
Oracle® Identity Management
Application Developer’s Guide

10g Release 2 (10.1.2)

Part No. B14087-01

December 2004

Oracle Identity Management Application Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14087-01

Copyright © 1996, 2004, Oracle. All rights reserved.

Primary Author: Henry Abrecht

Contributing Author: Jennifer Polk, Richard Smith

Contributor: Kamalendu Biswas, Ramakrishna Bollu, Saheli Dey, Bruce Ernst, Rajinder Gupta, Ashish
Kolli, Stephen Lee, David Lin, Radhika Moolky, Samit Roy, David Saslav

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which
case the procedures for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English."

RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle
Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

Oracle Directory Manager requires the JavaTM Runtime Environment. The JavaTM Runtime Environment,
Version JRE 1.1.6. ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain
View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

This product contains SSLPlus Integration SuiteTM version 1.2, from Consensus Development Corporation.

iPlanet is a registered trademark of Sun Microsystems, Inc.

v

Contents

Send Us Your Comments .. xxiii

Preface ... xxv

Audience... xxv
Documentation Accessibility ... xxv
Structure... xxvi
Related Documents .. xxvii
Conventions ... xxviii

What’s New in the SDK? ... xxxiii

New Features in the Release 10.1.2 SDK.. xxxiii
New Features in the Release 9.0.4 SDK.. xxxiii

Part I Programming for Oracle Identity Management

1 Developing Applications for Oracle Identity Management

Benefits of Integrating with Oracle Identity Management .. 1-1
Oracle Identity Management Services Available for Application Integration 1-2
Integrating Existing Applications with Oracle Identity Management .. 1-2
Integrating New Applications with Oracle Identity Management .. 1-3
Integrating J2EE Applications with Oracle Identity Management .. 1-4
Directory Programming: An Overview .. 1-4

Programming Languages Supported by the SDK... 1-4
SDK Components... 1-4
Application Development in the Directory Environment ... 1-4

Architecture of a Directory-Enabled Application .. 1-5
Directory Interactions During the Application Life Cycle.. 1-5
Services and APIs for Integrating Applications with Oracle Internet Directory............... 1-6
Integrating Existing Applications with Oracle Internet Directory 1-8
Integrating New Applications with Oracle Internet Directory .. 1-8

Other Components of Oracle Internet Directory... 1-9

2 Developing Applications with Standard LDAP APIs

History of LDAP ... 2-1

vi

 LDAP Models... 2-1
Naming Model.. 2-2
Information Model ... 2-3
Functional Model ... 2-3
Security Model.. 2-4

Authentication... 2-4
Access Control and Authorization ... 2-5
Data Integrity... 2-6
Data Privacy... 2-6
Password Policies.. 2-6

About the Standard LDAP APIs.. 2-7
API Usage Model ... 2-7
Getting Started with the C API .. 2-7
Getting Started with the DBMS_LDAP Package ... 2-8
Getting Started with the Java API.. 2-8

Initializing an LDAP Session .. 2-8
Initializing the Session by Using the C API ... 2-8
Initializing the Session by Using DBMS_LDAP .. 2-9
Initializing the Session by Using JNDI... 2-10

Authenticating an LDAP Session... 2-10
Authenticating an LDAP Session by Using the C API .. 2-11
Authenticating an LDAP Session by Using DBMS_LDAP ... 2-11

Searching the Directory.. 2-12
Program Flow for Search Operations... 2-12
Search Scope... 2-13
Filters... 2-14
Searching the Directory by Using the C API... 2-15
Searching the Directory by Using DBMS_LDAP ... 2-16

Terminating the Session... 2-17
Terminating the Session by Using the C API.. 2-17
Terminating the Session by Using DBMS_LDAP... 2-17

3 Developing Applications with Oracle Extensions to the Standard APIs

Using Oracle Extensions to the Standard APIs .. 3-1
Using the API Extensions in PL/SQL ... 3-3
Using the API Extensions in Java... 3-3

The oracle.java.util Package .. 3-3
PropertySetCollection, PropertySet, and Property Classes .. 3-3

How the Standard APIs and The Oracle Extensions Are Installed .. 3-4
Creating an Application Identity in the Directory .. 3-4

Creating an Application Identity ... 3-4
Assigning Privileges to an Application Identity ... 3-5

User Management Functionality ... 3-5
User Operations Performed by Directory-Enabled Applications ... 3-5
User Management APIs .. 3-6

Java API for User Management .. 3-6
C API for User Management ... 3-6

vii

PL/SQL API for User Management ... 3-6
User Authentication... 3-6

Java API for User Authentication ... 3-7
PL/SQL API for User Authentication.. 3-7
C API for User Authentication.. 3-7

User Creation .. 3-7
Java API for User Creation .. 3-7
PL/SQL API for User Creation... 3-8
C API for User Creation ... 3-8

User Object Retrieval ... 3-8
Java API for User Object Retrieval ... 3-8
PL/SQL API for User Object Retrieval .. 3-9
C API for User Object Retrieval .. 3-9

Group Management Functionality ... 3-9
Identity Management Realm Functionality .. 3-9

Realm Object Retrieval for the Java API ... 3-9
Server Discovery Functionality .. 3-10

Benefits of Oracle Internet Directory Discovery Interfaces... 3-10
Usage Model for Discovery Interfaces ... 3-11
Determining Server Name and Port Number From DNS... 3-12

Mapping the DN of the Naming Context... 3-12
Search by Domain Component of Local Machine... 3-12
Search by Default SRV Record in DNS... 3-12

Environment Variables for DNS Server Discovery.. 3-13
Programming Interfaces for DNS Server Discovery.. 3-13
Java APIs for Server Discovery ... 3-13
Examples: Java API for Directory Server Discovery.. 3-14

SASL Authentication Functionality .. 3-15
SASL Authentication by Using the DIGEST-MD5 Mechanism.. 3-15

Steps Involved in SASL Authentication by Using DIGEST-MD5..................................... 3-15
JAVA APIs for SASL Authentication by Using DIGEST-MD5 ... 3-16

SASL Authentication by Using External Mechanism .. 3-16
Proxying on Behalf of End Users ... 3-17
Creating Dynamic Password Verifiers... 3-18

Request Control for Dynamic Password Verifiers .. 3-18
Syntax for DynamicVerifierRequestControl ... 3-18
Parameters Required by the Hashing Algorithms ... 3-19
Configuring the Authentication APIs .. 3-19

Parameters Passed If ldap_search Is Used ... 3-20
Parameters Passed If ldap_compare Is Used ... 3-20

Response Control for Dynamic Password Verifiers... 3-20
Obtaining Privileges for the Dynamic Verifier Framework ... 3-20

Dependencies and Limitations for the PL/SQ LDAP API... 3-20

4 Developing Provisioning-Integrated Applications

Introduction to the Oracle Directory Provisioning Integration Service .. 4-1
Developing Provisioning-Integrated Applications ... 4-2

viii

Example of a Provisioning-Integrated Application .. 4-2
Requirements of the Employee Self Service Application.. 4-2
Registering the Employee Self Service Application in Oracle Internet Directory............. 4-3
Identifying the Management Context for the Employee Self Service Application 4-4
Determining Provisioning Mode for the Employee Self Service Application 4-4
Determining Events for the Employee Self Service Application ... 4-4
Provisioning the Employee Self Service Application for an Identity Management
Realm .. 4-5
Determining Scheduling Parameters for the Employee Self Service Application 4-9
Determining the Interface Connection Information for the Employee Self Service
Application ... 4-10
Implementing the Interface Specification for the Employee Self Service
Application ... 4-11
Creating the Provisioning Subscription Profile for the Employee Self Service
Application ... 4-11

Provisioning Integration Prerequisites ... 4-12
Development Usage Model for Provisioning Integration... 4-12

Initiating Provisioning Integration ... 4-12
Returning Provisioning Information to the Directory... 4-13

Development Tasks for Provisioning Integration .. 4-14
Application Installation.. 4-15
User Creation and Enrollment .. 4-15
User Deletion ... 4-15
Extensible Event Definitions.. 4-16
 Application Deinstallation.. 4-17
LDAP_NTFY Function Definitions... 4-17

FUNCTION user_exists .. 4-17
FUNCTION group_exists ... 4-17

FUNCTION event_ntfy .. 4-18

5 Developing Directory Plug-ins

Plug-in Prerequisites ... 5-1
Plug-in Benefits... 5-1
What Is the Plug-in Framework?... 5-2
Operation-Based Plug-ins Supported by the Directory.. 5-2

Pre-Operation Plug-ins.. 5-2
Post-Operation Plug-ins .. 5-3
When-Operation Plug-ins ... 5-3

Designing, Creating, and Using Plug-ins .. 5-3
Designing Plug-ins... 5-4

Types of Plug-in Operations.. 5-4
Naming Plug-ins ... 5-4

Creating Plug-ins.. 5-4
Package Specifications for Plug-in Module Interfaces .. 5-4

Compiling Plug-ins .. 5-6
Dependencies .. 5-6
Recompiling Plug-ins .. 5-6
Granting Permission... 5-6

ix

Registering Plug-ins... 5-6
The orclPluginConfig Object Class... 5-7
Adding a Plug-in Configuration Entry by Using Command-Line Tools 5-8
Example 1 ... 5-8
Example 2 ... 5-9

Managing Plug-ins... 5-9
Modifying Plug-ins... 5-9
Debugging Plug-ins .. 5-10

Enabling and Disabling Plug-ins .. 5-10
Exception Handling .. 5-10

Error Handling ... 5-10
Program Control Handling between Oracle Internet Directory and Plug-ins................ 5-10

Plug-in LDAP API... 5-11
Plug-ins and Replication .. 5-11
Plug-in and Database Tools ... 5-12
Security ... 5-12
Plug-in Debugging.. 5-12
Plug-in LDAP API Specifications ... 5-13

Examples of Plug-ins .. 5-13
Example 1: Search Query Logging ... 5-13
Example 2: Synchronizing Two DITs... 5-15

Binary Support in the Plug-in Framework... 5-18
Binary Operations with ldapmodify .. 5-18
Binary Operations with ldapadd .. 5-20
Binary Operations with ldapcompare.. 5-22

Database Object Types Defined ... 5-25
Specifications for Plug-in Procedures ... 5-26

6 Integrating with Oracle Delegated Administration Services

What Is Oracle Delegated Administration Services? .. 6-1
How Applications Benefit from Oracle Delegated Administration Services............................ 6-2

Integrating Applications with the Delegated Administration Services.. 6-2
Integration Profile .. 6-2
Oracle Delegated Administration Services Integration Methodology and
Considerations.. 6-2

Java APIs Used to Access URLs ... 6-5

7 Developing Applications for Single Sign-On

What Is mod_osso?... 7-1
Protecting Applications Using mod_osso: Two Methods .. 7-2

Protecting URLs Statically .. 7-2
Protecting URLs with Dynamic Directives .. 7-2

Developing Applications Using mod_osso... 7-3
Developing Statically Protected PL/SQL Applications ... 7-3
Developing Statically Protected Java Applications... 7-5
Developing Java Applications That Use Dynamic Directives ... 7-6

x

Java Example #1: Simple Authentication .. 7-6
Java Example #2: Single Sign-Off.. 7-8
Java Example #3: Forced Authentication... 7-8

A Word About Non-GET Authentication .. 7-9
Security Issues: Single Sign-Off and Application Logout ... 7-9

Application Login: Code Examples.. 7-10
Bad Code Example #1.. 7-10
Bad Code Example #2.. 7-10
Recommended Code ... 7-11

Application Logout: Recommended Code.. 7-11

Part II Oracle Internet Directory Programming Reference

8 C API Reference

About the Oracle Internet Directory C API... 8-1
Oracle Internet Directory SDK C API SSL Extensions.. 8-1

SSL Interface Calls .. 8-2
Wallet Support... 8-2

Functions in the C API .. 8-2
The Functions at a Glance ... 8-3
Initializing an LDAP Session.. 8-5

ldap_init and ldap_open.. 8-5
LDAP Session Handle Options .. 8-6

ldap_get_option and ldap_set_option ... 8-6
Authenticating to the Directory .. 8-10

ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s.......... 8-10
SASL Authentication Using Oracle Extensions .. 8-12

ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl... 8-13

SASL Authentication .. 8-14
ora_ldap_init_SASL ... 8-14

Working With Controls .. 8-14
Closing the Session ... 8-16

ldap_unbind, ldap_unbind_ext, and ldap_unbind_s ... 8-16
Performing LDAP Operations... 8-16

ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s............................ 8-17
Reading an Entry.. 8-20
Listing the Children of an Entry .. 8-20
ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s 8-20
ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s 8-22
ldap_rename and ldap_rename_s ... 8-24
ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s ... 8-26
ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s 8-27
ldap_extended_operation and ldap_extended_operation_s ... 8-29

Abandoning an Operation ... 8-30
ldap_abandon_ext and ldap_abandon ... 8-30

Obtaining Results and Peeking Inside LDAP Messages ... 8-31

xi

ldap_result, ldap_msgtype, and ldap_msgid .. 8-31
Handling Errors and Parsing Results... 8-33

ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result,
and ldap_err2string ... 8-33

Stepping Through a List of Results .. 8-35
ldap_first_message and ldap_next_message ... 8-35

Parsing Search Results.. 8-36
ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference,
ldap_count_entries, and ldap_count_references... 8-36
ldap_first_attribute and ldap_next_attribute... 8-37
ldap_get_values, ldap_get_values_len, ldap_count_values,
ldap_count_values_len, ldap_value_free, and ldap_value_free_len 8-38
ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn 8-39
ldap_get_entry_controls ... 8-40
ldap_parse_reference... 8-40

Sample C API Usage ... 8-41
C API Usage with SSL .. 8-42
C API Usage Without SSL.. 8-42
C API Usage for SASL-Based DIGEST-MD5 Authentication ... 8-43

Required Header Files and Libraries for the C API ... 8-45
Dependencies and Limitations of the C API ... 8-46

9 DBMS_LDAP PL/SQL Reference

Summary of Subprograms.. 9-1
Exception Summary ... 9-3
Data Type Summary .. 9-5
Subprograms ... 9-5

FUNCTION init .. 9-5
FUNCTION simple_bind_s .. 9-7
FUNCTION bind_s .. 9-7
FUNCTION unbind_s ... 9-8
FUNCTION compare_s... 9-9
FUNCTION search_s .. 9-10
FUNCTION search_st... 9-12
FUNCTION first_entry... 9-13
FUNCTION next_entry .. 9-14
FUNCTION count_entries ... 9-15
FUNCTION first_attribute... 9-16
FUNCTION next_attribute .. 9-17
FUNCTION get_dn... 9-18
FUNCTION get_values .. 9-19
FUNCTION get_values_len... 9-20
FUNCTION delete_s... 9-21
FUNCTION modrdn2_s... 9-22
FUNCTION err2string.. 9-23
FUNCTION create_mod_array... 9-24
PROCEDURE populate_mod_array (String Version) ... 9-25

xii

PROCEDURE populate_mod_array (Binary Version) .. 9-25
PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type) 9-26
FUNCTION get_values_blob .. 9-27
FUNCTION count_values_blob.. 9-28
FUNCTION value_free_blob... 9-29
FUNCTION modify_s .. 9-29
FUNCTION add_s .. 9-30
PROCEDURE free_mod_array.. 9-31
FUNCTION count_values ... 9-32
FUNCTION count_values_len .. 9-32
FUNCTION rename_s .. 9-33
FUNCTION explode_dn .. 9-34
FUNCTION open_ssl.. 9-35
FUNCTION msgfree... 9-36
FUNCTION ber_free .. 9-37
FUNCTION nls_convert_to_utf8.. 9-38
FUNCTION nls_convert_to_utf8.. 9-38
FUNCTION nls_convert_from_utf8... 9-39
FUNCTION nls_convert_from_utf8... 9-40
FUNCTION nls_get_dbcharset_name ... 9-41

10 Java API Reference

11 DBMS_LDAP_UTL PL/SQL Reference

Summary of Subprograms... 11-1
Subprograms .. 11-3

User-Related Subprograms.. 11-3
Function authenticate_user .. 11-4
Function create_user_handle.. 11-5
Function set_user_handle_properties ... 11-6
Function get_user_properties... 11-7
Function set_user_properties ... 11-8
Function get_user_extended_properties .. 11-9
Function get_user_dn.. 11-11
Function check_group_membership ... 11-12
Function locate_subscriber_for_user ... 11-12
Function get_group_membership ... 11-14

Group-Related Subprograms .. 11-15
Function create_group_handle .. 11-16
Function set_group_handle_properties.. 11-16
Function get_group_properties ... 11-17
Function get_group_dn... 11-18

Subscriber-Related Subprograms ... 11-19
Function create_subscriber_handle .. 11-20
Function get_subscriber_properties ... 11-21
Function get_subscriber_dn ... 11-22
Function get_subscriber_ext_properties... 11-23

xiii

Property-Related Subprograms .. 11-24
Miscellaneous Subprograms.. 11-25

Function normalize_dn_with_case.. 11-25
Function get_property_names ... 11-26
Function get_property_values ... 11-27
Function get_property_values_len ... 11-27
Procedure free_propertyset_collection ... 11-28
Function create_mod_propertyset... 11-29
Function populate_mod_propertyset ... 11-30
Procedure free_mod_propertyset.. 11-31
Procedure free_handle .. 11-31
Function check_interface_version ... 11-31
Function get_property_values_blob.. 11-32
Procedure property_value_free_blob ... 11-33

Function Return Code Summary.. 11-33
Data Type Summary ... 11-35

12 DAS_URL Interface Reference

Directory Entries for the Service Units ... 12-1
DAS Units and Corresponding URL Parameters .. 12-2
DAS URL API Parameter Descriptions... 12-4
Search-and-Select Service Units for Users or Groups .. 12-5

Invoking Search-and-Select Service Units for Users or Groups... 12-5
Receiving Data from the User or Group Search-and-Select Service Units 12-6

13 Provisioning Integration API Reference

Versioning of Provisioning Files and Interfaces ... 13-1
Extensible Event Definition Configuration .. 13-1
Inbound and Outbound Events.. 13-3
PL/SQL Bidirectional Interface (Version 2.0) ... 13-4
Provisioning Event Interface (Version 1.1) ... 13-6

Predefined Event Types ... 13-7
Attribute Type ... 13-8
Attribute Modification Type.. 13-8
Event Dispositions Constants.. 13-8
Callbacks... 13-8

GetAppEvent() ... 13-8
PutAppEventStatus()... 13-9
PutOIDEvent().. 13-9

Part III Appendixes

A Syntax for LDIF and Command-Line Tools

LDAP Data Interchange Format (LDIF) Syntax... A-1
Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers A-3

The OID Monitor (oidmon) Syntax .. A-3

xiv

Starting the OID Monitor.. A-3
Stopping the OID Monitor.. A-4
Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration............... A-4

The OID Control Utility (oidctl) Syntax... A-4
Starting and Stopping an Oracle Directory Server Instance.. A-5
Troubleshooting Directory Server Instance Startup ... A-6
Starting and Stopping an Oracle Directory Replication Server Instance........................... A-7
Starting the Oracle Directory Integration and Provisioning Server A-8
Stopping the Oracle Directory Integration and Provisioning Server A-11
Restarting Oracle Internet Directory Server Instances ... A-11
Starting and Stopping Directory Servers on a Virtual Host or an Oracle
Application Server Cluster (Identity Management) ... A-12

Entry and Attribute Management Command-Line Tools Syntax .. A-13
The Catalog Management Tool (catalog.sh) Syntax... A-13
ldapadd Syntax.. A-15
ldapaddmt Syntax ... A-16
ldapbind Syntax... A-18
ldapcompare Syntax ... A-19
ldapdelete Syntax .. A-20
ldapmoddn Syntax.. A-21
ldapmodify Syntax.. A-23
ldapmodifymt Syntax ... A-26
ldapsearch Syntax ... A-28

Examples of ldapsearch Filters .. A-30
Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax........ A-32

The Directory Integration and Provisioning Assistant (dipassistant) Syntax........................ A-32
Creating, Modifying, and Deleting Synchronization Profiles .. A-33
Listing All Synchronization Profiles in Oracle Internet Directory A-35
Viewing the Details of a Specific Synchronization Profile .. A-36
Performing an Express Configuration of the Active Directory Connector Profiles....... A-37
Bootstrapping a Directory by Using the Directory Integration and Provisioning
Assistant .. A-37
Properties Expected by the Bootstrapping Command ... A-39
Setting the Wallet Password for the Oracle Directory Integration and
Provisioning Server A-41
Changing the Password of the Administrator of Oracle Directory Integration and
Provisioning Platform ... A-41
Moving an Integration Profile to a Different Identity Management Node A-42
Limitations of the Directory Integration and Provisioning Assistant in Oracle
Internet Directory 10g Release 2 (10.1.2)... A-43

The schemasync Tool Syntax... A-44
The Oracle Directory Integration and Provisioning Server Registration Tool
(odisrvreg) .. A-45
Syntax for Provisioning Subscription Tool (oidprovtool)... A-45

B DSML Syntax

Capabilities of DSML... B-1
Benefits of DSML .. B-1

xv

DSML Syntax ... B-1
Top-Level Structure .. B-2
Directory Entries ... B-2
Schema Entries... B-3

Tools Enabled for DSML ... B-3

 Glossary

Index

xvi

xvii

List of Figures

1–1 A Directory-Enabled Application... 1-5
1–2 An Application Leveraging APIs and Services .. 1-7
2–1 A Directory Information Tree ... 2-2
2–2 Attributes of the Entry for Anne Smith ... 2-3
2–3 Steps in Typical DBMS_LDAP Usage .. 2-7
2–4 Flow of Search-Related Operations... 2-13
2–5 The Three Scope Options .. 2-14
3–1 Oracle API Extensions.. 3-2
3–2 Programmatic Flow for API Extensions .. 3-2
4–1 How an Application Obtains Provisioning Information by Using the Oracle

Directory Provisioning Integration Service.. 4-13
4–2 How an Application Returns Provisioning Information to Oracle Internet

Directory Provisioning Service .. 4-13
4–3 Provisioning Services and Their Subscribed Applications in a Typical

Deployment .. 4-14
4–4 PL/SQL Callback Interface... 4-16
6–1 Overview of Delegated Administration Services... 6-1

xviii

List of Tables

1–1 Interactions During Application Lifecycle ... 1-6
1–2 Services and APIs for Integrating with Oracle Internet Directory 1-7
1–3 Services for Modifying Existing Applications ... 1-8
1–4 Application Integration Points... 1-9
2–1 LDAP Functions ... 2-4
2–2 SSL Authentication Modes ... 2-5
2–3 Parameters for ldap_init()... 2-9
2–4 Arguments for ldap_simple_bind_s() .. 2-11
2–5 Options for search_s() or search_st() Functions ... 2-13
2–6 Search Filters.. 2-14
2–7 Boolean Operators .. 2-15
2–8 Arguments for ldap_search_s()... 2-16
2–9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st() 2-16
3–1 How the APIs are Installed... 3-4
3–2 Environment Variables for DNS Discovery .. 3-13
3–3 Methods for Directory Server Discovery... 3-14
3–4 Parameters in DynamicVerifierRequestControl... 3-19
3–5 Parameters Required by the Hashing Algorithms... 3-19
4–1 Extensible Event Definitions ... 4-17
4–2 Function user_exists Parameters .. 4-17
4–3 Function group_exists Parameters ... 4-18
4–4 Parameters for FUNCTION event_ntfy... 4-18
5–1 Plug-in Module Interface .. 5-4
5–2 Operation-Based and Attribute-Based Plug-in Procedure Signatures............................... 5-5
5–3 Plug-in Attribute Names and Values.. 5-7
5–4 Valid Values for the Plugin-in Return Code ... 5-10
5–5 Program Control Handling when a Plug-in Exception Occurs.. 5-10
5–6 Program Control Handling when an LDAP Operation Fails... 5-11
6–1 Considerations for Integrating an Application with Oracle Delegated

 Administration Services.. 6-3
6–2 URL Parameters for Oracle Delegated Administration Services .. 6-4
7–1 User Attributes Passed to Partner Applications.. 7-1
7–2 Commonly Requested Dynamic Directives ... 7-3
8–1 Arguments for SSL Interface Calls .. 8-2
8–2 Functions and Procedures in the C API.. 8-3
8–3 Parameters for Initializing an LDAP Session... 8-5
8–4 Parameters for LDAP Session Handle Options... 8-7
8–5 Constants... 8-7
8–6 Parameters for Authenticating to the Directory... 8-11
8–7 Parameters for Managing SASL Credentials .. 8-13
8–8 Parameters for Managing SASL Credentials .. 8-14
8–9 Fields in ldapcontrol Structure ... 8-15
8–10 Parameters for Closing the Session .. 8-16
8–11 Parameters for Search Operations .. 8-18
8–12 Parameters for Compare Operations ... 8-21
8–13 Parameters for Modify Operations... 8-23
8–14 Fields in LDAPMod Structure... 8-23
8–15 Parameters for Rename Operations ... 8-25
8–16 Parameters for Add Operations.. 8-27
8–17 Parameters for Delete Operations .. 8-28
8–18 Parameters for Extended Operations... 8-29
8–19 Parameters for Abandoning an Operation.. 8-30
8–20 Parameters for Obtaining Results and Peeking Inside LDAP Messages........................ 8-32

xix

8–21 Parameters for Handling Errors and Parsing Results ... 8-34
8–22 Parameters for Stepping Through a List of Results ... 8-35
8–23 Parameters for Retrieving Entries and Continuation References from a Search

 Result Chain, and for Counting Entries Returned ... 8-36
8–24 Parameters for Stepping Through Attribute Types Returned with an Entry 8-37
8–25 Parameters for Retrieving and Counting Attribute Values .. 8-38
8–26 Parameters for Retrieving, Exploding, and Converting Entry Names 8-39
8–27 Parameters for Extracting LDAP Controls from an Entry .. 8-40
8–28 Parameters for Extracting Referrals and Controls from a SearchResultReference

 Message .. 8-41
9–1 DBMS_LDAP API Subprograms ... 9-1
9–2 DBMS_LDAP Exception Summary ... 9-4
9–3 DBMS_LDAP Data Type Summary .. 9-5
9–4 INIT Function Parameters .. 9-6
9–5 INIT Function Return Values ... 9-6
9–6 INIT Function Exceptions ... 9-6
9–7 SIMPLE_BIND_S Function Parameters .. 9-7
9–8 SIMPLE_BIND_S Function Return Values... 9-7
9–9 SIMPLE_BIND_S Function Exceptions... 9-7
9–10 BIND_S Function Parameters... 9-8
9–11 BIND_S Function Return Values ... 9-8
9–12 BIND_S Function Exceptions ... 9-8
9–13 UNBIND_S Function Parameters .. 9-9
9–14 UNBIND_S Function Return Values... 9-9
9–15 UNBIND_S Function Exceptions... 9-9
9–16 COMPARE_S Function Parameters .. 9-9
9–17 COMPARE_S Function Return Values .. 9-10
9–18 COMPARE_S Function Exceptions .. 9-10
9–19 SEARCH_S Function Parameters ... 9-11
9–20 SEARCH_S Function Return Value.. 9-11
9–21 SEARCH_S Function Exceptions.. 9-11
9–22 SEARCH_ST Function Parameters... 9-12
9–23 SEARCH_ST Function Return Values ... 9-13
9–24 SEARCH_ST Function Exceptions ... 9-13
9–25 FIRST_ENTRY Function Parameters ... 9-13
9–26 FIRST_ENTRY Return Values... 9-14
9–27 FIRST_ENTRY Exceptions... 9-14
9–28 NEXT_ENTRY Function Parameters ... 9-14
9–29 NEXT_ENTRY Function Return Values .. 9-15
9–30 NEXT_ENTRY Function Exceptions .. 9-15
9–31 COUNT_ENTRY Function Parameters ... 9-15
9–32 COUNT_ENTRY Function Return Values .. 9-16
9–33 COUNT_ENTRY Function Exceptions .. 9-16
9–34 FIRST_ATTRIBUTE Function Parameters... 9-16
9–35 FIRST_ATTRIBUTE Function Return Values ... 9-17
9–36 FIRST_ATTRIBUTE Function Exceptions ... 9-17
9–37 NEXT_ATTRIBUTE Function Parameters .. 9-17
9–38 NEXT_ATTRIBUTE Function Return Values ... 9-18
9–39 NEXT_ATTRIBUTE Function Exceptions ... 9-18
9–40 GET_DN Function Parameters ... 9-18
9–41 GET_DN Function Return Values .. 9-19
9–42 GET_DN Function Exceptions .. 9-19
9–43 GET_VALUES Function Parameters.. 9-19
9–44 GET_VALUES Function Return Values .. 9-20
9–45 GET_VALUES Function Exceptions .. 9-20

xx

9–46 GET_VALUES_LEN Function Parameters.. 9-20
9–47 GET_VALUES_LEN Function Return Values .. 9-21
9–48 GET_VALUES_LEN Function Exceptions .. 9-21
9–49 DELETE_S Function Parameters .. 9-21
9–50 DELETE_S Function Return Values ... 9-22
9–51 DELETE_S Function Exceptions ... 9-22
9–52 MODRDN2_S Function Parameters... 9-22
9–53 MODRDN2_S Function Return Values ... 9-23
9–54 MODRDN2_S Function Exceptions ... 9-23
9–55 ERR2STRING Function Parameters ... 9-23
9–56 ERR2STRING Function Return Values.. 9-24
9–57 CREATE_MOD_ARRAY Function Parameters.. 9-24
9–58 CREATE_MOD_ARRAY Function Return Values .. 9-24
9–59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters 9-25
9–60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions 9-25
9–61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters 9-26
9–62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions 9-26
9–63 POPULATE_MOD_ARRAY (Binary) Parameters ... 9-27
9–64 POPULATE_MOD_ARRAY (Binary) Exceptions .. 9-27
9–65 GET_VALUES_BLOB Parameters .. 9-27
9–66 get_values_blob Return Values... 9-28
9–67 get_values_blob Exceptions... 9-28
9–68 COUNT_VALUES_BLOB Parameters ... 9-28
9–69 COUNT_VALUES_BLOB Return Values.. 9-29
9–70 VALUE_FREE_BLOB Parameters .. 9-29
9–71 MODIFY_S Function Parameters ... 9-30
9–72 MODIFY_S Function Return Values .. 9-30
9–73 MODIFY_S Function Exceptions .. 9-30
9–74 ADD_S Function Parameters .. 9-31
9–75 ADD_S Function Return Values ... 9-31
9–76 ADD_S Function Exceptions ... 9-31
9–77 FREE_MOD_ARRAY Procedure Parameters ... 9-32
9–78 COUNT_VALUES Function Parameters... 9-32
9–79 COUNT_VALUES Function Return Values.. 9-32
9–80 COUNT_VALUES_LEN Function Parameters... 9-33
9–81 COUNT_VALUES_LEN Function Return Values ... 9-33
9–82 RENAME_S Function Parameters .. 9-33
9–83 RENAME_S Function Return Values... 9-34
9–84 RENAME_S Function Exceptions... 9-34
9–85 EXPLODE_DN Function Parameters... 9-34
9–86 EXPLODE_DN Function Return Values ... 9-35
9–87 EXPLODE_DN Function Exceptions ... 9-35
9–88 OPEN_SSL Function Parameters.. 9-35
9–89 OPEN_SSL Function Return Values... 9-36
9–90 OPEN_SSL Function Exceptions... 9-36
9–91 MSGFREE Function Parameters ... 9-36
9–92 MSGFREE Return Values .. 9-37
9–93 BER_FREE Function Parameters .. 9-37
9–94 Parameters for nls_convert_to_utf8 ... 9-38
9–95 Return Values for nls_convert_to_utf8 .. 9-38
9–96 Parameters for nls_convert_to_utf8 ... 9-39
9–97 Return Values for nls_convert_to_utf8 .. 9-39
9–98 Parameter for nls_convert_from_utf8 .. 9-39
9–99 Return Value for nls_convert_from_utf8... 9-39
9–100 Parameter for nls_convert_from_utf8 .. 9-40

xxi

9–101 Return Value for nls_convert_from_utf8... 9-40
9–102 Return Value for nls_get_dbcharset_name ... 9-41
11–1 DBMS_LDAP_UTL User-Related Subprograms .. 11-1
11–2 DBMS_LDAP_UTL Group-Related Subprograms... 11-2
11–3 DBMS_LDAP_UTL Subscriber-Related Subprograms.. 11-2
11–4 DBMS_LDAP_UTL Miscellaneous Subprograms.. 11-2
11–5 AUTHENTICATE_USER Function Parameters ... 11-4
11–6 AUTHENTICATE_USER Function Return Values.. 11-4
11–7 CREATE_USER_HANDLE Function Parameters.. 11-5
11–8 CREATE_USER_HANDLE Function Return Values .. 11-5
11–9 SET_USER_HANDLE_PROPERTIES Function Parameters... 11-6
11–10 SET_USER_HANDLE_PROPERTIES Function Return Values 11-6
11–11 GET_USER_PROPERTIES Function Parameters ... 11-7
11–12 GET_USER_PROPERTIES Function Return Values .. 11-7
11–13 SET_USER_PROPERTIES Function Parameters .. 11-8
11–14 SET_USER_PROPERTIES Function Return Values ... 11-9
11–15 GET_USER_EXTENDED_PROPERTIES Function Parameters 11-10
11–16 GET_USER_EXTENDED_PROPERTIES Function Return Values 11-10
11–17 GET_USER_DN Function Parameters ... 11-11
11–18 GET_USER_DN Function Return Values.. 11-11
11–19 CHECK_GROUP_MEMBERSHIP Function Parameters .. 11-12
11–20 CHECK_GROUP_MEMBERSHIP Function Return Values ... 11-12
11–21 LOCATE_SUBSCRIBER_FOR_USER Function Parameters... 11-13
11–22 LOCATE SUBSCRIBER FOR USER Function Return Values... 11-13
11–23 GET_GROUP_MEMBERSHIP Function Parameters... 11-14
11–24 GET_GROUP_MEMBERSHIP Function Return Values ... 11-14
11–25 CREATE_GROUP_HANDLE Function Parameters.. 11-16
11–26 CREATE_GROUP_HANDLE Function Return Values .. 11-16
11–27 SET_GROUP_HANDLE_PROPERTIES Function Parameters....................................... 11-17
11–28 SET_GROUP_HANDLE_PROPERTIES Function Return Values 11-17
11–29 GET_GROUP_PROPERTIES Function Parameters ... 11-17
11–30 GET_GROUP_PROPERTIES Function Return Values .. 11-18
11–31 GET_GROUP_DN Function Parameters ... 11-19
11–32 GET_GROUP_DN Function Return Values.. 11-19
11–33 CREATE_SUBSCRIBER_HANDLE Function Parameters .. 11-20
11–34 CREATE_SUBSCRIBER_HANDLE Function Return Values... 11-20
11–35 GET_SUBSCRIBER_PROPERTIES Function Parameters.. 11-21
11–36 GET_SUBSCRIBER_PROPERTIES Function Return Values .. 11-21
11–37 GET_SUBSCRIBER_DN Function Parameters ... 11-22
11–38 GET_SUBSCRIBER_DN Function Return Values .. 11-22
11–39 GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters 11-23
11–40 GET_USER_EXTENDED_PROPERTIES Function Return Values 11-24
11–41 NORMALIZE_DN_WITH_CASE Function Parameters... 11-25
11–42 NORMALIZE_DN_WITH_CASE Function Return Values.. 11-26
11–43 GET_PROPERTY_NAMES Function Parameters .. 11-26
11–44 GET_PROPERTY_NAMES Function Return Values... 11-26
11–45 GET_PROPERTY_VALUES Function Parameters ... 11-27
11–46 GET_PROPERTY_VALUES Function Return Values.. 11-27
11–47 GET_PROPERTY_VALUES_LEN Function Parameters... 11-28
11–48 GET_PROPERTY_VALUES_LEN Function Return Values ... 11-28
11–49 FREE_PROPERTYSET_COLLECTION Procedure Parameters 11-29
11–50 CREATE_MOD_PROPERTYSET Function Parameters .. 11-29
11–51 CREATE_MOD_PROPERTYSET Function Return Values... 11-29
11–52 POPULATE_MOD_PROPERTYSET Function Parameters .. 11-30
11–53 POPULATE_MOD_PROPERTYSET Function Return Values 11-30

xxii

11–54 FREE_MOD_PROPERTYSET Procedure Parameters.. 11-31
11–55 FREE_HANDLE Procedure Parameters.. 11-31
11–56 CHECK_INTERFACE_VERSION Function Parameters... 11-32
11–57 CHECK_VERSION_INTERFACE Function Return Values ... 11-32
11–58 GET_PROPERTY_VALUES_BLOB Function Parameters .. 11-32
11–59 GET_PROPERTY_VALUES_BLOB Return Values.. 11-33
11–60 PROPERTY_VALUE_FREE_BLOB Function Parameters... 11-33
11–61 Function Return Codes .. 11-33
11–62 DBMS_LDAP_UTL Data Types.. 11-35
12–1 Service Units and Corresponding Entries ... 12-1
12–2 DAS Units and Corresponding URL Parameters... 12-2
12–3 DAS URL Parameter Descriptions ... 12-4
12–4 User Search and Select.. 12-6
12–5 Group Search and Select .. 12-6
13–1 Predefined Event Definitions .. 13-2
13–2 Attributes of the Provisioning Subscription Profile... 13-4
A–1 Arguments for Starting OID Monitor .. A-3
A–2 Arguments for Stopping OID Monitor .. A-4
A–3 Arguments for Starting a Directory Server by Using OIDCTL.. A-5
A–4 Arguments for Starting a Directory Replication Server by Using OIDCTL..................... A-7
A–5 Description of Arguments for Starting the Oracle Directory Integration and

 Provisioning Server .. A-9
A–6 Arguments for the Catalog Management Tool (catalog.sh) ... A-14
A–7 Arguments for ldapadd ... A-15
A–8 Arguments for ldapaddmt... A-17
A–9 Arguments for ldapbind .. A-18
A–10 Optional Arguments... A-19
A–11 Arguments for ldapcompare... A-19
A–12 Arguments for ldapdelete.. A-20
A–13 Arguments for ldapmoddn ... A-22
A–14 Arguments for ldapmodify ... A-23
A–15 Arguments for ldapmodifymt... A-27
A–16 Arguments for ldapsearch ... A-28
A–17 Summary of Functionality of the Directory Integration and Provisioning

 Assistant ... A-32
A–18 Parameters for Creating, Modifying, and Deleting Synchronization Profiles

 by Using the Directory Integration and Provisioning Assistant...................................... A-33
A–19 Properties Expected by createprofile and modifyprofile Commands A-34
A–20 Parameters of the listprofiles Command... A-36
A–21 Parameters of the showprofile Command .. A-36
A–22 Parameters of the expressconfig Command ... A-37
A–23 Parameters of the bootstrap Command... A-38
A–24 Bootstrapping Configuration File Properties.. A-39
A–25 Parameters of the chgpasswd Command.. A-42
A–26 Scenarios for Reassociating Directory Integration Profiles... A-42
A–27 Parameters of the reassociate Command .. A-43
A–28 Limitations of Bootstrapping in the Directory Integration and Provisioning

 Assistant ... A-44
A–29 Descriptions of ODISRVREG Arguments ... A-45
A–30 Provisioning Subscription Tool Parameters.. A-46

xxiii

Send Us Your Comments

Oracle Identity Management Application Developer’s Guide, 10g Release 2
(10.1.2)

Part No. B14087-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: (650) 506-7375. Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xxiv

xxv

Preface

Oracle Identity Management Application Developer’s Guide explains how to modify
applications to work with the Oracle Identity Management infrastructure. For the
purposes of this book, this infrastructure consists of Oracle Application Server Single
Sign-On, Oracle Internet Directory, Oracle Delegated Administration Services, and the
Directory Integration Platform.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Audience
The following readers can benefit from this book:

■ Developers who want to integrate applications with the Oracle Identity
Management infrastructure. This process involves storing and updating
information in an Oracle Internet Directory server. It also involves modifying
applications to work with mod_osso, an authentication module on the Oracle
HTTP Server.

■ Anyone who wants to learn about the LDAP APIs and Oracle extensions to these
APIs.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

xxvi

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Structure

Part I, Programming for Oracle Identity Management

Chapter 1, "Developing Applications for Oracle Identity Management"
Takes a high level look at how to integrate applications with the Oracle Identity
Management infrastructure. Introduces the reader to the Oracle Internet Directory
Software Developer’s Kit 10g Release 2 (10.1.2). Provides an overview of how an
application can use the kit to integrate with the directory.

Chapter 2, "Developing Applications with Standard LDAP APIs"
Provides a brief overview of all of the major operations available in the C API and the
PL/SQL API. Provides developers a general understanding of Lightweight Directory
Access Protocol (LDAP) from a perspective independent of the API.

Chapter 3, "Developing Applications with Oracle Extensions to the Standard APIs"
Explains the concepts behind Oracle extensions to LDAP APIs. Describes the abstract
entities that are modeled by the extensions as well as the usage model of the Oracle
extensions.

Chapter 4, "Developing Provisioning-Integrated Applications"
Explains how to develop applications that can use the Oracle Directory Provisioning
Integration Service in the Oracle Directory Integration and Provisioning platform.
These applications can be either legacy applications or third-party applications that are
based on the Oracle platform.

Chapter 5, "Developing Directory Plug-ins"
Explains how to use the plug-in framework for Oracle Internet Directory to facilitate
custom development.

Chapter 6, "Integrating with Oracle Delegated Administration Services"
Explains how developers can use the DAS URL to integrate with Oracle Delegated
Administration Services.

Chapter 7, "Developing Applications for Single Sign-On"
Explains how the HTTP authentication module mod_osso protects applications
enabled by OracleAS Single Sign-On. Provides code that demonstrates how
applications are integrated with mod_osso.

xxvii

Part II Oracle Internet Directory API Reference

Chapter 8, "C API Reference"
Introduces the standard C API. Provides examples of how to use it.

Chapter 9, "DBMS_LDAP PL/SQL Reference"
Introduces the DBMS_LDAP package, which enables PL/SQL programmers to access
data from LDAP servers. Provides examples of how to use DBMS_LDAP.

Chapter 10, "Java API Reference"
Directs readers to the Java APIs for Oracle Internet Directory. Provides a link to the
standard API and a link to the Oracle extensions.

Chapter 11, "DBMS_LDAP_UTL PL/SQL Reference"
Contains reference material for the DBMS_LDAP_UTL package, which extends the
DBMS_LDAP package.

Chapter 12, "DAS_URL Interface Reference"
Describes the Oracle extensions to the DAS_URL API.

Chapter 13, "Provisioning Integration API Reference"
Contains reference information for the Directory Integration and Provisioning
Platform API.

Part III Appendixes

Appendix A, "Syntax for LDIF and Command-Line Tools"
Provides syntax, usage notes, and examples for using LDAP Data Interchange Format
(LDIF) and LDAP command line tools

Appendix B, "DSML Syntax"
Provides syntax and usage notes for DSML (XML) integration.

Glossary
Defines terms used in this book.

Related Documents
For more information, see these Oracle resources:

■ Oracle Identity Management Concepts and Deployment Planning Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Identity Management Integration Guide

■ Oracle Identity Management Guide to Delegated Administration

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ PL/SQL User's Guide and Reference

■ Oracle Database Application Developer's Guide - Fundamentals

In North America, printed documentation is available for sale in the Oracle Store at

xxviii

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

For additional information, see:

■ Chadwick, David. Understanding X.500—The Directory. Thomson Computer Press,
1996.

■ Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

■ Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

■ Internet Assigned Numbers Authority home page, http://www.iana.org, for
information about object identifiers

■ Internet Engineering Task Force (IETF) documentation available at:
http://www.ietf.org, especially:

■ The LDAPEXT charter and LDAP drafts

■ The LDUP charter and drafts

■ RFC 2254, "The String Representation of LDAP Search Filters"

■ RFC 1823, "The LDAP Application Program Interface"

■ The OpenLDAP Community, http://www.openldap.org

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

xxix

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])

{ } Braces are used for grouping items. {ENABLE | DISABLE}

| A vertical bar represents a choice of two
options.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

xxx

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

... Ellipsis points mean repetition in syntax
descriptions.

In addition, ellipsis points can mean an
omission in code examples or text.

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other symbols You must use symbols other than brackets
([]), braces ({ }), vertical bars (|), and
ellipsis points (...) exactly as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates user-defined
programmatic elements, such as names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start >
menu item

How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Convention Meaning Example

xxxi

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp HR/HR TABLES=employees
QUERY=\"WHERE job_id='SA_REP' and
salary<8000\"

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

ORACLE_HOME
and
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory. The default
for Windows NT was C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is
C:\oracle\product\10.1.0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\product\10.1.0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the
ORACLE_BASE\ORACLE_HOME\rdbms\admin
directory.

Convention Meaning Example

xxxii

xxxiii

What’s New in the SDK?

This document acquaints you with new features in the Oracle Internet Directory
Software Developer’s Kit—both in the present release and in the last release. Use the
links provided to learn more about each feature.

New Features in the Release 10.1.2 SDK
The release 10.1.2 SDK adds these features:

■ Dynamic password verifiers

This feature addresses the needs of applications that provide parameters for
password verifiers only at runtime. To learn more, see "Creating Dynamic
Password Verifiers" in Chapter 3.

■ Binary support for ldapmodify, ldapadd, and ldapcompare plug-ins

Directory plug-ins can now access binary attributes in the directory database. To
learn more, see "Binary Support in the Plug-in Framework" in Chapter 5.

New Features in the Release 9.0.4 SDK
The following features made their debut in the release 9.0.4 SDK:

■ URL API for Oracle Delegated Administration Services

This API enables you to build administrative and self-service consoles that
delegated administrators can use to perform directory operations. To learn more,
see Chapter 6.

■ PL/SQL API Enhancements:

■ New functions in the LDAP v3 standard. Previously available only in the C
API, these functions are now available in PL/SQL.

■ Functions that enable proxied access to middle-tier applications.

■ Functions that create and manage provisioning profiles in the directory
integration and provisioning platform.

To learn more, see Chapter 4.

■ Plug-in support for external authentication

This feature enables administrators to use Microsoft Active Directory to store and
manage security credentials for Oracle components. To learn more, see Chapter 5.

xxxiv

■ Server discovery using DNS

This feature enables directory clients to discover the host name and port number
of a directory server. It reduces the cost of maintaining directory clients in large
deployments. To learn more, see "Server Discovery Functionality" in Chapter 2.

■ XML support for the directory SDK and directory tools

This feature enables LDAP tools to process XML as well as LDIF notation.
Directory APIs can manipulate data in a DSML 1.0 format.

■ Caching for client-side referrals

This feature enables clients to cache referral information, speeding up referral
processing. To learn more, see "LDAP Session Handle Options" in Chapter 6.

Part I
Programming for Oracle Identity

Management

Part I shows you how to modify your applications to work with the different
components of Oracle Identity Management. This section begins with an introduction
to the Oracle Internet Directory SDK and to LDAP programming concepts. You then
learn how to use the three LDAP APIs and their extensions to enable applications for
Oracle Internet Directory. The section ends with the tasks required to enable an
application for single sign-on.

Part I contains these chapters:

■ Chapter 1, "Developing Applications for Oracle Identity Management"

■ Chapter 2, "Developing Applications with Standard LDAP APIs"

■ Chapter 3, "Developing Applications with Oracle Extensions to the Standard APIs"

■ Chapter 4, "Developing Provisioning-Integrated Applications"

■ Chapter 5, "Developing Directory Plug-ins"

■ Chapter 6, "Integrating with Oracle Delegated Administration Services"

■ Chapter 7, "Developing Applications for Single Sign-On"

Developing Applications for Oracle Identity Management 1-1

1
Developing Applications for Oracle Identity

Management

Oracle Identity Management provides a shared infrastructure for all Oracle
applications. It also provides services and interfaces that facilitate third-party
enterprise application development. These interfaces are useful for application
developers who need to incorporate identity management into their applications.

This chapter discusses these interfaces and recommends application development best
practices in the Oracle Identity Management environment.

There are two types of applications that can be integrated with Oracle Identity
Management:

■ Existing applications already used in the enterprise. The enterprise might have
already invested in such applications and would benefit from their integration
with the Oracle Identity Management infrastructure.

■ New applications being developed by corporate IT departments or Slavs that are
based on the Oracle technology stack

This chapter contains the following topics:

■ Benefits of Integrating with Oracle Identity Management

■ Oracle Identity Management Services Available for Application Integration

■ Integrating Existing Applications with Oracle Identity Management

■ Integrating New Applications with Oracle Identity Management

■ Integrating J2EE Applications with Oracle Identity Management

■ Directory Programming: An Overview

Benefits of Integrating with Oracle Identity Management
Enterprise applications integrating with the Oracle Identity Management
infrastructure receive the following benefits:

■ Integration facilitates faster application deployment with lower costs:
Enterprises (primarily Oracle customers) already using an existing Oracle Identity
Management infrastructure can deploy new applications using the self-service
console of Oracle Delegated Administration Services. Delegating application
administration to users reduces the deployment cost of the application.

■ Seamless integration with Oracle applications: Because all Oracle applications
rely on the Oracle Identity Management infrastructure, new enterprise
applications can use all the features Oracle Identity Management offers.

Oracle Identity Management Services Available for Application Integration

1-2 Oracle Identity Management Application Developer’s Guide

■ Seamless integration with third-party identity management solutions: Because
the Oracle Identity Management infrastructure already has built-in capabilities for
integrating with third-party identity management solutions, application
developers can take advantage of the identity management features.

Oracle Identity Management Services Available for Application Integration
Custom applications can use Oracle Identity Management through a set of
documented and supported services and Opes. For example:

■ Oracle Internet Directory provides LDAP APIs for C, Java, and PL/SQL, and is
compatible with other LDAP SDKs.

■ Oracle Delegated Administration Services provides a core self-service console that
can be customized to support third-party applications. In addition, they provide a
number of services for building customized administration interfaces that
manipulate directory data.

■ Oracle Directory Integration Services facilitate the development and deployment
of custom solutions for synchronizing Oracle Internet Directory with third-party
directories and other user repositories.

■ Oracle Provisioning Integration Services provide a mechanism for provisioning
third-party applications, as well as a means of integrating the Oracle environment
with other provisioning systems.

■ OracleAS Single Sign-On provides APIs for developing and deploying partner
applications that share a single sign-on session with other Oracle Web
applications.

■ JAZN is the Oracle implementation of the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Support standard that allows
applications developed for the Web using the Oracle J2EE environment to use the
identity management infrastructure for authentication and authorization.

Integrating Existing Applications with Oracle Identity Management
An enterprise may have already deployed certain applications to perform critical
business functions. The Oracle Identity Management infrastructure provides the
following services that can be leveraged by the deployment to modify existing
applications:

■ Automated User Provisioning: The deployment can develop a custom
provisioning agent that automates the provisioning of users in the existing
application in response to provisioning events in the Oracle Identity Management
infrastructure. This agent must be developed using the interfaces of Oracle
Provisioning Integration Service.

■ User Authentication Services: If the user interface of the existing application is
based on HTTP, integrating it with Oracle HTTP Server and protecting its URL
using mod_osso will authenticate all incoming user requests using the OracleAS
Single Sign-On service.

■ Centralized User Profile Management: If the user interface of the existing
application is based on HTTP, and it is integrated with OracleAS Single Sign-On
for authentication, the application can use the self-service console of Oracle

See Also: Oracle Internet Directory Administrator’s Guide for more
information about developing automated user provisioning

Integrating New Applications with Oracle Identity Management

Developing Applications for Oracle Identity Management 1-3

Delegated Administration Services to enable centralized user profile management.
The self-service console can be customized by the deployment to address the
specific needs of the application.

Integrating New Applications with Oracle Identity Management
Application developers can use the services provided by the Oracle Identity
Management infrastructure more extensively if they are developing a new application
or planning a new release of an existing application. Application developers should
consider the following integration points:

■ User Authentication Services: The application developer has the following
options:

– If the application is based on J2EE, it can use the services provided by the
Oracle Application Server Java Authentication and Authorization Service
(JAAS) Support interface.

– If the application relies on Oracle Application Server Containers for J2EE, it
can use the services provided by mod_osso to authenticate users and obtain
important information about the user in the HTTP headers.

– If the application is a standalone Web-based application, it can use OracleAS
Single Sign-On as a partner application using the OracleAS Single Sign-On
APIs.

– If the application provides an interface that is not Web-based, it can use the
Oracle Internet Directory LDAP APIs (available in C, PL/SQL and Java) to
authenticate users.

■ Centralized Profile Management: The application developer has the following
options available:

– The application developer can model application-specific profiles and user
preferences as attributes in Oracle Internet Directory.

– If the user interface of the application is based on HTTP, and it is integrated
with OracleAS Single Sign-On for authentication, the application can leverage
the self-service console of Oracle Delegated Administration Services to enable
centralized user profile management. The self-service console can be
customized by the deployment to address the specific needs of the application.

– The application can also retrieve user profiles at run time using the Oracle
Internet Directory LDAP APIs (available in C, PL/SQL and Java).

■ Automated User Provisioning: Application developers should consider the
following options:

– If the user interface of the application is based on HTTP and it is integrated
with OracleAS Single Sign-On for authentication, then the application
developer can implement automated user provisioning the first time a user
accesses the application

– The application can also be integrated with the Oracle Internet Directory
Provisioning Integration Service, which enables it to automatically provision
or de-provision user accounts in response to administrative actions, such as
adding an identity, modifying the properties of an existing identity, or deleting
an existing identity in the Oracle Identity Management infrastructure

See Also: Oracle Identity Management Integration Guide

Integrating J2EE Applications with Oracle Identity Management

1-4 Oracle Identity Management Application Developer’s Guide

Integrating J2EE Applications with Oracle Identity Management
Oracle Application Server Containers for J2EE (OC4J) provides standards-based J2EE
security support. Furthermore, J2EE applications deployed within OC4J can be
authenticated and authorized against Oracle Identity Management.

J2EE security provides standard APIs such as getUserPrincipal and
isUserInRole that enable applications to obtain information about the authenticated
user. If an application requires additional user information (or attributes), it can use
Oracle Internet Directory LDAP APIs to retrieve this information from the directory.

To learn more about J2EE and JAAS security, see Oracle Application Server Containers for
J2EE Security Guide.

Directory Programming: An Overview
This section introduces you to the Oracle Internet Directory Software Developer’s Kit.
It provides an overview of how an application can use the kit to integrate with the
directory. You are also acquainted with the rest of the directory product suite.

The section contains these topics:

■ Programming Languages Supported by the SDK

■ SDK Components

■ Application Development in the Directory Environment

■ Other Components of Oracle Internet Directory

Programming Languages Supported by the SDK
The SDK is for application developers who use C, C++, and PL/SQL. Java developers
must use the JNDI provider from Sun Microsystems to integrate with the directory.

SDK Components
Oracle Internet Directory Software Developer’s Kit 10g Release 2 (10.1.2) consists of
the following:

■ A C API compliant with LDAP Version 3

■ A PL/SQL API contained in a PL/SQL package called DBMS_LDAP

■ Sample programs

■ Oracle Identity Management Application Developer’s Guide (this document)

■ Command-line tools

Application Development in the Directory Environment
This section contains these topics:

■ Architecture of a Directory-Enabled Application

■ Directory Interactions During the Application Life Cycle

■ Services and APIs for Integrating Applications with Oracle Internet Directory

■ Integrating Existing Applications with Oracle Internet Directory

■ Integrating New Applications with Oracle Internet Directory

Directory Programming: An Overview

Developing Applications for Oracle Identity Management 1-5

Architecture of a Directory-Enabled Application
Most directory-enabled applications are backend programs that simultaneously
handle multiple requests from multiple users. Figure 1–1 shows how a directory is
used by such applications.

Figure 1–1 A Directory-Enabled Application

This illustration shows four hypothetical users connecting to a middle tier. Each user
has a connection, for a total of four connections. The middle tier then connects to
Oracle Internet Directory by using only two connections. The directory contains data
for groups, subscribers, and applications.

As Figure 1–1 shows, when a user request involves an LDAP-enabled operation, the
application processes the request using a smaller set of pre-created directory
connections.

Directory Interactions During the Application Life Cycle
Table 1–1 on page 1-6 walks you through the directory operations that an application
typically performs during its lifecycle.

Oracle
Internet

Directory

User, Group,
Subscriber and
Application Data

LDAP-Enabled
Application

User 2

User N

User 1

User 3

Few
Connections

Multiple
Connections

...

Directory Programming: An Overview

1-6 Oracle Identity Management Application Developer’s Guide

Services and APIs for Integrating Applications with Oracle Internet Directory
Application developers can integrate with Oracle Internet Directory by using the
services and APIs listed and described in Table 1–2 on page 1-7.

Table 1–1 Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Application Installation 1. Create an application identity in the directory.
The application uses this identity to perform
most of its LDAP operations.

2. Give the application identity LDAP
authorizations by making it part of the correct
LDAP groups. These authorizations enable the
application to accept user credentials and
authenticate them against the directory. The
directory can also use application authorizations
to proxy for the user when LDAP operations
must be performed on the user’s behalf.

Application Startup and Bootstrap The application must retrieve credentials that enable
it to authenticate itself to the directory.

If the application stores configuration metadata in
Oracle Internet Directory, it can retrieve that
metadata and initialize other parts of the application.

The application can then establish a pool of
connections to serve user requests.

Application Runtime For every end-user request that needs an LDAP
operation, the application can:

■ Pick a connection from the pool of LDAP
connections

■ Switch the user to the end-user identity if the
LDAP operation needs to be performed with the
effective rights of the end-user

■ Perform the LDAP operation by using either the
regular API or the API enhancements described
in this chapter

■ Ensure that the effective user is now the
application identity once the LDAP operation is
complete

■ Return the LDAP connection back to the pool of
connections

Application Shutdown Abandon any outstanding LDAP operations and
close all LDAP connections.

Application Deinstallation Remove the application identity and the LDAP
authorizations granted to it.

Directory Programming: An Overview

Developing Applications for Oracle Identity Management 1-7

Figure 1–2 shows an application leveraging some of the services illustrated in
Table 1–2 on page 1-7.

Figure 1–2 An Application Leveraging APIs and Services

As Figure 1–2 shows, the application integrates with Oracle Internet Directory as
follows:

■ Using PL/SQL, C, or Java APIs, it performs LDAP operations directly against the
directory.

Table 1–2 Services and APIs for Integrating with Oracle Internet Directory

Service/API Description More Information

Standard LDAP APIs in C, PL/SQL
and Java

These provide basic LDAP
operations. The standard LDAP API
used in Java is the JNDI API with the
LDAP service provider from Sun
Microsystems.

Chapter 2, "Developing Applications
with Standard LDAP APIs"

Oracle Extensions to Standard C,
PL/SQL and Java APIs

These APIs provide programmatic
interfaces that model various
concepts related to identity
management.

Chapter 3, "Developing Applications
with Oracle Extensions to the
Standard APIs"

Oracle Delegated Administration
Services

Oracle Delegated Administration
Services consists of a self-service
console and administrative
interfaces. You can modify the
administrative interfaces to support
third-party applications.

■ Chapter 6, "Integrating with
Oracle Delegated
Administration Services"

■ The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

Oracle Directory Provisioning
Integration Service

You can use the Oracle Provisioning
Integration System to provision
third-party applications and
integrate other provisioning systems.

■ Chapter 4, "Developing
Provisioning-Integrated
Applications"

■ The introductory chapter in
Oracle Identity Management
Integration Guide

Oracle Internet Directory Plug-ins You can use plug-ins to customize
directory behavior in certain
deployments.

■ Chapter 5, "Developing
Directory Plug-ins"

■ The chapter about plug-ins in
Oracle Internet Directory
Administrator’s Guide

C, PL/SQL,
 Java APIs

DAS

Directory
Integration
Platform

Oracle
Internet

Directory

Provisoning
APIs

Application

DAS
URL
APIs

Directory Programming: An Overview

1-8 Oracle Identity Management Application Developer’s Guide

■ In some cases, it directs users to self-service features of Oracle Delegated
Administration Services.

■ It is notified of changes to entries for users or groups in Oracle Internet Directory.
The Oracle Directory Provisioning Integration Service provides this notification.

Integrating Existing Applications with Oracle Internet Directory
Your enterprise may already have deployed applications that you may have wanted to
integrate with the Oracle identity management infrastructure. You can still integrate
these applications using the services presented in Table 1–3.

Integrating New Applications with Oracle Internet Directory
If you are developing a new application or planning a new release of an existing
application, you have many directory integration options at your disposal. Table 1–4
on page 1-9 lists and describes these.

Table 1–3 Services for Modifying Existing Applications

Service Description More Information

Automated User Provisioning You can develop an agent that
automatically provisions users when
provisioning events occur in the
Oracle identity management
infrastructure. You use interfaces of
the Oracle Directory Provisioning
Integration Service to develop this
agent.

Chapter 4, "Developing
Provisioning-Integrated
Applications"

User Authentication Services If your user interface is based on
HTTP, you can integrate it with the
Oracle HTTP Server. This enables
you to use mod_osso and OracleAS
Single Sign-On to protect the
application URL.

Oracle Application Server Single
Sign-On Administrator’s Guide

Centralized User Profile
Management

If your user interface is based on
HTTP and is integrated with
OracleAS Single Sign-On, you can
use the Oracle Internet Directory
Self-Service Console to manage user
profiles centrally. You can tailor the
console to the needs of your
application.

■ Chapter 6, "Integrating with
Oracle Delegated
Administration Services"

■ The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

Directory Programming: An Overview

Developing Applications for Oracle Identity Management 1-9

Other Components of Oracle Internet Directory
The SDK is just one component in the directory suite. Here are the others:

■ Oracle directory server, LDAP Version 3

■ Oracle directory replication server

■ Oracle Directory Manager, a Java-based graphical user interface

Table 1–4 Application Integration Points

Integration Point Available Options More Information

User Authentication Services If your application is based on J2EE, it can use
the JAZN interface to authenticate users. If it
relies on OC4J, it can use mod_osso for the same
purpose. The second option enables the
application to obtain information about the user
from HTTP headers.

If your application is Web based and standalone,
it can still integrate with OracleAS Single
Sign-On, then it can still leverage Oracle
Application Server Single Sign-On by becoming a
partner application using the single sign-on APIs.

Finally, if the application provides a non-Web
user interface, it can use the Oracle Internet
Directory LDAP APIs to integrate users.

■ Oracle Application Server
Containers for J2EE User’s
Guide

■ Oracle Application Server
Single Sign-On
Administrator’s Guide

■ Part II, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

User Authorization Services If your application is based on J2EE, it can use
the JAZN interface to implement and enforce
user authorizations for application resources. The
application can define authorizations as groups
in Oracle Internet Directory and can then check
the authorizations of a user by checking his or
her group membership. It can use the Oracle
Internet Directory LDAP APIs for this purpose.

■ Oracle Application Server
Containers for J2EE User’s
Guide

■ Part II, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

Centralized Profile
Management

You can define application-specific profiles and
user preferences as attributes in Oracle Internet
Directory.

If your user interface is based on HTTP and is
integrated with OracleAS Single Sign-On, you
can use the Oracle Internet Directory Self-Service
Console to manage user profiles centrally. You
can tailor the console to the needs of your
application.

Additionally, you can use the Oracle Internet
Directory LDAP APIs to retrieve user profiles at
runtime.

■ The chapter about
deployment considerations
in Oracle Internet Directory
Administrator’s Guide

■ Chapter 6, "Integrating with
Oracle Delegated
Administration Services"

■ Oracle Identity Management
Guide to Delegated
Administration

■ Part II of this guide, which
is devoted to the various
LDAP APIs

Automated User
Provisioning

If your user interface is based on HTTP and it is
integrated with OracleAS Single Sign-On, you
can implement automated user provisioning the
very first time a user accesses the application.

You use the Oracle Directory Provisioning
Integration Service to integrate the application
with the Oracle identity management
infrastructure. Once integrated, the application
can provision or deprovision user accounts
automatically when an administrator adds,
modifies, or deletes an identity.

Chapter 4, "Developing
Provisioning-Integrated
Applications"

Directory Programming: An Overview

1-10 Oracle Identity Management Application Developer’s Guide

■ Oracle Internet Directory bulk tools

■ Oracle Internet Directory Administrator’s Guide

Developing Applications with Standard LDAP APIs 2-1

2
Developing Applications with Standard LDAP

APIs

This chapter takes a high-level look at the operations that the standard LDAP API
enables. It explains how to integrate your applications with the API. Before presenting
these topics, the chapter revisits the Lightweight Directory Access Protocol (LDAP).

This chapter contains these topics:

■ History of LDAP

■ LDAP Models

■ About the Standard LDAP APIs

■ Initializing an LDAP Session

■ Authenticating an LDAP Session

■ Searching the Directory

■ Terminating the Session

History of LDAP
LDAP began as a lightweight front end to the X.500 Directory Access Protocol. LDAP
simplifies the X.500 Directory Access Protocol in the following ways:

■ It uses TCP/IP connections. These are lightweight compared to the OSI
communication stack required by X.500 implementations

■ It eliminates little-used and redundant features of the X.500 Directory Access
Protocol

■ It uses simple formats to represent data elements. These formats are easier to
process than the complicated and highly structured representations in X.500.

■ It uses a simplified version of the X.500 encoding rules used to transport data over
networks.

 LDAP Models
LDAP uses four basic models to define its operations:

■ Naming Model

■ Information Model

LDAP Models

2-2 Oracle Identity Management Application Developer’s Guide

■ Functional Model

■ Security Model

Naming Model
The LDAP naming model enables directory information to be referenced and
organized. Each entry in a directory is uniquely identified by a distinguished name
(DN). The DN tells you exactly where an entry resides in the directory hierarchy. A
directory information tree (DIT) is used to represent this hierarchy.

Figure 2–1 illustrates the relationship between a distinguished name and a directory
information tree.

Figure 2–1 A Directory Information Tree

The DIT in Figure 2–1 shows entries for two employees of Acme Corporation who are
both named Anne Smith. It is structured along geographical and organizational lines.
The Anne Smith represented by the left branch works in the Sales division in the
United States. Her counterpart works in the Server Development division in the
United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne
Smith. She works in an organizational unit (ou) named Server Development, in the
country (c) of Great Britain (uk), in the organization (o) Acme. The DN for this Anne
Smith entry looks like this:

cn=Anne Smith,ou=Server Development,c=uk,o=acme

Note that the conventional format for a distinguished name places the lowest DIT
component at the left. The next highest component follows, on up to the root.

Within a distinguished name, the lowest component is called the relative
distinguished name (RDN). In the DN just presented, the RDN is cn=Anne Smith.
The RDN for the entry immediately above Anne Smith’s RDN is ou=Server
Development. And the RDN for the entry immediately above ou=Server
Development is c=uk, and so on. A DN is thus a sequence of RDNs separated by
commas.

To locate a particular entry within the overall DIT, a client uniquely identifies that
entry by using the full DN—not simply the RDN—of that entry. To avoid confusion
between the two Anne Smiths in the global organization depicted in Figure 2–1, you
use the full DN for each. If there are two employees with the same name in the same
organizational unit, you can use other mechanisms. You may, for example, use a
unique identification number to identify these employees.

c=us

ou=Sales ou=Server Development

cn=Anne Smith cn=Anne Smith

c=uk

root

o=acme

LDAP Models

Developing Applications with Standard LDAP APIs 2-3

Information Model
The LDAP information model determines the form and character of information in the
directory. This model uses the concept of entries as its defining characteristic. In a
directory, an entry is a collection of information about an object. A telephone directory,
for example, contains entries for people. A library card catalog contains entries for
books. An online directory may contain entries for employees, conference rooms,
e-commerce partners, or shared network resources such as printers.

In a typical telephone directory, a person entry contains an address and a phone
number. In an online directory, each of these pieces of information is called an
attribute. A typical employee entry contains attributes for a job title, an e-mail address,
and a phone number.

In Figure 2–2, the entry for Anne Smith in Great Britain (uk) has several attributes.
Each provides specific information about her. Those listed in the balloon to the right of
the tree are emailaddrs, printername, jpegPhoto, and app preferences. Note
that the rest of the bullets in Figure 2–2 are also entries with attributes, although these
attributes are not shown.

Figure 2–2 Attributes of the Entry for Anne Smith

Each attribute consists of an attribute type and one or more attribute values. The
attribute type is the kind of information that the attribute contains—jobTitle, for
instance. The attribute value is the actual information. The value for the jobTitle
attribute, for example, might be manager.

Functional Model
The LDAP functional model determines what operations can be performed on
directory entries. Table 2–1 on page 2-4 lists and describes the three types of functions:

LDAP Models

2-4 Oracle Identity Management Application Developer’s Guide

Security Model
The LDAP security model enables directory information to be secured. This model has
several parts:

■ Authentication

Ensuring that the identities of users, hosts, and clients are correctly validated

■ Access Control and Authorization

Ensuring that a user reads or updates only the information for which that user has
privileges

■ Data Integrity: Ensuring that data is not modified during transmission

■ Data Privacy

Ensuring that data is not disclosed during transmission

■ Password Policies

Setting rules that govern how passwords are used

Authentication
Authentication is the process by which the directory server establishes the identity of
the user connecting to the directory. Directory authentication occurs when an LDAP
bind operation establishes an LDAP session. Every session has an associated user
identity, also referred to as an authorization ID.

Oracle Internet Directory provides three authentication options: anonymous, simple,
and SSL.

Table 2–1 LDAP Functions

Function Description

Search and read The read operation retrieves the attributes of an entry whose
name is known. The list operation enumerates the children of a
given entry. The search operation selects entries from a defined
area of the tree based on some selection criteria known as a
search filter. For each matching entry, a requested set of
attributes (with or without values) is returned. The searched
entries can span a single entry, an entry's children, or an entire
subtree. Alias entries can be followed automatically during a
search, even if they cross server boundaries. An abandon
operation is also defined, allowing an operation in progress to
be canceled.

Modify This category defines four operations that modify the
directory:

■ Modify—change existing entries. You can add and delete
values.

■ Add—insert entries into the directory

■ Delete—remove entries from the directory

■ Modify RDN—change the name of an entry

Authenticate This category defines a bind operation. A bind enables a client
to initiate a session and prove its identity to the directory.
Oracle Internet Directory supports several authentication
methods, from simple clear-text passwords to public keys. The
unbind operation is used to terminate a directory session.

LDAP Models

Developing Applications with Standard LDAP APIs 2-5

Anonymous Authentication If your directory is available to everyone, users may log in
anonymously. In anonymous authentication, users leave the user name and password
fields blank when they log in. They then exercise whatever privileges are specified for
anonymous users.

Simple Authentication In simple authentication, the client uses an unencrypted DN and
password to identify itself to the server. The server verifies that the client’s DN and
password match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Socket Layer (SSL) is an industry
standard protocol for securing network connections. It uses a certificate exchange to
authenticate users. These certificates are verified by trusted certificate authorities. A
certificate ensures that an entity’s identity information is correct. An entity can be an
end user, a database, an administrator, a client, or a server. A certificate authority (CA)
is an application that creates public key certificates that are given a high level of trust
by all parties involved.

You can use SSL in one of the three authentication modes presented in Table 2–2.

In an Oracle Internet Directory environment, SSL authentication between a client and
a directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on an
SSL port. The default SSL port is 636.

2. SSL performs the handshake between the client and the directory server.

3. If the handshake is successful, the directory server verifies that the user has the
appropriate authorization to access the directory.

Access Control and Authorization
The authorization process ensures that a user reads or updates only the information
for which he or she has privileges. The directory server ensures that the user—
identified by the authorization ID associated with the session—has the requisite
permissions to perform a given directory operation. Absent these permissions, the
operation is disallowed.

The mechanism that the directory server uses to ensure that the proper authorizations
are in place is called access control. And an access control information item (ACI) is
the directory metadata that captures the administrative policies relating to access
control.

Table 2–2 SSL Authentication Modes

SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption and decryption are used.

One-way authentication Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and server authenticate themselves to each other,
exchanging certificates.

See Also: Oracle Advanced Security Administrator's Guide for more
information about SSL

LDAP Models

2-6 Oracle Identity Management Application Developer’s Guide

An ACI is stored in Oracle Internet Directory as user-modifiable operational attributes.
Typically a whole list of these ACI attribute values is associated with a directory
object. This list is called an access control list (ACL). The attribute values on that list
govern the access policies for the directory object.

ACIs are stored as text strings in the directory. These strings must conform to a
well-defined format. Each valid value of an ACI attribute represents a distinct access
control policy. These individual policy components are referred to as ACI Directives or
ACIs and their format is called the ACI Directive format.

Access control policies can be prescriptive: their security directives can be set to apply
downward to all entries at lower positions in the directory information tree (DIT). The
point from which an access control policy applies is called an access control policy
point (ACP).

Data Integrity
Oracle Internet Directory uses SSL to ensure that data is not modified, deleted, or
replayed during transmission. This feature uses cryptographic checksums to generate
a secure message digest. The checksums are created using either the MD5 algorithm or
the Secure Hash Algorithm (SHA). The message digest is included in each network
packet.

Data Privacy
Oracle Internet Directory uses public-key encryption over SSL to ensure that data is
not disclosed during transmission. In public-key encryption, the sender of a message
encrypts the message with the public key of the recipient. Upon delivery, the recipient
decrypts the message using his or her private key. The directory supports two levels of
encryption:

■ DES40

The DES40 algorithm, available internationally, is a DES variant in which the
secret key is preprocessed to provide forty effective key bits. It is designed for use
by customers outside the USA and Canada who want to use a DES-based
encryption algorithm.

■ RC4_40

Oracle is licensed to export the RC4 data encryption algorithm with a 40-bit key
size to virtually all destinations where Oracle products are available. This makes it
possible for international corporations to safeguard their entire operations with
fast cryptography.

Password Policies
A password policy is a set of rules that govern how passwords are used. When a user
attempts to bind to the directory, the directory server uses the password policy to
ensure that the password provided meets the various requirements set in that policy.

When you establish a password policy, you set the following types of rules, to mention
just a few:

■ The maximum length of time a given password is valid

■ The minimum number of characters a password must contain

■ The ability of users to change their passwords

About the Standard LDAP APIs

Developing Applications with Standard LDAP APIs 2-7

About the Standard LDAP APIs
The standard LDAP APIs enable you to perform the fundamental LDAP operations
described in "LDAP Models". These APIs are available in C, PL/SQL, and Java. The
first two are part of the directory SDK. The last is part of the JNDI package provided
by Sun Microsystems. All three use TCP/IP connections. They are based on LDAP
Version 3, and they support SSL connections to Oracle Internet Directory.

This section contains these topics:

■ API Usage Model

■ Getting Started with the C API

■ Getting Started with the Java API

■ Getting Started with the DBMS_LDAP Package

API Usage Model
Typically, an application uses the functions in the API in four steps:

1. Initialize the library and obtain an LDAP session handle.

2. Authenticate to the LDAP server if necessary.

3. Perform some LDAP operations and obtain results and errors, if any.

4. Close the session.

Figure 2–3 illustrates these steps.

Figure 2–3 Steps in Typical DBMS_LDAP Usage

Getting Started with the C API
When you build applications with the C API, you must include the header file
ldap.h, located at ORACLE_HOME/ldap/public. In addition, you must dynamically
link to the library located at ORACLE_HOME/lib/libclntsh.so.10.1.

See Also: "Sample C API Usage" on page 8-41 to learn how to use
the SSL and non-SSL modes

Initialize Session

Authenticate Session

Perform LDAP
Operations

Terminate Session

Initializing an LDAP Session

2-8 Oracle Identity Management Application Developer’s Guide

Getting Started with the DBMS_LDAP Package
The DBMS_LDAP package enables PL/SQL applications to access data located in
enterprise-wide LDAP servers. The names and syntax of the function calls are similar
to those of the C API. These functions comply with current recommendations of the
Internet Engineering Task Force (IETF) for the C API. Note though that the PL/SQL
API contains only a subset of the functions available in the C API. Most notably, only
synchronous calls to the LDAP server are available in the PL/SQL API.

To begin using the PL/SQL LDAP API, use this command sequence to load DBMS_
LDAP into the database:

1. Log in to the database, using SQL*Plus. Run the tool in the Oracle home in which
your database is present. Connect as SYSUSER.

SQL> CONNECT / AS SYSDBA

2. Load the API into the database, using this command:

SQL> @?/rdbms/admin/catladap.sql

Getting Started with the Java API
Java developers can use the Java Naming and Directory Interface (JNDI) from Sun
Microsystems to gain access to information in Oracle Internet Directory. The JNDI is
found at this link:

http://java.sun.com/products/jndi

Although no Java APIs are provided in this chapter, the section immediately
following, "Initializing the Session by Using JNDI", shows you how to use wrapper
methods for the Sun JNDI to establish a basic connection.

Initializing an LDAP Session
All LDAP operations based on the C API require clients to establish an LDAP session
with the LDAP server. For LDAP operations based on the PL/SQL API, a database
session must first initialize and open an LDAP session. Most Java operations require a
Java Naming and Directory Interface (JNDI) connection. The
oracle.ldap.util.jndi package, provided here, simplifies the work involved in
achieving this connection.

The section contains the following topics:

■ Initializing the Session by Using the C API

■ Initializing the Session by Using DBMS_LDAP

■ Initializing the Session by Using JNDI

Initializing the Session by Using the C API
The C function ldap_init() initializes a session with an LDAP server. The server is
not actually contacted until an operation is performed that requires it, allowing
various options to be set after initialization.

Initializing an LDAP Session

Developing Applications with Standard LDAP APIs 2-9

ldap_init has the following syntax:

LDAP *ldap_init
(
const char *hostname,
int portno
);

Table 2–3 lists and defines the function parameters.

ldap_init() and ldap_open() both return a session handle, or pointer, to an
opaque structure that must be passed to subsequent calls to the session. These routines
return NULL if the session cannot be initialized. You can check the error reporting
mechanism for your operating system to determine why the call failed.

Initializing the Session by Using DBMS_LDAP
In the PL/SQL API, the function DBMS_LDAP.init() initiates an LDAP session. This
function has the following syntax:

FUNCTION init (hostname IN VARCHAR2, portnum IN PLS_INTEGER)
RETURN SESSION;

The function init requires a valid host name and port number to establish an LDAP
session. It allocates a data structure for this purpose and returns a handle of the type
DBMS_LDAP.SESSION to the caller. The handle returned from the call should be used
in all subsequent LDAP operations defined by DBMS_LDAP for the session. The API
uses these session handles to maintain state about open connections, outstanding
requests, and other information.

A single database session can obtain as many LDAP sessions as required, although the
number of simultaneous active connections is limited to 64. One database session
typically has multiple LDAP sessions when data must be obtained from multiple
servers simultaneously or when open sessions that use multiple LDAP identities are
required.

Table 2–3 Parameters for ldap_init()

Parameter Description

hostname Contains a space-separated list of directory host names or IP addresses
represented by dotted strings. You can pair each host name with a port
number as long as you use a colon to separate the two.

The hosts are tried in the order listed until a successful connection is
made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number of the directory you would like to connect
to. The default LDAP port of 389 can be obtained by supplying the
constant LDAP_PORT. If a host includes a port number, this parameter is
ignored.

Note: The handles returned from calls to DBMS_LDAP.init() are
dynamic constructs: They do not persist across multiple database
sessions. Attempting to store their values in a persistent form, and to
reuse stored values at a later stage, can yield unpredictable results.

Authenticating an LDAP Session

2-10 Oracle Identity Management Application Developer’s Guide

Initializing the Session by Using JNDI
The oracle.ldap.util.jndi package supports basic connections by providing
wrapper methods for the JNDI implementation from Sun Microsystems. If you want to
use the JNDI to establish a connection, see the following link:

http://java.sun.com/products/jndi

Here is an implementation of oracle.ldap.util.jndi that establishes a non-SSL
connection:

import oracle.ldap.util.jndi
import javax.naming.*;

public static void main(String args[])
{
 try{
 InitialDirContext ctx = ConnectionUtil.getDefaultDirCtx(args[0], // host
 args[1], // port
 args[2], // DN
 args[3]; // password)
 // Do work
 }
 catch(NamingException ne)
 {
 // javax.naming.NamingException is thrown when an error occurs
 }
}

Authenticating an LDAP Session
Individuals or applications seeking to perform operations against an LDAP server
must first be authenticated. If the dn and passwd parameters of these entities are null,
the LDAP server assigns a special identity, called anonymous, to these users. Typically,
the anonymous user is the least privileged user of the directory.

Once a bind operation is complete, the directory server remembers the new identity
until another bind occurs or the LDAP session terminates (unbind_s). The LDAP
server uses the identity to enforce the security model specified by the enterprise in
which it is deployed. The identity helps the LDAP server determine whether the user
or application identified has sufficient privileges to perform search, update, or
compare operations in the directory.

Note that the password for the bind operation is sent over the network in clear text. If
your network is not secure, consider using SSL for authentication and other LDAP
operations that involve data transfer.

This section contains these topics:

■ Authenticating an LDAP Session by Using the C API

■ Authenticating an LDAP Session by Using DBMS_LDAP

Note:

■ DN and password represent the bind DN and password. For
anonymous binds, set these to "".

■ You can use ConnectionUtil.getSSLDirCtx() to establish a
no-authentication SSL connection.

Authenticating an LDAP Session

Developing Applications with Standard LDAP APIs 2-11

Authenticating an LDAP Session by Using the C API
The C function ldap_simple_bind_s() enables users and applications to
authenticate to the directory server using a DN and password.

The function ldap_simple_bind_s() has this syntax:

int ldap_simple_bind_s
(
LDAP*ld,
char*dn,
char*passwd,
);

Table 2–4 lists and describes the parameters for this function.

If the dn and passwd parameters for are NULL, the LDAP server assigns a special
identity, called anonymous, to the user or application.

Authenticating an LDAP Session by Using DBMS_LDAP
The PL/SQL function simple_bind_s enables users and applications to use a DN
and password to authenticate to the directory. simple_bind_s has this syntax:

FUNCTION simple_bind_s (ld IN SESSION, dn IN VARCHAR2, passwd IN VARCHAR2)
RETURN PLS_INTEGER;

Note that this function requires as its first parameter the LDAP session handle
obtained from init.

The following PL/SQL code snippet shows how the PL/SQL initialization and
authentication functions just described might be implemented.

DECLARE
retvalPLS_INTEGER;
my_sessionDBMS_LDAP.session;

BEGIN
retval:= -1;
-- Initialize the LDAP session
my_session:= DBMS_LDAP.init(’yow.acme.com’,389);
--Authenticate to the directory
retval:=DBMS_LDAP.simple_bind_s(my_session, ’cn=orcladmin’,
’welcome’);

In the previous example, an LDAP session is initialized on the LDAP server
yow.acme.com. This server listens for requests at TCP/IP port number 389. The
identity cn=orcladmin, whose password is welcome, is then authenticated. Once
authentication is complete, regular LDAP operations can begin.

Table 2–4 Arguments for ldap_simple_bind_s()

Argument Description

ld A valid LDAP session handle.

dn The identity that the application uses for authentication.

passwd The password for the authentication identity.

Searching the Directory

2-12 Oracle Identity Management Application Developer’s Guide

Searching the Directory
Searches are the most common LDAP operations. Applications can use complex search
criteria to select and retrieve entries from the directory.

This section contains these topics:

■ Program Flow for Search Operations

■ Search Scope

■ Filters

■ Searching the Directory by Using the C API

■ Searching the Directory by Using DBMS_LDAP

Program Flow for Search Operations
The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

1. Decide what attributes must be returned; then place them into an array.

2. Initiate the search, using the scope options and filters of your choice.

3. Obtain an entry from result set.

4. Obtain an attribute from the entry obtained in step 3.

5. Obtain the values of the attributes obtained in step 4; then copy these values into
local variables.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat Step 3 until there are no more entries

Figure 2–4 on page 2-13 uses a flow chart to represent these steps.

Note: This release of the DBMS_LDAP API provides only
synchronous search capability. This means that the caller of the search
functions is blocked until the LDAP server returns the entire result set.

Searching the Directory

Developing Applications with Standard LDAP APIs 2-13

Figure 2–4 Flow of Search-Related Operations

Search Scope
The scope of a search determines how many entries the directory server examines
relative to the search base. You can choose one of the three options described in
Table 2–5 and illustrated in Figure 2–5 on page 2-14.

Table 2–5 Options for search_s() or search_st() Functions

Option Description

SCOPE_BASE The directory server looks only for the entry corresponding to
the search base.

SCOPE_ONELEVEL

The directory server confines its search to the entries that are
the immediate children of the search base entry.

SCOPE_SUBTREE

The directory server looks at the search base entry and the
entire subtree beneath it.

Collect Required Attributes

Issue Search

Entry Count > 0
No

No

Yes

Attribute Valid

Yes

Entry Valid

Yes

1

Get First / Next Attribute

4

Get Attribute Values End of Search
5

Get First / Next Entry

3

2

No

No

Searching the Directory

2-14 Oracle Identity Management Application Developer’s Guide

Figure 2–5 The Three Scope Options

In Figure 2–5, the search base is the shaded circle. The shaded rectangle identifies the
entries that are searched.

Filters
A search filter is an expression that enables you to confine your search to certain types
of entries. The search filter required by the search_s() and search_st() functions
follows the string format defined in RFC 1960 of the Internet Engineering Task Force
(IETF). As Table 2–6 shows, there are six kinds of search filters. These are entered in
the format attribute operator value.

You can use boolean operators and prefix notation to combine these filters to form
more complex filters. Table 2–7 on page 2-15 provides examples. In these examples, the

Table 2–6 Search Filters

Filter Type Format Example Matches

Equality (att=value) (sn=Keaton) Surnames exactly equal
to Keaton.

Approximate (att~=value) (sn~=Ketan) Surnames
approximately equal to
Ketan.

Substring (attr=[leading]*[any]*[tr
ailing]

(sn=*keaton*)

(sn=keaton*)

(sn=*keaton)

(sn=ke*at*on)

Surnames containing
the string keaton.

Surnames starting with
keaton.

Surnames ending with
keaton.

Surnames starting with
ke, containing at and
ending with on.

Greater than or
equal

attr>=value (sn>=Keaton) Surnames
lexicographically
greater than or equal to
Keaton.

Less than or
equal

(attr<=value) (sn<=Keaton) Surnames
lexicographically less
than or equal to
Keaton.

Presence (attr=*) (sn=*) All entries having the
sn attribute.

SCOPE_BASE SCOPE_ONELEVEL SCOPE_SUBTREE

Base of
Search

Searching the Directory

Developing Applications with Standard LDAP APIs 2-15

& character represents AND, the | character represents OR, and the ! character
represents NOT.

The complex filters in Table 2–7 can themselves be combined to create even more
complex, nested filters.

Searching the Directory by Using the C API
The C function ldap_search_s() performs a synchronous search of the directory.

The syntax for ldap_search_s()looks like this:

int ldap_search_s
(
LDAP*ld,
char*base,
intscope,
char*filter,
intattrsonly,
LDAPMessage**res,
);

ldap_search_s works with several supporting functions to refine the search. The
steps that follow show how all of these C functions fit into the program flow of a
search operation. Chapter 8, "C API Reference", examines all of these functions in
depth.

1. Decide what attributes must be returned; then place them into an array of strings.
The array must be null terminated.

2. Initiate the search, using ldap_search_s(). Refine your search with scope
options and filters.

3. Obtain an entry from the result set, using either the ldap_first_entry()
function or the ldap_next_entry() function.

4. Obtain an attribute from the entry obtained in step 3. Use either the ldap_first_
attribute() function or the ldap_next_attribute() function for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use the ldap_get_values() function or the ldap_get_
values_len() function for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

Table 2–7 Boolean Operators

Filter Type Format Example Matches

AND (&(filter1)(filter2
)). . .)

(&(sn=keaton)(objec
tclass=inetOrgPerso
n))

Entries with surname
of Keaton and object
class of
InetOrgPerson.

OR (|(filter1)(filter2
)). . .)

(|(sn~=ketan)(cn=*k
eaton))

Entries with surname
approximately equal
to ketan or common
name ending in
keaton.

NOT (!(filter)) (!(mail=*)) Entries without a mail
attribute.

Searching the Directory

2-16 Oracle Identity Management Application Developer’s Guide

7. Repeat step 3 until there are no more entries.

Searching the Directory by Using DBMS_LDAP
You use the function DBMS_LDAP.search_s()to performs directory searches if you
use the PL/SQL API.

Here is the syntax for DBMS_LDAP.search_s():

FUNCTION search_s
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE
)
RETURN PLS_INTEGER;

The function takes the arguments listed and described in Table 2–9 on page 2-16.

search_s works with several supporting functions to refine the search. The steps that
follow show how all of these PL/SQL functions fit into the program flow of a search
operation.

1. Decide what attributes need to be returned; then place them into the DBMS_
LDAP.STRING_COLLECTION data-type.

Table 2–8 Arguments for ldap_search_s()

Argument Description

ld A valid LDAP session handle

base The DN of the search base.

scope The breadth and depth of the DIT to be searched.

filter The filter used to select entries of interest.

attrs The attributes of interest in the entries returned.

attrso If set to 1, only returns attributes.

res This argument returns the search results.

Table 2–9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()

Argument Description

ld A valid session handle

base

The DN of the base entry in the LDAP server where search should start

scope The breadth and depth of the DIT that needs to be searched

filter The filter used to select entries of interest

attrs The attributes of interest in the entries returned

attronly If set to 1, only returns the attributes

res An OUT parameter that returns the result set for further processing

Terminating the Session

Developing Applications with Standard LDAP APIs 2-17

2. Perform the search, using either DBMS_LDAP.search_s()or DBMS_
LDAP.search_st(). Refine your search with scope options and filters.

3. Obtain an entry from the result set, using eitherDBMS_LDAP.first_entry() or
DBMS_LDAP.next_entry().

4. Obtain an attribute from the entry obtained in step 3. Use either DBMS_
LDAP.first_attribute() or DBMS_LDAP.next_attribute() for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use either DBMS_LDAP.get_values() or DBMS_LDAP.get_
values_len() for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat step 3 until there are no more entries.

Terminating the Session
This section contains these topics:

■ Terminating the Session by Using the C API

■ Terminating the Session by Using DBMS_LDAP

Terminating the Session by Using the C API
Once an LDAP session handle is obtained and all directory-related work is complete,
the LDAP session must be destroyed. In the C API, the ldap_unbind_s() function is
used for this purpose.

ldap_unbind_s() has this syntax:

int ldap_unbind_s
(
LDAP* ld
);

A successful call to ldap_unbind_s()closes the TCP/IP connection to the directory.
It de-allocates system resources consumed by the LDAP session. Finally it returns the
integer LDAP_SUCCESS to its callers. Once ldap_unbind_s()is invoked, no other
LDAP operations are possible. A new session must be started with ldap_init().

Terminating the Session by Using DBMS_LDAP
The DBMS_LDAP.unbind_s() function destroys an LDAP session if the PL/SQL API
is used. unbind_s has the following syntax:

FUNCTION unbind_s (ld IN SESSION) RETURN PLS_INTEGER;

unbind_s closes the TCP/IP connection to the directory. It de-allocates system
resources consumed by the LDAP session. Finally it returns the integer DBMS_
LDAP.SUCCESS to its callers. Once the unbind_s is invoked, no other LDAP
operations are possible. A new session must be initiated with the init function.

Terminating the Session

2-18 Oracle Identity Management Application Developer’s Guide

Developing Applications with Oracle Extensions to the Standard APIs 3-1

3
Developing Applications with Oracle

Extensions to the Standard APIs

This chapter presents the Oracle extensions to the LDAP APIs. It includes sample use
cases.

This chapter contains these topics:

■ Using Oracle Extensions to the Standard APIs

■ Creating an Application Identity in the Directory

■ User Management Functionality

■ Group Management Functionality

■ Identity Management Realm Functionality

■ Server Discovery Functionality

■ SASL Authentication Functionality

■ Proxying on Behalf of End Users

■ Creating Dynamic Password Verifiers

■ Dependencies and Limitations for the PL/SQ LDAP API

Using Oracle Extensions to the Standard APIs
The APIs that Oracle has added to the existing APIs fulfill these functions:

■ User management

Applications can set or retrieve various user properties

■ Group management

Applications can query group properties

■ Realm management

Applications can set or retrieve properties about identity management realms

■ Server discovery management

Applications can locate a directory server in the Domain Name System (DNS)

■ SASL management

Applications can authenticate to the directory using SASL Digest-MD5

Using Oracle Extensions to the Standard APIs

3-2 Oracle Identity Management Application Developer’s Guide

The primary users of the Oracle extensions are backend applications that must
perform LDAP lookups for users, groups, applications, or hosted companies. This
section explains how these applications integrate these API extensions into their
program logic. The section contains these topics:

■ Using the API Extensions in PL/SQL

■ Using the API Extensions in Java

■ How the Standard APIs and The Oracle Extensions Are Installed

Figure 3–1 shows the placement of the API extensions in relation to existing APIs:

Figure 3–1 Oracle API Extensions

As Figure 3–1 shows, in the C, PL/SQL, and Java languages, the API extensions are
layers that sit on top of existing APIs:

Applications must use the underlying APIs for such common tasks as establishing and
closing connections and looking up directory entries not searchable with the API
extensions.

Figure 3–2 shows what program flow looks like when the API extensions are used.

Figure 3–2 Programmatic Flow for API Extensions

As Figure 3–2 shows, an application first establishes a connection to Oracle Internet
Directory. It can then use the standard API functions and the API extensions
interchangeably.

Oracle Application Server
C Program

C API
Extensions
(ora_ldap)

Oracle LDAP
C-API

Oracle Application Server
PL/SQL Program

PL/SQL
Extensions

(DBMS_LDAP_UTL)

Oracle DBMS_LDAP
pkg.

Oracle Application Server
Java Program

Java
Extensions

(oracle.Idap.util)

SUN JNDI
Interface

Established Connection
to OID

Close OID Connection

Connected State

Use Regular
API Functions

Use Oracle
Extension API

Using Oracle Extensions to the Standard APIs

Developing Applications with Oracle Extensions to the Standard APIs 3-3

Using the API Extensions in PL/SQL
Most of the extensions described in this chapter are helper functions. They access data
about specific LDAP entities such as users, groups, realms, and applications. In many
cases, these functions must pass a reference to one of these entities to the standard API
functions. To do this, the API extensions use opaque data structures called handles.
The steps that follow show an extension creating a user handle:

1. Establish an LDAP connection or get one from a pool of connections.

2. Create a user handle from user input. This could be a DN, a GUID, or a single
sign-on user ID.

3. Authenticate the user with the LDAP connection handle, user handle, or
credentials.

4. Free the user handle.

5. Close the LDAP connection, or return the connection back to the connection pool.

Using the API Extensions in Java
This section describes:

■ The oracle.java.util package

■ The PropertySetCollection, PropertySet, and Property classes

The oracle.java.util Package
In Java, LDAP entities—users, groups, realms, and applications—are modeled as Java
objects instead of as handles. This modeling is done in the oracle.java.util
package. All other utility functionality is modeled either as individual objects—as, for
example, GUID—or as static member functions of a utility class.

For example, to authenticate a user, an application must follow these steps:

1. Create oracle.ldap.util.user object, given the user DN.

2. Create a DirContext JNDI object with all of the required properties, or get one
from a pool of DirContext objects.

3. Invoke the User.authenticate function, passing in a reference to the DirContext
object and the user credentials.

4. If the DirContext object was retrieved from a pool of existing DirContext
objects, return it to that pool.

Unlike their C and PL/SQL counterparts, Java programmers do not have to explicitly
free objects. The Java garbage collection mechanism performs this task.

PropertySetCollection, PropertySet, and Property Classes
Many of the methods in the user, subscriber, and group classes return a
PropertySetCollection object. The object represents a collection of one or more
LDAP entries. Each of these entries is represented by a PropertySet object,
identified by a DN. A property set can contain attributes, each represented as a
property. A property is a collection of one or more values for the particular attribute it
represents. An example of the use of these classes follows:

PropertySetCollection psc = Util.getGroupMembership(ctx,
 myuser,
 null,
 true);

Creating an Application Identity in the Directory

3-4 Oracle Identity Management Application Developer’s Guide

 // for loop to go through each PropertySet
 for (int i = 0; i < psc.size(); i++) {

 PropertySet ps = psc.getPropertySet(i);

 // Print the DN of each PropertySet
 System.out.println("dn: " + ps .getDN());

 // Get the values for the "objectclass" Property
 Property objectclass = ps.getProperty("objectclass");

 // for loop to go through each value of Property "objectclass"
 for (int j = 0; j< objectclass.size(); j++) {

 // Print each "objectclass" value
 System.out.println("objectclass: " + objectclass.getValue(j));
 }
}

The entity myuser is a user object. The psc object contains all the nested groups that
myuser belongs to. The code loops through the resulting entries and prints out all the
object class values of each entry.

How the Standard APIs and The Oracle Extensions Are Installed
Table 3–1 explains how the APIs and their extensions are installed.

Creating an Application Identity in the Directory
Before an application can use the LDAP APIs and their extensions, it must establish an
LDAP connection. Once it establishes a connection, it must have permission to
perform operations. But neither task can be completed if the application lacks an
identity in the directory.

Creating an Application Identity
Creating an application identity in the directory is relatively simple. Such an entry
requires only two object classes: orclApplicationEntity and top. You can use

See Also: "Java Sample Code" on page B-23 for more sample uses of
the PropertySetCollection, PropertySet, and Property
classes

Table 3–1 How the APIs are Installed

Language Installation Method

Java API Installed as part of the LDAP client installation. The file,
ldapjclnt10.jar, is found at ORACLE_HOME/jlib.

PL/SQL API Installed as part of the Oracle database server. Load it by using a
script called catldap.sql, located at ORACLE_
HOME/rdbms/admin.

C API To build applications with the C API, include the header file
located at ORACLE_HOME/ldap/public/ldap.h; then link
dynamically to the library located at ORACLE_
HOME/lib/libclntsh.so.10.1.

User Management Functionality

Developing Applications with Oracle Extensions to the Standard APIs 3-5

either Oracle Directory Manager or an LDIF file to create the entry. In LDIF notation,
the entry looks like this:

dn: orclapplicationcommonname=application_name
changetype: add
objectclass:top
objectclass: orclApplicationEntity
userpassword: password

The value provided for userpassword is the value that the application uses to bind
to the directory.

Assigning Privileges to an Application Identity
To learn about the privileges available to an application, see the chapter about
delegating privileges for an Oracle technology deployment in Oracle Internet Directory
Administrator’s Guide. After identifying the right set of privileges, add the application
entity DN to the appropriate directory groups. The link just provided explains how to
perform this task using either Oracle Directory Manager or the ldapmodify
command.

User Management Functionality
This section explains how the Java, PL/SQL, and C LDAP APIs are used to manage
end users. It contains these topics:

■ User Operations Performed by Directory-Enabled Applications

■ User Management APIs

■ User Authentication

■ User Creation

■ User Object Retrieval

User Operations Performed by Directory-Enabled Applications
Directory-enabled applications need to perform the following operations:

■ Retrieve properties of user entries

These properties are stored as attributes of the user entry itself—in the same way,
for example, that a surname or a home address is stored.

■ Retrieve extended user preferences

These preferences apply to a user but are stored in a DIT different from the DIT
containing user entries. Extended user preferences are either user properties
common to all applications or user properties specific to an application. Those of
the first type are stored in a common location in the Oracle Context. Those of the
second type are stored in the application-specific DIT.

■ Query the group membership of a user

■ Authenticate a user given a simple name and credential

Typically an application uses a fully qualified DN, GUID, or simple user name to
identify a user. In a hosted environment, the application may use both a user name
and a realm name for identification.

User Management Functionality

3-6 Oracle Identity Management Application Developer’s Guide

User Management APIs
This section looks at the user management features of the APIs.

Java API for User Management
As stated earlier, all user-related functionality is abstracted in a Java class called
oracle.ldap.util.User. The process works like this:

1. Construct a oracle.ldap.util.User object based on a DN, GUID, or simple
name.

2. Invoke User.authenticate(DirContext, Credentials) to authenticate
the user if necessary.

3. Invoke User.getProperties(DirContext) to get the attributes of the user
entry.

4. Invoke User.getExtendedProperties(DirContext, PropCategory,
PropType) to get the extended properties of the user. PropCategory is either
shared or application-specific. PropType is the object that represents the type of
property desired. If PropType is null, all properties in a given category are
retrieved.

5. Invoke PropertyType.getDefinition(DirContext) to get the metadata
required to parse the properties returned in step 4.

6. Parse the extended properties and continue with application-specific logic. This
parsing is also performed by application-specific logic.

C API for User Management
Oracle Internet Directory does not support the C API for user management.

PL/SQL API for User Management
The steps that follow show how the DBMS_LDAP_UTL package is used to create and
use a handle that retrieves user properties from the directory.

1. Invoke DBMS_LDAP_UTL.create_user_handle(user_hd, user_type,
user_id) to create a user handle from user input. The input can be a DN, a
GUID, or a single sign-on user ID.

2. Invoke DBMS_LDAP_UTL.set_user_handle_properties(user_hd,
property_type, property) to associate a realm with the user handle.

3. Invoke DBMS_LDAP_UTL.get_user_properties(ld, user_handle,
attrs, ptype, ret_pset_coll) to place the attributes of a user entry into a
result handle.

4. Invoke DBMS_LDAP_UTL.get_property_names(pset, property_names)
and DBMS_LDAP_UTL.get_property_values(pset, property_name,
property_values) to extract user attributes from the result handle that you
obtained in step 3.

User Authentication
This section looks at the user authentication features of the APIs.

User Management Functionality

Developing Applications with Oracle Extensions to the Standard APIs 3-7

Java API for User Authentication
User authentication is a common LDAP operation that compares the credentials that a
user provides at login with the user’s credentials in the directory. Oracle Internet
Directory supports the following:

■ Arbitrary attributes can be used during authentication

■ Appropriate password policy exceptions are returned by the authentication
method. Note, however, that the password policy applies only to the
userpassword attribute.

The following is a piece code that shows how the API is used to authenticate a user:

 // User user1 - is a valid User Object
 try
 {
 user1.authenticateUser(ctx,
User.CREDTYPE_PASSWD, "welcome");

 // or
 // user1.authenticateUser(ctx, <any
attribute>, <attribute value>);
 }
 catch (UtilException ue)
 {
 // Handle the password policy error
accordingly
 if (ue instanceof PasswordExpiredException)
 // do something
 else if (ue instanceof GraceLoginException)
 // do something
 }

PL/SQL API for User Authentication
Use DBMS_LDAP_UTL.authenticate_user(session, user_handle, auth_
type, cred, binary_cred) to authenticate a user to the directory. This function
compares the password provided by the user with the password attribute in the user’s
directory entry.

C API for User Authentication
Oracle Internet Directory does not support the C API for user authentication.

User Creation
This section looks at the user creation features of the APIs.

Java API for User Creation
The subscriber class uses the createUser() method to programmatically create
users. The object classes required by a user entry are configurable through Oracle
Delegated Administration Services. The createUser() method assumes that the
client understands the requirement and supplies the values for the mandatory
attributes during user creation. If the programmer does not supply the required
information the server will return an error.

The following snippet of sample code demonstrates the usage.

// Subscriber sub is a valid Subscriber object
// DirContext ctx is a valid DirContext

User Management Functionality

3-8 Oracle Identity Management Application Developer’s Guide

// Create ModPropertySet object to define all the attributes and their values.
ModPropertySet mps = new ModPropertySet();
mps.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_ADD,"cn", "Anika");
mps.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_ADD,"sn", "Anika");
mps.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_ADD,"mail",
"Anika@oracle.com");

// Create user by specifying the nickname and the ModPropertySet just defined
User newUser = sub.createUser(ctx, mps);

// Print the newly created user DN
System.out.println(newUser.getDN(ctx));

// Perform other operations with this new user

PL/SQL API for User Creation
Oracle Internet Directory does not support the PL/SQL API for user creation.

C API for User Creation
Oracle Internet Directory does not support the PL/SQL API for user creation.

User Object Retrieval
This section describes user object retrieval features of the Java, PL/SQL, and C LDAP
APIs.

Java API for User Object Retrieval
The subscriber class offers the getUser() method to replace the public constructors
of the User class. A user object is returned based on the specified information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx is contains a valid directory connection with
sufficient privilege to perform the operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext(ctx);

// Obtain a Subscriber object representing the default
subscriber
Subscriber sub = roc.getSubscriber(ctx,
Util.IDTYPE_DEFAULT, null, null);

// Obtain a User object representing the user whose
nickname is "Anika"
User user1 = sub.getUser(ctx, Util.IDTYPE_SIMPLE, "Anika",
null);
// Do work with this user

The getUser() method can retrieve users based on DN, GUID
and simple name. A getUsers() method is also available to
perform a filtered search to return more than one user at a
time. The returned object is an array of User objects.
For example,

// Obtain an array of User object where the user’s nickname
starts with "Ani"

Identity Management Realm Functionality

Developing Applications with Oracle Extensions to the Standard APIs 3-9

User[] userArr = sub.getUsers(ctx, Util.IDTYPE_SIMPLE,
"Ani", null);
// Do work with the User array

PL/SQL API for User Object Retrieval
Oracle Internet Directory does not support the PL/SQL API for user object retrieval.

C API for User Object Retrieval
Oracle Internet Directory does not support the C API for user object retrieval.

Group Management Functionality
This section describes the group management features of the Java, PL/SQL, and C
LDAP APIs.

Groups are modeled in Oracle Internet Directory as a collection of distinguished
names. Directory-enabled applications must access Oracle Internet Directory to obtain
the properties of a group and to verify that a given user is a member of that group.

A group is typically identified by one of the following:

■ A fully qualified LDAP distinguished name

■ A global unique identifier

■ A simple group name along with a subscriber name

Identity Management Realm Functionality
This section describes the identity management realm features of the Java, PL/SQL,
and C LDAP APIs.

An identity management realm is an entity or organization that subscribes to the
services offered in the Oracle product stack. Directory-enabled applications must
access Oracle Internet Directory to obtain realm properties such as user search base or
password policy.

A realm is typically identified by one of the following:

■ A fully qualified LDAP distinguished name

■ A global unique identifier

■ A simple enterprise name

Realm Object Retrieval for the Java API
This section describes how the Java API can be used to retrieve objects in identity
management realms.

The RootOracleContext class represents the root Oracle Context. Much of the
information needed for identity management realm creation is stored within the root
Oracle Context. The RootOracleContext class offers the getSubscriber()
method. It replaces the public constructors of the subscriber class and returns an
identity management realm object based on the specified information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx contains a valid directory
// connection with sufficient privilege to perform the

Server Discovery Functionality

3-10 Oracle Identity Management Application Developer’s Guide

// operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext(ctx);

// Obtain a Subscriber object representing the
// Subscriber with simple name "Oracle"
Subscriber sub = roc.getSubscriber(ctx,
Util.IDTYPE_SIMPLE, "Oracle", null);

// Do work with the Subscriber object

Server Discovery Functionality
Directory server discovery (DSD) enables automatic discovery of the Oracle directory
server by directory clients. It enables deployments to manage the directory host name
and port number information in the central DNS server. All directory clients perform a
DNS query at runtime and connect to the directory server. Directory server location
information is stored in a DNS service location record (SRV).

An SRV contains:

■ The DNS name of the server providing LDAP service

■ The port number of the corresponding port

■ Any parameters that enable the client to choose an appropriate server from
multiple servers

DSD also allows clients to discover the directory host name information from the
ldap.ora file itself.

This section contains these topics:

■ Benefits of Oracle Internet Directory Discovery Interfaces

■ Usage Model for Discovery Interfaces

■ Determining Server Name and Port Number From DNS

■ Environment Variables for DNS Server Discovery

■ Programming Interfaces for DNS Server Discovery

■ Java APIs for Server Discovery

■ Examples: Java API for Directory Server Discovery

Benefits of Oracle Internet Directory Discovery Interfaces
Typically, the LDAP host name and port information is provided statically in a file
called ldap.ora which is located on the client in ORACLE_HOME/network/admin.
For large deployments with many clients, this information becomes very cumbersome

See Also:

■ "Discovering LDAP Services with DNS" by Michael P. Armijo at
this URL:

http://www.ietf.org/

■ "A DNS RR for specifying the location of services (DNS SRV)",
Internet RFC 2782 at the same URL.

Server Discovery Functionality

Developing Applications with Oracle Extensions to the Standard APIs 3-11

to manage. For example, each time the host name or port number of a directory server
is changed, the ldap.ora file on each client must be modified.

Directory server discovery eliminates the need to manage the host name and port
number in the ldap.ora file. Because the host name information resides on one
central DNS server, the information must be updated only once. All clients can then
discover the new host name information dynamically from the DNS when they
connect to it.

DSD provides a single interface to obtain directory server information without regard
to the mechanism or standard used to obtain it. Currently, Oracle directory server
information can be obtained either from DNS or from ldap.ora using a single
interface.

Usage Model for Discovery Interfaces
The first step in discovering host name information is to create a discovery handle. A
discovery handle specifies the source from which host name information will be
discovered. In case of the Java API, the discovery handle is created by creating an
instance of the oracle.ldap.util.discovery.DiscoveryHelper class.

DiscoveryHelper disco = new DiscoveryHelper(DiscoveryHelper.DNS_DISCOVER);

The argument DiscoveryHelper.DNS_DISCOVER specifies the source. In this case
the source is DNS.

Each source may require some inputs to be specified for discovery of host name
information. In the case of DNS these inputs are:

■ domain name

■ discover method

■ SSL mode

Detailed explanation of these options is given in Determining Server Name and Port
Number From DNS.

// Set the property for the DNS_DN
disco.setProperty(DiscoveryHelper.DNS_DN,"dc=us,dc=fiction,dc=com");
// Set the property for the DNS_DISCOVER_METHOD
disco.setProperty(DiscoveryHelper.DNS_DISCOVER_METHOD
 ,DiscoveryHelper.USE_INPUT_DN_METHOD);
// Set the property for the SSLMODE
disco.setProperty(DiscoveryHelper.SSLMODE,"0");

Now the information can be discovered.

// Call the discover method
disco.discover(reshdl);

The discovered information is returned in a result handle (reshdl). Now the results
can be extracted from the result handle.

ArrayList result =
(ArrayList)reshdl.get(DiscoveryHelper.DIR_SERVERS);
if (result != null)
{
 if (result.size() == 0) return;
 System.out.println("The hostnames are :-");
 for (int i = 0; i< result.size();i++)
 {
 String host = (String)result.get(i);

Server Discovery Functionality

3-12 Oracle Identity Management Application Developer’s Guide

System.out.println((i+1)+".
’"+host+"’");
 }
}

Determining Server Name and Port Number From DNS
Determining a host name and port number from a DNS lookup involves obtaining a
domain and then searching for SRV resource records based on that domain. If there is
more than one SRV resource record, they are sorted by weight and priority. The SRV
resource records contain host names and port numbers required for connection. This
information is retrieved from the resourcerecords and returned to the user.

There are three approaches for determining the domain name required for lookup:

■ Mapping the distinguished name (DN) of the naming context

■ Using the domain component of local machine

■ Looking up the default SRV record in the DNS

Mapping the DN of the Naming Context
The first approach is to map the distinguished name (DN) of naming context into
domain name using the algorithm given here.

The output domain name is initially empty. The DN is processed sequentially from
right to left. An RDN is able to be converted if it meets the following conditions:

■ It consists of a single attribute type and value

■ The attribute type is dc

■ The attribute value is non-null

If the RDN can be converted, then the attribute value is used as a domain name
component (label).

The first such value becomes the rightmost, and the most significant, domain name
component. Successive converted RDN values extend to the left. If an RDN cannot be
converted, then processing stops. If the output domain name is empty when
processing stops, then the DN cannot be converted into a domain name.

For the DN cn=John Doe,ou=accounting,dc=example,dc=net, the client
converts the dc components into the DNS name example.net.

Search by Domain Component of Local Machine
Sometimes a DN cannot be mapped to a domain name. For example, the DN
o=Oracle IDC,Bangalore cannot be mapped to a domain name. In this case, the
second approach uses the domain component of the local machine on which the client
is running. For example, if the client machine domain name is mc1.acme.com, the
domain name for the lookup is acme.com.

Search by Default SRV Record in DNS
The third approach looks for a default SRV record in the DNS. This record points to the
default server in the deployment. The domain component for this default record is _
default.

Once the domain name has been determined, it is used to send a query to DNS. The
DNS is queried for SRV records specified in Oracle Internet Directory-specific format.
For example, if the domain name obtained is example.net, the query for non-SSL

Server Discovery Functionality

Developing Applications with Oracle Extensions to the Standard APIs 3-13

LDAP servers is for SRV resource records having the owner name _ldap._tcp._
oid.example.net.

It is possible that no SRV resource records are returned from the DNS. In such a case
the DNS lookup is performed for the SRV resource records specified in standard
format. For example, the owner name would be _ldap._tcp.example.net.

The result of the query is a set of SRV records. These records are then sorted and the
host information is extracted from them. This information is then returned to the user.

Environment Variables for DNS Server Discovery
The following environment variables override default behavior for discovering a DNS
server.

Programming Interfaces for DNS Server Discovery
The programming interface provided is a single interface to discover directory server
information without regard to the mechanism or standard used to obtain it.
Information can be discovered from various sources. Each source can use its own
mechanism to discover the information. For example, the LDAP host and port
information can be discovered from the DNS acting as the source. Here DSD is used to
discover host name information from the DNS.

Java APIs for Server Discovery
A new Java class, the public class, has been introduced:

public class oracle.ldap.util.discovery.DiscoveryHelper

See Also: The chapter about directory administration in Oracle
Internet Directory Administrator’s Guide

Note: The approaches mentioned here can also be tried in
succession, stopping when the query lookup of DNS is successful. Try
the approaches in the order as described in this section. DNS is
queried only for SRV records in Oracle Internet Directory-specific
format. If none of the approaches is successful, then all the approaches
are tried again, but this time DNS is queried for SRV records in
standard format.

Table 3–2 Environment Variables for DNS Discovery

Environment Variable Description

ORA_LDAP_DNS IP address of the DNS server containing the SRV records. If the
variable is not defined, then the DNS server address is obtained
from the host machine.

ORA_LDAP_DNSPORT Port number on which the DNS server listens for queries. If the
variable is not defined, then the DNS server is assumed to be
listening at standard port number 53.

ORA_LDAP_DOMAIN Domain of the host machine. If the variable is not defined, then
the domain is obtained from the host machine itself.

See Also: For detailed reference information and class descriptions,
refer to the Javadoc located on the product CD.

Server Discovery Functionality

3-14 Oracle Identity Management Application Developer’s Guide

This class provides a method for discovering specific information from the specified
source.

Two new methods are added to the existing Java class
oracle.ldap.util.jndi.ConnectionUtil:

■ getDefaultDirCtx: This overloaded function determines the host name and port
information of non-SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover().

■ getSSLDirCtx: This overloaded function determines the host name and port
information of SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover().

Examples: Java API for Directory Server Discovery
The following is a sample Java program for directory server discovery:

import java.util.*;
import java.lang.*;
import oracle.ldap.util.discovery.*;
import oracle.ldap.util.jndi.*;

public class dsdtest
{
 public static void main(String s[]) throws Exception
 {
 HashMap reshdl = new HashMap();
 String result = new String();
 Object resultObj = new Object();
 DiscoveryHelper disco = new
DiscoveryHelper(DiscoveryHelper.DNS_DISCOVER);

// Set the property for the DNS_DN
disco.setProperty(DiscoveryHelper.DNS_DN,"dc=us,dc=fiction,dc=com")
;

// Set the property for the DNS_DISCOVER_METHOD
disco.setProperty(DiscoveryHelper.DNS_DISCOVER_METHOD
 ,DiscoveryHelper.USE_INPUT_DN_METHOD);

// Set the property for the SSLMODE
disco.setProperty(DiscoveryHelper.SSLMODE,"0");

// Call the discover method
int res=disco.discover(reshdl);
if (res!=0)
 System.out.println("Error Code returned by the discover method is :"+res) ;

// Print the results
printReshdl(reshdl);
}

Table 3–3 Methods for Directory Server Discovery

Method Description

discover Discovers the specific information from a given source

setProperty Sets the properties required for discovery

getProperty Accesses the value of properties

SASL Authentication Functionality

Developing Applications with Oracle Extensions to the Standard APIs 3-15

public static void printReshdl(HashMap reshdl)
{
 ArrayList result = (ArrayList)reshdl.get(DiscoveryHelper.DIR_SERVERS);

if (result != null)
{
 if (result.size() == 0) return;
 System.out.println("The hostnames are :-");
 for (int i = 0; i< result.size();i++)
 {
 String host = (String)result.get(i);
 System.out.println((i+1)+".
’"+host+"’");
 }
 }
 }
}

SASL Authentication Functionality
Oracle Internet Directory supports two mechanisms for SASL-based authentication.
This section describes the two methods. It contains these topics:

■ SASL Authentication by Using the DIGEST-MD5 Mechanism

■ SASL Authentication by Using External Mechanism

SASL Authentication by Using the DIGEST-MD5 Mechanism
SASL Digest-MD5 authentication is the required authentication mechanism for LDAP
Version 3 servers (RFC 2829). LDAP Version 2 does not support Digest-MD5.

The Digest-MD5 mechanism is described in RFC 2831 of the Internet Engineering Task
Force. It is based on the HTTP Digest Authentication (RFC 2617).

This section contains these topics:

■ Steps Involved in SASL Authentication by Using DIGEST-MD5

■ JAVA APIs for SASL Authentication by Using DIGEST-MD5

■ C APIs for SASL authentication using DIGEST-MD5

■ SASL Authentication by Using External Mechanism

Steps Involved in SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authenticates a user as follows:

1. The directory server sends data that includes various authentication options that it
supports and a special token to the LDAP client.

2. The client responds by sending an encrypted response that indicates the
authentication options that it has selected. The response is encrypted in such a
way that proves that the client knows its password.

3. The directory server then decrypts and verifies the client’s response.

See Also: Internet Engineering Task Force Web site:

http://www.ietf.org

SASL Authentication Functionality

3-16 Oracle Identity Management Application Developer’s Guide

To use the Digest-MD5 authentication mechanism, you can use either the Java API or
the C API to set up the authentication.

JAVA APIs for SASL Authentication by Using DIGEST-MD5
When using JNDI to create a SASL connection, you must set these
javax.naming.Context properties:

■ Context.SECURITY_AUTHENTICATION = "DIGEST-MD5"

■ Context.SECURITY_PRINCIPAL

The latter sets the principal name. This name is a server-specific format. It can be either
of the following:

■ The DN—that is, dn:—followed by the fully qualified DN of the entity being
authenticated

■ The string u:followed by the user identifier.

The Oracle directory server accepts just a fully qualified DN such as
cn=user,ou=my department,o=my company.

SASL Authentication by Using External Mechanism
The following is from section 7.4 of RFC 2222 of the Internet Engineering Task Force.

The mechanism name associated with external authentication is "EXTERNAL". The
client sends an initial response with the authorization identity. The server uses
information, external to SASL, to determine whether the client is authorized to
authenticate as the authorization identity. If the client is so authorized, the server
indicates successful completion of the authentication exchange; otherwise the server
indicates failure.

The system providing this external information may be, for example, IPsec or
SSL/TLS.

If the client sends the empty string as the authorization identity (thus requesting the
authorization identity be derived from the client’s authentication credentials), the
authorization identity is to be derived from authentication credentials that exist in the
system which is providing the external authentication.

Oracle Internet Directory provides the SASL external mechanism over an SSL mutual
connection. The authorization identity (DN) is derived from the client certificate
during the SSL network negotiation.

Note: The SASL DN must be normalized before it is passed to the C
or Java API that calls the SASL bind. To generate SASL verifiers,
Oracle Internet Directory supports only normalized DNs.

See Also:

■ "Authenticating to the Directory" on page 8-10

■ "C API Usage for SASL-Based DIGEST-MD5 Authentication" on
page 8-43

■ JNDI:

http://java.sun.com/products/jndi/

Proxying on Behalf of End Users

Developing Applications with Oracle Extensions to the Standard APIs 3-17

Proxying on Behalf of End Users
Often applications must perform operations that require impersonating an end user.
An application may, for example, want to retrieve resource access descriptors for an
end user. (Resource access descriptors are discussed in the concepts chapter of Oracle
Internet Directory Administrator’s Guide.)

A proxy switch occurs at run time on the JNDI context. An LDAP v3 feature, proxying
can only be performed using InitialLdapContext, a subclass of
InitialDirContext. If you use the Oracle extension
oracle.ldap.util.jndi.ConnectionUtil to establish a connection (the
example following), InitialLdapContext is always returned. If you use JNDI to
establish the connection, make sure that it returns InitialLdapContext.

To perform the proxy switch to an end user, the user DN must be available. To learn
how to obtain the DN, see the sample implementation of the
oracle.ldap.util.User class at this URL:

http://www.oracle.com/technology/sample_code/id_mgmt

This code shows how the proxy switch occurs:

import oracle.ldap.util.jndi.*;
import javax.naming.directory.*;
import javax.naming.ldap.*;
import javax.naming.*;

public static void main(String args[])
{
 try{
 InitialLdapContext appCtx=ConnectionUtil.getDefaultDirCtx(args[0], // host
 args[1], // port
 args[2], // DN
 args[3]; // pass)
 // Do work as application
 // . . .
 String userDN=null;
 // assuming userDN has the end user DN value
 // Now switch to end user
 ctx.addToEnvironment(Context.SECURITY_PRINCIPAL, userDN);
 ctx.addToEnvironment("java.naming.security.credentials", "");
 Control ctls[] = {
 new ProxyControl()
 };
 ((LdapContext)ctx).reconnect(ctls);
 // Do work on behalf of end user
 // . . .
 }
 catch(NamingException ne)
 {
 // javax.naming.NamingException is thrown when an error occurs
 }
}

The ProxyControl class in the code immediately preceding implements a
javax.naming.ldap.Control. To learn more about LDAP controls, see the section
about supported controls in the schema appendix of Oracle Internet Directory
Administrator’s Guide. Here is an example of what the ProxyControl class might look
like:

Creating Dynamic Password Verifiers

3-18 Oracle Identity Management Application Developer’s Guide

import javax.naming.*;
import javax.naming.ldap.Control;
import java.lang.*;

public class ProxyControl implements Control {

 public byte[] getEncodedValue() {
 return null;
 }

 public String getID() {
 return "2.16.840.1.113894.1.8.1";
 }

 public boolean isCritical() {
 return false;
 }
}

Creating Dynamic Password Verifiers
You can modify standard APIs to generate application passwords dynamically—that
is, when users log in to an application. This feature has been designed to meet the
needs of applications that provide parameters for password verifiers only at runtime.

This section contains the following topics:

■ Request Control for Dynamic Password Verifiers

■ Syntax for DynamicVerifierRequestControl

■ Parameters Required by the Hashing Algorithms

■ Configuring the Authentication APIs

■ Response Control for Dynamic Password Verifiers

■ Obtaining Privileges for the Dynamic Verifier Framework

Request Control for Dynamic Password Verifiers
Creating a password verifier dynamically involves modifying the LDAP
authentication APIs ldap_search or ldap_modify to include parameters for
password verifiers. An LDAP control called DynamicVerifierRequestControl is
the mechanism for transmitting these parameters. It takes the place of the password
verifier profile used to create password verifiers statically. Nevertheless, dynamic
verifiers, like static verifiers, require that the directory attributes orclrevpwd
(synchronized case) and orclunsyncrevpwd (unsynchronized case) be present and
that these attributes be populated.

Note that the orclpwdencryptionenable attribute of the password policy entry in
the user’s realm must be set to 1 if orclrevpwd is to be generated. If you fail to set
this attribute, an exception is thrown when the user tries to authenticate. To generate
orclunsyncrevpwd, you must add the crypto type 3DES to the entry
cn=defaultSharedPINProfileEntry,cn=common,cn=products,cn=oracle
context.

Syntax for DynamicVerifierRequestControl
The request control looks like this:

Creating Dynamic Password Verifiers

Developing Applications with Oracle Extensions to the Standard APIs 3-19

DynamicVerifierRequestControl
controlOid: 2.16.840.1.113894.1.8.14
criticality: FALSE
controlValue: an OCTET STRING whose value is the BER encoding of the following
type:

ControlValue ::= SEQUENCE {

 version [0]
 crypto [1] CHOICE OPTIONAL {
 SASL/MD5 [0] LDAPString,
 SyncML1.0 [1] LDAPString,
 SyncML1.1 [2] LDAPString,
 CRAM-MD5 [3] LDAPString },
 username [1] OPTIONAL LDAPString,
 realm [2] OPTIONAL LDAPString,
 nonce [3] OPTIONAL LDAPString,
 }

Note that the parameters in the control structure must be passed in the order in which
they appear. Table 3–4 defines these parameters.

Parameters Required by the Hashing Algorithms
Table 3–5 lists the four hashing algorithms that are used to create dynamic password
verifiers. The table also lists the parameters that each algorithm uses as building
blocks. Note that, although all algorithms use the user name and password
parameters, they differ in their use of the realm and nonce parameters.

Configuring the Authentication APIs
Applications that require password verifiers to be generated dynamically must include
DynamicVerifierRequestControl in their authentication APIs. Either ldap_

Table 3–4 Parameters in DynamicVerifierRequestControl

Parameter Description

controlOID The string that uniquely identifies the control structure.

crypto The hashing algorithm. Choose one of the four identified in the
control structure.

username The distinguished name (DN) of the user. This value must
always be included.

realm A randomly chosen realm. It may be the identity management
realm that the user belongs to. It may even be an application
realm. Required only by the SASL/MD5 algorithm.

nonce An arbitrary, randomly chosen value. Required by SYNCML1.0
and SYNCML1.1.

Table 3–5 Parameters Required by the Hashing Algorithms

Algorithm Parameters Required

SASL/MD5 username, realm, password

SYNCML1.0 username, password, nonce

SYNCML1.1 username, password, nonce

CRAM-MD5 username, password

Dependencies and Limitations for the PL/SQ LDAP API

3-20 Oracle Identity Management Application Developer’s Guide

search or ldap_compare must incorporate the controlOID and the control values
as parameters. They must BER-encode the control values as shown in "Syntax for
DynamicVerifierRequestControl"; then they must send both controlOID and the
control values to the directory server.

Parameters Passed If ldap_search Is Used
If you want the application to authenticate the user, use ldap_search to pass the
control structure. If ldap_search is used, the directory passes the password verifier
that it creates to the client.

ldap_search must include the DN of the user, the controlOID, and the control
values. If the user’s password is a single sign-on password, the attribute passed is
authpassword. If the password is a numeric pin or another type of unsynchronized
password, the attribute passed is orclpasswordverifier;orclcommonpin.

Parameters Passed If ldap_compare Is Used
If you want Oracle Internet Directory to authenticate the user, use ldap_compare to
pass the control structure. In this case, the directory retains the verifier and
authenticates the user itself.

Like ldap_search, ldap_compare must include the DN of the user, the
controlOID, the control values, and the user’s password attribute. For ldap_
compare, the password attribute is orclpasswordverifier;orclcommonpin
(unsynchronized case).

Response Control for Dynamic Password Verifiers
When it encounters an error, the directory sends the LDAP control
DynamicVerifierResponseControl to the client. This response control contains
the error code. To learn about the error codes that the response control sends, see the
troubleshooting chapter in Oracle Internet Directory Administrator’s Guide.

Obtaining Privileges for the Dynamic Verifier Framework
If you want the directory to create password verifiers dynamically, you must add your
application identity to the VerifierServices group of directory administrators. If you
fail to perform this task, the directory returns an LDAP_INSUFFICIENT_ACCESS
error.

Dependencies and Limitations for the PL/SQ LDAP API
The PL/SQL LDAP API for this release has the following limitations:

■ The LDAP session handles obtained from the API are valid only for the duration
of the database session. The LDAP session handles cannot be written to a table
and reused in other database sessions.

■ Only synchronous versions of LDAP API functions are supported in this release.

The PL/SQL LDAP API requires a database connection to work. It cannot be used
in client-side PL/SQL engines (like Oracle Forms) without a valid database
connection.

Developing Provisioning-Integrated Applications 4-1

4
Developing Provisioning-Integrated

Applications

This chapter explains how to develop applications that can use the Oracle Directory
Provisioning Integration Service, a component of Oracle Directory Integration and
Provisioning. These applications can be either legacy or third-party applications that
are based on the Oracle platform.

This chapter contains these topics:

■ Introduction to the Oracle Directory Provisioning Integration Service

■ Provisioning Integration Prerequisites

■ Development Usage Model for Provisioning Integration

■ Development Tasks for Provisioning Integration

Introduction to the Oracle Directory Provisioning Integration Service
A big challenge in directory administration is managing provisioning information for
the myriad accounts and applications that each user may need. For example, adding a
user to an information system typically requires a substantial amount of application
provisioning. It can include setting up an e-mail account, which in turn has specific
settings for a mail quota, some default folders, and perhaps some distribution lists. If
there are other connectivity applications that the user needs, then managing that
user’s accounts and personal profile can be overwhelming for a large enterprise. To
meet this challenge, the Oracle Directory Provisioning Integration Service provides a
platform for integrating applications. It enables you to add a user seamlessly to many
key systems in just one step.

The Oracle Directory Provisioning Integration Service serves as a passthrough for user
account information. Rather than provisioning a user with each individual application,
you simply register applications with the provisioning service. This enables them to
send provisioning information directly to Oracle Internet Directory and receive
information from it. Users can then be provisioned at once for a default set of
integrated applications. In this way, the Oracle Directory Provisioning Integration
Service eliminates redundant processing for each individual application.

In addition to a default set of provisioning events defined during installation, Oracle
Internet Directory can define new events and propagate them appropriately to
applications that subscribe to those events. The ability to both send and receive these
provisioning events provides for seamless management of user accounts.

See Also: The chapter on the Oracle Directory Provisioning
Integration Service in Oracle Identity Management Integration Guide

Developing Provisioning-Integrated Applications

4-2 Oracle Identity Management Application Developer’s Guide

Developing Provisioning-Integrated Applications
Applications integrated with the Oracle Directory Provisioning Integration Service can
be either legacy or third-party applications based on the Oracle platform. Once it has
registered with Oracle Internet Directory, an application can send and receive
provisioning information to and from the directory.

To integrate an application with the directory provisioning integration service, you
follow these general steps, each of which is explained more fully later in this chapter:

■ Register the application in Oracle Internet Directory.

■ Identify the identity management realm under which events are to be propagated
or to be applied.

■ Determine whether the application needs to receive events, send events, or both.

■ List the events that need to be sent or received.

■ List attributes of interest that an event should contain.

■ Assign proper privileges to the application identity in the identity management
realm. This enables the application to read events from Oracle Internet Directory
and propagate events to it.

■ Determine the interface name, interface type, and interface connection. This is
required by the provisioning server to propagate events to the application and
consume events from it.

■ Determine the other provisioning scheduling interval, maximum number of
events per schedule, and so on.

■ Implement the interface specifications inside the application.

■ Create the provisioning profile in Oracle Internet Directory so that event
propagation can start. Create this profile by using the provisioning subscription
tool (oidprovtool).

The section that follows uses a sample application to show how these steps are
implemented.

Example of a Provisioning-Integrated Application
This example of a provisioning-integrated application is called Employee Self Service
Application (ESSA). In this discussion, the terms "user" and "identity" are used
interchangeably.

Requirements of the Employee Self Service Application
This application requires that its entire user base be managed from Oracle Internet
Directory. The application administrator creates, modifies, and deletes identities in
Oracle Internet Directory. The identity information is propagated to the application as
an event, namely, IDENTITY_ADD.

Although the application creates the identity as user data, this is not sufficient to
authorize the employee to access the application. The presence of the identity in
Oracle Internet Directory only facilitates a global login. The application must discover
whether a particular identity is authorized to access the application. This is achieved
by subscribing the identity for that application, a task that the application
administrator can do. This subscribing triggers another event from Oracle Internet
Directory to the application—namely, SUBSCRIPTION_ADD—indicating that the
identity has now been subscribed in Oracle Internet Directory to use that application.

Developing Provisioning-Integrated Applications

Developing Provisioning-Integrated Applications 4-3

The application can then query the directory to check whether a particular user is
present in the application subscription lists before allowing the user access to the
application.

In this example, the events for this application are received from Oracle Internet
Directory. The application itself does not send any events to the directory. It could,
however, also send events to Oracle Internet Directory. To do this, the application
identity needs more directory privileges for the various operations that it wants to
perform on the directory. This is explained in "Determining Provisioning Mode for the
Employee Self Service Application" on page 4-4.

The steps are as follows:

1. A user is added in Oracle Internet Directory through either the Oracle Internet
Directory Self-Service Console or some other means such as synchronization from
third party sources or through command-line tools. The user information must be
placed in the appropriate identity management realm.

2. The IDENTITY_ADD event is propagated from Oracle Internet Directory to the
application. This assumes that the application subscribed to the IDENTITY_ADD
event during creation of the provisioning subscription profile.

3. On receiving the event, the application adds this identity to its database. In this
example, however, this does not mean that the user is authorized to access the
application. An additional event is required to subscribe the user as an authorized
user of that application.

4. In Oracle Internet Directory, the user is subscribed to the application by using
Oracle Delegated Administration Services.

5. The SUBSCRIPTION_ADD event is propagated from Oracle Internet Directory to
the application. This assumes that the application subscribed to the
SUBSCRIPTION_ADD event during creation of the provisioning subscription
profile.

6. On receiving this event, the application updates the identity record in its database
indicating that this is also an authorized user.

Registering the Employee Self Service Application in Oracle Internet Directory
The application must register itself as an application entity with its own identity entry
in Oracle Internet Directory. You can decide which realm to create the application
identity in, as long as that realm is a well-known location in the DIT. To create the
necessary DIT elements in Oracle Internet Directory, you must follow a template
described in this chapter.

The Oracle Context of the identity management realm has a container for the various
application footprints. That container is:
cn=products,cn=oraclecontext,identity_management_realm_DN.

If the application is meant for only one realm, then Oracle Corporation recommends
that you create the application identity DN in this form:
orclApplicationName=application_ name,cn=application_
type,cn=products,cn=oraclecontext,identity_management_realm_DN.
The cn=application_type element is called the application container.

If the application is meant for multiple realms, you can create the application identity
in the root Oracle Context, namely, cn=products,cn=oraclecontext.

In this example, the location and the content of the entry are as follows:

Developing Provisioning-Integrated Applications

4-4 Oracle Identity Management Application Developer’s Guide

dn: \
orclApplicationCommonName=ESSA,cn=demoApps,cn=Products,cn=OracleContext,o=ACME,
dc=com
orclapplicationcommonname: ESSA
orclappfullname: Employee Self Service Application
userpassword: welcome123
description: This is an sample application for demonstration.
orclaci: access to entry by group="cn=odisgroup,cn=odi,cn=oracle internet direct
ory" (proxy)
objectclass: orclApplicationEntity

In this example, the application type or application container is demoApps. The
application name is ESSA.

All directory operations must be done on the behalf of the application by the
provisioning server. Because the server does not have privileges to send or consume
events under the domain, it must process events by impersonating the application
identity. This, in turn, requires that the server be given the proxy privilege. In this
example, it is assumed that the application identity already has the necessary
privileges.

Identifying the Management Context for the Employee Self Service Application
All identity management realms are generally present under the identity management
realm base in the root Oracle Context. The application must be provisioned for the
appropriate realm—that is, proper privileges must be assigned to this application
identity so that it can administer its information under this realm. In this example, let
us assume that the appropriate realm is o=ACME,dc=com.

Determining Provisioning Mode for the Employee Self Service Application
You must decide whether the application only receives events or whether it also sends
them to Oracle Internet Directory. The mode can be one of the following:

■ INBOUND: from the application to Oracle Internet Directory

■ OUTBOUND: from Oracle Internet Directory to the application

■ BOTH

The default mode is OUTBOUND.

In this example, because the application is interested in only receiving events from
Oracle Internet Directory, we specify the events as OUTBOUND only.

Determining Events for the Employee Self Service Application
During installation, a fixed set of events is predefined. You can define new events at
runtime, but they can be propagated in the outbound mode only. The Oracle Directory
Provisioning Integration Service can process only a fixed set of predefined events for
the inbound mode.

In this example, we do not need to define any new events. The following events in
Oracle Internet Directory must be propagated to our sample application:

■ Identity creation (IDENTITY_ADD)

■ Identity modification (IDENTITY_MODIFY)

■ Identity employee deletion (IDENTITY_DELETE)

■ Identity subscription addition (SUBSCRIPTION_ADD)

Developing Provisioning-Integrated Applications

Developing Provisioning-Integrated Applications 4-5

■ Identity subscription modification (SUBSCRIPTION_MODIFY)

■ Identity subscription deletion (SUBSCRIPTION_DELETE)

Provisioning the Employee Self Service Application for an Identity Management
Realm
This is the most important step. It involves assigning the proper privileges to the
application identity in the identity management realm. These privileges enable the
application to read and apply the various events from Oracle Internet Directory and to
send change events to Oracle Internet Directory. Inbound events, which result in
modifying Oracle Internet Directory, require more privileges.

Generally, predefined groups are created when the identity management realm is
created. The groups have different privileges as described in this section.

The following template describes all the appropriate ACLs required for an application
to send or receive provisioning events.

The application identity must be added to the appropriate group, but this, in turn,
depends on the privileges it requires. For example, if an application is interested only
in receiving events from Oracle Internet Directory, then it does not need to be added to
groups that can create or modify entries in this realm.

The template accepts a few variables. Once the variables are instantiated, the template
becomes a proper LDIF file that can be executed against Oracle Internet Directory. You
can adjust the variables according to the needs of your deployment.

In this example, the identity management realm is o=ACME,dc=com. The template of
the LDIF file looks like this:

This creates The Application Identity subtree
#
The following variables are used :
(Some of them are OPTIONAL where the values oidprov tool can get default
values if not supplied.)
#
%s_IdentityRealm% : Identity Realm DN:
(MANDATORY: This is the domain in which all the related users and groups are
present. If Default Identity Realm needs to be used,
it can be queried in a directory install.
This value is stored in the root Oracle Context of the directory.
The value is stored in the 'orcldefaultsubscriber'
attribute in 'dn: cn=Common,cn=Products,cn=OracleContext')
%s_AppType% : Application Type (e.g EBusiness)
(MANDATORY : Name of the suite)
%s_AppName% : Application Name (e.g HRMS,Financials,Manufacturing)
(MANDATORY: Name of the Application in the suite.)
%s_SvcType% : Service Type (e.g Ebusiness)
(MANDATORY : Alias for name of suite.
This value can be be same as %s_AppType%)
%s_SvcName% : Service Name (e.g HRMS,Financials,Manufacturing)
(MANDATORY : Alias for name of Application.
This value can be same as %s_AppName%)
%s_AppURL% : Application URL if any. (set it to 'NULL' if there is nothing.)
#
Apart from these variables this LDIF templates would also need the following
information to load this data to Oracle Internet Directory:
#
LDAP_HOST : directory server hostname
LDAP_PORT : directory server port number
BINDDN : cn=orcladmin

Developing Provisioning-Integrated Applications

4-6 Oracle Identity Management Application Developer’s Guide

BINDPASSWD: Password for orcladmin
#
After replacing the variables in the template this data can be loaded into the
directory by running the following command:
ldapmodify -h %LDAP_HOST% -p %LDAP_PORT% -D %BINDDN% \
-w %BINDPWD% -f <this_template_file_name>
#
#

First we create the Application container. This needs to be created just once
initially. If this container is existing because some application was
already created using this template, please remove this entry
from the template/LDIF file.

dn: cn=%s_AppType%,cn=Products,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: %s_AppType%
objectclass: orclContainer

The application identity needs to created next. This is under the Applications
container. This object is of type "orclApplicationEntity"

dn: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%
changetype: add
orclapplicationcommonname: %s_AppName%
orclaci: access to entry by group="cn=odisgroup,cn=odi,cn=oracle internet
directory"
 (add,browse,delete,proxy)
objectclass: orclApplicationEntity

The following ACLs are for giving privileges to the application entities for
adding/modifying/deleting users in the relevant realm.

All members of the group represented by this DN are allowed to create users
in the relevant realm:

dn: cn=OracleDASCreateUser,cn=Groups,cn=OracleContext,%s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%

All members of the group represented by this DN are allowed to delete users in
the relevant realm:

dn: cn=OracleDASDeleteUser,cn=Groups,cn=OracleContext,%s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%

All members of the group represented by this DN are allowed to edit users in the
relevant realm:

dn: cn=OracleDASEditUser,cn=Groups,cn=OracleContext,%s_IdentityRealm%
changetype: modify

Developing Provisioning-Integrated Applications

Developing Provisioning-Integrated Applications 4-7

add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%

All members of the group represented by this DN are allowed to create groups in
the relevant realm:

dn: cn=OracleDASCreateGroup,cn=Groups,cn=OracleContext,%s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%

All members of the group represented by this DN are allowed to delete groups in
the relevant realm:

dn: cn=OracleDASDeleteGroup,cn=Groups,cn=OracleContext,%s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%

All members of the group represented by this DN are allowed to edit groups in
the relevant realm:

dn: cn=OracleDASEditGroup,cn=Groups,cn=OracleContext,%s_IdentityRealm%
changetype: modify
add: uniquemember
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%

The container is being created to hold the various subscription lists of the
application for this realm. This container will hold lots of subscription
information and resides just under the application identity.

dn: cn=subscriptions,orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,
 cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: subscriptions
objectclass: orclContainer

The following is the group that will hold administrators DNs for managing
subscription lists for this application. The application identity should also be
in this list and will be added here.

dn: cn=Subscription_Admins,cn=Subscriptions,orclApplicationCommonName=%s_AppName%,
cn=%s_AppType%,cn=products,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: Subscription_Admins
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%
objectclass: groupOfUniqueNames
objectclass: orclACPGroup
objectclass: orclprivilegegroup

Developing Provisioning-Integrated Applications

4-8 Oracle Identity Management Application Developer’s Guide

The following is the group that will hold DNs of users who can just view the
subscription lists for this application. The application identity should also be
in this list and will be added here.

dn: cn=Subscription_Viewers,cn=Subscriptions,orclApplicationCommonName=%s_
AppName%,
cn=%s_AppType%,cn=products,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: Subscription_Viewers
uniquemember: orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
%s_IdentityRealm%
objectclass: groupOfUniqueNames
objectclass: orclACPGroup
objectclass: orclprivilegegroup

The following is just a container for the actual subscription lists.

dn: cn=subscription_data,cn=subscriptions,orclApplicationCommonName=%s_AppName%,
 cn=%s_AppType%,cn=Products,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: subscription_data
objectclass: orclContainer

The following is a sample subscription list. We are calling it "cn=ACCOUNTS"
since it signifies accounts in the application.

dn: cn=ACCOUNTS,cn=subscription_
data,cn=subscriptions,orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: cn=ACCOUNTS
uniquemember: cn=orcladmin
objectclass: groupOfUniqueNames
objectclass: orclGroup

The following is a container for the service instance entries in the Root Oracle
Context. An application publishes itself as a service by creating
a service instance entry under this container. These service
instance entries are created outside any realm and in the root Oracle Context.

dn: cn=%s_SvcType%,cn=Services,cn=OracleContext
changetype: add
cn: %s_SvcType%
objectclass: orclContainer

The following is a container for the service instance entries in the Root Oracle
Context for that service type.

dn: cn=ServiceInstances,cn=%s_SvcType%,cn=Services,cn=OracleContext
changetype: add
cn: ServiceInstances
objectclass: orclContainer

The following is a service instance entry. An application publishes itself as a
service by creating this service instance.

dn: cn=%s_SvcName,cn=ServiceInstances,%,cn=%s_
SvcType%,cn=Services,cn=OracleContext

Developing Provisioning-Integrated Applications

Developing Provisioning-Integrated Applications 4-9

changetype: add
cn: %s_SvcName%
orclServiceType: %s_SvcType%
presentationAddress: %s_AppURL%
objectclass: orclServiceInstance

The following is a container for service instance reference entry that resides
in the relevant realm.

dn: cn=%s_SvcType%,cn=Services,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: %s_SvcType%
objectclass: orclContainer

It is a reference entry which actually points to the actual service instance
entry as well as to the subscription list container for the application.

dn: cn=%s_SvcName%,cn=%s_SvcType%,cn=Services,cn=OracleContext,%s_IdentityRealm%
changetype: add
cn: %s_SvcName%
description: Link To the Actual Subscription Location for the Application and the
actual Service instance.
orclServiceInstanceLocation: cn=%s_SvcName%,cn=%s_
SvcType%,cn=Services,cn=OracleContext
orclServiceSubscriptionLocation: cn=subscription_data,cn=subscriptions,
 orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,cn=OracleContext,
 %s_IdentityRealm%
objectclass: orclServiceInstanceReference

This LDIF operation gives appropriate privileges to the subscription admin and
subscription viewers group. The groups have already been created.

dn: cn=subscriptions,orclApplicationCommonName=%s_AppName%,cn=%s_
AppType%,cn=Products,
 cn=OracleContext,%s_IdentityRealm%
changetype: modify
replace: orclaci
orclaci: access to entry by group="cn=Subscription_
Admins,cn=Subscriptions,orclApplicationCommonName=%s_AppName%,
 cn=%s_AppType%,cn=products,cn=OracleContext,%s_IdentityRealm%"
(browse,add,delete) by group="cn=Subscription_
Viewers,cn=Subscriptions,orclApplicationCommonName=%s_AppName%,
 cn=%s_AppType%,cn=products,cn=OracleContext,%s_IdentityRealm%" (browse)
orclaci: access to attr=(*) by group="cn=Subscription_
Admins,cn=Subscriptions,orclApplicationCommonName=%s_AppName%,
 cn=%s_AppType%,cn=products,cn=OracleContext,%s_IdentityRealm%"
(search,read,write,compare) by group="cn=Subscription_
Viewers,cn=Subscriptions,orclApplicationCommonName=%s_AppName%,
 cn=%s_AppType%,cn=products,cn=OracleContext,%s_IdentityRealm%"
(search,read,compare)

Determining Scheduling Parameters for the Employee Self Service Application
The scheduling interval determines how often the provisioning servers send or receive
events. The server sends or receives events, and, when it has finished sending or
receiving all of them, it sleeps for a period specified in seconds in the scheduling
interval. The number of events it can send or receive at one time is dictated by the
“Maximum Events per Schedule” parameter.

Developing Provisioning-Integrated Applications

4-10 Oracle Identity Management Application Developer’s Guide

Let us assume that we need events to be propagated every two minutes, and a
maximum of 100 events each time.

Use the following to determine the interface connection information:

■ Interface Type: This is the event propagation medium. Currently, only PL/SQL is
supported.

■ Interface Name: This is the name of the PL/SQL package that the application must
implement and that the provisioning server invokes to send and receive events.
For our sample application. let us assume ESSA_INTF to be the interface name.

■ Interface Connection information: This is used by the server to connect to the
application database to invoke the PL/SQL interface.

The connection information is in this format:

Database Host: Listener Port: Database SID: DB Account: Password

For a high-availability, RAC-enabled database, the connection information should be
in this format:

Database Host: Listener Port: Service Name: DB Account: Password; Database Host:
Listener Port: Service Name: DB Account: Password; Database Host: Listener Port:
Service Name: DB Account: Password

The entire string should be specified in one line as a single value.

For our sample application, the connection information is:

localhost: 1521: iasdb : scott : tiger

The Oracle directory integration and provisioning server uses JDBC to connect to the
application database using the connect information provided, and then invokes the
PL/SQL APIs to propagate or receive events.

Determining the Interface Connection Information for the Employee Self Service
Application
Use the following to determine the interface connection information:

■ Interface Type: This is the event propagation medium. Currently only PL/SQL is
supported.

■ Interface Name: This is the name of the PL/SQL package that the application must
implement and that the provisioning server invokes to send and receive events.
For our sample application, let us assume that ESSA_INTF is the interface name.

■ Interface Connection information: This is used by the server to connect to the
application database to invoke the PL/SQL interface.

The following types of Database connection formats are supported:

■ Database Host: Listener Port: Database SID: DB Account: Password. This is the old
format, which is still supported. Nevertheless, do not use it because SID support
might soon be obsolete. In this case, the provisioning server uses JDBC thin driver
to connect. For example:

localhost: 1521: iasdb: scott: tiger

■ Database Host: Listener Port: DB Service Name: DB Account: Password. This is
recommended. In this case, the provisioning server uses JDBC thin driver to
connect. For example:

Developing Provisioning-Integrated Applications

Developing Provisioning-Integrated Applications 4-11

localhost: 1521: iasdb: scott: tiger
■ For a database configured for active failover clusters, the connection information

should be in one of the following two formats:

DBSVC=netServiceName:User:Password

In this case, the provisioning server uses JDBC OCI (thick) driver to connect. The
net service name needs to be defined in the local tnsnames.ora file on which the
provisioning server is running.

DBURL=ldap://ldap_host:ldap_port/DBServiceName:UserName:Password

In this case, the provisioning server uses JDBC thin driver to connect. Database
Registration should already have occurred in the directory. the driver connects to
the directory using the directory host and port. It retrieves the database connect
information and then connects to the database.

Implementing the Interface Specification for the Employee Self Service Application
The interface is described in detail in Chapter 13, "Provisioning Integration API
Reference".

For outbound events—that is, events from Oracle Internet Directory to the
application—the following interfaces must be implemented:

 PROCEDURE PutOIDEvent (event IN LDAP_EVENT,
 event_status OUT LDAP_EVENT_STATUS);

For inbound events—that is, events from application to Oracle Internet Directory—the
following interfaces must be implemented:

FUNCTION GetAppEvent(event OUT LDAP_EVENT) RETURNING NUMBER;
PROCEDURE PutAppEventStatus(event_status IN LDAP_EVENT_STATUS)

For our sample application, because we are handling only outbound events, we
implement all interfaces concerning those events.

Creating the Provisioning Subscription Profile for the Employee Self Service
Application
To create the provisioning subscription profile, use the following settings:

ORACLE_HOME/bin/oidprovtool operation=create ldap_host=localhost \
ldap_port=389 ldap_user_dn=cn=orcladmin ldap_user_password=welcome \
organization_dn="o=ACME,dc=com" \
application_dn="orclApplicationCommonName=ESSA,cn=demoApps,cn=Products,\
cn=OracleContext,o=ACME,dc=com" \
interface_name=ESSA_INTF interface_type=PLSQL \
interface_connect_info="localhost:1521:iasdb:scott:tiger" \
event_subscription="IDENTITY:o=oracle,dc=com:ADD(cn,sn,mail,description,
telephonenumber)" \

Provisioning Integration Prerequisites

4-12 Oracle Identity Management Application Developer’s Guide

event_subscription="IDENTITY:o=oracle,dc=com:MODIFY(cn,sn,mail,description,
telephonenumber)" \
event_subscription="IDENTITY:o=oracle,dc=com:DELETE" \
event_subscription="SUBSCRIPTION:cn=ESSA,cn=products,cn=oraclecontext,o=oracle,
dc=com:ADD(orclactivestartdate,orclactiveenddate,cn) \
event_subscription="SUBSCRIPTION:cn=ESSA,cn=prducts,cn=oraclecontext,o=oracle,
dc=com:MODIFY(orclactivestartdate,orclactiveenddate,cn) \
event_subscription="SUBSCRIPTION:cn=ESSA,cn=prducts,cn=oraclecontext,o=oracle,
dc=com:DELETE"

Provisioning Integration Prerequisites
To use the Oracle Directory Provisioning Integration Service, an application must be
Oracle RDBMS-based, and it must be enabled for Oracle Application Server Single
Sign-On.

As an application developer, you should be familiar with:

■ General LDAP concepts

■ Oracle Internet Directory

■ Oracle Internet Directory integration with Oracle Application Server

■ Oracle Delegated Administration Services

■ The user provisioning model described in the chapter on the Oracle Directory
Provisioning Integration Service in Oracle Identity Management Integration Guide.

■ The Oracle Directory Integration and Provisioning platform

■ Knowledge of SQL, PL/SQL, and database RPCs

In addition, Oracle Corporation recommends that you understand single sign-on
concepts.

Development Usage Model for Provisioning Integration
This section shows how an application interacts with the Oracle Directory
Provisioning Integration Service. It contains these topics:

■ Initiating Provisioning Integration

■ Returning Provisioning Information to the Directory

Initiating Provisioning Integration
When an application is installed, the Oracle Directory Provisioning Integration Service
is provided with three kinds of information:

■ Information that enables an application entry to be registered in the directory

■ database connect information, which is also registered in the directory

■ Information that enables the Oracle Directory Provisioning Integration Service to
service the application

Database connect information for the application is also registered.

Figure 4–1 on page 4-13 shows the first phase of provisioning—namely, passing user
events from Oracle Internet Directory through the Oracle Directory Integration and
Provisioning platform provisioning filter to the application.

Development Usage Model for Provisioning Integration

Developing Provisioning-Integrated Applications 4-13

Figure 4–1 How an Application Obtains Provisioning Information by Using the Oracle Directory
Provisioning Integration Service

In Figure 4–1:

1. The Oracle Directory Provisioning Integration Service retrieves the changes to
users and groups from the Oracle Internet Directory change log. It determines
which changes to send to the application.

2. The Oracle Directory Provisioning Integration Service sends the changes to the
application—using database connect information—by invoking a generic
provisioning interface.

3. The generic provisioning interface invokes application-specific logic. The
application-specific logic translates the generic provisioning event to one that is
application-specific. It then makes the necessary changes in the application
repository.

Returning Provisioning Information to the Directory
It is now possible to return provisioning information to Oracle Internet Directory.
Figure 4–2 shows the steps involved in this process, which is essentially the reverse of
the provisioning process.

1. The application repository generates the application event data and sends it to the
Oracle Directory Integration and Provisioning platform.

2. The Oracle Directory Integration and Provisioning platform filters the event data
and returns the change information to the directory server.

3. The change is applied in Oracle Internet Directory.

The updated information is stored in Oracle Internet Directory, ready to be accessed by
other applications.

Figure 4–2 How an Application Returns Provisioning Information to Oracle Internet Directory Provisioning
Service

Figure 4–3 on page 4-14 shows the relationship between the services and the
subscribed applications in a provisioning-integrated deployment.

Provisioning-Integrated
Application

Application Repository

Make Application-Specific
Change3

2 Send
Provisioning
Events

1 Get
Provisioning
Events

Oracle Directory Integration
and Provisioning Platform

Filter
Oracle
Internet

Directory

Provisioning-Integrated
Application

Application Repository

Make Change in
Application1

2 Consume
Application
Event

3 Make change in
Oracle Internet
Directory

Oracle Directory Integration
and Provisioning Platform

Filter
Oracle
Internet

Directory

Development Tasks for Provisioning Integration

4-14 Oracle Identity Management Application Developer’s Guide

Figure 4–3 Provisioning Services and Their Subscribed Applications in a Typical Deployment

Figure 4–3 shows a DIT in which the entries for two services—Oracle Human
Resources and Oracle Financials—point to their corresponding subscription list
containers.

■ Oracle Human Resources is represented as
cn=HRMS,cn=EBusiness,cn=Services,dc=com.

It points to its subscription list: cn=Accounts,cn=subscription_data,
cn=subscriptions,orclapplicationcommonname=HRMS,
cn=EBusiness,cn=Products,cn=OracleContext.

■ Oracle Financials is represented as
cn=Financials,cn=EBusiness,cn=Services,dc=com.

It points to its subscription list: cn=Accounts,cn=subscription_
data,cn=subscriptions,orclapplicationcommonname=FINANCIALS,
cn=EBusiness,cn=Products,cn=OracleContext.

Development Tasks for Provisioning Integration
To develop applications for synchronized provisioning, you perform these general
tasks:

1. Develop application-specific logic to perform provisioning activities in response to
events from the provisioning system.

cn=EBusiness

cn=Products

cn=OracleContext

cn=subscription_data

cn=Accounts
member:Jon
member:Mary
member:Joe
member:Adam

cn=subscriptions

orclapplicationcommonname=
HRMS

cn=subscription_data

cn=Accounts
member:Jon
member:Mary
member:Joe
member:Adam

cn=subscriptions

orclapplicationcommonname=
FINANCIALS

ROOT

dc=acme

dc=com

cn=
Mary

cn=
Adam

cn=
Joe

cn=Users

cn=
Services

cn=
HRMS

cn=
Financials

cn=
EBusiness

Subscription Lists
Location Pointers

Service Instance
Reference Entries

Subscription
List Containers

Application
Identities

Subscription
Lists

Development Tasks for Provisioning Integration

Developing Provisioning-Integrated Applications 4-15

2. Modify application installation procedures to enable the applications to subscribe
to provisioning events.

This section contains these topics:

■ Application Installation

■ User Creation and Enrollment

■ User Deletion

■ Extensible Event Definitions

■ Application Deinstallation

Application Installation
Modify the installation logic for each application to run a post-installation
configuration tool.

During application installation, the application invokes the Provisioning Subscription
Tool (oidprovtool). The general pattern of invoking this tool is:

oidprovtool param1=p1_value param2=p2_value param3=p3_value ...

User Creation and Enrollment
First, create users in Oracle Internet Directory; then enroll them in the application.

When using either of these interfaces, you must enable the Oracle Directory
Provisioning Integration Service to identify users presently enrolled in the application.
This way, the delete events it sends correspond only to users enrolled in the
application.

Implement the application logic so that the user_exists function verifies that a
given user in Oracle Internet Directory is enrolled in the application.

User Deletion
The Oracle Directory Provisioning Integration Service primarily propagates the user
deletion events from Oracle Internet Directory to the various provisioning-integrated
applications.

Using the PL/SQL callback interface, the application registers with the Oracle
Directory Provisioning Integration Service and provides:

■ The name of a PL/SQL package the application is using

■ The connect string to access that package

The Oracle Directory Provisioning Integration Service in turn connects to the
application database and invokes the necessary PL/SQL procedures.

Figure 4–4 on page 4-16 illustrates system interactions for the PL/SQL callback
interface.

See Also: "Development Usage Model for Provisioning Integration"
on page 4-12 for details of what the post-installation tool should do

Development Tasks for Provisioning Integration

4-16 Oracle Identity Management Application Developer’s Guide

Figure 4–4 PL/SQL Callback Interface

As Figure 4–4 shows, deleting a user from an application comprises these steps:

1. The administrator deletes the user in Oracle Internet Directory by using Oracle
Directory Manager or a similar tool.

2. The Oracle Directory Provisioning Integration Service retrieves that change from
the Oracle Internet Directory change-log interface.

3. To see if the user deleted from the directory was enrolled for this application, the
Oracle Directory Provisioning Integration Service invokes the user_exists()
function of the provisioning event interface of the application.

4. If the user is enrolled, the Oracle Directory Provisioning Integration Service
invokes the user_delete() function of the provisioning event interface.

5. The application-specific PL/SQL logic deletes the user and the related footprint
from the application-specific repository. This step is the responsibility of the
developer.

Extensible Event Definitions
This feature enables you to extend the abilities of the Oracle Directory Provisioning
Integration Service to return predefined sets of provisioning information to
applications. Configure the following events at installation to propagate them to the
appropriate applications.

Oracle
Internet

Directory

2

Invoke
PKG.user_delete()

4
Invoke

PKG.user_exists()

3

Oracle
Directory

Provisioning
Integration

Service

Get Changes

Provisioning-Integrated
Application

Generic PL/SQL Interface (ProvPkg)

Delete User
from
Application

5 Application-Specific PL/SQL Logic

Delete
User

1

Development Tasks for Provisioning Integration

Developing Provisioning-Integrated Applications 4-17

 Application Deinstallation
You must enable the deinstallation logic for each provisioning-integrated application
to run the Provisioning Subscription Tool (oidprovtool) that unsubscribes the
application from the Oracle Directory Provisioning Integration Service.

LDAP_NTFY Function Definitions
The Oracle Directory Provisioning Integration Service invokes the following callback
functions.

FUNCTION user_exists
A callback function invoked by the Oracle Directory Provisioning Integration Service
to check if a user is enrolled with the application.

Syntax
FUNCTION user_exists (user_name IN VARCHAR2,
 user_guid IN VARCHAR2,
 user_dn IN VARCHAR2)

Parameters

Return Value
Returns a positive number if the user exists

FUNCTION group_exists
A callback function invoked by the Oracle Directory Provisioning Integration Service
to check whether a group exists in the application.

Syntax
FUNCTION group_exists (group_name IN VARCHAR2,

Table 4–1 Extensible Event Definitions

Event Definition Attribute

Event Object Type
(orclODIPProvEventObjectType)

Specifies the type of object the event is associated with—for
example, USER, GROUP, or IDENTITY.

LDAP Change Type
(orclODIPProvEventChangeType)

Indicates what kinds of LDAP operations can generate an
event for this type of object—for example, ADD, MODIFY, or
DELETE)

Event Criteria
(orclODIPProvEventCriteria)

The additional selection criteria that qualifies an LDAP entry
to be of a specific object type. For example,
Objectclass=orclUserV2 means that any LDAP entry
that satisfies this criteria can be qualified as this object type,
and any change to this entry can generate appropriate
event(s).

Table 4–2 Function user_exists Parameters

Parameter Description

user_name User identifier

user_guid Global user identifier

user_dn DN attribute of the user entry

Development Tasks for Provisioning Integration

4-18 Oracle Identity Management Application Developer’s Guide

group_guid IN VARCHAR2,
group_dn IN VARCHAR2)
RETURN NUMBER;

Parameters

Return value
Returns a positive number if the group exists. Returns zero if the group does not exist.

FUNCTION event_ntfy
A callback function invoked by the Oracle Directory Provisioning Integration Service
to deliver change notification events for objects modeled in Oracle Internet Directory.
Currently modify and delete change notification events are delivered for users and
groups in Oracle Internet Directory. While delivering events for an object (represented
in Oracle Internet Directory), the related attributes are also sent along with other
details. The attributes are delivered as a collection (array) of attribute containers,
which are in un-normalized form. This means that, if an attribute has two values, two
rows are sent in the collection.

Syntax
FUNCTION event_ntfy (event_type IN VARCHAR2,
event_id IN VARCHAR2,
event_src IN VARCHAR2,
event_time IN VARCHAR2,
object_name IN VARCHAR2,
object_guid IN VARCHAR2,
object_dn IN VARCHAR2,
profile_id IN VARCHAR2,
attr_list IN LDAP_ATTR_LIST)
RETURN NUMBER;

Parameters

Table 4–3 Function group_exists Parameters

Parameter Description

group_name Group simple name

group_guid GUID of the group

group_dn DN of the group entry

Table 4–4 Parameters for FUNCTION event_ntfy

Parameter Description

event_type Type of event. Possible values: USER_DELETE, USER_MODIFY,
GROUP_DELETE, GROUP_MODIFY.

event_id Event id (change log number).

event_src DN of the modifier responsible for this event.

event_time Time when this event occurred.

object_name Simple name of the entry.

object_guid GUID of the entry.

object_dn DN of the entry

Development Tasks for Provisioning Integration

Developing Provisioning-Integrated Applications 4-19

Return Values
Success returns a positive number. Failure returns zero.

profile_id Name of the Provisioning Agent

attr_list Collection of ldap attributes of the entry

Table 4–4 (Cont.) Parameters for FUNCTION event_ntfy

Parameter Description

Development Tasks for Provisioning Integration

4-20 Oracle Identity Management Application Developer’s Guide

Developing Directory Plug-ins 5-1

5
Developing Directory Plug-ins

This chapter explains how to use the plug-in framework for Oracle Internet Directory
to extend LDAP operations.

This chapter contains these topics:

■ Plug-in Prerequisites

■ Plug-in Benefits

■ What Is the Plug-in Framework?

■ Designing, Creating, and Using Plug-ins

■ Examples of Plug-ins

■ Binary Support in the Plug-in Framework

■ Database Object Types Defined

■ Specifications for Plug-in Procedures

Plug-in Prerequisites
To develop Oracle Internet Directory plug-ins, you should be familiar with the
following:

■ Generic LDAP concepts

■ Oracle Internet Directory

■ Oracle Internet Directory integration with Oracle Application Server

■ SQL, PL/SQL, and database RPCs

Plug-in Benefits
To extend the capabilities of the Oracle Internet Directory server, you can write your
own server plug-in. A server plug-in is a PL/SQL package, shared object or library, or
a dynamic link library on Windows NT that contains your own functions. Oracle
supports only PL/SQL plug-ins.

You can extend LDAP operations in the following ways:

■ You can validate data before the server performs an LDAP operation on the data

■ You can perform actions (that you define) after the server successfully completes
an LDAP operation

■ You can define extended operations

What Is the Plug-in Framework?

5-2 Oracle Identity Management Application Developer’s Guide

■ You can be authenticated through external credential stores

■ You can replace an existing server module by defining your own server module

For the last one, you may, for example, implement your own password value checking
and place it into the Oracle Internet Directory server.

On startup, the directory server loads your plug-in configuration and library. It calls
your plug-in functions while processing various LDAP requests.

What Is the Plug-in Framework?
The plug-in framework is the environment in which the plug-in user can develop,
configure, and apply the plug-ins. Each individual plug-in instance is called a plug-in
module.

The plug-in framework includes the following:

■ Plug-in configuration tools

■ Plug-in module interface

■ Plug-in LDAP API (ODS.LDAP_PLUGIN package)

Follow these steps to use the server plug-in framework:

1. Write a user-defined plug-in procedure. This plug-in module must be written in
PL/SQL.

2. Compile the plug-in module against the same database that serves as the Oracle
Internet Directory backend database.

3. Grant execute permission of the plug-in module to ods_server.

4. Register the plug-in module through the configuration entry interface.

Operation-Based Plug-ins Supported by the Directory
For operation-based plug-ins, there are pre-operation, post-operation, and
when-operation plug-ins.

Pre-Operation Plug-ins
The server calls pre-operation plug-in modules before performing the LDAP
operation. The main purpose of this type of plug-in is to validate data before the data
can be used in the LDAP operation.

When an exception occurs in the pre-operation plug-in, one of the following occurs:

■ When the return error code indicates warning status, the associated LDAP request
proceeds.

■ When the return code indicates failure status, the request does not proceed.

If the associated LDAP request fails later on, the directory does not roll back the
committed code in the plug-in modules.

See Also: The chapter about the password policy plug-in in Oracle
Internet Directory Administrator’s Guide. The chapter contains an
example of how to implement your own password value checking
and place it into the Oracle Internet Directory server.

Designing, Creating, and Using Plug-ins

Developing Directory Plug-ins 5-3

Post-Operation Plug-ins
The Oracle Internet Directory server calls post-operation plug-in modules after
performing an LDAP operation. The main purpose of this type of plug-in is to invoke
a function after a particular LDAP operation is executed. For example, logging and
notification are post-operation plug-in functions.

When an exception occurs in the post-operation plug-in, the associated LDAP
operation is not rolled back.

If the associated LDAP request fails, the post plug-in is still executed.

When-Operation Plug-ins
The directory calls when-operation plug-in modules while performing standard LDAP
operations. The main purpose of this type of plug-in is to augment existing operations
within the same LDAP transaction. If either the LDAP request or the plug-in program
fails, all the changes are rolled back.

There are different types of When-operation plug-ins.

■ Add-on

■ Replace

You can, for example, use both add-on and replace plug-ins with the ldapcompare
operation. If you use the first type, the directory executes its server compare code and
executes the plug-in module defined by the plug-in developer. If you use the second
type, the directory does not execute its compare code. Instead it relies on the plug-in
module to perform the comparison.

Replace plug-ins are supported only in ldapadd, ldapcompare, ldapdelete,
ldapmodify, and ldapbind. Add-on plug-ins are supported in ldapadd,
ldapdelete, and ldapmodify.

Designing, Creating, and Using Plug-ins
This section contains these topics:

■ Designing Plug-ins

■ Creating Plug-ins

■ Compiling Plug-ins

■ Registering Plug-ins

■ Managing Plug-ins

■ Enabling and Disabling Plug-ins

■ Exception Handling

■ Plug-in LDAP API

■ Plug-ins and Replication

■ Plug-in and Database Tools

■ Security

■ Plug-in Debugging

Designing, Creating, and Using Plug-ins

5-4 Oracle Identity Management Application Developer’s Guide

Designing Plug-ins
Use the following guidelines when designing plug-ins:

■ Use plug-ins to guarantee that when a specific LDAP operation is performed,
related actions are also performed.

■ Use plug-ins only for centralized, global operations that should be invoked for the
program body statement, regardless of which user or LDAP application issues the
statement.

■ Do not create recursive plug-ins. For example, creating a PRE_LDAP_BIND plug-in
that itself issues an ldapbind (through the DBMS_LDAP PL/SQL API) statement,
causes the plug-in to execute recursively until it has run out of resources.

Types of Plug-in Operations
A plug-in can be associated with ldapbind, ldapadd, ldapmodify, ldapcompare,
ldapsearch, and ldapdelete operations.

Naming Plug-ins
Plug-in names (PL/SQL package names) must be unique if they share the same
database schema with other plug-ins or stored procedures. But plug-ins can share
names with other database schema objects such as tables and views. This kind of
sharing is not, however, recommended.

Creating Plug-ins
Creating a plug-in module is like creating a PL/SQL package. Both have a
specification part and a body part. The directory, not the plug-in, defines the plug-in
specification because the specification serves as the interface between Oracle Internet
Directory and the custom plug-in.

For security reasons and for the integrity of the LDAP server, you can compile plug-ins
only in the ODS database schema. You must compile them in the database that serves
as the backend database of Oracle Internet Directory.

Package Specifications for Plug-in Module Interfaces
Different plug-ins have different package specifications. As Table 5–1 shows, you can
name the plug-in package. You must, however, follow the signatures defined for each
type of plug-in procedure. See "Specifications for Plug-in Procedures" for details.

Note: Use plug-ins on the LDAP PL/SQL API judiciously. They are
executed for every LDAP request every time the event occurs on
which the plug-in is created.

Table 5–1 Plug-in Module Interface

Plug-in Item User Defined
Oracle Internet
Directory-Defined

Plug-in Package Name X

Plug-in Procedure Name X

Plug-in Procedure Signature X

Designing, Creating, and Using Plug-ins

Developing Directory Plug-ins 5-5

Table 5–2 names the different plug-in procedures. In addition, it lists and describes the
parameters that these procedures use.

Table 5–2 Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context Procedure Name IN Parameters OUT Parameters

Before ldapbind PRE_BIND ldapcontext, Bind DN,
Password

return code, error
message

With ldapbind but
replacing the default
server behavior

WHEN_BIND_REPLACE ldapcontext, bind
result, DN,
userpassword

bind result,
return code, error
message

After ldapbind POST_BIND ldapcontext, Bind
result, Bind DN,
Password

return code, error
message

Before ldapmodify PRE_MODIFY ldapcontext, DN, Mod
structure

return code, error
message

With ldapmodify WHEN_MODIFY ldapcontext, DN, Mod
structure

return code, error
message

With ldapmodify but
replacing the default
server behavior

WHEN_MODIFY_REPLACE ldapcontext, DN, Mod
structure

return code, error
message

After ldapmodify POST_MODIFY ldapcontext, Modify
result, DN, Mod
structure

return code, error
message

Before ldapcompare PRE_COMPARE ldapcontext, DN,
attribute, value

return code, error
message

With ldapcompare
but replacing the
default server behavior

WHEN_COMPARE_
REPLACE

ldapcontext, Compare
result, DN, attribute,
value

compare result,
return code, error
message

After ldapcompare POST_COMPARE ldapcontext, Compare
result, DN, attribute,
value

return code, error
message

Before ldapadd PRE_ADD ldapcontext, Entry return code, error
message

With ldapadd WHEN_ADD ldapcontext, Entry return code, error
message

With ldapadd but
replacing the default
server behavior

WHEN_ADD_REPLACE ldapcontext, Entry return code, error
message

After ldapadd POST_ADD ldapcontext, Add
result, Entry

return code, error
message

Before ldapdelete PRE_DELETE ldapcontext, DN return code, error
message

With ldapdelete WHEN_DELETE ldapcontext, DN return code, error
message

With ldapdelete but
replacing the default
server behavior

WHEN_DELETE ldapcontext, DN return code, error
message

After ldapdelete POST_DELETE ldapcontext, Delete
result, DN

return code, error
message

Before ldapsearch PRE_SEARCH ldapcontext, Base DN,
scope, filter

return code, error
message

Designing, Creating, and Using Plug-ins

5-6 Oracle Identity Management Application Developer’s Guide

Compiling Plug-ins
Plug-ins are exactly the same as PL/SQL stored procedures. A PL/SQL anonymous
block is compiled each time it is loaded into memory. Compilation consists of these
stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.

2. Semantic checking: Type checking and further processing on the parse tree.

3. Code generation: The pcode is generated.

If errors occur during the compilation of a plug-in, the plug-in is not created. You can
use the SHOW ERRORS statement in SQL*Plus or Enterprise Manager to see any
compilation errors when you create a plug-in, or you can SELECT the errors from the
USER_ERRORS view.

All plug-in modules must be compiled in the ODS database schema.

Dependencies
Compiled plug-ins have dependencies. They become invalid if an object depended
upon, such as a stored procedure or function called from the plug-in body, is modified.
Plug-ins that are invalidated for dependency reasons must be recompiled before the
next invocation.

Recompiling Plug-ins
Use the ALTER PACKAGE statement to manually recompile a plug-in. For example, the
following statement recompiles the my_plugin plug-in:

ALTER PACKAGE my_plugin COMPILE PACKAGE;

Granting Permission
Use the GRANT EXECUTE statement to grant execute permission to ods_server for the
plug-in modules.

Registering Plug-ins
To enable the directory server to call a plug-in at the right moment, you must register
the plug-in with the directory server. Do this by creating an entry for the plug-in under
cn=plugin,cn=subconfigsubentry.

After ldapsearch POST_SEARCH Ldap context, Search
result, Base DN,
scope, filter

return code, error
message

See Also:

■ "Error Handling" on page 5-10 for valid values for the return code
and error message

■ "Specifications for Plug-in Procedures" on page 5-26 for complete
supported procedure signatures

Table 5–2 (Cont.) Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context Procedure Name IN Parameters OUT Parameters

Designing, Creating, and Using Plug-ins

Developing Directory Plug-ins 5-7

The orclPluginConfig Object Class
A plug-in must have orclPluginConfig as one of its object classes. This is a
structural object class, and its super class is top. Table 5–3 lists and describes its
attributes.

Table 5–3 Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?

cn Plug-in entry name Yes

orclPluginAttributeList

(only for ldapcompare and
ldapmodify plug-ins.)

A semicolon-separated list of attribute names
that controls whether the plug-in takes effect. If
the target attribute is included in the list, then
the plug-in is invoked.

No

orclPluginEnable 0 = disable (default)

1 = enable

No

orclPluginEntryProperties An ldapsearch filter type value must be
specified. For example, if we specify
orclPluginEntryProperties:
(&(objectclass=inetorgperson)(sn=Ce
zanne)), the plug-in is not invoked if the
target entry has objectclass equal to
inetorgperson and sn equal to Cezanne.

No

orclPluginIsReplace 0 = disable (default)

1 = enable

For WHEN timing plug-in only

No

orclPluginKind PL/SQL No

orclPluginLDAPOperation One of the following values:

ldapcompare
ldapmodify
ldapbind
ldapadd
ldapdelete
ldapsearch

Yes

orclPluginName Plug-in package name Yes

orclPluginRequestGroup A semicolon-separated group list that controls if
the plug-in takes effect. You can use this group
to specify who can actually invoke the plug-in.

For example, if you specify
orclpluginrequestgroup:cn=security,
cn=groups,dc=oracle,dc=com when you
register the plug-in, the plug-in will not be
invoked unless the ldap request comes from the
person who belongs to the group
cn=security,cn=groups,dc=oracle,dc=
com.

No

Designing, Creating, and Using Plug-ins

5-8 Oracle Identity Management Application Developer’s Guide

Adding a Plug-in Configuration Entry by Using Command-Line Tools
Plug-ins must be added to Oracle Internet Directory server so that the server is aware
of additional operations that must be performed at the correct time.

When the plug-in successfully compiles against the Oracle Internet Directory backend
database, create a new entry and place it under
cn=plugin,cn=subconfigsubentry.

In the following examples, an entry is created for an operation-based plug-in called
my_plugin1. The LDIF file, my_ldif_file.ldif, is as follows:

Example 1
The following is an example LDIF file to create such an object:

cn=when_comp,cn=plugin,cn=subconfigsubentry

orclPluginRequestNegGroup A semicolon-separated group list that controls if
the plug-in takes effect. You can use this group
to specify who cannot invoke the plug-in. For
example, if you specify
orclpluginrequestgroup:
cn=security,cn=groups,dc=oracle,dc=
com, when you register the plug-in, the plug-in
is not invoked if the LDAP request comes from
the person who belongs to the group
cn=security,cn=groups,dc=oracle,dc=
com.

No

orclPluginResultCode An integer value to specify the ldap result code.
If this value is specified, then plug-in will be
invoked only if the LDAP operation is in that
result code scenario.

This is only for the post plug-in type.

No

orclPluginShareLibLocation File location of the dynamic linking library. If
this value is not present, then Oracle Internet
Directory server assumes the plug-in language
is PL/SQL.

No

orclPluginSubscriberDNList A semicolon separated DN list that controls if
the plug-in takes effect. If the target DN of an
LDAP operation is included in the list, then the
plug-in is invoked.

No

orclPluginTiming One of the following values:

pre
when
post

No

orclPluginType One of the following values:

operational
attribute
password_policy
syntax
matchingrule

See Also: Operation-Based Plug-ins Supported
by the Directory on page 5-2

Yes

orclPluginVersion Supported plug-in version number No

Table 5–3 (Cont.) Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?

Designing, Creating, and Using Plug-ins

Developing Directory Plug-ins 5-9

objectclass=orclPluginConfig
objectclass=top
orclPluginName=my_plugin1
orclPluginType=operational
orclPluginTiming=when
orclPluginLDAPOperation=ldapcompare
orclPluginEnable=1
orclPluginVersion=1.0.1
orclPluginIsReplace=1
cn=when_comp
orclPluginKind=PLSQL
orclPluginSubscriberDNList=dc=COM,c=us;dc=us,dc=oracle,dc=com;dc=org,dc=us;o=IMC
,c=US
orclPluginAttributeList=userpassword

Example 2
cn=post_mod_plugin, cn=plugin,cn=subconfigsubentry
objectclass=orclPluginConfig
objectclass=top
orclPluginName=my_plugin1
orclPluginType=operational
orclPluginTiming=post
orclPluginLDAPOperation=ldapmodify
orclPluginEnable=1
orclPluginVersion=1.0.1
cn=post_mod_plugin
orclPluginKind=PLSQL

Add this file to the directory with the following command:

ldapadd -p 389 -h myhost -D binddn -w password -f my_ldif_file.ldif

Managing Plug-ins
This section explains how to modify and debug plug-ins.

Modifying Plug-ins
Like a stored procedure, a plug-in cannot be explicitly altered. It must be replaced with
a new definition.

When replacing a plug-in, you must include the OR REPLACE option in the CREATE
PACKAGE statement. The OR REPLACE option enables a new version of an existing
plug-in to replace an older version without having an effect on grants made for the
original version of the plug-in.

Alternatively, the plug-in can be dropped using the DROP PACKAGE statement, and
you can rerun the CREATE PACKAGE statement.

If the plug-in name (the package name) is changed, you must register the new plug-in
again.

Note: To avoid creating an inconsistent state, the plug-in
configuration entry is not replicated.

Designing, Creating, and Using Plug-ins

5-10 Oracle Identity Management Application Developer’s Guide

Debugging Plug-ins
You can debug a plug-in using the same facilities available for PL/SQL stored
procedures.

Enabling and Disabling Plug-ins
To turn the plug-in on or off, modify the value of orclPluginEnable in the plug-in
configuration object. For example, modify the value of orclPluginEnable in
cn=post_mod_plugin,cn=plugins,cn=subconfigsubentry to be 1 or 0.

Exception Handling
Each of the procedures in a PL/SQL plug-in must have an exception handling block
that handles errors intelligently and, if possible, recovers from them.

Error Handling
Oracle Internet Directory requires that the return code (rc) and error message
(errmsg) be set correctly in the plug-in procedures.

Table 5–4 provides the values that are valid for the return code.

The errmsg parameter is a string value that can pass a user’s custom error message
back to Oracle Internet Directory server. The size limit for errmsg is 1024 bytes. Each
time Oracle Internet Directory runs the plug-in program, it examines the return code
to determine if it must display the error message.

If, for example, the value for the return code is 0, the error message value is ignored. If
the value of the return code is -1 or greater than zero, the following message is either
logged in the log file or displayed in standard output if the request came from LDAP
command-line tools:

ldap addition info: customized error

Program Control Handling between Oracle Internet Directory and Plug-ins
Table 5–5 shows where plug-in exceptions occur and how the directory handles them.

Table 5–4 Valid Values for the Plugin-in Return Code

Error Code Description

0 Success

Any number greater than
zero

Failure

-1 Warning

Table 5–5 Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

PRE_BIND, PRE_MODIFY,
PRE_ADD, PRE_SEARCH,
PRE_COMPARE, PRE_
DELETE

Depends on return code. If the return code is:

■ Greater than zero (error), then no LDAP operation is
performed

■ -1 (warning), then proceed with the LDAP operation

Designing, Creating, and Using Plug-ins

Developing Directory Plug-ins 5-11

Table 5–6 shows how the directory responds when an LDAP operation fails.

Plug-in LDAP API
There are different methods for providing API access:

■ Enable a user to utilize the standard LDAP PL/SQL APIs. Note though that, if
program logic is not carefully planned, an infinite loop in plug-in execution can
result.

■ Oracle Internet Directory provides the Plug-in LDAP API. This plug-in does not
cause a series of plug-in actions in the directory server if there are plug-ins
configured and associated with the LDAP request.

In the Plug-in LDAP API, the directory provides APIs for connecting back to the
directory server designated in the plug-in module. You must use this API if you want
to connect to the server that is executing the plug-in. If you want to connect to an
external server, you can use the DBMS_LDAP API.

Within each plug-in module, an ldapcontext is passed from the Oracle directory
server. When the Plug-in LDAP API is called, ldapcontext is passed for security and
binding purposes. When binding with this ldapcontext, Oracle Internet Directory
recognizes that the LDAP request is coming from a plug-in module. For this type of
plug-in bind, the directory does not trigger any subsequent plug-ins. It handles the
plug-in bind as a super-user bind. Use this plug-in bind with discretion.

Plug-ins and Replication
These cases can cause an inconsistent state in a replication environment:

■ Plug-in metadata replicated to other nodes

POST_BIND, POST_
MODIFY, POST_ADD,
POST_SEARCH, WHEN_
DELETE

LDAP operation is completed. There is no rollback.

WHEN_MODIFY, WHEN_
ADD, WHEN_DELETE

Rollback the LDAP operation

Table 5–6 Program Control Handling when an LDAP Operation Fails

LDAP Operation Fails in Oracle Internet Directory Server Handling

PRE_BIND, PRE_MODIFY,
PRE_ADD, PRE_SEARCH,
WHEN_DELETE

Pre-operation plug-in is completed. There is no rollback.

POST_BIND, POST_
MODIFY, POST_ADD,
POST_SEARCH, WHEN_
DELETE

Proceed with post-operation plug-in. The LDAP operation
result is one of the IN parameters.

WHEN_MODIFY, WHEN_
ADD, WHEN_DELETE

When types of plug-in changes are rolled back.

WHEN Changes made in the plug-in program body are rolled back.

See Also: "Plug-in LDAP API Specifications" on page 5-13

Table 5–5 (Cont.) Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

Designing, Creating, and Using Plug-ins

5-12 Oracle Identity Management Application Developer’s Guide

■ Changes to directory entries by plug-in programs or other LDAP operations

■ Plug-in installation on only some of the participating nodes

■ Implementation in the plug-in of extra checking that depends on the directory
data

Plug-in and Database Tools
Bulk tools do not support server plug-ins.

Security
Some Oracle Internet Directory server plug-ins require that you supply the code that
preserves tight security. For example, if you replace the directory’s ldapcompare or
ldapbind operation with your own plug-in module, you must ensure that your
implementation of this operation does not omit any functionality on which security
relies.

To ensure tight security, the following must be done:

■ Create the plug-in packages

■ Only the LDAP administrator can restrict the database user

■ Use the access control list (ACL) to set the plug-in configuration entries to be
accessed only by the LDAP administrator

■ Be aware of the program relationship between different plug-ins

Plug-in Debugging
Use the plug-in debugging mechanism for Oracle Internet Directory to examine the
process and content of plug-ins.The following commands control the operation of the
server debugging process.

■ To set up plug-in debugging, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdsu.pls

■ To enable plug-in debugging, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdon.pls

■ After enabling plug-in debugging, you can use this command in the plug-in
module code:

plg_debug(’debuggingmessage’);

The resulting debug message is stored in the plug-in debugging table.

■ To disable debugging, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdof.pls

■ To display the debug messages that you put in the plug-in module, run this
command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdsh.pls

■ To delete all of the debug messages from the debug table, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdde.pls

Examples of Plug-ins

Developing Directory Plug-ins 5-13

Plug-in LDAP API Specifications
Here is the package specification that Oracle Internet Directory provides for the
Plug-in LDAP API:

CREATE OR REPLACE PACKAGE LDAP_PLUGIN AS
 SUBTYPE SESSION IS RAW(32);

 -- Initializes the LDAP library and return a session handler
 -- for use in subsequent calls.
 FUNCTION init (ldappluginctx IN ODS.plugincontext)
 RETURN SESSION;

 -- Synchronously authenticates to the directory server using
 -- a Distinguished Name and password.
 FUNCTION simple_bind_s (ldappluginctx IN ODS.plugincontext,
 ld IN SESSION)
 RETURN PLS_INTEGER;

 -- Get requester info from the plugin context
 FUNCTION get_requester (ldappluginctx IN ODS.plugincontext)
 RETURN VARCHAR2;
END LDAP_PLUGIN;

Examples of Plug-ins
This section presents two sample plug-ins. One logs all ldapsearch commands. The
other synchronizes two directory information trees (DITs).

Example 1: Search Query Logging
Situation: A user wants to know if it is possible to log all of the ldapsearch
commands.

Solution: Yes. The user can use the post ldapsearch operational plug-in for this
purpose. They can either log all of the requests or only those that occur under the DNs
being searched.

To log all the ldapsearch commands:

1. Log all of the ldapsearch results into a database table. This log table has these
columns:

■ timestamp

■ baseDN

■ search scope

■ search filter

■ required attribute

■ search result

Use this SQL script to create the table:

drop table search_log;
create table search_log
(timestamp varchar2(50),
basedn varchar2(256),
searchscope number(1);
searchfilter varchar2(256);

Examples of Plug-ins

5-14 Oracle Identity Management Application Developer’s Guide

searchresult number(1));
drop table simple_tab;
create table simple_tab (id NUMBER(7), dump varchar2(256));
DROP sequence seq;
CREATE sequence seq START WITH 10000;
commit;

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUGIN_EXAMPLE1 AS
PROCEDURE post_search
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);
END LDAP_PLUGIN_EXAMPLE1;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUGIN_EXAMPLE1 AS
PROCEDURE post_search
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)
 IS
BEGIN
 INSERT INTO simple_tab VALUES
(to_char(sysdate, 'Month DD, YYYY HH24:MI:SS'), baseDN, scope, filterStr,
result);
 -- The following code segment demonstrate how to iterate
 -- the ODS.strCollection
 FOR l_counter1 IN 1..requiredAttr.COUNT LOOP
 INSERT INTO simple_tab
 values (seq.NEXTVAL, 'req attr ' || l_counter1 || ' = ' ||
 requiredAttr(l_counter1));
 END LOOP;
 rc := 0;
 errormsg := 'no post_search plugin error msg';
 COMMIT;
EXCEPTION
 WHEN others THEN
 rc := 1;
 errormsg := 'exception: post_search plguin';
END;
END LDAP_PLUGIN_EXAMPLE1;
/

4. Grant permission to ods_server.

Examples of Plug-ins

Developing Directory Plug-ins 5-15

GRANT EXECUTE ON LDAP_PLUGIN_EXAMPLE1 TO ods_server;

5. Register the plug-in entry in Oracle Internet Directory.

cn=post_search,cn=plugin,cn=subconfigsubentry
objectclass=orclPluginConfig
objectclass=top
orclPluginName=ldap_plugin_example1
orclPluginType=operational
orclPluginTiming=post
orclPluginLDAPOperation=ldapsearch
orclPluginEnable=1
orclPluginVersion=1.0.1
cn=post_search
orclPluginKind=PLSQL

Using the ldapadd command-line tool to add this entry:

% ldapadd –p port_number –h host_name –D bind_dn –w passwd –v –f register_
post_search.ldif

Example 2: Synchronizing Two DITs
Situation: There are two interdependent products under cn=Products,
cn=oraclecontext. This interdependency extends down to the users in these
products’ containers. If a user in the first DIT (product 1) is deleted, the corresponding
user in the other DIT (product 2) must be deleted.

Is it possible to set a trigger that, when the user in the first DIT is deleted, calls or
passes a trigger to delete the user in the second DIT?

Solution: Yes, we can use the post ldapdelete operation plug-in to handle the
second deletion occurring in the second DIT.

If the first DIT has the naming context of
cn=DIT1,cn=products,cn=oraclecontext and the second DIT has the naming
context of cn=DIT2,cn=products,cn=oraclecontext, the two users share the
same ID attribute. Inside of the post ldapdelete plug-in module, we can use LDAP_
PLUGIN and DBMS_LDAP APIs to delete the user in the second DIT.

We must set orclPluginSubscriberDNList to
cn=DIT1,cn=products,cn=oraclecontext, so that whenever we delete entries
under cn=DIT1,cn=products,cn=oraclecontext, the plug-in module is
invoked.

Examples of Plug-ins

5-16 Oracle Identity Management Application Developer’s Guide

1. Assume that the entries under both DITs have been added to the directory. For
example, the entry id=12345,cn=DIT1,cn=products,cn=oraclecontext is
in DIT1, and id=12345,cn=DIT2,cn=products,cn=oraclecontext is in
DIT2.

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUGIN_EXAMPLE2 AS
PROCEDURE post_delete
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);
END LDAP_PLUGIN_EXAMPLE2;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUGIN_EXAMPLE2 AS
PROCEDURE post_delete
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)
 IS
 retval PLS_INTEGER;
 my_session DBMS_LDAP.session;
 newDN VARCHAR2(256);
BEGIN
 retval := -1;
 my_session := LDAP_PLUGIN.init(ldapplugincontext);
 -- bind to the directory
 retval := LDAP_PLUGIN.simple_bind_s(ldapplugincontext, my_session);
 -- if retval is not 0, then raise exception
 newDN := REPLACE(dn, ‘DIT1’, ‘DIT2’);

Note: When you use a post ldapmodify plug-in to synchronize
changes between two Oracle Internet Directory nodes, you cannot
push all the attributes from one node to the other. This is because the
changes (mod structure) captured in the plug-in module include
operational attributes. These operational attributes are generated on
each node and cannot be modified by using the standard LDAP
methods.

When writing your plug-in program, exclude the following
operational attributes from synchronization: authPassword,
creatorsname, createtimestamp, modifiersname,
modifytimestamp, pwdchangedtime, pwdfailuretime,
pwdaccountlockedtime, pwdexpirationwarned, pwdreset,
pwdhistory, pwdgraceusetime.

The following attributes are used the most in the deployment
environment and should be excluded from synchronization first:
pwdchangedtime, pwdfailuretime, authpassword,
pwdaccountlockedtime.

Examples of Plug-ins

Developing Directory Plug-ins 5-17

 retval := DBMS_LDAP.delete_s(my_session, newDN);
 -- if retval is not 0, then raise exception
 rc := 0;
 errormsg := 'no post_delete plguin error msg';
EXCEPTION
 WHEN others THEN
 rc := 1;
 errormsg := 'exception: post_delete plguin';
END;
END LDAP_PLUGIN_EXAMPLE2;
/
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)
 IS
 retval PLS_INTEGER;
 my_session DBMS_LDAP.session;
 newDN VARCHAR2(256);
BEGIN
 retval := -1;
 my_session := LDAP_PLUGIN.init(ldapplugincontext);
 -- bind to the directory
 retval := LDAP_PLUGIN.simple_bind_s(ldapplugincontext, my_session);
 -- if retval is not 0, then raise exception
 newDN := REPLACE(dn, ‘DIT1’, ‘DIT2’);
 retval := DBMS_LDAP.delete_s(my_session, newDN);
 -- if retval is not 0, then raise exception
 rc := 0;
 errormsg := 'no post_delete plguin error msg';
EXCEPTION
 WHEN others THEN
 rc := 1;
 errormsg := 'exception: post_delete plguin';
END;
END LDAP_PLUGIN_EXAMPLE2;
/

4. Register the plug-in entry with Oracle Internet Directory.

Construct the LDIF file register_post_delete.ldif:

cn=post_delete,cn=plugin,cn=subconfigsubentry
objectclass=orclPluginConfig
objectclass=top
orclPluginName=ldap_plugin_example2
orclPluginType=operational
orclPluginTiming=post
orclPluginLDAPOperation=ldapdelete
orclPluginEnable=1
orclPluginSubscriberDNList=cn=DIT1,cn=oraclecontext,cn=products
orclPluginVersion=1.0.1
cn=post_delete
orclPluginKind=PLSQL

Use the ldapadd command-line tool to add this entry:

% ldapadd –p port_number –h host_name –D bind_dn –w passwd –v –f register_
post_delete.ldif

Binary Support in the Plug-in Framework

5-18 Oracle Identity Management Application Developer’s Guide

Binary Support in the Plug-in Framework
Starting with release 10.1.2, object definitions in the Plug-in LDAP API enable
ldapmodify, ldapadd, and ldapcompare plug-ins to access binary attributes in the
directory database. Formerly, only attributes of type VARCHAR2 could be accessed.
These object definitions do not invalidate plug-in code that precedes release 10.1.2. No
change to this code is required. The new definitions appear in the section "Database
Object Types Defined".

The section that you are reading now examines binary operations involving the three
types of plug-ins. It includes examples of these plug-ins. The new object definitions
apply to pre, post, and when versions of all three.

Note that the three examples use RAW functions and variables in place of LOBs.

Binary Operations with ldapmodify
The modobj object that the plug-in framework passes to an ldapmodify plug-in now
holds the values of binary attributes as binvals. This variable is a table of
binvalobj objects.

The plug-in determines whether a binary operation is being performed by examining
the operation field of modobj. It checks whether any of the values DBMS_
LDAP.MOD_ADD, DBMS_LDAP.MOD_DELETE, and DBMS_LDAP.MOD_REPLACE are
paired with DBMS_LDAP.MOD_BVALUES. The pairing DBMS_LDAP.MOD_ADD+DBMS_
LDAP.MOD_BVALUES, for example, signifies a binary add in the modify operation.

The example that follows shows a post ldapmodify plug-in modifying an entry in
another directory. The plug-in is invoked after ldapmodify applies the same change
to the same entry in the plug-in directory. The entry in the other directory appears
under the DIT cn=users,dc=us,dc=acme,dc=com.

create or replace package moduser as
 procedure post_modify(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 mods IN ODS.modlist,
 rc OUT integer,
 errormsg OUT varchar2);
end moduser;
/
show error

CREATE OR REPLACE PACKAGE BODY moduser AS
 procedure post_modify(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 mods IN ODS.modlist,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 counter1 pls_integer;
 counter2 pls_integer;
 retval pls_integer := -1;
 user_session DBMS_LDAP.session;
 user_dn varchar(256);
 user_array DBMS_LDAP.mod_array;
 user_vals DBMS_LDAP.string_collection;
 user_binvals DBMS_LDAP.blob_collection;
 ldap_host varchar(256);

Binary Support in the Plug-in Framework

Developing Directory Plug-ins 5-19

 ldap_port varchar(256);
 ldap_user varchar(256);
 ldap_passwd varchar(256);
 begin
 ldap_host := ’backup.us.oracle.com’;
 ldap_port := ’4000’;
 ldap_user := ’cn=orcladmin’;
 ldap_passwd := ’welcome’;

 plg_debug(’START MODIFYING THE ENTRY’);

 -- Get a session
 user_session := dbms_ldap.init(ldap_host, ldap_port);

 -- Bind to the directory
 retval := dbms_ldap.simple_bind_s(user_session, ldap_user,
 ldap_passwd);

 -- Create a mod_array
 user_array := dbms_ldap.create_mod_array(mods.count);

 -- Create a user_dn
 user_dn := substr(dn,1,instr(dn,’,’,1,1))||’cn=users,dc=us,dc=acme,
 dc=com’;

 plg_debug(’THE CREATED DN IS ’||user_dn);

 -- Iterate through the modlist
 for counter1 in 1..mods.count loop

 -- Log the attribute name and operation
 if (mods(counter1).operation > DBMS_LDAP.MOD_BVALUES) then
 plg_debug(’THE NAME OF THE BINARY ATTR. IS ’||mods(counter1).type);
 else
 plg_debug(’THE NAME OF THE NORMAL ATTR. IS ’||mods(counter1).type);
 end if;
 plg_debug(’THE OPERATION IS ’||mods(counter1).operation);

 -- Add the attribute values to the collection
 for counter2 in 1..mods(counter1).vals.count loop
 user_vals(counter2) := mods(counter1).vals(counter2).val;
 end loop;

 -- Add the attribute values to the collection
 for counter2 in 1..mods(counter1).binvals.count loop
 plg_debug(’THE NO. OF BYTES OF THE BINARY ATTR. VALUE IS ’
 ||mods(counter1).binvals(counter2).length);
 user_binvals(counter2) := mods(counter1).binvals(counter2).binval;
 end loop;

 -- Populate the mod_array accordingly with binary/normal attributes
 if (mods(counter1).operation >= DBMS_LDAP.MOD_BVALUES) then
 dbms_ldap.populate_mod_array(user_array,mods(counter1).operation -
 DBMS_LDAP.MOD_BVALUES,mods(counter1).type,user_binvals);
 user_binvals.delete;
 else
 dbms_ldap.populate_mod_array(user_array,mods(counter1).operation,
 mods(counter1).type,user_vals);
 user_vals.delete;
 end if;

Binary Support in the Plug-in Framework

5-20 Oracle Identity Management Application Developer’s Guide

 end loop;

 -- Modify the entry
 retval := dbms_ldap.modify_s(user_session,user_dn,user_array);
 if retval = 0 then
 rc := 0;
 errormsg:= ’No error occured while modifying the entry’;
 else
 rc := retval;
 errormsg := ’Error code ’||rc||’ while modifying the entry’;
 end if;

 -- Free the mod_array
 dbms_ldap.free_mod_array(user_array);

 plg_debug(’FINISHED MODIFYING THE ENTRY’);

 exception
 WHEN others THEN
 plg_debug (SQLERRM);
 end;
end moduser;
/
show error

exit;

Binary Operations with ldapadd
The entryobj object that the plug-in framework passes to an ldapadd plug-in now
holds binary attributes as binattr. This variable is a table of binattrobj objects.
The example that follows shows a post-add plug-in propagating a change (an added
user) in the plug-in directory to another directory. In the latter directory, the entry
appears under the DIT cn=users,dc=us,dc=acme,dc=com.

create or replace package adduser as
 procedure post_add(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 entry IN ODS.entryobj,
 rc OUT integer,
 errormsg OUT varchar2);
end adduser;
/
show error

CREATE OR REPLACE PACKAGE BODY adduser AS
 procedure post_add(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 entry IN ODS.entryobj,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 counter1 pls_integer;
 counter2 pls_integer;
 retval pls_integer := -1;
 s integer;
 user_session DBMS_LDAP.session;

Binary Support in the Plug-in Framework

Developing Directory Plug-ins 5-21

 user_dn varchar(256);
 user_array DBMS_LDAP.mod_array;
 user_vals DBMS_LDAP.string_collection;
 user_binvals DBMS_LDAP.blob_collection;
 ldap_host varchar(256);
 ldap_port varchar(256);
 ldap_user varchar(256);
 ldap_passwd varchar(256);
 begin
 ldap_host := ’backup.us.oracle.com’;
 ldap_port := ’4000’;
 ldap_user := ’cn=orcladmin’;
 ldap_passwd := ’welcome’;

 plg_debug(’START ADDING THE ENTRY’);

 -- Get a session
 user_session := dbms_ldap.init(ldap_host, ldap_port);

 -- Bind to the directory
 retval := dbms_ldap.simple_bind_s(user_session, ldap_user, ldap_passwd);

 -- Create a mod_array
 user_array := dbms_ldap.create_mod_array(entry.binattr.count +
 entry.attr.count);

 -- Create a user_dn
 user_dn := substr(dn,1,instr(dn,’,’,1,1))||’cn=users,dc=us,dc=acme,
 dc=com’;
 plg_debug(’THE CREATED DN IS ’||user_dn);

 -- Populate the mod_array with binary attributes
 for counter1 in 1..entry.binattr.count loop
 for counter2 in 1..entry.binattr(counter1).binattrval.count loop
 plg_debug(’THE NAME OF THE BINARY ATTR. IS ’||
 entry.binattr(counter1).binattrname);
 s := dbms_lob.getlength(entry.binattr(counter1).
 binattrval(counter2));
 plg_debug(’THE NO. OF BYTES OF THE BINARY ATTR. VALUE IS ’||s);
 user_binvals(counter2) := entry.binattr(counter1).
 binattrval(counter2);
 end loop;
 dbms_ldap.populate_mod_array(user_array,DBMS_LDAP.MOD_ADD,
 entry.binattr(counter1).binattrname,user_binvals);
 user_binvals.delete;
 end loop;

 -- Populate the mod_array with attributes
 for counter1 in 1..entry.attr.count loop
 for counter2 in 1..entry.attr(counter1).attrval.count loop
 plg_debug(’THE NORMAL ATTRIBUTE ’||entry.attr(counter1).attrname||’
 HAS THE VALUE ’||entry.attr(counter1).attrval(counter2));
 user_vals(counter2) := entry.attr(counter1).attrval(counter2);
 end loop;
 dbms_ldap.populate_mod_array(user_array,DBMS_LDAP.MOD_ADD,
 entry.attr(counter1).attrname,user_vals);
 user_vals.delete;
 end loop;

 -- Add the entry

Binary Support in the Plug-in Framework

5-22 Oracle Identity Management Application Developer’s Guide

 retval := dbms_ldap.add_s(user_session,user_dn,user_array);
 plg_debug(’THE RETURN VALUE IS ’||retval);
 if retval = 0 then
 rc := 0;
 errormsg:= ’No error occured while adding the entry’;
 else
 rc := retval;
 errormsg := ’Error code ’||rc||’ while adding the entry’;
 end if;

 -- Free the mod_array
 dbms_ldap.free_mod_array(user_array);
 retval := dbms_ldap.unbind_s(user_session);

 plg_debug(’FINISHED ADDING THE ENTRY’);

 exception
 WHEN others THEN
 plg_debug (SQLERRM);
 end;
end adduser;
/
show error

exit;

Binary Operations with ldapcompare
The ldapcompare plug-in can use three new overloaded module interfaces to
compare binary attributes. If you want to use these interfaces to develop a plug-in
package that handles both binary and nonbinary attributes, you must include two
separate procedures in the package. The package name for both procedures is the
same because only one orclPluginName can be registered in the plug-in entry.

After updating an existing plug-in package to include a procedure that compares
binary attributes, reinstall the package. Recompile packages that depend on the
plug-in package.

The three new interfaces look like this:

PROCEDURE pre_compare (ldapplugincontext IN ODS.plugincontext,
 dn IN VARCHAR2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT INTEGER,
 errormsg OUT VARCHAR2);

PROCEDURE when_compare_replace (ldapplugincontext IN ODS.plugincontext,
 result OUT INTEGER,
 dn IN VARCHAR2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT INTEGER,
 errormsg OUT VARCHAR2);

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,
 result IN INTEGER,
 dn IN VARCHAR2,
 attrname IN VARCHAR2,
 attrval IN BLOB,

Binary Support in the Plug-in Framework

Developing Directory Plug-ins 5-23

 rc OUT INTEGER,
 errormsg OUT VARCHAR2);

The example that follows compares a binary attribute of an entry in the plug-in
directory with a binary attribute of an entry in another directory. This package replaces
the compare code of the server with the compare code of the plug-in. The package
handles both binary and nonbinary attributes. As such it contains two separate
procedures.

create or replace package compareattr as
 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT integer,
 errormsg OUT varchar2);
 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN varchar2,
 rc OUT integer,
 errormsg OUT varchar2);
end compareattr;
/
show error

CREATE OR REPLACE PACKAGE BODY compareattr AS
 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN varchar2,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 pos INTEGER := 2147483647;
 begin
 plg_debug(’START’);
 plg_debug(’THE ATTRNAME IS ’||attrname||’ AND THE VALUE IS ’||attrval);
 plg_debug(’END’);
 rc := 0;
 errormsg := ’No error!!!’;
 exception
 WHEN others THEN
 plg_debug (’Unknown UTL_FILE Error’);
 end;

 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 counter pls_integer;
 retval pls_integer := -1;
 cmp_result integer;

Binary Support in the Plug-in Framework

5-24 Oracle Identity Management Application Developer’s Guide

 s integer;
 user_session DBMS_LDAP.session;
 user_entry DBMS_LDAP.message;
 user_message DBMS_LDAP.message;
 user_dn varchar(256);
 user_attrs DBMS_LDAP.string_collection;
 user_attr_name VARCHAR2(256);
 user_ber_elmt DBMS_LDAP.ber_element;
 user_vals DBMS_LDAP.blob_collection;
 ldap_host varchar(256);
 ldap_port varchar(256);
 ldap_user varchar(256);
 ldap_passwd varchar(256);
 ldap_base varchar(256);
 begin
 ldap_host := ’backup.us.oracle.com’;
 ldap_port := ’4000’;
 ldap_user := ’cn=orcladmin’;
 ldap_passwd := ’welcome’;
 ldap_base := dn;

 plg_debug(’STARTING COMPARISON IN WHEN REPLACE PLUG-IN’);

 s := dbms_lob.getlength(attrval);
 plg_debug(’THE NUMBER OF BYTES OF ATTRVAL ’||s);

 -- Get a session
 user_session := dbms_ldap.init(ldap_host, ldap_port);

 -- Bind to the directory
 retval := dbms_ldap.simple_bind_s(user_session, ldap_user, ldap_passwd);

 -- issue the search
 user_attrs(1) := attrname;
 retval := DBMS_LDAP.search_s(user_session, ldap_base,
 DBMS_LDAP.SCOPE_BASE,
 ’objectclass=*’,
 user_attrs,
 0,
 user_message);

 -- Get the entry in the other OID server
 user_entry := DBMS_LDAP.first_entry(user_session, user_message);

 -- Log the DN and the Attribute name
 user_dn := DBMS_LDAP.get_dn(user_session, user_entry);
 plg_debug(’THE DN IS ’||user_dn);
 user_attr_name := DBMS_LDAP.first_attribute(user_session,user_entry,
 user_ber_elmt);

 -- Get the values of the attribute
 user_vals := DBMS_LDAP.get_values_blob(user_session, user_entry,
 user_attr_name);

 -- Start the binary comparison between the ATTRVAL and the attribute
 -- values
 if user_vals.count > 0 then
 for counter in user_vals.first..user_vals.last loop
 cmp_result := dbms_lob.compare(user_vals(counter),attrval,
 dbms_lob.getlength(user_vals(counter)),1,1);

Database Object Types Defined

Developing Directory Plug-ins 5-25

 if cmp_result = 0 then
 rc := 0;
 -- Return LDAP_COMPARE_TRUE
 result := 6;
 plg_debug(’THE LENGTH OF THE ATTR. ’||user_attr_name||’ IN THE
 ENTRY IS ’||dbms_lob.getlength(user_vals(counter)));
 errormsg := ’NO ERROR. THE COMPARISON HAS SUCCEEDED.’;
 plg_debug(errormsg);
 plg_debug(’FINISHED COMPARISON’);
 return;
 end if;
 end loop;
 end if;

 rc := 1;
 -- Return LDAP_COMPARE_FALSE
 result := 5;
 errormsg := ’ERROR. THE COMPARISON HAS FAILED.’;
 plg_debug(’THE LENGTH OF THE ATTR. ’||user_attr_name||’ IN THE ENTRY IS ’
 ||dbms_lob.getlength(user_vals(user_vals.last)));
 plg_debug(errormsg);
 plg_debug(’FINISHED COMPARISON’);

 -- Free user_vals
 dbms_ldap.value_free_blob(user_vals);
 exception
 WHEN others THEN
 plg_debug (SQLERRM);
 end;
 end compareattr;
 /
 show error

 exit;

Database Object Types Defined
This section defines the object types introduced in the Plug-in LDAP API. All of these
definitions are in Oracle Directory Server database schema. Note that the API includes
object types that enable plug-ins to extract binary data from the database.

create or replace type strCollection as TABLE of VARCHAR2(512);
/
create or replace type pluginContext as TABLE of VARCHAR2(512);
/
create or replace type attrvalType as TABLE OF VARCHAR2(4000);
/
create or replace type attrobj as object (
attrname varchar2(2000),
attrval attrvalType
);
/
create or replace type attrlist as table of attrobj;
/
create or replace type binattrvalType as TABLE OF BLOB;
/
create or replace type binattrobj as object (
binattrname varchar2(2000),
binattrval binattrvalType
);

Specifications for Plug-in Procedures

5-26 Oracle Identity Management Application Developer’s Guide

/
create or replace type binattrlist as table of binattrobj;
/
create or replace type entryobj as object (
entryname varchar2(2000),
attr attrlist,
binattr binattrlist
);
/
create or replace type entrylist as table of entryobj;
/

create or replace type bvalobj as object (
length integer,
val varchar2(4000)
);
/
create or replace type bvallist as table of bvalobj;
/
create or replace type binvalobj as object (
length integer,
binval blob
);
/
create or replace type binvallist as table of binvalobj;
/
create or replace type modobj as object (
operation integer,
type varchar2(256),
vals bvallist,
binvals binvallist
);
/
create or replace type modlist as table of modobj;

Specifications for Plug-in Procedures
When you use the plug-ins, you must adhere to the signature defined for each of them.
Each signature is provided here.

PROCEDURE pre_add (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_add (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_add_replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

Specifications for Plug-in Procedures

Developing Directory Plug-ins 5-27

PROCEDURE post_add (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE pre_modify (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_modify (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_modify_replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE post_modify (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE pre_compare (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE pre_compare (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN BLOB,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_compare_replace (ldapplugincontext IN ODS.plugincontext,
result OUT INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

Specifications for Plug-in Procedures

5-28 Oracle Identity Management Application Developer’s Guide

PROCEDURE when_compare_replace (ldapplugincontext IN ODS.plugincontext,
result OUT INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN BLOB,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN BLOB,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE pre_delete (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE when_delete (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);
PROCEDURE when_delete_replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_delete (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE pre_search (ldapplugincontext IN ODS.plugincontext,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

Specifications for Plug-in Procedures

Developing Directory Plug-ins 5-29

PROCEDURE post_search (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE pre_bind (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
passwd IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE when_bind_replace (ldapplugincontext IN ODS.plugincontext,
result OUT INTEGER,
dn IN VARCHAR2,
passwd IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_bind (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
passwd IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

Specifications for Plug-in Procedures

5-30 Oracle Identity Management Application Developer’s Guide

Integrating with Oracle Delegated Administration Services 6-1

6
Integrating with Oracle Delegated

Administration Services

This chapter explains how to integrate applications with Oracle Delegated
Administration Services. This Web tool enables you to more easily develop tools for
administering application data in the directory.

It contains the following sections:

■ What Is Oracle Delegated Administration Services?

■ Integrating Applications with the Delegated Administration Services

■ Java APIs Used to Access URLs

What Is Oracle Delegated Administration Services?
Oracle Delegated Administration Services consists of a set of pre-defined, Web-based
service units for performing directory operations on behalf of users. These units enable
directory users to update their own information.

The delegated administration services provide most of the functionality that
directory-enabled applications require. You can use the service units to create user and
group entries, search for entries, and change user passwords.

You can embed delegated administration service units in your applications. If, for
example, you are building a Web portal, you can add service units that enable users to
change application passwords stored in the directory. Each service unit has a
corresponding URL stored in the directory. At runtime, an application can find the
URL by querying the directory.

Figure 6–1 Overview of Delegated Administration Services

DAS-Integrated
Application

DAS Services
Units

Single
Sign-on

Oracle
Internet

Directory

User

Url
Redirection

Authentication

Authentication

User / Group
Information

Integrating Applications with the Delegated Administration Services

6-2 Oracle Identity Management Application Developer’s Guide

How Applications Benefit from Oracle Delegated Administration Services
An application based on Oracle Delegated Administration Services is more advanced
than one based on earlier types of APIs. First, an application developed using the
service units is language independent because the units are Web based. This means
that the application can handle input and requests from any type of user or
application, eliminating the need for a costly custom solution or configuration. Second,
Oracle Delegated Administration Services comes with the Oracle Internet Directory
Self-Service Console, a GUI development tool that automates many of the
directory-oriented application requirements (such as Create, Edit, and Delete). Third,
Oracle Delegated Administration Services is integrated with Oracle Application Server
Single Sign-On. The application is automatically authenticated by the single sign-on
server. This means that the application can query the directory on a user’s behalf.

Integrating Applications with the Delegated Administration Services
This section contains these topics:

■ Integration Profile

■ Oracle Delegated Administration Services Integration Methodology and
Considerations

Integration Profile
An application integrated with Oracle Delegated Administration Services has the
following characteristics:

■ It is a Web-based GUI.

■ It is integrated with Oracle Application Server Single Sign-On through mod_osso.

■ It has operations that it must perform by way of a signed-on user. It can perform
these operations using Oracle Delegated Administration Services.

■ It has users or groups stored in Oracle Internet Directory and can use Oracle
Delegated Administration Services for user and group management.

■ It runs on the Oracle Application Server infrastructure or middle-tier. The
discovery mechanism for the service URLs is inaccessible otherwise.

Oracle Delegated Administration Services Integration Methodology and Considerations
Table 6–1 on page 6-3 identifies the tasks that are required to integrate an application
with Oracle Delegated Administration Services.

Integrating Applications with the Delegated Administration Services

Integrating with Oracle Delegated Administration Services 6-3

Use Case 1: Create User
This use case shows how to integrate the Create User unit with a custom application.
In the custom application page, Create User is shown as a link.

1. Identify the base URL for Oracle Delegated Administration Services by using this
Java API string:

baseUrl = Util.getDASUrl(ctx,DASURL_BASE).

This API returns the base URL in this form: http://host_name:port/

2. Get the URL for the Create Userunit by using this string:

relUrl = Util.getDASUrl (ctx , DASURL_CREATE_USER)

The return value is the relative URL to access the Create User unit.

The specific URL is the information needed to generate the link dynamically for
the application.

You can customize the parameters in Table 6–2 on page 6-4 for this unit.

Table 6–1 Considerations for Integrating an Application with Oracle Delegated
Administration Services

Point in Application
Lifecycle Considerations

Application design time Examine the various services that Oracle Delegated
Administration Services provides. Identify integration points
within the application GUI.

Make code changes to pass parameters to the Oracle Delegated
Administration Services self-service units and to process return
parameters from Oracle Delegated Administration Services.

 Introduce code in the bootstrap and installation logic to
dynamically discover the location of Oracle Delegated
Administration Services units from configuration information
in Oracle Internet Directory. To do this, use Oracle Internet
Directory Service Discovery APIs.

Application installation
time

Determine the location of Oracle Delegated Administration
Services units and store them in local repository.

Application runtime Display Oracle Delegated Administration Services URLs in
application GUI shown to users.

Pass the appropriate parameters to the Oracle Delegated
Administration Services by using URL encoding.

Process return codes from Oracle Delegated Administration
Services through the URL return.

Ongoing administrative
activities

Provide the capability to refresh the location of Oracle
Delegated Administration Services and its URLs in the
administrator screens. Do this in case the deployment moves
the location of Oracle Delegated Administration Services after
the application has been installed.

Integrating Applications with the Delegated Administration Services

6-4 Oracle Identity Management Application Developer’s Guide

3. Build the link with the parameters set to the following values:

baseUrl = http://acme.mydomain.com:7777/
relUrl = oiddas/ui/oracle/ldap/das/admin/AppCreateUserInfoAdmin
homeURL = http://acme.mydomain.com/myapp
cancelURL = http://acme.mydomain.com/myapp
doneURL = http://acme.mydomain.com/myapp
enablePA = true

The complete URL looks like this:

http://acme.mydomain.com:7777/oiddas/ui/oracle/ldap/das/admin/
AppCreateUserInfoAdmin?homeURL=http://acme.mydomain.com/myapp&
cancelURL=http://acme.mydomain.com/myapp&
doneURL=http://acme.mydomain.com/myapp&
enablePA=true

4. You can now embed this URL in the application.

Use Case 2: User LOV
List of Values (LOV) is implemented using JavaScript to invoke and pass values
between the LOV calling window and the LOV page. The application invoking the
LOV needs to open a popup window using JavaScript. Because Java scripts have
security restrictions, no data may cross domains. Due to this limitation, only pages in
the same domain can access the LOV units.

Base and relative URLs can be invoked the same way as they are for Create User.
Sample files are located at:

ORACLE_HOME/ldap/das/samples/lov

The samples illustrate how the LOV can be invoked and data can be passed between
the calling application and the Oracle Delegated Administration Services unit. A
Complete illustration of the LOV invocation is beyond the scope of this chapter.

Table 6–2 URL Parameters for Oracle Delegated Administration Services

Parameter Description

homeURL The URL that is linked to the global button Home in the Oracle
Delegated Administration Services unit. When the calling
application specifies this value, you can click Home to redirect
the Oracle Delegated Administration Services unit to the URL
specified by this parameter.

doneURL This URL is used by Oracle Delegated Administration Services
to redirect the Oracle Delegated Administration Services page
at the end of each operation. In the case of Create User, once
the user is created, clicking OK redirects the URL to this
location.

cancelURL This URL is linked with all the Cancel buttons shown in Oracle
Delegated Administration Services units. Any time the user
clicks Cancel, the page is redirected to the URL specified by
this parameter.

enablePA This parameter takes a Boolean value of true or false. This will
enable the Assign Privileges section in a User or Group
operation. If enablePA is passed with value of true in the
Create User page, then the Assign Privileges to User section
will also appear on the Create User Page.

Java APIs Used to Access URLs

Integrating with Oracle Delegated Administration Services 6-5

Java APIs Used to Access URLs
Java APIs can be used to discover URLs for Oracle Delegated Administration Services.
More details about these APIs are provided in Chapter 3, "Developing Applications
with Oracle Extensions to the Standard APIs" and in Chapter 12, "DAS_URL Interface
Reference". The API functions that address URL discovery are
getDASUrl(DirContext ctx, String urlTypeDN) and
getAllDASUrl(DirContext ctx).

Java APIs Used to Access URLs

6-6 Oracle Identity Management Application Developer’s Guide

Developing Applications for Single Sign-On 7-1

7
Developing Applications for Single Sign-On

This chapter explains how to develop applications to work with mod_osso. The
chapter contains the following topics:

■ What Is mod_osso?

■ Protecting Applications Using mod_osso: Two Methods

■ Developing Applications Using mod_osso

■ Security Issues: Single Sign-Off and Application Logout

What Is mod_osso?
In OracleAS release 10.1.2, you use mod_osso, an authentication module on the Oracle
HTTP Server, to enable applications for single sign-on. mod_osso is a simple
alternative to the single sign-on SDK, used in earlier releases to integrate partner
applications. mod_osso simplifies the authentication process by serving as the sole
partner application to the single sign-on server. By doing so, it renders authentication
transparent for OracleAS applications.

After authenticating users, mod_osso transmits the simple header values that
applications need to validate them. These include the following:

■ User name

■ User GUID

■ Language and territory

Table 7–1 lists all of the user attributes that mod_osso passes to applications. The table
also recommends attributes to use as keys, or handles, to retrieve additional user
attributes from Oracle Internet Directory.

Table 7–1 User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?

Osso-User-Guid Single sign-on user’s
globally unique user ID
(GUID).

Single sign-on user’s
globally unique user ID
(GUID).

Recommended.

Osso-Subscriber-Guid Realm GUID. Realm entry in Oracle
Internet Directory.

Recommended.

Protecting Applications Using mod_osso: Two Methods

7-2 Oracle Identity Management Application Developer’s Guide

mod_osso interoperates only with the Oracle HTTP listener. You can use OracleAS
SSO Plug-in to protect applications that work with third-party listeners such as Sun
One and IIS. To learn how to use OracleAS SSO Plug-in, see the appendix about this
tool in Oracle HTTP Server Administrator’s Guide.

Protecting Applications Using mod_osso: Two Methods
mod_osso redirects the user to the single sign-on server only if the URL you request is
configured to be protected. You can secure URLs in one of two ways: statically or
dynamically. Static directives simply protect the application, ceding control over user
interaction to mod_osso. Dynamic directives not only protect the application, they also
enable it to regulate user access.

This section contains the following topics:

■ Protecting URLs Statically

■ Protecting URLs with Dynamic Directives

Protecting URLs Statically
You can statically protect URLs with mod_osso by applying directives to the mod_
osso.conf file. This file is found at ORACLE_HOME/Apache/Apache/conf. In the
example that follows, a directory named /private, located just below the Oracle
HTTP Server document root, is protected by this directive:

<IfModule mod_osso.c>

 <Location /private>
 AuthType Basic
 require valid-user
 </Location>

</IfModule>

After making the entry, restart the Oracle HTTP Server:

ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs

Finally, populate the directory with pages and then test them. For example:

http://host:port/private/helloworld.html

Protecting URLs with Dynamic Directives
Dynamic directives are HTTP response headers that have special error codes that
enable an application to request granular functionality from the single sign-on system

Remote-User User nickname as entered
by user on the login page.

Single sign-on login page. Recommended for
pre-9.0.4 applications only.

Osso-Subscriber User-friendly name for a
realm.

Realm entry in Oracle
Internet Directory.

Not recommended. Use
GUID headers to perform
user searches in Oracle
Internet Directory.

Accept-Language Language and territory in
ISO format.

Single sign-on server. Not applicable.

Table 7–1 (Cont.) User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?

Developing Applications Using mod_osso

Developing Applications for Single Sign-On 7-3

without having to implement the intricacies of the single sign-on protocol. Upon
receiving a directive as part of a simple HTTP response from the application, mod_
osso creates the appropriate single sign-on protocol message and communicates it to
the single sign-on server.

OracleAS supports dynamic directives for Java servlets and JSPs. The product does not
currently support dynamic directives for PL/SQL applications.

Table 7–2 lists commonly requested dynamic directives.

Developing Applications Using mod_osso
This section explains how to write and enable applications using mod_osso. The
section contains the following topics:

■ Developing Statically Protected PL/SQL Applications

■ Developing Statically Protected Java Applications

■ Developing Java Applications That Use Dynamic Directives

■ A Word About Non-GET Authentication

Developing Statically Protected PL/SQL Applications
What follows is an example of a simple mod_osso-protected application. This
application logs the user in to the single sign-on server, displays user information, and
then logs the user out of both the application and the single sign-on server.

Use the following steps to write and enable a PL/SQL application using mod_osso.

1. Create the schema where application procedure will be loaded.

sqlplus sys/sys_password as sysdba
create user schema_name identified by schema_password;
grant connect, resource to schema_name;

2. Load the following procedure into the schema and grant the public access to the
procedure:

create or replace procedure show_user_info
 is
 begin
 begin
 htp.init;
 exception
 when others then null;
 end;
 htp.htmlOpen;
 htp.bodyOpen;

Table 7–2 Commonly Requested Dynamic Directives

Directive Status Code Headers

Request Authentication 401, 499 -

Request Forced
Authentication

499 Osso-Paranoid: true

Single Sign-Off 470 Osso-Return-URL

This is the URL to return to
after single sign-off is
complete

Developing Applications Using mod_osso

7-4 Oracle Identity Management Application Developer’s Guide

 htp.print(’<h2>Welcome to Oracle Single Sign-On</h2>’);
 htp.print(’<pre>’);
 htp.print(’Remote user: ’
 || owa_util.get_cgi_env(’REMOTE_USER’));
 htp.print(’User DN: ’
 || owa_util.get_cgi_env(’Osso-User-Dn’));
 htp.print(’User Guid: ’
 || owa_util.get_cgi_env(’Osso-User-Guid’));
 htp.print(’Subscriber: ’
 || owa_util.get_cgi_env(’Osso-Subscriber’));
 htp.print(’Subscriber DN: ’
 || owa_util.get_cgi_env(’Osso-Subscriber-Dn’));
 htp.print(’Subscriber Guid: ’
 || owa_util.get_cgi_env(’Osso-Subscriber-Guid’));
 htp.print(’</pre>’);
 htp.print(’<a href=/osso_logout?’
 ||’p_done_url=http://my.oracle.com>Logout’);

 htp.bodyClose;
 htp.htmlClose;
end show_user_info;
/
show errors;

grant execute on show_user_info to public;

3. Create a database access descriptor (DAD) for the application in the dads.conf
file, located at ORACLE_HOME/Apache/modplsql/conf:

<Location /pls/DAD_name>
 SetHandler pls_handler
 Order deny,allow
 AllowOverride None
 PlsqlDatabaseConnectString hostname:port:SID
 PlsqlDatabasePassword schema_password
 PlsqlDatabaseUsername schema_name
 PlsqlDefaultPage schema_name.show_user_info
 PlsqlDocumentTablename schema_name.wwdoc_document
 PlsqlDocumentPath docs
 PlsqlDocumentProcedure schema_name.wwdoc_process.process_
 download
 PlsqlAuthenticationMode Basic
 PlsqlPathAlias url
 PlsqlPathAliasProcedure schema_name.wwpth_api_alias.process_
 download
 PlsqlSessionCookieName schema_name
 PlsqlCGIEnvironmentList OSSO-USER-DN
 PlsqlCGIEnvironmentList OSSO-USER-GUID
 PlsqlCGIEnvironmentList OSSO-SUBSCRIBER
 PlsqlCGIEnvironmentList OSSO-SUBSCRIBER-DN
 PlsqlCGIEnvironmentList OSSO-SUBSCRIBER-GUID
</Location>

4. Protect the application DAD by entering the following lines in the mod_
osso.conf file:

<Location /pls/DAD_name>
 require valid-user
 authType Basic
</Location>

Developing Applications Using mod_osso

Developing Applications for Single Sign-On 7-5

5. Restart the Oracle HTTP Server:

http://host:port/private/helloworld.html

6. To test whether the newly created functions and procedures are protected by
mod_osso, try to access them from a browser:

http://host:port/pls/DAD/schema_name.show_user_info

Selecting the URL should invoke the single sign-on login page if mod_osso.conf
has been configured properly and mod_osso is registered with the single sign-on
server.

Developing Statically Protected Java Applications
Use the following steps to write and enable a servlet or JSP application using mod_
osso:

1. Write the JSP or servlet. Like the PL/SQL application example immediately
preceding, the simple servlet that follows logs the user in, displays user
information, and then logs the user out.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to get the SSO User information
 */

public class SSOProtected extends HttpServlet
{

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");

 // Show authenticated user informationsingle sign-on
 PrintWriter out = response.getWriter();
 out.println("<h2>Welcome to Oracle Single Sign-On</h2>");
 out.println("<pre>");
 out.println("Remote user: "
 + request.getRemoteUser());
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-User-Guid: "
 + request.getHeader("Osso-User-Guid"));
 out.println("Osso-Subscriber: "
 + request.getHeader("Osso-Subscriber"));
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-Subscriber-Dn: "
 + request.getHeader("Osso-Subscriber-Dn"));
 out.println("Osso-Subscriber-Guid: "

Note: The assumption here is that mod_osso is already configured
for single sign-on. This step is performed when OracleAS is installed.

Developing Applications Using mod_osso

7-6 Oracle Identity Management Application Developer’s Guide

 + request.getHeader("Osso-Subscriber-Guid"));
 out.println("Lang/Territory: "
 + request.getHeader("Accept-Language"));
 out.println("</pre>");
 out.println("<a href=/osso_logout?"
 +"p_done_url=http://my.oracle.com>Logout");

2. Protect the servlet by entering the following lines in the mod_osso.conf file:

<Location /servlet>
 require valid-user
 authType Basic
</Location>

3. Deploy the servlet. If you need help, see the overview chapter in Oracle Application
Server Containers for J2EE Servlet Developer’s Guide. This chapter provides an
example of a servlet and shows how to deploy it.

4. Restart the Oracle HTTP Server and OC4J:

ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs
ORACLE_HOME/opmn/bin/opmnctl stopproc type=oc4j
ORACLE_HOME/opmn/bin/opmnctl startproc type=oc4j

5. Test the servlet by trying to access it from the browser. Selecting the URL should
invoke the login page.

The process is this: when you try to access the servlet from the browser, you are
redirected to the single sign-on server for authentication. Next you are redirected
back to the servlet, which displays user information. You may then select the
logout link to log out of the application as well as the single sign-on server.

Developing Java Applications That Use Dynamic Directives
Applications that use dynamic directives require no entry in mod_osso.conf because
mod_osso protection is written directly into the application as one or more dynamic
directives. The servlets that follow show how such directives are incorporated. Like
their "static" counterparts, these sample "dynamic" applications generate user
information.

This section covers the following topics:

■ Java Example #1: Simple Authentication

■ Java Example #2: Single Sign-Off

■ Java Example #3: Forced Authentication

Java Example #1: Simple Authentication
This servlet uses the request.getRemoteUser()method to check the mod_osso
cookie for the user name. If the user name is absent, the servlet issues dynamic
directive 499, a request for simple authentication. The key lines are in boldface.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to use
 * Dynamic Directive for login
 */

Developing Applications Using mod_osso

Developing Applications for Single Sign-On 7-7

public class SSODynLogin extends HttpServlet
{

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 String l_user = null;

 // Try to get the authenticate user name
 try

{
 l_user = request.getRemoteUser();
 }
 catch(Exception e)
 {
 l_user = null;
 }

 // If user is not authenticated then generate
 // dynamic directive for authentication
 if((l_user == null) || (l_user.length() <= 0))
 {
 response.sendError(499, "Oracle SSO");
 }
 else
 {
 // Show authenticated user information
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<h2>Welcome to Oracle Single Sign-On</h2>");
 out.println("<pre>");
 out.println("Remote user: "
 + request.getRemoteUser());
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-User-Guid: "
 + request.getHeader("Osso-User-Guid"));
 out.println("Osso-Subscriber: "
 + request.getHeader("Osso-Subscriber"));
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-Subscriber-Dn: "
 + request.getHeader("Osso-Subscriber-Dn"));
 out.println("Osso-Subscriber-Guid: "
 + request.getHeader("Osso-Subscriber-Guid"));
 out.println("Lang/Territory: "
 + request.getHeader("Accept-Language"));
 out.println("</pre>");
 }
 }

Note: If Oracle JAAS Provider is used, the directive code 401 may be
substituted for 499.

Developing Applications Using mod_osso

7-8 Oracle Identity Management Application Developer’s Guide

Java Example #2: Single Sign-Off
This servlet is invoked when users select the login link within an application. The
application sets the URL to return to when sign-off is complete; then it issues a
directive that sends users to the single sign-off page. The key lines are in boldface.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to use
 * Dynamic Directive for logout
 */

public class SSODynLogout extends HttpServlet
{
 public void service (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {

// Set the return URL
 response.setHeader("Osso-Return-Url",
 "http://my.oracle.com");
 // Send Dynamic Directive for logout
 response.sendError(470, "Oracle SSO");
 }
}

Java Example #3: Forced Authentication
If logged-in users have exceeded a timeout, an application can force them to
reauthenticate. The directive for reauthentication is written into the servlet that
follows. The key lines are in boldface.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to use
 * Dynamic Directive for forced login
 */

public class SSODynForcedLogin extends HttpServlet
{

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 String l_user = null;
 // Try to get the authenticate user name
 try
 {
 l_user = request.getRemoteUser();
 }

Note: Alternatively, you can redirect to the osso_logout URL on
that computer.

Security Issues: Single Sign-Off and Application Logout

Developing Applications for Single Sign-On 7-9

 catch(Exception e)
 {
 l_user = null;
 }

// If the user is authenticated then show
 // user information; otherwise generate Dynamic
 // Directive for forced login
 if(l_user != null)
 {
 // Show authenticated user information
 PrintWriter out = response.getWriter();
 response.setContentType("text/html");
 out.println("<h2>Welcome to Oracle Single Sign-On.</h2>");
 out.println("<pre>");
 out.println("Remote user: "
 + request.getRemoteUser());
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-User-Guid: "
 + request.getHeader("Osso-User-Guid"));
 out.println("Osso-Subscriber: "
 + request.getHeader("Osso-Subscriber"));
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-Subscriber-Dn: "
 + request.getHeader("Osso-Subscriber-Dn"));
 out.println("Osso-Subscriber-Guid: "
 + request.getHeader("Osso-Subscriber-Guid"));
 out.println("Lang/Territory: "
 + request.getHeader("Accept-Language"));
 out.println("</pre>");
 }

else
 {
 response.setHeader("Osso-Paranoid", "true");
 response.sendError(499, "Oracle SSO");
 }
 }
}

A Word About Non-GET Authentication
The first page of a mod_osso-protected application must be a URL that uses the GET
authentication method. If the POST method is used, the data that the user provides
when logging in is lost during redirection to the single sign-on server. When deciding
whether to enable the global user inactivity timeout, please note that users are
redirected after timing out and logging in again.

Security Issues: Single Sign-Off and Application Logout
If you build custom applications using OracleAS, note the following: when global
logout, or single sign-off, is invoked, only the single sign-on and mod_osso cookies are
cleared. This means that an OracleAS application must be coded to store single sign-on
user and realm names in either the OC4J session or in the application session. The
application must then compare these values to those passed by mod_osso. If a match
occurs, the application must show personalized content. If no match occurs, which

Security Issues: Single Sign-Off and Application Logout

7-10 Oracle Identity Management Application Developer’s Guide

means that the mod_osso cookie is absent, the application must clear the application
session and force the user to log in.

This section covers the following topics:

■ Application Login: Code Examples

■ Application Logout: Recommended Code

Application Login: Code Examples
The first two code examples in this section do not incorporate the logic prescribed in
the section immediately preceding. The third example does incorporate this logic.
Although these are Java examples, they could be examples written in other languages
such as Perl, PL/SQL, and CGI.

Bad Code Example #1
// Get user name from application session. This session was
// established by the application cookie or OC4J session cookie
String username = request.getSession().getAttribute(’USER_NAME’);

// Get subscriber name from application session. This session was
// established by the application cookie or OC4J session cookie.
String subscriber = request.getSession().getAttribute(’SUBSCRIBER_NAME’);

// Get user security information from application session. This session was
established by the application cookie or OC4J session cookie
String user_sec_info = request.getSession().getAttribute(’USER_APP_SEC’);

if((username != null) && (subscriber!= null))
{

// Show personalized user content
show_personalized_page(username, subscriber, user_sec_info);

}
else
{

// Send Dynamic Directive for login
response.sendError(499, "Oracle SSO");

Bad Code Example #2
// Get SSO username from http header
String username = request.getRemoteUser();

// Get subscriber name from SSO http header
String subscriber = request.getHeader(’OSSO-SUBSCRIBER’);

// Get user security information from application session.
// This session was established by the application or OC4J session.
String user_sec_info =request.getSession().getAttribute(’USER_APP_SEC’);

if((ssousername != null)&&(subscriber!= null))
{

// Show personalized user content
show_personalized_page(username, subscriber, user_sec_info);
}
else
{

// Send Dynamic Directive for login
response.sendError(499, "Oracle SSO");

Security Issues: Single Sign-Off and Application Logout

Developing Applications for Single Sign-On 7-11

}

Recommended Code
// Get user name from application session. This session was
// established by the application or OC4J session
String username = request.getSession().getAttribute(’USER_NAME’);

// Get subscriber name from application session. This session was
// established by the application or OC4J session
String subscriber = request.getSession().getAttribute(’SUBSCRIBER_NAME’);

// Get user security information from application session.
 // This session was established by the application or OC4J session.
String user_sec_info = request.getSession().getAttribute(’USER_APP_SEC’);

// Get username and subscriber name from JAZN API */
JAZNUserAdaptor jaznuser = (JAZNUserAdaptor)requset.getUserPrincipal();
 String ssousername = jaznuser.getName();
 String ssosubscriber = jaznuser.getRealm().getName();

// If you are not using JAZN api then you can also get the username and
// subscriber name from mod_osso headers
String ssousername = request.getRemoteUser();
String ssosubscriber = request.getHeader(’OSSO-SUBSCRIBER’);

// Check for application session. Create it if necessary.
if((username == null) || (subscriber == null))
 {

...Code to create application session. Get the user information from
 JAZN api (or mod_osso headers if you are not using JAZN api) and populate the
 application session with user, subscriber, and user security info.
 }

if((username != null)&&(subscriber != null)
&&(ssousername != null)&&(ssosubscriber != null)
&&(username.equalsIgnoreCase(ssousername) == 0)
&&(subscriber.equalsIgnoreCase(ssosubscriber) == 0))

{
// Show personalized user content

show_personalized_page(username, subscriber, user_sec_info);
}
else
{

...Code to Wipe-out application session, followed by...

// Send Dynamic Directive for login
// If you are using JAZN then you should use following code
// response.sendError(401);

// If you are not using JAZN api then you should use following code
// response.sendError(499, "Oracle SSO");
}

Application Logout: Recommended Code
Most applications that authenticate users have a logout link. In a
single-sign-on-enabled application, the user invokes the dynamic directive for logout
in addition to other code in the logout handler of the application. Invoking the logout

Security Issues: Single Sign-Off and Application Logout

7-12 Oracle Identity Management Application Developer’s Guide

directive initiates single sign-off, or global logout. The example that follows shows
what single sign-off code should look like in Java.

// Clear application session, if any
String l_return_url := return url to your application
response.setHeader("Osso-Return-Url", l_return_url);
response.sendError(470, "Oracle SSO");

Part II
Oracle Internet Directory Programming

Reference

Part II presents the standard APIs and the Oracle extensions to these APIs. It contains
these chapters:

■ Chapter 8, "C API Reference"

■ Chapter 9, "DBMS_LDAP PL/SQL Reference"

■ Chapter 10, "Java API Reference"

■ Chapter 11, "DBMS_LDAP_UTL PL/SQL Reference"

■ Chapter 12, "DAS_URL Interface Reference"

■ Chapter 13, "Provisioning Integration API Reference"

C API Reference 8-1

8
C API Reference

This chapter introduces the Oracle Internet Directory C API and provides examples of
how to use it.

The chapter contains these topics:

■ About the Oracle Internet Directory C API

■ Functions in the C API

■ Sample C API Usage

■ Required Header Files and Libraries for the C API

■ Dependencies and Limitations of the C API

About the Oracle Internet Directory C API
The Oracle Internet Directory SDK C API is based on LDAP Version 3 C API and
Oracle extensions to support SSL.

You can use the Oracle Internet Directory API 10g Release 2 (10.1.2) in the following
modes:

■ SSL—All communication secured by using SSL

■ Non-SSL—Client/server communication not secure

The API uses TCP/IP to connect to a directory server. When it does this, it uses, by
default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL
call interface. You determine which mode you are using by the presence or absence of
the SSL calls in the API usage. You can easily switch between SSL and non-SSL modes.

This section contains these topics:

■ Oracle Internet Directory SDK C API SSL Extensions

■ The Functions at a Glance

Oracle Internet Directory SDK C API SSL Extensions
Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The SSL
extensions provide encryption and decryption of data over the wire and
authentication.

There are three modes of authentication:

See Also: "Sample C API Usage" on page 8-41 for more details on
how to use the two modes

Functions in the C API

8-2 Oracle Identity Management Application Developer’s Guide

■ None—Neither client nor server is authenticated, and only SSL encryption is used

■ One-way—Only the server is authenticated by the client

■ Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

SSL Interface Calls
There is only one call required to enable SSL:

int ldap_init_SSL(Sockbuf *sb, text *sslwallet, text *sslwalletpasswd, int
sslauthmode)

The ldap_init_SSL call performs the necessary handshake between client and
server using the standard SSL protocol. If the call is successful, then all subsequent
communication happens over a secure connection.

Wallet Support
depending on which authentication mode is being used, both the server and the client
may require wallets to use the SSL feature. 10g Release 2 (10.1.2) of the API supports
only the Oracle Wallet. You can create wallets by using Oracle Wallet Manager.

Functions in the C API
This section examines each of the functions and procedures in the C API. It explains
their purpose and syntax. It also provides tips for using them.

The section contains the following topics:

■ The Functions at a Glance

■ Initializing an LDAP Session

■ LDAP Session Handle Options

■ Authenticating to the Directory

Table 8–1 Arguments for SSL Interface Calls

Argument Description

sb Socket buffer handle returned by the ldap_open call as part of LDAP
handle.

sslwallet Location of the user wallet.

sslwalletpasswd Password required to use the wallet.

sslauthmode SSL authentication mode user wants to use. Possible values are:

■ GSLC_SSL_NO_AUTH—No authentication required

■ GSLC_SSL_ONEWAY_AUTH—Only server authentication required.

■ GSLC_SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A nonzero return value
indicates an error. The error code can be decoded by using the
function ldap_err2string.

Tip: "Sample C API Usage" on page 8-41

Functions in the C API

C API Reference 8-3

■ SASL Authentication Using Oracle Extensions

■ SASL Authentication

■ Working With Controls

■ Closing the Session

■ Performing LDAP Operations

■ Abandoning an Operation

■ Obtaining Results and Peeking Inside LDAP Messages

■ Handling Errors and Parsing Results

■ Stepping Through a List of Results

■ Parsing Search Results

The Functions at a Glance
Table 8–2 lists all of the functions and procedures in the C API and briefly explains
their purpose.

Table 8–2 Functions and Procedures in the C API

Function or Procedure Description

ber_free Free the memory allocated for a BerElement structure

ldap_abandon_ext
ldap_abandon

Cancel an asynchronous operation

ldap_add_ext
ldap_add_ext_s
ldap_add
ldap_add_s

Add a new entry to the directory

ldap_compare_ext
ldap_compare_ext_s
ldap_compare
ldap_compare_s

Compare entries in the directory

ldap_count_entries Count the number of entries in a chain of search results

ldap_count_values Count the string values of an attribute

ldap_count_values_len Count the binary values of an attribute

ora_ldap_create_clientctx Create a client context and returns a handle to it.

ora_ldap_create_cred_hdl Create a credential handle.

ldap_delete_ext
ldap_delete_ext_s
ldap_delete
ldap_delete_s

Delete an entry from the directory

ora_ldap_destroy_clientctx Destroy the client context.

ora_ldap_free_cred_hdl Destroy the credential handle.

ldap_dn2ufn Converts the name into a more user friendly format

ldap_err2string Get the error message for a specific error code

ldap_explode_dn Split up a distinguished name into its components

ldap_explode_rdn

Functions in the C API

8-4 Oracle Identity Management Application Developer’s Guide

ldap_first_attribute Get the name of the first attribute in an entry

ldap_first_entry Get the first entry in a chain of search results

ora_ldap_get_cred_props Retrieve properties associated with credential handle.

ldap_get_dn Get the distinguished name for an entry

ldap_get_option Access the current value of various session-wide
parameters

ldap_get_values Get the string values of an attribute

ldap_get_values_len Get the binary values of an attribute

ldap_init
ldap_open

Open a connection to an LDAP server

ora_ldap_init_SASL Perform SASL authentication

ldap_memfree Free memory allocated by an LDAP API function call

ldap_modify_ext
ldap_modify_ext_s
ldap_modify
ldap_modify_s

Modify an entry in the directory

ldap_msgfree Free the memory allocated for search results or other
LDAP operation results

ldap_first_attribute
ldap_next_attribute

Get the name of the next attribute in an entry

ldap_next_entry Get the next entry in a chain of search results

ldap_perror

(Deprecated)

Prints the message supplied in message.

ldap_rename
ldap_rename_s

Modify the RDN of an entry in the directory

ldap_result2error

(Deprecated)

Return the error code from result message.

ldap_result
ldap_msgfree
ldap_msgtype
ldap_msgid

Check the results of an asynchronous operation

ldap_sasl_bind
ldap_sasl_bind_s

General authentication to an LDAP server

ldap_search_ext
ldap_search_ext_s
ldap_search
ldap_search_s

Search the directory

ldap_search_st Search the directory with a timeout value

ldap_get_option
ldap_set_option

Set the value of these parameters

ora_ldap_set_clientctx Add properties to the client context handle.

ora_ldap_set_cred_props Add properties to credential handle.

Table 8–2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description

Functions in the C API

C API Reference 8-5

This section lists all the calls available in the LDAP C API found in RFC 1823.

Initializing an LDAP Session
The calls in this section initialize a session with an LDAP server.

ldap_init and ldap_open
ldap_init() initializes a session with an LDAP server, but does not open a
connection. The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization. ldap_open()
initializes a session and opens a connection. The two fulfill the same purpose and have
the same syntax, but the first is preferred.

Syntax
LDAP *ldap_init
(
 const char *hostname,
 int portno
)
;

Parameters

ldap_simple_bind
ldap_simple_bind_s
ldap_sasl_bind
ldap_sasl_bind_s

Simple authentication to an LDAP server

ldap_unbind_ext
ldap_unbind
ldap_unbind_s

End an LDAP session

ldap_value_free Free the memory allocated for the string values of an
attribute

ldap_value_free
ldap_value_free_len

Free the memory allocated for the binary values of an
attribute

See Also: The following URL for a more detailed explanation of
these calls:

http://www.ietf.org

Table 8–3 Parameters for Initializing an LDAP Session

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to
connect to. Each host name in the list may include a port
number. The two must be separated by a colon. The hosts are
tried in the order listed until a successful connection occurs.

Note: A suitable representation for including a literal IPv6[10]
address in the host name parameter is desired, but has not yet
been determined or implemented in practice.

Table 8–2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description

Functions in the C API

8-6 Oracle Identity Management Application Developer’s Guide

Usage Notes
ldap_init() and ldap_open() both return a session handle. This is a pointer to an
opaque structure that must be passed to subsequent calls pertaining to the session.
These routines return NULL if the session cannot be initialized. If the session cannot be
initialized, check the error reporting mechanism for the operating system to see why
the call failed.

Note that if you connect to an LDAPv2 server, one of the LDAP bind calls described
later SHOULD be completed before other operations can be performed on the session.
LDAPv3 does not require that a bind operation be completed before other operations
are performed.

The calling program can set various attributes of the session by calling the routines
described in the next section.

LDAP Session Handle Options
The LDAP session handle returned by ldap_init() is a pointer to an opaque data
type representing an LDAP session. In RFC 1823 this data type was a structure
exposed to the caller, and various fields in the structure could be set to control aspects
of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these
aspects of the session are now accessed through a pair of accessor functions, described
in this section.

ldap_get_option and ldap_set_option
ldap_get_option() is used to access the current value of various session-wide
parameters. ldap_set_option() is used to set the value of these parameters. Note
that some options are read only and cannot be set; it is an error to call ldap_set_
option() and attempt to set a read only option.

Note that if automatic referral following is enabled (the default), any connections
created during the course of following referrals will inherit the options associated with
the session that sent the original request that caused the referrals to be returned.

Syntax
int ldap_get_option
(
LDAP *ld,
int option,
void *outvalue
)
;

int ldap_set_option
(
LDAP *ld,
int option,
const void *invalue

portno Contains the TCP port number to connect to. The default LDAP
port of 389 can be obtained by supplying the constant LDAP_
PORT. If hostname includes a port number, portno is ignored.

Table 8–3 (Cont.) Parameters for Initializing an LDAP Session

Parameter Description

Functions in the C API

C API Reference 8-7

)
;

#define LDAP_OPT_ON ((void *)1)
#define LDAP_OPT_OFF ((void *)0)

Parameters
Table 8–4 lists and describes the parameters for LDAP session handle options.

Constants
Table 8–5 on page 8-7 lists and describes the constants for LDAP session handle
options.

Table 8–4 Parameters for LDAP Session Handle Options

Parameters Description

ld The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with ldap_init() or ldap_open()
inherit their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter should be
one of the constants listed and described in Table 8–5 on page 8-7. The
hexadecimal value of the constant is listed in parentheses after the
constant.

outvalue The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **, a copy of the data that is associated
with the LDAP session ld is returned. Callers should dispose of the
memory by calling ldap_memfree() or ldap_controls_free(),
depending on the type of data returned.

invalue A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the API implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to ldap_set_option(). If a value passed for
invalue is invalid or cannot be accepted by the implementation, ldap_
set_option() should return -1 to indicate an error.

Table 8–5 Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

LDAP_OPT_API_
INFO(0x00)

Not applicable.
Option is read
only.

LDAPAPIInfo* Used to retrieve some basic information
about the LDAP API implementation at
execution time. Applications need to be
able to determine information about the
particular API implementation they are
using both at compile time and during
execution. This option is read only and
cannot be set.

ORA_LDAP_OPT_RFRL_
CACHE

void* (LDAP_OPT_
ON
void* (LDAP_OPT_
OFF)

int * This option determines whether referral
cache is enabled or not. If this option is set
to LDAP_OPT_ON, the cache is enabled;
otherwise, the cache is disabled.

ORA_LDAP_OPT_RFRL_
CACHE_SZ

int * int * This option sets the size of referral cache.
The size is maximum size in terms of
number of bytes the cache can grow to. It is
set to 1MB by default.

Functions in the C API

8-8 Oracle Identity Management Application Developer’s Guide

LDAP_OPT_
DEREF(0x02)

int * int * Determines how aliases are handled
during search. It should have one of the
following values: LDAP_DEREF_NEVER
(0x00), LDAP_DEREF SEARCHING
(0x01), LDAP_DEREF_FINDING
(0x02), or LDAP_DEREF_ALWAYS
(0x03). The LDAP_DEREF_SEARCHING
value means aliases are dereferenced
during the search but not when locating
the base object of the search. The LDAP_
DEREF_FINDING value means aliases are
dereferenced when locating the base object
but not during the search. The default
value for this option is LDAP_DEREF_
NEVER.

LDAP_OPT_
SIZELIMIT(0x03)

int * int * A limit on the number of entries to return
from a search. A value of LDAP_NO_LIMIT
(0) means no limit. The default value for
this option is LDAP_NO_LIMIT.

LDAP_OPT_
TIMELIMIT(0x04)

int * int * A limit on the number of seconds to spend
on a search. A value of LDAP_NO_LIMIT
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself will wait locally for
search results. The timeout parameter
passed to ldap_search_ext_s() or
ldap_result()—both of which are
described later in this document—can be
used to specify both a local and server side
time limit. The default value for this option
is LDAP_NO_LIMIT.

LDAP_OPT_
REFERRALS(0x08)

void *(LDAP_OPT_
ON)
void *(LDAP_OPT_
OFF)

int * Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It may be set to one
of the constants LDAP_OPT_ON or LDAP_
OPT_OFF. Any non-null pointer value
passed to ldap_set_option() enables
this option. When the current setting is
read using ldap_get_option(), a zero
value means off and any nonzero value
means on. By default, this option is turned
on.

LDAP_OPT_
RESTART(0X09)

void * (LDAP_
OPT_ON)
void * (LDAP_
OPT_OFF)

int * Determines whether LDAP input and
output operations are automatically
restarted if they stop prematurely. It may
be set to either LDAP_OPT_ON or LDAP_
OPT_OFF. Any non-null pointer value
passed to ldap_set_option() enables
this option. When the current setting is
read using ldap_get_option(), a zero
value means off and any nonzero value
means on. This option is useful if an input
or output operation can be interrupted
prematurely—by a timer going off, for
example. By default, this option is turned
off.

Table 8–5 (Cont.) Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

Functions in the C API

C API Reference 8-9

Usage Notes
Both ldap_get_option() and ldap_set_option() return 0 if successful and -1
if an error occurs. If -1 is returned by either function, a specific error code may be
retrieved by calling ldap_get_option() with an option value of LDAP_OPT_
ERROR_NUMBER. Note that there is no way to retrieve a more specific error code if a
call to ldap_get_option() with an option value of LDAP_OPT_ERROR_NUMBER
fails.

When a call to ldap_get_option() succeeds, the API implementation MUST NOT
change the state of the LDAP session handle or the state of the underlying
implementation in a way that affects the behavior of future LDAP API calls. When a
call to ldap_get_option() fails, the only session handle change permitted is setting
the LDAP error code (as returned by the LDAP_OPT_ERROR_NUMBER option).

When a call to ldap_set_option() fails, it must not change the state of the LDAP
session handle or the state of the underlying implementation in a way that affects the
behavior of future LDAP API calls.

LDAP_OPT_PROTOCOL_
VERSION(0x11)

int * int * This option indicates the version of the
LDAP protocol used when communicating
with the primary LDAP server. The option
should be either LDAP_VERSION2 (2) or
LDAP_VERSION3 (3). If no version is set,
the default is LDAP_VERSION2 (2).

LDAP_OPT_SERVER_
CONTROLS(0x12)

LDAPControl** LDAPControl*** A default list of LDAP server controls to be
sent with each request.

See Also: "Working With Controls" on
page 8-14

LDAP_OPT_CLIENT_
CONTROLS(0x13)

LDAPControl** LDAPControl*** A default list of client controls that affect
the LDAP session.

See Also: "Working With Controls" on
page 8-14

LDAP_OPT_API_
FEATURE_INFO(0x15)

Not applicable.
Option is read
only.

LDAPAPIFeatureInfo * Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This
option is read only. It cannot be set.

LDAP_OPT_HOST_
NAME(0x30)

char * char ** The host name (or list of hosts) for the
primary LDAP server. See the definition of
the hostname parameter for ldap_
init() to determine the syntax.

LDAP_OPT_ERROR_
NUMBER(0x31)

int * int * The code of the most recent LDAP error
during this session.

LDAP_OPT_ERROR_
STRING(0x32)

char * - The message returned with the most recent
LDAP error during this session.

LDAP_OPT_MATCHED_
DN(0x33)

char * char ** The matched DN value returned with the
most recent LDAP error during this
session.

Table 8–5 (Cont.) Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

Functions in the C API

8-10 Oracle Identity Management Application Developer’s Guide

Standards track documents that extend this specification and specify new options
should use values for option macros that are between 0x1000 and 0x3FFF inclusive.
Private and experimental extensions should use values for the option macros that are
between 0x4000 and 0x7FFF inclusive. All values less than 0x1000 and greater than
0x7FFF that are not defined in this document are reserved and should not be used. The
following macro must be defined by C LDAP API implementations to aid extension
implementers:

#define LDAP_OPT_PRIVATE_EXTENSION_BASE 0x4000 /* to 0x7FFF inclusive */

Authenticating to the Directory
The functions in this section are used to authenticate an LDAP client to an LDAP
directory server.

ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s
The ldap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the DN to bind as, the method
to use, as a dotted-string representation of an object identifier identifying the method,
and a struct berval holding the credentials. The special constant value LDAP_
SASL_SIMPLE (NULL) can be passed to request simple authentication, or the
simplified routines ldap_simple_bind() or ldap_simple_bind_s() can be
used.

Syntax
int ldap_sasl_bind
(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_sasl_bind_s(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp
);

int ldap_simple_bind(
LDAP *ld,
const char *dn,
const char *passwd
);

Functions in the C API

C API Reference 8-11

int ldap_simple_bind_s(
LDAP *ld,
const char *dn,
const char *passwd
);

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

■ int ldap_bind(LDAP *ld, const char *dn, const char *cred,
int method);

■ int ldap_bind_s(LDAP *ld, const char *dn, const char *cred,
int method);

■ int ldap_kerberos_bind(LDAP *ld, const char *dn);

■ int ldap_kerberos_bind_s(LDAP *ld, const char *dn);

Parameters
Table 8–6 lists and describes the parameters for authenticating to the directory.

Usage Notes
Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

The ldap_sasl_bind() function initiates an asynchronous bind operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_sasl_bind() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the bind.

The ldap_simple_bind() function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to ldap_
result(), described in, can be used to obtain the result of the bind. In case of error,

Table 8–6 Parameters for Authenticating to the Directory

Parameter Description

ld The session handle

dn The name of the entry to bind as

mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentication, or
a text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For ldap_simple_bind(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the request if the
ldap_sasl_bind() call succeeds

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated berval
structure is returned that should be disposed of by calling
ber_bvfree(). NULL should be passed to ignore this field.

Functions in the C API

8-12 Oracle Identity Management Application Developer’s Guide

ldap_simple_bind() will return -1, setting the session error parameters in the
LDAP structure appropriately.

The synchronous ldap_sasl_bind_s() and ldap_simple_bind_s() functions
both return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

Note that if an LDAPv2 server is contacted, no other operations over the connection
can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and
multistep SASL sequences can be accomplished through a sequence of calls to ldap_
sasl_bind() or ldap_sasl_bind_s().

SASL Authentication Using Oracle Extensions
The function ora_ldap_init_SASL() can be used for SASL based authentication. It
accepts these arguments:

■ DN of the entity to be authenticated.

■ SASL credential handle for the entity. (This handle can be managed using ora_
ldap_create_cred_hdl(), ora_ldap_set_cred_props() and ora_ldap_
free_cred_hdl() functions).

■ SASL mechanism to be used.

This function encapsulates the SASL handshake between the client and the directory
server for various standard SASL mechanisms thereby reducing the coding effort
involved in establishing a SASL-based connection to the directory server.

Supported SASL mechanisms:

■ DIGEST-MD5

The SASL API supports the authentication only mode of DIGEST-MD5. The other
two authentication modes addressing data privacy and data integrity are yet to be
supported.

While authenticating against Oracle Internet Directory, the DN of the user has to
be normalized before it is sent across to the server. This can be done either outside
the SASL API using the ora_ldap_normalize_dn() function before the DN is
passed on to the SASL API or with the SASL API by setting the ORA_LDAP_CRED_
SASL_NORM_AUTHDN option in SASL credentials handle using ora_ldap_set_
cred_handle().

■ EXTERNAL:

The SASL API and SASL implementation in Oracle Internet Directory use SSL
authentication as one of the external authentication mechanisms.

Using this mechanism requires that the SSL connection (mutual authentication
mode) be established to the directory server by using the ora_ldap_init_
SSL() function. The ora_ldap_init_SASL() function can then be invoked
with the mechanism argument as EXTERNAL. The directory server would then
authenticate the user based on the user credentials in SSL connection.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

C API Reference 8-13

ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl
Use these functions to create and manage SASL credential handles. The ora_ldap_
create_cred_hdl function should be used to create a SASL credential handle of
certain type based on the type of mechanism used for SASL authentication. The ora_
ldap_set_cred_props() function can be used to add relevant credentials to the
handle needed for SASL authentication. The ora_ldap_get_cred_props()
function can be used for retrieving the properties stored in the credential handle, and
the ora_ldap_free_cred_hdl() function should be used to destroy the handle
after its use.

Syntax
OraLdapHandle ora_ldap_create_cred_hdl
(
 OraLdapClientCtx * clientCtx,
 int credType
);

OraLdapHandle ora_ldap_set_cred_props
(
 OraLdapClientCtx * clientCtx,
 OraLdapHandle cred,
 int String[],
 void * inProperty
);
OraLdapHandle ora_ldap_get_cred_props
(
 OraLdapClientCtx * clientCtx,
 OraLdapHandle cred,
 int String[],
 void * outProperty
);

OraLdapHandle ora_ldap_free_cred_hdl
(
 OraLdapClientCtx * clientCtx,
 OraLdapHandle cred
);

Parameters

Table 8–7 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_
init_clientctx() and ora_ldap_free_clientctx()
functions.

credType Type of credential handle specific to SASL mechanism.

cred Credential handle containing SASL credentials needed for a
specific SASL mechanism for SASL authentication.

String[] Type of credential, which needs to be added to credential
handle.

inProperty One of the SASL Credentials to be stored in credential handle.

outProperty One of the SASL credentials stored in credential handle.

Functions in the C API

8-14 Oracle Identity Management Application Developer’s Guide

SASL Authentication
ora_ldap_init_SASL, the lone function in this section, performs SASL
authentication.

ora_ldap_init_SASL
ora_ldap_init_SASL performs authentication based on the mechanism specified as
one of its input arguments.

Syntax

int ora_ldap_init_SASL
(
OraLdapClientCtx * clientCtx,
LDAP*ld,
char* dn,
char* mechanism,
OraLdapHandle cred,
LDAPControl**serverctrls,
LDAPControl**clientctrls
);

Parameters

Working With Controls
LDAPv3 operations can be extended through the use of controls. Controls can be sent
to a server or returned to the client with any LDAP message. These controls are
referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of
client controls. These controls affect the behavior of the LDAP API only and are never
sent to a server. A common data structure is used to represent both types of controls:

typedef struct ldapcontrol
{
char *ldctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;
} LDAPControl;

Table 8–8 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_
init_clientctx() and ora_ldap_free_clientctx()
functions.

ld Ldap session handle.

dn User DN that requires authentication.

mechanism SASL mechanism.

cred Credentials needed for SASL authentication.

serverctrls List of LDAP server controls

clientctrls List of client controls

Functions in the C API

C API Reference 8-15

The fields in the ldapcontrol structure are described in Table 8–9.

Some LDAP API calls allocate an ldapcontrol structure or a NULL-terminated array
of ldapcontrol structures. The following routines can be used to dispose of a single
control or an array of controls:

void ldap_control_free(LDAPControl *ctrl);
void ldap_controls_free(LDAPControl **ctrls);

If the ctrl or ctrls parameter is NULL, these calls do nothing.

A set of controls that affect the entire session can be set using the ldap_set_
option() function described in "ldap_get_option and ldap_set_option" on page 8-6.
A list of controls can also be passed directly to some LDAP API calls such as ldap_
search_ext(), in which case any controls set for the session through the use of
ldap_set_option() are ignored. Control lists are represented as a NULL-terminated
array of pointers to ldapcontrol structures.

Server controls are defined by LDAPv3 protocol extension documents; for example, a
control has been proposed to support server-side sorting of search results.

One client control is defined in this document (described in the following section).
Other client controls may be defined in future revisions of this document or in
documents that extend this API.

Client-Controlled Referral Processing As described previously in "LDAP Session
Handle Options" on page 8-6, applications can enable and disable automatic chasing of
referrals on a session-wide basic by using the ldap_set_option() function with the
LDAP_OPT_REFERRALS option. It is also useful to govern automatic referral chasing
on per-request basis. A client control with an OID of 1.2.840.113556.1.4.616
exists to provide this functionality.

/* OID for referrals client control */
#define LDAP_CONTROL_REFERRALS "1.2.840.113556.1.4.616"

/* Flags for referrals client control value */
#define LDAP_CHASE_SUBORDINATE_REFERRALS 0x00000020U
#define LDAP_CHASE_EXTERNAL_REFERRALS 0x00000040U

To create a referrals client control, the ldctl_oid field of an LDAPControl structure
must be set to LDAP_CONTROL_REFERRALS ("1.2.840.113556.1.4.616") and
the ldctl_value field must be set to a four-octet value that contains a set of flags.

Table 8–9 Fields in ldapcontrol Structure

Field Description

ldctl_oid The control type, represented as a string.

ldctl_value The data associated with the control (if any). To specify a
zero-length value, set ldctl_value.bv_len to zero and
ldctl_value.bv_val to a zero-length string. To indicate
that no data is associated with the control, set ldctl_
value.bv_val to NULL.

ldctl_iscritical Indicates whether the control is critical of not. If this field is
nonzero, the operation will only be carried out if the control is
recognized by the server or the client. Note that the LDAP
unbind and abandon operations have no server response.
Clients should not mark server controls critical when used
with these two operations.

Functions in the C API

8-16 Oracle Identity Management Application Developer’s Guide

The ldctl_value.bv_len field must always be set to 4. The ldctl_value.bv_
val field must point to a four-octet integer flags value. This flags value can be set to
zero to disable automatic chasing of referrals and LDAPv3 references altogether.
Alternatively, the flags value can be set to the value LDAP_CHASE_SUBORDINATE_
REFERRALS (0x00000020U) to indicate that only LDAPv3 search continuation
references are to be automatically chased by the API implementation, to the value
LDAP_CHASE_EXTERNAL_REFERRALS (0x00000040U) to indicate that only
LDAPv3 referrals are to be automatically chased, or the logical OR of the two flag
values (0x00000060U) to indicate that both referrals and references are to be
automatically chased.

Closing the Session
Use the functions in this section to unbind from the directory, to close open
connections, and to dispose of the session handle.

ldap_unbind, ldap_unbind_ext, and ldap_unbind_s
ldap_unbind_ext(), ldap_unbind(), and ldap_unbind_s() all work
synchronously in the sense that they send an unbind request to the server, close all
open connections associated with the LDAP session handle, and dispose of all
resources associated with the session handle before returning. Note, however, that
there is no server response to an LDAP unbind operation. All three of the unbind
functions return LDAP_SUCCESS (or another LDAP error code if the request cannot be
sent to the LDAP server). After a call to one of the unbind functions, the session
handle ld is invalid and it is illegal to make any further LDAP API calls using ld.

The ldap_unbind() and ldap_unbind_s() functions behave identically. The
ldap_unbind_ext() function allows server and client controls to be included
explicitly, but note that since there is no server response to an unbind request there is
no way to receive a response to a server control sent with an unbind request.

Syntax
int ldap_unbind_ext(LDAP *ld, LDAPControl **serverctrls,
LDAPControl **clientctrls);
int ldap_unbind(LDAP *ld);
int ldap_unbind_s(LDAP *ld);

Parameters

Performing LDAP Operations
Use the functions in this section to search the LDAP directory and to return a
requested set of attributes for each entry matched.

Table 8–10 Parameters for Closing the Session

Parameter Description

ld The session handle

serverctrls List of LDAP server controls

clientctrls

clientctrls

List of client controls

Functions in the C API

C API Reference 8-17

ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
The ldap_search_ext() function initiates an asynchronous search operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_search_ext() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the results from the search. These results can be parsed using the result parsing
routines described in detail later.

Similar to ldap_search_ext(), the ldap_search() function initiates an
asynchronous search operation and returns the message id of the operation initiated.
As for ldap_search_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the bind. In case of error, ldap_search() will return -1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous ldap_search_ext_s(), ldap_search_s(), and ldap_search_
st() functions all return the result of the operation, either the constant LDAP_
SUCCESS if the operation was successful, or another LDAP error code if it was not.
Entries returned from the search, if any, are contained in the res parameter. This
parameter is opaque to the caller. Entries, attributes, values, and so on, can be
extracted by calling the parsing routines described in this section. The results
contained in res should be freed when no longer in use by calling ldap_msgfree(),
which is described later.

The ldap_search_ext() and ldap_search_ext_s() functions support LDAPv3
server controls, client controls, and allow varying size and time limits to be easily
specified for each search operation. The ldap_search_st() function is identical to
ldap_search_s() except that it takes an additional parameter specifying a local
timeout for the search. The local search timeout is used to limit the amount of time the
API implementation will wait for a search to complete. After the local search timeout
expires, the API implementation will send an abandon operation to stop the search
operation.

Syntax
int ldap_search_ext
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp
);

int ldap_search_ext_s
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

8-18 Oracle Identity Management Application Developer’s Guide

int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res
);

int ldap_search
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly
);

int ldap_search_s
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPMessage **res
);

int ldap_search_st
);

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res
);

Parameters
Table 8–11 lists and describes the parameters for search operations.

Table 8–11 Parameters for Search Operations

Parameter Description

ld The session handle.

base The DN of the entry at which to start the search.

scope One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_
ONELEVEL (0x01), or LDAP_SCOPE_SUBTREE (0x02),
indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
"(objectclass=*)" which matches all entries is to be used.
Note that if the caller of the API is using LDAPv2, only a
subset of the filter functionality can be successfully used.

Functions in the C API

C API Reference 8-19

attrs A NULL-terminated array of strings indicating which attributes
to return for each matching entry. Passing NULL for this
parameter causes all available user attributes to be retrieved.
The special constant string LDAP_NO_ATTRS ("1.1") may
be used as the only string in the array to indicate that no
attribute types are to be returned by the server. The special
constant string LDAP_ALL_USER_ATTRS ("*") can be used
in the attrs array along with the names of some operational
attributes to indicate that all user attributes plus the listed
operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

timeout For the ldap_search_st() function, this specifies the local
search timeout value (if it is NULL, the timeout is infinite). If a
zero timeout (where tv_sec and tv_usec are both zero) is
passed, API implementations should return LDAP_PARAM_
ERROR. For the ldap_search_ext() and ldap_search_
ext_s() functions, the timeout parameter specifies both the
local search timeout value and the operation time limit that is
sent to the server within the search request. Passing a NULL
value for timeout causes the global default timeout stored in
the LDAP session handle (set by using ldap_set_option()
with the LDAP_OPT_TIMELIMIT parameter) to be sent to the
server with the request but an infinite local search timeout to
be used. If a zero timeout (where tv_sec and tv_usec are
both zero) is passed in, API implementations should return
LDAP_PARAM_ERROR. If a zero value for tv_sec is used but
tv_usec is nonzero, an operation time limit of 1 should be
passed to the LDAP server as the operation time limit. For
other values of tv_sec, the tv_sec value itself should be
passed to the LDAP server.

sizelimit For the ldap_search_ext() and ldap_search_ext_s()
calls, this is a limit on the number of entries to return from the
search. A value of LDAP_NO_LIMIT (0) means no limit.

res For the synchronous calls, this is a result parameter which will
contain the results of the search upon completion of the call. If
no results are returned, *res is set to NULL.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

Table 8–11 (Cont.) Parameters for Search Operations

Parameter Description

Functions in the C API

8-20 Oracle Identity Management Application Developer’s Guide

Reading an Entry
LDAP does not support a read operation directly. Instead, this operation is emulated
by a search with base set to the DN of the entry to read, scope set to LDAP_SCOPE_
BASE, and filter set to "(objectclass=*)" or NULL. The attrs parameter contains
the list of attributes to return.

Listing the Children of an Entry
LDAP does not support a list operation directly. Instead, this operation is emulated by
a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_
ONELEVEL, and filter set to "(objectclass=*)" or NULL. The parameter attrs
contains the list of attributes to return for each child entry.

ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
Use these routines to compare an attribute value assertion against an LDAP entry.

The ldap_compare_ext() function initiates an asynchronous compare operation
and returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, ldap_compare_ext() places the
message id of the request in *msgidp. A subsequent call to ldap_result() can be
used to obtain the result of the compare.

Similar to ldap_compare_ext(), the ldap_compare() function initiates an
asynchronous compare operation and returns the message id of the operation
initiated. As for ldap_compare_ext(), a subsequent call to ldap_result() can be
used to obtain the result of the bind. In case of error, ldap_compare() will return
-1, setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_compare_ext_s() and ldap_compare_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

msgidp This result parameter will be set to the message id of the
request if the ldap_search_ext() call succeeds.There are
three options in the session handle ld which potentially affect
how the search is performed. They are:

■ LDAP_OPT_SIZELIMIT—A limit on the number of
entries to return from the search. A value of LDAP_NO_
LIMIT (0) means no limit. Note that the value from the
session handle is ignored when using the ldap_search_
ext() or ldap_search_ext_s() functions.

■ LDAP_OPT_TIMELIMIT—A limit on the number of
seconds to spend on the search. A value of LDAP_NO_
LIMIT (0) means no limit. Note that the value from the
session handle is ignored when using the ldap_search_
ext() or ldap_search_ext_s() functions.

■ LDAP_OPT_DEREF—One of LDAP_DEREF_NEVER
(0x00), LDAP_DEREF_SEARCHING (0x01), LDAP_
DEREF_FINDING (0x02), or LDAP_DEREF_ALWAYS
(0x03), specifying how aliases are handled during the
search. The LDAP_DEREF_SEARCHING value means
aliases are dereferenced during the search but not when
locating the base object of the search. The LDAP_DEREF_
FINDING value means aliases are dereferenced when
locating the base object but not during the search.

Table 8–11 (Cont.) Parameters for Search Operations

Parameter Description

Functions in the C API

C API Reference 8-21

The ldap_compare_ext() and ldap_compare_ext_s() functions support
LDAPv3 server controls and client controls.

Syntax
int ldap_compare_ext
(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_compare_ext_s
(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_compare
(
LDAP *ld,
const char *dn,
const char *attr,
const char *value
);
int ldap_compare_s
(
LDAP *ld,
const char *dn,
const char *attr,
const char *value
);

Parameters
Table 8–12 lists and describes the parameters for compare operations.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 8–12 Parameters for Compare Operations

Parameter Description

ld The session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

bvalue The attribute value to compare against those found in the
given entry. This parameter is used in the extended routines
and is a pointer to a struct berval so it is possible to
compare binary values.

Functions in the C API

8-22 Oracle Identity Management Application Developer’s Guide

ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
Use these routines to modify an existing LDAP entry.

The ldap_modify_ext() function initiates an asynchronous modify operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_modify_ext() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the modify.

Similar to ldap_modify_ext(), the ldap_modify() function initiates an
asynchronous modify operation and returns the message id of the operation initiated.
As for ldap_modify_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the modify. In case of error, ldap_modify() will return -1,
setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_modify_ext_s() and ldap_modify_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The ldap_modify_ext() and ldap_modify_ext_s() functions support LDAPv3
server controls and client controls.

Syntax
typedef struct ldapmod
{
int mod_op;
char *mod_type;
union mod_vals_u
 {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext
(
LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,

value A string attribute value to compare against, used by the ldap_
compare() and ldap_compare_s() functions. Use ldap_
compare_ext() or ldap_compare_ext_s() if you need to
compare binary values.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_compare_ext() call succeeds.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Table 8–12 (Cont.) Parameters for Compare Operations

Parameter Description

Functions in the C API

C API Reference 8-23

LDAPControl **clientctrls,
int *msgidp
);

int ldap_modify_ext_s
(
LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_modify
(
LDAP *ld,
const char *dn,
LDAPMod **mods
);

int ldap_modify_s
(
LDAP *ld,
const char *dn,
LDAPMod **mods
);

Parameters
Table 8–13 lists and describes the parameters for modify operations.

Table 8–14 lists and describes the fields in the LDAPMod structure.

Table 8–13 Parameters for Modify Operations

Parameter Description

ld The session handle

dn The name of the entry to modify

mods A NULL-terminated array of modifications to make to the entry

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the
request if the ldap_modify_ext() call succeeds

Table 8–14 Fields in LDAPMod Structure

Field Description

mod_op The modification operation to perform. It must be one of
LDAP_MOD_ADD (0x00), LDAP_MOD_DELETE (0x01), or
LDAP_MOD_REPLACE (0x02). This field also indicates the
type of values included in the mod_vals union. It is logically
ORed with LDAP_MOD_BVALUES (0x80) to select the
mod_bvalues form. Otherwise, the mod_values form is
used.

mod_type The type of the attribute to modify.

Functions in the C API

8-24 Oracle Identity Management Application Developer’s Guide

Usage Notes
For LDAP_MOD_ADD modifications, the given values are added to the entry, creating
the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_vals field can be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after
the modification, having been created if necessary, or removed if the mod_vals field is
NULL. All modifications are performed in the order in which they are listed.

ldap_rename and ldap_rename_s
Use these routines to change the name of an entry.

The ldap_rename() function initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_rename() places the DN message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the rename.

The synchronous ldap_rename_s() returns the result of the operation, either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error code
if it was not.

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server
controls and client controls.

Syntax
int ldap_rename
(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_rename_s
(
LDAP *ld,
const char *dn,

mod_vals The values (if any) to add, delete, or replace. Only one of the
mod_values or mod_bvalues variants can be used, selected
by ORing the mod_op field with the constant LDAP_MOD_
BVALUES. mod_values is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a
NULL-terminated array of berval structures that can be used
to pass binary values such as images.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Table 8–14 (Cont.) Fields in LDAPMod Structure

Field Description

Functions in the C API

C API Reference 8-25

const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

int ldap_modrdn
(
LDAP *ld,
const char *dn,
const char *newrdn
);

int ldap_modrdn_s
(
LDAP *ld,
const char *dn,
const char *newrdn
);

int ldap_modrdn2
(
LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn
);

int ldap_modrdn2_s
(
LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn
);

Parameters
Table 8–15 lists and describes the parameters for rename operations.

Table 8–15 Parameters for Rename Operations

Parameter Description

ld The session handle.

dn The name of the entry whose DN is to be changed.

newrdn The new RDN to give the entry.

newparent The new parent, or superior entry. If this parameter is NULL,
only the RDN of the entry is changed. The root DN should be
specified by passing a zero length string, "". The newparent
parameter should always be NULL when using version 2 of the
LDAP protocol; otherwise the server's behavior is undefined.

Functions in the C API

8-26 Oracle Identity Management Application Developer’s Guide

ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
Use these functions to add entries to the LDAP directory.

The ldap_add_ext() function initiates an asynchronous add operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, ldap_add_ext() places the message id of the request
in *msgidp. A subsequent call to ldap_result() can be used to obtain the result of
the add.

Similar to ldap_add_ext(), the ldap_add() function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for ldap_
add_ext(), a subsequent call to ldap_result() can be used to obtain the result of
the add. In case of error, ldap_add() will return -1, setting the session error
parameters in the LDAP structure appropriately.

The synchronous ldap_add_ext_s() and ldap_add_s() functions both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

The ldap_add_ext() and ldap_add_ext_s() functions support LDAPv3 server
controls and client controls.

Syntax
int ldap_add_ext
(
LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_add_ext_s
(
LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

deleteoldrdn This parameter only has meaning on the rename routines if
newrdn is different than the old RDN. It is a boolean value, if
nonzero indicating that the old RDN value is to be removed, if
zero indicating that the old RDN value is to be retained as
non-distinguished values of the entry.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_rename() call succeeds.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 8–15 (Cont.) Parameters for Rename Operations

Parameter Description

Functions in the C API

C API Reference 8-27

int ldap_add
(
LDAP *ld,
const char *dn,
LDAPMod **attrs
);

int ldap_add_s
(
LDAP *ld,
const char *dn,
LDAPMod **attrs
);

Parameters
Table 8–16 lists and describes the parameters for add operations.

Usage Notes
Note that the parent of the entry being added must already exist or the parent must be
empty—that is, equal to the root DN—for an add to succeed.

ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
Use these functions to delete a leaf entry from the LDAP directory.

The ldap_delete_ext() function initiates an asynchronous delete operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_delete_ext() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the delete.

Similar to ldap_delete_ext(), the ldap_delete() function initiates an
asynchronous delete operation and returns the message id of the operation initiated.
As for ldap_delete_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the delete. In case of error, ldap_delete() will return -1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous ldap_delete_ext_s() and ldap_delete_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

Table 8–16 Parameters for Add Operations

Parameter Description

ld The session handle.

dn The name of the entry to add.

attrs The entry attributes, specified using the LDAPMod structure
defined for ldap_modify(). The mod_type and mod_vals
fields must be filled in. The mod_op field is ignored unless
ORed with the constant LDAP_MOD_BVALUES, used to select
the mod_bvalues case of the mod_vals union.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_add_ext() call succeeds.

Functions in the C API

8-28 Oracle Identity Management Application Developer’s Guide

The ldap_delete_ext() and ldap_delete_ext_s() functions support LDAPv3
server controls and client controls.

Syntax
int ldap_delete_ext
(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_delete_ext_s
(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_delete

(
LDAP *ld,
const char *dn
);

int ldap_delete_s
(
LDAP *ld,
const char *dn
);

Parameters
Table 8–17 lists and describes the parameters for delete operations.

Usage Notes
Note that the entry to delete must be a leaf entry—that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 8–17 Parameters for Delete Operations

Parameter Description

ld The session handle.

dn The name of the entry to delete.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the
request if the ldap_delete_ext() call succeeds.

Functions in the C API

C API Reference 8-29

ldap_extended_operation and ldap_extended_operation_s
These routines enable extended LDAP operations to be passed to the server, providing
a general protocol extensibility mechanism.

The ldap_extended_operation()function initiates an asynchronous extended
operation and returns the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. If successful, ldap_extended_
operation() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the extended operation which can
be passed to ldap_parse_extended_result() to obtain the OID and data
contained in the response.

The synchronous ldap_extended_operation_s() function returns the result of
the operation, either the constant LDAP_SUCCESS if the operation was successful, or
another LDAP error code if it was not. The retoid and retdata parameters are
filled in with the OID and data from the response. If no OID or data was returned,
these parameters are set to NULL.

The ldap_extended_operation() and ldap_extended_operation_s()
functions both support LDAPv3 server controls and client controls.

Syntax
int ldap_extended_operation
(
LDAP *ld,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_extended_operation_s
(
LDAP *ld,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap
);

Parameters
Table 8–18 lists and describes the parameters for extended operations.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Table 8–18 Parameters for Extended Operations

Parameter Description

ld The session handle

requestoid The dotted-OID text string naming the request

requestdata The arbitrary data needed by the operation (if NULL, no data is
sent to the server)

Functions in the C API

8-30 Oracle Identity Management Application Developer’s Guide

Abandoning an Operation
Use the functions in this section to abandon an operation in progress:

ldap_abandon_ext and ldap_abandon
ldap_abandon_ext() abandons the operation with message id msgid and returns
the constant LDAP_SUCCESS if the abandon was successful or another LDAP error
code if not.

ldap_abandon() is identical to ldap_abandon_ext() except that it does not
accept client or server controls and it returns zero if the abandon was successful, -1
otherwise.

After a successful call to ldap_abandon() or ldap_abandon_ext(), results with
the given message id are never returned from a subsequent call to ldap_result().
There is no server response to LDAP abandon operations.

Syntax
int ldap_abandon_ext
(
LDAP *ld,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_abandon
(
LDAP *ld,
int msgid
);

Parameters
Table 8–19 lists and describes the parameters for abandoning an operation.

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the
request if the ldap_extended_operation() call succeeds.

retoidp Pointer to a character string that will be set to an allocated,
dotted-OID text string returned by the server. This string
should be disposed of using the ldap_memfree() function. If
no OID was returned, *retoidp is set to NULL.

retdatap Pointer to a berval structure pointer that will be set an
allocated copy of the data returned by the server. This struct
berval should be disposed of using ber_bvfree(). If no
data is returned, *retdatap is set to NULL.

Table 8–19 Parameters for Abandoning an Operation

Parameter Description

ld The session handle.

Table 8–18 (Cont.) Parameters for Extended Operations

Parameter Description

Functions in the C API

C API Reference 8-31

Obtaining Results and Peeking Inside LDAP Messages
Use the functions in this section to return the result of an operation initiated
asynchronously. They identify messages by type and by ID.

ldap_result, ldap_msgtype, and ldap_msgid
ldap_result() is used to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, ldap_result() can actually
return a list or "chain" of result messages. The ldap_result() function only returns
messages for a single request, so for all LDAP operations other than search only one
result message is expected; that is, the only time the "result chain" can contain more
than one message is if results from a search operation are returned.

Once a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain of messages
returned by calling ldap_result() or by calling a synchronous search routine will
never be affected by subsequent LDAP API calls (except for ldap_msgfree() which
is used to dispose of a chain of messages).

ldap_msgfree() frees the result messages (possibly an entire chain of messages)
obtained from a previous call to ldap_result() or from a call to a synchronous
search routine.

ldap_msgtype() returns the type of an LDAP message. ldap_msgid() returns the
message ID of an LDAP message.

Syntax
int ldap_result
(
LDAP *ld,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res
);
int ldap_msgfree(LDAPMessage *res);
int ldap_msgtype(LDAPMessage *res);
int ldap_msgid(LDAPMessage *res);

Parameters
Table 8–20 on page 8-32 lists and describes the parameters for obtaining results and
peeling inside LDAP messages.

msgid The message id of the request to be abandoned.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Table 8–19 (Cont.) Parameters for Abandoning an Operation

Parameter Description

Functions in the C API

8-32 Oracle Identity Management Application Developer’s Guide

Usage Notes
Upon successful completion, ldap_result() returns the type of the first result
returned in the res parameter. This will be one of the following constants.

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)

LDAP_RES_SEARCH_REFERENCE (0x73)-- new in LDAPv3

LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES_DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_EXTENDED (0x78) -- new in LDAPv3

ldap_result() returns 0 if the timeout expired and -1 if an error occurs, in which
case the error parameters of the LDAP session handle will be set accordingly.

ldap_msgfree() frees each message in the result chain pointed to by res and
returns the type of the last message in the chain. If res is NULL, then nothing is done
and the value zero is returned.

ldap_msgtype() returns the type of the LDAP message it is passed as a parameter.
The type will be one of the types listed previously, or -1 on error.

ldap_msgid() returns the message ID associated with the LDAP message passed as
a parameter, or -1 on error.

Table 8–20 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter Description

ld The session handle.

msgid The message id of the operation whose results are to be
returned, the constant LDAP_RES_UNSOLICITED (0) if an
unsolicited result is desired, or the constant LDAP_RES_ANY
(-1) if any result is desired.

all Specifies how many messages will be retrieved in a single call
to ldap_result(). This parameter only has meaning for
search results. Pass the constant LDAP_MSG_ONE (0x00) to
retrieve one message at a time. Pass LDAP_MSG_ALL (0x01)
to request that all results of a search be received before
returning all results in a single chain. Pass LDAP_MSG_
RECEIVED (0x02) to indicate that all messages retrieved so
far are to be returned in the result chain.

timeout A timeout specifying how long to wait for results to be
returned. A NULL value causes ldap_result() to block until
results are available. A timeout value of zero seconds specifies
a polling behavior.

res For ldap_result(), a result parameter that will contain the
result of the operation. If no results are returned, *res is set to
NULL. For ldap_msgfree(), the result chain to be freed,
obtained from a previous call to ldap_result(), ldap_
search_s(), or ldap_search_st(). If res is NULL,
nothing is done and ldap_msgfree() returns zero.

Functions in the C API

C API Reference 8-33

Handling Errors and Parsing Results
Use the functions in this section to extract information from results and to handle
errors returned by other LDAP API routines.

ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and
ldap_err2string
 Note that ldap_parse_sasl_bind_result() and ldap_parse_extended_
result() must typically be used in addition to ldap_parse_result() to retrieve
all the result information from SASL Bind and Extended Operations respectively.

The ldap_parse_result(), ldap_parse_sasl_bind_result(), and ldap_
parse_extended_result() functions all skip over messages of type LDAP_RES_
SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when looking for a result
message to parse. They return the constant LDAP_SUCCESS if the result was
successfully parsed and another LDAP error code if not. Note that the LDAP error
code that indicates the outcome of the operation performed by the server is placed in
the errcodep ldap_parse_result() parameter. If a chain of messages that contains
more than one result message is passed to these routines they always operate on the
first result in the chain.

ldap_err2string() is used to convert a numeric LDAP error code, as returned by
ldap_parse_result(), ldap_parse_sasl_bind_result(), ldap_parse_
extended_result() or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It returns a
pointer to static data.

Syntax
int ldap_parse_result
(
LDAP *ld,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit
);

int ldap_parse_sasl_bind_result
(
LDAP *ld,
LDAPMessage *res,
struct berval **servercredp,
int freeit
);

int ldap_parse_extended_result
(
LDAP *ld,
LDAPMessage *res,
char **retoidp,
struct berval **retdatap,
int freeit
);
#define LDAP_NOTICE_OF_DISCONNECTION "1.3.6.1.4.1.1466.20036"

Functions in the C API

8-34 Oracle Identity Management Application Developer’s Guide

char *ldap_err2string(int err);

The routines immediately following are deprecated. To learn more about them, see
RFC 1823.

int ldap_result2error
(
LDAP *ld,
LDAPMessage *res,
int freeit
);
void ldap_perror(LDAP *ld, const char *msg);

Parameters
Table 8–21 lists and describes parameters for handling errors and parsing results.

Table 8–21 Parameters for Handling Errors and Parsing Results

Parameter Description

ld The session handle.

res The result of an LDAP operation as returned by ldap_
result() or one of the synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error
code field from the LDAPMessage message. This is the
indication from the server of the outcome of the operation.
NULL should be passed to ignore this field.

matcheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this result
parameter will be filled in with a DN indicating how much of
the name in the request was recognized. NULL should be
passed to ignore this field. The matched DN string should be
freed by calling ldap_memfree() which is described later in
this document.

errmsgp This result parameter will be filled in with the contents of the
error message field from the LDAPMessage message. The error
message string should be freed by calling ldap_memfree()
which is described later in this document. NULL should be
passed to ignore this field.

referralsp This result parameter will be filled in with the contents of the
referrals field from the LDAPMessage message, indicating zero
or more alternate LDAP servers where the request is to be
retried. The referrals array should be freed by calling ldap_
value_free() which is described later in this document.
NULL should be passed to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage message. The control
array should be freed by calling ldap_controls_free()
which was described earlier.

freeit A Boolean that determines whether the res parameter is
disposed of or not. Pass any nonzero value to have these
routines free res after extracting the requested information.
This is provided as a convenience; you can also use ldap_
msgfree() to free the result later. If freeit is nonzero, the
entire chain of messages represented by res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in
with the credentials passed back by the server for mutual
authentication, if given. An allocated berval structure is
returned that should be disposed of by calling ber_
bvfree(). NULL should be passed to ignore this field.

Functions in the C API

C API Reference 8-35

Usage Notes
See RFC 1823 for a description of parameters peculiar to the deprecated routines.

Stepping Through a List of Results
Use the routines in this section to step through the list of messages in a result chain
returned by ldap_result().

ldap_first_message and ldap_next_message
The result chain for search operations can include referral messages, entry messages,
and result messages.

ldap_count_messages() is used to count the number of messages returned. The
ldap_msgtype() function, described previously, can be used to distinguish between
the different message types.

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *msg);
int ldap_count_messages(LDAP *ld, LDAPMessage *res);

Parameters
Table 8–22 lists and describes the parameters for stepping through a list of results.

Usage Notes
ldap_first_message() and ldap_next_message() will return NULL when no
more messages exist in the result set to be returned. NULL is also returned if an error

retoidp For extended results, this result parameter will be filled in with
the dotted-OID text representation of the name of the extended
operation response. This string should be disposed of by
calling ldap_memfree(). NULL should be passed to ignore
this field. The LDAP_NOTICE_OF_DISCONNECTION macro is
defined as a convenience for clients that wish to check an OID
to see if it matches the one used for the unsolicited Notice of
Disconnection (defined in RFC 2251[2] section 4.4.1).

retdatap For extended results, this result parameter will be filled in with
a pointer to a struct berval containing the data in the
extended operation response. It should be disposed of by
calling ber_bvfree(). NULL should be passed to ignore this
field.

err For ldap_err2string(), an LDAP error code, as returned
by ldap_parse_result() or another LDAP API call.

Table 8–22 Parameters for Stepping Through a List of Results

Parameter Description

ld The session handle.

res The result chain, as obtained by a call to one of the
synchronous search routines or ldap_result().

msg The message returned by a previous call to ldap_first_
message() or ldap_next_message().

Table 8–21 (Cont.) Parameters for Handling Errors and Parsing Results

Parameter Description

Functions in the C API

8-36 Oracle Identity Management Application Developer’s Guide

occurs while stepping through the entries, in which case the error parameters in the
session handle ld will be set to indicate the error.

If successful, ldap_count_messages() returns the number of messages contained
in a chain of results; if an error occurs such as the res parameter being invalid, -1 is
returned. The ldap_count_messages() call can also be used to count the number
of messages that remain in a chain if called with a message, entry, or reference
returned by ldap_first_message(), ldap_next_message(), ldap_first_
entry(), ldap_next_entry(), ldap_first_reference(), ldap_next_
reference().

Parsing Search Results
Use the functions in this section to parse the entries and references returned by ldap_
search functions. These results are returned in an opaque structure that may be
accessed by calling the routines described in this section. Routines are provided to step
through the entries and references returned, step through the attributes of an entry,
retrieve the name of an entry, and retrieve the values associated with a given attribute
in an entry.

ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_
count_entries, and ldap_count_references
The ldap_first_entry() and ldap_next_entry() routines are used to step
through and retrieve the list of entries from a search result chain. The ldap_first_
reference() and ldap_next_reference() routines are used to step through
and retrieve the list of continuation references from a search result chain. ldap_
count_entries() is used to count the number of entries returned. ldap_count_
references() is used to count the number of references returned.

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);
LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *ref);
int ldap_count_entries(LDAP *ld, LDAPMessage *res);
int ldap_count_references(LDAP *ld, LDAPMessage *res);

Parameters
Table 8–23 lists and describes the parameters or retrieving entries and continuation
references from a search result chain, and for counting entries returned.

Usage Notes
ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), and
ldap_next_reference() all return NULL when no more entries or references exist

Table 8–23 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description

ld The session handle.

res The search result, as obtained by a call to one of the synchronous search
routines or ldap_result().

entry The entry returned by a previous call to ldap_first_entry() or
ldap_next_entry().

ref The reference returned by a previous call to ldap_first_reference()
or ldap_next_reference().

Functions in the C API

C API Reference 8-37

in the result set to be returned. NULL is also returned if an error occurs while stepping
through the entries or references, in which case the error parameters in the session
handle ld will be set to indicate the error.

ldap_count_entries() returns the number of entries contained in a chain of
entries; if an error occurs such as the res parameter being invalid, -1 is returned. The
ldap_count_entries() call can also be used to count the number of entries that
remain in a chain if called with a message, entry or reference returned by ldap_
first_message(), ldap_next_message(), ldap_first_entry(), ldap_
next_entry(), ldap_first_reference(), ldap_next_reference().

ldap_count_references() returns the number of references contained in a chain
of search results; if an error occurs such as the res parameter being invalid, -1 is
returned. The ldap_count_references() call can also be used to count the
number of references that remain in a chain.

ldap_first_attribute and ldap_next_attribute
Use the functions in this section to step through the list of attribute types returned
with an entry.

Syntax
char *ldap_first_attribute
(
LDAP *ld,
LDAPMessage *entry,
BerElement **ptr
);

char *ldap_next_attribute
(
LDAP *ld,
LDAPMessage *entry,
BerElement *ptr
);
void ldap_memfree(char *mem);

Parameters
Table 8–24 lists and describes the parameters for stepping through attribute types
returned with an entry.

Table 8–24 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

ld The session handle.

entry The entry whose attributes are to be stepped through, as
returned by ldap_first_entry() or ldap_next_
entry().

ptr In ldap_first_attribute(), the address of a pointer used
internally to keep track of the current position in the entry. In
ldap_next_attribute(), the pointer returned by a
previous call to ldap_first_attribute(). The
BerElement type itself is an opaque structure.

mem A pointer to memory allocated by the LDAP library, such as
the attribute type names returned by ldap_first_
attribute() and ldap_next_attribute, or the DN
returned by ldap_get_dn(). If mem is NULL, the ldap_
memfree() call does nothing.

Functions in the C API

8-38 Oracle Identity Management Application Developer’s Guide

Usage Notes
ldap_first_attribute() and ldap_next_attribute() returns NULL when
the end of the attributes is reached, or if there is an error. In the latter case, the error
parameters in the session handle ld are set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute
name. This should be freed when no longer in use by calling ldap_memfree().

ldap_first_attribute() will allocate and return in ptr a pointer to a
BerElement used to keep track of the current position. This pointer may be passed in
subsequent calls to ldap_next_attribute() to step through the entry's attributes.
After a set of calls to ldap_first_attribute() and ldap_next_attribute(), if
ptr is non-null, it should be freed by calling ber_free(ptr, 0). Note that it is very
important to pass the second parameter as 0 (zero) in this call, since the buffer
associated with the BerElement does not point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to ldap_get_
values() and friends to retrieve the associated values.

ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len,
ldap_value_free, and ldap_value_free_len
ldap_get_values() and ldap_get_values_len() are used to retrieve the
values of a given attribute from an entry. ldap_count_values() and ldap_
count_values_len() are used to count the returned values.

ldap_value_free() and ldap_value_free_len() are used to free the values.

Syntax
char **ldap_get_values
(
LDAP *ld,
LDAPMessage *entry,
const char *attr
);

struct berval **ldap_get_values_len
(
LDAP *ld,
LDAPMessage *entry,
const char *attr
);

int ldap_count_values(char **vals);
int ldap_count_values_len(struct berval **vals);
void ldap_value_free(char **vals);
void ldap_value_free_len(struct berval **vals);

Parameters
Table 8–25 lists and describes the parameters for retrieving and counting attribute
values.

Table 8–25 Parameters for Retrieving and Counting Attribute Values

Parameter Description

ld The session handle.

entry The entry from which to retrieve values, as returned by ldap_
first_entry() or ldap_next_entry().

Functions in the C API

C API Reference 8-39

Usage Notes
Two forms of the various calls are provided. The first form is only suitable for use with
non-binary character string data. The second _len form is used with any kind of data.

ldap_get_values() and ldap_get_values_len() return NULL if no values are
found for attr or if an error occurs.

ldap_count_values() and ldap_count_values_len() return -1 if an error
occurs such as the vals parameter being invalid.

If a NULL vals parameter is passed to ldap_value_free() or ldap_value_free_
len(), nothing is done.

Note that the values returned are dynamically allocated and should be freed by calling
either ldap_value_free() or ldap_value_free_len() when no longer in use.

ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
ldap_get_dn() is used to retrieve the name of an entry. ldap_explode_dn() and
ldap_explode_rdn() are used to break up a name into its component parts. ldap_
dn2ufn() is used to convert the name into a more user friendly format.

Syntax
char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);
char **ldap_explode_dn(const char *dn, int notypes);
char **ldap_explode_rdn(const char *rdn, int notypes);
char *ldap_dn2ufn(const char *dn);

Parameters
Table 8–26 lists and describes the parameters for retrieving, exploding, and converting
entry names.

attr The attribute whose values are to be retrieved, as returned by
ldap_first_attribute() or ldap_next_attribute(),
or a caller-supplied string (for example, "mail").

vals The values returned by a previous call to ldap_get_
values() or ldap_get_values_len().

Table 8–26 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description

ld The session handle.

entry The entry whose name is to be retrieved, as returned by ldap_
first_entry() or ldap_next_entry().

dn The DN to explode, such as returned by ldap_get_dn().

rdn The RDN to explode, such as returned in the components of
the array returned by ldap_explode_dn().

notypes A Boolean parameter, if nonzero indicating that the DN or
RDN components are to have their type information stripped
off: cn=Babs would become Babs.

Table 8–25 (Cont.) Parameters for Retrieving and Counting Attribute Values

Parameter Description

Functions in the C API

8-40 Oracle Identity Management Application Developer’s Guide

Usage Notes
ldap_get_dn() returns NULL if a DN parsing error occurs. The function sets error
parameters in the session handle ld to indicate the error. It returns a pointer to newly
allocated space that the caller should free by calling ldap_memfree() when it is no
longer in use.

ldap_explode_dn() returns a NULL-terminated char * array containing the RDN
components of the DN supplied, with or without types as indicated by the notypes
parameter. The components are returned in the order they appear in the DN. The array
returned should be freed when it is no longer in use by calling ldap_value_free().

ldap_explode_rdn() returns a NULL-terminated char * array containing the
components of the RDN supplied, with or without types as indicated by the notypes
parameter. The components are returned in the order they appear in the rdn. The array
returned should be freed when it is no longer in use by calling ldap_value_free().

ldap_dn2ufn() converts the DN into a user friendly format. The UFN returned is
newly allocated space that should be freed by a call to ldap_memfree() when no
longer in use.

ldap_get_entry_controls
ldap_get_entry_controls() is used to extract LDAP controls from an entry.

Syntax
int ldap_get_entry_controls
(
LDAP *ld,
LDAPMessage *entry,
LDAPControl ***serverctrlsp
);

Parameters
Table 8–27 lists and describes the parameters for extracting LDAP control from an
entry.

Usage Notes
ldap_get_entry_controls() returns an LDAP error code that indicates whether
the reference could be successfully parsed (LDAP_SUCCESS if all goes well).

ldap_parse_reference
Use ldap_parse_reference() to extract referrals and controls from a
SearchResultReference message.

Table 8–27 Parameters for Extracting LDAP Controls from an Entry

Parameters Description

ld The session handle.

entry The entry to extract controls from, as returned by ldap_
first_entry() or ldap_next_entry().

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of entry. The control array should be freed
by calling ldap_controls_free(). If serverctrlsp is
NULL, no controls are returned.

Sample C API Usage

C API Reference 8-41

Syntax
int ldap_parse_reference
(
LDAP *ld,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit
);

Parameters
Table 8–28 lists and describes parameters for extracting referrals and controls from a
SearchResultReference message.

Usage Notes
ldap_parse_reference() returns an LDAP error code that indicates whether the
reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Sample C API Usage
The following examples show how to use the C API both with and without SSL and
for SASL authentication. More complete examples are given in RFC 1823. The sample
code for the command-line tool to perform an LDAP search also demonstrates use of
the API in both the SSL and the non-SSL mode.

This section contains these topics:

■ C API Usage with SSL

■ C API Usage Without SSL

■ C API Usage for SASL-Based DIGEST-MD5 Authentication

Table 8–28 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description

ld The session handle.

ref The reference to parse, as returned by ldap_result(),
ldap_first_reference(), or ldap_next_reference().

referralsp This result parameter will be filled in with an allocated array of
character strings. The elements of the array are the referrals
(typically LDAP URLs) contained in ref. The array should be
freed when no longer in used by calling ldap_value_
free(). If referralsp is NULL, the referral URLs are not
returned.

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of ref. The control array shouldbe freed
by calling ldap_controls_free(). If serverctrlsp is
NULL, no controls are returned.

freeit A Boolean that determines whether the ref parameter is
disposed of or not. Pass any nonzero value to have this routine
free ref after extracting the requested information. This is
provided as a convenience. You can also use ldap_
msgfree() to free the result later.

Sample C API Usage

8-42 Oracle Identity Management Application Developer’s Guide

C API Usage with SSL
#include <stdio.h>
#include <ldap.h>

main()
{
LDAP *ld;
int ret = 0;
….
/* open a connection */
if ((ld = ldap_open("MyHost", 636)) == NULL)
 exit(1);

/* SSL initialization */
ret = ldap_init_SSL(&ld->ld_sb, "file:/sslwallet", "welcome",
 GSLC_SSL_ONEWAY_AUTH);
if(ret != 0)
{
printf(" %s \n", ldap_err2string(ret));
exit(1);
}

/* authenticate as nobody */
if (ldap_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_bind_s");
 exit(1);
}

.

.

.
}

Because the user is making the ldap_init_SSL call, the client/server
communication in the previous example is secured by using SSL.

C API Usage Without SSL
#include <stdio.h>
#include <ldap.h>

main()
{
LDAP *ld;
int ret = 0;
.
.
.
/* open a connection */
if ((ld = ldap_open("MyHost", LDAP_PORT
)) == NULL)
 exit(1);

/* authenticate as nobody */
if (ldap_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_bind_s");
 exit(1);
}

Sample C API Usage

C API Reference 8-43

.

.

.
}

In the previous example, the user is not making the ldap_init_SSL call, and the
client-to-server communication is therefore not secure.

C API Usage for SASL-Based DIGEST-MD5 Authentication
This sample program illustrates the usage of LDAP SASL C-API for SASL-based
DIGEST-MD5 authentication to a directory server.

/*
 EXPORT FUNCTION(S)
 NONE

 INTERNAL FUNCTION(S)
 NONE

 STATIC FUNCTION(S)
 NONE

 NOTES
 Usage:
 saslbind -h ldap_host -p ldap_port -D authentication_identity_dn \
 -w <password >
 options
 -h LDAP host
 -p LDAP port
 -D DN of the identity for authentication
 -p Password

 Default SASL authentication parameters used by the demo program
 SASL Security Property : Currenty only "auth" security property
 is supported by the C-API. This demo
 program uses this security property.
 SASL Mechanism : Supported mechanisms by OID
 "DIGEST-MD5" - This demo program
 illustrates it's usage.
 "EXTERNAL" - SSL authentication is used.
 (This demo program does
 not illustrate it's usage.)
 Authorization identity : This demo program does not use any
 authorization identity.

 MODIFIED (MM/DD/YY)
 ****** 06/12/03 - Creation

*/

/*---
 PRIVATE TYPES AND CONSTANTS
 ---*/

/*---
 STATIC FUNCTION DECLARATIONS
 ---*/

#include <stdio.h>

Sample C API Usage

8-44 Oracle Identity Management Application Developer’s Guide

#include <stdlib.h>
#include <ldap.h>

static int ldap_version = LDAP_VERSION3;

main (int argc, char **argv)
{
 LDAP* ld;
 extern char* optarg;
 char* ldap_host = NULL;
 char* ldap_bind_dn = NULL;
 char* ldap_bind_pw = NULL;
 int authmethod = 0;
 char ldap_local_host[256] = "localhost";
 int ldap_port = 389;
 char* authcid = (char *)NULL;
 char* mech = "DIGEST-MD5"; /* SASL mechanism */
 char* authzid = (char *)NULL;
 char* sasl_secprops = "auth";
 char* realm = (char *)NULL;
 int status = LDAP_SUCCESS;
 OraLdapHandle sasl_cred = (OraLdapHandle)NULL;
 OraLdapClientCtx *cctx = (OraLdapClientCtx *)NULL;
 int i = 0;

 while ((i = getopt(argc, argv,
 "D:h:p:w:E:P:U:V:W:O:R:X:Y:Z"
)) != EOF) {
switch(i) {

case 'h':/* ldap host */
 ldap_host = (char *)strdup(optarg);
 break;
case 'D':/* bind DN */
 authcid = (char *)strdup(optarg);
 break;

case 'p':/* ldap port */
 ldap_port = atoi(optarg);
 break;
case 'w':/* Password */
 ldap_bind_pw = (char *)strdup(optarg);
 break;

 default:
 printf("Invalid Arguments passed\n");
}
 }

 /* Get the connection to the LDAP server */
 if (ldap_host == NULL)
 ldap_host = ldap_local_host;

 if ((ld = ldap_open (ldap_host, ldap_port)) == NULL)
 {
 ldap_perror (ld, "ldap_init");
 exit (1);

Required Header Files and Libraries for the C API

C API Reference 8-45

 }

 /* Create the client context needed by LDAP C-API Oracle Extension functions*/
 status = ora_ldap_init_clientctx(&cctx);

 if(LDAP_SUCCESS != status) {
 printf("Failed during creation of client context \n");
 exit(1);
 }

 /* Create SASL credentials */
 sasl_cred = ora_ldap_create_cred_hdl(cctx, ORA_LDAP_CRED_HANDLE_SASL_MD5);

 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_REALM, (void
*)realm);
ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_AUTH_PASSWORD, (void

*)ldap_bind_pw);
 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_AUTHORIZATION_
ID,(void *)authzid);
ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_SECURITY_PROPERTIES,

(void *)sasl_secprops);

 /* If connecting to the directory using SASL DIGEST-MD5, the Authentication ID
 has to be normalized before it's sent to the server,
 the LDAP C-API does this normalization based on the following flag set in
 SASL credential properties */
 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_NORM_AUTHDN, (void
*)NULL);

 /* SASL Authetication to LDAP Server */
 status = (int)ora_ldap_init_SASL(cctx, ld, (char *)authcid, (char *)ORA_LDAP_
SASL_MECH_DIGEST_MD5,
 sasl_cred, NULL, NULL);

 if(LDAP_SUCCESS == status) {
 printf("SASL bind successful \n");
 }else {
 printf("SASL bind failed with status : %d\n", status);
 }

 /* Free SASL Credentials */
 ora_ldap_free_cred_hdl(cctx, sasl_cred);

 status = ora_ldap_free_clientctx(cctx);

 /* Unbind from LDAP server */
 ldap_unbind (ld);

 return (0);
}

/* end of file saslbind.c */

Required Header Files and Libraries for the C API
To build applications with the C API, you need to:

■ Include the header file located at ORACLE_HOME/ldap/public/ldap.h.

Dependencies and Limitations of the C API

8-46 Oracle Identity Management Application Developer’s Guide

■ Dynamically link to the library located at

– $ORACLE_HOME/lib/libclntsh.so.10.1 on UNIX operating systems

– %ORACLE_HOME%\bin\oraldapclnt10.dll on Windows operating
systems

Dependencies and Limitations of the C API
This API can work against any release of Oracle Internet Directory. It requires either
an Oracle environment or, at minimum, globalization support and other core libraries.

To use the different authentication modes in SSL, the directory server requires
corresponding configuration settings.

Oracle Wallet Manager is required for creating wallets if you are using the C API in
SSL mode.

TCP/IP Socket Library is required.

The following Oracle libraries are required:

■ Oracle SSL-related libraries

■ Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You
should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP SDK
specifications (RFC 1823).

See Also: Oracle Internet Directory Administrator’s Guide for details
about how to set the directory server in various SSL authentication
modes

DBMS_LDAP PL/SQL Reference 9-1

9
DBMS_LDAP PL/SQL Reference

DBMS_LDAP contains the functions and procedures that enable PL/SQL programmers
to access data from LDAP servers. This chapter examines all of the API functions in
detail.

The chapter contains these topics:

■ Summary of Subprograms

■ Exception Summary

■ Data Type Summary

■ Subprograms

Summary of Subprograms

Note: Sample code for the DBMS_LDAP package is available at this
URL:

http://www.oracle.com/technology/sample_code/id_mgmt

Table 9–1 DBMS_LDAP API Subprograms

Function or Procedure Description

FUNCTION init init() initializes a session with an LDAP server. This
actually establishes a connection with the LDAP server.

FUNCTION simple_bind_s The function simple_bind_s() can be used to perform
simple user name and password authentication to the
directory server.

FUNCTION bind_s The function bind_s() can be used to perform complex
authentication to the directory server.

FUNCTION unbind_s The function unbind_s() is used for closing an active
LDAP session.

FUNCTION compare_s The function compare_s() can be used to test if a
particular attribute in a particular entry has a particular
value.

FUNCTION search_s The function search_s() performs a synchronous search
in the LDAP server. It returns control to the PL/SQL
environment only after all of the search results have been
sent by the server or if the search request is 'timed-out by
the server.

Summary of Subprograms

9-2 Oracle Identity Management Application Developer’s Guide

FUNCTION search_st The function search_st() performs a synchronous
search in the LDAP server with a client side time out. It
returns control to the PL/SQL environment only after all
of the search results have been sent by the server or if the
search request is 'timed-out' by the client or the server.

FUNCTION first_entry The function first_entry is used to retrieve the first entry in
the result set returned by either search_s() or search_st.

FUNCTION next_entry The function next_entry() is used to iterate to the next
entry in the result set of a search operation.

FUNCTION count_entries This function is used to count the number of entries in the
result set. It can also be used to count the number of
entries remaining during a traversal of the result set using
a combination of the functions first_entry() and
next_entry.

FUNCTION first_attribute The function first_attribute() fetches the first
attribute of a given entry in the result set.

FUNCTION next_attribute The function next_attribute()fetches the next
attribute of a given entry in the result set.

FUNCTION get_dn The function get_dn() retrieves the X.500 distinguished
name of a given entry in the result set.

FUNCTION get_values The function get_values()can be used to retrieve all of
the values associated with a given attribute in a given
entry.

FUNCTION get_values_len The function get_values_len() can be used to retrieve
values of attributes that have a 'Binary' syntax.

FUNCTION delete_s This function can be used to remove a leaf entry in the
LDAP Directory Information Tree.

FUNCTION modrdn2_s The function modrdn2_s() can be used to rename the
relative distinguished name of an entry.

FUNCTION err2string The function err2string() can be used to convert an
LDAP error code to a string in the local language in which
the API is operating.

FUNCTION create_mod_array The function create_mod_array() allocates memory
for array modification entries that will be applied to an
entry using the modify_s() functions.

PROCEDURE populate_mod_
array (String Version)

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP.create_mod_array() is called.

PROCEDURE populate_mod_
array (Binary Version)

Populates one set of attribute information for add or
modify operations. This procedure call has to occur after
DBMS_LDAP.create_mod_array() is called.

PROCEDURE populate_mod_
array (Binary Version. Uses
BLOB Data Type)

Populates one set of attribute information for add or
modify operations. This procedure call has to happen after
DBMS_LDAP.create_mod_array() is called.

FUNCTION get_values_blob The function get_values_blob() can be used to
retrieve larger values of attributes that have a binary
syntax.

FUNCTION count_values_blob Counts the number of values returned by DBMS_
LDAP.get_values_blob().

Table 9–1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure Description

Exception Summary

DBMS_LDAP PL/SQL Reference 9-3

Exception Summary
DBMS_LDAP can generate the exceptions described in Table 9–2 on page 9-4.

FUNCTION value_free_blob Frees the memory associated with the BLOB_COLLECTION
returned by DBMS_LDAP.get_values_blob().

FUNCTION modify_s Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s, you must call DBMS_
LDAP.creat_mod_array() and DBMS_
LDAP.populate_mod_array().

FUNCTION add_s Adds a new entry to the LDAP directory synchronously.
Before calling add_s, you must call DBMS_LDAP.creat_
mod_array() and DBMS_LDAP.populate_mod_
array().

PROCEDURE free_mod_array Frees the memory allocated by DBMS_LDAP.create_
mod_array().

FUNCTION count_values Counts the number of values returned by DBMS_
LDAP.get_values().

FUNCTION count_values_len Counts the number of values returned by DBMS_
LDAP.get_values_len ().

FUNCTION rename_s Renames an LDAP entry synchronously.

FUNCTION explode_dn Breaks a DN up into its components.

FUNCTION open_ssl Establishes an SSL (Secure Sockets Layer) connection over
an existing LDAP connection.

FUNCTION msgfree This function frees the chain of messages associated with
the message handle returned by synchronous search
functions.

FUNCTION ber_free This function frees the memory associated with a handle
to BER_ELEMENT.

FUNCTION nls_convert_to_
utf8

The nls_convert_to_utf8 function converts the input
string containing database character set data to UTF8
character set data and returns it.

FUNCTION nls_convert_from_
utf8

The nls_convert_from_utf8 function converts the
input string containing UTF8 character set data to
database character set data and returns it.

FUNCTION nls_get_
dbcharset_name

The nls_get_dbcharset_name function returns a
string containing the database character set name.

See Also:

■ "Searching the Directory" in Chapter 3 for more about DBMS_
LDAP.search_s() and DBMS_LDAP.search_st()

■ "Terminating the Session by Using DBMS_LDAP" in Chapter 3 for
more about DBMS_LDAP.unbind_s()

Table 9–1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure Description

Exception Summary

9-4 Oracle Identity Management Application Developer’s Guide

Table 9–2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

general_error 31202 Raised anytime an error is encountered that does
not have a specific PL/SQL exception associated
with it. The error string contains the description
of the problem in the user’s language.

init_failed 31203 Raised by DBMS_LDAP.init() if there are
problems.

invalid_session 31204 Raised by all functions and procedures in the
DBMS_LDAP package if they are passed an invalid
session handle.

invalid_auth_method 31205 Raised by DBMS_LDAP.bind_s()if the
authentication method requested is not
supported.

invalid_search_scope 31206 Raised by all search functions if the scope of the
search is invalid.

invalid_search_time_val 31207 Raised by DBMS_LDAP.search_st()if it is
given an invalid value for a time limit.

invalid_message 31208 Raised by all functions that iterate through a
result-set for getting entries from a search
operation if the message handle given to them is
invalid.

count_entry_error 31209 Raised by DBMS_LDAP.count_entries if it
cannot count the entries in a given result set.

get_dn_error 31210 Raised by DBMS_LDAP.get_dn if the DN of the
entry it is retrieving is NULL.

invalid_entry_dn 31211 Raised by all functions that modify, add, or
rename an entry if they are presented with an
invalid entry DN.

invalid_mod_array 31212 Raised by all functions that take a modification
array as an argument if they are given an invalid
modification array.

invalid_mod_option 31213 Raised by DBMS_LDAP.populate_mod_array
if the modification option given is anything other
than MOD_ADD, MOD_DELETE or MOD_REPLACE.

invalid_mod_type 31214 Raised by DBMS_LDAP.populate_mod_array
if the attribute type that is being modified is
NULL.

invalid_mod_value 31215 Raised by DBMS_LDAP.populate_mod_array
if the modification value parameter for a given
attribute is NULL.

invalid_rdn 31216 Raised by all functions and procedures that
expect a valid RDN and are provided with an
invalid one.

invalid_newparent 31217 Raised by DBMS_LDAP.rename_s if the new
parent of an entry being renamed is NULL.

invalid_deleteoldrdn 31218 Raised by DBMS_LDAP.rename_s if the
deleteoldrdn parameter is invalid.

invalid_notypes 31219 Raised by DBMS_LDAP.explode_dn if the
notypes parameter is invalid.

Subprograms

DBMS_LDAP PL/SQL Reference 9-5

Data Type Summary
The DBMS_LDAP package uses the data types described in Table 9–3.

Subprograms
This section takes a closer look at each of the DBMS_LDAP subprograms.

FUNCTION init
init() initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

invalid_ssl_wallet_loc 31220 Raised by DBMS_LDAP.open_ssl if the wallet
location is NULL but the SSL authentication mode
requires a valid wallet.

invalid_ssl_wallet_
password

31221 Raised by DBMS_LDAP.open_ssl if the wallet
password given is NULL.

invalid_ssl_auth_mode 31222 Raised by DBMS_LDAP.open_ssl if the SSL
authentication mode is not 1, 2 or 3.

Table 9–3 DBMS_LDAP Data Type Summary

Data-Type Purpose

SESSION Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSAGE Used to hold a handle to the message retrieved from the result
set. This is used by all functions that work with entry attributes
and values.

MOD_ARRAY Used to hold a handle to the array of modifications being passed
to either modify_s() or add_s().

TIMEVAL Used to pass time limit information to the LDAP API functions
that require a time limit.

BER_ELEMENT Used to hold a handle to a BER structure used for decoding
incoming messages.

STRING_COLLECTION Used to hold a list of VARCHAR2 strings that can be passed on to
the LDAP server.

BINVAL_COLLECTION Used to hold a list of RAW data, which represent binary data.

BERVAL_COLLECTION Used to hold a list of BERVAL values that are used for
populating a modification array.

BLOB_COLLECTION Used to hold a list of BLOB data, which represent binary data.

Table 9–2 (Cont.) DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

Subprograms

9-6 Oracle Identity Management Application Developer’s Guide

Syntax
FUNCTION init
(
hostname IN VARCHAR2,
portnum IN PLS_INTEGER
)
RETURN SESSION;

Parameters

Return Values

Exceptions

Usage Notes
DBMS_LDAP.init() is the first function that should be called because it establishes a
session with the LDAP server. Function DBMS_LDAP.init() returns a session
handle, a pointer to an opaque structure that must be passed to subsequent calls
pertaining to the session. This routine will return NULL and raise the INIT_FAILED
exception if the session cannot be initialized. After init() has been called, the
connection has to be authenticated using DBMS_LDAP.bind_s or DBMS_
LDAP.simple_bind_s().

See Also
DBMS_LDAP.simple_bind_s(), DBMS_LDAP.bind_s().

Table 9–4 INIT Function Parameters

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server
to connect to. Each host name in the list may include a port
number, which is separated from the host by a colon. The hosts
are tried in the order listed, stopping with the first one to
which a successful connection is made.

portnum Contains the TCP port number to connect to. If the port
number is included with the host name, this parameter is
ignored. If the parameter is not specified, and the host name
does not contain the port number, a default port number of
389 is assumed.

Table 9–5 INIT Function Return Values

Value Description

SESSION A handle to an LDAP session that can be used for further calls
to the API.

Table 9–6 INIT Function Exceptions

Exception Description

init_failed Raised when there is a problem contacting the LDAP server.

general_error For all other errors. The error string associated with the
exception describes the error in detail.

Subprograms

DBMS_LDAP PL/SQL Reference 9-7

FUNCTION simple_bind_s
The function simple_bind_s can be used to perform simple user name and
password authentication to the directory server.

Syntax
FUNCTION simple_bind_s
(
ld IN SESSION,
dn IN VARCHAR2,
passwd IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Usage Notes
DBMS_LDAP.simple_bind_s() can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

FUNCTION bind_s
The function bind_s can be used to perform complex authentication to the directory
server.

Syntax
FUNCTION bind_s
(

Table 9–7 SIMPLE_BIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Table 9–8 SIMPLE_BIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS on a successful completion. If there was
a problem, one of the following exceptions will be raised.

Table 9–9 SIMPLE_BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Subprograms

9-8 Oracle Identity Management Application Developer’s Guide

ld IN SESSION,
dn IN VARCHAR2,
cred IN VARCHAR2,
meth IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Usage Notes
DBMS_LDAP.bind_s() can be used to authenticate a user. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP.simple_bind_s().

FUNCTION unbind_s
The function unbind_s is used for closing an active LDAP session.

Syntax
FUNCTION unbind_s
(
ld IN OUT SESSION
)
RETURN PLS_INTEGER;

Table 9–10 BIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The distinguished name of the user.

cred A text string containing the credentials used for authentication.

meth The authentication method.

Table 9–11 BIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS upon successful completion. One of the
following exceptions is raised if there is a problem.

Table 9–12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Subprograms

DBMS_LDAP PL/SQL Reference 9-9

Parameters

Return Values

Exceptions

Usage Notes
The unbind_s() function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources associated
with the session handle before returning. After a call to this function, the session
handle ld is invalid.

See Also
DBMS_LDAP.bind_s(), DBMS_LDAP.simple_bind_s().

FUNCTION compare_s
The function compare_s can be used to test if a particular attribute in a particular
entry has a particular value.

Syntax
FUNCTION compare_s
(
ld IN SESSION,
dn IN VARCHAR2,
attr IN VARCHAR2,
value IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Table 9–13 UNBIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

Table 9–14 UNBIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS on proper completion. One of the
following exceptions is raised otherwise.

Table 9–15 UNBIND_S Function Exceptions

Exception Description

invalid_session Raised if the sessions handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 9–16 COMPARE_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

Subprograms

9-10 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function compare_s can be used to assert that an attribute in the directory has a
certain value. This operation can be performed only on attributes whose syntax
enables them to be compared. The compare_s function can be called only after a valid
LDAP session handle has been obtained from the init() function and authenticated
by the bind_s() or simple_bind_s() functions.

See Also
DBMS_LDAP.bind_s()

FUNCTION search_s
The function search_s performs a synchronous search in the directory. It returns
control to the PL/SQL environment only after all of the search results have been sent
by the server or if the search request is timed out by the server.

Syntax
FUNCTION search_s
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE
)
RETURN PLS_INTEGER;

dn The name of the entry to compare against.

attr The attribute to compare against.

value A string attribute value to compare against.

Table 9–17 COMPARE_S Function Return Values

Value Description

PLS_INTEGER COMPARE_TRUE if the given attribute has a matching value.

COMPARE_FALSE if the given attribute does not have a
matching value.

Table 9–18 COMPARE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 9–16 (Cont.) COMPARE_S Function Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 9-11

Parameters

Return Values

Exceptions

Usage Notes
The function search_s() issues a search operation and does not return control to the
user environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the res parameter. This parameter is
opaque to the caller. Entries, attributes, and values can be extracted by calling the
parsing routines described in this chapter.

Table 9–19 SEARCH_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be
passed to indicate that the filter "(objectclass=*)", which
matches all entries, is to be used.

attrs A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") may be used as the only string in the array to indicate that
no attribute types are to be returned by the server. The special constant
string ALL_USER_ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and values
are to be returned, and nonzero if only types are wanted.

res This is a result parameter that contains the results of the search upon
completion of the call. If no results are returned, *res is set to NULL.

Table 9–20 SEARCH_S Function Return Value

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Table 9–21 SEARCH_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL, or SCOPE_SUBTREE.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Subprograms

9-12 Oracle Identity Management Application Developer’s Guide

See Also
DBMS_LDAP.search_st(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_
entry.

FUNCTION search_st
The function search_st() performs a synchronous search in the LDAP server with a
client-side time out. It returns control to the PL/SQL environment only after all of the
search results have been sent by the server or if the search request is timed out by the
client or the server.

Syntax
FUNCTION search_st
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
tv IN TIMEVAL,
res OUT MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 9–22 SEARCH_ST Function Parameters

Parameter Description

ld A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
"(objectclass=*)", which matches all entries, is to be
used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS ("1.1") may be used as the only
string in the array to indicate that no attribute types are to be
returned by the server. The special constant string ALL_USER_
ATTRS ("*") can be used in the attrs array along with the
names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be
returned.

attrsonly A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

tv The time out value, expressed in seconds and microseconds,
that should be used for this search.

res This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Subprograms

DBMS_LDAP PL/SQL Reference 9-13

Return Values

Exceptions

Usage Notes
This function is very similar to DBMS_LDAP.search_s() except that it requires a
time out value to be given.

See Also
DBMS_LDAP.search_s(), DBML_LDAP.first_entry(), DBMS_LDAP.next_
entry.

FUNCTION first_entry
The function first_entry() is used to retrieve the first entry in the result set
returned by either search_s() or search_st().

Syntax
FUNCTION first_entry
(
ld IN SESSION,
msg IN MESSAGE
)
RETURN MESSAGE;

Parameters

Table 9–23 SEARCH_ST Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Table 9–24 SEARCH_ST Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_time_
value

Raised if the time value specified for the time out is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 9–25 FIRST_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Subprograms

9-14 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function first_entry() should always be the first function used to retrieve the
results from a search operation.

See Also
DBMS_LDAP.next_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_
st()

FUNCTION next_entry
The function next_entry() is used to iterate to the next entry in the result set of a
search operation.

Syntax
FUNCTION next_entry
(
ld IN SESSION,
msg IN MESSAGE
)
RETURN MESSAGE;

Parameters

Table 9–26 FIRST_ENTRY Return Values

Value Description

MESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Table 9–27 FIRST_ENTRY Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 9–28 NEXT_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Subprograms

DBMS_LDAP PL/SQL Reference 9-15

Return Values

Exceptions

Usage Notes
The function next_entry() should always be called after a call to the function
first_entry(). Also, the return value of a successful call to next_entry() should
be used as msg argument used in a subsequent call to the function next_entry() to
fetch the next entry in the list.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_
st()

FUNCTION count_entries
This function is used to count the number of entries in the result set. It can also be used
to count the number of entries remaining during a traversal of the result set using a
combination of the functions first_entry() and next_entry().

Syntax
FUNCTION count_entries
(
ld IN SESSION,
msg IN MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 9–29 NEXT_ENTRY Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Table 9–30 NEXT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle, ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 9–31 COUNT_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Subprograms

9-16 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
count_entries() returns the number of entries contained in a chain of entries; if an
error occurs such as the res parameter being invalid, -1 is returned. The count_
entries() call can also be used to count the number of entries that remain in a chain
if called with a message, entry, or reference returned by first_message(), next_
message(), first_entry(), next_entry(), first_reference(), next_
reference().

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().

FUNCTION first_attribute
The function first_attribute() fetches the first attribute of a given entry in the
result set.

Syntax
FUNCTION first_attribute
(
ld IN SESSION,
ldapentry IN MESSAGE,
ber_elem OUT BER_ELEMENT
)
RETURN VARCHAR2;

Parameters

Table 9–32 COUNT_ENTRY Function Return Values

Value Description

PLS_INTEGER Nonzero if there are entries in the result set. -1 if there was a
problem.

Table 9–33 COUNT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

count_entry_error Raised if there was a problem in counting the entries.

Table 9–34 FIRST_ATTRIBUTE Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry().

ber_elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have already been read.

Subprograms

DBMS_LDAP PL/SQL Reference 9-17

Return Values

Exceptions

Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_
attribute() should be used in the next call to next_attribute() to iterate
through the various attributes of an entry. The name of the attribute returned from a
call to first_attribute() can in turn be used in calls to the functions get_
values() or get_values_len() to get the values of that particular attribute.

See Also
DBMS_LDAP.next_attribute(), DBMS_LDAP.get_values(), DBMS_LDAP.get_
values_len(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().

FUNCTION next_attribute
The function next_attribute() retrieves the next attribute of a given entry in the
result set.

Syntax
FUNCTION next_attribute
(
ld IN SESSION,
ldapentry IN MESSAGE,
ber_elem IN BER_ELEMENT
)
RETURN VARCHAR2;

Parameters

Table 9–35 FIRST_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP.next_attribute() to iterate
over all of the attributes

Table 9–36 FIRST_ATTRIBUTE Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 9–37 NEXT_ATTRIBUTE Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry().

ber_elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have been read.

Subprograms

9-18 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_
attribute() should be used in the next call to next_attribute() to iterate
through the various attributes of an entry. The name of the attribute returned from a
call to next_attribute() can in turn be used in calls to the functions get_
values() or get_values_len() to get the values of that particular attribute.

See Also
DBMS_LDAP.first_attribute(), DBMS_LDAP.get_values(), DBMS_
LDAP.get_values_len(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_
entry().

FUNCTION get_dn
The function get_dn() retrieves the X.500 distinguished name of given entry in the
result set.

Syntax
FUNCTION get_dn
(
ld IN SESSION,
ldapentrymsg IN MESSAGE
)
RETURN VARCHAR2;

Parameters

Table 9–38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR2

(function return)

The name of the attribute if it exists.

Table 9–39 NEXT_ATTRIBUTE Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 9–40 GET_DN Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry The entry whose DN is to be returned.

Subprograms

DBMS_LDAP PL/SQL Reference 9-19

Return Values

Exceptions

Usage Notes
The function get_dn() can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This can in turn be used as an input to
explode_dn() to retrieve the individual components of the DN.

See Also
DBMS_LDAP.explode_dn().

FUNCTION get_values
The function get_values() can be used to retrieve all of the values associated with a
given attribute in a given entry.

Syntax
FUNCTION get_values
(
ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2
)
RETURN STRING_COLLECTION;

Parameters

Table 9–41 GET_DN Function Return Values

Value Description

VARCHAR2 The X.500 Distinguished name of the entry as a PL/SQL string.

NULL if there was a problem.

Table 9–42 GET_DN Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

get_dn_error Raised if there was a problem in determining the DN.

Table 9–43 GET_VALUES Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry A valid handle to an entry returned from a search result.

attr The name of the attribute for which values are being sought.

Subprograms

9-20 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function get_values() can only be called after the handle to entry has been first
retrieved by call to either first_entry() or next_entry(). The name of the
attribute may be known beforehand or can be determined by a call to first_
attribute() or next_attribute().The function get_values() always assumes
that the data type of the attribute it is retrieving is a string. For retrieving binary data
types, get_values_len() should be used.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_
values(), DBMS_LDAP.get_values_len().

FUNCTION get_values_len
The function get_values_len() can be used to retrieve values of attributes that
have a binary syntax.

Syntax
FUNCTION get_values_len
(
ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2
)
RETURN BINVAL_COLLECTION;

Parameters

Table 9–44 GET_VALUES Function Return Values

Value Description

STRING_COLLECTION A PL/SQL string collection containing all of the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Table 9–45 GET_VALUES Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming entry handle is invalid.

Table 9–46 GET_VALUES_LEN Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

Subprograms

DBMS_LDAP PL/SQL Reference 9-21

Return Values

Exceptions

Usage Notes
The function get_values_len() can only be called after the handle to an entry has
been retrieved by a call to either first_entry() or next_entry().The name of the
attribute may be known beforehand or can also be determined by a call to first_
attribute() or next_attribute().This function can be used to retrieve both binary and
non-binary attribute values.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_
values_len(), DBMS_LDAP.get_values().

FUNCTION delete_s
The function delete_s() can be used to remove a leaf entry in the DIT.

Syntax
FUNCTION delete_s
(
ld IN SESSION,
entrydn IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Table 9–47 GET_VALUES_LEN Function Return Values

Value Description

BINVAL_COLLECTION A PL/SQL 'Raw' collection containing all the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Table 9–48 GET_VALUES_LEN Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming entry handle is invalid.

Table 9–49 DELETE_S Function Parameters

Parameter Name Description

ld A valid LDAP session.

entrydn The X.500 distinguished name of the entry to delete.

Subprograms

9-22 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function delete_s() can be used to remove only leaf entries in the DIT. A leaf
entry is an entry that does not have any entries under it. This function cannot be used
to delete non-leaf entries.

See Also
DBMS_LDAP.modrdn2_s().

FUNCTION modrdn2_s
The function modrdn2_s() can be used to rename the relative distinguished name of
an entry.

Syntax
FUNCTION modrdn2_s
(
ld IN SESSION,
entrydn in VARCHAR2
newrdn in VARCHAR2
deleteoldrdn IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Table 9–50 DELETE_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the delete operation was successful.
An exception is raised otherwise.

Table 9–51 DELETE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 9–52 MODRDN2_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newrdn The new relative distinguished name of the entry.

deleteoldrdn A boolean value that, if nonzero, indicates that the attribute
values from the old name should be removed from the entry.

Subprograms

DBMS_LDAP PL/SQL Reference 9-23

Return Values

Exceptions

Usage Notes
The function nodrdn2_s() can be used to rename the leaf nodes of a DIT. It simply
changes the relative distinguished name by which they are known. The use of this
function is being deprecated in the LDAP v3 standard. Please use rename_s(), which
fulfills the same purpose.

See Also
DBMS_LDAP.rename_s().

FUNCTION err2string
The function err2string() can be used to convert an LDAP error code to a string in
the local language in which the API is operating.

Syntax
FUNCTION err2string
(
ldap_err IN PLS_INTEGER
)
RETURN VARCHAR2;

Parameters

Table 9–53 MODRDN2_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the operation was successful. An
exception is raised otherwise.

Table 9–54 MODRDN2_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid.

invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 9–55 ERR2STRING Function Parameters

Parameter Description

ldap_err An error number returned from one of the API calls.

Subprograms

9-24 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions
err2string() raises no exceptions.

Usage Notes
In this release, the exception handling mechanism automatically invokes this function
if any of the API calls encounter an error.

FUNCTION create_mod_array
The function create_mod_array() allocates memory for array modification entries
that are applied to an entry using the modify_s() or add_s() functions.

Syntax
FUNCTION create_mod_array
(
num IN PLS_INTEGER
)
RETURN MOD_ARRAY;

Parameters

Return Values

Exceptions
create_mod_array() raises no exceptions.

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It calls DBMS_LDAP.free_mod_array to free memory after the
calls to add_s or modify_s have completed.

See Also
DBMS_LDAP.populate_mod_array(), DBMS_LDAP.modify_s(), DBMS_
LDAP.add_s(), and DBMS_LDAP.free_mod_array().

Table 9–56 ERR2STRING Function Return Values

Value Description

VARCHAR2 A character string translated to the local language. The string
describes the error in detail.

Table 9–57 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add or modify.

Table 9–58 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.

Returns NULL if there was a problem.

Subprograms

DBMS_LDAP PL/SQL Reference 9-25

PROCEDURE populate_mod_array (String Version)
Populates one set of attribute information for add or modify operations.

Syntax
PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modval IN DBMS_LDAP.STRING_COLLECTION
);

Parameters

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It has to happen after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.modify_s(), DBMS_LDAP.add_
s(), and DBMS_LDAP.free_mod_array().

PROCEDURE populate_mod_array (Binary Version)
Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP.create_mod_array() is called.

Syntax
PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,

Table 9–59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description

modptr The data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modval This field specifies the attribute values to add, delete, or
replace. It is for string values only.

Table 9–60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array

invalid_mod_option Invalid LDAP mod option

invalid_mod_type Invalid LDAP mod type

invalid_mod_value Invalid LDAP mod value

Subprograms

9-26 Oracle Identity Management Application Developer’s Guide

mod_type IN VARCHAR2,
modbval IN DBMS_LDAP.BERVAL_COLLECTION
);

Parameters

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It is invoked after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.modify_s(), DBMS_LDAP.add_
s(), and DBMS_LDAP.free_mod_array().

PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP.create_mod_array() is called.

Syntax
PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modbval IN DBMS_LDAP.BLOB_COLLECTION
);

Table 9–61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description

modptr This data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modbval This field specifies the attribute values to add, delete, or
replace. It is for the binary values.

Table 9–62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array.

invalid_mod_option Invalid LDAP mod option.

invalid_mod_type Invalid LDAP mod type.

invalid_mod_value Invalid LDAP mod value.

Subprograms

DBMS_LDAP PL/SQL Reference 9-27

Parameters

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It is invoked after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.modify_s(), DBMS_LDAP.add_
s(), and DBMS_LDAP.free_mod_array().

FUNCTION get_values_blob
The function get_values_blob() can be used to retrieve larger values of attributes
that have a binary syntax.

Syntax
Syntax
FUNCTION get_values_blob
(
ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2
)
RETURN BLOB_COLLECTION;

Parameters

Table 9–63 POPULATE_MOD_ARRAY (Binary) Parameters

Parameter Description

modptr This data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modbval This field specifies the binary attribute values to add, delete, or
replace.

Table 9–64 POPULATE_MOD_ARRAY (Binary) Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array.

invalid_mod_option Invalid LDAP mod option.

invalid_mod_type Invalid LDAP mod type.

invalid_mod_value Invalid LDAP mod value.

Table 9–65 GET_VALUES_BLOB Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

Subprograms

9-28 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function get_values_blob() can only be called after the handle to an entry has
been retrieved by a call to either first_entry() or next_entry(). The name of
the attribute may be known beforehand or can also be determined by a call to first_
attribute() or next_attribute(). This function can be used to retrieve both
binary and nonbinary attribute values.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_
values_blob(), DBMS_LDAP.get_values().

FUNCTION count_values_blob
Counts the number of values returned by DBMS_LDAP.get_values_blob().

Syntax
FUNCTION count_values_blob
(
values IN DBMS_LDAP.BLOB_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

attr The string name of the attribute for which values are being
sought.

Table 9–66 get_values_blob Return Values

Value Description

BLOB_COLLECTION A PL/SQL BLOB collection containing all the values of the given
attribute.

NULL No values are associated with the given attribute.

Table 9–67 get_values_blob Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid message Raised if the incoming entry handle is invalid.

Table 9–68 COUNT_VALUES_BLOB Parameters

Parameter Description

values The collection of large binary values.

Table 9–65 (Cont.) GET_VALUES_BLOB Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 9-29

Return Values

Exceptions
The function count_values_blob() raises no exceptions.

See Also
DBMS_LDAP.count_values(), DBMS_LDAP.get_values_blob().

FUNCTION value_free_blob
Frees the memory associated with BLOB_COLLECTION returned by DBMS_LDAP.get_
values_blob().

Syntax
PROCEDURE value_free_blob
(
vals IN OUT DBMS_LDAP.BLOB_COLLECTION
);

Parameters

Exceptions
value_free_blob() raises no exceptions.

See Also
DBMS_LDAP.get_values_blob().

FUNCTION modify_s
Performs a synchronous modification of an existing LDAP directory entry.

Syntax
FUNCTION modify_s
(
ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY
)
RETURN PLS_INTEGER;

Table 9–69 COUNT_VALUES_BLOB Return Values

Values Description

PLS_INTEGER Indicates the success or failure of the operation.

Table 9–70 VALUE_FREE_BLOB Parameters

Parameter Description

vals The collection of large binary values returned by DBMS_
LDAP.get_values_blob().

Subprograms

9-30 Oracle Identity Management Application Developer’s Guide

Parameters

Return Values

Exceptions

Usage Notes
This function call has to follow successful calls of DBMS_LDAP.create_mod_
array() and DBMS_LDAP.populate_mod_array().

See Also
DBMS_LDAP.create_mod_array(),DBMS_LDAP.populate_mod_array(),
DBMS_LDAP.add_s(), and DBMS_LDAP.free_mod_array().

FUNCTION add_s
Adds a new entry to the LDAP directory synchronously. Before calling add_s, DBMS_
LDAP.create_mod_array() and DBMS_LDAP.populate_mod_array() must be
called.

Syntax
FUNCTION add_s
(
ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY
)
RETURN PLS_INTEGER;

Table 9–71 MODIFY_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP.init().

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array().

Table 9–72 MODIFY_S Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the modification operation.

Table 9–73 MODIFY_S Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.

Subprograms

DBMS_LDAP PL/SQL Reference 9-31

Parameters

Return Values

Exceptions

Usage Notes
The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls to DBMS_LDAP.create_mod_array()
and DBMS_LDAP.populate_mod_array().

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.populate_mod_array(),
DBMS_LDAP.modify_s(), and DBMS_LDAP.free_mod_array().

PROCEDURE free_mod_array
Frees the memory allocated by DBMS_LDAP.create_mod_array().

Syntax
PROCEDURE free_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY
);

Table 9–74 ADD_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init().

entrydn This parameter specifies the name of the directory entry to be
created.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array().

Table 9–75 ADD_S Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the modification operation.

Table 9–76 ADD_S Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.

Subprograms

9-32 Oracle Identity Management Application Developer’s Guide

Parameters

Exceptions
free_mod_array raises no exceptions.

See Also
DBMS_LDAP.populate_mod_array(), DBMS_LDAP.modify_s(), DBMS_
LDAP.add_s(), and DBMS_LDAP.create_mod_array().

FUNCTION count_values
Counts the number of values returned by DBMS_LDAP.get_values().

Syntax
FUNCTION count_values
(
values IN DBMS_LDAP.STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions
count_values raises no exceptions.

See Also
DBMS_LDAP.count_values_len(), DBMS_LDAP.get_values().

FUNCTION count_values_len
Counts the number of values returned by DBMS_LDAP.get_values_len().

Syntax
FUNCTION count_values_len
(

Table 9–77 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

modptr This parameter is the handle to an LDAP mod structure
returned by a successful call to DBMS_LDAP.create_mod_
array().

Table 9–78 COUNT_VALUES Function Parameters

Parameter Description

values The collection of string values.

Table 9–79 COUNT_VALUES Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the operation.

Subprograms

DBMS_LDAP PL/SQL Reference 9-33

values IN DBMS_LDAP.BINVAL_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions
count_values_len raises no exceptions.

See Also
DBMS_LDAP.count_values(), DBMS_LDAP.get_values_len().

FUNCTION rename_s
Renames an LDAP entry synchronously.

Syntax
FUNCTION rename_s
(
ld IN SESSION,
dn IN VARCHAR2,
newrdn IN VARCHAR2,
newparent IN VARCHAR2,
deleteoldrdn IN PLS_INTEGER,
serverctrls IN LDAPCONTROL,
clientctrls IN LDAPCONTROL
)
RETURN PLS_INTEGER;

Parameters

Table 9–80 COUNT_VALUES_LEN Function Parameters

Parameter Description

values The collection of binary values.

Table 9–81 COUNT_VALUES_LEN Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the operation.

Table 9–82 RENAME_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP.init().

dn This parameter specifies the name of the directory entry to be
renamed or moved.

newrdn This parameter specifies the new RDN.

newparent This parameter specifies the DN of the new parent.

deleteoldrdn This parameter specifies whether the old RDN should be
retained. If this value is 1, the old RDN is removed.

Subprograms

9-34 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

See Also
DBMS_LDAP.modrdn2_s().

FUNCTION explode_dn
Breaks a DN up into its components.

Syntax
FUNCTION explode_dn
(
dn IN VARCHAR2,
notypes IN PLS_INTEGER
)
RETURN STRING_COLLECTION;

Parameters

serverctrls Currently not supported.

clientctrls Currently not supported.

Table 9–83 RENAME_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 9–84 RENAME_S Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_entry_dn Invalid LDAP DN.

invalid_rdn Invalid LDAP RDN.

invalid_newparent Invalid LDAP newparent.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

Table 9–85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

notypes This parameter specifies whether the attribute tags will be
returned. If this value is not 0, no attribute tags are returned.

Table 9–82 (Cont.) RENAME_S Function Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 9-35

Return Values

Exceptions

See Also
DBMS_LDAP.get_dn().

FUNCTION open_ssl
Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP
connection.

Syntax
FUNCTION open_ssl
(
ld IN SESSION,
sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHAR2,
sslauth IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Table 9–86 EXPLODE_DN Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN cannot be broken up, NULL will
be returned.

Table 9–87 EXPLODE_DN Function Exceptions

Exception Description

invalid_entry_dn Invalid LDAP DN.

invalid_notypes Invalid LDAP notypes value.

Table 9–88 OPEN_SSL Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session that is returned
by a successful call to DBMS_LDAP.init().

sslwrl This parameter specifies the wallet location. Required for
one-way or two-way SSL connections.

sslwalletpasswd This parameter specifies the wallet password. Required for
one-way or two-way SSL connections.

sslauth This parameter specifies the SSL Authentication Mode. (1 for no
authentication, 2 for one-way authentication required, 3 for
two-way authentication).

Subprograms

9-36 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
Need to call DBMS_LDAP.init() first to acquire a valid ldap session.

See Also
DBMS_LDAP.init().

FUNCTION msgfree
This function frees the chain of messages associated with the message handle returned
by synchronous search functions.

Syntax
FUNCTION msgfree
(
res IN MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 9–89 OPEN_SSL Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the operation.

Table 9–90 OPEN_SSL Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_ssl_wallet_
loc

Invalid LDAP SSL wallet location.

invalid_ssl_wallet_
passwd

Invalid LDAP SSL wallet password.

invalid_ssl_auth_mode Invalid LDAP SSL authentication mode.

Table 9–91 MSGFREE Function Parameters

Parameter Description

res The message handle obtained by a call to one of the synchronous
search routines.

Subprograms

DBMS_LDAP PL/SQL Reference 9-37

Return Values

Exceptions
msgfree raises no exceptions.

See Also
DBMS_LDAP.search_s(), DBMS_LDAP.search_st().

FUNCTION ber_free
This function frees the memory associated with a handle to BER ELEMENT.

Syntax
FUNCTION ber_free
(
ber_elem IN BER_ELEMENT,
freebuf IN PLS_INTEGER
)

Parameters

Return Values
ber_free returns no values.

Exceptions
ber_free raises no exceptions.

Table 9–92 MSGFREE Return Values

Value Description

PLS_INTEGER Indicates the type of the last message in the chain.

The function might return any of the following values:

■ DBMS_LDAP.LDAP_RES_BIND

■ DBMS_LDAP.LDAP_RES_SEARCH_ENTRY

■ DBMS_LDAP.LDAP_RES_SEARCH_REFERENCE

■ DBMS_LDAP.LDAP_RES_SEARCH_RESULT

■ DBMS_LDAP.LDAP_RES_MODIFY

■ DBMS_LDAP.LDAP_RES_ADD

■ DBMS_LDAP.LDAP_RES_DELETE

■ DBMS_LDAP.LDAP_RES_MODDN

■ DBMS_LDAP.LDAP_RES_COMPARE

■ DBMS_LDAP.LDAP_RES_EXTENDED

Table 9–93 BER_FREE Function Parameters

Parameter Description

ber_elem A handle to BER ELEMENT.

freebuf The value of this flag should be 0 while the BER ELEMENT
returned from DBMS_LDAP.first_attribute() is being
freed. For any other case, the value of this flag should be 1.

The default value of this parameter is zero.

Subprograms

9-38 Oracle Identity Management Application Developer’s Guide

See Also
DBMS_LDAP.first_attribute(),DBMS_LDAP.next_attribute().

FUNCTION nls_convert_to_utf8
The nls_convert_to_utf8() function converts the input string containing
database character set data to UTF8 character set data and returns it.

Syntax
Function nls_convert_to_utf8
(
data_local IN VARCHAR2
)
RETURN VARCHAR2;

Parameters

Return Values

Usage Notes
The functions in DBMS_LDAP package expect the input data to be UTF8 character set
data if the UTF8_CONVERSION package variable is set to FALSE. The nls_convert_
to_utf8() function converts database character set data to UTF8 character set data.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect input data to be database character set
data.

See Also
DBMS_LDAP.nls_convert_from_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

FUNCTION nls_convert_to_utf8
The nls_convert_to_utf8() function converts the input string collection
containing database character set data to UTF8 character set data. It then returns the
converted data.

Syntax
Function nls_convert_to_utf8
(
data_local IN STRING_COLLECTION
)
RETURN STRING_COLLECTION;

Table 9–94 Parameters for nls_convert_to_utf8

Parameter Description

data_local Contains the database character set data.

Table 9–95 Return Values for nls_convert_to_utf8

Value Description

VARCHAR2 UTF8 character set data string.

Subprograms

DBMS_LDAP PL/SQL Reference 9-39

Parameters

Return Values

Usage Notes
The functions in the DBMS_LDAP package expect the input data to be in the UTF8
character set if the UTF8_CONVERSION package variable is set to FALSE. The nls_
convert_to_utf8() function converts the input data from the database character
set to the UTF8 character set.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect the input data to be in the database
character set.

See Also
DBMS_LDAP.nls_convert_from_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

FUNCTION nls_convert_from_utf8
The nls_convert_from_utf8() function converts the input string containing
UTF8 character set to database character set data. It then returns this data.

Syntax
Function nls_convert_from_utf8
(
data_utf8 IN VARCHAR2
)
RETURN VARCHAR2;

Parameters

Return Values

Table 9–96 Parameters for nls_convert_to_utf8

Parameter Description

data_local Collection of strings containing database character set data.

Table 9–97 Return Values for nls_convert_to_utf8

Value Description

STRING_COLLECTION Collection of strings containing UTF8 character set data.

Table 9–98 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Contains UTF8 character set data.

Table 9–99 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Data string in the database character set.

Subprograms

9-40 Oracle Identity Management Application Developer’s Guide

Usage Notes
The functions in the DBMS_LDAP package return UTF8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. The nls_convert_from_utf8()
function converts the output data from the UTF8 character set to the database
character set.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also
DBMS_LDAP.nls_convert_to_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

FUNCTION nls_convert_from_utf8
The nls_convert_from_utf8() function converts the input string collection
containing UTF8 character set data to database character set data. It then returns this
data.

Syntax
Function nls_convert_from_utf8
(
data_utf8 IN STRING_COLLECTION
)
RETURN STRING_COLLECTION;

Parameters

Return Values

Usage Notes
The functions in the DBMS_LDAP package return UTF8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. nls_convert_from_utf8()
converts the output data from the UTF8 character set to the database character set. If
the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also
DBMS_LDAP.nls_convert_to_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

Table 9–100 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Collection of strings containing UTF8 character set data.

Table 9–101 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Collection of strings containing database character set data.

Subprograms

DBMS_LDAP PL/SQL Reference 9-41

FUNCTION nls_get_dbcharset_name
The nls_get_dbcharset_name() function returns a string containing the database
character set name.

Syntax
Function nls_get_dbcharset_name

RETURN VARCHAR2;

Parameters
None.

Return Values

See Also
DBMS_LDAP.nls_convert_to_utf8(), DBMS_LDAP.nls_convert_from_
utf8().

Table 9–102 Return Value for nls_get_dbcharset_name

Value Description

VARCHAR2 String containing the database character set name.

Subprograms

9-42 Oracle Identity Management Application Developer’s Guide

Java API Reference 10-1

10
Java API Reference

The standard Java APIs for Oracle Internet Directory are available as the Java Naming
and Directory Interface (JNDI) from Sun Microsystems. The JNDI is found at this link:

http://java.sun.com/products/jndi

The Oracle extensions to the standard APIs are found in Oracle Internet Directory API
Reference.

Sample code for the Java APIs is available at this URL:

http://www.oracle.com/technology/sample_code/id_mgmt

10-2 Oracle Identity Management Application Developer’s Guide

DBMS_LDAP_UTL PL/SQL Reference 11-1

11
DBMS_LDAP_UTL PL/SQL Reference

This chapter contains reference material for the DBMS_LDAP_UTL package, which
contains Oracle Extension utility functions. The chapter contains these topics:

■ Summary of Subprograms

■ Subprograms

■ Function Return Code Summary

■ Data Type Summary

Summary of Subprograms

Note: Sample code for the DBMS_LDAP_UTL package is available at
this URL:

http://www.oracle.com/technology/sample_code/id_mgmt

Table 11–1 DBMS_LDAP_UTL User-Related Subprograms

Function or Procedure Purpose

Function authenticate_
user

Authenticates a user against an LDAP server.

Function create_user_
handle

Creates a user handle.

Function set_user_
handle_properties

Associates the given properties to the user handle.

Function get_user_
properties

Retrieves user properties from an LDAP server.

Function set_user_
properties

Modifies the properties of a user.

Function get_user_
extended_properties

Retrieves user extended properties.

Function get_user_dn Retrieves a user DN.

Function check_group_
membership

Checks whether a user is member of a given group.

Function locate_
subscriber_for_user

Retrieves the subscriber for the given user.

Function get_group_
membership

Retrieves a list of groups of which the user is a member.

Summary of Subprograms

11-2 Oracle Identity Management Application Developer’s Guide

Table 11–2 DBMS_LDAP_UTL Group-Related Subprograms

Function or Procedure Purpose

Function create_group_
handle

Creates a group handle.

Function set_group_
handle_properties

Associates the given properties with the group handle.

Function get_group_
properties

Retrieves group properties from an LDAP server.

Function get_group_dn Retrieves a group DN.

Table 11–3 DBMS_LDAP_UTL Subscriber-Related Subprograms

Function or Procedure Purpose

Function create_
subscriber_handle

Creates a subscriber handle.

Function get_subscriber_
properties

Retrieves subscriber properties from an LDAP server.

Function get_subscriber_
dn

Retrieves a subscriber DN.

Table 11–4 DBMS_LDAP_UTL Miscellaneous Subprograms

Function or Procedure Purpose

Function normalize_dn_
with_case

Normalizes the DN string.

Function get_property_
names

Retrieves a list of property names in a PROPERTY_SET.

Function get_property_
values

Retrieves a list of values for a property name.

Function get_property_
values_blob

Retrieves a list of large binary values for a property name.

Procedure property_
value_free_blob

Frees the memory associated with BLOB_COLLECTION returned
by DBMS_LDAP_UTL.get_property_values_blob().

Function get_property_
values_len

Retrieves a list of binary values for a property name.

Procedure free_
propertyset_collection

Frees PROPERTY_SET_COLLECTION.

Function create_mod_
propertyset

Creates a MOD_PROPERTY_SET.

Function populate_mod_
propertyset

Populates a MOD_PROPERTY_SET structure.

Procedure free_mod_
propertyset

Frees a MOD_PROPERTY_SET.

Procedure free_handle Frees handles.

Function check_
interface_version

Checks for support of the interface version.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-3

Subprograms
This section contains the following topics:

■ User-Related Subprograms

■ Group-Related Subprograms

■ Subscriber-Related Subprograms

■ Property-Related Subprograms

■ Miscellaneous Subprograms

User-Related Subprograms
A user is represented by the DBMS_LDAP_UTL.HANDLE data type. You can create a
user handle by using a DN, GUID, or simple name, along with the appropriate
subscriber handle. When a simple name is used, additional information from the root
Oracle Context and the subscriber Oracle Context is used to identify the user. This
example shows a user handle being created:

retval := DBMS_LDAP_UTL.create_user_handle(
user_handle,
DBMS_LDAP_UTL.TYPE_DN,
"cn=user1,cn=users,o=acme,dc=com"
);

This user handle must be associated with an appropriate subscriber handle. If, for
example, subscriber_handle is o=acme,dc=com, the subscriber handle can be
associated in the following way:

retval := DBMS_LDAP_UTL.set_user_handle_properties(
user_handle,
DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,
subscriber_handle
);

Common uses of user handles include setting and getting user properties and
authenticating the user. Here is a handle that authenticates a user:

retval := DBMS_LDAP_UTL.authenticate_user(
my_session
user_handle
DBMS_LDAP_UTL.AUTH_SIMPLE,
"welcome"
NULL
);

In this example, the user is authenticated using a clear text password welcome.

Here is a handle that retrieves a user’s telephone number:

--my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) := ‘telephonenumber’;
retval := DBMS_LDAP_UTL.get_user_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
);

Subprograms

11-4 Oracle Identity Management Application Developer’s Guide

Function authenticate_user
The function authenticate_user()authenticates the user against Oracle Internet
Directory.

Syntax
FUNCTION authenticate_user
(
ld IN SESSION,
user_handle IN HANDLE,
auth_type IN PLS_INTEGER,
credentials IN VARCHAR2,
binary_credentials IN RAW
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also: "DBMS_LDAP_UTL Sample Code" on page B-9 for more
examples of user handles

Table 11–5 AUTHENTICATE_USER Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

auth_type PLS_INTEGER Type of authentication. The only valid
value is DBMS_LDAP_UTL.AUTH_SIMPLE

credentials VARCHAR2 The user credentials.

binary_credentials RAW The binary credentials. This parameter is
optional. It can be NULL by default.

Table 11–6 AUTHENTICATE_USER Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

DBMS_LDAP_UTL.INVALID_SUBSCRIBER_
ORCL_CTX

Invalid Subscriber Oracle Context.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_
ENTRIES

The subscriber has multiple DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_
EXCP

User account is locked.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-5

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_user_handle().

Function create_user_handle
The function create_user_handle() creates a user handle.

Syntax
FUNCTION create_user_handle
(
user_hd OUT HANDLE,
user_type IN PLS_INTEGER,
user_id IN VARCHAR2,
)
RETURN PLS_INTEGER;

Parameters

Return Values

DBMS_LDAP_UTL.AUTH_PASSWD_CHANGE_WARN This return value is deprecated.

DBMS_LDAP_UTL.AUTH_FAILURE_EXCP Authentication failed.

DBMS_LDAP_UTL.PWD_EXPIRED_EXCP User password has expired.

DBMS_LDAP_UTL.PWD_GRACELOGIN_WARN Grace login for user.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occurred when LDAP
operations were carried out.

Table 11–7 CREATE_USER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

user_type PLS_INTEGER The type of user ID that is passed. Valid values for
this argument are as follows:

■ DBMS_LDAP_UTL.TYPE_DN

■ DBMS_LDAP_UTL.TYPE_GUID

■ DBMS_LDAP_UTL.TYPE_NICKNAME

user_id VARCHAR2 The user ID representing the user entry.

Table 11–8 CREATE_USER_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

Table 11–6 (Cont.) AUTHENTICATE_USER Function Return Values

Value Description

Subprograms

11-6 Oracle Identity Management Application Developer’s Guide

See Also
DBMS_LDAP_UTL.get_user_properties(), DBMS_LDAP_UTL.set_user_
handle_properties().

Function set_user_handle_properties
The function set_user_handle_properties() configures the user handle
properties.

Syntax
FUNCTION set_user_handle_properties
(
user_hd IN HANDLE,
property_type IN PLS_INTEGER,
property IN HANDLE
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
The subscriber handle does not have to be set in User Handle Properties if the user
handle is created with TYPE_DN or TYPE_GUID as the user type.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

Table 11–9 SET_USER_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

property_type PLS_INTEGER The type of property that is passed. Valid values
for this argument are as follows: - DBMS_LDAP_
UTL.SUBSCRIBER_HANDLE.

property HANDLE The property describing the user entry.

Table 11–10 SET_USER_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_UTL.RESET_
HANDLE

When a caller tries to reset the existing handle properties.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

Table 11–8 (Cont.) CREATE_USER_HANDLE Function Return Values

Value Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-7

See Also
DBMS_LDAP_UTL.get_user_properties().

Function get_user_properties
The function get_user_properties() retrieves the user properties.

Syntax
FUNCTION get_user_properties
(
ld IN SESSION,
user_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
ret_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 11–11 GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING_COLLECTION The list of user attributes to retrieve.

ptype PLS_INTEGER Type of properties to return. These
are valid values:

■ DBMS_LDAP_UTL.ENTRY_
PROPERTIES

■ DBMS_LDAP_UTL.NICKNAME_
PROPERTY

ret-pset_
collection

PROPERTY_SET_COLLECTION User details contained in attributes
requested by the caller.

Table 11–12 GET_USER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_UTL.NO_
SUCH_USER

User does not exist.

DBMS_LDAP_
UTL.MULTIPLE_USER_
ENTRIES

The user has multiple DN entries.

DBMS_LDAP_
UTL.INVALID_ROOT_
ORCL_CTX

Invalid root Oracle Context.

Subprograms

11-8 Oracle Identity Management Application Developer’s Guide

Usage Notes
This function requires the following:

■ A valid LDAP session handle, which must be obtained from the DBMS_
LDAP.init() function.

■ A valid subscriber handle to be set in the group handle properties if the user type
is of DBMS_LDAP_UTL.TYPE_NICKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL.create_subscriber_
handle(), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL.TYPE_GUID or DBMS_LDAP_UTL.TYPE_
DN, the subscriber handle need not be set in the user handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_user_handle().

Function set_user_properties
The function set_user_properties() modifies the properties of a user.

Syntax
FUNCTION set_user_properties
(
ld IN SESSION,
user_handle IN HANDLE,
pset_type IN PLS_INTEGER,
mod_pset IN PROPERTY_SET,
mod_op IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for unconditional failures
that occur when LDAP operations are carried out.

Table 11–13 SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

pset_type PLS_INTEGER The type of property set being modified. A
valid value is ENTRY_PROPERTIES.

mod_pset PROPERTY_SET Data structure containing modify
operations to perform on the property set.

Table 11–12 (Cont.) GET_USER_PROPERTIES Function Return Values

Value Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-9

Return Values

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.get_user_properties().

Function get_user_extended_properties
The function get_user_extended_properties() retrieves user extended
properties.

mod_op PLS_INTEGER The type of modify operation to be
performed on the property set. Here are
valid values:

■ ADD_PROPERTYSET

■ MODIFY_PROPERTYSET

■ DELETE_PROPERTYSET

Table 11–14 SET_USER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.NO_
SUCH_USER

User does not exist.

DBMS_LDAP_
UTL.MULTIPLE_USER_
ENTRIES

The user has multiple DN entries.

DBMS_LDAP_
UTL.INVALID_ROOT_
ORCL_CTX

Invalid root Oracle Context.

DBMS_LDAP_UTL.PWD_
MIN_LENGTH_ERROR

Password length is less than the minimum required length.

DBMS_LDAP_UTL.PWD_
NUMERIC_ERROR

Password must contain numeric characters.

DBMS_LDAP_UTL.PWD_
NULL_ERROR

Password cannot be NULL.

DBMS_LDAP_UTL.PWD_
INHISTORY_ERROR

Password cannot be the same as the one that is being replaced.

DBMS_LDAP_UTL.PWD_
ILLEGALVALUE_ERROR

Password contains illegal characters.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for unconditional failures
while carrying out LDAP operations by the LDAP server.

Table 11–13 (Cont.) SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

Subprograms

11-10 Oracle Identity Management Application Developer’s Guide

Syntax
FUNCTION get_user_extended_properties
(
ld IN SESSION,
user_handle IN HANDLE,
attrs IN STRING_COLLECTION
ptype IN PLS_INTEGER,
filter IN VARCHAR2,
rep_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

Table 11–15 GET_USER_EXTENDED_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING_COLLECTION A list of attributes to fetch for the
user.

ptype PLS_INTEGER The type of properties to return.
Here is a valid value: - DBMS_
LDAP_UTL.EXTPROPTYPE_RAD

filter VARCHAR2 An LDAP filter to further refine the
user properties returned by the
function.

ret_pset_
collection

PROPERTY_SET_COLLECTION The user details containing the
attributes requested by the caller.

Table 11–16 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

USER_PROPERTY_NOT_FOUND User extended property does not exist.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-11

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.get_user_properties().

Function get_user_dn
The function get_user_dn() returns the user DN.

Syntax
FUNCTION get_user_dn
(
ld IN SESSION,
user_handle IN HANDLE,
dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

Table 11–17 GET_USER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

dn VARCHAR2 The user DN.

Table 11–18 GET_USER_DN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_
UTL.GENERAL_ERROR

Authentication failed.

DBMS_LDAP_UTL.NO_
SUCH_USER

User does not exist.

DBMS_LDAP_
UTL.MULTIPLE_USER_
ENTRIES

The user has multiple DN entries.

DBMS_LDAP_
UTL.INVALID_ROOT_
ORCL_CTX

Invalid root Oracle Context.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for unconditional failures
that occur when LDAP operations are carried out.

Subprograms

11-12 Oracle Identity Management Application Developer’s Guide

See Also
DBMS_LDAP.init().

Function check_group_membership
The function check_group_membership() checks whether the user belongs to a
group.

Syntax
FUNCTION check_group_membership
(
ld IN SESSION,
user_handle IN HANDLE,
group_handle IN HANDLE,
nested IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.get_group_membership().

Function locate_subscriber_for_user
The function locate_subscriber_for_user() retrieves the subscriber for the
given user and returns a handle to it.

Table 11–19 CHECK_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

group_handle HANDLE The group handle.

nested PLS_INTEGER The type of membership the user holds in groups.
Here are valid values:

■ DBMS_LDAP_UTL.NESTED_MEMBERSHIP

■ DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

Table 11–20 CHECK_GROUP_MEMBERSHIP Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS If user is a member.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GROUP_MEMBERSHIP If user is not a member.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-13

Syntax
FUNCTION locate_subscriber_for_user
(
ld IN SESSION,
user_handle IN HANDLE,
subscriber_handle OUT HANDLE
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_user_handle().

Table 11–21 LOCATE_SUBSCRIBER_FOR_USER Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

subscriber_handle HANDLE The subscriber handle.

Table 11–22 LOCATE SUBSCRIBER FOR USER Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of subscriber
DN entries exist in the directory
for the given subscriber.

DBMS_LDAP_UTL.NO_SUCH_USER User doesn’t exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES Multiple number of user DN
entries exist in the directory for
the given user.

DBMS_LDAP_UTL.SUBSCRIBER_NOT_FOUND Unable to locate subscriber for
the given user.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_EXCP User account is locked.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
while carrying out LDAP
operations by the LDAP server.

Subprograms

11-14 Oracle Identity Management Application Developer’s Guide

Function get_group_membership
The function get_group_membership() returns the list of groups to which the user
is a member.

Syntax
FUNCTION get_group_membership
(
user_handle IN HANDLE,
nested IN PLS_INTEGER,
attr_list IN STRING_COLLECTION,
ret_groups OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Table 11–23 GET_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

nested PLS_INTEGER The type of membership the user holds in
groups. Here are valid values:

■ DBMS_LDAP_UTL.NESTED_
MEMBERSHIP

■ DBMS_LDAP_UTL.DIRECT_
MEMBERSHIP

attr_list STRING_COLLECTION A list of attributes to be returned.

ret_groups PROPERTY_SET_
COLLECTION

A pointer to a pointer to an array of group
entries.

Table 11–24 GET_GROUP_MEMBERSHIP Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-15

Group-Related Subprograms
A group is represented using by using the DBMS_LDAP_UTL.HANDLE data type. A
group handle represents a valid group entry. You can create a group handle by using a
DN, GUID or a simple name, along with the appropriate subscriber handle. When a
simple name is used, additional information from the Root Oracle Context and the
Subscriber Oracle Context is used to identify the group. Here is an example of a group
handle creation:

retval := DBMS_LDAP_UTL.create_group_handle(
group_handle,
DBMS_LDAP_UTL.TYPE_DN,
"cn=group1,cn=Groups,o=acme,dc=com"
);

This group handle has to be associated with an appropriate subscriber handle. For
example, given a subscriber handle: subscriber_handle representing
o=acme,dc=com, the subscriber handle can be associated in the following way:

retval := DBMS_LDAP_UTL.set_group_handle_properties(
group_handle,
DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,
subscriber_handle
);

A sample use of group handle is getting group properties. Here is an example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) := ‘uniquemember’;
retval := DBMS_LDAP_UTL.get_group_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
);

The group-related subprograms also support membership-related functionality. Given
a user handle, you can find out if it is a direct or a nested member of a group by using
the DBMS_LDAP_UTL.check_group_membership() function. Here is an example:

retval := DBMS_LDAP_UTL.check_group_membership(
session,
user_handle,
group_handle,
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

You can also obtain a list of groups that a particular group belongs to, using the DBMS_
LDAP_UTL.get_group_membership() function. For example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) := ‘cn’;
retval := DBMS_LDAP_UTL.get_group_membership(
my_session,
user_handle,
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP,
my_attrs
my_pset_coll
);

See Also: Example: User-Related Functions on page B-9 for more
examples of group handles

Subprograms

11-16 Oracle Identity Management Application Developer’s Guide

Function create_group_handle
 The function create_group_handle() creates a group handle.

Syntax
FUNCTION create_group_handle
(
group_hd OUT HANDLE,
group_type IN PLS_INTEGER,
group_id IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_group_properties(), DBMS_LDAP_UTL.set_group_
handle_properties().

Function set_group_handle_properties
The function set_group_handle_properties() configures the group handle
properties.

Syntax
FUNCTION set_group_handle_properties
(
group_hd IN HANDLE,
property_type IN PLS_INTEGER,
property IN HANDLE
)
RETURN PLS_INTEGER;

Table 11–25 CREATE_GROUP_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to a handle to a group.

group_type PLS_INTEGER The type of group ID that is passed. Valid
values for this argument are as follows:

■ DBMS_LDAP_UTL.TYPE_DN

■ DBMS_LDAP_UTL.TYPE_GUID

■ DBMS_LDAP_UTL.TYPE_NICKNAME

group_id VARCHAR2 The group ID representing the group entry.

Table 11–26 CREATE_GROUP_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-17

Parameters

Return Values

Usage Notes
The subscriber handle doesn’t need to be set in Group Handle Properties if the group
handle is created with TYPE_DN or TYPE_GUID as the group type.

See Also
DBMS_LDAP_UTL.get_group_properties().

Function get_group_properties
The function get_group_properties() retrieves the group properties.

Syntax
FUNCTION get_group_properties
(
ld IN SESSION,
group_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
ret_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Table 11–27 SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to the handle to the group.

property_type PLS_INTEGER The type of property that is passed. Valid values
for this argument are as follows: DBMS_LDAP_
UTL.GROUP_HANDLE

property HANDLE The property describing the group entry.

Table 11–28 SET_GROUP_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_UTL.RESET_
HANDLE

When a caller tries to reset the existing handle properties.

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

Table 11–29 GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

group_handle HANDLE The group handle.

Subprograms

11-18 Oracle Identity Management Application Developer’s Guide

Return Values

Usage Notes
This function requires the following:

■ A valid LDAP session handle which must be obtained from the DBMS_
LDAP.init() function.

■ A valid subscriber handle to be set in the group handle properties if the group
type is of: DBMS_LDAP_UTL.TYPE_NICKNAME.

This function doe not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained fromDBMS_LDAP_UTL.create_subscriber_
handle(), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL.TYPE_GUID or DBMS_LDAP_UTL.TYPE_
DN, the subscriber handle does not have to be set in the group handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_group_handle().

Function get_group_dn
The function get_group_dn()returns the group DN.

attrs STRING_COLLECTION A list of attributes that must be fetched for
the group.

ptype PLS_INTEGER The type of properties to be returned. The
valid value is DBMS_LDAP_UTL.ENTRY_
PROPERTIES

ret_pset_coll PROPERTY_SET_
COLLECTION

The group details containing the attributes
requested by the caller.

Table 11–30 GET_GROUP_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn’t exist.

DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group DN
entries exist in the directory for the
given group.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
while carrying out LDAP operations
by the LDAP server.

Table 11–29 (Cont.) GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-19

Syntax
FUNCTION get_group_dn
(
ld IN SESSION,
group_handle IN HANDLE
dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Subscriber-Related Subprograms
A subscriber is represented by using dbms_ldap_utl.handle data type. You can
create a subscriber handle by using a DN, GUID or simple name. When a simple name
is used, additional information from the root Oracle Context is used to identify the
subscriber. This example shows a subscriber handle being created:

retval := DBMS_LDAP_UTL.create_subscriber_handle(
subscriber_handle,
DBMS_LDAP_UTL.TYPE_DN,

Table 11–31 GET_GROUP_DN Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

group_handle HANDLE The group handle.

dn VARCHAR2 The group DN.

Table 11–32 GET_GROUP_DN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn’t exist.

DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group DN
entries exist in the directory for
the given group.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
that are encountered when LDAP
operations are carried out.

Subprograms

11-20 Oracle Identity Management Application Developer’s Guide

"o=acme,dc=com"
);

subscriber_handle is created by it’s DN: o=oracle,dc=com.

Getting subscriber properties is one common use of a subscriber handle. Here is an
example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
 my_attrs(1) := ‘orclguid’;
 retval := DBMS_LDAP_UTL.get_subscriber_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
);

Function create_subscriber_handle
The function create_subscriber_handle() creates a subscriber handle.

Syntax
FUNCTION create_subscriber_handle
(
subscriber_hd OUT HANDLE,
subscriber_type IN PLS_INTEGER,
subscriber_id IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also: "DBMS_LDAP_UTL Sample Code" on page B-9 for
examples of subscriber handles

Table 11–33 CREATE_SUBSCRIBER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

subscriber_hd HANDLE A pointer to a handle to a subscriber.

subscriber_type PLS_INTEGER The type of subscriber ID that is passed. Valid
values for this argument are:

■ DBMS_LDAP_UTL.TYPE_DN

■ DBMS_LDAP_UTL.TYPE_GUID

■ DBMS_LDAP_UTL.TYPE_NICKNAME

■ DBMS_LDAP_UTL.TYPE_DEFAULT

subscriber_id VARCHAR2 The subscriber ID representing the subscriber
entry. This can be NULL if subscriber_
type is DBMS_LDAP_UTL.TYPE_DEFAULT.
In this case, the default subscriber is retrieved
from the root Oracle Context.

Table 11–34 CREATE_SUBSCRIBER_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-21

See Also
DBMS_LDAP_UTL.get_subscriber_properties().

Function get_subscriber_properties
The function get_subscriber_properties()retrieves the subscriber properties
for the given subscriber handle.

Syntax
FUNCTION get_subscriber_properties
(
ld IN SESSION,
subscriber_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
ret_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Table 11–35 GET_SUBSCRIBER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of attributes that must be
retrieved for the subscriber.

ptype PLS_INTEGER Properties of the subscriber’s Oracle
Context to return. These are valid
values:

■ DBMS_LDAP_UTL.ENTRY_
PROPERTIES

■ DBMS_LDAP_UTL.COMMON_
PROPERTIES

ret_pset_coll PROPERTY_SET_COLLECTION The subscriber details containing the
attributes requested by the caller.

Table 11–36 GET_SUBSCRIBER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

Table 11–34 (Cont.) CREATE_SUBSCRIBER_HANDLE Function Return Values

Value Description

Subprograms

11-22 Oracle Identity Management Application Developer’s Guide

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_subscriber_handle().

Function get_subscriber_dn
The function get_subscriber_dn() returns the subscriber DN.

Syntax
FUNCTION get_subscriber_dn
(
ld IN SESSION,
subscriber_handle IN HANDLE,
dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Subscriber has a multiple
number of DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
encountered while LDAP
operations are carried out.

Table 11–37 GET_SUBSCRIBER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

subscriber_handle HANDLE The subscriber handle.

dn VARCHAR2 The subscriber DN.

Table 11–38 GET_SUBSCRIBER_DN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn’t exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of subscriber DN
entries exist in the directory for the
given subscriber.

Table 11–36 (Cont.) GET_SUBSCRIBER_PROPERTIES Function Return Values

Value Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-23

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Function get_subscriber_ext_properties
The function get_subscriber_ext_properties() retrieves the subscriber
extended properties. Currently this can be used to retrieve the subscriber-wide default
Resource Access Descriptors.

Syntax
FUNCTION get_subscriber_ext_properties
(
ld IN SESSION,
subscriber_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
filter IN VARCHAR2,
rep_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes
for unconditional failures encountered
when LDAP operations are carried
out.

Table 11–39 GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session
handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of subscriber attributes
to retrieve.

ptype PLS_INTEGER The type of properties to
return. A valid value is -
DBMS_LDAP_
UTL.DEFAULT_RAD_
PROPERTIES

filter VARCHAR2 An LDAP filter to further
refine the subscriber
properties returned by the
function.

Table 11–38 (Cont.) GET_SUBSCRIBER_DN Function Return Values

Value Description

Subprograms

11-24 Oracle Identity Management Application Developer’s Guide

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also DBMS_LDAP.init(), DBMS_LDAP_UTL.get_subscriber_
properties().

Property-Related Subprograms
Many of the user-related, subscriber-related, and group-related subprograms return
DBMS_LDAP_UTL.PROPERTY_SET_COLLECTION, which is a collection of one or more
LDAP entries representing results. Each of these entries is represented by a DBMS_
LDAP_UTL.PROPERTY_SET. A PROPERTY_SET may contain attributes—that is,
properties—and its values. Here is an example that illustrates the retrieval of
properties from DBMS_LDAP_UTL.PROPERTY_SET_COLLECTION:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) := ‘cn’;

retval := DBMS_LDAP_UTL.get_group_membership(
my_session,
user_handle,
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP,
my_attrs,
my_pset_coll
);

IF my_pset_coll.count > 0 THEN
 FOR i in my_pset_coll.first .. my_pset_coll.last LOOP
-- my_property_names is of type DBMS_LDAP.STRING_COLLECTION
 retval := DBMS_LDAP_UTL.get_property_names(
pset_coll(i),
property_names
 IF my_property_names.count > 0 THEN
 FOR j in my_property_names.first .. my_property_names.last LOOP

ret_pset_collection PROPERTY_SET_COLLECTION The subscriber details
containing the attributes
requested by the caller.

Table 11–40 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures encountered when
LDAP operations are carried out.

Table 11–39 (Cont.) GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-25

 retval := DBMS_LDAP_UTL.get_property_values(
pset_coll(i),
property_names(j),
property_values
 if my_property_values.COUNT > 0 then
 FOR k in my_property_values.FIRST..my_property_values.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(my_property_names(j) || ‘: ‘
 ||my_
property_values(k));
 END LOOP; -- For each value
 else
 DBMS_OUTPUT.PUT_LINE('NO VALUES FOR ‘ || my_property_names(j));
 end if;
 END LOOP; -- For each property name
 END IF; -- IF my_property_names.count > 0
 END LOOP; -- For each propertyset
 END IF; -- If my_pset_coll.count > 0

use_handle is a user handle. my_pset_coll contains all the nested groups that
user_handle belongs to. The code loops through the resulting entries and prints out
the cn of each entry.

Miscellaneous Subprograms
The miscellaneous subprograms in the DBMS_LDAP_UTL package perform a variety of
different functions.

Function normalize_dn_with_case
The function normalize_dn_with_case() removes unnecessary white space
characters from a DN and converts all characters to lower case based on a flag.

Syntax
FUNCTION normalize_dn_with_case
(
dn IN VARCHAR2,
lower_case IN PLS_INTEGER,
norm_dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

See Also: Example: User-Related Functions on page B-9 for more
usage samples of the Property-related subpropgrams

Table 11–41 NORMALIZE_DN_WITH_CASE Function Parameters

Parameter Name Parameter Type Parameter Description

dn VARCHAR2 The DN.

lower_case PLS_INTEGER If set to 1: The normalized DN returns in
lower case. If set to 0: The case is preserved in
the normalized DN string.

norm_dn VARCHAR2 The normalized DN.

Subprograms

11-26 Oracle Identity Management Application Developer’s Guide

Return Values

Usage Notes
This function can be used while comparing two DNs.

Function get_property_names
The function get_property_names() retrieves the list of property names in the
property set.

Syntax
FUNCTION get_property_names
(
pset IN PROPERTY_SET,
property_names OUT STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 11–42 NORMALIZE_DN_WITH_CASE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Table 11–43 GET_PROPERTY_NAMES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection returned from any of the
following functions:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_
subscriber_properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_names STRING_COLLECTION A list of property names associated
with the property set.

Table 11–44 GET_PROPERTY_NAMES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On error.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-27

See Also
DBMS_LDAP_UTL.get_property values().

Function get_property_values
The function get_property_values() retrieves the property values (the strings)
for a given property name and property.

Syntax
FUNCTION get_property_values
(
pset IN PROPERTY_SET,
property_name IN VARCHAR2,
property_values OUT STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_property_values_len().

Function get_property_values_len
The function get_property_values_len() retrieves the binary property values
for a given property name and property.

Table 11–45 GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 The property name.

pset PROPERTY_SET The property set in the property set
collection obtained from any of the
following function returns:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_
subscriber_properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_values STRING_COLLECTION A list of property values (strings).

Table 11–46 GET_PROPERTY_VALUES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Subprograms

11-28 Oracle Identity Management Application Developer’s Guide

Syntax
FUNCTION get_property_values_len
(
pset IN PROPERTY_SET,
property_name IN VARCHAR2,
auth_type IN PLS_INTEGER,
property_values OUT BINVAL_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_property_values().

Procedure free_propertyset_collection
The procedure free_propertyset_collection() frees the memory associated
with property set collection.

Syntax
PROCEDURE free_propertyset_collection
(
pset_collection IN OUT PROPERTY_SET_COLLECTION
);

Table 11–47 GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 A property name.

pset PROPERTY_SET The property set in the property set
collection obtained from any of the
following function returns:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_
subscriber_properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_values BINVAL_COLLECTION A list of binary property values.

Table 11–48 GET_PROPERTY_VALUES_LEN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_
UTL.GENERAL_ERROR

On failure.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-29

Parameters

See Also
DBMS_LDAP_UTL.get_group_membership(), DBMS_LDAP_UTL.get_
subscriber_properties(), DBMS_LDAP_UTL.get_user_properties(),
DBMS_LDAP_UTL.get_group_properties().

Function create_mod_propertyset
The function create_mod_propertyset() creates a MOD_PROPERTY_SET data
structure.

Syntax
FUNCTION create_mod_propertyset
(
pset_type IN PLS_INTEGER,
pset_name IN VARCHAR2,
mod_pset OUT MOD_PROPERTY_SET
)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 11–49 FREE_PROPERTYSET_COLLECTION Procedure Parameters

Parameter Name Parameter Type Parameter Description

pset_collection PROPERTY_SET_
COLLECTION

The property set collection returned from one
of the following functions:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_subscriber_
properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

Table 11–50 CREATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

pset_type PLS_INTEGER The type of property set being modified.
Here is a valid value: ENTRY_PROPERTIES

pset_name VARCHAR2 The name of the property set. This can be
NULL if ENTRY_PROPERTIES are being
modified.

mod_pset MOD_PROPERTY_SET The data structure to contain modify
operations to be performed on the property
set.

Table 11–51 CREATE_MOD_PROPERTYSET Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

Subprograms

11-30 Oracle Identity Management Application Developer’s Guide

See Also
DBMS_LDAP_UTL.populate_mod_propertyset().

Function populate_mod_propertyset
The function populate_mod_propertyset() populates the MOD_PROPERTY_SET
data structure.

Syntax
FUNCTION populate_mod_propertyset
(
mod_pset IN MOD_PROPERTY_SET,
property_mod_op IN PLS_INTEGER,
property_name IN VARCHAR2,
property_values IN STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.create_mod_propertyset().

DBMS_LDAP_
UTL.GENERAL_ERROR

Other error.

Table 11–52 POPULATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

mod_pset MOD_PROPERTY_
SET

Mod-PropertySet data structure.

property_mod_op PLS_INTEGER The type of modify operation to perform on
a property. These are valid values:

■ ADD_PROPERTY

■ REPLACE_PROPERTY

■ DELETE_PROPERTY

property_name VARCHAR2 The name of the property

property_values STRING_
COLLECTION

Values associated with the property.

Table 11–53 POPULATE_MOD_PROPERTYSET Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.

DBMS_LDAP_UTL.PWD_GRACELOGIN_WARN Grace login for user.

Table 11–51 (Cont.) CREATE_MOD_PROPERTYSET Function Return Values

Value Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 11-31

Procedure free_mod_propertyset
The procedure free_mod_propertyset() frees the MOD_PROPERTY_SET data
structure.

Syntax
PROCEDURE free_mod_propertyset
(
mod_pset IN MOD_PROPERTY_SET
);

Parameters

See Also
DBMS_LDAP_UTL.create_mod_propertyset().

Procedure free_handle
The procedure free_handle() frees the memory associated with the handle.

Syntax
PROCEDURE free_handle
(
handle IN OUT HANDLE
);

Parameters

See Also
DBMS_LDAP_UTL.create_user_handle(), DBMS_LDAP_UTL.create_
subscriber_handle(), DBMS_LDAP_UTL.create_group_handle().

Function check_interface_version
The function check_interface_version() checks the interface version.

Syntax
FUNCTION check_interface_version
(
interface_version IN VARCHAR2
)
RETURN PLS_INTEGER;

Table 11–54 FREE_MOD_PROPERTYSET Procedure Parameters

Parameter Name Parameter Type Parameter Description

mod_pset PROPERTY_SET Mod_PropertySet data structure.

Table 11–55 FREE_HANDLE Procedure Parameters

Parameter Name Parameter Type Parameter Description

handle HANDLE A pointer to a handle.

Subprograms

11-32 Oracle Identity Management Application Developer’s Guide

Parameters

Return Values

Function get_property_values_blob
The function get_property_values_blob() retrieves large binary property values
for a given property name and property.

Syntax
FUNCTION get_property_values_blob
(
pset IN PROPERTY_SET,
property_name IN VARCHAR2,
auth_type IN PLS_INTEGER,
property_values OUT BLOB_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Table 11–56 CHECK_INTERFACE_VERSION Function Parameters

Parameter Name Parameter Type Parameter Description

interface_version VARCHAR2 Version of the interface.

Table 11–57 CHECK_VERSION_INTERFACE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS Interface version is supported.

DBMS_LDAP_UTL.GENERAL_ERROR Interface version is not supported.

Table 11–58 GET_PROPERTY_VALUES_BLOB Function Parameters

Parameters Parameter Type Description

property_name VARCHAR2 A property name.

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_subscriber_
properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_values BLOB_COLLECTION A list of binary property values.

Function Return Code Summary

DBMS_LDAP_UTL PL/SQL Reference 11-33

Return Values

See Also
DBMS_LDAP_UTL.get_property_values().

Procedure property_value_free_blob
Frees the memory associated with BLOB_COLLECTION returned by DBMS_LDAP.get_
property_values_blob().

Syntax
Syntax
PROCEDURE property_value_free_blob
(
vals IN OUT DBMS_LDAP.BLOB_COLLECTION
);

Parameters

See Also
DBMS_LDAP.get_property_values_blob().

Function Return Code Summary
The DBMS_LDAP_UTL functions can return the values in the following table

Table 11–59 GET_PROPERTY_VALUES_BLOB Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Table 11–60 PROPERTY_VALUE_FREE_BLOB Function Parameters

Parameter Description

vals The collection of large binary values returned by DBMS_
LDAP.get_property_values_blob().

Table 11–61 Function Return Codes

Name
Return
Code Description

SUCCESS 0 Operation successful.

GENERAL_ERROR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM_ERROR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_MEMBERSHIP -3 Returned by user-related functions and group
functions when the user is not a member of a group.

NO_SUCH_SUBSCRIBER -4 Returned by subscriber-related functions when the
subscriber does not exist in the directory.

Function Return Code Summary

11-34 Oracle Identity Management Application Developer’s Guide

NO_SUCH_USER -5 Returned by user-related functions when the user
does not exist in the directory.

NO_ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context does not exist in the directory.

MULTIPLE_SUBSCRIBER_
ENTRIES

-7 Returned by subscriber-related functions when
multiple subscriber entries are found for the given
subscriber nickname.

INVALID_ROOT_ORCL_CTX -8 Root Oracle Context does not contain all the required
information needed by the function.

NO_SUBSCRIBER_ORCL_CTX -9 Oracle Context does not exist for the subscriber.

INVALID_SUBSCRIBER_
ORCL_CTX

-10 Oracle Context for the subscriber is invalid.

MULTIPLE_USER_ENTRIES -11 Returned by user-related functions when multiple
user entries exist for the given user nickname.

NO_SUCH_GROUP -12 Returned by group related functions when a group
does not exist in the directory.

MULTIPLE_GROUP_ENTRIES -13 Multiple group entries exist for the given group
nickname in the directory.

ACCT_TOTALLY_LOCKED_
EXCEPTION

-14 Returned by DBMS_LDAP_UTL.authenticate_
user() function when a user account is locked. This
error is based on the password policy set in the
subscriber oracle context.

AUTH_PASSWD_CHANGE_WARN -15 This return code is deprecated.

AUTH_FAILURE_EXCEPTION -16 Returned by DBMS_LDAP_UTL.authenticate_
user() function when user authentication fails.

PWD_EXPIRED_EXCEPTION -17 Returned by DBMS_LDAP_UTL.authenticate_
user() function when the user password has
expired. This is a password policy error.

RESET_HANDLE -18 Returned when entity handle properties are being
reset by the caller.

SUBSCRIBER_NOT_FOUND -19 Returned by DBMS_LDAP-UTL.locate_
subscriber_for_user() function when it is
unable to locate the subscriber.

PWD_EXPIRE_WARN -20 Returned by DBMS_LDAP_UTL.authenticate_
user() function when the user password is about to
expire. This is a password policy error.

PWD_MINLENGTH_ERROR -21 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password is less than the
minimum required length. This is a password policy
error.

PWD_NUMERIC_ERROR -22 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password does not
contain at least one numeric character. This is a
password policy error.

Table 11–61 (Cont.) Function Return Codes

Name
Return
Code Description

Data Type Summary

DBMS_LDAP_UTL PL/SQL Reference 11-35

Data Type Summary
The DBMS_LDAP_UTL package uses the data types in the following table

PWD_NULL_ERROR -23 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password is an empty
password. This is a password policy error.

PWD_INHISTORY_ERROR -24 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password is the same as
the previous password. This is a password policy
error.

PWD_ILLEGALVALUE_ERROR -25 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password has an illegal
character. This is a password policy error.

PWD_GRACELOGIN_WARN -26 Returned by DBMS_LDAP_UTL.authenticate_
user() function to indicate that the user password
has expired and the user has been given a grace login.
This is a password policy error.

PWD_MUSTCHANGE_ERROR -27 Returned by DBMS_LDAP_UTL.authenticate_
user() function when user password needs to be
changed. This is a password policy error.

USER_ACCT_DISABLED_
ERROR

-29 Returned by DBMS_LDAP_UTL.authenticate_
user() function when user account has been
disabled. This is a password policy error.

PROPERTY_NOT_FOUND -30 Returned by user-related functions while searching
for a user property in the directory.

Table 11–62 DBMS_LDAP_UTL Data Types

Data Type Purpose

HANDLE Used to hold the entity.

PROPERTY_SET Used to hold the properties of an entity.

PROPERTY_SET_COLLECTION List of PROPERTY_SET structures.

MOD_PROPERTY_SET Structure to hold modify operations on an entity.

Table 11–61 (Cont.) Function Return Codes

Name
Return
Code Description

Data Type Summary

11-36 Oracle Identity Management Application Developer’s Guide

DAS_URL Interface Reference 12-1

12
DAS_URL Interface Reference

This chapter describes the Oracle extensions to the DAS_URL Service Interface. It
contains these sections:

■ Directory Entries for the Service Units

■ DAS Units and Corresponding URL Parameters

■ DAS URL API Parameter Descriptions

■ Search-and-Select Service Units for Users or Groups

Directory Entries for the Service Units
Table 12–1 lists the Oracle Delegated Administration Services units and the directory
entries that store relative URLs for these units.

Table 12–1 Service Units and Corresponding Entries

Service Unit Entry

Create User cn=CreateUser,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Edit User cn=EditUser,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Edit User when
GUID is passed as a
parameter

cn=EditUserGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Delete User cn=DeleteUser,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Delete User when
GUID of the user to
be deleted is passed
as a parameter

cn=DeleteUserGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Create Group cn=CreateGroup,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Edit Group cn=EditGroup,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Edit the group
whose GUID is
passed through a
parameter

cn=EditGroupGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Delete Group cn=DeleteGroup,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Delete group with
the GUID passed
through a parameter

cn=DeleteGroupGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

DAS Units and Corresponding URL Parameters

12-2 Oracle Identity Management Application Developer’s Guide

DAS Units and Corresponding URL Parameters
Table 12–2 lists the DAS units and the URL parameters that can be passed to these
units.

Assign privileges to
a user

cn=UserPrivilege,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Assign privileges to
a user with the
GUID passed
through a parameter

cn=UserPrivilegeGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Assign privilege to a
group

cn=GroupPrivilege,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Assign privilege to a
group with the given
GUID

cn=GroupPrivilegeGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

View User account
information/Profile

cn=AccountInfo,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Edit User account
Information/Profile

cn=Edit My Profile,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Change Password cn=PasswordChange,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search User cn=UserSearch,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search Group cn=GroupSearch,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search User LOV cn=UserLOV,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search Group LOV cn=GroupLOV,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

EUS Console cn=EUS Console,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext"

Delegation Console cn=DelegationConsole,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Table 12–2 DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values

Create User doneURL
homeURL
cancelURL
enablePA

returnGUID

Edit User homeURL
doneURL
cancelURL
enablePA

-

Table 12–1 (Cont.) Service Units and Corresponding Entries

Service Unit Entry

DAS Units and Corresponding URL Parameters

DAS_URL Interface Reference 12-3

EditUserGivenGUID homeURL
doneURL
cancelURL
enablePA
userGUID

-

EditMyProfile homeURL
doneURL
cancelURL

-

Delegation Console - -

DeleteUser homeURL
doneURL
cancelURL

-

DeleteUserGivenGUID homeURL
doneURL
cancelURL
userGUID

-

UserPrivilege homeURL
doneURL
cancelURL

UserPrivilegeGivenGUID homeURL
doneURL
cancelURL
userGUID

-

CreateGroup homeURL
doneURL
cancelURL
enablePA
parentDN

returnGUID

EditGroup homeURL
doneURL
cancelURL
enablePA

-

EditGroupGivenGUID homeURL
doneURL
cancelURL
enablePA
groupGUID

-

DeleteGroup homeURL
doneURL
cancelURL

-

DeleteGroupGivenGUID homeURL
doneURL
cancelURL
groupGUID

-

GroupPrivilege homeURL
doneURL
cancelURL

-

Table 12–2 (Cont.) DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values

DAS URL API Parameter Descriptions

12-4 Oracle Identity Management Application Developer’s Guide

DAS URL API Parameter Descriptions
The parameters described in Table 12–3 are used with DAS units.

GroupPrivilegeGivenGUID homeURL
doneURL
cancelURL
groupGUID

-

AccountInfo homeURL
doneURL
cancelURL

-

PasswordChange homeURL
doneURL
cancelURL

-

UserSearch homeURL
doneURLm
cancelURL

-

GroupSearch homeURL
doneURL
cancelURL

-

UserLOV base
cfilter
title
dasdomain
callbackURL

userDn
userGuid
userName
nickName
userEmail

GroupLOV otype
base
cfilter
title
dasdomain
callbackURL

groupDN
groupGuid
groupName
groupDescription

Table 12–3 DAS URL Parameter Descriptions

Parameter Description

homeURL The URL that is linked to the global button Home. When the calling
application specifies this value, clicking Home redirects the DAS unit to
the URL specified by this parameter.

doneURL This URL is used by DAS to redirect the DAS page at the end of each
operation. In the case of Create User, once the user is created, clicking
OK redirects the URL to this location.

callbackURL DAS uses this URL to send return values to the invoking application.
For UserLOV and GroupLOV units, the return values are submitted as
HTML form parameters through the HTTP POST method.

cancelURL This URL is linked with all the Cancel buttons shown in the DAS units.
Any time the user clicks Cancel, the page is redirected to the URL
specified by this parameter.

enablePA This parameter takes a Boolean value of true or false. Set to true, the
parameter enables the Assign Privileges in User or Group operation. If
the enablePA is passed with value of true in the Create User page, the
Assign Privileges to User section also appears in the Create User page.

Table 12–2 (Cont.) DAS Units and Corresponding URL Parameters

DAS Unit Parameter Return Values

Search-and-Select Service Units for Users or Groups

DAS_URL Interface Reference 12-5

Search-and-Select Service Units for Users or Groups
DAS provides service units for searching and selecting users or groups. These service
units are sometimes referred to as user or group List Of Values (LOV).

Invoking Search-and-Select Service Units for Users or Groups
A custom application can open a popup window and populate its contents by
supplying a search-and-select URL for a user or group:

http://a.b.c:port/oiddas/ui/oracle/ldap/das/search/LOVUserSearch?title=User&
callbackurl=http://x.y.z:port/custapp/Callback

or

http://a.b.c:port/oiddas/ui/oracle/ldap/das/search/LOVGroupSearch?title=
Group&callbackurl=http://x.y.z:port/custapp/Callback

In these examples, a.b.c:port is the host name and port of the OID DAS application
server. x.y.z:port is the host name and port of the custom application server.
title is a string that appears in the title of the Search and Select page. callbackurl
is a URL on the custom application server that receives the selected parameters for
users or groups.

userGUID This is the GUID of the user to be edited or deleted. This corresponds to
the orclguid attribute. Specifying the GUID causes the search for the
user step in either editUser or deleteUser units to be skipped.

GroupGUID This is the GUID of the group to be edited or deleted. This corresponds
to the orclguid attribute. Specifying the GUID causes the search for the
group step in either editGroup or deleteGroup units to be skipped.

parentDN When this parameter is specified in CreateGroup, the group is created
under this container. If the parameter is not specified, group creation
defaults to the group search base.

base This parameter represents the search base in the case of search
operations.

cfilter This parameter represents the filter to be used for the search. This filter
is LDAP compliant.

title This parameter represents the title to be shown in the Search and Select
LOV page.

otype This parameter represents the object type used for search. Values
supported are Select, Edit, and Assign.

returnGUID This parameter is appended to the done URL in case of a create
operation. The value will be the orclguid of the new object.

dasdomain This parameter is needed only when the browser is Internet Explorer
and the calling URL and the DAS URL are on different hosts and in the
same domain. An example value is us.oracle.com. Note the calling
application also needs to set the document.domain parameter on the
formload. For more details, refer to Microsoft support at:

http://support.microsoft.com/

Table 12–3 (Cont.) DAS URL Parameter Descriptions

Parameter Description

Search-and-Select Service Units for Users or Groups

12-6 Oracle Identity Management Application Developer’s Guide

Receiving Data from the User or Group Search-and-Select Service Units
After a User or Group has been selected via the OID DAS User or Group
Search-and-Select Service Unit, an HTTP form will be submitted to the callbackurl
page using the POST method. The parameters defined in Table 12–4 and Table 12–5
are available to the callbackurl page:

The callbackurl page in the popup window may transfer the form parameters to the
invoking page in the opener window using JavaScript. It may then close the popup
window.

Note: To avoid popup blocking, the custom application may open
the popup window with a URL on the local custom application server
and immediately redirect to the OID DAS User or Group
Search-and-Select URL.

Table 12–4 User Search and Select

Parameter Description

userDn User’s distinguished name.

userGuid User’s global unique ID.

userName User’s name.

nickName User’s nickname

userEmail User’s email.

Table 12–5 Group Search and Select

Parameter Description

groupDN Group’s distinguished name.

groupGuid Group’s global unique ID.

groupName Group’s name.

groupDescription Group’s description.

Note: To avoid JavaScript security problems, the custom application
may supply the callbackurl page on the same server as the invoking
page. This enables the callbackurl page in the popup window and the
invoking page in the opener window to communicate directly through
JavaScript.

Provisioning Integration API Reference 13-1

13
Provisioning Integration API Reference

This chapter examines the registration API for the Oracle Directory Provisioning
Integration Service. It contains the following sections:

■ Versioning of Provisioning Files and Interfaces

■ Extensible Event Definition Configuration

■ Inbound and Outbound Events

■ PL/SQL Bidirectional Interface (Version 2.0)

■ Provisioning Event Interface (Version 1.1)

Versioning of Provisioning Files and Interfaces
In release 9.0.2, the default interface version was version 1.1. In releases 9.0.4 and
10.1.2, the interface version defaults to version 2.0, but the administrator can set this
back to version 1.1 to maintain the release 9.0.2 interface.

Extensible Event Definition Configuration
This feature is only for outbound events. It addresses the ability to define a new event
at run time so that the provisioning integration service can interpret a change in Oracle
Internet Directory and determine whether an appropriate event is to be generated and
propagated to an application. The following events will be the only configured events
at installation time.

An event definition (entry) consists of the following attributes.

■ Event object type (orclODIPProvEventObjectType): This specifies the type of
object the event is associated with. For example, the object could be a USER,
GROUP, or IDENTITY.

■ LDAP change type (orclODIPProvEventChangeType): This indicates that all
kinds of LDAP operations can generate an event for this type of object. (e.g ADD,
MODIFY, DELETE)

■ Event criteria (orclODIPProvEventCriteria): The additional selection criteria
that qualify an LDAP entry to be of a specific object type. For example,
Objectclass=orclUserV2 means that any LDAP entry that satisfies this
criteria can be qualified as this Object Type and any change to this entry can
generate appropriate events.

The object class that holds the above attributes is orclODIPProvEventTypeConfig.
The container cn=ProvisioningEventTypeConfig,cn=odi,cn=oracle
internet directory is used to store all the event type configurations.

Extensible Event Definition Configuration

13-2 Oracle Identity Management Application Developer’s Guide

Table 13–1 lists the event definitions predefined as a part of the installation.

The container cn=ProvisioningEventTypeConfig,cn=odi,cn=oracle
internet directory is used to store all the event definition configurations. LDAP
configuration of the predefined event definitions is as follows:

dn: orclODIPProvEventObjectType=ENTRY,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: ENTRY
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=*
objectclass: orclODIPProvEventTypeConfig

dn:
orclODIPProvEventObjectType=USER,cn=ProvisioningEventTypeConfig,cn=odi,cn=oracle
internet directory
orclODIPProvEventObjectType: USER
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=InetOrgPerson
orclODIPProvEventCriteria: objectclass=orcluserv2
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=IDENTITY,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: IDENTITY
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=inetorgperson
orclODIPProvEventCriteria: objectclass=orcluserv2
objectclass: orclODIPProvEventTypeConfig

Table 13–1 Predefined Event Definitions

Event Object Type LDAP Change Type Event Criteria

ENTRY ADD
MODIFY
DELETE

objectclass=*

USER ADD
MODIFY
DELETE

objectclass=interorgperson
objectclass=orcluserv2

IDENTITY ADD
MODIFY
DELETE

objectclass=interorgperson
objectclass=orcluserv2

GROUP ADD
MODIFY
DELETE

objectclass=orclgroup
objectclass=groupofuniquenames

SUBSCRPTION ADD
MODIFY
DELETE

objectclass=orclservicerecepient

SUBSCRIBER ADD
MODIFY
DELETE

objectclass=orclsubscriber

Inbound and Outbound Events

Provisioning Integration API Reference 13-3

dn: orclODIPProvEventObjectType=GROUP,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: GROUP
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=orclgroup
orclODIPProvEventCriteria: objectclass=groupofuniquenames
objectclass: orclODIPProvEventTypeConfig

dn:
orclODIPProvEventObjectType=SUBSCRIPTION,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: SUBSCRIPTION
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=orclservicerecepient
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=SUBSCRIBER,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: SUBSCRIBER
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=orclsubscriber
objectclass: orclODIPProvEventTypeConfig

To define a new event of Object type XYZ (which is qualified with the object class
objXYZ), create the following entry in Oracle Internet Directory. The DIP server
recognizes this new event definition and propagates events if necessary to applications
that subscribe to this event.

dn: orclODIPProvEventObjectType=XYZ,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: XYZ
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=objXYZ
objectclass: orclODIPProvEventTypeConfig

This means that if an LDAP entry with the object class objXYZ is added, modified, or
deleted, DIP will propagate the XYZ_ADD, XYZ_MODIFY, or XYZ_DELETE event to any
application concerned.

Inbound and Outbound Events
An application can register as a supplier as well as a consumer of events. The
provisioning subscription profile has the attributes described in Table 13–2 on
page 13-4.

PL/SQL Bidirectional Interface (Version 2.0)

13-4 Oracle Identity Management Application Developer’s Guide

PL/SQL Bidirectional Interface (Version 2.0)
The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

DROP TYPE LDAP_EVENT;
DROP TYPE LDAP_EVENT_STATUS;
DROP TYPE LDAP_ATTR_LIST;
DROP TYPE LDAP_ATTR;
--
-- Name: LDAP_ATTR
-- Data Type: OBJECT

DESCRIPTION: This structure contains details regarding an attribute. A list of one
-- or more of this object is passed in any event.
--

CREATE TYPE LDAP_ATTR AS OBJECT (
 attr_name VARCHAR2(256),

Table 13–2 Attributes of the Provisioning Subscription Profile

Attribute Description

EventSubscriptions Outbound events only (multivalued).

Events for which DIP should send notification to this application. The format of
this string is [USER]GROUP]:[domain_of_
interest]:[DELETE|ADD|MODIFY(list_of_attributes_separated_by_
comma)]

Multiple values may be specified by listing the string multiple times, each time
with different values. If parameters are not specified, the following defaults are
assumed: USER:organization_DN:DELETEGROUP:organization_
DN:DELETE—that is, send user and group delete notifications under the
organization DN.

MappingRules Inbound events Only (multivalued).

This attribute is used to map the type of object received from an application and a
qualifying filter condition to determine the domain of interest for this event. The
mapping takes this form:

OBJECT_TYPE: Filter_condition: domain_of_interest

Multiple rules are allowed. In the mapping EMP:cn=users,dc=acme,dc=com,
the object type received is EMP. The event is meant for the domain
cn=users,dc=acme,dc=com. In the mapping
EMP:l=AMERICA:l=AMER,cn=users,dc=acme,dc=com, the object type
received is EMP. The event is meant for the domain
l=AMER,cn=users,dc=acme,dc=com.

permittedOperations Inbound events only (multi valued).

This attribute is used to define the types of events an application is privileged to
send to the provisioning integration service. The mapping takes this form:

Event_Object: affected_domain:operation(attributes, . . .)

In the mapping IDENTITY:cn=users,dc=acme,dc=com:ADD(*) the
IDENTITY_ADD event is allowed for the specified domain and all attributes are
also allowed. In the mapping
IDENTITY:cn=users,dc=acme,dc=com:MODIFY(cn,sn.mail,telephonen
umber), the IDENTITY_MODIFY event is allowed only for the attributes in the
list. Any extra attributes are silently ignored.

PL/SQL Bidirectional Interface (Version 2.0)

Provisioning Integration API Reference 13-5

 attr_value VARCHAR2(4000),
 attr_bvalue RAW(2048),
 attr_value_len INTEGER,
 attr_type INTEGER ,
 attr_mod_op INTEGER
);

GRANT EXECUTE ON LDAP_ATTR to public;

CREATE TYPE LDAP_ATTR_LIST AS TABLE OF LDAP_ATTR;
/
GRANT EXECUTE ON LDAP_ATTR_LIST to public;

--

-- Name: LDAP_EVENT
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains event information plus the attribute
-- list.
--

CREATE TYPE LDAP_EVENT AS OBJECT (
 event_type VARCHAR2(32),
 event_id VARCHAR2(32),
 event_src VARCHAR2(1024),
 event_time VARCHAR2(32),
 object_name VARCHAR2(1024),
 object_type VARCHAR2(32),
 object_guid VARCHAR2(32),
 object_dn VARCHAR2(1024),
 profile_id VARCHAR2(1024),
 attr_list LDAP_ATTR_LIST) ;
/

GRANT EXECUTE ON LDAP_EVENT to public;

--

-- Name: LDAP_EVENT_STATUS
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains information that is sent by the
-- consumer of an event to the supplier in response to the
-- actual event.

--

CREATE TYPE LDAP_EVENT_STATUS AS OBJECT (
 event_id VARCHAR2(32),
 orclguid VARCHAR(32),
 error_code INTEGER,
 error_String VARCHAR2(1024),
 error_disposition VARCHAR2(32)) ;
/

GRANT EXECUTE ON LDAP_EVENT_STATUS to public;

Provisioning Event Interface (Version 1.1)

13-6 Oracle Identity Management Application Developer’s Guide

Provisioning Event Interface (Version 1.1)
As stated in "Development Tasks for Provisioning Integration" on page 4-14, you must
develop logic to consume events generated by the provisioning integration service.

The interface between the application and the provisioning integration service can be
table-based, or it can use PL/SQL callbacks.

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

Rem
Rem NAME
Rem ldap_ntfy.pks - Provisioning Notification Package Specification.
Rem

DROP TYPE LDAP_ATTR_LIST;
DROP TYPE LDAP_ATTR;

-- LDAP ATTR
--
--
-- Name : LDAP_ATTR
-- Data Type : OBJECT
-- DESCRIPTION : This structure contains details regarding
-- an attribute.
--
--
CREATE TYPE LDAP_ATTR AS OBJECT (
 attr_name VARCHAR2(255),
 attr_value VARCHAR2(2048),
 attr_bvalue RAW(2048),
 attr_value_len INTEGER,
 attr_type INTEGER -- (0 - String, 1 - Binary)
 attr_mod_op INTEGER
);
/
 GRANT EXECUTE ON LDAP_ATTR to public;

--
-- Name : LDAP_ATTR_LIST
-- Data Type : COLLECTION
-- DESCRIPTION : This structure contains collection
-- of attributes.
--

CREATE TYPE LDAP_ATTR_LIST AS TABLE OF LDAP_ATTR;
/
 GRANT EXECUTE ON LDAP_ATTR_LIST to public;

--
-- NAME : LDAP_NTFY
-- DESCRIPTION : This is a notifier interface implemented by Provisioning System
-- clients to receive information about changes in Oracle Internet
-- Directory. The name of package can be customized as needed.
-- The function names within this package should not be changed.

Provisioning Event Interface (Version 1.1)

Provisioning Integration API Reference 13-7

--
--

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

--
-- LDAP_NTFY data type definitions
--

-- Event Types
USER_DELETE CONSTANT VARCHAR2(256) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2(256) := 'USER_MODIFY';
GROUP_DELETE CONSTANT VARCHAR2(256) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2(256) := 'GROUP_MODIFY';

-- Return Codes (Boolean)
SUCCESS CONSTANT NUMBER := 1;
FAILURE CONSTANT NUMBER := 0;

-- Values for attr_mod_op in LDAP_ATTR object.
MOD_ADD CONSTANT NUMBER := 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;
--

-- Name: LDAP_NTFY
-- DESCRIPTION: This is the interface to be implemented by Provisioning System
-- clients to send information to and receive information from
-- Oracle Internet Directory. The name of the package can be
-- customized as needed. The function names within this package
-- should not be changed.

--

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

Predefined Event Types
ENTRY_ADD CONSTANT VARCHAR2 (32) := 'ENTRY_ADD';
ENTRY_DELETE CONSTANT VARCHAR2 (32) := 'ENTRY_DELETE';
ENTRY_MODIFY CONSTANT VARCHAR2 (32) := 'ENTRY_MODIFY';

USER_ADD CONSTANT VARCHAR2 (32) := 'USER_ADD';
USER_DELETE CONSTANT VARCHAR2 (32) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2(32) := 'USER_MODIFY';

IDENTITY_ADD CONSTANT VARCHAR2 (32) := 'IDENTITY_ADD';
IDENTITY_DELETE CONSTANT VARCHAR2 (32) := 'IDENTITY_DELETE';
IDENTITY_MODIFY CONSTANT VARCHAR2 (32) := 'IDENTITY_MODIFY';

GROUP_ADD CONSTANT VARCHAR2 (32) := 'GROUP_ADD';
GROUP_DELETE CONSTANT VARCHAR2 (32) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2 (32) := 'GROUP_MODIFY';

SUBSCRIPTION_ADD CONSTANT VARCHAR2(32) := 'SUBSCRIPTION_ADD';
SUBSCRIPTION_DELETE CONSTANT VARCHAR2(32) := 'SUBSCRIPTION_DELETE';
SUBSCRIPTION_MODI CONSTANT VARCHAR2(32) := 'SUBSCRIPTION_MODIFY';

Provisioning Event Interface (Version 1.1)

13-8 Oracle Identity Management Application Developer’s Guide

SUBSCRIBER_ADD CONSTANT VARCHAR2(32) := 'SUBSCRIBER_ADD';
SUBSCRIBER_DELETE CONSTANT VARCHAR2(32) := 'SUBSCRIBER_DELETE';
SUBSCRIBER_MODIFY CONSTANT VARCHAR2(32) := 'SUBSCRIBER_MODIFY';

Attribute Type
ATTR_TYPE_STRING CONSTANT NUMBER := 0;
ATTR_TYPE_BINARY CONSTANT NUMBER := 1;
ATTR_TYPE_ENCRYPTED_STRING CONSTANT NUMBER := 2;

Attribute Modification Type
MOD_ADD CONSTANT NUMBER := 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;

Event Dispositions Constants
EVENT_SUCCESS CONSTANT VARCHAR2(32) := 'EVENT_SUCCESS';
EVENT_ERROR CONSTANT VARCHAR2(32) := 'EVENT_ERROR';
EVENT_RESEND CONSTANT VARCHAR2(32) := 'EVENT_RESEND';

Callbacks
A callback is a function invoked by the provisioning integration service to send or
receive notification events. While transferring events for an object, the related
attributes can also be sent along with other details. The attributes are delivered as a
collection (array) of attribute containers, which are in unnormalized form: if an
attribute has two values, two rows are sent in the collection.

GetAppEvent()
The directory integration and provisioning server invokes this API in the remote
database. It is up to the application to respond with an event. The Oracle Directory
Integration and Provisioning platform processes the event and sends the status back
using the PutAppEventStatus() callback. The return value of GetAppEvent()
indicates whether an event is returned or not.

FUNCTION GetAppEvent (event OUT LDAP_EVENT)
RETURN NUMBER;

-- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER := 0;
EVENT_NOT_FOUND CONSTANT NUMBER := 1403;

If the provisioning server is not able to process the event—that is, it runs into some
type of LDAP error—it responds with EVENT_RESEND. The application is expected to
resend that event when GetAppEvent() is invoked again.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified does not exist, or the user to be
subscribed does not exist, or the user to be deleted does not exist—then it responds
with EVENT_ERROR to indicate to the application that something was wrong.
Resending the event is not required. It is up to the application to handle the event.

Note the difference between EVENT_RESEND and EVENT_ERROR in the previous
discussion. EVENT_RESEND means that it was possible to apply the event but the
server could not. If it gets the event again, it might succeed.

Provisioning Event Interface (Version 1.1)

Provisioning Integration API Reference 13-9

EVENT_ERROR means there is no error in performing directory operations, but the
event could not be processed due to other reasons.

PutAppEventStatus()
The directory integration and provisioning server invokes this callback in the remote
database after processing an event it has received using the GetAppEvent() callback.
For every event received, the directory integration and provisioning server sends the
status event back after processing the event.

PROCEDURE PutAppEventStatus (event_status IN LDAP_EVENT_STATUS);

PutOIDEvent()
The directory integration and provisioning server invokes this API in the remote
database. It sends event to applications using this callback. It also expects a status
event object in response as an OUT parameter. If a valid event status object is not sent
back, or it indicates a RESEND, the directory integration and provisioning server
resends the event. In case of EVENT_ERROR, the server does not resend the event.

PROCEDURE PutOIDEvent (event IN LDAP_EVENT, event_status OUT LDAP_EVENT_
STATUS);
END LDAP_NTFY;
/

Provisioning Event Interface (Version 1.1)

13-10 Oracle Identity Management Application Developer’s Guide

Part III
Appendixes

Part III presents the command-line tools, including generic tools and Oracle-specific
tools. It contains these appendixes:

■ Appendix A, "Syntax for LDIF and Command-Line Tools"

■ Appendix B, "DSML Syntax"

Syntax for LDIF and Command-Line Tools A-1

A
Syntax for LDIF and Command-Line Tools

This appendix provides syntax, usage notes, and examples for LDIF and LDAP
command-line tools. It contains these topics:

■ LDAP Data Interchange Format (LDIF) Syntax

■ Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

■ Entry and Attribute Management Command-Line Tools Syntax

■ Oracle Directory Integration and Provisioning Platform Command-Line Tools
Syntax

LDAP Data Interchange Format (LDIF) Syntax
The standardized file format for directory entries is as follows:

dn: distinguished_name
attribute_type: attribute_value
.
.
.
objectClass: object_class_value
.
.
.

The following example shows a file entry for an employee. The first line contains the
DN. The lines that follow the DN begin with the mnemonic for an attribute, followed
by the value to be associated with that attribute. Note that each entry ends with lines
defining the object classes for the entry.

dn: cn=Suzie Smith,ou=Server Technology,o=Acme, c=US
cn: Suzie Smith
cn: SuzieS
sn: Smith
mail: ssmith@us.Acme.com
telephoneNumber: 69332

Property Value Description

dn: RDN,RDN,RDN,... Separate RDNs with commas.

attribute_type attribute_value This line repeats for every attribute in the entry,
and for every attribute value in multi-valued
attributes.

objectClass object_class_value This line repeats for every object class.

LDAP Data Interchange Format (LDIF) Syntax

A-2 Oracle Identity Management Application Developer’s Guide

photo: /ORACLE_HOME/empdir/photog/ssmith.jpg
objectClass: organizationalPerson
objectClass: person
objectClass: top

The next example shows a file entry for an organization:

dn: o=Acme,c=US
o: Acme
ou: Financial Applications
objectClass: organization
objectClass: top

LDIF Formatting Notes
A list of formatting rules follows. This list is not exhaustive.

■ All mandatory attributes belonging to an entry being added must be included
with non-null values in the LDIF file.

■ Non-printing characters and tabs are represented in attribute values by base-64
encoding.

■ The entries in your file must be separated from each other by a blank line.

■ A file must contain at least one entry.

■ Lines can be continued to the next line by beginning the continuation line with a
space or a tab.

■ Add a blank line between separate entries.

■ Reference binary files, such as photographs, with the absolute address of the file,
preceded by two forward slashes.

■ The DN contains the full, unique directory address for the object.

■ The lines listed after the DN contain both the attributes and their values. DNs and
attributes used in the input file must match the existing structure of the DIT. Do
not use attributes in the input file that you have not implemented in your DIT.

■ Sequence the entries in an LDIF file so that the DIT is created from the top down.
If an entry relies on an earlier entry for its DN, make sure that the earlier entry is
added before its child entry.

■ When you define schema within an LDIF file, insert a white space between the
opening parenthesis and the beginning of the text, and between the end of the text
and the ending parenthesis.

Tip: To see the mandatory and optional attribute types for an
object class, use Oracle Directory Manager. See Oracle Internet
Directory Administrator’s Guide.

See Also:

■ The various resources listed in "Related Documents" on
page xxv for a complete list of LDIF formatting rules

■ The section "Using Globalization Support with LDIF Files" in
Oracle Internet Directory Administrator’s Guide

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Syntax for LDIF and Command-Line Tools A-3

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory
Servers

This section tells how to use command-line tools for starting, stopping, restarting, and
monitoring Oracle Internet Directory servers. It contains these topics:

■ The OID Monitor (oidmon) Syntax

■ The OID Control Utility (oidctl) Syntax

The OID Monitor (oidmon) Syntax
Use the OID Monitor to initiate, monitor, and terminate directory server processes. If
you elect to install a replication server, OID Monitor controls it. When you use oidctl
to start or stop directory server instances, OID Monitor interprets your commands.

Starting the OID Monitor
Starting OID Monitor restarts any Oracle Internet Directory processes that were
previously stopped.

To start the OID Monitor:

1. Set the following environment variables:

■ ORACLE_HOME

■ ORACLE_SID or a proper TNS CONNECT string

■ NLS_LANG (APPROPRIATE_LANGUAGE.AL32UTF8). The default language
set at installation is AMERICAN_AMERICA.

■ PATH. In the PATH environment variable, specify the Oracle LDAP
binary—that is, ORACLE_HOME/bin—before the UNIX binary directory.

2. At the system prompt, type:

oidmon [connect=connect_string] [host=virtual/host_name][sleep=seconds] start

For example:

oidmon connect=dbs1 sleep=15 start

To start OID Monitor on a virtual host:

oidmon connect=dbsl host=virtual_host start

Table A–1 Arguments for Starting OID Monitor

Argument Description

connect=connect_string Specifies the connect string for the database to which you want
to connect. This is the network service name set in the
tnsnames.ora file. This argument is optional.

host=virtual/host_name Specifies the virtual host or rack nodes on which to start OID
Monitor

sleep=seconds Specifies number of seconds after which the OID Monitor
should check for new requests from OID Control and for
requests to restart any servers that may have stopped. The
default sleep time is 10 seconds. This argument is optional.

start Starts the OID Monitor process

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

A-4 Oracle Identity Management Application Developer’s Guide

Stopping the OID Monitor
Stopping the OID Monitor also stops all other Oracle Internet Directory processes.

To stop the OID Monitor daemon, at the system prompt, type:

oidmon [connect=connect_string] [host=virtual/host_name] stop

For example:

oidmon connect=dbs1 stop

Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration
While starting and stopping OID Monitor, use the host parameter to specify the
virtual host name. The syntax is:

oidmon [connect=connect_string] host=virtual_host start|stop

The OID Control Utility (oidctl) Syntax
OID Control Utility is a command-line tool for starting and stopping the directory
server. The commands are interpreted and executed by the OID Monitor process.

This section contains these topics:

■ Starting and Stopping an Oracle Directory Server Instance

■ Troubleshooting Directory Server Instance Startup

■ Starting and Stopping an Oracle Directory Replication Server Instance

Table A–2 Arguments for Stopping OID Monitor

Argument Description

connect=connect_string Specifies the connect string for the database to which you want
to connect. This is the connect string set in the tnsnames.ora
file.

host=virtual/host_name Specifies the virtual host or rack nodes on which to start OID
Monitor

stop Stops the OID Monitor process

Note: If you are going to start Oracle Internet Directory servers on
a virtual host, then, when using both oidmon and oidctl, be sure
to specify the host argument as the virtual host.

If the OID Monitor is started with the host=host name argument,
and the host name does not match the name of the physical host,
then the OID Monitor assumes that the intended host is the logical
host. You must use the same host name when using oidmon to stop
or start any servers, otherwise the OID Monitor does not start or
stop the servers.

To determine the physical host name, execute the uname command.

Note: Although you can start the directory server without using
OID Monitor and the OID Control Utility, Oracle Corporation
recommends that you use them. This way, if the directory server
unexpectedly terminates, then OID Monitor automatically restarts
it.

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Syntax for LDIF and Command-Line Tools A-5

■ Starting the Oracle Directory Integration and Provisioning Server

■ Stopping the Oracle Directory Integration and Provisioning Server

■ Restarting Oracle Internet Directory Server Instances

■ Starting and Stopping Directory Servers on a Virtual Host or an Oracle
Application Server Cluster (Identity Management)

Starting and Stopping an Oracle Directory Server Instance
Use the object class to start and stop Oracle directory server instances.

Starting an Oracle Directory Server Instance The syntax for starting an Oracle directory
server instance is:

oidctl connect=connect_string server=oidldapd instance=server_instance_number
-server number_of_server_processes [configset=configset_number]
[host=virtual/host_name] [flags=' -p port_number -work
maximum_number_of_worker_threads_per_server -debug debug_level
-l change_logging'] start

Table A–3 Arguments for Starting a Directory Server by Using OIDCTL

Argument Description

-debug debug_level Specifies a debug level during Oracle directory server
instance startup

-l change_logging Turns replication change logging on and off. To turn it
off, enter -l false. To turn it on, do any one of the
following:

■ omit the -l flag

■ enter simply -l

■ enter -l true

Turning off change logging for a given node by
specifying -l false has two drawbacks: it prevents
replication of updates on that node to other nodes in
the DRG, and it prevents application provisioning and
synchronization of connected directories, because those
two services require an active change log. The default,
TRUE, permits replication, provisioning, and
synchronization.

-p port_number Specifies a port number during server instance startup.
The default port number is 389.

-server server_processes Specifies the number of server processes to start on this
port

-sport Specifies the SSL port number during server instance
startup. Default port if not set is 636.

See Also:

■ The information about orclsslenable attribute
in the section "Configuration Set Entry Schema
Elements" in Oracle Internet Directory
Administrator’s Guide

■ "Configuring SSL Parameters"in Oracle Internet
Directory Administrator’s Guide

-work threads_per_server Specifies the maximum number of worker threads for
this server

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

A-6 Oracle Identity Management Application Developer’s Guide

For example, to start a directory server instance whose net service name is dbs1, using
configset5 at port 12000, with a debug level of 1024, an instance number 3, and in
which change logging is turned off, type at the system prompt:

oidctl connect=dbs1 server=oidldapd instance=3 configset=5 flags='-p 12000
-debug 1024 -l ' start

When starting and stopping an Oracle directory server instance, the server name and
instance number are mandatory, as are the commands start or stop. All other
arguments are optional.

All keyword value pairs within the flags arguments must be separated by a single
space.

Single quotes are mandatory around the flags.

The configset identifier defaults to zero (configset0) if not set.

Stopping an Oracle Directory Server Instance At the system prompt, type:

oidctl connect=connect_string server=oidldapd instance=server_instance_number stop

For example:

oidctl connect=dbs1 server=oidldapd instance=3 stop

Troubleshooting Directory Server Instance Startup
If the directory server fails to start, you can override all user-specified configuration
parameters to start the directory server and then return the configuration sets to a
workable state by using the ldapmodify operation.

To start the directory server by using its hard-coded default parameters instead of the
configuration parameters stored in the directory, type at the system prompt:

configset=configset_number Configset number used to start the server. This defaults
to configset0 if not set. This should be a number
between 0 and 1000.

connect=connect_string If you already have a tnsnames.ora file configured,
then this is the net service name specified in that file,
located in ORACLE_HOME/network/admin.

host=virtual/host_name Specifies the virtual host or rack nodes on which to
start the directory server

instance=instance_number Instance number of the server to start. Should be a
number between 1 and 1000.

server=oidldapd Type of server to start (valid values are OIDLDAPD and
OIDREPLD). This is not case-sensitive.

start Starts the server specified in the server argument.

Note: If you choose to use a port other than the default port (389
for non-secure usage or 636 for secure usage), you must tell the
clients which port to use to locate the Oracle Internet Directory. If
you use the default ports, clients can connect to the Oracle Internet
Directory without referencing a port in their connect requests.

Table A–3 (Cont.) Arguments for Starting a Directory Server by Using OIDCTL

Argument Description

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Syntax for LDIF and Command-Line Tools A-7

oidctl connect=connect_string flags='-p port_number -f'

The -f option in the flags starts the server with hard-coded configuration values,
overriding any defined configuration sets except for the values in configset0.

To see debug log files generated by the OID Control Utility, navigate to ORACLE_
HOME/ldap/log.

Starting and Stopping an Oracle Directory Replication Server Instance
Use the OID Control Utility to start and stop Oracle directory replication server
instances.

Starting an Oracle Directory Replication Server Instance The syntax for starting the Oracle
directory replication server is:

oidctl connect=connect_string server=oidrepld instance=server_instance_number
[configset=configset_number] flags= ' -p directory_server_port_number
-d debug_level -h directory_server_host_name -m [true | false]
-z transaction_size ' start

For example, to start the replication server with an instance=1, at port 12000, with
debugging set to 1024, type at the system prompt:

Table A–4 Arguments for Starting a Directory Replication Server by Using OIDCTL

Argument Description

connect=connect_string If you already have a tnsnames.ora file configured, then
this is the name specified in that file, which is located in
ORACLE_HOME/network/admin.

server=oidrepld Type of server to start (valid values are OIDLDAPD and
OIDREPLD). This is not case-sensitive.

instance=instance_number Instance number of the server to start. Should be a number
between 1 and 1000.

configset=configset_number Configset number used to start the server. The default is
configset0. This should be a number between 0 and
1000.

-p directory__port Port number that the replication server uses to connect to
the directory on TCP port directory_server_port_
number. If you do not specify this option, the tool
connects to the default port (389).

-d debug_level Specifies a debug level during replication server instance
startup

-h directory_host_name Specifies the directory_server_host_name to which
the replication server connects, rather than to the default
host, that is, your local computer. directory_server_
host_name can be a computer name or an IP address.
(Replication server only)

-m [true|false] Turns conflict resolution on and off. Valid values are true
and false. The default is true. (Replication server only)

-z transaction_size Specifies the number of changes applied in each
replication update cycle. If you do not specify this, the
number is determined by the Oracle directory server
sizelimit parameter, which has a default setting of 1024.
You can configure this latter setting.

start Starts the server specified in the server argument.

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

A-8 Oracle Identity Management Application Developer’s Guide

oidctl connect=dbs1 server=oidrepld instance=1 flags='-p 12000 -h eastsun11 -d
1024' start

When starting and stopping an Oracle directory replication server, the -h flag, which
specifies the host name, is mandatory. All other flags are optional.

All keyword value pairs within the flags arguments must be separated by a single
space.

Single quotes are mandatory around the flags.

The configset identifier defaults to zero (configset0) if not set.

Stopping an Oracle Directory Replication Server Instance At the system prompt, type:

oidctl connect=connect_string server=OIDREPLD instance=server_instance_number stop

For example:

oidctl connect=dbs1 server=oidrepld instance=1 stop

Starting the Oracle Directory Integration and Provisioning Server
The Oracle directory integration and provisioning server executable, odisrv, resides
in the ORACLE_HOME/bin directory.

The way you start the directory integration and provisioning server depends on
whether your installation is:

■ A typical Oracle Internet Directory installation

In this case, your installation includes, among other server and client components,
the OID Monitor and the OID Control Utility. In such installations, you start and
stop the directory integration and provisioning server by using these tools.

■ An Oracle Directory Integration and Provisioning platform-only installation

In this case, the way you start the directory integration and provisioning server
depends on whether you are using the Oracle Directory Integration and
Provisioning platform for high availability.

– If you are using Oracle Directory Integration and Provisioning platform for
high availability, then Oracle Corporation recommends that you start the
directory integration and provisioning server by using the OID Monitor and
the OID Control Utility. This requires configuring the tnsnames.ora file
with the right host and SID to which the OID Monitor must connect.

Note: If you choose to use a port other than the default port (389
for non-secure usage or 636 for secure usage), you must tell the
clients which port to use to locate the Oracle Internet Directory. If
you use the default ports, clients can connect to the Oracle Internet
Directory without referencing a port in their connect requests.

Note: Although you can start the directory integration and
provisioning server without using the OID Monitor and the OID
Control Utility, Oracle Corporation recommends that you use them.
This way, if the directory integration and provisioning server
unexpectedly terminates, the OID Monitor automatically restarts it.

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Syntax for LDIF and Command-Line Tools A-9

– If you are not using Oracle Directory Integration and Provisioning platform
for high availability, then Oracle Corporation recommends that you start the
directory integration and provisioning server without using the OID Monitor.

You can start the directory integration and provisioning server in either SSL mode for
tighter security, or non-SSL mode. You need to use a connect string to connect to the
database.

Starting the Oracle Directory Integration and Provisioning Server by Using the OID Monitor and
Control Utilities

To start the directory integration and provisioning server in non-SSL mode:

1. Be sure that OID Monitor is running. To verify this on UNIX, enter the following at
the command line:

ps -ef | grep oidmon

If OID Monitor is not running, then start it by following the instructions in "The
OID Monitor (oidmon) Syntax" on page A-3.

2. Start the directory integration and provisioning server by using the OID Control
Utility. Do this by entering:

oidctl [connect=connect_string] server=odisrv [instance=instance_number]
[config=configuration_set_number] [flags="[host=hostname] [port=port_number]
[grpID=group_identifier_of_provisioning_profile] [debug=debug_level]
[refresh=interval_between_refresh] [maxprofiles=number_of_profiles]
[sslauth=ssl_mode]"] start

Table A–5 describes the arguments in this command.

Note: When the Oracle directory integration and provisioning
server is invoked in the default mode, it supports only the Oracle
Directory Provisioning Integration Service, and not the Oracle
Directory Synchronization Service.

Table A–5 Description of Arguments for Starting the Oracle Directory Integration and
Provisioning Server

Argument Description

connect=connect_string If you already have a tnsnames.ora file configured,
then this is the net service name specified in that file,
located in ORACLE_HOME/network/admin

server=odisrv Type of server to start. In this case, the server you are
starting is odisrv. This is not case-sensitive. This
argument is mandatory.

instance=instance_number Specifies the instance number to assign to the directory
integration and provisioning server. This instance
number must be unique. OID Monitor verifies that the
instance number is not already associated with a
currently running instance of this server. If it is
associated with a currently running instance, then OID
Monitor returns an error message.

config=set_number Specifies the number of the configuration set that the
directory integration and provisioning server is to
execute. This argument is mandatory.

host=host_name Oracle directory server host name

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

A-10 Oracle Identity Management Application Developer’s Guide

Starting the Oracle Directory Integration and Provisioning Server Without Using the OID Monitor
and the OID Control Utility In a client-only installation, where the OID Monitor and OID
Control tools are not available, the Oracle directory integration and provisioning
server can be started without OID Monitor or OID Control Utility, either in non-SSL
mode or, for tighter security, in SSL mode. The parameters described in Table A–5 on
page A-9 remain the parameters for each type of invocation.

port=port_number Oracle directory server port number

debug=debug_level The required debugging level of the directory
integration and provisioning server. See the chapter
about logging, auditing, and monitoring in Oracle
Internet Directory Administrator’s Guide.

refresh=refresh_interval Specifies the interval, in minutes, between server
refreshes for any changes in the integration profiles.
The default is 2 minutes (Refresh=2).

grpID=profile_identifier Specifies the group of profiles to be scheduled.

maxprofiles=number_of_profiles Specifies the maximum number of profiles that can be
executed concurrently for this server instance.

sslauth=ssl_mode SSL modes:

■ 0: SSL is not used—that is, non-SSL mode

■ 1: SSL used for encryption only—that is, with no
PKI authentication. A wallet is not used in this
case.

■ 2: SSL is used with one-way authentication. This
mode requires you to specify a complete path
name of an Oracle Wallet, including the file name
itself, unlike other directory tools that expect only
the wallet location. For example, in a server-only
installation, or in a complete installation, you
would enter something like this:

oidctl server=odisrv
[instance=instance_number]
[configset=configset_number]
[grpID=group_identifier_of_provisioning_
profile]
 flags="host=myhost
port=myport sslauth=2

In a client-only installation, you would enter
something like this:

odisrv [host=host_name]
[port=port_number]
config=configuration_set_number
[instance=instance_number]
[debug=debug_level]
[refresh=interval_between_refresh]
[maxprofiles=number_of_profiles]
[refresh=interval_between_refresh]
[maxprofiles=number_of_profiles]
[sslauth=ssl_mode]

Table A–5 (Cont.) Description of Arguments for Starting the Oracle Directory Integration
and Provisioning Server

Argument Description

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

Syntax for LDIF and Command-Line Tools A-11

To start the directory integration and provisioning server, enter the following at the
command line:

odisrv [host=host_name] [port=port_number] config=configuration_set_number
[instance=instance_number] [debug=debug_level] [refresh=interval_between_refresh]
[maxprofiles=number_of_profiles] [sslauth=ssl_mode]

Stopping the Oracle Directory Integration and Provisioning Server
You can use the OID Monitor and the OID Control utility to stop the directory
integration and provisioning server:

1. Before you stop the directory integration and provisioning server, be sure that the
OID Monitor is running. To verify this, enter the following at the command line:

ps -ef | grep oidmon

If OID Monitor is not running, then start it by following the instructions in "The
OID Monitor (oidmon) Syntax" on page A-3.

2. Stop the directory integration and provisioning server by entering:

oidctl [connect=connect_string] server=odisrv instance=instance stop

Restarting Oracle Internet Directory Server Instances
When you want to refresh the server cache immediately, rather than at the next
scheduled time, use the RESTART command. When the Oracle Internet Directory
server restarts, it maintains the same parameters it had before it stopped.

To restart an Oracle Internet Directory server instance, at the system prompt, type:

oidctl connect=connect_string server={oidldapd|oidrepld|odisrv}
instance=server_instance_number restart

OID Monitor must be running whenever you restart directory server instances.

If you try to contact a server that is not running, you receive from the SDK the error
message 81—LDAP_SERVER_DOWN.

If you change a configuration set entry that is referenced by an active server instance,
you must stop that instance and restart it to effect the changed value in the
configuration set entry on that server instance. You can either issue the STOP
command followed by the START command, or you can use the RESTART command.
RESTART both stops and restarts the server instance.

For example, suppose that Oracle directory server instance1 is started, using
configset3, and with the net service name dbs1. Further, suppose that, while
instance1 is running, you change one of the attributes in configset3. To enable
the change in configset3 to take effect on instance1, you enter the following
command:

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

■ Cygwin 1.3.2.2-1 or later. Visit this site:

http://sources.redhat.com

■ MKS Toolkit 6.1. Visit this site:

http://www.datafocus.com/

Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers

A-12 Oracle Identity Management Application Developer’s Guide

oidctl connect=dbs1 server=oidldapd instance=1 restart

If there are more than one instance of the Oracle directory server running on that node
using configset3, then you can restart all the instances at once by using the
following command syntax:

oidctl connect=dbs1 server=oidldapd restart

Note that this command restarts all the instances running on the node, whether they
are using configset3 or not.

Starting and Stopping Directory Servers on a Virtual Host or an Oracle Application
Server Cluster (Identity Management)
When starting a directory server, a directory replication server, or a directory
integration and provisioning server, use the host parameter to specify the virtual host
name.

Starting and Stopping a Directory Server
To start a directory server on a virtual host:

oidctl [connect=connect_string] host=virtual_host_name server=oidldapd
instance=instance_number configset=configset_number flags= "..." start

To stop a directory server on a virtual host:

oidctl host=virtual_host_name server=oidldapd instance=instance_number stop

Starting and Stopping a Directory Replication Server
To start a directory replication server on a virtual host:

oidctl [connect=connect_string] host=virtual_host_name server=oidrepld
instance=instance_number flags= "..." start

To stop a directory replication server on a virtual host:

oidctl host=virtual_host_name server=oidrepld instance=instance_number stop

Starting and Stopping a Directory Integration and Provisioning Server
To start a directory integration and provisioning server on a virtual host:

oidctl [connect=connect_string] host=virtual_host_name server=odisrv
instance=instance_number configset=configset_number flags= "..." start

To stop a directory integration and provisioning server on a virtual host:

oidctl host=virtual/host_name server=odisrv instance=instance_number stop

When the directory server is started to run on the virtual host, it binds and listens to
requests on the specified LDAP port on the IP address or IP addresses that correspond
to the virtual host only.

When communicating with the directory server, the directory replication server uses
the virtual host name. Further, the replicaID attribute that represents the unique
replication identification for the Oracle Internet Directory node is generated once. It is

Important Note: During the restart process, clients cannot access
the Oracle directory server instance. However, the process takes
only a few seconds to execute.

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-13

independent of the host name and hence requires no special treatment in an Oracle
Application Server Cold Failover Cluster.

When communicating with the directory server, the directory integration and
provisioning server uses the virtual host name.

Entry and Attribute Management Command-Line Tools Syntax
This section tells you how to use the following tools:

■ The Catalog Management Tool (catalog.sh) Syntax

■ ldapadd Syntax

■ ldapbind Syntax

■ ldapcompare Syntax

■ ldapdelete Syntax

■ ldapmoddn Syntax

■ ldapmodify Syntax

■ ldapmodifymt Syntax

■ ldapsearch Syntax

The Catalog Management Tool (catalog.sh) Syntax
Oracle Internet Directory uses indexes to make attributes available for searches. When
Oracle Internet Directory is installed, the cn=catalogs entry lists available attributes
that can be used in a search. You can index only those attributes that have:

■ An equality matching rule

■ Matching rules supported by Oracle Internet Directory

If you want to use additional attributes in search filters, then you must add them to the
catalog entry. You can do this at the time you create the attribute by using Oracle
Directory Manager. However, if the attribute already exists, then you can index it only
by using the Catalog Management tool.

Before running catalog.sh, be sure that the directory server is either stopped or in
read-only mode. Otherwise, data will be inconsistent.

Note: Various UNIX shells interpret some characters—for
example, asterisks (*)—as special characters. Depending on the
shell you are using, you may need to escape these characters.

Caution: Do not use the catalog.sh -delete option on
indexes created by the Oracle Internet Directory base schema.
Removing indexes from base schema attributes can adversely
impact the operation of Oracle Internet Directory.

Entry and Attribute Management Command-Line Tools Syntax

A-14 Oracle Identity Management Application Developer’s Guide

The Catalog Management tool uses this syntax:

catalog.sh -connect connect_string {-add|-delete} {-attr attr_name|-file file_
name}

When you enter the catalog.sh command, the following message appears:

This tool can only be executed if you know the OiD user password.
Enter OiD password:

If you enter the correct password, the command is executed. If you give an incorrect
password, the following message is displayed:

Cannot execute this tool

To effect the changes after running the Catalog Management tool, stop, then restart,
the Oracle directory server.

Note: To run shell script tools on the Windows operating system,
you need one of the following UNIX emulation utilities:

■ Cygwin 1.3.2.2-1 or later. Visit this site:

http://sources.redhat.com

■ MKS Toolkit 6.1. Visit this site:

http://www.datafocus.com

Table A–6 Arguments for the Catalog Management Tool (catalog.sh)

Argument Description

-connect connect_string Specifies the connect string to connect to the directory
database. This argument is mandatory.

See Also: Oracle9i Net Services Administrator's Guide in the
Oracle Database Documentation Library

-add -attr attr_name Indexes the specified attribute

-delete -attr attr_name Drops the index from the specified attribute

-add -file file_name Indexes attributes (one for each line) in the specified file

-delete -file file_name Drops the indexes from the attributes in the specified file

See Also:

■ "The OID Control Utility (oidctl) Syntax" on page A-4 and for
instructions on starting and restarting directory servers. Note
that OID Monitor must be running before you start a directory
server.

■ "The OID Monitor (oidmon) Syntax" on page A-3 for
information about starting OID Monitor

■ The section about matching rules in the schema appendix of
Oracle Internet Directory Administrator’s Guide

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-15

ldapadd Syntax
The ldapadd command-line tool enables you to add entries, their object classes,
attributes, and values to the directory. To add attributes to an existing entry, use the
ldapmodify command, explained in "ldapmodify Syntax" on page A-23.

ldapadd uses this syntax:

ldapadd [arguments] -f file_name

where file_name is the name of an LDIF file written with the specifications
explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

The following example adds the entry specified in the LDIF file
my_ldif_file.ldi:

ldapadd -p 389 -h myhost -f my_ldif_file.ldi

See Also: "Adding Configuration Set Entries by Using ldapadd"
in Oracle Internet Directory Administrator’s Guide for an explanation
of using ldapadd to configure a server with an input file

Table A–7 Arguments for ldapadd

Optional Arguments Description

-b Specifies that you have included binary file names in the file,
which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

-c Tells ldapadd to proceed in spite of errors. The errors will be
reported. (If you do not use this option, ldapadd stops when
it encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry specified in binddn. This is the DN of the user seeking
authentication. Use this with the -w password option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-f file_name Specifies the input name of the LDIF format import data file.
For a detailed explanation of how to format an LDIF file, see
"LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-K Same as -k, but performs only the first step of the Kerberos
bind

-k Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with
KERBEROS defined. You must already have a valid ticket
granting ticket.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would occur without actually performing the
operation

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

Entry and Attribute Management Command-Line Tools Syntax

A-16 Oracle Identity Management Application Developer’s Guide

ldapaddmt Syntax
ldapaddmt is like ldapadd: It enables you to add entries, their object classes,
attributes, and values to the directory. It is unlike ldapadd in that it supports multiple
threads for adding entries concurrently.

While it is processing LDIF entries, ldapaddmt logs errors in the add.log file in the
current directory.

ldapaddmt uses this syntax:

ldapaddmt -T number_of_threads -h host -p port -f file_name

where file_name is the name of an LDIF file written with the specifications
explained in the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

The following example uses five concurrent threads to process the entries in the file
myentries.ldif.

ldapaddmt -T 5 -h node1 -p 3000 -f myentries.ldif

-p directory_port Connects to the directory on TCP port directory_port. If
you do not specify this option, the tool connects to the default
port (389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections.

 For example, on UNIX, you could set this parameter as
follows: -W "file://home/my_dir/my_wallet".

On Windows NT, you could set this parameter as follows: -W
"file:C:\my_dir\my_wallet".

-X dsml_file Specifies the input name of the DSML format import data file.

Note: Increasing the number of concurrent threads improves the
rate at which LDIF entries are created, but consumes more system
resources.

Table A–7 (Cont.) Arguments for ldapadd

Optional Arguments Description

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-17

Table A–8 Arguments for ldapaddmt

Optional Arguments Description

-b Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character. The tool
retrieves the actual values from the file referenced.

-c Tells the tool to proceed in spite of errors. The errors will be
reported. (If you do not use this option, the tool stops when it
encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user
seeking authentication. Use this with the -w password option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory
Administrator’s Guide.

-h ldap_host Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-K Same as -k, but performs only the first step of the kerberos
bind

-k Authenticates using Kerberos authentication instead of simple
authentication. To enable this option, you must compile with
KERBEROS defined. You must already have a valid ticket
granting ticket.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would occur without actually performing the
operation.

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-T Sets the number of threads for concurrently processing entries

-U SSLAuth Specifies SSL Authentication Mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet". On Windows NT, you could set this parameter as
follows: -W "file:C:\my_dir\my_wallet".

Entry and Attribute Management Command-Line Tools Syntax

A-18 Oracle Identity Management Application Developer’s Guide

ldapbind Syntax
The ldapbind command-line tool enables you to see whether you can authenticate a
client to a server.

ldapbind uses this syntax:

ldapbind [arguments]

-X dsml_file Specifies the input name of the DSML format import data file.

Table A–9 Arguments for ldapbind

Optional Arguments Description

-D binddn When authenticating to the directory, specifies doing so as the
entry specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-n Shows what would occur without actually performing the
operation.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies the wallet password required for one-way or
two-way SSL connections.

-U SSLAuth Specifies SSL authentication mode: 1 for no authentication
required 2 for one way authentication required 3 for two way
authentication required.

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W file://home/my_dir/my_
wallet. On Windows NT, you could set this parameter as
follows: -W "file:C:\my_dir\my_wallet".

-O sasl_properties Specifies SASL security properties. The security property
supported is -O "auth". This security property is for
DIGEST-MD5 SASL mechanism. It enables authentication with
no data integrity or data privacy.

-Y sasl_mechanism Specifies a SASL mechanism. These mechanisms are
supported:

■ Y "DIGEST-MD5"

■ Y "EXTERNAL": The SASL authentication in this
mechanism is done on top of two-way SSL authentication.
In this case the identity of the user stored in the SSL wallet
is used for SASL authentication.

Table A–8 (Cont.) Arguments for ldapaddmt

Optional Arguments Description

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-19

ldapcompare Syntax
The ldapcompare command-line tool enables you to match attribute values you
specify in the command line with the attribute values in the directory entry.

ldapcompare uses this syntax:

ldapcompare [arguments]

The following example tells you whether Person Nine’s title is associate.

ldapcompare -p 389 -h myhost -b "cn=Person Nine,ou=EuroSInet Suite,o=IMC,c=US" -a
title -v associate

-R sasl_realm Specifies a SASL realm.

Table A–10 Optional Arguments

Optional Arguments Description

-O sasl_properties Specifies SASL security properties. The security property
supported is -O "auth". This security property is for
DIGEST-MD5 SASL mechanism. It enables authentication with
no data integrity or data privacy.

-Y sasl_mechanism Specifies a SASL mechanism. These mechanisms are
supported:

■ Y "DIGEST-MD5"

■ Y "EXTERNAL": The SASL authentication in this
mechanism is done on top of two-way SSL authentication.
In this case the identity of the user stored in the SSL wallet
is used for SASL authentication.

-R sasl_realm Specifies a SASL Realm.

Table A–11 Arguments for ldapcompare

Optional Arguments Description

-a attribute_name Specifies the attribute on which to perform the compare. This
argument is mandatory.

-b basedn Specifies the distinguished name of the entry on which to
perform the compare. This argument is mandatory.

-v attribute_value Specifies the attribute value to compare. This argument is
mandatory.

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user
seeking authentication. Use this with the -w password option.

-d debug_level Sets the debugging level. See the chapter about logging,
auditing, and monitoring in Oracle Internet Directory
Administrator’s Guide.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-f file_name Specifies the input file name

Table A–9 (Cont.) Arguments for ldapbind

Optional Arguments Description

Entry and Attribute Management Command-Line Tools Syntax

A-20 Oracle Identity Management Application Developer’s Guide

ldapdelete Syntax
The ldapdelete command-line tool enables you to remove entire entries from the
directory that you specify in the command line.

ldapdelete uses this syntax:

ldapdelete [arguments] ["entry_DN" | -f input_file_name]

The following example uses port 389 on a host named myhost.

ldapdelete -p 389 -h myhost "ou=EuroSInet Suite, o=IMC, c=US"

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet".

On Windows NT, you could set this parameter as follows: -W
"file:C:\my_dir\my_wallet".

Note: If you specify the entry DN, then do not use the -f option.

Table A–12 Arguments for ldapdelete

Optional Argument Description

-D binddn When authenticating to the directory, uses a full DN for the
binddn parameter—that is, the DN of the user seeking
authentication; typically used with the -w password option.

Table A–11 (Cont.) Arguments for ldapcompare

Optional Arguments Description

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-21

ldapmoddn Syntax
The ldapmoddn command-line tool enables you to modify the DN or RDN of an
entry.

ldapmoddn uses this syntax:

ldapmoddn [arguments]

-d debug_level Sets the debugging level. See "Setting Debug Logging Levels
by Using the OID Control Utility" in Oracle Internet Directory
Administrator’s Guide.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-f input_file_name Specifies the input file name

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-k Authenticates using authentication instead of simple
authentication. To enable this option, you must compile with
Kerberos defined. You must already have a valid ticket
granting ticket.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would be done, but doesn’t actually delete

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet". On Windows NT, you could set this parameter as
follows: -W "file:C:\my_dir\my_wallet".

Table A–12 (Cont.) Arguments for ldapdelete

Optional Argument Description

Entry and Attribute Management Command-Line Tools Syntax

A-22 Oracle Identity Management Application Developer’s Guide

The following example uses ldapmoddn to modify the RDN component of a DN from
cn=mary smith to cn=mary jones. It uses port 389, and a host named myhost.

ldapmoddn -p 389 -h myhost -b "cn=mary smith,dc=Americas,dc=imc,dc=com" -R
"cn=mary jones"

Table A–13 Arguments for ldapmoddn

Argument Description

-b basedn Specifies DN of the entry to be moved. This argument is
mandatory.

-D binddn When authenticating to the directory, do so as the entry is
specified in binddn. This is the DN of the user seeking
authentication. Use this with the -w password option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-f file_name Specifies the input file name

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-N newparent Specifies new parent of the RDN. Either this argument or the
-R argument must be specified.

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-r Specifies that the old RDN is not retained as a value in the
modified entry. If this argument is not included, the old RDN
is retained as an attribute in the modified entry.

-R newrdn Specifies new RDN. Either this argument or the -N argument
must be specified.

-U SSLAuth Specifies SSL authentication mode: 1 for no authentication
required 2 for one way authentication required 3 for two way
authentication required

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Provides the password required to connect.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet".

 On Windows NT, you could set this parameter as follows: -W
"file:C:\my_dir\my_wallet".

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-23

ldapmodify Syntax
The ldapmodify tool enables you to act on attributes.

ldapmodify uses this syntax:

ldapmodify [arguments] -f file_name

where file_name is the name of an LDIF file written with the specifications
explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

The list of arguments in the following table is not exhaustive. These arguments are all
optional.

Table A–14 Arguments for ldapmodify

Argument Description

-a Denotes that entries are to be added, and that the input file is
in LDIF format.

-b Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character.

-c Tells ldapmodify to proceed in spite of errors. The errors will
be reported. (If you do not use this option, ldapmodify stops
when it encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user
seeking authentication. Use this with the -w password option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would occur without actually performing the
operation.

-o log_file_name Can be used with the -c option to write the erroneous LDIF
entries in the logfile. You must specify the absolute path for the
log file name.

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

Entry and Attribute Management Command-Line Tools Syntax

A-24 Oracle Identity Management Application Developer’s Guide

To run modify, delete, and modifyrdn operations using the -f flag, use LDIF for
the input file format (see "LDAP Data Interchange Format (LDIF) Syntax" on page A-1)
with the specifications noted in this section:

If you are making several modifications, then, between each modification you enter,
add a line that contains a hyphen (-) only. For example:

dn: cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype: modify
add: work-phone
work-phone: 510/506-7000
work-phone: 510/506-7001
-
delete: home-fax

Unnecessary space characters in the LDIF input file, such as a space at the end of an
attribute value, will cause the LDAP operations to fail.

Line 1: Every change record has, as its first line, the literal dn: followed by the DN
value for the entry, for example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US

Line 2: Every change record has, as its second line, the literal changetype: followed
by the type of change (add, delete, modify, modrdn), for example:

changetype: modify

or

changetype: modrdn

Format the remainder of each record according to the following requirements for each
type of change:

■ changetype: add

Uses LDIF format (see "LDAP Data Interchange Format (LDIF) Syntax" on
page A-1).

■ changetype: modify

The lines that follow this changetype consist of changes to attributes belonging to
the entry that you identified previously in Line 1. You can specify three different
types of attribute modifications—add, delete, and replace—which are explained
next:

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the -D option.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet".

On Windows NT, you could set this parameter as follows: -W
"file:C:\my_dir\my_wallet".

Table A–14 (Cont.) Arguments for ldapmodify

Argument Description

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-25

– Add attribute values. This option to changetype modify adds more values to
an existing multi-valued attribute. If the attribute does not exist, it adds the
new attribute with the specified values:

add: attribute name
attribute name: value1
attribute name: value2...

For example:

dn:cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype: modify
add: work-phone
work-phone: 510/506-7000
work-phone: 510/506-7001

– Delete values. If you supply only the delete line, all the values for the
specified attribute are deleted. Otherwise, if you specify an attribute line, you
can delete specific values from the attribute:

delete: attribute name
[attribute name: value1]
dn: cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype: modify
delete: home-fax

– Replace values. Use this option to replace all the values belonging to an
attribute with the new specified set:

replace: attribute name
[attribute name: value1 ...]

If you do not provide any attributes with replace, the directory adds an
empty set. It then interprets the empty set as a delete request, and complies by
deleting the attribute from the entry. This is useful if you want to delete
attributes that may or may not exist. For example:

dn: cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype: modify
replace: work-phone
work-phone: 510/506-7002

■ changetype:delete

This change type deletes entries. It requires no further input, since you identified
the entry in Line 1 and specified a changetype of delete in Line 2.

For example:

dn: cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype: delete

■ changetype:modrdn

The line following the change type provides the new relative distinguished name
using this format:

newrdn: RDN

For example:

Entry and Attribute Management Command-Line Tools Syntax

A-26 Oracle Identity Management Application Developer’s Guide

dn: cn=Barbara Fritchy,ou=Sales,o=Oracle,c=US
changetype: modrdn
newrdn: cn=Barbara Fritchy-Blomberg

To specify an attribute as single-valued, include the keyword SINGLE-VALUE in the
attribute definition entry in the LDIF file. Surround it with white space.

Example: Using ldapmodify to Add an Attribute
This example adds a new attribute called myAttr. The LDIF file for this operation is:

dn: cn=subschemasubentry
changetype: modify
add: attributetypes
attributetypes: (1.2.3.4.5.6.7 NAME ‘myAttr’ DESC ‘New attribute definition’
EQUALITY caseIgnoreMatch SYNTAX
‘1.3.6.1.4.1.1466.115.121.1.15’)

On the first line, enter the DN specifying where this new attribute is to be located. All
attributes and object classes they are stored in cn=subschemasubentry.

The second and third lines show the proper format for adding a new attribute.

The last line is the attribute definition itself. The first part of this is the object identifier
number: 1.2.3.4.5.6.7. It must be unique among all other object classes and
attributes. Next is the NAME of the attribute. In this case the attribute NAME is
myAttr. It must be surrounded by single quotes. Next is a description of the attribute.
Enter whatever description you want between single quotes. At the end of this
attribute definition in this example are optional formatting rules to the attribute. In
this case we are adding a matching rule of EQUALITY caseIgnoreMatch and a
SYNTAX of Directory String. This example uses the object ID number of
1.3.6.1.4.1.1466.115.121.1.15 instead of the SYNTAXES name which is
Directory String.

Put your attribute information in a file formatted like this example. Then run the
following command to add the attribute to the schema of your Oracle directory server.

ldapmodify -h yourhostname -p 389 -D "orcladmin" -w "welcome" -v -f
/tmp/newattr.ldif

This ldapmodify command assumes that your Oracle directory server is running on
port 389, that your super user account name is orcladmin, that your super user
password is welcome and that the name of your LDIF file is newattr.ldif.
Substitute the host name of your computer where you see yourhostname.

If you are not in the directory where the LDIF file is located, then you must enter the
full directory path to the file at the end of your command. This example assumes that
your LDIF file is located in the /tmp directory.

ldapmodifymt Syntax
The ldapmodifymt command-line tool enables you to modify several entries
concurrently.

ldapmodifymt uses this syntax:

ldapmodifymt -T number_of_threads [arguments] -f file_name

where file_name is the name of an LDIF file written with the specifications
explained the section "LDAP Data Interchange Format (LDIF) Syntax" on page A-1.

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-27

The following example uses five concurrent threads to modify the entries in the file
myentries.ldif.

ldapmodifymt -T 5 -h node1 -p 3000 -f myentries.ldif

The arguments in the following table are all optional.

See Also: "ldapmodify Syntax" on page A-23 for additional
formatting specifications used by ldapmodifymt

Note: The ldapmodifymt tool logs error messages in the file
add.log, which is located in the directory where you are running
the command.

Table A–15 Arguments for ldapmodifymt

Argument Description

-a Denotes that entries are to be added, and that the input file is
in LDIF format. (If you are running ldapadd, this flag is not
required.)

-b Specifies that you have included binary file names in the data
file, which are preceded by a forward slash character.

-c Tells ldapmodify to proceed in spite of errors. The errors will
be reported. (If you do not use this option, ldapmodify stops
when it encounters an error.)

-D binddn When authenticating to the directory, specifies doing so as the
entry is specified in binddn—that is, the DN of the user
seeking authentication. Use this with the -w password option.

-E character_set Specifies native character set encoding. See the appendix about
globalization support in Oracle Internet Directory Administrator’s
Guide.

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would occur without actually performing the
operation.

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-T Sets the number of threads for concurrently processing entries

-U SSLAuth Specifies SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

Entry and Attribute Management Command-Line Tools Syntax

A-28 Oracle Identity Management Application Developer’s Guide

ldapsearch Syntax
The ldapsearch command-line tool enables you to search for and retrieve specific
entries in the directory.

The ldapsearch tool uses this syntax:

ldapsearch [arguments] filter [attributes]

The filter format must be compliant with RFC-2254.

Separate attributes with a space. If you do not list any attributes, all attributes are
retrieved.

-v Specifies verbose mode

-V ldap_version Specifies the version of the LDAP protocol to use. The default
value is 3, which causes the tool to use the LDAP v3 protocol.
A value of 2 causes the tool to use the LDAP v2 protocol.

-w password Overrides the default, unauthenticated, null bind. To force
authentication, use this option with the -D option.

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet".

On Windows NT, you could set this parameter as follows: -W
"file:C:\my_dir\my_wallet".

See Also: RFC-2254 available at http://www.ietf.org for
further information about the standard for the filter format

Note:

■ The ldapsearch tool does not generate LDIF output by
default. To generate LDIF output from the ldapsearch
command-line tool, use the -L flag.

■ Various UNIX shells interpret some characters—for example,
asterisks (*)—as special characters. Depending on the shell you
are using, you may need to escape these characters.

Table A–16 Arguments for ldapsearch

Argument Description

-b basedn Specifies the base DN for the search. This argument is
mandatory.

-s scope This argument is mandatory. Specifies search scope: base, one,
or sub Base: Retrieves a particular directory entry. Along with
this search depth, you use the

search criteria bar

 to select the attribute objectClass and the filter Present.
One Level: Limits your search to all entries beginning one level
down from the root of your search Subtree: Searches entries
within the entire subtree, including the root of your search

Table A–15 (Cont.) Arguments for ldapmodifymt

Argument Description

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-29

-A Retrieves attribute names only (no values)

-a deref Specifies alias dereferencing: never, always, search, or find

-B Allows printing of non-ASCII values

-D binddn When authenticating to the directory, specifies doing so as the
entry specified in binddn—that is, the DN of the user seeking
authentication. Use this with the -w password option.

-d debug_level Sets debugging level to the level specified (see the chapter
about logging, monitoring, and auditing in Oracle Internet
Directory Administrator’s Guide).

-E character_set Specifies native character set encoding. See the appendix about
globalization support inOracle Internet Directory Administrator’s
Guide.

-f file Performs sequence of searches listed in file.

-F sep Printssep instead of = between attribute names and values

-h ldaphost Connects to ldaphost, rather than to the default host, that is,
your local computer. ldaphost can be a computer name or an
IP address.

-L Prints entries in LDIF format (-B is implied).

-l timelimit Specifies maximum time (in seconds) to wait for ldapsearch
command to complete

-M Instructs the tool to send the ManageDSAIT control to the
server. The ManageDSAIT control instructs the server not to
send referrals to clients. Instead a referral entry is returned as a
regular entry.

-n Shows what would be done without actually searching

-O ref_hop_limit Specifies the number of referral hops that a client should
process. The default value is 5.

-p ldapport Connects to the directory on TCP port ldapport. If you do
not specify this option, the tool connects to the default port
(389).

-P wallet_password Specifies wallet password required for one-way or two-way
SSL connections

-S attr Sorts the results by attribute attr.

-t Writes to files in /tmp.

-u Includes user friendly entry names in the output

-U SSLAuth Specifies the SSL authentication mode:

■ 1 for no authentication required

■ 2 for one way authentication required

■ 3 for two way authentication required

-v Specifies verbose mode

-w passwd Specifies bind passwd for simple authentication

Table A–16 (Cont.) Arguments for ldapsearch

Argument Description

Entry and Attribute Management Command-Line Tools Syntax

A-30 Oracle Identity Management Application Developer’s Guide

Examples of ldapsearch Filters
Study the following examples to see how to build your own search commands.

Example 1: Base Object Search The following example performs a base-level search on
the directory from the root.

ldapsearch -p 389 -h myhost -b "" -s base -v "objectclass=*"

■ -b specifies base DN for the search, root in this case.

■ -s specifies whether the search is a base search (base), one level search (one) or
subtree search (sub).

■ objectclass=* specifies the filter for search.

Example 2: One-Level Search The following example performs a one level search starting
at ou=HR, ou=Americas, o=IMC, c=US.

ldapsearch -p 389 -h myhost -b "ou=HR, ou=Americas, o=IMC, c=US" -s one -v
"objectclass=*"

Example 3: Subtree Search The following example performs a subtree search and returns
all entries having a DN starting with cn=us.

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "cn=Person*"

Example 4: Search Using Size Limit The following example actually retrieves only two
entries, even if there are more than two matches.

ldapsearch -h myhost -p 389 -z 2 -b "ou=Benefits,ou=HR,ou=Americas,o=IMC,c=US" -s
one "objectclass=*"

Example 5: Search with Required Attributes The following example returns only the DN
attribute values of the matching entries:

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "objectclass=*" dn

The following example retrieves only the distinguished name along with the surname
(sn) and description (description) attribute values:

ldapsearch -p 389 -h myhost -b "c=US" -s sub -v "cn=Person*" dn sn description

Example 6: Search for Entries with Attribute Options The following example retrieves entries
with common name (cn) attributes that have an option specifying a language code
attribute option. This particular example retrieves entries in which the common names
are in French and begin with the letter R.

ldapsearch -p 389 -h myhost -b "c=US" -s sub "cn;lang-fr=R*"

-W wallet_location Specifies wallet location required for one-way or two-way SSL
connections. For example, on UNIX, you could set this
parameter as follows: -W "file://home/my_dir/my_
wallet".

On Windows NT, you could set this parameter as follows: -W
"file:C:\my_dir\my_wallet".

-z sizelimit Specifies maximum number of entries to retrieve

-X Prints the entries in DSML v1 format.

Table A–16 (Cont.) Arguments for ldapsearch

Argument Description

Entry and Attribute Management Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-31

Suppose that, in the entry for John, no value is set for the cn;lang-it language code
attribute option. In this case, the following example does not return John’s entry:

ldapsearch -p 389 -h myhost -b "c=us" -s sub "cn;lang-it=Giovanni"

Example 7: Searching for All User Attributes and Specified Operational Attributes The following
example retrieves all user attributes and the createtimestamp and orclguid
operational attributes:

ldapsearch -p 389 -h myhost -b "ou=Benefits,ou=HR,ou=Americas,o=IMC,c=US" -s sub
"cn=Person*" * createtimestamp orclguid

The following example retrieves entries modified by Anne Smith:

ldapsearch -h sun1 -b "" "(&(objectclass=*)(modifiersname=cn=Anne
Smith))"

The following example retrieves entries modified between 01 April 2001 and 06 April
2001:

ldapsearch -h sun1 -b "" "(&(objectclass=*)(modifytimestamp >= 20000401000000)
(modifytimestamp <= 20000406235959))"

Other Examples: Each of the following examples searches on port 389 of host sun1,
and searches the whole subtree starting from the DN ou=hr,o=acme,c=us.

The following example searches for all entries with any value for the objectclass
attribute.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree "objectclass=*"

The following example searches for all entries that have orcl at the beginning of the
value for the objectclass attribute.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree "objectclass=orcl*"

The following example searches for entries where the objectclass attribute begins
with orcl and cn begins with foo.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"(&(objectclass=orcl*)(cn=foo*))"

The following example searches for entries in which the common name (cn) is not
foo.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree "(!(cn=foo))"

The following example searches for entries in which cn begins with foo or sn begins
with bar.

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"(|(cn=foo*)(sn=bar*))"

The following example searches for entries in which employeenumber is less than or
equal to 10000.

Note: Because modifiersname and modifytimestamp are not
indexed attributes, use catalog.sh to index these two attributes.
Then, restart the Oracle directory server before issuing the two
previous ldapsearch commands.

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-32 Oracle Identity Management Application Developer’s Guide

ldapsearch -p 389 -h sun1 -b "ou=hr, o=acme, c=us" -s subtree
"employeenumber<=10000"

Oracle Directory Integration and Provisioning Platform Command-Line
Tools Syntax

This section contains these topics:

■ The Directory Integration and Provisioning Assistant (dipassistant) Syntax

■ The schemasync Tool Syntax

■ The Oracle Directory Integration and Provisioning Server Registration Tool
(odisrvreg)

■ Syntax for Provisioning Subscription Tool (oidprovtool)

The Directory Integration and Provisioning Assistant (dipassistant) Syntax
The Directory Integration and Provisioning Assistant (dipassistant) is a
command-line tool for administering the Oracle directory integration and provisioning
server. The syntax for the Directory Integration and Provisioning Assistant is:

dipassistant [-gui | command] [-help]

command := createprofile [cp]
| createprofilelike [cpl]
| modifyprofile [mp]
| deleteprofile [dp]
| listprofiles[lp | lsprof]
| showprofile[sp]
| expressconfig[ec]
| bootstrap [bs]
| wpasswd [wp]
| chgpasswd [cpw]
| reassociate [rs]

For help on a particular command, enter:

dipassistant command -help

Table A–17 lists the tasks you can perform with the Directory Integration and
Provisioning Assistant. It also points you to instructions for performing each task.

Table A–17 Summary of Functionality of the Directory Integration and Provisioning Assistant

Tasks Commands More Information

Use the Oracle Directory Integration and
Provisioning Server Administration tool, which
is the graphical version of the Directory
Integration and Provisioning Assistant

-gui The chapter about tools in Oracle
Identity Management Integration Guide.

Create, modify, or delete a synchronization
profile

createprofile
createprofilelike
modifyprofile
deleteprofile

"Creating, Modifying, and Deleting
Synchronization Profiles" on page A-33

See all the profile names in Oracle Internet
Directory

listprofiles "Listing All Synchronization Profiles in
Oracle Internet Directory" on
page A-35

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-33

Creating, Modifying, and Deleting Synchronization Profiles
The syntax for creating, modifying, or deleting synchronization profiles by using the
Directory Integration and Provisioning Assistant is:

dipassistant createprofile [-h hostName] [-p port] [-D bindDn] [-w password] -f
fileName -configset Configset Number

dipassistant createprofilelike [-h hostName] [-p port] [-D bindDn] [-w password]
-profile origProfName -newprofile newProfName

dipassistant modifyprofile [-h hostName] [-p port] [-D bindDn] [-w password]
{-f fileName | -profile profName [-updlcn] } [propName1=value]
[propName2=value]...

dipassistant deleteprofile -profile profName [-h hostName] [-p port] [-D bindDn]
[-w password] [-configset Configset Number]

Table A–18 describes the parameters for creating, modifying, and deleting
synchronization profiles by using the Directory Integration and Provisioning
Assistant.

See the details of a specific profile showprofile "Viewing the Details of a Specific
Synchronization Profile" on page A-36

Creates and configures import and export
profiles for synchronization with Microsoft
Active Directory

expressconfig "Performing an Express Configuration
of the Active Directory Connector
Profiles" on page A-37

Make Oracle Internet Directory and the
connected directory identical before beginning
synchronization

bootstrap "Bootstrapping a Directory by Using
the Directory Integration and
Provisioning Assistant" on page A-37

Set the wallet password that the Oracle
directory integration and provisioning server
later uses to connect to Oracle Internet Directory

wpasswd "Setting the Wallet Password for the
Oracle Directory Integration and
Provisioning Server" on page A-41

Reset the password of the administrator of the
Oracle Directory Integration Platform

chgpasswd "Changing the Password of the
Administrator of Oracle Directory
Integration and Provisioning Platform"
on page A-41

Move integration profiles from one identity
management node to another

reassociate "Moving an Integration Profile to a
Different Identity Management Node"
on page A-42

Table A–18 Parameters for Creating, Modifying, and Deleting Synchronization Profiles
by Using the Directory Integration and Provisioning Assistant

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D | -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

Table A–17 (Cont.) Summary of Functionality of the Directory Integration and Provisioning Assistant

Tasks Commands More Information

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-34 Oracle Identity Management Application Developer’s Guide

The following example uses a configuration file named import.profile to create a
new profile and associate the new profile with configuration set 1:

dipassistant createprofile -h myhost -p 3060 -D cn=dipadmin -w welcome1
-f import.profile -configset 1

The following example creates a new profile named iPlImport with values copied
from a profile named iPllmportTemplate.

dipassistant createprofilelike -h myhost -p 3060 -D cn=dipadmin -w welcome1
-profile iPlImportTemplate -newProfile iPlImport

The following example uses a configuration file named changes.profile to modify
a profile named myprofile.

dipassistant modifyprofile -profile myprofile -h myhost -p 3060 -D cn=dipadmin
-w welcome1 -f changes.profile

The following example deletes the myprofile profile.

dipassistant deleteprofile -profile myprofile -h myhost -p 3060 -D cn=dipadmin
-w welcome1 -configset 1

For the createprofile, createprofilelike, and modifyprofile commands,
you specify a configuration file containing the properties listed in Table A–19. When
modifying an already existing profile, no defaults are assumed. Only those attributes
specified in the file are changed. When using Directory Integration and Provisioning
Assistant, you reference a property name in the format odip.profile.property_
name. However, in Oracle Internet Directory, the property name is stored in the format
orclodipproperty_name. Both property name formats are listed in Table A–19.

-f | -file The configuration file containing the profile parameters.

See Also: Table A–19 on page A-34 for a list of parameters and their
description

-configset An integer greater than 0 that represents the configuration set with which
to associate the profile.

-profile A text string representing the name of profile to be modified, deleted, or
used as a template for creating a new profile.

-newProfile |
-name

A text string representing the name of profile to be created in Oracle
Internet Directory.

-updlcn Updates the last applied changed number in the specified profile

Table A–19 Properties Expected by createprofile and modifyprofile Commands

Property Description Default

odip.profile.agentexecommand /
orclodipagentexecommand

In the case of a non-LDAP interface, the command to
produce the information in LDIF format

-

odip.profile.condiraccount /
orclodipcondiraccessaccount

DN or user name used to connect to the third party
directory.

-

odip.profile.condirfilter /
orclodipcondirmatchingfilter

Filter that needs to be applied to the changes read
from the connected directory before importing to
Oracle Internet Directory

-

Table A–18 (Cont.) Parameters for Creating, Modifying, and Deleting Synchronization
Profiles by Using the Directory Integration and Provisioning Assistant

Parameter Description

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-35

Listing All Synchronization Profiles in Oracle Internet Directory
The listprofiles command prints a list of all the synchronization profiles in Oracle
Internet Directory. The syntax for this command is:

dipassistant listprofiles [-h hostName] [-p port] [-D bindDn] [-w password]
[-configset Configset Number]

Table A–20 on page A-36 describes the parameters of the listprofiles command.

odip.profile.condirpassword /
orclodipcondiraccesspassword

Password used for identification to the third-party
directory.

-

odip.profile.condirurl /
orclodipcondirurl

Location of third-party directory [hostname:port] -

odip.profile.configfile Name of the file that contains the additional
profile-specific information to be used for execution

-

odip.profile.configinfo /
orclodipadditionalconfiginfo

Contains additional profile-specific information to be
used for execution

-

odip.profile.debuglevel /
orclodipprofiledebuglevel

Specifies the profile debug level -

odip.profile.interface /
orclodipinterfacetype

Indicator as to whether the LDAP or LDIF or DB or
TAGGED format is to be used for data exchange

LDAP

odip.profile.lastchgnum /
orclodipcondirlastappliedchangenumbe
r

Last applied change number. In the case of an export
profile this number refers to Oracle Internet
Directory’s last applied change number However, n
the case of the import profile, this number refers to
the last applied change number in the connected
directory

-

odip.profile.mapfile /
orclodipattributemappingrules

Name of the file that contains the mapping rules -

odip.profile.name /
orclodipagentname

Name of the profile -

odip.profile.oidfilter /
orclodipoidmatchingfilter

Filter that needs to be applied to the changes that are
read from the Oracle Internet Directory before
exporting to the connected directory

-

odip.profile.password /
orclODIPAgentPassword

Password for accessing this profile -

odip.profile.retry /
orclodipsyncretrycount

Maximum number of times the Oracle directory
integration and provisioning server should attempt to
execute an entry

4

odip.profile.schedinterval/
orclodipschedulinginterval

Interval between successive executions of this profile
by the integration server. If the previous execution
has not completed then the next execution will not
resume until it completes.

One minute

odip.profile.status /
orclodipagentcontrol

Either DISABLE or ENABLE DISABLE

odip.profile.syncmode /
orclodipasynchronizationmode

Direction of synchronization. When the changes are
propagated from the third party to Oracle Internet
Directory, the synchronization mode is IMPORT.
When the changes are propagated to the third party
directory, the synchronization mode is EXPORT.

IMPORT

Table A–19 (Cont.) Properties Expected by createprofile and modifyprofile Commands

Property Description Default

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-36 Oracle Identity Management Application Developer’s Guide

The following example prints a list of all the synchronization profiles in Oracle
Internet Directory:

dipassistant listprofiles -h myhost -p 3060 -D cn=dipadmin -w welcome1

By default, the preceding command prints the following list of sample profiles created
during installation. However, your deployment of Oracle Internet Directory may
contain additional synchronization profiles.

IplanetExport
IplanetImport
ActiveImport
ActiveExport
LdifExport
LdifImport
TaggedExport
TaggedImport
OracleHRAgent
ActiveChgImp

Viewing the Details of a Specific Synchronization Profile
The showprofile command prints the details of a specific synchronization profile.
The syntax for this command is:

dipassistant showprofile -profile profName [-h hostName] [-p port] [-D bindDn]
[-w password]

Table A–21 describes the parameters of the showprofile command.

Table A–20 Parameters of the listprofiles Command

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D | -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

-configset An integer greater than 0 that represents the configuration set with which
to associate the profile.

Table A–21 Parameters of the showprofile Command

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D | -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

-profile A text string representing the name of profile to show.

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-37

For example, the following showprofile command prints the details for the
ActiveImport sample profile that is created during installation:

dipassistant showprofile -h myhost -p 3060 -D cn=dipadmin -w welcome1
-profile ActiveImport

The preceding command prints the following details of the ActiveImport sample
profile:

odip.profile.version = 2.0
odip.profile.lastchgnum = 0
odip.profile.interface = LDAP
odip.profile.oidfilter = orclObjectGUID
odip.profile.schedinterval = 60
odip.profile.name = ActiveImport
odip.profile.syncmode = IMPORT
odip.profile.condirfilter =
"searchfilter=(|(objectclass=group)(objectclass=organizationalunit)
(&(objectclass=user)(!(objectclass=computer))))"
odip.profile.retry = 5
odip.profile.debuglevel = 0
odip.profile.status = DISABLE

Performing an Express Configuration of the Active Directory Connector Profiles
The expressconfig command performs an express configuration of the Active
Directory connector. When you run this command, it performs all required
configurations outlined in Table A–17, " Summary of Functionality of the Directory
Integration and Provisioning Assistant" on page A-32. This command also creates two
profiles, an import profile and an export profile. The syntax for performing an express
configuration is as follows:

dipassistant expressconfig [-h hostName] [-p port] [-3rdpartyds 3rd party ds]
[-configset Configset Number]

Table A–22 describes the parameters of the expressconfig command.

Bootstrapping a Directory by Using the Directory Integration and Provisioning
Assistant
The bootstrap command performs the initial migration of data between a connected
directory and Oracle Internet Directory. The syntax for this command is as follows:

dipassistant bootstrap { -profile profName [-h hostName] [-p port] [-D bindDn] [-w
password] [-log logFile] [-logseverity severity] [-trace traceFile] [-tracelevel
level] [-loadparallelism #nThrs] [-loadretry retryCnt] | -f filename }

Table A–23 on page A-38 describes the parameters of the bootstrap command.

Table A–22 Parameters of the expressconfig Command

Parameter Description

-h | -host| -oidhost Host where Oracle Internet Directory is running. The default
value is the name of the local host.

-p |-port | -oidport Port at which Oracle Internet Directory was started. The default is
389.

-3rdpartyds The third-party directory service to configure.

-configset An integer greater than 0 that represents the configuration set
with which to associate the profile.

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-38 Oracle Identity Management Application Developer’s Guide

When you use the bootstrap command, you can use either the -profile parameter
to specify a synchronization profile or the -f parameter to a configuration file. The
following example uses a synchronization profile named iPlanetProfile to
perform bootstrapping:

dipassistant bootstrap –profile iPlanetProfile -h myhost –port 3060 -D cn=dipadmin
-w welcome1

The following example uses a configuration file named bootstrap.cfg to perform
bootstrapping:

dipassistant bootstrap –f bootstrap.cfg

When you use the -f parameter with the bootstrap command, you must specify a
configuration file containing the properties listed in Table A–24 on page A-39.

Table A–23 Parameters of the bootstrap Command

Parameter Description

-f | cfg A configuration file containing all the parameters required for
performing the bootstrapping.

See Also: Table A–24 on page A-39 for a list of parameters and
their description.

-h | -host Host where Oracle Internet Directory is running. The default
value is the name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is
389.

-D | -dn The bind DN to be used in identifying to the directory. The default
value is the DN of the Oracle Directory Integration and
Provisioning platform administrator.

-w | -passwd The password of the bind DN to be used while binding to the
directory.

-profile A text string representing the name of profile to use when
performing the bootstrapping.

-log Log file. If this parameter is not specified, then, by default, the log
information is written to ORACLE_
HOME/ldap/odi/bootstrap.log

-logseverity Log severity 1 - 15. 1 – INFO, 2 – WARNING, 3 – DEBUG, 4 –
ERROR. Or any combination of these. If not specified, then INFO
and ERROR messages alone will be logged.

-trace Trace file for debugging purposes.

-tracelevel Trace level.

-loadparallelism Indicator that loading to Oracle Internet Directory is to take place
in parallel by using multiple threads. For example,
-loadparallelism 5 means that five threads are to be created,
each of which tries to load the entries in parallel to Oracle Internet
Directory.

-loadretry When loading to the destination fails, the number of times to retry
before marking the entry bad.

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-39

Properties Expected by the Bootstrapping Command

Table A–24 Bootstrapping Configuration File Properties

Property Description Mandatory Default

odip.bootstrap.srctype Indicator of whether source
of the bootstrapping is
LDAP or LDIF. Valid
values are either LDAP or
LDIF.

Yes -

odip.bootstrap.desttype Indicator of whether
destination of the
bootstrapping is LDAP or
LDIF. Valid values are
either LDAP or LDIF.

Yes -

odip.bootstrap.srcurl In the case of LDAP source
type, location of the source
directory. In the case of
LDIF, the location of the
LDIF file.

Note: For LDAP, the
expected format is
host[:port]. For LDIF,
the expected format is the
absolute path of the file.

Yes -

odip.bootstrap.desturl In the case of LDAP,
location of the destination
directory. In the case of
LDIF, the location of the
LDIF file.

Note: For LDAP, the
expected format is
host[:port]. For LDIF,
the expected format is the
absolute path of the file.

Yes -

odip.bootstrap.srcsslmode Indicator of whether
SSL-based authentication
must be used to connect to
the source of the
bootstrapping. A value of
TRUE indicates that
SSL-based authentication
must be used.

No FALSE

odip.bootstrap.destsslmode Indicator of whether
SSL-based authentication
must be used to connect to
the destination of the
bootstrapping. TRUE
indicates that SSL-based
authentication must be
used.

Note: In the case of LDIF,
this parameter is
meaningless.

No FALSE

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-40 Oracle Identity Management Application Developer’s Guide

odip.bootstrap.srcdn Supplement to the source
URL. In the case of LDIF
binding, this parameter is
meaningless. However in
the case of LDAP, this
parameter specifies the
Bind DN.

Only in the
case of
LDAP

-

odip.bootstrap.destdn Supplement to the
destination URL. In the
case of LDIF binding, this
parameter is meaningless.
However in the case of
LDAP, this parameter
specifies the Bind DN.

Only in the
case of
LDAP

-

odip.bootstrap.srcpasswd Bind password to the
source. In the case of LDAP
binding, this is used as
security. Oracle
Corporation recommends
that you not specify the
password in this file.

No -

odip.bootstrap.destpasswd Bind password. In the case
of LDAP binding, this is
used as security credential.

Oracle Corporation
recommends that you not
specify the password in
this file.

No -

odip.bootstrap.mapfile Location of the map file
that contains the attribute
and domain mappings.

No -

odip.bootstrap.logfile Location of the log file. If
this file already exists then
it will be appended. The
default log file is
bootstrap.log created
under $ORACLE_
HOME/ldap/odi/log
directory.

No The file bootstrap.log
created under the
directory ORACLE_
HOME/ldap/odi/

odip.bootstrap.logseverity Type of log messages that
needs to be logged.

INFO – 1

WARNING - 2

DEBUG – 4

ERROR - 8

Note: A combination of
these types can also be
given. For example, if you
are interested only in
WARNING and ERROR
message, then specify a
value of 8+2—that is, 10.
Similarly, for all types of
message, use 1 + 2 + 4
+ 8 = 15

No 1 + 8 = 9

Table A–24 (Cont.) Bootstrapping Configuration File Properties

Property Description Mandatory Default

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-41

Setting the Wallet Password for the Oracle Directory Integration and Provisioning
Server
The wp command enables you to set the wallet password that the Oracle directory
integration and provisioning server later uses to connect to Oracle Internet Directory.
To use this command, enter:

dipassistant wp

The Directory Integration and Provisioning Assistant prompts you to enter, and then
confirm, the password.

Changing the Password of the Administrator of Oracle Directory Integration and
Provisioning Platform
This chgpasswd command resets the password of dipadmin account. The default
password for the dipadmin account is same as ias_admin password chosen during
installation. To reset the password, you must provide the security credentials of the
orcladmin account. The syntax for resetting the password is as follows:

dipassistant chgpasswd [-h hostName] [-p port] [-D bindDn] [-w password]

Table A–25 on page A-42 describes the parameters of the chgpasswd command.

odip.bootstrap.loadparallelism Numeric value indicating
the number of writer
threads used to load the
processed data to the
destination

No 1-

odip.bootstrap.loadretry In the event of a failure to
load an entry, indicator of
how many times to retry

No 5

odip.bootstrap.trcfile Location of the trace file. If
this file already exists, then
it is overwritten.

No The default location is
ORACLE_
HOME/ldap/odi/log/
bootstrap.trc

odip.bootstrap.trclevel The tracing level No 3

odip.bootstrap.srcencode The encoding used by the
LDIF file if the file:

Is generated by using a
utility of a third-party
directory

Contains NLS data

Is processed on a different
platform

By default, the Directory
Integration and
Provisioning Assistant
assumes that the file is
processed on the system on
which it was generated.

Yes -

Table A–24 (Cont.) Bootstrapping Configuration File Properties

Property Description Mandatory Default

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-42 Oracle Identity Management Application Developer’s Guide

The following is an example of the chgpasswd command:

dipassistant chgpasswd -h myhost -p 3060 -D cn=dipadmin -w welcome1

The Directory Integration and Provisioning Assistant then prompts for the new
password as follows:

New Password:
Confirm Password:

Moving an Integration Profile to a Different Identity Management Node
You can use the reassociate command of the Directory Integration and
Provisioning Assistant to move directory integration profiles to another node and to
reassociate them with it. For example, if the middle-tier components are associated
with a particular Oracle Identity Management infrastructure, then all the integration
profiles existing in that infrastructure node can be moved to a new infrastructure node
and reassociated with it.

Table A–26 describes the reassociation rules.

The syntax for the reassociate command is as follows:

dipassistant reassociate [-src_ldap_host hostName] [-src_ldap_port port] [-src_
ldap_dn bindDn] [-src_ldap_passwd password] -dst_ldap_host hostName [-dst_ldap_
port port [-dst_ldap_dn bindDn] [-dst_ldap_passwd password] [-log logfile]

Table A–25 Parameters of the chgpasswd Command

Parameter Description

-h | -host Host where Oracle Internet Directory is running. The default value is the
name of the local host.

-p | -port Port at which Oracle Internet Directory was started. The default is 389.

-D | -dn The bind DN to be used in identifying to the directory. The default value
is the DN of the Oracle Directory Integration and Provisioning platform
administrator.

-w | -passwd The password of the bind DN to be used while binding to the directory.

Table A–26 Scenarios for Reassociating Directory Integration Profiles

Scenario Actions Taken

Integration profile does not
exist on the second Oracle
Internet Directory node

The integration profile is copied to the second Oracle Internet
Directory node and is disabled after copying. It must be enabled
by the application. The lastchangenumber attribute in the
integration profile is modified to the current last change number
on the second Oracle Internet Directory node.

Integration profile exists on
the second Oracle Internet
Directorynode

Both integration profiles are reconciled in the following manner:

■ Any new attribute in the profile on node 1 is added to the
profile on node 2

■ For existing same attributes, the values in profile on node 1
override the attributes in the profile on node 2

■ The profile is disabled after copying. It needs to be enabled
by the application.

■ The lastchangenumber attribute in the integration profile
is modified to the current last change number on the second
Oracle Internet Directory node

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-43

Table A–27 describes the parameters of the reassociate command.

The reassociate command defaults are as follows:

src_ldap_host - localhost, src_ldap_port & dst_ldap_port - 389
src_ldap_dn & dst_ldap_dn - cn=orcladmin account

The following is an example of the reassociate command:

dipassistant reassociate -src_ldap_host oid1.mycorp.com \
-dst_ldap_host oid2.mycorp.com -src_ldap_passwd srcpassword \
-dst_ldap_passwd dstpassword

Note if the location of the log file is not specified then by default it will be created as
ORACLE_HOME/ldap/odi/log/reassociate.log.

Limitations of the Directory Integration and Provisioning Assistant in Oracle Internet
Directory 10g Release 2 (10.1.2)
In this release, the Directory Integration and Provisioning Assistant does not support
the following:

■ SSL-based authentications to Oracle Internet Directory

■ Schema synchronization

■ Automatic profile creation at the end of the bootstrapping process when used with
the -cfg option

■ Mapping file validation

■ Creation of a failed entries file

The following elements of the Directory Integration and Provisioning Assistant are
untested:

■ Bootstrapping of the connected directory over the SSL connection

■ The use of the modifyprofile command while synchronization is happening for
that profile

The bootstrapping command of the Directory Integration and Provisioning Assistant
has the limitations described in Table A–28 on page A-44.

Table A–27 Parameters of the reassociate Command

Parameter Description

-src_ldap_host host_name Host where Oracle Internet Directory-1 runs

-src_ldap_port port_number Port where Oracle Internet Directory-1 runs

-src_ldap_dn bind_DN Bind DN for connecting to Oracle Internet Directory-1

-src_ldap_passwd password Bind DN password for connecting to Oracle Internet
Directory-1

-dst_ldap_host host_name Host where Oracle Internet Directory-2 runs

-dst_ldap_portport_number Port where Oracle Internet Directory-2 runs

-dst_ldap_dn bind_DN Bind DN for connecting to Oracle Internet Directory-2

-dst_ldap_passwd password Bind DN password for connecting to Oracle Internet
Directory-2

-log log_file Log file

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-44 Oracle Identity Management Application Developer’s Guide

For initial bootstrapping, you should perform the following steps:

1. Generate a dump of the entries in the connected directory to an LDIF file using a
proprietary tool on the connected directory server.

2. Configure the properties file so that entries are created in Oracle Internet Directory
using the LDIF-to-LDAP approach.

The schemasync Tool Syntax
The schemasync tool enables you to synchronize schema elements—namely
attributes and object classes—between an Oracle directory server and third-party
LDAP directories.

The usage for schemasync is as follows:

ORACLE_HOME/bin/schemasync -srchost source_LDAP_directory -srcport
source_LDAP_port_number -srcdn privileged_DN_in_source_directory_to_access_schema
-srcpwd password -dsthost destination_directory -dstport destination_port
-dstdn privileged_dn_in_destination_directory -dstpwdpassword [-ldap]

The errors that occur during schema synchronization are logged in the
following log files:

Table A–28 Limitations of Bootstrapping in the Directory Integration and Provisioning
Assistant

Type of Bootstrapping Limitation

LDIF-to-LDIF None

LDAP-to-LDIF For a large number of entries, bootstrapping can fail with an
error of size limit exceeded. To resolve this, the connected
directory server from which you are bootstrapping should:

■ Support paged results control (OID 1.2.840.113556.1.4.319).
Currently, Microsoft Active Directory is the only LDAP
directory that supports this control.

■ Have an adequate value for the server side search size limit
parameter.

■ Use a proprietary tool on the connected directory server to
dump all entries to an LDIF file, and then bootstrap by using
either the LDIF-to-LDIF or the LDIF-to-LDAP approach.

LDIF -to-LDAP None

LDAP-to-LDAP Same as LDAP-to-LDIF

Note: the -ldap parameter is optional. If it is specified, then the
schema changes are applied directly from the source LDAP
directory to the destination LDAP directory. If it is not specified,
then the schema changes are placed in the following LDIF files:

■ ORACLE_HOME/ldap/odi/data/attributetypes.ldif
This file has the new attribute definitions.

■ ORACLE_HOME/ldap/odi/data/objectclasses.ldif
This file has the new object class definitions.

if you do not specify -ldap, then you must use ldapmodify to
upload the definitions from these two files, first attribute types and
then object classes.

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-45

■ ORACLE_HOME/ldap/odi/log/attributetypes.log

■ ORACLE_HOME/ldap/odi/log/objectclasses.log

The Oracle Directory Integration and Provisioning Server Registration Tool (odisrvreg)
To register an Oracle directory integration and provisioning server with the directory,
this tool creates an entry in the directory and sets the password for the directory
integration and provisioning server. If the registration entry already exists, then you
can use the tool to reset the existing password. The odisrvreg tool also creates a local
file called odisrvwallet_hostname, at ORACLE_HOME/ldap/odi/conf. This file
acts as a private wallet for the directory integration and provisioning server, which
uses it on startup to bind to the directory.

Table A–29 describes the parameters that you use with the Oracle Directory
Integration and Provisioning Server Registration Tool. You can also run odisrvreg in
SSL mode to make communication between the tool and the directory fully secure,
using the -U, -W, and -P parameters that are also described in Table A–29.

To register the directory integration and provisioning server, enter this command:

odisrvreg -h host_name -p port -D binddn -w bindpasswd –I passwd [-U ssl_mode -W
wallet –P wallet_password]

Syntax for Provisioning Subscription Tool (oidprovtool)
Use the Provisioning Subscription Tool (oidprovtool) to administer directory entries
for provisioning profiles. You can perform these tasks:

■ Create a profile (create)

■ Disable a profile (disable)

■ Reenable a profile (enable)

■ Modify a profile (modify)

■ Delete a profile (delete)

■ Get the current status of a profile (status)

■ Clear all of the errors in a profile (reset)

Table A–29 Descriptions of ODISRVREG Arguments

Argument Description

-h host_name Oracle directory server host name

-p port_number Port number on which the directory server is running

-D binddn Bind DN. The bind DN must have authorization to create the
registration entry for the directory integration and
provisioning server

-l host In a cold failover cluster configuration, the virtual hostname

-w bindpasswd Bind password

-U ssl_mode For no authorization, specify 0. For one-way authorization,
specify 1.

-W wallet_location Location of the Oracle Wallet containing the SSL certificate

-P wallet_password Wallet password to open the Oracle wallet

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-46 Oracle Identity Management Application Developer’s Guide

oidprovtool hides the location of profile entries from callers of the tool. It also hides
schema details. From the caller’s perspective, the combination of an application
identity and an identity management realm uniquely identify a provisioning profile.
There can be only one provisioning profile per application per identity management
realm.

The name of the executable is oidProvTool. It is found at ORACLE_HOME/bin. To
invoke the tool, issue this command:

oidprovtool param1=param1_value param2=param2_value param3=param3_value ...

oidprovtool accepts the following parameters:

Note: To run oidprovtool and other shell scripts on Windows
platforms, use one of these UNIX emulation utilities:

■ Cygwin 1.0:

http://sources.redhat.com

■ MKS Toolkit 5.1 or 6.0:

http://www.datafocus.com/products

Table A–30 Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

operation The subscription operation
performed. Only one operation
can be performed for each
invocation of the tool.

All M

ldap_host Host name of the directory
server on which the operation is
performed. If not specified, the
default value of localhost is
assumed.

All O

profile_status The status of the profile. This
value can be either enabled or
disabled. The default is
enabled.

Create O

profile_mode The values possible are
inbound, outbound, or both.
The default is outbound.

Create O

profile_debug The debug level at which the
DIP server executes the profile.

All O

sslmode A value of 0 indicates non-SSL.
A value of 1 indicates SSL.

All O

ldap_port The TCP/IP port on which the
directory server is listening for
requests. Defaults to 389 if no
value is specified.

All O

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-47

ldap_user_dn The distinguished name of the
user on whose behalf the
operation is performed. The
default is cn=orcladmin. Not
all users may have the
permissions necessary to
perform provisioning
subscription operations. See the
administration guide to learn
how to grant or deny
permissions.

All O

ldap_user_password The password of the user on
whose behalf the operation is
performed. The default is
welcome.

All O

application_dn The distinguished name of the
application for which the
operation is performed. Used
together,application_dn and
organization_dn help the
subscription tool identify a
provisioning profile.

All M

organization_dn The distinguished name of the
organization for which the
operation is performed. The
default is the default identity
management realm. Used
together,application_dn and
organization_dn help
oidprovtool identify a
provisioning profile.

All O

interface_name Database schema name for the
PL/SQL package. The format of
this value should be
[Schema].[PACKAGE_NAME]

Create or
modify

M

interface_type The type of the interface to
which events have to be
propagated. The default is
PLSQL if no value is specified.

Create or
modify

O

interface_connect_info The database connect string. The
format is
host:port:database_
sid:user_id:password.

Create or
modify

M

interface_version The version of the interface
protocol. Valid Values are 1.0,
1.1, or 2.0. Version 1.0 and 1.1 are
old interfaces. Version 2.0 is the
default.

Create O

interface_additional_info Additional information about
the interface. This parameter is
not used currently.

Create or
modify

O

schedule The length of time, in seconds,
that must elapse before DIP
processes the profile. Defaults to
3600 if no value is specified.

Create or
modify

O

Table A–30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-48 Oracle Identity Management Application Developer’s Guide

max_retries The number of times the
provisioning service should try
to deliver an event if delivery
has failed. Defaults to 5 if no
value is specified.

Create or
modify

O

max_events_per_schedule The maximum number of events
that should be propagated in one
schedule. The default is 100.
Useful for controlling load
situations.

Create or
modify

O

profile_group The group of the profile. The
Default is 0. Use this parameter
to address scalability issues that
arise when different DIP server
instances execute different
groups.

Create or
modify

O

lastchangenumber The change number at which
events are propagated to the
application. Used only in
outbound mode. The default
for the create operation is the
current number.

Create or
modify

O

Table A–30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

Syntax for LDIF and Command-Line Tools A-49

event_subscription Events that DIP should notify
the application about. The string
must have this format:

[USER | GROUP]:[domain_of_
interest]:[DELETE |
MODIFY(list of attributes
separated by commas)]

You can specify multiple values
by including more than one
event_subscription
parameter in a run of
oidprovtool.

create only M (for outbound
mode only)

event_mapping_rules For multivalued inbound events
only. This parameter maps the
type of object received from an
application and a qualifying
filter condition to determine the
domain of interest for events
indicated in event_
subscription. The parameter
takes this format:

OBJECT_TYPE:filter_
condition:domain_of_interest

Multiple rules are allowed. You
might, for example, enter these
two rules:

EMP::cn=users,dc=acme,dc=com

EMP:1=AMERICA:1=AMER,cn=user
s,dc=acme,dc=com

In the first case, if the object type
received is EMP, the event is
meant for the domain
cn=users,dc=acme,dc=com.
In the second case, the object
received is again EMP, but the
rule contains the attribute l
(locality). The value of this
attribute is AMERICA.
Accordingly, the events specified
are meant for the domain
l=AMER,cn=users,dc=acme,
dc=com.

Create or
modify

M (for inbound mode
only)

Table A–30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax

A-50 Oracle Identity Management Application Developer’s Guide

event_permitted_operations For multivalued inbound events
only. This parameter is used to
define the types of events an
application is privileged to send
to the Provisioning Integration
Service. The parameter takes this
format:

EVENT_OBJECT:affected_
domain:operation(attributes)

Here are two examples:

IDENTITY:cn=users,dc=acme,dc
=com:ADD(*)

IDENTITY:cn=users,dc=acme,dc
=com:MODIFY(cn,sn,mail,telep
honenumber)

In the first example, the
IDENTITY_ADD event is allowed
for the domain specified as well
as all of its attributes. In the
second example, IDENTITY_
ADD is allowed for the same
domain, but only for certain
attributes. Other attributes are
ignored.

Create or
modify

M (for inbound mode
only)

Table A–30 (Cont.) Provisioning Subscription Tool Parameters

Name Description Operations Mandatory/Optional

DSML Syntax B-1

B
DSML Syntax

This appendix contains the following sections:

■ Capabilities of DSML

■ Benefits of DSML

■ DSML Syntax

■ Tools Enabled for DSML

Capabilities of DSML
Directory services form a core part of distributed computing. XML is becoming the
standard markup language for Internet applications. As directory services are brought
to the Internet, there is a pressing and urgent need to express the directory information
as XML data. This caters to the growing breed of applications that are not
LDAP-aware yet require information exchange with a LDAP directory server.

Directory Services Mark-up Language (DSML) defines the XML representation of
LDAP information and operations. The LDAP Data Interchange Format (LDIF) is
used to convey directory information, or a set of changes to be applied to directory
entries. The former is called Attribute Value Record and the latter is called Change
Record.

Benefits of DSML
Using DSML with Oracle Internet Directory and Internet applications makes it easier
to flexibly integrate data from disparate sources. Also, DSML enables applications that
do not use LDAP to communicate with LDAP-based applications, easily operating on
data generated by an Oracle Internet Directory client tool or accessing the directory
through a firewall.

DSML is based on XML, which is optimized for delivery over the Web. Structured data
in XML will be uniform and independent of application or vendors, thus making
possible numerous new flat file type synchronization connectors. Once in XML format,
the directory data can be made available in the middle tier and have more meaningful
searches performed on it.

DSML Syntax
A DSML version 1 document describes either directory entries, a directory schema or
both. Each directory entry has a unique name called a distinguished name (DN). A
directory entry has a number of property-value pairs called directory attributes. Every
directory entry is a member of a number of object classes. An entry's object classes

DSML Syntax

B-2 Oracle Identity Management Application Developer’s Guide

constrain the directory attributes the entry can take. Such constraints are described in a
directory schema, which may be included in the same DSML document or may be in a
separate document.

The following subsections briefly explain the top-level structure of DSML and how to
represent the directory and schema entries.

Top-Level Structure
The top-level document element of DSML is of the type dsml, which may have child
elements of the following types:

directory-entries
directory-schema

The child element directory-entries may in turn have child elements of the type entry.
Similarly the child element directory-schema may in turn have child elements of the
types class and attribute-type.

At the top level, the structure of a DSML document looks like this:

<!- a document with directory & schema entries -->
 <dsml:directory-entries>
 <dsml:entry dn="...">...</dsml:entry>
 .
 .
 .
 </dsml:directory-entries>
 .
 .
 .
 <dsml:directory-schema>
 <dsml:class id="..." ...>...</dsml:class>
 <dsml:attribute-type id="..." ...>...</dsml:attribute-type>
 .
 .
 .
 </dsml:directory-schema>
</dsml:dsml>

Directory Entries
The element type entry represents a directory entry in a DSML document. The
entry element contains elements representing the entry's directory attributes. The
distinguished name of the entry is indicated by the XML attribute dn.

Here is an XML entry to describe the directory entry:

<dsml:entry dn="uid=Heman, c=in, dc=oracle, dc=com">
<dsml:objectclass>
 <dsml:oc-value>top</dsml:oc-value>
 <dsml:oc-value ref="#person">person</dsml:oc-value>
 <dsml:oc-value>organizationalPerson</dsml:oc-value>
 <dsml:oc-value>inetOrgPerson</dsml:oc-value>
</dsml:objectclass>
<dsml:attr name="sn">
<dsml:value>Siva</dsml:value></dsml:attr>
<dsml:attr name="uid">
<dsml:value>Heman</dsml:value></dsml:attr>
<dsml:attr name="mail">

Tools Enabled for DSML

DSML Syntax B-3

<dsml:attr name="givenname">
<dsml:value>Siva V. Kumar</dsml:value></dsml:attr>
<dsml:attr name="cn">
<dsml:value>Svenugop@Oracle.com</dsml:value></dsml:attr>
<dsml:value>Siva Kumar</dsml:value></dsml:attr>

The oc-value's ref is a URI Reference to a class element that defines the object
class. In this case it is a URI [9] Reference to the element that defines the person object
class. The child elements objectclass and attr are used to specify the object
classes and the attributes of a directory entry.

Schema Entries
The element type class represents a schema entry in a DSML document. The class
element takes an XML attribute id to make referencing easier.

For example, the object class definition for the person object class might look like the
following:

<dsml:class id="person" superior="#top" type="structural">
 <dsml:name>person</dsml:name>
 <dsml:description>...</dsml:description>
 <dsml:object-identifier>2.5.6.6</object-identifier>
 <dsml:attribute ref="#sn" required="true"/>
 <dsml:attribute ref="#cn" required="true"/>
 <dsml:attribute ref="#userPassword" required="false"/>
 <dsml:attribute ref="#telephoneNumber" required="false"/>
 <dsml:attribute ref="#seeAlso" required="false"/>
 <dsml:attribute ref="#description" required="false"/>
</dsml:class>

The directory attributes are described in a similar way. For example, the attribute
definition for the cn attribute may look like this:

<dsml:attribute-type id="cn">
 <dsml:name>cn</dsml:name>
 <dsml:description>...</dsml:description>
 <dsml:object-identifier>2.5.4.3</object-identifier>
 <dsml:syntax>1.3.6.1.4.1.1466.115.121.1.44</dsml:syntax>
</dsml:attribute-type>

Tools Enabled for DSML
With the XML framework, you can now use non-ldap applications to access directory
data. The XML framework broadly defines the access points and provides the
following tools:

■ ldapadd

■ ldapaddmt

■ ldapsearch

The client tool ldifwrite generates directory data and schema LDIF files. If you
convert these LDIF files to XML, you can store the XML file on an application server
and query it. The query and response time is small compared to performing an LDAP
operation against an LDAP server.

See Also: "Entry and Attribute Management Command-Line Tools
Syntax" in Appendix A for information about syntax and usage.

Tools Enabled for DSML

B-4 Oracle Identity Management Application Developer’s Guide

Glossary-1

 Glossary

access control item (ACI)

An attribute that determines who has what type of access to what directory data. It
contains a set of rules for structural access items, which pertain to entries, and content
access items, which pertain to attributes. Access to both structural and content access
items may be granted to one or more users or groups.

access control list (ACL)

The group of access directives that you define. The directives grant levels of access to
specific data for specific clients, or groups of clients, or both.

access control policy point

An entry that contains security directives that apply downward to all entries at lower
positions in the directory information tree (DIT).

ACI

See access control item (ACI).

ACL

See access control list (ACL).

ACP

See access control policy point.

administrative area

A subtree on a directory server whose entries are under the control (schema, ACL, and
collective attributes) of a single administrative authority.

advanced symmetric replication (ASR)

See Oracle9i Advanced Replication

anonymous authentication

The process by which the directory authenticates a user without requiring a user name
and password combination. Each anonymous user then exercises the privileges
specified for anonymous users.

API

See application program interface.

Glossary-2

application program interface

Programs to access the services of a specified application. For example, LDAP-enabled
clients access directory information through programmatic calls available in the LDAP
API.

ASR

See Oracle9i Advanced Replication

attribute

An item of information that describes some aspect of an entry. An entry comprises a
set of attributes, each of which belongs to an object class. Moreover, each attribute has
both a type, which describes the kind of information in the attribute, and a value, which
contains the actual data.

attribute configuration file

In an Oracle Directory Integration Platform environment, a file that specifies attributes
of interest in a connected directory.

attribute type

The kind of information an attribute contains, for example, jobTitle.

attribute uniqueness

An Oracle Internet Directory feature that ensures that no two specified attributes have
the same value. It enables applications synchronizing with the enterprise directory to
use attributes as unique keys.

attribute value

The particular occurrence of information appearing in that entry. For example, the
value for the jobTitle attribute could be manager.

authentication

The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to allowing access to resources in a system.

authorization

Permission given to a user, program, or process to access an object or set of objects.

binding

The process of authenticating to a directory.

central directory

In an Oracle Directory Integration Platform environment, the directory that acts as the
central repository. In an Oracle Directory Integration and Provisioning platform
environment, Oracle Internet Directory is the central directory.

certificate

An ITU x.509 v3 standard data structure that securely binds an identity to a public key.
A certificate is created when an entity’s public key is signed by a trusted identity: a
certificate authority (CA). This certificate ensures that the entity’s information is
correct and that the public key actually belongs to that entity.

Glossary-3

certificate authority (CA)

A trusted third party that certifies that other entities—users, databases, administrators,
clients, servers—are who they say they are. The certificate authority verifies the user’s
identity and grants a certificate, signing it with the certificate authority’s private key.

certificate chain

An ordered list of certificates containing an end-user or subscriber certificate and its
certificate authority certificates.

change logs

A database that records changes made to a directory server.

cipher suite

In SSL, a set of authentication, encryption, and data integrity algorithms used for
exchanging messages between network nodes. During an SSL handshake, the two
nodes negotiate to see which cipher suite they will use when transmitting messages
back and forth.

cluster

A collection of interconnected usable whole computers that is used as a single
computing resource. Hardware clusters provide high availability and scalability.

cold backup

The procedure to add a new DSA node to an existing replicating system by using the
database copy procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are
examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet
Directory.

concurrent operations

The number of operations that are being executed on the directory from all of the
concurrent clients. Note that this is not necessarily the same as the concurrent clients,
because some of the clients may be keeping their sessions idle.

configset

See configuration set entry.

configuration set entry

A directory entry holding the configuration parameters for a specific instance of the
directory server. Multiple configuration set entries can be stored and referenced at
runtime. The configuration set entries are maintained in the subtree specified by the
subConfigsubEntry attribute of the DSE, which itself resides in the associated
directory information base (DIB) against which the servers are started.

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information.

Glossary-4

The destination service is indicated by using its service name for Oracle9i release 9.2
database or its Oracle System Identifier (SID) for Oracle release 8.0 or version 7
databases. The network route provides, at a minimum, the location of the listener
through use of a network address.

connected directory

In an Oracle Directory Integration Platform environment, an information repository
requiring full synchronization of data between Oracle Internet Directory and
itself—for example, an Oracle human Resources database.

consumer

A directory server that is the destination of replication updates. Sometimes called a
slave.

contention

Competition for resources.

context prefix

The DN of the root of a naming context.

cryptography

The practice of encoding and decoding data, resulting in secure messages.

data integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,
and the operation is performed in a naming context not held locally by the server. A
default knowledge reference typically sends the user to a server that has more
knowledge about the directory partitioning arrangement.

default identity management realm

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such hosted environments, the enterprise performing the
hosting is called the default identity management realm, and the enterprises that are
hosted are each associated with their own identity management realm in the DIT.

default realm location

An attribute in the root Oracle Context that identifies the root of the default identity
management realm.

delegated administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory. Other administrators—called delegated

Glossary-5

administrators—may exercise roles in specific identity management realms, or for
specific applications.

DES

Data Encryption Standard, a block cipher developed by IBM and the U.S. government
in the 1970's as an official standard.

DIB

See directory information base (DIB).

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries
that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration profile

In an Oracle Directory Integration Platform environment, an entry in Oracle Internet
Directory that describes how Oracle Directory Integration and Provisioning platform
communicates with external systems and what is communicated.

directory integration and provisioning server

In an Oracle Directory Integration Platform environment, the server that drives the
synchronization of data between Oracle Internet Directory and a connected directory.

directory naming context

See naming context.

directory provisioning profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that the Oracle Directory Integration and
Provisioning platform sends to the directory-enabled applications

directory replication group (DRG)

The directory servers participating in a replication agreement.

directory server instance

A discrete invocation of a directory server. Different invocations of a directory server,
each started with the same or different configuration set entries and startup flags, are
said to be different directory server instances.

directory-specific entry (DSE)

An entry specific to a directory server. Different directory servers may hold the same
DIT name, but have different contents—that is, the contents can be specific to the
directory holding it. A DSE is an entry with contents specific to the directory server
holding it.

directory synchronization profile

A special kind of directory integration profile that describes how synchronization is
carried out between Oracle Internet Directory and an external system.

Glossary-6

directory system agent (DSA)

The X.500 term for a directory server.

distinguished name (DN)

The unique name of a directory entry. It comprises all of the individual names of the
parent entries back to the root.

DIS

See directory integration and provisioning server

DIT

See directory information tree (DIT)

DN

See distinguished name (DN)

DRG

See directory replication group (DRG)

DSA

See directory system agent (DSA)

DSE

See directory-specific entry (DSE)

DSA-specific entries. Different DSAs may hold the same DIT name, but have different
contents. That is, the contents can be specific to the DSA holding it. A DSE is an entry
with contents specific to the DSA holding it.

encryption

The process of disguising the contents of a message and rendering it unreadable
(ciphertext) to anyone but the intended recipient.

entry

The building block of a directory, it contains information about an object of interest to
directory users.

export agent

In an Oracle Directory Integration Platform environment, an agent that exports data
out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration Platform environment, the file that contains data
exported by an export agent.

export file

See export data file.

external agent

A directory integration agent that is independent of Oracle directory integration and
provisioning server. The Oracle directory integration and provisioning server does not
provide scheduling, mapping, or error handling services for it. An external agent is

Glossary-7

typically used when a third party metadirectory solution is integrated with the Oracle
Directory Integration Platform.

failover

The process of failure recognition and recovery. In an Oracle Application Server Cold
Failover Cluster, an application running on one cluster node is transparently migrated
to another cluster node. During this migration, clients accessing the service on the
cluster see a momentary outage and may need to reconnect once the failover is
complete.

fan-out replication

Also called a point-to-point replication, a type of replication in which a supplier
replicates directly to a consumer. That consumer can then replicate to one or more
other consumers. The replication can be either full or partial.

filter

A method of qualifying data, usually data that you are seeking. Filters are always
expressed as DNs, for example: cn=susie smith,o=acme,c=us.

global administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory.

global unique identifier (GUID)

An identifier generated by the system and inserted into an entry when the entry is
added to the directory. In a multimaster replicated environment, the GUID, not the
DN, uniquely identifies an entry. The GUID of an entry cannot be modified by a user.

grace login

A login occurring within the specified period before password expiration.

group search base

In the Oracle Internet Directory default DIT, the node in the identity management
realm under which all the groups can be found.

guest user

One who is not an anonymous user, and, at the same time, does not have a specific
user entry.

GUID

See global unique identifier (GUID).

handshake

A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

Glossary-8

identity management

The process by which the complete security lifecycle for network entities is managed
in an organization. It typically refers to the management of an organization’s
application users, where steps in the security life cycle include account creation,
suspension, privilege modification, and account deletion. The network entities
managed may also include devices, processes, applications, or anything else that needs
to interact in a networked environment. Entities managed by an identity management
process may also include users outside of the organization, for example customers,
trading partners, or Web services.

identity management realm

A collection of identities, all of which are governed by the same administrative
policies. In an enterprise, all employees having access to the intranet may belong to
one realm, while all external users who access the public applications of the enterprise
may belong to another realm. An identity management realm is represented in the
directory by a specific entry with a special object class associated with it.

identity management realm-specific Oracle Context

An Oracle Context contained in each identity management realm. It stores the
following information:

■ User naming policy of the identity management realm—that is, how users are
named and located

■ Mandatory authentication attributes

■ Location of groups in the identity management realm

■ Privilege assignments for the identity management realm—for example: who has
privileges to add more users to the Realm.

■ Application specific data for that Realm including authorizations

import agent

In an Oracle Directory Integration Platform environment, an agent that imports data
into Oracle Internet Directory.

import data file

In an Oracle Directory Integration Platform environment, the file containing the data
imported by an import agent.

inherit

When an object class has been derived from another class, it also derives, or inherits,
many of the characteristics of that other class. Similarly, an attribute subtype inherits
the characteristics of its supertype.

instance

See directory server instance.

integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard
specifications. It is an international community of network designers, operators,

Glossary-9

vendors, and researchers concerned with the evolution of the Internet architecture and
the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a
server. It permits manipulation of remote message folders, also called mailboxes, in a
way that is functionally equivalent to local mailboxes.

key

A string of bits used widely in cryptography, allowing people to encrypt and decrypt
data; a key can be used to perform other mathematical operations as well. Given a
cipher, a key determines the mapping of the plaintext to the ciphertext.

key pair

A public key and its associated private key.

See public/private key pair.

knowledge reference

The access information (name and address) for a remote DSA and the name of the
DIT subtree that the remote DSA holds. Knowledge references are also called referrals.

latency

The time a client has to wait for a given directory operation to complete. Latency can
be defined as wasted time. In networking discussions, latency is defined as the travel
time of a packet from source to destination.

LDAP

See Lightweight Directory Access Protocol (LDAP).

LDIF

See LDAP Data Interchange Format (LDIF).

Lightweight Directory Access Protocol (LDAP)

A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet
Directory.

LDAP Data Interchange Format (LDIF)

The set of standards for formatting an input file for any of the LDAP command-line
utilities.

logical host

In an Oracle Application Server Cold Failover Cluster, one or more disk groups and
pairs of host names and IP addresses. It is mapped to a physical host in the cluster.
This physical host impersonates the host name and IP address of the logical host

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it
(with or without alteration of the original message), and retransmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender and
receiver. This type of security attack works only in the absence of authentication.

Glossary-10

mapping rules file

In an Oracle Directory Integration Platform environment, the file that specifies
mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from
which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site that
participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value
sought and the attribute value stored. For example, matching rules associated with the
telephoneNumber attribute could cause "(650) 123-4567" to be matched with either
"(650) 123-4567" or "6501234567" or both. When you create an attribute, you associate a
matching rule with it.

MD4

A one-way hash function that produces a 128-bit hash, or message digest. If as little as
a single bit value in the file is modified, the MD4 checksum for the file will change.
Forgery of a file in a way that will cause MD4 to generate the same result as that for
the original file is considered extremely difficult.

MD5

An improved version of MD4.

MDS

See master definition site (MDS)

metadirectory

A directory solution that shares information between all enterprise directories,
integrating them into one virtual directory. It centralizes administration, thereby
reducing administrative costs. It synchronizes data between directories, thereby
ensuring that it is consistent and up-to-date across the enterprise.

MTS

See shared server

multimaster replication

Also called peer-to-peer or n-way replication, a type of replication that enables
multiple sites, acting as equals, to manage groups of replicated data. In a multimaster
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

naming attribute

The attribute used to compose the RDN of a new user entry created through Oracle
Delegated Administration Services or Oracle Internet Directory Java APIs. The default
value for this is cn.

Glossary-11

naming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must
begin at an entry that serves as the top of the subtree, and extend downward to either
leaf entries or knowledge references (also called referrals) to subordinate naming
contexts. It can range in size from a single entry to the entire DIT.

native agent

In an Oracle Directory Integration Platform environment, an agent that runs under the
control of the directory integration and provisioning server. It is in contrast to an
external agent.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they wish to connect:

CONNECT username/password@net_service_name

Depending on your needs, net service names can be stored in a variety of places,
including:

■ Local configuration file, tnsnames.ora, on each client

■ Directory server

■ Oracle Names server

■ External naming service, such as NDS, NIS or CDS

nickname attribute

The attribute used to uniquely identify a user in the entire directory. The default value
for this is uid. Applications use this to resolve a simple user name to the complete
distinguished name. The user nickname attribute cannot be multi-valued—that is, a
given user cannot have multiple nicknames stored under the same attribute name.

object class

A named group of attributes. When you want to assign attributes to an entry, you do
so by assigning to that entry the object classes that hold those attributes.

All objects associated with the same object class share the same attributes.

OEM

See Oracle Enterprise Manager.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The
commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility

The utility used to change the password with which Oracle Internet Directory connects
to an Oracle database.

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates the
Oracle directory server processes. It also controls the replication server if one is
installed, and Oracle directory integration and provisioning server.

Glossary-12

one-way function

A function that is easy to compute in one direction but quite difficult to reverse
compute, that is, to compute in the opposite direction.

one-way hash function

A one-way function that takes a variable sized input and creates a fixed size output.

Oracle Call Interface (OCI)

An application programming interface (API) that enables you to create applications
that use the native procedures or function calls of a third-generation language to
access an Oracle database server and control all phases of SQL statement execution.

Oracle Delegated Administration Services

A set of individual, pre-defined services—called Oracle Delegated Administration
Services units—for performing directory operations on behalf of a user. Oracle Internet
Directory Self-Service Console makes it easier to develop and deploy administration
solutions for both Oracle and third-party applications that use Oracle Internet
Directory.

Oracle Directory Integration Platform

A component of Oracle Internet Directory. It is a framework developed to integrate
applications around a central LDAP directory like Oracle Internet Directory.

Oracle directory integration and provisioning server

In an Oracle Directory Integration Platform environment, a daemon process that
monitors Oracle Internet Directory for change events and takes action based on the
information present in the directory integration profile.

Oracle Directory Manager

A Java-based tool with a graphical user interface for administering Oracle Internet
Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products.

Oracle Identity Management

An infrastructure enabling deployments to manage centrally and securely all
enterprise identities and their access to various applications in the enterprise.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about
dispersed users and network resources. It combines Lightweight Directory Access
Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and
availability of Oracle9i.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and
their client applications to reside on different computers and communicate. The main
function of Oracle Net Services is to establish network sessions and transfer data
between a client application and a server. Oracle Net Services is located on each

Glossary-13

computer in the network. Once a network session is established, Oracle Net Services
acts as a data courier for the client and the server.

Oracle PKI certificate usages

Defines Oracle application types that a certificate supports.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and servers.

See Also: Oracle Advanced Security Administrator's Guide

Oracle9i Advanced Replication

A feature in Oracle9i that enables database tables to be kept synchronized across two
Oracle databases.

other information repository

In an Oracle Directory Integration and Provisioning platform environment, in which
Oracle Internet Directory serves as the central directory, any information repository
except Oracle Internet Directory.

partition

A unique, non-overlapping directory naming context that is stored on one directory
server.

peer-to-peer replication

Also called multimaster replication or n-way replication. A type of replication that
enables multiple sites, acting as equals, to manage groups of replicated data. In such a
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

PKCS #12

A public-key encryption standard (PKCS). RSA Data Security, Inc. PKCS #12 is an
industry standard for storing and transferring personal authentication
credentials—typically in a format called a wallet.

plaintext

Message text that has not been encrypted.

point-to-point replication

Also called fan-out replication is a type of replication in which a supplier replicates
directly to a consumer. That consumer can then replicate to one or more other
consumers. The replication can be either full or partial.

primary node

In an Oracle Application Server Cold Failover Cluster, the cluster node on which the
application runs at any given time.

private key

In public-key cryptography, this key is the secret key. It is primarily used for
decryption but is also used for encryption with digital signatures.

Glossary-14

provisioning agent

An application or process that translates Oracle-specific provisioning events to
external or third-party application-specific events.

provisioned applications

Applications in an environment where user and group information is centralized in
Oracle Internet Directory. These applications are typically interested in changes to that
information in Oracle Internet Directory.

profile

See directory integration profile

proxy user

A kind of user typically employed in an environment with a middle tier such as a
firewall. In such an environment, the end user authenticates to the middle tier. The
middle tier then logs into the directory on the end user’s behalf. A proxy user has the
privilege to switch identities and, once it has logged into the directory, switches to the
end user’s identity. It then performs operations on the end user’s behalf, using the
authorization appropriate to that particular end user.

public key

In public-key cryptography this key is made public to all, it is primarily
used for encryption but can be used for verifying signatures.

public-key cryptography

Cryptography based on methods involving a public key and a private key.

public-key encryption

The process in which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted by the recipient using the
recipient’s private key.

public/private key pair

A mathematically related set of two numbers where one is called the private key and
the other is called the public key. Public keys are typically made widely available,
while private keys are available only to their owners. Data encrypted with a public key
can only be decrypted with its associated private key and vice versa. Data encrypted
with a public key cannot be decrypted with the same public key.

realm search base

An attribute in the root Oracle Context that identifies the entry in the DIT that contains
all identity management realms. This attribute is used when mapping a simple realm
name to the corresponding entry in the directory.

referral

Information that a directory server provides to a client and which points to other
servers the client must contact to find the information it is requesting.

See also knowledge reference.

relational database

A structured collection of data that stores data in tables consisting of one or more
rows, each containing the same set of columns. Oracle makes it very easy to link the
data in multiple tables. This is what makes Oracle a relational database management

Glossary-15

system, or RDBMS. It stores data in two or more tables and enables you to define
relationships between the tables. The link is based on one or more fields common to
both tables.

replica

Each copy of a naming context that is contained within a single server.

RDN

See relative distinguished name (RDN).

registry entry

An entry containing runtime information associated with invocations of Oracle
directory servers, called a directory server instance. Registry entries are stored in the
directory itself, and remain there until the corresponding directory server instance
stops.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names that
would serve to uniquely address the entry. In the example,
cn=Smith,o=acme,c=US, the RDN is cn=Smith.

remote master site (RMS)

In a replicated environment, any site, other than the master definition site (MDS), that
participates in Oracle9i Advanced Replication.

replication agreement

A special directory entry that represents the replication relationship among the
directory servers in a directory replication group (DRG).

response time

The time between the submission of a request and the completion of the response.

root DSE

See root directory specific entry.

root directory specific entry

An entry storing operational information about the directory. The information is
stored in a number of attributes.

Root Oracle Context

In the Oracle Identity Management infrastructure, the Root Oracle Context is an entry
in Oracle Internet Directory containing a pointer to the default identity management
realm in the infrastructure. It also contains information on how to locate an identity
management realm given a simple name of the realm.

SASL

See Simple Authentication and Security Layer (SASL)

scalability

The ability of a system to provide throughput in proportion to, and limited only by,
available hardware resources.

Glossary-16

schema

The collection of attributes, object classes, and their corresponding matching rules.

secondary node

In an Oracle Application Server Cold Failover Cluster, the cluster node to which an
application is moved during a failover.

Secure Hash Algorithm (SHA)

An algorithm that takes a message of less than 264 bits in length and produces a
160-bit message digest. The algorithm is slightly slower than MD5, but the larger
message digest makes it more secure against brute-force collision and inversion
attacks.

Secure Socket Layer (SSL)

An industry standard protocol designed by Netscape Communications Corporation
for securing network connections. SSL provides authentication, encryption, and data
integrity using public key infrastructure (PKI).

service time

The time between the initiation of a request and the completion of the response to the
request.

session key

A key for symmetric-key cryptosystems that is used for the duration of one message or
communication session.

SGA

See System Global Area (SGA).

SHA

See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server
processes, so the number of users that can be supported is increased. With shared
server configuration, many user processes connect to a dispatcher. The dispatcher
directs multiple incoming network session requests to a common queue. An idle
shared server process from a shared pool of server processes picks up a request from
the queue. This means a small pool of server processes can server a large amount of
clients. Contrast with dedicated server.

sibling

An entry that has the same parent as one or more other entries.

simple authentication

The process by which the client identifies itself to the server by means of a DN and a
password which are not encrypted when sent over the network. In the simple
authentication option, the server verifies that the DN and password sent by the client
match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

A method for adding authentication support to connection-based protocols. To use this
specification, a protocol includes a command for identifying and authenticating a user

Glossary-17

to a server and for optionally negotiating a security layer for subsequent protocol
interactions. The command has a required argument identifying a SASL mechanism.

single key-pair wallet

A PKCS #12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

slave

See consumer.

SLAPD

Standalone LDAP daemon.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in the
scope of the search. It points the user to the server that stores the requested
information.

specific administrative area

Administrative areas control:

■ Subschema administration

■ Access control administration

■ Collective attribute administration

A specific administrative area controls one of these aspects of administration. A specific
administrative area is part of an autonomous administrative area.

sponsor node

In replication, the node that is used to provide initial data to a new node.

SSL

See Secure Socket Layer (SSL).

subACLSubentry

A specific type of subentry that contains ACL information.

subclass

An object class derived from another object class. The object class from which it is
derived is called its superclass.

subentry

A type of entry containing information applicable to a group of entries in a subtree.
The information can be of these types:

■ Access control policy points

■ Schema rules

■ Collective attributes

Subentries are located immediately below the root of an administrative area.

Glossary-18

subordinate reference

A knowledge reference pointing downward in the DIT to a naming context that starts
immediately below an entry.

subschema DN

The list of DIT areas having independent schema definitions.

subSchemaSubentry

A specific type of subentry containing schema information.

subtype

An attribute with one or more options, in contrast to that same attribute without the
options. For example, a commonName (cn) attribute with American English as an
option is a subtype of the commonName (cn) attribute without that option. Conversely,
the commonName (cn) attribute without an option is the supertype of the same
attribute with an option.

super user

A special directory administrator who typically has full access to directory
information.

superclass

The object class from which another object class is derived. For example, the object
class person is the superclass of the object class organizationalPerson. The
latter, namely, organizationalPerson, is a subclass of person and inherits the
attributes contained in person.

superior reference

A knowledge reference pointing upward to a DSA that holds a naming context higher
in the DIT than all the naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more
options. For example, the commonName (cn) attribute without an option is the
supertype of the same attribute with an option. Conversely, a commonName (cn)
attribute with American English as an option is a subtype of the commonName (cn)
attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It supplies
updates from the master copy to the consumer server.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the same
instance, the data in the instance SGA is shared among the users. Consequently, the
SGA is sometimes referred to as the "shared global area." The combination of the
background processes and memory buffers is called an Oracle instance.

system operational attribute

An attribute holding information that pertains to the operation of the directory itself.
Some operational information is specified by the directory to control the server, for
example, the time stamp for an entry. Other operational information, such as access

Glossary-19

information, is defined by administrators and is used by the directory program in its
processing.

TLS

See Transport Layer Security (TLS)

think time

The time the user is not engaged in actual use of the processor.

throughput

The number of requests processed by Oracle Internet Directory for each unit of time.
This is typically represented as "operations per second."

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol enables
client/server applications to communicate in a way that prevents eavesdropping,
tampering, or message forgery.

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when an
identity is being validated as the entity it claims to be. Typically, the certificate
authorities you trust issue user certificates.

trustpoint

See trusted certificate.

UTF-16

16-bit encoding of Unicode.The Latin-1 characters are the first 256 code points in this
standard.

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit
space. It encodes nearly every character in just about every existing character set
standard, covering most written scripts used in the world. It is owned and defined by
Unicode Inc. Unicode is canonical encoding which means its value can be passed
around in different locales. But it does not guarantee a round-trip conversion between
it and every Oracle character set without information loss.

UNIX Crypt

The UNIX encryption algorithm.

user search base

In the Oracle Internet Directory default DIT, the node in the identity management
realm under which all the users are placed.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely
called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects the
mean solar time along the Earth's prime meridian. UTC is indicated by a z at the end
of the value, for example, 200011281010z.

Glossary-20

UTF-8

A variable-width 8-bit encoding of Unicode that uses sequences of 1, 2, 3, or 4 bytes
for each character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with
one byte, characters from 128-2047 require two bytes, characters from 2048-65535
require three bytes, and characters beyond 65535 require four bytes. The Oracle
character set name for this is AL32UTF8 (for the Unicode 3.1 standard).

virtual host name

In an Oracle Application Server Cold Failover Cluster, the host name corresponding to
this virtual IP address.

virtual IP address

In an Oracle Application Server Cold Failover Cluster, each physical node has its own
physical IP address and physical host name. To present a single system image to the
outside world, the cluster uses a dynamic IP address that can be moved to any
physical node in the cluster. This is called the virtual IP address.

wallet

An abstraction used to store and manage security credentials for an individual entity.
It implements the storage and retrieval of credentials for use with various
cryptographic services. A wallet resource locator (WRL) provides all the necessary
information to locate the wallet.

wait time

The time between the submission of the request and initiation of the response.

X.509

A popular format from ISO used to sign public keys.

Index-1

Index

Numerics
389 port, A-6, A-8
636 port, A-6, A-8

A
abandoning an operation, 8-30
access control, 2-4, 2-5

and authorization, 2-5
access control information (ACI), 2-6

attributes, 2-6
directives

format, 2-6
Access Control List (ACL), 2-6
access control lists (ACLs), 2-6
ACI. See access control information (ACI)
ACLs. See Access Control List (ACL)
add.log, A-16
administration tools

ldapadd, A-15
ldapaddmt, A-16
ldapbind, A-18
ldapcompare, A-19
ldapdelete, A-20
ldapmoddn, A-21
ldapmodify, A-23
ldapmodifymt, A-26
ldapsearch, A-28

agent tools, A-32
anonymous authentication, 2-5
application login, 7-10 to 7-11
application logout, 7-12
application session cookie

clearing, 7-10
coding for, 7-10

applications, building
with the C API, 8-45

attribute options
searching for by using ldapsearch, A-30

attribute values, replacing, A-25
attributes

adding
by using ldapadd, A-15
concurrently, by using ldapaddmt, A-16
to existing entries, A-15

attribute options
searching for by using ldapsearch, A-30

deleting
by using ldapmodify, A-25

in LDIF files, A-1
types, 2-3
values, 2-3

deleting, A-25
authentication, 2-4

anonymous, 2-5
certificate-based, 2-5
Kerberos, A-15, A-17, A-21
modes, SSL, 8-1, 8-2
one-way SSL, 2-5
options, 2-4
password-based, 2-5
SSL, 2-5, 8-1

none, 8-2
one-way, 8-2
two-way, 8-2
with ldapadd, A-16
with ldapaddmt, A-17
with ldapbind, A-18
with ldapmodify, A-23
with ldapmodifymt, A-27

strong, 2-5
to a directory server

enabling, 2-10
enabling, by using DBMS_LDAP, 2-11
enabling, by using the C API, 2-11

to the directory, 8-10
two-way SSL, 2-5

authentication, simple, 7-6
authorization, 2-4, 2-5
authorization ID, 2-4

B
base search, A-28
bootstrap command, in Directory Integration and

Provisioning Assistant, A-37
bulk tools, 1-10

Index-2

C
C API

functions
abandon, 8-30
abandon_ext, 8-30
add, 8-26
add_ext_s, 8-26
add_s, 8-26
compare, 8-20
compare_ext, 8-20
compare_ext_s, 8-20
compare_s, 8-20
count_entries, 8-36
count_references, 8-36
count_values, 8-38
count_values_len, 8-38
delete, 8-27
delete_ext, 8-27
delete_ext_s, 8-27
delete_s, 8-27
dn2ufn, 8-39
err2string, 8-33
explode_dn, 8-39
explode_rdn, 8-39
extended_operation, 8-29
extended_operation_s, 8-29
first_attribute, 8-37
first_entry, 8-36
first_message, 8-35
first_reference, 8-36
get_dn, 8-39
get_entry_controls, 8-40
get_option, 8-6
get_values, 8-38
get_values_len, 8-38
init_ssl call, 8-2
modify, 8-22
modify_ext, 8-22
modify_ext_s, 8-22
modify_s, 8-22
msgid, 8-31
msgtype, 8-31
next_attribute, 8-37
next_entry, 8-36
next_message, 8-35
next_reference, 8-36
parse_extended_result, 8-33
parse_reference, 8-40
parse_result, 8-33
parse_sasl_bind_result, 8-33
rename, 8-24
rename_s, 8-24
result, 8-31
sasl_bind, 8-10
sasl_bind_s, 8-10
search_st, 8-17
set_option, 8-6
simple_bind, 8-10
simple_bind_s, 8-10
unbind_ext, 8-16

unbind_s, 8-16
value_free, 8-38
value_free_len, 8-38

sample usage, 8-41
summary, 8-3
usage with SSL, 8-42
usage without SSL, 8-42

Catalog Management Tool
syntax, A-13

Catalog Management tool
syntax, A-13

catalog.sh
syntax, A-13

certificate authority, 2-5
certificate-based authentication, 2-5
certificates, 2-5
change logging, A-6
change logs

flag, A-5
toggling, A-5

change types, in ldapmodify input files, A-24
changetype attribute

add, A-24
delete, A-25
modify, A-24
modrdn, A-25

children of an entry, listing, 8-20
code examples

application login, 7-10 to 7-11
authentication, 7-6, 7-7
forced authentication, 7-8, 7-11
single sign-off, 7-8

command-line tools
Directory Integration and Provisioning

Assistant, A-32
ldapadd, A-15
ldapbind, A-18
ldapcompare, A-19
ldapdelete, A-20
ldapmoddn, A-21
ldapmodify, A-23
ldapmodifymt, A-26
ldapsearch, A-28
schemasync, A-44
syntax, A-13

components
Oracle Internet Directory SDK, 1-4

configuration set entries
modifying, A-11
overriding user-specified, A-6

controls, working with, 3-18, 3-20, 8-14

D
DAP Information Model, 2-3
DAS units, 6-1
DAS URL Parameter Descriptions, 12-4
DAS URL Parameters, 6-4
DAS URL parameters, 12-2
data

Index-3

integrity, 2-4, 2-6
privacy, 2-4, 2-6

data-type summary, 9-5
DBMS_LDAP

about, 0-xxvii
DBMS_LDAP package, 0-xxvii

searching by using, 2-12
DBMS_LDAP_UTL

about, 11-1
data-types, 11-35
function return codes, 11-33
group-related subprograms

about, 11-2
function create_group_handle, 11-16
function get_group_dn, 11-18
function get_group_properties, 11-17
function set_group_handle_properties, 11-16

miscellaneous subprograms
about, 11-2
function check_interface_version, 11-31
function create_mod_propertyset, 11-29
function get_property_names, 11-26
function get_property_values, 11-27
function get_property_values_len, 11-27
function normalize_dn_with_case, 11-25
function populate_mod_propertyset, 11-30
procedure free_handle, 11-31
procedure free_mod_propertyset, 11-31
procedure free_propertyset_collection, 11-28

subscriber-related subprograms
about, 11-2
function create_subscriber_handle, 11-20
function get_subscriber_dn, 11-22
function get_subscriber_properties, 11-21

user-related subprograms
about, 11-1
function authenticate_user, 11-4
function check_group_membership, 11-12
function create_user_handle, 11-5
function get_group_membership, 11-14
function get_user_dn, 11-11
function get_user_extended_properties, 11-9
function get_user_properties, 11-7
function locate_subscriber_for_user, 11-12
function set_user_handle_properties, 11-6
function set_user_properties, 11-8

debug
log files, viewing, A-7

default port
number, A-6, A-8

dependencies and limitations, 8-46
C API, 8-46

DES40 encryption, 2-6
directives, 2-6
Directory Information Tree, 2-2
directory information tree (DIT), 2-2
Directory Integration and Provisioning Assistant

bootstrap command, A-37
what it does, A-32

directory integration and provisioning server

registration tool, A-45
starting, A-8
stopping, A-11

directory replication server
starting, A-7
stopping, A-8

directory server discovery, 3-10
directory servers

restarting, A-11
starting

mandatory arguments, A-6
syntax, A-5
with default configuration, A-7

stopping, A-6
distinguished names, 2-2

components of, 2-2
format, 2-2
in LDIF files, A-1

DNs. see distinguished names.
documentation, related, 0-xxvii
dynamic directives

common types, 7-3
defined, 7-2, 7-3
programming languages supported, 7-3

dynamic password verifiers
controls, 3-18, 3-20
creating, 3-18 to 3-20
parameters, 3-18, 3-19

E
encryption

DES40, 2-6
levels available in Oracle Internet Directory, 2-6
RC4_40, 2-6

entries
adding

by using ldapadd, A-15
by using ldapaddmt, A-16

deleting
by using ldapdelete, A-20
by using ldapmodify, A-25

distinguished names of, 2-2
locating by using distinguished names
modifying

by using ldapmodify, A-23
concurrently, by using ldapmodifymt, A-26

naming, 2-2
reading, 8-20
searching

base level, A-28
by using ldapsearch, A-28
one-level, A-28
subtree level, A-28

errors
handling and parsing results, 8-32

exception summary, 9-3

Index-4

F
filters, 2-14

IETF-compliant, A-28
ldapsearch, A-30

forced authentication, 7-8, 7-11
formats, of distinguished names, 2-2

G
GET authentication method, 7-9
global user inactivity timeout, 7-9
group entries

creating
by using ldapmodify, A-25

H
header files and libraries, required, 8-45
history of LDAP, 2-1
HTTP headers, 7-1

I
integrity, data, 2-6
interface calls, SSL, 8-2

J
Java, 1-4, 2-8
Java API reference

class descriptions
Property class, 3-3
PropertySet class, 3-3
PropertySetCollection class, 3-3

Java partner applications
dynamically protected, 7-6 to 7-9
statically protected, 7-6

Java partner applications, statically protected, 7-5
JAZN

see Oracle Application Server Java Authentication
and Authorization Service

JNDI, 1-4, 2-8
JPEG images, adding with ldapadd, A-16

K
Kerberos authentication, A-15, A-17, A-21

L
LDAP

functional model, 2-3
history, 2-1
information model, 2-3
messages, obtaining results and peeking

inside, 8-31
naming model, 2-2
operations, performing, 8-16
search filters, IETF-compliant, A-28
security model, 2-4

server instances
starting, A-5

session handle options, 8-6
in the C API, 2-10

sessions
initializing, 2-8

version 2 C API, 8-1
LDAP APIs, 1-7
LDAP Data Interchange Format (LDIF), A-1

syntax, A-1
LDAP Functional Model, 2-3
LDAP Models, 2-1

LDAP Naming Model, 2-2
LDAP Security Model, 2-4
ldapadd, A-15

adding entries, A-15
adding JPEG images, A-16
LDIF files in, A-15
plug-in support, 5-20 to 5-22
syntax, A-15

ldapaddmt, A-16
adding entries concurrently, A-16
LDIF files in, A-16
log, A-16
syntax, A-16

ldapbind, A-18
syntax, A-18

ldap-bind operation, 2-4
ldapcompare, A-19

plug-in support, 5-22 to 5-25
syntax, A-19

ldapdelete, A-20
deleting entries, A-20
syntax, A-20

ldapmoddn, A-21
syntax, A-21

ldapmodify, A-23
adding values to multivalued attributes, A-25
change types, A-24
creating group entries, A-25
deleting entries, A-25
LDIF files in, A-23
plug-in support, 5-18 to 5-20
replacing attribute values, A-25
syntax, A-23

ldapmodifymt, A-26
by using, A-26
LDIF files in, A-26
multithreaded processing, A-27
syntax, A-26

ldapsearch, A-28
filters, A-30
syntax, A-28

LDIF
files

in ldapadd commands, A-15
in ldapaddmt commands, A-16
in ldapmodify commands, A-23
in ldapmodifymt commands, A-26

formatting notes, A-2

Index-5

formatting rules, A-2
syntax, A-1
using, A-1

log files
debug, viewing, A-7

M
m, A-16
mod_osso

benefits, 7-1
compared with single sign-on SDK, 7-1
definition, 7-1
integration methods, 7-2
sample applications, 7-3 to 7-9

mod_osso cookie, 7-10
multiple threads, A-27

in ldapaddmt, A-16
increasing the number of, A-16

multithreaded command-line tools
ldapmodifymt, A-27

multivalued attributes
adding values to, by using ldapmodify, A-25

N
naming entries, 2-2
net service name, A-4

O
object classes

adding
concurrently, by using ldapaddmt, A-16

in LDIF files, A-1
objects

removing
by using command-line tools, A-20

removing by using command-line tools, A-23
odisrvreg, A-45
OID Control Utility

run-server command, A-4
stop-server command, A-4
syntax, A-4
viewing debug log files, A-7

OID Monitor, A-4
sleep time, A-3
starting, A-3
stopping, A-4
syntax, A-3

oidctl
viewing debug log files, A-7

oidctl. See OID Control Utility
OIDLDAPD, A-6
OIDREPLD, A-8
one-level search, A-28
one-way SSL authentication, 2-5, 8-2
OpenLDAP Community, 0-xxviii
operational attributes

ACI, 2-6
Oracle Application Server Java Authentication and

Authorization Service
defined, 1-2

Oracle Directory Manager, 1-9
listing attribute types, A-2

Oracle directory replication server, 1-9
Oracle directory replication server instances

starting, A-7
stopping, A-7, A-8

Oracle directory server, 1-9
Oracle directory server instances

starting, A-5
stopping, A-5, A-6

Oracle extensions
about, 3-1
application

deinstallation logic, 1-6
runtime logic, 1-6
shutdown logic, 1-6
startup and bootstrap logic, 1-6

group management functionality, 3-9
programming abstractions

for Java language, 3-3
for PL/SQL language, 3-3

programming abstractions for Java language, 3-3
user management functionality, 3-3, 3-5

Oracle extensions to support SSL, 8-1
Oracle Identity Management

infrastructure
modifying existing applications, 1-2

integrating
new applications, 1-3

integrating applications with, 1-1
benefits of, 1-1
supported services, 1-2

Oracle Internet Directory, components, 1-9
Oracle SSL call interface, 8-1
Oracle SSL extensions, 8-1
Oracle SSL-related libraries, 8-46
Oracle system libraries, 8-46
Oracle wallet, 8-2
Oracle Wallet Manager, 8-2

required for creating wallets, 8-46
Oracle wallets

changing location of
with ldapadd, A-16
with ldapaddmt, A-17
with ldapbind, A-18
with ldapcompare, A-20
with ldapdelete, A-21
with ldapmoddn, A-22
with ldapmodify, A-24
with ldapmodifymt, A-28
with ldapsearch, A-30

Oracle xxtensions
what an LDAP-integrated application looks

like, 1-5
OracleAS Single Sign-On

user attributes, 7-1
overview of LDAP models, 2-1

Index-6

P
password-based authentication, 2-5
passwords

policies, 2-6
performance

by using multiple threads, A-16
permissions, 2-4, 2-5
PL/SQL API, 9-1

contains subset of C API, 2-8
data-type summary, 9-5
exception summary, 9-3
functions

add_s, 9-30
ber_free, 9-37
bind_s, 9-7
compare_s, 9-9
count_entries, 9-15
count_values, 9-32
count_values_len, 9-32
create_mod_array, 9-24
dbms_ldap.init, 9-6
delete_s, 9-21
err2string, 9-23
explode_dn, 9-34
first_attribute, 9-16
first_entry, 9-13
get_dn, 9-18
get_values, 9-19
get_values_len, 9-20
init, 9-5
modify_s, 9-29
modrdn2_s, 9-22
msgfree, 9-36
next_attribute, 9-17
next_entry, 9-14
open_ssl, 9-35, 9-36, 9-37
rename_s, 9-33
search_s, 9-10
search_st, 9-12
simple_bind_s, 9-7
unbind_s, 9-8

loading into database, 2-8
procedures

free_mod_array, 9-31
populate_mod_array (binary version), 9-25
populate_mod_array (string version), 9-25

subprograms, 9-5
summary, 9-1

plug-ins
binary support, 5-18 to 5-25

port
default, A-6, A-8

port 389, A-6, A-8
port 636, A-6, A-8
POST authentication method, 7-9
privacy, data, 2-4, 2-6
privileges, 2-4, 2-5
procedures, PL/SQL

free_mod_array, 9-31
populate_mod_array (binary version), 9-25

populate_mod_array (string version), 9-25
profile tools, A-32
provisioning

tool
syntax, A-45

Provisioning Subscription Tool, A-45

R
RC4_40 encryption, 2-6
RDNs. see relative distinguished names (RDNs)
related documentation, 0-xxvii
relative distinguished names (RDNs), 2-2

modifying
by using ldapmodify, A-25

results, stepping through a list of, 8-35
RFC 1823, 8-46
rules, LDIF, A-2
run-server command, by using OID Control

Utility, A-4

S
sample C API usage, 8-41
SDK components, 1-4
search

filters
IETF-compliant, A-28
ldapsearch, A-30

results
parsing, 8-36

scope, 2-13
search-related operations, flow of, 2-12
security, within Oracle Internet Directory

environment, 2-4
self-service console, 6-2
service location record, 3-10
servlets

dynamically protected, 7-6 to 7-9
statically protected, 7-5, 7-6

sessions
closing, 8-16
enabling termination by using DBMS_

LDAP, 2-17
initializing

by using DBMS_LDAP, 2-9
by using the C API, 2-8

session-specific user identity, 2-4
simple authentication, 2-5
single sign-off, 7-8
single sign-on SDK

compared with mod_osso, 7-1
sleep time, OID Monitor, A-3
Smith, Mark, 0-xxviii
SSL

authentication modes, 8-1
default port, 2-5
enabling

with ldapadd, A-16
with ldapaddmt, A-17

Index-7

with ldapbind, A-18
with ldapmodify, A-23
with ldapmodifymt, A-27

handshake, 8-2
interface calls, 8-2
no authentication, 2-5
one-way authentication, 2-5
Oracle extensions, 8-1

provide encryption and decryption, 8-1
two-way authentication, 2-5
wallets, 8-2

static directives
defined, 7-2
writing, 7-2

stop-server command, A-4
strong authentication, 2-5
subtree level search, A-28
syntax

Catalog Management Tool, A-13
catalog management tool, A-14
catalog.sh, A-13
command-line tools, A-13
Directory Integration and Provisioning

Assistant, A-32
directory integration and provisioning server

registration tool, A-45
ldapadd, A-15
ldapaddmt, A-16
ldapbind, A-18
ldapcompare, A-19
ldapdelete, A-20
ldapmoddn, A-21
ldapmodify, A-23
ldapmodifymt, A-26
ldapsearch, A-28
LDIF, A-1
odisrvreg, A-45
OID Control Utility, A-4
OID Monitor, A-3
oidctl, A-4
oidprovtool, A-45
Oracle Directory Integration and Provisioning

command-line tools, A-32
Provisioning Subscription Tool, A-45
provisioning tool, A-45
schemasync, A-44

T
TCP/IP socket library, 8-46
troubleshooting

directory server instance startup, A-6
two-way authentication, SSL, 8-2
types of attributes, 2-3

U
URLs, protecting, 7-2, 7-3
user attributes, 7-1, 7-2

V
values, deleting attribute, A-25

W
wallets

SSL, 8-2
support, 8-2

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	What’s New in the SDK?
	New Features in the Release 10.1.2 SDK
	New Features in the Release 9.0.4 SDK

	Part I Programming for Oracle Identity Management
	1 Developing Applications for Oracle Identity Management
	Benefits of Integrating with Oracle Identity Management
	Oracle Identity Management Services Available for Application Integration
	Integrating Existing Applications with Oracle Identity Management
	Integrating New Applications with Oracle Identity Management
	Integrating J2EE Applications with Oracle Identity Management
	Directory Programming: An Overview
	Programming Languages Supported by the SDK
	SDK Components
	Application Development in the Directory Environment
	Architecture of a Directory-Enabled Application
	Directory Interactions During the Application Life Cycle
	Services and APIs for Integrating Applications with Oracle Internet Directory
	Integrating Existing Applications with Oracle Internet Directory
	Integrating New Applications with Oracle Internet Directory

	Other Components of Oracle Internet Directory

	2 Developing Applications with Standard LDAP APIs
	History of LDAP
	LDAP Models
	Naming Model
	Information Model
	Functional Model
	Security Model
	Authentication
	Access Control and Authorization
	Data Integrity
	Data Privacy
	Password Policies

	About the Standard LDAP APIs
	API Usage Model
	Getting Started with the C API
	Getting Started with the DBMS_LDAP Package
	Getting Started with the Java API

	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using DBMS_LDAP
	Initializing the Session by Using JNDI

	Authenticating an LDAP Session
	Authenticating an LDAP Session by Using the C API
	Authenticating an LDAP Session by Using DBMS_LDAP

	Searching the Directory
	Program Flow for Search Operations
	Search Scope
	Filters
	Searching the Directory by Using the C API
	Searching the Directory by Using DBMS_LDAP

	Terminating the Session
	Terminating the Session by Using the C API
	Terminating the Session by Using DBMS_LDAP

	3 Developing Applications with Oracle Extensions to the Standard APIs
	Using Oracle Extensions to the Standard APIs
	Using the API Extensions in PL/SQL
	Using the API Extensions in Java
	The oracle.java.util Package
	PropertySetCollection, PropertySet, and Property Classes

	How the Standard APIs and The Oracle Extensions Are Installed

	Creating an Application Identity in the Directory
	Creating an Application Identity
	Assigning Privileges to an Application Identity

	User Management Functionality
	User Operations Performed by Directory-Enabled Applications
	User Management APIs
	Java API for User Management
	C API for User Management
	PL/SQL API for User Management

	User Authentication
	Java API for User Authentication
	PL/SQL API for User Authentication
	C API for User Authentication

	User Creation
	Java API for User Creation
	PL/SQL API for User Creation
	C API for User Creation

	User Object Retrieval
	Java API for User Object Retrieval
	PL/SQL API for User Object Retrieval
	C API for User Object Retrieval

	Group Management Functionality
	Identity Management Realm Functionality
	Realm Object Retrieval for the Java API

	Server Discovery Functionality
	Benefits of Oracle Internet Directory Discovery Interfaces
	Usage Model for Discovery Interfaces
	Determining Server Name and Port Number From DNS
	Mapping the DN of the Naming Context
	Search by Domain Component of Local Machine
	Search by Default SRV Record in DNS

	Environment Variables for DNS Server Discovery
	Programming Interfaces for DNS Server Discovery
	Java APIs for Server Discovery
	Examples: Java API for Directory Server Discovery

	SASL Authentication Functionality
	SASL Authentication by Using the DIGEST-MD5 Mechanism
	Steps Involved in SASL Authentication by Using DIGEST-MD5
	JAVA APIs for SASL Authentication by Using DIGEST-MD5

	SASL Authentication by Using External Mechanism

	Proxying on Behalf of End Users
	Creating Dynamic Password Verifiers
	Request Control for Dynamic Password Verifiers
	Syntax for DynamicVerifierRequestControl
	Parameters Required by the Hashing Algorithms
	Configuring the Authentication APIs
	Parameters Passed If ldap_search Is Used
	Parameters Passed If ldap_compare Is Used

	Response Control for Dynamic Password Verifiers
	Obtaining Privileges for the Dynamic Verifier Framework

	Dependencies and Limitations for the PL/SQ LDAP API

	4 Developing Provisioning-Integrated Applications
	Introduction to the Oracle Directory Provisioning Integration Service
	Developing Provisioning-Integrated Applications
	Example of a Provisioning-Integrated Application
	Requirements of the Employee Self Service Application
	Registering the Employee Self Service Application in Oracle Internet Directory
	Identifying the Management Context for the Employee Self Service Application
	Determining Provisioning Mode for the Employee Self Service Application
	Determining Events for the Employee Self Service Application
	Provisioning the Employee Self Service Application for an Identity Management Realm
	Determining Scheduling Parameters for the Employee Self Service Application
	Determining the Interface Connection Information for the Employee Self Service Application
	Implementing the Interface Specification for the Employee Self Service Application
	Creating the Provisioning Subscription Profile for the Employee Self Service Application

	Provisioning Integration Prerequisites
	Development Usage Model for Provisioning Integration
	Initiating Provisioning Integration
	Returning Provisioning Information to the Directory

	Development Tasks for Provisioning Integration
	Application Installation
	User Creation and Enrollment
	User Deletion
	Extensible Event Definitions
	Application Deinstallation
	LDAP_NTFY Function Definitions
	FUNCTION user_exists
	FUNCTION group_exists

	FUNCTION event_ntfy

	5 Developing Directory Plug-ins
	Plug-in Prerequisites
	Plug-in Benefits
	What Is the Plug-in Framework?
	Operation-Based Plug-ins Supported by the Directory
	Pre-Operation Plug-ins
	Post-Operation Plug-ins
	When-Operation Plug-ins

	Designing, Creating, and Using Plug-ins
	Designing Plug-ins
	Types of Plug-in Operations
	Naming Plug-ins

	Creating Plug-ins
	Package Specifications for Plug-in Module Interfaces

	Compiling Plug-ins
	Dependencies
	Recompiling Plug-ins
	Granting Permission

	Registering Plug-ins
	The orclPluginConfig Object Class
	Adding a Plug-in Configuration Entry by Using Command-Line Tools
	Example 1
	Example 2

	Managing Plug-ins
	Modifying Plug-ins
	Debugging Plug-ins

	Enabling and Disabling Plug-ins
	Exception Handling
	Error Handling
	Program Control Handling between Oracle Internet Directory and Plug-ins

	Plug-in LDAP API
	Plug-ins and Replication
	Plug-in and Database Tools
	Security
	Plug-in Debugging
	Plug-in LDAP API Specifications

	Examples of Plug-ins
	Example 1: Search Query Logging
	Example 2: Synchronizing Two DITs

	Binary Support in the Plug-in Framework
	Binary Operations with ldapmodify
	Binary Operations with ldapadd
	Binary Operations with ldapcompare

	Database Object Types Defined
	Specifications for Plug-in Procedures

	6 Integrating with Oracle Delegated Administration Services
	What Is Oracle Delegated Administration Services?
	How Applications Benefit from Oracle Delegated Administration Services

	Integrating Applications with the Delegated Administration Services
	Integration Profile
	Oracle Delegated Administration Services Integration Methodology and Considerations

	Java APIs Used to Access URLs

	7 Developing Applications for Single Sign-On
	What Is mod_osso?
	Protecting Applications Using mod_osso: Two Methods
	Protecting URLs Statically
	Protecting URLs with Dynamic Directives

	Developing Applications Using mod_osso
	Developing Statically Protected PL/SQL Applications
	Developing Statically Protected Java Applications
	Developing Java Applications That Use Dynamic Directives
	Java Example #1: Simple Authentication
	Java Example #2: Single Sign-Off
	Java Example #3: Forced Authentication

	A Word About Non-GET Authentication

	Security Issues: Single Sign-Off and Application Logout
	Application Login: Code Examples
	Bad Code Example #1
	Bad Code Example #2
	Recommended Code

	Application Logout: Recommended Code

	Part II Oracle Internet Directory Programming Reference
	8 C API Reference
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions
	SSL Interface Calls
	Wallet Support

	Functions in the C API
	The Functions at a Glance
	Initializing an LDAP Session
	ldap_init and ldap_open

	LDAP Session Handle Options
	ldap_get_option and ldap_set_option

	Authenticating to the Directory
	ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s

	SASL Authentication Using Oracle Extensions
	ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props, and ora_ldap_free_cred_hdl

	SASL Authentication
	ora_ldap_init_SASL

	Working With Controls
	Closing the Session
	ldap_unbind, ldap_unbind_ext, and ldap_unbind_s

	Performing LDAP Operations
	ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
	Reading an Entry
	Listing the Children of an Entry
	ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
	ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
	ldap_rename and ldap_rename_s
	ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
	ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
	ldap_extended_operation and ldap_extended_operation_s

	Abandoning an Operation
	ldap_abandon_ext and ldap_abandon

	Obtaining Results and Peeking Inside LDAP Messages
	ldap_result, ldap_msgtype, and ldap_msgid

	Handling Errors and Parsing Results
	ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and ldap_err2string

	Stepping Through a List of Results
	ldap_first_message and ldap_next_message

	Parsing Search Results
	ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_ count_entries, and ldap_count_references
	ldap_first_attribute and ldap_next_attribute
	ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len, ldap_value_free, and ldap_value_free_len
	ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
	ldap_get_entry_controls
	ldap_parse_reference

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL
	C API Usage for SASL-Based DIGEST-MD5 Authentication

	Required Header Files and Libraries for the C API
	Dependencies and Limitations of the C API

	9 DBMS_LDAP PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data Type Summary
	Subprograms
	FUNCTION init
	FUNCTION simple_bind_s
	FUNCTION bind_s
	FUNCTION unbind_s
	FUNCTION compare_s
	FUNCTION search_s
	FUNCTION search_st
	FUNCTION first_entry
	FUNCTION next_entry
	FUNCTION count_entries
	FUNCTION first_attribute
	FUNCTION next_attribute
	FUNCTION get_dn
	FUNCTION get_values
	FUNCTION get_values_len
	FUNCTION delete_s
	FUNCTION modrdn2_s
	FUNCTION err2string
	FUNCTION create_mod_array
	PROCEDURE populate_mod_array (String Version)
	PROCEDURE populate_mod_array (Binary Version)
	PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
	FUNCTION get_values_blob
	FUNCTION count_values_blob
	FUNCTION value_free_blob
	FUNCTION modify_s
	FUNCTION add_s
	PROCEDURE free_mod_array
	FUNCTION count_values
	FUNCTION count_values_len
	FUNCTION rename_s
	FUNCTION explode_dn
	FUNCTION open_ssl
	FUNCTION msgfree
	FUNCTION ber_free
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_get_dbcharset_name

	10 Java API Reference
	11 DBMS_LDAP_UTL PL/SQL Reference
	Summary of Subprograms
	Subprograms
	User-Related Subprograms
	Function authenticate_user
	Function create_user_handle
	Function set_user_handle_properties
	Function get_user_properties
	Function set_user_properties
	Function get_user_extended_properties
	Function get_user_dn
	Function check_group_membership
	Function locate_subscriber_for_user
	Function get_group_membership

	Group-Related Subprograms
	Function create_group_handle
	Function set_group_handle_properties
	Function get_group_properties
	Function get_group_dn

	Subscriber-Related Subprograms
	Function create_subscriber_handle
	Function get_subscriber_properties
	Function get_subscriber_dn
	Function get_subscriber_ext_properties

	Property-Related Subprograms
	Miscellaneous Subprograms
	Function normalize_dn_with_case
	Function get_property_names
	Function get_property_values
	Function get_property_values_len
	Procedure free_propertyset_collection
	Function create_mod_propertyset
	Function populate_mod_propertyset
	Procedure free_mod_propertyset
	Procedure free_handle
	Function check_interface_version
	Function get_property_values_blob
	Procedure property_value_free_blob

	Function Return Code Summary
	Data Type Summary

	12 DAS_URL Interface Reference
	Directory Entries for the Service Units
	DAS Units and Corresponding URL Parameters
	DAS URL API Parameter Descriptions
	Search-and-Select Service Units for Users or Groups
	Invoking Search-and-Select Service Units for Users or Groups
	Receiving Data from the User or Group Search-and-Select Service Units

	13 Provisioning Integration API Reference
	Versioning of Provisioning Files and Interfaces
	Extensible Event Definition Configuration
	Inbound and Outbound Events
	PL/SQL Bidirectional Interface (Version 2.0)
	Provisioning Event Interface (Version 1.1)
	Predefined Event Types
	Attribute Type
	Attribute Modification Type
	Event Dispositions Constants
	Callbacks
	GetAppEvent()
	PutAppEventStatus()
	PutOIDEvent()

	Part III Appendixes
	A Syntax for LDIF and Command-Line Tools
	LDAP Data Interchange Format (LDIF) Syntax
	Starting, Stopping, Restarting, and Monitoring Oracle Internet Directory Servers
	The OID Monitor (oidmon) Syntax
	Starting the OID Monitor
	Stopping the OID Monitor
	Starting and Stopping OID Monitor in a Cold Failover Cluster Configuration

	The OID Control Utility (oidctl) Syntax
	Starting and Stopping an Oracle Directory Server Instance
	Troubleshooting Directory Server Instance Startup
	Starting and Stopping an Oracle Directory Replication Server Instance
	Starting the Oracle Directory Integration and Provisioning Server
	Stopping the Oracle Directory Integration and Provisioning Server
	Restarting Oracle Internet Directory Server Instances
	Starting and Stopping Directory Servers on a Virtual Host or an Oracle Application Server Cluster (Identity Management)

	Entry and Attribute Management Command-Line Tools Syntax
	The Catalog Management Tool (catalog.sh) Syntax
	ldapadd Syntax
	ldapaddmt Syntax
	ldapbind Syntax
	ldapcompare Syntax
	ldapdelete Syntax
	ldapmoddn Syntax
	ldapmodify Syntax
	ldapmodifymt Syntax
	ldapsearch Syntax
	Examples of ldapsearch Filters

	Oracle Directory Integration and Provisioning Platform Command-Line Tools Syntax
	The Directory Integration and Provisioning Assistant (dipassistant) Syntax
	Creating, Modifying, and Deleting Synchronization Profiles
	Listing All Synchronization Profiles in Oracle Internet Directory
	Viewing the Details of a Specific Synchronization Profile
	Performing an Express Configuration of the Active Directory Connector Profiles
	Bootstrapping a Directory by Using the Directory Integration and Provisioning Assistant
	Properties Expected by the Bootstrapping Command
	Setting the Wallet Password for the Oracle Directory Integration and Provisioning Server
	Changing the Password of the Administrator of Oracle Directory Integration and Provisioning Platform
	Moving an Integration Profile to a Different Identity Management Node
	Limitations of the Directory Integration and Provisioning Assistant in Oracle Internet Directory 10g Release 2 (10.1.2)

	The schemasync Tool Syntax
	The Oracle Directory Integration and Provisioning Server Registration Tool (odisrvreg)
	Syntax for Provisioning Subscription Tool (oidprovtool)

	B DSML Syntax
	Capabilities of DSML
	Benefits of DSML
	DSML Syntax
	Top-Level Structure
	Directory Entries
	Schema Entries

	Tools Enabled for DSML

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

