UTL. | ocat e_
subscri ber _for_user () function when it is
unable to locate the subscriber.

Returned by DBM5_LDAP_UTL. aut henti cat e_
user () function when the user password is about to
expire. This is a password policy error.

Returned by DBM5_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password is less than the
minimum required length. This is a password policy
error.

Returned by DBM5_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password does not
contain at least one numeric character. This is a
password policy error.

11-34 Oracle Identity Management Application Developer’s Guide

Data Type Summary

Table 11-61 (Cont.) Function Return Codes

Return
Name Code Description
PWD_NULL_ERROR -23 Returned by DBM5_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password is an empty
password. This is a password policy error.
PWD_I NHI STORY_ERRCR -24 Returned by DBM5_LDAP_UTL. set _user _

PWD_| LLEGALVALUE_ERRCR -25

PVD_GRACELOG N_WARN - 26

PVD MUSTCHANGE_ERROR - 27

USER_ACCT DI SABLED_ -29
ERROR
PROPERTY_NOT_FOUND -30

properties() function while changing the user
password and the new user password is the same as
the previous password. This is a password policy
error.

Returned by DBM5_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password has an illegal
character. This is a password policy error.

Returned by DBMS_LDAP_UTL. aut henti cat e_
user () function to indicate that the user password
has expired and the user has been given a grace login.
This is a password policy error.

Returned by DBM5_LDAP_UTL. aut henti cat e_
user () function when user password needs to be
changed. This is a password policy error.

Returned by DBMS_LDAP_UTL. aut henti cat e_
user () function when user account has been
disabled. This is a password policy error.

Returned by user-related functions while searching
for a user property in the directory.

Data Type Summary

The DBMS_LDAP_UTL package uses the data types in the following table

Table 11-62 DBMS_LDAP_UTL Data Types

Data Type Purpose

HANDLE Used to hold the entity.

PROPERTY_SET Used to hold the properties of an entity.

PROPERTY_SET_COLLECTI ON
MOD_PROPERTY_SET

List of PROPERTY_SET structures.

Structure to hold modify operations on an entity.

DBMS_LDAP_UTL PL/SQL Reference 11-35

Data Type Summary

11-36 Oracle Identity Management Application Developer’s Guide

12

DAS URL Interface Reference

This chapter describes the Oracle extensions to the DAS_URL Service Interface. It
contains these sections:

Directory Entries for the Service Units
DAS Units and Corresponding URL Parameters
DAS URL API Parameter Descriptions

Search-and-Select Service Units for Users or Groups

Directory Entries for the Service Units

Table 12-1 lists the Oracle Delegated Administration Services units and the directory
entries that store relative URLs for these units.

Table 12-1 Service Units and Corresponding Entries

Service Unit

Entry

Create User

cn=Cr eat eUser, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext

Edit User cn=Edi t User, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext
Edit User when cn=Edi t User G venGUl D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,

GUIDis passedasa c¢cn=0racl eCont ext

parameter

Delete User cn=Del et eUser, cn=Cper at i onURLs, cn=DAS, cn=Product s, cn=0r acl eCont ext

Delete User when
GUID of the user to
be deleted is passed
as a parameter

cn=Del et eUser G venCGUI D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Create Group

cn=Cr eat eG oup, cn=Cper at i onURLS, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Edit Group cn=Edi t Group, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext
Edit the group cn=Edi t G oupG venGUI D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,

whose GUID is cn=0r acl eCont ext

passed through a

parameter

Delete Group cn=Del et eGr oup, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,

cn=0r acl eCont ext

Delete group with
the GUID passed
through a parameter

cn=Del et eG oupG venGUl D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

DAS_URL Interface Reference 12-1

DAS Units and Corresponding URL Parameters

Table 12-1 (Cont.)

Service Units and Corresponding Entries

Service Unit

Entry

Assign privileges to
a user

cn=User Pri vi | ege, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Assign privileges to
a user with the
GUID passed
through a parameter

cn=User Privi| egeG venGUl D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Assign privilege to a
group

cn=G oupPrivi |l ege, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Assign privilege to a
group with the given
GUID

cn=G oupPrivi | egeG venCGU D, cn=Cper at i onURLS, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

View User account
information/Profile

cn=Account | nf o, cn=Cper at i onURLS, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Edit User account
Information/Profile

cn=Edit My Profile, cn=CperationURLs, cn=DAS, cn=Product s,
cn=0r acl eCont ext

Change Password

cn=Passwor dChange, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Search User

cn=User Sear ch, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Search Group cn=G oupSear ch, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext
Search User LOV cn=User LOV, cn=0per at i onURLs, ¢cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext
Search Group LOV ¢n=G oupLQV, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext
EUS Console cn=EUS Consol e, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext "

Delegation Console

cn=Del egat i onConsol e, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

DAS Units and Corresponding URL Parameters

Table 12-2 lists the DAS units and the URL parameters that can be passed to these
units.

Table 12-2 DAS Units and Corresponding URL Parameters

DAS Unit

Parameter Return Values

Create User

Edit User

doneURL
home URL
cancel URL
enabl ePA

homeURL -
doneURL

cancel URL

enabl ePA

returnG D

12-2 Oracle Identity Management Application Developer's Guide

DAS Units and Corresponding URL Parameters

Table 12-2 (Cont.) DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values

EditUserGivenGUID honeURL -
doneURL
cancel URL
enabl ePA
user GUI D

EditMyProfile home URL -
doneURL
cancel URL

Delegation Console - -

DeleteUser homeURL -
doneURL
cancel URL

DeleteUserGivenGUID home URL -
doneURL
cancel URL
user GJ D

UserPrivilege home URL
doneURL
cancel URL

UserPrivilegeGivenGUID homeURL -
doneURL
cancel URL
user GU D

CreateGroup homeURL returnGJ D
doneURL
cancel URL
enabl ePA
par ent DN

EditGroup home URL -
doneURL
cancel URL
enabl ePA

EditGroupGivenGUID honmeURL -
doneURL
cancel URL
enabl ePA
groupGJ D

DeleteGroup homeURL -
doneURL
cancel URL

DeleteGroupGivenGUID homeURL -
doneURL
cancel URL
groupGU D

GroupPrivilege homeURL -
doneURL
cancel URL

DAS_URL Interface Reference 12-3

DAS URL API Parameter Descriptions

Table 12-2 (Cont.) DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values

GroupPrivilegeGivenGUID honeURL -
doneURL
cancel URL
groupGUI D

AccountInfo home URL -
doneURL
cancel URL

PasswordChange homeURL -
doneURL
cancel URL

UserSearch home URL -
doneURLm
cancel URL

GroupSearch homeURL -
doneURL
cancel URL

UserLOV base user Dn
cfilter user Qui d
title user Name
dasdomai n ni ckName
cal I backURL user Emi |

GroupLOV otype gr oupDN
base groupQui d
cfilter gr oupNane
title groupDescri ption
dasdomai n
cal | backURL

DAS URL API Parameter Descriptions

The parameters described in Table 12-3 are used with DAS units.

Table 12-3 DAS URL Parameter Descriptions

Parameter Description

homeURL The URL that is linked to the global button Home. When the calling
application specifies this value, clicking Home redirects the DAS unit to
the URL specified by this parameter.

doneURL This URL is used by DAS to redirect the DAS page at the end of each
operation. In the case of Create User, once the user is created, clicking
OK redirects the URL to this location.

cal | backURL DAS uses this URL to send return values to the invoking application.
For UserLOV and GroupLOV units, the return values are submitted as
HTML form parameters through the HTTP POST method.

cancel URL This URL is linked with all the Cancel buttons shown in the DAS units.
Any time the user clicks Cancel, the page is redirected to the URL
specified by this parameter.

enabl ePA This parameter takes a Boolean value of true or false. Set to true, the
parameter enables the Assign Privileges in User or Group operation. If
the enabl ePAis passed with value of true in the Create User page, the
Assign Privileges to User section also appears in the Create User page.

12-4 Oracle Identity Management Application Developer's Guide

Search-and-Select Service Units for Users or Groups

Table 12-3 (Cont.) DAS URL Parameter Descriptions

Parameter Description

user GU D This is the GUID of the user to be edited or deleted. This corresponds to
the orclguid attribute. Specifying the GUID causes the search for the
user step in either editUser or deleteUser units to be skipped.

G oupGUI D This is the GUID of the group to be edited or deleted. This corresponds
to the orclguid attribute. Specifying the GUID causes the search for the
group step in either editGroup or deleteGroup units to be skipped.

parent DN When this parameter is specified in CreateGroup, the group is created
under this container. If the parameter is not specified, group creation
defaults to the group search base.

base This parameter represents the search base in the case of search
operations.

cfilter This parameter represents the filter to be used for the search. This filter
is LDAP compliant.

title This parameter represents the title to be shown in the Search and Select
LOV page.

otype This parameter represents the object type used for search. Values

supported are Sel ect , Edi t, and Assi gn.

returnGID This parameter is appended to the done URL in case of a create
operation. The value will be the orclguid of the new object.

dasdomai n This parameter is needed only when the browser is Internet Explorer
and the calling URL and the DAS URL are on different hosts and in the
same domain. An example value is us.oracle.com. Note the calling
application also needs to set the document . domai n parameter on the
formload. For more details, refer to Microsoft support at:

http://support.mcrosoft.com

Search-and-Select Service Units for Users or Groups

DAS provides service units for searching and selecting users or groups. These service
units are sometimes referred to as user or group List Of Values (LOV).

Invoking Search-and-Select Service Units for Users or Groups

A custom application can open a popup window and populate its contents by
supplying a search-and-select URL for a user or group:

http://a.b.c:port/oiddas/ui/oracl e/l dap/ das/ search/ LOVUser Search?titl e=User &
cal | backurl=http://x.y.z:port/custapp/ Cal | back

or

http://a.b.c:port/oiddas/ui/oracl e/l dap/ das/ sear ch/ LOVG oupSear ch?title=
G oupé&cal | backurl =http://x.y.z:port/custapp/ Cal | back

In these examples, a. b. c: port is the host name and port of the OID DAS application
server. X.Y. z: port is the host name and port of the custom application server.

titl eisa string that appears in the title of the Search and Select page. cal | backur |
is a URL on the custom application server that receives the selected parameters for
users or groups.

DAS_URL Interface Reference 12-5

Search-and-Select Service Units for Users or Groups

Note:

To avoid popup blocking, the custom application may open

the popup window with a URL on the local custom application server
and immediately redirect to the OID DAS User or Group
Search-and-Select URL.

Receiving Data from the User or Group Search-and-Select Service Units

After a User or Group has been selected via the OID DAS User or Group
Search-and-Select Service Unit, an HTTP form will be submitted to the callbackurl
page using the POST method. The parameters defined in Table 12—4 and Table 12-5
are available to the callbackurl page:

Table 12—-4 User Search and Select

Parameter Description

user Dn User’s distinguished name.
user Gui d User’s global unique ID.
user Nanme User’s name.

ni ckName User’s nickname

user Enai | User’s email.

Table 12-5 Group Search and Select

Parameter Description

groupDN Group’s distinguished name.
groupCQui d Group’s global unique ID.
gr oupNane Group’s name.

groupDescri ption

Group’s description.

The callbackurl page in the popup window may transfer the form parameters to the
invoking page in the opener window using JavaScript. It may then close the popup

window.

Note:

To avoid JavaScript security problems, the custom application

may supply the callbackurl page on the same server as the invoking
page. This enables the callbackurl page in the popup window and the
invoking page in the opener window to communicate directly through

JavaScript.

12-6 Oracle Identity Management Application Developer's Guide

13

Provisioning Integration API Reference

This chapter examines the registration API for the Oracle Directory Provisioning
Integration Service. It contains the following sections:

= Versioning of Provisioning Files and Interfaces
= Extensible Event Definition Configuration

= Inbound and Outbound Events

« PL/SQL Bidirectional Interface (Version 2.0)

= Provisioning Event Interface (Version 1.1)

Versioning of Provisioning Files and Interfaces

In release 9.0.2, the default interface version was version 1.1. In releases 9.0.4 and
10.1.2, the interface version defaults to version 2.0, but the administrator can set this
back to version 1.1 to maintain the release 9.0.2 interface.

Extensible Event Definition Configuration

This feature is only for outbound events. It addresses the ability to define a new event

at run time so that the provisioning integration service can interpret a change in Oracle
Internet Directory and determine whether an appropriate event is to be generated and
propagated to an application. The following events will be the only configured events

at installation time.

An event definition (entry) consists of the following attributes.

= Event object type (or ¢l CDI PPr ovEvent Obj ect Type): This specifies the type of
object the event is associated with. For example, the object could be a USER,
GROUP, or | DENTI TY.

= LDAP change type (or cl ODI PPr ovEvent ChangeType): This indicates that all
kinds of LDAP operations can generate an event for this type of object. (e.g ADD,
MODI FY, DELETE)

« Event criteria (or cl ODI PPr ovEvent Cri t eri a): The additional selection criteria
that qualify an LDAP entry to be of a specific object type. For example,
Qbj ect cl ass=or cl User V2 means that any LDAP entry that satisfies this
criteria can be qualified as this Object Type and any change to this entry can
generate appropriate events.

The object class that holds the above attributes is or c| ODI PPr ovEvent TypeConfi g.
The container cn=Pr ovi si oni hgEvent TypeConfi g, cn=odi , cn=or acl e
i nternet directory isused to store all the event type configurations.

Provisioning Integration API Reference 13-1

Extensible Event Definition Configuration

Table 13-1 lists the event definitions predefined as a part of the installation.

Table 13-1 Predefined Event Definitions

Event Object Type LDAP Change Type Event Criteria

ENTRY ADD obj ect cl ass=*
MODI FY
DELETE

USER ADD obj ect cl ass=i nt er or gper son
MODI FY obj ect cl ass=orcl userv2
DELETE

| DENTI TY ADD obj ect cl ass=i nt er or gper son
MODI FY obj ect cl ass=orcl userv2
DELETE

GROUP ADD obj ect cl ass=orcl group
MODI FY obj ect cl ass=gr oupof uni quenanes
DELETE

SUBSCRPTI ON ADD obj ect cl ass=or cl servi cer ecepi ent
MODI FY
DELETE

SUBSCRI BER ADD obj ect cl ass=or cl subscri ber
MODI FY
DELETE

The container cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi , cn=or acl e
i nternet directory isused to store all the event definition configurations. LDAP
configuration of the predefined event definitions is as follows:

dn: orcl ODI PProvEvent Obj ect Type=ENTRY, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

orcl ODI PProvEvent Obj ect Type: ENTRY

or cl ODI PProvEvent LDAPChangeType: Add

or ¢l CDI PPr ovEvent LDAPChangeType: Modify

orcl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=*

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

dn:

orcl ODI PProvEvent Obj ect Type=USER, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi , cn=or acl e
internet directory

orcl ODI PProvEvent Obj ect Type: USER

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl ODI PPr ovEvent LDAPChangeType: Mdify

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=lnet OrgPerson

orcl ODI PProvEvent Criteria: objectclass=orcluserv2

obj ectcl ass: orcl CDl PProvEvent TypeConfi g

dn: orcl ODl PProvEvent Qbj ect Type=I DENTI TY, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

orcl DI PProvEvent Qbj ect Type: | DENTITY

orcl ODI PProvEvent LDAPChangeType: Add

or cl ODI PProvEvent LDAPChangeType: Mdify

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEvent Criteria: objectclass=inetorgperson

orcl ODI PProvEvent Criteria: objectclass=orcluserv2

obj ect cl ass: orcl ODI PProvEvent TypeConfi g

13-2 Oracle Identity Management Application Developer's Guide

Inbound and Outbound Events

dn: orcl ODI PProvEvent Obj ect Type=GROUP, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

or cl ODI PProvEvent Obj ect Type: GROUP

or cl ODI PProvEvent LDAPChangeType: Add

or cl CDI PPr ovEvent LDAPChangeType: Modify

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEvent Criteria: objectclass=orclgroup

orcl ODI PProvEvent Criteria: objectclass=groupof uni quenanes

obj ectclass: orcl QDI PProvEvent TypeConfig

dn:

or cl ODI PProvEvent bj ect Type=SUBSCRI PTI ON, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

or cl ODI PProvEvent Obj ect Type: SUBSCRI PTI ON

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl CDI PPr ovEvent LDAPChangeType: Mdify

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEvent Criteria: objectclass=orclservicerecepient

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

dn: orcl ODl PProvEvent Obj ect Type=SUBSCRI BER, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

or ¢l ODI PProvEvent Obj ect Type: SUBSCRI BER

or cl ODI PProvEvent LDAPChangeType: Add

or cl ODI PProvEvent LDAPChangeType: Mdify

or cl ODI PProvEvent LDAPChangeType: Delete

orcl ODI PProvEvent Criteria: objectclass=orcl subscriber

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

To define a new event of Object type XYZ (which is qualified with the object class

obj XYZ), create the following entry in Oracle Internet Directory. The DIP server
recognizes this new event definition and propagates events if necessary to applications
that subscribe to this event.

dn: orcl ODl PProvEvent Obj ect Type=XYZ, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

or cl DI PProvEvent Obj ect Type: XYZ

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl CDI PPr ovEvent LDAPChangeType: Mdify

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEvent Criteria: objectclass=obj XYZ

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

This means that if an LDAP entry with the object class obj XYZ is added, modified, or
deleted, DIP will propagate the XYZ_ADD, XYZ_MODI FY, or XYZ_DELETE event to any
application concerned.

Inbound and Outbound Events

An application can register as a supplier as well as a consumer of events. The
provisioning subscription profile has the attributes described in Table 13-2 on
page 13-4.

Provisioning Integration API Reference 13-3

PL/SQL Bidirectional Interface (Version 2.0)

Table 13-2 Attributes of the Provisioning Subscription Profile

Attribute

Description

Event Subscri ptions

Mappi ngRul es

perm ttedQOperations

Outbound events only (multivalued).

Events for which DIP should send notification to this application. The format of
this string is [USER] GROUP] : [domai n_of _

interest]:[DELETE| ADD| MODI FY(list_of _attributes_separated_by_
conma) |

Multiple values may be specified by listing the string multiple times, each time
with different values. If parameters are not specified, the following defaults are
assumed: USER: or gani zat i on_DN: DELETEGROUP: or gani zati on_

DN: DELETE—that is, send user and group delete notifications under the
organization DN.

Inbound events Only (multivalued).

This attribute is used to map the type of object received from an application and a
qualifying filter condition to determine the domain of interest for this event. The
mapping takes this form:

OBJECT_TYPE: Filter_condition: domain_of_interest

Multiple rules are allowed. In the mapping EMP: cn=user s, dc=acne, dc=com
the object type received is EMP. The event is meant for the domain

cn=users, dc=acne, dc=com In the mapping

EMP: | =AMERI CA: | =AMER, cn=user s, dc=acne, dc=com the object type
received is EMP. The event is meant for the domain

| =AMER, cn=user s, dc=acne, dc=com

Inbound events only (multi valued).

This attribute is used to define the types of events an application is privileged to
send to the provisioning integration service. The mapping takes this form:

Event _(noject: affected_donmin:operation(attributes, . . .)

In the mapping | DENTI TY: cn=user s, dc=acme, dc=com ADD(*) the

| DENTI TY_ADD event is allowed for the specified domain and all attributes are
also allowed. In the mapping

| DENTI TY: cn=user s, dc=acne, dc=com MODI FY(cn, sn. mai | , t el ephonen
unber), the | DENTI TY_MODI FY event is allowed only for the attributes in the
list. Any extra attributes are silently ignored.

PL/SQL Bidirectional Interface (Version 2.0)

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

DROP TYPE LDAP_EVENT;

DROP TYPE LDAP_EVENT_STATUS,;
DROP TYPE LDAP_ATTR_LI ST;
DROP TYPE LDAP_ATTR,

-- Name: LDAP_ATTR
-- Data Type: OBJECT

DESCRI PTION: This structure contains details regarding an attribute. Alist of one

or nore of this object is passed in any event.

CREATE TYPE LDAP_ATTR AS OBJECT (

attr_name VARCHAR2(256) ,

13-4 Oracle Identity Management Application Developer's Guide

PL/SQL Bidirectional Interface (Version 2.0)

attr_val ue VARCHAR2(4000) ,
attr_bval ue RAW 2048) ,
attr_value_len | NTEGER,
attr_type I NTEGER ,
attr_nod_op | NTEGER

)
GRANT EXECUTE ON LDAP_ATTR to public;

CREATE TYPE LDAP_ATTR LI ST AS TABLE OF LDAP_ATTR,
/
GRANT EXECUTE ON LDAP_ATTR LI ST to public;

-- Nane: LDAP_EVENT
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains event information plus the attribute
-- list.

CREATE TYPE LDAP_EVENT AS OBJECT (
event _type VARCHAR2(32),
event _id VARCHAR2(32) ,
event_src VARCHAR2(1024),
event _tinme VARCHAR2(32),
obj ect _name VARCHAR2(1024),
obj ect _type VARCHAR2(32),
obj ect _guid VARCHAR2(32),
object _dn VARCHAR2(1024),
profile_id VARCHAR2(1024),
attr_list LDAP_ATTRLIST) ;

/

GRANT EXECUTE ON LDAP_EVENT to public;

-- Nane: LDAP_EVENT_STATUS

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains information that is sent by the
-- consuner of an event to the supplier in response to the
-- actual event.

CREATE TYPE LDAP_EVENT_STATUS AS OBJECT (

event _id VARCHAR2(32) ,
orclguid VARCHAR(32) ,
error_code | NTECER,
error_String VARCHAR2(1024) ,

error_di sposition VARCHAR2(32)) ;
/

GRANT EXECUTE ON LDAP_EVENT STATUS to public;

Provisioning Integration API Reference 13-5

Provisioning Event Interface (Version 1.1)

Provisioning Event Interface (Version 1.1)

As stated in "Development Tasks for Provisioning Integration" on page 4-14, you must
develop logic to consume events generated by the provisioning integration service.

The interface between the application and the provisioning integration service can be
table-based, or it can use PL/SQL callbacks.

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

Rem

Rem NAME

Rem I dap_ntfy.pks - Provisioning Notification Package Specification.
Rem

DROP TYPE LDAP_ATTR LI ST;
DRCP TYPE LDAP_ATTR

-- LDAP ATTR

-- Name . LDAP_ATTR

-- Data Type : OBJECT

-- DESCRIPTION : This structure contains details regarding
-- an attribute.

CREATE TYPE LDAP_ATTR AS OBJECT (

attr_name VARCHAR2(255) ,

attr_val ue VARCHAR2(2048) ,

attr_bval ue RAW 2048) ,

attr_value len | NTEGER

attr_type INTEGER -- (0 - String, 1 - Binary)
attr_nod_op | NTEGER

GRANT EXECUTE ON LDAP_ATTR to public;

-- Nane . LDAP_ATTR LI ST

-- Data Type : COLLECTION

-- DESCRIPTION : This structure contains collection
-- of attributes.

CREATE TYPE LDAP_ATTR LI ST AS TABLE OF LDAP_ATTR;
/
GRANT EXECUTE ON LDAP_ATTR LI ST to public;

-- NAME : LDAP_NTFY

-- DESCRIPTION: This is a notifier interface inplenented by Provisioning System
-- clients to receive information about changes in Oracle Internet
-- Directory. The name of package can be customi zed as needed.

-- The function nanes within this package shoul d not be changed.

13-6 Oracle Identity Management Application Developer's Guide

Provisioning Event Interface (Version 1.1)

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

-- LDAP_NTFY data type definitions

-- Event Types

USER_DELETE CONSTANT VARCHAR2(256) : = ' USER DELETE ;
USER_MODI FY CONSTANT VARCHAR2(256) : = ' USER_MODI FY' ;
GROUP_DELETE CONSTANT VARCHAR?(256) : = ' GROUP_DELETE ;
GROUP_MODI FY CONSTANT VARCHAR?(256) : = ' GROUP_MODI FY' ;

-- Return Codes (Bool ean)

SUCCESS CONSTANT NUMBER : = 1,
FAI LURE CONSTANT NUMBER : = 0;
-- Values for attr_mod_op in LDAP_ATTR obj ect.

MOD_ADD CONSTANT NUMBER : = 0;
MOD_DELETE CONSTANT NUMBER : = 1,
MOD_REPLACE CONSTANT NUMBER : = 2;

-- Name: LDAP_NTFY

-- DESCRIPTION. This is the interface to be inplemented by Provisioning System
-- clients to send information to and receive information from

-- Oacle Internet Directory. The nane of the package can be

-- custoni zed as needed. The function names within this package
-- shoul d not be changed.

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

SUBSCRI PTI ON_ADD
SUBSCRI PTI ON_DELETE
SUBSCRI PTI ON_MODI

CONSTANT VARCHAR2(32)
CONSTANT VARCHAR2(32)
CONSTANT VARCHAR2(32)

Provisioning Integration API Reference 13-7

Predefined Event Types

ENTRY_ADD CONSTANT VARCHAR2 (32) = "ENTRY_ADD ;
ENTRY_DELETE CONSTANT VARCHAR2 (32) = ' ENTRY_DELETE' ;
ENTRY_MODI FY CONSTANT VARCHAR2 (32) = ' ENTRY_MODI FY' ;
USER_ADD CONSTANT VARCHAR2 (32) = ' USER ADD ;

USER _DELETE CONSTANT VARCHAR2 (32) = ' USER DELETE ;
USER_MCODI FY CONSTANT VARCHAR2(32) = ' USER_MODI FY';

| DENTI TY_ADD CONSTANT VARCHAR2 (32) = " | DENTI TY_ADD ;

| DENTI TY_DELETE CONSTANT VARCHAR?2 (32) = ' | DENTI TY_DELETE' ;
| DENTI TY_MDI FY CONSTANT VARCHAR2 (32) = "I DENTI TY_MODI FY';
CGROUP_ADD CONSTANT VARCHAR2 (32) = ' GROUP_ADD ;
GROUP_DELETE CONSTANT VARCHAR2 (32) = ' GROUP_DELETE' ;
GROUP_MODI FY CONSTANT VARCHAR? (32) = ' GROUP_NMODI FY' ;

' SUBSCRI PTI ON_ADD ;
" SUBSCRI PTI ON_DELETE';
* SUBSCRI PTI ON_MODI FY" ;

Provisioning Event Interface (Version 1.1)

Attribute Type

SUBSCRI BER_ADD CONSTANT VARCHAR2(32) = ' SUBSCRI BER_ADD ;
SUBSCRI BER DELETE CONSTANT VARCHAR2(32) = ' SUBSCRI BER_DELETE ;
SUBSCRI BER_MODI FY CONSTANT VARCHAR2(32) = ' SUBSCRI BER_MODI FY' ;
ATTR TYPE_STRI NG CONSTANT NUMBER @ = O;

ATTR_TYPE_BI NARY CONSTANT NUMBER @ = 1;

ATTR TYPE_ENCRYPTED STRING ~ CONSTANT NUMBER @ = 2;

Attribute Modification Type

MCD_ADD CONSTANT NUMBER = 0;
MOD_DELETE CONSTANT NUMBER =1
MOD_REPLACE CONSTANT NUMBER =2

Event Dispositions Constants

Callbacks

EVENT_SUCCESS ~ CONSTANT VARCHARY(32) = ' EVENT_SUCCESS ;
EVENT_ERROR CONSTANT VARCHAR2(32) = ' EVENT_ERRCR ;
EVENT RESEND CONSTANT VARCHARY(32) = ' EVENT_RESEND ;

A callback is a function invoked by the provisioning integration service to send or
receive notification events. While transferring events for an object, the related
attributes can also be sent along with other details. The attributes are delivered as a
collection (array) of attribute containers, which are in unnormalized form: if an
attribute has two values, two rows are sent in the collection.

GetAppEvent()

The directory integration and provisioning server invokes this API in the remote
database. It is up to the application to respond with an event. The Oracle Directory
Integration and Provisioning platform processes the event and sends the status back
using the Put AppEvent St at us() callback. The return value of Get AppEvent ()
indicates whether an event is returned or not.

FUNCTI ON Get AppEvent (event OUT LDAP_EVENT)

RETURN NUMBER;

-- Return CONSTANTS

EVENT_FOUND CONSTANT NUMBER : = 0;
EVENT_NOT_FOUND CONSTANT NUMBER : = 1403;

If the provisioning server is not able to process the event—that is, it runs into some
type of LDAP error—it responds with EVENT_RESEND. The application is expected to
resend that event when Get AppEvent () is invoked again.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified does not exist, or the user to be
subscribed does not exist, or the user to be deleted does not exist—then it responds
with EVENT_ERROR to indicate to the application that something was wrong.
Resending the event is not required. It is up to the application to handle the event.

Note the difference between EVENT_RESEND and EVENT_ERRCR in the previous
discussion. EVENT_RESEND means that it was possible to apply the event but the
server could not. If it gets the event again, it might succeed.

13-8 Oracle Identity Management Application Developer's Guide

Provisioning Event Interface (Version 1.1)

EVENT_ERROR means there is no error in performing directory operations, but the
event could not be processed due to other reasons.

PutAppEventStatus()

The directory integration and provisioning server invokes this callback in the remote
database after processing an event it has received using the Get AppEvent () callback.
For every event received, the directory integration and provisioning server sends the
status event back after processing the event.

PROCEDURE Put AppEvent Status (event _status | N LDAP_EVENT_STATUS);

PutOIDEvent()

The directory integration and provisioning server invokes this API in the remote
database. It sends event to applications using this callback. It also expects a status
event object in response as an QUT parameter. If a valid event status object is not sent
back, or it indicates a RESEND, the directory integration and provisioning server
resends the event. In case of EVENT_ERROR, the server does not resend the event.

PROCEDURE Put O DEvent (event | N LDAP_EVENT, event _status OUT LDAP_EVENT_
STATUS) ;

END LDAP_NTFY;

/

Provisioning Integration API Reference 13-9

Provisioning Event Interface (Version 1.1)

13-10 Oracle Identity Management Application Developer’s Guide

Part Il

Appendixes

Part III presents the command-line tools, including generic tools and Oracle-specific
tools. It contains these appendixes:

= Appendix A, "Syntax for LDIF and Command-Line Tools"
= Appendix B, "DSML Syntax"

A

Syntax for LDIF and Command-Line Tools

This appendix provides syntax, usage notes, and examples for LDIF and LDAP
command-line tools. It contains these topics:

= LDAP Data Interchange Format (LDIF) Syntax
= Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers
= Entry and Attribute Management Command-Line Tools Syntax

= Oracle Directory Integration and Provisioning Platform Command-Line Tools
Syntax

LDAP Data Interchange Format (LDIF) Syntax

The standardized file format for directory entries is as follows:

dn: distingui shed_nane
attribute_type: attribute_value

obj ect G ass: object_class_val ue

Property Value Description

dn: RDN, RDN, RDN, . . . Separate RDNs with commas.

attribute_type attribute_value This line repeats for every attribute in the entry,
and for every attribute value in multi-valued
attributes.

obj ect G ass obj ect _cl ass_val ue This line repeats for every object class.

The following example shows a file entry for an employee. The first line contains the
DN. The lines that follow the DN begin with the mnemonic for an attribute, followed
by the value to be associated with that attribute. Note that each entry ends with lines
defining the object classes for the entry.

dn: cn=Suzie Smith, ou=Server Technol ogy, o=Acre, c=US
cn: Suzie Smth

cn: SuzieS

sn: Smith

mai | : ssmth@is. Acne. com

t el ephoneNunber: 69332

Syntax for LDIF and Command-Line Tools A-1

LDAP Data Interchange Format (LDIF) Syntax

phot o: / ORACLE_HOVE/ enpdi r/ phot og/ ssnith. j pg
obj ect Cl ass: organi zati onal Person

obj ect Gl ass: person

obj ectC ass: top

The next example shows a file entry for an organization:

dn: o=Acne, c=US

0. Acne

ou: Financial Applications
obj ect G ass: organi zation
obj ectC ass: top

LDIF Formatting Notes

A list of formatting rules follows. This list is not exhaustive.

= All mandatory attributes belonging to an entry being added must be included
with non-null values in the LDIF file.

Tip: To see the mandatory and optional attribute types for an
object class, use Oracle Directory Manager. See Oracle Internet
Directory Administrator’s Guide.

= Non-printing characters and tabs are represented in attribute values by base-64
encoding.

= The entries in your file must be separated from each other by a blank line.

= A file must contain at least one entry.

= Lines can be continued to the next line by beginning the continuation line with a
space or a tab.

= Add ablank line between separate entries.

= Reference binary files, such as photographs, with the absolute address of the file,
preceded by two forward slashes.

= The DN contains the full, unique directory address for the object.

= The lines listed after the DN contain both the attributes and their values. DNs and
attributes used in the input file must match the existing structure of the DIT. Do
not use attributes in the input file that you have not implemented in your DIT.

= Sequence the entries in an LDIF file so that the DIT is created from the top down.
If an entry relies on an earlier entry for its DN, make sure that the earlier entry is
added before its child entry.

= When you define schema within an LDIF file, insert a white space between the
opening parenthesis and the beginning of the text, and between the end of the text
and the ending parenthesis.

See Also:

« The various resources listed in "Related Documents" on
page xxv for a complete list of LDIF formatting rules

= The section "Using Globalization Support with LDIF Files" in
Oracle Internet Directory Administrator’s Guide

A-2 Oracle Identity Management Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory

Servers

This section tells how to use command-line tools for starting, stopping, restarting, and
monitoring Oracle Internet Directory servers. It contains these topics:

=« The OID Monitor (oidmon) Syntax
=« The OID Control Utility (oidctl) Syntax

The OID Monitor (oidmon) Syntax

Use the OID Monitor to initiate, monitor, and terminate directory server processes. If
you elect to install a replication server, OID Monitor controls it. When you use oi dct |
to start or stop directory server instances, OID Monitor interprets your commands.

Starting the OID Monitor

Starting OID Monitor restarts any Oracle Internet Directory processes that were

previously stopped.

To start the OID Monitor:

1. Set the following environment variables:

« ORACLE_HOVE

= ORACLE_SI Dor a proper TNS CONNECT string

= NLS_LANG (APPROPRI ATE_LANGUAGE. AL32UTF8) . The default language
set at installation is AVERI CAN_AMERI CA.

= PATH. In the PATHenvironment variable, specify the Oracle LDAP
binary—that is, ORACLE_HOME/ bi n—before the UNIX binary directory.

2. At the system prompt, type:

oi dnmon [connect =connect _string] [host=virtual/host_nane][sl eep=seconds] start

Table A-1 Arguments for Starting OID Monitor

Argument

Description

connect =connect _stri ng

host =vi rtual / host _nane

sl eep=seconds

start

Specifies the connect string for the database to which you want
to connect. This is the network service name set in the
t nsnanes. or a file. This argument is optional.

Specifies the virtual host or rack nodes on which to start OID
Monitor

Specifies number of seconds after which the OID Monitor
should check for new requests from OID Control and for
requests to restart any servers that may have stopped. The
default sleep time is 10 seconds. This argument is optional.

Starts the OID Monitor process

For example:

oi dnmon connect =dbs1 sl eep=15 start

To start OID Monitor on a virtual host:

oi dnmon connect =dbsl host =vi rtual _host start

Syntax for LDIF and Command-Line Tools A-3

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Stopping the OID Monitor
Stopping the OID Monitor also stops all other Oracle Internet Directory processes.

To stop the OID Monitor daemon, at the system prompt, type:

oi dnon [connect =connect _string] [host=virtual/host_nane] stop

Table A—2 Arguments for Stopping OID Monitor

Argument Description

connect =connect _string Specifies the connect string for the database to which you want
to connect. This is the connect string set in the t nsnanes. or a

file.

host =vi rtual / host _name Specifies the virtual host or rack nodes on which to start OID
Monitor

stop Stops the OID Monitor process

For example:

oi dnmon connect =dbs1 stop

Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration

While starting and stopping OID Monitor, use the host parameter to specify the
virtual host name. The syntax is:

oi dnon [connect =connect _string] host=virtual _host start]|stop

Note: If you are going to start Oracle Internet Directory servers on
a virtual host, then, when using both oi dnon and oi dct |, be sure
to specify the host argument as the virtual host.

If the OID Monitor is started with the host =host nane argument,
and the host name does not match the name of the physical host,
then the OID Monitor assumes that the intended host is the logical
host. You must use the same host name when using oi drmon to stop
or start any servers, otherwise the OID Monitor does not start or
stop the servers.

To determine the physical host name, execute the uname command.

The OID Control Utility (oidctl) Syntax

OID Control Utility is a command-line tool for starting and stopping the directory
server. The commands are interpreted and executed by the OID Monitor process.

Note: Although you can start the directory server without using
OID Monitor and the OID Control Utility, Oracle Corporation
recommends that you use them. This way, if the directory server
unexpectedly terminates, then OID Monitor automatically restarts
it.

This section contains these topics:
« Starting and Stopping an Oracle Directory Server Instance
« Troubleshooting Directory Server Instance Startup

« Starting and Stopping an Oracle Directory Replication Server Instance

A-4 Oracle Identity Management Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

= Starting the Oracle Directory Integration and Provisioning Server
= Stopping the Oracle Directory Integration and Provisioning Server
= Restarting Oracle Internet Directory Server Instances

= Starting and Stopping Directory Servers on a Virtual Host or an Oracle
Application Server Cluster (Identity Management)

Starting and Stopping an Oracle Directory Server Instance
Use the object class to start and stop Oracle directory server instances.

Starting an Oracle Directory Server Instance The syntax for starting an Oracle directory
server instance is:

oi dct| connect=connect_string server=oi dl dapd i nstance=server _instance_nunber
-server nunber_of _server_processes [configset=configset_nunber]

[host=virtual /host_nane] [flags=" -p port_nunber -work

maxi mum _nunmber _of _worker _threads_per_server -debug debug_| evel

-1 change_|l ogging'] start

Table A—3 Arguments for Starting a Directory Server by Using OIDCTL

Argument Description

- debug debug_| evel Specifies a debug level during Oracle directory server
instance startup

-1 change_l oggi ng Turns replication change logging on and off. To turn it
off, enter -1 fal se. To turn it on, do any one of the
following:

« omitthe-| flag
= enter simply - |
« enter-l true

Turning off change logging for a given node by
specifying - | f al se has two drawbacks: it prevents
replication of updates on that node to other nodes in
the DRG, and it prevents application provisioning and
synchronization of connected directories, because those
two services require an active change log. The default,
TRUE, permits replication, provisioning, and
synchronization.

-p port_nunber Specifies a port number during server instance startup.
The default port number is 389.

-Server server_processes Specifies the number of server processes to start on this
port

-sport Specifies the SSL port number during server instance
startup. Default port if not set is 636.
See Also:

= The information about or cl ssl enabl e attribute
in the section "Configuration Set Entry Schema
Elements" in Oracle Internet Directory
Administrator’s Guide

= "Configuring SSL Parameters"in Oracle Internet
Directory Administrator’s Guide

-work threads_per_server Specifies the maximum number of worker threads for
this server

Syntax for LDIF and Command-Line Tools A-5

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-3 (Cont.) Arguments for Starting a Directory Server by Using OIDCTL

Argument Description

configset=configset number Configset number used to start the server. This defaults
to confi gset 0 if not set. This should be a number
between 0 and 1000.

connect =connect _string If you already have a t nsnames. or a file configured,
then this is the net service name specified in that file,
located in ORACLE_HQOVE/ net wor k/ admi n.

host =vi rt ual / host _nane Specifies the virtual host or rack nodes on which to
start the directory server

i nstance=i nst ance_nunber Instance number of the server to start. Should be a
number between 1 and 1000.

server =oi dl dapd Type of server to start (valid values are O DLDAPD and
O DREPLD). This is not case-sensitive.

start Starts the server specified in the ser ver argument.

For example, to start a directory server instance whose net service name is dbs1, using
confi gset 5 at port 12000, with a debug level of 1024, an instance number 3, and in
which change logging is turned off, type at the system prompt:

oidctl connect=dbsl server=oidl dapd instance=3 configset=5 flags="-p 12000
-debug 1024 -1 ' start

When starting and stopping an Oracle directory server instance, the server name and
instance number are mandatory, as are the commands st art or st op. All other
arguments are optional.

All keyword value pairs within the flags arguments must be separated by a single
space.

Single quotes are mandatory around the flags.

The configset identifier defaults to zero (conf i gset 0) if not set.

Note: If you choose to use a port other than the default port (389
for non-secure usage or 636 for secure usage), you must tell the
clients which port to use to locate the Oracle Internet Directory. If
you use the default ports, clients can connect to the Oracle Internet
Directory without referencing a port in their connect requests.

Stopping an Oracle Directory Server Instance At the system prompt, type:

oidctl connect=connect_string server=oi dl dapd instance=server _i nstance_nunber stop

For example:

oidctl connect=dbsl server=oi dl dapd instance=3 stop

Troubleshooting Directory Server Instance Startup

If the directory server fails to start, you can override all user-specified configuration
parameters to start the directory server and then return the configuration sets to a
workable state by using the | dapnodi f y operation.

To start the directory server by using its hard-coded default parameters instead of the
configuration parameters stored in the directory, type at the system prompt:

A-6 Oracle Identity Management Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

oidctl connect=connect_string flags='-p port_number -f

The - f option in the flags starts the server with hard-coded configuration values,
overriding any defined configuration sets except for the values in conf i gset 0.

To see debug log files generated by the OID Control Utility, navigate to ORACLE_

HOVE/ | dap/ | og.

Starting and Stopping an Oracle Directory Replication Server Instance
Use the OID Control Utility to start and stop Oracle directory replication server

instances.

Starting an Oracle Directory Replication Server Instance The syntax for starting the Oracle

directory replication server is:

oidctl connect=connect_string server=oidrepl d instance=server_instance_nunber
[configset=configset nunber] flags="' -p directory_server_port_number
-d debug_level -h directory_server_host _name -m[true | false]

-z transaction_size

start

Table A—4 Arguments for Starting a Directory Replication Server by Using OIDCTL

Argument

Description

connect =connect _stri ng

server=oi drepl d

i nstance=i nst ance_nunber

configset =configset _number

-p directory__port

-d debug_I evel

-h directory_host _nane

-m[true|false]

-z transaction_size

start

If you already have a t nsnames. or a file configured, then
this is the name specified in that file, which is located in
ORACLE_HOVE/ net wor k/ adni n.

Type of server to start (valid values are O DLDAPD and
QO DREPLD). This is not case-sensitive.

Instance number of the server to start. Should be a number
between 1 and 1000.

Configset number used to start the server. The default is
confi gset 0. This should be a number between 0 and
1000.

Port number that the replication server uses to connect to
the directory on TCP portdi rect ory_server_port _
number . If you do not specify this option, the tool
connects to the default port (389).

Specifies a debug level during replication server instance
startup

Specifies the di r ect ory_ser ver _host _namne to which
the replication server connects, rather than to the default
host, that is, your local computer. di rect ory_server _
host _nane can be a computer name or an IP address.
(Replication server only)

Turns conflict resolution on and off. Valid values aret r ue
and f al se. The default is true. (Replication server only)

Specifies the number of changes applied in each
replication update cycle. If you do not specify this, the
number is determined by the Oracle directory server
sizelimit parameter, which has a default setting of 1024.
You can configure this latter setting.

Starts the server specified in the ser ver argument.

For example, to start the replication server with an i nst ance=1, at port 12000, with
debugging set to 1024, type at the system prompt:

Syntax for LDIF and Command-Line Tools A-7

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

oidctl connect=dbsl server=oidrepld instance=1 flags='-p 12000 -h eastsunll -d
1024' start

When starting and stopping an Oracle directory replication server, the - h flag, which
specifies the host name, is mandatory. All other flags are optional.

All keyword value pairs within the flags arguments must be separated by a single
space.

Single quotes are mandatory around the flags.

The configset identifier defaults to zero (conf i gset 0) if not set.

Note: If you choose to use a port other than the default port (389
for non-secure usage or 636 for secure usage), you must tell the
clients which port to use to locate the Oracle Internet Directory. If
you use the default ports, clients can connect to the Oracle Internet
Directory without referencing a port in their connect requests.

Stopping an Oracle Directory Replication Server Instance At the system prompt, type:

oidct! connect=connect_string server=0 DREPLD i nst ance=server _i nstance_nunber stop

For example:

oi dct| connect=dbs1 server=oidrepld instance=1 stop

Starting the Oracle Directory Integration and Provisioning Server
The Oracle directory integration and provisioning server executable, odi Sr v, resides
in the ORACLE_HOME/ bi n directory.

The way you start the directory integration and provisioning server depends on
whether your installation is:

= A typical Oracle Internet Directory installation

In this case, your installation includes, among other server and client components,
the OID Monitor and the OID Control Utility. In such installations, you start and
stop the directory integration and provisioning server by using these tools.

Note: Although you can start the directory integration and
provisioning server without using the OID Monitor and the OID
Control Utility, Oracle Corporation recommends that you use them.
This way, if the directory integration and provisioning server
unexpectedly terminates, the OID Monitor automatically restarts it.

= An Oracle Directory Integration and Provisioning platform-only installation

In this case, the way you start the directory integration and provisioning server
depends on whether you are using the Oracle Directory Integration and
Provisioning platform for high availability.

- If you are using Oracle Directory Integration and Provisioning platform for
high availability, then Oracle Corporation recommends that you start the
directory integration and provisioning server by using the OID Monitor and
the OID Control Utility. This requires configuring the t nsnanes. or a file
with the right host and SID to which the OID Monitor must connect.

A-8 Oracle Identity Management Application Developer’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

- If you are not using Oracle Directory Integration and Provisioning platform
for high availability, then Oracle Corporation recommends that you start the
directory integration and provisioning server without using the OID Monitor.

You can start the directory integration and provisioning server in either SSL mode for
tighter security, or non-SSL mode. You need to use a connect string to connect to the
database.

Note: When the Oracle directory integration and provisioning
server is invoked in the default mode, it supports only the Oracle
Directory Provisioning Integration Service, and not the Oracle
Directory Synchronization Service.

Starting the Oracle Directory Integration and Provisioning Server by Using the OID Monitor and
Control Utilities

To start the directory integration and provisioning server in non-SSL mode:

1. Be sure that OID Monitor is running. To verify this on UNIX, enter the following at
the command line:

ps -ef | grep oidnon

If OID Monitor is not running, then start it by following the instructions in "The
OID Monitor (oidmon) Syntax" on page A-3.

2. Start the directory integration and provisioning server by using the OID Control
Utility. Do this by entering;:

oidctl [connect=connect_string] server=odisrv [instance=instance_nunber]

[config=configuration_set_nunber] [flags="[host=hostname] [port=port_nunber]
[grpl D=group_i dentifier_of_provisioning_profile] [debug=debug_| evel]
[refresh=interval _between_refresh] [maxprofiles=nunber_of profiles]
[sslauth=ssl _node]"] start

Table A-5 describes the arguments in this command.

Table A-5 Description of Arguments for Starting the Oracle Directory Integration and
Provisioning Server

Argument Description

connect =connect _string If you already have a t nsnamnes. or a file configured,
then this is the net service name specified in that file,
located in ORACLE_HOVE/ net wor k/ adni n

server=odi srv Type of server to start. In this case, the server you are
starting is odi srv. This is not case-sensitive. This
argument is mandatory.

i nst ance=i nst ance_nunber Specifies the instance number to assign to the directory
integration and provisioning server. This instance
number must be unique. OID Monitor verifies that the
instance number is not already associated with a
currently running instance of this server. If it is
associated with a currently running instance, then OID
Monitor returns an error message.

confi g=set _number Specifies the number of the configuration set that the
directory integration and provisioning server is to
execute. This argument is mandatory.

host =host _nane Oracle directory server host name

Syntax for LDIF and Command-Line Tools A-9

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Table A-5 (Cont.) Description of Arguments for Starting the Oracle Directory Integration
and Provisioning Server

Argument Description
port=port _nunber Oracle directory server port number
debug=debug_| evel The required debugging level of the directory

integration and provisioning server. See the chapter
about logging, auditing, and monitoring in Oracle
Internet Directory Administrator’s Guide.

refresh=refresh_interval Specifies the interval, in minutes, between server
refreshes for any changes in the integration profiles.
The default is 2 minutes (Ref r esh=2).

grpl D=profile_identifier Specifies the group of profiles to be scheduled.

mexpr of i | es=nunber _of _profiles Specifies the maximum number of profiles that can be
executed concurrently for this server instance.

ssl aut h=ssl _node SSL modes:
« 0:SSL is not used—that is, non-SSL mode

= 1:SSL used for encryption only—that is, with no
PKI authentication. A wallet is not used in this
case.

= 2:SSLis used with one-way authentication. This
mode requires you to specify a complete path
name of an Oracle Wallet, including the file name
itself, unlike other directory tools that expect only
the wallet location. For example, in a server-only
installation, or in a complete installation, you
would enter something like this:

oidctl server=odisrv
[instance=i nstance_nunber]
[configset=configset_nunber]
[grpl D=group_i dentifier_of _provisioning_
profile]

fl ags="host =nyhost
port=nyport sslauth=2

In a client-only installation, you would enter
something like this:

odi srv [host=host _nang]

[port=port _nunber]
config=configuration_set_nunber
[instance=i nstance_nunber]

[debug=debug_l evel]
[refresh=interval _between_refresh]
[maxprof i | es=nunber _of _profiles]
[refresh=interval _between_refresh]
[maxprof i | es=number _of _profil es]

[ssl aut h=ssl _node]

Starting the Oracle Directory Integration and Provisioning Server Without Using the OID Monitor
and the OID Control Utility In a client-only installation, where the OID Monitor and OID
Control tools are not available, the Oracle directory integration and provisioning
server can be started without OID Monitor or OID Control Utility, either in non-SSL
mode or, for tighter security, in SSL mode. The parameters described in Table A-5 on
page A-9 remain the parameters for each type of invocation.

A-10 Oracle Identity Management Application Developer’'s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

To start the directory integration and provisioning server, enter the following at the
command line:

odi srv [host=host _nane] [port=port_nunber] config=configuration_set_nunber
[instance=i nstance_nunber] [debug=debug_| evel] [refresh=interval between_refresh]
[maxprofil es=nunber _of _profiles] [sslauth=ssl_node]

Stopping the Oracle Directory Integration and Provisioning Server

You can use the OID Monitor and the OID Control utility to stop the directory
integration and provisioning server:

1. Before you stop the directory integration and provisioning server, be sure that the
OID Monitor is running. To verify this, enter the following at the command line:

ps -ef | grep oidnon
If OID Monitor is not running, then start it by following the instructions in "The
OID Monitor (oidmon) Syntax" on page A-3.

2. Stop the directory integration and provisioning server by entering:

oidctl [connect=connect_string] server=odisrv instance=instance stop

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

= Cygwin 1.3.2.2-1 or later. Visit this site:

http://sources. redhat.com

« MKS Toolkit 6.1. Visit this site:

http://ww. dat af ocus. com

Restarting Oracle Internet Directory Server Instances

When you want to refresh the server cache immediately, rather than at the next
scheduled time, use the RESTART command. When the Oracle Internet Directory
server restarts, it maintains the same parameters it had before it stopped.

To restart an Oracle Internet Directory server instance, at the system prompt, type:

oi dct| connect=connect_string server={oidl dapd| oi drepl d| odi srv}
i nstance=server _i nstance_number restart

OID Monitor must be running whenever you restart directory server instances.

If you try to contact a server that is not running, you receive from the SDK the error
message 81— DAP_SERVER DOW\.

If you change a configuration set entry that is referenced by an active server instance,
you must stop that instance and restart it to effect the changed value in the
configuration set entry on that server instance. You can either issue the STOP
command followed by the START command, or you can use the RESTART command.
RESTART both stops and restarts the server instance.

For example, suppose that Oracle directory server i nst ancel is started, using
confi gset 3, and with the net service name dbs1. Further, suppose that, while

i nst ancel is running, you change one of the attributes in conf i gset 3. To enable
the change in conf i gset 3 to take effect oni nst ancel, you enter the following
command:

Syntax for LDIF and Command-Line Tools A-11

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

oidctl connect=dbsl server=oidl dapd instance=1 restart

If there are more than one instance of the Oracle directory server running on that node
using conf i gset 3, then you can restart all the instances at once by using the
following command syntax:

oidctl connect=dbsl server=oidl dapd restart

Note that this command restarts all the instances running on the node, whether they
are using confi gset 3 or not.

Important Note: During the restart process, clients cannot access
the Oracle directory server instance. However, the process takes
only a few seconds to execute.

Starting and Stopping Directory Servers on a Virtual Host or an Oracle Application
Server Cluster (Identity Management)

When starting a directory server, a directory replication server, or a directory
integration and provisioning server, use the host parameter to specify the virtual host
name.

Starting and Stopping a Directory Server
To start a directory server on a virtual host:

oidctl [connect=connect_string] host=virtual _host_nanme server=oi dl dapd
i nst ance=i nst ance_nunber confi gset=configset _nunber flags="..." start
To stop a directory server on a virtual host:

oi dct| host=virtual _host_name server=oi dl dapd i nstance=i nstance_nunber stop

Starting and Stopping a Directory Replication Server
To start a directory replication server on a virtual host:

oidctl [connect=connect_string] host=virtual _host_nanme server=oi drepld
i nstance=i nstance_number flags="..." start
To stop a directory replication server on a virtual host:

oi dct| host=virtual _host_name server=oi drepl d instance=i nstance_nunber stop

Starting and Stopping a Directory Integration and Provisioning Server
To start a directory integration and provisioning server on a virtual host:

oidctl [connect=connect_string] host=virtual _host_name server=odisrv

i nstance=i nst ance_nunber confi gset=configset _nunber flags="..." start

To stop a directory integration and provisioning server on a virtual host:

oi dct| host=virtual/host_name server=odisrv instance=instance_number stop

When the directory server is started to run on the virtual host, it binds and listens to

requests on the specified LDAP port on the IP address or IP addresses that correspond
to the virtual host only.

When communicating with the directory server, the directory replication server uses
the virtual host name. Further, the r epl i cal Dattribute that represents the unique
replication identification for the Oracle Internet Directory node is generated once. It is

A-12 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

independent of the host name and hence requires no special treatment in an Oracle
Application Server Cold Failover Cluster.

When communicating with the directory server, the directory integration and
provisioning server uses the virtual host name.

Entry and Attribute Management Command-Line Tools Syntax
This section tells you how to use the following tools:
= The Catalog Management Tool (catalog.sh) Syntax
= ldapadd Syntax
= ldapbind Syntax
= ldapcompare Syntax
= ldapdelete Syntax
= ldapmoddn Syntax
= ldapmodify Syntax
= ldapmodifymt Syntax
= ldapsearch Syntax

Note: Various UNIX shells interpret some characters—for
example, asterisks (*)—as special characters. Depending on the
shell you are using, you may need to escape these characters.

The Catalog Management Tool (catalog.sh) Syntax

Oracle Internet Directory uses indexes to make attributes available for searches. When
Oracle Internet Directory is installed, the cn=cat al 0gs entry lists available attributes
that can be used in a search. You can index only those attributes that have:

= Anequality matching rule
= Matching rules supported by Oracle Internet Directory

If you want to use additional attributes in search filters, then you must add them to the
catalog entry. You can do this at the time you create the attribute by using Oracle
Directory Manager. However, if the attribute already exists, then you can index it only
by using the Catalog Management tool.

Before running cat al 0g. sh, be sure that the directory server is either stopped or in
read-only mode. Otherwise, data will be inconsistent.

Caution: Do not use the cat al 0g. sh - del et e option on
indexes created by the Oracle Internet Directory base schema.
Removing indexes from base schema attributes can adversely
impact the operation of Oracle Internet Directory.

Syntax for LDIF and Command-Line Tools A-13

Entry and Attribute Management Command-Line Tools Syntax

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

=« Cygwin 1.3.2.2-1 or later. Visit this site:

http://sources. redhat.com

« MKS Toolkit 6.1. Visit this site:

http://ww. dat af ocus. com

The Catalog Management tool uses this syntax:

catal og. sh -connect connect_string {-add|-delete} {-attr attr_nanme|-file file_
name}

Table A—6 Arguments for the Catalog Management Tool (catalog.sh)

Argument Description

-connect connect _string Specifies the connect string to connect to the directory
database. This argument is mandatory.

See Also: Oracle9i Net Services Administrator’'s Guide in the
Oracle Database Documentation Library

-add -attr attr_nane Indexes the specified attribute
-delete -attr attr_name Drops the index from the specified attribute
-add -file file_nane Indexes attributes (one for each line) in the specified file

-delete -file file_name Drops the indexes from the attributes in the specified file

When you enter the cat al 0g. sh command, the following message appears:
This tool can only be executed if you know the O D user password.
Enter O D password:
If you enter the correct password, the command is executed. If you give an incorrect
password, the following message is displayed:
Cannot execute this tool
To effect the changes after running the Catalog Management tool, stop, then restart,
the Oracle directory server.
See Also:

= "The OID Control Utility (oidctl) Syntax" on page A-4 and for
instructions on starting and restarting directory servers. Note
that OID Monitor must be running before you start a directory
server.

« "The OID Monitor (oidmon) Syntax" on page A-3 for
information about starting OID Monitor

= The section about matching rules in the schema appendix of
Oracle Internet Directory Administrator’s Guide

A-14 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Idapadd Syntax

The | dapadd command-line tool enables you to add entries, their object classes,
attributes, and values to the directory. To add attributes to an existing entry, use the
| daprodi f y command, explained in "ldapmodify Syntax" on page A-23.

See Also: "Adding Configuration Set Entries by Using ldapadd"
in Oracle Internet Directory Administrator’s Guide for an explanation
of using | dapadd to configure a server with an input file

| dapadd uses this syntax:

| dapadd [argunents] -f file_nane

where f i | e_narre is the name of an LDIF file written with the specifications
explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

The following example adds the entry specified in the LDIF file
my_ldif_file. ldi:

| dapadd -p 389 -h nyhost -f ny_Idif _file.ldi

Table A—7 Arguments for Idapadd

Optional Arguments Description

-b Specifies that you have included binary file names in the file,
which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

-C Tells Idapadd to proceed in spite of errors. The errors will be
reported. (If you do not use this option, | dapadd stops when
it encounters an error.)

-D bi nddn When authenticating to the directory, specifies doing so as the
entry specified in bi nddn. This is the DN of the user seeking
authentication. Use this with the - wpasswor d option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-f file_nane Specifies the input name of the LDIF format import data file.

For a detailed explanation of how to format an LDIF file, see
"LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

-h | daphost Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

-K Same as - k, but performs only the first step of the Kerberos
bind

-k Authenticates using Kerberos authentication instead of simple

authentication. To enable this option, you must compile with
KERBERGCS defined. You must already have a valid ticket
granting ticket.

-M Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would occur without actually performing the
operation
-Oref_hop_limt Specifies the number of referral hops that a client should

process. The default value is 5.

Syntax for LDIF and Command-Line Tools A-15

Entry and Attribute Management Command-Line Tools Syntax

Table A—7 (Cont.) Arguments for Idapadd

Optional Arguments Description

-p directory_port Connects to the directory on TCP port di rect ory_port.If
you do not specify this option, the tool connects to the default
port (389).

-P wal | et _password Specifies wallet password required for one-way or two-way

SSL connections
-U SSLAuth Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required
= 3 for two way authentication required
-V Specifies verbose mode

-V | dap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect
-Wwal | et _| ocation Specifies wallet location required for one-way or two-way SSL
connections.

For example, on UNIX, you could set this parameter as
follows: -W"file://home/my_dir/my_wallet".

On Windows NT, you could set this parameter as follows: - W
"file:C\ny_dir\ny_wallet".

-X dsml _file Specifies the input name of the DSML format import data file.

Idapaddmt Syntax

| dapaddnt is like | dapadd: It enables you to add entries, their object classes,
attributes, and values to the directory. It is unlike | dapadd in that it supports multiple
threads for adding entries concurrently.

While it is processing LDIF entries, | dapaddnt logs errors in the add. | og file in the
current directory.

| dapaddnt uses this syntax:

| dapaddnt -T nunber _of threads -h host -p port -f file_name

where fi | e_nare is the name of an LDIF file written with the specifications
explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

The following example uses five concurrent threads to process the entries in the file
myentries.|ldif.

| dapaddnt -T 5 -h nodel -p 3000 -f nyentries.|dif

Note: Increasing the number of concurrent threads improves the
rate at which LDIF entries are created, but consumes more system
resources.

A-16 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A—-8 Arguments for I[dapaddmt

Optional Arguments

Description

-b

-D bi nddn

-E character_set

-h | dap_host

-Oref_hop_limt

-p | dapport

-P wal | et _password

-7
-U SSLAuth

-V

-V | dap_version

-w passwor d

-Wwal | et _| ocation

Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

Tells the tool to proceed in spite of errors. The errors will be
reported. (If you do not use this option, the tool stops when it
encounters an error.)

When authenticating to the directory, specifies doing so as the
entry is specified in bi nddn—that is, the DN of the user
seeking authentication. Use this with the - wpasswor d option.

Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory
Administrator’s Guide.

Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

Same as - K, but performs only the first step of the kerberos
bind

Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with
KERBERGCS defined. You must already have a valid ticket
granting ticket.

Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port | dapport . If you do
not specify this option, the tool connects to the default port
(389).

Specifies wallet password required for one-way or two-way
SSL connections

Sets the number of threads for concurrently processing entries
Specifies SSL Authentication Mode:

= 1 for no authentication required

= 2 for one way authentication required

= 3 for two way authentication required

Specifies verbose mode

Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

Provides the password required to connect

Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W " fil e://home/ny_dir/ny_

wal | et " . On Windows NT, you could set this parameter as
follows: -W"file:C\nmy_dir\nmy_wallet".

Syntax for LDIF and Command-Line Tools A-17

Entry and Attribute Management Command-Line Tools Syntax

Table A-8 (Cont.) Arguments for Idapaddmt

Optional Arguments Description

-X dsml _file Specifies the input name of the DSML format import data file.

Idapbind Syntax

The | dapbi nd command-line tool enables you to see whether you can authenticate a
client to a server.

| dapbi nd uses this syntax:

| dapbi nd [argunent s]

Table A-9 Arguments for Idapbind

Optional Arguments Description

- D bi nddn When authenticating to the directory, specifies doing so as the
entry specified in bi nddn—that is, the DN of the user seeking
authentication. Use this with the - wpasswor d option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-h | daphost Connects to | daphost , rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

-n Shows what would occur without actually performing the
operation.

-p | dapport Connects to the directory on TCP port | dapport . If you do
not specify this option, the tool connects to the default port
(389).

-P wal | et _password Specifies the wallet password required for one-way or
two-way SSL connections.

-U SSLAut h Specifies SSL authentication mode: 1 for no authentication
required 2 for one way authentication required 3 for two way
authentication required.

-V | dap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w passwor d Provides the password required to connect.

-Wwal [et _| ocation Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: - W file://home/ ny_dir/nmy_
wal | et . On Windows NT, you could set this parameter as
follows: -W"file:C\nmy_dir\nmy_wal let".

-0 sasl _properties Specifies SASL security properties. The security property
supported is - O "aut h". This security property is for
DIGEST-MD5 SASL mechanism. It enables authentication with
no data integrity or data privacy.

-Y sasl _nmechani sm Specifies a SASL mechanism. These mechanisms are
supported:

« Y "Dl GEST- MD5"

. Y "EXTERNAL": The SASL authentication in this
mechanism is done on top of two-way SSL authentication.
In this case the identity of the user stored in the SSL wallet
is used for SASL authentication.

A-18 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-9 (Cont.) Arguments for Idapbind

Optional Arguments

Description

-R sasl _realm

Specifies a SASL realm.

Table A-10 Optional Arguments

Optional Arguments

Description

-O sasl _properties

-Y sasl _mechani sm

-R sasl _realm

Specifies SASL security properties. The security property
supported is - O "aut h". This security property is for
DIGEST-MD5 SASL mechanism. It enables authentication with
no data integrity or data privacy.

Specifies a SASL mechanism. These mechanisms are
supported:
« Y "Dl GEST- MD5"

« Y "EXTERNAL": The SASL authentication in this
mechanism is done on top of two-way SSL authentication.
In this case the identity of the user stored in the SSL wallet
is used for SASL authentication.

Specifies a SASL Realm.

Idapcompare Syntax

The | dapconpar e command-line tool enables you to match attribute values you
specify in the command line with the attribute values in the directory entry.

| dapconpar e uses this syntax:

| dapconpare [arguments]

The following example tells you whether Per son Ni ne’s title is associ at e.

| dapconpare -p 389 -h nyhost -b "cn=Person N ne, ou=Eur oSl net Suite, o=l MC, c=US" -a

title -v associate

Table A-11 Arguments for I[dapcompare

Optional Arguments

Description

-a attribute_nane

-b basedn

-v attribute_val ue

-D bi nddn

-d debug_I evel

-E character_set

-f file_nane

Specifies the attribute on which to perform the compare. This
argument is mandatory.

Specifies the distinguished name of the entry on which to
perform the compare. This argument is mandatory.

Specifies the attribute value to compare. This argument is
mandatory.

When authenticating to the directory, specifies doing so as the
entry is specified in bi nddn—that is, the DN of the user
seeking authentication. Use this with the - wpasswor d option.

Sets the debugging level. See the chapter about logging,
auditing, and monitoring in Oracle Internet Directory
Administrator’s Guide.

Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

Specifies the input file name

Syntax for LDIF and Command-Line Tools A-19

Entry and Attribute Management Command-Line Tools Syntax

Table A-11 (Cont.) Arguments for [dapcompare

Optional Arguments Description

-h | daphost Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

-M Instructs the tool to send the ManageDSAI T control to the

server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-Oref_hop_linit Specifies the number of referral hops that a client should
process. The default value is 5.

-p | dapport Connects to the directory on TCP port | dapport . If you do
not specify this option, the tool connects to the default port
(389).

-P wal | et _password Specifies wallet password required for one-way or two-way

SSL connections

-U SSLAuth Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required

-V | dap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w passwor d Provides the password required to connect

-Wwal | et _| ocation Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W " fil e://home/ny_dir/ny_
wal let".

On Windows NT, you could set this parameter as follows: - W
"file:C\ny_dir\my_wallet".

Idapdelete Syntax

The | dapdel et e command-line tool enables you to remove entire entries from the
directory that you specify in the command line.

| dapdel et e uses this syntax:

| dapdel ete [argunents] ["entry_DN' | -f input_file_nane]

Note: If you specify the entry DN, then do not use the - f option.

The following example uses port 389 on a host named nyhost .
| dapdel ete -p 389 -h nyhost "ou=EuroSlnet Suite, o=IM, c=US"

Table A-12 Arguments for Idapdelete

Optional Argument Description

- D bi nddn When authenticating to the directory, uses a full DN for the
bi nddn parameter—that is, the DN of the user seeking
authentication; typically used with the - wpasswor d option.

A-20 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A—12 (Cont.) Arguments for Idapdelete

Optional Argument Description

-d debug_| evel Sets the debugging level. See "Setting Debug Logging Levels
by Using the OID Control Utility" in Oracle Internet Directory
Administrator’s Guide.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-f input_file_name Specifies the input file name

-h | daphost Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

-k Authenticates using authentication instead of simple

authentication. To enable this option, you must compile with
Kerberos defined. You must already have a valid ticket
granting ticket.

-M Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would be done, but doesn’t actually delete

-Oref_hop_limt Specifies the number of referral hops that a client should
process. The default value is 5.

-p | dapport Connects to the directory on TCP port | dapport . If you do
not specify this option, the tool connects to the default port
(389).

-P wal | et _password Specifies wallet password required for one-way or two-way

SSL connections

-U SSLAuth Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required
-V Specifies verbose mode

-V | dap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w passwor d Provides the password required to connect.

-Wwal | et _| ocation Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W " fil e://home/ny_dir/ny_
wal | et " . On Windows NT, you could set this parameter as
follows: -W"file:C\nmy_dir\nmy_wal let".

Idapmoddn Syntax

The | dapmoddn command-line tool enables you to modify the DN or RDN of an
entry.

| dapnoddn uses this syntax:

| dapmoddn [ar gunment s]

Syntax for LDIF and Command-Line Tools A-21

Entry and Attribute Management Command-Line Tools Syntax

The following example uses | dapmoddn to modify the RDN component of a DN from
cn=mary smthtocn=mary jones.Ituses port 389, and a host named nyhost .

| dapmoddn -p 389 -h nyhost -b "cn=mary snith, dc=Ameri cas, dc=i nt, dc=conf -R

“cn=mary jones"

Table A-13 Arguments for Idapmoddn

Argument Description

-b basedn Specifies DN of the entry to be moved. This argument is
mandatory.

-D bi nddn When authenticating to the directory, do so as the entry is

-E character_set

-f file_nane

-h | daphost

- N newpar ent

-Oref_hop_limt

-p | dapport

-P wal | et _password

-

-R newrdn

-U SSLAut h

-V | dap_version

-w passwor d

-Wwal | et _|ocation

specified in bi nddn. This is the DN of the user seeking
authentication. Use this with the - wpasswor d option.

Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

Specifies the input file name

Connects to | daphost, rather than to the default host, that is,

your local computer. | daphost can be a computer name or an
IP address.

Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Specifies new parent of the RDN. Either this argument or the
- Rargument must be specified.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port | dapport. If you do
not specify this option, the tool connects to the default port
(389).

Specifies wallet password required for one-way or two-way
SSL connections

Specifies that the old RDN is not retained as a value in the
modified entry. If this argument is not included, the old RDN
is retained as an attribute in the modified entry.

Specifies new RDN. Either this argument or the -N argument
must be specified.

Specifies SSL authentication mode: 1 for no authentication
required 2 for one way authentication required 3 for two way
authentication required

Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

Provides the password required to connect.

Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W"fil e://home/ny_dir/ny_

wal | et".

On Windows NT, you could set this parameter as follows: - W
"file:C\ny_dir\ny_wallet".

A-22 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Idapmodify Syntax

The | daprodi fy tool enables you to act on attributes.

| dapnodi f y uses this syntax:

| dapmodi fy [argunents] -f file_nane

where f i | e_narre is the name of an LDIF file written with the specifications
explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

The list of arguments in the following table is not exhaustive. These arguments are all

optional.

Table A-14 Arguments for Idapmodify

Argument Description

-a Denotes that entries are to be added, and that the input file is
in LDIF format.

-b Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character.

-C Tells | dapnodi fy to proceed in spite of errors. The errors will
be reported. (If you do not use this option, | daprodi f y stops
when it encounters an error.)

-D bi nddn When authenticating to the directory, specifies doing so as the

-E character_set

-h | daphost

-0 log_file_nane

-Oref_hop_limt

-p | dapport

-P wal | et _password

-U SSLAut h

entry is specified in bi nddn—that is, the DN of the user
seeking authentication. Use this with the - wpasswor d option.

Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation.

Can be used with the - ¢ option to write the erroneous LDIF
entries in the logfile. You must specify the absolute path for the
log file name.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port | dapport. If you do
not specify this option, the tool connects to the default port
(389).

Specifies wallet password required for one-way or two-way
SSL connections

Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required

Specifies verbose mode

Syntax for LDIF and Command-Line Tools A-23

Entry and Attribute Management Command-Line Tools Syntax

Table A-14 (Cont.) Arguments for Idapmodify

Argument Description

-V | dap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w passwor d Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the - D option.

-Wwal | et _| ocation Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W " file://home/ny_dir/ny_
wal | et".

On Windows NT, you could set this parameter as follows: - W
"file:C\ny_dir\ny_wallet".

To run nodi fy, del et e, and nodi f yr dn operations using the - f flag, use LDIF for
the input file format (see "LDAP Data Interchange Format (LDIF) Syntax" on page A-1)
with the specifications noted in this section:

If you are making several modifications, then, between each modification you enter,
add a line that contains a hyphen (-) only. For example:

dn: cn=Barbara Fritchy, ou=Sal es, 0=0r acl e, c=US
changetype: nodify

add: wor k- phone

wor k- phone: 510/ 506- 7000

wor k- phone: 510/ 506- 7001

del ete: home-fax
Unnecessary space characters in the LDIF input file, such as a space at the end of an
attribute value, will cause the LDAP operations to fail.

Line 1: Every change record has, as its first line, the literal dn: followed by the DN
value for the entry, for example:

dn: cn=Barbara Fritchy, ou=Sal es, 0=Cracl e, c=US

Line 2: Every change record has, as its second line, the literal changet ype: followed
by the type of change (add, del ete, nodify, nodrdn), for example:

changetype: nodify

or
changet ype: nodrdn

Format the remainder of each record according to the following requirements for each
type of change:

« changetype: add

Uses LDIF format (see "LDAP Data Interchange Format (LDIF) Syntax" on
page A-1).
« changetype: nodify
The lines that follow this changetype consist of changes to attributes belonging to
the entry that you identified previously in Line 1. You can specify three different

types of attribute modifications—add, delete, and replace—which are explained
next:

A-24 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

- Add attribute values. This option to changetype modify adds more values to
an existing multi-valued attribute. If the attribute does not exist, it adds the
new attribute with the specified values:

add: attribute name
attribute name: val uel
attribute name: val ue2...

For example:

dn: cn=Bar bara Fritchy, ou=Sal es, 0=Cracl e, c=US
changetype: nodify

add: work- phone

wor k- phone: 510/ 506- 7000

wor k- phone: 510/ 506- 7001

— Delete values. If you supply only the del et e line, all the values for the
specified attribute are deleted. Otherwise, if you specify an attribute line, you
can delete specific values from the attribute:

del ete: attribute nane

[attribute name: val uel]

dn: cn=Barbara Fritchy, ou=Sal es, 0=0racl e, c=US
changetype: nodify

del ete: home-fax

- Replace values. Use this option to replace all the values belonging to an
attribute with the new specified set:
replace: attribute name

[attribute name: valuel ...]

If you do not provide any attributes with r epl ace, the directory adds an
empty set. It then interprets the empty set as a delete request, and complies by
deleting the attribute from the entry. This is useful if you want to delete
attributes that may or may not exist. For example:

dn: cn=Barbara Fritchy, ou=Sal es, 0=0racl e, c=US
changetype: nodify
repl ace: work-phone
wor k- phone: 510/ 506- 7002
changet ype: del et e

This change type deletes entries. It requires no further input, since you identified
the entry in Line 1 and specified a changetype of delete in Line 2.

For example:

dn: cn=Barbara Fritchy, ou=Sal es, 0=0r acl e, c=US
changetype: delete

changet ype: nodr dn

The line following the change type provides the new relative distinguished name
using this format:

new dn: RDN

For example:

Syntax for LDIF and Command-Line Tools A-25

Entry and Attribute Management Command-Line Tools Syntax

dn: cn=Barbara Fritchy, ou=Sal es, 0=0r acl e, c=US
changet ype: nodrdn
new dn: cn=Barbara Fritchy-Bl onberg

To specify an attribute as single-valued, include the keyword SI NGLE- VALUE in the
attribute definition entry in the LDIF file. Surround it with white space.

Example: Using Idapmodify to Add an Attribute
This example adds a new attribute called my At t r . The LDIF file for this operation is:

dn: cn=subschemasubentry

changetype: nodify

add: attributetypes

attributetypes: (1.2.3.4.5.6.7 NAME ‘nyAttr’ DESC ‘New attribute definition’
EQUALI TY casel gnoreMat ch SYNTAX

“1.3.6.1.4.1.1466. 115. 121. 1. 15")

On the first line, enter the DN specifying where this new attribute is to be located. All
attributes and object classes they are stored in cn=subschemasubent ry.

The second and third lines show the proper format for adding a new attribute.

The last line is the attribute definition itself. The first part of this is the object identifier
number: 1. 2. 3. 4. 5. 6. 7. It must be unique among all other object classes and
attributes. Next is the NAVE of the attribute. In this case the attribute NAME is

myAt t r. It must be surrounded by single quotes. Next is a description of the attribute.
Enter whatever description you want between single quotes. At the end of this
attribute definition in this example are optional formatting rules to the attribute. In
this case we are adding a matching rule of EQUALI TY casel gnor eMat ch and a
SYNTAX of Di rectory Stri ng. This example uses the object ID number of
1.3.6.1.4.1.1466. 115. 121. 1. 15 instead of the SYNTAXES name which is
Directory String.

Put your attribute information in a file formatted like this example. Then run the
following command to add the attribute to the schema of your Oracle directory server.

| dapmodi fy -h yourhostname -p 389 -D "orcladmin" -w "wel cong" -v -f
[tnp/newattr.|dif

This | dapnodi f y command assumes that your Oracle directory server is running on
port 389, that your super user account name is or ¢l admi n, that your super user
password is wel cone and that the name of your LDIF fileis newat t r . | di f .
Substitute the host name of your computer where you see your host nane.

If you are not in the directory where the LDIF file is located, then you must enter the
full directory path to the file at the end of your command. This example assumes that
your LDIF file is located in the / t np directory.

Idapmodifymt Syntax

The | daprodi f ynmt command-line tool enables you to modify several entries
concurrently.

| dapnodi f ynt uses this syntax:

| daprmodi fynt - T nunmber _of _threads [argunents] -f file_nane

where f i | e_nare is the name of an LDIF file written with the specifications
explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

A-26 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

See Also:

"ldapmodify Syntax" on page A-23 for additional

formatting specifications used by ldapmodifymt

The following example uses five concurrent threads to modify the entries in the file

nyentries. | dif.

| daprmodi fynt -T 5 -h nodel -p 3000 -f nyentries.ldif

Note: Thel dapnodi f ynt tool logs error messages in the file
add. | og, which is located in the directory where you are running

the command.

The arguments in the following table are all optional.

Table A—-15 Arguments for [dapmodifymt

Argument Description

-a Denotes that entries are to be added, and that the input file is
in LDIF format. (If you are running | dapadd, this flag is not
required.)

-b Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character.

-C Tells Idapmodify to proceed in spite of errors. The errors will
be reported. (If you do not use this option, ldapmodify stops
when it encounters an error.)

-D bi nddn When authenticating to the directory, specifies doing so as the

-E character_set

-h | daphost

-Oref_hop_limt

-p | dapport

-P wal | et _password

-7
-U SSLAut h

entry is specified in bi nddn—that is, the DN of the user
seeking authentication. Use this with the - wpasswor d option.

Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

Shows what would occur without actually performing the
operation.

Specifies the number of referral hops that a client should
process. The default value is 5.

Connects to the directory on TCP port | dapport . If you do
not specify this option, the tool connects to the default port
(389).

Specifies wallet password required for one-way or two-way
SSL connections

Sets the number of threads for concurrently processing entries

Specifies SSL authentication mode:
= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required

Syntax for LDIF and Command-Line Tools A-27

Entry and Attribute Management Command-Line Tools Syntax

Table A-15 (Cont.) Arguments for I[dapmodifymt

Argument Description
-V Specifies verbose mode
-V | dap_version Specifies the version of the LDAP protocol to use. The default

value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w passwor d Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the - D option.

-Wwal | et _| ocation Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W " fil e://home/ny_dir/ny_
wal let".

On Windows NT, you could set this parameter as follows: - W
"file:C\ny_dir\my_wallet".

Idapsearch Syntax

The | dapsear ch command-line tool enables you to search for and retrieve specific
entries in the directory.

The | dapsear ch tool uses this syntax:

| dapsearch [argunents] filter [attributes]
Thefilter format must be compliant with RFC-2254.

See Also: RFC-2254 available at ht t p: / / www. i et f . or g for
further information about the standard for the filter format

Separate attributes with a space. If you do not list any attributes, all attributes are
retrieved.

Note:

= Thel dapsear ch tool does not generate LDIF output by
default. To generate LDIF output from the | dapsear ch
command-line tool, use the - L flag.

= Various UNIX shells interpret some characters—for example,
asterisks (*)—as special characters. Depending on the shell you
are using, you may need to escape these characters.

Table A-16 Arguments for Idapsearch

Argument Description

-b basedn Specifies the base DN for the search. This argument is
mandatory.

-S scope This argument is mandatory. Specifies search scope: base, one,

or sub Base: Retrieves a particular directory entry. Along with
this search depth, you use the

search criteria bar

to select the attribute obj ect Cl ass and the filter Pr esent .
One Level: Limits your search to all entries beginning one level
down from the root of your search Subtree: Searches entries
within the entire subtree, including the root of your search

A-28 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Table A-16 (Cont.) Arguments for Idapsearch

Argument Description

-A Retrieves attribute names only (no values)

-a deref Specifies alias dereferencing: never, always, search, or find

-B Allows printing of non-ASCII values

- D bi nddn When authenticating to the directory, specifies doing so as the

entry specified in bi nddn—that is, the DN of the user seeking
authentication. Use this with the - wpasswor d option.

-d debug_I evel Sets debugging level to the level specified (see the chapter
about logging, monitoring, and auditing in Oracle Internet
Directory Administrator’s Guide).

-E character_set Specifies native character set encoding. See the appendix about
globalization support inOracle Internet Directory Administrator’s
Guide.

-f file Performs sequence of searches listed infi | e.

-F sep Printssep instead of = between attribute names and values

-h | daphost Connects to | daphost, rather than to the default host, that is,
your local computer. | daphost can be a computer name or an
IP address.

-L Prints entries in LDIF format (- B is implied).

-l tinelimt Specifies maximum time (in seconds) to wait for ldapsearch

command to complete

-M Instructs the tool to send the ManageDSAI T control to the
server. The ManageDSAI T control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would be done without actually searching

-Oref_hop_limt Specifies the number of referral hops that a client should
process. The default value is 5.

-p | dapport Connects to the directory on TCP port | dapport . If you do
not specify this option, the tool connects to the default port
(389).

-P wal | et _password Specifies wallet password required for one-way or two-way
SSL connections

-Sattr Sorts the results by attribute at t r.

-t Wrrites to files in / t np.

-u Includes user friendly entry names in the output

-U SSLAuth Specifies the SSL authentication mode:

= 1 for no authentication required
= 2 for one way authentication required

= 3 for two way authentication required
-V Specifies verbose mode

-w passwd Specifies bind passwd for simple authentication

Syntax for LDIF and Command-Line Tools A-29

Entry and Attribute Management Command-Line Tools Syntax

Table A-16 (Cont.) Arguments for Idapsearch

Argument Description

-Wwal | et _| ocation Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W " fil e://home/ny_dir/ny_
wal | et ™.

On Windows NT, you could set this parameter as follows: - W
"file:C\ny_dir\ny_wallet".

-z sizelinmt Specifies maximum number of entries to retrieve

-X Prints the entries in DSML v1 format.

Examples of Idapsearch Filters
Study the following examples to see how to build your own search commands.

Example 1: Base Object Search The following example performs a base-level search on
the directory from the root.

| dapsearch -p 389 -h nyhost -b "" -s base -v "objectclass=*"
= - b specifies base DN for the search, root in this case.
= - S specifies whether the search is a base search (base), one level search (one) or

subtree search (sub).
= 0bj ect cl ass=* specifies the filter for search.
Example 2: One-Level Search The following example performs a one level search starting
atou=HR, ou=Anericas, o=IM, c=US.
| dapsearch -p 389 -h nyhost -b "ou=HR ou=Anericas, o=IMC, c¢=US"' -s one -v
"obj ectcl ass=*"
Example 3: Subtree Search The following example performs a subtree search and returns
all entries having a DN starting with cn=us.
| dapsearch -p 389 -h nyhost -b "c=US" -s sub -v "cn=Person*"
Example 4: Search Using Size Limit The following example actually retrieves only two
entries, even if there are more than two matches.
| dapsearch -h myhost -p 389 -z 2 -b "ou=Benefits, ou=HR, ou=Aneri cas, o=I MC, c=US" -s
one "objectclass=*"
Example 5: Search with Required Attributes The following example returns only the DN
attribute values of the matching entries:
| dapsearch -p 389 -h nyhost -b "c=US" -s sub -v "objectclass=*" dn
The following example retrieves only the distinguished name along with the surname
(sn) and description (descri pt i on) attribute values:
| dapsearch -p 389 -h nyhost -b "c=US" -s sub -v "cn=Person*" dn sn description
Example 6: Search for Entries with Attribute Options The following example retrieves entries
with common name (cn) attributes that have an option specifying a language code

attribute option. This particular example retrieves entries in which the common names
are in French and begin with the letter R.

| dapsearch -p 389 -h nyhost -b "c=US" -s sub "cn;lang-fr=R"

A-30 Oracle Identity Management Application Developer’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Suppose that, in the entry for John, no value is set for the cn; | ang-i t language code
attribute option. In this case, the following example does not return John's entry:

| dapsearch -p 389 -h nyhost -b "c=us" -s sub "cn;lang-it=G ovanni"
Example 7: Searching for All User Attributes and Specified Operational Attributes The following

example retrieves all user attributes and the cr eat et i mest anp and or cl gui d
operational attributes:

| dapsearch -p 389 -h nyhost -b "ou=Benefits, ou=HR, ou=Aneri cas, o=I MC, c=US" -s sub
"cn=Person*" * createtimestanp orclguid

The following example retrieves entries modified by Anne Smith:

| dapsearch -h sunl -b "" "(& objectclass=*)(nodifiersname=cn=Anne

Smith))"

The following example retrieves entries modified between 01 April 2001 and 06 April
2001:

| dapsearch -h sunl -b "" "(&(objectclass=*)(nodifytinestanp >= 20000401000000)
(nodi fyti mestanp <= 20000406235959))"

Note: Because nodi fi er snanme and nodi f yti nest anp are not
indexed attributes, use cat al 0g. sh to index these two attributes.
Then, restart the Oracle directory server before issuing the two
previous | dapsear ch commands.

Other Examples: Each of the following examples searches on port 389 of host sunl,
and searches the whole subtree starting from the DN ou=hr, o=acme, c=us.

The following example searches for all entries with any value for the obj ect cl ass
attribute.

| dapsearch -p 389 -h sunl -b "ou=hr, o=acne, c=us" -s subtree "objectclass=*"
The following example searches for all entries that have or ¢l at the beginning of the
value for the obj ect cl ass attribute.

| dapsearch -p 389 -h sunl -b "ou=hr, o=acne, c=us" -s subtree "objectclass=orcl*"

The following example searches for entries where the obj ect cl ass attribute begins
with or ¢l and cn begins with foo.

| dapsearch -p 389 -h sunl -b "ou=hr, o=acne, c=us" -s subtree

"(&(obj ectcl ass=orcl *) (cn=f oo*))"

The following example searches for entries in which the common name (cn) is not

f oo.

| dapsearch -p 389 -h sunl -b "ou=hr, o=acne, c=us" -s subtree "(!(cn=fo00))"

The following example searches for entries in which c¢n begins with f 00 or sn begins
with bar .

| dapsearch -p 389 -h sunl -b "ou=hr, o=acne, c=us" -s subtree

"(] (cn=fo00*) (sn=bar*))"

The following example searches for entries in which enpl oyeenunber is less than or
equal to 10000.

Syntax for LDIF and Command-Line Tools A-31

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

| dapsearch -p 389 -h sunl -b "ou=hr, o=acne, c=us" -s subtree
"enpl oyeenunber <=10000"

Oracle Directory Integration and Provisioning Platform Command-Line
Tools Syntax

This section contains these topics:

= The Directory Integration and Provisioning Assistant (dipassistant) Syntax

= The schemasync Tool Syntax

= The Oracle Directory Integration and Provisioning Server Registration Tool
(odisrvreg)

= Syntax for Provisioning Subscription Tool (oidprovtool)

The Directory Integration and Provisioning Assistant (dipassistant) Syntax

The Directory Integration and Provisioning Assistant (di passi stant) isa
command-line tool for administering the Oracle directory integration and provisioning
server. The syntax for the Directory Integration and Provisioning Assistant is:

di passistant [-gui | command] [-hel p]

command := createprofile [cp]
| createprofilelike [cpl]
| modifyprofile [np]
| deleteprofile [dp]
| listprofiles[lp | Isprof]
| showprofile[sp]

| expressconfigec]
| bootstrap [bs]

| wpasswd [wp]

| chgpasswd [cpw]

| reassociate [rs]

For help on a particular command, enter:

di passi stant conmand -hel p

Table A-17 lists the tasks you can perform with the Directory Integration and
Provisioning Assistant. It also points you to instructions for performing each task.

Table A-17 Summary of Functionality of the Directory Integration and Provisioning Assistant

Tasks Commands More Information
Use the Oracle Directory Integration and - gui The chapter about tools in Oracle
Provisioning Server Administration tool, which Identity Management Integration Guide.

is the graphical version of the Directory
Integration and Provisioning Assistant

Create, modify, or delete a synchronization createprofile "Creating, Modifying, and Deleting
profile createprofilelike Synchronization Profiles" on page A-33
modi fyprofile
del eteprofile
See all the profile names in Oracle Internet listprofiles "Listing All Synchronization Profiles in
Directory Oracle Internet Directory" on

page A-35

A-32 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-17 (Cont.) Summary of Functionality of the Directory Integration and Provisioning Assistant

Tasks Commands More Information

See the details of a specific profile showprofile "Viewing the Details of a Specific
Synchronization Profile" on page A-36

Creates and configures import and export expressconfig "Performing an Express Configuration

profiles for synchronization with Microsoft of the Active Directory Connector

Active Directory Profiles" on page A-37

Make Oracle Internet Directory and the boot strap "Bootstrapping a Directory by Using

connected directory identical before beginning the Directory Integration and

synchronization Provisioning Assistant" on page A-37

Set the wallet password that the Oracle wpasswad "Setting the Wallet Password for the

directory integration and provisioning server Oracle Directory Integration and

later uses to connect to Oracle Internet Directory Provisioning Server" on page A-41

Reset the password of the administrator of the ~ chgpasswd "Changing the Password of the

Oracle Directory Integration Platform Administrator of Oracle Directory
Integration and Provisioning Platform"
on page A-41

Move integration profiles from one identity reassoci ate "Moving an Integration Profile to a

management node to another Different Identity Management Node"
on page A-42

Creating, Modifying, and Deleting Synchronization Profiles

The syntax for creating, modifying, or deleting synchronization profiles by using the
Directory Integration and Provisioning Assistant is:

di passistant createprofile [-h hostNane] [-p port] [-D bindDn] [-w password] -f
fileName -configset Configset Nunber

di passistant createprofilelike [-h hostName] [-p port] [-D bindDn] [-w password]
-profile origProf Name -newprofile newProf Name

di passi stant nodifyprofile [-h hostNane] [-p port] [-D bindDn] [-w password]
{-f fileName | -profile profName [-updlcn] } [propNamel=val ue]
[propName2=val ue] . ..

di passi stant deleteprofile -profile profName [-h hostNane] [-p port] [-D bindDn]
[-w password] [-configset Configset Nunber]

Table A-18 describes the parameters for creating, modifying, and deleting
synchronization profiles by using the Directory Integration and Provisioning
Assistant.

Table A-18 Parameters for Creating, Modifying, and Deleting Synchronization Profiles
by Using the Directory Integration and Provisioning Assistant

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D| -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

Syntax for LDIF and Command-Line Tools A-33

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-18 (Cont.) Parameters for Creating, Modifying, and Deleting Synchronization
Profiles by Using the Directory Integration and Provisioning Assistant

Parameter Description

-f] -file The configuration file containing the profile parameters.
See Also: Table A-19 on page A-34 for a list of parameters and their
description

-confi gset An integer greater than O that represents the configuration set with which
to associate the profile.

-profile A text string representing the name of profile to be modified, deleted, or
used as a template for creating a new profile.

-newProfile | A text string representing the name of profile to be created in Oracle

- nane Internet Directory.

-updl cn Updates the last applied changed number in the specified profile

The following example uses a configuration file named i mport. profi | e to create a
new profile and associate the new profile with configuration set 1:

di passistant createprofile -h nyhost -p 3060 -D cn=di padnmin -w wel conel
-f inmport.profile -configset 1

The following example creates a new profile named i Pl | nport with values copied
from a profile named i Pl | nrport Tenpl at e.

di passi stant createprofilelike -h myhost -p 3060 -D cn=di padmi n -w wel conel
-profile i PlInportTenplate -newProfile iPllnport

The following example uses a configuration file named changes. profi | e to modify
a profile named nmyprofil e.

di passi stant nodifyprofile -profile nyprofile -h myhost -p 3060 -D cn=di padnin
-w wel conel -f changes. profile

The following example deletes the mypr of i | e profile.

di passistant deleteprofile -profile nyprofile -h nyhost -p 3060 -D cn=di padmin
-w wel conel -configset 1

For the createprofil e, createprofilelike,and nodi fyprofil e commands,
you specify a configuration file containing the properties listed in Table A-19. When
modifying an already existing profile, no defaults are assumed. Only those attributes
specified in the file are changed. When using Directory Integration and Provisioning
Assistant, you reference a property name in the format odi p. profil e. property_
name. However, in Oracle Internet Directory, the property name is stored in the format
or cl odi pproperty_nane. Both property name formats are listed in Table A-19.

Table A-19 Properties Expected by createprofile and modifyprofile Commands

Property Description Default
odi p. profil e. agent execommand / In the case of a non-LDAP interface, the command to -

or cl odi pagent execonmand produce the information in LDIF format

odi p. profile.condiraccount / DN or user name used to connect to the third party -

orcl odi pcondi raccessaccount directory.

odip. profile.condirfilter / Filter that needs to be applied to the changes read -

orcl odi pcondi rmat chi ngfilter from the connected directory before importing to

Oracle Internet Directory

A-34 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—19 (Cont.) Properties Expected by createprofile and modifyprofile Commands

Property Description Default
odi p. profile.condirpassword / Password used for identification to the third-party -
or cl odi pcondi raccesspassword directory.
odi p. profile.condirurl / Location of third-party directory [host nane: port] -
orcl odi pcondi rurl
odip. profile.configfile Name of the file that contains the additional -
profile-specific information to be used for execution
odi p. profile.configinfo / Contains additional profile-specific information to be -
orcl odi paddi ti onal confi gi nfo used for execution
odi p. profile.debugl evel / Specifies the profile debug level -
orcl odi pprofi | edebugl evel
odip.profile.interface / Indicator as to whether the LDAP or LDl F or DB or LDAP
orcl odi pi nterfacetype TAGGED format is to be used for data exchange
odi p. profile.lastchgnum/ Last applied change number. In the case of an export -
orcl odi pcondi rl ast appl i edchangenurmbe profile this number refers to Oracle Internet
r Directory’s last applied change number However, n
the case of the import profile, this number refers to
the last applied change number in the connected
directory
odi p. profile. mapfile / Name of the file that contains the mapping rules -
orcl odi pattri but emappi ngrul es
odi p. profile.nane / Name of the profile -
or cl odi pagent nane
odip.profile.oidfilter / Filter that needs to be applied to the changes that are -
orcl odi poi dmat chi ngfilter read from the Oracle Internet Directory before
exporting to the connected directory
odi p. profile.password / Password for accessing this profile -
or cl ODI PAgent Passwor d
odip.profile.retry / Maximum number of times the Oracle directory 4

or cl odi psyncret rycount

odi p. profile.schedinterval/
or cl odi pschedul i ngi nt erval

odi p. profile.status /
or cl odi pagent control

odi p. profile.syncnode /
or cl odi pasynchroni zat i onmode

integration and provisioning server should attempt to
execute an entry

Interval between successive executions of this profile
by the integration server. If the previous execution
has not completed then the next execution will not
resume until it completes.

Either DI SABLE or ENABLE

Direction of synchronization. When the changes are
propagated from the third party to Oracle Internet
Directory, the synchronization mode is | MPORT.
When the changes are propagated to the third party
directory, the synchronization mode is EXPORT.

One minute

Dl SABLE

| MPORT

Listing All Synchronization Profiles in Oracle Internet Directory

Thel i st profil es command prints a list of all the synchronization profiles in Oracle
Internet Directory. The syntax for this command is:

di passistant listprofiles [-h hostName] [-p port] [-D bindDn] [-w password]
[-configset Configset Nunber]

Table A-20 on page A-36 describes the parameters of the | i st prof i | es command.

Syntax for LDIF and Command-Line Tools A-35

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—20 Parameters of the listprofiles Command

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D| -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

-confi gset An integer greater than 0 that represents the configuration set with which

to associate the profile.

The following example prints a list of all the synchronization profiles in Oracle
Internet Directory:

di passistant listprofiles -h myhost -p 3060 -D cn=di padnin -w wel conel

By default, the preceding command prints the following list of sample profiles created
during installation. However, your deployment of Oracle Internet Directory may
contain additional synchronization profiles.

| pl anet Export
I pl anet | mport
Acti vel nport
Acti veExport
Ldi f Export

Ldi f I nport
TaggedExport
TaggedI nport
O acl eHRAgent
Acti veChgl np

Viewing the Details of a Specific Synchronization Profile

The showpr of i | € command prints the details of a specific synchronization profile.
The syntax for this command is:

di passi stant showprofile -profile profNane [-h hostNane] [-p port] [-D bindDn]
[-w password]

Table A-21 describes the parameters of the showpr of i | e command.

Table A—21 Parameters of the showprofile Command

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D| -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

-profile A text string representing the name of profile to show.

A-36 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

For example, the following showpr of i | € command prints the details for the
Act i vel nport sample profile that is created during installation:

di passi stant showprofile -h myhost -p 3060 -D cn=di padmin -w wel comel
-profile Activel nport

The preceding command prints the following details of the Act i vel npor t sample
profile:

odi p. profile.version = 2.0

odi p. profile.lastchgnum= 0
odip.profile.interface = LDAP

odi p.profile.oidfilter = orcl ObjectGUD

odi p. profile.schedinterval = 60

odi p. profile.name = Activel nport

odi p. profile.syncmode = | MPORT

odi p.profile.condirfilter =
"searchfilter=(|(objectclass=group)(objectclass=organizational unit)
(& obj ect cl ass=user) (! (objectcl ass=conputer))))"
odip.profile.retry =5

odi p. profile.debugl evel =0

odi p. profile.status = DI SABLE

Performing an Express Configuration of the Active Directory Connector Profiles

The expr essconf i g command performs an express configuration of the Active
Directory connector. When you run this command, it performs all required
configurations outlined in Table A-17, " Summary of Functionality of the Directory
Integration and Provisioning Assistant” on page A-32. This command also creates two
profiles, an import profile and an export profile. The syntax for performing an express
configuration is as follows:

di passi stant expressconfig [-h hostName] [-p port] [-3rdpartyds 3rd party ds]
[-configset Configset Nunber]

Table A-22 describes the parameters of the expr essconf i g command.

Table A—22 Parameters of the expressconfig Command

Parameter Description

-h'| -host| -oidhost Host where Oracle Internet Directory is running. The default
value is the name of the local host.

-p |-port | -oidport gggt at which Oracle Internet Directory was started. The default is

- 3rdpartyds The third-party directory service to configure.

-confi gset An integer greater than 0 that represents the configuration set

with which to associate the profile.

Bootstrapping a Directory by Using the Directory Integration and Provisioning
Assistant

The boot st r ap command performs the initial migration of data between a connected
directory and Oracle Internet Directory. The syntax for this command is as follows:

di passi stant bootstrap { -profile prof Name [-h hostNane] [-p port] [-D bindDn] [-w
password] [-log logFile] [-logseverity severity] [-trace traceFile] [-tracelevel
level] [-loadparallelism#nThrs] [-loadretry retryCnt] | -f filenane }

Table A-23 on page A-38 describes the parameters of the boot st r ap command.

Syntax for LDIF and Command-Line Tools A-37

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—23 Parameters of the bootstrap Command

Parameter Description

-f | cfg A configuration file containing all the parameters required for
performing the bootstrapping.

See Also: Table A-24 on page A-39 for a list of parameters and
their description.

-h | -host Host where Oracle Internet Directory is running. The default
value is the name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is
389.

-D| -dn The bind DN to be used in identifying to the directory. The default

value is the DN of the Oracle Directory Integration and
Provisioning platform administrator.

-w | -passwd The password of the bind DN to be used while binding to the
directory.
-profile A text string representing the name of profile to use when

performing the bootstrapping.

-log Log file. If this parameter is not specified, then, by default, the log
information is written to ORACLE _
HOVE/ | dap/ odi / boot strap. | og

-l ogseverity Log severity 1 - 15. 1 — INFO, 2 - WARNING, 3 - DEBUG, 4 -
ERROR. Or any combination of these. If not specified, then INFO
and ERROR messages alone will be logged.

-trace Trace file for debugging purposes.
-tracel evel Trace level.
-1 oadparal | el i sm Indicator that loading to Oracle Internet Directory is to take place

in parallel by using multiple threads. For example,

-1 oadpar al | el i sm 5 means that five threads are to be created,
each of which tries to load the entries in parallel to Oracle Internet
Directory.

-l oadretry When loading to the destination fails, the number of times to retry
before marking the entry bad.

When you use the boot st r ap command, you can use either the - pr of i | e parameter
to specify a synchronization profile or the - f parameter to a configuration file. The
following example uses a synchronization profile named i Pl anet Profil e to
perform bootstrapping:

di passi stant bootstrap —profile iPlanetProfile -h nyhost —port 3060 -D cn=di padnin
-w wel conel

The following example uses a configuration file named boot st r ap. cf g to perform
bootstrapping:

di passi stant bootstrap —f bootstrap.cfg

When you use the - f parameter with the boot st r ap command, you must specify a
configuration file containing the properties listed in Table A—24 on page A-39.

A-38 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Properties Expected by the Bootstrapping Command

Table A—24 Bootstrapping Configuration File Properties

Property Description Mandatory Default
odi p. boot strap. srctype Indicator of whether source Yes -
of the bootstrapping is

LDAP or LDIF. Valid
values are either LDAP or
LDl F.

odi p. boot strap. desttype Indicator of whether Yes -
destination of the
bootstrapping is LDAP or
LDIF. Valid values are
either LDAP or LDI F.

odi p. boot strap. srcurl In the case of LDAP source Yes -
type, location of the source
directory. In the case of
LDIF, the location of the
LDIF file.

Note: For LDAP, the
expected format is

host [: port] . For LDIF,
the expected format is the
absolute path of the file.

odi p. boot strap. dest url In the case of LDAP, Yes -
location of the destination
directory. In the case of
LDIF, the location of the
LDIF file.

Note: For LDAP, the
expected format is

host [: port] . For LDIF,
the expected format is the
absolute path of the file.

odi p. boot strap. srcssl mode Indicator of whether No FALSE
SSL-based authentication
must be used to connect to
the source of the
bootstrapping. A value of
TRUE indicates that
SSL-based authentication
must be used.

odi p. boot st rap. dest ssl node Indicator of whether No FALSE
SSL-based authentication
must be used to connect to
the destination of the
bootstrapping. TRUE
indicates that SSL-based
authentication must be
used.

Note: In the case of LDIF,
this parameter is
meaningless.

Syntax for LDIF and Command-Line Tools A-39

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—24 (Cont.) Bootstrapping Configuration File Properties

Property

Description

Mandatory

Default

odi p. boot strap. srcdn

odi p. boot strap. dest dn

odi p. boot strap. srcpasswd

odi p. boot st rap. dest passwd

odi p. boot strap. mapfile

odi p. bootstrap. logfile

odi p. boot strap. | ogseverity

Supplement to the source
URL. In the case of LDIF
binding, this parameter is
meaningless. However in
the case of LDAP, this
parameter specifies the
Bind DN.

Supplement to the
destination URL. In the
case of LDIF binding, this
parameter is meaningless.
However in the case of
LDAP, this parameter
specifies the Bind DN.

Bind password to the
source. In the case of LDAP
binding, this is used as
security. Oracle
Corporation recommends
that you not specify the
password in this file.

Bind password. In the case
of LDAP binding, this is
used as security credential.

Oracle Corporation
recommends that you not
specify the password in
this file.

Location of the map file
that contains the attribute
and domain mappings.

Location of the log file. If
this file already exists then
it will be appended. The
default log file is

boot strap. | og created
under $ORACLE_

HOWE/ | dap/ odi / | og
directory.

Type of log messages that
needs to be logged.

INFO -1
WARNING - 2
DEBUG -4
ERROR - 8

Note: A combination of
these types can also be
given. For example, if you
are interested only in
WARNING and ERROR
message, then specify a
value of 8+2—that is, 10.
Similarly, for all types of
message,usel + 2 + 4
+ 8 = 15

A-40 Oracle Identity Management Application Developer’s Guide

Only in the
case of
LDAP

Only in the
case of
LDAP

No

No

The file boot strap. | og
created under the
directory ORACLE_
HOWE/ | dap/ odi /

1+8=09

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—24 (Cont.) Bootstrapping Configuration File Properties

Property Description Mandatory Default
odi p. boot strap. | oadparal | el i sm Numeric value indicating ~ No 1-
the number of writer
threads used to load the
processed data to the
destination
odi p. bootstrap. | oadretry In the event of a failure to No 5
load an entry, indicator of
how many times to retry
odi p. bootstrap.trcfile Location of the trace file. If No The default location is
this file already exists, then ORACLE_
it is overwritten. HOME/ | dap/ odi / | og/
bootstrap.trc
odi p. boot strap. trcl evel The tracing level No 3
odi p. boot st rap. srcencode The encoding used by the Yes -

LDIF file if the file:

Is generated by using a
utility of a third-party
directory

Contains NLS data

Is processed on a different
platform

By default, the Directory
Integration and
Provisioning Assistant
assumes that the file is
processed on the system on
which it was generated.

Setting the Wallet Password for the Oracle Directory Integration and Provisioning
Server

The wp command enables you to set the wallet password that the Oracle directory
integration and provisioning server later uses to connect to Oracle Internet Directory.
To use this command, enter:

di passi stant wp

The Directory Integration and Provisioning Assistant prompts you to enter, and then
confirm, the password.

Changing the Password of the Administrator of Oracle Directory Integration and
Provisioning Platform

This chgpasswd command resets the password of di padmni n account. The default
password for the di padni n account is same as i as_adm n password chosen during
installation. To reset the password, you must provide the security credentials of the
or cl adm n account. The syntax for resetting the password is as follows:

di passi stant chgpasswd [-h hostNane] [-p port] [-D bindDn] [-w password]

Table A-25 on page A-42 describes the parameters of the chgpasswd command.

Syntax for LDIF and Command-Line Tools A-41

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-25 Parameters of the chgpasswd Command

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D| -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

The following is an example of the chgpasswd command:

di passi stant chgpasswd -h myhost -p 3060 -D cn=di padmin -w wel comel

The Directory Integration and Provisioning Assistant then prompts for the new
password as follows:

New Passwor d:
Confirm Password:

Moving an Integration Profile to a Different Identity Management Node

You can use the r eassoci at € command of the Directory Integration and
Provisioning Assistant to move directory integration profiles to another node and to
reassociate them with it. For example, if the middle-tier components are associated
with a particular Oracle Identity Management infrastructure, then all the integration
profiles existing in that infrastructure node can be moved to a new infrastructure node
and reassociated with it.

Table A-26 describes the reassociation rules.

Table A—26 Scenarios for Reassociating Directory Integration Profiles

Scenario Actions Taken

Integration profile does not The integration profile is copied to the second Oracle Internet

exist on the second Oracle Directory node and is disabled after copying. It must be enabled

Internet Directory node by the application. The | ast changenumnber attribute in the
integration profile is modified to the current last change number
on the second Oracle Internet Directory node.

Integration profile exists on Both integration profiles are reconciled in the following manner:
the second Oracle Internet

Di . Any new attribute in the profile on node 1 is added to the
irectorynode

profile on node 2

« For existing same attributes, the values in profile on node 1
override the attributes in the profile on node 2

= The profile is disabled after copying. It needs to be enabled
by the application.

=« Thel ast changenunber attribute in the integration profile
is modified to the current last change number on the second
Oracle Internet Directory node

The syntax for the r eassoci at € command is as follows:

di passi stant reassociate [-src_| dap_host hostName] [-src_|ldap_port port] [-src_
| dap_dn bindDn] [-src_| dap_passwd password] -dst_| dap_host hostName [-dst_| dap_
port port [-dst_ldap_dn bindDn] [-dst_| dap_passwd password] [-log logfile]

A-42 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A-27 describes the parameters of the r eassoci at e command.

Table A—27 Parameters of the reassociate Command

Parameter Description

-src_| dap_host host _nane Host where Oracle Internet Directory-1 runs

-src_l dap_port port_nunber Port where Oracle Internet Directory-1 runs

-src_l dap_dn bind_DN Bind DN for connecting to Oracle Internet Directory-1

-src_|l dap_passwd password Bind DN password for connecting to Oracle Internet
Directory-1

-dst _| dap_host host _nane Host where Oracle Internet Directory-2 runs

-dst _| dap_portport _number Port where Oracle Internet Directory-2 runs

-dst _| dap_dn bi nd_DN Bind DN for connecting to Oracle Internet Directory-2

-dst _| dap_passwd password Bind DN password for connecting to Oracle Internet

Directory-2
-log log_ file Log file

The r eassoci at e command defaults are as follows:

src_l dap_host - |ocal host, src_|ldap_port & dst_|dap_port - 389
src_ldap_dn & dst_ldap_dn - cn=orcladm n account

The following is an example of the r eassoci at e command:

di passi stant reassociate -src_| dap_host oidl. nycorp.com\
-dst _| dap_host oi d2. mycorp. com -src_| dap_passwd srcpassword \
-dst _| dap_passwd dst passwor d

Note if the location of the log file is not specified then by default it will be created as
ORACLE HOWE/ | dap/ odi /| og/ reassoci at e. | og.

Limitations of the Directory Integration and Provisioning Assistant in Oracle Internet
Directory 10g Release 2 (10.1.2)

In this release, the Directory Integration and Provisioning Assistant does not support
the following:

. SSL-based authentications to Oracle Internet Directory
= Schema synchronization

= Automatic profile creation at the end of the bootstrapping process when used with
the - cf g option

= Mapping file validation
« Creation of a failed entries file

The following elements of the Directory Integration and Provisioning Assistant are
untested:

= Bootstrapping of the connected directory over the SSL connection

« The use of the modifyprofile command while synchronization is happening for
that profile

The bootstrapping command of the Directory Integration and Provisioning Assistant
has the limitations described in Table A-28 on page A-44.

Syntax for LDIF and Command-Line Tools A-43

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—28 Limitations of Bootstrapping in the Directory Integration and Provisioning
Assistant

Type of Bootstrapping Limitation

LDIF-to-LDIF None

LDAP-to-LDIF For a large number of entries, bootstrapping can fail with an
error of size limit exceeded. To resolve this, the connected
directory server from which you are bootstrapping should:

= Support paged results control (OID 1.2.840.113556.1.4.319).
Currently, Microsoft Active Directory is the only LDAP
directory that supports this control.

« Have an adequate value for the server side search size limit
parameter.

= Use a proprietary tool on the connected directory server to
dump all entries to an LDIF file, and then bootstrap by using
either the LDIF-to-LDIF or the LDIF-to-LDAP approach.

LDIF -to-LDAP None
LDAP-to-LDAP Same as LDAP-to-LDIF

For initial bootstrapping, you should perform the following steps:

1. Generate a dump of the entries in the connected directory to an LDIF file using a
proprietary tool on the connected directory server.

2. Configure the properties file so that entries are created in Oracle Internet Directory
using the LDIF-to-LDAP approach.

The schemasync Tool Syntax

The schemasync tool enables you to synchronize schema elements—namely
attributes and object classes—between an Oracle directory server and third-party
LDAP directories.

The usage for schemasync is as follows:

ORACLE_HOME/ bi n/ schemasync -srchost source_LDAP_directory -srcport
source_LDAP port _number -srcdn privileged DN in_source_directory to_access_schema
-srcpwd password -dsthost destination_directory -dstport destination_port

-dstdn privileged_dn_in_destination_directory -dstpwdpassword [-Idap]

Note: the - | dap parameter is optional. If it is specified, then the
schema changes are applied directly from the source LDAP
directory to the destination LDAP directory. If it is not specified,
then the schema changes are placed in the following LDIF files:

« ORACLE HOVE/ | dap/ odi/data/attributetypes.|dif
This file has the new attribute definitions.

« ORACLE_HOVE/ | dap/ odi / dat a/ obj ectcl asses. | di f
This file has the new object class definitions.

if you do not specify - | dap, then you must use | dapnodi f y to
upload the definitions from these two files, first attribute types and
then object classes.

The errors that occur during schema synchronization are logged in the
following log files:

A-44 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

« ORACLE_HOVE/ | dap/odi/l og/attributetypes.|og
« ORACLE_HOVE/ | dap/ odi /| og/ obj ect cl asses. | og

The Oracle Directory Integration and Provisioning Server Registration Tool (odisrvreg)

To register an Oracle directory integration and provisioning server with the directory,
this tool creates an entry in the directory and sets the password for the directory
integration and provisioning server. If the registration entry already exists, then you
can use the tool to reset the existing password. The odi sr vr eg tool also creates a local
file called odi srvwal | et _host nane, at ORACLE_HOVE/ | dap/ odi / conf . This file
acts as a private wallet for the directory integration and provisioning server, which
uses it on startup to bind to the directory.

Table A-29 describes the parameters that you use with the Oracle Directory
Integration and Provisioning Server Registration Tool. You can also run odi sr vr eg in
SSL mode to make communication between the tool and the directory fully secure,
using the - U, - Wand - P parameters that are also described in Table A-29.

To register the directory integration and provisioning server, enter this command:

odi srvreg -h host_nanme -p port -D binddn -w bindpasswd —-I passwd [-U ssl_node -W
wal l et —P wal | et _passwor d]

Table A—29 Descriptions of ODISRVREG Arguments

Argument Description

-h host _name Oracle directory server host name

-p port_number Port number on which the directory server is running

- D binddn Bind DN. The bind DN must have authorization to create the

registration entry for the directory integration and
provisioning server

-1 host In a cold failover cluster configuration, the virtual hostname

-w bi ndpasswd Bind password

-U ssl _node For no authorization, specify 0. For one-way authorization,
specify 1.

-Wwal [et _| ocation Location of the Oracle Wallet containing the SSL certificate

-P wal | et _password Wallet password to open the Oracle wallet

Syntax for Provisioning Subscription Tool (oidprovtool)

Use the Provisioning Subscription Tool (0i dpr ovt ool) to administer directory entries
for provisioning profiles. You can perform these tasks:

= Create a profile (cr eat e)

= Disable a profile (di sabl e)

= Reenable a profile (enabl e)

= Modify a profile (modi f y)

= Delete a profile (del et e)

= Get the current status of a profile (st at us)

= Clear all of the errors in a profile (r eset)

Syntax for LDIF and Command-Line Tools A-45

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

oi dprovt ool hides the location of profile entries from callers of the tool. It also hides
schema details. From the caller’s perspective, the combination of an application
identity and an identity management realm uniquely identify a provisioning profile.
There can be only one provisioning profile per application per identity management
realm.

Note: To run oi dprovt ool and other shell scripts on Windows
platforms, use one of these UNIX emulation utilities:

« Cygwin1.0:

http://sources.redhat.com

= MKS Toolkit 5.1 or 6.0:

http: // ww. dat af ocus. cont product s

The name of the executable is 0i dPr ovTool . It is found at ORACLE_HOVE/ bi n. To
invoke the tool, issue this command:

oi dprovt ool paranil=paraml_val ue paran2=paran?_val ue paran8=paran8_val ue ...

oi dprovt ool accepts the following parameters:

Table A-30 Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional
operation The subscription operation All M

performed. Only one operation

can be performed for each

invocation of the tool.
| dap_host Host name of the directory All (@]

profile_status

profile_node

profile_debug

ssl mode

| dap_port

server on which the operation is
performed. If not specified, the
default value of | ocal host is
assumed.

The status of the profile. This Create o
value can be either enabl ed or

di sabl ed. The default is

enabl ed.

The values possible are Create o
i nbound, out bound, or both.
The default is out bound.

The debug level at which the All o
DIP server executes the profile.

A value of 0 indicates non-SSL. All (@)
A value of 1 indicates SSL.
The TCP/IP port on which the All o

directory server is listening for
requests. Defaults to 389 if no
value is specified.

A-46 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

| dap_user_dn The distinguished name of the All (@]
user on whose behalf the
operation is performed. The
default is cn=or cl admi n. Not
all users may have the
permissions necessary to
perform provisioning
subscription operations. See the
administration guide to learn
how to grant or deny
permissions.

| dap_user _passwor d The password of the user on All (@]
whose behalf the operation is
performed. The default is
wel come.

application_dn The distinguished name of the All M
application for which the
operation is performed. Used
together, appl i cati on_dnand
or gani zat i on_dn help the
subscription tool identify a
provisioning profile.

organi zation_dn The distinguished name of the ~ All o
organization for which the
operation is performed. The
default is the default identity
management realm. Used
together, appl i cat i on_dnand
or gani zat i on_dn help
oi dpr ovt ool identify a
provisioning profile.

interface_nane Database schema name for the Create or M
PL/SQL package. The format of modify
this value should be
[Schema] . [PACKAGE_NAME]

interface_type The type of the interface to Create or @)
which events have to be modify

propagated. The default is
PLSQL if no value is specified.

interface_connect _info The database connect string. The Create or M
format is modify
host : port: dat abase_
si d: user _i d: passwor d.

interface_version The version of the interface Create (@]
protocol. Valid Values are 1.0,
1.1, or 2.0. Version 1.0 and 1.1 are
old interfaces. Version 2.0 is the
default.

interface_additional _info Additional information about Create or @)
the interface. This parameteris ~ modify
not used currently.

schedul e The length of time, in seconds, Create or (@)
that must elapse before DIP modify
processes the profile. Defaults to
3600 if no value is specified.

Syntax for LDIF and Command-Line Tools A-47

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

max_retries The number of times the Create or (@]
provisioning service should try =~ modify
to deliver an event if delivery
has failed. Defaults to 5 if no
value is specified.

max_event s_per _schedul e The maximum number of events Create or @)
that should be propagated in one modify
schedule. The default is 100.
Useful for controlling load
situations.

profile_group The group of the profile. The Create or o
Default is 0. Use this parameter ~modify
to address scalability issues that
arise when different DIP server
instances execute different

groups.
| ast changenumber The change number at which Create or o
events are propagated to the modify

application. Used only in

out bound mode. The default
for the cr eat e operation is the
current number.

A-48 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—30 (Cont.) Provisioning Subscription Tool Parameters

Name

Description Operations

Mandatory/Optional

event _subscription

event _mappi ng_rul es

Events that DIP should notify create only
the application about. The string
must have this format:

[USER | GROUP]: [domai n_of _
interest]:[DELETE |

MODI FY(list of attributes
separated by conmas)]

You can specify multiple values
by including more than one
event _subscri ption
parameter in a run of

oi dpr ovt ool .

For multivalued inbound events Create or
only. This parameter maps the =~ modify
type of object received from an

application and a qualifying

filter condition to determine the

domain of interest for events

indicated in event _

subscri pti on. The parameter

takes this format:

OBJECT TYPE: filter_
condi tion: domai n_of _i nterest

Multiple rules are allowed. You
might, for example, enter these
two rules:

EMP: : cn=users, dc=acne, dc=com

EMP: 1=AMVERI CA: 1=AMER, ch=user
s, dc=acne, dc=com

In the first case, if the object type
received is EMP, the event is
meant for the domain
cn=users, dc=acne, dc=com
In the second case, the object
received is again EMP, but the
rule contains the attribute |
(locality). The value of this
attribute is AVERI CA.
Accordingly, the events specified
are meant for the domain

| =AMER, cn=user s, dc=acne,
dc=com

M (for outbound
mode only)

M (for inbound mode
only)

Syntax for LDIF and Command-Line Tools A-49

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Table A—30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations

Mandatory/Optional

event _permitted_operations For multivalued inbound events Create or
only. This parameter is used to ~ modify
define the types of events an
application is privileged to send
to the Provisioning Integration
Service. The parameter takes this
format:

EVENT_OBJECT: af fect ed_
domai n: operation(attributes)

Here are two examples:

| DENTI TY: cn=user s, dc=acne, dc

=com ADD(*)

| DENTI TY: cn=user s, dc=acne, dc
=com MODI FY(cn, sn, mai |, tel ep
honenunber)

In the first example, the

| DENTI TY_ADDevent is allowed
for the domain specified as well
as all of its attributes. In the
second example, | DENTI TY_
ADD is allowed for the same
domain, but only for certain
attributes. Other attributes are
ignored.

M (for inbound mode
only)

A-50 Oracle Identity Management Application Developer’s Guide

B

DSML Syntax

This appendix contains the following sections:
= Capabilities of DSML

= Benefits of DSML

= DSML Syntax

= Tools Enabled for DSML

Capabilities of DSML

Directory services form a core part of distributed computing. XML is becoming the
standard markup language for Internet applications. As directory services are brought
to the Internet, there is a pressing and urgent need to express the directory information
as XML data. This caters to the growing breed of applications that are not
LDAP-aware yet require information exchange with a LDAP directory server.

Directory Services Mark-up Language (DSML) defines the XML representation of
LDAP information and operations. The LDAP Data Interchange Format (LDIF) is

used to convey directory information, or a set of changes to be applied to directory
entries. The former is called Attribute Value Record and the latter is called Change
Record.

Benefits of DSML

Using DSML with Oracle Internet Directory and Internet applications makes it easier
to flexibly integrate data from disparate sources. Also, DSML enables applications that
do not use LDAP to communicate with LDAP-based applications, easily operating on
data generated by an Oracle Internet Directory client tool or accessing the directory
through a firewall.

DSML is based on XML, which is optimized for delivery over the Web. Structured data
in XML will be uniform and independent of application or vendors, thus making
possible numerous new flat file type synchronization connectors. Once in XML format,
the directory data can be made available in the middle tier and have more meaningful
searches performed on it.

DSML Syntax

A DSML version 1 document describes either directory entries, a directory schema or
both. Each directory entry has a unique name called a distinguished name (DN). A
directory entry has a number of property-value pairs called directory attributes. Every
directory entry is a member of a number of object classes. An entry's object classes

DSML Syntax B-1

DSML Syntax

constrain the directory attributes the entry can take. Such constraints are described in a
directory schema, which may be included in the same DSML document or may be in a
separate document.

The following subsections briefly explain the top-level structure of DSML and how to
represent the directory and schema entries.

Top-Level Structure

The top-level document element of DSML is of the type dsm , which may have child
elements of the following types:

directory-entries
directory-schema

The child element directory-entries may in turn have child elements of the type entry.
Similarly the child element directory-schema may in turn have child elements of the
types class and attribute-type.

At the top level, the structure of a DSML document looks like this:

<!- a document with directory & schema entries -->
<dsm :directory-entries>
<dsm:entry dn="..."> ..</dsm:entry>

</dsm :directory-entries>

<dsm : di rect ory- schema>
<dsm:class id="..." ...> ..</dsm:class>
<dsnl:attribute-type id="..." ...> ..</dsnm:attribute-type>

</dsm : directory-schem>
</dsm : dsnl >

Directory Entries

The element type ent r y represents a directory entry in a DSML document. The
ent ry element contains elements representing the entry's directory attributes. The
distinguished name of the entry is indicated by the XML attribute dn.

Here is an XML entry to describe the directory entry:

<dsm :entry dn="ui d=Heman, c=in, dc=oracle, dc=coni>

<dsni : obj ect cl ass>
<dsm : oc- val ue>t op</ dsml : oc- val ue>
<dsn : oc-val ue ref="#person">person</dsm : oc-val ue>
<dsni : oc- val ue>or gani zat i onal Per son</dsm : oc-val ue>
<dsni : oc- val ue>i net Or gPer son</ dsni : oc- val ue>

</ dsm : obj ect cl ass>

<dsm :attr name="sn">

<dsm : val ue>Si va</ dsni : val ue></dsm : attr>

<dsm:attr name="uid">

<dsnl : val ue>Heman</ dsni : val ue></dsm : attr>

<dsm :attr name="rmail">

B-2 Oracle Identity Management Application Developer's Guide

Tools Enabled for DSML

<dsm :attr name="givennanme">

<dsm :val ue>Siva V. Kumar</dsm :val ue></dsnl:attr>

<dsm :attr name="cn">

<dsni : val ue>Svenugop@ acl e. conx/ dsm : val ue></dsnl : attr>
<dsm : val ue>Si va Kumar</dsm :val ue></dsm :attr>

The oc-val ue' s ref is a URI Reference to a class element that defines the object
class. In this case it is a URI [9] Reference to the element that defines the per son object
class. The child elements obj ect cl ass and at t r are used to specify the object
classes and the attributes of a directory entry.

Schema Entries

The element type cl ass represents a schema entry in a DSML document. The cl ass
element takes an XML attribute i d to make referencing easier.

For example, the object class definition for the per son object class might look like the
following:

<dsnl : cl ass id="person" superior="#top" type="structural">
<dsni : nane>per son</ dsni : nane>
<dsni : description>...</dsnl:description>
<dsm : obj ect-identifier>2.5.6.6</object-identifier>
<dsm:attribute ref="#sn" required="true"/>
<dsm :attribute ref="#cn" required="true"/>
<dsm :attribute ref="#userPassword" required="false"/>
<dsm :attribute ref="#tel ephoneNunber” required="fal se"/>
<dsm:attribute ref="#seeA so" required="fal se"/>
<dsni:attribute ref="#description" required="fal se"/>
</dsm :cl ass>

The directory attributes are described in a similar way. For example, the attribute
definition for the cn attribute may look like this:

<dsm:attribute-type id="cn">
<dsm : nane>cn</ dsn : nane>
<dsni : description>...</dsnl:description>
<dsm : obj ect-identifier>2.5.4.3</object-identifier>
<dsm :syntax>1.3.6.1.4.1. 1466. 115. 121. 1. 44</dsm : synt ax>
</dsm :attribute-type>

Tools Enabled for DSML

With the XML framework, you can now use non-ldap applications to access directory
data. The XML framework broadly defines the access points and provides the
following tools:

« | dapadd
« | dapaddnt

« | dapsearch

See Also: "Entry and Attribute Management Command-Line Tools
Syntax" in Appendix A for information about syntax and usage.

The client tool | di f wri t e generates directory data and schema LDIF files. If you
convert these LDIF files to XML, you can store the XML file on an application server
and query it. The query and response time is small compared to performing an LDAP
operation against an LDAP server.

DSML Syntax B-3

Tools Enabled for DSML

B-4 Oracle Identity Management Application Developer’s Guide

Glossary

access control item (ACI)

An attribute that determines who has what type of access to what directory data. It
contains a set of rules for structural access items, which pertain to entries, and content
access items, which pertain to attributes. Access to both structural and content access
items may be granted to one or more users or groups.

access control list (ACL)

The group of access directives that you define. The directives grant levels of access to
specific data for specific clients, or groups of clients, or both.

access control policy point

An entry that contains security directives that apply downward to all entries at lower
positions in the directory information tree (DIT).

ACI

See access control item (ACI).

ACL

See access control list (ACL).

ACP

See access control policy point.

administrative area

A subtree on a directory server whose entries are under the control (schema, ACL, and
collective attributes) of a single administrative authority.

advanced symmetric replication (ASR)

See Oracle9i Advanced Replication

anonymous authentication

The process by which the directory authenticates a user without requiring a user name
and password combination. Each anonymous user then exercises the privileges
specified for anonymous users.

API

See application program interface.

Glossary-1

Glossary-2

application program interface

Programs to access the services of a specified application. For example, LDAP-enabled
clients access directory information through programmatic calls available in the LDAP
APIL

ASR
See Oracle9i Advanced Replication

attribute

An item of information that describes some aspect of an entry. An entry comprises a
set of attributes, each of which belongs to an object class. Moreover, each attribute has
both a type, which describes the kind of information in the attribute, and a value, which
contains the actual data.

attribute configuration file
In an Oracle Directory Integration Platform environment, a file that specifies attributes
of interest in a connected directory.

attribute type

The kind of information an attribute contains, for example, j obTi t | e.

attribute uniqueness

An Oracle Internet Directory feature that ensures that no two specified attributes have
the same value. It enables applications synchronizing with the enterprise directory to
use attributes as unique keys.

attribute value

The particular occurrence of information appearing in that entry. For example, the
value for the j obTi t | e attribute could be manager .

authentication

The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to allowing access to resources in a system.
authorization

Permission given to a user, program, or process to access an object or set of objects.

binding

The process of authenticating to a directory.

central directory

In an Oracle Directory Integration Platform environment, the directory that acts as the
central repository. In an Oracle Directory Integration and Provisioning platform
environment, Oracle Internet Directory is the central directory.

certificate

An ITU x.509 v3 standard data structure that securely binds an identity to a public key.
A certificate is created when an entity’s public key is signed by a trusted identity: a
certificate authority (CA). This certificate ensures that the entity’s information is
correct and that the public key actually belongs to that entity.

certificate authority (CA)

A trusted third party that certifies that other entities—users, databases, administrators,
clients, servers—are who they say they are. The certificate authority verifies the user’s
identity and grants a certificate, signing it with the certificate authority’s private key.

certificate chain

An ordered list of certificates containing an end-user or subscriber certificate and its
certificate authority certificates.

change logs

A database that records changes made to a directory server.

cipher suite

In SSL, a set of authentication, encryption, and data integrity algorithms used for
exchanging messages between network nodes. During an SSL handshake, the two

nodes negotiate to see which cipher suite they will use when transmitting messages
back and forth.

cluster

A collection of interconnected usable whole computers that is used as a single
computing resource. Hardware clusters provide high availability and scalability.

cold backup

The procedure to add a new DSA node to an existing replicating system by using the
database copy procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are
examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet
Directory.

concurrent operations

The number of operations that are being executed on the directory from all of the
concurrent clients. Note that this is not necessarily the same as the concurrent clients,
because some of the clients may be keeping their sessions idle.

configset

See configuration set entry.

configuration set entry

A directory entry holding the configuration parameters for a specific instance of the
directory server. Multiple configuration set entries can be stored and referenced at
runtime. The configuration set entries are maintained in the subtree specified by the
subConfigsubEntry attribute of the DSE, which itself resides in the associated
directory information base (DIB) against which the servers are started.

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information.

Glossary-3

Glossary-4

The destination service is indicated by using its service name for Oracle9i release 9.2
database or its Oracle System Identifier (SID) for Oracle release 8.0 or version 7
databases. The network route provides, at a minimum, the location of the listener
through use of a network address.

connected directory

In an Oracle Directory Integration Platform environment, an information repository
requiring full synchronization of data between Oracle Internet Directory and
itself—for example, an Oracle human Resources database.

consumer
A directory server that is the destination of replication updates. Sometimes called a
slave.

contention

Competition for resources.

context prefix

The DN of the root of a naming context.

cryptography
The practice of encoding and decoding data, resulting in secure messages.

data integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,
and the operation is performed in a naming context not held locally by the server. A
default knowledge reference typically sends the user to a server that has more
knowledge about the directory partitioning arrangement.

default identity management realm

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such hosted environments, the enterprise performing the
hosting is called the default identity management realm, and the enterprises that are
hosted are each associated with their own identity management realm in the DIT.

default realm location

An attribute in the root Oracle Context that identifies the root of the default identity
management realm.

delegated administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory. Other administrators—called delegated

administrators—may exercise roles in specific identity management realms, or for
specific applications.

DES

Data Encryption Standard, a block cipher developed by IBM and the U.S. government
in the 1970's as an official standard.

DIB

See directory information base (DIB).

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries
that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration profile

In an Oracle Directory Integration Platform environment, an entry in Oracle Internet
Directory that describes how Oracle Directory Integration and Provisioning platform
communicates with external systems and what is communicated.

directory integration and provisioning server

In an Oracle Directory Integration Platform environment, the server that drives the
synchronization of data between Oracle Internet Directory and a connected directory.

directory naming context

See naming context.

directory provisioning profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that the Oracle Directory Integration and
Provisioning platform sends to the directory-enabled applications

directory replication group (DRG)

The directory servers participating in a replication agreement.

directory server instance

A discrete invocation of a directory server. Different invocations of a directory server,
each started with the same or different configuration set entries and startup flags, are
said to be different directory server instances.

directory-specific entry (DSE)

An entry specific to a directory server. Different directory servers may hold the same
DIT name, but have different contents—that is, the contents can be specific to the
directory holding it. A DSE is an entry with contents specific to the directory server
holding it.

directory synchronization profile

A special kind of directory integration profile that describes how synchronization is
carried out between Oracle Internet Directory and an external system.

Glossary-5

Glossary-6

directory system agent (DSA)

The X.500 term for a directory server.

distinguished name (DN)

The unique name of a directory entry. It comprises all of the individual names of the
parent entries back to the root.

DIS

See directory integration and provisioning server

DIT

See directory information tree (DIT)

DN
See distinguished name (DN)

DRG
See directory replication group (DRG)

DSA
See directory system agent (DSA)

DSE
See directory-specific entry (DSE)

DSA-specific entries. Different DSAs may hold the same DIT name, but have different
contents. That is, the contents can be specific to the DSA holding it. A DSE is an entry
with contents specific to the DSA holding it.

encryption

The process of disguising the contents of a message and rendering it unreadable
(ciphertext) to anyone but the intended recipient.

entry

The building block of a directory, it contains information about an object of interest to
directory users.

export agent

In an Oracle Directory Integration Platform environment, an agent that exports data
out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration Platform environment, the file that contains data
exported by an export agent.

export file

See export data file.

external agent

A directory integration agent that is independent of Oracle directory integration and
provisioning server. The Oracle directory integration and provisioning server does not
provide scheduling, mapping, or error handling services for it. An external agent is

typically used when a third party metadirectory solution is integrated with the Oracle
Directory Integration Platform.
failover

The process of failure recognition and recovery. In an Oracle Application Server Cold
Failover Cluster, an application running on one cluster node is transparently migrated
to another cluster node. During this migration, clients accessing the service on the
cluster see a momentary outage and may need to reconnect once the failover is
complete.

fan-out replication

Also called a point-to-point replication, a type of replication in which a supplier
replicates directly to a consumer. That consumer can then replicate to one or more
other consumers. The replication can be either full or partial.

filter

A method of qualifying data, usually data that you are seeking. Filters are always
expressed as DN, for example: cn=susi e smnith, o=acne, c=us.

global administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory.

global unique identifier (GUID)

An identifier generated by the system and inserted into an entry when the entry is
added to the directory. In a multimaster replicated environment, the GUID, not the
DN, uniquely identifies an entry. The GUID of an entry cannot be modified by a user.
grace login

A login occurring within the specified period before password expiration.

group search base

In the Oracle Internet Directory default DIT, the node in the identity management
realm under which all the groups can be found.

guest user

One who is not an anonymous user, and, at the same time, does not have a specific
user entry.

GUID

See global unique identifier (GUID).

handshake

A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

Glossary-7

Glossary-8

identity management

The process by which the complete security lifecycle for network entities is managed
in an organization. It typically refers to the management of an organization’s
application users, where steps in the security life cycle include account creation,
suspension, privilege modification, and account deletion. The network entities
managed may also include devices, processes, applications, or anything else that needs
to interact in a networked environment. Entities managed by an identity management
process may also include users outside of the organization, for example customers,
trading partners, or Web services.

identity management realm

A collection of identities, all of which are governed by the same administrative
policies. In an enterprise, all employees having access to the intranet may belong to
one realm, while all external users who access the public applications of the enterprise
may belong to another realm. An identity management realm is represented in the
directory by a specific entry with a special object class associated with it.

identity management realm-specific Oracle Context

An Oracle Context contained in each identity management realm. It stores the
following information:

= User naming policy of the identity management realm—that is, how users are
named and located

= Mandatory authentication attributes
= Location of groups in the identity management realm

= Privilege assignments for the identity management realm—for example: who has
privileges to add more users to the Realm.

= Application specific data for that Realm including authorizations

import agent

In an Oracle Directory Integration Platform environment, an agent that imports data
into Oracle Internet Directory.

import data file

In an Oracle Directory Integration Platform environment, the file containing the data
imported by an import agent.

inherit

When an object class has been derived from another class, it also derives, or inherits,
many of the characteristics of that other class. Similarly, an attribute subtype inherits
the characteristics of its supertype.

instance

See directory server instance.

integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard
specifications. It is an international community of network designers, operators,

vendors, and researchers concerned with the evolution of the Internet architecture and
the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a
server. It permits manipulation of remote message folders, also called mailboxes, in a
way that is functionally equivalent to local mailboxes.

key

A string of bits used widely in cryptography, allowing people to encrypt and decrypt
data; a key can be used to perform other mathematical operations as well. Given a
cipher, a key determines the mapping of the plaintext to the ciphertext.

key pair
A public key and its associated private key.
See public/private key pair.

knowledge reference

The access information (name and address) for a remote DSA and the name of the
DIT subtree that the remote DSA holds. Knowledge references are also called referrals.
latency

The time a client has to wait for a given directory operation to complete. Latency can
be defined as wasted time. In networking discussions, latency is defined as the travel
time of a packet from source to destination.

LDAP

See Lightweight Directory Access Protocol (LDAP).

LDIF
See LDAP Data Interchange Format (LDIF).

Lightweight Directory Access Protocol (LDAP)

A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet
Directory.

LDAP Data Interchange Format (LDIF)

The set of standards for formatting an input file for any of the LDAP command-line
utilities.

logical host

In an Oracle Application Server Cold Failover Cluster, one or more disk groups and
pairs of host names and IP addresses. It is mapped to a physical host in the cluster.
This physical host impersonates the host name and IP address of the logical host

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it
(with or without alteration of the original message), and retransmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender and
receiver. This type of security attack works only in the absence of authentication.

Glossary-9

Glossary-10

mapping rules file

In an Oracle Directory Integration Platform environment, the file that specifies
mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from
which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site that
participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value
sought and the attribute value stored. For example, matching rules associated with the
t el ephoneNunber attribute could cause "(650) 123-4567" to be matched with either
"(650) 123-4567" or "6501234567" or both. When you create an attribute, you associate a
matching rule with it.

MD4

A one-way hash function that produces a 128-bit hash, or message digest. If as little as
a single bit value in the file is modified, the MD4 checksum for the file will change.
Forgery of a file in a way that will cause MD4 to generate the same result as that for
the original file is considered extremely difficult.

MD5

An improved version of MD4.

MDS
See master definition site (MDS)

metadirectory

A directory solution that shares information between all enterprise directories,
integrating them into one virtual directory. It centralizes administration, thereby
reducing administrative costs. It synchronizes data between directories, thereby
ensuring that it is consistent and up-to-date across the enterprise.

MTS

See shared server

multimaster replication

Also called peer-to-peer or n-way replication, a type of replication that enables
multiple sites, acting as equals, to manage groups of replicated data. In a multimaster
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

naming attribute

The attribute used to compose the RDN of a new user entry created through Oracle
Delegated Administration Services or Oracle Internet Directory Java APIs. The default
value for this is cn.

naming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must
begin at an entry that serves as the top of the subtree, and extend downward to either
leaf entries or knowledge references (also called referrals) to subordinate naming
contexts. It can range in size from a single entry to the entire DIT.

native agent

In an Oracle Directory Integration Platform environment, an agent that runs under the
control of the directory integration and provisioning server. It is in contrast to an
external agent.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they wish to connect:

CONNECT user nanme/ passwor d@et _ser vi ce_narme

Depending on your needs, net service names can be stored in a variety of places,
including:

= Local configuration file, t nsnames. or a, on each client

= Directory server

» Oracle Names server

= External naming service, such as NDS, NIS or CDS

nickname attribute

The attribute used to uniquely identify a user in the entire directory. The default value
for this is ui d. Applications use this to resolve a simple user name to the complete
distinguished name. The user nickname attribute cannot be multi-valued—that is, a
given user cannot have multiple nicknames stored under the same attribute name.
object class

A named group of attributes. When you want to assign attributes to an entry, you do
so by assigning to that entry the object classes that hold those attributes.

All objects associated with the same object class share the same attributes.

OEM

See Oracle Enterprise Manager.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The
commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility

The utility used to change the password with which Oracle Internet Directory connects
to an Oracle database.

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates the
Oracle directory server processes. It also controls the replication server if one is
installed, and Oracle directory integration and provisioning server.

Glossary-11

Glossary-12

one-way function

A function that is easy to compute in one direction but quite difficult to reverse
compute, that is, to compute in the opposite direction.

one-way hash function

A one-way function that takes a variable sized input and creates a fixed size output.

Oracle Call Interface (OCI)

An application programming interface (API) that enables you to create applications
that use the native procedures or function calls of a third-generation language to
access an Oracle database server and control all phases of SQL statement execution.

Oracle Delegated Administration Services

A set of individual, pre-defined services—called Oracle Delegated Administration
Services units—for performing directory operations on behalf of a user. Oracle Internet
Directory Self-Service Console makes it easier to develop and deploy administration
solutions for both Oracle and third-party applications that use Oracle Internet
Directory.

Oracle Directory Integration Platform

A component of Oracle Internet Directory. It is a framework developed to integrate
applications around a central LDAP directory like Oracle Internet Directory.

Oracle directory integration and provisioning server

In an Oracle Directory Integration Platform environment, a daemon process that
monitors Oracle Internet Directory for change events and takes action based on the
information present in the directory integration profile.

Oracle Directory Manager

A Java-based tool with a graphical user interface for administering Oracle Internet
Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products.

Oracle Identity Management

An infrastructure enabling deployments to manage centrally and securely all
enterprise identities and their access to various applications in the enterprise.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about
dispersed users and network resources. It combines Lightweight Directory Access
Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and
availability of Oracle9i.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and
their client applications to reside on different computers and communicate. The main
function of Oracle Net Services is to establish network sessions and transfer data
between a client application and a server. Oracle Net Services is located on each

computer in the network. Once a network session is established, Oracle Net Services
acts as a data courier for the client and the server.

Oracle PKI certificate usages
Defines Oracle application types that a certificate supports.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and servers.

See Also: Oracle Advanced Security Administrator’s Guide

Oracle9i Advanced Replication

A feature in Oracle9i that enables database tables to be kept synchronized across two
Oracle databases.

other information repository

In an Oracle Directory Integration and Provisioning platform environment, in which
Oracle Internet Directory serves as the central directory, any information repository
except Oracle Internet Directory.

partition

A unique, non-overlapping directory naming context that is stored on one directory
server.

peer-to-peer replication

Also called multimaster replication or n-way replication. A type of replication that
enables multiple sites, acting as equals, to manage groups of replicated data. In such a
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

PKCS #12

A public-key encryption standard (PKCS). RSA Data Security, Inc. PKCS #12 is an
industry standard for storing and transferring personal authentication
credentials—typically in a format called a wallet.

plaintext
Message text that has not been encrypted.

point-to-point replication

Also called fan-out replication is a type of replication in which a supplier replicates
directly to a consumer. That consumer can then replicate to one or more other
consumers. The replication can be either full or partial.

primary node

In an Oracle Application Server Cold Failover Cluster, the cluster node on which the
application runs at any given time.

private key

In public-key cryptography, this key is the secret key. It is primarily used for
decryption but is also used for encryption with digital signatures.

Glossary-13

Glossary-14

provisioning agent

An application or process that translates Oracle-specific provisioning events to
external or third-party application-specific events.

provisioned applications

Applications in an environment where user and group information is centralized in
Oracle Internet Directory. These applications are typically interested in changes to that
information in Oracle Internet Directory.

profile

See directory integration profile

proxy user

A kind of user typically employed in an environment with a middle tier such as a
firewall. In such an environment, the end user authenticates to the middle tier. The
middle tier then logs into the directory on the end user’s behalf. A proxy user has the
privilege to switch identities and, once it has logged into the directory, switches to the
end user’s identity. It then performs operations on the end user’s behalf, using the
authorization appropriate to that particular end user.

public key

In public-key cryptography this key is made public to all, it is primarily
used for encryption but can be used for verifying signatures.

public-key cryptography

Cryptography based on methods involving a public key and a private key.

public-key encryption

The process in which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted by the recipient using the
recipient’s private key.

public/private key pair

A mathematically related set of two numbers where one is called the private key and
the other is called the public key. Public keys are typically made widely available,
while private keys are available only to their owners. Data encrypted with a public key
can only be decrypted with its associated private key and vice versa. Data encrypted
with a public key cannot be decrypted with the same public key.

realm search base

An attribute in the root Oracle Context that identifies the entry in the DIT that contains
all identity management realms. This attribute is used when mapping a simple realm
name to the corresponding entry in the directory.

referral

Information that a directory server provides to a client and which points to other
servers the client must contact to find the information it is requesting.

See also knowledge reference.

relational database

A structured collection of data that stores data in tables consisting of one or more
rows, each containing the same set of columns. Oracle makes it very easy to link the
data in multiple tables. This is what makes Oracle a relational database management

system, or RDBMS. It stores data in two or more tables and enables you to define
relationships between the tables. The link is based on one or more fields common to
both tables.

replica

Each copy of a naming context that is contained within a single server.

RDN
See relative distinguished name (RDN).

registry entry

An entry containing runtime information associated with invocations of Oracle
directory servers, called a directory server instance. Registry entries are stored in the
directory itself, and remain there until the corresponding directory server instance
stops.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names that
would serve to uniquely address the entry. In the example,

cn=Smi t h, o=acne, c=US, the RDN is cn=Sni t h.

remote master site (RMS)

In a replicated environment, any site, other than the master definition site (MDS), that
participates in Oracle9i Advanced Replication.

replication agreement

A special directory entry that represents the replication relationship among the
directory servers in a directory replication group (DRG).

response time

The time between the submission of a request and the completion of the response.

root DSE

See root directory specific entry.

root directory specific entry

An entry storing operational information about the directory. The information is
stored in a number of attributes.

Root Oracle Context

In the Oracle Identity Management infrastructure, the Root Oracle Context is an entry
in Oracle Internet Directory containing a pointer to the default identity management
realm in the infrastructure. It also contains information on how to locate an identity
management realm given a simple name of the realm.

SASL

See Simple Authentication and Security Layer (SASL)

scalability

The ability of a system to provide throughput in proportion to, and limited only by,
available hardware resources.

Glossary-15

Glossary-16

schema

The collection of attributes, object classes, and their corresponding matching rules.

secondary node

In an Oracle Application Server Cold Failover Cluster, the cluster node to which an
application is moved during a failover.

Secure Hash Algorithm (SHA)

An algorithm that takes a message of less than 264 bits in length and produces a
160-bit message digest. The algorithm is slightly slower than MD5, but the larger
message digest makes it more secure against brute-force collision and inversion
attacks.

Secure Socket Layer (SSL)

An industry standard protocol designed by Netscape Communications Corporation
for securing network connections. SSL provides authentication, encryption, and data
integrity using public key infrastructure (PKI).

service time

The time between the initiation of a request and the completion of the response to the
request.

session key

A key for symmetric-key cryptosystems that is used for the duration of one message or
communication session.

SGA

See System Global Area (SGA).

SHA
See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server
processes, so the number of users that can be supported is increased. With shared
server configuration, many user processes connect to a dispatcher. The dispatcher
directs multiple incoming network session requests to a common queue. An idle
shared server process from a shared pool of server processes picks up a request from
the queue. This means a small pool of server processes can server a large amount of
clients. Contrast with dedicated server.

sibling
An entry that has the same parent as one or more other entries.

simple authentication

The process by which the client identifies itself to the server by means of a DN and a
password which are not encrypted when sent over the network. In the simple
authentication option, the server verifies that the DN and password sent by the client
match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

A method for adding authentication support to connection-based protocols. To use this
specification, a protocol includes a command for identifying and authenticating a user

to a server and for optionally negotiating a security layer for subsequent protocol
interactions. The command has a required argument identifying a SASL mechanism.

single key-pair wallet

A PKCS #12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

slave

See consumer.

SLAPD
Standalone LDAP daemon.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in the
scope of the search. It points the user to the server that stores the requested
information.

specific administrative area
Administrative areas control:

» Subschema administration

» Access control administration

» Collective attribute administration

A specific administrative area controls one of these aspects of administration. A specific
administrative area is part of an autonomous administrative area.

sponsor node

In replication, the node that is used to provide initial data to a new node.

SSL
See Secure Socket Layer (SSL).

subACLSubentry

A specific type of subentry that contains ACL information.

subclass

An object class derived from another object class. The object class from which it is
derived is called its superclass.

subentry

A type of entry containing information applicable to a group of entries in a subtree.
The information can be of these types:

= Access control policy points
= Schema rules
= Collective attributes

Subentries are located immediately below the root of an administrative area.

Glossary-17

Glossary-18

subordinate reference

A knowledge reference pointing downward in the DIT to a naming context that starts
immediately below an entry.

subschema DN

The list of DIT areas having independent schema definitions.

subSchemaSubentry

A specific type of subentry containing schema information.

subtype

An attribute with one or more options, in contrast to that same attribute without the
options. For example, a conmpbnNane (cn) attribute with American English as an
option is a subtype of the conmonNare (cn) attribute without that option. Conversely,
the conmonNane (cn) attribute without an option is the supertype of the same
attribute with an option.

super user

A special directory administrator who typically has full access to directory
information.

superclass

The object class from which another object class is derived. For example, the object
class per son is the superclass of the object class or gani zat i onal Per son. The
latter, namely, or gani zat i onal Per son, is a subclass of per son and inherits the
attributes contained in per son.

superior reference

A knowledge reference pointing upward to a DSA that holds a naming context higher
in the DIT than all the naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more
options. For example, the commonNare (cn) attribute without an option is the
supertype of the same attribute with an option. Conversely, a conmonNane (cn)
attribute with American English as an option is a subtype of the commonNane (cn)
attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It supplies
updates from the master copy to the consumer server.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the same
instance, the data in the instance SGA is shared among the users. Consequently, the
SGA is sometimes referred to as the "shared global area."” The combination of the
background processes and memory buffers is called an Oracle instance.

system operational attribute

An attribute holding information that pertains to the operation of the directory itself.
Some operational information is specified by the directory to control the server, for
example, the time stamp for an entry. Other operational information, such as access

information, is defined by administrators and is used by the directory program in its
processing.

TLS

See Transport Layer Security (TLS)

think time

The time the user is not engaged in actual use of the processor.

throughput

The number of requests processed by Oracle Internet Directory for each unit of time.
This is typically represented as "operations per second."

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol enables
client/server applications to communicate in a way that prevents eavesdropping,
tampering, or message forgery.

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when an
identity is being validated as the entity it claims to be. Typically, the certificate
authorities you trust issue user certificates.

trustpoint

See trusted certificate.

UTF-16

16-bit encoding of Unicode.The Latin-1 characters are the first 256 code points in this
standard.

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit
space. It encodes nearly every character in just about every existing character set
standard, covering most written scripts used in the world. It is owned and defined by
Unicode Inc. Unicode is canonical encoding which means its value can be passed
around in different locales. But it does not guarantee a round-trip conversion between
it and every Oracle character set without information loss.

UNIX Crypt
The UNIX encryption algorithm.

user search base

In the Oracle Internet Directory default DIT, the node in the identity management
realm under which all the users are placed.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely
called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects the
mean solar time along the Earth's prime meridian. UTC is indicated by a z at the end
of the value, for example, 200011281010z.

Glossary-19

Glossary-20

UTF-8

A variable-width 8-bit encoding of Unicode that uses sequences of 1, 2, 3, or 4 bytes
for each character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with
one byte, characters from 128-2047 require two bytes, characters from 2048-65535
require three bytes, and characters beyond 65535 require four bytes. The Oracle
character set name for this is AL32UTFS8 (for the Unicode 3.1 standard).

virtual host name
In an Oracle Application Server Cold Failover Cluster, the host name corresponding to
this virtual IP address.

virtual IP address

In an Oracle Application Server Cold Failover Cluster, each physical node has its own
physical IP address and physical host name. To present a single system image to the
outside world, the cluster uses a dynamic IP address that can be moved to any
physical node in the cluster. This is called the virtual IP address.

wallet

An abstraction used to store and manage security credentials for an individual entity.
It implements the storage and retrieval of credentials for use with various
cryptographic services. A wallet resource locator (WRL) provides all the necessary
information to locate the wallet.

wait time

The time between the submission of the request and initiation of the response.

X.509
A popular format from ISO used to sign public keys.

Numerics

389 port, A-6,A-8
636 port, A-6, A-8

A

abandoning an operation, 8-30
access control, 2-4,2-5
and authorization, 2-5
access control information (ACI), 2-6
attributes, 2-6
directives
format, 2-6
Access Control List (ACL), 2-6
access control lists (ACLs), 2-6
ACI. See access control information (ACI)
ACLs. See Access Control List (ACL)
add.log, A-16
administration tools
ldapadd, A-15
ldapaddmt, A-16
ldapbind, A-18
ldapcompare, A-19
ldapdelete, A-20
ldapmoddn, A-21
ldapmodify, A-23
ldapmodifymt, A-26
ldapsearch, A-28
agent tools, A-32
anonymous authentication, 2-5
application login, 7-10 to 7-11
application logout, 7-12
application session cookie
clearing, 7-10
coding for, 7-10
applications, building
with the C API, 8-45
attribute options
searching for by using ldapsearch, A-30
attribute values, replacing, A-25
attributes
adding
by using ldapadd, A-15
concurrently, by using ldapaddmt, A-16
to existing entries, A-15

Index

attribute options
searching for by using ldapsearch, A-30
deleting
by using ldapmodify, A-25
in LDIF files, A-1
types, 2-3
values, 2-3
deleting, A-25
authentication, 2-4
anonymous, 2-5
certificate-based, 2-5
Kerberos, A-15, A-17, A-21
modes, SSL, 8-1, 8-2
one-way SSL, 2-5
options, 2-4
password-based, 2-5
SSL, 2-5,8-1
none, 8-2
one-way, 8-2
two-way, 8-2
with ldapadd, A-16
with ldapaddmt, A-17
with ldapbind, A-18
with ldapmodify, A-23
with ldapmodifymt, A-27
strong, 2-5
toa directory server
enabling, 2-10
enabling, by using DBMS_LDAP, 2-11
enabling, by using the C API, 2-11
to the directory, 8-10
two-way SSL, 2-5
authentication, simple, 7-6
authorization, 2-4,2-5
authorization ID, 2-4

B

base search, A-28

bootstrap command, in Directory Integration and
Provisioning Assistant, A-37

bulk tools, 1-10

Index-1

C unbind_s, 8-16
value_free, 8-38
CAfPI ti value_free_len, 8-38
unctions
1 , 841
abandon, 8-30 sample usage

band 830 summary, 8-3
abandon_ext, - usage with SSL, 8-42

ajj’ %26 826 usage without SSL, 8-42
add_ext_s, 8-
adds, 826 Catalog Management Tool

syntax, A-13
Catalog Management tool

syntax, A-13
catalog.sh

syntax, A-13
certificate authority, 2-5
certificate-based authentication, 2-5
certificates, 2-5
change logging, A-6
change logs

flag, A-5

toggling, A-5

compare, 8-20
compare_ext, 8-20
compare_ext_s, 8-20
compare_s, 8-20
count_entries, 8-36
count_references, 8-36
count_values, 8-38
count_values_len, 8-38
delete, 8-27
delete_ext, 8-27
delete_ext_s, 8-27

delete s, 8-27 change types, in ldapmodify input files, A-24

dn2ufr}, 8-39 changetype attribute
err2string, 8-33 add, A-24

explode_dn, 8-39 _
explode_rdn, 8-39 ilecl)ztie;;, AAZ_g 4
extended_operation, 8-29 modr dr,1, A5
extended_operation_s, 8-29
first_attribute, 8-37
first_entry, 8-36
first_message, 8-35
first_reference, 8-36
get_dn, 8-39
get_entry_controls, 8-40
get_option, 8-6

children of an entry, listing, 8-20
code examples
application login, 7-10 to 7-11
authentication, 7-6,7-7
forced authentication, 7-8,7-11
single sign-off, 7-8
command-line tools
Directory Integration and Provisioning
get_values, 8-38 Assistant, A-32
ge.t_values_len, 8-38 ldapadd, A-15
1n1t_§sl call, 8-2 Idapbind, A-18
mod}fy, 522 ldapcompare, A-19
mod#y_ext, 8-22 ldapdelete, A-20
mod%fy_ext_s, 8-22 Idapmoddn, A-21
mod'lfy_s, 822 ldapmodify, A-23
msgid, 8-31 ldapmodifymt, A-26
msgtype, 831 ldapsearch, A-28
next_attribute, 8-37 schemasync, A-44
next_entry, 8-36 syntax, A-13
next_message, 8-35 components

next_referen;ea 8-361 435 Oracle Internet Directory SDK, 1-4
parse_exften c _regt;(t), ; configuration set entries
parse_reference, 8- modifying, A-11

parse_result, 8-33 overriding user-specified, A-6

parse_saslgbzizd_result, 8-33 controls, working with, 3-18, 3-20, 8-14
rename, 8-

rename_s, 8-24

result, 8-31 D

sasl_bind, 8-10 DAP Information Model, 2-3
sasl_bind_s, 8-10 DAS units, 6-1

search_st, §-17 DAS URL Parameter Descriptions, 12-4
set_option, 8-6 DAS URL Parameters, 6-4
simple_bind, 8-10 DAS URL parameters, 12-2
simple_bind_s, 8-10 data

unbind_ext, 8-16

Index-2

integrity, 2-4,2-6
privacy, 2-4,2-6
data-type summary, 9-5
DBMS_LDAP
about, 0-xxvii
DBMS_LDAP package, 0-xxvii
searching by using, 2-12
DBMS_LDAP_UTL
about, 11-1
data-types, 11-35
function return codes, 11-33
group-related subprograms
about, 11-2
function create_group_handle, 11-16
function get_group_dn, 11-18
function get_group_properties, 11-17
function set_group_handle_properties, 11-16
miscellaneous subprograms
about, 11-2
function check_interface_version, 11-31
function create_mod_propertyset, 11-29
function get_property_names, 11-26
function get_property_values, 11-27
function get_property_values_len, 11-27
function normalize_dn_with_case, 11-25
function populate_mod_propertyset, 11-30
procedure free_handle, 11-31
procedure free_mod_propertyset, 11-31
procedure free_propertyset_collection, 11-28
subscriber-related subprograms
about, 11-2
function create_subscriber_handle, 11-20
function get_subscriber_dn, 11-22
function get_subscriber_properties, 11-21
user-related subprograms
about, 11-1
function authenticate_user, 11-4
function check_group_membership, 11-12
function create_user_handle, 11-5
function get_group_membership, 11-14
function get_user_dn, 11-11
function get_user_extended_properties, 11-9
function get_user_properties, 11-7
function locate_subscriber_for_user, 11-12
function set_user_handle_properties, 11-6
function set_user_properties, 11-8
debug
log files, viewing, A-7
default port
number, A-6, A-8
dependencies and limitations, 8-46
CAPI, 846
DES40 encryption, 2-6
directives, 2-6
Directory Information Tree, 2-2
directory information tree (DIT), 2-2
Directory Integration and Provisioning Assistant
bootstrap command, A-37
what it does, A-32
directory integration and provisioning server

registration tool, A-45
starting, A-8
stopping, A-11
directory replication server
starting, A-7
stopping, A-8
directory server discovery, 3-10
directory servers
restarting, A-11

starting
mandatory arguments, A-6
syntax, A-5

with default configuration, A-7

stopping, A-6
distinguished names, 2-2

components of, 2-2

format, 2-2

in LDIF files, A-1
DNis. see distinguished names.
documentation, related, 0-xxvii
dynamic directives

common types, 7-3

defined, 7-2,7-3

programming languages supported, 7-3
dynamic password verifiers

controls, 3-18, 3-20

creating, 3-18 to 3-20

parameters, 3-18, 3-19

E
encryption
DES40, 2-6
levels available in Oracle Internet Directory, 2-6
RC4_40, 2-6
entries
adding

by using ldapadd, A-15
by using ldapaddmt, A-16
deleting
by using Idapdelete, A-20
by using ldapmodify, A-25
distinguished names of, 2-2
locating by using distinguished names
modifying
by using ldapmodify, A-23
concurrently, by using ldapmodifymt, A-26
naming, 2-2
reading, 8-20
searching
base level, A-28
by using ldapsearch, A-28
one-level, A-28
subtree level, A-28
errors
handling and parsing results, 8-32
exception summary, 9-3

Index-3

F

filters, 2-14
IETF-compliant, A-28
ldapsearch, A-30
forced authentication, 7-8,7-11
formats, of distinguished names, 2-2

G

GET authentication method, 7-9
global user inactivity timeout, 7-9
group entries
creating
by using ldapmodify, A-25

H

header files and libraries, required, 8-45
history of LDAP, 2-1
HTTP headers, 7-1

integrity, data, 2-6
interface calls, SSL, 8-2

J

Java, 1-4,2-8
Java API reference
class descriptions
Property class, 3-3
PropertySet class, 3-3
PropertySetCollection class, 3-3
Java partner applications
dynamically protected, 7-6 to 7-9
statically protected, 7-6

Java partner applications, statically protected, 7-5

JAZN

see Oracle Application Server Java Authentication

and Authorization Service
JNDI, 1-4,2-8
JPEG images, adding with ldapadd, A-16

K

Kerberos authentication, A-15, A-17, A-21

L

LDAP
functional model, 2-3
history, 2-1
information model, 2-3
messages, obtaining results and peeking
inside, 8-31
naming model, 2-2
operations, performing, 8-16
search filters, IETF-compliant, A-28
security model, 2-4

Index-4

server instances
starting, A-5
session handle options, 8-6
in the C API, 2-10
sessions
initializing, 2-8
version 2 C API, 8-1
LDAP APIs, 1-7
LDAP Data Interchange Format (LDIF), A-1
syntax, A-1
LDAP Functional Model, 2-3
LDAP Models, 2-1
LDAP Naming Model, 2-2
LDAP Security Model, 2-4
ldapadd, A-15
adding entries, A-15
adding JPEG images, A-16
LDIF files in, A-15
plug-in support, 5-20 to 5-22
syntax, A-15
ldapaddmt, A-16
adding entries concurrently, A-16
LDIF files in, A-16
log, A-16
syntax, A-16
ldapbind, A-18
syntax, A-18
ldap-bind operation, 2-4
ldapcompare, A-19
plug-in support, 5-22 to 5-25
syntax, A-19
ldapdelete, A-20
deleting entries, A-20
syntax, A-20
ldapmoddn, A-21
syntax, A-21
ldapmodify, A-23
adding values to multivalued attributes,
change types, A-24
creating group entries, A-25
deleting entries, A-25
LDIF files in, A-23
plug-in support, 5-18 to 5-20
replacing attribute values, A-25
syntax, A-23
ldapmodifymt, A-26
by using, A-26
LDIF filesin, A-26
multithreaded processing, A-27
syntax, A-26
ldapsearch, A-28
filters, A-30
syntax, A-28
LDIF
files
in Idapadd commands, A-15
in ldapaddmt commands, A-16
in ldapmodify commands, A-23
in ldapmodifymt commands, A-26
formatting notes, A-2

formatting rules, A-2

syntax, A-1
using, A-1
log files

debug, viewing, A-7

M
m, A-16
mod_o0sso

benefits, 7-1
compared with single sign-on SDK, 7-1
definition, 7-1
integration methods, 7-2
sample applications, 7-3 to 7-9
mod_osso cookie, 7-10
multiple threads, A-27
in ldapaddmt, A-16
increasing the number of, A-16
multithreaded command-line tools
ldapmodifymt, A-27
multivalued attributes
adding values to, by using ldapmodify, A-25

N

naming entries, 2-2
net service name, A-4

O

object classes

adding

concurrently, by using ldapaddmt, A-16

in LDIF files, A-1
objects

removing

by using command-line tools, A-20

removing by using command-line tools, A-23
odisrvreg, A-45
OID Control Utility

run-server command, A-4

stop-server command, A-4

syntax, A-4

viewing debug log files, A-7
OID Monitor, A-4

sleep time, A-3

starting, A-3

stopping, A-4

syntax, A-3
oidctl

viewing debug log files, A-7
oidctl. See OID Control Utility
OIDLDAPD, A-6
OIDREPLD, A-8
one-level search, A-28
one-way SSL authentication, 2-5, 8-2
OpenLDAP Community, 0-xxviii
operational attributes

ACI, 2-6

Oracle Application Server Java Authentication and

Authorization Service
defined, 1-2
Oracle Directory Manager, 1-9
listing attribute types, A-2
Oracle directory replication server, 1-9
Oracle directory replication server instances
starting, A-7
stopping, A-7, A-8
Oracle directory server, 1-9
Oracle directory server instances
starting, A-5
stopping, A-5, A-6
Oracle extensions
about, 3-1
application
deinstallation logic, 1-6
runtime logic, 1-6
shutdown logic, 1-6
startup and bootstrap logic, 1-6
group management functionality, 3-9
programming abstractions
for Java language, 3-3
for PL/SQL language, 3-3
programming abstractions for Java language,
user management functionality, 3-3, 3-5
Oracle extensions to support SSL, 8-1
Oracle Identity Management
infrastructure
modifying existing applications, 1-2
integrating
new applications, 1-3
integrating applications with, 1-1
benefits of, 1-1
supported services, 1-2
Oracle Internet Directory, components, 1-9
Oracle SSL call interface, 8-1
Oracle SSL extensions, 8-1
Oracle SSL-related libraries, 8-46
Oracle system libraries, 8-46
Oracle wallet, 8-2
Oracle Wallet Manager, 8-2
required for creating wallets, 8-46
Oracle wallets
changing location of
with Idapadd, A-16
with ldapaddmt, A-17
with ldapbind, A-18
with ldapcompare, A-20
with ldapdelete, A-21
with ldapmoddn, A-22
with ldapmodify, A-24
with ldapmodifymt, A-28
with ldapsearch, A-30
Oracle xxtensions
what an LDAP-integrated application looks
like, 1-5
OracleAS Single Sign-On
user attributes, 7-1
overview of LDAP models, 2-1

3-3

Index-5

P

password-based authentication, 2-5
passwords
policies, 2-6
performance
by using multiple threads, A-16
permissions, 2-4,2-5
PL/SQL API, 9-1
contains subset of C API, 2-8
data-type summary, 9-5
exception summary, 9-3

functions
add_s, 9-30
ber_free, 9-37
bind_s, 9-7

compare_s, 9-9
count_entries, 9-15
count_values, 9-32
count_values_len, 9-32
create_mod_array, 9-24
dbms_ldap.init, 9-6
delete_s, 9-21
err2string, 9-23
explode_dn, 9-34
first_attribute, 9-16
first_entry, 9-13
get_dn, 9-18
get_values, 9-19
get_values_len, 9-20
init, 9-5
modify_s, 9-29
modrdn2_s, 9-22
msgfree, 9-36
next_attribute, 9-17
next_entry, 9-14
open_ssl, 9-35,9-36, 9-37
rename_s, 9-33
search_s, 9-10
search_st, 9-12
simple_bind_s, 9-7
unbind_s, 9-8
loading into database, 2-8
procedures
free_mod_array, 9-31
populate_mod_array (binary version), 9-25
populate_mod_array (string version), 9-25
subprograms, 9-5
summary, 9-1
plug-ins
binary support, 5-18 to 5-25
port
default, A-6, A-8
port 389, A-6, A-8
port 636, A-6, A-8
POST authentication method, 7-9
privacy, data, 2-4,2-6
privileges, 2-4,2-5
procedures, PL/SQL
free_mod_array, 9-31
populate_mod_array (binary version), 9-25

Index-6

populate_mod_array (string version), 9-25
profile tools, A-32
provisioning
tool
syntax, A-45
Provisioning Subscription Tool, A-45

R

RC4_40 encryption, 2-6
RDN:s. see relative distinguished names (RDNs)
related documentation, 0-xxvii
relative distinguished names (RDNs), 2-2
modifying
by using ldapmodify, A-25
results, stepping through a list of, 8-35
RFC 1823, 8-46
rules, LDIF, A-2
run-server command, by using OID Control
Utility, A-4

S

sample C API usage, 8-41
SDK components, 1-4
search
filters
IETF-compliant, A-28
ldapsearch, A-30
results
parsing, 8-36
scope, 2-13
search-related operations, flow of, 2-12
security, within Oracle Internet Directory
environment, 2-4
self-service console, 6-2
service location record, 3-10
servlets
dynamically protected, 7-6 to 7-9
statically protected, 7-5,7-6
sessions
closing, 8-16
enabling termination by using DBMS_
LDAP, 2-17
initializing
by using DBMS_LDAP, 2-9
by using the C API, 2-8
session-specific user identity, 2-4
simple authentication, 2-5
single sign-off, 7-8
single sign-on SDK
compared with mod_osso, 7-1
sleep time, OID Monitor, A-3
Smith, Mark, 0-xxviii
SSL
authentication modes, 8-1
default port, 2-5
enabling
with ldapadd, A-16
with ldapaddmt, A-17

with ldapbind, A-18 V

with ldapmodify, A-23
with ldapmodifymt, A-27
handshake, 8-2
interface calls, 8-2 W

values, deleting attribute,

A-25

no authentication, 2-5
one-way authentication, 2-5
Oracle extensions, 8-1
provide encryption and decryption, 8-1
two-way authentication, 2-5
wallets, 8-2

wallets
SSL, 8-2
support, 8-2

static directives

defined, 7-2
writing, 7-2

stop-server command, A-4
strong authentication, 2-5
subtree level search, A-28
syntax

Catalog Management Tool, A-13

catalog management tool, A-14

catalog.sh, A-13

command-line tools, A-13

Directory Integration and Provisioning
Assistant, A-32

directory integration and provisioning server
registration tool, A-45

ldapadd, A-15

ldapaddmt, A-16

ldapbind, A-18

ldapcompare, A-19

ldapdelete, A-20

ldapmoddn, A-21

ldapmodify, A-23

ldapmodifymt, A-26

ldapsearch, A-28

LDIF, A-1

odisrvreg, A-45

OID Control Utility, A-4

OID Monitor, A-3

oidctl, A-4

oidprovtool, A-45

Oracle Directory Integration and Provisioning
command-line tools, A-32

Provisioning Subscription Tool, A-45

provisioning tool, A-45

schemasync, A-44

TCP/IP socket library, 8-46
troubleshooting

directory server instance startup, A-6

two-way authentication, SSL, 8-2
types of attributes, 2-3

URLs, protecting, 7-2,7-3
user attributes, 7-1,7-2

Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	What’s New in the SDK?
	New Features in the Release 10.1.2 SDK
	New Features in the Release 9.0.4 SDK

	Part I Programming for Oracle Identity Management
	1 Developing Applications for Oracle Identity Management
	Benefits of Integrating with Oracle Identity Management
	Oracle Identity Management Services Available for Application Integration
	Integrating Existing Applications with Oracle Identity Management
	Integrating New Applications with Oracle Identity Management
	Integrating J2EE Applications with Oracle Identity Management
	Directory Programming: An Overview
	Programming Languages Supported by the SDK
	SDK Components
	Application Development in the Directory Environment
	Architecture of a Directory-Enabled Application
	Directory Interactions During the Application Life Cycle
	Services and APIs for Integrating Applications with Oracle Internet Directory
	Integrating Existing Applications with Oracle Internet Directory
	Integrating New Applications with Oracle Internet Directory

	Other Components of Oracle Internet Directory

	2 Developing Applications with Standard LDAP APIs
	History of LDAP
	LDAP Models
	Naming Model
	Information Model
	Functional Model
	Security Model
	Authentication
	Access Control and Authorization
	Data Integrity
	Data Privacy
	Password Policies

	About the Standard LDAP APIs
	API Usage Model
	Getting Started with the C API
	Getting Started with the DBMS_LDAP Package
	Getting Started with the Java API

	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using DBMS_LDAP
	Initializing the Session by Using JNDI

	Authenticating an LDAP Session
	Authenticating an LDAP Session by Using the C API
	Authenticating an LDAP Session by Using DBMS_LDAP

	Searching the Directory
	Program Flow for Search Operations
	Search Scope
	Filters
	Searching the Directory by Using the C API
	Searching the Directory by Using DBMS_LDAP

	Terminating the Session
	Terminating the Session by Using the C API
	Terminating the Session by Using DBMS_LDAP

	3 Developing Applications with Oracle Extensions to the Standard APIs
	Using Oracle Extensions to the Standard APIs
	Using the API Extensions in PL/SQL
	Using the API Extensions in Java
	The oracle.java.util Package
	PropertySetCollection, PropertySet, and Property Classes

	How the Standard APIs and The Oracle Extensions Are Installed

	Creating an Application Identity in the Directory
	Creating an Application Identity
	Assigning Privileges to an Application Identity

	User Management Functionality
	User Operations Performed by Directory-Enabled Applications
	User Management APIs
	Java API for User Management
	C API for User Management
	PL/SQL API for User Management

	User Authentication
	Java API for User Authentication
	PL/SQL API for User Authentication
	C API for User Authentication

	User Creation
	Java API for User Creation
	PL/SQL API for User Creation
	C API for User Creation

	User Object Retrieval
	Java API for User Object Retrieval
	PL/SQL API for User Object Retrieval
	C API for User Object Retrieval

	Group Management Functionality
	Identity Management Realm Functionality
	Realm Object Retrieval for the Java API

	Server Discovery Functionality
	Benefits of Oracle Internet Directory Discovery Interfaces
	Usage Model for Discovery Interfaces
	Determining Server Name and Port Number From DNS
	Mapping the DN of the Naming Context
	Search by Domain Component of Local Machine
	Search by Default SRV Record in DNS

	Environment Variables for DNS Server Discovery
	Programming Interfaces for DNS Server Discovery
	Java APIs for Server Discovery
	Examples: Java API for Directory Server Discovery

	SASL Authentication Functionality
	SASL Authentication by Using the DIGEST-MD5 Mechanism
	Steps Involved in SASL Authentication by Using DIGEST-MD5
	JAVA APIs for SASL Authentication by Using DIGEST-MD5

	SASL Authentication by Using External Mechanism

	Proxying on Behalf of End Users
	Creating Dynamic Password Verifiers
	Request Control for Dynamic Password Verifiers
	Syntax for DynamicVerifierRequestControl
	Parameters Required by the Hashing Algorithms
	Configuring the Authentication APIs
	Parameters Passed If ldap_search Is Used
	Parameters Passed If ldap_compare Is Used

	Response Control for Dynamic Password Verifiers
	Obtaining Privileges for the Dynamic Verifier Framework

	Dependencies and Limitations for the PL/SQ LDAP API

	4 Developing Provisioning-Integrated Applications
	Introduction to the Oracle Directory Provisioning Integration Service
	Developing Provisioning-Integrated Applications
	Example of a Provisioning-Integrated Application
	Requirements of the Employee Self Service Application
	Registering the Employee Self Service Application in Oracle Internet Directory
	Identifying the Management Context for the Employee Self Service Application
	Determining Provisioning Mode for the Employee Self Service Application
	Determining Events for the Employee Self Service Application
	Provisioning the Employee Self Service Application for an Identity Management Realm
	Determining Scheduling Parameters for the Employee Self Service Application
	Determining the Interface Connection Information for the Employee Self Service Application
	Implementing the Interface Specification for the Employee Self Service Application
	Creating the Provisioning Subscription Profile for the Employee Self Service Application

	Provisioning Integration Prerequisites
	Development Usage Model for Provisioning Integration
	Initiating Provisioning Integration
	Returning Provisioning Information to the Directory

	Development Tasks for Provisioning Integration
	Application Installation
	User Creation and Enrollment
	User Deletion
	Extensible Event Definitions
	Application Deinstallation
	LDAP_NTFY Function Definitions
	FUNCTION user_exists
	FUNCTION group_exists

	FUNCTION event_ntfy

	5 Developing Directory Plug-ins
	Plug-in Prerequisites
	Plug-in Benefits
	What Is the Plug-in Framework?
	Operation-Based Plug-ins Supported by the Directory
	Pre-Operation Plug-ins
	Post-Operation Plug-ins
	When-Operation Plug-ins

	Designing, Creating, and Using Plug-ins
	Designing Plug-ins
	Types of Plug-in Operations
	Naming Plug-ins

	Creating Plug-ins
	Package Specifications for Plug-in Module Interfaces

	Compiling Plug-ins
	Dependencies
	Recompiling Plug-ins
	Granting Permission

	Registering Plug-ins
	The orclPluginConfig Object Class
	Adding a Plug-in Configuration Entry by Using Command-Line Tools
	Example 1
	Example 2

	Managing Plug-ins
	Modifying Plug-ins
	Debugging Plug-ins

	Enabling and Disabling Plug-ins
	Exception Handling
	Error Handling
	Program Control Handling between Oracle Internet Directory and Plug-ins

	Plug-in LDAP API
	Plug-ins and Replication
	Plug-in and Database Tools
	Security
	Plug-in Debugging
	Plug-in LDAP API Specifications

	Examples of Plug-ins
	Example 1: Search Query Logging
	Example 2: Synchronizing Two DITs

	Binary Support in the Plug-in Framework
	Binary Operations with ldapmodify
	Binary Operations with ldapadd
	Binary Operations with ldapcompare

	Database Object Types Defined
	Specifications for Plug-in Procedures

	6 Integrating with Oracle Delegated Administration Services
	What Is Oracle Delegated Administration Services?
	How Applications Benefit from Oracle Delegated Administration Services

	Integrating Applications with the Delegated Administration Services
	Integration Profile
	Oracle Delegated Administration Services Integration Methodology and Considerations

	Java APIs Used to Access URLs

	7 Developing Applications for Single Sign-On
	What Is mod_osso?
	Protecting Applications Using mod_osso: Two Methods
	Protecting URLs Statically
	Protecting URLs with Dynamic Directives

	Developing Applications Using mod_osso
	Developing Statically Protected PL/SQL Applications
	Developing Statically Protected Java Applications
	Developing Java Applications That Use Dynamic Directives
	Java Example #1: Simple Authentication
	Java Example #2: Single Sign-Off
	Java Example #3: Forced Authentication

	A Word About Non-GET Authentication

	Security Issues: Single Sign-Off and Application Logout
	Application Login: Code Examples
	Bad Code Example #1
	Bad Code Example #2
	Recommended Code

	Application Logout: Recommended Code

	Part II Oracle Internet Directory Programming Reference
	8 C API Reference
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions
	SSL Interface Calls
	Wallet Support

	Functions in the C API
	The Functions at a Glance
	Initializing an LDAP Session
	ldap_init and ldap_open

	LDAP Session Handle Options
	ldap_get_option and ldap_set_option

	Authenticating to the Directory
	ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s

	SASL Authentication Using Oracle Extensions
	ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props, and ora_ldap_free_cred_hdl

	SASL Authentication
	ora_ldap_init_SASL

	Working With Controls
	Closing the Session
	ldap_unbind, ldap_unbind_ext, and ldap_unbind_s

	Performing LDAP Operations
	ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
	Reading an Entry
	Listing the Children of an Entry
	ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
	ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
	ldap_rename and ldap_rename_s
	ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
	ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
	ldap_extended_operation and ldap_extended_operation_s

	Abandoning an Operation
	ldap_abandon_ext and ldap_abandon

	Obtaining Results and Peeking Inside LDAP Messages
	ldap_result, ldap_msgtype, and ldap_msgid

	Handling Errors and Parsing Results
	ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and ldap_err2string

	Stepping Through a List of Results
	ldap_first_message and ldap_next_message

	Parsing Search Results
	ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_ count_entries, and ldap_count_references
	ldap_first_attribute and ldap_next_attribute
	ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len, ldap_value_free, and ldap_value_free_len
	ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
	ldap_get_entry_controls
	ldap_parse_reference

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL
	C API Usage for SASL-Based DIGEST-MD5 Authentication

	Required Header Files and Libraries for the C API
	Dependencies and Limitations of the C API

	9 DBMS_LDAP PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data Type Summary
	Subprograms
	FUNCTION init
	FUNCTION simple_bind_s
	FUNCTION bind_s
	FUNCTION unbind_s
	FUNCTION compare_s
	FUNCTION search_s
	FUNCTION search_st
	FUNCTION first_entry
	FUNCTION next_entry
	FUNCTION count_entries
	FUNCTION first_attribute
	FUNCTION next_attribute
	FUNCTION get_dn
	FUNCTION get_values
	FUNCTION get_values_len
	FUNCTION delete_s
	FUNCTION modrdn2_s
	FUNCTION err2string
	FUNCTION create_mod_array
	PROCEDURE populate_mod_array (String Version)
	PROCEDURE populate_mod_array (Binary Version)
	PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
	FUNCTION get_values_blob
	FUNCTION count_values_blob
	FUNCTION value_free_blob
	FUNCTION modify_s
	FUNCTION add_s
	PROCEDURE free_mod_array
	FUNCTION count_values
	FUNCTION count_values_len
	FUNCTION rename_s
	FUNCTION explode_dn
	FUNCTION open_ssl
	FUNCTION msgfree
	FUNCTION ber_free
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_get_dbcharset_name

	10 Java API Reference
	11 DBMS_LDAP_UTL PL/SQL Reference
	Summary of Subprograms
	Subprograms
	User-Related Subprograms
	Function authenticate_user
	Function create_user_handle
	Function set_user_handle_properties
	Function get_user_properties
	Function set_user_properties
	Function get_user_extended_properties
	Function get_user_dn
	Function check_group_membership
	Function locate_subscriber_for_user
	Function get_group_membership

	Group-Related Subprograms
	Function create_group_handle
	Function set_group_handle_properties
	Function get_group_properties
	Function get_group_dn

	Subscriber-Related Subprograms
	Function create_subscriber_handle
	Function get_subscriber_properties
	Function get_subscriber_dn
	Function get_subscriber_ext_properties

	Property-Related Subprograms
	Miscellaneous Subprograms
	Function normalize_dn_with_case
	Function get_property_names
	Function get_property_values
	Function get_property_values_len
	Procedure free_propertyset_collection
	Function create_mod_propertyset
	Function populate_mod_propertyset
	Procedure free_mod_propertyset
	Procedure free_handle
	Function check_interface_version
	Function get_property_values_blob
	Procedure property_value_free_blob

	Function Return Code Summary
	Data Type Summary

	12 DAS_URL Interface Reference
	Directory Entries for the Service Units
	DAS Units and Corresponding URL Parameters
	DAS URL API Parameter Descriptions
	Search-and-Select Service Units for Users or Groups
	Invoking Search-and-Select Service Units for Users or Groups
	Receiving Data from the User or Group Search-and-Select Service Units

	13 Provisioning Integration API Reference
	Versioning of Provisioning Files and Interfaces
	Extensible Event Definition Configuration
	Inbound and Outbound Events
	PL/SQL Bidirectional Interface (Version 2.0)
	Provisioning Event Interface (Version 1.1)
	Predefined Event Types
	Attribute Type
	Attribute Modification Type
	Event Dispositions Constants
	Callbacks
	GetAppEvent()
	PutAppEventStatus()
	PutOIDEvent()

	Part III Appendixes
	A Syntax for LDIF and Command-Line Tools
	LDAP Data Interchange Format (LDIF) Syntax
	Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers
	The OID Monitor (oidmon) Syntax
	Starting the OID Monitor
	Stopping the OID Monitor
	Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration

	The OID Control Utility (oidctl) Syntax
	Starting and Stopping an Oracle Directory Server Instance
	Troubleshooting Directory Server Instance Startup
	Starting and Stopping an Oracle Directory Replication Server Instance
	Starting the Oracle Directory Integration and Provisioning Server
	Stopping the Oracle Directory Integration and Provisioning Server
	Restarting Oracle Internet Directory Server Instances
	Starting and Stopping Directory Servers on a Virtual Host or an Oracle Application Server Cluster (Identity Management)

	Entry and Attribute Management Command-Line Tools Syntax
	The Catalog Management Tool (catalog.sh) Syntax
	ldapadd Syntax
	ldapaddmt Syntax
	ldapbind Syntax
	ldapcompare Syntax
	ldapdelete Syntax
	ldapmoddn Syntax
	ldapmodify Syntax
	ldapmodifymt Syntax
	ldapsearch Syntax
	Examples of ldapsearch Filters

	Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax
	The Directory Integration and Provisioning Assistant (dipassistant) Syntax
	Creating, Modifying, and Deleting Synchronization Profiles
	Listing All Synchronization Profiles in Oracle Internet Directory
	Viewing the Details of a Specific Synchronization Profile
	Performing an Express Configuration of the Active Directory Connector Profiles
	Bootstrapping a Directory by Using the Directory Integration and Provisioning Assistant
	Properties Expected by the Bootstrapping Command
	Setting the Wallet Password for the Oracle Directory Integration and Provisioning Server
	Changing the Password of the Administrator of Oracle Directory Integration and Provisioning Platform
	Moving an Integration Profile to a Different Identity Management Node
	Limitations of the Directory Integration and Provisioning Assistant in Oracle Internet Directory 10g Release 2 (10.1.2)

	The schemasync Tool Syntax
	The Oracle Directory Integration and Provisioning Server Registration Tool (odisrvreg)
	Syntax for Provisioning Subscription Tool (oidprovtool)

	B DSML Syntax
	Capabilities of DSML
	Benefits of DSML
	DSML Syntax
	Top-Level Structure
	Directory Entries
	Schema Entries

	Tools Enabled for DSML

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

