
Oracle® Application Server Portal
Developer’s Guide

10g Release 2 (10.1.2)

Part No. B14134-01

November 2004

Oracle Application Server Portal Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14134-01

Copyright © 2004, Oracle. All rights reserved.

Contributing Authors: Joan Carter, Tugdual Grall, Helen Grembowicz, Peter Moskovits, Frank Rovitto,
Ingrid Snedecor, Sue Vickers, Vanessa Wang

Contributors: Gareth Bryan, Abhinav Gattani, Paul Lin, Pankaj Mittal, Lei Oh, Alistair Wilson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xiii

Preface ... xv

Intended Audience.. xv
Documentation Accessibility ... xv
Structure ... xvi
Related Documents .. xvii
Conventions .. xvii
Browser Recommendations ... xviii

Part I Portlet Overview

1 Understanding Portlets

1.1 Introduction to Portal Development .. 1-1
1.2 Understanding Portlets .. 1-1
1.3 Portlet Anatomy.. 1-3
1.4 Portlet Resources... 1-4
1.4.1 Out-of-the-Box Portlets ... 1-5
1.4.2 Other Sources of Pre-Built Portlets.. 1-6
1.4.3 Web Clipping ... 1-6
1.4.4 OmniPortlet .. 1-9
1.4.5 Portlet Builder ... 1-10
1.4.6 Programmatic Portlets ... 1-11
1.4.7 Deciding Which Tool to Use ... 1-12
1.5 Summary ... 1-12

Part II Portlet Technologies

2 Portlet Technologies Matrix

2.1 The Portlet Technologies Matrix... 2-1
2.2 General Suitability .. 2-4
2.2.1 Web Clipping ... 2-4
2.2.1.1 Examples of portlets you can build using Web Clipping....................................... 2-4
2.2.2 OmniPortlet .. 2-4
2.2.2.1 Examples of portlets you can create with OmniPortlet .. 2-4

iv

2.2.3 Java Portlets ... 2-4
2.2.3.1 Examples of portlets you can build using Java .. 2-5
2.2.4 Portlet Builder ... 2-5
2.2.4.1 Examples of portlets you can build using the Portlet Builder 2-5
2.2.5 PL/SQL Portlets... 2-5
2.2.5.1 Examples of portlets you can build using PL/SQL... 2-5
2.3 Expertise Required.. 2-5
2.3.1 Web Clipping ... 2-5
2.3.2 OmniPortlet .. 2-6
2.3.3 Java Portlets .. 2-6
2.3.4 Portlet Builder .. 2-6
2.3.5 PL/SQL Portlets... 2-6
2.4 Deployment Type ... 2-6
2.4.1 Web Providers.. 2-7
2.4.2 WSRP Providers... 2-8
2.4.3 Database Providers.. 2-8
2.4.4 Provider Architecture... 2-10
2.5 Caching Style .. 2-11
2.5.1 Web Clipping, OmniPortlet, and Portlet Builder... 2-12
2.5.2 Java Portlets ... 2-12
2.5.3 PL/SQL Portlets.. 2-12
2.6 Development Tool ... 2-12
2.6.1 Web Clipping, OmniPortlet, and Portlet Builder... 2-12
2.6.2 Java Portlets ... 2-12
2.6.3 PL/SQL Portlets.. 2-13
2.7 Portlet Creation Style... 2-13
2.7.1 OmniPortlet and Web Clipping.. 2-14
2.7.2 Java Portlets ... 2-14
2.7.3 Portlet Builder ... 2-14
2.7.4 PL/SQL Portlets.. 2-15
2.8 User Interface Flexibility ... 2-15
2.8.1 Web Clipping .. 2-15
2.8.2 OmniPortlet and Portlet Builder .. 2-15
2.8.3 Java Portlets and PL/SQL Portlets... 2-15
2.9 Ability to Capture Content from Web Sites ... 2-15
2.9.1 Web Clipping .. 2-15
2.9.2 OmniPortlet ... 2-16
2.9.3 Java Portlets ... 2-16
2.9.4 PL/SQL Portlets.. 2-16
2.10 Ability to Render Content Inline ... 2-16
2.10.1 Web Clipping .. 2-16
2.10.2 OmniPortlet ... 2-17
2.10.3 Java Portlets ... 2-17
2.10.4 Portlet Builder ... 2-17
2.10.5 PL/SQL Portlets.. 2-17
2.11 Charting Capability ... 2-17
2.11.1 Web Clipping .. 2-17

v

2.11.2 OmniPortlet ... 2-17
2.11.3 Java Portlets ... 2-17
2.11.4 Portlet Builder ... 2-18
2.11.5 PL/SQL Portlets.. 2-18
2.12 Public Portlet Parameters Support .. 2-18
2.13 Private Portlet Parameter Support .. 2-19
2.13.1 OmniPortlet, Web Clipping, and Portlet Builder... 2-19
2.13.2 Java Portlets and PL/SQL Portlets... 2-19
2.14 Event Support... 2-19
2.14.1 Web Clipping, OmniPortlet, and Java Portlets .. 2-19
2.14.2 Portlet Builder and PL/SQL Portlets ... 2-19
2.15 Ability to Hide and Show Portlets Based on User Privileges.. 2-19
2.15.1 Web Clipping and OmniPortlet.. 2-19
2.15.2 Java Portlets ... 2-19
2.15.3 Portlet Builder ... 2-20
2.15.4 PL/SQL Portlets.. 2-20
2.16 Multi-lingual Support ... 2-20
2.16.1 Web Clipping, OmniPortlet, Java Portlets, and PL/SQL Portlets 2-20
2.16.2 Portlet Builder ... 2-20
2.17 Pagination Support .. 2-20
2.17.1 OmniPortlet ... 2-20
2.17.2 Java Portlets and PL/SQL Portlets... 2-20
2.17.3 Portlet Builder ... 2-20
2.18 Single Sign-On and External Application Integration.. 2-20
2.18.1 Web Clipping .. 2-21
2.18.2 OmniPortlet ... 2-21
2.18.3 Java Portlets ... 2-21
2.18.4 PL/SQL Portlets.. 2-21

Part III Building Portlets

3 Building Portlets with OmniPortlet

3.1 What is OmniPortlet? ... 3-2
3.1.1 Type .. 3-3
3.1.2 Source ... 3-3
3.1.2.1 Spreadsheet ... 3-5
3.1.2.2 SQL ... 3-5
3.1.2.3 XML .. 3-6
3.1.2.4 Web Service ... 3-7
3.1.2.5 Web Page ... 3-8
3.1.3 Filter ... 3-9
3.1.4 View.. 3-10
3.1.5 Layout... 3-11
3.1.5.1 Tabular Layout... 3-12
3.1.5.2 Chart Layout .. 3-13
3.1.5.3 News Layout .. 3-15

vi

3.1.5.4 Bullet Layout .. 3-17
3.1.5.5 Form Layout ... 3-18
3.1.6 Edit Defaults mode... 3-19
3.1.7 Events ... 3-20
3.2 Parameters and Events.. 3-20
3.2.1 Portlet Parameters and Events.. 3-21
3.2.2 Page Parameters and Events ... 3-22
3.3 Using OmniPortlet ... 3-22
3.3.1 Adding an OmniPortlet to a Portal Page .. 3-22
3.3.2 Defining a Portlet Based on a SQL Data Source... 3-23
3.3.3 Defining a Portlet Based on a Web Service ... 3-26
3.3.4 Defining a Portlet Based on an Existing Web Page ... 3-28
3.3.5 Modifying the Layout of an Existing OmniPortlet .. 3-35
3.3.6 Using Parameters and Events ... 3-37
3.3.6.1 Adding Parameters to an Existing OmniPortlet ... 3-38
3.3.6.2 Adding Events to an Existing OmniPortlet ... 3-40
3.3.6.3 Relating Portlet Parameters and Events on a Page... 3-40
3.4 Summary ... 3-43

4 Building Content-Based Portlets with Web Clipping

4.1 What Is Web Clipping? .. 4-1
4.2 Adding Web Page Content to a Portal Page ... 4-2
4.2.1 Adding a Web Clipping Portlet to a Page.. 4-2
4.2.2 Selecting a Section of a Web Page to Display in the Web Clipping Portlet 4-4
4.2.3 Setting Web Clipping Portlet Properties .. 4-8
4.3 Integrating Authenticated Web Content Using Single Sign-On .. 4-9
4.4 Example: Adding a Web Clipping That Users Can Customize .. 4-15
4.4.1 Exercise: Adding a Web Clipping Portlet to a Personal Page 4-15
4.4.2 Exercise: Selecting a Clipping in OTN... 4-16
4.4.3 Exercise: Customizing a Web Clipping Portlet .. 4-18
4.5 Current Limitations for Web Clipping ... 4-21

5 Building Java Portlets

5.1 Guidelines for Creating Java Portlets.. 5-2
5.1.1 Shared Screen Mode (View Mode for JPS)... 5-2
5.1.1.1 HTML Guidelines for Rendering Portlets.. 5-2
5.1.1.2 Cascading Style Sheet Guidelines for Rendering Portlets...................................... 5-3
5.1.2 Edit Mode (JPS and OracleAS Portal)... 5-4
5.1.2.1 Guidelines for Edit Mode Options... 5-4
5.1.2.2 Guidelines for Buttons in Edit Mode... 5-4
5.1.2.3 Guidelines for Rendering Customization Values .. 5-4
5.1.3 Edit Defaults Mode (JPS and OracleAS Portal) ... 5-5
5.1.3.1 Guidelines for Edit Defaults Mode Options... 5-5
5.1.3.2 Guidelines for Buttons in Edit Defaults Mode ... 5-5
5.1.3.3 Guidelines for Rendering Customization Values .. 5-5
5.1.4 Preview Mode (JPS and OracleAS Portal).. 5-6
5.1.4.1 Guidelines for Preview Mode... 5-6

vii

5.1.5 Full Screen Mode (OracleAS Portal) ... 5-6
5.1.5.1 Guidelines for Full Screen Mode.. 5-7
5.1.6 Help Mode (JPS and OracleAS Portal) ... 5-7
5.1.6.1 Guidelines for Help Mode... 5-7
5.1.7 About Mode (JPS and OracleAS Portal) ... 5-7
5.1.7.1 Guidelines for About Mode .. 5-7
5.1.8 Link Mode (OracleAS Portal)... 5-7
5.1.8.1 Guidelines for Link Mode ... 5-8
5.2 Introduction to Java Portlet Specification and WSRP.. 5-8
5.2.1 The Relationship Between WSRP and JPS ... 5-9
5.3 Building JPS-Compliant Portlets with Oracle JDeveloper ... 5-10
5.3.1 Installing the Oracle JDeveloper Portal Add-In ... 5-11
5.3.2 Building JPS-compliant Portlets ... 5-11
5.3.2.1 Creating a Portlet... 5-11
5.3.2.2 Adding Portlet Logic... 5-20
5.3.2.3 Deploying Your Portlet to an Application Server .. 5-20
5.3.2.3.1 Creating a Connection to Oracle Application Server Containers for J2EE 5-21
5.3.2.3.2 Deploying the WAR File ... 5-22
5.3.2.4 Registering and Viewing Your Portlet ... 5-22
5.3.2.4.1 Registering on a Local OracleAS Portal Instance .. 5-23
5.3.2.4.2 Registering on portal.standards.com... 5-28
5.3.2.4.3 Adding Your Portlet .. 5-28
5.4 Building PDK-Java Portlets with Oracle JDeveloper.. 5-28
5.4.1 Installing the Oracle JDeveloper Portal Add-In ... 5-29
5.4.2 Building PDK-Java Portlets ... 5-29
5.4.2.1 Creating a Portlet and Provider... 5-29
5.4.2.2 Adding Portlet Logic... 5-36
5.4.2.3 Validating Your Portlet and Provider .. 5-36
5.4.2.4 Deploying to an Application Server ... 5-38
5.4.2.4.1 Creating a Connection to Oracle Application Server Containers for J2EE 5-38
5.4.2.4.2 Deploying the WAR File ... 5-39
5.4.2.5 Registering and Viewing Your Portlet ... 5-41
5.4.3 Adding Render Modes... 5-45
5.4.3.1 Assumptions... 5-46
5.4.3.2 Implementing Extra Show Modes... 5-46
5.4.3.3 Updating the XML Provider Definition ... 5-46
5.4.3.4 Viewing the Portlet.. 5-46
5.4.4 Customizing Portlets.. 5-48
5.4.4.1 Assumptions... 5-50
5.4.4.2 Implementing Customization for Edit and Edit Defaults Pages 5-50
5.4.4.2.1 Reviewing the Generated Code ... 5-50
5.4.4.2.2 Modifying the Generated Code.. 5-51
5.4.4.3 Implementing Customization for Show Pages ... 5-52
5.4.4.4 Preference Information Within the XML Provider Definition............................ 5-52
5.4.4.5 Viewing the Portlet.. 5-53
5.4.5 Passing Parameters and Submitting Events ... 5-53
5.4.5.1 Assumptions... 5-53

viii

5.4.5.2 Adding Parameters to Your Portlets... 5-54
5.4.5.3 Submitting Events ... 5-56
5.4.5.3.1 Creating an Events Portlet .. 5-56
5.4.6 Accessing Session Information ... 5-59
5.4.6.1 Assumptions... 5-60
5.4.6.2 Implementing Session Storage... 5-60
5.4.6.3 Viewing the Portlet.. 5-62
5.4.7 Implementing Portlet Security.. 5-62
5.4.7.1 Assumptions... 5-62
5.4.7.2 Portlet Security Features... 5-62
5.4.7.2.1 Authentication .. 5-62
5.4.7.2.2 Authorization.. 5-63
5.4.7.2.3 Communication Security... 5-63
5.4.7.3 Single Sign-On.. 5-63
5.4.7.3.1 Partner Application.. 5-64
5.4.7.3.2 External Application .. 5-64
5.4.7.3.3 No Application Authentication.. 5-65
5.4.7.4 OracleAS Portal Access Control Lists (ACLs) ... 5-65
5.4.7.5 Portlet Security Managers .. 5-66
5.4.7.5.1 Viewing the Portlet .. 5-67
5.4.7.5.2 Implementing Your Own Security Manager.. 5-68
5.4.7.6 OracleAS Portal Server Security.. 5-68
5.4.7.7 Message Authentication ... 5-68
5.4.7.8 HTTPS Communication.. 5-69
5.4.7.8.1 Configuration of SSL.. 5-70
5.4.7.9 LDAP (Oracle Internet Directory) Security ... 5-70
5.4.7.9.1 Implementing Oracle Internet Directory Security... 5-71
5.4.7.9.2 Viewing Your Portlets ... 5-73
5.4.8 Controlling the Export/Import of Portlet Customizations .. 5-74
5.4.8.1 Import/Export Programming Interface ... 5-75
5.4.8.1.1 Logging Interface.. 5-76
5.4.8.2 Exporting Customizations Example ... 5-77
5.4.8.3 Implementing Security for Export/Import.. 5-82
5.4.8.3.1 Securing Provider Communications ... 5-82
5.4.8.3.2 Disabling Export/Import of Customizations... 5-83
5.4.8.3.3 Obfuscating Data for Transport (Automatic)... 5-83
5.4.8.3.4 Encrypting Customization Data for Transport .. 5-83
5.4.8.3.5 Exporting by Reference ... 5-83
5.4.8.3.6 Encrypting Customization Data Example .. 5-84
5.4.8.3.7 Exporting by Reference Example... 5-86
5.4.9 Enhancing Portlet Performance with Caching ... 5-88
5.4.9.1 Assumptions... 5-89
5.4.9.2 Activating Caching.. 5-90
5.4.9.3 Adding Expiry-Based Caching .. 5-90
5.4.9.4 Adding Invalidation Based Caching... 5-91
5.4.9.4.1 Configuring the Provider Servlet... 5-91
5.4.9.4.2 Defining the OracleAS Web Cache Invalidation Port................................... 5-91

ix

5.4.9.4.3 Configuring the XML Provider Definition ... 5-93
5.4.9.4.4 Manually Invalidating the Cache... 5-94
5.4.9.5 Adding Validation-Based Caching ... 5-95
5.4.10 Writing Multi-Lingual Portlets ... 5-95
5.4.10.1 Assumptions... 5-96
5.4.10.2 Internationalizing Your Portlet.. 5-96
5.4.10.2.1 Providing Translations for Portlet Content .. 5-96
5.4.10.2.2 Providing Translation for Portlet Attributes .. 5-98
5.4.10.3 Viewing the Portlet.. 5-101
5.5 Building Struts Portlets with Oracle JDeveloper... 5-101
5.5.1 OracleAS Portal and the Apache Struts Framework ... 5-101
5.5.1.1 Model View Controller Overview .. 5-101
5.5.1.2 Apache Struts Overview... 5-103
5.5.1.3 OracleAS Portal Integration with Struts .. 5-103
5.5.1.3.1 Oracle Struts Portlet ... 5-104
5.5.1.4 Summary... 5-105
5.5.2 Creating a Struts Portlet... 5-105
5.5.2.1 Creating a Struts Portlet ... 5-106
5.5.2.1.1 Create a new flow and view to host the Portlet actions 5-107
5.5.2.1.2 Creating the new JSPs.. 5-107
5.5.2.1.3 Creating a Portlet ... 5-108
5.5.2.1.4 Extending the portlet to add Portal Business Logic 5-109
5.5.2.2 Registering the Provider... 5-109
5.5.2.3 Summary... 5-109

6 Building PL/SQL Portlets

6.1 Guidelines for Creating PL/SQL Portlets ... 6-1
6.1.1 Portlet Show Modes .. 6-2
6.1.2 Recommended Portlet Procedures and Functions.. 6-2
6.2 Building PL/SQL Portlets with the PL/SQL Generator ... 6-3
6.2.1 Creating the Input XML File .. 6-4
6.2.2 Running the PL/SQL Generator ... 6-6
6.2.3 Publishing the Generated PL/SQL Portlet .. 6-7
6.2.3.1 Installing the Packages in the Database .. 6-8
6.2.3.2 Registering the Database Provider... 6-8
6.2.3.3 Adding Your Portlet to a Page.. 6-8
6.3 Building PL/SQL Portlets Manually.. 6-8
6.3.1 Implementing the Portlet Package .. 6-9
6.3.2 Implementing the Provider Package ... 6-10
6.3.3 Adding Your Portlet to a Page.. 6-14
6.4 Implementing Information Storage... 6-14
6.4.1 Implementing a Preference Store ... 6-15
6.4.1.1 Using a Preference Store... 6-15
6.4.1.2 Creating and Accessing a Preference Store ... 6-15
6.4.2 Implementing a Session Store ... 6-19
6.4.2.1 Creating and Accessing a Session Store ... 6-19
6.5 Using Parameters ... 6-21

x

6.5.1 Passing Private Parameters ... 6-22
6.5.2 Passing Page Parameters and Mapping Public Portlet Parameters 6-22
6.5.3 Retrieving Parameter Values .. 6-23
6.6 Accessing Context Information.. 6-24
6.6.1 Using Context Information.. 6-25
6.6.2 Using wwctx_api to Obtain Context Information.. 6-25
6.7 Implementing Portlet Security ... 6-27
6.7.1 Using Security ... 6-27
6.7.1.1 Guidelines for Using the Security APIs.. 6-27
6.7.2 Coding Security... 6-28
6.8 Improving Portlet Performance with Caching .. 6-30
6.8.1 Using Caching ... 6-31
6.8.1.1 Validation-Based Caching .. 6-31
6.8.1.2 Expiry-Based Caching... 6-32
6.8.1.3 Invalidation-Based Caching... 6-32
6.8.2 Configuring and Monitoring the Cache .. 6-32
6.8.3 Implementing Validation-Based Caching ... 6-32
6.8.4 Implementing Expiry-Based Caching.. 6-34
6.8.5 Implementing Invalidation-Based Caching .. 6-35
6.9 Implementing Error Handling ... 6-36
6.9.1 Using Error Handling .. 6-37
6.9.1.1 Guidelines for Error Handling .. 6-38
6.9.2 Adding Error Handling ... 6-38
6.10 Implementing Event Logging .. 6-40
6.10.1 Using Event Logging.. 6-41
6.10.1.1 Guidelines for Event Logging.. 6-41
6.10.2 Adding Event Logging... 6-41
6.11 Writing Multi-Lingual Portlets .. 6-43
6.11.1 Using Multi-Lingual Support ... 6-43
6.11.2 Adding Multi-Lingual Support .. 6-44
6.11.2.1 Loading Language Strings ... 6-44
6.11.2.2 Retrieving Language Strings.. 6-45

Part IV Appendixes

A Building Portlets with the Portlet Builder

A.1 Using a Wizard to Build a Portlet.. A-1
A.1.1 Creating a Schema in OracleAS Portal .. A-2
A.1.1.1 Creating a Schema ... A-2
A.1.1.2 Granting and Revoking Privileges on Database Objects A-4
A.1.1.3 Enrolling the Schema in One or More Roles.. A-7
A.1.2 Creating a Provider for Locally Built Portlets .. A-8
A.1.3 Exposing a Provider ... A-9
A.1.4 Creating Portlets Using OracleAS Portal Wizards... A-11
A.1.4.1 Building Portlets Declaratively.. A-13
A.1.4.2 Building Forms Declaratively .. A-15
A.1.4.3 Building Reports Declaratively ... A-31

xi

A.1.4.4 Building Forms and Reports against interMedia Rich Content A-54
A.1.4.5 Building Charts Declaratively ... A-56
A.1.4.6 Building Lists of Values Declaratively ... A-77
A.2 Editing a Portlet Builder Component ... A-81
A.3 Managing Portlets.. A-82
A.3.1 Navigating to the Component Management Page .. A-83
A.3.2 Renaming a Portlet ... A-83
A.3.3 Deleting a Portlet .. A-83
A.3.4 Copying a Portlet .. A-84
A.3.5 Generating the PL/SQL Package for a Portlet ... A-84
A.3.6 Viewing Source Code... A-84
A.3.6.1 Viewing the Package Spec and Body for a Portlet.. A-85
A.3.6.2 Viewing the Call Interface for a Portlet .. A-85
A.3.7 Managing Locks on Portlets.. A-85
A.4 Managing Versions .. A-86
A.5 Managing Portlet Security ... A-87
A.5.1 Granting Portlet Access Privileges ... A-88
A.5.1.1 Inheriting Portlet Access Privileges from a Provider... A-88
A.5.1.2 Granting Access Privileges to Individual Users ... A-89
A.6 Performing Test Runs on a Portlet .. A-90
A.6.1 Running a Component as a Full Page.. A-91
A.6.2 Running a Component as a Portlet .. A-91
A.6.3 Running a Component through the Customization Form ... A-91
A.6.4 Running the Component as a Portlet through the Portlet Customization Form A-91
A.6.5 Running in Batch Mode ... A-92
A.6.5.1 Setting init.ora Parameters for Batch Jobs.. A-93
A.6.5.2 Adding a Batch Button to an Existing Component .. A-93
A.7 Referencing the OracleAS Portal Schema... A-94
A.8 Coding Additional Functionality .. A-95
A.8.1 Using Bind Variables.. A-96
A.8.2 Writing Event Handlers for Items on Forms .. A-96
A.8.2.1 Writing a JavaScript Event Handler for an Item on a Form................................ A-96
A.8.2.2 Writing a PL/SQL Event Handler for a Button on a Form A-97
A.8.3 Using PL/SQL to Get and Set Values in a Form.. A-98
A.8.4 Using PL/SQL to Get or Set Cookies in a Form or Report... A-99
A.8.5 Defining Values through Page Parameters... A-99
A.9 Using Shared Components to Create a Look and Feel... A-104
A.9.1 Granting Access to Shared Components... A-105
A.9.2 Using JavaScript to Create Field- and Form-Level Validation................................. A-106
A.9.2.1 Guidelines for Writing Field- or Form-Level Validation JavaScript................ A-106
A.9.2.2 Creating JavaScript under the Shared Components Provider A-107
A.9.2.3 Adding JavaScript to a Form ... A-107
A.9.3 Creating Color Definitions .. A-107
A.9.4 Creating Image Definitions .. A-108
A.9.5 Creating Font Definitions .. A-109
A.9.6 Using User Interface Templates.. A-110
A.9.6.1 Building a Structured User Interface Template .. A-110

xii

A.9.6.2 Building an Unstructured User Interface Template ... A-111
A.9.6.3 Configuring a Page Group to Allow Use of UI Templates................................ A-114
A.9.6.4 Applying a UI Template to a Page.. A-116
A.10 Example: Building Charts and Reports .. A-118
A.10.1 Exercise: Building the Team Details Report.. A-118
A.10.2 Exercise: Building the Average Salaries Chart ... A-120
A.10.3 Exercise: Building the Team Bonuses Report ... A-121

B Troubleshooting OracleAS Portal

B.1 Problems and Solutions .. B-1
B.1.1 Java Portlet Wizard Not Available... B-1
B.1.2 Portlet Code Does Not Compile ... B-2
B.1.3 Application Server Connection Test Fails ... B-2
B.1.4 Provider Test Page Shows Error... B-2
B.1.5 Provider Registration Fails .. B-3
B.1.6 Portlet Does Not Display on Page.. B-3
B.1.7 After Initial Successful Display, Portlet Does Not Display on Page B-4
B.1.8 Other Portlet Problems .. B-4
B.1.9 Provider Group Not Created .. B-5
B.1.10 URL Portlet Does Not Work ... B-5
B.2 Diagnosing OmniPortlet Problems ... B-5
B.2.1 Chart Not Rendered on UNIX .. B-6
B.2.2 Unable to Access HTTPS Site.. B-6
B.2.3 OmniPortlet Cannot Access the Specified URL ... B-6
B.2.4 Portlet Content Is Not Refreshed.. B-8
B.2.5 Edit Defaults Changes are Not Reflected in the Customized Portlet.......................... B-8
B.3 Diagnosing Web Clipping Problems... B-9
B.3.1 Checking the Status of the Provider with the Test Page... B-9
B.3.2 Solving Problems with Connections .. B-9
B.3.2.1 Configuring Proxy Servers... B-10
B.3.2.2 Proxy Authentication .. B-10
B.3.3 Setting Logging Levels... B-11
B.4 Need More Help?... B-11

Glossary

Index

xiii

Send Us Your Comments

Oracle Application Server Portal Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14134-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: 650-506-7375 Attn: Oracle Application Server Portal Documentation
Manager

■ Postal service:

Oracle Corporation
OracleAS Portal Documentation
500 Oracle Parkway, 2OP8
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xiv

xv

Preface

This manual describes how to build portlets for Oracle Application Server Portal
(OracleAS Portal) using a variety of tools and technologies. This includes
understanding the various technology choices open to you, choosing the technology
that best meets your requirements, and using the appropriate tools to build and
deploy your portlets.

Intended Audience
This manual is intended primarily for portal developers, but page designers may also
find it useful.

The manual guides you through the process of first understanding and choosing a
portlet technology, and then building your portlets with that technology. To find out
which chapters will be of most interest to you, refer to the "Structure".

For information about the different privileges in OracleAS Portal and how these affect
the tasks you can perform, see the Oracle Application Server Portal User’s Guide.

What Is a Portal Developer? A portal developer is a user with the following global
privileges: Create All Portal DB Providers and Manage All Shared Components. The
main task of a portal developer is to build portlets and make them available to page
designers and other users for inclusion on their pages. Since OracleAS Portal offers
such a wide spectrum of tools and technologies for building portlets, a portal
developer may or may not have substantial programming background.

What Is a Page Designer? A page designer (also known as a page manager) is a user
with the Manage privilege on a page. A user with this privilege can perform any
action on the page and can create sub-pages under the page. The page designer is
often responsible for designing the layout (or region configuration) of the page and
assigning privileges on the page to other users (for example, to determine who can
add content to the page).

The scope of a page designer’s control over a page may be limited if the page is based
on a template.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over

xvi

time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Structure
This manual is organized as follows:

Part I (Portlet Overview)
This part provides an introduction to portlets.

Chapter 1 (Understanding Portlets)
This chapter explains portlets, and how portlet development compares with
traditional Web page development.

Part II (Portlet Technologies)
This part includes considerations for choosing a portlet building technology and the
specific benefits of using each portlet technology to help you decide which technology
is best suited for your purposes.

Chapter 2 (Portlet Technologies Matrix)
This chapter presents a summary of portlet features, characteristics, technologies, and
tools. It is presented in a matrix format, and is designed to help users decide which
portlet building technology suits their needs best. It lists the technologies and tools
they can use with OracleAS Portal on one axis, and the features and characteristics on
the other.

Part III (Building Portlets)
This part contains the chapters that explain how to use the portlet technologies
discussed in this manual.

Chapter 3 (Building Portlets with OmniPortlet)
This chapter explains how to use the various tabs and controls in the OmniPortlet
wizard, as well as how to extend the functionality of OmniPortlet by installing
pluggable extensions.

xvii

Chapter 4 (Building Content-Based Portlets with Web Clipping)
This chapter explains how to use the Web Clipping Studio to create a portlet based on
a Web clipping.

Chapter 5 (Building Java Portlets)
This chapter explains how to create Java portlets based on the JSR-168 portlet
standard, how to build Java portlets using Oracle's Portal Developer Kit-Java, and how
to make a portlet out of your struts application.

Chapter 6 (Building PL/SQL Portlets)
This chapter explains how to create PL/SQL portlets based on the Oracle Application
Server Portal Developer Kit-PL/SQL (PDK-PL/SQL). To make effective use of this
chapter, you should already know PL/SQL and have some familiarity with the
PL/SQL Web Toolkit.

Part IV (Appendixes)
This part contains supporting information in appendixes.

Appendix A (Building Portlets with the Portlet Builder)
This appendix describes the process of creating a portlet through a wizard and steps
you through creating, editing, managing, and running different types of portlets.

Appendix B (Troubleshooting OracleAS Portal)
This appendix explains how to troubleshoot your portlets.

Glossary
The glossary provides definitions for terms used in this and other OracleAS Portal
manuals.

Related Documents
For more information, see the following manuals in the OracleAS Portal
documentation set:

■ Chapter 12, "Oracle Application Server Portal", in the Oracle Application Server
Release Notes

■ Oracle Application Server Portal User’s Guide

■ Oracle Application Server Portal Configuration Guide

■ Oracle Application Server Portal Error Messages Guide

You may also find the following manuals in the Oracle Application Server
documentation set useful:

■ Oracle Application Server Concepts

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server Web Cache Administrator’s Guide

Conventions
The following conventions are also used in this manual:

xviii

Browser Recommendations
When using OracleAS Portal, we recommend that you use one of the following Web
browsers:

■ Netscape 4.79

■ Microsoft Internet Explorer 5.01 or 5.5 (with Service Pack 1) for Windows 2000

■ Microsoft Internet Explorer 6.0 for Windows XP

You may encounter JavaScript errors if you use a browser older than the
recommended minimum.

Cache Settings
To ensure that your browser is always displaying valid portal content, please make
sure that your browser cache settings are as follows:

In Internet Explorer:
1. From the menu, choose Tools > Internet Options.

2. Make sure you are on the General tab.

3. In the Temporary Internet File section, click the Settings button.

4. In the Check for newer versions of stored pages radio group, select Every visit to
the page.

5. Click OK.

6. Click OK.

In Netscape:
1. From the menu, choose Edit > Preferences.

2. Expand the Advanced node.

3. Click Cache.

4. In the Document in cache is compared to document on network radio group,
select Every time.

5. Click OK.

Convention Meaning

italicized text Italicized type introduces important terms used for the first time.

boldface text Boldface type is used for emphasis, and to represent the names of
items as they appear on your screen.

CAPITALIZED text Capitalized text indicates procedure names.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

xix

Image Settings
Please make sure that images are automatically loaded as follows:

In Internet Explorer:
1. From the menu, choose Tools > Internet Options.

2. Click the Advanced tab.

3. Scroll through the list of options to the Multimedia node, and select Show
Pictures.

4. Click OK.

In Netscape:
1. From the menu, choose Edit > Preferences.

2. Click Advanced.

3. Select the Automatically load images check box.

4. Click OK.

Sometimes this setting is disabled to increase performance on low bandwidth
connections. However, one common problem that occurs when images are not
automatically loaded is that once logged out, you cannot login again without closing
and reinvoking the browser. Hence, we recommend that this setting is always enabled.

xx

Part I
Portlet Overview

Part I contains the following chapter:

■ Chapter 1, "Understanding Portlets"

Understanding Portlets 1-1

1
Understanding Portlets

This chapter explains portlets, the anatomy of a portlet, and provides an overview of
the various portlet-building tools available in OracleAS Portal:

■ Introduction to Portal Development

■ Understanding Portlets

■ Portlet Anatomy

■ Portlet Resources

1.1 Introduction to Portal Development
OracleAS Portal enables you to present information from multiple, unrelated data
sources in one, organized view. This view, a portal page, can contain one or more
components—called portlets—that can each get their content from different data
sources.

OracleAS Portal has all the tools you need for developing portlets and adding them to
your portal pages. Portal’s tools support a wide range of development skill: from the
novice business developer to the experienced IT programmer. You can develop
portlets either declaratively, through the Portal user interface, or programmatically,
through Portal’s collection of application programming interfaces (APIs), known as
the Oracle Application Server Portal Developer Kit (PDK). Additionally, you can
develop portlets through other development tools, external to OracleAS Portal, and
integrate them through the PDK and a Portal entity called a provider. To learn more
about providers, refer to Chapter 2, "Portlet Technologies Matrix".

This chapter defines portlets, lists and describes some sources for pre-built portlets
and resources for building portlets, and suggests the best resource for the job.

1.2 Understanding Portlets
A portlet is a reusable, pluggable Web component that can draw content from many
different sources. A typical portlet is one that displays summaries of Web content.

Understanding Portlets

1-2 Oracle Application Server Portal Developer’s Guide

Figure 1–1 Portlets on the My Oracle Home Page

For example, in your portal you may have a news feed portlet that supplies linked
news article headlines that are each accompanied by a sentence describing the content
of the article (Figure 1–2).

Figure 1–2 The Oracle News Portlet on the My Oracle Home Page

Users click the linked headlines to get to the full text of the article, which is hosted on
an external news service (Figure 1–3). The portlet has a somewhat dynamic nature in
that headlines change automatically as news stories are added and removed at the
source.

Portlet Anatomy

Understanding Portlets 1-3

Figure 1–3 Content Target from a Portlet Link

Portlets provide a seamless, single view of data that originates from multiple sources.
Since different portlets can be placed on a common page, the user receives a
single-source experience. In reality, the content is derived from multiple sources.

Portlets display excerpts of other Web sites, generate summaries of key information,
perform searches, and access assembled collections of information from a variety of
data sources.

1.3 Portlet Anatomy
A portlet on a page is rendered in an HTML table cell. A portlet can display various
types of content, such as HTML, formatted text, images, or elements of an HTML
form.

Figure 1–4 shows the anatomy of a portlet, which includes a header that contains the
portlet title. You can create a hyperlink in the portlet title, so that when a user clicks
the title, the portlet displays in a full browser page. A portlet can also include a border,
to distinguish the layout from other portlets on the page.

Every portlet includes three links: Customize, Help, and About. The portlet developer
can expose these links to the page designer, who can then turn these on or off. Clicking
the Customize link displays a number of options where the end user can personalize
various attributes of the portlet. Clicking the Help link display a window containing
help text that you can create to assist the end user with the portlet. Clicking the About
link displays a window that you can create to describe the contents of the portlet.

Each portlet also contains the standard collapse icon, which the end user can click to
collapse or expand the portlet on the page.

Portlet Resources

1-4 Oracle Application Server Portal Developer’s Guide

Figure 1–4 Portlet Anatomy

1.4 Portlet Resources
Portlet resources include the many pre-built portlets available out-of-the-box from
many sources, including OracleAS Portal, Oracle E-Business Suite, and third-party
sources. Portlet resources also include portlet-building tools available through the
Portal user interface as well as from the PDK and other Oracle tools. Each of these
tools offers different product features that are targeted toward different developer
roles.

This section describes different portlet resources, suggests the level of expertise
required to use them, and provides examples of when they might best be used. It
includes the following subsections:

■ Out-of-the-Box Portlets

■ Other Sources of Pre-Built Portlets

■ Web Clipping

■ OmniPortlet

■ Portlet Builder

■ Programmatic Portlets

This section introduces you to the various portlet resources. For specific information
on each tool and its benefits, refer to Chapter 2, "Portlet Technologies Matrix".

Portlet Resources

Understanding Portlets 1-5

1.4.1 Out-of-the-Box Portlets

Figure 1–5 The Portlet Repository

What Is It?
Out-of-the-box portlets are fully developed, registered portlets that are immediately
available from the Portlet Repository when you install OracleAS Portal (Figure 1–5).
They include such portlets as Search, Saved Searches, Favorites, and My Notifications.

Who Is the Intended User?
Out-of-the-box portlets are best suited for use by end users and page designers,
though they are available to users at all levels of expertise.

When Should It Be Used?
Use out-of-the-box portlets when your needs are satisfied by the functions the portlets
offer, and the level of customization readily available is sufficient to complete the
desired task.

Consider alternatives when you need to extend or customize the portlet, for example,
you must change the user interface, or when the functionality you require is not
available out of the box.

Note: You’ll find information on the pre-built portlets in OracleAS
Portal in the Oracle Application Server Portal User’s Guide, available
on the Oracle Application Server documentation CD and on Portal
Center
(http://www.oracle.com/technology/products/ias/por
tal/index.html, then click the Search icon in the right-hand
corner of any page).

Portlet Resources

1-6 Oracle Application Server Portal Developer’s Guide

For more information on when you should use each technology, refer to Chapter 2,
"Portlet Technologies Matrix".

1.4.2 Other Sources of Pre-Built Portlets

What Is It?
Other sources of pre-built portlets include partner portlets, integration solutions, and
the Portal Knowledge Exchange.

Partner portlets are available through Oracle’s partnerships with different types of
leading system integrators, software vendors, and content providers. You can access
these portlets through the Portal Catalog, available on Portal Center
(http://www.oracle.com/technology/products/ias/portal/index.html
). Examples of these include portlets for:

■ Generating point-to-point driving directions

■ Accessing IT information from a wide variety of sources

■ Viewing summary information on news, stocks, and weather

Portal Center also provides integration solutions that are useful for customers who
require basic functionality for popular applications such as Microsoft Exchange, Lotus
Notes, SAP, IMAP, SMTP, and the like.

The Portal Knowledge Exchange, also accessible on Portal Center, is an offering from
Portal Developer Services. Community members exchange portal expertise that
includes portlet samples, tips, white papers, sample code, and the like. Members
receive a personal folder on Portal Center, which they can use to upload portlet code
and portal development insights and download and rate contributions from other
developers.

Who Is the Intended User?
Fully developed, downloadable portlets are best suited for use by end users and page
designers who understand how to download, install, and register Web and database
providers in OracleAS Portal. They are available for use by all levels of experience.

When Should It Be Used?
Just like out-of-the-box portlets, use pre-built portlets from other sources when your
needs are satisfied by the functions the portlets offer, and the level of customization
readily available is sufficient to complete the desired task.

Consider alternatives when you need to extend or customize the portlet, for example,
when you must change the user interface or when the functionality you require is not
available out of the box.

1.4.3 Web Clipping

What Is It?
Web Clipping is a browser-based declarative tool that enables you to integrate any
Web application with OracleAS Portal. It is designed to give you quick integration by
leveraging the Web application’s existing user interface. Web Clipping has been
implemented as a Web provider using the PDK-Java, which is a component of
OracleAS Portal.

Portlet Resources

Understanding Portlets 1-7

To create a Web Clipping portlet, the portal page designer uses a Web browser to
navigate to the Web page that contains the desired content. Through the Web Clipping
Studio, users can drill down through a visual rendering of the target page to choose
just the content they want (Figure 1–6 and Figure 1–7).

Figure 1–6 Selecting Web Content through the Web Clipping Studio

Figure 1–7 Clipped Content Rendered as a Portlet in Portal

Web Clipping supports:

■ Navigation through various styles of login mechanisms, including form- and
JavaScript-based submission and HTTP Basic and Digest Authentication with
cookie-based session management.

Portlet Resources

1-8 Oracle Application Server Portal Developer’s Guide

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will still be identified correctly
by the Web Clipping engine and delivered as the portlet content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1, JavaScript, applets, and plug-in enabled content, retrieved
through HTTP GET and POST (form submission).

■ Customization, allowing a page designer to expose input parameters that page
viewers can modify when they customize the portlet. These parameters can be
exposed as public parameters that a page designer can map as OracleAS Portal
page parameters. This feature allows end users to obtain personalized clippings.

■ Integrate authenticated web content through Single Sign-On, including
integration with external applications, which enables you to leverage Oracle
Application Server Single Sign-On and to clip content from authenticated external
Web sites.

■ Inline rendering, enabling you to set up Web Clipping portlets to display links
within the context of the portlet. As a result, when a user clicks a link in the Web
Clipping portlet, the results display within the same portlet. You can use this
feature with internal and external Web sites.

■ Proxy Authentication, including support for global proxy authentication and
per-user authentication. You can specify the realm of the proxy server and
whether all users will automatically log in using a user name and password you
provide, each user will log in using an individual user name and password, or all
users will log in using a specified user name and password.

■ Migration from URL-based portlets, enabling you to migrate your URL-based
portlets to Web Clipping.

Note that although the URL was valid when this document was written, the URL
may change in the future. You should be redirected to the new URLpage.

Who Is the Intended User?
Web Clipping is best suited for use by page designers and portlet developers who
want to leverage an existing Web page for rapid portlet development. The Web
Clipping portlet is accessible out of the box, and is available in the Portlet Repository
of OracleAS Portal. This portlet can be added to a page by any user with the right
privileges.

When Should It Be Used?
Use Web Clipping when you want to copy content and functionality from an existing
Web page and expose it in your portal as a portlet. Consider alternatives if you want
to change the way information is presented in the clipped portlet. That is, you don’t
need to control the UI or application flow, and you are accessing Web-based
applications. For a greater level of control, use the OracleAS Portal OmniPortlet’s Web
page data source in lieu of Web Clipping.

Here are some examples of when you may consider using the Web Clipping portlet:

■ Stock chart portlet. Suppose you want to create a portlet that displays the stock
market’s daily performance chart from your financial advisor’s Web site. You
could clip this information from an external Web site, even if your company is
using a proxy.

■ Personalized weather portlet. Suppose you want to create a portlet that displays
weather information from a major Internet weather site, and you want your users
to be able to personalize the portlet by providing the desired zip code.

Portlet Resources

Understanding Portlets 1-9

■ Web mail portlet. Suppose your users want to access their confidential Web mail
accounts through a portlet, and their inboxes to display in the portlet.

For more information on using Web Clipping, refer to Chapter 4, "Building
Content-Based Portlets with Web Clipping".

1.4.4 OmniPortlet

Figure 1–8 An OmniPortlet Using Tabular Format

What Is It?
The OracleAS Portal OmniPortlet is a declarative portlet-building tool that enables you
to build portlets against a variety of data sources, including XML files,
comma-separated value files (for example, spreadsheets), Web Services, databases,
Web pages, and SAP data sources. OmniPortlet users can also choose a pre-built
layout for the data. Pre-built layouts include tabular, news, bullet, form, or chart.

Like Web Clipping, OmniPortlet supports proxy authentication, including support for
global proxy authentication and per-user authentication. You can specify whether all
users will automatically log in using a user name and password you provide, each
user will log in using an individual user name and password, or all users will log in
using a specified user name and password.

Who Is the Intended User?
OmniPortlet is best suited for use by page designers and developers.

When Should It Be Used?
Use OmniPortlet when you want to build portlets rapidly against a variety of data
sources with a variety of layouts. Consider alternatives when you want complete
control of the design and functionality of the portlet.

Here are some examples of when you may consider using OmniPortlet:

■ RSS news feed portlet. Suppose you want to create a portlet that displays live,
scrolling news information to your users. The data comes from a Really Simple
Syndication news feed, such as the Oracle Technology Network Headlines. You
also want the portlet to contain hyperlinks to the news source.

■ Sales chart portlet. Suppose you want to present up-to-date information on your
company’s sales results. You also want to display data in the form of a pie chart,
and your company stores its sales information in a remote relational database.

■ SAP portlet. Suppose you want to display information from a company’s SAP
system. To minimize the load on the company’s SAP Business Suite, the

Note: You’ll find information about OmniPortlet on Portal Center,
(http://www.oracle.com/technology/products/ias/por
tal/index.html).

Portlet Resources

1-10 Oracle Application Server Portal Developer’s Guide

information retrieved from the system must be cached on a per user basis for the
entire day.

For more information on OmniPortlet, refer to Chapter 3, "Building Portlets with
OmniPortlet".

1.4.5 Portlet Builder

Figure 1–9 Sample Form, Report, and Chart from the Portlet Builder

What Is It?
OracleAS Portal includes a number of portlet-building wizards that are accessible
through the Provider tab in the Portal Navigator. These wizards can be used to build
charts, reports, forms, calendars, and lists of values.

When Should It Be Used?
It is recommended that you use OmniPortlet as an alternative to Portlet Builder
whenever possible. OmniPortlet provides more flexibility and a separation of data and
layout which enables you to change from a report to chart without re-creating the
entire portlet (as is required with Portlet Builder). OmniPortlet also provides more
options for deployment to many different portals simultaneously. OracleAS Portal will
continue to support Portlet Builder as a portlet building option. However, new
features and enhancements will be directed toward the OmniPortlet tool.

For more information on Portlet Builder, refer to Appendix A, "Building Portlets with
the Portlet Builder".

1.4.6 Programmatic Portlets

What Is It?
The OracleAS PDK contains a set of portlet-building APIs that you can use to create
programmatic portlets.

Note: You’ll find more information about these APIs on Portal
Center
(http://www.oracle.com/technology/products/ias/por
tal/index.html).

Portlet Resources

Understanding Portlets 1-11

Who Is the Intended User?
These tools are best used by experienced and knowledgeable IT developers.

When Should It Be Used?
Use the PDK when you have very specialized business rules or logic and when you
require customized authentication, granular processing of dynamic results, and
complete user interface control. Additionally, use the PDK when:

■ You’re building a portlet from the start and need complete control over all of its
functionality.

■ You know Java or PL/SQL.

■ You’d like a functioning starting point.

■ You are comfortable with the PDK and the configuration of OracleAS Portal
Providers.

Consider using this approach when the out-of-the-box declarative tools do not address
your needs.

Here are some examples of when you may consider using Java portlets created with
Oracle Application Server Portal Developer Kit:

■ Discussion forum portlet. Suppose you want to create a portlet that integrates
your company’s JSP-based discussion forum application with OracleAS Portal.
The discussion forum posts are stored in a relational database. The portlet must
also follow the strict look and feel of your company’s Internet Web site.

■ Email portlet. Suppose you want to create a portlet that enables users to send
email from the company’s intranet portal. You must integrate the email portlet
with the company’s LDAP server so that the users can use the address book on the
LDAP server.

For more information on using the PDK-Java and PDK-PL/SQL, refer to Chapter 5,
"Building Java Portlets" and Chapter 6, "Building PL/SQL Portlets".

1.4.7 Deciding Which Tool to Use
Figure 1–10 illustrates the spectrum of portlet resources described in the previous
section. Notice how one end of the spectrum is geared toward a page designer while
the other end speaks to the portlet developer. You can choose your tool depending on
which type of user mostly closely approximates your expertise.

For more information on deciding which tool to use, refer to Chapter 2, "Portlet
Technologies Matrix".

Note: The PDK-PL/SQL is not described in detail in this manual. For
specific information on the PDK-PL/SQL, refer to the Developer
Services area on Portal Center
(http://www.oracle.com/technology/products/ias/porta
l/index.html).

Summary

1-12 Oracle Application Server Portal Developer’s Guide

Figure 1–10 Portlet Resources from Page Designers to Experienced Developers

1.5 Summary
In this chapter, you learned what portlets are, as well as the various technologies
available in OracleAS Portal. For more information on these tools and technologies,
refer to Chapter 2, "Portlet Technologies Matrix".

Part II
Portlet Technologies

Part II contains the following chapter:

■ Chapter 2, "Portlet Technologies Matrix"

Portlet Technologies Matrix 2-1

2
Portlet Technologies Matrix

This chapter describes portlet features, characteristics, technologies, and tools to help
you decide which portlet building technology best suits your needs. It includes the
following sections:

■ The Portlet Technologies Matrix

■ General Suitability

■ Expertise Required

■ Deployment Type

■ Caching Style

■ Development Tool

■ Portlet Creation Style

■ User Interface Flexibility

■ Ability to Capture Content from Web Sites

■ Ability to Render Content Inline

■ Charting Capability

■ Public Portlet Parameters Support

■ Private Portlet Parameter Support

■ Event Support

■ Ability to Hide and Show Portlets Based on User Privileges

■ Multi-lingual Support

■ Pagination Support

■ Single Sign-On and External Application Integration

2.1 The Portlet Technologies Matrix
Table 2–1, " Portlet Building Technologies Comparison Matrix" summarizes the
technologies and tools you can use with OracleAS Portal on one axis, and the features
and characteristics on the other. The matrix contains those tools and technologies that
are covered in this book in detail: OmniPortlet, Web Clipping, the Java Portlets
(PDK-Java) including Standards, Portlet Builder as an appendix, and PL/SQL Portlets
(PDK-PL/SQL) (in the matrix only).

The Portlet Technologies Matrix

2-2 Oracle Application Server Portal Developer’s Guide

The other sections in this chapter provide further detail on the characteristics listed in
Table 2-1. Use the table to quickly scan all the features and characteristics, then refer to
the subsequent sections for more in-depth information.

Note: While these are the primary tools for building portlets,
additional tools and technologies exist, such as other Oracle products,
including Oracle Reports and Oracle Discoverer. These other tools are
not covered in this book.

Table 2–1 Portlet Building Technologies Comparison Matrix

Web Clipping OmniPortlet PDK-Java Standards Portlet Builder PDK-PL/SQL

General Suitability

A simple
wizard-based tool
that helps you
retrieve and
present Web
content, originating
from other Web
sites, in your portal.

Wizard-based tool,
accessible from the
browser. Capable
of retrieving and
presenting data
from a wide variety
of data sources.

APIs for portlets
built specifically for
OracleAS Portal.
The most flexible
programmatic
approach.

Portlets that should
work with portals
of other vendors.
Oracle supports
both WSRP and
JSR-168.

Wizard-based tool,
accessible from the
browser. Best
suited for simple,
DB-centric
applications or
portlets.

APIs for portlets
built specifically for
OracleAS Portal.
The most flexible
programmatic
approach.

Expertise Required

No expertise
required.

Basic
understanding of
one or more
supported data
sources and the
concepts of portlet
and page
parameters and
events.

Java, Servlet, JSP
knowledge.

Java, Servlet, JSP
knowledge.

Basic
understanding of
relational DB
concepts.
Optionally SQL,
PL/SQL.

SQL, PL/SQL,
PL/SQL Web
Toolkit.

Supported Data Sources (for details, see Expertise Required)

Any Web site
accessible on the
network over
HTTP or HTTPS.

CSV, XML, Web
Service, SAP, SQL,
Web site, JCA.

No limitations. No limitations. SQL (local DB or
remote DB via DB
link)

SQL (local DB or
remote DB via DB
link)

Deployment Type

Web provider Web provider Web provider WSRP Database provider Database provider

Caching Style

Expiry-based
caching,
invalidation-based
caching (auto
invalidate when
customized).

Expiry-based
caching,
invalidation-based
caching (auto
invalidate when
customized).

Expiry-based,
validation, and
invalidation
caching, ESI.

Validation and
expiry-based
caching.

Expiry-based
caching.

Expiry-based,
validation, and
invalidation
caching.

Development Tool

Browser - wizard. Browser - wizard. Oracle JDeveloper -
Java Portlet Wizard
(or any other Java
development
environment -
without the
Wizard).

Oracle JDeveloper -
Java Portlet Wizard
(or any other Java
development
environment -
without the
Wizard).

Browser -
optionally PL/SQL
development
environment.

PL/SQL
development
environment.

Portlet Creation Style

The Portlet Technologies Matrix

Portlet Technologies Matrix 2-3

Develop in place. Develop in place. No in-place portlet
building
experience. Add
portlet to page, edit
defaults, and
personalize.

No in-place portlet
building
experience. Add
portlet to page, edit
defaults, and
personalize.

Develop first, then
add and Develop in
place.

No in-place portlet
building
experience. Add
portlet to page, edit
defaults, and
personalize.

User Interface Flexibility

N/A Limited. Very flexible. Very flexible Limited. Very flexible.

Ability to Capture Content from Web Sites

Yes, by its nature. Yes, by using the
Web Data Source.

Yes, by using the
java.net package

Yes, by using the
java.net package

No Yes, by using the
UTIL_HTTP
package.

Ability to Render Content Inline

Yes. (Supported by
Web Clipping
9.0.4.0.2 or later.)

No URL rewriting
support, but can be
achieved by using
public portlet
parameters and
events.

By using private
portlet parameters.

Include servlets
and JSPs (using the
PortletContext.getR
equestDispatcher()
method).

Pagination in
reports and charts
is rendered inline.

By using private
portlet parameters.

Charting Capability

N/A Yes, 2D-3D charts. By using BI Beans. By using BI Beans. HTML charts. Programmatically,
HTML charts.

Public Portlet Parameters Support

Yes. (Supported by
Web Clipping
9.0.4.0.2 or later.)

Yes Yes No Yes Yes

Private Portlet Parameter Support

N/A N/A Yes Yes No Yes

Event Support

Yes Yes Yes Portlet private
events (actions).

No No

Ability to Hide and Show Portlets Based on User Privileges

No, though it is
possible to apply
security managers
that are not
exposed through
the UI.

No, though it is
possible to apply
security managers
that are not
exposed through
the UI.

Yes, by using the
Security managers.

Yes, the Servlet
security model is
supported by using
methods such as
PortletRequest.isUs
erInRole() and
PortletRequest.get
UserPrincipal().

Yes Yes, by using the
Security APIs.

Multi-lingual Support

N/A Yes Yes Yes No Yes

Pagination Support

N/A No Programmatically Programmatically Yes Programmatically

Single Sign-On and External Application Integration

Web Clipping
9.0.4.0.2 and above
supports external
application
integration.

Basic
authentication
support if the data
source requires it.

External
application
integration
supported. LDAP
integration is
supported when
the portlet is
running behind the
same firewall as the
LDAP server.

No. (Feasible
through custom
user attributes.)
LDAP integration
is supported.

No. (It runs in the
OracleAS Portal
repository, it does
not require SSO
integration.)

SSO is enabled by
using mod_oso.

Table 2–1 (Cont.) Portlet Building Technologies Comparison Matrix

Web Clipping OmniPortlet PDK-Java Standards Portlet Builder PDK-PL/SQL

General Suitability

2-4 Oracle Application Server Portal Developer’s Guide

2.2 General Suitability
This section describes each portlet-building technology in terms of its usage
characteristics (for example, wizard-based or programmatic).

2.2.1 Web Clipping
Web Clipping is a simple wizard-based tool that helps you retrieve and present Web
content, originating from other Web sites, in your portal. Web Clipping does not
require any technical background.

2.2.1.1 Examples of portlets you can build using Web Clipping
■ Stock chart portlet

■ Personalized weather portlet

■ Web mail portlet

2.2.2 OmniPortlet
If you are looking for an easy to use, wizard-based tool to present information from a
wide variety of data sources, you should consider OmniPortlet. OmniPortlet runs
completely in the browser. All you need to do is drop your OmniPortlet on a portal
page, select your data source from a list of available data sources.

■ Spreadsheet

■ SQL

■ XML

■ Web Service

■ Web page

Although OmniPortlet does not require an additional development tool or a strong
technical background, you can build reusable and high-performing portlets with it.

2.2.2.1 Examples of portlets you can create with OmniPortlet
■ RSS news feed portlet

■ Sales chart portlet

■ SAP Business Suite portlet

2.2.3 Java Portlets
If the wizard-based portlet building tools do not satisfy your needs, you can build
your portlets programmatically using Java. The Java Community Process standardized
the Java portlet APIs in 2003. Portlets built against the Java Specification Request (JSR)
168 standard are interoperable across different portal platforms. The Java Portlet
Wizard, an Oracle JDeveloper plug-in, helps you get started with your Java portlets.

Note: When building portlets in Java, you have full control over
your portlet's functionality. For example, you can control what it looks
like and how it behaves.

Expertise Required

Portlet Technologies Matrix 2-5

2.2.3.1 Examples of portlets you can build using Java
■ Discussion forum portlet

■ Email portlet

2.2.4 Portlet Builder
Portlet Builder is a wizard-based tool to create data-driven portlets, where the data
resides in an Oracle database. You can build interactive forms to insert, update, and
delete database records. You can create flexible reports and HTML bar charts to
display information from the database. Portlet Builder also enables you to pass
parameters and navigate between your data-driven portlets by using dynamic links.

2.2.4.1 Examples of portlets you can build using the Portlet Builder
■ Data entry portlet

■ Dynamic list of partners portlet

■ Sales results portlet

2.2.5 PL/SQL Portlets
Similar to Java portlets, PL/SQL portlets provide a flexible approach to build Web
applications that cannot be satisfied by built-in portlets. For example, your application
may require implementation of special business rules or logic or meet
custom-designed authorization requirements. PL/SQL portlets are commonly used
when you need to perform data intensive operations by using SQL and PL/SQL.
OracleAS Portal offers a rich set of PL/SQL APIs such as programmatic provider
registration, object level privilege management, user interface control, or multilingual
support.

For example, any information provider can create custom portlets to display an
application to users through OracleAS Portal. Developers simply build their portlets
according to OracleAS Portal Developer Kit (PDK) specifications and register the
provider with OracleAS Portal. Developers can use PDK to develop portlets to suit
their needs.

2.2.5.1 Examples of portlets you can build using PL/SQL
■ Content upload portlet

■ Site map portlet

■ Sophisticated data entry and report portlet

2.3 Expertise Required
While some of the portlet building tools do not require portlet development skills,
others assume a strong technical background. This section describes each tool in terms
of the level of knowledge required to use it effectively.

2.3.1 Web Clipping
Web Clipping is a tool that does not require any technical background at all. However,
if you want to parameterize the Web page content that you clipped, you need to have
an understanding of public portlet parameters and page parameters.

Deployment Type

2-6 Oracle Application Server Portal Developer’s Guide

2.3.2 OmniPortlet
OmniPortlet requires you to have basic knowledge of the data source you want to
leverage in your portlet.

2.3.3 Java Portlets
To build Java portlets, you must know at least a subset of J2EE. Knowing HTML, Java
servlets and XML is a must, and JSP experience is recommended. Additional Java
knowledge is optional, depending on the task you want to perform. Using Java
portlets you can access any data source (supported by the Java language).

2.3.4 Portlet Builder
If you want to use Portlet Builder, you must have a good understanding of relational
database concepts. Depending on what you want to achieve, SQL and/or PL/SQL
knowledge may be required, as well. Using Portlet Builder, you can consume data
from the local (Oracle Application Server infrastructure) database or remote databases
using database links.

2.3.5 PL/SQL Portlets
To build PL/SQL portlets, you must know how to write SQL statements, code and
debug PL/SQL program units using SQL*Plus or similar development tool that
enables you to connect to Oracle database. You should also know HTML and PL/SQL
Web Toolkit to generate the portlet content. Experience of coding PL/SQL Server
Pages (PSP) is optional.

2.4 Deployment Type
As shown in Figure 2-1, portlets can be deployed to OracleAS Portal through three
provider types: Web providers, WSRP providers, and database providers. Web
providers are deployed to a J2EE application server, which is often remote and
communicates with OracleAS Portal through Simple Object Access Protocol (SOAP)
over HTTP. Web Services for Remote Portlets (WSRP), an OASIS standard, is
supported in the Developer’s Preview of OracleAS Portal. Database providers are

Data source What you need to know about the data source

Spreadsheet The URL that points to the spreadsheet containing the data that
you want to display in the portlet.

SQL The connection information to the data source and the SQL
query that retrieves the data from the database.

XML The location of the XML source and optionally the address of
the XSL filter and the XML schema.

Web service The WSDL URL, the method of the Web service, and optionally
the XSL filter URL and the XML schema URL.

Web page The Web page data source uses the same environment as Web
Clipping. No technical background is required.

J2EE Connector
Architecture

Although not displayed on the Type page of the OmniPortlet
wizard, a J2EEtm Connector Architecture (JCA) 1.0 adapter is
also available. JCA provides a mechanism to store and retrieve
enterprise data such as that held in ERP systems (Oracle
Financials, SAP, PeopleSoft, and so on).

Deployment Type

Portlet Technologies Matrix 2-7

implemented in PL/SQL and deployed in the Oracle database where OracleAS Portal
is installed.

Figure 2–1 Portlet Provider Overview

2.4.1 Web Providers
Web providers are the most commonly used and flexible type of provider. They may
reside on the same application server as OracleAS Portal, on a remote application
server, or anywhere on the network. A Web provider could be implemented using
virtually any Web technology. However, the Oracle Application Server Portal
Developer Kit provides a Java framework that simplifies the task of building Web
providers.

Web providers use open standards, such as XML, SOAP, HTTP, or J2EE for
deployment, definition, and communication with OracleAS Portal. Also, because Web
providers can be deployed to a J2EE container, they do not put an additional load on
the OracleAS Portal Repository database.

Note: While in most cases Web providers are more beneficial than
database providers, note that Web providers do not support the
export and import of system level customization (edit defaults) and
end user personalization.

Deployment Type

2-8 Oracle Application Server Portal Developer’s Guide

Figure 2–2 Web Providers

There are several benefits when developing portlets and exposing them as Web
providers:

■ Deploy portlets remotely.

■ Leverage existing Web application code to create portlets.

■ Declarative specification of providers.

■ More functionality than database providers.

■ Portlets of Web providers can be developed using standard Java technologies (for
example, servlets and JSPs).

To expose your portlets using a Web provider, you must create a provider that
manages your portlets and can communicate with OracleAS Portal using SOAP. To
learn how to expose your portlets using a Web provider, visit Portal Studio
(http://www.oracle.com/technology/products/ias/portal/index.html
), click General, then refer to "An Overview of Writing Portlets for Web Providers."

2.4.2 WSRP Providers
WSRP, a Web services standard, allows interoperability between a standards enabled
container and any WSRP portal. From an architecture perspective, WSRP is very
similar to Web providers.

2.4.3 Database Providers
You can also create a database provider that owns one or more PL/SQL portlets.
Database provider and their PL/SQL portlets reside in the Oracle Application
Server Metadata Repository database and are implemented as PL/SQL packages.
To access database providers on remote servers, you can use the Federated Portal
Adapter. For more information, see "Understanding the Federated Portal Adapter" on
the General page of Portal Studio
(http://www.oracle.com/technology/products/ias/portal/index.html
).

Deployment Type

Portlet Technologies Matrix 2-9

Figure 2–3 Database Providers

Database providers are ideal when you must perform data-intensive operations using
PL/SQL. An example of this is when you are building forms or charts with the
OracleAS Portal user interface or the PL/SQL APIs provided in the PDK.

To learn how to expose your PL/SQL portlets using a database provider, visit Portal
Studio, click General, then refer to "An Overview of Writing Portlets for Database
Providers."

Note: To learn more about portlets, refer to the Documentation
page on Portal Center
(http://www.oracle.com/technology/products/ias/por
tal/index.html).

Deployment Type

2-10 Oracle Application Server Portal Developer’s Guide

2.4.4 Provider Architecture

Figure 2–4 Provider Architecture

This figure illustrates the basic architecture of portlet providers. When users display
the portal page in their Web browsers, the flow of the request works like this:

1. The user requests a portal page from the Web browser by entering a URL in the
browser’s address field.

2. The Parallel Page Engine (PPE), which resides in the Oracle Application Server’s
middle tier, retrieves the portal page layout information (also called the page
metadata) from the OracleAS Portal Repository.

3. The PPE contacts all the providers for the portlet content.

4. The providers make the necessary calls to their portlets so that the portlets
generate the portlet content in the form of HTML or XML code.

5. The providers return the portlet content back to the PPE.

6. The PPE assembles the portal page, and the Oracle Application Server returns the
page to the Web browser.

Note: The PPE is responsible for constructing the requested portal
page based on the page metadata.

Note: For more information about the portlet and provider
architecture, visit Portal Center
(http://www.oracle.com/technology/products/ias/por
tal/index.html), then, under Developer Services, click Portal
Studio/PDK.

Caching Style

Portlet Technologies Matrix 2-11

Web Clipping, OmniPortlet, and Java portlets communicate with OracleAS Portal
through Web providers. After you install OracleAS Portal, Web Clipping and
OmniPortlet are ready to use; their providers are registered with OracleAS Portal out
of the box. You have to register the provider of your Java portlets explicitly.

Data-driven portlets, built with Portlet Builder, communicate with OracleAS Portal
through database providers. You do not need to register the Portlet Builder providers
with OracleAS Portal explicitly; they are automatically registered for you.

PL/SQL portlets communicate with OracleAS Portal through a database provider.
You have to register the database provider explicitly.

2.5 Caching Style
Caching plays an essential role in ensuring that your portal is highly performant.
OracleAS Portal supports caching on various levels, such as caching pages, portlets,
styles, and page metadata. Caching portlets is key to delivering accurate information
in a timely manner to your users. All portlet building technologies, available with
OracleAS Portal, support caching.

As OracleAS Portal supports user customization of pages and portlets, the view of a
page can vary from user to user. OracleAS Portal’s caching is designed to allow
content to vary on a per-user basis. Therefore, portal objects, including portlets, can be
cached at two levels: user level and system level.

■ User-level caching is for a specific user; the cache entries stored are unique for that
user and cannot be accessed by other users. Good candidates for user-level
caching are portlets supporting customization, such as e-mail or stock ticker
portlets.

■ System-level caching allows users to share a single cache entry and, therefore,
there is no need to cache a copy of the object for every user. Examples of content
that might be suitable for system-level caching are not customizable news portlets,
or custom-built navigation portlets.

When not using caching, accessing various data sources with Web Clipping,
OmniPortlet, and Portlet Builder might be time consuming. When you enable caching,
you instruct OracleAS Portal or OracleAS Web Cache to maintain a copy of the portlet
content. If the portlet is requested and the content was cached previously, the portlet
does not have to spend time contacting the data source and regenerating its content
again. Simply, the previously cached portlet content is returned.

■ Expiry-based caching: You can use expiry-based caching when the portlet content
is static or when it is not critical that the most up-to-date content be displayed.
When using expiry-based caching, you must specify the caching period.

■ Validation-based caching: Validation-based caching can be used for portlets with
dynamic content that changes frequently or unpredictably. The portlet associates
its content with a caching key and returns the key value along with the content.
When the portlet content is requested, the portlet decides, based on the caching
key, if the current content is valid. If the portlet content is valid, then it returns a

Note: Web Clipping and OmniPortlet are developing very rapidly.
The most recent versions of these portlets are available for download
on OTN. If you decide to go with the latest version of these tools, you
must deploy them to OC4J and register them with OracleAS Portal as
Web providers.

Development Tool

2-12 Oracle Application Server Portal Developer’s Guide

response indicating that the cached content can be used (that is, the content is
valid) or generates the new portlet content and returns it along with a new caching
key for that content.

■ Invalidation-based caching: Invalidation-based caching is the most complex, but
also the most flexible, form of caching. It combines the efficiency of expiry-based
caching with the ability to invalidate the cache content any time. Objects in
OracleAS Web Cache are considered valid until they are invalidated explicitly.

2.5.1 Web Clipping, OmniPortlet, and Portlet Builder
For portlets built with Web Clipping, OmniPortlet, and Portlet Builder you can specify
a period of time for which they are cached (expiry-based caching). In addition to this,
portlets built with Web Clipping and OmniPortlet are refreshed automatically when
the end user personalizes them

2.5.2 Java Portlets
Java portlets support three types of caching: expiry-, validation-, and
invalidation-based caching. With Java portlets, you can combine invalidation-based
caching with either expiry-based or validation-based caching.

In addition to caching all your portlet's content, you can also cache fragments of your
portlets by using Edge Side Includes (ESI).

2.5.3 PL/SQL Portlets
Similar to Java portlets, PL/SQL portlets also support three types of caching: expiry-,
validation-, and invalidation-based caching.

2.6 Development Tool
This section describes the type of development tool you may use to build the portlet.
For example, OmniPortlet is built in a browser-based wizard while Java portlets may
be built in a tool like Oracle JDeveloper.

2.6.1 Web Clipping, OmniPortlet, and Portlet Builder
OmniPortlet, Web Clipping, and Portlet Builder use a browser-based wizard as the
development tool.

2.6.2 Java Portlets
To build Java portlets, the only requirement is the JDK. It is highly recommended,
though, that you use Oracle JDeveloper, a professional, integrated development
environment (IDE). While you can consider other IDEs, the PDK contains an Oracle
JDeveloper plug-in that includes the Java Portlet Wizard, to minimize your Java
portlet development efforts.

The Java Portlet Wizard generates a starting skeleton and file structure for both JSR
168 and PDK-Java portlets. You need to only add your own business logic to the
skeleton. JDeveloper can also package and deploy your applications to your J2EE
container, such as OracleAS Containers for J2EE (OC4J). Also, Oracle JDeveloper helps
you test your portlet provider. You can use the integrated standalone OC4J that is
shipped with Oracle JDeveloper as your development Java portlet runtime
environment, if the version matches that of the platform on which you plan to deploy.

Portlet Creation Style

Portlet Technologies Matrix 2-13

2.6.3 PL/SQL Portlets
When developing a PL/SQL portlet, you create PL/SQL program units that access
OracleAS Portal by calling OracleAS Portal PL/SQL APIs. To enable this access, you
create a schema, the provider schema, to store the provider and portlet PL/SQL
packages in the same database in which OracleAS Portal is installed. The provider
schema must be granted execute privileges on the OracleAS Portal PL/SQL APIs.

To facilitate the development of database providers and PL/SQL portlets, you can use
the PL/SQL Generator, a hosted utility that creates installable PL/SQL code for a
database provider and its PL/SQL portlets. The PL/SQL Generator is a Web
application that receives the provider and portlet definitions in the form of an XML
file. The syntax of the XML tags that are used for the provider and portlet definition is
a subset of the XML tags that are used for defining Web providers with the PDK-Java.
The output of the PL/SQL Generator is a SQL script that can be run from SQL*Plus.
The script contains SQL commands for installing the provider and portlet packages.

The hosted PL/SQL Generator is available in the Portal Studio Web site at
http://www.oracle.com/technology/products/ias/portal/index.html.

2.7 Portlet Creation Style
OracleAS Portal supports two types of portlet creation as shown in Figure 2–5:

■ "Develop in-place"

■ "Develop first, add later"

The figure also indicates that the "Develop first, add later" portlet creation is usually
the task of the portlet developer, while the "Develop in-place" portlet creation is the
page designer's responsibility.

Portlet Creation Style

2-14 Oracle Application Server Portal Developer’s Guide

Figure 2–5 Portlet Creation Style

2.7.1 OmniPortlet and Web Clipping
OmniPortlet and Web Clipping offer the same approach to creating portlets. First you
add the portlets to a portal page and then you define them in place on the page.

2.7.2 Java Portlets
Java portlets do not tend to provide a develop in place experience. You can easily add
edit defaults and personalization to your Java portlets.

2.7.3 Portlet Builder
With Portlet Builder you define the portlets first. The previously defined portlets are
then made available to you in the portlet repository so you can add them to your
pages. For simple portlets, though, Portlet Builder offers you the develop in place
experience, similar to OmniPortlet and Web Clipping.

Note: With extensive coding, you can create develop in place Java
portlets. For example, Web Clipping and OmniPortlet are both Java
portlets.

Note: Portlets built with Portlet Builder's develop in place
technology are somewhat limited as compared to those built using the
Navigator.

Ability to Capture Content from Web Sites

Portlet Technologies Matrix 2-15

2.7.4 PL/SQL Portlets
Similar to the Java portlets, PL/SQL portlets typically follow the "Develop first, add
later" creation path. Extensive coding is required to develop in place PL/SQL portlets.
For example, simple in place portlets that are offered by Porltet Builder are written in
PL/SQL.

2.8 User Interface Flexibility
This section describes the portlet building tools in terms of the control you have over
the user interface.

2.8.1 Web Clipping
Because of its nature, Web Clipping always displays the remote Web site content,
therefore UI flexibility is not a requirement for this portlet.

2.8.2 OmniPortlet and Portlet Builder
While you can be very productive in building portlets with OmniPortlet and Portlet
Builder, they are somewhat limiting with respect to the user interface.

OmniPortlet enables you to select from a few layout styles, including tabular, chart,
news, bullet, and form. Depending on the layout styles, you can fine-tune the
appearance of your portlet. For example, you can opt for alternating versus plain table
row background, choose from three types of charts (bar, pie, and line), or specify the
bullet style (disc, circle, square, numeric, and so on). You can also specify the column
labels, as well as their alignment.

2.8.3 Java Portlets and PL/SQL Portlets
In Java portlets and PL/SQL portlets you have full control over your portlet's user
interface. Your portlet is free to generate any HTML content that conforms the
rendering rules for OracleAS Portal pages.

2.9 Ability to Capture Content from Web Sites
This section describes the portlet building tools in terms of their ability to include
content from other sources.

2.9.1 Web Clipping
In the event that you have to create a portlet that displays the content from a remote
Web site as it is presented at the source location, the best tool to use is Web Clipping.
Web Clipping can tolerate the changes of the source HTML page to some extent. If a
clipped table moves from one place to another in the source page, the Web Clipping
engine can find the table again using the internal "fuzzy match" algorithm. Portlets
built with Web Clipping can also maintain session to the remote Web site. Web
Clipping also supports the end user personalization of HTML form values.

2.9.2 OmniPortlet
Another possible scenario is that you are interested in the data only, not in the way it
is presented on the remote Web site. You want to retrieve the data, process the data
(format, filter, and so on), and present it in a portlet in a tabular, chart, or news format.

Ability to Render Content Inline

2-16 Oracle Application Server Portal Developer’s Guide

For this purpose, OmniPortlet is the best choice. OmniPortlet is a powerful tool that
extracts data from Web pages by using its Web data source.

2.9.3 Java Portlets
In your Java portlets, similarly to other Java applications, you can always take
advantage of the low-level Java networking APIs to retrieve and process content from
remote Web sites. To avoid unnecessary development efforts, before choosing Java
always make sure that Web Clipping or OmniPortlet are not viable options for you.

2.9.4 PL/SQL Portlets
PL/SQL portlets can communicate with Web servers to access data on the Internet by
using procedures and functions from the UTL_HTTP package. The package makes
HTTP callouts from SQL and PL/SQL. The package also supports HTTP over the
Secured Socket Layer protocol (SSL), also known as HTTPS, directly or through an
HTTP proxy. Other Internet-related data-access protocols (such as the File Transfer
Protocol (FTP) or the Gopher protocol) are also supported using an HTTP proxy server
that supports those protocols.

2.10 Ability to Render Content Inline
Active elements in your portlets, such as links or form buttons, enable your users to
navigate to remote URLs. In a News portlet for example, you can click a hyperlink to
navigate to a news site with detailed information about the news you are interested in.
You leave the portal page; the News site replaces it in your browser.

However, you may be required to keep your users within the context of the portal
page by rendering the requested content within the same portlet container. You have
to display the detailed news on the portal page within the boundaries of the same
portlet.

2.10.1 Web Clipping
Web Clipping has URL rewriting support to achieve this functionality: it can process
the links, originating from the source Web site, and modify (rewrite) them to achieve
the desired functionality.

You can choose from the following three options:

■ You can select not to rewrite the links, in which case clicking the link takes the
users out of Portal to the Web site providing the clip.

■ Depending on whether your clip requires authentication, you can also choose
Login Server or Inline. By choosing Login Server you instruct Web Clipping to
rewrite the URLs within the portlet so the user is always logged in to the external
Web site first before proceeding.

■ The Inline option rewrites all URLs within the portlet to point back to the portal
page so that all browsing within the Web Clipping portlet remains within Portal.

2.10.2 OmniPortlet
OmniPortlet does not offer URL rewriting directly, but you can achieve the inline
rendering functionality by using public portlet parameters and events. Then you have
to map the events to the same portal page where your OmniPortlet resides.

Charting Capability

Portlet Technologies Matrix 2-17

2.10.3 Java Portlets
Since you have full control over the links and buttons in Java portlets, you can easily
implement the inline rendering functionality. You have to append the private portlet
parameters to the page URL.

If you use Struts in your portlet, the PDK-Struts integration framework renders your
content always in the same portlet container.

If your portlet consists of multiple JSPs (for example several steps in a survey, or in a
Wizard), your portlet can make use of a special parameter to specify at runtime, which
JSP should be used to render the content.

2.10.4 Portlet Builder
Portlets built with Portlet Builder do not have inherent inline rendering support. You
can, however, construct your links in SQL-based reports and charts so that they point
to specific portal pages. If required, you can also pass parameters to portal pages,
which in turn can then be mapped to portlet parameters.

2.10.5 PL/SQL Portlets
Similar to Java portlets, you have full control over the active elements in PL/SQL
portlets and, therefore, you can achieve the inline rendering functionality
programmatically by implementing private portlet parameters.

2.11 Charting Capability
This section describes the portlet building tools in terms of their charting functionality.

2.11.1 Web Clipping
Because of its nature, Web Clipping can retrieve and present HTML content
containing charts, but it does not support the creation of charts.

2.11.2 OmniPortlet
OmniPortlet supports the following three chart types: bar, line, and pie. Charts in
OmniPortlet are dynamically generated images, optionally, with event-enabled
hyperlinks included.

2.11.3 Java Portlets
You can create more sophisticated chart portlets programmatically in your Java
portlets using Oracle's Business Intelligence (BI) Beans.

2.11.4 Portlet Builder
With Portlet Builder, you can build HTML-based bar chart portlets. Among other
features, you can specify the color and orientation of the bars.

Note: Oracle Reports and Oracle Discoverer portlets use BI Beans to
create professional graphs.

Public Portlet Parameters Support

2-18 Oracle Application Server Portal Developer’s Guide

2.11.5 PL/SQL Portlets
In PL/SQL portlets, HTML-based charting can be achieved by extensive coding.

2.12 Public Portlet Parameters Support
There are three types of parameters in OracleAS Portal: page parameters, public
portlet parameters, and private portlet parameters.

■ Page parameters: A page parameter is used to pass a value to a page. Using page
parameters, the information that is displayed on a page can vary depending on
where the page is called from and who is viewing the page. Using page
parameters, you can synchronize the portlets on your page by passing them the
same values. This gives you the ability to reuse and tailor portlets on pages by
merely integrating them with page parameters. Without this functionality, you
would have to code portlets individually to use different parameter values.

■ Public portlet parameters: A public portlet parameter is used to pass a value to a
portlet. Using portlet parameters, the information that is displayed in a portlet can
be specific to a particular page or a user. Portlet parameters are created by the
portlet developer and are exposed to the page designer, through the user interface.
After adding a portlet to a page, page designers can assign values to the public
portlet parameters to make the information displayed in the portlet specific to the
page.

Page designers can assign values to public portlet parameters by providing a
specific value (constant), a system variable (for example, the portal user name), or
a page parameter. At run time, the portlet receives the values from the sources that
you specified. In this way, page designers have complete control over the source
of the parameter, whereas you have complete control over how the data is used
after it is transmitted to the portlet.

■ Private portlet parameters: You can use private portlet parameters to implement
internal navigation in your portlet. You can pass parameters to your portlets every
time the page is requested. Private portlet parameters can be passed exclusively
from the portlet instance to the same portlet instance.

Portlets supporting public portlet parameters enable page designers to tailor the
portlets' data input for each portlet instance. In this case, the portlet developer can
focus on the portlet logic, while page designers can easily reuse portlets and address
the interaction between the page and the portlets.

All five portlet building technologies discussed in this chapter (OmniPortlet, Web
Clipping, Java portlets, Portlet Builder, and PL/SQL portlets) support public portlet
parameters. OmniPortlet, Web Clipping, and Portlet Builder provide complete support
through their wizard interface. You can add public portlet parameter support to your
Java portlets programmatically or with the Java Portlet Wizard. PL/SQL portlets
support public parameters only programmatically.

2.13 Private Portlet Parameter Support
This section describes the portlet building tools in terms of their support for private
parameters.

Note: The JSR 168 standard does not cover the notion of public
portlet parameters. If you want to utilize public portlet parameters in
your Java portlets, you have to use PDK-Java.

Ability to Hide and Show Portlets Based on User Privileges

Portlet Technologies Matrix 2-19

2.13.1 OmniPortlet, Web Clipping, and Portlet Builder
OmniPortlet, Web Clipping, and Portlet Builder do not provide access to the portlet
developer to private portlet parameters.

2.13.2 Java Portlets and PL/SQL Portlets
In your Java portlets and PL/SQL portlets, you can implement internal navigation by
using private portlet parameters.

2.14 Event Support
An event is a user action that is defined by the portlet developer to invoke a Portal
page. User actions include clicking a link or a button in a portlet. Page designers
specify what to do when an event occurs in a portlet on your page. When an event
occurs, page designers can either redisplay the current page or navigate the user to
another portal page, optionally passing values to that page's parameters.

2.14.1 Web Clipping, OmniPortlet, and Java Portlets
Web Clipping, OmniPortlet, and Java portlets support events.

2.14.2 Portlet Builder and PL/SQL Portlets
Portlet Builder and PL/SQL portlets do not support events.

2.15 Ability to Hide and Show Portlets Based on User Privileges
This section describes the portlet building tools in terms of their support for
authorization functionality.

2.15.1 Web Clipping and OmniPortlet
You can hide and show portlets built with Web Clipping and OmniPortlet on portal
pages dynamically by using security managers. Although Web Clipping and
OmniPortlet do not expose security managers through the user interface, you can
apply them by editing their XML provider definition file.

2.15.2 Java Portlets
The PDK provides a number of security managers for Java portlets. For example:

■ Group security manager: The group security manager makes the portlet appear to
users who are members of a specified group, while hiding it from those who are
not members.

■ Authentication level security manager: You can use the authentication level
security manager to control access to the portlets based on the user's
authentication level. For example you may hide the portlet from public users but
display it to authenticated users.

JSR 168 portlets support the standard servlet mechanisms.

Note: PL/SQL portlets do not support private and public
parameters simultaneously. You need to decide which parameter type
to support before coding your PL/SQL portlet.

Multi-lingual Support

2-20 Oracle Application Server Portal Developer’s Guide

2.15.3 Portlet Builder
Portlet Builder provides a declarative user interface to control access to portlets.

2.15.4 PL/SQL Portlets
The PDK provides the Security APIs to implement hiding and showing content in
PL/SQL portlets.

2.16 Multi-lingual Support
This section describes the portlet building tools in terms of their support for other
languages.

2.16.1 Web Clipping, OmniPortlet, Java Portlets, and PL/SQL Portlets
Web Clipping, OmniPortlet, Java portlets, and PL/SQL portlets display textual
information in the language selected by the portal user.

2.16.2 Portlet Builder
Portlets built with Portlet Builder support English only.

2.17 Pagination Support
Support for pagination is useful when you are required to display a relatively large set
of records in your portlets.

2.17.1 OmniPortlet
OmniPortlet does not support pagination.

2.17.2 Java Portlets and PL/SQL Portlets
You can implement pagination in your Java portlets and PL/SQL portlets
programmatically.

2.17.3 Portlet Builder
Portlet Builder has built-in support for pagination.

2.18 Single Sign-On and External Application Integration
This section describes the portlet building tools in terms of authentication for external
application.

2.18.1 Web Clipping
Web Clipping's integration with the external application framework provides a fully
automated mechanism to store passwords to external Web sites. All you have to do is
to associate an External Application ID to the Web Clipping Provider during provider
registration time.

Single Sign-On and External Application Integration

Portlet Technologies Matrix 2-21

2.18.2 OmniPortlet
OmniPortlet enables you to store connection information when the data source is
password protected. The credentials to access the data source can either be shared
across all users, or saved on a per user basis. OmniPortlet is capable of storing
database credentials, as well as HTTP basic authentication user name-password pairs.
The credentials are stored in the secured data repository of OmniPortlet, in an Oracle
database.

2.18.3 Java Portlets
Java portlets can integrate with the external application framework as well as any
LDAP server, such as Oracle Internet Directory (OID), programmatically.

2.18.4 PL/SQL Portlets
You can build PL/SQL portlets that enable single sign-on by using mod_osso, an
authentication module on the Oracle HTTP Server. mod_osso is a simple alternative to
the single sign-on SDK, used in earlier releases to integrate partner applications. mod_
osso simplifies the authentication process by serving as the sole partner application to
the Single Sign-On server.

PL/SQL portlets can integrate with the external application framework
programmatically.

Single Sign-On and External Application Integration

2-22 Oracle Application Server Portal Developer’s Guide

Part III
Building Portlets

Part III contains the following chapters:

■ Chapter 3, "Building Portlets with OmniPortlet"

■ Chapter 4, "Building Content-Based Portlets with Web Clipping"

■ Chapter 5, "Building Java Portlets"

■ Chapter 6, "Building PL/SQL Portlets"

Building Portlets with OmniPortlet 3-1

3
Building Portlets with OmniPortlet

OmniPortlet is a subcomponent of Oracle Application Server Portal that enables page
designers and content contributors to easily publish data from different data sources
using a variety of layouts. You can learn more about other portlet development tools
in Chapter 2, "Portlet Technologies Matrix".

The OmniPortlet enables page designers and content contributors to:

■ Display data from multiple sources (CSV, XML, SQL, and so on)

■ Sort the data to display

■ Format data using a variety of layouts (bulleted list, chart, form, and so on)

■ Use portlet parameters

■ Raise portlet events

■ Expose customizable settings to page viewers

OmniPortlet also supports proxy authentication, including support for global proxy
authentication and per-user authentication. You can specify whether all users will
automatically log in using a user name and password you provide, each user will log
in using an individual user name and password, or all users will log in using a
specified user name and password.

The OmniPortlet provider is installed as part of OracleAS Portal. You can upgrade to
later releases of OmniPortlet from the product area on OTN
(http://www.oracle.com/technology/products/ias/portal/index.html
) as part of the Oracle Application Server Portal Developer Kit (PDK). Instructions for
installing, configuring, and registering the OmniPortlet provider are provided within
the pdksoftware.zip file containing the JPDK and Portal Tools.

This chapter provides an overview of the OmniPortlet, then steps you through
defining various types of OmniPortlets. It contains the following sections:

■ What is OmniPortlet?

■ Parameters and Events

■ Using OmniPortlet

Note: You can find more information about developing portlets in
Chapter 1, "Understanding Portlets", and information about
providers and other portlet technologies in Chapter 2, "Portlet
Technologies Matrix".

What is OmniPortlet?

3-2 Oracle Application Server Portal Developer’s Guide

3.1 What is OmniPortlet?
OmniPortlet is specifically targeted at enabling page designers and developers to
quickly and easily publish data from various data sources in a variety of layouts using
a Web-based wizard. An OmniPortlet can be based on almost any kind of data source,
such as a spreadsheet (comma-separated values), XML, and even application data
from an existing Web page.

To display personalized data, you can refine the retrieved data by filtering the results
returned from a data source, and parameterize the credential information used to
access secure data. Out of the box, OmniPortlet provides the most common layout for
portlets: tabular, chart, news, bulleted list, and form.

OmniPortlet is provided with Oracle Application Server 10g; you can add an
OmniPortlet from the OracleAS Portal Repository in the Portlet Builders folder. If
you’ve downloaded OmniPortlet as part of the Oracle Application Server Portal
Developer Kit, you must register it before you can use it. To learn more about
registering a Web provider, refer to the documentation on Portal Center. You can then
add an OmniPortlet to any portal page.

The OmniPortlet wizard contains six tabs. When you first define your OmniPortlet,
you set the data source type, data source options, filter options, view options, and
layout. When you’ve completed these steps of the wizard, you can re-enter the wizard
by clicking the Edit Defaults icon on the Portal page. When you re-enter the wizard,
you can change the definitions on the Source, Filter, View, and Layout tabs, as well as
set up the events parameters on the Events tab.

This section provides a high-level overview of the six tabs (see the table below), as
well as a detailed description of each tab. You can also find information in the online
help (accessible by clicking the Help link in the product), which describes the options
on each tab.

Note: You can find more information about building portal pages
in the Oracle Application Server Portal User’s Guide on Portal Center.

Table 3–1 Omniportlet Wizard

Tab Description

Type Provides your data source options. Displays only in the initial
definition of the portlet.

Source Provides the options for the selected data source, such as the
URL of the Web Service you wish to use.

Filter Provides sorting options at the OracleAS Portal level to enable
you to refine your results.

View Provides options for displaying portlet header and footer text,
the layout style, and caching.

Layout Provides detailed options for customizing the layout.

Events Provides options for adding events to the portlet. Displays
only after the portlet has been defined in the Edit Defaults
mode of the wizard.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-3

3.1.1 Type

Figure 3–1 Type Tab of the OmniPortlet Wizard

When you first launch the OmniPortlet, the Type tab displays, which enables you to
choose your data source. Out of the box, OmniPortlet supports the following data
sources:

3.1.2 Source
After you’ve chosen your data source type, the Source tab of the OmniPortlet wizard
displays. This tab adapts to the data source you’ve chosen, to enable you to specify the
options offered by that data source. The top portion of the screen is dedicated to the
specified source. If the OmniPortlet provider has been set up to use proxy
authentication that requires your login, a Proxy Authentication section displays where
you can enter this information.

Note: If you’ve downloaded and installed an additional data
source from Portal Center
(http://www.oracle.com/technology/products/ias/por
tal/index.html), the data source will display on the Type tab.

Table 3–2 Supported Data Source Types

Data Source Type Description

Spreadsheet Displays data from a text file containing comma-separated
values (CSV).

SQL Displays data from a database using SQL.

XML Displays data from an XML file.

Web Service Displays data from a discrete business service that can be
accessed over the Internet using standard protocols.

Web Page Displays data based on existing Web content.

What is OmniPortlet?

3-4 Oracle Application Server Portal Developer’s Guide

Each Source tab, except for the Source tab for the Web Page data source, contains a
Connection section, where you can define the connection information to access
secured data, and a Portlet Parameters section, where you can define the parameters
for the portlet. You can then map the portlet parameters to the page-level parameters.

Figure 3–2 Source Tab: Connection and Portlet Parameters Section

The following sections describe the portion of the Source tab specific to each data
source.

■ Spreadsheet

■ SQL

■ XML

■ Web Service

■ Web Page

3.1.2.1 Spreadsheet
Spreadsheets are a common method of storing small data sets. OmniPortlet enables
you to share spreadsheets by supporting comma-separated values (CSV) as a data
source. On the Source tab, you specify the location of the CSV file. If the file is located
on a secure server, you can specify the connection information in the Connection
section described above. You can also select the character set to use when OracleAS
Portal reads the file.

Note: The Proxy Authentication section only displays for the data
sources that may require you to use a proxy server to access them:
CSV (comma-separate values), XML, Web Service, and Web Page.
For more information on configuring the OmniPortlet provider to
use proxy authentication, see the online help topic that displays
when you click Help on the Edit Providers: OmniPortlet Provider
page.

Note: For more information on the Source tab options, click Help
in the upper right corner of the page.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-5

Figure 3–3 Source Tab: Spreadsheet

3.1.2.2 SQL
The relational database is the most common place to store data. OmniPortlet enables
you to use standard JDBC drivers and provides out-of-the-box access to Oracle and
any JDBC database. You can specify the driver type when you configure the
connection information.

Figure 3–4 Source Tab: SQL

Note: Since the OmniPortlet provider exists and executes in a tier
different than the OracleAS Portal application and does not have
access to the OracleAS Portal session information, you must expose
CSV files that are uploaded to OracleAS Portal as PUBLIC in order
for OmniPortlet to access them.

Note: You can also use the DataDirect JDBC drivers to access
other relational databases. To configure OmniPortlet to use these
drivers, refer to "OmniPortlet: How to Use DataDirect JDBC
Drivers" under Developer Services > OmniPortlet & Web Clipping
on Portal Center
(http://www.oracle.com/technology/products/ias/por
tal/index.html).

What is OmniPortlet?

3-6 Oracle Application Server Portal Developer’s Guide

3.1.2.3 XML
Although still a relatively new method of storing data, XML is increasingly used to
control access to data sets over the intranet, and even the Internet. On the Source tab,
you can specify the URL of the XML file that contains your data.

Figure 3–5 Source Tab: XML

The specified XML file can either be in tabular (ROWSET/ROW) structure, or you can
provide an XML Style Sheet (XSL) to transform the data. The following image shows
an example of the ROWSET/ROW structure of an XML data source.

Figure 3–6 ROWSET/ROW Structure of an XML Data Source

In the above example, the <TEAM> tags delineate the rowset, and the <EMPLOYEE>
tags delineate the rows.

Regardless of the format of the XML file, OmniPortlet automatically inspects the XML
to determine the column names, which will then be used to define the layout. If you
want to specify this information yourself, you can supply a URL to an XML schema
that describes the data.

Note: For more information on using the SQL data source, refer to
Defining a Portlet Based on a SQL Data Source.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-7

Similar to the other data sources, you can also specify the connection information for
this data source, if the XML file is located on a secured server protected by HTTP Basic
Authentication.

3.1.2.4 Web Service
A Web Service is a discrete business service that can be programmatically accessed
over the Internet using standard protocols, such as SOAP and HTTP. Web Services are
non-platform and non-language specific, and are typically registered with a Web
Service broker. When you find a Web Service you wish to use, you must obtain the
URL to the WSDL (Web Service Description Language) file that describes the Web
Service, specifies the methods that can be called, the expected parameters, and a
description of the returned data.

OmniPortlet supports both types of Web Services (Document and RPC (Remote
Procedure Calls)). Once a WSDL is supplied, it is parsed, and the available methods
that can be called display on the Source tab.

Similar to the XML data source, OmniPortlet expects the Web Service data in
ROWSET/ROW format, though you can also use an XSL file to transform the data.
OmniPortlet inspects the WSDL to determine the column names, though you may also
specify an XML schema to describe the returned data set.

If you are new to Web services, you may want to first review the New to Web Services
guide on the Oracle Web Services Center
(http://www.oracle.com/technology/tech/webservices/learner.html).

Note: Since the OmniPortlet provider exists and executes in a
different tier to OracleAS Portal and does not have access to the
OracleAS Portal session information, you must expose XML files
that are uploaded to OracleAS Portal as PUBLIC in order for
OmniPortlet to access them.

Note: For more information on using the Web Service data source,
refer to Defining a Portlet Based on a Web Service.

What is OmniPortlet?

3-8 Oracle Application Server Portal Developer’s Guide

Figure 3–7 Source Tab: Web Service

3.1.2.5 Web Page
OmniPortlet enables you to use existing Web content as a source of data to publish
information to your portal. It provides and renders clipped Web content as a data
source.

The Web Page data source extends the scope offered by the Web Clipping Portlet to
include scraping functionality. It also supports the following features:

■ Navigation through various login mechanisms, including form- and
JavaScript-based submission, and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will still be identified correctly
by the Web page data source and delivered as the portlet content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1 and JavaScript, retrieved through HTTP GET and POST (form
submission).

All Web clipping definitions are stored persistently in the Oracle Application Server
infrastructure database or on another Oracle database. Any secure information, such
as passwords, is stored in encrypted form, according to the DES (Data Encryption
Standard), using Oracle9i database encryption technology.

The Source tab of the OmniPortlet wizard enables you to launch the Web Clipping
Studio by clicking the Select Web Page button. Once you launch the Web Clipping
Studio, you can refer to the Oracle Application Server Web Clipping Online Help.

Note: For more information on using the Web Page data source,
refer to Defining a Portlet Based on an Existing Web Page.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-9

Figure 3–8 Source Tab: Web Page

3.1.3 Filter
After you’ve selected the data source and specified the data source options, you can
further refine your data by using OmniPortlet’s filtering options. To use filtering
efficiently, it is better to refine the data as much as possible at the data source level
(that is, on the Source tab), then use the options on the Filter tab to streamline the data.
For example, if you are using a SQL data source, you could use a WHERE clause to
return only specific data from the specified columns. In this case, you could skip the
Filter tab and continue to the View page of the wizard. However, if there are no
filtering options at the data source level, you can use the options on the Filter tab to
sort your data.

Figure 3–9 Filter Tab

What is OmniPortlet?

3-10 Oracle Application Server Portal Developer’s Guide

3.1.4 View
Once you’ve specified the data and sorted it, you can choose the view options and
layout for your OmniPortlet. The View tab enables you to add Header and Footer text,
choose a Layout style that you can later refine on the Layout tab, and enable caching.
You can choose from the following layouts:

■ tabular

■ chart

■ news

■ bullet

■ form

Figure 3–10 View Tab

3.1.5 Layout
The Layout tab changes depending on the Layout Style you chose on the View tab,
and enables you to further customize the appearance of your portlet. OmniPortlet
supports drill-down hyperlinks in the chart layout. That is, you can set up the chart so
that when a user clicks on a specific part of the chart, an action occurs (for example,
jump to another URL).

For the other layout styles, you can define each column to display in a specific format,
such as plain text, HTML, an image, button, or field. For example, suppose you
selected a data source that includes a URL to an image. To see this image, you can

Note: For more information on the different layout styles you can
use with OmniPortlet, click Help in the upper right corner of the
page.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-11

select Image for the display of this column. Each column can also be mapped to an
action, similar to the behavior of chart hyperlinks.

The following layout styles are available with OmniPortlet:

■ Tabular Layout

■ Chart Layout

■ News Layout

■ Bullet Layout

■ Form Layout

3.1.5.1 Tabular Layout

Figure 3–11 Layout Tab: Tabular Style

Once you’ve chosen the tabular style on the View tab, you can refine the layout on the
Layout tab. Typically, you use the tabular layout if you have one or more columns of
data that you want to display in a table. You can choose Plain to display all rows in the
table without any background color, or Alternating to display a background color for
every other row in the table.

In the Column Layout section, you can choose which data columns to display in the
portlet, then select a display format for the data. Here, you can set a column to display
a hyperlink, so that a secondary Web page displays when the user clicks that column
in the table. You can also specify whether the secondary Web page displays in a new
window.

Note: You can control the background color of a portlet through
the portal page style. For more information on using portal page
styles, refer to the Oracle Application Server Portal User’s Guide.

What is OmniPortlet?

3-12 Oracle Application Server Portal Developer’s Guide

Figure 3–12 Example of an OmniPortlet Using a Tabular Layout

3.1.5.2 Chart Layout

Figure 3–13 Layout Tab: Chart

You can use the chart layout to display your data graphically, as a bar, pie, or line
chart. On the Layout tab, you select the chart style and the column layout. When you
choose the column layout, you can choose the groups, or columns on which the labels
will be based. The category defines the values that will be used to create the chart
legend, and the value determines the relative size of the bars, lines, or slices in the
chart. You can also select whether the sections of the chart should point to a hyperlink,
and whether the targeted information should display in a new window.

Note: For more information on using the OmniPortlet wizard,
click the Help link in the upper right corner of the Layout tab.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-13

Figure 3–14 Example of the Layout Tab for a Pie Chart Layout

You can also define chart hyperlinks so that each bar, pie section, or line, links to
another Web page. For example, you can display a chart portlet and a report portlet on
your portal page, then set up the chart hyperlink to display a row in the report that
displays more detailed information about the selected data.

In Figure 3–15, you can see the results of the options selected on the Layout tab in the
previous image. Below the chart, you can see that the category, which was Department
on the Layout tab, is used for the legend.

Note: To group the information in the chart, you must group the
information at the data level (for example, in your SQL query
statement). Also, if numeric values in a data source contain
formatted strings, commas, or currency (for example, $32,789.00),
they are considered to be text and ignored when the chart is
generated. You can instead remove these formatting characters
from numerical values so that they are correctly read.

What is OmniPortlet?

3-14 Oracle Application Server Portal Developer’s Guide

Figure 3–15 Example of an OmniPortlet Using a Pie Chart Layout

3.1.5.3 News Layout

Figure 3–16 Layout Tab: News

You can use the news layout to display links to articles with brief descriptions for
each. You can use this layout to publish information in standard XML formats, such as
RDF (Resource Description Framework) or RSS (RDF Site Summary) to your portal
page. In the Column Layout section, you can add a heading that displays at the top of
the portlet. You can also add a logo, or use the scrolling layout so that the user can
view all the information in the portlet as it moves vertically. Here, also, you can enter a
URL so that another Web page displays when the user clicks on specific data in the
portlet. You can also specify whether the secondary Web page displays in a new
window.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-15

Figure 3–17 Example of an OmniPortlet Using a News Layout

3.1.5.4 Bullet Layout

Figure 3–18 Layout Tab: Bullet

You can use the bullet layout to display your data in a bulleted list. The Layout tab
provides a variety of different bullet and numbered bullet styles. In the Column
Layout section, you can choose how the columns will display in the portlet, as well as
whether a second Web page will display when the user clicks that column. You can
also specify whether the second Web page displays in a new window.

Note: The News Layout Scroll type in OmniPortlet is supported
on Microsoft Internet Explorer and Netscape 7.0.

Note: For more information on using the OmniPortlet wizard,
click the Help link in the upper right corner the Layout tab.

What is OmniPortlet?

3-16 Oracle Application Server Portal Developer’s Guide

Figure 3–19 Example of an OmniPortlet Using a Bullet Layout

3.1.5.5 Form Layout

Figure 3–20 Layout Tab: Form

You can use the form layout if you have data you want to display as labels or default
values in a form, such as Name: <name>. You can then use the portlet parameters and
events to pass data to the selected row.

You can also specify whether to display the target of a URL in a new window:

Note: For more information on using the OmniPortlet wizard,
click the Help link in the upper right corner the Layout tab.

What is OmniPortlet?

Building Portlets with OmniPortlet 3-17

Figure 3–21 Open In New Window Checkbox

Figure 3–22 Example of an OmniPortlet Using a Form Layout

3.1.6 Edit Defaults mode
After you’ve created your OmniPortlet and returned to your Portal page, you can then
click the Edit Defaults icon to re-enter the wizard. You’ll notice that you can click the
tabs (except for the Type tab) to directly access each page of the wizard. You can also
access the Events tab through the Edit Defaults wizard, which is explained in the next
section.

When you edit an OmniPortlet through the Edit Defaults mode, keep in mind the
following notes:

■ A new mode, "none," is now the default setting for the Locale Personalization
Level of OmniPortlet and the Simple Parameter form. This new mode indicates
that, when you edit the portlet defaults through the Edit Defaults mode, the
changes apply to all users, regardless of the current OracleAS Portal session
language and the locale of your browser. For more information about these
settings, refer to the "Configuring the OmniPortlet Provider" document included
with the pdksoftware.zip file.

■ You can also customize the portlet at runtime by clicking the Customize link on
the portlet. When you customize the portlet, a complete copy of the

Note: For more information on using the OmniPortlet wizard,
click the Help link in the upper right corner the Layout tab

Parameters and Events

3-18 Oracle Application Server Portal Developer’s Guide

personalization object file is created. Since all properties are duplicated,
subsequently modifying the portlet through Edit Defaults will not be reflected in
the customized version of the portlet. To ensure the latest changes are made to the
portlet, you must click Customize again (after the modifications through the Edit
Defaults wizard are made), then select the Reset to Defaults option.

3.1.7 Events
On the Events tab in the Edit Defaults mode of the OmniPortlet wizard, you can
identify event parameters based on the portlet parameters you selected on the Source
tab.

Figure 3–23 Events Tab of the OmniPortlet Wizard

3.2 Parameters and Events
Out of the box, OmniPortlet can receive up to five parameters and raising up to three
events. Each of the events can send one or more parameters. For example, you can set
up a chart that displays the employees in a department. When the user clicks one piece
of the chart (for example, a department name), an event is raised that sends a
parameter to the page. The page may then pass a parameter to all the portlets on that
page that display information about the employees. Then, all the portlets on the page
display information about the employees in the selected department.

To set up parameters and events, you must first enable the page group to accept
parameters and events. In Oracle Application Server 10g, parameters and events are
by default enabled. Then, you set up each portlet to accept the necessary parameters,
and raise the required events. After you’ve set up the portlet parameters, you can link
the portlets together by setting up the page-level parameters and events. The steps to
do this are described in detail later in this chapter.

Note: To learn how to use parameters and events with
OmniPortlet, follow the steps in Using OmniPortlet. If you are
comfortable with the provider.xml file, you can add more
parameters and events by editing the file.

Parameters and Events

Building Portlets with OmniPortlet 3-19

3.2.1 Portlet Parameters and Events
Out of the box, you can define up to five portlet parameters for an OmniPortlet. You
can do this:

■ On the Source tab of the wizard when you define the OmniPortlet

■ On the Source tab when you select Edit Defaults for the OmniPortlet

Figure 3–24 Source Tab: Portlet Parameters Section

Parameter values determine what data is displayed in the portlet. You can also use a
parameter to pass a value in a URL or to embed a value in the portlet text.

You can set up each OmniPortlet to raise up to three events. Each event can pass up to
three parameters. Each parameter can be a portlet parameter, such as Param1, or a
data source column, such as Department_No. You set up events on the Events tab
when you select Edit Defaults for the OmniPortlet

Figure 3–25 Events Tab

3.2.2 Page Parameters and Events
After you’ve set up the parameters and events for each OmniPortlet on a portal page,
you can map the portlet parameters and events to other portlets on the same page. For

Note: You can learn more about portlet parameters in the online
help, which you can access by clicking the Help link on the Source
tab in the OmniPortlet wizard. The online help describes portlet
parameters in detail, and how to set them up for your OmniPortlet.
You can also refer to the chapter in the Oracle Application Server
Portal User’s Guide.

Using OmniPortlet

3-20 Oracle Application Server Portal Developer’s Guide

more information on using page parameters and events, refer to the OracleAS Portal
online help and the Oracle Application Server Portal User’s Guide.

3.3 Using OmniPortlet
The following sections will show you how to create three types of OmniPortlets (SQL
data source, Web Service data source, and Web Page data source). You will learn how
to create and modify these OmniPortlets, as well as use portlet parameters and events
and page parameters and events to add interactivity to your portal page.

3.3.1 Adding an OmniPortlet to a Portal Page
In this section, you will learn how to add an OmniPortlet instance to your portal page.

To add an OmniPortlet instance to a page:

1. In the Edit mode of the page where you want to add the OmniPortlet, click the
Add Portlets icon.

2. On the Add Portlets page, in the Available Portlets list, click the Portlet Builders
link.

3. Click the OmniPortlet link.

If you cannot find this link, use the Search field to find OmniPortlet.

4. Click OK. The new instance of OmniPortlet now displays on your portal page.

Figure 3–26 OmniPortlet Instance on a Portal Page

3.3.2 Defining a Portlet Based on a SQL Data Source
In this section, you’ll learn how to use OmniPortlet to publish data from a database
using a SQL statement.

To select the SQL data source for the portlet:

1. In the new OmniPortlet instance, click the Define link.

2. On the Type tab of the OmniPortlet wizard, you can choose the data source you
wish to use. Select the SQL radio button, then click Next.

Note: To learn more about specific pages and tabs in OmniPortlet,
click the Help link in the top right corner. The help topic describes
the contents of the selected page or tab.

Using OmniPortlet

Building Portlets with OmniPortlet 3-21

Figure 3–27 Type Tab of the OmniPortlet Wizard

3. On the Source tab, set the connection information for your data source by clicking
Edit Connection.

4. On the Connection Information page, in the Connection Name field, enter HR_
SCOTT, and make sure that the Make this named connection available to all
users checkbox is selected.

5. In the Username field, enter the login ID for the sample database: scott.

6. In the Password field, enter the password for the user ID: tiger.

7. In the Connection String field, enter the connection string for your database, for
example: hostname:port:oracle_sid, where hostname is the location where
the database is installed.

8. Make sure Oracle-thin is selected from the Driver Name drop-down list, then click
Test to make sure the connection information is correct.

Figure 3–28 Connection Information for the HR Scott Connection

Using OmniPortlet

3-22 Oracle Application Server Portal Developer’s Guide

9. Once the connection returns a Successful message, close the Test dialog box, then
click OK.

The new Connection Name now displays on the SQL Data Source: Source tab.

Figure 3–29 Connection Name on SQL Data Source Tab

10. In the Statement field, enter the following code:

select dept.deptno "Dept No", dname "Department", sum(sal)
"Salary" from emp,dept
where emp.deptno = dept.deptno
group by dname,dept.deptno

11. Click Test to test the query against your data source, then click Close to close the
Test dialog box.

Figure 3–30 SQL Statement on the Source Tab

12. Once you’ve validated your query against the database, click Next.

13. Since we’ve already sorted our data using our SQL statement, we do not need to
set the conditions on the Filter tab.

Click Next.

14. On the View tab, in the Title field, enter Salary by Department.

15. Click Next.

16. In the Footer Text field, enter Data from a SQL data source.

Note: If the connection does not work, verify you’ve entered the
information appropriate to your database, or contact your database
administrator.

Using OmniPortlet

Building Portlets with OmniPortlet 3-23

Figure 3–31 Header and Footer section of the View Tab

17. On the Layout tab, leave the default Tabular definition selected and click Finish.
The OmniPortlet displays the results from your SQL query on your portal page.

Figure 3–32 Tabular Results from SQL Data Source

In this section, you learned how to use the OmniPortlet wizard to create a portlet that
displays data from a SQL data source in a tabular layout. Follow the steps in the next
section to learn how to modify the layout of your new OmniPortlet.

3.3.3 Defining a Portlet Based on a Web Service
In this section, you will learn how to build a portlet based on a Web Service. For the
purposes of this example, you will use a Web service provided on the Oracle
Technology Network (http://www.oracle.com/technology/index.html), but
you can use any Web Service with OmniPortlet.

To create a portlet based on a Web Service:

1. Follow the steps in Using OmniPortlet to add an instance of OmniPortlet to your
portal page.

2. In the Edit mode of your page, click the Define link in the new OmniPortlet
instance.

3. On the Type tab, select the Web Service radio button, then click Next.

4. On the Source tab, set the definition location for the Web Service (WSDL).

Enter the following in the WSDL URL field:
http://otn.oracle.com/ws/oracle.otn.ws.scott.OTNDeptEmp?WSDL

Note: In the Header Text and Footer Text fields, you can also
enter HTML tags. For example, if you entered <i>Data from a
SQL data source</i>, the text would display at runtime as
Data from a SQL data source.

Using OmniPortlet

3-24 Oracle Application Server Portal Developer’s Guide

Figure 3–33 WSDL URL Field of the Source Tab

5. Click Show Methods to see what methods are available from this Web service.

6. From the Available methods for this Web Service drop-down list, choose
OTNDeptEmp.getEmpXML, then click Show Parameters to see what parameters
this method accepts.

Figure 3–34 Web Service Methods Section of the Source Tab

7. Click Next.

8. On the Filter tab, you can restrict the data returned from the data source. In this
example, since the Web Service returns all data from the EMP table, you will
restrict the returned data to a single department.

In the Conditions section, set DEPTNO = 20 by choosing:

a. From the Column drop-down list, choose DEPTNO.

b. From the Operator drop-down list, choose Equals.

c. In the Value field, enter 20.

Figure 3–35 Conditions Section of the Filter Tab

9. In the Order section, set the results to display in alphabetical order by employee
name.

Next to Order By, choose ENAME from the Column drop-down list, and make
sure Ascending is selected in the Order drop-down list.

Note: If you use a method that has parameters, the parameters
will display in this section of the tab. You can enter a sample value
for the parameter, then click Test to view the sample XML data, the
SOAP response, and the SOAP Request.

Using OmniPortlet

Building Portlets with OmniPortlet 3-25

Figure 3–36 Order Section of the Filter Tab

10. Click Finish.

Your new portlet should look like the following:

Figure 3–37 Web Service Portlet on the Portal Page

In this section, you learned how to create a portlet using a Web service as a data
source, and how to use the options on the Filter tab of the OmniPortlet wizard to sort
your data. In the next section, you learn how to add interactivity to your portal page
by using parameters and events.

3.3.4 Defining a Portlet Based on an Existing Web Page
The steps in this section will show you how to add information from an existing Web
page to your portal page. In this example, you will use information from the Oracle
Web site (http://www.oracle.com).

To create a portlet using a Web page data source:

1. Follow the steps in Using OmniPortlet to add an OmniPortlet instance to your
portal page.

2. In the Edit mode of your page, click the Define link in the new OmniPortlet
instance.

3. On the Type tab of the OmniPortlet wizard, select the Web Page radio button,
then click Next.

4. On the Source tab, click Select Web Page.

5. On the Web Clipping Studio page that displays, enter http://www.oracle.com
in the URL Location field.

Figure 3–38 URL Location Field

6. Click Start to display the Web Clipping Studio.

7. On the home page, you can type a search string in the Search field. For this
example, enter omniportlet, then click the Search icon.

Using OmniPortlet

3-26 Oracle Application Server Portal Developer’s Guide

Figure 3–39 Searching for Information on the www.oracle.com Home Page

8. The Search result is displayed in the Web Clipping Studio. Click Section to divide
the target Web page into its clippable sections.

Figure 3–40 Sectioning the Target Web Page

9. At the top left corner of the search results, click Choose to select the table that
encloses the multiple search results.

Figure 3–41 Choosing the Search Results

10. After you’ve chosen the clipping, you can refine your data further by scraping the
data, that is, selecting specific cells you wish to display in your portlet. Click
Scrape.

Note: In this example, you’ll notice that you can select URLs as
part of your Web clipping. In Oracle Application Server Portal
10.1.2 and later, the context of the application is maintained. So, for
example, any images that display on the hyperlinked page will be
maintained.

Using OmniPortlet

Building Portlets with OmniPortlet 3-27

Figure 3–42 Scraping the Data in the Clipping

11. While in Scraping mode, you can identify the text pieces in the Web clipping by
selecting the check boxes next to each item. You can repeat these items at the
column level, row level, or table level. In this example, we want to show the title
and the description of each resulting article from our search. We can repeat the
title and description at the row level, so that each result returned by the search
displays only the title and the description of every result. In general, you choose
the text items in the first row that contains all the pieces you wish to repeat for
each row.

In this step, select the output you want by selecting the check boxes next to the
items. In this case, we want to display the title of the article and its description.

Figure 3–43 Selecting the Title

Figure 3–44 Selecting the Description

12. Change the name of the output to be more meaningful. The following image
shows an example of the new names:

Figure 3–45 Changing the Product Name

13. After you’ve defined the base unit of the repeating rows (in this case, the article
title and description), you can now specify the repeat level. In the Data section, if
you select one or more cells in the first row of a table, you can choose to repeat the
selected cells at the row, column, or table level. When you click the More button,
check boxes in all the cells in the row of the base unit (in this case, the article titled
OmniPortlet: How to use Oracle9i XDB using the XML data source) are highlighted to
identify the repeating group.

Note: The check boxes you have manually selected (when
choosing the title and description) have a white background, while
the check boxes you selected using the More button have a grey (or
highlighted) background.

Using OmniPortlet

3-28 Oracle Application Server Portal Developer’s Guide

By clicking the More button, you can see that you have activated the repeating
action, starting with the column level (notice that all the columns in the first row
are highlighted with the first click of the More button). As you click the More and
Less buttons, you can see how the highlighted check box positions change to
identify all the repeating possibilities. You may have to click the More and Less
buttons several times to find the correct repeating pattern for the data you wish to
display.

Figure 3–46 More and Less Buttons

In this example, click the More button once to change the repeating level to row.
Now, you will see that, for the first row, the article title and description are still
selected (as indicated with the selected check boxes with a white background). In
the subsequent rows, the article title and description are now also selected (as
indicated with the selected check boxes with a grey background), which shows
that the repeating level is at the row level.

Figure 3–47 Highlighted Check Boxes at the Row Level (Title)

Using OmniPortlet

Building Portlets with OmniPortlet 3-29

Figure 3–48 Highlighted Check Boxes at the Row Level (Description)

14. Click the Continue icon.

Figure 3–49 Continue Icon

15. In the Clipping Attributes section, you can update the title and description of this
portlet, so that users can see what clipped information this portlet contains. You
can also change the connection time out, or the length of time in seconds, that the
portlet will wait to establish a connection to the content source of the Web
clipping.

In the Title field, enter OmniPortlet Articles.

16. In the Description field, enter Display all articles regarding
OmniPortlet on oracle.com.

17. In the Time Out (seconds) field, enter 60.

The Clipping Attributes section of the Web Clipping Studio should now look like
the following image:

Figure 3–50 Clipping Attributes Section of the Web Clipping Studio

18. Click OK.

19. On the Source tab of the OmniPortlet wizard, the new title and description now
display. To edit the Web clipping in the Web Clipping Studio, you can click the
Select Web Page button again.

Note: For more information on using the Web Clipping Studio,
click the Help icon in the upper right-hand corner to view the
online help.

Using OmniPortlet

3-30 Oracle Application Server Portal Developer’s Guide

Click Finish.

20. Your new Web Page portlet displays on the portal page, and should look like the
following image.

Figure 3–51 Portlet Based on Existing Web Page Content

3.3.5 Modifying the Layout of an Existing OmniPortlet
After you’ve created a portlet, you may want to modify its appearance. With
OmniPortlet, you can do so using its reentrant wizard.

In this section, you will learn how to modify the layout of the portlet you created in
the previous section.

To modify the OmniPortlet layout:

1. In the Edit mode of the page where you added the OmniPortlet, click the Edit
Defaults icon in the OmniPortlet.

2. You can modify various aspects of your OmniPortlet in the Edit Defaults mode, by
clicking on the desired tab.

To change the layout, first click the View tab.

3. Under Layout Style, select the Chart radio button, then click the Layout tab to
modify the layout definition.

Note: When you modify your OmniPortlet using the Edit Defaults
mode, the changes may not appear in the Show mode of the portlet
if you or the end user have already customized the portlet. If you
do modify the portlet in the Edit Defaults mode, your end user
must select the Reset to Defaults option on the Customize page in
order for the Edit Defaults changes to appear.

Using OmniPortlet

Building Portlets with OmniPortlet 3-31

Figure 3–52 Layout Style Section of the View Tab

4. On the Layout tab, in the Chart Style section, select the Pie radio button to display
a pie chart, then choose Bottom from the Legend drop-down list to display the
chart’s legend below the pie chart.

Figure 3–53 Chart Style Section of the Layout Tab

5. In the Column Layout section, select the columns to hide or display.

From the Group drop-down list, choose <None> and leave the other columns as
they are.

Figure 3–54 Column Layout Section of the Layout Tab

6. Click OK to accept your changes and return to your portal page.

Your new SQL portlet should look like the following:

Using OmniPortlet

3-32 Oracle Application Server Portal Developer’s Guide

Figure 3–55 SQL Data Source OmniPortlet Displaying as a Pie Chart

In this section, you learned how to return to the OmniPortlet wizard to modify the
layout of your portlet, and to change the layout of your portlet from a tabular
report to a pie chart.

3.3.6 Using Parameters and Events
Page parameters are used to pass values to a page and to the portlets on the page. The
portlets that are configured to accept page parameters can trigger another action,
depending on the contextual wiring of the parameters and events. For example, you
could set up a page that displays a portlet that displays a stock ticker and a portlet that
displays news about a particular company. A page parameter could then accept the
stock symbol as a value, then display the relevant stock and news information in the
appropriate portlets.

You can use parameters in your pages only if the Enable Parameters and Events page
group setting is enabled. For information on enabling parameters and events in a page
group, refer to the Oracle Application Server Portal User’s Guide, Chapter 4,
“Working with Page Groups,” located on the Documentation page on Portal Center
(http://www.oracle.com/technology/products/ias/portal/index.html
).

In this section, you will learn how to configure your page to support page parameters
and events. You will then set up portlet parameters and events, then integrate them
with your page parameters and events.

At the end of this section, the end user will be able to click a section of the pie chart
that you created in Modifying the Layout of an Existing OmniPortlet. This action will
display information about the selected department in the Web Service portlet you
created in Defining a Portlet Based on a Web Service.

Note: For more information on page parameters and events, refer
to the Oracle Application Server Portal User’s Guide, Chapter 7,
Section 11, “Using Parameters and Events.”

Using OmniPortlet

Building Portlets with OmniPortlet 3-33

3.3.6.1 Adding Parameters to an Existing OmniPortlet
The steps in this section will show you how to add parameters to the Web Service
portlet you created in Defining a Portlet Based on a Web Service.

To configure the OmniPortlet to accept parameters:

1. While you’re in the Edit mode of your portal page, click the Edit Defaults icon in
the upper left-hand corner of the Web service portlet.

Figure 3–56 Edit Defaults Icon for the Web Service Portlet

2. On the Source tab that displays, locate the Portlet Parameters section, then set the
following parameters:

■ Set the Default Value for Param1 to 20

■ Set the Default Value for Param2 to RESEARCH

Figure 3–57 Portlet Parameters Section of the Source Tab

3. At the top of the screen, click the Filter tab.

4. Change the existing condition to:

DEPTNO Equals ##Param1##

Figure 3–58 Condition Section of the Filter Tab

5. Click the View tab.

6. Add text to the portlet header that updates according to the selected department.

In the Header and Footer Text section, in the Header Text field, enter the
following:

Note: By changing the value to ##Param1##, you set the portlet to
use the value of Param1 (which you created on the Source tab) for
the value of the DEPTNO column. For example, if Param1 is 10,
then DEPTNO is set to 10.

Using OmniPortlet

3-34 Oracle Application Server Portal Developer’s Guide

List of employees of the ##Param2## department.

Figure 3–59 Header and Footer Section of the View Tab

7. Click OK to save your changes to the Web service portlet.

In this section, you learned how to set portlet parameters, which you then integrated
into the functionality of the portlet. Instead of simply showing the data for
Department 20, portlet will display the information for the department number
indicated in the parameter you used, and the header text will be updated according to
the department indicated in the second parameter you used. After you set up the
events for the SQL data source portlet, you will map page parameters to the portlet
parameters you created in this section.

The next section will show you how to add events to the SQL portlet you created in
Defining a Portlet Based on a SQL Data Source. Then, after you’ve set up the events,
you will configure the parameters and events to work together on the portal page.

3.3.6.2 Adding Events to an Existing OmniPortlet
The steps in this section will show you how to raise an event when a parameter is set
in another portlet on the same page.

To set up events in a portlet:

1. While the page is in Edit mode, click the Edit Defaults icon in the upper left-hand
corner of the Salary by Departments portlet (that displays the pie chart).

2. Click the Layout tab.

3. In the Chart Drilldown section, choose Event1 from the Action drop-down list, so
that when a user clicks a section of the pie chart, Event1 occurs.

4. Click the Events tab.

5. Under “When Event1 is raised, pass:”, set the following options:

■ Event1Param1 = Dept No

■ Event1Param2 = Department

Figure 3–60 Event Outputs Section of the Events Tab

In this section, you set up your SQL OmniPortlet to raise an event when the user clicks
on a piece of the pie chart. Once the user clicks the piece, OmniPortlet retrieves the

Using OmniPortlet

Building Portlets with OmniPortlet 3-35

number and name for the selected department, and passes that information to the two
event parameters (Event1Param1 and Event1Param2).

In the next section, you will set up the parameters you created in Adding Parameters
to an Existing OmniPortlet and the events you created in this section to behave
together on your portal page by mapping them to page parameters and events.

3.3.6.3 Relating Portlet Parameters and Events on a Page
After you’ve created the parameters for the portlet that will control the data being
passed, and set the event for the portlet that will control the data being passed, you
must set the page parameters and events to relate the two portlets together on your
portal page.

The steps in this section will show you how to set up the parameters at the page level,
so that the parameters set in the Web Service portlet are passed to the SQL portlet, and
then raise the appropriate event.

To set the page parameters and events:

1. While you are in the Edit mode of your page, click the Page : Properties link in the
upper left-hand corner of your page.

Figure 3–61 Page: Properties Link Located Next to the Page Group: Properties Link

2. Click the Parameters tab.

3. In the New Page Parameter section, in the Parameter Name field, enter dept_no,
then click Add.

4. In the Page Parameter Properties section, next to the new dept_no parameter,
enter Department Number in the Display Name field, and 20 in the Default
Value field.

5. Follow the previous two steps to create a second page parameter called dept_
name, and set the Display Name to Department Name, and the Default Value to
RESEARCH.

Figure 3–62 Page Parameter Properties Section of the Parameters Tab

6. In the Portlet Parameter Values section, find the Web service portlet you created
that contains the portlet parameters. If you created a new page specifically for the
steps in this chapter, this portlet is the second instance of portlet: OmniPortlet in
the list.

Click the arrow to the left of portlet: OmniPortlet to display the Portlet Parameters
for that portlet.

7. Next to Param1, choose Page Parameter from the drop-down list, then choose
Department Number from the drop-down list that displays.

Using OmniPortlet

3-36 Oracle Application Server Portal Developer’s Guide

The portlet parameter Param1 is now mapped to the dept_no page parameter you
created in the previous steps.

8. Map the Param2 portlet parameter to the Department Name page parameter.

Figure 3–63 Portlet Parameter Values Section of the Parameters Tab for the Page

9. Click the Events tab at the top of the screen.

10. Click the first instance of portlets: Omniportlet.

11. Make sure Event1 is highlighted under portlets: Omniportlet.

12. Under When this event is raised, make sure Go to Page is selected, then click the
List icon next to the drop-down list.

13. Find your page name in the list, then click the Return Object link next to its name.

Your page name now displays in the "Go to page" list.

Figure 3–64 Setting Portlet Event1 to Display Your Portal Page

14. When you select your portal page, the page parameters display in the Page Input
section.

Next to Department Number, choose Event Output from the drop-down list, then
choose Event1Param1 from the drop-down list that displays. You have now set the
Department Number page parameter to display the contents of Event Parameter 1.

15. Set the Department Name page parameter to display the contents of Event
Parameter 2.

The Page Input section should now look like the following image.

Note: Now, the portlet parameters you created for the Web
service portlet in Adding Parameters to an Existing OmniPortlet are
mapped to page-level parameters called dept_no (Department
Number) and dept_name (Department Name).

Summary

Building Portlets with OmniPortlet 3-37

Figure 3–65 Page Input Section of the Event Tab for the Portal Page

16. Click OK to accept your changes.

17. Test your changes by clicking on a piece of the pie chart. When you click the
Accounting section, for example, the Web service portlet automatically updates
with the information for the Accounting department.

In this section, you learned how to use page parameters and events to link your
portlets together on a single portal page.

3.4 Summary
In this chapter, you learned how to use OmniPortlet to build various types of portlets
on a page. You also learned how to use parameters and events to integrate portlets on
a page and create a portal application.

You can find more information about using the various tools in OmniPortlet by
clicking the Help link on each of the pages in the wizard. For more information on
using Web Clipping, refer to Chapter 4, "Building Content-Based Portlets with Web
Clipping".

Note: Now, the event parameters you created in Adding Events to
an Existing OmniPortlet for the SQL data source portlet are
mapped to the page parameters, which are linked to the portlet
parameters. Thus, the two portlets on your page are now linked
and interactive.

Summary

3-38 Oracle Application Server Portal Developer’s Guide

Building Content-Based Portlets with Web Clipping 4-1

4
Building Content-Based Portlets with Web

Clipping

Web Clipping is a browser-based declarative tool that enables you to integrate any
Web application with OracleAS Portal. It is designed to give you quick integration by
leveraging the Web application's existing user interface. Web Clipping has been
implemented as a web provider using the Java Portal Developers Kit, which is a
component of OracleAS Portal.

With Web Clipping, you can collect Web content into portlets in a single centralized
Web page. You can use Web Clipping to consolidate content from Web sites scattered
throughout a large organization.

This chapter contains the following sections:

■ What Is Web Clipping?

■ Adding a Web Clipping Portlet to a Page

■ Integrating Authenticated Web Content Using Single Sign-On

■ Example: Adding a Web Clipping That Users Can Customize

■ Current Limitations for Web Clipping

4.1 What Is Web Clipping?
Web Clipping allows clipping of an entire Web page or a portion of it and reusing it as
a portlet. Basic and HTML-form-based sites may be clipped. Use Web Clipping when
you want to copy content from an existing Web page and expose it in your portal as a
portlet. The Web Clipping portlet supports:

■ Navigation through various styles of login mechanisms, including form- and
JavaScript-based submission and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will still be identified correctly
by the Web Clipping engine and delivered as the portlet content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1, JavaScript, applets, and plug-in enabled content, retrieved
through HTTP GET and POST (form submission).

■ Customization, allowing a page designer to expose input parameters that page
viewers can modify when they customize the portlet. These parameters can be
exposed as public parameters that a page designer can map as OracleAS Portal
page parameters. This feature allows end users to obtain personalized clippings.

Adding Web Page Content to a Portal Page

4-2 Oracle Application Server Portal Developer’s Guide

■ Integrate authenticated web content through Single Sign-On, including
integration with external applications, which enables you to leverage Oracle
Application Server Single Sign-On and to clip content from authenticated external
Web sites.

■ Inline rendering, enabling you to set up Web Clipping portlets to display links
within the context of the portlet. As a result, when a user clicks a link in the Web
Clipping portlet, the results display within the same portlet. You can use this
feature with internal and external Web sites.

■ Proxy Authentication, including support for global proxy authentication and
per-user authentication. You can specify the realm of the proxy server and whether
all users will automatically log in using a user name and password you provide,
each user will log in using an individual user name and password, or all users will
log in using a specified user name and password.

■ Migration from URL-based portlets, enabling you to migrate your URL-based
portlets to Web Clipping. For more information, refer to the following article:

http://www.oracle.com/technology/products/ias/portal/html/mig
rating_urlservices_to_webclipping.html

Note that although the URL was valid when this document was written, the URL
may change in the future. You should be redirected to the new URL page.

By default, all Web clipping definitions are stored persistently in the Oracle
Application Server infrastructure database. Any secure information, such as
passwords, are stored in encrypted form, according to the Data Encryption Standard
(DES), using Oracle encryption technology.

4.2 Adding Web Page Content to a Portal Page
To add Web page content to a portal page, you must first install, configure, and
register the Web Clipping provider. Instructions are provided in the following file:

http://host:port/portalTools/webClipping/htdocs/help/configuring.webclipping.html

Then, you take the following steps:

1. Add the Web Clipping portlet to the portal page, as described in Section 4.2.1.

2. Use the Web Clipping Studio to navigate to the Web page containing the desired
content, and then select the portion of the page to clip, as described in
Section 4.2.2.

3. Set the properties of the Web Clipping portlet, as described in Section 4.2.3.

4.2.1 Adding a Web Clipping Portlet to a Page
To add a Web Clipping portlet to an OracleAS Portal page:

1. Navigate to the Page Groups portlet. By default, the Page Groups portlet is located
on the Build tab of the Portal Builder page.

2. In the Edit a Page section of the Page Groups portlet, click the Browse Pages icon
and select the page to which you want to add the Web Clipping portlet.

Figure 4–1 shows the Page Groups portlet.

Adding Web Page Content to a Portal Page

Building Content-Based Portlets with Web Clipping 4-3

Figure 4–1 Selecting a Page

3. Click Edit.

4. In the region in which you want to add the Web Clipping portlet, click the Add
Portlet icon.

Figure 4–2 shows a portion of the page.

Figure 4–2 Adding a Portlet to a Page

5. In the Add Portlets page, navigate to the Web Clipping Portlet link and click it.
The Web Clipping Portlet moves to the Selected Portlets box.

By default, the Web Clipping portlet is located in the Portal Builder page of the
Portlet Repository. If you cannot find this page, use the Search field to find the
portlet.

6. Click OK to add a Web Clipping portlet to your page.

Figure 4–3 shows the Web Clipping portlet added to your page.

Adding Web Page Content to a Portal Page

4-4 Oracle Application Server Portal Developer’s Guide

Figure 4–3 Web Clipping Portlet Added to a Page

4.2.2 Selecting a Section of a Web Page to Display in the Web Clipping Portlet
To select a section of a Web page to display in the Web Clipping portlet, you use the
Web Clipping Studio. Using the Web Clipping Studio, you can:

■ Browse for Web content

■ Section the chosen target page

■ Choose the exact portion of the Web content to clip

■ Preview the clipped content as a portlet

■ Save the clipped content as a portlet

■ Set portlet properties and save the updated portlet information

To select a section of a Web page to display in the Web Clipping portlet:

1. Above the Web Clipping portlet, click the Edit Defaults icon, as shown in
Figure 4–4.

Figure 4–4 Editing Default Settings

The Find a Web Clipping page is displayed.

2. In the URL Location field, enter the location of the starting Web page that links to
the content you want to clip.

3. Click Start, as shown in Figure 4–5.

Adding Web Page Content to a Portal Page

Building Content-Based Portlets with Web Clipping 4-5

Figure 4–5 Specifying a URL

The Web Clipping Studio displays the page you specified, as shown in Figure 4–6.

Figure 4–6 Browsing to a Page Containing Content for a Web Clipping

Note that the URL in the browser bar changes from:

http://hostname:port/portal/page?_dad=portal&_schema=PORTAL...

To:

http://hostname:port/portalTools/webClipping...

4. Browse to the page that contains the content you want to clip.

As you click hyperlinks in the Web page, your navigation links are recorded.

Adding Web Page Content to a Portal Page

4-6 Oracle Application Server Portal Developer’s Guide

5. Once you display the page that contains the content you want to clip, in the Web
Clipping Studio banner, click Section, as shown in Figure 4–7.

Figure 4–7 Sectioning the Target Web Page

Sectioning divides the target Web page into its clippable sections, as shown in
Figure 4–8. After you click Section, you are no longer able to browse links in the
displayed page. If you want to continue navigation, click Unsection in the Web
Clipping Studio banner.

Figure 4–8 Sectioned Target Web Page

6. At the top left of the section of the Web content you want to clip, click Choose.

You can choose only one section as a clipping at a time.

Note: Any browsing operations that do not contribute to the
eventual Web clipping will be discarded. Only the significant
browsing operations are recorded for later playback during the show
mode; any discarded links are not visited.

For any Web sites that require HTTP Basic or Digest Authentication, a
form is displayed that requests user name and password information.
This encoded authentication information is recorded as part of the
browsing information.

Adding Web Page Content to a Portal Page

Building Content-Based Portlets with Web Clipping 4-7

7. Web Clipping Studio displays a preview of your chosen section. If it is the section
you want, click Select in the Web Clipping Studio banner. The Web Clipping
Studio displays the Find a Web Clipping page, with the properties of the clipping.

If you do not want to use the section you clipped in your portlet, click Unselect to
return to the page containing the section. You can choose another section on the
page, or click Unsection to navigate to another page.

Some sections may contain no data, only whitespace. For example, a Web page
may contain an HTML <DIV> tag that contains no text or images. If you click
Choose on a section that contains no data, Web Clipping displays a preview, but
the preview correctly shows only whitespace. In this case, click Unselect in the
preview page to return to the sectioned page. Then, select a section containing
data.

8. In the Find a Web Clipping page, click OK to display the selected Web clipping in
the Web Clipping portlet on your page. (You can edit default properties in the
page. See Section 4.2.3 for more information.)

Figure 4–9 shows the content added to the Web Clipping portlet.

Figure 4–9 Clipped Content Added to the Web Clipping Portlet on a Portal Page

4.2.3 Setting Web Clipping Portlet Properties
You can edit various portlet settings to change the appearance of the Web Clipping
portlet and to specify how end users can interact with the portlet.

To set Web Clipping portlet properties:

Note: To increase the number of sections available from which to
choose, click Section Smaller in the Web Clipping Studio banner. For
example, you would click Section Smaller to drill down one level of
nested tables. To decrease the number of sections available from which
to choose, click Section Larger.

Integrating Authenticated Web Content Using Single Sign-On

4-8 Oracle Application Server Portal Developer’s Guide

1. Above the Web Clipping portlet, click the Edit Defaults icon. Web Clipping Studio
displays the Find a Web Clipping page with a Properties section, as shown in
Figure 4–10.

Figure 4–10 Properties Section of Find a Web Clipping Page

2. From the URL Rewriting list in the Properties section, choose Inline if you want
link targets to be displayed inside the portlet, or choose None if you want link
targets to be displayed in a new browser window.

3. In the Title field, enter a title to display in the portlet banner.

4. In the Description field, enter a description of the portlet.

5. In the Time Out (seconds) field, enter the amount of time (in seconds) for the Web
Clipping provider to attempt to contact the Web page from which the content was
clipped.

6. In the Expires (minutes) field, enter the amount of time (in minutes) that cached
content is valid. Any requests for portlet content that occur within the time period
you specify will be satisfied from the cache.

Once the cache period is exceeded, requests for portlet content will be satisfied by
retrieving content from the portlet's Web Clipping data source. The cache will also
be refreshed with this content.

7. If you entered any information in a form while clipping content for the Web
Clipping portlet, the Parameterize Inputs section is available. Select the Click to
start parameterizing check box to customize parameters associated with the Web
Clipping portlet content. Then:

a. From the Parameters list, choose the parameters that you want to customize.

b. From the Customizable list, select a parameter if you want to allow end users
to provide their own values for the parameters when they customize the
portlet. Select None if you do not want to allow this.

c. In the Display Name field, enter a name to be displayed for the parameter.

d. In the Default Value field, enter a value to use by default for the parameter.

Section 4.4.3 provides an example of customizing parameters.

8. Click OK.

4.3 Integrating Authenticated Web Content Using Single Sign-On
You can integrate an external application into a Web Clipping portlet, leveraging
Oracle Application Server Single Sign-On to clip content from authenticated external
Web sites. For example, if you have an account with My Oracle (an external
application) that requires a login to access a particular page, you can incorporate clips
from that page into a Web Clipping portlet.

Integrating Authenticated Web Content Using Single Sign-On

Building Content-Based Portlets with Web Clipping 4-9

To integrate an external application, take the following steps:

1. Set up the external application in OracleAS Portal, specifying the authentication
information. Refer to the Oracle Application Server Portal Configuration Guide for
more detail.

a. Log in to OracleAS Portal as the orcladmin user.

b. Navigate to the Administer External Applications portlet. (Select the
Administer tab, then select the Portal subtab. In the SSO Server
Administration section which is in the middle column, select Administer
External Applications.)

c. Click Add External Application.

d. In the Create External Application page, in the Application Name field, enter
a name for the application. For example, My.Oracle.Com.

e. For Login URL, enter the URL to log on to the application, for example,
http://my.oracle.com/portal/page?_pageid=0,53&_dad=moc&_schema=MOC.
To determine the URL, navigate to the desired URL in a browser and note the
URL.

f. For User Name/ID Field Name, enter the field name that the external
application uses for the user name. Determine the field name by viewing the
source for the desired page. In this case, enter ssousername.

g. For Password Field Name, enter the field name that the external application
uses for the password. Determine the field name by viewing the source for the
desired page. In this case, enter password. OracleAS Portal uses this
information in connecting to the application.

h. Select POST as the authentication method.

Figure 4–11 shows a portion of the Create External Application page:

Figure 4–11 Creating an External Application

Integrating Authenticated Web Content Using Single Sign-On

4-10 Oracle Application Server Portal Developer’s Guide

i. In the Additional Fields section, you can enter names and values of any
additional fields that are submitted with the login form of the external
application. To specify the page to be redirected to after you log in, enter
redirectFieldName for Field Name. For example, for My Oracle, enter a Field
Value of p_requested_url. Figure 4–12 shows the Additional Fields section.

Figure 4–12 Specifying Redirection

j. Click OK.

k. To test your credentials with My Oracle, in the Administer External
Applications page, click the name of the application you just created. Then, in
the External Application Login page, log on to the application My Oracle
using your My Oracle user name and password.

In the Administer External Applications page click Close.

For more information about OracleAS Single Sign-On and External Applications,
see the Oracle Application Server Single Sign-On Administrator’s Guide.

2. For the Web Clipping portlet, create a new Web Clipping Provider:

a. Select the Administer tab, then select the Portlets tab.

b. Select Register a Provider.

c. In the Register Provider page, enter webClippingMyOracle for the Name and
Web Clipping MyOracle for the Display Name. Enter a Timeout and Timeout
Message. Select Web for the Implementation Style.

d. Click Next.

e. In the General Properties section of the Define Connection page, for the URL,
enter:

http://server:port/portalTools/webClipping/providers/webClipping

Note the server:port refer to the host and port where the providers are located.

f. For the user's identity, select The user's identity needs to be mapped to a
different name in the Web provider's application, and/or the Web provider
requires an external application login for establishment of a browser
session. If selecting this option, specify the external application ID below.

Integrating Authenticated Web Content Using Single Sign-On

Building Content-Based Portlets with Web Clipping 4-11

g. For External Application ID, click the List of Values icon and select the
external application you registered.

Figure 4–13 shows the top part of the Define Connections page.

Figure 4–13 Specifying an External Application for a Web Clipping Provider

h. In the User/Session Information section, select User to send user specific
information to the provider. For Login Frequency, select Once Per User
Session.

i. Check that the proxy settings are correct. If you use a proxy server to contact
the Web providers from the middle tier, enter the proxy server for Middle
Tier.

If you use a proxy server to contact the Web providers from the portal
repository, enter the proxy server for Portal Repository.

j. Click Finish.

k. In the Registration Confirmation page, if the registration was successful, click
OK.

3. Add a portlet to a page, using the Web Clipping MyOracle provider that you just
created:

a. In OracleAS Portal, navigate to the page in which you want to add the portlet
(See Section 4.2.1 for information about navigating to a page.)

b. In the region in which you want to add the Web Clipping portlet, click the
Add Portlet icon.

c. In the Add Portlets page, search for Web Clipping MyOracle. Click it to move
it to the Selected Portlets box.

d. Click OK.

Section 4.2.1 describes in detail how to add a portlet.

4. Select a section of a page to display in the Web Clipping portlet:

a. Above the Web Clipping portlet, click the Edit Defaults icon.

The Find a Web Clipping page is displayed.

Integrating Authenticated Web Content Using Single Sign-On

4-12 Oracle Application Server Portal Developer’s Guide

b. In the URL Location field, enter the location of the starting Web page that
links to the content you want to clip. In this case, enter http://my.oracle.com.

c. Click Start. The Web Clipping Studio displays the page you specified.

d. Enter the login information for My Oracle.

e. Browse to the page that contains the content you want to clip. After you
display the page that contains the content you want to clip, click Section in the
Web Clipping Studio banner. Figure 4–14 shows the external application
displayed in Web Clipping Studio.

Figure 4–14 External Application in Web Clipping Studio

f. At the top left of the section of the Web content you want to clip, click Choose.

g. Web Clipping Studio displays a preview of your chosen section. If it is the
section you want, click Select in the Web Clipping Studio banner.

The Web Clipping Studio displays the Find a Web Clipping page, with the
properties of the clipping, as shown in Figure 4–15.

Example: Adding a Web Clipping That Users Can Customize

Building Content-Based Portlets with Web Clipping 4-13

Figure 4–15 Properties of the External Application

h. In the Find a Web Clipping page, click OK to display the selected Web
clipping in the Web Clipping portlet on your page, as shown in Figure 4–16.

Figure 4–16 External Application Displayed in Portlet

Now, the Web clipping, even though it is from a page requiring authentication, is
available in your portlet.

Note that you can only associate one external application with a provider. For each
external application, you must register a new provider. Each portal user accesses the
authenticated content using their user name and password for that system, not the
page designer's credentials.

4.4 Example: Adding a Web Clipping That Users Can Customize
In this example, you use the Web Clipping portlet to add information from Portal to a
portal page and you allow end users to customize their own views.

This example contains the following exercises:

Example: Adding a Web Clipping That Users Can Customize

4-14 Oracle Application Server Portal Developer’s Guide

■ Exercise: Adding a Web Clipping Portlet to a Personal Page

■ Exercise: Selecting a Clipping in OTN

■ Exercise: Customizing a Web Clipping Portlet

4.4.1 Exercise: Adding a Web Clipping Portlet to a Personal Page
Administrators can set up personal pages for all users. This exercise assumes that the
administrator has enabled this functionality. In this exercise, you add the Web
Clipping portlet to your personal page.

1. In the Edit a Page section of the Page Groups portlet, click the Browse Pages icon.

By default the Page Groups portlet is located on the Build tab of the Portal Builder
page.

2. In the Page Group Map, expand the Personal Pages node, then expand the node
for the first letter of your user name. Figure 4–17 shows the Personal Pages node.

Figure 4–17 Expanding Page Group Map Nodes

3. Click Return Object next to your user name. Your personal page is displayed.

4. Click Edit Page.

5. In any portlet region, click the Add Portlets icon.

6. In the Add Portlets page, click the Web Clipping Portlet link.

By default, the Web Clipping portlet is located in the Portal Tools page of the
Portlet Repository. If you cannot find this page, use the Search field to find the
portlet.

7. The Web Clipping portlet is added to the Selected Portlets list. Click OK.

4.4.2 Exercise: Selecting a Clipping in OTN
In this exercise, you navigate to Oracle Technology Network (OTN) and search for
specific information, then select the results as the clipping for your portlet.

1. Above the Web Clipping portlet, click the Edit Defaults icon.

2. In the Web Clipping Studio's Find a Web Clipping page, in the URL Location field,
enter

http://www.oracle.com/technology/products/ias/portal/index.html

Click Start. OTN displays the Oracle Application Server Portal page.

Example: Adding a Web Clipping That Users Can Customize

Building Content-Based Portlets with Web Clipping 4-15

3. Enter a search string in the Search field at the top of the page, as shown in
Figure 4–18. For this exercise, enter "web clipping portlet", then click Go.

The Search result is displayed in the Web Clipping Studio.

Figure 4–18 Searching for Information on OTN

4. Click Section. Web Clipping Studio divides the target Web page into its clippable
sections, as shown in Figure 4–19.

Figure 4–19 Sectioning the Target Web Page

5. At the top left corner of the search result, click Choose.

A preview of the search result section displays.

Some sections may contain no data, only whitespace. For example, a Web page
may contain an HTML <DIV> tag that contains no text or images. If you click
Choose on a section that contains no data, Web Clipping displays a preview, but
the preview correctly shows only whitespace. In this case, click Unselect in the
preview page to return to the sectioned page. Then, select a section containing
data.

6. Click Select to confirm that the search result section is the one you want to clip.

7. In the Find a Web Clipping page, click OK to display the selected Web clipping in
the Web Clipping portlet on your page. Figure 4–20 shows the Web Clipping
displayed in the page.

Example: Adding a Web Clipping That Users Can Customize

4-16 Oracle Application Server Portal Developer’s Guide

Figure 4–20 Selected Web Clipping Displayed in Web Clipping Portlet

4.4.3 Exercise: Customizing a Web Clipping Portlet
In this exercise, you edit the properties of the Web Clipping portlet to allow end users
to display a different product in the portlet:

1. Above the Web Clipping portlet you just added, click the Edit Defaults icon, as
shown in Figure 4–21.

Figure 4–21 Clicking Edit Defaults for the Web Clipping Portlet

2. In the Find a Web Clipping page, modify the following items in the Properties
section:

■ From the URL Rewriting list, choose Inline to specify that you want link
targets displayed inside the portlet, rather than in a new browser window.

■ In the Title field, enter Portal Search. This title displays in the banner of your
Web Clipping portlet, as well as the pages where users can customize
parameters for the Web clipping.

Figure 4–22 shows the Properties and Parameterize Inputs sections of the Find a
Web Clipping page.

Example: Adding a Web Clipping That Users Can Customize

Building Content-Based Portlets with Web Clipping 4-17

Figure 4–22 Setting Properties for a Web Clipping

3. Because the content displayed in the portlet was reached by entering information
in the Search field on OTN, you can customize the parameters used by the search
to allow end users to specify their own search string.

In the Parameterize Inputs section, select the Click to start parameterizing check
box.

4. On the last line of the parameters table, make the following changes:

■ In the Parameters column, choose p_Query from the list.

■ In the Customizable column, choose Param1 from the list.

■ In the Display Name column, enter Portal Search.

■ Make sure that Default Value displays "web clipping portlet" to be sure you
have selected the right parameter.

Figure 4–23 shows the parameters table.

Figure 4–23 Specifying Parameters for User Input

5. Click OK to display the default search results in the Web Clipping portlet on your
page.

6. In the Web Clipping portlet banner, click Customize, as shown in Figure 4–24.

Figure 4–24 Clicking Customize in the Web Clipping Portlet Banner

7. In the page that displays, scroll down to the Inputs section. Notice that the
parameter field for the search string is labeled Portal Search, as you specified for
the Display Name for this parameter. In the Portal Search field, enter a different
search string. For example, enter OmniPortlet 2004, as shown in Figure 4–25.

Current Limitations for Web Clipping

4-18 Oracle Application Server Portal Developer’s Guide

Figure 4–25 Specifying Input for Parameters

8. Click OK.

The Web Clipping portlet now displays the results of performing a search on OTN
for OmniPortlet 2004 information, as shown in Figure 4–26.

Figure 4–26 New Web Clipping Result Based on Customer Input Parameter

4.5 Current Limitations for Web Clipping
This section describes current limitations for Web Clipping. For information about the
latest features and limitations in a release, be sure to read the Oracle Application Server
Release Notes.

■ If the site to which you are connecting uses a lot of JavaScript to manipulate
cookies or uses the JavaScript method document.write to modify the HTML
document being written out, you may not be able to clip content from the site.

■ URL-based portlets that have been migrated to Web Clipping do not support
proxy authentication by default. This is because URL-based portlets inherently do
not support proxy authentication and Web Clipping preserves the edit mode of the
portlets. Their edit mode does not provide an opportunity to enter authentication
information. To work around this restriction, add an empty Web Clipping portlet

Current Limitations for Web Clipping

Building Content-Based Portlets with Web Clipping 4-19

to the same portal and use the Web Clipping portlet Customize link to enter the
user name and password for proxy authentication.

■ When you integrate with partner applications (through the use of mod_osso), you
cannot clip directly through those partner applications in an authenticated
manner. However, you can use the partner applications through the external
application framework.

■ You cannot use the Web Clipping Portlet to clip OracleAS Portal pages. As a
workaround, examine the portlet that is supplying the data and take the
appropriate action:

– For database provider portlets, use export/import to copy pages across
portals.

– For Web provider portlets, re-register the same provider in the destination
portal and edit the portal manually.

For troubleshooting information, see Appendix B, "Troubleshooting OracleAS Portal".

Current Limitations for Web Clipping

4-20 Oracle Application Server Portal Developer’s Guide

Building Java Portlets 5-1

5
Building Java Portlets

This chapter explains how to create Java portlets based on the Java Portlet
Specification, how to build Java portlets using Oracle Application Server Portal
Developer Kit-Java (PDK-Java), and how to make a portlet out of your struts
application:

■ Guidelines for Creating Java Portlets

■ Introduction to Java Portlet Specification and WSRP

– The Relationship Between WSRP and JPS

■ Building JPS-Compliant Portlets with Oracle JDeveloper

– Installing the Oracle JDeveloper Portal Add-In

– Building JPS-compliant Portlets

■ Building PDK-Java Portlets with Oracle JDeveloper

– Installing the Oracle JDeveloper Portal Add-In

– Building PDK-Java Portlets

– Adding Render Modes

– Customizing Portlets

– Passing Parameters and Submitting Events

– Accessing Session Information

– Implementing Portlet Security

– Controlling the Export/Import of Portlet Customizations

– Enhancing Portlet Performance with Caching

– Writing Multi-Lingual Portlets

■ Building Struts Portlets with Oracle JDeveloper

– OracleAS Portal and the Apache Struts Framework

– Creating a Struts Portlet

The source code for many of the examples referenced in this chapter are available as
part of PDK-Java. You can download PDK-Java from the Oracle Application Server
Portal Developer Kit (PDK) page on OTN,
http://www.oracle.com/technology/products/ias/portal/pdk.html.

When you unzip PDK-Java, you will find the examples in:

../pdk/jpdk/v2/src/oracle/portal/sample/v2/devguide

Guidelines for Creating Java Portlets

5-2 Oracle Application Server Portal Developer’s Guide

5.1 Guidelines for Creating Java Portlets
When you write your portlets in Java for either the Java Portlet Specification (JPS) or
PDK-Java, you should follow the best practices described in this section. All of these
guidelines pertain specifically to the Show modes of your portlet. A Show mode is an
area of functionality provided by a portlet.

An OracleAS Portal portlet may have the following Show modes, each with its own
visualization and behavior. JPS portlets can define custom portlet modes in
portlet.xml. Defining custom modes is especially useful if the portlet must
interoperate with portal implementations from other vendors.

■ Shared Screen Mode (View Mode for JPS)

■ Edit Mode (JPS and OracleAS Portal)

■ Edit Defaults Mode (JPS and OracleAS Portal)

■ Preview Mode (JPS and OracleAS Portal)

■ Full Screen Mode (OracleAS Portal)

■ Help Mode (JPS and OracleAS Portal)

■ About Mode (JPS and OracleAS Portal)

■ Link Mode (OracleAS Portal)

5.1.1 Shared Screen Mode (View Mode for JPS)
A portlet uses Shared Screen mode (known as View mode in JPS) to appear on a page
with other portlets. This is the mode most people think about when they envision a
portlet. Portlets are rendered inside HTML table cells when in Shared Screen mode.
This means a portlet can display any content that can be rendered within a table cell,
including, among other technologies, HTML, plug-ins, and Java applets. The actual
size of the table cell is variable depending on user settings, the browser width, and the
amount and style of content in the portlet. When developing portlets, remember that
your portlet will share a page with others and you cannot completely control its
dimensions and placement.

5.1.1.1 HTML Guidelines for Rendering Portlets
Plain HTML is the most basic way to render portlets and provides a great deal of
flexibility to portlet developers. You can use almost any standard HTML paradigm,
such as links, forms, images, tables, as long as it can display within an HTML table
cell. Improperly written HTML may appear inconsistently across different browsers
and, in the worst case, could cause parts of your page not to appear at all. Ensure that
you adhere to the following rules:

■ Use standard HTML. The official HTML specification is available from the W3C
(more information available at: http://www.w3.org/MarkUp/).

■ Avoid unterminated and extraneous tags. The behavior of pages with improperly
terminated tags is unpredictable because it depends on what the browser chooses
to do. Tools like weblint (http://www.weblint.org/) and HTML Tidy

Note: JPS offers some modes not offered by OracleAS Portal and vice
versa. If you are coding portlets to JPS, you can declare custom portlet
modes that map to the extra modes offered by OracleAS Portal.

Guidelines for Creating Java Portlets

Building Java Portlets 5-3

(http://www.w3.org/People/Raggett/tidy/) can help detect and fix
hanging and unnecessary tags.

■ Avoid elements that cannot be rendered properly in an HTML table cell. Some
constructs cannot be used simply because they do not display correctly in a table
cell. Frames, for example, do not appear when inserted in a table.

■ Keep portlet content concise. Do not try to take full screen content and expose it
through a small portlet. You end up with portlet content too small or cramped for
smaller monitors.

■ Do not create fixed-width HTML tables in portlets. You have no way to tell how
wide of a column your portlet will have on a user’s page. If your portlet requires
more room than given, it might overlap with another portlet in certain browsers.

■ Avoid long, unbroken lines of text. The result is similar to what happens with
wide fixed-width tables. Your portlet might overlap other portlets in certain
browsers.

■ Check behavior when resizing the page. Test your portlet’s behavior when the
browser window is resized to ensure that it works in different browser window
sizes.

■ Check behavior when the default browser font changes. People may choose
whatever font size they wish and they can change it at any point in time. Your
portlet should handle these situations gracefully.

The HTML you use also impacts the perceived performance of your site. Users judge
performance based on how long it takes for them to see the page they requested, and
browsers require time to interpret and display HTML. Given that, you should:

■ Avoid deeply nested tables. Deeply nested tables slow performance dramatically
in some older browser versions. OracleAS Portal draws several levels of tables to
render portlets. If your portlets use tables within tables, your users may have to
wait quite a while for those pages to render.

■ Avoid lengthy, complex HTML. Portlets share a page with other portlets. Thus,
portlet generation times can significantly effect the overall performance of the
page. If portlets must render complex HTML or wait for external resources, such
as third party applications, it can greatly slow the rendering of the page.

5.1.1.2 Cascading Style Sheet Guidelines for Rendering Portlets
The fonts and colors of every portlet on a page should match the style settings chosen
by the user. To accomplish this goal, these style selections are embedded automatically
using a Cascading Style Sheet (CSS) on each OracleAS Portal page. The portlets access
these settings for their fonts and colors, either directly or using the API.

While different browsers have implemented varying levels of the full CSS
specification, OracleAS Portal uses a very basic subset of this specification to allow for
consistent fonts and colors. CSS implementation levels should not affect the
consistency of your pages across browsers. Follow these guidelines for using CSS:

■ Use CSS instead of hard coding. Hard coding fonts and colors is extremely
dangerous. If you hard code fonts and colors, your portlet may look out of place
when the user changes the page style settings. Since you have no way of knowing
the user’s font and color preference choices, you might also choose to hard code a
font color that turns out to be the same as the user’s chosen background color, in
which case your portlet appears to be invisible to that user.

■ Use the CSS APIs to format your text. The stylesheet definition is available at the
top of OracleAS Portal pages, but you should not call it directly. Instead, use the

Guidelines for Creating Java Portlets

5-4 Oracle Application Server Portal Developer’s Guide

APIs provided to format your text appropriately. This method ensures that your
portlets work even if the stylesheet changes in the future.

■ Avoid using CSS for absolute positioning. Since users can customize their portal
pages, you cannot guarantee that your portlet can appear in a particular spot.

5.1.2 Edit Mode (JPS and OracleAS Portal)
A portlet uses Edit mode to allow users to customize the behavior of the portlet. Edit
mode provides a list of settings that the user can change. These customizable settings
may include the title, type of content, formatting, amount of information, defaults for
form elements, and anything that affects the appearance or content of the portlet.

Portal users typically access a portlet's Edit mode by clicking Customize on the portlet
banner. When you click Customize, a new page appears in the same browser window.
The portlet typically creates a Web page representing a dialog box to choose the
portlet’s settings. Once you apply the settings, you automatically return to the original
page.

5.1.2.1 Guidelines for Edit Mode Options
The following guidelines should govern what you expose to users in Edit mode:

■ Allow users to customize the title of the portlet. The same portlet may be added
to the same portal page several times. Allowing the user to customize the title
helps alleviate confusion.

■ If using caching, invalidate the content. If customizations cause a change in
portlet display or content, you must ensure that the portlet content is regenerated
and not returned from the cache. Otherwise, the user may see incorrect content.

■ Do not use Edit mode as an administrative tool. Edit mode is meant to give users
a way of changing the behavior of their portlets. If you need to change provider
settings or do other administrative tasks, you should create secured portlets
specifically for those tasks.

5.1.2.2 Guidelines for Buttons in Edit Mode
For consistency and user convenience, Edit mode should implement the following
buttons in the following order:

■ OK saves the user customizations and redirects the browser back to the calling
portal page

■ Apply saves the user customizations and reloads the current page.

■ Cancel redirects the browser to the calling portal page without saving changes.

5.1.2.3 Guidelines for Rendering Customization Values
When you show the forms used to change customization settings, you should default
the values such that the user does not have to constantly re-enter settings. When
rendering the customization values, follow a specific sequence to provide consistent
behavior. Following is the sequence for rendering customization values:

1. User preference: Query and display this user's customizations, if available.

2. Instance defaults: If no user customizations are found, query and display system
defaults for the portlet instance. These are set in Edit Defaults mode and only
apply to this portlet instance.

Guidelines for Creating Java Portlets

Building Java Portlets 5-5

3. Portlet defaults: If no system default customizations are found, display general
portlet defaults, which may be blank. General portlet defaults are sometimes hard
coded into the portlet but should be overridden if either of the two previous
conditions apply.

This logic allows the customizations to be presented in a predictable way, consistent
with the other portlets in the portal. PDK-Java makes this type of logic easy to
implement.

5.1.3 Edit Defaults Mode (JPS and OracleAS Portal)
A portlet uses the Edit Defaults mode to allow page designers to customize the default
behavior of a particular portlet instance. Edit Defaults mode provides a list of settings
that the page designer can change. These customizable settings may include the title,
type of content, formatting, amount of information, defaults for form elements, and
anything that affects the appearance or content of the portlet.

These default customization settings can change the appearance and content of that
individual portlet for all users. Because Edit Defaults mode defines the system level
defaults for what a portlet displays and how it displays it, this mode should not be
used as an administrative tool or for managing other portlets.

Page designers access Edit Defaults mode from the Customize Page when they choose
Customize for Others. The link is labeled Edit Defaults on the banner of the wire
frame diagram of that portlet.

When you click Edit Defaults, a new page appears in the same browser window. The
portlet typically creates a Web page representing a dialog box to customize the portlet
instance settings. Once the settings are applied, you are automatically returned to the
original page.

5.1.3.1 Guidelines for Edit Defaults Mode Options
The following guidelines should govern what you expose to page designers in Edit
Defaults mode:

■ If using caching, invalidate the cache. If customizations cause a change in portlet
display or content, you must ensure that the portlet content is regenerated and not
returned from the cache. Otherwise, the user may see incorrect content.

■ Do not use Edit Defaults mode as an administrative tool. Edit Defaults mode
gives users a way of changing the behavior of their portlets. If you need to change
provider settings or do other administrative tasks, you should create secured
portlets specifically for those tasks.

5.1.3.2 Guidelines for Buttons in Edit Defaults Mode
For consistency and user convenience, Edit mode should implement the following
buttons in the following order:

■ OK saves the user customizations and redirects the browser back to the calling
portal page.

■ Apply saves the user customizations and reloads the current page.

■ Cancel redirects the browser to the calling portal page without saving changes.

5.1.3.3 Guidelines for Rendering Customization Values
When you show the forms used to change customization settings, you should default
the values so that the page designer does not have to constantly re-enter settings.

Guidelines for Creating Java Portlets

5-6 Oracle Application Server Portal Developer’s Guide

When rendering the customization values, follow a specific sequence to provide
consistent behavior. Following is the sequence for rendering customization values:

1. Instance preferences: Query and display system defaults for the portlet instance.

2. Portlet defaults: If no system default customizations are found, display general
portlet defaults, which may be blank. General portlet defaults are sometimes hard
coded into the portlet but should be overridden by system defaults.

This logic allows the customizations to be presented in a predictable way, consistent
with the other portlets in the portal.

5.1.4 Preview Mode (JPS and OracleAS Portal)
A portlet uses Preview mode to show the user what the portlet looks like before
adding it to a page. Preview mode visually represents what the portlet can do.

Portal users typically access a portlet's Preview mode by clicking on its Preview icon
from the Add Portlet page. A window then displays the preview of the chosen portlet.
The user then has the option to add that portlet to the page. Portal administrators may
access Preview mode from the Portlet Repository.

Note that the portal does not draw the portal banner when rendering the portlet in this
mode.

5.1.4.1 Guidelines for Preview Mode
The following guidelines should govern what you expose to users in Preview mode:

■ Provide an idea of what the portlet does. Preview mode should generate enough
content for the user to get an idea of the actual content and functionality of the
portlet.

■ Keep your portlet previews small. The amount of data produced in this mode
should not exceed a few lines of HTML or a screen shot. Preview mode appears in
a small area and exceeding the window's size looks unprofessional and forces
users to scroll.

■ Do not use live hyperlinks. Links may not behave as expected when rendered on
the Add Portlet page or the Portlet Repository. Hyperlinks can be simulated using
the underline font.

■ Do not use active form buttons. Forms may not behave as you expect them to
when rendered on the Add Portlet page or the Portlet Repository. If you decide to
render form elements, do not link them to anything.

5.1.5 Full Screen Mode (OracleAS Portal)
Portlets use Full Screen mode to show more details than possible when sharing a page
with other portlets. Full Screen mode lets a portlet have the entire window to itself.

For example, if a portlet displays expense information, it could show a summary of the
top ten spenders in Shared Screen mode and the spending totals for everyone in Full
Screen mode. Portlets can also provide a shortcut to Web applications. If a portlet
provided an interface to submitting receipts for expenses in Shared Screen mode, it
could link to the entire expense application from Full Screen mode.

Portal users access a portlet's Full Screen mode by clicking the title of the portlet.

Technically, JPS portlets do not have Full Screen mode. However, you can implement
the equivalent of Full Screen mode for a JPS portlet with View mode (Shared Screen
mode) and a maximized state for the window.

Guidelines for Creating Java Portlets

Building Java Portlets 5-7

5.1.5.1 Guidelines for Full Screen Mode
The following guidelines should govern what you expose to users in Full Screen
mode:

■ Avoid elements that cannot be rendered properly in an HTML table cell. Even
though Full Screen mode has a window to itself, the portlet is still formatted in an
HTML table cell. Hence, you should avoid constructs that do not display correctly
in a table cell. Frames, for example, do not appear when inserted in a table.

■ Provide a way to navigate to the previous page. You should provide users with a
link or button that takes them back to the original portal page.

5.1.6 Help Mode (JPS and OracleAS Portal)
A portlet uses Help mode to display information about the functionality of the portlet
and how to use it. The user should be able to find useful information about the portlet,
its content, and its capabilities with this mode.

Portal users access a portlet's Help mode by clicking Help in the portlet banner.

5.1.6.1 Guidelines for Help Mode
The following guidelines should govern what you expose to users in Help mode:

■ Describe how to use the portlet. Users may not know all the features your portlet
provides just from its interface. Describe the features and how to get the most out
of them.

5.1.7 About Mode (JPS and OracleAS Portal)
Users should be able to see what version of the portlet is currently running, its
publication and copyright information, and how to contact the author. Portlets that
require registration may link to Web-based applications or contact information from
this mode, as well.

Portal users access a portlet's About mode by clicking About on the portlet banner. A
new page appears in the same browser window. The portlet can either generate the
content for this new page or take the user to an existing page or application.

5.1.7.1 Guidelines for About Mode
The following guidelines should govern what you expose to users in About mode:

■ Display relevant copyright, version, and author information. Users want to
know what portlet they are using and where they can get more information. The
about page may become important when supporting your portlets.

5.1.8 Link Mode (OracleAS Portal)
A portlet uses Link mode to render a link to itself that displays on a mobile page.
When the user clicks the link, the portlet is called in Show mode but with a different
content type.

For JPS portlets that declare support of the Oracle Mobile XML content type, OracleAS
Portal renders the link in one of two ways:

■ Call the portlet's View mode with the MINIMIZED window state, if the portlet
declares support for it.

■ Otherwise, render a link using the portlet’s title.

Introduction to Java Portlet Specification and WSRP

5-8 Oracle Application Server Portal Developer’s Guide

5.1.8.1 Guidelines for Link Mode
The following guidelines should govern what you expose to users in Link mode:

■ Limit content. Users should see the same data as Shared Screen mode but without
all of the graphic images and unnecessary content that would be difficult or
impossible to view effectively on the tiny screen of a mobile device.

5.2 Introduction to Java Portlet Specification and WSRP
Organizations engaged in enterprise portal projects have found application integration
to be a major issue. Until now, users developed portlets using proprietary APIs for a
single portal platform and often faced a shortage of available portlets from a particular
portal vendor. All this changes with the introduction of the following standards:

■ Web Services for Remote Portlets (WSRP)

■ Java Portlet Specification (JPS)1 based on JSR 168

These two standards enable the development of portlets that interoperate with
different portal products, and therefore widen the availability of portlets within an
organization. This wider availability can, in turn, dramatically increase an
organization's productivity when building enterprise portals.

WSRP is a Web services standard that allows the plug-and-play of visual, user-facing
Web services with portals or other intermediary Web applications. Being a standard,
WSRP enables interoperability between a standards enabled container and any WSRP
portal. WSRP defines:

■ Web Services Definition Language (WSDL) interface for the invocation of WSRP
services

■ Markup fragment rules for markup emitted by WSRP services

■ The method to publish, find, and bind WSRP services and metadata

JPS is a specification that defines a set of APIs to enable interoperability between
portlets and portals, addressing the areas of aggregation, personalization,
presentation, and security. JPS defines container services which provide:

■ A portlet API for coding portlet functionality

■ The URL-rewriting mechanism for creating user interaction within a portlet
container

■ The security and personalization of portlets

Oracle actively participates in the WSRP committee and is also a member of the expert
group for JPS. Oracle is committed to supporting these standards and is working on a
production release of a WSRP-enabled portal. Today, Oracle Technology Network
(OTN) members can:

■ View a hosted, pre-release version of the WSRP portal. On this hosted portal, users
can also view a set of WSRP sample portlets, register a provider (also known as a
producer), and add portlets to a page.

■ View a developer’s preview version of the WSRP portal.

■ View a preview release of Oracle’s JPS-compliant portlet container, which exposes
Java portlets as WSRP services.

■ Verify the interoperability of their WSRP-enabled portlets.

1 The Java Portlet Specification 1.0 arose from Java Specification Request 168 and the JSR168
Expert Group.

Introduction to Java Portlet Specification and WSRP

Building Java Portlets 5-9

■ Download tools to build interoperable portlets based on these standards.

5.2.1 The Relationship Between WSRP and JPS
WSRP is a communication protocol between portal servers and portlet containers,
while JPS describes the Java Portlet API for building portlets. Combining these
standards enables developers to integrate their applications from any internal or
external source as portlets with WSRP portals. Building portal pages becomes as
simple as selecting portlets from the OracleAS Portal repository. Figure 5–1 shows the
architecture of the WSRP specification.

Figure 5–1 WSRP Specification Architecture

Since OracleAS Portal’s existing architecture is so similar to the one specified by the
WSRP committee, OracleAS Portal is able to support communication between our
portal and both the new Java Portlet APIs as well as our existing APIs (PDK-Java).
Figure 5–2 shows the architecture of the WSRP portal. Notice that the JPS-compliant
portlet container uses the WSRP protocol for communication and the PDK-Java portlet
container uses Oracle's proprietary protocol for communication.

Note: Figure 5–1 illustrates the use of JPS portlets with WSRP, but it
should be noted that WSRP can also work with non-JPS portlets.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-10 Oracle Application Server Portal Developer’s Guide

Figure 5–2 OracleAS Portal’s WSRP Architecture

5.3 Building JPS-Compliant Portlets with Oracle JDeveloper
Using a convenient download from OTN, you can add extensions to Oracle
JDeveloper for building portlets. To use this extension, you perform the steps in the
following procedures:

■ Installing the Oracle JDeveloper Portal Add-In

■ Building JPS-compliant Portlets

This section assumes the following:

■ You are familiar with portlet terminology such as portlet Show modes. Refer to
Chapter 1, "Understanding Portlets" and Section 5.1, "Guidelines for Creating Java
Portlets".

■ You have already downloaded and installed the Java Portlet Container and have
an Oracle Application Server Containers for J2EE 9.0.4 container to which you
may deploy your portlets.

■ You are already familiar with Oracle JDeveloper and know how to build and
deploy Java components using it. You can download Oracle JDeveloper from
OTN.

5.3.1 Installing the Oracle JDeveloper Portal Add-In
The OracleAS Portal Developer Kit (PDK) provides you with the necessary libraries to
install an add-in for Oracle JDeveloper that dramatically increases your flexibility and
productivity when developing portlets. This extension includes two wizards, one for
building JPS-compliant portlets and one for building PDK-Java portlets. Both wizards

Note: OracleAS Portal is not WSRP-enabled in Release 9.0.4. You
can, however, build and test your standards-based portlets today. To
build standards-based portlets, use Oracle JDeveloper with the
OracleAS Portal Add-In as described Section 5.3.2, "Building
JPS-compliant Portlets". To test your standards-based portlets against
a WSRP-enabled OracleAS Portal, you must use the Portlet Standards
Developer's Preview release or portalstandards.oracle.com.

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-11

guide you through the steps of creating the portlet skeleton and all you need do then is
implement your own business logic.

To obtain the add-in:

1. Visit
http://www.oracle.com/technology/products/ias/portal/index.ht
ml.

2. On the left side of the page, click Integration/Utilities.

3. Click Portal Add-In for Oracle JDeveloper to download portal-addin.zip.

4. Click Install Instructions and read and follow the instructions.

5.3.2 Building JPS-compliant Portlets
Once you have successfully installed the Portlet Wizard for Java, you can begin your
interoperability portlet development quickly and easily with Oracle JDeveloper:

■ Creating a Portlet: Use the wizard to create your basic portlet code and the
necessary configuration files for the framework.

■ Adding Portlet Logic: Extend the example code with your own business logic.

■ Deploying Your Portlet to an Application Server: Use Oracle JDeveloper to deploy
your application to your application server.

■ Registering and Viewing Your Portlet: Register and view your portlet with your
local OracleAS Portal instance or, if you do not have a local instance,
http://portalstandards.oracle.com.

5.3.2.1 Creating a Portlet
This section walks you through the Portlet Wizard. You can choose which portlet Show
modes you want to implement and the implementation method (JSP, HTTP servlet,
Java class, or HTML). The wizard then creates a simple sample implementation for
each of the selected modes.

1. After you open Oracle JDeveloper, click the workspace where you want to create
this project. If you do not have a workspace, you can create one as follows:

a. Right-click the Applications node in the Applications - Navigator and choose
New from the context menu.

b. Choose Workspace from the Items list in the New Gallery dialog box.

c. Click OK.

d. Enter a Workspace Name and Directory Name, and clear Add a New Empty
Project in the Create Workspace dialog box.

e. Click OK.

2. Right-click the name of the workspace in the Applications - Navigator and choose
New Project from the context menu.

3. Click Empty Project in the Items list in the New Gallery dialog box.

4. Click OK.

Note: You can also just go to
http://www.oracle.com/technology/products/ias/portal
/index.html and search for portal-addin.zip.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-12 Oracle Application Server Portal Developer’s Guide

5. Enter the Project Name and Directory Name in the Create Project dialog box.

6. Click OK.

7. Right-click your project and select New from the context menu.

8. In the Categories list, expand the Web Tier category and click Portlets.

9. In the Items list, click Java Portlet.

Figure 5–3 New Dialog Box

10. Click OK. The Portlet Wizard appears.

11. If you are on the Welcome page of the wizard, click Next.

Note: If you cannot find Portlets, refer to Section 5.3.1, "Installing the
Oracle JDeveloper Portal Add-In" to ensure that you have installed the
add-in correctly.

Note: Clicking Java Portlet opens the Portlet Wizard for creating
JPS-compliant portlets. Clicking Oracle PDK Java Portlet opens the
Portlet Wizard for creating PDK-Java portlets.

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-13

Figure 5–4 Welcome Page

12. On the General Portlet Properties page, enter the values as described in Table 5–1
and shown in Figure 5–5.

Figure 5–5 General Portlet Properties Page

Table 5–1 General Portlet Properties Values

Property Value

Class Enter the name of the class the wizard will create. The field is
primed with a default class name that you may accept or
change.

Package Browse the packages in the project and select the one in which
the class will reside. If you do not select a package, the wizard
uses the default package of the project.

Default Language Select the default language that your portlet will support. The
wizard uses English by default.

Customizable Select whether your portlet will be customizable by end users.
The wizard allows customization by default.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-14 Oracle Application Server Portal Developer’s Guide

13. Click Next.

14. On the Name and Attribution page, enter the values as described in Table 5–2 and
shown in Figure 5–6.

Figure 5–6 Name and Attribution Page

15. Click Next to continue specifying the portlet’s properties or click Finish. If you
click Finish at this point, the wizard chooses the default values for all remaining
settings.

16. On the Content Types and Portlet Modes page shown in Figure 5–7, select the
content types for your portlet and map the portlet modes to an implementation.
By default, your portlet will display text/html as the content type, and a portlet
mode of View. If Customizable was selected on the General Portlet Properties
page, then edit also appears as a portlet mode for text/html.

Note: The Finish button is not enabled until after the second step
of the wizard has been completed.

Table 5–2 Name and Attribution Values

Property Value

Display Name
(required)

Enter the name that will be displayed in the OracleAS Portal
catalog or repository. Enter My Java Portlet for this
example.

Portlet Title
(required)

Enter the title that will appear on the portlet header (on a portal
page). Enter Welcome to my company for this example.

Short Title Enter the title that will appear on the portlet header for mobile
devices. Enter Welcome for this example.

Description Enter a description of your portlet. Enter This Java portlet
displays a welcome message to users. for this
example.

Keywords Enter keywords to help users find the portlet in the portal. Enter
welcome, new users, company information for this
example.

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-15

Figure 5–7 Content Types and Portlet Modes Page

a. If you need to add content types other than text/html, click text/html
and then click Add. For the purposes of this example, you do not need to add
any other content types.

b. If you need to add additional portlet modes, click an existing portlet mode (for
example, view) and click Add. The list of available portlet modes displays, as
shown in Figure 5–8, and you can add portlet modes by moving the desired
portlet modes from the Available Modes list to the Selected Modes list. For the
purposes of this example, you do not need to select any other portlet modes.
When you are finished with the Portlet Modes dialog box, click OK.

Figure 5–8 Portlet Modes Dialog Box

c. Once you have added all of the desired portlet modes, you need to choose the
function to be performed for each mode. For each portlet mode, click the
portlet mode and choose the desired function from the radio group on the
right. For the purposes of this example, choose Generate JSP for both the edit
and view portlet modes, and leave the default path and file name of the
generated JSP. For more information on portlet modes, refer to Section 5.1,
"Guidelines for Creating Java Portlets".

Building JPS-Compliant Portlets with Oracle JDeveloper

5-16 Oracle Application Server Portal Developer’s Guide

17. Click Next.

18. If you selected Customizable on the General Portlet Properties page earlier in the
wizard, the Customization Preferences page, shown in Figure 5–9, now displays
and you can declare preferences for your portlet. If you did not select
Customizable earlier, then this page is skipped. On the Customization Preferences
page, you specify a preference name, default value, and whether the preference
value should be translated:

Figure 5–9 Customization Preferences Page

a. To add a preference, click Add and fill in the Add New Preference dialog box,
show in Figure 5–10, (Name, Default Value(s), and whether it should be
translated).

Figure 5–10 Add New Preference Dialog Box

Note: Generate JSP and Custom Code generate code for you in the
specified location. Map to Path routes the request through to an
existing Web resource that you will create separately yourself.

Note: The Name is always translated, but there is not always a
need to translate the Default Value. For example, if the value is an
integer, no translation is needed

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-17

b. To delete a preference, choose it in the Portlet Preferences list and click
Remove.

19. Click Next.

20. On the Security Roles page, shown in Figure 5–11, you can add security roles to
your portlet. The wizard has no predefined security roles. It parses the web.xml
for security roles and enables them to be referenced by your portlet. You will not
need to do anything for this step as a new project has no security roles defined.
You can manually create the security roles according to JPS later.

Figure 5–11 Security Roles Page

21. Click Next.

22. On the Caching page, you specify whether to enable caching of your portlet by
default. The portlet itself may choose to cache content for any given response. The
settings on this page come into force when the portlet itself does not specify a
caching condition for a response. For the purposes of this example, fill out this
page as described below and shown in Figure 5–12:

a. Click Cache Portlet.

b. Click Cache Content Expires After.

c. Accept the default duration of the cached copy (60 seconds).

Note: If you did not want any default caching for this portlet, you
would choose Do Not Cache By Default. In this case, the wizard
actually sets a cache duration of 0 seconds. As stated above, this
cache setting only comes into play when the portlet itself does not
specify a caching condition for a response.

If you choose no caching here and you later decide that you want
default caching for the portlet, you can easily go back and change
the cache duration value in the portlet.xml file, which is
generated by the wizard, to some number greater than zero.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-18 Oracle Application Server Portal Developer’s Guide

Figure 5–12 Caching Page

23. Click Next.

24. On the Initialization Parameters page, shown in Figure 5–13, you can add any
required initialization parameters for the portlet. Initialization parameters provide
the Web application developer, who decides what goes into the .war file, an
alternative to JNDI variables for configuring the behavior of all of the different
components of the Web application (for example, servlets and portlets) in a
compatible way. For more information on initialization parameters, refer to the
Java Portlet Specification. For the purposes of this example, no initialization
parameters are needed.

Figure 5–13 Initialization Parameters Page

25. Click Next.

26. Click Finish to generate the files for your portlet. In this case, the following files
should be generated for your project node in the Applications - Navigator (see
Figure 5–14):

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-19

■ Generated code for each View mode, assuming that you selected Generate JSP
on the Content Types and Portlet Modes page. If you selected Custom Code
instead, that code will reside in the portlet’s Java class.

■ Two Java classes

■ portlet.xml

■ web.xml

Figure 5–14 Applications - Navigator

5.3.2.2 Adding Portlet Logic
Once you create the default implementation, you can extend the sample code with
your own business logic to implement the desired functionality and features. Refer to
the JavaDoc or JPS for more information on adding functionality and features. For the
purposes of this example, you do not need to perform this step and can proceed
directly to the deployment procedure.

5.3.2.3 Deploying Your Portlet to an Application Server
After you finish the wizard and successfully generate your portlet, you are ready to
deploy it to an application server. Because you chose to create a JPS-compliant portlet,
you can deploy it using the wizard for any vendor’s JPS-compliant container. The
following procedures describe how to deploy a JPS-compliant portlet to Oracle’s
WSRP container running on Oracle Application Server Containers for J2EE:

■ Creating a Connection to Oracle Application Server Containers for J2EE

■ Deploying the WAR File

5.3.2.3.1 Creating a Connection to Oracle Application Server Containers for J2EE To establish
a connection to your application server, perform the following steps:

Note: The steps that follow describe the procedure for deploying
to a standalone instance of Oracle Application Server Containers
for J2EE. For information about deploying to a full Oracle
Application Server instance, please refer to the Oracle JDeveloper
online help system.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-20 Oracle Application Server Portal Developer’s Guide

1. If it is not still open, start Oracle JDeveloper and open the project you created in
the previous sections.

2. In the Navigator, click the Connections tab.

3. Right-click the Connections node and select New Application Server Connection
from the context menu. Complete the wizard that displays as follows:

a. If the Welcome page appears, click Next. If you do not want the Welcome page
to appear in future, be sure to select Skip this Page Next Time.

b. Enter a meaningful name for the connection (for example,
PDKStandardsOC4J), and choose Standalone OC4J as the connection type.

c. Click Next.

d. Enter the administrator’s user name and password. This password was set
during the installation of the PDK Standards Oracle Application Server
Containers for J2EE.

e. Click Next.

f. Enter the information in Table 5–3.

g. Click Next.

h. Verify the connection details by clicking Test Connection. A success message
should appear if everything is correct. If the test fails, you may need to revise
your connection information.

i. Click Finish.

5.3.2.3.2 Deploying the WAR File To create and deploy a WAR file, perform the following
steps:

1. Go to the Applications - Navigator.

2. In your current project, right-click web.xml and choose Create WAR Deployment
Profile from the context menu.

3. In the Save Deployment Profile dialog box, change the name to something
meaningful (for example, jsrportlet1.deploy).

Table 5–3 Settings for New Application Server Connection

Setting Value

URL Enter the full RMI URL for this setting. For example:

ormi://my.machine.com:23791/

The RMI port number may be found in:

OC4J_HOME/j2ee/home/config/rmi.xml

Target Web Site Enter the name of the target Web site containing your deployed
J2EE application files. For the purposes of this example, you can
accept the default value, http-web-site.

Local Directory Where
admin.jar for OC4J Is
Installed

Enter the path to the local admin.jar that is version-compatible
with the remote servers specified in the URL setting above. For
JPS-compliant portlets built with Oracle JDeveloper 9.0.3, you
need to change the default path in this setting to point to an
instance of Oracle Application Server Containers for J2EE
Release 9.0.4. For example:

OC4J_HOME\j2ee\home

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-21

4. Click OK.

5. In the Profile Settings dialog box, perform the following steps:

a. Click Specify J2EE Web Context Root and enter my-portlet in the adjacent
field.

b. Click OK.

6. Right-click the deployment profile (for example, jsrportlet1.deploy) and
choose Deploy to > the application server connection (for example,
PDKStandardsOC4J) from the context menu.

7. Await the Deployment Finished message in the Deployment Log at the bottom of
Oracle JDeveloper and verify that no errors occurred.

8. Take the URL provided in the log (for example,
http://myserver.com:8888/my-portlet2) and append /portlets?WSDL
to construct the URL you use to register your JPS-compliant portlet with OracleAS
Portal. For example:

http://myserver.com:8888/my-portlet/portlets?WSDL

5.3.2.4 Registering and Viewing Your Portlet
After you’ve created and deployed the provider and its portlet(s), you must register
the provider with OracleAS Portal. Registering your provider gives OracleAS Portal
the information it needs to locate and communicate with your provider. After you
register a provider, the provider and its portlets become available in the Portlet
Repository. They are also listed in the OracleAS Portal Navigator.

This section describes how to register your provider and add your portlet to pages:

■ Registering on a Local OracleAS Portal Instance

■ Registering on portal.standards.com

■ Adding Your Portlet

2 The examples in this chapter typically use a port of 8888, which is the default port. Of course,
you may choose to use different port numbers in your own installation.

Note: In some cases, you may get a message in the log stating that
Oracle JDeveloper was unable to determine the HTTP port number
of the remote server. Typically, you can determine the port number
yourself by looking at the URL that takes you to your Oracle
Application Server Containers for J2EE home page (for example,
http://myserver.com:8888).

Note: When you build portlets and providers with built-in tools,
such as the Portlet Builder, OracleAS Portal automatically registers the
provider for you. Once you’ve created your portlet, it automatically
displays in the Portlet Repository. OracleAS Portal also offers built-in
portlets that are contained in a preconfigured provider. For example,
OmniPortlet and Web Clipping are portlets that you can use out of the
box, and are already registered with OracleAS Portal. You can view
these portlets in the Add Portlets list. However, if you build the
portlets and providers programmatically, you must then register these
providers in order to make them available to the portal user.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-22 Oracle Application Server Portal Developer’s Guide

5.3.2.4.1 Registering on a Local OracleAS Portal Instance To register your standards-based
portlets against a WSRP-enabled OracleAS Portal, you must have installed and
configured the Portlet Standards Developer's Preview release. You can obtain this
preview release from the Oracle Technology Network. Assuming you have a local
instance of the WSRP-compliant OracleAS Portal, you can register your portlet as
follows:

1. Open OracleAS Portal and log in as normal. Note that to register your provider,
you need to have Manage or Edit privileges on providers. If you do not have these
privileges, you need to request them from your administrator.

2. If you are not already on the Builder page, click Builder in the upper right corner.

3. Click the Administer tab.

4. Click the Portlets subtab.

5. In the Remote Providers portlet, click Register a Provider.

6. On the Register Provider page, shown in Figure 5–15, enter the values as described
in Table 5–4.

Table 5–4 Register Provider Page Values

Setting Value

Name your_nameProvider

Display Name your_name Provider

Timeout 100

Timeout Message The your_name Provider has timed out!

Implementation Style WSRP

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-23

Figure 5–15 Register Provider Page

7. Click Next.

8. On the Define Connection page, shown in Figure 5–16, enter the WSDL URL for
your provider in the WSDL URL field. This URL is the one that you created in step
8 of Section 5.3.2.3.2, "Deploying the WAR File". For example:

http://myserver.com:8888/my-portlet/portlets?WSDL

Building JPS-Compliant Portlets with Oracle JDeveloper

5-24 Oracle Application Server Portal Developer’s Guide

Figure 5–16 Define Connection Page

9. Click Next.

10. On the Portal Registration Information page, shown in Figure 5–17, you fill in any
registration properties required by the provider. If there are none, you can proceed
to the next step.

Building JPS-Compliant Portlets with Oracle JDeveloper

Building Java Portlets 5-25

Figure 5–17 Portal Registration Information Page

11. Click Next.

12. On the Control Access page, shown in Figure 5–18, assign privileges for this
provider as desired. For the purposes of this example, you can enter a group (for
example, PORTAL_ADMINISTRATORS) for Grantee and click Add.

Building JPS-Compliant Portlets with Oracle JDeveloper

5-26 Oracle Application Server Portal Developer’s Guide

Figure 5–18 Control Access Page

13. Click Finish. You should see a Registration Confirmation page similar to the one
in Figure 5–19.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-27

Figure 5–19 Registration Confirmation Page

5.3.2.4.2 Registering on portal.standards.com If you do not have a local instance of the
WSRP-compliant OracleAS Portal, you can register your portlet as follows:

1. Go to the OracleAS Portal Verification service on OTN:

http://portalstandards.oracle.com/

2. Follow the instructions in the document, How to Test Interoperability, located on
OTN:

http://portalstandards.oracle.com/pls/wsrp/docs/PAGE/WSRPPORTALPAGE/
VERIFICATIONSERVER/TAB31866/HOW.TO.REGISTER.WSRP.PROVIDERS.HTML

5.3.2.4.3 Adding Your Portlet Your portlet should now be available for adding to pages
like any other portlet in the Portlet Repository. To add your portlet to a page, follow
the instructions in Section 7.6.2, "Adding Portlets," of the Oracle Application Server
Portal User’s Guide.

5.4 Building PDK-Java Portlets with Oracle JDeveloper
Using a convenient download from OTN, you can add extensions to Oracle
JDeveloper for building portlets. To use this extension, you perform the steps in the
following procedures:

■ Installing the Oracle JDeveloper Portal Add-In

■ Building PDK-Java Portlets

This section assumes the following:

Building PDK-Java Portlets with Oracle JDeveloper

5-28 Oracle Application Server Portal Developer’s Guide

■ You are familiar with portlet terminology such as portlet Show modes. Refer to
Chapter 1, "Understanding Portlets" and Section 5.1, "Guidelines for Creating Java
Portlets".

■ You have already downloaded and installed the Java Portlet Container and have
an Oracle Application Server Containers for J2EE 9.0.4 container to which you
may deploy your portlets.

■ You are already familiar with Oracle JDeveloper and know how to build and
deploy Java components using it. You can download Oracle JDeveloper from
OTN.

5.4.1 Installing the Oracle JDeveloper Portal Add-In
For instructions on how to install the Oracle JDeveloper Portal add-in, refer to
Section 5.3.1, "Installing the Oracle JDeveloper Portal Add-In".

5.4.2 Building PDK-Java Portlets
Once you have successfully installed the Oracle JDeveloper Portal add-in, you can
begin your portlet development quickly and easily with Oracle JDeveloper:

■ Creating a Portlet and Provider: Use the Portlet Wizard to create your basic portlet
code and the necessary configuration files for the provider framework.

■ Adding Portlet Logic: Extend the example code with your own business logic.

■ Validating Your Portlet and Provider: Using the built-in J2EE server of Oracle
JDeveloper, you can validate the configuration of your provider and its portlets.

■ Deploying to an Application Server: Use Oracle JDeveloper to deploy your
application to your application server.

■ Registering and Viewing Your Portlet: Register and view your portlet with your
local OracleAS Portal instance.

5.4.2.1 Creating a Portlet and Provider
This section walks you through the Portlet Wizard. You can choose which portlet Show
modes you want to implement and the implementation method (JSP, HTTP servlet,
Java class, or HTML). The wizard then creates a simple sample implementation for
each of the selected modes.

1. After you open Oracle JDeveloper, click the workspace where you want to create
this project. If you do not have a workspace, you can create one as follows:

a. Right-click the Applications node in the Applications - Navigator and choose
New from the context menu.

b. Choose Workspace from the Items list in the New Gallery dialog box.

c. Click OK.

d. Enter a Workspace Name and Directory Name, and clear Add a New Empty
Project in the Create Workspace dialog box.

e. Click OK.

2. Right-click the name of the workspace in the Applications - Navigator and choose
New Project from the context menu.

3. Click Empty Project in the Items list in the New Gallery dialog box.

4. Click OK.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-29

5. Enter the Project Name and Directory Name in the Create Project dialog box.

6. Click OK.

7. Right-click your project and select New from the context menu.

8. In the Categories list, expand the Web Tier category and click Portlets.

9. In the Items list, click Oracle PDK Java Portlet.

Figure 5–20 New Gallery Dialog Box for Oracle PDK Java Portlet

10. Click OK. The Portlet Wizard displays.

11. If you are on the Welcome page of the wizard, click Next.

Note: If you cannot find Portlets, refer to Section 5.3.1, "Installing the
Oracle JDeveloper Portal Add-In" to ensure that you have installed the
add-in correctly.

Note: Clicking Java Portlet opens the Portlet Wizard for creating
JPS-compliant portlets. Clicking Oracle PDK Java Portlet opens the
Portlet Wizard for creating PDK-Java portlets.

Building PDK-Java Portlets with Oracle JDeveloper

5-30 Oracle Application Server Portal Developer’s Guide

Figure 5–21 Welcome Page

12. On the Portlet Description page, shown in Figure 5–22, enter the names,
description, and timeout settings. For the purposes of this example, you can accept
the default values on this page.

Figure 5–22 Portlet Description Page

13. Click Next.

14. The next few pages of the wizard enable you to define the portlet modes for this
portlet. The Show Modes page, shown in Figure 5–23, enables you to choose the
implementation style for the Show page and whether you want to implement
Show details page:

a. Show page is selected by default. Choose an Implementation style from the
list. For the purposes of this example, choose JSP. Enter the File name for the
JSP to be generated by the Portlet Wizard. For the purposes of this example,
you may accept the default file name.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-31

b. If your portlet requires a details page, select Show details page and enter the
Implementation style and File name as appropriate. For the purposes of this
example, we do not need Show details.

Figure 5–23 Show Modes Page

15. Click Next.

16. On the Customize Modes page, shown in Figure 5–24, Edit page should already be
selected. For the purposes of this example, choose an Implementation style of JSP
and accept the default File name.

17. Select Edit Defaults page and, for the purposes of this example, choose an
Implementation style of JSP and accept the default File name.

Figure 5–24 Customize Modes Page

18. Click Next.

Building PDK-Java Portlets with Oracle JDeveloper

5-32 Oracle Application Server Portal Developer’s Guide

19. On the Additional Modes page, shown in Figure 5–25, nothing is selected by
default. For the purposes of this example, select Help page, choose an
Implementation style of JSP, and accept the default File name.

20. Select About page, choose an Implementation style of JSP, and accept the default
File name.

Figure 5–25 Additional Modes Page

21. Click Next.

22. On the Public Portlet Parameters page, shown in Figure 5–26, click Add.

23. Enter the values as described in Table 5–5 and shown in Figure 5–26.

Table 5–5 Public Portlet Parameter

Name Display Name Description

MyParam My Portlet Parameter This parameter displays a
value.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-33

Figure 5–26 Public Portlet Parameters Page

24. Click Next.

25. On the Public Portlet Events page, shown in Figure 5–27, you can map parameters
to events. For the purposes of this example, leave this page empty and click Next.

Figure 5–27 Public Portlet Events Page

26. On the Provider Description page, shown in Figure 5–28, enter MyJPWProvider
as the Provider name. Ensure that all of the check boxes are selected.

Building PDK-Java Portlets with Oracle JDeveloper

5-34 Oracle Application Server Portal Developer’s Guide

Figure 5–28 Provider Description Page

27. Click Finish to generate the files for your portlet. In this case, the following files
should be generated for your project in the Applications - Navigator (see
Figure 5–29):

■ Files for each portlet mode you selected.

■ provider.xml

■ web.xml

■ index.jsp

■ _default.properties

■ myjpwprovider.properties

All of the above files are required to deploy and run the portlet successfully, except
for index.jsp, which is used by Oracle JDeveloper for testing purposes.

Figure 5–29 Applications - Navigator

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-35

5.4.2.2 Adding Portlet Logic
Once you create the default implementation, you can extend the sample code with
your business logic to implement the desired functionality and features. For the
purposes of this example, you do not need to perform this step and can proceed
directly to the testing and registration procedures.

5.4.2.3 Validating Your Portlet and Provider
After you have built your portlet, you need to check the configuration to ensure that
the portlet and its provider operate correctly.

1. If it is not already open, open Oracle JDeveloper and the project your created in
the previous sections.

2. Find the index.jsp file for your portlet in the Navigator and right-click it.

3. Choose Run from the context menu. Your browser should open with a page
similar to the one shown in Figure 5–30.

Figure 5–30 Portlet Application Test Page

Note: This procedure is for testing purposes only. After this
procedure, you still need to register your provider as described in
Section 5.4.2.5, "Registering and Viewing Your Portlet". For
development and production, you should always deploy your
portlet to an application server as described in Section 5.4.2.4,
"Deploying to an Application Server".

Building PDK-Java Portlets with Oracle JDeveloper

5-36 Oracle Application Server Portal Developer’s Guide

4. Click the link underneath Service Name. Your browser should open with a page
similar to the one shown in Figure 5–31. Note that you need the URL from this
page to register your provider, which is the next procedure.

Figure 5–31 Provider Test Page

5.4.2.4 Deploying to an Application Server
After you finish the wizard and successfully generate your portlet, you are ready to
deploy it to an application server, Oracle Application Server Containers for J2EE. The
following procedures describe how to deploy a portlet to Oracle Application Server
Containers for J2EE:

■ Creating a Connection to Oracle Application Server Containers for J2EE

■ Deploying the WAR File

5.4.2.4.1 Creating a Connection to Oracle Application Server Containers for J2EE To establish
a connection to your application server, perform the following steps:

1. If it is not still open, start Oracle JDeveloper and open the project you created in
Section 5.4.2.1, "Creating a Portlet and Provider".

Note: The steps that follow describe the procedure for deploying
to a standalone instance of Oracle Application Server Containers
for J2EE. For information about deploying to a full Oracle
Application Server instance, please refer to the Oracle JDeveloper
online help system.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-37

2. In the Navigator, right-click Connections and select New Application Server
Connection from the context menu. Complete the wizard that displays as follows:

a. If the Welcome page appears, click Next. If you do not want the Welcome page
to appear in future, be sure to select Skip this Page Next Time.

b. Enter a meaningful name for the connection (for example, PDKJavaOC4J) and
choose Standalone OC4J as the connection type.

c. Click Next.

d. Enter the administrator’s user name and password. This password was set
during the installation of the Oracle Application Server Containers for J2EE.

e. Click Next.

f. Enter the information in Table 5–6.

g. Click Next.

h. Verify the connection details by clicking Test Connection. A success message
should display if everything is correct. If the test fails, you may need to revise
your connection information.

i. Click Finish.

5.4.2.4.2 Deploying the WAR File To create and deploy a WAR file, perform the following
steps:

1. Right-click your portlet project and choose New from the context menu.

2. In the New dialog box, under Categories, choose General > Deployment Profiles
and, under Items, choose WAR File - J2EE Web Module.

3. In the Save Deployment Profile dialog box, change the name to something
meaningful (for example, myj2eeportlet1.deploy).

4. Click OK.

5. In the Profile Settings dialog box, perform the following steps:

Table 5–6 Settings for New Application Server Connection

Setting Value

URL Enter the full RMI URL for this setting. For example:

ormi://my.machine.com:23791/

The RMI port number may be found in:

OC4J_HOME/j2ee/home/config/rmi.xml

Target Web Site Enter the name of the target Web site containing your deployed
J2EE application files. For the purposes of this example, you can
accept the default value, http-web-site.

Local Directory Where
admin.jar for OC4J Is
Installed

Enter the path to the local admin.jar that is
version-compatible with the remote servers specified in the URL
setting above. For portlets you plan to deploy to Oracle
Application Server Containers for J2EE 9.0.3, you can use the
default admin.jar included with Oracle JDeveloper 9.0.3. For
portlets you plan to deploy to Oracle Application Server
Containers for J2EE 9.0.4, you need to change the default path in
this setting to point to an instance of Oracle Application Server
Containers for J2EE Release 9.0.4. For example:

OC4J_HOME\j2ee\home

Building PDK-Java Portlets with Oracle JDeveloper

5-38 Oracle Application Server Portal Developer’s Guide

a. Click Specify J2EE Web Context Root and enter myj2eeportlet1.

b. In the pane on the left, choose File Groups > WEB-INF/lib > Contributors.

c. Check Portlet Development.

d. Click OK.

e. Choose File > Save All.

6. Right-click the deployment profile (for example, myj2eeportlet1.deploy) and
choose Deploy to > the application server connection (for example,
PDKJavaOC4J) from the context menu.

7. Await the Deployment Finished message in the Deployment Log at the bottom of
Oracle JDeveloper and verify that no errors occurred.

8. Take the URL provided in the Deployment Log (for example,
http://myserver.com:8888/myj2eeportlet1) and append /providers to
construct the URL you use to test and register your J2EE portlet with OracleAS
Portal. For example:

http://myserver.com:8888/myj2eeportlet1/providers

9. Enter the URL you constructed in the preceding step in your browser. You should
see a page similar to the one in Figure 5–32.

Note: In some cases, you may get a message in the log stating that
Oracle JDeveloper was unable to determine the HTTP port number
of the remote server. Typically, you can determine the port number
yourself by looking at the URL that takes you to your Oracle
Application Server Containers for J2EE home page (for example,
http://myserver.com:8888).

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-39

Figure 5–32 PDK - Java Test Page for Portlets

5.4.2.5 Registering and Viewing Your Portlet
After you’ve created and deployed the provider and its portlet(s), you must register
the provider with OracleAS Portal. Registering your provider gives OracleAS Portal
the information it needs to locate and communicate with your provider. After you
register a provider, the provider and its portlets become available in the Portlet
Repository. They are also listed in the OracleAS Portal Navigator.

This section describes how to register your provider and add your portlet to pages:

1. Open OracleAS Portal and log in as normal. Note that to register your provider,
you need to have Manage or Edit privileges on providers. If you do not have these
privileges, you need to request them from your administrator.

2. If you are not already on the Builder page, click Builder in the upper right corner.

Note: When you build portlets and providers with built-in tools,
such as the Portlet Builder, OracleAS Portal automatically registers the
provider for you. Once you’ve created your portlet, it automatically
displays in the Portlet Repository. OracleAS Portal also offers built-in
portlets that are contained in a preconfigured provider. For example,
OmniPortlet and Web Clipping are portlets that you can use out of the
box, and are already registered with OracleAS Portal. You can view
these portlets in the Add Portlets list. However, if you build the
portlets and providers programmatically, you must then register these
providers in order to make them available to the portal user.

Building PDK-Java Portlets with Oracle JDeveloper

5-40 Oracle Application Server Portal Developer’s Guide

3. Click the Administer tab.

4. Click the Portlets sub tab.

5. In the Remote Providers portlet, click Register a Provider.

6. On the Provider Information page, shown in Figure 5–33, enter the values as
described in Table 5–7.

Figure 5–33 Register Provider Page

7. Click Next.

8. On the Define Connection page, shown in Figure 5–34, enter the URL for your
provider in the URL field. This URL is the one that you created in step 8 of
Section 5.4.2.4.2, "Deploying the WAR File". For example:

http://myserver.com:8888/myj2eeportlet1/providers

Table 5–7 Provider Information Page Values

Setting Value

Name your_namePDKJProvider

Display Name your_name PDKJProvider

Timeout 100

Timeout Message The your_name PDKJProvider has timed out!

Implementation Style Web

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-41

Figure 5–34 Define Connection Page

9. Click Next.

10. On the Control Access page, shown in Figure 5–35, assign privileges for this
provider as desired. For the purposes of this example, you can enter a group (for
example, PORTAL_ADMINISTRATORS) for Grantee and click Add.

Building PDK-Java Portlets with Oracle JDeveloper

5-42 Oracle Application Server Portal Developer’s Guide

Figure 5–35 Control Access Page

11. Click Finish. You should see a Registration Confirmation page similar to the one
in Figure 5–36.

Figure 5–36 Registration Confirmation Page

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-43

12. Your portlet should now be available for adding to pages just as any other portlet
in the Portlet Repository. To add your portlet to a page, follow the instructions in
Section 7.6.2, "Adding Portlets," of the Oracle Application Server Portal User’s Guide.

5.4.3 Adding Render Modes
In the Portlet Wizard, you add Show modes by checking boxes on the wizard pages.
Refer to Section 5.4.2, "Building PDK-Java Portlets" for more information about using
the wizard. For each Show mode that you select in the wizard, a basic HelloWorld
skeleton is created. If you need to add a Show mode after creating the portlet or you
are adding one of the modes (preview or link) not available through the wizard, you
can do that manually by updating provider.xml and HTML or JSPs in Oracle
JDeveloper. To add Render modes, you need to perform the following tasks:

■ Implementing Extra Show Modes

■ Updating the XML Provider Definition

■ Viewing the Portlet

Once you have completed this section, you will be able to implement any Render
mode using RenderManager because the principles are the same for all modes. For
example, even though this section does not describe how to implement the Help mode
in detail, you will understand how to do it, as the process is the same as for Preview
mode, which is described here.

To learn about the extra requirements for rendering the special Edit and Edit Defaults
Render modes, refer to the article, "Adding Customization to Java Portlets" on the
Oracle Technology Center for OracleAS Portal. For more detailed information on the
PDK runtime classes used in this article, refer to the JavaDoc.

5.4.3.1 Assumptions
■ You built a portlet using the wizard and successfully added it to a page.

5.4.3.2 Implementing Extra Show Modes
Your first task when creating Show modes manually is to create an HTML file or JSP
for each mode. For example, if you want to implement Preview mode, you need to
create an HTML file to provide preview content.

To create an HTML file to preview content, perform the following step:

1. In Oracle JDeveloper, open the project that contains your portlets and select the
portlet in the Applications - Navigator to ensure the HTML page is created in the
appropriate place. You can use Oracle JDeveloper’s design view to easily create
HTML pages. For example, the following HTML could serve as a preview page:

<p>This is the <i>preview</i> mode of your portlet!</p>

Once you have created the HTML file for previewing content, you are ready to update
the XML provider definition.

5.4.3.3 Updating the XML Provider Definition
When you want to expose additional Render modes you must update your XML
provider definition as follows:

■ Set a boolean flag that indicates to the PDK Framework that a link or icon to that
mode should be rendered.

■ Point to the HTML file or JSP that you created for that mode.

Building PDK-Java Portlets with Oracle JDeveloper

5-44 Oracle Application Server Portal Developer’s Guide

For example, if you want to render Preview mode, perform the following steps:

1. Edit the provider definition file, provider.xml and add the tag to activate
Preview mode:

<showPreview>true</showPreview>

2. Specify the preview page to be the HTML page that you created in Section 5.4.3.2,
"Implementing Extra Show Modes":

<previewPage>/htdocs/myportlet/MyPortletPreviewPage.html</previewPage>

3. Save the updates to provider.xml.

4. Redeploy your portlet. Refer to step 6 in Section 5.4.2.4.2, "Deploying the WAR
File".

5.4.3.4 Viewing the Portlet
To view the new Render modes, you must ensure that your updated XML provider
definition is re-parsed. To do this, perform the following tasks:

1. Copy the HTML file you created in Section 5.4.3.2, "Implementing Extra Show
Modes" and provider.xml to the Oracle Application Server Containers for J2EE
instance where you plan to deploy the portlet.

2. Refresh the provider.

3. Refresh the portal page containing your portlet.

To view Preview mode, do the following:

1. Edit a page or create a new page and choose Add Portlet.

2. Navigate to the location of your portlet with a Preview mode (for example, Portlet
Staging Area). Note the magnifying glass icon next to the portlet shown in
Figure 5–37

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-45

Figure 5–37 Add Portlet Page

3. Click the magnifying glass icon next to the portlet and a preview window similar
to the one in Figure 5–38 appears.

Figure 5–38 Preview Window

Building PDK-Java Portlets with Oracle JDeveloper

5-46 Oracle Application Server Portal Developer’s Guide

5.4.4 Customizing Portlets
In Section 5.4.3, "Adding Render Modes" you learned how to use the PDK Provider
Framework to activate and render additional Show modes that were either not
activated when creating the portlet with the wizard or not available through the
wizard (that is, Link and Preview modes). This section describes the two
Customization modes (Edit and Edit Defaults) in more detail. When checked in the
Java Portlet Wizard, Edit page and Edit Defaults page cause the generation of skeleton
code for the two Customization modes. The skeleton code enables you to access the
personalization framework with a few lines of code rather than completely hand
coding a customization framework and a data store to hold the values.

To add customization to your portlet, you need to do the following:

■ Update the Edit page of your portlet to set and retrieve customization changes.

■ Update the Edit Defaults page of your portlet to set and retrieve customization
changes.

■ Update the Show page of your portlets to use the customization set by the user.

The Edit and Edit Defaults modes allow portlet users to change a set of customizable
parameters supported by the portlet, which typically drive the way the portlet is
rendered in other modes. For a particular instance of a portlet on an OracleAS Portal
page, the customizations made in the Edit and Edit Defaults modes apply only to that
instance of the portlet.

■ Edit mode customizations are specific to the individual user making the
customizations. This mode is activated by clicking the Customize link on the
portlet header in show mode.

■ Edit defaults mode customizations apply to all users in the same locale who have
not yet made specific customizations to that portlet instance. This mode is
generally only available to page designers, and can be activated by following the
Edit icon on the page.

When rendering Edit and Edit Defaults modes, a PortletRenderer can carry out
either of these tasks to support the customization process:

■ Renders the Edit Form: For each of the portlet's customizable parameters,
PortletRenderer uses a PortletPersonalizationManager to retrieve the
current value and renders a control in an HTML form so the current value can be
edited.

■ Handles Edit Form actions: When an OK or Apply button is clicked on the
standard edit form header, PortletRenderer uses a
PortletPersonalizationManager to store the customized parameters submitted by
the edit form and redirects the browser to the appropriate portal page.

Therefore, the purpose of the PortletPersonalizationManager controller is to
enable a PortletRenderer to store and retrieve the current values of customizable
parameters that apply to a particular portlet instance and user. The PDK Framework
uses the abstraction of a PersonalizationObject as a container for a set of
customized parameters and a PortletReference as the key under which a set of
customizations are stored. Thus, a PortletPersonalizationManager is simply a
mechanism that allows the storage and retrieval of persisted
PersonalizationObjects under a given PortletReference.

A preference store is a mechanism for storing information like user preference data,
portlet/provider settings, or even portlet data, while using OracleAS Portal. The
information stored in the preference store is persistent in the sense that, even if you log
out and log back in later, you could still access previously saved preferences. The

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-47

preference store maintains the user preference information and invokes the user
preferences whenever the user logs in again. PDK-Java provides the
PrefStorePersonalizationManager, which uses a PreferenceStore
implementation to persist customized data. Currently, PDK-Java has two
PreferenceStore implementations: DBPreferenceStore and
FilePreferenceStore. The DBPreferenceStore persists data using a JDBC
compatible relational database and FilePreferenceStore persists data using the file
system.

For more details of these implementations, consult the JavaDoc.

To add customization functionality to your portlet you use
PrefStorePersonalizationManager in conjunction with
NameValuePersonalizationObject (that is, the default
PersonalizationObject implementation). By default, the wizard generates a
simple edit form for both the Edit and Edit Defaults modes to enable users to
customize the portlet title. This section describes how to update the existing code to
enable portal users to customize the portlet greeting.

5.4.4.1 Assumptions
1. You have followed through and understood these sections:

■ Building PDK-Java Portlets

■ Adding Render Modes

2. You built a portlet using the wizard, with Edit page and Edit Defaults page
checked, and successfully added it to a page.

5.4.4.2 Implementing Customization for Edit and Edit Defaults Pages
The Edit page of your portlet is called when a user customizes the portlet. By default,
the JSP generated by the wizard includes all of the required code to provide
customization of the portlet title. You just need to insert a few lines of code into the
Edit page for additional customization.

5.4.4.2.1 Reviewing the Generated Code The wizard creates the following code for you by
default:

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="oracle.portal.provider.v2.personalize.NameValuePersonalizationObject"
 import="oracle.portal.provider.v2.render.PortletRendererUtil"
%>

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
%>

Note: PDK-Java provides the Preference Store Migration/Upgrade
Utility to help migrate the preference store from a file system to a
database and upgrade customizations from earlier releases. This
utility is described more fully on the Oracle Technology Network
(http://www.oracle.com/technology/products/ias/
portal/index.html).

Building PDK-Java Portlets with Oracle JDeveloper

5-48 Oracle Application Server Portal Developer’s Guide

<P>Hello <%=pReq.getUser().getName() %>.</P>
<P>This is the <i>Edit</i> render mode!</P>
<%-- This page both displays the customization
 form and processes it,. Display the form if
 there is no action parameter, process it
 otherwise --%>

<%
 String actionParam = PortletRendererUtil.getEditFormParameter(pReq);
 String action = request.getParameter(actionParam);
 String title = request.getParameter("my2portlet_title");
 NameValuePersonalizationObject data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditData(pReq);
 // Cancel automatically redirects to the page, so
 // will only receive OK or APPLY
 if (action !=null)
 {
 data.setPortletTitle(title);
 PortletRendererUtil.submitEditData(pReq, data);
 return;
 }

 // Otherwise just render the form.
 title = data.getPortletTitle();
%>
<table border="0">
 <td width="20%">
 <p align="right">Title:</p>
 </td>
 <td width="80%">
 <input type="TEXT" name="my2portlet_title" value="<%= title %>">
 </td>
</table>

5.4.4.2.2 Modifying the Generated Code The JSP contains an input field for the portlet
title. This field represents the Customize page of the portlet where users can update
the portlet title.

1. Following the table in the generated code, add a second table containing a text
field and a prompt, allowing users to enter a new greeting for the portlet:

<table border="0">
 <tr>
 <td width="20%">
 <p align="right">Greeting:</p>
 </td>
 <td width="80%">
 <input type="TEXT" name="myportlet_greeting" value="<%= greeting %>">
 </td>
 </tr>
</table>

2. The HTML above simply specifies a field to enter a new greeting on the Edit page.
This new greeting is displayed in the portlet’s Shared Screen mode. Next, you add
a string below String title that retrieves the value of the greeting:

String title = request.getParameter("my2portlet_title");
String greeting = request.getParameter("myportlet_greeting");

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-49

3. Generating an Edit page from the wizard automatically includes access to the
personalization framework in the page code. At the top of the Edit page, you see
the NameValuePersonalizationObject declared. This form of
personalization in OracleAS Portal allows easy storage of name/value pairs.

The Edit page handles two cases: viewing the page or applying changes to it. The
changes we have made so far affect the code for viewing the page. Applying
changes to the Edit page is handled in the block of code beginning with if
(action !=null).

In this block of code, you must store the new portlet greeting. You must also
account for the case where the user decides to make no changes and you simply
retrieve the existing greeting:

if (action !=null)
{
 data.setPortletTitle(title);
 //Put the new greeting.
 data.putString("myportlet_greeting", greeting);
 PortletRendererUtil.submitEditData(pReq, data);
 return;
}
//Otherwise just render the form.
title = data.getPortletTitle();
//Get the old greeting.
greeting = data.getString("myportlet_greeting");

You are now done updating the Edit page.

You can simply duplicate these changes for the Edit Defaults page. The Edit Defaults
page is called when a page designer or portal administrator clicks Edit on the page
and then clicks Edit Defaults. This page sets the default customization for this
instance of the portlet. Even though the code in the JSP is identical, the PDK
Framework and OracleAS Portal automatically handle the customization differently
depending on the Show mode (Edit or Edit Defaults).

5.4.4.3 Implementing Customization for Show Pages
To have access to the personalization data in the portlet's Shared Screen mode, you
need to add a few lines of code to the Show page. These lines include:

■ Adding import statements.

■ Declaring the NameValuePersonalizationObject.

■ Retrieving the customization data.

1. Edit your Show page and import NameValuePersonalizationObject and
PortletRendererUtil. You can copy these from the Edit page if necessary.

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="oracle.portal.provider.v2.personalize.
 NameValuePersonalizationObject"
 import="oracle.portal.provider.v2.render.PortletRendererUtil"
%>

2. Declare the NameValuePersonalizationObject and retrieve the edit data
from the portlet render request. You can copy this from the portlet's Edit page.

<%
 PortletRenderRequest pReq = (PortletRenderRequest)

Building PDK-Java Portlets with Oracle JDeveloper

5-50 Oracle Application Server Portal Developer’s Guide

 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 NameValuePersonalizationObject data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditData(pReq);
%>

3. Get the string information from the customization framework:

String greeting = data.getString("myportlet_greeting");

4. Add some text to the Show page that displays the greeting in the Shared Screen
mode of the portlet.

<P>Hello <%= pReq.getUser()getName() %>.</P>
<P>This is the <i>show</i>, render mode!</P>
<P>Greeting: <%= greeting %></P>

You have now completed updating the Show page of the portlet.

5.4.4.4 Preference Information Within the XML Provider Definition
The Portlet Wizard generates all of the needed tags for accessing the
PreferenceStore in the XML provider definition file (provider.xml). By default,
at the provider level, the wizard uses the FilePreferenceStore class to store
preferences:

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
<session>false</session>
<passAllUrlParams>false</passAllUrlParams>
<preferenceStore class="oracle.portal.provider.v2.preference.FilePreferenceStore">
 <name>prefStore1</name>
 <useHashing>true</useHashing>
</preferenceStore>

At the portlet level, tags are added to use PrefStorePersonalizationManager as
the personalizationManager class and NameValuePersonalizationObject
as the data class:

<personalizationManager class="oracle.portal.provider.v2.personalize.
 PrefStorePersonalizationManager">
 <dataClass>oracle.portal.provider.v2.NewValuePersonalizationObject</dataClass>
</personalizationManager

You need not make any changes or updates to the XML Provider Definition if you
choose to continue to use the FilePreferenceStore class. However, if you have a
global environment for OracleAS Portal (for example, you are running in a load
balanced, multi-node cluster of Oracle Application Server Containers for J2EE
instances) or would prefer to store preferences in the database, you can change the
class from FilePreferenceStore to DBPreferenceStore.

5.4.4.5 Viewing the Portlet
To view the customization changes you made in the preceding sections, you need to
deploy the portlet to your application server or Oracle Application Server Containers
for J2EE and refresh the page containing your portlet. You should now see that the

Note: For more information on using DBPreferenceStore, refer to
Section "5.3.6 Step 6: Configure Portal Tools and Web Providers
(Optional)" of the Oracle Application Server Portal Configuration Guide.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-51

portlet contains a null greeting. click Customize in the portlet title bar and update the
greeting. When you return to the page, you should see your changes.

You can also test Edit Defaults by clicking Edit on the page and then clicking Edit
Defaults. Since you have already modified the portlet, the changes will not appear to
you in Shared Screen mode unless you view the page as a public user or a different
user.

5.4.5 Passing Parameters and Submitting Events
OracleAS Portal and the PDK provide page parameters, public and private portlet
parameters, and events to enable portlet developers to easily write reusable, complex
portlets. The Portlet Wizard in Oracle JDeveloper creates portlets that are already set
up to use parameters and events. This feature enables you to focus solely on adding
business logic to your portlets and does not require any changes to provider.xml.

For an overview of parameters and events, refer to the following:

■ Section 2.12, "Public Portlet Parameters Support"

■ Section 2.13, "Private Portlet Parameter Support"

■ Section 2.14, "Event Support"

5.4.5.1 Assumptions
1. You have followed through and understood Section 5.4.2, "Building PDK-Java

Portlets".

2. You built a portlet using the wizard and successfully added it to a page.

5.4.5.2 Adding Parameters to Your Portlets
Using the wizard in Section 5.4.2, "Building PDK-Java Portlets", you built a basic
portlet and specified a parameter called MyParam. If you did not create a parameter,
you can create a new portlet now by right clicking on provider.xml in the
Applications - Navigator of Oracle JDeveloper, selecting Add Portlet, and following
the steps in Section 5.4.2, "Building PDK-Java Portlets".

By default, the wizard creates a portlet to which you can easily map page parameters
without updating any code or files. In this section, you will use the default parameter
created for you by the wizard.

To use the default parameter, you only need to register the provider and add the
portlet to a page. After that, you perform the following tasks:

■ Create a page parameter.

■ Wire the page parameter to your Java portlet.

■ Enter parameter values in the URL or another portlet that passes this page
parameter.

1. Go to the Parameter tab of the page properties. Note that parameters should be
enabled by default, but, if not, you must enable them before proceeding.

2. Create a page parameter called MyParameter with a default value of My
Default Value.

3. Expand your Java portlet and map the page parameter you just created to the
portlet parameter.

My Portlet Parameter = Page Parameter MyParameter

Building PDK-Java Portlets with Oracle JDeveloper

5-52 Oracle Application Server Portal Developer’s Guide

4. Go back to the page. Notice that, in the portlet, a value of My Default Value
appears.

5. View the page and enter the parameter and a value at the end of the URL:

&MyParameter=This%20portlet%20works

Figure 5–39 Parameter Portlet

If you have a portlet, such as the Simple Parameter Form included with OmniPortlet,
that can pass parameters, you can easily map parameters from that portlet to your Java
portlet using the Events tab.

If you now take a look at the code and tags generated by the wizard, you see that very
little code was needed to enable parameters in the Java portlet.

Review provider.xml. Note that the wizard added one tag group called
inputParameter, which includes the name of the parameter for which the portlet
listens.

<inputParameter class="oracle.portal.provider.v2.DefaultParameterDefinition">
 <name>MyParam</name>
 <displayName>My Portlet Parameter</displayName>
</inputParameter>

The wizard also generated code in the JSP that represents your Show page, which
receives this parameter, and displays the parameter name and its value.

<%
ParameterDefinition params[] =
 pReq.GetPortletDefinition().getInputParameters();
%>

<p>This portlets input parameters are ...</p>
<table align="left" width="50%"><tr><td>Value
 </td></tr>
<%
 String name = null;
 String value = null;
 String[] values = null;
for (int i = 0; i < params.length; i++)
{
 name = params[i].getName();
 values = pReq.getParameterValues(name);
 if (values != null)
 {
 StringBuffer temp = new StringBuffer();
 for (int j = 0; j < params.length; j++)
 {
 temp.append(values[j]);

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-53

 if (j + 1 != values.length)
 {
 temp.append(", ");
 }
 }
 value = temp.toString();
 }
 else
 {
 value = "No values submitted yet.";
 }
%>
<tr>
 <td><span class="PortletText2" <%= name %></td>
 <td><span class="PortletText2" <%= value %></td>
</tr>
<%
}
%>
</table>

5.4.5.3 Submitting Events
In the previous section, you created a portlet that received parameters. Now you will
create a portlet that passes parameters and events to other portlets on the same page or
a different page. Some portlets, like the Simple Parameter Form in OmniPortlet,
provide an easy, declarative interface to create a simple form to pass parameters to
other portlets. If you want complete control over the events passed and the look of
your portlet, though, you can add events to your Java portlet.

The Portlet Wizard does not create all of the code needed to pass parameters to other
portlets. The wizard updates the tags in provider.xml and requires that you add the
necessary business logic to your JSP code. To create a portlet that uses events, you
perform the following tasks:

■ Create a new portlet with the Portlet Wizard.

■ Add code to your JSP page.

■ Map this portlet’s parameters to the portlet you created in Section 5.4.5.2, "Adding
Parameters to Your Portlets".

5.4.5.3.1 Creating an Events Portlet To create an events portlet, perform the following
steps:

1. Create a new portlet called MyEventsPortlet in the same provider by invoking
the Portlet Wizard. Go through the wizard as normal. In step 5 of the wizard,
create a parameter. In step 6 of the wizard, enter the information shown in
Table 5–8.

Table 5–8 Events

Events Area Name Display Name Description

Events Exposed MyEvent My Event This is my event.

Parameters
Associated

MyParam My Parameter This is my
parameter

Building PDK-Java Portlets with Oracle JDeveloper

5-54 Oracle Application Server Portal Developer’s Guide

Figure 5–40 Public Portlet Events Page of Portlet Wizard

The wizard generates the following code in provider.xml:

<showDetails>false</showDetails>
<inputParameter class="oracle.portal.provider.v2.
 DefaultParameterDefinition">
 <name>MyParam</name>
 <displayName>My Parameter</displayName>
</inputParameter>
<event class="oracle.portal.provider.v2.DefaultEventDefinition">
 <name>MyEvent</name>
 <displayName>My Event</displayName>
 <parameter class="oracle.portal.provider.v2.DefaultParameterDefinition">
 <name>MyParam</name>
 <displayName>My Parameter</displayName>
 </parameter>
</event>
<renderer class="oracle.portal.provider.v2.render.RenderManager">

2. Import the needed classes:

■ oracle.portal.provider.v2.event.EventUtils

■ oracle.portal.utils.NameValue

■ oracle.portal.provider.v2.url.UrlUtils

3. Add a link that passes the parameter value to another portlet. As shown in the
sample code below, you receive the same page parameter as the previous portlet,
but in addition you create a link that passes an event as well:

<%@page contentType="text/html; charset=windows-1252"
import="oracle.portal.provider.v2.render.PortletRenderRequest"
import="oracle.portal.provider.v2.http.HttpCommonConstants"
import="oracle.portal.provider.v2.ParameterDefinition"
import="oracle.portal.provider.v2.event.EventUtils"

Note: In the following example, notice that the input parameter and
the event parameter have the same name, MyParam. They are two
different parameters, even though they have the same name.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-55

import="oracle.portal.utils.NameValue"
import="oracle.portal.provider.v2.url.UrlUtils"
%>
<%
PortletRenderRequest pReq = (PortletRenderRequest)
request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
%>
<%
 NameValue[] parameters = new NameValue[2];
 parameters[0] = new NameValue(EventUtils.eventName("MyEvent"),"");
 parameters[1] = new
NameValue(EventUtils.eventParameter("MyParam"),pReq.getParameter
 ("MyParam"));
%>

<a href="<%= UrlUtils.constructLink
 (pReq, pReq.getRenderContext().getEventURL(), parameters , true, true)%>">
The value of the stock is <%= pReq.getParameter("MyParam") %>

4. Add the portlet to a different page (in the same page group) than the previous
portlet (the Parameter Portlet). Expand the portlet and wire it to receive the same
parameter as the previous portlet.

My Parameter = Page Parameter MyParameter

5. Apply your changes on the Parameter tab and go to the Events tab. Expand the
Event portlet and select the event. Select Go to Page and find the page to which
you want to pass the event. Choose the page where the Parameter portlet is
located. Configure this portlet to pass an event as the page parameter
MyParameter.

MyParameter = Event Output MyParameter

Note: This sample code does not handle NULL values. When the
portlet is initially added to the page, you may receive an error, but,
after wiring the portlet to the page parameter, it should work fine.

Building PDK-Java Portlets with Oracle JDeveloper

5-56 Oracle Application Server Portal Developer’s Guide

Figure 5–41 Portlet Events in the Edit Page

6. Click OK to view the page. Your Event portlet should have a link that displays the
value received from the page.

Figure 5–42 My Event Portlet Before Parameter Change

7. You can append a parameter value to the URL and the portlet displays the value
in the link.

&MyParameter=20

8. When you click the link, that value is passed to the Parameter portlet on its page.

Figure 5–43 My Event Portlet After Parameter Change

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-57

5.4.6 Accessing Session Information
When a user accesses any portal page, OracleAS Portal initiates a public
unauthenticated session and maintains a cookie to track information about the session
across requests. If the user logs in to OracleAS Portal, this session becomes an
authenticated session of the logged-in user. This portal session terminates when:

■ The browser session terminates (that is, the user closes all the browser windows).

■ The user explicitly logs out.

■ The session times out because the user’s idle time exceeds the configured limit.

A portal session exists from the time the user first accesses the portal to the time the
session ends in one of these ways.

You can utilize the session store to save and retrieve information that persists during
the portal session. This information is only available, and useful, to you during the life
of the session. You should only store temporary information in the session store.
Application developers may use the session store to save information related to the
current user session. Data in the session store can be shared across portlets.

If the information you want to store must persist across sessions, you may want to
store it in the preference store instead. Some common applications of the session store
are:

■ to cache data that is expensive to load or calculate (for example, search results).

■ to cache the current state of a portlet (for example, the current range, or page, of
search results displayed in the portlet, or sequence of events performed by user).

Before you implement session storage, you should carefully consider the performance
costs. Because portlets and providers are remote, it can be a relatively expensive
operation to create and maintain even a small amount of information in the session
store. For this reason, you may want to avoid altogether any session storage for public
pages that are accessed frequently by many users.

Furthermore, while using the session store with Web providers, you create a stateful
application that needs to track state information in memory. Similarly, you create a
stateful application if you use the file-system implementation of preference store.

If scalability is an important concern for you, a stateful application may cause you
problems. Stateful applications can impact the load-balancing and failover mechanism
for your OracleAS Portal configuration. Even though you may deploy multiple
middle-tiers accessing the same OracleAS Portal instance, you must implement sticky
routing (where the same node handles subsequent requests in the same session) to
track state. Sticky routing may result in lopsided load-balancing or loss of session data
in case a node crashes, impacting failover. This issue is one reason why many
developers prefer to build stateless applications. However, if scalability is not a
concern, then a stateful application should present no problems for you.

In previous sections, you learned how to use the PDK Framework to render portlet
content in various Render modes and how to implement features such as
customization, and parameters and events. This section describes you how to
implement session storage for your portlet.

In this section, session storage is used to count the number of times your portlet has
rendered in Shared Screen mode.

5.4.6.1 Assumptions
1. You have followed through and understood Section 5.4.2, "Building PDK-Java

Portlets".

Building PDK-Java Portlets with Oracle JDeveloper

5-58 Oracle Application Server Portal Developer’s Guide

2. You built a portlet using the wizard and successfully added it to a page.

5.4.6.2 Implementing Session Storage
The PDK Framework represents the session with a ProviderSession object, which
is established during the call to the Provider Instance's initSession method. This
object is associated with the ProviderUser. To make data persistent between
requests from OracleAS Portal, you need to write data into the session object using the
setAttribute method on the ProviderSession object. This method maps a
java.lang.Object to a java.lang.String and stores that mapping inside the
session object. The String can then be used to retrieve the Object during a
subsequent request, provided the session is still valid.

A provider session may become invalid for the following reasons:

■ session times out

■ invalidate method on ProviderSession is called

■ JVM process running the servlet container is terminated.

All portlets contained by the same ProviderInstance share the same session for a
particular ProviderUser. Therefore, data unique to a particular portlet instance must
be mapped to a unique String in the session. This is accomplished using the
portletParameter method in the PortletRendererUtil class. This method
makes a supplied String parameter or attribute name unique to a
PortletInstance, by prefixing it with a generated identifier for that instance. The
returned instance-specific name can be used to write portlet instance data into the
session. For more detailed information on the PDK Framework classes, refer to the
JavaDoc

To implement session storage, you need to perform the following tasks:

■ Import ProviderSession, PortletRendererUtil, and
HttpPortletRendererUtil.

■ Retrieve the provider session.

■ Read and write the session by accessing it from within your Java portlet.

■ Set the session to true in provider.xml.

■ Register the provider for session storage and set the Login Frequency.

The steps that follow describe how to add a session count to your portlet that displays
how many times the portlet has been rendered for the current session.

1. After using the wizard to create a portlet, you can edit the JSP for the Show page
in Oracle JDeveloper. You need to import the following classes:

<%@page contentType="text/html; charset=windows-1252"
import="oracle.portal.provider.v2.render.PortletRenderRequest"
import="oracle.portal.provider.v2.http.HttpCommonConstants"
import="oracle.portal.provider.v2.ProviderSession"
import="oracle.portal.provider.v2.render.PortletRendererUtil"
import="oracle.portal.provider.v2.render.http.HttpPortletRendererUtil"
%>

2. Insert code that checks for a valid session first and then increments the count and
displays it. If the session is valid and a previously stored value exists, you display
the value, increment the count, and store the new value. If the session is valid but
no previously stored value exists, you initialize a new count starting with 1, and
display and store the value. You also want to obtain the unique string key for this

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-59

portlet and then use an it in an array to count the session. If no session information
was received, you want to provide information to the user indicating they may
need to log back in.

<%
PortletRenderRequest pReq = (PortletRenderRequest)
request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
ProviderSession pSession = pReq.getSession();
 if (pSession != null)
 {
 String key = PortletRendererUtil.portletParameter(pReq, "count");
 Integer i = (Integer)pSession.getAttribute(key);
 if (i == null)
 {
 i = new Integer(0);
 }
 i = new Integer(i.intValue()+1);
 pSession.setAttribute(key, i);
%>

<p>Render count in this session: <%=i%> </p>

<%
 }
 else
 {
%>

<p>The session has become invalid</p>

Please log out and log in again.
<%
 }
%>

3. By default, the wizard does not set session to true in provider.xml. You need to
update this flag in order for the provider to receive session information from the
portal. You should only set this tag to true if you are using session information in
your provider or portlets. By setting this flag to true, extra load is added to the
provider calls.

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
<session>true</session>

4. Register the provider for session support and set its Login Frequency to Once Per
Session.

5.4.6.3 Viewing the Portlet
If you have not already added your Java portlet to a page, do so now. Ensure that you
perform the following tasks:

■ Set your provider to Once per User Session for the login frequency value.

■ Refresh the provider to accept the new changes.

■ Re-login in case your session is no longer valid.

Building PDK-Java Portlets with Oracle JDeveloper

5-60 Oracle Application Server Portal Developer’s Guide

5.4.7 Implementing Portlet Security
In the previous sections, you learned how to use the PDK Framework to render portlet
content for various Show modes and how to implement features such as
customization, parameters and events, and session storage. This section describes the
available security services for your Java portlet. For more detailed information about
the PDK classes referred to in this section, please refer to the JavaDoc.

5.4.7.1 Assumptions
1. You have followed through and understood Section 5.4.2, "Building PDK-Java

Portlets".

2. You built a portlet using the wizard and successfully added it to a page.

5.4.7.2 Portlet Security Features
This section describes the various security features that are available to secure your
portlet providers.

5.4.7.2.1 Authentication When a user first logs in to an OracleAS Portal instance, they
must enter their password to verify their identity and obtain access. This
authentication is performed by OracleAS Single Sign-On server. Refer to
Section 5.4.7.3, "Single Sign-On" for more information.

5.4.7.2.2 Authorization Authorization determines if a particular user may view or
interact with a portlet. OracleAS Portal provides two types of authorization checking:

■ Portal Access Control Lists (ACLs): After you are authenticated by OracleAS
Single Sign-On, OracleAS Portal uses ACLs to determine what users privileges
you have to perform actions on portal objects, such as folders and portlets. The
actions available to a user can range from simply viewing an object to performing
administrative functions on it. If you do not belong to a group that has been
granted a specific privilege, OracleAS Portal prevents you from performing the
actions associated with that privilege. Refer to Section 5.4.7.4, "OracleAS Portal
Access Control Lists (ACLs)" for more information.

■ Programmatic Portlet Security: You can also implement your own security
manager programmatically. Refer to Section 5.4.7.5, "Portlet Security Managers"
for more information.

5.4.7.2.3 Communication Security To this point, we have covered user authentication
and authorization, which do not check the authenticity of messages received by a
provider. To completely secure your providers, secure the communication between
OracleAS Portal and a Web provider. (These methods do not apply to database
providers, which execute within the OracleAS Portal database.) If the communication
is not secured, it is possible for someone to imitate an OracleAS Portal instance and
fool the Web provider into returning sensitive information. There are three types of
communication security:

■ OracleAS Portal Server Authentication restricts access to a provider to a small
number of recognized machines. This method compares the IP address or the host
name of an incoming HTTP message with a list of trusted hosts. If the IP address
or host name is in the list, the message is passed to the provider. If not, it is
rejected before reaching the provider. Refer to Section 5.4.7.6, "OracleAS Portal
Server Security" for more information.

■ Message Authentication appends a checksum based on a shared key to provider
messages. When a message is received by the provider, the authenticity of the

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-61

message is confirmed by calculating the expected value of the checksum and
comparing it with the actual value received. If the values are the same, the
message is accepted. If they are different, the message is rejected without further
processing. The checksum includes a time stamp to reduce the chance of a
message being illegally recorded in transit and resent later. Refer to Section 5.4.7.7,
"Message Authentication" for more information.

■ Message Encryption relies on the use of the HTTPS protocol for OracleAS Portal
to provider communication. Messages are strongly encrypted to protect the data
therein. Encryption provides a high level of security, but it incurs a performance
penalty due to the additional processing required for each message. Refer to
Section 5.4.7.8, "HTTPS Communication" for more information.

For more information about communication security, refer to the Oracle Application
Server Portal Configuration Guide.

5.4.7.3 Single Sign-On
Portlets act as windows into an application. They display summary information and
provide a way to access the full functionality of the application. Portlets expose
application functionality directly in the portal or provide deep links that take you to
the application itself to perform a task.

For more information about Single Sign-On, refer to the Oracle Application Server Portal
Configuration Guide.

An application may need to authenticate the user accessing the application through
the portlet. These are the possible application authentication methods:

■ Partner Application. In this case, the application user is the same authenticated
user used by OracleAS Portal.

■ External Application. In this case, the OracleAS Portal user is different from the
application user, but the application user name and password are managed by the
OracleAS Portal user.

■ No Application Authentication. In this case, the communication between provider
and OracleAS Portal is not protected at all.

5.4.7.3.1 Partner Application A partner application is an application that shares the
same OracleAS Single Sign-On as OracleAS Portal for its authentication. Thus, when a
user is already logged in to OracleAS Portal, their identity can be asserted to the
partner application without them having to log in again.

Partner applications are tightly integrated with OracleAS Single Sign-On. When a user
attempts to access a partner application, the partner application delegates the
authentication of the user to OracleAS Single Sign-On. Once a user is authenticated
(that is, has provided a valid username and password) for one partner application, the
user does not need to provide a username or password when accessing other partner
applications that share the same OracleAS Single Sign-On instance. The OracleAS
Single Sign-On determines that the user was successfully authenticated and indicates
successful authentication to the new partner application.

The advantages of a partner application implementation are as follows:

■ Provides the tightest integration with OracleAS Portal and OracleAS Single
Sign-On Server.

■ Provides the best single sign-on experience to users.

■ Provides the most secure form of integration because user names and passwords
are not transmitted between OracleAS Portal and the provider.

Building PDK-Java Portlets with Oracle JDeveloper

5-62 Oracle Application Server Portal Developer’s Guide

The disadvantages of a partner application implementation are as follows:

■ The application must share the same user repository as OracleAS Portal even
though the application’s user community may be a subset of the OracleAS Portal
user community. While worth some consideration, this issue is a minor one
because the portal pages that expose the application can be easily restricted to the
application’s user community.

■ The application can only be tightly integrated to one or more OracleAS Single
Sign-On instances if they share the same user repository.

■ The application must be written such that it delegates authentication to OracleAS
Single Sign-On.

■ You must have access to the application source code.

5.4.7.3.2 External Application An external application uses a different authentication
server than OracleAS Portal. The application may use a different instance of Single
Sign-On Server used by OracleAS Portal or some other authentication method.
However the Single Sign-On Server does store the username and password of the
external application for that user. This means that when a user is already logged into
Oracle Portal, they will be logged into the external application without having to type
in their username or password.

Applications that manage the authentication of users can be loosely integrated with
OracleAS Single Sign-On if the administrator registers them as external applications.
When a user who was previously authenticated by OracleAS Single Sign-On accesses
an external application for the first time, OracleAS Single Sign-On attempts to
authenticate the user with the external application. The authentication process submits
an HTTP request that combines the registration information and the user’s user name
and password for the application. If the user has not yet registered their user name
and password for the external application, OracleAS Single Sign-On prompts the user
for the required information before making the authentication request. When a user
supplies a user name and password for an external application, OracleAS Single
Sign-On maps the new user name and password to the user’s OracleAS Portal user
name and stores them. They will be used the next time the user needs authentication
with the external application.

The advantages of an external application implementation are as follows:

■ Allows integration with many portals. If, however, one of the portals is preferred
over the others, the application could be integrated as a partner application of that
preferred portal and an external application of the others.

■ Provides a single sign-on experience for users. However, users still must maintain
different user names and passwords. In addition, the external application user
name mapping must be maintained.

■ Allows integration with multiple portals independent of their user repositories
and OracleAS Single Sign-On.

■ Avoids the requirement of having access to the application source code.

The disadvantages of an external application implementation are as follows:

■ Does not share the same user repository as the portal, which requires additional
maintenance of user information by the end user.

■ Transmits the user name and password to the provider in plain text, unless you
implement SSL.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-63

5.4.7.3.3 No Application Authentication The provider trusts the OracleAS Portal instance
sending the request completely. The provider can determine if the user is logged in
and the portal user name, but the application has not authenticated the user.

The advantages of no application authentication are as follows:

■ Provides the easiest form of integration and the fastest to implement.

The disadvantages of no application authentication are as follows:

■ Provides the least security.

■ Provides the weakest integration with OracleAS Portal.

5.4.7.4 OracleAS Portal Access Control Lists (ACLs)
When you log on to an OracleAS Portal instance, you are authenticated by an
OracleAS Single Sign-On instance. Having verified your identity, OracleAS Portal uses
ACLs to determine whether you are authorized to access particular portlets and add
them to your pages from the Portlet Repository.

OracleAS Portal ACLs operate according to the following security characteristics:

■ Privileges define the actions that can be performed on the object to which they are
granted. Privileges include actions such as Manage and Execute.

■ OracleAS Portal users and their privileges are granted from the Administer tab of
the Builder.

■ OracleAS Portal user groups are administered from the Administer tab of
OracleAS Portal Builder. Membership in the groups and privileges granted to the
groups are all defined and maintained here. A privilege granted to a user group is
inherited by all the users of that group.

■ Provider privileges apply to the provider and all of its portlets. Provider ACLs are
administered on the Provider tab of the OracleAS Portal Navigator.

■ Portlet privileges can override the privileges set for the provider of the portlet.
Portlet ACLs are administered from the Provider tab of the OracleAS Portal
Navigator. Clicking Open for a provider takes you to a page that manages the
portlets of the provider.

For more information on the available privileges for each object, users, and user
groups in OracleAS Portal, refer to the Oracle Application Server Portal Configuration
Guide.

The advantages of ACLs are as follows:

■ ACLs offer a simple, yet powerful, mechanism to secure OracleAS Portal objects.

■ Central management of user group membership simplifies the management of
ACLs because it negates the necessity of modifying the ACLs associated with each
object.

The disadvantages of ACLs are as follows:

■ ACLs are applied at the provider or portlet level. You cannot vary the security
rules for a portlet depending on the page where you place it.

5.4.7.5 Portlet Security Managers
Portlet security managers are implemented within a provider to verify that a given
users may view an instance of the portlet. When a user views a page with a portlet
instance on it, security managers determine whether the user has the appropriate
privileges to see the portlet. Implementing access control methods in the provider

Building PDK-Java Portlets with Oracle JDeveloper

5-64 Oracle Application Server Portal Developer’s Guide

restricts the retrieval of content from a portlet (that is, hides the portlet) from users
without the appropriate privileges. Only if the specified characteristics, such as user
details and preferences, pass the authorization logic will the content be retrieved for
the user. If no portlet security methods are implemented in the provider, then any user
name may be passed in, even fictitious, unauthenticated ones.

A provider can implement two portlet security methods:

■ Get a list of portlets.

■ Verify the accessibility of the portlet.

Portlets have access to the OracleAS Portal user privileges and groups of which the
user is a member. The following information can be used by the security methods:

■ The default group of the user

■ The privileges of a user or group

■ The highest available privilege of a user across all groups

■ The objects the user can access (only in database providers)

The AuthLevelSecurityManager has access to the following information about
authorization level:

■ Strongly authenticated.

The user has been authenticated by OracleAS Single Sign-On in the current
OracleAS Portal session (that is, the user logged in with a valid user name and
password) and requested the portlet in the context of that session.

■ Weakly authenticated.

A user who was previously strongly authenticated returns to view a page without
an active OracleAS Portal session. A persistent cookie (maintained by the user's
browser) indicates that in some previous session the user logged on with a valid
user name and password.

■ Public or not authenticated.

The user has not logged in within the context of the current OracleAS Portal
session, and does not have a persistent cookie to indicate that such a state
previously existed.

To incorporate these security services into your Java portlet, you simply need to
update provider.xml and set the security level to strong, weak, or public. Place the
following XML right above the </portlet> tag in provider.xml:

<securityManager class="oracle.portal.provider.v2.security.AuthLevelSecurityManager">
 <securityLevel>strong</securityLevel>
</securityManager>

After you make this change to provider.xml, refresh the provider.

The advantages of security methods are as follows:

■ Enable a portlet to produce different output depending on the level of
authorization.

The disadvantages of security methods are as follows:

■ Most security manager implementations will use the authorization level or some
other user specific element in an incoming message. A check of this type could be
bypassed by an entity imitating an OracleAS Portal instance.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-65

5.4.7.5.1 Viewing the Portlet

To demonstrate the behavior of the security manager added to your Java portlet,
follow these steps:

1. Ensure you are logged in to an OracleAS Portal instance with privileges to create
pages and add portlets to a page.

2. Create a new portal page, ensuring it is visible to PUBLIC.

3. Add your Java portlet to the page.

4. Make a note of the direct URL to your new Portal page.

5. Now log out of the Portal instance by clicking the Logout link.

6. Directly access the Portal page by entering the URL noted in Step 4 into your
browser's address bar.

You will see the page created in Step 2 but not the portlet added in Step 3. When you
added the portlet to the page, you were logged in and hence strongly authenticated.
The PDK runtime detected this and allowed you to add the portlet. When you logged
out and viewed the page, you were no longer strongly authenticated and hence the
PDK Framework did not allow rendering of the portlet's contents.

If you log in again and view the page, you will see that the portlet is still there.

5.4.7.5.2 Implementing Your Own Security Manager If your portlet requires special security
arrangements which are not provided by the implementations shipped with the PDK,
you will need to supply your own custom PortletSecurityManager controller
class. To do this, simply extend the
oracle.portal.provider.v2.security.PortletSecurityManager class
and supply implementations for the two methods specified by the interface. Then
simply replace the class attribute of the securityManager controller element in the
XML provider definition with you new class name and configure child elements
appropriately.

5.4.7.6 OracleAS Portal Server Security
One way to prevent unauthorized access to providers is to restrict access to the
provider to known client machines at the server level. This method goes some way
toward defending against denial of service attacks.

In Oracle Application Server, you achieve this goal by using the allow and deny
directives in the httpd.conf file to control access to client machines based on their
host names or IP addresses. If host names are used as discriminators, the server needs
to look them up on its Domain Name Server (DNS), which adds extra overhead to the
processing of each request. Using the IP address circumvents this problem, but the IP
address of a remote client may change without warning.

The advantages of server security are as follows:

■ Limits access to the provider to trusted hosts only.

■ Simplifies configuration.

The disadvantages of server security are as follows:

■ OracleAS Web Cache does not have IP address checking capability. If OracleAS
Web Cache sits in front of a provider, you have no protection from a client on any
host sending show requests to OracleAS Web Cache.

■ Restricting access to certain IP addresses and host names may be circumvented by
sending messages to a provider containing fake IP addresses and host names. This

Building PDK-Java Portlets with Oracle JDeveloper

5-66 Oracle Application Server Portal Developer’s Guide

trick is difficult to perform effectively since return messages go to the machine
whose IP address was copied, but it can still cause problems.

For more information on this topic, refer to the Oracle Application Server Portal
Configuration Guide.

5.4.7.7 Message Authentication
PDK-Java supports message authentication so that access may be limited to a specified
provider instance or group of provider instances. A provider is registered with a secret
shared key known only to OracleAS Portal and provider administrators.

OracleAS Portal sends a digital signature, calculated using a Hashed Message
Authentication Code (HMAC) algorithm, with each message to a provider. A provider
may authenticate the message by checking the signature using its own copy of the
shared key. This technique may be used in Secure Socket Layer (SSL) communication
with a provider instead of client certificates.

OracleAS Portal calculates a signature based on user information, a shared key and a
time stamp. The signature and time stamp are then sent as part of the SOAP message.
The time stamp is based on UTC (coordinated universal time, the scientific name for
Greenwich Mean Time) so that timestamps can be used in messages between
computers in different time zones.

When the provider receives this message it generates its own copy of the signature. If
the signatures agree, it will then compare the message time stamp with the current
time. If the difference between the two is within an acceptable value the message is
considered authentic and is processed accordingly.

A single provider instance cannot support more than one shared key because it could
cause security and administration problems. For instance, if one copy of the shared
key is compromised in some way, the provider administrator has to create a new key
and distribute it to all of the OracleAS Portal clients, who then must update their
provider definitions. The way around this problem is to deploy different provider
services, specifying a unique shared key for each service. Each provider service has its
own deployment properties file so that each service is configured independently of the
others. The overhead of deploying multiple provider services within the same
provider adapter is relatively small.

In a provider without OracleAS Web Cache in front of it, this use of the same signature
cookie over the lifetime of a provider session implies a tradeoff between performance
and the security provided by authenticating the requests. The signature cookie value is
only calculated once after the initial SOAP request establishes the session with the
provider. The shorter the provider session timeout, the more often a signature will be
calculated providing greater security against a show request being resent illegally.
However, the SOAP request required to establish a session incurs a time penalty.

In a provider using OracleAS Web Cache to cache show request responses, you have a
similar tradeoff. Cached content is secured in the sense that incoming requests must
include the signature cookie to retrieve it, but caching content for an extended period
of time leaves the provider open to illegal show requests.

While the signature element provides protection against interception and resending of
messages, it does nothing to prevent interception and reading of message contents.
Messages are still transmitted in plain text. If you are concerned about the content of
messages being read by unauthorized people, you should use message authentication
in conjunction with SSL.

The advantages of message authentication are as follows:

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-67

■ Ensures that the message received by a provider comes from a legitimate OracleAS
Portal instance.

The disadvantages of message authentication are as follows:

■ Causes administration problems if a provider serves more than one portal.

■ Entails performance implications if made very secure by having a short session
timeout.

For more information on this topic, refer to the Oracle Application Server Portal
Configuration Guide.

5.4.7.8 HTTPS Communication
Normal communication between OracleAS Portal and a provider uses HTTP, a
network protocol that transmits data as plain text using TCP as the transport layer.
HTTPS uses an extra secured layer (SSL) on top of TCP to secure communication
between a client and a server, making it difficult to intercept and read messages.

Each entity (for example, an OracleAS Web Cache instance) receiving a
communication using SSL has a freely available public key and a private key known
only to the entity itself. Any messages sent to an entity are encrypted with its public
key. A message encrypted by the public key may only be decrypted by the private key
so that, even if a message is intercepted by a felonious third party, it cannot be
decrypted.

Certificates used to sign communications ensure that the public key does in fact belong
to the correct entity. These are issued by trusted third parties, known as Certification
Authorities (CA). They contain an entity's name, public key, and other security
credentials and are installed on the server end of an SSL communication to verify the
identity of the server. Client certificates may also be installed on the client to verify the
identity of a client.

Oracle Wallet Manager manages public key security credentials. It generates public
and private key pairs, creates a certificate request to a CA, and installs the certificate
on a server.

For more information on this topic, refer to the Oracle Application Server Portal
Configuration Guide.

5.4.7.8.1 Configuration of SSL When a provider is registered from an OracleAS Portal
instance, only one URL is entered, which means either HTTP or HTTPS may be used
but not both.

Each port on each server that may be used to receive SSL messages must have a server
side certificate installed (that is, the OracleAS Web Cache instance (if any)) in front of
the Web provider and the server which hosts the provider. The certificate installed on a
server port ensures that communication between two points is encrypted but does not
authenticate the source of a message. Message authentication should be used as well to
fully secure communication between a trusted OracleAS Portal instance and a
provider.

For more information about SSL configuration for OracleAS Portal, refer to the Oracle
Application Server Portal Configuration Guide.

5.4.7.9 LDAP (Oracle Internet Directory) Security
PDK-Java uses Portlet Security Managers for LDAP (Oracle Internet Directory)
security. PDK-Java uses Oracle Internet Directory as a repository of users, groups, and
permissions. It retrieves information about the logged-in user and determines whether

Building PDK-Java Portlets with Oracle JDeveloper

5-68 Oracle Application Server Portal Developer’s Guide

the user has the required permissions to view the portlet and data within the portlet.
By enabling Oracle Internet Directory security, your providers can:

■ Secure portlets based on groups.

■ Restrict access to the administrative functions of your portlets (using your own
security manager).

■ Retrieve all of the user property information stored in the Oracle Internet
Directory including first name, last name, title, email, telephone number, groups,
and photo.

■ Create users and groups for OracleAS Portal.

By default, Oracle Internet Directory security is disabled. You must make a change in
the deployment properties file for a specific provider to enable this feature. Enabling
and using Oracle Internet Directory to secure your portlets can be done quickly and
easily:

1. Enable the Oracle Internet Directory manager in the deployment properties files
(provider_name.properties).

oidManager=true
oidAdminClass=class_that_extends_oracle.portal.provider.v2.oid.OidInfo

2. Provide the connection information for Oracle Internet Directory by extending the
simple class called OidInfo.

3. Provide a list of groups that can view your portlet in the provider definition file.

<group>cn=group1,cn=groups,dc=us,dc=oracle,dc=com</group>

Your provider connects to Oracle Internet Directory using the information
provided to the OidInfo class by you. The portlet accesses Oracle Internet
Directory using the credentials provided (for example, user name and password)
and performs the specified tasks. We recommend that you create an Oracle
Internet Directory user specifically for your provider connection with the
minimum set of privileges needed to complete the tasks requested by your
portlets. For example, if your portlet only checks group information, do not
connect to the Oracle Internet Directory as an administrator.

5.4.7.9.1 Implementing Oracle Internet Directory Security PDK-Java provides a set of
default classes specifically for Oracle Internet Directory integration. These classes
handle the connection from your portlets to Oracle Internet Directory, enable your
portlets to be secured based on OracleAS Portal groups, and provide access to user
property information from within Oracle Internet Directory. The classes used by your
Web provider for Oracle Internet Directory integration:

■ oracle.portal.provider.v2.oid.OidInfo receives the Oracle Internet Directory
connection information provided by the developer and connects to Oracle Internet
Directory. When building your own portlets, you should extend this class to send
secure connection details from the provider to Oracle Internet Directory.

■ oracle.portal.sample.v2.devguide.oid.UnsafeOidInfo is an
extension of OidInfo and provides an easy way to test portlet security. This class
is used by the Oracle Internet Directory samples in PDK-Java and parses the
deployment properties file for the Oracle Internet Directory connection
information (seen below). This class should only be used for testing and
development, it is not safe to use in a production scenario.

■ oidManager is set to false by default. It must be set to true in provider_
name.properties to enable Oracle Internet Directory. (If you have only one

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-69

provider in your Web application, ensure that provider_name.properties is
identical to _default.properties.) For example:

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/lab_provider/provider.xml
autoReload=true
oidManager=true
oidAdminClass=oracle.portal.sample.v2.devguide.oid.UnsafeOidInfo
oidHost=myhost.mydomain.com
oidPort=oidPort
oidUser=oidUser
oidPasswd=oidPassword

■ oidAdminClass is set to the class that extends OidInfo. PDK-Java provides
UnsafeOidInfo by default, but as the name suggests, this class should not be
used in production scenarios.

– oidHost is the machine where Oracle Internet Directory is hosted.

– oidPort is the port used by the Oracle Internet Directory.

– oidUser is the Oracle Internet Directory account.

– oidPasswd is the Oracle Internet Directory password.

For example:

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/lab_provider/provider.xml
autoReload=true
oidManager=true
oidAdminClass=oracle.portal.sample.v2.devguide.oid.UnsafeOidInfo
oidHost=myhost.mydomain.com
oidPort=oidPort
oidUser=oidUser
oidPasswd=oidPassword

■ oracle.portal.provider.v2.security.GroupSecurityManager
manages which groups have access to your provider and its portlets. It retrieves
this information from the provider definition file and is portlet specific. Each
portlet in a provider may have different group settings. There is no limit on the
number of groups that can be set using this tag, but, since the Web provider parses
and validates each group in turn, listing many groups may degrade performance.

■ <group> is the tag in provider.xml that handles group management. It lists the
groups allowed to access the portlet. The group information here follows the same
case sensitivity as the Oracle Internet Directory.

<securityManager class="oracle.portal.provider.v2.security.
 GroupSecurityManager">
 <group>cn=DBA,cn=portal_instance_id,cn=groups,
 dc=us,dc=oracle,dc=com</group>

Note: The following example refers to your portal_instance_id,
which is specific to your installation. To find your instance identifier,
refer to your Oracle Internet Directory Administrator’s Guide.

Building PDK-Java Portlets with Oracle JDeveloper

5-70 Oracle Application Server Portal Developer’s Guide

</securityManager>

The advantages of Oracle Internet Directory security are as follows:

■ Offers a simple, powerful way to secure your portlets.

■ Secures data within your portlets based on the user's group membership.

■ Creates users and groups directly from your portlets exposed as Web providers.

The disadvantages of Oracle Internet Directory security are as follows:

■ Slightly degrades performance when authorizing your portlet through Oracle
Internet Directory. There is a cost associated with obtaining group information
from any LDAP server, but this cost only happens the first time a user accesses a
portlet in a session.

■ Requires provider access to Oracle Internet Directory.

■ Assumes all OracleAS Portal instances served by the provider use the same Oracle
Internet Directory instance.

For more information on securing your providers using Oracle Internet Directory or to
set up the sample portlets secured using Oracle Internet Directory, review the
technical note, Installing the OID Portlets.

5.4.7.9.2 Viewing Your Portlets To demonstrate the behavior of the security manager
added to your Java portlet, follow these steps:

1. Ensure you are logged in to an OracleAS Portal instance as a user who is a
member of the group specified in the <group> tag in provider.xml.

2. Use an existing page or create a new one, ensuring it is visible to PUBLIC.

3. Add your Java portlet to the page.

4. Make a note of the direct URL to your new page.

5. Click Logout.

6. Directly access the page by entering the URL noted in Step 4 in your browser's
address bar or login to OracleAS Portal using a user that is not part of the group
listed in provider.xml.

You will see the page created in Step 2 but not the portlet added in Step 3. When you
added the portlet to the page, you were logged in as a user authorized to view the
portlet. The PDK runtime detected this and allowed you to add the portlet. When you
logged out and viewed the page, you were no longer part of the group allowed to
view the portlet and hence the PDK Framework did not allow rendering of the
portlet's contents.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-71

Figure 5–44 Page and Portlets for Developer

If you log in again and view the page, you will see that the portlet is still there.

Figure 5–45 Page and Portlets for Developer/Administrator

5.4.8 Controlling the Export/Import of Portlet Customizations
The export/import facility of OracleAS Portal is a multi-purpose tool for moving your
portal objects, such as portlets, between instances of OracleAS Portal. For example,
you might use export/import to move objects from a development environment to a
stage environment and then, finally, to a production environment. You might also use
export/import to move pages and page groups between OracleAS Portal instances, or
to move Web providers from one machine to another. For more information about
export/import in general, please refer to the Oracle Application Server Portal
Configuration Guide.

Because portlet default settings can be set by the administrator and then changed by
the user, they require some special consideration when you import and export them.
To simplify the transport process, OracleAS Portal provides default functionality that
handles administrator customization data (that is, data created through Edit Defaults
mode) for you. When a portlet is exported, the default customization data stored using
PDK-Java’s PreferenceStore mechanism is exported with the portlet by default.
Hence, when the portlet is imported into a target instance of OracleAS Portal, this
data is imported along with it. As a result, the portlet instance’s default settings are
maintained when the portlet is moved from one portal instance to another.3

Building PDK-Java Portlets with Oracle JDeveloper

5-72 Oracle Application Server Portal Developer’s Guide

The aforementioned behavior is provided to you as a convenience and it requires no
action on your part to leverage. You might, however, want to exercise more granular
control over the exportation of customization data than that provided by the default
functionality. To implement your own requirements for export/import, you can make
use of the programming interface to augment or override the default handling of
customizations.

The export/import functionality for customizations requires that your OracleAS Portal
instance and provider are on Release 10.1.2. Export/import of customizations behaves
the same regardless of the location of your provider:

■ in the default Oracle Application Server Containers for J2EE of the Oracle
Application Server, where the OracleAS Portal instance is different.

■ in a separate Oracle Application Server Containers for J2EE, where the OracleAS
Portal instance may be different, and the provider is the same but is not registered
on the target OracleAS Portal instance.

5.4.8.1 Import/Export Programming Interface
The PDK-Java's preference store mechanism allows data to be persisted by any
number of application entities. The following three entities are the ones that persist
data for the purposes of export/import:

1. The portlet instance is the portlet on a page with the default customizations made
to it by the administrator. The API for the portlet instance is:

■ oracle.portal.provider.v2.PortletInstance

– exportData

public byte[] exportData
 (
 boolean exportUsers,
 String[] userNames,
 TransportLogger logger
)
 throws PortletException

– importData

public void importData
 (
 byte[] data,
 TransportLogger logger
)
 throws PortletException

2. The portlet definition is the base portlet without any customizations applied to it.
You might think of the portlet definition as the version of the portlet that exists in
the Portlet Repository before it is placed on a particular page for use. The API for
the portlet definition is:

■ oracle.portal.provider.v2.PortletDefinition

– exportData

public byte[] exportData
 (
 ProviderInstance pi,
 boolean exportUsers,

3 User customization data for OracleAS Portal objects is never exported. This restriction applies
to portlets as well as other objects, such as pages.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-73

 String[] userNames,
 TransportLogger logger
)
 throws PortletException

– importData

public void importData
 (
 ProviderInstance pi,
 byte[] data,
 TransportLogger logger
)
 throws PortletException

3. The provider instance is the entity that contains and communicates with a set of
portlets. The API for the provider instance is:

■ oracle.portal.provider.v2.ProviderInstance

– exportData

public byte[] exportData
 (
 boolean exportUsers,
 String[] userNames,
 TransportLogger logger
)
 throws ProviderException

– importData

public void importData
 (
 byte[] data,
 TransportLogger logger
)
 throws ProviderException

By default, each of the above entities employs an instance of
oracle.portal.provider.v2.transport.PrefStoreTransporter to
transform the data from an
oracle.portal.provider.v2.preference.PreferenceStore to a byte array
for transport. For the default export/import behavior, though, only the portlet instance
entity’s customization data is exported and imported. If you have persisted data at the
portlet definition or provider instance level, you may want to export that data as well.
For example, a billing handle that you persisted at the ProviderInstance level may
need to be exported.

To change the behavior of PrefStoreTransporter, you can override its default
implementation. The example in Section 5.4.8.3.7, "Exporting by Reference Example"
illustrates how you can override PrefStoreTransporter.

5.4.8.1.1 Logging Interface To simplify troubleshooting of your export/import
transactions, you can send messages to both the calling OracleAS Portal instance and
the Web provider log. PDK-Java provides a transport logging class that enables you to
add events to the log during export and import operations. In this way, you can better
keep track of events that occur during the transport of portlet customizations. The log
can be a valuable troubleshooting tool if you encounter unexpected behavior in your
portlets during or after transport. For example, you can log events when
incompatibilities between PDK-Java versions are found.

Building PDK-Java Portlets with Oracle JDeveloper

5-74 Oracle Application Server Portal Developer’s Guide

You log events using the logger object, an instance of the
oracle.portal.provider.v2.transport.TransportLogger class provided
for each of the methods mentioned above. You log events with the calling portal
through the instance provided for each method. You record events in the Web provider
log with the normal logging mechanism, oracle.portal.log.LogManager. The
log levels for export/import are as follows:

■ TransportLogger.SEVERITY_INFO

■ TransportLogger.SEVERITY_WARNING

■ TransportLogger.SEVERITY_ERROR

5.4.8.2 Exporting Customizations Example
This example illustrates the most basic case where you build a portlet and accept the
default behavior for the export of customizations. In the examples in Section 5.4.8.3.6,
"Encrypting Customization Data Example" and Section 5.4.8.3.7, "Exporting by
Reference Example", you will see how to enhance the security of your customizations
during export and import. To implement the more basic form of exporting
customizations, do the following:

1. Create a stock portlet and implement the Show mode with the following
MyStockPortletShowRenderer.java class. Note that this class does not
incorporate any special code to enable export/import.

package oracle.portal.sample.v2.devguide.tx;
import java.util.StringTokenizer;
import oracle.portal.provider.v2.PortletException;
import oracle.portal.provider.v2.personalize.NameValuePersonalizationObject;
import oracle.portal.provider.v2.render.PortletRenderRequest;
import oracle.portal.provider.v2.render.PortletRendererUtil;
import oracle.portal.provider.v2.render.http.BaseManagedRenderer;
import java.io.PrintWriter;
import oracle.portal.sample.v2.devguide.webservices.
 NetXmethodsServicesStockquoteStockQuoteServiceStub;
public class MyStockPortletShowRenderer extends BaseManagedRenderer
{
 private String pid = null;
 private String userdata;
 private String stockList;
 private String stockCode;
 public void renderBody(PortletRenderRequest request) throws PortletException
 {
 // Use the PrintWriter from the PortletRenderRequest
 PrintWriter out = null;
 NetXmethodsServicesStockquoteStockQuoteServiceStub ns = new
 NetXmethodsServicesStockquoteStockQuoteServiceStub();
 try
 {
 out = request.getWriter();
 NameValuePersonalizationObject data = null;
 data = (NameValuePersonalizationObject)PortletRendererUtil.
 getEditDefaultData(request);
 stockList= data.getString("stock");
 if(stockList!=null) {
 StringTokenizer st = new StringTokenizer(stockList,",");
 out.println("<table border='0'>");
 out.println("<thead>");
 out.println("<tr>");
 out.println("<th width='20%'>");

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-75

 out.println("<p align='left'> Stock Code</p></th><th width='20%'>");
 out.println("<p align='left'> Quote</p>");
 out.println("</th>");
 out.println("</tr>");
 out.println("<thead>");
 while(st.hasMoreElements()) {
 stockCode= st.nextElement().toString();
 out.println("<tr>");
 out.println("<td width='20%'>");
 out.println("<p align='left'>"+ stockCode +
 "</p></td><td width='20%'>");
 out.println(ns.getQuote(stockCode));
 out.println("</td>");
 out.println("</tr>");
 }
 out.println("</table>");
 }
 else
 {
 out.println("
 Click Edit Defaults to define stock codes.");
 }
 }
 catch(Exception ioe)
 {
 throw new PortletException(ioe);
 }
 }
}

2. Implement the Edit Defaults mode for your stock portlet with the following class,
MyStockPortletEditDefaultsRenderer.java. This class enables the
administrator to make and store default customizations, which are then exported
according to the default behavior.

package oracle.portal.sample.v2.devguide.tx;
import oracle.portal.provider.v2.PortletException;
import oracle.portal.provider.v2.http.HttpCommonConstants;
import oracle.portal.provider.v2.render.PortletRenderRequest;
import oracle.portal.provider.v2.render.http.BaseManagedRenderer;
import oracle.portal.provider.v2.render.PortletRendererUtil;
import oracle.portal.provider.v2.personalize.NameValuePersonalizationObject;
import java.io.PrintWriter;
import java.io.IOException;
import oracle.portal.provider.v2.render.http.HttpPortletRendererUtil;
public class MyStockPortletEditDefaultsRenderer extends BaseManagedRenderer
{
 public void renderBody(PortletRenderRequest request) throws PortletException
 {
 PrintWriter out = null;
 try
 {
 out = request.getWriter();
 }
 catch(IOException ioe)
 {
 throw new PortletException(ioe);
 }

 // Customize the portlet title and stock
 String actionParam = PortletRendererUtil.getEditFormParameter(request);

Building PDK-Java Portlets with Oracle JDeveloper

5-76 Oracle Application Server Portal Developer’s Guide

 PortletRenderRequest prr = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String action = request.getParameter(actionParam);
 String title = prr.getQualifiedParameter("myportlet_title");
 String stock = prr.getQualifiedParameter("myportlet_stock");
 NameValuePersonalizationObject data = null;
 try
 {
 data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditDefaultData(request);
 }
 catch(IOException io)
 {
 throw new PortletException(io);
 }
 // Cancel automatically redirects to the page, so
 // will only recieve OK or APPLY
 if (action != null)
 {
 data.setPortletTitle(title);
 data.putString("stock",stock);
 try
 {
 PortletRendererUtil.submitEditData(request, data);
 }
 catch(IOException ioe)
 {
 throw new PortletException(ioe);
 }
 return;
 }
 // Otherwise just render the form
 title = data.getPortletTitle();
 stock = data.getString("stock");
 out.print("<table border='0'> <tr> ");
 out.println("<td width='20%'> <p align='right'>Title:</p></td>
 <td width='80%'>");
 out.print("<input type='TEXT' name='" +
 HttpPortletRendererUtil.portletParameter(prr, "myportlet_title")
 + "' value='" + title + "'>");
 out.println("</td> </tr>");
 out.print("<tr> <td width='20%'> <p align='right'>Stock Codes:</p></td>
 <td width='80%'>");
 out.print("<input type='TEXT' name='" +
 HttpPortletRendererUtil.portletParameter(prr, "myportlet_stock")
 + "' value='" + stock + "'>");
 out.println("
 For example use US Stock Codes separated by comma:
 <i> SUNW,IBM,ORCL</i>");
 out.print("</td> </tr>");
 out.println("</table>");
 }
}

3. Create the following class,
NetXmethodsServicesStockquoteStockQuoteServiceStub.java, for
your stock portlet:

package oracle.portal.sample.v2.devguide.webservices;
import oracle.soap.transport.http.OracleSOAPHTTPConnection;
import org.apache.soap.encoding.SOAPMappingRegistry;

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-77

import java.net.URL;
import org.apache.soap.rpc.Call;
import org.apache.soap.Constants;
import java.util.Vector;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.rpc.Response;
import org.apache.soap.Fault;
import org.apache.soap.SOAPException;
import java.util.Properties;
public class NetXmethodsServicesStockquoteStockQuoteServiceStub
{
 public NetXmethodsServicesStockquoteStockQuoteServiceStub()
 {
 m_httpConnection = new OracleSOAPHTTPConnection();
 m_smr = new SOAPMappingRegistry();
 }
 private String _endpoint = "http://64.124.140.30:9090/soap";
 public String getEndpoint()
 {
 return _endpoint;
 }
 public void setEndpoint(String endpoint)
 {
 _endpoint = endpoint;
 }
 private OracleSOAPHTTPConnection m_httpConnection = null;
 private SOAPMappingRegistry m_smr = null;
 public Float getQuote(String symbol) throws Exception
 {
 Float returnVal = null;
 URL endpointURL = new URL(_endpoint);
 Call call = new Call();
 call.setSOAPTransport(m_httpConnection);
 call.setTargetObjectURI("urn:xmethods-delayed-quotes");
 call.setMethodName("getQuote");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 Vector params = new Vector();
 params.addElement(new Parameter("symbol", String.class, symbol, null));
 call.setParams(params);
 call.setSOAPMappingRegistry(m_smr);
 Response response = call.invoke(endpointURL,
 "urn:xmethods-delayed-quotes#getQuote");
 if (!response.generatedFault())
 {
 Parameter result = response.getReturnValue();
 returnVal = (Float)result.getValue();
 }
 else
 {
 Fault fault = response.getFault();
 throw new SOAPException(fault.getFaultCode(), fault.getFaultString());
 }
 return returnVal;
 }
 public void setMaintainSession(boolean maintainSession)
 {
 m_httpConnection.setMaintainSession(maintainSession);
 }
 public boolean getMaintainSession()
 {

Building PDK-Java Portlets with Oracle JDeveloper

5-78 Oracle Application Server Portal Developer’s Guide

 return m_httpConnection.getMaintainSession();
 }
 public void setTransportProperties(Properties props)
 {
 m_httpConnection.setProperties(props);
 }
 public Properties getTransportProperties()
 {
 return m_httpConnection.getProperties();
 }
}

4. Create a Web provider through provider.xml for this portlet. Notice the use of
the <preferenceStore> element to allow for the storing of customizations:

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
 <session>false</session>
 <passAllUrlParams>false</passAllUrlParams>
 <preferenceStore class="oracle.portal.provider.
 v2.preference.FilePreferenceStore">
 <name>prefStore1</name>
 <useHashing>true</useHashing>
 </preferenceStore>
 <portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>1</id>
 <name>MyStockPortlet</name>
 <title>My Stock Portlet</title>
 <description>Simple Stock Portlet to show Export and Import
 feature of web providers</description>
 <timeout>80</timeout>
 <showEditToPublic>false</showEditToPublic>
 <hasAbout>false</hasAbout>
 <showEdit>false</showEdit>
 <hasHelp>false</hasHelp>
 <showEditDefault>true</showEditDefault>
 <showDetails>false</showDetails>
 <renderer class="oracle.portal.provider.v2.render.RenderManager">
 <renderContainer>true</renderContainer>
 <renderCustomize>true</renderCustomize>
 <autoRedirect>true</autoRedirect>
 <contentType>text/html</contentType>
 <showPage class="oracle.portal.sample.v2.
 devguide.tx.MyStockPortletShowRenderer"/>
 <editDefaultsPage class="oracle.portal.sample.v2.devguide.tx.
 MyStockPortletEditDefaultsRenderer"/>
 </renderer>
 <personalizationManager class="oracle.portal.provider.v2.personalize.
 PrefStorePersonalizationManager">
 <dataClass>oracle.portal.provider.v2.personalize.
 NameValuePersonalizationObject
 </dataClass>
 </personalizationManager>
 </portlet>
</provider>

5. Register this export-enabled provider with the source OracleAS Portal instance.
For more information about registering Web providers, refer to Section 5.4.2.5,
"Registering and Viewing Your Portlet".

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-79

6. Create two regions on a sample page and add My Stock Portlet to the first region.
For information on creating regions and pages, refer to the Oracle Application Server
Portal User’s Guide.

7. Edit the page and choose Edit Defaults for My Stock Portlet. Choose the stock
codes SUNW,IBM,ORCL. For more information on how to edit defaults for a portlet
on a page, refer to the Oracle Application Server Portal User’s Guide.

8. Add My Stock Portlet to a second region and again edit the defaults. for it Use a
different stock code this time, MSFT.

9. Export the page group containing this page. For instructions on how to export a
page group, refer to Chapter 10, "Exporting and Importing Content," in the Oracle
Application Server Portal Configuration Guide.

10. Import the page group into a target OracleAS Portal instance. For instructions on
how to import a page group, refer to Chapter 10, "Exporting and Importing
Content," in the Oracle Application Server Portal Configuration Guide.

11. View the page with My Stock Portlet in the target OracleAS Portal instance and
ensure that the customizations were maintained.

5.4.8.3 Implementing Security for Export/Import
Transporting customizations can present a security concern if your portlet stores
sensitive data and is not operating in a secured environment. At the provider and
portlet level, OracleAS Portal provides several ways for you to secure the export and
subsequent import of portlet customizations. To better secure portlets and providers
for exportation and importation, you can take the following actions:

■ Securing Provider Communications. Using OracleAS Portal configuration options,
you can secure the communications between providers and OracleAS Portal. This
step in turn makes the export/import of portlets more secure.

■ Disabling Export/Import of Customizations. You can disable the export of all
portlet customization data on a per Web application basis. This method provides
the greatest security but only at a significant cost in functionality because it
prevents administrators from retaining their default customizations when the
portlet is moved.

■ Obfuscating Data for Transport (Automatic). By default, OracleAS Portal
obfuscates but does not encrypt customization data before transporting it.

■ Encrypting Customization Data for Transport. You may want to encrypt
customization data for transport if any of the following are true:

– Your Web provider connection is not secured through HTTPS.

– You want to ensure the data is secured during transit.

– You want the data to remain secure while stored in the OracleAS Portal
instance.

Note: If the Web provider is running in a secured environment,
remember to provide the proxy host and port while starting up Oracle
Application Server Containers for J2EE. For example:

java -Dhttp.proxyHost=www-proxy.us.oracle.com -Dhttp.proxyPort=80
 -jar oc4j.jar

Building PDK-Java Portlets with Oracle JDeveloper

5-80 Oracle Application Server Portal Developer’s Guide

■ Exporting by Reference. Instead of including portlet customization data directly in
the transport set, you can include it by reference in the transport set. Because the
data itself is not present in the transport set, export by reference is the most secure
way of transporting customizations.

5.4.8.3.1 Securing Provider Communications If the security of exporting/importing
portlets is of concern to you, you should configure OracleAS Portal to secure
communications with your portlet providers. The chief mechanisms for securing
provider communications in OracleAS Portal are:

■ Message authentication through a Hashed Message Authentication Code (HMAC)
algorithm. For more information on message authentication for providers, refer to
Section 6.1.7.8, "Message Authentication", in the Oracle Application Server Portal
Configuration Guide.

■ HTTPS between providers and OracleAS Portal. For more information on HTTPS
for provider communications, refer to Section 6.1.7.9, "HTTPS Communication", in
the Oracle Application Server Portal Configuration Guide.

5.4.8.3.2 Disabling Export/Import of Customizations The JNDI variable,
oracle/portal/provider/global/transportEnabled, controls whether to
allow the exportation and importation of customizations. If you set the variable to
true, customizations are transported as part of export/import. If you set it to false,
they are not transported. You can set JNDI variables for PDK-Java through Oracle
Enterprise Manager 10g. If for some reason Oracle Enterprise Manager 10g is not
available for the instance, you can set the values manually in orion-web.xml. For a
full Oracle Application Server installation, this file is located in:

ORACLE_HOME/j2ee/OC4J_instance/application-deployments/jpdk\jpdk

For a standalone OC4J installation, this file is located in:

ORACLE_HOME/j2ee/home/application-deployments/jpdk/jpdk

5.4.8.3.3 Obfuscating Data for Transport (Automatic) By default, customization data is
encoded (Base64). This encoding ensures that data is obfuscated during transport. You
do not need to take any actions to leverage Base64 encoding as it is provided by
default. However, if you want greater security, you can encrypt the data. Refer to
Section 5.4.8.3.4, "Encrypting Customization Data for Transport".

5.4.8.3.4 Encrypting Customization Data for Transport By implementing the
oracle.portal.provider.v2.security.CipherManager class for your
provider, you can encrypt the customization data prior to exporting it. Upon import,
the cipher manager is invoked again to decrypt the data. Refer to Section 5.4.8.3.6,
"Encrypting Customization Data Example".

5.4.8.3.5 Exporting by Reference As mentioned previously, the default behavior for
exportation of portlets is to include the actual customization data in the transport set.

Note: You cannot use certificates for the HTTPS communication with
providers.

Note: If you choose to encrypt your Web providers for export
through the cipher manager, you must also devise your own key
management strategy for the encryption algorithm.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-81

For a more secure transport, you can code your portlet such that the customizations
are exported through pointer rather than by including the actual preference data.
When the transport set is imported, the target OracleAS Portal instance sends the
pointer back to the Web provider, which then has the opportunity to reassociate the
actual data with the new portlet instance. Refer to Section 5.4.8.3.7, "Exporting by
Reference Example".

5.4.8.3.6 Encrypting Customization Data Example To encrypt customization data in your
Web provider, you need to create your own cipher manager and associate it with your
portlet provider. This example provides a simple, insecure cipher manager for
illustrative purposes only. To implement a secure implementation of the cipher
manager for your production system, you would need to significantly extend this
sample. Some of the issues you would need to consider for a production
implementation are as follows:

■ Do not hold the key object in memory. Read it from a persistent store as necessary.

■ Use the provider's PreferenceStore API supported by a
DBPreferenceStore to work in the clustered case.

■ On import, if the cipher manager instance obtained from provider.xml matches
the class name returned in the SOAP message, that CipherManager instance is
used to perform the decryption. Hence, the instance maintained in the
portlet/provider definition may be configured using any applicable means (for
example, tags in provider.xml or JNDI variable) and that configuration is
reused on import.

To encrypt customization data in your Web provider, do the following:

1. Create a cipher manager class, InsecureCipherManager. This class would be
used for encryption and decryption of customization data exported from or
imported to a Web provider. A base64 encoded, hard coded secret key is used with
the DES algorithm supplied by the default javax.crypto provider of the
underlying Java Runtime Environment. As a result, this particular sample is
insecure because the encoded key can be recovered by a malicious party simply by
decompiling the byte code.

package oracle.portal.sample.v2.devguide.tx;
import java.io.IOException;
import java.security.GeneralSecurityException;
import javax.crypto.Cipher;

Note: When exporting across security zones, exporting by reference
may not work effectively. In general, you should only employ export
by reference when transporting within the same general security
environment.

Note: The sample provided below is for illustrative purposes only.
You would need to significantly enhance it for use in a production
environment.

Note: This sample makes use of the javax.crypto package, which is
optional in Java 1.3 and must be installed manually. In Java 1.4,
though, this package is present by default.

Building PDK-Java Portlets with Oracle JDeveloper

5-82 Oracle Application Server Portal Developer’s Guide

import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESKeySpec;
import oracle.portal.provider.v2.ProviderException;
import oracle.portal.provider.v2.security.CipherManager;
import sun.misc.BASE64Decoder;
public final class InsecureCipherManager implements CipherManager
{
 /**
 * Base64 encoded external form of a javax.crypto.SecretKey which was
 * generated for the DES algorithm. This is completely insecure! Anyone
 * can decompile the bytecode and recostitue the key. A more secure
 * implementation would implement a key management policy in a
 * java.security.KeyStore.
 */
 private static final String sEncodedKey = "UTJds807Arw=";
 /**
 * Generated from the (insecure) encoded form in sEncodedKey.
 */
 private SecretKey mKey;
 /**
 * Transforms the input data to a more secure form, in a single operation,
 * using the DES cryptographic algorithm along with a statically defined
 * secret key.
 * @param toEncode the input data.
 * @return an encoded form of the input data.
 * @throws ProviderException if an error occurs during transform.
 */
 public final byte[] encode(byte[] toEncode) throws ProviderException
 {
 try
 {
 Cipher c = Cipher.getInstance("DES");
 c.init(Cipher.ENCRYPT_MODE, getSecretKey());
 return c.doFinal(toEncode);
 }
 catch (GeneralSecurityException gse)
 {
 throw new ProviderException(gse);
 }
 catch (IOException ioe)
 {
 throw new ProviderException(ioe);
 }
 }
 /**
 * Transforms the input data to its original form, in a single operation,
 * using the DES cryptographic algorithm along with a statically defined
 * secret key.
 * @param toDecode the input data.
 * @return a decoded form of the input data.
 * @throws ProviderException if an error occurs during transform.
 */
 public final byte[] decode(byte[] toDecode) throws ProviderException
 {
 try
 {
 Cipher c = Cipher.getInstance("DES");
 c.init(Cipher.DECRYPT_MODE, getSecretKey());
 return c.doFinal(toDecode);

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-83

 }
 catch (GeneralSecurityException gse)
 {
 throw new ProviderException(gse);
 }
 catch (IOException ioe)
 {
 throw new ProviderException(ioe);
 }
 }
 /**
 * Returns a <code>javax.crypto.SecretKey</code> deserialized from the
 * obuscated form in sEncodedKey. Note, this is highly insecure!!
 */
 private SecretKey getSecretKey()
 throws GeneralSecurityException, IOException
 {
 if (mKey == null)
 {
 DESKeySpec ks = new DESKeySpec((new BASE64Decoder()).decodeBuffer(
 sEncodedKey));
 SecretKeyFactory skf = SecretKeyFactory.getInstance("DES");
 mKey = skf.generateSecret(ks);
 }
 return mKey;
 }
}

2. Modify your provider.xml to reference the cipher manager:

<?xml version = '1.0' encoding = 'UTF-8'?>
<?providerDefinition version="3.1"?>
<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
<providerInstanceClass>net.mzyg.tx.TxProviderInstance</providerInstanceClass>
 <session>false</session>
 <passAllUrlParams>false</passAllUrlParams>
 <preferenceStore class="oracle.portal.provider.v2.
 preference.DBPreferenceStore">
 <name>prefStore1</name>
 <connection>java:comp/env/jdbc/PortletPrefs</connection>
 </preferenceStore>
<cipherManager class="oracle.portal.sample.v2.devguide.tx.
 InsecureCipherManager"/>

5.4.8.3.7 Exporting by Reference Example To export by reference rather than exporting
the actual customization, do the following:

1. Override the DefaultPortletInstance with the following
ExportByRefDefaultPortletInstance:

package oracle.portal.sample.v2.devguide.tx;
import oracle.portal.provider.v2.DefaultPortletInstance;
import oracle.portal.provider.v2.preference.PreferenceStore;
import oracle.portal.provider.v2.transport.PrefStoreTransporter;
public class ExportByRefDefaultPortletInstance extends DefaultPortletInstance
{
 /**
 * Returns a {@link oracle.portal.provider.v2.transport.PrefStoreTransporter}
 * capable of carrying out transport operations such as export/import on
 * data applicable to {@link oracle.portal.provider.v2.PortletInstance}
 * persisted in {@link oracle.portal.provider.v2.preference.PreferenceStore}.

Building PDK-Java Portlets with Oracle JDeveloper

5-84 Oracle Application Server Portal Developer’s Guide

 * This implementation returns an {@link ExportByRefPrefStoreTransporter}.
 * @param ps the {@link oracle.portal.provider.v2.preference.PreferenceStore}
 * containing the data to be transported.
 * @return a {@link oracle.portal.provider.v2.transport.PrefStoreTransporter}
 */
 protected PrefStoreTransporter getPrefStoreTransporter(PreferenceStore ps)
 {
 return new ExportByRefPrefStoreTransporter(ps);
 }
}

2. Create the ExportByRefPrefStoreTransporter class referenced in
ExportByRefDefaultPortletInstance. This class implements an alternative
preference store transporter that does not send preference data during the export
operation. Instead, it writes the context path of the source preference to the stream.
During the export, it reads the context path and uses that path to look up the
preference data and copy it to the new instance. This method of exporting by
reference assumes that the source and target providers have access to the same
preference store. In fact, the best case for this example would be the situation
where the source and target providers are the same.

package oracle.portal.sample.v2.devguide.tx;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import oracle.portal.provider.v2.transport.PrefStoreTransporter;
import oracle.portal.provider.v2.transport.TransportLogger;
import oracle.portal.provider.v2.preference.Preference;
import oracle.portal.provider.v2.preference.PreferenceStore;
import oracle.portal.provider.v2.preference.PreferenceStoreException;
public class ExportByRefPrefStoreTransporter extends PrefStoreTransporter
{
 public ExportByRefPrefStoreTransporter(PreferenceStore prefStore)
 {
 super(prefStore);
 }
 /**
 * Exports the context path of the supplied {@link
 * oracle.portal.provider.v2.preference.Preference} from the {@link
 * oracle.portal.provider.v2.preference.PreferenceStore}.
 * @param pref the source {@link
 * oracle.portal.provider.v2.preference.Preference}
 * @param out the <code>java.io.OutputStream</out> to which data will be
 * written.
 * @param logger
 */
 protected void exportPreference(Preference pref, OutputStream out,
 TransportLogger logger) throws PreferenceStoreException, IOException
 {
 // Get the context path of the preference we are exporting.
 String contextPath = pref.getContextPath();
 DataOutputStream dos = new DataOutputStream(out);
 // Write the context path in the export data. The import process
 // will use this context path to lookup this preference in the
 // preference store and copy it to the new context
 dos.writeUTF(contextPath);
 }
 /**

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-85

 * Reads a context path from the stream and copies preference data
 * from that location into the {@link
 * oracle.portal.provider.v2.preference.PreferenceStore}.
 * @param pref the target {@link
 * oracle.portal.provider.v2.preference.Preference}
 * @param in the <code>java.io.InputStream</code> from which to read data.
 * @param logger
 */
 protected void importPreference(Preference pref, InputStream in,
 TransportLogger logger) throws PreferenceStoreException, IOException
 {
 // Read the context path to copy the value for this
 // preference from.
 DataInputStream dis = new DataInputStream(in);
 String contextPath = dis.readUTF();
 // Create preference object to copy from (identical to the
 // target preference but with a different context path)
 Preference sourcePref = new Preference(contextPath,
 pref.getName(), pref.getType(), (String)null);
 // Copy across the preference
 getPrefStore().copy(sourcePref, pref, true);
 }
}

3. Update provider.xml to include the following element for your portlet:

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
...
<portletInstanceClass>oracle.portal.sample.v2.devguide.tx.
 ExportByRefDefaultPortletInstance</portletInstanceClass>
</portlet>

5.4.9 Enhancing Portlet Performance with Caching
In the previous sections of this chapter, you learned how to write fully-functional Java
portlets using the PDK Framework. Once you complete the basic functionality of your
portlet, you may want to turn your attention to portlet performance.

Caching is a common technique for enhancing the performance of Web sites that
include a great deal of dynamic content. The overhead involved in retrieving data and
generating the output for dynamic content can be significantly reduced by proxying
requests through a local agent backed by a large, low-latency data store known as a
cache. The cache agent responds to a request in one of two ways:

■ If a valid version of the requested content exists in the cache, the agent simply
returns the existing cached copy, thus skipping the costly process of content
retrieval and generation. This condition is called a cache hit.

■ If a valid version of the requested content does not exist in the cache, the agent
forwards the request to its destination and awaits the return of the content. The
agent returns the content to the requestor and stores a local copy in its cache for
reuse if a subsequent request for the same content arises. This condition is called a
cache miss.

Web providers generate dynamic content (that is, portlets) and they often reside
remotely from the OracleAS Portal instance on which they are deployed. As such,
caching might improve their performance. The architecture of OracleAS Portal lends
itself well to caching, since all rendering requests originate from a single page
assembling agent, known as the Parallel Page Engine (PPE), which resides on the
middle tier. You can make the PPE cache the portlets rendered by your Web provider

Building PDK-Java Portlets with Oracle JDeveloper

5-86 Oracle Application Server Portal Developer’s Guide

and reuse the cached copies to handle subsequent requests, minimizing the overhead
your Web provider imposes on page assembly.

The Web provider can use any one of three different caching methods, depending
upon which one is best suited to the application. The methods differ chiefly in how
they determine whether content is still valid:

1. Expiry-based Caching: When a provider receives a render request, it stamps its
response with an expiry time. The rendered response remains in the cache and fills
all subsequent requests for the same content until its expiry time passes. This
caching scheme is perhaps the simplest and most performant because the test for
cache validity requires very little overhead and does not involve any network
round trips. Expiry-based caching suits applications where the content has a
well-defined life span. For content with a less certain life span, however,
expiry-based caching is less effective. Refer to Section 5.4.9.2, "Activating Caching"
and Section 5.4.9.3, "Adding Expiry-Based Caching" for more information.

2. Invalidation-based Caching: Invalidation-based caching works essentially the
same way as expiry-based caching, except that the contents of the cache can expire
or become invalid at any time. Invalidation of cache content is usually triggered by
an event.

For example, if you have a calendar portlet that shows your appointments for the
day, the content for the portlet could be generated once, the first time you show
the calendar for that day. The content remains cached until something happens to
change your schedule for that day, such as the addition of an appointment, the
deletion of an existing appointment, or a change of time for an appointment. Each
of these change events can trigger an action in the calendar application. When
such an event takes place, your calendar application can generate an invalidation
request for any cached portlet content affected by the change. The next time you
view a page containing your calendar portlet, the cache will not contain an entry.
Your Web provider will be contacted to regenerate the new content with the
modified schedule.

This method is a very efficient way to cache content because the originator of the
content (that is, your Web provider) is contacted only when new content needs to
be generated, but you are not bound to a fixed regeneration schedule. Refer to
Section 5.4.9.2, "Activating Caching" and Section 5.4.9.4, "Adding Invalidation
Based Caching" for more information.

3. Validation-based Caching: When a provider receives a render request, it stamps
its response with a version identifier (or E Tag). The response goes into the cache,
but, before the PPE can reuse the cached response, it must determine whether the
cached version is still valid. It sends the provider a render request that includes
the version identifier of the cached content. The provider determines whether the
version identifier remains valid. If the version identifier is still valid, the provider
immediately sends a lightweight response to the PPE without any content, which
indicates the cached version can be used. Otherwise, the provider generates new
content with a new version identifier, which replaces the previously cached
version. In this form of caching, the PPE must always confirm with the provider
whether the content is up to date. The validity of the cached copy is determined by
some logic in the provider. The advantage of this approach is that the provider
controls the use of the cached content rather than relying on a fixed period of time.
Refer to Section 5.4.9.2, "Activating Caching" and Section 5.4.9.5, "Adding
Validation-Based Caching" for more information.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-87

5.4.9.1 Assumptions
1. You have followed through and understood Section 5.4.2, "Building PDK-Java

Portlets".

2. You built a portlet using the wizard and successfully added it to a page.

5.4.9.2 Activating Caching
To use the caching features of OracleAS Portal in your Web providers, you must first
activate the middle tier cache. This cache is known as the PL/SQL Cache because it is
the same cache used by mod_plsql, the Oracle HTTP Server plug-in that calls database
procedures, and hence database providers, over HTTP.

Usually, your OracleAS Portal administrator takes care of the configuration details for
caching.

For invalidation-based caching, you need to configure OracleAS Web Cache in front of
the Web provider. Bear in mind that remote Web providers often do not have OracleAS
Web Cache installed. For more information about OracleAS Web Cache, refer to the
Oracle Application Server Web Cache Administrator’s Guide.

Once you have installed and configured OracleAS Web Cache, ensure the following in
the OracleAS Web Cache Manager:

■ Points to the host name and port of the Web provider.

■ Caching rules do not cause the caching of provider content. Content should be
cached according to the surrogate control headers generated by the provider in its
response.

5.4.9.3 Adding Expiry-Based Caching
Expiry-based caching is one of the simplest caching schemes to implement, and can be
activated declaratively in your XML provider definition. You can set an expiry time for
the output of any ManagedRenderer you utilize by setting its pageExpires
property to the number of minutes you want the output to be cached for. For example,
suppose we want portlet output to be cached for one minute.

1. After you have used the Portlet Wizard to build a portlet as described in
Section 5.4.2, "Building PDK-Java Portlets", edit the provider.xml file and set
the pageExpires property tag of showPage to 1. This will set an expires entry of
1 minute for the portlet.

By default the wizard generates a standard and compressed tag for showPage.
You need to expand the tag to include a subtag of pageExpires:

<showPage class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/htdocs/mycacheportlet/MyCachePortletShowPage.jsp
 </resourcePath>
 <PageExpires>1</PageExpires>
</showPage>

2. Test that the portlet is cached for 1 minute by adding some JSP code to your show
page. You can simply add the current time to your JSP.

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="java.Util.Date"
 import="java.text.DateFormat"
%>

Building PDK-Java Portlets with Oracle JDeveloper

5-88 Oracle Application Server Portal Developer’s Guide

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 DateFormat df = DateFormat.getDateTimeInstance(DateFormat.LONG,
 DateFormat.LONG,pReq.getLocale());
 String time = df.format(new Date());
%>

<P>Hello <%=pReq.getUser().getName() %>.</P>
<P>This is the <i>Edit</i> render mode!</P>
<P>This information is correct as of <%=time%>.</P>

When viewing the portlet, you see that the time (including seconds) is constant for
1 minute. After the time has expired, the portlet displays the most current time
and a new cache is set.

5.4.9.4 Adding Invalidation Based Caching
When using OracleAS Web Cache, requests for content are sent through HTTP and
content is either returned from the cache or the HTTP request is forwarded to the
originator of the content. When content is returned to OracleAS Web Cache, it is added
to the cache before being returned to the requestor. Cache content is invalidated by
sending invalidation requests directly to OracleAS Web Cache. PDK-Java uses the Java
API for Web Cache (JAWC) to generate invalidation requests. This section describes
how to configure OracleAS Web Cache and use the invalidation-based caching sample
that comes with PDK-Java.

Not all requests sent to OracleAS Web Cache are cached. In order for the content to be
cached, the content must include directives that tell OracleAS Web Cache to cache the
content. Usually OracleAS Web Cache uses the URL associated with the request as the
cache key, but you can specify additional keys by setting special HTTP headers,
known as surrogate control headers, on the response.

To configure a Java portlet to use invalidation-based caching, you do the following:

■ Configure OracleAS Web Cache. Refer to Oracle Application Server Web Cache
Administrator’s Guide for more information.

■ Switch invalidation-based caching on at the provider servlet level.

■ Define the Invalidation Port.

■ Activate invalidation-based caching in the provider.xml file.

■ To have the portlet invalidate the cache, update the JSP code in your portlet to
trigger an invalidation request.

5.4.9.4.1 Configuring the Provider Servlet To enable invalidation-based caching, you must
switch it on at the provider servlet level. The flag is set in an initialization parameter
inside the PDK-Java Web application deployment descriptor, web.xml. For example:

<servlet-class>oracle.webdb.provider.v2.adapter.SOAPServlet</servlet-class>
 <init-param>
 <param-name>invalidation_caching</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

If the flag is not defined here, then invalidation-based caching is switched off. The
status of this flag can easily be checked by displaying the provider's test page. For
example:

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-89

http://<provider_hostname>:<port>/jpdk/providers/webcache/MyWebPRovider

5.4.9.4.2 Defining the OracleAS Web Cache Invalidation Port If you are using an Oracle
Application Server installation type where PDK-Java was automatically pre-installed
(for example, an OracleAS Portal and Wireless type installation), you should find that
OracleAS Web Cache invalidation settings have already been preconfigured in MID_
TIER_ORACLE_HOME/portal/conf/cache.xml. In this case, you can safely ignore the
instructions in this section and proceed to Section 5.4.9.4.3, "Configuring the XML
Provider Definition". Otherwise, you will need to configure the invalidation portlet for
OracleAS Web Cache.

First, you need the username and password for the invalidation port(s) of the
OracleAS Web Cache instance(s) associated with your application server. After you
obtain those, use the provided oracle.webdb.provider.v2.cache.Obfuscate
Java utility to convert the username and password into an obfuscated string of the
format required by the JAWC API. In a default Oracle Application Server installation,
the username for the invalidation port is usually invalidator and the password is
usually the same as the application server administrator's password. For example,
suppose you installed Oracle Application Server in D:\as904, with an invalidation
port username of invalidator and a password of welcome. You would run the
following command:

D:\as904\jdk\bin\java -classpath D:\as904\portal\jlib\pdkjava.jar
 oracle.webdb.provider.v2.cache.Obfuscate invalidator:welcome

If successful, the command should print a hexadecimal string like the following:

0510198d5df8efd5779406342be2528aa0cccb179ea6b77baf49f019f5075a3a11

Now, use this information to create a JAWC configuration file, cache.xml, which
specifies one or more OracleAS Web Cache instances and their invalidation ports. For
example:

<?xml version="1.0">
<webcache>
<invalidation
 host=cache.mycompany.com
 port=4001
authorization="0510198d5df8efd5779406342be2528aa0cccb179ea6b77baf49f019f5075a3a11"/>
</webcache>

You may have more than one OracleAS Web Cache defined, in which case the same
invalidation request goes to each OracleAS Web Cache in the configuration file, for
example:

Note: The command that follows assumes that pdkjava.jar is
present in ORACLE_HOME/portal/jlib and jawc.jar is present in
ORACLE_HOME/webcache/jlib, as required by the PDK-Java
installation guide.

If you are using a standalone Oracle Application Server Containers for
J2EE installation, you need to substitute in the path to the java
executable an external Java 2 SDK installation.

Building PDK-Java Portlets with Oracle JDeveloper

5-90 Oracle Application Server Portal Developer’s Guide

<?xml version="1.0">
<webcache>
<connectionPool>
<invalidationConnection1
 host=cache.mycompany.com
 port=4001
authorization="0510198d5df8efd5779406342be2528aa0cccb179ea6b77baf49f019f5075a3a11"/>
<invalidationConnection2
 host=cache.mycompany.com
 port=4002
authorization="0510198d5df8efd5779406342be2528aa0cccb179ea6b77baf49f019f5075a3a11"/>
</connectionPool>
</webcache>

JAWC finds this configuration file using the system property
oracle.http.configfile. To set this system property for an Oracle Application
Server Containers for J2EE instance within an Oracle Application Server installation,
simply add an appropriate line to the oc4j.properties file for the particular instance in
which PDK-Java is installed (for example, MID_TIER_ORACLE_
HOME/j2ee/OC4Jinstance/config/oc4j.properties) and then restart that
instance. For example:

oracle.http.configfile=fully_qualified_filename

If you are running Oracle Application Server Containers for J2EE standalone, you can
specify the option in the command line you use to start it.

java -Doracle.http.configfile=<fully_qualified_filename> -jar oc4j.jar

5.4.9.4.3 Configuring the XML Provider Definition Using a combination of tags in
provider.xml, you can activate automatic invalidation-based caching for an entire
portlet or some of its pages. To turn on automatic invalidation-based caching, you
need to declare it as follows either at the level of individual pages or the renderer, to
indicate that invalidation-based caching should be activated for all pages:

<useInvalidationCaching>true</useInvalidationCaching>

If your portlet supports customization (through the Edit or Edit Defaults modes), you
may also want to declare <autoInvalidate>true</autoInvalidate> for your
renderer. This declaration causes invalidation of all the cached content for the portlet
when you click OK or Apply in Edit mode, thus causing new markup to be generated
based on the customized settings.

The maximum time for holding the page in the cache is the minimum of the following:

Note: The tag names connectionPool,
invalidationConnection1, and invalidationConnection2
are user defined. A template file is supplied in the directory:

MID_TIER_ORACLE_HOME/j2ee/OC4Jinstance/applications/jpdk/jpdk/WEB-INF/
 providers/webcache

Note: Since the location of the cache configuration file is defined as a
system property, only one cache may be defined per server instance. It
is not possible to have two different Web Provider instances behind
separate OracleAS Web Cache configurations.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-91

■ Maximum expiry time from OracleAS Portal defined in the Cache tab of the
Global Settings page.

■ Web Provider default (24 hours) if no maximum expiry time is specified by
OracleAS Portal.

■ The time in minutes of the <pageExpires> tag, if present.

The following excerpt from provider.xml specifies that this portlet shall be cached
for up to 5 minutes and shall be automatically invalidated upon customization:

<renderer class="oracle.portal.provider.v2.render.RenderManager">
 <contentType>text/html</contentType>
 <renderContainer>true</renderContainer>
 <autoRedirect>true</autoRedirect>
 <autoInvalidate>true</autoInvalidate>
 <showPage class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/htdocs/invalidation/invalidation1.jsp</resourcePath>
 <useInvalidationCaching>true</useInvalidationCaching>
 <pageExpires>5</pageExpires>
 </showPage>
 <editPage class="oracle.portal.sample.v2.devguide.invalidation.
 InvalidationEditRenderer"/>
</renderer>

5.4.9.4.4 Manually Invalidating the Cache You may want the cached version of the portlet
invalidated when a request is processed or information somewhere has been updated.
In these cases, you may want to manually invalidate the cache.

The invalidation-based caching portlet sample included with PDK-Java contains a
single portlet that displays the time the content was cached and a link to trigger an
invalidation request. The first time a page request is made to the Web provider
through the cache, the response is cached. Subsequent requests for the portlet content
are fulfilled by returning content from OracleAS Web Cache. When you click the link
at the bottom of the portlet an invalidation request is generated by the provider that
removes the portlet from the cache. The next request for the portlet is forwarded to the
provider and the provider generates a new portlet with the current time.

To perform invalidation calls to OracleAS Web Cache, first you need to have a handle
to a ServletInvalidationContext object. You can get this handle by calling the
static getServletInvalidationContext() method of the
ServletInvalidationContextFactory class.

Once you have the handle, you need to specify the cache key. In the cache key, you
need to specify whether you want to invalidate a particular portlet instance, all the
instances of a portlet, or all the portlets managed by a provider. To perform this task,
you use the methods of the ServletInvalidationContext class or the methods of
its super class, InvalidationContext. This is where you can specify whether the
portlet should be cached for this particular user (USER level). If there is no user
specified in the cache key, then the cached content is returned to all users, which
means you are using SYSTEM level caching.

Note: The pageExpires tag is also used for normal expiry based
caching. These two forms of caching are mutually exclusive.
Invalidation-based caching takes place in an OracleAS Web Cache
instance located in the same place as the Web provider. Pages stored
using expiry based caching are cached in the middle tier of OracleAS
Portal.

Building PDK-Java Portlets with Oracle JDeveloper

5-92 Oracle Application Server Portal Developer’s Guide

In the sample code below, we are invalidating a portlet instance and calling the
setFullProviderPath() and setPortletReference() methods. When the
caching key is set, you call the invalidate() method on the
InvalidationContext object that sends the invalidation message to OracleAS Web
Cache.

ServletInvalidationContext inv =
 ServletInvalidationContextFactory.getServletInvalidationContext();
inv.setFullProviderPath
 ((ServletPortletRenderRequest)pReq);
inv.setPortletReference
 (pReq.getPortletReference());
int num = inv.invalidate();

Review the Web cache sample provider for more information.

5.4.9.5 Adding Validation-Based Caching
Adding validation-based caching requires slightly more effort, but gives you explicit
control over exactly which requests to your provider are cache hits. As an example,
you may want to update the cache only when data within the portlet has changed. To
implement this algorithm, you need to override the prepareResponse method. The
signature of the BaseManagedRenderer.prepareResponse method is:

public boolean prepareResponse(PortletRenderRequest pr)
 throws PortletException,
 PortletNotFoundException

In your version of prepareResponse(), you need to do the following:

■ Retrieve the cached version identifier set by the PPE in the render request by
calling the HttpPortletRendererUtil.getCachedVersion() method:

public static java.lang.String getCachedVersion
 (PortletRenderRequest request)

■ If the portlet finds the previously cached version valid, the appropriate header has
to be set by calling the HttpPortletRendererUtil.useCachedVersion()
method. It also instructs the RenderManager that it won't be necessary to call
renderBody() to render the portlet body.

public static void useCachedVersion(PortletRenderRequest request)

Otherwise, use HttpPortletRendererUtil.setCachedVersion() to
generate a new version of the portlet, which will be cached. It also indicates to the
PPE that the renderBody() method has to be called to regenerate the portlet
content.

public static void setCachedVersion(PortletRenderRequest request,
 java.lang.String version,
 int level)
 throws java.lang.IllegalArgumentException

For validation-based caching, you need not update provider.xml. You can view the
portlet by refreshing the page or adding the portlet to a page and updating the
content. If the content has changed, the portlet shows the new content. If the content
has not changed, a cached version of the portlet is displayed.

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-93

5.4.10 Writing Multi-Lingual Portlets
This section shows you how to build a Java portlet that can be rendered in different
languages. The language used in your portlet will depend upon on the language
setting that has been chosen in the portal that is displaying it.

Once you have completed this section you will be able to write portlets that support as
many or as few languages as you wish. You will also be able to convert your existing
portlets to support multiple languages. Once a portlet is written to support multiple
languages, it is easy to plug in new languages. The basic model for multi-lingual Java
portlets is similar to the standard Java Internationalization model. If you already know
about Java Internationalization, you should find this process very familiar.

5.4.10.1 Assumptions
1. You have followed through and understood Section 5.4.2, "Building PDK-Java

Portlets".

2. You built a portlet using the wizard and successfully added it to a page.

5.4.10.2 Internationalizing Your Portlet
■ Providing Translations for Portlet Content

■ Providing Translation for Portlet Attributes

5.4.10.2.1 Providing Translations for Portlet Content In Building PDK-Java Portlets, you
created a portlet using the Java Portlet Wizard. The basic message created by the
wizard is only available in one language and the text to be displayed is hard-coded in
to the portlet's renderer class. To make your portlets available in multiple languages,
you have to store such language dependent elements in their own resource bundles.

Creating Resource Bundles
For each language you want your portlet to be available in, you will need a resource
bundle. You will also need to create a 'default' resource bundle that will be used when
there is no resource bundle corresponding to the language setting chosen in the portal.

■ Create a Default Resource Bundle

1. In Oracle JDeveloper, create a Java class called MyProviderBundle that
extends ListResourceBundle from the java.util.package. The class should
contain a multi-dimensional array of objects that holds key-value pairs
representing each of the language dependent elements from your JSP show
page. This implementation is demonstrated in the following code:

package mypackage2;
import java.util.ListResourceBundle;
public class MyProviderBundle extends ListResourceBundle
{
public static String HELLO_MSG = "MyPortletHelloMessage";
public static String INFO_MSG = "MyPortletInfoMessage";
public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{
{HELLO_MSG, "Hello"},
{INFO_MSG, "This is the show page of the portlet and it is being generated
in the default language!"}
};

Building PDK-Java Portlets with Oracle JDeveloper

5-94 Oracle Application Server Portal Developer’s Guide

}

2. Save MyProviderBundle.

■ Creating Resource Bundles for Other Supported Languages

Now you must create a resource bundle class for each language you want your
portlet to support. Each of these classes must be named the same as your default
resource bundle class, but with a language code appended to the end. For
example, if you want to support the French language, create a Java class named
MyProviderBundle_fr. The language code fr is the same as the code that will
be used by the locale object in the portal if the language setting is set to French (for
more information on Locales, see the JavaDoc for java.util.Locale). When
you change the language setting in OracleAS Portal, you change the value of the
current locale object and therefore the locale object's language code. These
language codes adhere to the ISO:639 codes for representation for names of
languages.

1. To create a French resource bundle, create a Java class named
MyProviderBundle_fr, as described above.

2. Using your default resource bundle as a template, replace the English
language strings with their French equivalents. An example is given below:

package mypackage2;

import java.util.ListResourceBundle;
public class MyProviderBundle_fr extends
ListResourceBundle
{
public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{
{MyProviderBundle.HELLO_MSG, "Bonjour"},
{MyProviderBundle.INFO_MSG, "Cette page est le 'show mode' de la portlet
 et est generee dans la langue par defaut."}
};
}

3. Save MyProviderBundle_fr.

4. Repeat steps 1 through 3 for every language that you wish to create a resource
bundle for, updating the class name with the appropriate language code and
the message strings with their equivalent in the appropriate language.

Updating Your Renderer
To make use of the resource bundles you just created, you need to edit the JSP show
page and replace the hard-coded messages with references that will pickup the
messages at run time from the resource bundle that corresponds most closely with the
locale object of the portal.

1. Open the JSP that represents your show page and change the following:

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="java.util.ResourceBundle"
%>

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-95

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);

<-- Get a resource bundle object for the current language. -->
ResourceBundle b =
ResourceBundle.getBundle("mypackage2.MyProviderBundle",pReq.getLocale());
%>

<-- Pull the message from the appropriate resource bundle. -->
<P> <%= b.getString(mypackage2.MyProviderBundle.HELLO_MSG) %>
 <%= pReq.getUser().getName() %>.</P>
<P> <%= b.getString(mypackage2.MyProviderBundle.INFO_MSG) %></P>

2. Save your JSP page.

Now you can refresh your portlet and view the changes.

Figure 5–46 Portlet in English

To view the French greeting, you set the language in the Set Language portlet to
French instead of English.

Figure 5–47 Portlet in French

Notice that the text inside the portlet has changed, but the portlet title remains in the
default language, English. You can also have the portlet set the appropriate portlet
attributes (such as portlet name, portlet title, and portlet description) by pointing to a
resource bundle from provider.xml.

5.4.10.2.2 Providing Translation for Portlet Attributes In your provider's definition file,
provider.xml, a number of attributes describing your portlet are defined such as the
portlets name and description, these are used in places, for example in your portlet's
title bar in Show mode and so should be translated, too. There are two different ways
of providing these translations, which one you choose is up to you. Both of these
methods are outlined below:

■ Method 1: Using Resource Bundles at the Provider Level

■ Method 2: Creating Resource Bundles at Portlet Level

Building PDK-Java Portlets with Oracle JDeveloper

5-96 Oracle Application Server Portal Developer’s Guide

Method 1: Using Resource Bundles at the Provider Level
You can provide translations for your portlet attributes in your resource bundle(s),
then specify that you want to use these resource bundles in provider.xml,
specifying the keys you have used in your resource bundles. Using this method you
can use the keys you want to, and as long as you use different keys for each
corresponding attribute in your provider's various portlets you can have just one set of
resource bundles that all of your provider's portlets can use.

■ Updating Your Resource Bundles

1. Open your default resource bundle, MyProviderBundle.java.

2. Add additional strings to your resource bundle that represent your portlet
attributes and then add text for those strings:

package mypackage2;

import java.util.ListResourceBundle;
public class MyProviderBundle extends ListResourceBundle
{
public static String HELLO_MSG = "MyPortletHelloMessage";
public static String INFO_MSG = "MyPortletInfoMessage";
public static String PORTLET_NAME = "FirstPortletName";
public static String PORTLET_TITLE = "FirstPortletTitle";
public static String PORTLET_SHORT_TITLE = "FirstPortletShortTitle";
public static String PORTLET_DESCRIPTION = "FirstPortletDescription";
public static String TIMEOUT_MESSAGE = "FirstPortletTimeoutMessage";

public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{
{HELLO_MSG, "Hi"},
{INFO_MSG, "This is the show page of the portlet and it is being generated
 in the default language!"},
{PORTLET_NAME, "MyGlobalPortlet"},
{PORTLET_TITLE, "My Global Portlet"},
{PORTLET_SHORT_TITLE, "MyGlobalPortlet"},
{PORTLET_DESCRIPTION, "My first ever Global portlet, using my
 MyPortletShowPage.jsp"},
{TIMEOUT_MESSAGE, "Timed out waiting for MyGlobalPortlet"}
};
}

3. Save MyProviderBundle.java.

4. Open MyProviderBundle_fr.java. Change it so that it contains the French
strings that match the strings declared in MyProviderBundle.

package mypackage2;

import java.util.ListResourceBundle;
public class MyProviderBundle_fr extends ListResourceBundle
{
public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{

Building PDK-Java Portlets with Oracle JDeveloper

Building Java Portlets 5-97

{MyProviderBundle.HELLO_MSG, "Bonjour"},
{MyProviderBundle.INFO_MSG, "Cette page est le 'show mode' de la portlet
 et est generee en francais!"},
{MyProviderBundle.PORTLET_NAME, "MaPremierePortlet"},
{MyProviderBundle.PORTLET_TITLE, "Ma Portlet Multi-Langue"},
{MyProviderBundle.PORTLET_SHORT_TITLE, "Ma Global Portlet"},
{MyProviderBundle.PORTLET_DESCRIPTION, "Ma premiere portlet
 multi-langue, utilisant mon renderer"},
{MyProviderBundle.TIMEOUT_MESSAGE, "Temps d'acces a la portlet
 demandee expire"}
};
}

5. Save MyProviderBundle_fr.java.

■ Updating provider.xml

1. Open the XML provider definition file and update it to point to the resource
bundle instead of using the hard-coded portlet attribute values.

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>3</id>
 <resource>MyProviderBundle</resource>
 <nameKey>FirstPortletName</nameKey>
 <titleKey>FirstPortletTitle</titleKey>
 <ShortTitleKey>FirstPortletShortTitle</ShortTitleKey>
 <descriptionKey>FirstPortletDescription</descriptionKey>
 <timeout>10</timeout>
 <timeoutMessageKey>FirstPortletTimeoutMessage</timeoutMessageKey>
 <showEditToPublic>false</showEditToPublic>
 <hasAbout>true</hasAbout>

Method 2: Creating Resource Bundles at Portlet Level
PDK-Java defines a set of resource bundle keys that you can use for providing
translations for your portlet attributes. Making use of these keys means that you don't
have to specify the resource bundle keys in your provider.xml file, as we did in
Method 1: Using Resource Bundles at the Provider Level. However, you do have to
provide a separate set of resource bundles for each portlet in your provider as the keys
you use for each portlet need to be the same, but their values will differ.

■ Updating Your Resource Bundles

1. Open your default resource bundle, MyProviderBundle.java.

2. Remove any changes you made from the previous section, and import
oracle.portal.provider.v2.PortletConstants. You can then
reference the following constants instead of the strings. You do not have to
declare static strings when using PortletConstants:

{PortletConstants.NAME, "MyGlobalPortlet"},
{PortletConstants.TITLE, "My Global portlet"},
{PortletConstants.SHORTTITLE, "MyGlobalPortlet"},
{PortletConstants.DESCRIPTION, "My first ever Global portlet"},
{PortletConstants.TIMEOUTMSG, "Timed out waiting for MyGlobalPortlet"}

3. Save MyProviderBundle.java.

4. Open MyProviderBundle_fr.java. Remove the portlet attributes added in
the previous section, import
oracle.portal.provider.v2.PortletConstants, and reference the
constants instead of the strings.

Building Struts Portlets with Oracle JDeveloper

5-98 Oracle Application Server Portal Developer’s Guide

{PortletConstants.NAME, "MaPremierePortlet"},
{PortletConstants.TITLE, "Ma Portlet Multi-Langue"},
{PortletConstants.SHORTTITLE, "Ma Global Portlet"},
{PortletConstants.DESCRIPTION, "Ma premiere portlet multi-langue,
 utilisant mon renderer"},
{PortletConstants.TIMEOUTMSG, "Temps d'acces a la portlet demandee
 expire"}

5. Save MyProviderBundle_fr.java.

■ Updating provider.xml

1. In provider.xml, you need to use only one tag instead of one tag for each
string as you did in Method 1: Using Resource Bundles at the Provider Level.
Add the tag between the portlet id and the timeout number value.

<resource>mypackage2.MyProviderBundle</resource>

For more information on Java Internationalization see the Internationalization
trail of the Java Tutorial.

5.4.10.3 Viewing the Portlet
Once you have updated your provider and deployed it to Oracle Application Server
Containers for J2EE, refresh the provider and portal page containing your portlet. To
see your resource bundles working, add the "Set Language" portlet to your page and
try changing the language setting to French. Remember that the default resource
bundle is English, and that selecting any other language that doesn't have a
corresponding resource bundle will result in the portlet being displayed in English.

5.5 Building Struts Portlets with Oracle JDeveloper
This section describes the framework for building Struts portlets with Oracle
JDeveloper for use in OracleAS Portal. You will learn how to build a Struts portlet
from an existing application by adding the Struts Tag Library from the Oracle
Application Server Portal Developer Kit (version 9.0.4.0.2 or higher) to Oracle
JDeveloper, then use the Oracle PDK Java Portlet wizard to create the Java portlet
itself.

■ OracleAS Portal and the Apache Struts Framework

■ Creating a Struts Portlet

5.5.1 OracleAS Portal and the Apache Struts Framework
This section discusses the use of the Apache Struts with OracleAS Portal. Struts is an
implementation of the Model-View-Controller (MVC) design pattern.

■ Model View Controller Overview

■ Apache Struts Overview

■ OracleAS Portal Integration with Struts

■ Summary

5.5.1.1 Model View Controller Overview
Database applications undertake several distinct tasks:

■ Data access

Building Struts Portlets with Oracle JDeveloper

Building Java Portlets 5-99

■ Business logic implementation

■ User interface display

■ User interaction

■ Application (page) Flow

The MVC (Model View Controller) architecture provides a way of compartmentalizing
these tasks, based on the premise that activities, such as data presentation, should be
separate from data access. This architecture enables you to easily plug a data source to
the application without having to rewrite the user interface. MVC allows the logical
separation of an application into three distinct layers: the Model, the View, and the
Controller.

The Model
The Model is the repository for the application data and business logic. One facet of
the Model’s purpose is to retrieve data from and persist data to the database. It is also
responsible for exposing the data in such a way that the View can access it, and for
implementing a business logic layer to validate and consume the data entered through
the View. At the application level, the Model acts as the validation and abstraction
layer between the user interface and the business data that is displayed. The database
server itself is simply a persistence layer for the Model.

The View
The View is responsible for rendering the Model data using JSPs. The View code does
not include a hardcoded application or navigation logic, but may contain some logic to
carry out tasks like displaying conditional data based on a user role. When an end user
executes an action within the HTML page that the View renders, an event is submitted
to the Controller. The Controller then determines the next step.

The Controller
The Controller is the linchpin of the MVC pattern. Every user action carried out in the
View is submitted through the Controller. The Controller then performs the next
action, based on the content of the request from the browser.

The Controller can be driven in several different ways. For example, you can use URL
arguments to route the requests to the correct code,. The MVC pattern itself
determines the function of the Controller, not how it should work.

Benefits
The MVC architecture provides a clear and modular view of the application and its
design. By separating the different components and roles of the application logic, it
allows developers to design applications as a series of simple and different
components: the Model, the View, and the Controller. This pattern should help to
create applications that are easier to maintain and evolve. For example, once you
create one view, you can easily create another view using the same business logic.
Because of the ease and reusability, the MVC pattern is the most widely used pattern
in the context of Web-based application development.

The following diagram shows how the MVC pattern applies to a conventional
thin-client Web application:

Building Struts Portlets with Oracle JDeveloper

5-100 Oracle Application Server Portal Developer’s Guide

Figure 5–48 The MVC Pattern

5.5.1.2 Apache Struts Overview
The Apache Struts framework (http://struts.apache.org) is one of the most
popular frameworks for building Web applications, and provides an architecture
based on the JSP Model 2 approach of the MVC design paradigm. In the Model 2
approach, the end user requests are managed by a servlet that controls the flow, and
uses components such as JavaBeans, EJBs, or ADF Business Components to access and
manipulate the data. It then uses JSPs to render the application content in a Web
browser. This model differs from JSP Model 1, where the JSPs managed the browser
request and data access.

The Struts framework provides its own HTTP Servlet as a controller component. The
Struts framework is driven by an XML configuration file that contains the page flow of
the application. Struts does not provide the Model, but allows the developers to
integrate it to any data access mechanism, for example EJBs, TopLink, ADF Business
Components, or JDBC. The Struts View by default uses JavaServer Pages (JSP),
including the Java Standard Tag Library (JSTL) and JavaServer Faces (JSF). Struts
provides a set of JavaBeans and JSP tags to help you use the different components of
the MVC.

5.5.1.3 OracleAS Portal Integration with Struts
The Oracle Application Server Portal Developer Kit contains numerous examples and
documents regarding the usage of the OracleAS Portal APIs, such as personalization
and caching. The integration of the application flow and business logic is not part of
the portlet APIs. By using the Struts framework, however, you can leverage the MVC
architecture to create and publish applications within your enterprise portal.

5.5.1.3.1 Oracle Struts Portlet To create a portlet using the Struts framework, or to
generate a portlet from an existing Struts application, you must deploy all the
components in the J2EE container. In the context of OracleAS Portal, the Struts
application is called by the PPE, and not by the browser as compared to a standalone
Struts application. When a request is made, Oracle Parallel Page Engine (PPE), calls

Note: For more information about JSTL and JSF, see the FAQ on the
Apache Software Foundation Web site
(http://struts.apache.org/faqs/kickstart.html).

Building Struts Portlets with Oracle JDeveloper

Building Java Portlets 5-101

the Struts portlet that then forwards the request to the Apache Struts Controller
servlet.

Figure 5–49 Integrating Struts Applications with OracleAS Portal

The following code shows a portion of the provider definition file (provider.xml):

...
<renderContainer>true</renderContainer>
 <renderCustomize>true</renderCustomize>
 <autoRedirect>true</autoRedirect>
 <contentType>text/html</contentType>
 <showPage class="oracle.portal.provider.v2.render.http.StrutsRenderer">
 <defaultAction>showCustomer.do</defaultAction>
 </showPage>
</renderer>
...

The showPage tag defines the business logic that will be executed in the Show mode
of the portlet. The showPage of the Struts portlet contains two important components:

1. The renderer class
(oracle.portal.provider.v2.render.http.StrutsRenderer), which
receives the portlet request from the PPE and acts as a proxy to forward the
request to the Struts Action Servlet.

2. The defaultAction tag, which defines the Struts action that will be used by
default when the portlet is called for the first time.

The Oracle Application Server Portal Developer Kit enables you to easily develop a
view (Portal View) of your Struts application. This view enforces a consistent look and
feel of your Struts portlet using Portal styles, and allows the end user to use the
application within the portal.

To create a Struts portlet, you must use the OracleAS Portal JSP tags, which are
extensions of the default Struts JSP tags. This development process is similar to that of
creating a standalone Struts application. To learn how to build a Struts portlet, refer to

Building Struts Portlets with Oracle JDeveloper

5-102 Oracle Application Server Portal Developer’s Guide

Section 5.5.2.1, "Creating a Struts Portlet". Also, since the portlet and struts application
must also be in the same Servlet Context, you must create a single Web application
that contains both elements. To learn how to easily create this Web application in
Oracle JDeveloper, refer to the next section, Section 5.5.2.1, "Creating a Struts Portlet".

5.5.1.4 Summary
Apache Struts has become the de facto standard for developing MVC-based J2EE
applications, because it offers a clean and simple implementation of the MVC design
paradigm. This framework enables you, as the portlet developer, to separate the
different components of an application, and to leverage the Struts controller to easily
publish an existing Struts application to OracleAS Portal without completely changing
the existing business logic.

The Oracle Application Development Framework (ADF) can use the Struts action
servlet as a controller, or use its own controller (the ADF Controller or ADFc). This
framework enables you to use the same approach to build Struts portlets as well as
ADF portlets.

5.5.2 Creating a Struts Portlet
OracleAS PDK (version 9.0.4.0.2) introduced new extensions to integrate Apache
Struts applications. This section explains how to build a portlet from an existing Struts
application. You can also follow these steps to create a portlet that uses the Model
View Controller paradigm. To learn more about the Apache Struts framework, refer to
Section 5.5.1, "OracleAS Portal and the Apache Struts Framework".

The PDK-Java extensions described in this article are compliant to the 1.1 production
version of the Apache Struts project. Oracle JDeveloper version 9.0.3.x contains by
default the Apache Struts version 1.1b2 (1.1 Beta 2). If you want to use Oracle
JDeveloper 9.0.3.x to build Struts applications and portlets, you must upgrade the
Oracle JDeveloper Struts libraries to the production version of Struts. Apache Struts
1.1 production is embedded with Oracle JDeveloper 10g (9.0.4) and higher.

This section contains the following steps:

■ Creating a Struts Portlet

■ Registering the Provider

■ Summary

5.5.2.1 Creating a Struts Portlet
To publish a part of an existing Struts application as portlet, you must first create a
new view that will serve as the Portal View of your application. This view will use
existing objects (Actions, ActionForm, and so on) with a new mapping and new
JavaServer Pages.

In this example, you will create a portlet that enables you to add a new entry to a Web
Logger (Blog).

Note: For more information on the Oracle Application Server Portal
Developer Kit, see Portal Center
(http://www.oracle.com/technology/products/ias/porta
l/index.html).

Building Struts Portlets with Oracle JDeveloper

Building Java Portlets 5-103

Figure 5–50 Submitting a Blog

Figure 5–51 Saving a Blog Entry

prepareNewBlog is a simple empty action that redirects the request to the
enterNewBlog.jsp page. This page shows a form for submitting a new blog.

The corresponding entry in the struts-config.xml is:

<action path="/prepareNewBlog" scope="request"
type="view.PrepareNewBlogAction" >
 <forward name="success" path="/view/enterNewBlog.jsp"/>
</action>
<action path="/saveNewBlog" name="blogForm" scope="request"
 type="view.SaveNewBlogAction" input"/view/enterNewBlog.jsp" >
 <forward name="success" path="/view/newBlogConfirmation.jsp"/>
</action>

5.5.2.1.1 Create a new flow and view to host the Portlet actions To create a new view, first
create a new set of ActionMappings (page flow) that will redirect the various actions
and requests to Portal-specific JSPs.

<action path="/portal/prepareNewBlog" scope="request"
 type="view.PrepareNewBlogAction" >
 <forward name="success" path="/view/portal/enterNewBlog.jsp"/>
</action>
<action path="/portal/saveNewBlog" name="blogForm" scope="request"
type="view.SaveNewBlogAction" input="/view/enterNewBlog.jsp" >
 <forward name="success" path="/view/portal/newBlogConfirmation.jsp"/>
</action>

Building Struts Portlets with Oracle JDeveloper

5-104 Oracle Application Server Portal Developer’s Guide

As you can see, only the path attributes are modified. The FormBean Action
responsible for the application business logic remains unchanged.

5.5.2.1.2 Creating the new JSPs As specified in the previous step, the actions forward
the request to new JSPs, which are responsible for rendering the portlet content. Your
new portlet view JSPs can share the HTML with the standalone view, but be sure that
the portlet:

■ Uses Portal styles that enforce a consistent look and feel with the rest of the portal
page.

■ Contains HTML code that is allowed in HTML table cells (that is, no <html>,
<body>, and <frame> tags).

■ Renders portal-aware links and forms. This is necessary to ensure that your Struts
portlet renders its content inline, thus keeping your users within the context of the
portal page by rendering the requested content within the same portlet container.

To achieve inline rendering in your Struts portlet, you must use OracleAS PDK tags:

<pdk-struts-html:form action="/portal/saveNewBlog.do">
...
...
</pdk-struts-html:form>

During the rendering of the portlet, one of the JSP tags (for example, the
pdk-struts-html:form tag), submits the form to the Parallel Page Engine (PPE),
which then sends the parameters to the Struts portlet. The Struts controller executes
the logic behind these actions and returns the next JSP to the portlet within the portal
page.

The PDK contains all the Struts tags, and extends all the tags that are related to URLs.
The following is a list of the PDK extended tags:

■ form: creates an HTML form and embeds the portal page context in the form to
ensure inline rendering

■ link and rewrite: create a link to the portal page, and are required for inline
rendering

■ img: creates an absolute link that points to the Web provider. If you want to use
this tag in the context of Internet Web sites that have firewalls, you must make
sure the provider is directly accessible from the Internet. If it is not possible, you
can deploy the images to the OracleAS Portal middle tier and use the Apache
Struts image link to generate a relative link (relative to the portal, not to the
application).

5.5.2.1.3 Creating a Portlet You can create your Struts portlet either manually or by
using the Java Portlet wizard. Although the wizard does not explicitly offer Struts
support, you can utilize the wizard to build your Struts portlet.

To create a portlet:

1. In Oracle JDeveloper, open the OracleAS PDK Java Portlet Wizard.

Note: You can register the OracleAS PDK with Oracle JDeveloper so
that you can drop the tags from the Oracle JDeveloper Components
Palette. For more information, see the "Registering a Custom Tag
Library in JDeveloper" section in the Oracle JDeveloper online help.

Building Struts Portlets with Oracle JDeveloper

Building Java Portlets 5-105

2. For the implementation style of the show page, select Java Class.

3. For the Package name, enter oracle.portal.provider.v2.render.http

4. For the class name, enter StrutsRenderer.

5. The Java Portlet Wizard generates the skeleton of the portlet renderer class,
StrutsRenderer, for you. Since the StrutsRenderer is part of the PDK, you do not
need this generated file. So, when you finish the wizard, you must delete the file
generated by the wizard. To do so, click the file in the System Navigator window,
then select the Erase from Disk option in the File menu of Oracle JDeveloper.

6. Edit the provider.xml and change the following properties:

At the provider level:

■ Enable session handling, because Struts applications use session management:

<session>true</session>

■ Enable the passing of URL parameters, so that all parameters from any form
submission can be passed to the Struts controller:

<passAllUrlParams>true</passAllUrlParams>

At the portlet level:

■ Specify the first action to raise when the portlet is called. Use the following
code:

<showPage class="oracle.portal.provider.v2.render.http.StrutsRenderer">
<defaultAction>/portal/prepareNewBlog.do</defaultAction>
</showPage>

5.5.2.1.4 Extending the portlet to add Portal Business Logic In your application, you should
add code specific to your portal, such as the user’s information, personalization, and
localization. To do so, you can create a new Action class that is only called in the
Portal context, and handles all Portal-specific business logic.

5.5.2.2 Registering the Provider
Now that your portlet is ready to be used by OracleAS Portal, you must make it
accessible to OracleAS Portal by registering it. When your register your provider,
make sure the session information is passed to your Struts portlet by specifying the
provider login frequency as "Once per user session."

5.5.2.3 Summary
Oracle Application Server enables you to easily create Struts portlets using Oracle
JDeveloper and publish existing Struts applications to OracleAS Portal. For more
information on using the Oracle JDeveloper Java Portlet wizards, refer to the
beginning of this chapter. For more information on using OracleAS Portal, refer to the
Oracle Application Server Portal User’s Guide and the OracleAS Portal Online Help.

Note: For more information on opening the wizard, see
Section 5.4.2.1, "Creating a Portlet and Provider".

Building Struts Portlets with Oracle JDeveloper

5-106 Oracle Application Server Portal Developer’s Guide

Building PL/SQL Portlets 6-1

6
Building PL/SQL Portlets

The OracleAS Portal PL/SQL APIs are implemented as a set of PL/SQL packages and
objects. Database providers and portlets are deployed to a database schema as
PL/SQL packages. This chapter explains how to create PL/SQL portlets based on the
Oracle Application Server Portal Developer Kit-PL/SQL (PDK-PL/SQL). To make
effective use of this chapter, you should already know PL/SQL and have some
familiarity with the PL/SQL Web Toolkit.

This chapter contains the following sections:

■ Guidelines for Creating PL/SQL Portlets

■ Building PL/SQL Portlets with the PL/SQL Generator

■ Building PL/SQL Portlets Manually

■ Implementing Information Storage

■ Using Parameters

■ Accessing Context Information

■ Implementing Portlet Security

■ Improving Portlet Performance with Caching

■ Implementing Error Handling

■ Implementing Event Logging

■ Writing Multi-Lingual Portlets

6.1 Guidelines for Creating PL/SQL Portlets
When you write your portlets in PL/SQL, you should follow the best practices
described in this section:

■ Portlet Show Modes

■ Recommended Portlet Procedures and Functions

Note: In general, Oracle recommends that you build your portlets
using Java rather than PL/SQL. For more information on choosing a
technology for building your portlets, refer to Chapter 2, "Portlet
Technologies Matrix". For more information on building your portlets
using Java, refer to Chapter 5, "Building Java Portlets".

Guidelines for Creating PL/SQL Portlets

6-2 Oracle Application Server Portal Developer’s Guide

6.1.1 Portlet Show Modes
Just like a Java portlet, a PL/SQL portlet has a variety of Show modes available to it. A
Show mode is an area of functionality provided by a portlet. The available Show
modes are described more fully in Chapter 5, "Building Java Portlets":

■ Shared Screen mode is described in Section 5.1.1, "Shared Screen Mode (View
Mode for JPS)"

■ Edit mode is described in Section 5.1.2, "Edit Mode (JPS and OracleAS Portal)".

■ Edit Defaults mode is described in Section 5.1.3, "Edit Defaults Mode (JPS and
OracleAS Portal)".

■ Preview mode is describe in Section 5.1.4, "Preview Mode (JPS and OracleAS
Portal)".

■ Full Screen mode is described in Section 5.1.5, "Full Screen Mode (OracleAS
Portal)".

■ Help mode is described in Section 5.1.6, "Help Mode (JPS and OracleAS Portal)".

■ About mode is described in Section 5.1.7, "About Mode (JPS and OracleAS
Portal)".

■ Link mode is described in Section 5.1.8, "Link Mode (OracleAS Portal)".

To check the selected Show mode, you can use the constants in the wwpro_api_
provider package. These constants are listed with their corresponding Show mode in
Table 6–1.

6.1.2 Recommended Portlet Procedures and Functions
The primary goal of the portlet’s code is to generate the HTML output that displays on
a page for all of the Show modes required by OracleAS Portal. Although it is possible
to implement the portlet as a set of separate PL/SQL stored program units, organizing
the portlet’s code into a PL/SQL package is the best way of encapsulating related
portlet code and data as a single unit in the database. You also achieve better database
performance and ease of portlet maintenance.

As you may recall from Section 2.4, "Deployment Type", requests from OracleAS Portal
for a particular portlet go through the portlet’s provider. To communicate with its
portlets, the provider contains a set of required methods that make calls to the portlet
code.

Table 6–1 Show Mode Constants in wwpro_api_provider

Show mode Constant

Shared Screen MODE_SHOW

Edit MODE_SHOW_EDIT

Edit Defaults MODE_SHOW_EDIT_DEFAULTS

Preview MODE_SHOW_PREVIEW

Full Screen MODE_SHOW_DETAILS

Help MODE_SHOW_HELP

About MODE_SHOW_ABOUT

Link MODE_SHOW_LINK

Building PL/SQL Portlets with the PL/SQL Generator

Building PL/SQL Portlets 6-3

When implementing a portlet as a PL/SQL package, it is a good idea to organize the
portlet code in parallel with the provider code. For example, when the provider needs
to retrieve information about one of its portlets, it uses its get_portlet function.
Hence, it makes sense for the portlet to contain a get_portlet_info function that
returns the requested information when called by the provider’s get_portlet
function. Similarly, it is logical for the provider’s show_portlet procedure to call the
portlet’s show procedure, which produces the HTML output for a requested Show
mode and returns it to the provider.

The following procedures and functions are recommended for use in PL/SQL portlets
to communicate efficiently with the database provider:

■ get_portlet_info returns the portlet record to the provider.

■ show produces HTML output for a requested Show mode and returns it to the
provider.

■ register initializes the portlet at the instance level.

■ deregister enables cleanups at the instance level.

■ is_runnable determines whether the portlet can be run. Security checks can be
performed in this function.

■ copy copies the customized and default values of portlet preferences from one
portlet instance to a new portlet instance when OracleAS Portal makes a copy of
the page.

■ describe_parameters returns a list of public portlet parameters.

6.2 Building PL/SQL Portlets with the PL/SQL Generator
To facilitate the development of database providers and PL/SQL portlets, you can use
the PL/SQL Generator, a utility that creates installable PL/SQL code for a database
provider and its portlets. The PL/SQL Generator is a standalone Web application that
receives the provider and portlet definitions in the form of an XML file (similar in
format to the provider.xml file). The XML tags used for the provider and portlet
definition are a subset of the XML tags used for defining Web providers with
PDK-Java. The output of the PL/SQL Generator is a SQL script that can be run from
SQL*Plus. The script contains SQL commands for installing the provider and portlet
packages in the correct order.

You can download the PL/SQL Generator along with its installation instructions from:

http://www.oracle.com/technology/products/ias/portal/files/plsqlgenerator.zip

The general model for working with the PL/SQL Generator is as follows:

1. Create an XML file that defines the provider and portlets that you want to build,
as described in Section 6.2.1, "Creating the Input XML File".

2. Run the PL/SQL Generator using the XML file as input, as described in
Section 6.2.2, "Running the PL/SQL Generator".

3. Publish the generated PL/SQL portlet, which includes the following steps:

■ Install the provider generated by the PL/SQL Generator into the database, as
described in Section 6.2.3.1, "Installing the Packages in the Database".

■ Register the database provider with the Oracle Application Server, as
described in Section 6.2.3.2, "Registering the Database Provider".

Building PL/SQL Portlets with the PL/SQL Generator

6-4 Oracle Application Server Portal Developer’s Guide

■ Add the generated portlet to a page, as described in Section 6.2.3.3, "Adding
Your Portlet to a Page".

6.2.1 Creating the Input XML File
The source XML file starts and ends with the <provider> and </provider> tags,
and can include one or many portlet definitions. Each portlet definition is bracketed by
the <portlet> and </portlet> tags. A portlet definition includes the XML tags
that specify values for the portlet record attributes and enable the links in the portlet
header. For example, the <name> tag specifies the portlet name in the provider
domain and the <title> tag specifies the portlet display name or title. When set to
true, the <showEdit> tag enables the Edit mode for the portlet and the corresponding
link in the portlet header. Table 6–2 lists the available XML tags for PL/SQL Generator
input.

Table 6–2 XML Tags for PL/SQL Generator Input

XML Tag Definition Value Type

provider Encloses provider definition tags. Not applicable

portlet Encloses portlet definition tags. Not applicable

id Specifies the portlet ID in the provider. This value
must be unique within the provider.

string

name Specifies the portlet name. The name should not
contain any spaces. The generator uses the
information provided in the name tag for the portlet
package name.

string

title Specifies the portlet display name. string

shortTitle Specifies the portlet short display name. This tag is
useful for mobile portlets.

string

description Specifies the portlet description. string

defaultLocale Specifies the language the portlet renders by default.
The value is the two letter ISO language and country
codes expressed as language.country.

string

timeout Specifies the portlet’s timeout interval in seconds. number

timeoutMsg Specifies the message to display when the portlet
times out.

string

showEdit Indicates whether the portlet supports Edit mode,
which enables the user to customize the portlet's
properties.

Boolean

showEditDefault Indicates whether the portlet supports the Edit
Defaults mode, which enables page administrators
to customize the default values of the portlet's
properties.

Boolean

showDetails Indicates whether the portlet can be viewed in Full
Screen mode. In this mode, the entire browser
window is dedicated to the portlet. Full screen mode
enables the portlet to show more details than when
it shares the page with other portlets.

Boolean

showPreview Indicates whether the portlet supports the Preview
mode.

Boolean

hasHelp Indicates whether the portlet supports the Help
mode.

Boolean

Building PL/SQL Portlets with the PL/SQL Generator

Building PL/SQL Portlets 6-5

hasAbout Indicates whether the portlet supports the About
mode.

Boolean

language Defines the portlet’s default language (for example,
en).

string

contentType Indicates the default content type supported by the
portlet. The tag can take one of the following values:

wwpro_api_provider.CONTENT_TYPE_HTML
wwpro_api_provider.CONTENT_TYPE_XML
wwpro_api_provider.CONTENT_TYPE_MOBILE

string

apiVersion Specifies the version of the OracleAS Portal PL/SQL
API to which the portlet conforms. For OracleAS
Portal 9.0.4 and earlier releases, the tag value should
be wwpro_api_provider.API_VERSION_1.

string

callIsRunnable Indicates whether OracleAS Portal must check for
the user's credentials before displaying the portlet.
The default value is true.

Boolean

callGetPortlet Indicates whether the portal can use the portlet
record data stored in the Portlet Metadata
Repository (PMR) instead of contacting the provider
for the portlet record. If the portlet record (specified
by provider id, portlet id, and language) returned
by a provider does not change, then the provider
should set the value for call_get_portlet to
false. This tells the portal to use the PMR instead of
making calls to the provider's get_portlet and
get_portlet_list functions. An example of
when a provider would not want the portal to use
portlet metadata from the PMR is when the value of
the portlet records is different for logged on users.
The default value is true.

Boolean

acceptContentType Specifies a comma delimited list of content types
that the portlet can produce. For example, if a portlet
can produce content of both HTML and
MOBILEXML type, then the tag value is:

text/html,text/vnd.oracle.mobilexml

string

hasShowLinkMode Indicates whether the portlet implements the Link
mode. If the value is false, the portlet uses its short
or full title to display a link label that references the
portlet content in a mobile device. Otherwise, a
customized link can be generated in the portlet code.
The default value is false.

Boolean

mobileOnly Indicates whether the portlet is available only to
mobile devices. The default value is false.

Boolean

preferenceStorePath Specifies the base preference store path where the
provider has stored the portlet customization
information. This path is used when exporting
portlets.

string

createdOn Defines the portlet creation date. The default value
is sysdate.

date

createdBy Identifies the user who created the portlet record. string

lastUpdatedOn Defines the most recent date on which the portlet
record was changed. The default value is sysdate.

date

Table 6–2 (Cont.) XML Tags for PL/SQL Generator Input

XML Tag Definition Value Type

Building PL/SQL Portlets with the PL/SQL Generator

6-6 Oracle Application Server Portal Developer’s Guide

Following is a sample of the input XML for the PL/SQL Generator. Mandatory
information is shown in bold.

<!-- This is a sample provider.xml file for the PLSQL Generator 1.2 -->
<provider>
 <portlet>
 <id>1</id>
 <name>Test_Portlet</name>
 <title>Test Portlet Title</title>
 <shortTitle>Short portlet title</shortTitle>
 <description>This is a Test portlet</description>
 <timeout>30</timeout>
 <timeoutMsg>Test Portlet Timed Out</timeoutMsg>
 <showEdit>true</showEdit>
 <showEditDefault>true</showEditDefault>
 <showDetails>true</showDetails>
 <showPreview>true</showPreview>
 <hasHelp>true</hasHelp>
 <hasAbout>true</hasAbout>
 <language>en</language>
 <contentType>wwpro_api_provider.CONTENT_TYPE_HTML</contentType>
 <apiVersion>wwpro_api_provider.API_VERSION_1</apiVersion>
 <callIsRunnable>true</callIsRunnable>
 <callGetPortlet>true</callGetPortlet>
 <acceptContentType>'text/html'</acceptContentType>
 <hasShowLinkMode>false</hasShowLinkMode>
 <mobileOnly>false</mobileOnly>
 <passAllUrlParams>true</passAllUrlParams>
 <cacheLevel>wwpro_api_provider.CACHE_LEVEL_USER</cacheLevel>
 <rewriteUrls>true</rewriteUrls>
 </portlet>
</provider>

6.2.2 Running the PL/SQL Generator
Once you have created a valid XML input file, you can run the PL/SQL Generator to
generate the provider and portlet packages in the form of a SQL file:

lastUpdatedBy Identifies the user who most recently changed the
portlet record.

string

passAllUrlParams Indicates parameter passing behavior in the portlet.
If the tag value is true, then OracleAS Portal passes
all parameters in the URL to the portlet. If the tag
value is false, then the portlet receives only those
parameters that are intended for the portlet. The
default value is true.

Boolean

cacheLevel Indicates a portlet's cache level. It can take one of the
following values:

wwpro_api_provider.CACHE_LEVEL_SYSTEM
wwpro_api_provider.CACHE_LEVEL_USER
wwpro_api_provider.CACHE_LEVEL_PTL_SESSION

string

rewriteUrls Indicates whether or not URL rewriting will be
performed on the output from a portlet render
request. The default value is false.

Boolean

Table 6–2 (Cont.) XML Tags for PL/SQL Generator Input

XML Tag Definition Value Type

Building PL/SQL Portlets with the PL/SQL Generator

Building PL/SQL Portlets 6-7

1. If you have not already done so, install the PL/SQL Generator according to the
instructions that came with the download.

2. From your browser, go to the URL for the PL/SQL Generator. It should look
something like the page shown in Figure 6–1.

Figure 6–1 PL/SQL Generator Page

3. Click Browse and select the source XML file for the Source XML File field. Refer
to Section 6.2.1, "Creating the Input XML File" for more information on creating
the XML file.

4. In the Provider Name field, enter the name of the provider. The provider name
must not contain any spaces in it. The generator uses the value entered in the
Provider Name field for the provider package name.

5. Click Generate to generate the SQL file that contains the installable PL/SQL code
for the provider and portlet packages. When the browser prompts you to save or
open the file, choose Save.

6. In the Save dialog box, change the file extension to .sql and revise the file name
as you wish.

7. Save the file.

6.2.3 Publishing the Generated PL/SQL Portlet
After you have run the PL/SQL Generator and obtained a SQL file, you still need to
perform the following tasks to make the provider and portlets available to OracleAS
Portal:

■ Installing the Packages in the Database

■ Registering the Database Provider

■ Adding Your Portlet to a Page

Building PL/SQL Portlets Manually

6-8 Oracle Application Server Portal Developer’s Guide

6.2.3.1 Installing the Packages in the Database
To install the generated provider and portlet packages into the database where you
installed OracleAS Portal, perform the following steps:

1. Start a SQL*Plus session and log in to the PORTAL schema.

2. Create a new database schema, the provider schema, to store the generated
provider and portlet packages by entering the following commands in SQL*Plus:

create user provider_schema identified by provider_schema_password;
grant resource, connect to provider_schema;

3. Grant the EXECUTE privilege for the OracleAS Portal APIs to the provider schema
by running the provsyns.sql script that is located in the MID_TIER_ORACLE_
HOME/portal/admin/plsql/wwc directory as follows:

@provsyns.sql provider_schema

4. Log in to the provider schema and run the generated SQL file. It will create the
provider and portlet packages in the database.

6.2.3.2 Registering the Database Provider
After creating the provider and portlet packages in the database, you must register the
provider with OracleAS Portal before adding the PL/SQL portlet to a portal page:

1. Log in to OracleAS Portal as an administrator.

2. From the Portal Builder, click Administer > Portlets.

3. In the Remote Providers portlet, click Register a Provider.

4. Fill in the Name, Display Name, Timeout, and Timeout Message as desired.

5. Choose an Implementation Style of Database.

6. Click Next and complete the remainder of the wizard.

7. When you complete the wizard, click Finish.

8. From the Portlet Repository portlet, click Display Portlet Repository.

9. Browse the repository and find the provider that you just registered. Typically,
new providers appear in the Portlet Staging Area of the repository.

10. Once you find the provider, confirm that it contains all of the portlets you created
in the provider. If the provider or its portlets do not appear, then retrace the steps
in this section and the preceding sections (Section 6.2.3.1, "Installing the Packages
in the Database", Section 6.2.1, "Creating the Input XML File", and Section 6.2.2,
"Running the PL/SQL Generator") to ensure that you correctly created and
registered your provider and portlet.

6.2.3.3 Adding Your Portlet to a Page
Once your provider and its portlets appear in the repository, you can add it to a page.
To add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.3 Building PL/SQL Portlets Manually
This section describes how to build a basic PL/SQL portlet using the hello world
sample contained in the starter provider sample. The starter provider sample,

Building PL/SQL Portlets Manually

Building PL/SQL Portlets 6-9

located in ..\pdkplsql\pdk\plsql\starter in PDK-PL/SQL (pdkplsql.zip),
consists of the following files:

■ starter_provider.pks is the package specification of the starter provider.

■ starter_provider.pkb is the package body of the starter provider.

■ helloworld_portlet.pks is the package specification of the hello world
portlet.

■ helloworld_portlet.pkb is the package body of the hello world portlet.

■ snoop_portlet.pks is the package specification of the snoop portlet.

■ snoop_portlet.pkb is the package body of the snoop portlet.

■ insintpr.sql is the installation script for the starter provider.

The general model for building PL/SQL portlets manually is as follows:

1. Modify the hello world portlet package specification and body to create your
own portlet package, as described in Section 6.3.1, "Implementing the Portlet
Package"

2. Modify the starter provider package specification and body to add your new
portlet to a provider, as described in Section 6.3.2, "Implementing the Provider
Package"

3. Add your portlet to a page, as described in Section 6.3.3, "Adding Your Portlet to a
Page"

6.3.1 Implementing the Portlet Package
To modify helloworld_portlet.pks and helloworld_portlet.pkb to create
your own portlet package, perform the following steps:

1. Make copies of the package specification, helloworld_portlet.pks, and body,
helloworld_portlet.pkb.

2. Rename the copies to my_first_portlet.pks and my_first_portlet.pkb,
respectively.

3. Open my_first_portlet.pks in an editor and change the name of the package
to my_first_portlet:

CREATE OR REPLACE
package my_first_portlet
is
...

end my_first_portlet;

4. Open my_first_portlet.pkb in an editor and repeat the change that you
made in the previous step; that is, change the name of the package to my_first_
portlet.

5. In my_first_portlet.pkb, find the function named get_portlet_info and
modify it as follows:

function get_portlet_info
(
 p_provider_id in integer
 ,p_language in varchar2
)
return wwpro_api_provider.portlet_record

Building PL/SQL Portlets Manually

6-10 Oracle Application Server Portal Developer’s Guide

is
 l_portlet wwpro_api_provider.portlet_record;
begin
 l_portlet.id := starter_provider.PORTLET_FIRST;
 l_portlet.provider_id := p_provider_id;
 l_portlet.title := 'My First Portlet';
 l_portlet.name := 'My_First_Portlet';
 ...

6. In my_first_portlet.pkb, find the procedure named show and modify it as
follows:

procedure show
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
 l_portlet wwpro_api_provider.portlet_record;
 l_text_name in varchar2(100);
 l_text in varchar2(200);
begin
...
 /*
 Display the content of the portlet in the show mode.
 Use the wwui_api_portlet.portlet_text() API when
 generating the content of the portlet so that the
 output uses the portlet CSS.
 */
 htp.p(wwui_api_portlet.portlet_text(
 p_string => 'Hello World - Mode Show'
 ,p_level => 1
));
 /*
 Add the functionality you want here. In this case we are adding
 a welcome message addressed to the current user.
 */
 l_text_name := 'Welcome to my first portlet ' || wwctx_api.get_user;
 l_text := wwui_api_portlet.portlet_text(
 p_string => l_text_name,
 p_level => 1);
 htp.p(l_text); htp.para;
 if (p_portlet_record.has_border) then
 wwui_api_portlet.close_portlet;
 end if;
...

7. Save my_first_portlet.pkb.

6.3.2 Implementing the Provider Package
After you implement the portlet package, you must add your portlet to a provider. To
modify starter_provider.pks and starter_provider.pkb to add your new
portlet to a provider, perform the following steps:

1. Make copies of the package specification, starter_provider.pks, and body,
starter_provider.pkb.

2. Rename the copies to starter_provider2.pks and starter_
provider2.pkb, respectively.

Building PL/SQL Portlets Manually

Building PL/SQL Portlets 6-11

3. Open starter_provider2.pks in an editor.

4. Add a constant called PORTLET_FIRST. This constant is used as the identifier for
the portlet within the provider. Hence, the constant’s value must be unique within
the provider.

CREATE OR REPLACE
package STARTER_PROVIDER
is
 /**
 * This package is used as an example to show how providers can be created
 * in the portal system.
 *
 * This provider contains the following portlets:
 *
 * Hello World (PORTLET_HELLOWORLD)
 * Snoop (PORTLET_SNOOP)
 *
 */
 PORTLET_HELLOWORLD constant integer := 1;
 PORTLET_SNOOP constant integer := 2;
 PORTLET_FIRST constant integer := 3;

5. Save starter_provider2.pks.

6. Open starter_provider2.pkb in an editor.

7. In starter_provider2.pkb, add a call for the new portlet's get_portlet_
info function in the get_portlet function of the provider package. This step
entails adding the call my_first_portlet.get_portlet_info in the get_
portlet function. The get_portlet function allows the portal to retrieve
information for the portlet when necessary.

function get_portlet
 p_provider_id in integer
 ,p_portlet_id in integer
 ,p_language in varchar2
)
return wwpro_api_provider.portlet_record
is
begin
 if (p_portlet_id = PORTLET_HELLOWORLD) then
 return helloworld_portlet.get_portlet_info(
 p_provider_id => p_provider_id
 ,p_language => p_language
);
 elsif (p_portlet_id = PORTLET_SNOOP) then
 return snoop_portlet.get_portlet_info(
 p_provider_id => p_provider_id
 ,p_language => p_language
);
 elsif (p_portlet_id = PORTLET_FIRST) then
 return my_first_portlet.get_portlet_info(
 p_provider_id => p_provider_id

Note: If you want to create a new, empty provider, remove all
references to the hello world and snoop portlets from starter_
provider2.pks and starter_provider2.pkb before performing
the steps that follow.

Building PL/SQL Portlets Manually

6-12 Oracle Application Server Portal Developer’s Guide

 ,p_language => p_language
);
 else
 raise wwpro_api_provider.PORTLET_NOT_FOUND_EXCEPTION;
 end if;
end get_portlet;

8. In starter_provider2.pkb, add the new portlet to the list of portlets returned
by the provider. This step entails adding the new portlet to the get_portlet_
list function of the provider. The get_portlet_list function tells the portal
which portlets the provider implements.

function get_portlet_list
...
begin
 l_cnt := 0;
 if (p_security_level = false) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_HELLOWORLD
 ,p_language => p_language
);
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_SNOOP
 ,p_language => p_language
);
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_FIRST
 ,p_language => p_language
);
 else
 if (helloworld_portlet.is_runnable(
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_HELLOWORLD
 ,p_language => p_language
);
 end if;
 if (snoop_portlet.is_runnable
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_SNOOP
 ,p_language => p_language
);
 end if;
 if (my_first_portlet.is_runnable(
 p_provider_id => p_provider_id

Building PL/SQL Portlets Manually

Building PL/SQL Portlets 6-13

 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_FIRST
 ,p_language => p_language
);
 end if;
 end if;
 return l_portlet_list;
end get_portlet_list;

9. In starter_provider2.pkb, modify the is_portlet_runnable function to
add a call to the is_runnable function of the new portlet.

function is_portlet_runnable
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
return boolean
is
begin
 if (p_portlet_instance.portlet_id = PORTLET_HELLOWORLD) then
 return helloworld_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 elsif (p_portlet_instance.portlet_id = PORTLET_SNOOP) then
 return snoop_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 elsif (p_portlet_instance.portlet_id = PORTLET_FIRST) then
 return my_first_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 else
 raise wwpro_api_provider.PORTLET_NOT_FOUND_EXCEPTION;
 end if;
end is_portlet_runnable;

10. Repeat step 9 according to the information in Table 6–3.

Table 6–3 Changes to starter_provider2.pkb

Procedure/Function Addition

procedure register_portlet elsif (p_portlet_instance.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.register(p_portlet_instance)

procedure deregister_portlet elsif (p_portlet_instance.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.deregister
 (p_portlet_instance)

function describe_portlet_
parameters

elsif (p_portlet_id =
 PORTLET_FIRST) then
return my_first_portlet.describe_parameters
 (p_provider_id, p_language);

Implementing Information Storage

6-14 Oracle Application Server Portal Developer’s Guide

11. Save and close starter_provider2.pkb.

12. Log in to OracleAS Portal as you normally would.

13. From the Portal Builder, click Administer > Portlets.

14. From the Portlet Repository portlet, click Display Portlet Repository.

15. Browse the repository and find the starter provider (typically it will appear in the
Portlet Staging Area of the repository). It should contain its two original portlets:
hello world and snoop.

16. From a command line prompt, start SQL*Plus and connect as the owner of the
starter provider schema.

17. Compile the new and modified PL/SQL packages in the following order:

■ starter_provider2.pks

■ my_first_portlet.pks

■ starter_provider2.pkb

■ my_first_portlet.pkb

18. If any compilation errors occur, fix and recompile them until all of the packages
compile successfully.

19. From the Portlet Repository portlet, click Display Portlet Repository.

20. Browse the repository and find the starter provider again. It should now
contain your new portlet, my_first_portlet, in addition to its original portlets.

6.3.3 Adding Your Portlet to a Page
Once your portlet appears in the repository, you can add it to a page. To add your
portlet to a page, follow the instructions in Section 7.6.2, "Adding Portlets," of the
Oracle Application Server Portal User’s Guide.

6.4 Implementing Information Storage
OracleAS Portal provides APIs for storing and retrieving individual portlet
preferences, and storing and manipulating temporary data for the current session:

■ Implementing a Preference Store

■ Implementing a Session Store

procedure show_portlet elsif (p_portlet_record.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.show(p_portlet_record)

procedure copy_portlet elsif (p_copy_portlet_info.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.copy(p_portlet_record)

Note: If you make changes to an existing provider or the portlet
record, you need to refresh your provider before seeing the changes
reflected in your OracleAS Portal instance.

Table 6–3 (Cont.) Changes to starter_provider2.pkb

Procedure/Function Addition

Implementing Information Storage

Building PL/SQL Portlets 6-15

6.4.1 Implementing a Preference Store
OracleAS Portal provides a set of APIs for storing and retrieving individual
preferences for each unique portlet instance in a persistent manner. It provides a
unique identifier for each individual, a preference store automatically mapped by user,
and access mechanisms for storing and retrieving personalization information in your
PL/SQL portlets.

By default, when you enable end-user personalization, Customize appears on the title
bar of your portlet. This link displays a form where users can choose settings for that
portlet.

End-user personalization options are available through the wwpre_api_name and
wwpre_api_value packages.

6.4.1.1 Using a Preference Store
In general, you can set up preference storage as follows:

1. Create the preference path through wwpre_api_name.create_path.

2. Create the preference with wwpre_api_name.create_name.

3. Set the preference values by providing the preference name and scoping level for
which you want to set the value. Use wwpre_api_value.set_value_as_
varchar2, set_value_as_number, or set_value_as_date for this purpose.

4. Get preference values by providing the preference name and path whenever you
want to retrieve the preference value. Use wwpre_api_value.get_value_as_
varchar2, get_value_as_number, or get_value_as_date for this purpose.

6.4.1.2 Creating and Accessing a Preference Store
The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement preference storage. The objective
is to achieve the following functionality:

■ When a user clicks Customize, they can enter text in two fields.

■ The first field prompts for personalized text. The second prompts for a
personalized portlet title.

■ The values the user enters for these two fields is stored in the preference store.

■ The personalized text and portlet titles are retrieved whenever that user invokes
the portlet instance.

You can browse through this example as follows to see how to create the preference
store, store values in it, and retrieve values from it:

1. Open the services_portlet.pkb file in an editor.

2. The portlet path and preference names are provided with aliases in the constants
part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

3. Find the register procedure. Your portlet needs to create a path for storing your
preferences. To do so, it calls wwpre_api_name.create_path for creating the
preference path. It then calls wwpre_api_name.create_name for creating the

Implementing Information Storage

6-16 Oracle Application Server Portal Developer’s Guide

preference name, taking the portlet path, name, and description as input
parameters. Another input parameter is the p_type_name that indicates special
value types. The NLSID type indicates that the value stored is a Globalization
Support ID. The functions for setting and retrieving this type treat it as a number
value. Apart from that, when a preference store value of this type is exported or
copied, so are its associated strings. The last input parameter, the language, is
obtained from a context API.

procedure register
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
is
begin
 --
 -- Create a path for the portlet instance. This is used to create
 -- the preferences for the portlet instance in the preference store.
 --
 wwpre_api_name.create_path(
 p_path => PORTLET_PATH || p_portlet_instance.reference_path
);
 --
 -- Create the names to store the portlet preferences.
 --
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_STRING,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_TITLE,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);
exception
 when others then
 raise;
end register;

4. The deregister procedure must eliminate the preference store with a call to
wwpre_api_name.delete_name.

procedure deregister
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
is
begin
 --
 -- Delete the path used by the portlet instance. This will delete
 -- all the names and all the values associated with the path.
 --
 wwpre_api_name.delete_path(
 p_path => PORTLET_PATH || p_portlet_instance.reference_path

Implementing Information Storage

Building PL/SQL Portlets 6-17

);
exception
 when others then
 raise;
end deregister;

5. The portlet must also get and set the values in the preference store using wwpre_
api_value.set_value and wwpre_api_value.get_value. Find the get_
default_preference function. Notice how this function loads the system level
default values from the preference store. The default preferences are associated
with an instance. The language strings are set in the database.

function get_default_preference
...
begin
 --
 -- Try to find a previously entered portlet instance string preference,
 -- if any.
 -- A portlet instance string preference is stored in the preference
 -- store and has a level of SYSTEM_LEVEL_TYPE.
 --
 p_path => PORTLET_PATH || p_reference_path,
 l_prefs.string_id := to_char(wwpre_api_value.get_value_as_number(
 p_name => PREFNAME_STRING,
 p_level_type => wwpre_api_value.SYSTEM_LEVEL_TYPE
));
 --
 -- If the value returned above is null it is an indication that there
 -- is no default string yet. Initialize the string id to 0 to indicate
 -- this and load the default string value.
 --
 if (l_prefs.string_id is null or to_number(l_prefs.string_id) = 0) then
 wwpre_api_value.set_value_as_number(
 p_path => PORTLET_PATH || p_reference_path,
 p_name => PREFNAME_STRING,
 p_level_type => wwpre_api_value.SYSTEM_LEVEL_TYPE,
 p_level_name => null,
 p_value => 0
);
...
end get_default_preference;

6. Find the show procedure. Notice the behavior when the portlet is in Edit Defaults
or Edit mode. Note also how p_action is populated when APPLY, CANCEL, or
OK is clicked. Once the form is submitted, the show procedure of the portlet is
called again and, if the p_action parameter is not null, then the save_prefs
procedure is called to save the customizations and redirect to the relevant page.

procedure show
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
 l_str varchar2(32000);
 l_pref_record preference_record;
 l_action varchar2(10);
 l_names owa.vc_arr;
 l_values owa.vc_arr;
begin
...

Implementing Information Storage

6-18 Oracle Application Server Portal Developer’s Guide

 elsif (p_portlet_record.exec_mode =
 wwpro_api_provider.MODE_SHOW_EDIT)
 or (p_portlet_record.exec_mode =
 wwpro_api_provider.MODE_SHOW_EDIT_DEFAULTS)
 then
 wwpro_api_parameters.retrieve(l_names, l_values);
 for i in 1..l_names.count loop
 if (upper(l_names(i)) = upper('p_string')) then
 l_pref_record.string := l_values(i);
 elsif l_names(i) = 'p_title' then
 l_pref_record.title_string := l_values(i);
 elsif l_names(i) = 'p_action' then
 l_action := l_values(i);
 end if;
 end loop;
 if (l_action in (ACTION_OK,ACTION_APPLY,ACTION_CANCEL)) then
 if (p_portlet_record.exec_mode =
 wwpro_api_provider.MODE_SHOW_EDIT) then
 save_prefs(p_string => l_pref_record.string,
 p_title => l_pref_record.title_string,
 p_action => l_action,
 p_level => wwpre_api_value.USER_LEVEL_TYPE,
 p_portlet_record => p_portlet_record);
 else
 save_prefs(p_string => l_pref_record.string,
 p_title => l_pref_record.title_string,
 p_action => l_action,
 p_level => wwpre_api_value.SYSTEM_LEVEL_TYPE,
 p_portlet_record => p_portlet_record);
 end if;
 else
 show_edit(p_portlet_record => p_portlet_record);
 end if;
...
end show;

7. The show_edit procedure renders the page for Edit or Edit Defaults mode. It
renders two text fields that allow the user to change the customizable values in a
form with three buttons (Apply, OK, and Cancel). Note that this function uses the
wwpro_api_adapter.open_form to create the HTML form with the correct
action attribute for the <FORM> tag and with the correct hidden fields. It is
important to use this procedure to create the <FORM> tag if you want to use the
portlet with the Federated Portal Adapter from remote OracleAS Portal instances.

procedure show_edit
(
 p_portlet_record in wwpro_api_provider.portlet_runtime_record
)
is
 l_prefs preference_record;
 l_text_prompt_string varchar2(30);
 l_title_prompt_string varchar2(30);
begin
...
 htp.centeropen;
 htp.tableOpen(cattributes => 'BORDER="1" WIDTH=90%');
 htp.tableRowOpen;
 htp.p('<TD>');
 --
 -- This procedure call creates the <FORM> tags with a set of

Implementing Information Storage

Building PL/SQL Portlets 6-19

 -- standard parameters. Using this procedure makes the
 -- customisation page work through the pl/sql http adapter.
 --
 wwpro_api_adapter.open_form(p_formattr => 'NAME="services"',
 p_prr => p_portlet_record);
 htp.p('</TD>');
 htp.tableRowClose;
 htp.tableClose;
 htp.centerclose;
 htp.formclose;
end show_edit;

8. Review the following procedures and functions, which are related to the
preference storage implementation in this example:

■ get_user_preference retrieves the user customized string and title for the
portlet.

■ save_prefs is invoked to save the preferences to the preference store when
the user clicks OK or Apply after making customization changes.

■ entered_text_is_valid checks to see if the text entered in the
customizable text fields is valid.

9. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

10. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.4.2 Implementing a Session Store
The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement a session store. The objective is
to achieve the following functionality:

■ When a user invokes this portlet, it displays text that reads: "This portlet has
rendered x times in this session." x is the number of times the portlet has been
rendered.

■ Every time the user invokes the portlet, the counter increases by 1.

■ Clicking Details in the portlet enables the user to reset the counter through Clear.
After clearing the counter, the counter starts again from zero.

6.4.2.1 Creating and Accessing a Session Store
You can browse through this example as follows to see how to create the session store,
store values in it, and retrieve values from it:

1. Open the services_portlet.pkb file in an editor.

2. The domain and subdomain definitions for your session object are provided with
aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

Implementing Information Storage

6-20 Oracle Application Server Portal Developer’s Guide

3. Find the clear_count procedure. clear_count is called from the show
procedure when the user clicks Clear to reset the counter. First, clear_count
calls wwsto_api_session.load_session to load the session object. Second, it
calls wwsto_api_session.set_attribute to set the counter to zero. Third, it
saves the session object by calling save_session.

procedure clear_count
(
 p_action in varchar2,
 p_back_url in varchar2,
 p_reference_path in varchar2
)
is
 ex_counter integer;
 session_parms &&1..wwsto_api_session;
begin
 --
 -- Clear the display counter.
 --
 if (p_action = ACTION_CLEAR) then
 --
 -- Load the session object that contains the display counter
 --
 session_parms :=
 &&1..wwsto_api_session.load_session (DOMAIN,SUBDOMAIN);
 ex_counter :=
 session_parms.get_attribute_as_number(
 'ex_counter' || p_reference_path);
 --
 -- Reset the display counter.
 --
 ex_counter := 0;
 session_parms.set_attribute(
 'ex_counter' || p_reference_path, ex_counter);
 --
 -- Save the changes to the database immediately to avoid any
 -- data consistency problems with the data stored in the
 -- session object.
 --
 session_parms.save_session;
 end if;
 owa_util.redirect_url(curl=>p_back_url);
end clear_count;

4. Find the show_contents procedure. show_contents is called from the show
procedure to retrieve the counter, increment it by one, and save the value in the
session store. Notice how it retrieves the session object to display the number of
times the user has rendered the portlet. It also retrieves the counter value with
get_attribute_as_number and increments the counter for every invocation of
this procedure.

procedure show_contents
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
 l_prefs preference_record;
 session_parms &&1..wwsto_api_session;
 ex_counter integer;
 l_portlet wwpro_api_provider.portlet_record;

Using Parameters

Building PL/SQL Portlets 6-21

 l_str varchar2(32000);
begin
 --
 -- In this mode a session counter is used to indicate
 -- the number of invocations of this portlet during the
 -- current session. The counter is stored in the session
 -- store.
 --
 session_parms :=
 &&1..wwsto_api_session.load_session(DOMAIN,SUBDOMAIN);
 ex_counter :=
 session_parms.get_attribute_as_number(
 'ex_counter' || p_portlet_record.reference_path);
 if (ex_counter is null) then -- first invocation
 session_parms.set_attribute(
 'ex_counter' || p_portlet_record.reference_path,1);
 ex_counter := session_parms.get_attribute_as_number(
 'ex_counter' || p_portlet_record.reference_path);
 else -- on every invocation increase by 1
 ex_counter := ex_counter + 1;
 session_parms.set_attribute(
 'ex_counter'
 || p_portlet_record.reference_path, ex_counter);
 end if;
 session_parms.save_session;
...
end show_contents;

5. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

6. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.5 Using Parameters
The functionality of portlets can be extended with the help of parameters. The
business logic implemented by portlets may produce different HTML output
depending on the parameters passed to the page. By using the portlet parameters, you
can navigate within the portlet in the Shared Screen mode without changing the
current page. Portlets can also communicate with each other through parameters.

Portlet parameters are structured as name-value pairs. These pairs map directly to the
URL parameter passing format by using the GET submission method or can use the
HTTP message body by using the POST submission method. Portlets can also expose
their parameters to OracleAS Portal. When added to a page, these portlets can accept
values in the form of page parameters created by the page designer.

Portlets do not have direct access to the URL, the HTTP message body, or the page
parameters. To retrieve the parameter values, portlets must call the OracleAS Portal
PL/SQL parameter APIs provided in the wwpro_api_parameters package.

OracleAS Portal offers the following types of parameters:

Using Parameters

6-22 Oracle Application Server Portal Developer’s Guide

■ Private portlet parameters enable the implementation of internal navigation in
your portlet.

■ Public portlet parameters let you pass control over the data flow of your portlet to
the page designer. The page designer can map the public portlet parameters to
their page parameters, provide default values, and allow users to customize those
values.

■ Page parameters are defined in a simple user interface by page designers. These
page parameters can be mapped to public portlet parameters in order for the page
designer to pass parameter values from the page to the portlets on it.

For more information about parameters, refer to Section 2.12, "Public Portlet
Parameters Support" and Section 2.13, "Private Portlet Parameter Support".

6.5.1 Passing Private Parameters
You can use either GET or POST HTML submission methods when passing private
portlet parameters. The GET method uses the URL to pass the parameters, whereas the
POST method places the parameters in an HTTP message body. For both methods, you
must specify the portlet instance on the portal page, how the parameter is called, and
the value of the parameter.

There are two types of private portlet parameters:

■ Qualified parameters ensure that a private portlet parameter is not read by any
other portlet on the page. The reference path, which is assigned when the portlet is
added to a page, is the unique prefix of the parameter. For example,
http://page_url?277_MAP_368673.region=Europe. The qualified
parameter’s reference path is 277_MAP_368673, the name is region, and the
value is Europe. For private parameters, we strongly recommend that you always
use qualified parameters.

■ Unqualified parameters have no information about the portlet instance and can
be read by any portlet on the page. For example, http://page_
url?region=Europe. The unqualified parameter’s name is region and its value
is Europe. For private parameters, we strongly recommend that you avoid
unqualified parameters.

6.5.2 Passing Page Parameters and Mapping Public Portlet Parameters
Public portlet parameters enhance the flexibility of your portlets by enabling page
designers to reuse your portlets on multiple pages. As a result, page designers do not
have to ask you to make changes to the portlet code when adding the portlet to
different pages. By using public portlet parameters, any portlet on a page can easily
receive its value from the mapped page parameter, regardless of the portlet parameter
name.

For example, suppose you have a page parameter named dept_id. Three portlets
need this value, but one portlet calls it dept, another calls it deptno, and still another
department_id. Mapping the page parameter enables all three portlets to receive the
value from the dept_id parameter and place it in the appropriate portlet parameter.

WARNING: You cannot mix the usage of public and private
parameters in a portlet. To enable public parameters for your
portlet, you must take steps that preclude the usage of private
parameters and vice versa.

Using Parameters

Building PL/SQL Portlets 6-23

Furthermore, the page designer may set a default value (for example, department 20)
that can be customized by users (for example, department 30) and applied to all three
portlets.

The general model for passing public and page parameters is as follows:

1. Enable public parameters in the portlet record by setting pass_all_url_params
to false. This ensures that the portlet is only passed parameters intended for that
portlet.

2. Declare the public parameters in the provider’s describe_portlet_
parameters function. For each of the portlets that belong to the provider, this
procedure should return a list of the parameters that the portlet accepts in the
form of a PL/SQL table of records of the type:

type portlet_parameter_table is table of
portlet_parameter_record index by binary_integer;

3. Provide descriptive information for the parameters in the portlet’s describe_
parameters function. For example:

function describe_parameters
 (p_provider_id in integer, p_language in varchar2)
return wwpro_api_provider.portlet_parameter_table
 is
l_params wwpro_api_provider.portlet_parameter_table;
 begin
 l_params(1).name := ’dept_id’;
 l_params(1).datatype := wwpro_api_provider.STRING_TYPE;
 l_params(1).description := ’Defines a department ID’;
 l_params(1).display_name := ’Department ID’;
 return l_params;
end describe_parameters;

4. Assign values to the public parameters. Public parameters typically get their
values through page parameters. Page parameters are usually assigned default
values by the page designer and the user can then customize the value at runtime.
Alternatively, page parameter values can be assigned in the calling URL. For more
information about how page designers can use page parameters, refer to the Oracle
Application Server Portal User’s Guide.

6.5.3 Retrieving Parameter Values
Regardless of whether you are using private or public parameters, you use the same
APIs to retrieve their values. Portlets obtain their parameters by calling the PL/SQL
parameter APIs in the wwpro_api_parameters package:

■ wwpro_api_parameters_get_value returns the parameter value that is
specified by a given parameter name. Parameter names are not case sensitive,
whereas parameter values are case sensitive. For example:

l_region := wwpro_api_parameters.get_value
 (p_name => ’region’,
 p_reference_path => p_portlet_record.reference_path);

■ wwpro_api_parameters_get_values returns an array of parameter values.
This function returns all the values that are associated with a single parameter
name or an empty list if no matches are found. Some business logic may require
multiple selections, when multiple values are passed to the portlet by using the

Accessing Context Information

6-24 Oracle Application Server Portal Developer’s Guide

same parameter name. Portlets can take one or more values of the same parameter.
For example:

l_region_values owa.vc_arr;
...
l_region_values := wwpro_api_parameters.get_values
 (p_name = ’region’,
 p_reference_path => p_portlet_record.reference_path);

■ wwpro_api_parameters_get_names returns the names of the parameters that
are passed on to a specified portlet that is identified by the reference path. The
returned list is a PL/SQL table of the owa.vc_ar type that is defined as follows:

type vc_arr is table of varchar2(32000) index by binary_integer;

For example:

l_names owa.vc_arr;
...
l_names := wwpro_api_parameters.get_names
 (p_reference_path => p_portlet_record.reference_path);

■ wwpro_api_parameters.retrieve returns the names and values of all of the
portlet’s parameters. For example:

procedure show_portlet
 (p_portlet_record in out
 wwpro_api_provider.portlet_runtime_record)
is
 l_names owa.vc_arr;
 l_values owa.vc_arr;
...
begin
...
 wwpro_api_parameters.retrieve (l_names, l_values);
 for i in 1..l_names.count loop
 htp.p(’Parameter Name: ’||l_names(i));
 htp.p(’Parameter Value: ’||l_values(i));
 htp.br;
 end loop;
...
end show_portlet;

6.6 Accessing Context Information
Whenever a user accesses a page in OracleAS Portal, a public session is established.
When the user logs in to OracleAS Portal, the public session becomes an authenticated
session. This session contains several pieces of context information about the user,
such as username, current session ID, IP address, and language preference. It also
includes supporting information such as the OracleAS Portal schema currently in use.

Session context services return information about a user's session and are available
through the wwctx_api package.

Note: Portlet parameter names should not start with an underscore
(_) because those parameters are reserved for internal use by OracleAS
Portal, and are not passed to the portlet.

Accessing Context Information

Building PL/SQL Portlets 6-25

6.6.1 Using Context Information
The general model for working with the session context is as follows:

1. Identify the piece of information you require for your functionality.

2. Use the appropriate method from wwctx_api to get and optionally set this value.

Table 6–4 lists the function calls used to obtain the various pieces of session
information.

6.6.2 Using wwctx_api to Obtain Context Information
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can obtain session information
using the wwwctx_api package. You can browse through this example as follows to
see how the function calls are implemented in a portlet:

1. Open the services_portlet.pkb file in an editor.

2. Find the get_portlet_info function.

3. Notice the usage of wwctx_api.get_user to derive the user information and set
that value in the portlet information record:

...
 l_portlet.timeout := null;
 l_portlet.timeout_msg := null;
 l_portlet.created_on := to_date('10/19/2000', 'MM/DD/YYYY');
 l_portlet.created_by := wwctx_api.get_user;
 l_portlet.last_updated_on := to_date('10/19/2000', 'MM/DD/YYYY');
 l_portlet.last_updated_by := wwctx_api.get_user;
 l_portlet.has_show_edit_defaults := true;
 l_portlet.has_show_preview := true;
 l_portlet.preference_store_path := PORTLET_PATH;
...

Note: For more information on the context APIs, see the PL/SQL
API Reference. The API Reference can be found on Portal Center
(http://www.oracle.com/technology/products/ias/porta
l/index.html) or, if you downloaded PDK-PL/SQL
(pdkplsql.zip), in ..\pdkplsql\pdk\plsql\doc.

Table 6–4 Context Information Function Calls

Session Information Function Call

Current user wwctx_api.get_user

Login status of user wwctx_api.is_logged_on

Login time wwctx_api.get_login_time

Language wwctx_api.get_nls_language

Current session id wwctx_api.get_sessionid

IP address of user client wwctx_api.get_ip_address

User schema wwctx_api.get_db_user

OracleAS Portal schema wwctx_api.get_product_schema

OracleAS Portal version wwctx_api.get_product_version

Accessing Context Information

6-26 Oracle Application Server Portal Developer’s Guide

4. wwctx_api.get_user is used similarly in various places throughout
services_portlet.pkb. Search the code for other occurrences of wwctx_
api.get_user.

5. Another example of getting context information occurs in the is_runnable
function:

function is_runnable
(
 p_provider_id in integer
 ,p_reference_path in varchar2
)
return boolean
is
begin
 --
 -- Portlet security check. It allows the portlet to be visible
 -- if the user is logged on (that is, the current session is not a
 -- public session).
 --
 return wwctx_api.is_logged_on;
end is_runnable;

6. In the register procedure, wwctx_api.get_nls_language is used to get the
language:

 --
 -- Create the names to store the portlet preferences.
 --
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_STRING,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_TITLE,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);

7. Close services_portlet.pkb. You can implement session context in similar
fashion to what is illustrated here, but based upon your own functional
requirements.

8. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

9. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

Implementing Portlet Security

Building PL/SQL Portlets 6-27

6.7 Implementing Portlet Security
Portlet security refers to the techniques and methods used by portlets to control their
access by end users. The portlets leave authentication to OracleAS Portal and trust that
the portal will return the portlet to the correct, validated user upon request.

OracleAS Portal strictly controls access to information and applications by assigning
specific privileges to users and groups. Portal security services allow you to specify
access control programmatically and check for the appropriate privileges at runtime.
The security mechanisms used by portlets ensure that only authorized users gain
access to these portlets. These security services are available through the wwsec_api
package.

Portlet security is invoked when a portlet is displayed on a portal page and when a
portlet is returned in a portlet list by the get_portlet_list function for database
providers. Security services in the Portal framework have the following key features:

■ Portlet Display: Before a portlet is displayed on a page, the provider checks for
the portlet’s access privileges. The provider needs to define the is_portlet_
runnable function which calls the portlet's is_runnable function to check
access privileges.

■ User Group: You can find which default group a user belongs to by using the
wwsec_api.get_defaultgroup function.

■ Check Privileges: You can find whether a user/group has the required privileges
to customize a portlet by using the wwsec_api.has_privilege function.

■ Highest Privilege: You can find the highest available privilege of a user across all
groups by using the wwsec_api.get_privilege_level function.

■ Accessible Objects: You can find all the objects to which a user has access, given a
privilege level, by using the wwsec_api.accessible_objects function. You
can find other similar associated functions in the API documentation. The API
Reference can be found on Portal Center
(http://www.oracle.com/technology/products/ias/portal/index.h
tml) or, if you downloaded PDK-PL/SQL (pdkplsql.zip), in
..\pdkplsql\pdk\plsql\doc.

6.7.1 Using Security
To implement PL/SQL portlet security, the portal requires the function is_portlet_
runnable be implemented by database providers. The actual implementation of this
function is up to the application; that is, the security scheme that determines whether
the current user has enough privileges to access the portlet is defined by the individual
portlet implementation. The portal also requires the function get_portlet_list for
database providers to return the set of portlets that are accessible by the current user.

6.7.1.1 Guidelines for Using the Security APIs
The portlet security mechanism may use the context and security subsystem APIs and
infrastructure. The context APIs can be used to retrieve information about the current
user. The security subsystem can be used to check the privileges of the current user.

Implementing Portlet Security

6-28 Oracle Application Server Portal Developer’s Guide

While using these APIs, keep in mind the following:

■ Only authorized users should be able to see your portlet in the Add Portlet dialog.
This objective can be accomplished by implementing the is_portlet_
runnable function in the provider. You can also allow public access to your
portlet.

■ If a portlet does not want to render itself to a user, it should return no HTML or
return an exception that the page engine will ignore. It should not return an error
message. Doing so adds unnecessarily to the error stack, which has its limits. Refer
to Section 6.9, "Implementing Error Handling" for more information.

■ Portlet security allows the portlet to perform a runtime security check to ensure
that the current user has the necessary authorization to access the portlet.

■ When a portlet is rendered in Show mode, it may call the is_runnable method
for database providers to determine whether the portlet should be displayed for
the currently logged on user. The portal does not make the call to this function
directly. It is not a requirement, however, for the portlet to make this call. The
portlet should make this call in its Show mode only if it implements portlet
security.

■ The result of the call to is_runnable determines whether the portlet is actually
displayed. If the result is true, the portlet displays, otherwise it does not display.
The portlet is rendered in Show mode when it is displayed in a portal page.

■ When a portlet is returned in a portlet list by a call to the provider function get_
portlet_list, the value of the p_security_level parameter determines the
purpose of the function call. When the call is made from the Portlet Repository
refresh operation in order to retrieve the master list of portlets that the provider
implements, the parameter p_security_level has a value of false. This
setting indicates to the provider that no portlet security check should be made and
a master list of all the portlets that the provider implements must be returned. The
master list of portlets returned in this case is used to populate the Portlet
Repository for that provider.

■ If the value of p_security_level is true, then it is up to the provider
implementation to decide whether portlet security should be performed. If portlet
security is implemented, the provider may return a different list of portlets
depending on the current user.

■ When the Portlet Repository is displayed, OracleAS Portal calls the is_portlet_
runnable function for database providers for each of the portlets that exist in the
Portlet Repository. This step is done to display only the portlets that the currently
logged on user is authorized to see. One example where the Portlet Repository is
displayed is in the Add Portlets dialog.

6.7.2 Coding Security
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can implement security. You can

Note: For more information on the context and security subsystem
APIs, see the PL/SQL API Reference. The API Reference can be found
on Portal Center
(http://www.oracle.com/technology/products/ias/porta
l/index.html) or, if you downloaded PDK-PL/SQL
(pdkplsql.zip), in ..\pdkplsql\pdk\plsql\doc.

Implementing Portlet Security

Building PL/SQL Portlets 6-29

browse through this example as follows to see how the security functions are
implemented in a portlet:

1. Open the services_provider.pkb file in an editor.

2. Find the is_portlet_runnable function. This function calls the security
implementation through the portlet's is_runnable function to check portlet
access privileges.

function is_portlet_runnable
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
return boolean
is
begin
 if (p_portlet_instance.portlet_id = SERVICES_PORTLET_ID) then
 return services_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 else
 raise wwpro_api_provider.PORTLET_NOT_FOUND_EXCEPTION;
 end if;
end is_portlet_runnable;

3. Find the get_portlet_list procedure. get_portlet_list allows the portlet
to be included in the list of portlets implemented by this provider. get_portlet_
list first checks the security flag (p_security_level) to find out whether
security is enabled. If the flag is set to true, get_portlet_list uses is_
runnable to check whether the portlet is accessible. The value of the p_
security_level parameter indicates whether to perform security checks before
returning a portlet in the list. When a portlet repository refresh operation retrieves
the master list of portlets implemented by the provider, p_security_level has
a value of false. A value of false means the provider need not perform a
security check and that a master list of all of the portlets implemented by the
provider must be returned. The master list of portlets returned is used to populate
the portlet repository for that provider. If the value of p_security_level is
true, then the provider implementation decides whether to perform portlet
security checks. If portlet security is implemented, the provider may return a
different list of portlets depending on the currently logged on user.

function get_portlet_list
...
 if (p_security_level = false) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => SERVICES_PORTLET_ID
 ,p_language => p_language
);
 else
 if (services_portlet.is_runnable(
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => SERVICES_PORTLET_ID

Implementing Portlet Security

6-30 Oracle Application Server Portal Developer’s Guide

 ,p_language => p_language
);
 end if;
...
end get_portlet_list;

4. Open the services_portlet.pkb file in an editor.

5. Find the show procedure. Before displaying a portlet, the show procedure runs a
security check to determine whether the current user is allowed to see the portlet.

procedure show
...
 -- Perform a security check
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 wwerr_api_error.add(
 DOMAIN, SUBDOMAIN,
 'securityerr', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;
...
end show;

6. Find the is_runnable function. is_runnable is the place where you
implement your security checks. In this example, the security check is quite
simple. If the user is logged on (that is, not in a public session), then the function
returns true and the portlet is displayed to the user. For your own purposes, you
could, of course, code much more complex security checks in the is_runnable
function.

function is_runnable
(
 p_provider_id in integer
 ,p_reference_path in varchar2
)
return boolean
is
begin
 --
 -- Portlet security check. It allows the portlet to be visible
 -- if the user is logged on (that is, the current session is not a
 -- public session).
 --
 return wwctx_api.is_logged_on;
end is_runnable;

7. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

8. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

Improving Portlet Performance with Caching

Building PL/SQL Portlets 6-31

6.8 Improving Portlet Performance with Caching
OracleAS Portal provides for the caching of PL/SQL portlets. This functionality
permits PL/SQL portlets to cache their Web content on the middle tier. Subsequent
requests for the content may be retrieved from the cache, with or without validation
from the database, decreasing the database workload.

OracleAS Portal provides three types of caching for your PL/SQL portlets:

■ Validation-based caching compares a key value to check whether the contents of
the cache are still valid. If the key value does not change, it uses the cached
content. Otherwise, it makes a round trip to the portal node to fetch the portlet
content.

■ Expiry-based caching uses a given expiration period for the contents of the cache
when rendering the portlet. This form of caching is useful for content that changes
infrequently or at very regular intervals (for example, every day at the close of
business).

■ Invalidation-based caching is the most complex form of caching but also the most
flexible. The objects in OracleAS Web Cache are considered valid as long as they
are not invalidated explicitly. You can also combine invalidation-based caching
with either expiry-based or validation-based caching.

Because OracleAS Portal supports user customization of pages and portlets, the view
of a page can vary from one user to another. OracleAS Portal’s caching is designed to
allow content to vary on a per-user basis, even if the URL is the same across all users.
Therefore, portal objects can be cached at either the user level or the system level:

■ User-level caching is for a specific user. The cache entries are unique for that user
and cannot be accessed by other users.

■ System-level caching is for all users. One cache entry is used for all users.
Examples of content that might be suitable for system-level caching are page
banners and news portlets.

When a database provider issues a request for a portlet, the request is sent to the
portlets’s show procedure. This procedure accepts the portlet_runtime_record as
a parameter. This record structure contains fields that can be examined and set by the
portlet to enable caching. The caching control fields of this record are:

■ caching_key: This value is communicated in the ETAG header for this request
and returned back to the portlet provider in subsequent requests. Setting this field
enables validation-based caching.

■ caching_period: This field enables expiry-based caching. The value is the
number of minutes the content should be held in the cache. This mode overrides
validation-based caching. If a value is set for this field, then the caching_key
field is ignored.

■ caching_level: This field defines whether the content is meant for general use
or for a specific user. The valid values are SYSTEM and USER.

6.8.1 Using Caching
The general model for working with portlet caching varies according to the type of
caching you choose. To a great extent, the type of caching you choose depends on the
portlet content. If the portlet content changes at fairly regular intervals (for example, at
the close of business every day), then it probably makes sense to use expiry-based
caching. If the portlet content changes at irregular intervals, then validation- or
invalidation-based caching is probably best.

Improving Portlet Performance with Caching

6-32 Oracle Application Server Portal Developer’s Guide

6.8.1.1 Validation-Based Caching
If you choose validation-based caching, the general model is as follows:

1. Set the caching_key field of the portlet_runtime_record parameter. Add a
check to compare the value of the current key with the value of the caching_key
field of the portlet_runtime_record parameter. Note that the first time the
show procedure is called, the key is null and its value must be set.

2. Determine whether you want to use system or user level caching. Set the
caching_level field of the portlet_runtime_record parameter
accordingly.

6.8.1.2 Expiry-Based Caching
If you choose expiry-based caching, the general model is as follows:

1. Set the caching_period field of the portlet_runtime_record parameter to
the desired interval for the cache (in minutes).

2. Determine whether you want to use system or user level caching. Set the
caching_level field of the portlet_runtime_record parameter
accordingly.

6.8.1.3 Invalidation-Based Caching
If you choose invalidation-based caching, the general model is as follows:

1. Indicate to OracleAS Portal that it must generate specific headers for OracleAS
Web Cache by calling wwpro_api_provider.USE_INVALIDATION.

2. Determine whether you want to use system or user level caching. Set the
caching_level field of the portlet_runtime_record parameter
accordingly.

3. Optionally, set up validation- or expiry-based caching as well.

4. Add invalidation logic to your portlet where needed (for example, when the
portlet is customized) and make appropriate calls to wwpro_api_
invalidation.

6.8.2 Configuring and Monitoring the Cache
The Oracle Application Server Portal Configuration Guide describes how to configure
caching as well as how to monitor and tune performance.

6.8.3 Implementing Validation-Based Caching
The caching example, located in ..\pdkplsql\pdk\plsql\cache in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement validation and expiry-based
caching. You can browse through this example as follows to see how the
validation-based functions are implemented in a portlet:

1. Open the validcache_portlet.pkb file in an editor.

2. At the very top of the file, notice the aliases for the caching level constants.

CREATE OR REPLACE
package body VALIDCACHE_PORTLET
is
 -- Caching Constants
 CACHE_LEVEL_SYSTEM constant varchar2(10) := 'SYSTEM';
 CACHE_LEVEL_USER constant varchar2(10) := 'USER';

Improving Portlet Performance with Caching

Building PL/SQL Portlets 6-33

3. Find the show procedure. Notice first that the p_portlet_record is an in and
out parameter for this procedure.

procedure show
(
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)

4. In the procedure’s security check, the caching fields of p_portlet_record are
set to null if the security check fails.

begin
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 -- Set it to null so that cache does not get used even if exists
 p_portlet_record.caching_level := null;
 p_portlet_record.caching_key := null;
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;

5. After that, the procedure calls the get_cache_key function to get the cache key’s
value and assign it to a temporary value:

 --
 -- CACHE IS VALID?
 --
 l_cache_key := get_cache_key();

6. Find the get_cache_key function, which is referenced from the show procedure.
This function generates a key for the portlet. You can implement your own logic
here based upon your portlet’s requirements.

function get_cache_key
return varchar2
is
 l_date date;
begin
 select sysdate into l_date from dual;
 return trim(substr(to_char(l_date, 'YYYY:MM:DD:HH:MI:SS'),1,18));
exception
 when others then
 null;
end get_cache_key;

7. Now return to the show procedure. Notice how the code checks your portlet_
runtime_record parameter for the current values of the caching_key and the
caching_level. This same piece of code can compare your caching_key
values.

 if p_portlet_record.caching_level = CACHE_LEVEL_SYSTEM then
 if l_cache_key is not null then
 -- Cache exists for the user, overwrite it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_key := l_cache_key;
 else
 return; -- System cache is still valid.
 end if;
 elsif p_portlet_record.caching_level = CACHE_LEVEL_USER then

Improving Portlet Performance with Caching

6-34 Oracle Application Server Portal Developer’s Guide

 if p_portlet_record.caching_key != l_cache_key then
 -- cache has expired. reset it
 p_portlet_record.caching_key := l_cache_key;
 else
 return; -- User cache is good as gold
 end if;
 elsif p_portlet_record.caching_level is null then
 if p_portlet_record.caching_key is not null then
 -- Cache does not exists for the user, create it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_key := l_cache_key;
 else
 -- Define a sytem cache. This can happen only once!
 -- the first time the portlet is rendered.
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_key := 'MY_INITIAL_CACHE_KEY';
 end if;
 else
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_key := 'MY_INITIAL_CACHE_KEY';
 end if;

8. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

9. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.8.4 Implementing Expiry-Based Caching
The caching example, located in ..\pdkplsql\pdk\plsql\cache in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement expiry-based caching. You can
browse through this example as follows to see how the expiry-based functions are
implemented in a portlet:

1. Open the expirycache_portlet.pkb file in an editor.

2. At the very top of the file, notice the aliases for the caching level constants.

CREATE OR REPLACE
package body VALIDCACHE_PORTLET
is
 -- Caching Constants
 CACHE_LEVEL_SYSTEM constant varchar2(10) := 'SYSTEM';
 CACHE_LEVEL_USER constant varchar2(10) := 'USER';

3. Find the show procedure. Notice first that the p_portlet_record is an in and
out parameter for this procedure.

procedure show
(
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)

4. In the procedure’s security check, the caching fields of p_portlet_record are
set to null if the security check fails.

begin
 if (not is_runnable(

Improving Portlet Performance with Caching

Building PL/SQL Portlets 6-35

 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 -- Set it to null so that cache does not get used even if exists
 p_portlet_record.caching_level := null;
 p_portlet_record.caching_key := null;
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;

5. After that, the procedure sets the value of the caching period in minutes in a
temporary variable. The get_cache_key function to get the cache key’s value
and assign it to a temporary value:

 -- Set the Caching Period to one minute
 l_cache_period := 1;

6. Next, notice how the code checks your portlet_runtime_record parameter
for the current values of the caching_period and sets the caching_period
accordingly. This same piece of code can compare your caching_period values.

 if p_portlet_record.caching_level = CACHE_LEVEL_SYSTEM then
 -- Cache does not exists for the user, create it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_period := l_cache_period;
 elsif p_portlet_record.caching_level = CACHE_LEVEL_USER then
 -- Cache exists for the user, overwrite it
 p_portlet_record.caching_period := l_cache_period;
 elsif p_portlet_record.caching_level is null then
 if p_portlet_record.caching_period is not null then
 -- Cache does not exists for the user, create it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_period := l_cache_period;
 else
 -- Define a sytem cache. This can happen only once!
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_period := l_cache_period;
 end if;
 else -- p_portlet_record.caching_level value is messed up!
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_period := l_cache_period;
 end if;

7. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

8. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.8.5 Implementing Invalidation-Based Caching
Suppose you have a portlet that displays a map of the world, map_portlet.pkb and
map_portlet.pks. You would go about adding invalidation-based functions to it as
follows:

1. In the show procedure, you need to add a call to wwpro_api_provider.use_
invalidation. This call indicates to OracleAS Portal that the portlet content
should be cached by OracleAS Web Cache. Note that we have also specified that

Improving Portlet Performance with Caching

6-36 Oracle Application Server Portal Developer’s Guide

the content be cached at the user level and that expiry-based caching be used as
well (that is, an expiration interval of one minute has been set).

procedure show
...
 if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
 p_portlet_record.caching_invalidation :=
 wwpro_api_provider.use_invalidation;
 p_portlet_record.caching_level := 'USER';
 p_portlet_record.caching_period := 1;
...

2. Create a procedure in your map_portlet.pkb file that invalidates the cache. For
example:

procedure map_invalidation
(
p_provider_id in number,
p_portlet_id in number,
p_instance_id in varchar2,
p_page_url in varchar2
)
is
begin
 wwpro_api_invalidation.invalidate_by_instance
 (p_provider_id => p_provider_id,
 p_portlet_id => p_portlet_id,
 p_instance_id => p_instance_id,
 p_user => wwctx_api.get_user);
 owa_util.redirect_url(p_page_url);
end map_invalidation;

3. In the show procedure, add a link for refreshing the portlet before the code that
draws the map. For example:

/* Draw the Refresh Me link */
htp.anchor(
 curl => wwctx_api.get_user||
 '.map_invalidation?p_provider_id='||p_portlet_record.provider_id||
 '&p_portlet_id='||p_portlet_record.portlet_id||
 '&p_instance_id='||p_portlet_record.reference_path||
 '&p_page_url='||utl_url.escape(
 url => p_portlet_record.page_url,
 escape_reserved_chars => TRUE),
 ctext => wwui_api_portlet.portlet_text(
 p_string =>'Refresh Me',
 p_level => 1)
);

4. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

5. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

Implementing Error Handling

Building PL/SQL Portlets 6-37

6.9 Implementing Error Handling
OracleAS Portal provides the capability for you to trap erroneous input and return
meaningful error messages. It manages the internal error stack by tracking the raised
exceptions and retaining information about them. OracleAS Portal also includes a set
of APIs for presenting errors in a standardized way.

Error handling services are available through the wwerr_api_error and wwerr_
api_error_ui packages. These error handling services include the following key
features:

■ Error stack. OracleAS Portal uses an error stack to keep track of the error
messages. When an error occurs, the error message is pushed onto an error stack.
Whenever procedures or function calls are nested, the error stack keeps track of all
the error messages. You can choose to retrieve only the top error (or most recent
error) by using the wwerr_api_error.get_top method. Alternatively, you can
get all the error messages on the stack using the wwerr_api_error.get_
errors function. The stack can also be checked for the presence of any errors by
calling the wwerr_api_error.is_empty function.

■ Error messages. Error handling services provide a way to define meaningful error
messages. To define your own error messages, you need to define its name space.
The name space consists of the following:

– Name is the error name.

– Domain is the area of the product where the error occurred.

– Subdomain is the subsystem where the error occurred.

– Context is the name of the function where the error occurred.

The name space uniquely identifies your error message. If it does not do so, a
wwc-0000 error message is generated.

The default domains include the portal (WWC), application (WWV), and page groups
(WWS). Each domain is further classified into subdomains, which define the object
types. The portal domain includes the portlet, page, and document object types.
The application domain includes object types such as forms, menus, reports, and
charts. The page group domain includes object types such as folders, items,
categories, and perspectives. If you need to define an error that does not fall
within these classifications, you can define your own domain with subdomains for
your errors.

■ Message parameters. The other language strings that you create for your errors
can take substitution parameters for your messages. The p1, p2, p3... parameters
can be used to pass substitution parameters to the error messages. For example,
for this string:

(domain='yahoo', subdomain='provider', name='generalerror', string='Error: %1')

an error can be added as follows:

wwerr_api_error.add(p_domain=>'yahoo', p_sub_domain=>'provider',
 p_name=>'generalerror', p_context=>'yahoo.show', p1=> sqlerrm);

■ Error display. The wwerr_api_error_ui package provides a means to generate
a standard user interface for displaying the errors in OracleAS Portal. The error
messages can be displayed in two different ways:

Implementing Error Handling

6-38 Oracle Application Server Portal Developer’s Guide

– Full screen user interface: These error messages are displayed in a full screen
mode. You may want to display full screen errors when the system encounters
fatal or show-stopper errors.

– Inline user interface: These error messages are displayed within the current
page itself. You may use inline errors for minor errors or warnings.

Additionally, you can choose the output format of the display (HTML, XML, or
ASCII text).

6.9.1 Using Error Handling
In general, you set up error handling as follows:

1. On detecting error conditions, add the error message, with an appropriate domain
and sub-domain combination, to the stack using the wwerr_api_error.add
procedure.

2. When necessary (for example, at the end of a routine), expose the error messages
using the wwerr_api_error_ui procedures. To display full screen messages,
use the procedures show_html, show_xml, or show_text depending on your
preferred output type. To display inline messages, use the procedures show_
inline_html, show_inline_xml, or show_inline_text, depending on the
output type you desire.

6.9.1.1 Guidelines for Error Handling
While implementing error handling, keep in mind the following:

■ While defining your own error messages, use your own error domain for these
messages. Never use the WWC, WWV, or WWS domain for your error messages. You
will need to write a small loader script to load these into the other language tables.

■ Avoid unnecessary error messages. If you do not want to do anything in a
function, just return null rather than an error. For example, suppose you are
coding a copy_portlet procedure for your portlet because the provider calls it
for all of its other portlets. If you do not wish the copy_portlet procedure for
this particular portlet to do anything, then simply have it return null. If you
return errors, it will unnecessarily disrupt the portlet functionality.

■ A maximum of ten error messages is kept on the stack. Beyond ten, messages are
ignored when a call to wwerr_api_error.add is made.

■ Use the API as a programmatic way of finding the problem. You can use the
non-user-interface format for this purpose. For example, when programmatically
registering a provider, the exception block can use get_text_stack to get the
error messages and print them. This approach helps when debugging calls to
public APIs since all of them add errors to the stack for exceptions.

■ Remember to seed the other language strings for your error messages. For more
information, refer to Section 6.11, "Writing Multi-Lingual Portlets".

■ The standard user interface for error messages provides a navigation link back to
the previous page. It also includes a Help icon for the specified help URL.

6.9.2 Adding Error Handling
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can implement error handling.
You can browse through this example as follows to see how the error handling
functions are implemented in a portlet:

Implementing Error Handling

Building PL/SQL Portlets 6-39

1. Open the services_portlet.pkb file in an editor.

2. The domain and subdomain definitions for your error messages are provided with
aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

3. Find the show procedure. This procedure performs a security check and, if an
error condition arises, it calls wwerr_api_error.add to push the securityerr
error message onto the stack.

procedure show
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
...
begin
 -- Perform a security check
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 wwerr_api_error.add(
 DOMAIN, SUBDOMAIN,
 'securityerr', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;

4. The show procedure also checks for any other kind of execution mode and
generates an appropriate error message for an invalid display mode.

if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
...
elsif (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW_EDIT)
...
else
 wwerr_api_error.add(DOMAIN, SUBDOMAIN,
 'invaliddispmode', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_EXECUTION_EXCEPTION;
end if;

5. Lastly, the show procedure implements a general error message in the exception
handler to catch any errors not trapped by the preceding conditions.

exception
 when others then
 wwerr_api_error.add(
 DOMAIN, SUBDOMAIN,
 'generalerr', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_EXECUTION_EXCEPTION;
end show;

6. Error handling is also implemented in the save_prefs and save_default_
prefs procedures. They check whether the error stack is empty and, if it is not,
the portlet makes a call to wwerr_api_error.show_html to display the error in
full screen mode.

Implementing Event Logging

6-40 Oracle Application Server Portal Developer’s Guide

exception
 when INVALID_TEXT_EXCEPTION then
 l_information := l_user||'%'||l_time
 ||'%INVALID_TEXT_EXCEPTION%'||p_string;
 l_action := LOG_FAILED;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => 0,
 p_elapsed_time=> l_elapsed_time);
 wwerr_api_error.add(DOMAIN, SUBDOMAIN,
 'invalid_text', 'services_portlet.save_prefs');
 if (not wwerr_api_error.is_empty) then
 wwerr_api_error_ui.show_html;
 end if;
end save_prefs;

7. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

8. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.10 Implementing Event Logging
OracleAS Portal can log events that occur during transactions with its objects. It stores
these logs in the database, which makes them available through standard SQL calls
and reporting tools.

You can choose the events you would like to log and organize them categorically
based on user-defined domains and subdomains. For the logged events, you can view
information about the event, the time the event started and stopped, the host or IP
address of the remote user, the browser type, and the language.

Event logging services are available through the wwlog_api and wwlog_api_admin
packages. These services include the following key features:

■ Event logs are useful for tracking specific usage of the portal. To track such
information, you create a log event. Log events require a name space that consists
of:

– Name is the event name.

– Domain is the area of the product where the event occurred.

– Subdomain is the subsystem that generated the event.

The default domains include the portal (WWC), application (WWV), and page group
(WWS). Each domain is further classified into subdomains which define the object
types. The portal domain includes the portlet, page, and document object types.
The application domain includes object types such as forms, menus, reports, and
charts. The page group domain includes object types such as folders, items,
categories, and perspectives. Events themselves could be of types such as add,
delete, customize, hide, copy, execute, and export. If you need to define an event
that does not fall within these classifications, you can define your own domain
with subdomains for your events.

Implementing Event Logging

Building PL/SQL Portlets 6-41

■ Logs can track information in two different ways:

– Interval logging calculates the elapsed time for the action performed (for
example, the time taken to render a portlet).

– Event logging logs the occurrence of a single step event you care about (for
example, whenever a user customizes a portlet).

■ Log switching enables you to set a switch interval that defines how long you want
to maintain your existing log records. The log information stored in the database
uses two different tables. The log records are purged based on the value entered
for the Activity Log Interval in the Configuration tab of Global Settings
(accessible from the Services portlet in the Administer > Portal tab). When the log
interval (in days) is reached, the logging switches between the two logging tables
in the database (for example, A and B). Logs first go into A. When the log interval
is reached the first time, the logs are written to B. When the log interval is reached
again, the logs go back to A. A is emptied in preparation to store the new log
records. If you set your log interval to 14 (the default setting), the logs will switch
every 14 days, thus preserving for you, at any point in time, records dated
between 14 and 28 days old.

6.10.1 Using Event Logging
In general, you can set up event logging as follows:

1. Add the event object, with an appropriate domain and subdomain combination,
using wwlog_api_admin.add_log_event. Adding the event ensures that lists
of values and other user interface components invoked when the user is
monitoring the events show this new event in their lists.

2. Register the log event record by using wwlog_api_admin.add_log_registry.
The log registry record represents the events you want to log in the future and
provides a means to filter the events that need to be logged.

3. Use start_log and stop_log to mark the events you want to log in your code.
Alternatively, for entering single step event log information, just call the log
method to mark that event.

6.10.1.1 Guidelines for Event Logging
While implementing event logging, keep in mind the following:

■ Log only what you really care about to improve performance. You don't want to
flood the system with log messages about which you do not care. If events are
logged in Show mode, then multiple instances of these portlets mean additional
hits to the database.

■ Choose your domain, subdomain, and log events carefully. While using the log
APIs, do not use the OracleAS Portal domains like WWC, WWV, or WWS for your log
messages. Organize your domains and subdomains hierarchically ensuring that
they are unique across portlets. If other portlets happen to use the same domains
or subdomains, you will see those log messages interspersed with your own.

■ Create log events that show up in the pop-up lists of values monitoring the logs.
You can simply create log registry records that filter the events that would be
actually logged, either by specifying particular events or using the generic filters
with wild cards (%). Apart from creating log registry records, we recommend that
you create log events for events that you want to monitor. This way the lists of
values in the user interface show these records for additional functions like
monitoring.

Implementing Event Logging

6-42 Oracle Application Server Portal Developer’s Guide

■ Provide required privileges to users or user groups who need to monitor the logs.
Any logs created by a user can be viewed by that user, the Portal Administrator,
and any user with the Edit privilege on the ANY_LOGS object type.

6.10.2 Adding Event Logging
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can implement event logging.
You can browse through this example as follows to see how the event logging
functions are implemented in a portlet:

1. Open the services_portlet.pkb file in an editor.

2. The domain and subdomain definitions for your log messages are provided with
aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

3. Find the save_prefs procedure. This procedure provides customizable
functionality where you can personalize text and the portlet title in Edit mode.
save_prefs stores these customizations in the database. While saving the
changes, it is advisable to log them. Hence, this procedure provides an ideal
example of implementing the logging service. A single step event is logged using
wwlog_api.log. The first instance of wwlog_api.log logs the event of
personalizing text. The second instance logs the event of personalizing the portlet
title.

procedure save_prefs
...
begin
...
 if (l_prefs.string_id is null or to_number(l_prefs.string_id) = 0)
 then
 l_action := LOG_INSERT;
...
 else -- string exists in at least one language so update it
 l_action := LOG_UPDATE;
...
 end if;
-- Log this transaction
l_information := l_user||'%'||l_time||'%completed%'||p_string;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => l_row_count,
 p_elapsed_time=> l_elapsed_time);
...
 if (l_prefs.title_id is null or to_number(l_prefs.title_id) = 0)
 then
 l_action := LOG_INSERT;
...
 else
 l_action := LOG_UPDATE;

Writing Multi-Lingual Portlets

Building PL/SQL Portlets 6-43

...
-- Log this transaction
 l_information := l_user||'%'||l_time||'%completed%'||p_title;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => l_row_count,
 p_elapsed_time=> l_elapsed_time);
...
end save_prefs;

4. The save_prefs procedure also logs an event with wwlog_api.log when an
exception occurs.

exception
 when INVALID_TEXT_EXCEPTION then
 l_information := l_user||'%'||l_time
 ||'%INVALID_TEXT_EXCEPTION%'||p_string;
 l_action := LOG_FAILED;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => 0,
 p_elapsed_time=> l_elapsed_time);
...

5. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

6. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

6.11 Writing Multi-Lingual Portlets
OracleAS Portal has a robust set of APIs for interacting with OracleAS Portal
multi-lingual storage facility. This storage facility provides a mechanism for the storing
and retrieving of strings in different languages. These APIs abstract the native
multi-lingual functionality and provide developers with a powerful storage
mechanism for developing providers that support different language environments.

Multi-lingual services are available through the wwnls_api package. These services
include the following key features:

■ The multi-lingual APIs enable the provider to load several translations for the
strings displayed in their portlets. Once the strings have been loaded, the provider
can call the APIs to retrieve the strings from the multi-lingual table as needed.

■ Context APIs retrieve the user’s language and the appropriate translation for that
language. The Context APIs determine the user’s language environment from the
language setting in the browser. When a requested translation does not exist, the
APIs return the base language translation.

Writing Multi-Lingual Portlets

6-44 Oracle Application Server Portal Developer’s Guide

For example, assume that the provider's register procedure loads US and French
translations for the portlet title. When the portlet is rendered, the provider
implementation retrieves the portlet title string from the table and displays the
following results:

■ A request for a French string causes the portlet title to appear in French.

■ A request for a US string causes the portlet title to appear in US English.

■ A request for a Chinese string causes the portlet title to appear in US English
because we did not load a translation for the Chinese language.

6.11.1 Using Multi-Lingual Support
In general, you can set up multi-lingual support as follows:

1. Load your string definitions into the database using the string equivalents for each
language you intend to use. For this purpose, call the wwnls_api.add_string
or wwnls_api.set_string with an appropriate domain, subdomain, error
message name, and error text combination.

2. Retrieve the strings you require with wwnls_api.get_string for the language
that you desire.

6.11.2 Adding Multi-Lingual Support
To add multi-lingual support, you need to perform the following tasks:

■ Loading Language Strings

■ Retrieving Language Strings

6.11.2.1 Loading Language Strings
Language strings can be loaded by a script that is part of the provider installation. This
script calls add_string and set_string to create equivalent strings for different
languages.

OracleAS Portal uniquely identifies language strings using a combination of domain,
subdomain, and name. The domain and subdomain provide a way to categorize the
strings. The domain and subdomain should be unique enough to reasonably preclude
conflicts with other users of the APIs.

■ A domain is a particular area of the product. An example of a domain could be
provider or page group.

■ A subdomain is a subsystem of the domain. For example, the subdomain could be
the provider name (for example, HelloProvider) or subpage name (for
example, HelloPage).

The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement multi-lingual support. You can
browse through this example as follows to see how to load strings for multi-lingual
support:

1. Open the services_seed.sql file in an editor.

2. Notice the add_string call with the parameters for domain name, subdomain
name, string name, language, and the actual string text. It returns the String ID for
the language string. For setting equivalent strings in other languages, set_
string is called with the same parameters.

set serveroutput on size 1000000

Writing Multi-Lingual Portlets

Building PL/SQL Portlets 6-45

set define off

declare
 l_string_id integer;
 l_person_id integer;
 l_group_id integer;
begin
...
-- strings for portlet record fields
l_string_id := wwnls_api.add_string(
 'provider','services','ptldefname','us','DatabaseServicesPortlet');
wwnls_api.set_string(
 'provider','services','ptldefname','d','DatenbankServicesPortlet-d');
l_string_id := wwnls_api.add_string(
 'provider','services','ptldeftitle','us','Database Services Portlet');
wwnls_api.set_string(
 'provider','services','ptldeftitle','d','Datenbank Services Portlet - d');
l_string_id := wwnls_api.add_string(
 'provider','services','ptldefdesc','us','This is the database services
portlet implemented in PL/SQL. It displays 6 show modes.');
wwnls_api.set_string(
 'provider','services','ptldefdesc','d','Dies ist das Datenbank Service
Portlet, erstellt in PL/SQL. Es stellt 6 Anzeigemodi dar. - d');
l_string_id := wwnls_api.add_string(
 'provider','services','ptldevtmmsg','us','Web Services Portlet Timed
Out.');
wwnls_api.set_string(
 ’provider','services','ptldevtmmsg','d','Zeitüeberschreitung aufgetreten
in Web Services Portlet. -d');

6.11.2.2 Retrieving Language Strings
The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement multi-lingual support. You can
browse through this example as follows to see how to retrieve strings for multi-lingual
support:

1. Open the services_portlet.pkb file in an editor.

2. The domain and subdomain definitions for your language strings are provided
with aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

3. Find the get_portlet_info procedure. Notice the calls to wwnls_api.get_
string to populate the portlet title, name, and description.

function get_portlet_info
(
 p_provider_id in integer
 ,p_language in varchar2
)
return wwpro_api_provider.portlet_record
is
 l_portlet wwpro_api_provider.portlet_record;
begin
 l_portlet.id := services_provider.SERVICES_PORTLET_ID;

Writing Multi-Lingual Portlets

6-46 Oracle Application Server Portal Developer’s Guide

 l_portlet.provider_id := p_provider_id;
 l_portlet.language := p_language;
 l_portlet.title :=
 wwnls_api.get_string(
 p_domain => DOMAIN
 ,p_sub_domain => SUBDOMAIN
 ,p_name => 'ptldeftitle'
 ,p_language => p_language
);
 l_portlet.description :=
 wwnls_api.get_string(
 p_domain => DOMAIN
 ,p_sub_domain => SUBDOMAIN
 ,p_name => 'ptldefdesc'
 ,p_language => p_language
);
 l_portlet.name :=
 wwnls_api.get_string(
 p_domain => DOMAIN
 ,p_sub_domain => SUBDOMAIN
 ,p_name => 'ptldefname'
 ,p_language => p_language
);
...

4. Browse the rest of the file to examine other usage examples ofwwnls_api.get_
string, which is used in several other places in services_portlet.pkb.

5. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 6.3.2, "Implementing the
Provider Package" for information on how to add it.

6. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Section 7.6.2, "Adding
Portlets," of the Oracle Application Server Portal User’s Guide.

Part IV
Appendixes

Part IV contains the following appendixes:

■ Appendix A, "Building Portlets with the Portlet Builder"

■ Appendix B, "Troubleshooting OracleAS Portal"

Building Portlets with the Portlet Builder A-1

A
Building Portlets with the Portlet Builder

For developers who want quick solutions for building components, OracleAS Portal
provides the Portlet Builder. The Portlet Builder wizards guide you step-by-step
through the process of creating a portlet. The wizards enable even the novice business
developer to begin creating portlets right away.

After answering a few basic questions, you can decide whether to continue with the
wizard or to create the portlet based on information already collected. A Finish button
appears as soon as the wizard has collected enough information, allowing you to
create the portlet without having to traverse all the wizard’s pages. When you’re ready
for other users to run the portlet, you need only assign portlet access privileges,
publish the portlet, and add it to a page.

This appendix describes the process of creating a portlet through a wizard and steps
you through creating, editing, managing, and running different types of portlets. It
contains the following sections:

■ Using a Wizard to Build a Portlet

■ Editing a Portlet Builder Component

■ Managing Portlets

■ Managing Versions

■ Managing Portlet Security

■ Performing Test Runs on a Portlet

■ Referencing the OracleAS Portal Schema

■ Coding Additional Functionality

■ Using Shared Components to Create a Look and Feel

■ Example: Building Charts and Reports

A.1 Using a Wizard to Build a Portlet
Portlets must be built under the ownership of a provider. This means that before you
can build a portlet, you must first create a provider—or select an existing provider—to
host (own or contain) the portlet. If you’re creating a new provider, you may first want
to create a schema against which to build the provider.

Although every portlet you create using OracleAS Portal requires that you build it
under the ownership of a provider, it is not necessary that you build a provider each
time you build a portlet. In fact, you can use an existing provider, or create one
dedicated to the ownership of your locally built portlets, and then never have to create
another provider again.

Using a Wizard to Build a Portlet

A-2 Oracle Application Server Portal Developer’s Guide

One provider can be used as a container that manages multiple portlets. A good rule is
to use one provider per logical application, for example, a Human Resources
application that consists of reports, forms, and charts.

This section steps you through the process of creating a schema, creating a provider,
and building a portlet under the ownership of that provider in OracleAS Portal. It
includes the following subsections:

■ Creating a Schema in OracleAS Portal

■ Creating a Provider for Locally Built Portlets

■ Creating Portlets Using OracleAS Portal Wizards

A.1.1 Creating a Schema in OracleAS Portal
A schema is an Oracle database user account under the ownership of which you can
store database objects, applications, and components and control the schema’s
database privileges. Use a Portal schema to enforce password access to the schema, to
set aside tablespace specifically for your locally built portlets, and to identify the
temporary tablespace the schema should use.

Creating a schema involves three main tasks:

■ Creating a Schema

■ Granting and Revoking Privileges on Database Objects

■ Enrolling the Schema in One or More Roles

This section steps you through each of these tasks.

A.1.1.1 Creating a Schema
To create a schema in OracleAS Portal:
1. Log in to OracleAS Portal.

2. Click the Navigator link at the top of the page.

3. In the Navigator, click the Database Objects tab to bring it forward.

4. At the top of the page, click the Schema link next to Create New… (Figure A–1)

Figure A–1 The Schema Link on the Database Objects Tab in the Portal Navigator

5. On the Create Schema page (Figure A–2), enter a name to identify the schema in
the Schema field.

The name must be unique within the portal. Blank and special characters are not
allowed in the name. Type an underscore character to add a space in a name. For
example, you can name a schema PORTLETS_SCHEMA, but not PORTLETS
SCHEMA. Additionally, you cannot name a schema PORTLETS*SCHEMA nor
PORTLETS%SCHEMA.

Building Portlets with the Portlet Builder A-3

Figure A–2 The Create Schema Page

6. In the Password field, enter the password you will assign to the schema.

Asterisks appear for each character you enter. Users will enter this password when
logging into the Oracle database as this schema.

7. Reenter the password in the Confirm Password field.

8. Select a default tablespace from the Default Tablespace list.

This will be used for storing any database objects created by the schema. We
recommend that you select a tablespace created specifically for storing locally
build portlet applications. If necessary, talk about this with your database
administrator.

9. Select a temporary tablespace from the Temporary Tablespace list.

This will be used by the schema to create temporary storage for operations such as
sorting table rows.

10. Select an Oracle resource profile for the new schema from the ORACLE Profile
list.

The default profile is DEFAULT. Feel free to use this. If you plan to create a new
profile, you must use Oracle SQL commands to do so. Refer to the Oracle database
documentation for more information. You’ll find this on the Oracle Technology
Network at http://www.oracle.com/technology/index.html.

11. Select the Use this Schema for Portal Users check box to add the schema you are
creating to the list of database schemas to which portal users can map for
administrative purposes.

Every OracleAS Portal user must be associated with a database schema. By
default, the name of this schema is <portal>_public, where <portal> is the name of
the schema in which OracleAS Portal is installed. If you select this check box, a
portal user can be mapped instead to the schema you are creating here.

12. Click Create to save your changes and return to the Portal Navigator.

Alternatively, click the link to your new schema that now appears at the top of the
page to begin editing the new schema’s properties. See "Granting and Revoking
Privileges on Database Objects" and "Enrolling the Schema in One or More Roles"
for more information.

Using a Wizard to Build a Portlet

A-4 Oracle Application Server Portal Developer’s Guide

A.1.1.2 Granting and Revoking Privileges on Database Objects
You may need to increase or limit the access your users will have on some database
objects associated with this schema. Once they are able to log in to this schema, users’
access privileges are influenced by the roles of which this schema is a member (see
"Enrolling the Schema in One or More Roles"). You can use grants to select specific
database objects and specify which of those access privileges should be further limited
or increased.

For example, imagine that you have a BASIC_USER role. This role allows users to
SELECT from all tables in the database. You may care to restrict selections on some
tables. You can use grants to select one or more database objects (such as specific
tables, views, and the like) and remove the SELECT privilege. Conversely, if a role
does not include all the access privileges you want a schema to have on one or more
database objects, you can use grants to increase access privileges.

This section describes how to further control privileges on objects associated with your
schema.

To grant privileges to database objects associated with a schema:

1. Log in to OracleAS Portal.

2. Click the Navigator link at the top of the page.

3. Click the Database Objects tab to bring it forward.

4. On the Database Objects tab, go to the Name column to locate the schema you will
work with, and click the Edit link that is next to it.

Note: By default, OracleAS Portal allows only SELECT on
database objects. Other privileges must be granted explicitly.

Note: If you have arrived at this task by clicking a link to edit the
schema that appeared at the top of the Create Schema page, skip to
step 6.

Building Portlets with the Portlet Builder A-5

Figure A–3 The Edit Link Next to a Schema in the Portal Navigator

5. On the resulting page, click the Grants tab (Figure A–4).

Figure A–4 The Grants Tab

6. In the Object field, enter the name of a database object on which you want to
control privileges.

Click the Browse icon to select from a list of objects. Prefix the name of the object
with the schema that owns it. For example, add SCOTT to EMP (SCOTT.EMP) to
indicate the EMP table in the SCOTT schema.

7. Click Add to add the object to the list at the bottom of the page.

Using a Wizard to Build a Portlet

A-6 Oracle Application Server Portal Developer’s Guide

Objects are grouped by object type. That is, tables are listed with tables, views with
views, and so on.

8. Check or clear check boxes next to the object to increase or limit the access
privileges on the object.

Figure A–5 The Check Boxes Next to a Table Object

9. Click Apply to save your changes, or click OK to save your changes and return to
the Portal Navigator.

A.1.1.3 Enrolling the Schema in One or More Roles
You will want to enroll your schema in one or more roles to provide the desired level
of overall database access privileges. If you think of a schema as a super-user, created
from a population of users who have password access to the schema, you enroll a
schema in one or more roles to provide access privileges to the database to all users
who in turn have login access to the schema.

The access privileges provided through the schema’s membership in one or more roles
can be overridden on specific database objects through grants (see "Granting and
Revoking Privileges on Database Objects").

To enroll a schema in one or more roles:

1. Log in to OracleAS Portal.

2. Click the Navigator link at the top of the page.

3. Click the Database Objects tab to bring it forward.

Note: If you have arrived at this task by clicking a link to edit the
schema that appeared at the top of the Create Schema page or if
you are continuing from editing the schema’s Main or Grants tab,
skip to step 6.

Building Portlets with the Portlet Builder A-7

4. On the Database Objects tab, go to the Name column to locate the schema you will
work with and click the Edit link that is next to it.

5. On the resulting page, click the Roles tab to bring it forward.

Figure A–6 The Roles Tab

By default, the schema is enrolled in the CONNECT role, and may be enrolled in
others.

6. Click the Browse icon next to the Role field.

7. Select a role to which you will enroll the schema.

8. Click the Add button next to the Role field to add the selected role to the Is a
Member Of list.

Continue selecting roles and clicking the Add button until you have enrolled the
schema in all desired roles.

9. Click Apply to save your changes, or click OK to save your changes and return to
the Portal Navigator.

A.1.2 Creating a Provider for Locally Built Portlets
Once you have created or identified an existing schema that will own your provider,
you are ready to create a provider to host (own or contain) your locally built portlets.

To create a provider for locally build portlets:

1. Log in to OracleAS Portal.

2. Click the Navigator link at the top of the page.

3. In the Portal Navigator, click the Providers tab to bring it forward.

4. On the Providers tab, click the Locally Built Providers link.

5. On the resulting page, click the Database Provider link next to Create New…

Using a Wizard to Build a Portlet

A-8 Oracle Application Server Portal Developer’s Guide

6. In the Portal DB Provider Name field, enter an internal name to identify this
provider to the portal.

Blank characters and special characters are not allowed. Type an underscore
character to add a space, for example, portlet_provider.

7. In the Portal DB Provider Display Name field, enter a display name to identify
this provider to users.

8. Select a schema, for example, the one you just created, from the Portal DB
Provider Schema drop-down list.

This list of schemas includes only those with the Use this Schema for Portal Users
check box checked. This check box appears on the Main tab.

9. Click OK to save your changes and return to the Portal Navigator.

A.1.3 Exposing a Provider
Before you can create and publish portlets under the auspices of a provider, you must
ensure that the provider has been identified as a provider to OracleAS Portal. To do
this:

1. Create a provider, for example, as described in Section A.1.2.

Note: If you do not see the Create New link on the Locally Built
Providers page, this means that the user name you used to log in
does not have privileges in any schema. The capability to create a
new provider is available only when the current user has some
privilege in a database schema. In this case, you must have the
Portal Administrator edit your user profile to grant you the
privilege to create a schema. To do this:

1. Go to the Portal User Profile portlet on the Administer tab of the
Portal Builder page.

2. Enter the user name and click Edit.

3. On the Edit Portal User Profile page, click the Privileges tab to
bring it forward.

4. Under Administration Privileges, set All Schemas to Create.

Next, the Portal Administrator must add your user name to a
group that has privileges to create database providers. To do this:

1. Go to the Group portlet on the Administer tab of the Portal Builder
page.

2. Under Edit/Delete Group, enter the group name and click Edit.

3. On the resulting page, under Members, click Add User.

4. In the Search field, enter the user name, and click Go.

5. Select the newly added user name entry, then under Roles
Assignment, select a group that has privileges to create database
providers.

When these tasks are complete, you can log in again with your user
name and create a schema on the Database Objects tab in the
Portal Navigator. Once you have the privilege to create a schema,
you will see the Create New link on the Locally Built Providers
page.

Building Portlets with the Portlet Builder A-9

2. Locate the listing for your new provider in the Portal Navigator.

3. Click the Grant Access link next to your new provider (Figure A–7).

Figure A–7 The Grant Access Link Next to a Provider in the Portal Navigator

4. On the Grant Access page, verify that the box next to Expose as Provider is
checked.

Figure A–8 The Expose as Provider Check Box on the Provider Grant Access Page

5. Click OK to save your change and exit the Grant Access page.

Checking this check box enables users to publish portlets to the portlet repository
under the auspices of this provider. Provided you have checked this box, the
portlets you create using the Portlet Builder will be published to the portlet
repository automatically (under the Portlet Staging Area node) when you finish
them.

Using a Wizard to Build a Portlet

A-10 Oracle Application Server Portal Developer’s Guide

Figure A–9 The Portlet Staging Area Node in the Portlet Repository

A.1.4 Creating Portlets Using OracleAS Portal Wizards
This section lists and describes the types of portlets you can build using the
portlet-building wizards available in OracleAS Portal. It provides general information
on how to build a portlet and specific information on how to build forms, reports,
charts, and lists of values.

Beginning with OracleAS Portal 10g (9.0.4), you can define portlets "in place" on a
page. In other words, you can add a portlet to a page and define the complete portlet
using the Portlet Builder without leaving the page. To add and create portlets in this
way, you must have the required privileges: you must belong to the PORTAL_
ADMINISTRATORS group and have the MANAGE CONTENT privilege on the page.
This section describes how to define portlets outside of the page; then, you can modify
and manage portlets independently, and later add the portlet to the page, as described
in Section A.6.4, "Running the Component as a Portlet through the Portlet
Customization Form".

This section contains the following subsections:

■ Building Portlets Declaratively

■ Building Forms Declaratively

■ Building Reports Declaratively

■ Building Forms and Reports against interMedia Rich Content

■ Building Charts Declaratively

■ Building Lists of Values Declaratively

You can build additional types of portlets through the portlet-building wizards.
Table A–1 lists and describes the types of portlets you can build.

Building Portlets with the Portlet Builder A-11

Table A–1 Types of Portlets Available Through Portlet-Building Wizards

Portlet Type Description

Form Displays a customized form that can be used as an interface for
updating tables, executing stored procedures, and generating
other customized forms.

Through the OracleAS Portal portlet-building wizards, you can
build three types of forms.

■ A form based on a table or view enables users to insert,
update, and delete data in a database table or view.

■ A master-detail form displays a master row and multiple
detail rows within a single HTML page. The form contains
fields for updating values in two database tables or views.

■ A form based on a procedure enables users to insert,
update, and delete data over a database stored procedure.

Report Displays the data that you select from a database table or view
in report format. The report can have tabular, form, or custom
layout. You can build three types of reports:

■ Query By Example (QBE) Report allows users to query,
insert, update and delete data in table and views. In the
QBE report build wizard, you choose which data to display
in the report. Or, you can allow end users to make their
own queries in the QBE report's customization form.

■ Reports from Query Wizard guides you through building a
report using a wizard to construct your SELECT statement.

■ Reports from SQL Query builds a report from your
manually-constructed SQL query.

Chart Displays data that you select from a database table or view as a
bar chart.

Calendar Displays the data that you select from a database table or view
in calendar format.

Dynamic Page Displays dynamically-generated HTML content on a Web page.

XML Component Displays an XML page.

Hierarchy Displays the data that you select from a database table or view
as a graphical hierarchy of items containing up to three levels.

Menu Displays an HTML-based menu that contains options that are
linked to other menus, OracleAS Portal database portlets, or
URLs.

URL Renders the content of a URL target in a portlet.

Frame Driver Displays a Web page with two frames. The queries entered in
one frame control the content of the other.

Link Displays a link that provides a hypertext jump between
OracleAS Portal database portlets and other database portlets,
database portlet customization forms, or any HTML page.

List of Values Use LOVs when creating database portlets to preselect the
possible values in an entry field. Users select a value from the
list rather than enter it manually. You can build LOVs based on
other LOVs.

Data Component Displays data in a spreadsheet format.

Using a Wizard to Build a Portlet

A-12 Oracle Application Server Portal Developer’s Guide

A.1.4.1 Building Portlets Declaratively

To use a wizard to build a portlet:

1. Log in to OracleAS Portal.

2. Click the Navigator link at the top of the page.

3. Click the Providers tab to bring it forward.

4. Click the Locally Built Providers link.

Figure A–10 The Locally Built Providers Link in the Portal Navigator

5. Click the name of the OracleAS Portal database provider you want to host the new
portlet.

The Name column displays the names of all the providers on which you have
privileges.

6. Next to Create New…, click the link for the type of portlet that you want to build,
for example, Chart or Form (Figure A–11).

Figure A–11 The Form Link Next to Create New in the Portal Navigator

See Table A–1 for a list and description of the types of portlets you can build.

Note: To build a portlet, you must have at least the Edit privilege
on the provider that will own the portlet. For more information, see
"Creating a Provider for Locally Built Portlets".

Building Portlets with the Portlet Builder A-13

Depending on the type of portlet you are building, OracleAS Portal displays
either the first step of the portlet build wizard or a menu of additional choices. If
you click Form, for example, you have the option of creating a form based on a
table or view, a master-detail form, or a form based on a procedure (Figure A–12).

Figure A–12 Choices Available for Creating a Form in the Portlet Builder

7. When the first step of the portlet build wizard displays, follow the instructions
shown on each step.

A progress indicator displays how many wizard steps are left to complete. The
Finish button becomes available when you have provided the wizard with
sufficient information to build the portlet. The fields you didn’t complete will
populate with default values or will remain null.

If you are unsure of how to complete the fields on a particular step of the wizard,
click the online help icon in OracleAS Portal for more information.

The next sections guide you through the specific steps required to build a particular
type of portlet. For more information, see:

■ Building Forms Declaratively

■ Building Reports Declaratively

■ Building Forms and Reports against interMedia Rich Content

■ Building Charts Declaratively

■ Building Lists of Values Declaratively

A.1.4.2 Building Forms Declaratively
Forms provide a means of inserting, updating, and deleting content from your
database through a user-friendly interface. You control form layout through options
available in the Forms build wizard. Wizard options enable you to control the look and
feel of the overall form as well as the form’s individual entry fields and buttons.

You can perform JavaScript validation on user-specified values entered in any text
field on the form. Additionally, you can add PL/SQL event handlers that run when a
user clicks a button on the form. After successful submission of form content, you can
specify a PL/SQL block or procedure that will execute.

The portlet-building wizards in OracleAS Portal provide three construction methods
for building forms:

■ Forms based on tables or views

■ Master-detail forms

Using a Wizard to Build a Portlet

A-14 Oracle Application Server Portal Developer’s Guide

■ Forms based on a procedure

All of these forms are described in Table A–1. This section describes how to create a
form based on a table or view (Figure A–13).

Figure A–13 Sample Form Based on a Table

To create a form based on a table or view:

1. Follow the instructions detailed in "Building Portlets Declaratively".

Return to this section once you complete step 6.

2. Click the Form link next to Create New… (Figure A–14).

Figure A–14 The Form Link Next to Create New in the Portal Navigator

3. On the Forms page, click Form based on table or view.

Building Portlets with the Portlet Builder A-15

Figure A–15 The Form Based on Table or View Link in the Portlet Builder

4. In the Name field, enter an internal name for the form (Figure A–16).

Figure A–16 Step One of the Form Wizard

The internal name is not published to users.

5. In the Display Name field, enter the name by which users will identify this form
(Figure A–16).

The display name is used at runtime. It displays as the title of the browser window
as well as in the banner of the form. When the form is published as a portlet, the
display name is used as the title of the portlet and in the List of Available Portlets
in the Portlet Repository.

6. In the Description field, enter a description of this form (Figure A–16).

The description displays below the portlet in the Portlet Repository. it can be a
summary of the portlet’s purpose, a classification of its type, or any other
descriptive information. It may be useful within your organization to have a
standard approach to what is included in the description.

7. From the list of Portal DB Providers, select the provider that will own this form
(Figure A–16).

Using a Wizard to Build a Portlet

A-16 Oracle Application Server Portal Developer’s Guide

We recommend that you use a provider specifically created for owning, or hosting,
your declaratively-built portlets. This list displays only those providers in which
you have been granted privileges to build portlets.

8. Click Next.

9. Click the Browse icon next to the Table or View field, and choose a table or view
on which to base your form (Figure A–17).

You can use a constant in this field (for example, #APP_SCHEMA#.EMP,
#PORTAL_SCHEMA#.DEPT) in lieu of a fixed value. For more information, see
"Referencing the OracleAS Portal Schema".

Figure A–17 Selecting a Table or View

The tables and views that you can choose in this step are those that are accessible
from the Portal DB Provider you selected in the previous step. You can also enter
the table name directly into the field.

10. Click Next.

11. Select a form layout.

Choose between Tabular or Custom. Tabular layouts are created automatically.
Custom layouts are based on HTML code that you supply in a later step.

12. Click Next.

13. Set Formatting and Validation Options (Figure A–18):

Building Portlets with the Portlet Builder A-17

Figure A–18 Form Formatting and Validation Options

a. Click Form in the left column to set up the formatting and validation options
for the entire form (Figure A–18).

The formatting and validation options that appear in the right column relate to
the object you have selected in the left column.

Table A–2 lists and describes form-level formatting and validation options.

Table A–2 Form-Level Formatting and Validation Options

Option Description

Form Background Color Choose the background color of the form.

Form Background Image Choose an image that will appear in the background of the
form.

Form Border Choose a style for the border around the form background.

Log Activity Check Box Check to record activity in the OracleAS Portal log. Log
information includes performance statistics as well as the
names of users who request the form.

Show Timing Check Box Check to display the time elapsed, starting from when the
server receives the request to generate HTML for the form.
Timing displays at the bottom of the form.

Order by Choose the column by which you will order the data returned
by the SELECT statement. Select the percent sign (%) if you do
not wish to specify a column for ordering.

Then by Choose the column(s) for subsequent ordering of the data
returned by the SELECT statement. Select the percent sign (%)
if you do not wish to specify a column for ordering.

Ascending Choose Ascending (from a to z/0 to 9) or Descending (from z
to a/9 to 0), depending on how you want the column values
ordered.

Using a Wizard to Build a Portlet

A-18 Oracle Application Server Portal Developer’s Guide

b. Select a TOP_SECTION item in the left column (that is, INSERT_TOP,
UPDATE_TOP, and the like) to set formatting and validation options in the
right column for INSERT, UPDATE, and other like items that will display at
the top of the form (Figure A–19).

Figure A–19 Button Formatting and Validation Options

By default, insert, update, delete, query, and reset buttons appear at the top
and bottom of each form. To prevent these buttons from displaying, click the
Delete icon that appears next to the item in the left column.

Table A–3 lists and describes the formatting and validation options for
buttons.

On Successful Submission
of a Form Execute this
PL/SQL

Enter optional PL/SQL code that will execute after a user
clicks a button on the form. The button must cause an
operation, such as INSERT, to be performed on the table or
view on which the form is based. For example, you might enter
code that causes a message to display to the user when a table
row is successfully updated.

Table A–2 (Cont.) Form-Level Formatting and Validation Options

Option Description

Building Portlets with the Portlet Builder A-19

Table A–3 Formatting and Validation Options for Buttons

Option Description

Item Type Select the method for displaying the selected item type on your
form. Note that the default for items, such as INSERT_TOP, is
button. For INSERT, UPDATE, DELETE, QUERY, and RESET, you
will likely most often want to use the default. If you choose
another item type, you will need to add code to invoke the item’s
functionality (for example, an insert) through a JavaScript or
PL/SQL Event Handler. Item types include:

■ Blank—Inserts a line break in between fields.

■ Button—Inserts a button. INSERT, UPDATE, DELETE,
QUERY, and RESET items require the selection of an event
handler further down on this page.

■ CheckBox—For INSERT, UPDATE, and so on, you must
write a JavaScript handler for this to be meaningful. For
columns, the underlying column must be at least varchar2(5)
to accommodate entries of TRUE (checked) and FALSE (not
checked).

■ ComboBox—Inserts a pop-list of values with an extra blank
space that allows for manual entry of a value. You must
already have defined a list of values to make this selection.
You can enter a constant in the Default Value field, and define
the default value as a constant in the Default Value Type field.
For more information, see "Referencing the OracleAS Portal
Schema".

■ File Upload (Binary)—Used to insert a BLOB column.

■ File Upload (interMedia)—Select this type for interMedia
rich content, such as images, audio clips, and video clips. The
table must have columns of the type ORDIMAGE,
ORDAUDIO, or ORDVIDEO. For more information, see
"Building Forms and Reports against interMedia Rich
Content".

■ Hidden—Creates a hidden form field.

■ Horizontal Rule—Draws a horizontal line, similar to <hr>.

■ Image—Used to show an image.

■ Label Only—This shows only a prompt.

■ Password—This will have the behavior of a password field,
where input will be hidden.

■ TextArea—Provides a large text area for the entry of multiple
lines of text.

■ TextBox—Provides a text box.

Display Options Label—Enter text that will display next to the button.

Layout Options This section displays only if you selected Tabular in the Form
Layout step. If you selected Custom, you can specify your own
sophisticated layout in the next step using HTML code.

Begin on New Line—Check this option to display the item on a
new line on the form. Leaving this blank will display the item on
the same line as the previous item or column field.

JavaScript Event
Handlers

Choose an event and enter the JavaScript for the action you want
to occur when that event happens. Refer to your JavaScript
documentation for descriptions of the events on this list.

Using a Wizard to Build a Portlet

A-20 Oracle Application Server Portal Developer’s Guide

c. Select a column name in the left column to set formatting and validation
options in the right column for table or view columns that will display in the
form (Figure A–20).

Figure A–20 Column Formatting and Validation Options

To prevent the display of a column, click the Delete icon next to it.

Table A–4 lists and describes the formatting and validation options available
for table or view columns.

PL/SQL Button Event
Handler

Choose a button event and enter the PL/SQL code for the action
you want to occur when the event happens. For advanced
customization, choose Custom from the drop-down list, and enter
the PL/SQL code for the custom event.

Table A–4 Formatting and Validation Options for Table or View Columns

Option Description

Item Type Defines how the column you’ve selected on the left will
display on your form. Options are listed and described in
Table A–3.

Table A–3 (Cont.) Formatting and Validation Options for Buttons

Option Description

Building Portlets with the Portlet Builder A-21

Display Options Label—Enter text to label this column on the form. Text will be
display-only and will appear next to the field that represents
this table or view column on the form. For example, you can
add a label next to the field for the EMPNO column called
Employee Identification Number.

Link—Specify a link to another OracleAS Portal portlet or
URL. If you specify this option, the Label appears on the form
as a hypertext link. If you want to link the form to another
URL, type the URL location in the Link text box. If you want to
link to an OracleAS Portal portlet, you can type the name
of the package containing the portlet, for example:

SCHEMA.portlet.SHOW

SCHEMA is the name of the schema that owns the portlet;
portlet is the portlet name; and SHOW is the procedure used
to display the portlet. You can also specify SHOW_PARMS to
display the customization form for the portlet.

Font Face, Color, Size—Specify the font characteristics for
displaying text associated with the selected column on the
form.

Input Width—Enter the character width of the field associated
with the selected column.

Input Max Length—Enter the maximum length of the data
that can be entered into the form field associated with the
selected column.

Table A–4 (Cont.) Formatting and Validation Options for Table or View Columns

Option Description

Using a Wizard to Build a Portlet

A-22 Oracle Application Server Portal Developer’s Guide

Validation Options Mandatory—Check to require that the user specify a value in
the field associated with the selected column before submitting
the form.

Updatable—Check to enable the user to update the column.
Leaving this blank prevents updates. This feature is useful
when you want to allow users to update some table columns in
the form, but only view others. For example, by clearing
Updatable for employee names and ID numbers, and checking
Updatable for the employee’s department, you can create a
form that enables users to update an employee’s department
(for example, when the employee is transferred), but disables
users from updating the employee name and ID number.
When users display views, updatable columns display in
black, non-updatable columns display in blue, and mandatory
columns display in red.

Insertable—Check to store the value of the column in the
database when the user creates a new record. Leaving this
blank prevents the value from being stored in the database
(that is, it removes the column from the INSERT statement).

Default Value—Enter a default value for the field associated
with the selected column. Users can accept this value or specify
their own. Specify a constant, function, expression, or SQL
query.

Default Value Type—Specify a type for the default value
entered in the previous field (Default Value).

Format Mask—Enter an Oracle display format for columns
containing numeric and date data types. For example, you
could enter DD/MM/YYYY to display dates according to this
pattern; or you could enter 999,999,999.99 to place
commas and decimals according to this pattern.

Note: Refer to the Oracle database documentation
(http://www.oracle.com/technology/index.html) for
information about date and numeric formatting options.

Field Level Validation—Choose a JavaScript validation
routine that verifies whether the user enters a valid value in
the field. For example, you could choose a JavaScript routine
called IsNumber that verifies that a number has been typed in
a SALARY field. Field validation providers are implemented in
JavaScript and run when the OnChange condition occurs; for
example, when the user presses the Return key after entering a
value in the field.

Form Level Validation—Choose a JavaScript validation
provider that verifies whether the user enters a valid value in
the field. Form validation providers run when the user submits
the information, for example, after the user clicks the Insert
button on the form.

Table A–4 (Cont.) Formatting and Validation Options for Table or View Columns

Option Description

Building Portlets with the Portlet Builder A-23

d. Select a BOTTOM_SECTION item in the left column (that is, PREVIOUS,
NEXT, INSERT_BOTTOM, UPDATE_BOTTOM, and the like) to set formatting
and validation options in the right column for PREVIOUS, NEXT, INSERT,
UPDATE, and other like items that will display at the bottom of the form.

See step b of this task for more information.

14. Click Next.

15. If you selected a Custom layout:

Enter the HTML code that will control the layout of your form. The text boxes on
this page contain sample HTML code that creates a table. Using this model, each
column you selected in the Tables or Views step of this wizard is formatted to
display in a table row on the form.

Column labels are specified by the suffix .LABEL in the sample code. Column
values are specified by the suffix .ITEM in the sample code.

You can update the sample code with any HTML of your own, provided you do
not change the column values (.ITEM suffix) or labels (.LABEL suffix). You can,
however, delete column values from this code.

If you selected a Tabular layout:

Enter descriptive text that you want to appear on the top or bottom of the form
(Figure A–21). You can add a form title and help text for the form. You can also
choose a template that controls the look and feel of the page on which the form
appears.

Layout Options This section displays only if you selected Tabular in the Form
Layout step. If you selected Custom, you can specify your own
sophisticated layout in the next step using HTML code.

Begin on New Line—Check to create a line break before the
field associated with the selected column. Leaving this blank
will display the column field on the same line as the previous
column field.

Row Span—Enter the number of HTML cells that can be used
to display the field vertically on the browser page.

Col Span—Enter the number of HTML cells that can be used
to display the field horizontally on the browser page.

JavaScript Event Handlers Choose an event and enter the JavaScript for the action you
want to occur when the event takes place.

Refer to your JavaScript documentation for descriptions of the
events in the list.

Table A–4 (Cont.) Formatting and Validation Options for Table or View Columns

Option Description

Using a Wizard to Build a Portlet

A-24 Oracle Application Server Portal Developer’s Guide

Figure A–21 Entering Header, Footer, and Other Text for a Form

Table A–5 lists and describes the options available on this page.

Table A–5 Form Text Options on Tabular Format Forms

Option Description

Template Choose a template to set the look and feel of form elements
such as background colors and images and the image that
appears in the upper left corner of the page.

Templates are used only when your form is displayed in
full-page view, and not when it is displayed as a portlet. When
a form is displayed as a portlet, the host page’s style controls
the look and feel.

Preview Template Click to view the appearance of the template currently selected
in the Template drop-down list.

Display Name Edit the display name of the form. You can specify HTML in
this field.

Header Text Enter any introductory text that you want to display at the top
of the form, just below the title, but above any buttons.

You can specify HTML in this field.

Footer Text Enter any text that you want to display at the bottom of the
form.

You can specify HTML in this field.

Building Portlets with the Portlet Builder A-25

16. Click Next.

17. Optionally, enter the PL/SQL that will run at different points during the execution
of the HTML code that creates this form (Figure A–22).

In the PL/SQL you enter into these fields, you can use constants for the OracleAS
Portal schema, the application schema, and the application name. For more
information, see "Referencing the OracleAS Portal Schema".

Figure A–22 Optional Fields for Entering Additional PL/SQL Code

Table A–6 lists and describes the options on this page.

Help Text Enter any text that you want to display in a help page for the
form. OracleAS Portal automatically adds a help button to the
form. Users can click this button to link to a page displaying
the help text that you enter here.

You can specify HTML in this field.

Table A–6 Additional PL/SQL Code Options

Option Description

… before displaying the
page.

Enter a PL/SQL procedure that will execute before the HTML
for the form is generated (that is, before the <FORM> tag is
generated). In spite of the name of this field, the PL/SQL
procedure actually executes after the page itself is displayed.

Table A–5 (Cont.) Form Text Options on Tabular Format Forms

Option Description

Using a Wizard to Build a Portlet

A-26 Oracle Application Server Portal Developer’s Guide

18. Click Finish to save your changes.

Once you click Finish, Portal jumps to a summary page from which you can
manage your form (Figure A–23). These tasks are discussed in later sections in this
appendix.

… before displaying the
form.

Enter a PL/SQL procedure that will execute after the <FORM>
tag but before displaying any form elements.

… after displaying the
form.

Enter a PL/SQL procedure that will execute before the ending
</FORM> tag and after all form elements are displayed.

… after displaying the
page.

Enter a PL/SQL procedure that will execute after the ending
</FORM> tag.

… before processing the
form.

Enter a PL/SQL procedure that will execute before the form is
processed.

… after processing the
form.

Enter a PL/SQL procedure that will execute after the form is
processed.

Note: If you want to display output from a PL/SQL procedure,
you must enter the PL/SQL in one of these four fields:

■ before displaying the page

■ before displaying the form

■ after displaying the form

■ after displaying the page

You cannot display output from a PL/SQL procedure in the
before/after processing the form fields; the output will not display.

Additionally, if you want to display output from your PL/SQL
procedure, you must specify the schema name with the procedure.
This is required even if the form and the procedure are in the same
schema.

Table A–6 (Cont.) Additional PL/SQL Code Options

Option Description

Building Portlets with the Portlet Builder A-27

Figure A–23 Form Summary Page

19. Click Close to return to the Portal Navigator.

A.1.4.3 Building Reports Declaratively

Figure A–24 A Sample Report

Reports display data from tables and views (Figure A–24). You can base a report on
multiple tables or views using a JOIN condition. You can highlight data that satisfies
conditions you specify. For example, you can display in bold red text the records of all
employees who have been employed less than two years. You can create hypertext
links from values displayed in the report to other OracleAS Portal database portlets
or URLs.

Using a Wizard to Build a Portlet

A-28 Oracle Application Server Portal Developer’s Guide

Additionally, the wizards enable you to specify other options to achieve the following
results:

■ Limit data displayed in the report

■ Sum column values

■ Use logical operators to select data within the columns

■ Format data in the report

■ Format the report’s customization form

■ Specify PL/SQL code that executes at various points in the report.

The OracleAS Portal Portlet Builder wizards provide three construction methods for
building reports:

■ Query By Example (QBE) Reports

■ Reports From Query Wizard

■ Reports From SQL Query

These reports are described in Table A–1. This section describes how to build a report
using the Query Wizard.

To build a report using the Query Wizard:

1. Follow the instructions detailed in "Building Portlets Declaratively".

Return to this section once you complete step 6.

2. Click the Report link next to Create New…(Figure A–25)

Figure A–25 The Report Link in the Example Applications Portal DB Provider

3. On the Reports page, click Reports From Query Wizard (Figure A–26).

Figure A–26 The Reports From Query Wizard Link in the Portlet Builder

4. In the Name field, enter an internal name for the report (Figure A–27).

Building Portlets with the Portlet Builder A-29

Figure A–27 The First Step in the Report From Query Wizard

The internal name is not published to users.

5. In the Display Name field, enter a display name for the report (Figure A–27).

The display name is used at runtime. It displays as the title of the browser window
as well as in the banner of the report. When the report is published as a portlet, the
display name is used as the title of the portlet and in the List of Available Portlets
in the Portlet Repository.

6. From the list of Portal DB Providers, select the provider that will own this report
(Figure A–27).

We recommend that you use a provider specifically created for owning, or hosting,
your declaratively-built portlets. This list displays only those providers in which
you have been granted privileges to build portlets.

7. Click Next.

8. From the Tables and Views list, choose one or more tables or views on which to
base this report (Figure A–28).

Note: In the Tables and Views field, you can use constants for the
OracleAS Portal schema and the application schema (for example,
enter #APP_SCHEMA#.EMP). For more information, see
"Referencing the OracleAS Portal Schema".

Using a Wizard to Build a Portlet

A-30 Oracle Application Server Portal Developer’s Guide

Figure A–28 Selecting a Data Source for the Report

Click Add after each selection (Figure A–29).

Figure A–29 Clicking Add to Add a Data Source

9. Click Next.

10. If you are basing your report on multiple tables or views, identify the columns that
will be joined to one another.

This page displays only when you have selected multiple columns or views in the
previous step. Default join conditions are automatically generated. You can accept
or modify these defaults.

11. Click Next.

12. Select the columns you want to display in your report (Figure A–30).

Building Portlets with the Portlet Builder A-31

Figure A–30 Selecting the Columns that Will Display in the Report

Click the arrows between the two columns to move individual selections or the
entire list from one column to the other. Use the rearrange icons to the right of the
right column to set the order of appearance of your selected columns. Select no
more than 255 columns.

13. Click Next.

14. Optionally, specify conditions that limit the data displayed in the report
(Figure A–31).

Figure A–31 Setting Column Conditions

Table A–7 lists and describes the options on this page.

Using a Wizard to Build a Portlet

A-32 Oracle Application Server Portal Developer’s Guide

15. Click Next.

16. Select from three report layout types: Tabular, Form, or Custom.

■ Tabular layouts are based on options you choose in the Report Building
wizard. Results are displayed in a table format, where each record represents a
row in the underlying table or view, and each data column displays as a
column in the table.

■ Form layouts are based on options you choose in the Report Building wizard.
Results are displayed in rows, where each data column is displayed in a
separate row.

■ Custom layouts are based on HTML code that you supply in a later wizard
step. Because you specify your own HTML code, you will have a greater level
of control over the appearance of your report than you would using a
structured (tabular or form) layout.

This description will proceed as if you have selected a tabular layout. Some of the
wizard steps you would take with other types of layouts are not included in the
construction of a tabular report. For example, with a custom layout, you would be
given an opportunity to specify your custom HTML code. That step does not
display in the wizard when you choose a tabular layout.

Table A–7 Options on the Column Conditions Page

Option Description

Column Name Choose a column if you want to specify a condition for the data
in the report. The column need not be one that was selected for
display. For example, you can choose a salary column that is
not selected for display to limit the displayed data to only
those employees that meet your specified salary condition,
such as salary must be greater than $200. To set this condition,
choose (for example) SAL under Column Name, then choose a
Condition of >, and enter 200 as your Value.

Condition Choose conditions that will define Column Name’s
relationship to Value. Choose from:

■ equal to (=)

■ greater than (>)

■ greater than or equal to (>=)

■ less than (<)

■ less than or equal to (<=)

■ like

■ not equal to (!=)

■ null

■ not null

■ in

■ not in

To specify multiple values after an IN or NOT IN condition,
type a colon (:) between each value, for example, 10:20:30.

Value Enter a value that limits which rows of the identified column
are displayed in the report.

More … Click to display more fields for adding more conditions on this
page.

Building Portlets with the Portlet Builder A-33

17. Click Next.

18. Specify column formatting (Figure A–32).

Figure A–32 The Column Formatting Page

Table A–8 lists and describes the options presented on this page.

Table A–8 Column Formatting Options for a Tabular Report

Option Description

Column Displays the names of the table or view columns you selected
in a previous wizard step.

Column Heading Enter the name you will use to identify this column in your
report. For example, if your table has an EMPNO column, you
can enter Employee ID Number, in lieu of the column’s
actual name.

Sum Select to add values together and display the result in the
report.

Data Type Displays the data type of the data in the associated column.

Align Choose whether to align data to the left, center, or right margin
of a report column. By default, numeric data aligns to the right,
and alphabetical data aligns to the left.

Display as Choose from:

■ Text—Displays the value in the report without
interpreting any associated HTML tags. For example, the
value <i>Name</i> displays as <i>Name</i>.

■ HTML—Displays the value in the report using associated
HTML tags. For example, the value <i>Name</i>
displays as Name.

■ Hidden—Hides the value from view in the report. For
example, choose Hidden for columns whose values are
included for link parameters that you do not want
displayed in the report.

Format Mask Enter an Oracle display format for columns that contain date
and numeric data types. See Table A–9 and Table A–10 for
examples of date and number format masks.

Using a Wizard to Build a Portlet

A-34 Oracle Application Server Portal Developer’s Guide

You cannot use format masks in reports generated in Excel format. Table A–9 and
Table A–10 provide examples of date and number format masks, which you can
use in the Format Mask field on this wizard page.

Link Create a link from the column to another OracleAS Portal
portlet. The column value will display as a hypertext link. You
can specify a link only if one has already been created for this
column and has been stored in the database.

Edit Link Click to display the Set Link Parameters window. In this
window, you can set the values of the link parameters to pass
to the target portlet. Enter a static value, such as 10 or KING, or
select from the list of columns you identified in the table or
view columns step earlier in this wizard. If you need the value
of a column for a link parameter, but do not want that column
displayed in the report, you can set the Display as value to
Hidden.

Width Type Specify one of the following:

■ Char—Displays the output in the specified number of
characters per line. For example, if you enter 20 in Width,
the report displays 20 characters of the column data in
each line. If the number of characters exceeds the specified
number, the remaining characters are wrapped to the next
line. Note, however, that if the output is ASCII format,
Char is based on the column width.

■ Pixel—Displays the output in the specified number of
pixels per row. For example, if you enter 10 in Width, the
column data displays 10 pixels of data per line.

■ Percent—Displays the output in a column that takes up
the specified percentage of the table. For example, if you
enter 25 in Width, the column data displays in a column
that takes up 25 percent of the overall table width.

Width Enter the numeric value for the width type.

Table A–9 Examples of Date Format Masks

Sample Date Format Date Displayed

MM/DD/RR 03/04/85

Mon. DD, RRRR Mar. 4, 1985

Day Month DD fmHH:MI AM Monday March 4 11:35 PM

Dy Mon ddth fmHH24:MI:SS Mon Mar 4th 23:35:22

Day "the" ddthsp "of" Month Monday the fourth of March

Table A–10 Examples of Number Format Masks

Sample Number Format Number Number Displayed

-0000 7934

-7934

"7934"

"-7934"

-00000 7934 "07934"

-NNNN 7639

535

"7639"

"535"

Table A–8 (Cont.) Column Formatting Options for a Tabular Report

Option Description

Building Portlets with the Portlet Builder A-35

The quotation marks in Table A–10 will not appear in your output. They are used
here to make it clear where there are leading spaces. See the Oracle Application
Server documentation for more information on format masks. You’ll find it on the
Oracle Technology Network,
http://www.oracle.com/technology/index.html.

19. Click Next.

20. Optionally, specify conditions and define special formatting for displayed report
data that will be used whenever those conditions are met (Figure A–33).

For example, specify that the background color of a particular row should become
yellow whenever the JOB column equals PRESIDENT.

Figure A–33 The Formatting Conditions Page

Table A–11 lists and describes the options on this page.

+NNNN 100

-99

"100"

"-99"

-%NN 10 "%10"

$<NNNNN.00> 120014 " $1200.14"

+KKNNNNN.00 1950 "+ 1950.00"

$ <NNNNN.00> 1200

400

"$ 1200.00

"$ 400.00"

Table A–11 Options on the Formatting Conditions Page of the Report Wizard

Option Description

Column Choose a column on which the condition will be applied. The
column must be one of those selected for display in an earlier
wizard step.

Table A–10 (Cont.) Examples of Number Format Masks

Sample Number Format Number Number Displayed

Using a Wizard to Build a Portlet

A-36 Oracle Application Server Portal Developer’s Guide

21. Click Next.

22. Define display options for the various possible views of the report:

■ Table A–12 describes display options common to all views (Figure A–34).

Condition Choose conditions that will define Column’s relationship to
Value. Choose from:

■ equal to (=)

■ greater than (>)

■ greater than or equal to (>=)

■ less than (<)

■ less than or equal to (<=)

■ like

■ not equal to (!=)

■ null

■ not null

■ in

■ not in

Value Enter a column value to trigger the condition. There is no need
to apply formatting masks to numeric values. For example, in a
table with an EMPNO column, if you want to apply special
formatting to EMPNO values greater than 3000, select > for the
Condition, and enter 3000 in this field.

To specify multiple values after an IN or NOT IN condition,
type a colon (:) between each value, for example, 10:20:30.

Row/Col Choose whether to apply the conditional formatting to an
entire row or to just the affected column data. If you specify a
condition, you must choose <Row> or a column name here.

Color Choose a text color for displaying data that meets the specified
condition.

Background Color Choose a background color for the column or row that contains
data that meets the specified condition.

Font Face Choose a font in which to display data that meets the specified
condition.

A Select to display results that meet the specified condition in
bold.

A Select to display results that meet the specified condition in
italic.

A Select to underscore results that meet the specified condition.

Blink Select to cause results that meet the specified condition to blink
on and off.

Seq Enter a sequential number to establish an order of precedence
for execution of the formatting. This is useful, for example,
when a row contains data that meets more than one condition,
and the formatting rules differ for each. The condition with the
highest position in the order (that is, 1), takes precedence over
all the others.

Table A–11 (Cont.) Options on the Formatting Conditions Page of the Report Wizard

Option Description

Building Portlets with the Portlet Builder A-37

■ Table A–13 describes display options for full-page views (Figure A–35).

■ Options for portlet views are the same as those for full-page views, with a few
noted exceptions. See Table A–13 and Figure A–35.

■ Table A–14 describes display options for column breaks (Figure A–36).

■ Table A–15 describes display options for row order (Figure A–37).

■ Table A–16 describes display options for mobile devices (Figure A–38).

Figure A–34 Display Options Common to All Views

Table A–12 Report Display Options Common to All Views

Option Description

Show Total Row Count Select to display the total number of rows in the report.

Show Null Values as Enter the text string you want to display for all null values in
the report, for example, (null).

Embed interMedia rich
content in the report

Select to generate report output that shows any interMedia
data values, such as audio, video, or images.

For more information, see "Building Forms and Reports against
interMedia Rich Content".

Expire After (minutes) Enter the number of minutes after the initial display to keep
the report in the cache. When the time expires, the report data
is refreshed from the database.

Default Format Choose a display format for the report:

■ HTML—Formats the report using HTML tables, and
displays output on a new page in the Web browser.
Portlets that contain large amounts of data may take
longer to display in this format.

■ Excel—Formats the report for display in Microsoft Excel.
When running the finished report, your local Excel
settings may make it necessary for you to first save the
report locally before it can be opened and viewed.

■ ASCII—Formats the report using the HTML PRE tag to
display heading and values in the report as ASCII text.
This option is useful for displaying large amounts of data.

Using a Wizard to Build a Portlet

A-38 Oracle Application Server Portal Developer’s Guide

Figure A–35 Report Display Options for Full Web-Page and Portlet Views

Table A–13 Report Display Options for Full Web-Page and Portlet Views

Option Description

Font Face Specify a font for report text.

Font Size Specify a font size for report text. Use relative values, such as
+1, +2, and so on.

Relative font size is the last font size specified in the HTML
code for the page plus the relative value. For example, the last
font size specified in HTML code is 14 points; a new heading is
coded at +2 font size; the heading will display in 16-point type.

Border Specify the thickness of border to display around the report.
Choose No Border, Thin Border, or Thick Border.

Font Color Specify a font color for report text.

Heading Background
Color

Specify a background color for report column headings.

Table Row Color(s) Specify a background color for report rows. To choose more
than one color use CTRL-Click (Windows). Rows will display
in alternating colors.

Maximum Rows Per Page Enter the maximum number of rows you want to display in the
report.

Draw Lines Between Rows Select to display lines between report rows.

Log Activity (Full page only.) Check to enter performance information and
the names of users who request the report in the OracleAS
Portal activity log.

Show Timing (Full page only.) Check to display report timing at the bottom
of the report. Timing runs from when the server receives the
request to generate the report to when the HTML for the report
is generated.

Show Query Conditions (Full page only.) Check to display user-specified parameters
that are passed to the query that created the report and the
time when the report was created.

Building Portlets with the Portlet Builder A-39

Figure A–36 Report Display Options for Column Breaks

Figure A–37 Report Display Options for Row Order

Table A–14 Report Display Options for Column Breaks

Option Description

Break Style Select a break style, and choose whether to break the report on
values from one, two, or three columns.

First Break Column Select the first column on which to break. For example, if you
choose DEPTNO, the report will show all the rows associated
with the first department number, followed by all the rows
associated with the next department number, and so on.

If you specify break columns, then you must also specify Order
by values for the columns in the same order (see Table A–15).

Second Break Column Select the second column on which to break. If you do not
require a second level break, choose %.

Third Break Column Select the third column on which to break. If you do not
require a third level break, choose %.

Table A–15 Report Display Options for Row Order

Option Description

Order by Select the table or view column whose values will be used to
sort rows in the report. Choosing this option is equivalent to
specifying a SQL ORDER BY clause. Choose Ascending to sort
A to Z or 0 to 9. Choose Descending to sort Z to A or 9 to 0.

then by Select additional columns whose values will be used to sort
report rows. For example, if you choose Order by Department
ID, then by Employee Name, Oracle Portal sorts report rows
numerically using department IDs. Rows containing the same
Department ID are then sorted alphabetically using employee
names.

Using a Wizard to Build a Portlet

A-40 Oracle Application Server Portal Developer’s Guide

Figure A–38 Report Display Options for Mobile Devices

23. Click Next.

24. In the Customization Form Display Options section, choose the parameters that
you want to display on the report's customization form (Figure A–39).

Figure A–39 Detail of the Customization Form Display Options Page

For each parameter you choose, an entry field appears on the customization form
that enables users to choose their own conditions for displaying data in the report.
Check Value Required if you want to require the user to enter a value in the
parameter entry field. If you wish, you can use bind variables to allow users to
specify their own amounts. See "Using Bind Variables" for more information.

Table A–17 lists and describes the display options for the report customization
form.

Table A–16 Report Display Options for Mobile Devices

Option Description

Columns to Display Select the columns you want to display on a mobile device. Use
this feature to reduce the size of the report to better fit onto the
smaller screens available on mobile devices.

Maximum Rows Per Page Enter the maximum number of rows you want to display on a
single screen.

Building Portlets with the Portlet Builder A-41

25. In the Formatting options section, choose formatting options to include on the
report customization form (Figure A–40).

Including one or more of these selections enables users to have a greater level of
control over the final appearance of the report.

Table A–17 Display Options for the Customization Form Display Options Page

Option Description

Value Required Select to require that the user specify a value for the column’s
entry field on the report customization form. If you do not
check this box, the user will not be required to specify a value.

Column Name Select a table or view column. An entry field will be added to
the report customization form. Users can specify values that
limit the data displayed in the report. Entry fields appear only
for the columns you select here.

Prompt Enter the prompt text you want to display next to the entry
field. The prompt text tells users what to enter in the field. For
example:

Enter a Department Number:

LOV Select a list of values (LOV) for the column’s entry field. Users
of the customization form can choose values from this list to
limit the data displayed in the report. Click the Browse icon
next to this field to locate an LOV. Note that the LOV must
already be built and stored in the Portal Repository. For more
information, see "Building Lists of Values Declaratively".

In the LOV field, you can use a constant for the application
name (for example, enter #APP_NAME#.dept_lov). For more
information, see "Referencing the OracleAS Portal Schema".

Display LOV As Select a format for displaying your list of values. Choose from:

■ <Blank>—No option is selected.

■ Check box—Each selection displays with a check box next
to it. Users check or do not check the box to indicate their
preferred value.

■ Combo box—Combines a pop-up list and a manual entry
field. Users can either select a provided value or enter
their own.

■ Pop up—Provides a pop-up list from which users select a
value.

■ Radio group—Lists each selection with a radio button
next to it. Users select or do not select the button to
indicate their preferred value.

■ Multiple Select—Allow users to choose more than one
value.

Make Public Click to allow values to be made public, that is, to allow
non-authenticated users to see them.

Be sure to make public any element that will be a variable in
the list of portlet parameters associated with a page parameter.

More Parameters Click to display more fields on this page to include more table
or view columns on the report customization form.

Using a Wizard to Build a Portlet

A-42 Oracle Application Server Portal Developer’s Guide

Figure A–40 The Formatting Options Section of the Customization Form Display
Options Page

26. In the Public Formatting Options section, choose formatting options to include on
the parameter tab for the page where the report is displayed (Figure A–41).

Figure A–41 The Public Formatting Options Section of the Customization Form Display
Options Page

27. In the Button Options section, select the buttons that will display on the report
customization form (Figure A–42).

Table A–18 lists and describes button display options for the report customization
form.

Figure A–42 The Button Options Section of the Customization Form Display Options
Page

Building Portlets with the Portlet Builder A-43

28. Click Next.

29. Optionally, select a template to set the look and feel of the report and the report
customization form when they are displayed on a full Web page.

The template you choose here applies to both the report and the report
customization form when they are displayed on a full Web page. The template is
not used when the report and report customization form are displayed as portlets;
in this case, the style of the page is used.

The template controls the look and feel of the page on which the report appears. In
contrast, the display options you have specified on other pages in this wizard
control the look and feel of the report itself.

Click the Preview button to see how the template elements will display
(Figure A–43).

Table A–18 Button Display Options for the Customization Form Display Options Page

Option Description

Button Select one or more buttons to display on the report
customization form:

■ Run—Displays the URL portlet with the options the user
has specified in the customization form.

■ Save—Saves users’ current selections to enable them to
rerun a report using the same parameters without having
to reenter them into the report customization form. When
you include this button, the report customization form
also displays a Reset to Defaults button that resets all
values in the report customization form to their default
values.

■ Batch—Runs the URL portlet in batch mode and saves the
results in the database.

■ Reset—Undoes any changes made to the report
customization form since the last Save, Reset, or Reset to
Defaults event.

Name Enter the label that will display on the selected button. Keep
the name short to avoid displaying large buttons. You cannot
change the label on the Reset to Defaults button.

Location Specify the location of the button on the report customization
form. Choose from Top, Top and Bottom, or Bottom.

Alignment Specify the alignment of the button on the report
customization form. Choose from Left, Center, or Right.

Using a Wizard to Build a Portlet

A-44 Oracle Application Server Portal Developer’s Guide

Figure A–43 Report and Customization Form Text Page

30. Optionally, enter text for display on the top or bottom of the report or the report
customization form (Figure A–43).

Table A–19 lists and describes the options for including text. Enter text for the
report in the left column. Enter text for the report customization form in the right
column.

Table A–19 Options for Including Text on a Report or a Report Customization Form

Option Description

Display Name Edit the display name for the report and the report
customization form.

You can specify HTML in this field.

Description (Report only.) Provide a description of the purpose of this
report. This is an attribute that may or may not display,
depending on which attributes have been selected for display
in the region where the report or report portlet is placed.

Header Text Enter any introductory text for display at the top of the report
or report customization form. Header Text displays below the
display name or title.

You can specify HTML in this field.

Footer Text Enter any text for display at the bottom of the report or report
customization form.You can specify HTML in this field.

Building Portlets with the Portlet Builder A-45

31. Click Next.

32. Optionally, enter PL/SQL code that runs during the execution of the report or
report customization form HTML (Figure A–44).

Table A–20 lists and describes the options available for running PL/SQL code at
different points during the execution of the HTML code that creates the report or
the report customization form.

Help Text Enter any text for inclusion on a help page for the report or
report customization form. OracleAS Portal automatically
includes a help button with the report and the report
customization form when they are displayed on a full page.
When they are displayed as a portlet, whether the help button
displays is controlled by the way the host portlet region has
been configured. Users click the help button to display the text
you enter here.

You can specify HTML in this field.

About Text Enter any text for inclusion in an About box. OracleAS Portal
automatically includes an About button with the report and
the report customization form when they are displayed on a
full page. When they are displayed as a portlet, whether the
about button displays is controlled by the way the host portlet
region has been configured. Users click the about button to
display the text you enter here.

Note: In the PL/SQL you enter into these fields, you can use
constants for the OracleAS Portal schema, the application schema,
and the application name. For more information, see "Referencing
the OracleAS Portal Schema".

Table A–19 (Cont.) Options for Including Text on a Report or a Report Customization

Option Description

Using a Wizard to Build a Portlet

A-46 Oracle Application Server Portal Developer’s Guide

Figure A–44 Additional PL/SQL Code Page

33. Click Finish.

This saves the report and takes you to a summary page where you can manage
and test run the report (Figure A–45). Subsequent sections in this appendix
provide more detail about these tasks.

Table A–20 Options for Executing PL/SQL Code During Report Publication

Option Description

… before displaying the
page

Enter a PL/SQL procedure that will execute before the page
containing the report or the report customization form
displays.

… after displaying the
header

Enter a PL/SQL procedure that will execute after the report or
the report customization form header displays.

… before displaying the
footer

Enter a PL/SQL procedure that will execute before the report
or the report customization form footer displays.

… after displaying the
page

Enter a PL/SQL procedure that will execute after the page
containing the report or the report customization form
displays.

Building Portlets with the Portlet Builder A-47

Figure A–45 The Report Summary Page

A.1.4.4 Building Forms and Reports against interMedia Rich Content
You can integrate interMedia rich content, such as such as images, audio, and video,
into the reports and forms you build with OracleAS Portal. These objects are stored
in the Oracle9i Database Server.

The database column types for the interMedia rich content you can display include:

■ ORDIMAGE—This object type supports the storage, management, and
manipulation of image data, such as GIF, JPEG, and BMP.

■ ORDAUDIO—This object type supports the storage and management of audio
data, such as MP3, AU, WAV, and MPEG

■ ORDVIDEO—This object type supports the storage and management of video
data such as REAL, QuickTime 3/4, AVI, and MPEG.

In addition to allowing the use of these interMedia rich content type columns in an
OracleAS Portal report or form, object attributes can be displayed in join conditions,
formatting, column conditions, and so on. For example, display a video clip’s size or
duration in a report, or set a report condition that specifies that only objects modified
after a certain date will display.

Keep in mind that, although interMedia supports a variety of content types and
formats, the browser being used to view this material must natively support the
relevant MIME type or have an installed plug-in that displays rich content that is not
typically supported on the Web. For example, most browsers can natively display GIF
and JPEG images, but TIFF images are not displayed without an installed plug-in.

interMedia and Reports
Two OracleAS Portal Reports Wizards offer the opportunity to include interMedia
rich content:

■ Reports from Query Wizard

■ Query By Example Report (QBE)

Using a Wizard to Build a Portlet

A-48 Oracle Application Server Portal Developer’s Guide

With QBE reports, object-type attributes will not display. Consequently, trying to
provide a value for an interMedia-based column in a report customization form
results in an error. This means that you cannot use a report customization form for
a QBE report that runs against interMedia object-type columns.

You can display interMedia rich content in a report in one of two ways:

■ Embedded (inline)

The image, audio, or video runs in place within the report.

■ As a linked icon

When a user clicks the link, the content is displayed in a new browser window, or
it may be handled by the associated source application. For example, it may
display in a RealPlayer window.

These display options apply to all columns that contain interMedia content in the
OracleAS Portal report. They can be selected on the Display Options tab in the
OracleAS Portal Report Wizard. By default, interMedia rich content is represented by
icons in a report. Users click an icon to view the actual content. If you plan to rely on
the default, you do not need to do anything further. If you plan to embed interMedia
rich content, select the Embed interMedia rich content in the report check box on the
Display Options page in the Report Wizard.

For more information about the Report Wizard, see "Building Reports Declaratively".

interMedia and Forms
Two OracleAS Portal Form Wizards offer the opportunity to include interMedia rich
content in your form:

■ Form based on table or view

■ Master-detail form

With either of these methods, you must make sure that the underlying database object
you are changing through your form is based on columns of type ORDIMAGE,
ORDAUDIO, or ORDVIDEO.

To include interMedia rich content in your form, on the Formatting and Validation
Options page of the OracleAS Portal Form Wizard, select the column name in the
left frame, and specify an Item Type of File Upload (interMedia) in the right frame.

One advantage of uploading images, audio, and video clips into interMedia-based
columns over uploading into BLOB columns is that the data is automatically parsed to
extract several attributes, such as MIME type, length, and any user-defined metadata
that might be included in the original media file. For example, a QuickTime file might
contain close-captioning, or a RealVideo file might have copyright information. With
interMedia-based columns, these attributes are automatically extracted and stored in
the interMedia object for indexing and querying.

Note: The assigning of column types is done outside of OracleAS
Portal. Consult your database administrator if necessary to create a
table with interMedia column types.

Building Portlets with the Portlet Builder A-49

A.1.4.5 Building Charts Declaratively

Figure A–46 A Chart Built with the Portlet Builder Chart Wizard

Charts display data from database tables or views as bar charts. They are based on at
least two table or view columns:

■ Values in the Label column provide a display name for the bars on the chart.

■ Values in the Values column calculate the size of the bars on the chart relative to
one another. Value columns must always contain numeric data.

You can also specify a Link column. Values in this column create hypertext links from
the chart’s labels to other OracleAS Portal database portlets or URLs. For example,
with a link in place, users can click the label in a chart and jump to a form that enables
them to update the data the chart is based on.

Charts are also an effective way to display aggregate data. You can use Group By and
Summary Options in the wizard to sum the column values returned by your query,
for example, the minimum, maximum, or average value, or the number of values in a
column.

The portlet-building wizards in OracleAS Portal provide two construction methods for
charts:

■ Charts From Query Wizard

■ Charts From SQL Query

The Query Wizard provides a greater level of assistance in constructing a chart. The
SQL Query method provides you with a greater level of control over the query that
will be used to fetch data for the chart.

This section describes how to build a chart using the Query Wizard.

To create a chart using the Query Wizard:

1. Follow the instructions detailed in "Building Portlets Declaratively".

Return to this section once you complete step 6.

2. Click the Chart link next to Create New… (Figure A–47).

Figure A–47 The Chart Link Next to Create New …

3. On the Charts page, click Charts From Query Wizard (Figure A–48).

Using a Wizard to Build a Portlet

A-50 Oracle Application Server Portal Developer’s Guide

Figure A–48 The Charts From Query Wizard Link

4. On the resulting page enter an internal name for the chart in the Name field
(Figure A–49).

The internal name is not published to users.

Figure A–49 The First Step of the Chart Wizard

5. In the Display Name field, enter the name by which users will identify this chart
(Figure A–49).

The display name is used at runtime. It displays as the title of the browser window
as well as in the banner of the chart. When the chart is published as a portlet, the
display name is used as the title of the portlet and in the List of Available Portlets
in the Portlet Repository.

6. In the Description field, enter a description of this chart (Figure A–49).

The description displays below the portlet in the Portlet Repository. It can be a
summary of the portlet’s purpose, a classification of its type, or any other
descriptive information. It may be useful within your organization to have a
standard approach to what is included in the description.

7. From the list of Portal DB Providers, select the provider that will own this chart
(Figure A–49).

This list displays only those providers in which you have been granted privileges
to build portlets. We recommend that you use a provider specifically created for
owning, or hosting, your declaratively-built portlets.

Building Portlets with the Portlet Builder A-51

8. Click Next.

9. Click the List icon next to the Table or View field, and choose a table or view on
which to base your chart (Figure A–50).

Figure A–50 Clicking the List Icon to Select a Table or View

The tables and views that you can choose in this step are those that are accessible
from the Portal DB Provider you selected in the previous step. Additionally, the
list is limited to those tables and views on which you have the following
privileges: all table views in the provider schema, granted select to public, granted
select to the provider schema.

If clicking the List icon produces a "No response from Server" message, and you
know the table you want to select, try entering the table name directly into the
field.

10. Click Next.

Note: In the Tables/Views field, you can use constants for the
OracleAS Portal schema and the application schema (for example,
enter #APP_SCHEMA#.EMP). For more information, see
"Referencing the OracleAS Portal Schema".

Note: You can choose only one table or view using this wizard. If
you want to base the chart on more than one table or view, you
must write your own SQL to create the chart using the Charts from
SQL Query wizard.

Using a Wizard to Build a Portlet

A-52 Oracle Application Server Portal Developer’s Guide

11. Choose the column(s) that contain the values you will display as Labels, Links,
and Values in the chart (Figure A–51).

Figure A–51 Columns to Be Used for Labels, Links, and Values in the Chart

Table A–21 lists and describes the options on this page.

12. Click Next.

Table A–21 Data Selection Options for Charts

Option Description

Label Choose the column that contains the values you will use as
labels for different bars on the chart. For example, if you were
going to create a chart that compared salaries of each job title in
the department, you might choose the JOB column as the
Label, SAL as the Value, and AVG as the Group Function.

Link Links must be preconstructed and stored in the database before
you can use them here. Use this field to choose a
preconstructed link that jumps from a chart bar’s label to
another OracleAS Portal portlet or URL. Click the Edit icon
next to the Link field to set link parameters. If you do not set
link parameters, the default values of the link are used.

Value Choose the column that contains the values to be used to
calculate the relative size of the bars in the chart. Value
columns always contain numeric data.

The default for Value is 1. Specifying a value of 1 is useful if
you also choose a group function. For example, you can choose
the JOB column from SCOTT.EMP as the Label, 1 as the Value,
and COUNT as the Group Function. This creates a chart that
displays the number of employees in each job classification.

Group Function A group function calculates a single summary value (%, sum,
count, average, maximum, minimum, standard deviation, or
variance) from groups of numeric values in the Value column.
OracleAS Portal uses values in the Label column to
determine these groupings.

For example, you can choose the JOB column from
SCOTT.EMP as the Label, SAL as the Value, and AVG as the
Group Function. This creates a chart that displays the average
salary for each job classification.

Building Portlets with the Portlet Builder A-53

13. Optionally, specify conditions that limit the data displayed in the chart.

For example, to display data from all employees in Department 10, choose
DEPTNO from Column Name, choose = or like from Condition, and enter 10 in
the Value field (Figure A–52).

Figure A–52 Defining Column Conditions for a Chart

Table A–22 lists and describes the options that appear on the Column Conditions
page.

Table A–22 Options on the Column Conditions Page

Option Description

Column Name Choose columns whose values will be used to limit the data
displayed in the chart. For example, if you want to display
values greater than 3000 from the EMPNO column of the
SCOTT.EMP table, choose EMPNO as the Column Name, choose
> from Condition, and enter 3000 in the Value field.

Condition Choose conditions that will define Column Name’s
relationship to Value. Choose from:

■ equal to (=)

■ greater than (>)

■ greater than or equal to (>=)

■ less than (<)

■ less than or equal to (<=)

■ like

■ not equal to (!=)

■ null

■ not null

■ in

■ not in

To specify multiple values after an IN or NOT IN condition,
type a colon (:) between each value, for example, 10:20:30.

Value Enter a value that will limit the data displayed in the chart.

Using a Wizard to Build a Portlet

A-54 Oracle Application Server Portal Developer’s Guide

14. Click Next.

15. Optionally, specify conditions and define special formatting for chart data that will
be used whenever those conditions are met.

For example, you can specify that a chart bar should be red its related column
value exceeds a particular amount (Figure A–53).

Figure A–53 Defining Formatting Conditions

Table A–23 lists and describes the formatting condition options on this page.

More Conditions Click to add more fields for specifying additional conditions.

Table A–23 Options on the Formatting Conditions Page of the Chart Wizard

Option Description

Column Choose a column on which the condition will be applied.

Condition Choose conditions that will define Column’s relationship to
Value. Choose from:

■ equal to (=)

■ greater than (>)

■ greater than or equal to (>=)

■ less than (<)

■ less than or equal to (<=)

■ like

■ not equal to (!=)

■ null

■ not null

■ in

■ not in

■ between

Table A–22 (Cont.) Options on the Column Conditions Page

Option Description

Building Portlets with the Portlet Builder A-55

16. Click Next.

17. Define display options for the various possible views of the chart:

■ Table A–24 describes display options common to all views of a chart
(Figure A–54).

■ Table A–25 describes display options for full-page views of a chart
(Figure A–55).

■ Table A–26 describes display options for charts displayed as portlets
(Figure A–56).

Value Enter a column value to trigger the condition. There is no need
to apply formatting masks to numeric values. For example, in a
table with an EMPNO column, if you want to apply special
formatting to EMPNO values greater than 3000, select > for the
Condition, and enter 3000 in this field. Enter date values in
nls_date_format.

To specify multiple values after an IN or NOT IN condition,
type a colon (:) between each value, for example, 10:20:30. To
specify a BETWEEN condition, separate the two values by
either a comma, a space, or the word and.

Col/Bar Choose whether you want the conditional formatting to be
applied to a displayed column name or to the <BAR>
associated with value that meets the condition.

For example, imagine that your chart uses the SAL and ENAME
columns. ENAME is used to label each bar in the chart, and SAL
is used to provide the value that drives the size of the bar. If
you want a chart bar to turn red and blink if a salary is under
40,000, select <BAR>. If you want the ENAME to turn red and
blink when the condition is met, select ENAME. If you want the
salary, which is included in the chart along with the label and
the bar, to turn red and blink when the condition is met, select
SAL.

Color Choose a color for displaying data that meets the specified
condition. The color will be applied to text or to the bar,
depending on the choice you made in the Col/Bar field.

Type Face Choose a font in which to display data that meets the specified
condition.

A Select to display results that meet the specified condition in
bold.

A Select to display results that meet the specified condition in
italic.

A Select to underscore results that meet the specified condition.

Blink Select to cause results that meet the specified condition to blink
on and off.

Seq Enter a sequential number to establish an order of precedence
for execution of the formatting. This is useful, for example,
when a row contains data that meets more than one condition,
and the formatting rules differ for each. The condition with the
highest position in the order (that is, 1), takes precedence over
all the others.

Table A–23 (Cont.) Options on the Formatting Conditions Page of the Chart Wizard

Option Description

Using a Wizard to Build a Portlet

A-56 Oracle Application Server Portal Developer’s Guide

■ Table A–27 describes display options for charts displayed on mobile devices
(Figure A–57).

Figure A–54 Display Options Common to All Chart Views

Figure A–55 Display Options for Full Web Page Chart Views

Table A–24 Display Options Common to All Chart Views

Option Description

Order By Choose a method for ordering the chart’s data:

■ ORDER BY VALUE—The bars in the chart are shown in
the same numeric order as values in the table column that
you specified in the Value entry field.

■ ORDER BY VALUE DESC—The bars in the chart are
shown in reverse order of values in the table column that
you specified in the Value entry field.

■ ORDER BY LABEL—The bars in the chart are shown in
the same order as values in the table column that you
specified in the Label entry field.

■ ORDER BY LABEL DESC—The bars in the chart are
shown in the reverse order of values in the table column
that you specified in the Label entry field.

Include Null Values Select to display null values in the chart.

Treat Null Values as Enter the text string you want to be displayed for any null
values in the chart, for example: (this field is null).

Expire After (minutes) Enter the number of minutes after the initial display to keep
the chart in the cache. When the time expires, the chart data is
refreshed from the database.

Building Portlets with the Portlet Builder A-57

Figure A–56 Display Options for Charts Viewed As Portlets

Table A–25 Display Options Applying to Full Web-Page Chart Views

Option Description

Type Face Choose the font for displaying chart text.

Font Color Choose the font color for displaying chart text. User-defined
colors are not available for selection.

Font Size Choose the font size for displaying chart text.

Chart Type Choose whether to display the cart bars in a horizontal or
vertical orientation.

Axis Choose a method for displaying chart bars relative to the value
of the chart’s axis. For example, if you choose Zero, the value
of the axis is set at 0. If you choose Average Value, the axis
is set at the average of all values in the table or view column on
which the Value section of the chart is based.

Bar Image Choose an image that will be used to fill in the bars on the
chart. Choose MULTI to display bars in different colors.

Chart Scale Choose a percent (%) value to set the scale of chart bars relative
to the Web page that will host the chart. Higher percentages
display larger bars.

Bar Width Choose a width in pixels for chart bars. This option applies to
bars in both horizontally-and vertically-oriented charts.

Bar Height Enter a height in pixels for chart bars. This option applies to
bars in both horizontally-and vertically-oriented charts.

Value Format Mask Enter a format for numeric values or dates that appear on the
chart.

Maximum Rows Per Page Enter the maximum number of bars you want to display per
page.

Summary Options Choose one or more options to display summary information
about the chart. Each option you choose is included in the
summary information box at the bottom of the chart. Windows
users can choose more than one option by pressing the Ctrl key
while clicking each option.

Log Activity Select to enter information in the OracleAS Portal activity log.
Information includes performance statistics and the names of
users who request the chart.

Show Timing Select to display the time when the server received the request
to generate HTML for the chart. This information is displayed
at the bottom of the chart.

Show Query Conditions Select to display all user-specified parameters passed to the
SQL query that created the chart and the time the chart was
created. This information is displayed at the bottom of the
chart.

Using a Wizard to Build a Portlet

A-58 Oracle Application Server Portal Developer’s Guide

Figure A–57 Display Options for Charts Viewed on Mobile Devices

18. Click Next.

19. Define the content for display on the chart customization form.

Use the options on this page to give your users control over what data will appear
in their view of the chart.

For example, if you choose the DEPTNO column from the SCOTT.EMP table as a
Column Name in this step, OracleAS Portal adds an entry field for DEPTNO to
the chart’s customization form. Users can type a department number in the field to
limit display to data relevant to that department.

Optionally, you can add a list of values to the entry files. Instead of requiring users
to type a numeric value for DEPTNO, you could add a list of values that enables
them to choose, for example, 10, 20, or 30.

In portlet implementations, the chart customization form displays when users
click the Customize link at the top of the portlet. In full-page implementations,
you can provide users with a link to run the chart; the link can target the chart
customization form, which in turn can have a Run button. Users click this button
to run the chart once they’ve set their customization options.

If you wish, you can use bind variables to allow users to specify their own values
in the customization form. See "Using Bind Variables" for more information.

■ Table A–28 describes chart customization form display options (Figure A–58).

Table A–26 Display Options for Charts Viewed as Portlets

Option Description

Page Style Choose the page style element to use for displaying chart text.

Type Face Choose a font to override the font of the chosen page style
element.

Font Color Choose a font color to override the font color of the chosen
page style element.

Font Size Choose a font size to override the font size of the chosen page
style element.

Bar Width Choose a width in pixels for bars on the chart. This option
applies to bars in both horizontally- and vertically-oriented
charts.

Bar Height Choose a height in pixels for bars on the chart. This option
applies to bars in both horizontally- and vertically-oriented
charts.

Maximum Rows Per Page Enter the maximum number of bars you want to display in the
chart.

Table A–27 Display Options for Charts Viewed on Mobile Devices

Option Description

Maximum Rows Per Page Enter the maximum number of bars you want to display in the
chart.

Building Portlets with the Portlet Builder A-59

■ Table A–29 describes chart customization form formatting options
(Figure A–59).

■ Table A–30 describes chart customization form public formatting options
(Figure A–60).

■ Table A–31 describes chart customization form button options (Figure A–61).

Figure A–58 Chart Customization Form Display Options

Table A–28 Chart Customization Form Display Options

Option Description

Value Required Select to require the user to specify a value for the column’s
entry field on the chart’s customization form.

Column Name Choose a table or view column for inclusion on the chart
customization form. An entry field will display on the form
that enables users to specify values that limit the data that will
be displayed in the chart. If you do not choose a table or view
column, no entry appears on the customization form.

Prompt Enter prompt text to display next to the entry field. The prompt
text tells users what to enter in the field, for example: Choose
the department number you want to display.

LOV Select a list of values (LOV) for the column’s entry field. Users
of the customization form can choose values from this list to
limit the data displayed in the report. Click the Browse icon
next to this field to locate an LOV. Note that the LOV must
already be built and stored in the Portal Repository. For more
information, see "Building Lists of Values Declaratively".

In the LOV field, you can use a constant for the application
name (for example, enter #APP_NAME#.dept_lov). For more
information, see "Referencing the OracleAS Portal Schema".

Using a Wizard to Build a Portlet

A-60 Oracle Application Server Portal Developer’s Guide

Figure A–59 Chart Customization Form Formatting Options

Display LOV As Select a format for displaying your list of values. Choose from:

■ <Blank>—No option is selected.

■ Check box—Each selection displays with a check box next
to it. Users check or do not check the box to indicate their
preferred value.

■ Combo box—Combines a pop-up list and a manual entry
field. Users can either select a provided value or enter
their own.

■ Pop up—Provides a pop-up list from which users select a
value.

■ Radio group—Lists each selection with a radio button
next to it. Users select or do not select the button to
indicate their preferred value.

■ Multiple Select—Allow users to choose more than one
value.

Make Public Check this field if you want this element to display on the chart
customization form.

Be sure to make public any element that will be a variable in
the list of portlet parameters associated with a page parameter.

More Parameters Click to add more entry fields on the customization form.

Table A–29 Chart Customization Form Formatting Options

Option Description

Axis Select to enable users of the chart customization form to choose
a method for displaying chart bars relative to the value of the
chart’s axis. For example, if users choose Zero, the value of the
axis is set at 0. If users choose Average Value, the axis is set
at the average of all values in the table or view column on
which the Value section of the chart is based.

Include Nulls Select to enable users of the chart customization form to
specify whether to display null values in the chart.

Maximum Rows/Page Select to enable users of the chart customization form to
specify the maximum number of bars to display in the chart.

Table A–28 (Cont.) Chart Customization Form Display Options

Option Description

Building Portlets with the Portlet Builder A-61

Figure A–60 Chart Customization Form Public Formatting Options

Figure A–61 Chart Customization Form Button Options

Summary Select to enable users of the chart customization form to choose
one or more options that display summary information about
the chart. Each option that users choose is included in the
summary information box at the bottom of the chart.

Type Select to enable users of the chart customization form to choose
a font for displaying chart text.

Display Name Select to allow users of the chart customization form to edit the
display name for the chart.

Order By Select to enable users of the chart customization form to set the
display order for chart data.

Table A–30 Chart Customization Form Public Formatting Options

Option Description

Type Select to enable unauthenticated users of the chart
customization form to choose a font for displaying chart text.

Display Name Select to enable unauthenticated users of the chart
customization form to edit the display name of the chart.

Maximum Rows Select to enable unauthenticated users of the chart
customization form to specify the maximum number of bars to
display in the chart.

Order By Select to enable unauthenticated users of the chart
customization form to set the display order for chart data.

Table A–29 (Cont.) Chart Customization Form Formatting Options

Option Description

Using a Wizard to Build a Portlet

A-62 Oracle Application Server Portal Developer’s Guide

20. Click Next.

21. Optionally, select a template to define the look and feel of the page that will host
the chart, and enter text for display at the top and/or bottom of the chart and the
chart customization form.

The template is applied only when the chart is displayed on a full Web page. If the
chart is displayed as a portlet, the template you select here will be ignored and the
style of the host page will be used.

Table A–32 lists and describes the options available on this page (Figure A–62).

Table A–31 Chart Customization Form Button Options

Option Description

Button (Full page only) Select one or more buttons to display on the
chart customization form:

■ Run—Displays the URL portlet with the options the user
has specified in the chart customization form.

■ Save—Saves users’ current selections to enable them to
rerun a chart using the same parameters without having to
reenter them into the chart customization form. When you
include this button, the chart customization form also
displays a Reset to Defaults button that resets all values in
the chart customization form to their default values.

■ Batch—Runs the URL portlet in batch mode and saves the
results in the database.

■ Reset—Undoes any changes made to the chart
customization form since the last Save, Reset, or Reset to
Defaults event.

Name Enter the label that will display on the selected button. Keep
the name short to avoid displaying large buttons. You cannot
change the label on the Reset to Defaults button.

Location Specify the location of the button on the chart customization
form. Choose from Top, Top and Bottom, or Bottom.

Alignment Specify the alignment of the button on the chart customization
form. Choose from Left, Center, or Right.

Building Portlets with the Portlet Builder A-63

Figure A–62 Options Available on the Chart and Customization Form Text Page

Table A–32 Options Available on the Chart and Customization Form Text Page

Option Description

Template Choose a template to set the look and feel of the page that will
host the chart. The template is applied only when the chart is
displayed on a full Web page. If the chart is displayed as a
portlet, the template you select here will be ignored and the
style of the host page will be used.

Display options, which you specified on previous wizard
pages, control the look and feel of the chart itself.

Preview Template Click to view the appearance of the template that is currently
selected in the Template list.

Description (Chart only.) Provide a description of the purpose of this chart.
This is an attribute that may or may not display, depending on
which attributes have been selected for display in the region
where the chart or chart portlet is placed.

Display Name Edit the chart’s display name or the title for the chart
customization form.

You can specify HTML in this field.

Header Text Enter any introductory text that you want to display at the top
of the chart or the chart customization form. This text displays
below the display name or title.

You can specify HTML in this field.

Using a Wizard to Build a Portlet

A-64 Oracle Application Server Portal Developer’s Guide

22. Click Next.

23. Optionally, enter PL/SQL code to run at different points during the runtime
creation of the chart or the chart customization form.

Table A–33 lists and describes the options available on this page (Figure A–63).

Figure A–63 Additional PL/SQL Code Options for Charts

Footer Text Enter any text that you want to display at the bottom of the
chart or the chart customization form.

You can specify HTML in this field.

Help Text Enter any text that you want to display in a help page for the
chart or chart customization form. OracleAS Portal
automatically includes a help button with the chart and the
chart customization form when they are displayed on a full
page. When they are displayed as a portlet, whether the help
button displays is controlled by the way the host portlet region
has been configured. Users click the help button to display the
text you enter here.

You can specify HTML in this field.

Table A–33 Options Available on the Additional PL/SQL Code Page

Option Description

… before displaying the
page.

Enter a PL/SQL procedure that will execute before the page
containing the chart or the chart customization form displays.

Table A–32 (Cont.) Options Available on the Chart and Customization Form Text Page

Option Description

Building Portlets with the Portlet Builder A-65

24. Click Finish.

Clicking Finish saves your changes and takes you to a summary page where you
can test your results (Figure A–64). See "Performing Test Runs on a Portlet" for
more information on testing your results.

Figure A–64 Chart Summary Page

… after displaying the
header.

Enter a PL/SQL procedure that will execute after the chart or
the chart customization form header displays.

If you want to display output in the chart from a PL/SQL
procedure, you must enter the PL/SQL in the … after
displaying the header field.

… before displaying the
footer.

Enter a PL/SQL procedure that will execute before the chart or
customization form footer displays.

… after displaying the
page.

Enter a PL/SQL procedure that will run after the page
containing the chart or customization form displays.

Table A–33 (Cont.) Options Available on the Additional PL/SQL Code Page

Option Description

Using a Wizard to Build a Portlet

A-66 Oracle Application Server Portal Developer’s Guide

A.1.4.6 Building Lists of Values Declaratively

Figure A–65 Different Display Types for a Dynamic List of Values

When you build a list of values using the OracleAS Portal List of Values Wizard, you
have the option of creating two types of lists:

■ Dynamic list of values

■ Static list of values

A dynamic list of values takes its content from a SELECT statement you build through
the wizard. The content of the list may change, depending on the data that is available
for selection from the source database. A static list of values takes its content from
values you enter in the wizard. These values do not change unless you edit the list and
specifically alter them.

This section describes how to create a dynamic list of values.

To create a dynamic list of values:

1. Follow the instructions detailed in "Building Portlets Declaratively".

Return to this section once you complete step 6.

2. Click the List of Values link next to Create New… (Figure A–66).

Figure A–66 The List of Values Link Next to Create New …

3. On the List of Values page, click Dynamic List of Values (Figure A–67).

Building Portlets with the Portlet Builder A-67

Figure A–67 The Dynamic List of Values Link

4. On the resulting page, select the Portal DB Provider that will own this list from the
Owner drop-down list (Figure A–68).

Figure A–68 Defining List of Values Options

5. In the Name field, enter a name for this list of values (Figure A–68).

This name appears on the selection list when you insert a list of values.

6. From the Default Format drop-down list, choose a default format for the list of
values (Figure A–68).

Choose from:

■ Check box—Users mark a check box to indicate their selection.

■ Combo box—Users select from a drop-down list or manually enter their
selection.

■ Pop up—Users select from a secondary window, which automatically
populates the relevant field with the selected value.

Using a Wizard to Build a Portlet

A-68 Oracle Application Server Portal Developer’s Guide

■ Radio group—Users mark a circle (radio button) with their selection.

■ Multiple Select—Users select one or more values from a list.

Note that portlet developers who add the list of values to their portlet can override
this default and display the list in a different format.

7. Specify whether to show null values by selecting either Yes, No, or % from the
Show Null Value drop-down list (Figure A–68).

■ When you select Yes, null values display as Null in the list of values.

■ When you select No, null values display as blank spaces in the list of values.

■ When you select %, blank spaces are also displayed. The difference between %
and No is that, with %, when you place the list of values on a form, the null
value (the wildcard %) is available for the set up of dynamic transactions in
the form’s code.

8. Enter a SQL SELECT statement in the SQL Query text box (Figure A–68).

Select two values from two table or view columns (though you can select each
value from the same column):

■ The first column specifies the values displayed in the list of values.

■ The second column specifies the actual values that are passed to the portlet.

For example, the query select ename, empno from scott.emp creates a list
of values that displays employee names from the ENAME column. It passes the
employee’s associated ID number (EMPNO) to the portlet when a user chooses a
name from the list of values.

Do not end your query with a semicolon.

9. Click OK to save your changes.

Clicking OK takes you to a summary page where you can manage the list of
values (Figure A–69). For example, from this page, you can run the list to see the
different ways it can display.

Note: You can enter bind variables by prefixing them with colons
(:), but only if the list of values is to be used in a form portlet. Lists
of values with bind variables will not work in other kinds of
OracleAS Portal portlets.

In the SQL query, you can use constants for the OracleAS Portal
schema and the application schema. For more information, see
"Referencing the OracleAS Portal Schema".

Building Portlets with the Portlet Builder A-69

Figure A–69 List of Values Summary Page

Once you complete a list of values, it becomes available. It displays automatically on
selection lists wherever you can add a list of values. For example, both the form and
report customization forms you construct with Portlet Builder wizards allow for the
addition of lists of values. As you go through these wizards, you’ll note that the list
you created here now appears as a selection option.

A.2 Editing a Portlet Builder Component
After you build a portlet using a wizard, you can use options in the Navigator to edit
it. You can edit the portlet and overwrite the current version with your changes, or you
can edit the portlet as new, and create a new version of it (consequently leaving the
old, original version unchanged).

Where the wizards step you through the creation of a portlet, the editor provides tabs
that contain the options that were available in the wizard. Each tab corresponds to a
step in the wizard that created the portlet. Entry fields on each tab contain the values
that were specified during creation of the portlet, or by the user who last edited the
portlet.

A portlet is locked while you edit it, preventing other users from making changes to it.
The portlet remains locked until you click OK in the Edit page. For more information,
see "Managing Locks on Portlets".

To edit a portlet:

1. At the top of the Portal Builder page, click the Navigator link.

2. Click the Providers tab to bring it forward.

3. Click the Locally Built Providers link.

The Name column displays the names of all the providers on which you have
privileges.

4. Click the name of the OracleAS Portal database provider that contains the portlet
that you want to edit.

Note: To edit a portlet, you must have at least the Edit privilege
on the portlet or the provider that owns it.

Managing Portlets

A-70 Oracle Application Server Portal Developer’s Guide

5. Click the name of the portlet.

6. On the resulting page, the Develop tab should be exposed. Click the Edit link at
the bottom of the tab.

To leave the original version of a portlet unchanged, click the Edit as New link
instead of Edit.

7. Click one or more tabs to bring them forward and edit their associated options.

The tabs contain the same options that are available in the wizards. For more
information about these options, see the previous sections that cover building
portlets:

■ Building Forms Declaratively

■ Building Reports Declaratively

■ Building Charts Declaratively

■ Building Lists of Values Declaratively

As you switch from tab to tab, OracleAS Portal keeps track of any changes you
make. Click OK only after you have made all the changes on all the tabs that you
want to make. If you decide you don’t want to save your edits, click Cancel.

Note that it is important that you click either OK or Cancel. Simply closing the
window will cause the component to remain locked. Special measures must be
taken to unlock inappropriately locked portlets. For more information, see
"Managing Locks on Portlets".

A.3 Managing Portlets
For each locally-built portlet, OracleAS Portal provides a central location from which
you can perform management tasks: the management page. This section describes
how to locate any locally built portlet’s management page and how to perform various
management tasks. It includes the following subsections:

■ Navigating to the Component Management Page

■ Renaming a Portlet

■ Deleting a Portlet

■ Copying a Portlet

■ Generating the PL/SQL Package for a Portlet

A.3.1 Navigating to the Component Management Page
To navigate to the component management page:

1. Click the Navigator link at the top of the Portal Builder page.

2. Click the Providers tab to bring it forward.

3. On the Providers tab, click the Locally Built Providers link.

Note: To rename, delete, or copy a portlet, you must have at least
the Edit privilege on the provider that owns the portlet.

To generate a portlet, you must have at least the View Source
privilege on the portlet or on the provider that owns it.

Building Portlets with the Portlet Builder A-71

4. Click the name of the Database Provider that owns the portlet you will manage,
then click the Manage link next to the component you will manage.

Note the three tabs on this page:

■ Develop—Run, test, revise, delete and manage the various versions of a
component.

■ Manage—Export, copy, rename (both internal and display names), generate,
and monitor the performance of the component.

■ Access—Define security for the component within the OracleAS Portal
framework. This includes publication of the component as a portlet, privilege
inheritance from the provider, and cache invalidation.

A.3.2 Renaming a Portlet
To rename a portlet:

1. Navigate to the component management page for the portlet you will rename.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Manage tab to bring it forward.

3. Click the Rename icon.

4. Rename the internal and/or the display name for the portlet:

a. For the internal name, in the New Component Name field enter a new name
for the portlet.

b. For the display name, in the New Component Display Name field enter a
new display name for the portlet.

5. Click OK.

The portlet is renamed with the name you provided.

A.3.3 Deleting a Portlet
To delete a portlet from the database:

1. Navigate to the component management page for the portlet you will delete.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Develop tab to bring it forward.

3. Click the Delete icon.

The Delete Portlet page displays the versions of the portlet that you are authorized
to delete.

4. Select the check box next to each version of the portlet that you want to delete.

5. Click Yes.

A.3.4 Copying a Portlet
To copy a portlet:

1. Navigate to the component management page for the portlet you will copy.

Managing Portlets

A-72 Oracle Application Server Portal Developer’s Guide

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Manage tab to bring it forward.

3. Click the Copy icon.

The Copy Portlet page displays.

4. From the New Owner list, choose the provider that will own the new copy of the
portlet.

You can choose the same provider.

5. Provide new internal and display names for the portlet:

a. For the internal name, in the New Component Name field enter a new name
for the portlet.

b. For the display name, in the New Component Display Name field enter a
new display name for the portlet.

6. Click OK.

A.3.5 Generating the PL/SQL Package for a Portlet
Use this feature to make sure that the portlet code compiles without errors and
performs within a reasonable time. This is particularly useful if you’ve written more
complex code than is currently supported in the portlet builder wizards. For example,
you could create a package; base a form or report on the package; then, using this
feature, verify that the form or report will compile.

To generate the PL/SQL package for a portlet:

1. Navigate to the component management page for the portlet you will work with.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Manage tab to bring it forward.

3. Click the Generate icon.

OracleAS Portal generates the PL/SQL package using the most recent OracleAS
Portal routines.

A.3.6 Viewing Source Code
OracleAS Portal stores portlets in the database as PL/SQL packaged procedures.
You can view the package spec and body for the portlet as well as its call interface.

The portlet call interface displays the arguments that can be set during run time. For
example, if you created a report and selected HTML as a Default Format in the
Display Options step of the Report build wizard, the call interface displays HTML as
the default value for the _format_out argument.

When you run the package containing the portlet in PL/SQL or by calling it from a
URL, you can edit the call interface to accept different arguments. You could change
the _format_out argument to another report output format, such as ASCII.

This section describes how to view the package spec, body, and call interface for a
portlet. It includes the following subsections:

■ Viewing the Package Spec and Body for a Portlet

Building Portlets with the Portlet Builder A-73

■ Viewing the Call Interface for a Portlet

A.3.6.1 Viewing the Package Spec and Body for a Portlet
To view the package spec and body for a portlet:

1. Navigate to the component management page for the portlet you will work with.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Develop tab to bring it forward.

3. Click the Package Spec link next to PL/SQL Source to view the portlet’s spec; click
the Package Body link next to PL/SQL Source to view the body.

A.3.6.2 Viewing the Call Interface for a Portlet
To view the call interface for a portlet:

1. Navigate to the component management page for the portlet you will work with.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Develop tab to bring it forward.

3. Click the Show link next to Call Interface.

A.3.7 Managing Locks on Portlets
A portlet lock prevents other developers from overwriting your changes while you are
editing a portlet. No other developer can edit the portlet when it is locked. Portlets are
locked automatically when they are being edited. You can determine who is doing the
editing by taking the steps outlined in this section.

To view the name of a user who has locked a portlet:

1. Navigate to the component management page for the portlet you will work with.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Manage tab to bring it forward.

3. Click the Show Locks on this Component link.

Locked portlets show a Status of EDIT on the resulting page. In addition to status,
this page also lists the user responsible for the lock, the length of time the version
has been locked, and other information. It also provides an Unlock link you can
click to unlock the portlet.

The Unlock link is useful if a developer has edited a component, then closed the
browser window without clicking OK or Cancel. In such case, the component
remains locked. Use the Unlock link to unlock the component.

Note: To view portlet source code, you must have at least the
View Source privilege on the portlet or the provider that owns it.

Note: To view a portlet lock or to unlock a portlet, you must have
at least the Edit privilege on the portlet or the provider that owns it.

Managing Versions

A-74 Oracle Application Server Portal Developer’s Guide

A.4 Managing Versions
OracleAS Portal enables you to store multiple versions of the same portlet in the
database. Use the Edit as New link on the Develop tab (see Section A.3.1) to create a
new version of the portlet that is based on the current production version. When you
save your edits, you will be saving them to a new version, rather than overwriting any
existing versions. The next time you edit the portlet, you can open the most current
version or an earlier version of the portlet. This section describes how to access various
versions of an OracleAS Portal component.

To access various versions of an OracleAS Portal component:

1. Navigate to the component management page for the portlet you will work with.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. Click the Develop tab to bring it forward.

3. To access the production version:

■ Click the Edit link to make changes to the existing production version.

■ Click the Edit as New link to make changes to a new version that is based on
the production version.

The production version is listed next to Production Version Status on the
Develop tab. This field lists the production version, and indicates whether this
version’s code package is valid, that is, that it will run.

4. To access an archived version of the component:

a. Next to Archive Version(s), click the x (Archive) version you want to work
with.

The variable value (x) stands for the archive number.

b. On the resulting page, click Yes to make the selected version the production
version.

Note that the version number listed next to Production Version Status
changes to your selection.

c. On the Develop tab, click the Edit or the Edit as New link to edit the newly
selected production version of the component.

You can delete portlet versions from the database at any time. Follow the steps
outlined in "Deleting a Portlet", then check the box next to the version(s) you want to
delete, and click Yes. If you delete the production version and leave an archive version
intact, you may want to select the archive version on the Develop tab and make it the
production version.

The most recent version of a portlet is called the production version. The production
version can be valid or invalid, depending on whether the database package
containing the portlet will run without errors. If a portlet has a version status of
(PRODUCTION with INVALID package), you must either generate the portlet (see
Section A.3.5) or edit the portlet (see Section A.2) to fix the errors before it will run.

A.5 Managing Portlet Security
The Actions column of the Navigator (Figure A–70) displays the actions you may
perform on a portlet. The actions listed here depend on the access privileges you have
been granted on the portlet.

Building Portlets with the Portlet Builder A-75

Figure A–70 Portlet Actions

By default, you have the Manage privilege on any portlet you create. The Manage
privilege provides the highest level of access. This means you can run, edit, delete, or
export the portlet. You can also grant access privileges to another user on any portlet
that you create.

To build a portlet within OracleAS Portal, you must have at least the Edit privilege
on the provider that will own the finished portlet. By default, portlets inherit whatever
privileges are assigned to the provider that owns them. For example, after a
component is created in the MY_APP provider, all developers with at least the Execute
privilege on MY_APP can run the component after it is published as a portlet. Portlet
owners can override these privileges and set access on a user-by-user level, rather than
at the provider level.

Table A–34 lists the actions one can perform on a portlet and indicates which
privileges enable a user to perform those actions.

Table A–34 Portlet Actions Associated with Portlet Privilege Levels

Action Manage Edit
View
Source Customize Execute

Grant portlet privileges to
other users

X

Manage portlet locks X X

Edit any portlet version X X

Delete the portlet from the
database

X X

Rename the portlet X X

Export the portlet to
another database

X X

Copy the portlet X X

Generate the portlet
PL/SQL package

X X X

Monitor portlet usage X X X

View portlet’s call
interface, package spec,
and body

X X X

Customize the portlet X X X X

Run the portlet X X X X X

Add the portlet to the
Favorites list

X X X X X

Managing Portlet Security

A-76 Oracle Application Server Portal Developer’s Guide

A.5.1 Granting Portlet Access Privileges

You can define access to your portlet at the provider level and at the portlet level. This
section describes how to inherit provider access privileges or override them by setting
privileges at the portlet level. It contains the following subsections:

■ Inheriting Portlet Access Privileges from a Provider

■ Granting Access Privileges to Individual Users

A.5.1.1 Inheriting Portlet Access Privileges from a Provider
By default, access to your portlet is inherited from the provider that owns it. For
example, all users who have the Execute privilege on the owning provider are
automatically able to execute your portlet. Users with the Edit provider privilege can
edit all the portlets owned by the provider, and so forth. You can set provider access
through the Grants tab (for more information, see "Granting and Revoking Privileges
on Database Objects"). On the Grants tab, you can grant different privileges to
different groups of users. Once privileges on the provider are established, you can
specify that any portlets created under the provider must inherit the same set of
privileges. This section describes how to specify that portlets should inherit privileges
granted to their host providers.

To inherit portlet access privileges from a provider:

1. Click the Navigator link at the top of the Portal Builder page.

2. Click the Providers tab to bring it forward.

3. Click the Locally Built Providers link.

4. Click the name of the Database Provider that contains the portlet on which you
want to grant access privileges.

5. Click the Manage link next to the relevant portlet.

The Manage page displays.

6. Click the Access tab.

7. Check the Inherit Privileges from Provider check box.

Portlet access will be defined by the portlet’s host provider.

A.5.1.2 Granting Access Privileges to Individual Users
You can override the default access privileges (that is, those granted through the
provider) by setting them at the portlet level. This section describes how to set access
privileges at the portlet level, allowing you to more specifically target privileges to
individual users.

Note: To grant access privileges on a portlet to other users or
groups, you must have at least the Manage privilege on the portlet
or the provider that owns it.

Note: Before you can publish Portlet Builder components as
portlets, the host provider must be exposed to OracleAS Portal as
a provider. For information on how to enable this setting, see
"Exposing a Provider".

Building Portlets with the Portlet Builder A-77

To grant access privileges to individual users:

1. Click the Navigator link at the top of the Portal Builder page.

2. Click the Providers tab to bring it forward.

3. Click the Locally Built Providers link.

4. Click the name of the Database Provider that contains the portlet on which you
want to grant access privileges.

5. Click the Manage link next to the relevant portlet.

 The Manage page displays.

6. Click the Access tab.

7. Clear the Inherit Privileges from Provider check box, then click Apply.

The Access page displays two new sections: Grant Access and Change Access.

8. In the Grantee field, enter the name of the user or group to whom you want to
grant privileges.

If you are not sure of the name of the user or group click the Browse Users or
Browse Groups icon and select from the list provided.

9. From the privilege list, choose an access privilege to grant to the user or group.

See Table A–34 for information on the actions allowed with different access
privileges.

10. Click Add.

The user or group you entered in the Grantee field displays along with the access
privilege you granted in the Change Access section at the bottom of the page.

11. (Optional) To modify a user or group’s access privilege, choose a new privilege
next to the user or group in the Change Access section.

12. (Optional) To remove all privileges, click the Delete icon next to the user or group
in the Change Access section.

13. Click Apply.

14. Click Close to exit the Manage page and return to the Portal Navigator.

Note: OracleAS Portal uses the Oracle Internet Directory for
identity management, serving as the repository for users and
groups. In Oracle Internet Directory, groups are uniquely identified
by their distinguished name (DN). Each group has a unique DN,
though many groups can share a common name, in the same way
that two people can share a common name, yet have completely
different lineage (that is, John Smith and John Doe). When working
within the portal, groups created from within that portal are
displayed simply with their common names. However, when the
portal references a group from some other location in the Oracle
Internet Directory—such as a group from some other portal
associated with the same Identity Management Infrastructure—the
DN of the group is displayed to distinguished it from the portal’s
locally defined groups.

Performing Test Runs on a Portlet

A-78 Oracle Application Server Portal Developer’s Guide

A.6 Performing Test Runs on a Portlet
After you create a component under a Portal DB Provider, you will likely want to test
whether it runs to your satisfaction and make edits to it if it does not. All of this
functionality is available to you through the Develop tab on the Manage page. From
this tab, you can run a component as a full page, as a portlet, and through the
component’s customization form.

You also have the option of running the component as a portlet through the portlet
customization form. But this option is not available on the Develop tab. To do this, you
must first publish the component as a portlet, place the portlet on a page, then click
the Customize link in the portlet header.

This section discusses how to run a component using these various methods. It
includes the following subsections:

■ Running a Component as a Full Page

■ Running a Component as a Portlet

■ Running a Component through the Customization Form

■ Running the Component as a Portlet through the Portlet Customization Form

A.6.1 Running a Component as a Full Page
To run a component as a full page:

1. Click the Navigator link at the top of the Portal Builder page.

2. Click the Providers tab to bring it forward.

3. Click the Locally Built Providers link.

4. Click the name of the Database Provider that owns the portlet.

5. Click the Manage link next to the component you want to run.

The Develop tab of the Manage page displays.

6. Click Run.

 The component displays in a separate browser window on a full Web page.

A.6.2 Running a Component as a Portlet
To run a component as a portlet:

1. Click the Navigator link at the top of the Portal Builder page.

2. Click the Providers tab to bring it forward.

3. Click the Locally Built Providers link.

4. Click the name of the Database Provider that owns the portlet.

5. Click the Manage link next to the component you want to run.

Note: To run a portlet, you must have at least the Execute
privilege on the portlet or the provider that owns it. You must also
ensure that the Publish as Portlet check box is selected on the
Access tab of the Manage page.

You can run a portlet only if there is a valid portlet version. See
"Managing Versions" for more information.

Building Portlets with the Portlet Builder A-79

The Develop tab of the Manage page displays.

6. Click Run as Portlet.

The portlet displays in a separate browser window in a smaller-than-full-page
format.

A.6.3 Running a Component through the Customization Form
To run a component through the customization form:

1. Click the Navigator link at the top of the Portal Builder page.

2. Click the Providers tab to bring it forward.

3. Click the Locally Built Providers link.

4. Click the name of the Database Provider that owns the portlet.

5. Click the Manage link next to the component you want to run.

The Develop tab of the Manage page displays.

6. Click Customize.

 The customization form displays.

7. Customize your settings and click the Run button.

The component displays in a separate browser window on a full Web page.

A.6.4 Running the Component as a Portlet through the Portlet Customization Form
To run a component as a portlet through the portlet customization form:

1. Publish the component as a portlet:

a. Click the Navigator link at the top of the Portal Builder page.

b. Click the Providers tab to bring it forward.

c. Click the Locally Built Providers link.

d. Click the Database Provider that owns the component you will work with.

e. Click the Manage link next to the portlet you will work with.

f. On the Manage page, click the Access tab to bring it forward.

g. Under the Portal Access heading, verify that Publish as Portlet is selected.

h. Click Close to save your change and return to the Portal Navigator.

2. Add the portlet to a page:

a. Go to the page where you will place the portlet.

b. Click the Edit link at the top of the page.

c. Go to a portlet region on the page.

d. Click the Add Portlet icon.

Note: The Publish As Portlet check box is available only when
the provider has been configured appropriately. For more
information, see "Exposing a Provider".

Performing Test Runs on a Portlet

A-80 Oracle Application Server Portal Developer’s Guide

e. Enter the portlet’s display name in the Portlet Repository’s Search field, and
click Go.

If you do not remember the exact name, you can drill to the portlet’s location
within the Portlet Repository. Typically, you’ll find newly-created portlets
under the Portlet Staging Area node. Click the node, then click the portlet’s
host provider name.

f. Click the portlet to add it to the Selected Portlets list.

g. Click OK to add the portlet and return the page where you have placed it.

3. Click the Customize link in the portlet header.

If this link does not display, edit the host region’s properties to include it (in Page
Edit mode, click the Edit Region icon at the top of the region).

4. Customize your settings and click OK.

The portlet displays with your customizations.

A.6.5 Running in Batch Mode
OracleAS Portal developers can add a Batch button to a customization form that
enables end users to run the component in batch mode. Batch mode is asynchronous,
allowing users to run a transaction in the background, freeing their systems for other
tasks.You can place a Batch button on the customization forms for charts and reports.
Batch processing is useful if the component is based on a large amount of data, or if
you anticipate that the portlet will display many rows of data.

When you execute a job in batch mode, OracleAS Portal displays a page indicating
that the job was submitted to the batch queue, and provides a number for identifying
the job.

This section provides information on how to add the Batch button to an existing
component, and the parameters that should be pre-set by the database administrator
in the init.ora file to enable batch processing. It includes the following subsections:

■ Setting init.ora Parameters for Batch Jobs

■ Adding a Batch Button to an Existing Component

A.6.5.1 Setting init.ora Parameters for Batch Jobs
To enable Oracle Portal end users to execute jobs in batch mode, the database
administrator should review the parameters in the init.ora file for the Oracle
database where Oracle Portal is installed. If these parameters are not set correctly, even
though batch jobs may be sent to the batch queue, they may not run.

Table A–35 provides some suggested settings:

A.6.5.2 Adding a Batch Button to an Existing Component
To add a Batch button to an existing component:

Table A–35 Suggested Batch-Handling Settings for the init.ora File

init.ora Parameter and Setting Specifies

job_queue_processes=2 Two background processes.

job_queue_intervals=60 The processes wake up every 60 seconds.

job_queue_keep_connections=TRUE Sleep, don’t disconnect.

Building Portlets with the Portlet Builder A-81

1. Navigate to the component management page for the portlet you will work with.

For information on how to navigate to this page, see "Navigating to the
Component Management Page".

2. If necessary, click the Develop tab to bring it forward.

3. Click the Edit link at the bottom of the tab.

4. Click the Customization Form Display Options tab to bring it forward.

This is the third tab from the right.

5. Scroll to the Button Options section at the bottom of the tab.

6. Select the check box next to Batch.

7. Optionally, set the Batch button’s display options:

a. Enter a display name for the Batch button.

The default is Batch.

b. Specify the location for the button.

Choose from Top, Top and Bottom, and Bottom. Top is the default

c. Specify button alignment.

Choose from Center, Left, or Right. Center is the default.

8. Click OK to save your changes and return to the Manage page

9. Click Close to return to the Portal Navigator.

A.7 Referencing the OracleAS Portal Schema
To make the import and export of applications more robust, wherever you can use
PL/SQL code, you can use constants in place of the names of the OracleAS Portal
Schema, the application schema, and the application name. Table A–36 lists the
components that can use these constants and the places where they can be used within
the Portlet Builder.

Table A–36 Constants for Applications and Schemas for Portlet Builder Components

Component Constants Places to Use in the Portlet Builder

Reports #APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ SQL query

■ Table Name (#APP_SCHEMA#, #PORTAL_
SCHEMA#)

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

Charts #APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ SQL query

■ Table Name (#APP_SCHEMA#, #PORTAL_
SCHEMA#)

■ LOV Name (#APP_NAME#)

Calendars #APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ SQL query

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

Referencing the OracleAS Portal Schema

A-82 Oracle Application Server Portal Developer’s Guide

These constants should be replaced at runtime, that is, passed as a parameter to the
component when the component is run. When you edit a component in the Portlet
Builder, any constants you have used should still appear "as is," that is, as #APP_
SCHEMA# or whatever constant you used.

Table A–37 provides some examples of how you can use these constants.

Forms #APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ Table Name (#APP_SCHEMA#, #PORTAL_
SCHEMA#)

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

Dynamic
Page

#APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ SQL query

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

XML #APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ SQL query

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

Hierarchy #APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ Table Name (#APP_SCHEMA#, #PORTAL_
SCHEMA#)

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

Frame
Driver

#APP_SCHEMA#

#PORTAL_SCHEMA#

#APP_NAME#

■ SQL query

■ Advanced PL/SQL section

■ LOV Name (#APP_NAME#)

Links #APP_SCHEMA#

#PORTAL_SCHEMA#

Component Name

LOV #APP_SCHEMA#

#PORTAL_SCHEMA#

SQL query

Table A–37 Examples of the Use of Constants

Location in Portlet Builder Examples

SQL Query Select * from #app_schema#.emp;

Select * from #portal_schema#.emp;

Select #app_name# from #portal_schema#.emp;

Advanced PL/SQL Section Htp.p('#APP_NAME#');

Htp.p('#APP_SCHEMA#');

Htp.p('#PORTAL_SCHEMA#');

Select * from #app_schema#.emp;

Select * from #portal_schema#.emp;

Select #app_name# from #portal_schema#.emp;

LOV Name #APP_NAME#.dept_lov

Table Name #APP_SCHEMA#.EMP

#PORTAL_SCHEMA#.DEPT

Table A–36 (Cont.) Constants for Applications and Schemas for Portlet Builder

Component Constants Places to Use in the Portlet Builder

Building Portlets with the Portlet Builder A-83

A.8 Coding Additional Functionality
The data for OracleAS Portal components is fetched from a database through the use
of a SQL query. When you build charts and reports, you can write your own SQL
query or use a build wizard to generate it for you. When you build a calendar or frame
driver, you must write your own SQL query.

Charts, calendars, and hierarchies all require OracleAS Portal-specific syntax in the
SQL statement that creates these portlets. For example, you must identify in the chart
SQL statement a table or view column that supplies labels for the chart. You also
identify a column that contains numeric data to determine the size of chart bars. The
wizards for building charts and other types of components guide you through the
specification of any special syntax.

You can also specify in the SQL query hypertext links that jump from column values
that are displayed in the component to other components or Web pages. For example,
you can link employee names on a department chart to individual reports containing
information about each employee on the chart.

This section explores some of the ways you can build additional functionality into
your locally built components. It includes the following subsections:

■ Using Bind Variables

■ Writing Event Handlers for Items on Forms

■ Using PL/SQL to Get and Set Values in a Form

■ Using PL/SQL to Get or Set Cookies in a Form or Report

■ Defining Values through Page Parameters

A.8.1 Using Bind Variables
You can add bind variables to the SQL query that enables the locally built component
to accept user input from a customization form. Each bind variable corresponds to a
column in the table or view on which the component is based. They each create an
entry field in the customization form for the portlet. The user can then choose which
data to display in the component.

A bind variable appears in a SQL query as an alphanumeric string preceded by a colon
(:var1, :var2, :var3, and so on). For example, the following SQL query creates entry
fields for the SALARY and DEPT columns of the SCOTT.EMP table:

select ename, sal, dept
from scott.emp
where sal = :salary and deptno like :dept

Entering this SQL query creates a customization form with two text entry fields. The
first enables the user to select a salary. The second field selects a department number.
OracleAS Portal uses the values that the user typed in the customization form entry
fields to create the output.

Note: You can also set up bind variables declaratively, through
wizards. For an example of how to do this as well as for additional
information on how to map the variable to a page parameter in
OracleAS Portal, see "Defining Values through Page Parameters".

Coding Additional Functionality

A-84 Oracle Application Server Portal Developer’s Guide

You do not need to know SQL to specify bind variables. You can identify columns that
will accept parameters in the Column field in the Customization Form Display
Options step of several portlet build wizards.

A.8.2 Writing Event Handlers for Items on Forms
You can code JavaScript and PL/SQL event handlers to customize the layout and
operation of items on forms. An in-depth knowledge of JavaScript and PL/SQL is
required to successfully include event handlers in your forms.

■ You can use JavaScript event handlers to customize the behavior of form items,
such as buttons, check boxes, lists, text boxes, and the like. Your browser must
support the JavaScript version you use.

■ You can use PL/SQL event handlers to customize the behavior of buttons.

If you code both JavaScript and PL/SQL event handlers for the same button, be careful
to avoid potential conflicts between the execution of the two scripts.

Refer to your JavaScript or PL/SQL documentation for descriptions of the events that
are available to you in OracleAS Portal.

This section describes how to add event handlers through the portlet build wizards. It
includes the following subsections:

■ Writing a JavaScript Event Handler for an Item on a Form

■ Writing a PL/SQL Event Handler for a Button on a Form

A.8.2.1 Writing a JavaScript Event Handler for an Item on a Form
To write a JavaScript event handler for an item on a form:

1. Edit the form that includes the item for which you want to write an event handler:

a. Go to the Manage page for the relevant form component.

For information on navigating to this page, see "Navigating to the Component
Management Page".

b. If necessary, click the Develop tab to bring it forward.

c. Click the Edit link toward the bottom of the tab.

2. Click the Formatting and Validation Options tab to bring it forward.

3. In the left frame, click the name of the item for which you will write a JavaScript
event handler.

4. In the right frame, scroll to the JavaScript Event Handlers section.

5. From the JavaScript Event Handlers list, choose the required event, and enter the
JavaScript to be executed when the event occurs.

Example A–1 Converting a Value to Uppercase

To convert a value in a text box or text area input field to uppercase whenever the field
loses focus, choose the onBlur event and enter the following JavaScript:

this.value = this.value.toUpperCase();

Example A–2 Confirming Submission of a Form

To add a confirmation when the end user clicks a button before submitting a form,
choose the onClick event and type the following JavaScript:

Building Portlets with the Portlet Builder A-85

return confirm('Are you sure you want to submit the form?');

This displays a prompt dialog where the end user can click OK or Cancel; clicking OK
submits the form.

Example A–3 Checking the Data Type of a Value

To verify that a value entered by the end user is a number only, choose the onChange
event and type the following JavaScript:

if (isNaN(this.value)) {
alert('Please enter a valid number.');
}

A.8.2.2 Writing a PL/SQL Event Handler for a Button on a Form
To write a PL/SQL event handler for a button on a form:

1. Edit the form that includes the item for which you want to write an event handler:

a. Go to the Manage page for the relevant form component.

For information on navigating to this page, see "Navigating to the Component
Management Page".

b. If necessary, click the Develop tab to bring it forward.

c. Click the Edit link toward the bottom of the tab.

2. Click the Formatting and Validation Options tab to bring it forward.

3. In the left frame, click the name of the button for which you will write a PL/SQL
event handler.

4. In the right frame, scroll to the PL/SQL Button Event Handler section.

5. Define either:

■ A pre-defined event: Choose an event for the button from the PL/SQL Button
Event Handler list.

■ A custom event: Choose Custom from the PL/SQL Button Event Handler list,
and type the associated PL/SQL code.

A.8.3 Using PL/SQL to Get and Set Values in a Form
You can access and modify form field values using the methods of the form’s session
storage object contained in the variable p_session. To get a value, you must use
type-specific get methods on p_session. This p_session has the following get
functions for the data types NUMBER, VARCHAR2, and DATE:

■ get_value_as_NUMBER

■ get_value_as_VARCHAR2

■ get_value_as_DATE

You must provide the block name and attribute name as arguments to these functions.
For a single-block form, the block name is DEFAULT. For a master-detail form, the
block name is MASTER_BLOCK or DETAIL_BLOCK

For the detail block, you must also provide the row index. The attribute name is the
column name prefixed by A_.

To get the value of DEPTNO in a single block form, you would code:

Coding Additional Functionality

A-86 Oracle Application Server Portal Developer’s Guide

declare
 my_deptno number;
begin
 my_deptno := p_session.get_value_as_NUMBER(
 p_block_name => 'DEFAULT',
 p_attribute_name => 'A_DEPTNO');
end;

For example, if you’re doing this in the third record of a detail block, use:

my_deptno := p_session.get_value_as_NUMBER(
 p_block_name => 'DETAIL_BLOCK',
 p_attribute_name => 'A_DEPTNO',
 p_index => 3);

To set a field value, use p_session.set_value. This p_session.set_value
function takes the same arguments as the get_value functions, with the addition of
p_value for specifying the value (p_value is overloaded for any data type). Here,
set_value is a procedure, and does not return a value. For example, to set the value
of DEPTNO, use:

p_session.set_value(
 p_block_name => 'DEFAULT',
 p_attribute_name => 'A_DEPTNO',
 p_value => '20');

You can use the session storage object (p_session) in any button event handler and
in the following places in the Advanced PL/SQL step of the Forms wizard (see also
Table A–6):

■ Before page

■ After page

■ Before processing

■ After processing

Note that the Before form and After form handlers do not have access to the session
storage object.

If you define custom code for a button mapped to an Insert, Update, or Delete event,
you must call the procedure doInsert, doUpdate, or doDelete at an appropriate
place in your code to perform the button’s default function. For example, if you
programmatically set a field value in an Insert button, call doInsert after p_
session.set_value to perform the insert into the table.

A.8.4 Using PL/SQL to Get or Set Cookies in a Form or Report
When you use PL/SQL in OracleAS Portal, you have access to a variety of packages
that are part of the PL/SQL Gateway. The gateway is delivered as part of OracleAS
Portal. One of these is the package owa_cookie.

This package contains data types, procedures, and functions that enable you to send
HTTP cookies to and get them from the client’s browser. HTTP cookies are opaque
strings sent to the browser to maintain state between HTTP calls. State can be
maintained throughout the client’s session—longer if an expiration date is included.

Maintaining a state means that the client can be identified throughout a session,
allowing for the execution of transactions. So, for example, shopping applications can
store information about currently-selected items; for-fee services can send back
registration information, freeing the client from retyping a user ID on the next

Building Portlets with the Portlet Builder A-87

connection; and sites can store per-user preferences on the client, an in turn, have those
clients supply those preferences every time it reconnects to that site.

The owa_cookie package contains subprograms and data types that you can use to
set and get cookie values. Table A–38 lists some owa_cookie subprograms and data
types, and describes how each is used.

Sessions are used by the Web Request Broker to maintain persistent states within
gateways through multiple accesses over a period of time. Since the PL/SQL Gateway
is unique in connecting to the database and all the states are maintained within the
database, the concept of sessions does not apply to the PL/SQL Gateway. Instead,
cookies can be used to maintain persistent state variables from the client browser.

A.8.5 Defining Values through Page Parameters
For many components, you can set values for columns using page parameters. For
example:

■ Indicate that a column is customizable in the component’s Customization Form
Display Options page.

■ Enable parameters for the page group that will host the component.

■ Add a page parameter to the page that will host the component.

■ Map the page parameter to the portlet parameter.

This section provides a brief overview of this process. We’ll add a customizable
value—a parameter or bind variable—to a report and map that parameter to the page
that will host the portlet component.

To set up a parameter and use it on a portal page:

1. Create a report as described in "Building Reports Declaratively".

2. When you reach the step covering Customization Form Display Options, check
the Value Required check box, select a column, assign a prompt to it, and make it
public (Figure A–71).

Table A–38 owa_cookie Subprograms and Data Types

Subprogram or Data Type Used to

owa_cookie.cookie data type Contain cookie name-value pairs

owa_cookie.get function Get the value of the specified cookie

owa_cookie.get_all procedure Get all cookie name-value pairs

owa_cookie.remove procedure Remove the specified cookie

owa_cookie.send procedure Generate a "Set-Cookie" line in the HTTP header

Note: This procedure explains how to set a parameter for a report
portlet that displays directly on a page. If you include the report
portlet as a link (click Edit Region; on the Attributes tab, select the
Display Name Link attribute; click the Actions icon, then Edit
Portlet Instance link, and check Link That Displays Item In New
Browser Window), the parameter attached has no effect when end
users click the link to display the report: the result shown is no
rows displayed.

Coding Additional Functionality

A-88 Oracle Application Server Portal Developer’s Guide

Figure A–71 Report Customization Form Display Options

3. Complete the creation of your report.

4. Go to the Page Groups portlet (typically, on the Build tab of the Portal Builder.)

5. In the Page Group field, select the page group that will host the report and click
the Edit button to edit the page group’s properties.

6. Click the Configure tab to bring it forward, and scroll down to the Parameters and
Events section of the tab.

7. Click the Edit link.

8. Select the Enable Parameters and Events check box.

9. Click OK, then click Close.

10. In the Page Groups portlet, click the Browse icon next to the Name field under
Edit a Page.

11. In the resulting secondary window, drill to the page that will host the portlet, and
click the Return Object link next to it.

12. Click the Edit button next to the now-populated Name field.

13. Add the new report portlet to the page:

a. Click the Add Portlet icon over a region.

b. In the Portlet Repository, click the Portlet Staging Area node.

c. Click the name of the provider that owns the portlet.

d. Click the portlet to add it to the Selected Portlets list.

e. Click OK to return to the host page.

The portlet will display with the following error message: Error: Required
field not set yet - emp.deptno (WWV-14900). Once you define the
page parameter and wire it to the portlet parameter you can provide a value, and
this message will no longer display.

14. In the page toolbar at the top of the page, click the Page: Properties link.

15. On the resulting page, click the Parameters tab to bring it forward.

This tab displays only when parameters and events are enabled for the page’s
parent page group.

16. In the Parameter Name field, enter a name for the page parameter you will wire to
the parameter (bind variable) you created for your component (Figure A–72).

Building Portlets with the Portlet Builder A-89

Figure A–72 The Parameter Name Field on the Parameters tab

17. Click Add.

18. Optionally, go to the Page Parameter Properties section and configure the
parameter (Figure A–73):

a. Enter a display name, which identifies the parameter to other users.

b. Enter a default value.

c. Select whether to allow users to change the value of the parameter when they
customize the page.

d. Enter a description of the parameter.

Figure A–73 Defining Page Parameter Properties

19. Go to the Portlet Parameter Values section, and expand the node next to the
portlet you added to the page in Step 13 (Figure A–74).

Figure A–74 Expanding a Portlet Node under Portlet Parameter Values

20. From the drop-down list next to your portlet parameter, select Page Parameter
(Figure A–75).

Coding Additional Functionality

A-90 Oracle Application Server Portal Developer’s Guide

Figure A–75 Selecting the Type of Mapping to Use with a Portlet Parameter

21. By default, the next drop-down list should display the relevant page parameter
display name. If it doesn’t, select the relevant name from the list (in our example,
the relevant display name is Department Number).

This maps the parameter you defined for your portlet (on the Customization Form
Display Options page) to the parameter you have defined for the page (on the
Parameters tab).

22. Click OK.

23. If you provided a default value for the page parameter in Step 18b, the report
portlet will display with results relevant to the parameter, for example, with
results for the specified department number (Figure A–76).

Figure A–76 Report Results for Department 20

If you did not provide a default value, you can provide one by clicking the
Customize link in the portlet header (if the parameter was made customizable in
Step 18b) and providing a value under Query Options (Figure A–77).

Figure A–77 Customizing Page and Portlet Parameter Values

Building Portlets with the Portlet Builder A-91

A.9 Using Shared Components to Create a Look and Feel
Each portlet build wizard contains options that enable you to define a look and feel for
the portlet’s content. For example, you can choose the row colors that display in a
report; the font type, color, and size for chart labels; and the height, width, and order
of entry fields in a form. In addition to its built-in look-and-feel capabilities, OracleAS
Portal offers advanced features through the Shared Components provider for the
creation of a more customized look and feel.

Through the Shared Components provider, you can build JavaScripts for use in your
wizard-built forms; define custom colors, fonts, and images; and apply User Interface
Templates to pages and portlets.

The Shared Components provider is located in the Portal Navigator on the Providers
tab under Locally Built Providers.

OracleAS Portal includes out-of-the-box a default set of shared components. These
are system type components. The components you develop yourself under the Shared
Components provider are user type components. You can edit, export, and delete a
user-type shared component, but not a system-type. To edit a system type, you must
first copy it, then edit the copy.

This section explores the capabilities of the Shared Components provider and
describes how to put them to use. It includes the following subsections:

■ Granting Access to Shared Components

■ Using JavaScript to Create Field- and Form-Level Validation

■ Creating Color Definitions

■ Creating Image Definitions

■ Creating Font Definitions

■ Using User Interface Templates

A.9.1 Granting Access to Shared Components
Access privileges to the Shared Components provider define the actions you can
perform on shared components. Table A–39 lists and describes the access privileges
that are relevant to the Shared Components provider:

Table A–39 Shared Components Provider Access Privileges

Access Privilege Enables You to

Manage ■ Grant shared component access privileges to other users
or groups.

■ Create a new shared component.

■ Copy a System type shared component to create a new
User type.

■ Edit any User type shared component.

■ Delete any User type shared component.

■ Export any User type shared component to another
schema or database.

Create ■ Create a new shared component.

■ Copy a System type shared component to create a new
User type.

Using Shared Components to Create a Look and Feel

A-92 Oracle Application Server Portal Developer’s Guide

By default, all users who are members of the DBA or PORTAL_DEVELOPERS groups
have Manage shared component access privileges.

Access privileges are granted for all shared components. Access privileges cannot be
granted on a shared component type, such as all JavaScripts, nor on an individual
shared component, such as a particular JavaScript. Access must be granted to all
shared components or none of them.

To grant access privileges to the Shared Components provider to a user or group:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. In the Actions column for the Shared Components provider, click the Grant
Access link.

4. In the Grantee field, enter the name of the user or group that you want to allow to
access the shared components.

Optionally, click the Browse Users or Browse Groups icon and select from the list
provided.

5. Choose the level of access to grant to the user or group from the list of available
privileges.

See Table A–39 for a list of relevant privileges.

6. Click Add.

The user or group you specified now appears in the Change Access section at the
bottom of the page.

7. (Optional) To modify an access privilege, choose a new privilege next to the user
or group in the Change Access section.

8. (Optional) To remove a privileges, click the Delete icon next to the user or group
in the Change Access section.

9. Click OK.

A.9.2 Using JavaScript to Create Field- and Form-Level Validation
OracleAS Portal provides tools for you to create JavaScripts that perform field- and
form-level validation on entry fields in forms. Field-level validation is performed
when the end user causes the onBlur condition to occur after entering a value in an
entry field, for example, when tabbing to another entry field. Form-level validation
occurs after the user enters a value in an entry field and submits all values on the page,
for example, when clicking an OK button.

This section provides a few guidelines for using JavaScript to build field- or form-level
validation in a form and describes how to create and add JavaScript to your form. It
contains the following subsections:

■ Guidelines for Writing Field- or Form-Level Validation JavaScript

■ Creating JavaScript under the Shared Components Provider

■ Adding JavaScript to a Form

A.9.2.1 Guidelines for Writing Field- or Form-Level Validation JavaScript
Follow these guidelines when writing a field- or form-level validation JavaScript:

Building Portlets with the Portlet Builder A-93

■ All validation routines should be written as functions and return either TRUE or
FALSE values.

■ The routine should display an alert message to users if the element (entry field)
being validated contains an invalid value.

■ The routine should bring focus (position the cursor) to the entry field where the
user entered the incorrect value flagged by the JavaScript.

Example A–4 demonstrates the use of JavaScript to perform field-level validation.

Example A–4 Example JavaScript

1-> function isNumber(theElement)
 {
2-> if (isNaN(Math.abs(theElement.value)))
 {
3-> alert("Value must be a number.");
4-> theElement.focus();
 return false;
 }
 return true;
 }

The JavaScript presented in Example A–4 performs field-level validation tasks in the
following sequence:

1. Identifies the name of the function and the entry field being validated.

2. Checks whether the absolute value of the entry field is a number. A relevant
JavaScript function that signifies that a value is not a number is: isNaN

3. If the value in the entry field is not a number, the user is alerted with the message,
"Value must be a number."

4. The routine brings focus to the entry field.

A.9.2.2 Creating JavaScript under the Shared Components Provider
To create JavaScript under the Shared Components Provider:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the Shared Components provider.

4. Click the Javascript link next to Create New…

5. In the JavaScript Name field, enter a descriptive name for the JavaScript.

For example, enter NotNull for a JavaScript that ensures there are no null values
in an entry field.

6. In the Language field, enter the language in which the JavaScript will be written.

For example, enter JavaScript1.1 or JavaScript1.2.

Note: You must have at least the Create shared component access
privilege to create a JavaScript.

You must have the Manage shared component access privilege to
edit a JavaScript.

Using Shared Components to Create a Look and Feel

A-94 Oracle Application Server Portal Developer’s Guide

7. Click Next.

8. Enter or copy your JavaScript into the field provided.

9. Click Finish.

To edit the JavaScript you just created, drill to the relevant JavaScript (in the Portal
Navigator: Providers tab: Locally Built Providers link: Shared Components:
JavaScripts: your JavaScript), and click the Edit link next to the relevant JavaScript.

A.9.2.3 Adding JavaScript to a Form
Once you have created JavaScript under the Shared Components provider, it is
automatically added to selection list that is available in the Build Form wizard. For
example, when you create a form, you can select a JavaScript that you created once
you reach the Formatting and Validation Options page. The list of available JavaScripts
is located on this page under the Validation Options section (for more information,
see "Building Forms Declaratively").

A.9.3 Creating Color Definitions
Creating a color definition is an opportunity for you to provide a meaningful name to
a color you plan to use in your portal. A color definition is an association between a
color name and its hexadecimal value. For example, you might use a standard red as
your corporate color. Using your ability to define colors, you could select that red and
give it a meaningful name within OracleAS Portal, such as standard_red,
company_red, or even <your company name>_red.

You associate a color value in the form #XXXXXX, where X is a value in the range 0-9
or A-F, with any name you choose. The color names you define are used in fonts, page
backgrounds, and other elements of OracleAS Portal portlets.

To create a color definition:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the Shared Components provider.

4. Click the Color link next to Create New…

5. In the Color Name field, enter the name you want to give the color.

You can identify a color by any name you choose; for example, My_Blue_Color.

6. In the Color Value field, enter the hexadecimal value for the color, for example,
#FF0000 for a shade of red.

Hexadecimal values must be prefaced by the # character. You can click a color in
the palette to automatically enter its hexadecimal value in the Color Value field.

7. (Optional) To preview a color value, click Preview.

8. When you are satisfied with your color definition, click Create.

Note: You must have at least the Create shared component access
privilege to create a color definition.

You must have at least the Manage shared component access
privilege to edit a color definition.

Building Portlets with the Portlet Builder A-95

The page updates with a link, which you can click to edit the color definition. If
you do not want to edit the color definition at this time, click Close.

A.9.4 Creating Image Definitions
Creating an image definition is an opportunity for you to provide a meaningful name
and type to an image you plan to use in your portal. An image definition is an
association between an image name and the name of the file containing the image. You
can specify any name you choose.

To create an image definition:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the Shared Components provider.

4. Click the Image link next to Create New…

5. In the Image Name field, enter the name you want to give the image.

 You can identify an image by any name you choose; for example, SiteLogo.

6. In the Image Filename field, enter the name and extension of the file containing
the image.

For example, enter logo.gif. The image must be located in a directory mapped
to the OracleAS Portal virtual directory /images/.

7. From the Image Type list, choose an image type, for example Icon 24x24.

The type you choose will display next to the image in the Type column of the
Portal Navigator.

8. Click Create.

The page updates with a link, which you can click to edit the image definition. If
you do not want to edit the image definition at this time, click Close.

A.9.5 Creating Font Definitions
Creating a font definition is an opportunity for you to provide a meaningful name to a
font you plan to use in your portal. A font definition is an association between the
name of a font face and any descriptive name you choose to give it. For example, your
company may have identified a font to be used in all public documents. Using your
ability to create a font definition, you could identify that font in OracleAS Portal with
a custom name, such as <your company name>_font. The fonts you define are
used for text that appears in OracleAS Portal portlets.

Note: You must have at least the Create shared component access
privilege to create an image definition.

You must have at least the Manage shared component access
privilege to edit an image definition.

Note: The /images/ virtual directory path is set in the Oracle
HTTP Listener plsql.conf file.

Using Shared Components to Create a Look and Feel

A-96 Oracle Application Server Portal Developer’s Guide

To create a font definition:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the Shared Components provider.

4. Click the Font link next to Create New…

5. In the Font Name field, enter the name you want to give the font.

You can identify a font by any name you choose; for example, web_banner_font.

6. In the Font Value field, enter the name of a font, for example Arial.

You can specify the name of any font that is supported by a Web browser. If you
specify a font that is not supported, the Web browser will use its own default font.

You can specify alternative fonts by separating them with commas in the Font
Value field; for example, Times New Roman, Times. In this example, if the user’s
Web browser does not support the Times New Roman font, it will use the Times
font instead.

7. Click Create.

The page updates with a link, which you can click to edit the font definition. If you
do not want to edit the font definition at this time, click Close.

A.9.6 Using User Interface Templates
Use User Interface (UI) templates to provide a header and footer to a Web page or
portlet. UI templates can be applied to either pages or OracleAS Portal portlets. By
applying a template, you can automatically specify a page title, a title background,
links to home and help pages, and background colors and images.

UI templates are good for standardizing the overall look and feel of many pages, or for
standardizing groups of portlets in an OracleAS Portal database provider. For
example, you can design a UI template for a provider that includes the company logo
in the heading, the name of the company in the title, and a common background
image. By ensuring every portlet in the provider uses the same UI template, you
impose a standard appearance.

You can also use unstructured UI templates to pass values through JavaScript to a
page that uses the template.

This section provides information about the two types of user interface template—
structured and unstructured—and describes generally how to use them to create a
look and feel. It also includes information about configuring a page group to allow for
the use of UI templates and applying a UI template to a page. It contains the following
subsections:

■ Building a Structured User Interface Template

■ Building an Unstructured User Interface Template

■ Configuring a Page Group to Allow Use of UI Templates

Note: You must have at least the Create shared component access
privilege to create a font definition.

You must have at least the Manage shared component access
privilege to edit a font definition.

Building Portlets with the Portlet Builder A-97

■ Applying a UI Template to a Page

A.9.6.1 Building a Structured User Interface Template
Structured user interface templates are applied only to portlets. They are created with
a wizard. In the wizard, you specify images, text, and layout elements that are applied
to every portlet that uses the template.

You cannot use your own HTML code to extend the template beyond the
pre-identified attributes. To achieve greater flexibility, or to build a user interface
template that you can apply to pages as well as portlets, you may want to build an
unstructured user interface template (see "Building an Unstructured User Interface
Template").

To build a structured user interface template:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the Shared Components provider.

4. Click the User Interface Template link next to Create New…

5. Click the Structured UI Template link.

6. In the Template Name field, enter a name for the template.

Make the name as descriptive as possible. This is the name users will see when
applying a UI template to a portlet during the build process. For example, if the
template will be applied to all portlets created for a scheduling provider, you
could name it Schedule_Template.

7. Select other options to refine the look and feel of the template.

For example, you can choose an image that will appear in the upper left corner of
the template and a background image that will display behind the portlet, as
shown in Figure A–78.

Figure A–78 Structured UI Template with Cloud Image

If you have a question about an option, click the help icon. Leave an option blank
if you do not want to include it in your template.

8. (Optional) Click Preview to open a new browser window that displays the UI
template.

Using Shared Components to Create a Look and Feel

A-98 Oracle Application Server Portal Developer’s Guide

You can reselect options then click Preview again to see how the changes affect the
look of the template.

9. When you are satisfied with your template, click Create.

The page updates with a link, which you can click to edit the template. If you do
not want to edit the template at this time, click Close.

A.9.6.2 Building an Unstructured User Interface Template
Unstructured user interface templates are based on HTML code that you supply.
Because you are writing your own HTML code, you can create a more elaborate and
sophisticated unstructured UI template than you can a structured UI template.

To create an unstructured user interface template, you first write HTML code to create
a Web page. You can also copy this code into OracleAS Portal from another source,
such as a Web page editor. Once entered into OracleAS Portal, you edit the HTML
code to add substitution tags. When the HTML code executes, the substitution tags
embed portlets, titles, and other elements into the Web page. For example, you can add
a #BODY# tag that adds a portlet such as a chart or report to the original Web page
background. For a list of all the substitution tags you can include in your HTML code,
see Table A–40.

In an unstructured template, you can use <ORACLE></ORACLE> tags to include
SQL statements or PL/SQL blocks. You can also include HEAD elements such as
custom JavaScript, cascading style sheet references, and META tags. You can use
special substitution tags for integrating page metadata to embed PL/SQL scripting.

You can also apply unstructured UI templates to pages. User interface templates
control the decoration displayed around the page content. To control the look and feel
of the actual page content, you must use page templates. For more information about
using UI and page templates, refer to the Oracle Application Server Portal User’s Guide,
available on Portal Center
(http://www.oracle.com/technology/products/ias/portal/index.html
).

To build an unstructured user interface template:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the Shared Components provider.

4. Click the User Interface Template link next to Create New…

5. Click the Unstructured UI Template link.

6. In the Template Name field, enter a name for the template.

Because this is the name users will see when applying a UI template to a page or
portlet during the build process, you should make the name as descriptive as
possible. For example, if the template will be applied to all portlets created for a
calendar, you could name it Calendar_Template.

7. In the Template Definition field, enter or paste the HTML code you want to use as
the basis for your unstructured user interface template.

The HTML code you supply should create a Web page.

8. Embed substitution tags in the HTML code in the location where you want the
items associated with the tags to appear in the finished template.

Building Portlets with the Portlet Builder A-99

Table A–40 lists and describes the tags you can use. For example, you may want to
embed a #BODY# substitution tag in the code. #BODY# adds the main body of the
page, such as page content or an OracleAS Portal portlet to the Web page when
the HTML code executes. If the HTML source code divides a page into two
frames, you can embed the #BODY# tag in different places in the code, causing the
portlet to display in the left frame or the right frame.

Table A–40 Unstructured UI Template Substitution Tags

Tag Value set by

#BODY# The portlet itself or the page's portlets.

#IMAGE_PREFIX# The OracleAS Portal images directory as specified in
the plsql.conf configuration file.

#USER# The user name of the user who is currently logged on.

#USER.FULLNAME# The full name of the user who is currently logged on.
The full name includes the user’s first, middle, and
last names.

#VERSION# The version of this installation of OracleAS Portal.

#HELPSCRIPT# The JavaScript function used to open a window to
display the online help. If you include #HELPLINK#
in your template, you should also include this tag.

#DIRECTION# The direction of character layout (left-to-right or
right-to-left). This value is set based on the language.

#ALIGN_LEFT# Align text to the left.

#ALIGN_RIGHT# Align text to the right

#PAGE.STYLE# The HTML LINK element that references the page's
cascading style sheet.

This tag is allowed only in the document HEAD.

#PAGE.STYLE.URL# The URL of the page's cascading style sheet.

#PAGE.BASE# The HTML base element for the base URL of the
document.

This tag is allowed only in the document HEAD.

#PAGE.BASE.URL# The base URL.

#PAGE.BGIMAGE# The HTML source for the whole page background
image.

#PAGE.BGCOLOR# The HTML source for the whole page background
color.

#PAGE.SUBPAGELINK# The URL for a sub-page link.

#PORTAL.HOME# The HTML image hyperlink to the portal home page.

#PORTAL.HOME.URL# The URL of the portal home page.

#PORTAL.HOME.IMAGE# The image used for the portal home page link.

#PORTAL.HOME.LABEL# The text used for the portal home page link.

#PORTAL.NAVIGATOR# The HTML image hyperlink to the Navigator.

#PORTAL.NAVIGATOR.URL# The URL of the Navigator.

#PORTAL.NAVIGATOR.IMAGE# The image used for the Navigator link.

#PORTAL.NAVIGATOR.LABEL# The text used for the Navigator link.

Using Shared Components to Create a Look and Feel

A-100 Oracle Application Server Portal Developer’s Guide

9. (Optional) Click Preview to open a new browser window that displays the UI
template.

You can update the code then click Preview again to see how the changes affect
the look of the template.

10. When you are satisfied with your template, click Create.

The page updates with a link, which you can click to edit the template. If you do
not want to edit the template at this time, click Close.

A.9.6.3 Configuring a Page Group to Allow Use of UI Templates
Before you can apply a UI template to a page, you must configure the host page group
to allow for their use. To configure a page group to allow for UI templates:

1. Go to the Page Groups portlet in the Portal Builder, and select the relevant page
group from the Page Group drop-down list (Figure A–79).

#PORTAL.HELP# The HTML image hyperlink to the online help.

#PORTAL.HELP.URL# The URL of the online help.

#PORTAL.HELP.IMAGE# The image used for the online help link.

#PORTAL.HELP.LABEL# The text used for the online help link.

#PORTAL.LOGOUT# The HTML text hyperlink to the logout URL.

#PORTAL.LOGOUT.URL# The logout URL.

#PORTAL.LOGOUT.LABEL# The text used for the logout link.

#PORTAL.ACCOUNTINFO# The HTML text hyperlink to the account information
dialog.

#PORTAL.ACCOUNTINFO.URL# The URL of the account information page.

#PORTAL.ACCOUNTINFO.LABEL
#

The text used for the account information link.

#PORTAL.COMMUNITY# The name of the OracleAS Portal Community Web
site.

#PORTAL.COMMUNITY.URL# The URL of the OracleAS Portal Community Web site.

#PORTAL.COMMUNITY.IMAGE# The image of the OracleAS Portal Community Web
site.

#PORTAL.COMMUNITY.LABEL# The label of the OracleAS Portal Community Web site.

#PAGE.CUSTOMIZEPAGE# The HTML text hyperlink to the customize page.

#PAGE.CUSTOMIZEPAGE.URL# The URL of the customize page.

#PAGE.CUSTOMIZEPAGE.LABEL# The text used for the customize page link.

#PAGE.EDITPAGE# The HTML text to allow page editing.

#PAGE.EDITPAGE.URL# The HTML text to allow page URL editing.

#PAGE.EDITPAGE.LABEL# The HTML text to allow page label editing.

#PAGE.REFRESH# The HTML text hyperlink used to refresh the page.

#PAGE.REFRESH.URL# The refresh URL.

#PAGE.REFRESH.LABEL# The text used for the refresh link.

Table A–40 (Cont.) Unstructured UI Template Substitution Tags

Tag Value set by

Building Portlets with the Portlet Builder A-101

In a typical installation, you will find the Page Groups portlet on the Build tab of
the Portal Builder.

Figure A–79 Selecting a Page Group in the Page Groups Portlet

2. Click the Edit button next to the selected page group.

3. On the Page Group Properties page, click the Configure tab to bring it forward.

4. On the Configure tab, click the Edit link under Page Types and Template
(Figure A–80).

Figure A–80 The Edit Link under Page Types and Template

5. On the resulting Page Defaults page, scroll down to the User Interface Template
section, and enable the Enable Pages To Use UI Templates check box
(Figure A–81).

Figure A–81 The User Interface Template Section of the Page Defaults Page

Using Shared Components to Create a Look and Feel

A-102 Oracle Application Server Portal Developer’s Guide

6. Click OK to save your change and exit the Page Defaults page.

7. Click Close to exit Page Group Properties.

See Section A.9.6 for information on creating a UI Template. See Section A.9.6.4 for
information on applying a UI template to a page.

A.9.6.4 Applying a UI Template to a Page
Once your page group is configured to allow the use of UI templates (Section A.9.6.3),
you can apply the ones you have created to pages in that page group. To apply a UI
template:

1. Go to the Page Groups portlet, and click the Browse Pages icon next to the Name
field under Edit a Page (Figure A–82).

In a typical installation, you will find the Page Groups portlet on the Build tab of
the Portal Builder.

Figure A–82 The Browse Pages Icon under Edit a Page

2. Drill down to the page to which you will apply a UI template.

3. Click the Return Object link next to the relevant page (Figure A–83).

Figure A–83 The Return Object Link next to a Page

Building Portlets with the Portlet Builder A-103

4. In the Page Groups portlet, click the Edit button next to the Name field.

5. On the resulting page, click the Page: Properties link in the toolbar at the top of
the page (Figure A–84).

Be sure to click the Page: Properties link, rather than Page Group: Properties link.

Figure A–84 The Page: Properties Link in the Page Toolbar

6. On the Page Properties page, click the Optional tab to bring it forward.

7. Go to the User Interface Templates section on the Optional tab, and select a UI
template from the UI Template drop-down list (Figure A–85).

Figure A–85 Selecting a UI Template on the Optional Tab

8. Click OK to save your change and return to the page.

A.10 Example: Building Charts and Reports
This example assumes that you have access to an OracleAS Portal database provider
in the SCOTT schema called myCompany_DB_Provider. If you have the appropriate
privileges, you can create this provider yourself (for information about how to do this,
see "Creating a Provider for Locally Built Portlets"). If you do not have the appropriate
privileges to create OracleAS Portal database providers, ask your portal
administrator to create the provider for you.

This example includes the following exercises:

■ Exercise: Building the Team Details Report

■ Exercise: Building the Average Salaries Chart

■ Exercise: Building the Team Bonuses Report

A.10.1 Exercise: Building the Team Details Report
The Team Details report, shown in Figure A–86, displays a list of employees in the
Sales department (department 30).

Example: Building Charts and Reports

A-104 Oracle Application Server Portal Developer’s Guide

Figure A–86 Team Details Report

To build the Team Details report:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the provider myCompany_DB_Provider.

If you do not see this provider, you can create it. For more information, see
"Creating a Provider for Locally Built Portlets".

4. Click the Report link next to Create New…

5. Click the Reports From Query Wizard link.

6. In the Name field, enter <YourName>_team_details.

7. In the Display Name field, enter Team Details.

8. In the Description field, enter team details exercise.

9. In the Portal DB Provider list, MYCOMPANY_DB_PROVIDER should already
be selected.

10. Click Next.

11. In the Tables and Views field, enter SCOTT.EMP if necessary.

12. Click Add.

13. Click Next.

14. From the Columns list, select:

■ EMP.ENAME

■ EMP.EMPNO

■ EMP.JOB

Click the right arrow button after each selection to move it from Columns to
Selected Columns.

15. If necessary, use the up and down arrows to the right of Selected Columns to
arrange the columns in the order specified above.

16. Click Next.

17. From the Column Name list, choose EMP.DEPTNO.

18. From the Condition list, choose =.

19. In the Value field, enter 30.

20. Click Next.

Building Portlets with the Portlet Builder A-105

21. Select Tabular.

22. Click Next.

23. Next to each column, enter the Column Heading Text as indicated in Table A–41:

This will add descriptive labels above columns that appear in your report.

24. Click Next twice, or until you see the Display Options step of the wizard.

25. In both the Full Page Options and Portlet Options sections, select the values
shown in Table A–42:

26. Click Finish.

27. Click Run as Portlet to see what your report will look like.

28. Close the browser window where the report is displayed, and click Close to close
the component manager and return to the Portal Navigator.

A.10.2 Exercise: Building the Average Salaries Chart
The Average Salaries chart, shown in Figure A–87, displays the average salary for each
job title.

Figure A–87 Average Salaries Chart

To build the Average Salaries chart:

Table A–41 Team Details Report Column Heading Text

Column Column Heading Text

ENAME Name

EMPNO Employee No

JOB Job

Table A–42 Team Details Report Full Page and Portlet Display Options

Option Value

Heading Font Face Arial

Heading Font Color White

Heading Size 10pt

Row Text Font Face Arial

Row Text Font Color Black

Row Text Size 10pt

Heading Background Color Slate Gray

Border Thin Border

Example: Building Charts and Reports

A-106 Oracle Application Server Portal Developer’s Guide

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the provider myCompany_DB_Provider.

4. Click the Chart link next to Create New…

5. Click the Charts From SQL Query link.

6. In the Name field, enter <YourName>_team_average_salary.

7. In the Display Name field, enter Average Salaries.

8. In the Description field, enter average salaries exercise.

9. In the Portal DB Provider list, MYCOMPANY_DB_PROVIDER should already
be selected.

10. Click Next.

11. In the SQL Query field, enter the following code:

select
 null the_link,
 job the_name,
 avg(sal) the_data
from emp
group by job

This SQL query will work only if you have SELECT privileges on the EMP table in
the SCOTT schema.

12. Click Next twice, or until you see the Display Options step of the wizard.

13. In both the Full Page Options and Portlet Options sections, select the values
shown in Table A–43:

14. Click Finish.

15. Click Run as Portlet to see what your chart will look like.

16. Close the browser window where the chart is displayed, and click Close to close
the component manager and return to the Portal Navigator.

A.10.3 Exercise: Building the Team Bonuses Report
The Team Bonuses report, shown in Figure A–88, displays the average bonus paid to
employees in each department.

Table A–43 Average Salaries Chart Full Page and Portlet Display Options

Option Value

Type Face Arial

Font Color Black

Font Size 10 pt

Chart Type Horizontal

Bar Image Red Bar (red.gif)

Building Portlets with the Portlet Builder A-107

Figure A–88 Team Bonuses Report

To build the Team Bonuses report:

1. In the Navigator, click the Providers tab to bring it forward.

2. At the root level of the Providers tab, click the Locally Built Providers link.

3. Click the link for the myCompany_DB_Provider provider.

4. Click the Report link next to Create New…

5. Click the Reports From SQL Query link.

6. In the Name field, enter <YourName>_team_bonuses.

7. In the Display Name field, enter Team Bonuses.

8. In the Description field, enter team bonuses example.

9. In the Portal DB Provider list, MYCOMPANY_DB_PROVIDER should already
be selected.

10. Click Next.

11. In the SQL Query field, enter the following code:

select dept.deptno, dept.dname||','||dept.loc, sum(emp.comm)
from dept, emp
where dept.deptno = emp.deptno
group by dept.deptno, dept.dname||','||dept.loc

The above query summarizes data from selected columns contained in the DEPT
and EMP tables. Although we used a SQL query to build the report, we just as
easily could have built it using the Reports Query Wizard.

This SQL query will work only if you have SELECT privileges on the DEPT and
EMP tables in the SCOTT schema.

12. Click Next.

13. Select Tabular.

14. Click Next.

15. Next to each column, enter the Column Heading Text as indicated in Table A–44:

This will add descriptive labels above the columns that appear in your report.

16. Click Next twice, or until you see the Display Options step of the wizard.

Table A–44 Team Bonuses Report Column Heading Text

Column Column Heading Text

DEPTNO Department No

DEPT.DNAME||','||DEPT.LOC Department

SUM(EMP.COMM) Bonus Paid

Example: Building Charts and Reports

A-108 Oracle Application Server Portal Developer’s Guide

17. For both the Full Page Options and Portlet Options sections, select the values
shown in Table A–45:

18. Click Finish.

19. Click Run as Portlet to see what your report will look like.

20. Close the browser window where the report is displayed, and click Close to close
the component manager and return to the Portal Navigator.

Table A–45 Team Bonuses Report Full Page and Portlet Display Options

Option Value

Heading Font Face Arial

Heading Font Color White

Heading Size 10pt

Row Text Font Face Arial

Row Text Font Color Black

Row Text Size 10pt

Heading Background Color Slate Gray

Border Thin Border

Building Portlets with the Portlet Builder A-109

Building Portlets with the Portlet Builder A-110

Building Portlets with the Portlet Builder A-111

Building Portlets with the Portlet Builder A-112

Building Portlets with the Portlet Builder A-113

Building Portlets with the Portlet Builder A-114

Building Portlets with the Portlet Builder A-115

Building Portlets with the Portlet Builder A-116

Building Portlets with the Portlet Builder A-117

Building Portlets with the Portlet Builder A-118

Building Portlets with the Portlet Builder A-119

Building Portlets with the Portlet Builder A-120

Building Portlets with the Portlet Builder A-121

Building Portlets with the Portlet Builder A-122

Building Portlets with the Portlet Builder A-123

Example: Building Charts and Reports

A-124 Oracle Application Server Portal Developer’s Guide

Building Portlets with the Portlet Builder A-125

Example: Building Charts and Reports

A-126 Oracle Application Server Portal Developer’s Guide

Troubleshooting OracleAS Portal B-1

B
Troubleshooting OracleAS Portal

This appendix describes common problems that you might encounter when using
OracleAS Portal and explains how to solve them. It contains the following topics:

■ Problems and Solutions

■ Diagnosing OmniPortlet Problems

■ Diagnosing Web Clipping Problems

■ Need More Help?

B.1 Problems and Solutions
This section describes common problems and solutions. It contains the following
topics:

■ Java Portlet Wizard Not Available

■ Portlet Code Does Not Compile

■ Application Server Connection Test Fails

■ Provider Test Page Shows Error

■ Provider Registration Fails

■ Portlet Does Not Display on Page

■ After Initial Successful Display, Portlet Does Not Display on Page

■ Other Portlet Problems

■ Provider Group Not Created

■ URL Portlet Does Not Work

B.1.1 Java Portlet Wizard Not Available
In JDeveloper, when you try to open the Java Portlet Wizard by choosing File > New >
Web tier , the Portlets menu selection is not present.

Problem
The Java Portlet Wizard is not installed.

Solution
Install the Java Portlet Wizard, as described in the Installing the Oracle JDeveloper 10g
Portal Add-in document on Portal Studio:

Problems and Solutions

B-2 Oracle Application Server Portal Developer’s Guide

http://portalstudio.oracle.com/pls/ops/docs/folder/community/pdk/utilities/jdev/jdev.addin.insta
ll.guide.html

 On Portal Studio (http://portalstudio.oracle.com), you can find this
document in the Integration/Utilities section.

B.1.2 Portlet Code Does Not Compile
When you try to compile the code for your portlet, a compilation error occurs.

Problem 1
The Portlet Development library is not selected.

Solution 1
Make sure that Portlet Development library is selected for the project, as follows: edit
your project’s properties and select the Profiles > Development > Libraries entry in
the pane on the right. Make sure that the Portlet Development library is listed under
Selected Libraries.

Problem 2
There is a syntax error in the portlet’s Java code.

Solution 2
Check the portlet’s Java code syntax.

B.1.3 Application Server Connection Test Fails
In JDeveloper, the Application Server Connection Test fails with the message
Connection refused: connect.

Problem 1
OC4J is not running.

Solution 1
Make sure you OC4J is up and running by trying to access it on its default port, 8888:
type the following URL in your browser: http://yourhostyourdomain:8888

Problem 2
The connection information is incorrect.

Solution 2
Verify the connection information that you provided in the Connection Setup wizard.

B.1.4 Provider Test Page Shows Error
When accessing the provider test page with your browser, an error is shown.

Problem 1
The provider.xml syntax is incorrect.

Solution 1
Correct the provider.xml syntax. Refer to the PDK-Java XML Provider Definition Tag
Reference document on Portal Studio:

Troubleshooting OracleAS Portal B-3

http://portalstudio.oracle.com/pls/ops/docs/folder/community/pdk/jpdk/v2/xml_tag_reference_
v2.html

Problem 2
JAR files are missing from the deployment environment.

Solution 2
Locate the missing JAR files and add them to the classpath.

B.1.5 Provider Registration Fails
When you register your provider with OracleAS Portal, the provider registration fails
with the message:
WWC-43176 The provider URL specified may be wrong or the
provider is not running.

Problem 1
The provider is down.

Solution 1
Make sure that you can access the provider test page from your browser: enter the
provider registration URL in your browser's address bar.

Problem 2
The provider is not accessible from your OracleAS Portal middle tier.

Solution 2
Try to access the provider node from your OracleAS Portal middle tier by pinging it:
$> ping providerhost

Problem 3
The provider node host name is not recognized.

Solution 3
Replace the provider node host name with the provider node IP address in the
provider registration URL.

Problem 4
Provider registration fails due to related circumstances.

Solution 4
Use logcfg.sql to gather more diagnostic information.

B.1.6 Portlet Does Not Display on Page
In OracleAS Portal, when you access a portal page, the portlet does not display on the
page.

Problem 1
The provider is not running.

Problems and Solutions

B-4 Oracle Application Server Portal Developer’s Guide

Solution 1
Make sure that the provider is up and running by accessing the provider test page
from your browser: enter the provider registration URL in your browser's address bar.

Problem 2
The security manager for the provider is preventing the portlet from displaying.

Solution 2
In the provider definition file, provider.xml, delete or comment out the security
manager, if any.

B.1.7 After Initial Successful Display, Portlet Does Not Display on Page
In OracleAS Portal, when you access the portal page, the portlet initially displays on
the page, but returns error messages in subsequent display attempts.

Problem
The provider session information is incorrect.

Solution
Check whether or not the provider uses sessions. If it does, edit the provider
registration information to make sure that you registered it accordingly, as follows:

Login Frequency: Once per User Sessions

B.1.8 Other Portlet Problems
In addition to specific issues listed in the preceding sections, the following information
may help you to troubleshoot other portlet problems.

Problem 1
In OracleAS Portal, when accessing the portal page, the portlet does not display or
displays an error message.

Solution 1
Check the application log file, located in J2EE_
HOME/application-deployments/web_application_name: look for errors.

Problem 2
Pertinent information that may help solve the problem is not being recorded in the log
file.

Solution 2
Increase the provider’s log level to produce more detailed logging information by
adding the following entry to the orion-web.xml file:
<orion-web-app deployment-version="9.0.4.0.0"
jsp-cache-directory="./persistence" temporary-directory="./temp"
servlet-webdir="/servlet/">
<env-entry-mapping
name="oracle/portal/log/logLevel">6</env-entry-mapping>
</orion-web-app>.

You may have to restart your OC4J to ensure that the changes made to the
configuration file take effect.

Troubleshooting OracleAS Portal B-5

B.1.9 Provider Group Not Created
When you create a new provider group, the provider group is not created.

Problem 1
There is a problem in mod_osso.

Solution 1
Check for a mod_osso midtier registration problem.

Problem 2
There is a problem in the jpdk application classpath.

Solution 2
Check the jpdk application log for errors.

B.1.10 URL Portlet Does Not Work
Attempting to display your portlet through URL generates the following error
message: 500 INTERNAL SERVER ERROR

Problem
The httpProxyHost is not defined correctly.

Solution
In your provider.xml file, check the default proxy information. For example:

<proxyInfo class=""oracle.portal.provider.v1.http.ProxyInformation"">
@ <httpProxyHost>www-proxy.us.oracle.com</httpProxyHost>
 <httpProxyPort>80</httpProxyPort>
</proxyInfo>

Change the httpProxyHost and httpProxyPort proxy settings or remove these
settings if you do not use proxy. Restart the OC4J instance to test if this resolves the
problem.

B.2 Diagnosing OmniPortlet Problems
This section provides information to help you troubleshoot problems you may
encounter while using OmniPortlet.

To view errors that occur during the execution of OmniPortlet:

■ Open the application log file:
$OC4J_HOME/j2ee/home/application-deployments/portalTools/
 application.log
or
$IAS_HOME/j2ee/OC4J_instance/application-deployments/
 portalTools/OC4J_instance_default_island_1/application.log

■ Display the HTML source (for example, in Microsoft Internet Explorer brower,
choose View > Source), and locate the errors embedded in the output HTML as
comments.

To alter the logging level of the OmniPortlet Provider:

Diagnosing OmniPortlet Problems

B-6 Oracle Application Server Portal Developer’s Guide

■ Open the web.xml file and modify the context-param value of
oracle.portal.log.LogLevel to the possible values ranging from 1 to 7
(where 7 means debug). The web.xml file is located at:
$OC4J_HOME/j2ee/home/applications/portalTools/
 omniPortlet/WEB-INF/web.xml
or
$IAS_HOME/j2ee/OC4J_instance/applications/portalTools/
 omniPortlet/WEB-INF/web.xml

The OmniPortlet errors that you are most likely to encounter, and possible solutions,
are:

■ Chart Not Rendered on UNIX

■ Unable to Access HTTPS Site

■ OmniPortlet Cannot Access the Specified URL

■ Portlet Content Is Not Refreshed

B.2.1 Chart Not Rendered on UNIX
On UNIX, when you select the Layout Style of Chart, the chart is not displayed.

Problem
The DISPLAY environment variable is not set up correctly.

Solution
Specify a valid DISPLAY setting in either of the following ways:

■ Set the DISPLAY environment variable environment variable to an X server that
you can access: setenv DISPLAY localhost:0.0java -jar oc4j.jar

■ Or, with JDK 1.4 or above, specify a "headless" display when starting your JVM:
java -Djava.awt.headless=true -jar oc4j.jar

B.2.2 Unable to Access HTTPS Site
When you access an HTTPS URL, the following error displays:

java.lang.NoClassDefFoundError:
at oracle.security.ssl.OracleSSLCipherSuite.isSSLLibDomestic
when accessing HTTPS site with certificate

Problem
The required SSL library is not in the library path.

Solution
See the section "Library For HTTPS Access in Standalone OC4J Installation" (under
"OmniPortlet Provider Test Page") in the OracleAS Portal Developer Kit (PDK)
Configuring the OmniPortlet Provider document, which is part of the PDK zip file on
OTN at
http://www.oracle.com/technology/products/ias/portal/pdk.html
(click the link Download the PDK Content).

B.2.3 OmniPortlet Cannot Access the Specified URL
Your OmniPortlet displays errors or does not not display the correct content.

Troubleshooting OracleAS Portal B-7

Problem 1
The URL is not active.

Solution 1
Type the URL directly in your browser Address field to test that it is a valid URL.

Problem 2
If a proxy server is required to reach the site, the proxy settings are not valid. The
following messages may display:

Failed to open specified URL.
Cannot open the URL specified because of connection timeout.

Solution 2
Check that your proxy settings are valid: in the OmniPortlet Provider Test Page, click
the Edit link for the HTTP Proxy Setting to specify the proxy server settings.

Problem 3
The message OmniPortlet timed out displays in your OmniPortlet.

Solution 3
1. If a proxy server is required to reach the site, see Solution 3.

2. If the URL request take a long time to process (for example, if it executes a long
running query), try increasing the timeout value (in seconds) in the OmniPortlet
provider.xml file in the $IAS_HOME/j2ee/OC4J_instance/
applications/portalTools/omniPortlet/WEB-INF/providers/
omniPortlet directory. If you do this, you also need to do the following:

■ Bounce your middle-tier.

■ Increase the provider registration Timeout value of the Portal instances with
which this provider is registered.

Problem 4
If HTTP authentication is required, the user name and password are missing or not
valid. The following message displays:

Authorization failed when connecting to the URL specified.
Provide correct user name and password to connect.

Solution 4
To configure the Secured Data (Web Clipping) Repository Setting, click the Edit link in
the OmniPortlet Provider Test Page, and configure your settings. Then, in the Source
tab, click Edit Connection, and enter a valid username and password.

Problem 5
If opening a URL of an HTTPS site with a certificate, the certificate is identified as not
valid with the following error message in the portlet:

SSL handshake failed for HTTPS connection to the specified URL.
The certificate file needs to be augmented.

Diagnosing OmniPortlet Problems

B-8 Oracle Application Server Portal Developer’s Guide

Solution 5
See the section "Adding Certificates for Trusted Sites" in the "Securing OracleAS
Portal" chapter in the Oracle Application Server Portal Configuration Guide.

Problem 6
If the proxy server requires authentication, the user name and password are missing or
not valid. The following message displays:

Invalid or missing user proxy login information.

Solution 6
Check that your proxy server user name and password are valid: see Section B.3.2.2,
"Proxy Authentication".

B.2.4 Portlet Content Is Not Refreshed
After changing portlet properties in the edit defaults page, your portlet content is not
refreshed.

Problem 1
Web cache invalidation is not configured properly.

Solution 1
See the section "Web Cache" in the OracleAS Portal Developer Kit (PDK) Configuring the
OmniPortlet Provider documentdocument, which is part of the PDK zip file on OTN at
http://www.oracle.com/technology/products/ias/portal/pdk.html
(click the link Download the PDK Content).

Problem 2
You have customized the portlet.

Solution 2
Select the Reset to Defaults option on the Customize page in order for the Edit
Defaults changes to appear.

B.2.5 Edit Defaults Changes are Not Reflected in the Customized Portlet
When you customize the portlet at runtime using the Customize link, the new
property values are not reflected in the customized version of the portlet.

Problem
 When you customize the portlet, a complete copy of the personalization object file is
created. Since all properties are duplicated, subsequently modifying the portlet
through Edit Defaults will not be reflected in the customized version of the portlet.

Solution
 To ensure the latest changes are made to the portlet, you must click Customize again
(after the modifications through the Edit Defaults wizard are made), then select the
Reset to Defaults option.

Troubleshooting OracleAS Portal B-9

B.3 Diagnosing Web Clipping Problems
This section provides information to help you troubleshoot problems you may
encounter while using the Web Clipping provider or Web Clipping Studio:

■ Checking the Status of the Provider with the Test Page

■ Solving Problems with Connections

■ Setting Logging Levels

B.3.1 Checking the Status of the Provider with the Test Page
You can use the Web Clipping Provider Test Page to determine whether or not the
provider is functioning properly. To access the Test Page, click Web Clipping Provider
from the Portal Tools Application Welcome Page, which is located at:

http://Hostname:Port/portalTools

The Provider Test Page: Web Clipping is displayed. It provides the following
information:

■ Portlet information: Information about the Web Clipping portlet (The Web
Clipping provider contains only one portlet.)

■ Provider initialization parameters and values.

■ Provider status, with links to pages to edit the configuration.

For more information about using the Test Page, see the "Administering Web
Clipping" appendix in the Oracle Application Server Portal Configuration Guide.

B.3.2 Solving Problems with Connections
If you encounter difficulties making or maintaining connections to the site to be
clipped or a site that was clipped, note the following:

■ If a proxy server is needed to connect to HTTP servers outside of a firewall, make
sure that the proxy servers are configured correctly. See Section B.3.2.1 for more
information.

■ If the proxy servers are configured for proxy authentication, you will receive
HTTP error code 407 when you attempt to clip a page outside the firewall unless
you have manually configured proxy authentication. See Section B.3.2.2 for
information about manual configuration.

■ If a reverse proxy is used, make sure that the reverse proxy server is configured
correctly. See the "Performing Advanced Configuration" chapter of the Oracle
Application Server Portal Configuration Guide for information about configuring a
reverse proxy.

■ If you are attempting to add a clip to a Web Clipping portlet, and experience
difficulty making or maintaining connections, the cause may be that the
configuration includes a load balancer, but the configuration was not set correctly:

– If multiple OC4J instances are set up behind a load balancer, the Web Clipping
Repository and HTTP proxy must be configured to be identical on all OC4J
instances before you join the OC4J instances to the Load Balancer.

Web clippings have definitions that must be stored persistently in the Web
Clipping Repository hosted by an Oracle Database server. In a multiple
middle-tier environment, all instances of OC4J must be configured to store
definitions in the same repository.

Diagnosing Web Clipping Problems

B-10 Oracle Application Server Portal Developer’s Guide

In addition, all instances of OC4J must have identical configurations for the
HTTP proxy.

– The Load Balancer must be session-enabled. If it is not, the first request
connects, but subsequent requests, which may be routed to a different
instance, fail.

For more information about configuring with a load balancer, see the "Performing
Advanced Configuration" chapter of the Oracle Application Server Portal
Configuration Guide.

■ To be sure a URL is correct, test the URL that you want to clip in a browser before
you attempt to clip it. Also test the URL from the provider middle tier to be sure
that it is accessible from there.

■ If you cannot clip a page, make sure that the page is not overpopulated with
IFrames. View the page in a browser, looking at the page source. If it contains
IFrames, start with the URL pointed to by the IFrame "src" attribute.

■ If images in a clipping are not retrieved when the rest of the clipping is retrieved,
check your browser proxy settings. Because images are treated as links (using the
"src" attribute of the IMG tag), images from clipped sites are served directly from
the original sites. If the images required that the proxy setting be enabled during
creation of the clipping or Show mode, disabling the browser proxy setting
disables viewing of the images in a clipping. Enable the browser proxy setting.

■ If you cannot connect, check the error log. (See Section B.3.3 for information about
the error log.) Check to see if the log contains a message about logon to the
database being denied. If this is the case, the PORTAL schema password in the
infrastructure database may have been modified manually and no longer matches
the password stored in Oracle Internet Directory. Refer to the Oracle Internet
Directory Administrator’s Guide for more information about setting the password.

B.3.2.1 Configuring Proxy Servers
If a proxy server is needed to connect to HTTP servers outside of a firewall, make sure
that the proxy servers are configured correctly.

To configure the proxy servers, go to the Web Clipping Provider Test Page, as
described in Section B.3.1. In the Web Clipping Provider Test Page, click Edit in the
Actions column of the HTTP Proxy row. In the Edit Provider page, specify the HTTP
Proxy Host and the HTTP Proxy Port for the HTTP Proxy.

For access to servers that are inside the firewall, you can specify a list of domain names
that do not require going through the firewall by selecting No Proxy for Domains
beginning with and entering the URL. You do not need to restart OC4J for the new
settings to take effect.

For more information about configuring proxy servers, see the "Administering Web
Clipping" appendix of the Oracle Application Server Portal Configuration Guide.

B.3.2.2 Proxy Authentication
Web Clipping supports global proxy authentication, and per-user authentication. You
can specify the realm of the proxy server and whether all users will automatically log
in using a user name and password you provide, each user will log in using an
individual user name and password, or all users will log in using a specified user
name and password. For more information about configuring proxy authentication,
see the "Administering Web Clipping" appendix of the Oracle Application Server Portal
Configuration Guide.

Troubleshooting OracleAS Portal B-11

B.3.3 Setting Logging Levels
By default, the logging level of Web Clipping is set to level 3, which provides
information about configuration, severe errors, and warnings. This is a reasonable
level for day-to-day operation. To view information that is useful for debugging, set
the logging level to 7.

To set the logging level, edit the web.xml file and specify the level for the
oracle.portal.log.LogLevel parameter. The web.xml is located at:

OracleHome/j2ee/OC4J_Portal/applications/portalTools/webClipping/WEB-INF

For example, to set the level to display debugging information, set the value of the
parameter oracle.portal.log.LogLevel to 7, as shown in the following
example:

<context-param>
 <param-name>oracle.portal.log.LogLevel</param-name>
 <param-value>7</param-value>
</context-param>

Errors that occur when accessing the Test Page or during the execution of the Web
Clipping portlet are written to one of the following files:

OC4J_HOME/j2ee/home/application-deployments/portalTools/application.log
IAS_HOME/j2ee/OC4J_instance/application-deployments/portalTools/OC4J_instance_
default_island_1/application.log

B.4 Need More Help?
You can find more solutions on Oracle MetaLink, http://metalink.oracle.com. If
you do not find a solution for your problem, log a service request.

See Also:

■ Oracle Application Server Release Notes, available on the Oracle
Technology Network:
http://www.oracle.com/technology/documentation/ia
s.html

Need More Help?

B-12 Oracle Application Server Portal Developer’s Guide

 Glossary-1

Glossary

About mode

An optional portlet show mode that displays information about the portlet’s
copyright, version, and author.

access control list

See ACL.

ACL

Access Control List. A list of groups and users authorized for specific access to an
object.

advanced search

A search engine that enables users to:

■ Find content that contains any or all terms in the search string.

■ Search selected page groups, or search across all page groups.

■ Restrict the search to a particular page, category, perspective, item type, or
attribute.

If Oracle Text is installed and enabled, advanced search can also be used to perform
near, soundex, and fuzzy searches.

See also search portlet. Contrast with basic search and custom search.

API

Application Programming Interface. A set of exposed data structures and functions
that an application can use to invoke services on a portlet, page, or page group.

Glossary-2

Note that OracleAS Portal APIs are exposed through the PDK available on Portal
Center (http://www.oracle.com/technology/products/ias/portal/).

application

Obsolete terminology. See database provider.

Application Programming Interface

See API.

Application Service Provider

See ASP.

approval notification

A message in the Notification portlet indicating that the creation or update of an
item requires an approval. Approval notifications are sent to the list of approvers
identified in an approval process. An approver may respond to the notification by
approving or rejecting the item in question.

approval process

A series of one or more steps in which a newly created or updated item must be
approved before it can be published. Each step in an approval process must have
one or more approvers, where each approver is either a user or a group. Routing to
the approvers can be in serial (one at a time) or in parallel (all at once), and each
step can be defined to require a response (either an approval or a rejection) by any
one member or by all members. Once the required number of responses is received
during a step, the process continues to the next step. The process ends when the
item is rejected, or the final step is reached and the document is approved.

ASP

Application Service Provider. Provides remote hosting of applications, maintaining
and operating the hardware, software, and other resources required to run the
applications. A good example is Oracle Portal Online
(http://portal.oracle.com), a hosted subscription service that provides the
features of OracleAS Portal to smaller businesses and organizations who want to
build portals but do not have the resources in-house to build and manage them.

attribute

Stores information (or metadata) about an item or page: for example, Create Date,
Expire Date, or Author. page group administrators can create custom attributes to
extend the functionality of item types and page types. For example, a base attribute

Glossary-3

on a file is Display Name; a custom attribute might be a check box to indicate
whether the file is confidential. Custom attributes are useful for assigning unique,
searchable identifiers to items.

authenticated user

User who is logged on to OracleAS Portal. By default, authenticated users can
access and, based on privileges granted to the user, act on certain OracleAS Portal
objects, such as pages.

Contrast with public users, who can access only public content.

authorization

The evaluation of security constraints to send a message or make a request.
Authorization uses specific criteria—authentication and restriction—to determine
whether the request should be permitted.

authorized user

See authenticated user.

banner

See region banner. See also navigation page.

base attribute

See attribute.

base item type

See item type.

base page type

See page type.

basic search

Enables users to find content that contains a specific search string.

See also search portlet. Contrast with advanced search and custom search.

basic search box item type

A navigation item type that a user can add to a page to allow other users to search.
You can specify whether users of the search box can search all page groups or only
in selected page groups.

Glossary-4

batch job

Running an OracleAS Portal portlet in the background using the OracleAS Portal
batch job facility. An end user can run a portlet in batch mode by selecting options
on the portlet’s customization form. Batch processing is useful if the portlet is
based on a large amount of data, if the portlet displays many rows of data, or if the
job may take a long time to run.

bind variable

Variable in a SQL statement that must be replaced with a valid value or address of a
value in order for the statement to execute successfully. Portlet developers typically
use bind variables (for example, dept) to display a parameter entry field in an
OracleAS Portal portlet’s customization form. The entry field enables end users to
choose the data that the portlet will display.

bookmark

See favorite.

breadcrumbs

See page path item type.

Builder page

See Portal Builder page.

bulk load

See zip file item type.

caching

The act of storing frequently accessed information, typically Web pages or portlets
in OracleAS Portal, in a location where it can be accessed quickly, to avoid frequent
content generation. For example, Oracle Application Server Web Cache stores
dynamically-generated portlets in its memory, then serves them to the PPE when
there is a request for the specified portlet. This storage reduces the total time spent
handling the request by avoiding connections to the back-end database and other
Web sites.

See also expiry-based caching, invalidation-based caching, system level caching,
and validation-based caching.

Glossary-5

calendar

An OracleAS Portal portlet that displays the results of a SQL query in calendar
format.

call interface

Displays the arguments that were selected when an OracleAS Portal portlet was
originally created or last edited.

category

A predefined attribute used to group or classify pages, items, and portlets in a
page group. A category helps users answer the question "What is this item or
page?" For example, in a travel page group, you might have categories for maps,
snapshots, and hotel reviews. Only one category can be assigned to a particular
item or page.

Contrast with perspective.

chart

An OracleAS Portal portlet that displays the results of a SQL query as a chart, such
as a bar chart, pie chart, or line chart. Charts are based on at least two table or view
columns: one that identifies the bars on the chart and another that calculates the size
of the bars on the chart.

check-out/check-in

See document control.

child object

An object which is part of a hierarchy. For example, sub-pages, sub-categories, and
sub-perspectives are child objects of a page, category, and perspective respectively.

See also manifest.

CHTML

Compact HTML. A subset of HTML recommendations, designed for small devices.

classification

Categories and perspectives are used to classify the content of a page so that it is
easy for users to locate that content during a search.

See also category and perspective.

Glossary-6

cluster

A database object used to store tables that are related to one another and that are
often joined together in the same area on a disk.

community

See Portal Community.

compact HTML

See CHTML.

component

Obsolete terminology. See portlet.

content area

Obsolete terminology. See page group.

content contributor

User who has the appropriate privileges to add items to a page. Appropriate page
privileges include Manage Content and Manage Items With Approval. Appropriate
item privileges include Manage, Edit, and View.

content item type

A means of identifying the actual content of an item that is being uploaded to a
page, such as a document, text, or an image.

Built-in content item types are:

■ file item type and simple file item type

■ text item type and simple text item type

■ URL item type and simple URL item type

■ image item type and simple image item type

■ image map item type

■ PL/SQL item type and simple PL/SQL item type

■ page link item type and simple page link item type

■ zip file item type

 See also item type. Contrast with navigation item type.

Glossary-7

CSS

Cascading Style Sheet.

current version

The version of an item that is displayed on the page. The current version is not
necessarily the most recent version of the item.

See also versioning.

custom attribute

See attribute.

custom item type

See item type.

customization form

Page that prompts end users for values to pass to an OracleAS Portal portlet. End
users can view the customization form for a portlet, if one has been created, by
clicking the portlet’s Customize link.

custom page type

See page type.

custom provider

A type of provider that enables you to create and maintain portlets that access
customer-specific content or applications. You can build custom portlets in
OracleAS Portal either declaratively or programmatically.

custom search

Enables users to define a variety of searches against information stored in the
OracleAS Portal schema of the Oracle Application Server Metadata Repository. By
editing the default customizations of the Custom Search portlet, you can define
unique search submission forms and results pages that meet the specific search
requirements, or configure portlets that execute and return results based on
predefined search criteria.

See also search portlet. Contrast with advanced search and basic search.

DAD

Database Access Descriptor. A set of values that specify how an application
connects to an Oracle database to fulfill an HTTP request. The information in the

Glossary-8

DAD includes the user name (which also specifies the schema and the privileges),
password, connect-string, error log file, standard error message, and Globalization
Support parameters such as NLS language, NLS date format, NLS date language,
and NLS currency.

Database Access Descriptor

See DAD.

database administrator

See DBA.

database object

See object.

database provider

A type of provider that is written as a PL/SQL stored procedure and is used to
create portlets that reside in the database. One example of a database provider is a
provider built using the wizards in OracleAS Portal to provide form, report, and
chart portlets.

Contrast with Web provider.

data-driven portlet

You can use data-driven portlets to display, create, or update data stored in the
objects of an Oracle database. OracleAS Portal provides build wizards for creating
data-driven portlets. The build wizards produce PL/SQL procedures that are stored
in the database.

data portlet

An OracleAS Portal portlet that displays data in a spreadsheet format.

DAV

See WebDAV.

DBA

Database Administrator. User belonging to the DBA group. By default, members in
the DBA group have access to all OracleAS Portal product pages, and have the
Manage privilege for all pages, page groups, database providers, and
administration.

Glossary-9

default subscriber

The base subscriber that is installed along with the install of OracleAS Portal.

de-militarized zone

See DMZ.

developer

Builds portlets for others to include on their pages. Relies heavily on the APIs to
extend the capabilities of OracleAS Portal; may frequently consult the Portal
Knowledge Exchange or the forums for advice or inspiration.

Developer Services

See Portal Developer Services.

DIP

Directory Integration Platform. The provisioning platform provided by OID to
synchronize different directories and directory enabled applications.

direct access URL

A feature that enables a user to directly access or bookmark an OracleAS Portal
object (for example, a page, category, perspective, or document) using a URL that
contains the object type and name. Direct access URLs are typically shorter and
more traditional in appearance since the URL does not contain parameters, for
example:

http://mymachine.mycompany.com:5000/pls/portal/url/page/toplevelsite

Contrast with dynamic URL. See also durable link.

Directory Information Tree

See DIT.

Directory Integration Platform

See DIP.

display name

An object’s external name used throughout OracleAS Portal, for example, in the
Navigator, on pages, and in the page editor. When the object is published as a
portlet, the display name is used as the title of the portlet in the Portlet Repository.

Glossary-10

Distinguished Name

See DN.

DIT

Directory Information Tree. A hierarchical tree-like structure in Oracle Internet
Directory (OID) consisting of the DNs of the entries.

DN

Distinguished Name. The unique name of a directory entry in Oracle Internet
Directory (OID). It includes all the individual names of the parent entries back to
the root. The Distinguished Name tells you exactly where the entry resides in the
directory's hierarchy. This hierarchy is represented by a directory information tree
(DIT).

DMZ

De-militarized Zone. Computer host or small network inserted as a "neutral zone"
between a company’s private network and the outside public network. It prevents
outside users from getting direct access to a server that has company data. A DMZ
is an optional and more secure approach to a firewall and effectively acts as a proxy
server as well. (The term comes from the geographic buffer zone that was set up
between North Korea and South Korea following the UN police action in the early
1950s.)

document control

Allows users to check-out an item so that other users cannot edit that item, thus
preventing users from overwriting each others changes. When the user has finished
editing the item, he or she checks the item back in, making it available again for
other users to edit.

DR

Disaster Recovery.

durable link

A link to an item that uses the item’s GUID (globally unique ID) to uniquely
identify it. An item’s GUID does not change so its durable link will not break when
the item is edited, renamed, moved, or imported to a different portal instance.

Contrast with direct access URL.

Glossary-11

dynamic page

An OracleAS Portal portlet that displays dynamic content on a page. The dynamic
page build wizard enables you to specify one or many PL/SQL blocks within
HTML code to create a page. This code executes every time an end user requests the
page.

dynamic URL

A URL that contains a query string (one or more parameters and the characters ?
and &).

Contrast with direct access URL

edge side includes

See ESI.

Edit mode

Page editing: Edit mode enables an authenticated user with appropriate privileges
to set page properties and to add, modify, or delete portlets and items on the page.
To switch to Edit mode, the user clicks an Edit link on the page. There are three Edit
mode views: graphical view, layout view, and list view.

See also Mobile Preview mode and Pending Items Preview mode.

Portlets: An optional portlet show mode that enables personalization of the portlet
on a per user, per instance basis.

Contrast with Edit Defaults mode.

Edit Defaults mode

An optional portlet show mode that enables administrators to set the defaults of a
portlet for all users.

Contrast with Edit mode.

Enterprise Manager

Oracle Enterprise Manager 10g A component of the Oracle Application Server that
enables administrators to manage Oracle Application Server services through a
single environment. For example, an administrator can use Enterprise Manager to
monitor the services that make up an OracleAS Portal instance, including HTTP
services, mod_plsql services, the Oracle Application Server Single Sign-On
Server, the PPE, the Oracle database, and providers.

Glossary-12

enterprise portal

Enterprise portals are common, integrated starting points that provide personalized
access to relevant enterprise information sources. Enterprise portals enable site
visitors to customize their view of the resources available on the public Internet.

ESI

Edge Side Includes. A markup language to enable partial page caching (PPC) of
HTML fragments.

event

See page event.

Event servlet

The Event servlet implements the functionality of OracleAS Portal to allow for
dynamic page navigation when accessing an event enabled portlet. The Event
servlet runs in the same container as the PPE.

expiration period

Number of days after which, or an exact date on which, an item expires. After an
item expires, it is viewable only by the item’s or page’s owner and the page group
administrator in Edit mode. Expired items are removed from the database during a
system purge of all expired items.

expiry-based caching

A caching method that uses a retention period to specify how long the item is valid
in the cache, before a refresh is required. Pages that use expiry-based caching may
also be cached in the user’s browser.

See also invalidation-based caching and validation-based caching.

expiry notification

A message automatically sent to a user or group indicating that an item on the page
is about to expire. The notification is set up by the page group administrator.

explicit object

Export object category. An object which is explicitly selected, from the Navigator or
Bulk Actions for export.

See also manifest and referenced object.

Glossary-13

export

A method of creating a set of files (transport set) that contains page groups, pages,
portlets, and other content from a single OracleAS Portal instance. You can then
import this set of files into another Oracle Application Server instance.

eXtensible Markup Language

See XML.

external application

Application external to OracleAS Portal that is typically launched from the External
Applications portlet. As each external application is configured by a portal
administrator, users simply supply their user name and password information. The
Oracle Application Server Single Sign-On Server will present these credentials for
future authentication challenges.

external object

Export object category. An object which is an external dependency of an explicit
object. External objects ensure that the explicit objects perform on the target portal.

See also manifest.

favorite

A hyperlink in the Favorites portlet that provides quick access to a frequently
visited URL, either inside or outside your company firewall. An authenticated user
can customize the Favorites portlet with his or her own preferred set of frequently
accessed URLs.

favorite group

A collection of favorites (and favorite groups) that are usually logically related.

Federated Portal Adapter

See FPA.

file item type

One of the default item types that a content contributor can add to a page. When a
user adds a file item to a page, the file is uploaded into the OracleAS Portal schema
of the Oracle Application Server Metadata Repository and displayed as a
hyperlink on the page. When a user clicks the display name link, the files may be
downloaded to the user’s computer or displayed in the user’s Web browser,
depending on the file type and the configuration of the browser.

Glossary-14

firewall

A machine that acts as an intermediary to protect a set of computers or networks
from outside attack. It regulates access to computers on a local area network from
outside, and regulates access to outside computers from within the local area
network. A firewall can work either by acting as a proxy server that forwards
requests so that the requests behave as though they were issued by the firewall
machine, or by examining requests and attempting to eliminate suspect calls.

folder

Obsolete terminology. See page.

form

An OracleAS Portal portlet that provides a transactional interface to one or more
database tables, views, or procedures. For example, you can use tools in OracleAS
Portal to build a form for entering new employee information into your Human
Resources database.

See also master-detail form.

FPA

Federated Portal Adapter. The Federated Portal Adapter is a module in the portal
instance (written in both Java and PL/SQL) that receives SOAP messages for a Web
provider, parses the SOAP, and then dispatches the messages to a database
provider as PL/SQL procedure calls. In effect, the Federated Portal Adapter makes
a database provider behave exactly the same way as a Web provider, allowing users
to distribute their database providers across database servers. All remote providers
can be treated as Web providers, hiding their implementation (database or Web)
from the user. The most common use is to share database providers (including page
groups) owned by one portal instance among other portal instances.

frame driver

An OracleAS Portal portlet consisting of a Web page divided into two frames. A
driving frame contains a SQL query that drives the contents of the second (target)
frame.

Full Screen mode

An optional portlet show mode that provides more content than can be shown in
the portlet when it is sharing a page with other portlets.

Glossary-15

function

PL/SQL subprogram that performs a specified sequence of actions and then returns
a value. Functions are usually small, very specific blocks of code written to perform
a specific task within the scope of a larger application.

In a page, end users execute functions by clicking the title of a PL/SQL or custom
item.

gist

An Oracle Text summary consisting of the document paragraphs which best
represent the overall subject matter. You can use such summaries to skim the main
content of the text or assess your interest in the text’s subject matter.

global privilege

A privilege that grants a certain level of access to a user or group on all objects of a
particular type. For example, you could grant a Web Designer group Manage
privileges on all styles.

grantee

User who is given privileges on an object by another user.

graphical view

Page editing view that renders page content in-place on the page. Graphical view
enables you to view pages and items as they appear on the finished page as you
edit.

Contrast with layout view and list view.

group

Collection of OracleAS Portal users who typically share a common need or interest;
for example, Human Resources, Accounting, and so on. Groups make it easy to
grant access to an object (such as a page or portlet) to several users at once, You can
also use groups to implement user roles by assigning role-related privileges to a
group, then adding users in that role.OID tracks the membership of OracleAS
Portal groups.

group owner

User who has the privilege to add or delete members from a group, or to delete the
group itself. Groups can have more than one owner.

Glossary-16

HA

High Availability.

Handheld Device Markup Language

See HDML.

HDML

Handheld Device Markup Language. A simple language to define hypertext-like
markup content and applications for handheld devices with small display.

Help mode

An optional portlet show mode that displays usage information about the
functionality of the portlet.

hierarchy

An OracleAS Portal portlet that displays data from a self-referencing table or view.
At least two columns in the table must share a recursive relationship. A hierarchy
can contain up to three levels and display data such as employees in an
organization chart or the hierarchical relationship between menus in a Web site.

home page

The page, defined within OracleAS Portal, that typically displays when logging on
or when a user selects the Home smart link item type. The portal administrator
chooses this page for public users; authenticated users may choose their own. If the
portal administrator enables mobile page design, he or she can specify a separate
mobile home page to display when the portal is accessed from a mobile device.

hosted site

See stripe.

HTML

Hyper Text Markup Language. A format for encoding hypertext documents that
may contain text, graphics, and references to programs and other hypertext
documents.

HTTP

Hyper Text Transfer Protocol. The underlying format, or protocol, used across the
Web to format and transmit messages and determine what actions Web servers and
browsers should take in response to various commands. HTTP is the protocol
typically used between Oracle Application Server and its clients.

Glossary-17

Hyper Text Markup Language

See HTML.

Hyper Text Transfer Protocol

See HTTP.

IDE

Integrated Development Environment. A visual tool containing editors, debuggers,
screen painters, object browsers, and the like.

ILS

Item Level Security. Mechanism that controls granular access to items on a given
page. ILS authorizes item managers to grant explicit item access to users and
groups that take precedence over page-level privileges.

image item type

One of the default item types that a content contributor can add to a page. You can
add images in JPEG, GIF, or PNG formats.

image map item type

One of the default item types that a content contributor can add to a page. An
image map is a single image with hotspots that, when clicked, link to other URLs.
For example, you can create an image map of the world each continent is
hyperlinked to more information about the continent.

import

A method of transporting content and objects (for example, page groups, pages,
and portlets) into an OracleAS Portal instance. For example, you can import a page,
its associated style, and its contents from one instance of OracleAS Portal to
another.

index

Optional structure associated with a table used to locate rows of the table quickly,
and (optionally) to guarantee that every row is unique.

Integrated Development Environment

See IDE.

Glossary-18

internal image name

The name used to identify an image that has been uploaded to the portal. Uploaded
images can be reused within the portal by referencing their internal names.

internal provider

A type of provider that makes page group objects (pages, navigation pages, etc.)
available to instances of OracleAS Portal.

invalidation-based caching

A caching method used by Oracle Application Server Web Cache, where an item
remains in the cache until some event occurs that requires it to be refreshed. For
example, a user may update an item, requiring the cache to be updated. In response
to the event, the portal or a provider sends an invalidation message to Oracle
Application Server Web Cache. The next time there is a request for the invalidated
item, it is refreshed in the cache.

Any data saved in Oracle Application Server Web Cache is considered valid until it
is invalidated or it expires. When the information cached in Oracle Application
Server Web Cache becomes inaccurate, it must be invalidated. The page metadata
saved in Oracle Application Server Web Cache is invalidated, for example, if the
page designer changes the page structure or when the user’s privileges change. A
portlet may become invalidated when the end user customizes it.

See also expiry-based caching and validation-based caching.

item

An individual piece of content (text, hyperlink, image, etc.) that resides on a page in
an item region. Users with an appropriate privilege level can add items to a page.
Item content and metadata are stored in the OracleAS Portal schema of the Oracle
Application Server Metadata Repository. Items are rendered on the page according
to the layout, style, and attribute display defined for the item region.

See also item type.

item ID

Local database reference to the content of an item. An item ID value is used in
custom item types to pass items to PL/SQL procedures. The function uses the item
ID to access the content of the item.

item level security

See ILS.

Glossary-19

item type

Defines the contents of an item and the attributes that are stored (metadata) about
an item. Item types are categorized as content item types and navigation item
types.

Custom item types can be created by page group administrators to extend the
functionality provided by item types and store additional attribute information
about items.

item versioning

See versioning.

J2EE

Java 2 Platform, Enterprise Edition. This platform enables application developers to
develop, deploy, and manage multitier, server-centric, enterprise level applications.
The J2EE platform offers a multitiered distributed application model, integrated
XML-based data interchange, a unified security model, and flexible transaction
control. You can build your own J2EE portlets and expose them through Web
providers.

See also OC4J.

J2SE

Java 2 Platform, Standard Edition. This platform enables application developers to
develop, deploy, and manage Java applets and applications on a desktop client
platform such as a personal computer or workstation. J2SE not only defines API
standards, but also specifies the deployment of enterprise applications, thus
enabling application server administrators to perform the deployment regardless of
the vendor of the J2SE server.

See also OC4J.

Java 2 Platform, Enterprise Edition

See J2EE.

Java 2 Platform, Standard Edition

See J2SE.

JavaScript

Scripting language developed by Netscape that enables generation of portlets that
introduce dynamic behavior in otherwise static HTML. OracleAS Portal enables

Glossary-20

you to use JavaScript to create routines that validate entry fields in forms and
customization forms. You can also create JavaScript event handlers for entry fields
and buttons on forms.

Java Specification Request

See JSR 168.

JavaServer Page

See JSP.

JSP

JavaServer Page. An extension to servlet functionality that provides a simple
programmatic interface to Web pages. JSPs are HTML pages with special tags and
embedded Java code that is executed on the Web or application server. JSPs provide
dynamic functionality to HTML pages. They are actually compiled into servlets
when first requested and run in the servlet container.

See also JSP tags.

JSR 168

Java Specification Request (JSR) 168. Defines a set of APIs for building
standards-based portlets using Java. Portlets built to this specification can be
rendered to a portal locally or deployed to a WSRP container for rendering portlets
remotely. For more information, see
http://jcp.org/en/jsr/detail?id=168. JSR 168 is not supported in
OracleAS Portal 10.1.2.

JSP tags

Tags that can be embedded in JSPs to enclose Java code. These tags use the <jsp:
syntax and enclose action elements in the JSP with begin and end tags similar to
XML elements.

keyword

An attribute used to provide additional information about a page or item so that
users can easily locate the page or item during a search.

layout view

Page editing view that enables you to add, arrange, and remove regions on the
page. You can also hide, show, delete, or move content in this view.

Contrast with graphical view and list view.

Glossary-21

LBR

Load-balancing router. A very fast network device that distributes Web requests to a
large number of servers. It provides portal users with a single published address,
without them having to send each request to a specific middle tier server.

LDAP

Lightweight Directory Access Protocol. A standard for representing and accessing
user and group profile information.

level

Used to provide structure to mobile pages and as a way to limit the amount of
content displayed on the smaller screens of mobile devices. Users drill down into
the levels on a mobile page to view more content.

library

Collection of one or more PL/SQL or Java program units. Libraries can be
referenced by several applications simultaneously.

Lightweight Directory Access Protocol

See LDAP.

Link mode

An optional portlet show mode that enables portlets to render themselves on
mobile devices, such as cellular telephones.

list view

Page editing view that displays a listing of all page content and provides options
that enable you to perform actions (delete, move, copy, etc.) on multiple objects.

Contrast with graphical view and layout view.

list of objects item type

A navigation item type that a user can add to a page. This item type is a list of
objects (for example, pages and perspectives) that users can choose to display as a
drop-down list or as links (with or without associated images).

list of values

See LOV.

Glossary-22

load-balancing router

See LBR.

local provider group

The collection of providers that are defined within an instance of OracleAS Portal.
Provider groups make it easier to share providers defined or registered within one
instance of OracleAS Portal with other OracleAS Portal instances.

See also provider group. Contrast with remote provider group.

lock

Setting automatically applied to an OracleAS Portal portlet when it is being edited.
The setting prevents other users from editing the portlet.

In WebDAV the action of preventing other users from editing a file. Locking a file in
a WebDAV client checks out the corresponding item in the portal itself.

login/logout link item type

A navigation item type that a user can place on a page to enable other users to log
in or log out of the portal.

LOV

List of values. An OracleAS Portal portlet that enables developers to add selectable
values to entry fields in forms. A single list of values can be displayed in different
formats, such as combo boxes, radio buttons, or check boxes.

manifest

The list of objects in a transport set and their dependents, also provides a granular
level of control over the import mode.

master-detail form

An OracleAS Portal portlet that displays a master table row and multiple detail
rows within a single HTML page. Values in the master row determine which detail
rows are displayed for querying, updating, inserting, and deleting.

See also form.

menu

An OracleAS Portal portlet that displays a Web page containing options that end
users can click to navigate to other menus, other OracleAS Portal portlets, or URLs.

Glossary-23

middle tier

Part of the OracleAS Portal architecture that handles HTTP user requests by
forwarding them to the appropriate Portal database or provider, assembles Portal
pages, and manages caching of Portal content.

mobile page

A page type that enables page creators to produce pages specifically for mobile
devices, for example, cellular phones.

Mobile Preview mode

A preview mode that enables you to preview how your page will look on a mobile
device.

mobile XML

See Oracle Application Server Wireless XML.

mod_oc4j

The Oracle HTTP Server module that manages the communication between the
Oracle HTTP Server and OC4J.

mod_plsql

The Oracle HTTP Server module that handles the database connections made from
the Oracle HTTP Server. It enables PL/SQL database procedures to generate HTTP
responses containing formatted data and HTML code that can display in a Web
browser.

navigation item type

Used to provide navigation and to access or execute portal-specific functions.

Built-in navigation item types include:

■ smart link item type

■ smart text item type

■ login/logout link item type

■ basic search box item type

■ list of objects item type

■ object map link item type

■ page path item type

Glossary-24

■ page function item type

See also item type. Contrast with content item type.

navigation page

A special purpose page within a page group that is typically embedded on other
pages or page templates to implement standard user interface effects such as
navigation bars and banners. Often contains navigation item types for navigation
within the portal.

Navigator

A feature for locating objects and interacting with OracleAS Portal. Provides access
to objects to which the user has privileges, such as page groups, providers, and
database objects.

non-default subscriber

A subscriber that has a stripe on a hosted OracleAS Portal provided by an ASP.

object

1. OracleAS Portal object: A structure such as a page group, portlet, page, or style.

2. Database object: An Oracle database structure such as a table, procedure, or
trigger. These objects can be created using OracleAS Portal wizards or Oracle
database commands.

object map link item type

A navigation item type that a user can add to a page to display a map of objects
that are available in the portal.

OC4J

Oracle Application Server Containers for J2EE. The J2EE server component of
Oracle Application Server written entirely in Java that executes on the standard
Java Development Kit (JDK) Virtual machine (Java VM). It includes a JSP Translator,
a Java servlet container, and an Enterprise JavaBeans (JB) container.

OID

Oracle Internet Directory. The repository for storing OracleAS Portal user
credentials and group memberships. By default, the Oracle Application Server
Single Sign-On Server authenticates user credentials against Oracle Internet
Directory information about dispersed users and network resources. Oracle Internet

Glossary-25

Directory combines LDAP version 3 with the high performance, scalability,
robustness, and availability of the Oracle database.

OmniPortlet

A Web provider that provides portlets that can display spreadsheet, XML, and Web
Service data as tabular, chart, news, bullet, and form layouts.

OPCA

OracleAS Portal Configuration Assistant. A Java-based configuration tool for
installing and configuring OracleAS Portal. In a typical Oracle Application Server
installation, the OPCA is executed by the Oracle Universal Installer (OUI) in the
post-installation phase. The OPCA can also be invoked in the standalone mode.

OPPI

(No longer in use) OPPI referred to "OracleAS Portal Partner Initiative" which no
longer exists. This Initiative was folded into the standard Oracle Partner Network
(OPN). Partners can declare a focus on Oracle Application Server and an interest in
OracleAS Portal when they sign up for OPN, but there is no separate program just
for these partners.

Oracle Application Server

Oracle’s integrated application server:

■ Standards compliant (J2EE, Web Services, and XML)

■ Delivers a comprehensive set of capabilities, including portal, caching, wireless,
integration, and personalization

■ Provides a single, unified platform for Java and J2EE, Web Services, XML, SQL,
and PL/SQL

Oracle Application Server Containers for J2EE

See OC4J.

Oracle Application Server Metadata Repository

An Oracle database that contains schemas and business logic used by application
server components (including OracleAS Portal) and other pieces of the
infrastructure.

OracleAS Portal uses a schema within the Oracle Application Server Metadata
Repository to store and manage the content and metadata associated with the portal
instance.

Glossary-26

Oracle Application Server Portal

A component of Oracle Application Server used for the development, deployment,
administration, and configuration of enterprise class portals. OracleAS Portal
incorporates a portal building framework with self-service publishing features to
enable you to create and manage information accessed within your portal.

Oracle Application Server Portal Developer Kit

See PDK.

Oracle Application Server Single Sign-On Server

A component of Oracle Application Server that enables users to log in to all
features of the Oracle Application Server product suite, as well as to other Web
applications, using a single user name and password. OracleAS Portal is integrated
with Oracle Application Server Single Sign-On Server as a partner application and
delegates authentication to it.

Oracle Application Server Web Cache

A component of Oracle Application Server that improves the performance,
scalability, and availability of frequently used Web sites. By storing frequently
accessed URLs in memory, Oracle Application Server Web Cache eliminates the
need to repeatedly process requests for those URLs on the Web server. Oracle
Application Server Web Cache uses invalidation-based caching and is integrated
with OracleAS Portal for improved performance.

See also portal cache.

Oracle Application Server Wireless

A component of Oracle Application Server used to deliver information and
applications to mobile devices. Using Oracle Application Server Wireless, you can
create custom portal sites that use different kinds of content, including Web pages,
custom Java applications, and XML-based applications. Oracle Application Server
Wireless sites make this diverse information accessible to mobile devices without
you having to rewrite the content for each target device platform.

Oracle Application Server Wireless XML

Device independent markup language used for communication between OracleAS
Portal and Oracle Application Server Wireless.

Oracle Application Server

See Oracle Application Server.

Glossary-27

OracleAS Portal

See Oracle Application Server Portal.

OracleAS Portal Configuration Assistant

See OPCA.

OracleAS Portal Partner Initiative

See OPPI.

OracleAS Portal Verification Service

(Previously known as Portal Studio). A major component of Portal Center
(http://www.oracle.com/technology/products/ias/portal) that is
specifically tuned to the needs of the portal developer. This site provides developers
a way to test and display remote portlets exposed as Web or WSRP providers
without having to install their own copy of OracleAS Portal. Developer's portlets
reside on their servers and must be accessible over the internet. You can access
OracleAS Portal Verification Service directly at
http://portalstandards.oracle.com.

Oracle Enterprise Manager

See Enterprise Manager.

Oracle HTTP Server

The Web server component of Oracle Application Server, built on Apache Web
server technology and used to service HTTP requests. It is the part of the middle
tier that handles requests between the Web and OracleAS Portal. Extensions to the
Oracle HTTP Server support Java servlets, JSPs, Perl, PL/SQL, and CGI
applications.

Oracle Internet Directory

See OID.

Oracle Technology Network

See OTN.

Oracle Text

A feature of Oracle9i and later that provides advanced search and retrieval services
on content stored in an Oracle repository. It is fully integrated into OracleAS Portal
to provide users with the ability to perform a full text search and retrieval of content
managed within the OracleAS Portal schema of the Oracle Application Server

Glossary-28

Metadata Repository. It also provides automatic grouping and classification of
results by gist and theme.

Oracle Ultra Search

An Oracle Text-based application that supports crawling, indexing, and federated
searching of multiple, heterogeneous repositories including databases, file systems,
Web servers, and e-mailing list archives.

Contrast with search portlet.

OTN

Oracle Technology Network. The online Oracle technical community that provides
a variety of technical resources for building Oracle-based applications. You can
access OTN at http://www.oracle.com/technology/.

Overwrite mode

See Replace on Import mode.

package

A database object consisting of a PL/SQL specification and a body. The
specification includes the data types and subprograms that can be referenced by
other program units. The body includes the actual implementation of the package.

page

An OracleAS Portal object that contains portlets and items. Each time you display a
page, it is dynamically assembled and formatted according to the portlets and
layout chosen for that page.

See also page type.

page designer

A page designer (also known as page manager) is a user with the Manage privilege
on a page. A user with this privilege can perform any action on the page and can
create sub-pages under the page. The page designer is often responsible for
designing the layout (or region configuration) of the page and assigning privileges
on the page to other users (for example, to determine who can add content to the
page).

The scope of a page designer’s control over a page may be limited if the page is
based on a template.

Glossary-29

page event

A user action defined by a portlet developer. User actions include clicking a link,
button, or other control on a Web page. A page designer can specify that an event
forces the reloading of the current page or the loading of another page, and passes
parameters to the newly loaded page.

page function item type

A navigation item type that a user can add to a page. A page function is a
procedure call that a user can add to a custom page type. If there are no page
functions associated with the current page, this item type does not display.

page group

An OracleAS Portal object that groups and sets properties of related portal objects,
such as pages, styles, navigation pages, and perspectives. Page groups typically
contain a hierarchy of pages and sub-pages for organizing content.

page group administrator

User who has full privileges over an entire page group. Page group administrators
set up and maintain the page group; designate page owners; and create a taxonomy.
Page group administrators can also view and manage all the pages in the page
group.

page group map

Displays the hierarchical organization of all page groups in a portal and enables
users to access individual pages within the page group. The page group map is
tailored for each user; only the pages the user is authorized to view and/or edit are
displayed.

page group quota

See quota.

page link item type

One of the default item types that a content contributor can add to a page. A page
link provides a route using a hyperlink to another page within the portal. When the
user clicks the display name link, the page referenced by the item is displayed in
the user’s browser.

page manager

See page designer.

Glossary-30

page metadata

Stored information or attributes about a page, which is used by OracleAS Portal to
set its layout and cache.

page path item type

A navigation item type that a user can add to a page. A page path is a chain of page
reference names. Page paths, often called breadcrumbs, describe the complete
directory path.

page template

An OracleAS Portal object that establishes a common look and feel and common
content for every page that uses the template. Users creating the page may select a
page template to define the layout of the page and add default content. A page
template includes all the features of a page, therefore may contain items, navigation
pages, and portlets.

Contrast with user interface (UI) template.

page toolbar

In page Edit mode, the links at the top of the page that enable you to edit various
aspects of the page, switch editing views (for example, from graphical view to
layout view), edit page group properties, and so on.

page type

Defines the content of a page and the information that is stored about a page. Base
page types included with OracleAS Portal are: standard page, mobile page,
PL/SQL page type, JSP, and URL page. Custom page types are page types created
by page group administrators to extend the functionality provided by base page
types and store additional information about pages.

Parallel Page Engine

See PPE.

parameter

A value passed between pages and portlets, or between portlets.

A page parameter is a page level parameter (created by a page designer) whose
values can be mapped to portlet parameters.

A portlet parameter is declared by a provider. Page designers map page parameters
to portlet parameters. When the PPE requests a portlet from a provider, only the

Glossary-31

portlet parameters that the portlet declared and mapped to page parameters are
sent.

parameter entry field

Field on a customization form that enables end users to enter values that will be
passed to an OracleAS Portal portlet.

partial page caching

See PPC.

partner application

An application that has delegated its authentication to the Oracle Application
Server Single Sign-On Server. If registered with the SSO Server, users can log in to
multiple partner applications using a single log in page. In a given session, once
users have been authenticated by the SSO Server, they won’t need to log in again to
access additional partner applications.

path aliasing

See direct access URLs.

PDK

OracleAS Portal Developer Kit. The development framework used to build and
integrate Web content and applications with OracleAS Portal. It includes toolkits,
samples, and technical articles that help make portal development simple. You can
take existing Java servlets, JSPs, URL-accessible content and Web Services and turn
them into portlets. It is typically used by external developers and vendors to create
portlets and services. The PDK is regularly updated on Portal Center
(http://www.oracle.com/technology/products/ias/portal/index.ht
ml) to provide developers with the latest tools and techniques.

See also PDK-Java, PDK-PL/SQL, and PDK-URL Services.

PDK-Java

A toolkit for implementing portlets in Java and adding portal features. Used to
declaratively turn your existing Java servlets, JSPs, and Web services into portlets.

See also PDK. Contrast with PDK-PL/SQL.

PDK-PL/SQL

A set of articles, samples, and services that enable PL/SQL programmers to easily
create portlets and extend them by using PL/SQL APIs.

Glossary-32

See also PDK. Contrast with PDK-Java.

PDK-URL Services

A utility for declaratively turning secured and public Web content into portlets.
These services are capable of dynamically passing parameters to target URLs,
clipping and reformatting content, and providing SSO for applications requiring
form-based or basic authentication. These services also allow developers to take any
application written in any language and easily create integrated portlets. PDK-URL
Services takes the URL of an application, parses the content, and uses the PDK-Java
framework to create a portlet.

See also PDK.

Pending Approvals Monitor

A portlet that enables you to list pending approvals in the page groups that you
administer. You can list the pending approvals by approver, date, page group, or
submitter.

Pending Items Preview mode

A preview mode that enables you to view items that are awaiting approval. This
mode can be used by content contributors to preview items they have added before
they are approved, and by approvers to preview items before they approve or reject
them.

See also Edit mode.

personal page

An area within OracleAS Portal where authenticated users can store personal
content and share it with other users. The portal administrator can choose to create
a personal page for a user when creating a user account.

perspective

A cross-category grouping of items. Perspectives help users answer the question,
"Who will be interested in this item?" For example, you can add links to diverse
vacation spots around the world and assign perspectives like Vacations for Nordic
Enthusiasts, Archeology Expeditions, and Extreme Vacations for Adventurers to items
about vacation types. Users publishing content using an item type that includes a
perspective attribute may specify none, one, or many values.

Contrast with category.

Glossary-33

PL/SQL item type

One of the default item types that a content contributor can add to a page. A
PL/SQL item contains a block of PL/SQL code. When a user clicks the item, the
block is executed. The result displays in the user’s browser. PL/SQL items can also
be displayed directly on the page.

PL/SQL function

See function.

PL/SQL page type

One of the page types supported by OracleAS Portal. PL/SQL pages contain
PL/SQL code that generates HTML when the page is rendered.

poll

A set of questions used to find out information from users.

Contrast with survey and test.

portal

A common interface (that is, a Web page) that provides a personalized, single point
of interaction with Web-based applications and information relevant to individual
users or class of users. Portals built using OracleAS Portal are made up of pages
managed within page groups, containing portlets and items.

portal administrator

User with the highest level of privileges in OracleAS Portal. Portal administrators
can view and modify anything in OracleAS Portal, even pages and database
providers marked private. (The only exception is groups: although portal
administrators can modify the PORTAL_ADMINISTRATORS and PORTAL_
PUBLISHERS groups, they cannot modify any other group unless they have been
named group owner.)

Portal Builder page

A predefined page that contains development and administrative portlets used to
build and manage OracleAS Portal objects and services.

portal cache

The portal cache stores cache entries for objects that use validation-based caching.
It also acts as a backup to the memory-based Oracle Application Server Web Cache
when objects use both validation-based caching and invalidation-based caching.

Glossary-34

Portal Catalog

(No longer in use). Portal Catalog referred to the application that was formerly on
Portal Center which contained information on partners who offered OracleAS
Portal related products and services. This information was migrated to the Oracle
PartnerNetwork Solutions Catalog (http://solutions.oracle.com/). Users
should now look in the Solutions Catalog for this information.

Portal Center

(http://www.oracle.com/technology/products/ias/portal/index.ht
ml)
A Web site where you can find out everything you want to know about OracleAS
Portal. Updated frequently, it always has the latest product information, and is
home to the Portal Developer Services and Portal Catalog. This Web site contains
all information about the product (including documentation, demonstrations, etc.),
and provides access to OracleAS Portal expertise.

Portal Community

A network of people dedicated to creating and exchanging information about
OracleAS Portal. This community includes anyone who uses OracleAS Portal; it can
leverage the Portal Knowledge Exchange for sharing Portal-related information
and take advantage of the Portal Developer Services.

Portal DB provider

See database provider.

Portal Developer Kit

See PDK.

Portal Developer Services

The network of people dedicated to creating and exchanging OracleAS Portal
expertise. This program provides online testing tools through Portal Center
(http://www.oracle.com/technology/products/ias/portal/index.ht
ml), as well as other venues, and interaction with the product team and other Portal
developers, using newsletters, surveys, and the Portal Knowledge Exchange.

See also Portal Community.

Portal Knowledge Exchange

A self-service Web site where subscribers to the Portal Developer Services can
share white papers, techniques, and portlets with others in the community.

Glossary-35

Contributions can also be rated so that the most valuable contributions can be easily
located.

portal page

See page.

portal repository

See Oracle Application Server Metadata Repository.

portal session

A period of interaction between a browser and OracleAS Portal, from the initial
access to log off, closure of the browser window, or expiration of the session after a
period of inactivity.

Portal smart link item type

A navigation item type that is self-configuring. For example, if you add a Home
smart link to a navigation page, when a user clicks the Home link, he or she is
automatically taken to his or her home page.

Portal smart text item type

A navigation item type that is self-configuring. For example, if you add a Current
Date smart text item to a navigation page, the current date is automatically pulled
from the server and need not be specified (through complex coding) by you.

Portal Studio

See OracleAS Portal Verification Service.

portlet

A reusable, pluggable Web component that typically displays portions of Web
content. Portlets are the fundamental building blocks of an OracleAS Portal page.
Using the wizard-based portlet builder, you can easily create your own data-driven
portlets. OracleAS Portal also provides several ways to build portlets
programmatically and to integrate any kind of Web content. Portlets may be
implemented using various technologies, such as Java, JSPs, Java servlets, PL/SQL,
Perl, ASP, etc. The PDK covers the standard-based portlet development options that
OracleAS Portal provides.

portlet provider

See provider.

Glossary-36

portlet publisher

User who can publish OracleAS Portal objects (pages or otherwise) as portlets so
that they can be included on pages.

portlet record

A programmatic structure that contains detailed information about a portlet, such
as its implementation style and show mode (PL/SQL).

Portlet Repository

A special page group that contains the portlets available from the local providers
and any registered remote providers. When you register a provider, the provider
and its portlets are added to the Portlet Repository.

PPC

Partial Page Caching. A feature that enables Oracle Application Server Web Cache
to independently cache and manage fragments of HTML documents. A template
page is configured with Edge Side Includes (ESI) markup tags that tell Oracle
Application Server Web Cache to fetch and include the HTML fragments. The
fragments themselves are HTML files containing discrete text or other objects.

PPE

Parallel Page Engine. A multi-threaded servlet engine that runs in the OC4J
container and services page requests. The PPE reads page metadata, calls providers
for portlet content, accepts provider responses, and assembles the requested page in
the specified page layout. The Parallel Page Engine is part of the OracleAS Portal
middle tier.

pretty URL

See direct access URL.

Preview mode

An optional portlet show mode that provides users with a preview of the portlet
before they add it to a page.

primary key

Column in a database table consisting of unique values that can be used to identify
rows in a table.

Glossary-37

privilege

In OracleAS Portal, the right to perform an action. Privileges are either global (set
through in the User or Group Profile) or specific to particular objects (usually set
through the object’s Access tab). When building applications, access can also be
granted to database objects, shared portlets, portlets, and applications.

producer

See provider.

profile

Information about an OracleAS Portal user or group, such as password, user ID,
and privileges.

property sheet

A built-in attribute that displays a summary of an item’s attributes or a page’s
properties.

provider

The communication link between OracleAS Portal and a portlet. There are two
types of providers: Web providers and database providers. Web providers may
reside anywhere on the network and are addressed through SOAP. Web providers
may be implemented using any Web technology. You can build your own Web
providers by using the PDK-Java and the PDK-URL Services. Database providers
reside within an Oracle database and manage portlets while performing
data-intensive operations.

Providers act as containers for portlets; each portlet communicates with OracleAS
Portal through its provider. Providers also manage the portlets they contain.

provider definition

A declarative, XML-based configuration file (provider.xml) that describes a Web
provider, its portlets, and the location of the content to be displayed in the portlets.
This configuration file also describes the behavior of the provider and its portlets.

provider group

A logical collection of Web providers defined by a provider group service. A portal
administrator can register provider groups for use with their portal. Once
registered, a provider group simplifies the process of registering individual
providers in the group. This enables organizations that create Web providers to
publish registration details of their providers and facilitate automatic registration

Glossary-38

with any OracleAS Portal instance. The only information that must be given to the
portal administrator is the name and location of the provider group.

See also local provider group and remote provider group.

provider record

Record returned by a database provider containing specified information about a
portlet.

proxy server

A proxy server typically sits on a network firewall and enables clients behind the
firewall to access Web resources. All requests from clients go to the proxy server
rather than directly to the destination server. The proxy server forwards the request
to the destination server and passes the received information back to the client. The
proxy server channels all Web traffic at a site through a single, secure port; this
enables an organization to create a secure firewall by preventing Internet access to
internal machines, while allowing Web access.

public page

Any page in a page group that is viewable by public users (users who are not
logged onto OracleAS Portal). The page manager or page group administrator
must explicitly designate a page as public.

public user

User who can access, but is not logged onto, OracleAS Portal. When users first
access OracleAS Portal, they do so as public users, whether or not they have the
ability to log on. A public user can view any page that has been marked as public,
but cannot customize or edit any content, or view pages that have any form of
access control.

Contrast with authenticated user.

purge

See system purge.

query

A SQL SELECT statement that specifies which data to retrieve from one or more
tables or views in a database.

Glossary-39

quota

The amount of space provided in a page group or in the OracleAS Portal schema of
the Oracle Application Server Metadata Repository to store uploaded documents.

recent object

An OracleAS Portal object, such as a page or portlet, that has recently been
displayed or edited. Each authenticated user has his or her own Recent Objects
portlet that provides links to the last n objects accessed.

referenced object

Export object category. An object which is directly or indirectly referenced by an
explicit object.

See also manifest.

reference path

Path that uniquely identifies a portlet instance on a page. A reference path can be
used to target parameters to individual portlets on a given page.

region

A carved-out area on a standard page used to define the page layout, define page
content (portlets and items), and control the style and attributes for content
displayed in a region. A standard page can have one or multiple regions. Regions
can be created above, below, or beside other regions.

You can create the following types of regions:

■ Undefined regions are regions that have not been assigned a particular type.

■ Item type regions allow you to add items such as text, images, files, and so
forth.

■ Portlet type regions allow you to include portlets in a region.

■ Sub-Page Links regions allow you to display a list of the current page’s
sub-pages in a region.

■ Tab type regions allow you to include tabs in a region.

region banner

A colored, horizontal bar with a title displayed in a region of an OracleAS Portal
page. A banner breaks up the visual flow of a page and groups related items that
appear beneath it.

Glossary-40

remote database

Database running on a separate machine that can be accessed over the network
through a connect string or database link.

remote provider group

The collection of providers that are defined outside of your local instance of
OracleAS Portal.

See provider group. Contrast with local provider group.

Replace on Import mode

Import mode. When this option is selected, if the object exists on the target, then it is
replaced. If the object does not exist then it is created. When this option is not
selected, if the object exists on the target, it is referenced. If it does not exist on the
target, it is created.

report

An OracleAS Portal portlet that displays the results of a SQL query in a tabular
format.

Reuse mode

See Replace on Import mode.

rich text editor

A WYSIWIG editor that enables content contributors to easily apply formatting to
text items. The rich text editor is only available in Internet Explorer.

root page

The top level of the page hierarchy in a page group; it contains all other sub-pages
in the page group. Also known as the page group’s home page.

routing method

OracleAS Portal provides three approval routing methods:

■ All, Parallel enables OracleAS Portal to send the approval to recipients in the
step all at the same time. All of the recipients must respond to the approval
before the item approval can move to the next step.

■ All, Serial enables OracleAS Portal to send the approval to recipients in the step
one at a time in the sequence specified. All of the recipients must respond to the
approval before the item approval can move to the next step.

Glossary-41

■ Any, Parallel enables OracleAS Portal to send the approval to recipients in the
step all at the same time. However, only one of the recipients must respond to
the approval before the item approval can move to the next step.

See also approval process.

row

Set of values in a table; for example, the values representing one employee in the
SCOTT.EMP table.

saved search

A saved search enables you to save all the search criteria under a single name. This
feature enables you to repeat the search quickly, by choosing the saved search name
rather than re-entering the criteria manually. You can save the results of a basic
search, advanced search, or custom search. The Saved Searches portlet lists all the
saved searches in a page group.

search portlet

Enables users to search for pages and content within the OracleAS Portal schema of
the Oracle Application Server Metadata Repository. Users can also search based
on text strings, categories, perspectives, and attributes, and using operators such as
CONTAINS, GREATER THAN, LESS THAN, and EQUAL TO.

Contrast with Oracle Ultra Search.

self registration

Allows users to create new accounts for themselves through a link in the Login
portlet.

sequence

A database object used to automatically generate numbers for table rows.

servlet

A Java program that usually runs on a Web server, extending the Web server’s
functionality. HTTP servlets take client HTTP requests, generate dynamic content
(such as through querying a database), and provide an HTTP response.

session

See portal session.

Glossary-42

shared object

An OracleAS Portal object such as a personal page, navigation page, style, page
template, perspective, category, or custom type that can be shared across page
groups.

shared portlet

An OracleAS Portal portlet that is shared between other portlets in an OracleAS
Portal database provider. Each shared portlet can be displayed on multiple pages
with the same personalization.

Shared Screen mode

A portlet show mode that renders the body of the portlet. Every portlet must have
at least a Shared Screen mode.

show mode

The ways by which a portlet can be called to display information. These methods
include:

■ Shared Screen mode

■ Edit mode

■ Edit Defaults mode

■ Preview mode

■ Help mode

■ About mode

■ Link mode

■ Full Screen mode

simple file item type

A simplified version of the file item type, this item type includes fewer attributes
and therefore is quicker and easier to create.

simple image item type

A simplified version of the image item type, this item type includes fewer
attributes and therefore is quicker and easier to create.

Simple Object Access Protocol

See SOAP.

Glossary-43

simple page link item type

A simplified version of the page link item type, this item type includes fewer
attributes and therefore is quicker and easier to create.

simple PL/SQL item type

A simplified version of the PL/SQL item type, this item type includes fewer
attributes and therefore is quicker and easier to create.

simple text item type

A simplified version of the text item type, this item type includes fewer attributes
and therefore is quicker and easier to create.

simple URL item type

A simplified version of the URL item type, this item type includes fewer attributes
and therefore is quicker and easier to create.

Single Sign-On

See Oracle Application Server Single Sign-On Server.

smart link item type

See Portal smart link item type.

smart text item type

See Portal smart text item type.

snapshot

A table that contains the results of a query on one or more tables, called master
tables, in a remote database.

snapshot log

A table associated with the master table of a snapshot tracking changes to the
master table.

SOAP

Simple Object Access Protocol. A lightweight, XML-based protocol for exchanging
information in a decentralized, distributed environment. SOAP supports different
styles of information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange. RPC style information exchange allows for
request-response processing, where an endpoint receives a procedure oriented

Glossary-44

message and replies with a correlated response message. Message-oriented
information exchange supports organizations and applications that need to
exchange business or other types of documents where a message is sent but the
sender may not expect or wait for an immediate response.

SSL accelerator card

A hardware device that handles traffic much faster than regular SSL software.

See also LBR.

SSO

Single Sign-On.

See Oracle Application Server Single Sign-On Server.

standard page

A page type used to contain and manage items and portlets.

stored procedure

A set of PL/SQL procedures that are stored in a database.

stripe

Secure slice on the virtual private portal that is assigned to a particular subscriber.

structured UI template

A shared portlet that controls the look and feel of OracleAS Portal portlets and runs
in standalone mode. Structured UI templates display the same image and text in the
same location around every portlet that uses the template.

See user interface (UI) template. Contrast with unstructured UI template.

style

A set of values and parameters that controls the colors and fonts of pages and
regions within a page. Style settings include font style, size, color, alignment, and
background color. Styles can be created for a specific page group or as a shared
object that is used by pages within multiple page groups.

sub-category

A category that appears hierarchically below another (parent) category. This
provides a way of grouping closely related categories together.

Glossary-45

sub-item

An item that appears hierarchically below another (parent) item. This provides a
way of grouping closely related items together, for example, the spreadsheet that is
used by a particular HTML file item could be added as a sub-item of the HTML file
item.

sub-page

A page that appears hierarchically below another (parent) page. Every page in a
page group (except the root page) is a sub-page.

sub-perspective

A perspective that appears hierarchically below another (parent) perspective. This
provides a way of grouping closely related perspectives together.

subscriber

Company that signs up with an ASP and receives a stripe on a hosted OracleAS
Portal.

subscription notification

A method by which end users can subscribe to a particular page or item so that
they are notified (through the My Notifications portlet) when that page or item is
updated. The page designer must include a Subscribe Portal smart link item type
for users to be able to subscribe to a page, and must display the Subscribe attribute
for users to be able to subscribe to items. Additionally, the page group
administrator must enable approvals and notifications for the page group.

substitution tag

Special portal tag used within unstructured UI templates to dynamically embed
titles, headings, and other elements into the template.

survey

A set of questions used to find out information from users. Surveys can redirect
users to different sections of the survey depending on their answers to particular
questions.

Contrast with poll and test.

synonym

An additional name assigned to a table or view that can thereafter be used to refer
to it.

Glossary-46

system level caching

System level caching places a single copy of an object in the system cache (on the
middle tier) for all users. Consequently, all customization options introduced by
individual users on their own instance of the object are disabled. Also, access
privileges for the object will not be enforced. Examples of content that may be
suitable for system level caching include page banners and news portlets.

system purge

Deletes all items in a page group from the OracleAS Portal schema of the Oracle
Application Server Metadata Repository that are marked as deleted or expired.
System purges are performed by the page group administrator or portal
administrator.

tab

An area on a page used to increase the amount of content that the page can display
by effectively doubling (or tripling, quadrupling, and so on) the amount of real
estate available. Tabs also allow you to group content that are common to a subject
area, organization, specific role, and so forth.

table

The basic storage structure in a relational database.

tablespace

Allocation of space in the database.

template

See page template or user interface (UI) template.

temporary tablespace

Allocation of space in the database used for the creation of temporary table
segments for operations such as sorting table rows.

test

A set of questions used to assess a user’s understanding of a particular subject or
subjects. You can provide the correct answer for questions and assign each question
a score. You can also hand score essay-type answers.

Contrast with poll and survey.

Glossary-47

text item type

One of the default item types that a content contributor can add to a page. When
you create a text item, you enter text (up to 32KB) in the Item Wizard. The text block
is then stored in the OracleAS Portal schema of the Oracle Application Server
Metadata Repository.

theme

A snapshot generated by Oracle Text that describes a document. Rather than
searching for documents that contain specific words or phrases, users can use
Oracle Text to search for documents that are about a certain subject, even if that
subject is not mentioned explicitly in the document.

title

See display name.

translation

A page group rendered in another language. When a page group administrator
creates a translation, content contributors can add content in that language. Page
group users can also view the translated content by setting their browser language
to one of the supported languages.

transport set

A transport set is a collection of OracleAS Portal objects for export or import. It can
contain more than one object of a particular type, such as multiple page groups and
multiple pages.

trigger

A database object associated with a table. It executes before or after one or more
specified events.

Ultra Search

See Oracle Ultra Search.

Uniform Resource Locator

See URL.

unstructured UI template

A shared portlet that is used to insert content and HTML code into a specified page
or control the look and feel of OracleAS Portal portlets. Unstructured UI templates

Glossary-48

are based on HTML code that, when executed, dynamically embeds titles, headings,
and other elements that make up a page.

See also substitution tag and user interface (UI) template. Contrast with structured
UI template.

URL

Uniform Resource Locator. A compact string representation of the location for a
resource that is available through the Internet. It is also the format Web clients use
to encode requests to Oracle Application Server.

URL item type

One of the default item types that a content contributor can add to a page. A URL
item, when clicked, provides a route to another Web page. When a user clicks the
URL item’s display name, the Web page referenced by the URL displays.

URL page

A page type that provides a route to another Web page, identified by its URL. When
a user clicks the page link, the Web page referenced by the link is displayed.

URL portlet

An OracleAS Portal portlet that displays the contents of a Web page specified by a
URL.

user interface (UI) template

A shared portlet that controls the look and feel of OracleAS Portal portlets in full
page display mode. Selecting a UI template when you are building a portlet
automatically selects a title on the page where the portlet is displayed, a title
background, links to other Web pages, and background colors and images.

See also structured UI template and unstructured UI template. Contrast with page
template.

validation-based caching

A caching method that is performed using the portal cache. Before an item in the
portal cache is used, the PPE, or mod_plsql, contacts the portal or a provider to
determine if the cached item is still valid.

Contrast with expiry-based caching and invalidation-based caching.

Glossary-49

versioning

Allows multiple versions of an item to simultaneously exist in the OracleAS Portal
schema of the Oracle Application Server Metadata Repository. This feature is
useful for tracking document changes from one version to the next or for reverting
to a previous version if necessary.

view

A virtual table whose rows do not actually exist in the database, but which is based
on a table that is physically stored in the database.

View mode

Runtime view of a page.

Contrast with Edit mode.

virtual private database

See VPD.

virtual private portal

Refers to the OracleAS Portal features for hosting multiple companies or multiple
organizations securely within the same portal instance.

VPD

Virtual Private Database. A feature for ASPs that want to leverage the Oracle
database to host their customers. Essentially, it uses one physical database instance
for all customers, but to each customer it looks like they have their own database.
Users cannot see any information that is not meant for them and complete customer
isolation is achieved. It requires little to no changes in the core application to take
effect as most of the work is done at the database level. Implementing VPD basically
requires two key steps: adding a context column (for example., company name) to
all the database tables, and implementing a policy to restrict queries on each table
based on the context of the logged in user. VPD provides highly secure, full
subscriber isolation using this method.

WAP

Wireless Application Protocol. A set of open, global protocols for developing
applications and services that use wireless networks.

Web Cache

See Oracle Application Server Web Cache.

Glossary-50

Web clipping

Enables page designers to collect Web content into a single centralized portal. It can
be used to consolidate content from hundreds of different Web sites scattered
throughout a large organization.

WebDAV

Web-based Distributed Authoring and Versioning. A protocol extension to HTTP
1.1 that supports distributed authoring and versioning. With WebDAV, the Internet
becomes a transparent read and write medium, where content can be checked out,
edited, and checked into a URL address.

Web Services for Remote Portlets

See WSRP.

Web provider

An entity that is called, using an HTTP request, by OracleAS Portal and returns
portlet content in HTML, XML, or WSRP. A Web provider acts as a proxy for one
or more portlets that are defined within a particular application environment (for
example, Java, ASP, or Perl) and executed as applications external to OracleAS
Portal. Web providers are particularly appropriate for Web-accessible information
sources.

See also provider. Contrast with database provider.

Web server

A program that delivers Web pages.

Wireless Application Protocol

See WAP.

Wireless Markup Language

See XML.

wireless portal

A portal accessible from wireless devices, such as cellular telephones.

See also Oracle Application Server Wireless.

Glossary-51

wizard

Graphical interface that guides a user step-by-step through a process. In OracleAS
Portal, wizards are used for creating database providers, portlets, database objects,
pages, page groups, and items.

WML

Wireless Markup Language. An XML-based markup language used to define
hypertext-like content and applications for handheld devices.

WSRP

Web Services for Remote Portlets (WSRP). Web services standard that allows the
plug-and-play of visual, user-facing Web services with portals or other intermediary
Web applications. Being a standard, WSRP enables interoperability between a
standards-enabled container based on a particular language (such as JSR 168, .NET,
Perl) and any WSRP portal. So, a portlet (regardless of language) deployed to a
WSRP-enabled container can be rendered on any portal that supports this standard.
WSRP is not supported in OracleAS Portal 10.1.2.

XML

Extensible Markup Language. An open standard for describing data using a subset
of the SGML syntax.

XML portlet

An OracleAS Portal portlet that displays the executed results of XML code. To
create the portlet, you either specify XML code or a URL that points to the XML
code.

zip file item type

One of the default item types that a content contributor can add to a page. Zip file
items enable you to upload many files in a single operation. You can use them to
migrate the contents of a file system or Web site into the OracleAS Portal schema of
the Oracle Application Server Metadata Repository. When you upload a zip file to
OracleAS Portal, then unzip the uploaded file, a page is created for each directory
and an item is created for each file. The items are published in the target page.

Glossary-52

Index-1

Index

A
About mode, 5-7
access control lists

see ACLs
Access tab for managing portlets, A-83
ACLs, 5-65

portlet privileges, 5-66
privileges, 5-66
provider privileges, 5-66

ALIGN_LEFT substitution tag, A-112
ALIGN_RIGHT substitution tag, A-113
Apache struts

creating a portlet, 5-105
overview, 5-103

APIs, 1-11
audio data, A-54
authenticated content

Single Sign-On and, 1-8, 4-2, 4-9
authentication, 5-62

comparison of portlet builders, 2-20
external application, 5-64
message, 5-63, 5-68
none, 5-65
partner application, 5-64
proxy

Web Clipping and, B-10
server, 5-63
single sign-on, 5-63

authorization, 5-63

B
Batch button, adding, A-93
batch mode, for running portlets, A-92
best practices

About mode, 5-7
CSS for Shared Screen mode, 5-3
Edit Defaults mode, 5-5
Edit mode, 5-4
error handling PL/SQL, 6-38
event handling PL/SQL, 6-41
for Java portlets, 5-2
Full Screen mode, 5-7
Help mode, 5-7
HTML for Shared Screen mode, 5-2

Link mode, 5-8
PL/SQL procedures and functions, 6-2
Preview mode, 5-6
security PL/SQL, 6-27

bind variables
LOV, A-80
using, A-96

Blank item type, form portlets, A-22
BLOBs, A-22, A-56
BODY substitution tag, A-112
browsers

recommended cache settings, xviii
recommended image settings, xix
recommended versions, xviii

browsing
Web Clipping and, 4-6

Button item type, form portlets, A-22

C
caching, 5-88

activation, 5-90
adding, 5-90, 5-91, 5-95
expiry-based, 2-12, 5-89
expiry-based PL/SQL, 6-34
invalidation port, 5-91
invalidation-based, 2-12, 5-89
invalidation-based PL/SQL, 6-35
manually invalidating the cache, 5-94
PL/SQL, 6-30
provider servlet for invalidation based, 5-91
provider.xml for invalidation based, 5-93
recommended browser settings, xviii
style, 2-11
system-level, 2-11
user-level, 2-11
validation-based, 2-12, 5-89
validation-based PL/SQL, 6-32

calendar portlets, A-12
chart portlets, A-12

accessible tables and views, A-59
column conditions, A-62
common display options, A-65
comparison, 2-17
customization form button options, A-72
customization form display options, A-69

Index-2

customization form formatting options, A-71
examples, A-120
formatting conditions, A-63
from query wizard, A-57
full page display options, A-66
group functions, A-61
labels, A-56, A-60
links, A-56, A-60
mobile display options, A-68
PL/SQL code options, A-75
portlet display options, A-67
supplementary text options, A-74
values, A-56, A-60

check box, LOV, A-79
CheckBox item type, form portlets, A-22
cipher manager, 5-84
clipping sections, 4-6
code

adding functionality, A-95
bind variables, A-96
viewing body, A-85
viewing call interface, A-85
viewing package spec, A-85
viewing portlet source, A-84

color, creating definitions for, A-107
column conditions, A-36
combo box, LOV, A-79
ComboBox item type, form portlets, A-22
communication

HTTPS, 5-69
security, 5-63

connection
to application server in Oracle JDeveloper, 5-21,

5-38
content

adding to page, 4-2
rendering inline, 2-16

context information
accessing PL/SQL, 6-24
function calls PL/SQL, 6-25
obtaining via wwctx_api package, 6-25

cookies, A-99
Web Clipping and, 4-21

Create shared components privilege, A-105
CSS

guidelines for Shared Screen mode, 5-3
customization

implementing PL/SQL session store, 6-19
preference store for PL/SQL, 6-15

customizations
transporting, 5-74

Customize privilege, A-87
customizing

code generated by wizard, 5-50
Edit and Edit Defaults pages, 5-50
modifying generated code, 5-51
portlets, 5-48
Show page, 5-52

D
data

filtering, 3-9
data component portlets, A-13
data sources

filtering data, 3-9
using a spreadsheet, 3-5
using a Web Service, 3-7
using an existing Web page, 3-8
using SQL, 3-5
using with portlets, 3-3
using XML, 3-6

database providers, 2-8, 2-9
DBA group, A-105
debugging information

Web Clipping and, B-11
default profile, A-3
deploying

WAR file for JPS portlet, 5-22
WAR file for PDK-Java portlet, 5-39

develop in-place portlets, 2-13
Develop tab for managing portlets, A-83
develop-in-place portlets, 2-3, A-11
DIRECTION substitution tag, A-112
directories, virtual, A-109
doDelete, A-99
doInsert, A-99
doUpdate, A-99
dynamic page portlets, A-12

E
Edit Defaults mode, 3-19, 5-5
Edit Defaults page, 5-50
Edit mode, 5-4
Edit page, 5-50
Edit privilege, A-87
encryption

example, 5-84
for transport, 5-83
message, 5-63

error handling
PL/SQL, 6-36

errors
Web Clipping and, B-9, B-11

event handling
PL/SQL, 6-40

events, 5-53
adding to a portlet, 3-20
generated code in provider.xml, 5-57
submitting, 5-56
using with OmniPortlet, 3-20, 3-37

examples
average salaries chart, A-120
team bonuses report, A-121
team details report, A-118

Execute privilege, A-87
expiration

portlet content, 4-9
Expires field

Index-3

Web Clipping and, 4-9
expiry-based caching, 2-12
export

by reference, 5-83
by reference example, 5-86
customizations, 5-74
encrypting for, 5-83
encryption example, 5-84
example of, 5-77
JNDI variable, 5-83
logging interface, 5-76
programming interface, 5-75
securing communications, 5-82
security, 5-82

exportData, 5-75, 5-76
external applications

authentication, 5-64
Web Clipping and, 1-8, 4-2, 4-9

F
file upload (binary) item types, form portlets, A-22
file upload (interMedia) item types

form portlets, A-22
including in form, A-55

font definitions, creating, A-109
form portlets, A-12, A-15

adding JavaScript, A-107
audio data, A-54
doDelete, A-99
doInsert, A-99
doUpdate, A-99
formatting and validation options, A-19
getting and setting values, A-98
image data, A-54
interMedia rich content, A-54
JavaScript Event Handlers, A-22, A-26
p_session, A-98
p_value, A-98
PL/SQL code options, A-29
PL/SQL Event Handlers, A-23
set_value, A-98
supplementary text options, A-27
video data, A-54

format masks
dates, A-39
numbers, A-40

formatting and validation options
buttons, A-20
columns, A-23
form level, A-19

formatting conditions, A-41
forms

building with the Portlet Builder, A-15
Web Clipping and, 4-9, 4-19

frame driver portlets, A-13
Full Screen mode, 5-6
fuzzy matching

with Web Clipping, 1-8, 4-1

G
generator

PL/SQL, 6-3
grants, A-4
groups

DBA, A-105
PORTAL_DEVELOPERS, A-105

guidelines
About mode, 5-7
CSS for Shared Screen mode, 5-3
Edit Defaults mode, 5-5
Edit mode, 5-4
error handling PL/SQL, 6-38
event handling PL/SQL, 6-41
Full Screen mode, 5-7
Help mode, 5-7
HTML for Shared Screen mode, 5-2
Link mode, 5-8
Preview mode, 5-6
security PL/SQL, 6-27

H
Help mode, 5-7
HELPLINK substitution tag, A-112
HELPSCRIPT substitution tag, A-112
hidden item types, form portlets, A-22
hierarchy portlets, A-13
horizontal rule item types, form portlets, A-22
HTML

guidelines for Shared Screen mode, 5-2
HTTP error code 407

Web Clipping and, B-9
httpd.conf, 5-68
HTTPS, 5-69

configuration, 5-70

I
IFrames

Web Clipping and, B-10
image data, A-54
Image item types, form portlets, A-22
IMAGE_PREFIX substitution tag, A-112
images

creating definitions for, A-108
in Web Clipping clip, B-10
recommended browser settings, xix
virtual directory, A-109

import
by reference, 5-83
by reference example, 5-86
customizations, 5-74
encrypting for, 5-83
encryption example., 5-84
JNDI variable, 5-83
logging interface, 5-76
programming interface, 5-75
securing communications, 5-82
security, 5-82

Index-4

importData, 5-75, 5-76
init.ora parameters, A-93
inline rendering, 2-16

Web Clipping and, 1-8, 4-2
input parameters

Web Clipping and, 4-9, 4-19
interMedia rich content, A-22, A-54, A-55
invalidation-based caching, 2-12
item types

file upload (interMedia), A-55
item types, form portlets

blanks, A-22
buttons, A-22
check boxes, A-22
combo boxes, A-22
file upload (binary), A-22
file upload (interMedia), A-22
hidden, A-22
horizontal rule, A-22
image, A-22
label only, A-22
password, A-22
text area, A-22
text box, A-22

J
J2EE application server, 2-6
Java

portlet guidelines, 5-2
Java Community Process, 2-4
Java Portlet Specification

see JPS
Java portlets

authentication for external application, 2-21
caching style, 2-12
capturing content, 2-16
charting, 2-17
comparing to other portlet builders, 2-2
development tool, 2-12
event support, 2-19
expertise required, 2-6
multi-lingual support, 2-20
pagination support, 2-20
parameter support, 2-19
rendering content inline, 2-17
security, 2-19
usage suitability, 2-4
user interface, 2-15

JavaScript
adding to a form portlet, A-107
creating under shared components, A-107
validation guidelines, A-106
Web Clipping and, 4-21

JavaScript Event Handlers, A-96
examples, A-97
for buttons, A-22
for columns, A-26
writing, A-96

JNDI variable

for export, 5-83
JNDIvariable

for import, 5-83
JPS, 5-8

creating portlet, 5-11
deploying portlet, 5-20
wizard in Oracle JDeveloper, 5-12

JSR-168, 2-2

L
Label Only item types, form portlets, A-22
language

string loading PL/SQL, 6-44
string retrieval PL/SQL, 6-45

language support
see multi-lingual portlets

layout
bullet, 3-17
chart, 3-13
form, 3-18
modifying with OmniPortlet, 3-35
news, 3-16
OmniPortlet, 3-11
tabular, 3-12

LDAP
see Oracle Internet Directory

limitations
Web Clipping and, 4-21

Link mode, 5-7
link portlets, A-13
list of values

portlets, A-13
lists of values

bind variables, A-80
check box, A-79
combo box, A-79
creating, A-77
dynamic, A-77
multiple select, A-79
pop-up list, A-79
radio group, A-79
static, A-77

load balancers
Web Clipping and, B-9

locks, on portlets, A-85
log files

Web Clipping and, B-11
logging levels

Web Clipping and, B-11
logon denied message

Web Clipping and, B-10

M
Manage privilege, A-87
Manage shared components privilege, A-105
Manage tab for managing portlets, A-83
matrix, portlet technologies, 2-1
menu portlets, A-13

Index-5

messages
authentication, 5-68
encryption, 5-63

migration
preference store, 5-49

MLS
see multi-lingual portlets

mobile device display options, A-47
mod_osso

Web Clipping and, 4-21
mode

Edit Defaults, 3-19
modes

About, 5-7
adding render, 5-45
Edit, 5-4
Edit Defaults, 5-5
Full Screen, 5-6
Help, 5-7
Link, 5-7
list of Show, 5-2
Preview, 5-6
Shared Screen, 5-2

multi-lingual
PL/SQL portlets, 6-43

multi-lingual portlets
comparison, 2-20
provider.xml, 5-98
resource bundles, 5-96
updating renderer, 5-97

multiple select, LOV, A-79

N
navigation

with Web Clipping, 1-8, 4-1
NLS

see multi-lingual portlets

O
OmniPortlet, 1-9

about, 3-2
adding to a portal page, 3-22
authentication for external application, 2-21
bullet layout, 3-17
caching style, 2-12
capturing content, 2-16
chart layout, 3-13
charting, 2-17
comparing to other portlet builders, 2-2
development tool, 2-12
event support, 2-19
Events tab, 3-20
expertise required, 2-6
Filter tab, 3-9
filtering data, 3-9
form layout, 3-18
Layout tab, 3-11
modifying the layout, 3-35

multi-lingual support, 2-20
news layout, 3-16
pagination support, 2-20
parameter support, 2-19
rendering content inline, 2-17
security, 2-19
Source tab, 3-3
tabular layout, 3-12
Type tab, 3-3
usage suitability, 2-4
user interface, 2-15
using data sources, 3-3
View tab, 3-10

Oracle Internet Directory, 5-70
Oracle JDeveloper

application server connection, 5-21, 5-38
deploying JPS portlet, 5-20
deploying PDK-Java portlet, 5-38
portal add-in, 5-11
WAR file deployment, 5-22, 5-39

Oracle struts portlet, 5-103
OracleAS Portal

add-in for Oracle JDeveloper, 5-11
repository, 2-10
using data sources, 3-3

OracleAS Portal pages
Web Clipping and, 4-21

OracleAS Web Cache
invalidation port, 5-91, 5-93
invalidation-based caching, 2-12

ORDAUDIO, A-54
ORDIMAGE, A-54
ORDVIDEO, A-54
owa_cookie package

data types, A-99
subprograms, A-99

P
p_session, A-98
p_value, A-98
package

implementing portlet with PL/SQL, 6-9
implementing provider with PL/SQL, 6-10

page designer, definition, xv
page manager

see page designer
page metadata, 2-10
page parameters, 2-18

using with OmniPortlet, 3-37
PAGE.BASE substitution tag, A-113
PAGE.BASE.URL substitution tag, A-113
PAGE.BGCOLOR substitution tag, A-113
PAGE.BGIMAGE substitution tag, A-113
PAGE.CUSTOMIZEPAGE substitution tag, A-113
PAGE.CUSTOMIZEPAGE.LABEL substitution

tag, A-114
PAGE.CUSTOMIZEPAGE.URL substitution

tag, A-114
PAGE.EDITPAGE substitution tag, A-114

Index-6

PAGE.EDITPAGE.LABEL substitution tag, A-114
PAGE.EDITPAGE.URL substitution tag, A-114
PAGE.REFRESH substitution tag, A-114
PAGE.REFRESH.LABEL substitution tag, A-114
PAGE.REFRESH.URL substitution tag, A-114
PAGE.STYLE substitution tag, A-113
PAGE.STYLE.URL substitution tag, A-113
PAGE.SUBPAGELINK substitution tag, A-113
pagination support in portlets, comparison, 2-20
Parallel Page Engine (PPE), 2-10
parameters, 5-53

adding, 5-54
generated code in provider.xml, 5-55
mapping public PL/SQL, 6-22
passing page PL/SQL, 6-22
passing private PL/SQL, 6-22
PL/SQL, 6-21
qualified PL/SQL, 6-22
retrieving values PL/SQL, 6-23
types, 2-18
unqualified PL/SQL, 6-22
using with OmniPortlet, 3-20, 3-37
Web Clipping and, 4-9, 4-19

parameters and events
using with OmniPortlet, 3-20, 3-37

partner application, 5-64
Password item types, form portlets, A-22
PDK, 1-11
PDK-Java

comparing to other portlet builders, 2-2
customizing portlets, 5-48
deploying portlet, 5-38
Portlet Wizard, 5-29
render modes, 5-45
testing portlet and provider, 5-36

PDK-PL/SQL
comparing to other portlet builders, 2-2

performance
caching, 5-88
caching PL/SQL, 6-30

persistent state variables, A-99
personal pages

Web Clipping and, 4-15
PL/SQL

accessing context information, 6-24
building portlets, 6-8
caching, 6-30
error handling, 6-36
event handling, 6-40
gateway, A-99
generating for portlets, A-84
generator, 6-3
getting and setting values, A-98
implementing the portlet package, 6-9
implementing the provider package, 6-10
owa_cookie package, A-99
parameters, 6-21
preference store, 6-15
publishing generated portlets, 6-7
recommended procedures and functions, 6-2

running the generator, 6-6
security, 6-27
session store, 6-19
starter provider sample, 6-8
XML for generator, 6-4

PL/SQL code options
chart portlets, A-75
form portlets, A-29
report portlets, A-52

PL/SQL Event Handlers, A-96
for buttons, A-23, A-97
writing, A-97

PL/SQL portlets
authentication for external application, 2-21
building expertise required, 2-6
caching style, 2-12
capturing content, 2-16
charting, 2-18
comparing to other portlet builders, 2-2
development tool, 2-13
event support, 2-19
multi-lingual support, 2-20
pagination support, 2-20
parameter support, 2-19
rendering content inline, 2-17
security, 2-20
usage suitability, 2-5
user interface, 2-15

plsql.conf file, A-109
pop-up list, LOV, A-79
portal developer, definition, xv
Portal schema

password and Web Clipping, B-10
Portal Tools

about OmniPortlet, 3-2
PORTAL_DEVELOPERS group, A-105
PORTAL.ACCOUNTINFO substitution tag, A-113
PORTAL.ACCOUNTINFO.LABEL substitution

tag, A-113
PORTAL.ACCOUNTINFO.URL substitution

tag, A-113
PORTAL.COMMUNITY substitution tag, A-113
PORTAL.COMMUNITY.IMAGE substitution

tag, A-113
PORTAL.COMMUNITY.LABEL substitution

tag, A-113
PORTAL.COMMUNITY.URL substitution

tag, A-113
PORTAL.HELP substitution tag, A-113
PORTAL.HELP.IMAGE substitution tag, A-113
PORTAL.HELP.LABEL substitution tag, A-113
PORTAL.HELP.URL substitution tag, A-113
PORTAL.HOME substitution tag, A-113
PORTAL.HOME.IMAGE substitution tag, A-113
PORTAL.HOME.LABEL substitution tag, A-113
PORTAL.HOME.URL substitution tag, A-113
PORTAL.LOGOUT substitution tag, A-113
PORTAL.LOGOUT.LABEL substitution tag, A-113
PORTAL.LOGOUT.URL substitution tag, A-113
PORTAL.NAVIGATOR substitution tag, A-113

Index-7

PORTAL.NAVIGATOR.IMAGE substitution
tag, A-113

PORTAL.NAVIGATOR.LABEL substitution
tag, A-113

PORTAL.NAVIGATOR.URL substitution tag, A-113
portals

about, 1-1
using data sources, 3-3

portalstandards.oracle.com, 5-28
Portlet Builder

building portlets with, A-1
caching style, 2-12
charting, 2-18
comparing to other portlet builders, 2-2
development tool, 2-12
event support, 2-19
expertise required, 2-6
multi-lingual support, 2-20
pagination support, 2-20
parameter support, 2-19
rendering content inline, 2-17
security, 2-20
usage suitability, 2-5
user interface, 2-15

Portlet Wizard
generated code for customization, 5-50
JPS, 5-12
modifying generated code, 5-51
PDK-Java, 5-29

PortletDefintion, 5-75
PortletInstance, 5-75
PortletRenderer, 5-49
portlets

about OmniPortlet, 3-2
Access tab, A-83
accessing archived versions, A-86
adding a Batch button, A-93
adding a header and footer, 3-10
adding an OmniPortlet to a page, 3-22
adding events, 3-20
adding functionality, A-95
building, A-13
building with PL/SQL, 6-8
bullet layout, 3-17
caching, PL/SQL, 6-30
calendar, A-12
changing the layout, 3-11
changing view options, 3-10
chart, A-12
chart layout, 3-13
context information PL/SQL, 6-24
copying, A-84
creating a struts portlet, 5-105
creating JPS-compliant, 5-11
customization export, 5-74
Customize privilege, A-87
customizing, 5-48
data components, A-13
defined, 1-1
defining based on a Web page, 3-28

defining based on a Web Service, 3-26
defining based on SQL, 3-23
deleting, A-83
deploying JPS compliant, 5-20
deploying PDK-Java compliant, 5-38
deployment, 2-6
Develop tab, A-83
develop-in-place, A-11
development tool, 2-12
dynamic page, A-12
Edit privilege, A-87
editing, A-81, A-86
editing as new, A-86
error handling PL/SQL, 6-36
event handling PL/SQL, 6-40
Execute privilege, A-87
export of customizations, 5-74
features and characteristics, 2-1
form, A-12
form layout, 3-18
forms, A-15
frame driver, A-13
generating PL/SQL, A-84
granting privileges, A-88
guidelines, Java, 5-2
guidelines, PL/SQL

best practices
PL/SQL, 6-1

hierarchy, A-13
Java, 5-1
Java Standards, 2-2
JPS wizard in Oracle JDeveloper, 5-12
link, A-13
lists of values, A-13
Manage privilege, A-87
Manage tab, A-83
managing locks, A-85
managing versions, A-86
menu, A-13
modes list, 5-2
multi-lingual, 5-95
multi-lingual PL/SQL, 6-43
news layout, 3-16
OmniPortlet, 1-9
out of the box, 1-5
package, PL/SQL, 6-9
PDK-Java, 5-29
PL/SQL, 6-1
PL/SQL parameters, 6-21
Portlet Builder, 1-10, A-1 to A-123
portlet building privileges, A-87
portlet management page, A-82
privileges, 5-66
providers, 2-7, A-1
publishing generated, 6-7
renaming, A-83
report, A-12
running, A-90
running as full page, A-91
running as portlets, A-91

Index-8

running in batch mode, A-92
running with Customization Form, A-91
schemas, A-1, A-2
security, 5-62
security managers, 5-66
security PL/SQL, 6-27
tabular layout, 3-12
technologies, 2-1
testing, A-90
testing PDK-Java, 5-36
types of, A-12
URLs, A-13
View Source privilege, A-87
viewing call interface, A-85
viewing package spec and body, A-85
viewing source code, A-84
Web Clipping, 1-6
Web source, 1-1
XML component, A-12

preference store, 5-49
creating and accessing in PL/SQL, 6-15
migration utility, 5-49
PL/SQL, 6-15

PrefStoreTransporter, 5-87
Preview mode, 5-6
private portlet parameters, 2-18
privileges, 5-66

access to shared components, A-105
Create shared components, A-105
for building portlets, A-87
granting on portlets, A-88
granting to individuals, A-89
inheriting from provider, A-88
Manage shared components, A-105
portlet, 5-66
provider, 5-66

properties
Web Clipping portlet, 4-8, 4-18

provider servlet
for invalidation based caching, 5-91

ProviderInstance, 5-76
providers, A-1

architecture, 2-10
database providers, 2-9
inheriting privileges from, A-88
locally built providers, A-8
package, PL/SQL, 6-10
Portal DB Provider, A-18
portlet deployment, 2-6
privileges, 5-66
schemas, A-1
shared components, A-104

provider.xml
activating invalidation based caching, 5-93
events, 5-57
multi-lingual, 5-98
parameters, 5-55
portlet resource bundles, 5-100
preference information, 5-52
provider resource bundles, 5-98

session, 5-62
updating for render modes, 5-46

proxy authentication
URL-based portlets and, 4-21
Web Clipping and, 1-8, 4-2, B-10

proxy server setting
Web Clipping and, B-9, B-10

public portlet parameters, 2-18

Q
query wizard, charts, A-57

R
radio group, LOV, A-79
registering

JPS portlet, 5-22
on a local OracleAS Portal, 5-23
on portalstandards.oracle.com, 5-28
PDJ-Java portlet, 5-41

render modes, 5-45
updating provider.xml for, 5-46

report portlets, A-12
audio data, A-54
building, A-31
column break display options, A-45
column conditions, A-36
column formatting options, A-38
common display options, A-43
customization forms, A-48, A-50
date format masks, A-39
examples, A-118, A-121
formatting conditions, A-41
full Web page display options, A-44
image data, A-54
interMedia rich content, A-54
layout types, A-37
mobile device display options, A-47
number format masks, A-40
PL/SQL code options, A-52
row order display options, A-46
supplementary text options, A-52
templates, A-51
video data, A-54

resource bundles, 5-96
updating renderer, 5-97

roles, A-7

S
schemas, A-1, A-2

access privileges, A-4, A-7
creating, A-2
default profile, A-3
default tablespace, A-3
enrolling in roles, A-7
granting privileges, A-4
naming, A-2
temporary tablespace, A-3

sections

Index-9

Web Clipping and, 4-6
security, 5-62

authentication, 5-62
authorization, 5-63
coding in PL/SQL, 6-28
communication, 5-63
features, 5-62
for export, 5-82
for import, 5-82
for transport communications, 5-82
guidelines for PL/SQL, 6-27
implementing PL/SQL, 6-27
managers, 5-66
message authentication, 5-68
server, 5-68

session
persistent states, A-99

session information, 5-59
checking for valid session, 5-61
enabling in provider.xml, 5-62
storage implementation, 5-60

session store
creating and accessing in PL/SQL, 6-19
PL/SQL, 6-19

set_value, A-98
shared components, A-104

creating JavaScript under, A-107
editing, A-104
granting access, A-105

shared components provider
creating color definitions, A-107
creating image definitions, A-108
font definitions, A-109
user interface templates, A-110

Shared Screen mode, 5-2
Show modes

list, 5-2
Show page, 5-52
Simple Object Access Protocol (SOAP), 2-6
Single Sign-On

Web Clipping and, 1-8, 4-2, 4-9
single sign-on, 5-63

comparison of portlet builders, 2-20
external application, 2-20, 5-64
partner application, 5-64

SOAP, 2-6
spreadsheet

using as a data source, 3-5
SQL

defining for a portlet, 3-23
using as a data source, 3-5

SSL, 5-69
configuration, 5-70

starter provider sample, 6-8
status

checking for Web Clipping, B-9
strings

loading language PL/SQL, 6-44
retrieving language PL/SQL, 6-45

struts

building portlet in JDeveloper, 5-101
creating a portlet, 5-105
OracleAS Portal integration, 5-103
overview, 5-103

substitution tags, A-112
ALIGN_LEFT, A-112
ALIGN_RIGHT, A-113
BODY, A-112
DIRECTION, A-112
HELPLINK, A-112
HELPSCRIPT, A-112
IMAGE_PREFIX, A-112
PAGE.BASE, A-113
PAGE.BASE.URL, A-113
PAGE.BGCOLOR, A-113
PAGE.BGIMAGE, A-113
PAGE.CUSTOMIZEPAGE, A-113
PAGE.CUSTOMIZEPAGE.LABEL, A-114
PAGE.CUSTOMIZEPAGE.URL, A-114
PAGE.EDITPAGE, A-114
PAGE.EDITPAGE.LABEL, A-114
PAGE.EDITPAGE.URL, A-114
PAGE.REFRESH, A-114
PAGE.REFRESH.LABEL, A-114
PAGE.REFRESH.URL, A-114
PAGE.STYLE, A-113
PAGE.STYLE.URL, A-113
PAGE.SUBPAGELINK, A-113
PORTAL.ACCOUNTINFO, A-113
PORTAL.ACCOUNTINFO.LABEL, A-113
PORTAL.ACCOUNTINFO.URL, A-113
PORTAL.COMMUNITY, A-113
PORTAL.COMMUNITY.IMAGE, A-113
PORTAL.COMMUNITY.LABEL, A-113
PORTAL.COMMUNITY.URL, A-113
PORTAL.HELP, A-113
PORTAL.HELP.IMAGE, A-113
PORTAL.HELP.LABEL, A-113
PORTAL.HELP.URL, A-113
PORTAL.HOME, A-113
PORTAL.HOME.IMAGE, A-113
PORTAL.HOME.LABEL, A-113
PORTAL.HOME.URL, A-113
PORTAL.LOGOUT, A-113
PORTAL.LOGOUT.LABEL, A-113
PORTAL.LOGOUT.URL, A-113
PORTAL.NAVIGATOR, A-113
PORTAL.NAVIGATOR.IMAGE, A-113
PORTAL.NAVIGATOR.LABEL, A-113
PORTAL.NAVIGATOR.URL, A-113
USER, A-112
USER.FULLNAME, A-112
VERSION, A-112

T
tablespace

default, A-3
temporary, A-3

tags, substitution, A-112

Index-10

technologies, portlets, 2-1
templates, A-51

see also user interface templates, A-110
test page

Web Clipping, B-9
testing

portlet and provider for PDK-Java, 5-36
portlets, A-90

text options
chart portlets, A-74
form portlets, A-27
report portlets, A-52

TextArea item types, form portlets, A-22
TextBox item types, form portlets, A-22
Time Out field

Web Clipping and, 4-9
transport

by reference, 5-83
by reference example, 5-86
customizations, 5-74
encrypting for, 5-83
encryption example, 5-84
example, 5-77
JNDI variable, 5-83
logging interface, 5-76
programming interface, 5-75
securing communications, 5-82
security, 5-82

troubleshooting
Web Clipping, B-5, B-9

U
URL rewriting field

Web Clipping and, 4-9
URL-based portlets

about, A-13
migrating to Web Clipping, 1-8, 4-2

URLs
specifying for Web Clipping, 4-5, 4-13

user interface templates, A-110
structured, A-110
substitution tags, A-112
unstructured, A-111

USER substitution tag, A-112
USER.FULLNAME substitution tag, A-112
users

page designer, xv
portal developer, xv

V
validation

field-level, A-106
form-level, A-106
JavaScript guidelines, A-106
JavaScripts, A-106
writing field-level, A-106
writing form-level, A-106

validation options, form portlets

Default Value, A-25
Default Value Type, A-25
Field Level Validation, A-25
Form Level Validation, A-25
Format Mask, A-25
Insertable, A-25
Mandatory, A-25
Updatable, A-25

validation-based caching, 2-12
variables, persistent state, A-99
version management, A-86
VERSION substitution tag, A-112
video data, A-54
View mode, 5-2
View Source privilege, A-87
virtual directories, images, A-109

W
WAR file

for JPS, 5-22
for PDK-Java, 5-39

Web browsers
recommended cache settings, xviii
recommended image settings, xix
recommended versions, xviii

Web Clipping
authentication for external application, 2-21
caching style, 2-12
capturing content, 2-15
charting, 2-17
comparing to other portlet builders, 2-2
development tool, 2-12
event support, 2-19
expertise required, 2-5
forms and, 4-9, 4-19
limitations, 4-21
load balancers and, B-9
logging levels and, B-11
multi-lingual support, 2-20
parameter support, 2-19
personal pages and, 4-15
proxy authentication, B-10
proxy servers and, B-9, B-10
rendering content inline, 2-16
searching, 4-16
security, 2-19
test page, B-9
troubleshooting, B-5, B-9
usage suitability, 2-4
user interface, 2-15

Web Clipping portlet, 1-6, 4-1
adding, 4-2
properties, 4-8, 4-18

Web Clipping provider, 4-1
Web Clipping Studio, 4-2

using, 4-4
Web content

adding to page, 4-2
browsing for, 4-4

Index-11

expiration, 4-9
reuse, 1-8, 4-1
specifying, 4-5, 4-13
timeout value, 4-9

Web page
using as a data source, 3-8, 3-28

Web providers, 2-7
Web Service

defining for a portlet, 3-26
using as a data source, 3-7

Web Services for Remote Portlets
see WSRP

Web source, 1-1
web.xml file

for Web Clipping, B-10
WSRP, 2-2, 2-6, 5-8

providers, 2-8
wwctx_api

context information, 6-25

X
XML

component portlets, A-12
for PL/SQL Generator, 6-4
using as a data source, 3-6

XML provider definition
see provider.xml

Index-12

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	Browser Recommendations

	Part I Portlet Overview
	1 Understanding Portlets
	1.1 Introduction to Portal Development
	1.2 Understanding Portlets
	1.3 Portlet Anatomy
	1.4 Portlet Resources
	1.4.1 Out-of-the-Box Portlets
	1.4.2 Other Sources of Pre-Built Portlets
	1.4.3 Web Clipping
	1.4.4 OmniPortlet
	1.4.5 Portlet Builder
	1.4.6 Programmatic Portlets
	1.4.7 Deciding Which Tool to Use

	1.5 Summary

	Part II Portlet Technologies
	2 Portlet Technologies Matrix
	2.1 The Portlet Technologies Matrix
	2.2 General Suitability
	2.2.1 Web Clipping
	2.2.1.1 Examples of portlets you can build using Web Clipping

	2.2.2 OmniPortlet
	2.2.2.1 Examples of portlets you can create with OmniPortlet

	2.2.3 Java Portlets
	2.2.3.1 Examples of portlets you can build using Java

	2.2.4 Portlet Builder
	2.2.4.1 Examples of portlets you can build using the Portlet Builder

	2.2.5 PL/SQL Portlets
	2.2.5.1 Examples of portlets you can build using PL/SQL

	2.3 Expertise Required
	2.3.1 Web Clipping
	2.3.2 OmniPortlet
	2.3.3 Java Portlets
	2.3.4 Portlet Builder
	2.3.5 PL/SQL Portlets

	2.4 Deployment Type
	2.4.1 Web Providers
	2.4.2 WSRP Providers
	2.4.3 Database Providers
	2.4.4 Provider Architecture

	2.5 Caching Style
	2.5.1 Web Clipping, OmniPortlet, and Portlet Builder
	2.5.2 Java Portlets
	2.5.3 PL/SQL Portlets

	2.6 Development Tool
	2.6.1 Web Clipping, OmniPortlet, and Portlet Builder
	2.6.2 Java Portlets
	2.6.3 PL/SQL Portlets

	2.7 Portlet Creation Style
	2.7.1 OmniPortlet and Web Clipping
	2.7.2 Java Portlets
	2.7.3 Portlet Builder
	2.7.4 PL/SQL Portlets

	2.8 User Interface Flexibility
	2.8.1 Web Clipping
	2.8.2 OmniPortlet and Portlet Builder
	2.8.3 Java Portlets and PL/SQL Portlets

	2.9 Ability to Capture Content from Web Sites
	2.9.1 Web Clipping
	2.9.2 OmniPortlet
	2.9.3 Java Portlets
	2.9.4 PL/SQL Portlets

	2.10 Ability to Render Content Inline
	2.10.1 Web Clipping
	2.10.2 OmniPortlet
	2.10.3 Java Portlets
	2.10.4 Portlet Builder
	2.10.5 PL/SQL Portlets

	2.11 Charting Capability
	2.11.1 Web Clipping
	2.11.2 OmniPortlet
	2.11.3 Java Portlets
	2.11.4 Portlet Builder
	2.11.5 PL/SQL Portlets

	2.12 Public Portlet Parameters Support
	2.13 Private Portlet Parameter Support
	2.13.1 OmniPortlet, Web Clipping, and Portlet Builder
	2.13.2 Java Portlets and PL/SQL Portlets

	2.14 Event Support
	2.14.1 Web Clipping, OmniPortlet, and Java Portlets
	2.14.2 Portlet Builder and PL/SQL Portlets

	2.15 Ability to Hide and Show Portlets Based on User Privileges
	2.15.1 Web Clipping and OmniPortlet
	2.15.2 Java Portlets
	2.15.3 Portlet Builder
	2.15.4 PL/SQL Portlets

	2.16 Multi-lingual Support
	2.16.1 Web Clipping, OmniPortlet, Java Portlets, and PL/SQL Portlets
	2.16.2 Portlet Builder

	2.17 Pagination Support
	2.17.1 OmniPortlet
	2.17.2 Java Portlets and PL/SQL Portlets
	2.17.3 Portlet Builder

	2.18 Single Sign-On and External Application Integration
	2.18.1 Web Clipping
	2.18.2 OmniPortlet
	2.18.3 Java Portlets
	2.18.4 PL/SQL Portlets

	Part III Building Portlets
	3 Building Portlets with OmniPortlet
	3.1 What is OmniPortlet?
	3.1.1 Type
	3.1.2 Source
	3.1.2.1 Spreadsheet
	3.1.2.2 SQL
	3.1.2.3 XML
	3.1.2.4 Web Service
	3.1.2.5 Web Page

	3.1.3 Filter
	3.1.4 View
	3.1.5 Layout
	3.1.5.1 Tabular Layout
	3.1.5.2 Chart Layout
	3.1.5.3 News Layout
	3.1.5.4 Bullet Layout
	3.1.5.5 Form Layout

	3.1.6 Edit Defaults mode
	3.1.7 Events

	3.2 Parameters and Events
	3.2.1 Portlet Parameters and Events
	3.2.2 Page Parameters and Events

	3.3 Using OmniPortlet
	3.3.1 Adding an OmniPortlet to a Portal Page
	3.3.2 Defining a Portlet Based on a SQL Data Source
	3.3.3 Defining a Portlet Based on a Web Service
	3.3.4 Defining a Portlet Based on an Existing Web Page
	3.3.5 Modifying the Layout of an Existing OmniPortlet
	3.3.6 Using Parameters and Events
	3.3.6.1 Adding Parameters to an Existing OmniPortlet
	3.3.6.2 Adding Events to an Existing OmniPortlet
	3.3.6.3 Relating Portlet Parameters and Events on a Page

	3.4 Summary

	4 Building Content-Based Portlets with Web Clipping
	4.1 What Is Web Clipping?
	4.2 Adding Web Page Content to a Portal Page
	4.2.1 Adding a Web Clipping Portlet to a Page
	4.2.2 Selecting a Section of a Web Page to Display in the Web Clipping Portlet
	4.2.3 Setting Web Clipping Portlet Properties

	4.3 Integrating Authenticated Web Content Using Single Sign-On
	4.4 Example: Adding a Web Clipping That Users Can Customize
	4.4.1 Exercise: Adding a Web Clipping Portlet to a Personal Page
	4.4.2 Exercise: Selecting a Clipping in OTN
	4.4.3 Exercise: Customizing a Web Clipping Portlet

	4.5 Current Limitations for Web Clipping

	5 Building Java Portlets
	5.1 Guidelines for Creating Java Portlets
	5.1.1 Shared Screen Mode (View Mode for JPS)
	5.1.1.1 HTML Guidelines for Rendering Portlets
	5.1.1.2 Cascading Style Sheet Guidelines for Rendering Portlets

	5.1.2 Edit Mode (JPS and OracleAS Portal)
	5.1.2.1 Guidelines for Edit Mode Options
	5.1.2.2 Guidelines for Buttons in Edit Mode
	5.1.2.3 Guidelines for Rendering Customization Values

	5.1.3 Edit Defaults Mode (JPS and OracleAS Portal)
	5.1.3.1 Guidelines for Edit Defaults Mode Options
	5.1.3.2 Guidelines for Buttons in Edit Defaults Mode
	5.1.3.3 Guidelines for Rendering Customization Values

	5.1.4 Preview Mode (JPS and OracleAS Portal)
	5.1.4.1 Guidelines for Preview Mode

	5.1.5 Full Screen Mode (OracleAS Portal)
	5.1.5.1 Guidelines for Full Screen Mode

	5.1.6 Help Mode (JPS and OracleAS Portal)
	5.1.6.1 Guidelines for Help Mode

	5.1.7 About Mode (JPS and OracleAS Portal)
	5.1.7.1 Guidelines for About Mode

	5.1.8 Link Mode (OracleAS Portal)
	5.1.8.1 Guidelines for Link Mode

	5.2 Introduction to Java Portlet Specification and WSRP
	5.2.1 The Relationship Between WSRP and JPS

	5.3 Building JPS-Compliant Portlets with Oracle JDeveloper
	5.3.1 Installing the Oracle JDeveloper Portal Add-In
	5.3.2 Building JPS-compliant Portlets
	5.3.2.1 Creating a Portlet
	5.3.2.2 Adding Portlet Logic
	5.3.2.3 Deploying Your Portlet to an Application Server
	5.3.2.4 Registering and Viewing Your Portlet

	5.4 Building PDK-Java Portlets with Oracle JDeveloper
	5.4.1 Installing the Oracle JDeveloper Portal Add-In
	5.4.2 Building PDK-Java Portlets
	5.4.2.1 Creating a Portlet and Provider
	5.4.2.2 Adding Portlet Logic
	5.4.2.3 Validating Your Portlet and Provider
	5.4.2.4 Deploying to an Application Server
	5.4.2.5 Registering and Viewing Your Portlet

	5.4.3 Adding Render Modes
	5.4.3.1 Assumptions
	5.4.3.2 Implementing Extra Show Modes
	5.4.3.3 Updating the XML Provider Definition
	5.4.3.4 Viewing the Portlet

	5.4.4 Customizing Portlets
	5.4.4.1 Assumptions
	5.4.4.2 Implementing Customization for Edit and Edit Defaults Pages
	5.4.4.3 Implementing Customization for Show Pages
	5.4.4.4 Preference Information Within the XML Provider Definition
	5.4.4.5 Viewing the Portlet

	5.4.5 Passing Parameters and Submitting Events
	5.4.5.1 Assumptions
	5.4.5.2 Adding Parameters to Your Portlets
	5.4.5.3 Submitting Events

	5.4.6 Accessing Session Information
	5.4.6.1 Assumptions
	5.4.6.2 Implementing Session Storage
	5.4.6.3 Viewing the Portlet

	5.4.7 Implementing Portlet Security
	5.4.7.1 Assumptions
	5.4.7.2 Portlet Security Features
	5.4.7.3 Single Sign-On
	5.4.7.4 OracleAS Portal Access Control Lists (ACLs)
	5.4.7.5 Portlet Security Managers
	5.4.7.6 OracleAS Portal Server Security
	5.4.7.7 Message Authentication
	5.4.7.8 HTTPS Communication
	5.4.7.9 LDAP (Oracle Internet Directory) Security

	5.4.8 Controlling the Export/Import of Portlet Customizations
	5.4.8.1 Import/Export Programming Interface
	5.4.8.2 Exporting Customizations Example
	5.4.8.3 Implementing Security for Export/Import

	5.4.9 Enhancing Portlet Performance with Caching
	5.4.9.1 Assumptions
	5.4.9.2 Activating Caching
	5.4.9.3 Adding Expiry-Based Caching
	5.4.9.4 Adding Invalidation Based Caching
	5.4.9.5 Adding Validation-Based Caching

	5.4.10 Writing Multi-Lingual Portlets
	5.4.10.1 Assumptions
	5.4.10.2 Internationalizing Your Portlet
	5.4.10.3 Viewing the Portlet

	5.5 Building Struts Portlets with Oracle JDeveloper
	5.5.1 OracleAS Portal and the Apache Struts Framework
	5.5.1.1 Model View Controller Overview
	5.5.1.2 Apache Struts Overview
	5.5.1.3 OracleAS Portal Integration with Struts
	5.5.1.4 Summary

	5.5.2 Creating a Struts Portlet
	5.5.2.1 Creating a Struts Portlet
	5.5.2.2 Registering the Provider
	5.5.2.3 Summary

	6 Building PL/SQL Portlets
	6.1 Guidelines for Creating PL/SQL Portlets
	6.1.1 Portlet Show Modes
	6.1.2 Recommended Portlet Procedures and Functions

	6.2 Building PL/SQL Portlets with the PL/SQL Generator
	6.2.1 Creating the Input XML File
	6.2.2 Running the PL/SQL Generator
	6.2.3 Publishing the Generated PL/SQL Portlet
	6.2.3.1 Installing the Packages in the Database
	6.2.3.2 Registering the Database Provider
	6.2.3.3 Adding Your Portlet to a Page

	6.3 Building PL/SQL Portlets Manually
	6.3.1 Implementing the Portlet Package
	6.3.2 Implementing the Provider Package
	6.3.3 Adding Your Portlet to a Page

	6.4 Implementing Information Storage
	6.4.1 Implementing a Preference Store
	6.4.1.1 Using a Preference Store
	6.4.1.2 Creating and Accessing a Preference Store

	6.4.2 Implementing a Session Store
	6.4.2.1 Creating and Accessing a Session Store

	6.5 Using Parameters
	6.5.1 Passing Private Parameters
	6.5.2 Passing Page Parameters and Mapping Public Portlet Parameters
	6.5.3 Retrieving Parameter Values

	6.6 Accessing Context Information
	6.6.1 Using Context Information
	6.6.2 Using wwctx_api to Obtain Context Information

	6.7 Implementing Portlet Security
	6.7.1 Using Security
	6.7.1.1 Guidelines for Using the Security APIs

	6.7.2 Coding Security

	6.8 Improving Portlet Performance with Caching
	6.8.1 Using Caching
	6.8.1.1 Validation-Based Caching
	6.8.1.2 Expiry-Based Caching
	6.8.1.3 Invalidation-Based Caching

	6.8.2 Configuring and Monitoring the Cache
	6.8.3 Implementing Validation-Based Caching
	6.8.4 Implementing Expiry-Based Caching
	6.8.5 Implementing Invalidation-Based Caching

	6.9 Implementing Error Handling
	6.9.1 Using Error Handling
	6.9.1.1 Guidelines for Error Handling

	6.9.2 Adding Error Handling

	6.10 Implementing Event Logging
	6.10.1 Using Event Logging
	6.10.1.1 Guidelines for Event Logging

	6.10.2 Adding Event Logging

	6.11 Writing Multi-Lingual Portlets
	6.11.1 Using Multi-Lingual Support
	6.11.2 Adding Multi-Lingual Support
	6.11.2.1 Loading Language Strings
	6.11.2.2 Retrieving Language Strings

	Part IV Appendixes
	A Building Portlets with the Portlet Builder
	A.1 Using a Wizard to Build a Portlet
	A.1.1 Creating a Schema in OracleAS Portal
	A.1.1.1 Creating a Schema
	A.1.1.2 Granting and Revoking Privileges on Database Objects
	A.1.1.3 Enrolling the Schema in One or More Roles

	A.1.2 Creating a Provider for Locally Built Portlets
	A.1.3 Exposing a Provider
	A.1.4 Creating Portlets Using OracleAS Portal Wizards
	A.1.4.1 Building Portlets Declaratively
	A.1.4.2 Building Forms Declaratively
	A.1.4.3 Building Reports Declaratively
	A.1.4.4 Building Forms and Reports against interMedia Rich Content
	A.1.4.5 Building Charts Declaratively
	A.1.4.6 Building Lists of Values Declaratively

	A.2 Editing a Portlet Builder Component
	A.3 Managing Portlets
	A.3.1 Navigating to the Component Management Page
	A.3.2 Renaming a Portlet
	A.3.3 Deleting a Portlet
	A.3.4 Copying a Portlet
	A.3.5 Generating the PL/SQL Package for a Portlet
	A.3.6 Viewing Source Code
	A.3.6.1 Viewing the Package Spec and Body for a Portlet
	A.3.6.2 Viewing the Call Interface for a Portlet

	A.3.7 Managing Locks on Portlets

	A.4 Managing Versions
	A.5 Managing Portlet Security
	A.5.1 Granting Portlet Access Privileges
	A.5.1.1 Inheriting Portlet Access Privileges from a Provider
	A.5.1.2 Granting Access Privileges to Individual Users

	A.6 Performing Test Runs on a Portlet
	A.6.1 Running a Component as a Full Page
	A.6.2 Running a Component as a Portlet
	A.6.3 Running a Component through the Customization Form
	A.6.4 Running the Component as a Portlet through the Portlet Customization Form
	A.6.5 Running in Batch Mode
	A.6.5.1 Setting init.ora Parameters for Batch Jobs
	A.6.5.2 Adding a Batch Button to an Existing Component

	A.7 Referencing the OracleAS Portal Schema
	A.8 Coding Additional Functionality
	A.8.1 Using Bind Variables
	A.8.2 Writing Event Handlers for Items on Forms
	A.8.2.1 Writing a JavaScript Event Handler for an Item on a Form
	A.8.2.2 Writing a PL/SQL Event Handler for a Button on a Form

	A.8.3 Using PL/SQL to Get and Set Values in a Form
	A.8.4 Using PL/SQL to Get or Set Cookies in a Form or Report
	A.8.5 Defining Values through Page Parameters

	A.9 Using Shared Components to Create a Look and Feel
	A.9.1 Granting Access to Shared Components
	A.9.2 Using JavaScript to Create Field- and Form-Level Validation
	A.9.2.1 Guidelines for Writing Field- or Form-Level Validation JavaScript
	A.9.2.2 Creating JavaScript under the Shared Components Provider
	A.9.2.3 Adding JavaScript to a Form

	A.9.3 Creating Color Definitions
	A.9.4 Creating Image Definitions
	A.9.5 Creating Font Definitions
	A.9.6 Using User Interface Templates
	A.9.6.1 Building a Structured User Interface Template
	A.9.6.2 Building an Unstructured User Interface Template
	A.9.6.3 Configuring a Page Group to Allow Use of UI Templates
	A.9.6.4 Applying a UI Template to a Page

	A.10 Example: Building Charts and Reports
	A.10.1 Exercise: Building the Team Details Report
	A.10.2 Exercise: Building the Average Salaries Chart
	A.10.3 Exercise: Building the Team Bonuses Report

	B Troubleshooting OracleAS Portal
	B.1 Problems and Solutions
	B.1.1 Java Portlet Wizard Not Available
	B.1.2 Portlet Code Does Not Compile
	B.1.3 Application Server Connection Test Fails
	B.1.4 Provider Test Page Shows Error
	B.1.5 Provider Registration Fails
	B.1.6 Portlet Does Not Display on Page
	B.1.7 After Initial Successful Display, Portlet Does Not Display on Page
	B.1.8 Other Portlet Problems
	B.1.9 Provider Group Not Created
	B.1.10 URL Portlet Does Not Work

	B.2 Diagnosing OmniPortlet Problems
	B.2.1 Chart Not Rendered on UNIX
	B.2.2 Unable to Access HTTPS Site
	B.2.3 OmniPortlet Cannot Access the Specified URL
	B.2.4 Portlet Content Is Not Refreshed
	B.2.5 Edit Defaults Changes are Not Reflected in the Customized Portlet

	B.3 Diagnosing Web Clipping Problems
	B.3.1 Checking the Status of the Provider with the Test Page
	B.3.2 Solving Problems with Connections
	B.3.2.1 Configuring Proxy Servers
	B.3.2.2 Proxy Authentication

	B.3.3 Setting Logging Levels

	B.4 Need More Help?

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

