
Oracle® Sensor Edge Server
Administrator’s Guide  

10g Release 2 (10.1.2) 

Part No.  B14455-01

December 2004



Oracle Sensor Edge Server Administrator’s Guide, 10g Release 2 (10.1.2)  

Part No.  B14455-01

Copyright © 2000, 2004, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they 
are provided under a license agreement containing restrictions on use and disclosure and are also protected 
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, 
or decompilation of the Programs, except to the extent required to obtain interoperability with other 
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in 
the documentation, please report them to us in writing. This document is not warranted to be error-free. 
Except as may be expressly permitted in your license agreement for these Programs, no part of these 
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any 
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on 
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation 
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license 
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, 
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such 
purposes, and we disclaim liability for any damages caused by such use of the Programs. 

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third 
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. 
You bear all risks associated with the use of such content. If you choose to purchase any products or services 
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: 
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the 
third party, including delivery of products or services and warranty obligations related to purchased 
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from 
dealing with any third party.



iii

Contents

Send Us Your Comments .......................................................................................................................   vii

Preface .................................................................................................................................................................   ix

Documentation Accessibility .....................................................................................................................    ix
Structure .......................................................................................................................................................    ix
Related Documents .....................................................................................................................................     x
Conventions .................................................................................................................................................     x

1  Configuring the Oracle Sensor Edge Server 

1.1 Overview of the Oracle Sensor Edge Server ...........................................................................   1-1
1.1.1 Deploying Drivers, Filters and Dispatchers to the Oracle Sensor Edge Server..........   1-1
1.1.2 Overview of Events .............................................................................................................   1-2
1.2 Overview of the Oracle Sensor Edge Server Configuration File..........................................   1-4
1.2.1 The General Settings and Parameters for the Oracle Sensor Edge Server ..................   1-5
1.2.2 Available Dispatchers, Filters, and Drivers .....................................................................   1-5
1.2.2.1 Dispatchers ....................................................................................................................   1-6
1.2.2.2 Drivers............................................................................................................................   1-7
1.2.2.3 Filters ..............................................................................................................................   1-7
1.2.3 The Current Dispatcher Method for the Oracle Sensor Edge Server ...........................   1-7
1.2.4 Filters, Dispatchers and Devices Used by the Oracle Sensor Edge Server..................   1-7
1.2.4.1 Setting the Parameters for Instances..........................................................................   1-8
1.3 Starting and Stopping the Oracle Sensor Edge Server ..........................................................   1-9
1.3.1 Starting the Oracle Sensor Edge Server by Starting an OC4J Instance ........................   1-9
1.3.2 Stopping Oracle Sensor Edge Server by Stopping the OC4J Instance .........................   1-9
1.3.3 Starting the Oracle Edge Sensor Server From the Command Line ..............................   1-9
1.4 Configuring the Dispatchers for an Oracle Sensor Edge Server ......................................    1-10
1.4.1 Setting the Current Dispatcher Used by the Oracle Sensor Edge Server .................    1-10
1.4.1.1 Configuring the Oracle Sensor Edge Server to Use Oracle Streams ..................    1-11
1.4.1.1.1 Post-Installation Steps for the Streams Dispatcher .......................................    1-12
1.4.1.2 Configuring the Dispatcher to Send Messages Through OC4J JMS ..................    1-13
1.4.1.2.1 Configuring jms.xml Under the OC4J Container ..........................................    1-13
1.4.1.2.2 Creating the JMS Dispatcher ............................................................................    1-14
1.4.1.3 Configuring the Dispatcher to Send Event Messages to a Web Service............    1-14
1.4.1.4 Configuring the Dispatcher to Send Event Messages Through HTTP..............    1-15
1.4.1.5 Using the Nulldispatcher .........................................................................................    1-15



iv

1.5 Connecting Readers and Sensors...........................................................................................    1-15
1.5.1 Creating a Device..............................................................................................................    1-16
1.6 Enabling Devices to Filter Events ..........................................................................................    1-17
1.6.1 Creating a Filter Instance.................................................................................................    1-17

2  Managing Drivers 

2.1 Managing Drivers .......................................................................................................................   2-1
2.2 Configuring the Pre-Seeded Drivers........................................................................................   2-3
2.2.1 Configuring the EdgeSimulator ........................................................................................   2-4
2.2.1.1 Defining the Parameters of the EdgeSimulator .......................................................   2-4
2.2.1.2 Connecting the Simulator to the Oracle Sensor Edge Server.................................   2-7
2.2.2 Configuring the AlienDevice Driver.................................................................................   2-7
2.2.2.1 Finding the IP Address of the Alien RFID Reader ..................................................   2-8
2.2.2.2 Connecting the Alien RFID Reader to a Web Browser ...........................................   2-8
2.2.2.3 Creating a Device for the Alien RFID Reader ..........................................................   2-9
2.2.3 Configuring the IntermecDevice Driver........................................................................    2-10
2.2.3.1 Installing the IntelliTag IDK ....................................................................................    2-11
2.2.3.2 Registering the Serial and PCMCIA Readers ........................................................    2-12
2.2.3.3 Configuring Readers .................................................................................................    2-12
2.2.3.4 Testing the Readers ...................................................................................................    2-13
2.2.3.5 Installing the Oracle Sensor Edge Server Device Controller...............................    2-14
2.2.3.6 Starting the Oracle Sensor Edge Server Device Controller .................................    2-14
2.2.3.7 Configuring the Oracle Sensor Edge Server to Communication with the Device ......    

2-14
2.2.4 Configuring the Patlite Driver ........................................................................................    2-16
2.2.4.1 Installing the Patlite Hardware ...............................................................................    2-16
2.2.4.2 Configuring the Oracle Edge Server Device Controller for the Patlite Device    2-17
2.2.4.3 Starting the Device Controller for the Patlite Device ...........................................    2-17
2.2.4.4 Configuring the Oracle Sensor Edge Server to Communicate with the Device 

Controller   2-17

3  Managing Filters 

3.1 Managing Filters .........................................................................................................................   3-1
3.1.1 Device- and Device Group-Level Filtering ......................................................................   3-3
3.2 Defining the Parameters of the Pre-Seeded Filters ................................................................   3-4
3.2.1 Configuring the Check Tag ID Filter ................................................................................   3-5
3.2.2 Using the Cross-Reader Redundant Filter .......................................................................   3-6
3.2.3 Using the Debug Filter ........................................................................................................   3-6
3.2.4 Configuring the Pass Filter.................................................................................................   3-6
3.2.5 Configuring the Shelf Filter................................................................................................   3-7
3.2.5.1 Events Generated by the Shelf Filter .........................................................................   3-8
3.2.6 Configuring the Pallet Pass Thru Filter ............................................................................   3-9
3.2.7 Configuring the Pallet Shelf Filter..................................................................................    3-10
3.2.7.1 Events Generated by the Pallet Shelf Filter............................................................    3-10
3.3 Enabling Event Filtering for Devices or Device Groups ....................................................    3-12
3.3.1 Creating a Filter Instance.................................................................................................    3-12
3.3.1.1 Prioritizing Filter Instances for Devices and Device Groups..............................    3-12



v

4  Managing Extensions 

4.1 Overview of Extensions .............................................................................................................   4-1
4.2 Extension Archive Files..............................................................................................................   4-1
4.2.1 Packaging an Extension Archive File................................................................................   4-4
4.3 Uploading Extensions ................................................................................................................   4-4
4.4 Extension Class Hierarchy.........................................................................................................   4-5
4.5 Implementing Extensions ..........................................................................................................   4-5
4.5.1 Extension Context................................................................................................................   4-5
4.5.1.1 Retrieving Information About the Instance..............................................................   4-5
4.5.1.2 Accessing the Runtime Context of an Instance ........................................................   4-6
4.6 Managing the Parameters of an Instance ................................................................................   4-6
4.6.1 Exposing Custom Parameters............................................................................................   4-6
4.6.2 Retrieving Parameter Values .............................................................................................   4-6

A  Sample edgeserver.xml File

A.1 edgeserver.xml ...........................................................................................................................    A-1

B  Troubleshooting

B.1 Error Messages after Start-Up..................................................................................................    B-1
B.2 Tag Reads Are Not Dispatched to the Back-End ..................................................................    B-1
B.3 Exceptions Thrown When Stopping the Oracle Sensor Edge Server .................................    B-2
B.4 Additional Information About the Oracle Sensor Edge Server ..........................................    B-2
B.5 Installation Requirements.........................................................................................................    B-2

Glossary

Index



vi



vii

Send Us Your Comments

Oracle Sensor Edge Server Administrator’s Guide, 10g Release 2 (10.1.2)

Part No.  B14455-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this 
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate 
the title and part number of the documentation and the chapter, section, and page 
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and 
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support 
Services.



viii



ix

Preface

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Standards will continue to evolve over 
time, and Oracle is actively engaged with other market-leading technology vendors to 
address technical obstacles so that our documentation can be accessible to all of our 
customers. For additional information, visit the Oracle Accessibility Program Web site 
at 

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader, 
may not always correctly read the code examples in this document. The conventions 
for writing code require that closing braces should appear on an otherwise empty line; 
however, JAWS may not always read a line of text that consists solely of a bracket or 
brace.

Accessibility of Links to External Web Sites in Documentation This documentation 
may contain links to Web sites of other companies or organizations that Oracle does 
not own or control. Oracle neither evaluates nor makes any representations regarding 
the accessibility of these Web sites.

Structure
The Oracle Sensor Edge Server Administrator ’s Guide describes how to configure and 
manage the Oracle Sensor Edge Server. This guide includes the following chapters.

Chapter 1, "Configuring the Oracle Sensor Edge Server"
Describes the configuration file of the Oracle Sensor Edge Server.

Chapter 2, "Managing Drivers"
Describes how to configure the drivers and devices used by the Oracle Sensor Edge 
Server.



x

Chapter 3, "Managing Filters"
Describes how to configure the filters and filter instances used by the drivers and 
devices of the Oracle Sensor Edge Server.

Chapter 4, "Managing Extensions"
Describes the Extension Archive file format for packaging custom drivers, dispatchers, 
and filters and how to upload Extension Archive files to the Oracle Sensor Edge 
Server.

Appendix A, "Sample edgeserver.xml File"
Provides a sample of the configuration file for the Oracle Sensor Edge Server.

Appendix B, "Troubleshooting"
Provides solutions to problems encountered when running the Oracle Sensor Edge 
Server. 

Related Documents
For more information, see the following manuals:

■ Oracle Application Server Wireless Developer’s Guide

■ Oracle Application Server Wireless API Reference

■ Oracle Application Server Wireless Administrator’s Guide

Conventions
The following conventions are also used in this manual:

Convention Meaning

    .
    .
    .

Vertical ellipsis points in an example mean that information not directly 
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts 
of the statement or command not directly related to the example have 
been omitted

< >  Angle brackets enclose user-supplied names.

[ ] Brackets enclose optional clauses from which you can choose one or 
none.



Configuring the Oracle Sensor Edge Server 1-1

1
Configuring the Oracle Sensor Edge Server

This chapter, through the following sections, describes how to configure the Oracle 
Sensor Edge Server to receive, filter, and dispatch data. 

■ Section 1.1, "Overview of the Oracle Sensor Edge Server"

■ Section 1.2, "Overview of the Oracle Sensor Edge Server Configuration File"

■ Section 1.3, "Starting and Stopping the Oracle Sensor Edge Server"

■ Section 1.4, "Configuring the Dispatchers for an Oracle Sensor Edge Server"

■ Section 1.5, "Connecting Readers and Sensors"

■ Section 1.6, "Enabling Devices to Filter Events"

1.1 Overview of the Oracle Sensor Edge Server
The Oracle Sensor Edge Server enables enterprises to incorporate information received 
from sensors devices into their I.T. infrastructure and business applications by 
receiving event data from sensor devices and then normalizing this data by putting it 
in a common data format and filtering out excess information. The event data, which is 
now a normalized event message, is then sent to database applications. 

1.1.1 Deploying Drivers, Filters and Dispatchers to the Oracle Sensor Edge Server
To receive and process event data from sensor devices, the Oracle Edge Sesor Server 
uses driver and filter objects to receive, read events and then process the event data. 
The Oracle Edge Sensor Server then sends the processed event data on to applications 
using a dispatcher. Depending on the configuration of the Oracle Sensor Edge Server’s 
dispatcher, an Oracle Sensor Edge Server client application receives event messages 
through database streams, JMS (Java Message Service), Web Services (SOAP), or HTTP. 
The payload of the message is always an event. For more information on dispatching 
events, refer to Section 1.4.

The drivers provided out of the box support the 9RE-001 by Alien Technology,  the 
Penn, Delaware, and PCMCIA readers manufactured by Intermec and the PHE-3FB 
PC-Controlled Light indicator manufactured by Patlite Corporation. For more 
information on drivers, refer to Chapter 2, "Managing Drivers". For filtering event 
data, the Oracle Sensor Edge Server provides filters that perform not only such 
functions as device monitoring, event tracking, and data cleansing by blocking 
redundant events, but  can also send events that signal when new containers or pallets 
enter or exit the field or gateway of a device reader, or enable you to see all of the tag 
IDs of items held in a container or on a pallet. For more information on the filters 
provided by the Oracle Sensor Edge Server, refer to Chapter 3, "Managing Filters".   



Overview of the Oracle Sensor Edge Server

1-2 Oracle Sensor Edge Server Administrator’s Guide

You can change or further enhance the capabilities of the Oracle Sensor Edge Server by 
adding extensions: custom-built drivers, filters and dispatchers. You add the drivers, 
filters and dispatchers by downloading an Extension Archive file (a JAR file 
containing all of the class files as well as other related files) to the repository. For more 
information, refer to Chapter 4, "Managing Extensions".

For the Oracle Sensor Server to use extensions, however, you must create instances of 
these objects. For example, for a sensor to use a driver, you must create an instance of 
the driver object called a device instance. Similarly, for device instance to utilize a 
filter, you must create a filter instance of the filter object. When you assign a dispatcher 
as the current dispatcher used by the  Oracle Sensor Edge Server, you create an 
instance of a dispatcher. For more information on the components of the Oracle Sensor 
Edge Server, refer to the Oracle Application Server Wireless Developer’s Guide

1.1.2 Overview of Events
The Event type represents a message sent from one component of the Oracle Sensor 
Edge Server to another. These event messages are specific to each type of driver or 
filter. The Event type is divided into the following sections:

■ Header

■ Type Info

■ Payload

Header
The Header sections includes the routing headers and the message headers, which 
contain fields that designate the delivery of an event message. The routing fields 
include <sourceName> and <correlationID>. The message headers include the 
<siteName> and <deviceName> fields.

■ <sourceName>

This field identifies the originator of the event. This is an optional field, one set by the 
client.

■ <correlationId>

The client sets the value for this field, which is used for message responses to a particular 
client (such as checking if a device functions). Any message response sent back by the client 
will have the same ID. This is an optional field.

■ <siteName>

The site that originally generated the message.

■ <deviceName>

The name of the device or application that generates the event. 

Note: If you modify the devices, device groups, or current 
dispatchers (or modify the devices, device groups, or dispatchers in 
the template section of edgeserver.xml), then you must stop and 
restart the Oracle Sensor Edge Server so that any changes can take 
effect. For more information on starting and stopping the Oracle 
Sensor Edge Server, refer to Section 1.3.



Overview of the Oracle Sensor Edge Server

Configuring the Oracle Sensor Edge Server 1-3

■ <time>

The date and time when the observation or message was created.

Type Info
The Type Info section contains the formatting information for the payload: the type 
and subtype of the event.

■ <type>

The number value that corresponds to the type of event. Table 1–1 describes the values of 
the <type> field. The Oracle Application Server Wireless Developer’s Guide describes 
the values for the <type> field in further detail.

■ <subtype>

The number value for the subtype. For more information on Instruction Events, refer to the 
Oracle Application Server Wireless Developer's Guide

Table 1–1 Value Ranges for the <type> Field

Range Message Type

0-99 System messages. The range of values includes:

■ 0 -- Unknown

A value of 0 represents a bad event or a system internal 
event. 

■ 1 -- Message Event

A confirmation message, usually the return result code of a 
corresponding instruction.

100-199 Instructions or commands. The range of values includes:

■ 100 -- General Instructions

General Instructions for controlling devices.

■ 101 -- RFID Instruction

Instructions to RFID devices.

■ 102 -- Printer

Instructions to printers.

■ 103 -- Lightstack

200-299 Observations. The range of values includes:

■ 200 -- RFID Observation

The message is an RFID observation

■ 201 -- RTLS

■ 202 -- Physical Contact

■ 203 -- Temperature

■ 204 -- Humidity

■ 205 -- Weight

■ 206 -- Tampering

■ 207 -- Audio

■ 208 -- Message Board

500-599 Custom messages



Overview of the Oracle Sensor Edge Server Configuration File

1-4 Oracle Sensor Edge Server Administrator’s Guide

Payload
The Payload section, which is the event-specific section with the following fields:

■ <id>

The text value of this field identifies a tag (that is, a read or target) to an event 
instruction.

■ <data>

The tag data. This is an optional field.

1.2 Overview of the Oracle Sensor Edge Server Configuration File
You configure the Oracle Sensor Edge Server by editing its configuration file, 
edgeserver.xml. This file defines all of the parameters and runtime settings for the 
Oracle Sensor Edge Server. When the Oracle Sensor Edge Server first starts, it reads the 
file to setup all of the runtime data and loads all of the necessary components and 
extensions. edgeserver.xml is located at

ORACLE_HOME/edge/config/edgeserver.xml

Example 1–1 illustrates the basic structure of this XML file.

Example 1–1 Structure of edgeserver.xml

<EdgeServer>
   <DispatcherList>
     <Dispatcher>...</Dispatcher>
   </DispatcherList>
   <DriverList>
      <Driver>...</Driver>
   </DriverList>
   <FilterList>
      <Filter>...</Filter>
   </FilterList>
   <CurrentDispatcher>
      <DispatcherName> ...</DispatcherName>
   </CurrentDispatcher>
   <DeviceGroups>
      <DeviceGroup>
         <DeviceList>
            <Device>...</Device>
         </DeviceList>
      </DeviceGroup>
   </DeviceGroups>
</EdgeServer>

Note: The Oracle Sensor Edge Server also stores its cache file at this 
location.

Note: Refer to Appendix A for an example of the entire 
edgeserver.xml file. 



Overview of the Oracle Sensor Edge Server Configuration File

Configuring the Oracle Sensor Edge Server 1-5

1.2.1 The General Settings and Parameters for the Oracle Sensor Edge Server
The file’s root element, <EdgeServer> encompasses high-level configurations 
(described in Table 1–2) and contains elements that enable you to configure not only 
the dispatchers, filters, and drivers available to the Oracle Sensor Edge Server, but the 
instances of these objects that enable the Oracle Sensor Edge Server to receive and 
process events.

1.2.2 Available Dispatchers, Filters, and Drivers
The <DispatcherList>, <DriverList> and <FilterList> elements comprise 
the template section of the configuration file, where you define the filters, dispatchers 
and drivers that are available to the Oracle Sensor Edge Server.

Dispatchers, filters and drivers are extensions, downloadable components that add 
functionality to the Oracle Sensor Edge Server. By themselves, these extensions are not 
active components; they are not executed. For the Oracle Sensor Edge Server to use 
these components, you must instantiate an extension by creating an instance of it. For 
example, to connect a driver to a reader, you must create a device instance of the 
driver extension. Table 1–3 describes the components for extensions that can be 
configured. The instances of these extensions (described in Section 1.2.4.1) are called 
devices and filter instances. The instance of a dispatcher is the current dispatcher. 

Defining Parameters for Extensions and Instances
Both extensions and their instances contain dynamic lists of parameter settings which 
are defined within the <Parameters> elements of the configuration file. These 
parameters are specific to the type of extension and can be configured for each 
instance. For extensions, the <Parameters> elements and its child, <Parameter> 

Table 1–2 General Configuration for the Oracle Sensor Edge Server

Element Description

<Name> The name of the Oracle Sensor Edge Server.

<SiteName> The name of the site where the Oracle Sensor Edge Server resides.

<DispatcherMode> The mode for the internal queue. Values include:

■ Persist (default mode) -- Persists all events before dispatching.

■ Normal -- Persists only when there is an error while 
dispatching events.

■ Memory -- No persistence; the events are stored in memory 
before they are dispatched.

<IsExtensionMonitorEnabled> When set to true (enabled), the extension monitor can add 
extensions at runtime.

<LogLevel> Notify, Warning, Error

Table 1–3 Structure of the Extensions

Component Description

ClassName The name of the class that implements the specific extension 
interface. This class is loaded first when an instance is created 
from an extension.

Description A text description of the extension or instance.

Name A unique name for the extension or instance.

Parameters A list of parameters specific to the extension or instance. 



Overview of the Oracle Sensor Edge Server Configuration File

1-6 Oracle Sensor Edge Server Administrator’s Guide

tell the Oracle Sensor Edge Server the default values of the parameters and which 
parameters (if any) are exposed. 

<Parameter> requires the following fields:

■ id

An attribute with a unique identifier. Some of the tags in edgeserver.xml 
(including <Parameters>) require a unique identifier so that they can be 
referenced by other tags. The identifier is defined in the id attribute and must be 
unique across the configuration file (although they do not have to be consecutive). 
When adding new elements that do not have references, you do not have to 
manually add the value of the reference id attribute; the Oracle Sensor Edge 
Server automatically assigns a value once it starts.

■ name

The name of the attribute, unique within the <Parameters> tag.

■ defaultValue

The default value for the parameter. This is used as the initial value in any UI or 
when first creating the object

■ description

Text that describes the value (mostly for the user interface).

■ encrypted

Indicates whether the value for the parameter should be encrypted so that the 
value does not have to be stored in clear-text format.

■ isClearText

Enables the default value (and the value for the parameter instance) to be reset to 
clear-text format. If the encrypted parameter is set to true, then the clear-text 
format is read and then set to encrypted format the next time the Oracle Sensor 
Edge Server starts.

■ required

Indicates whether the parameter value is required.

■ valueType

The type attribute specifics the type to use for the value. It could be

■ string for string values

■ int for integer values

■ boolean for true or false values

■ double for a double-precision number

1.2.2.1 Dispatchers
The <DispatcherList> element specifies all of the dispatcher extensions that are 
uploaded to the system and are available to the Oracle Sensor Edge Server. It contains 
an array of <Dispatcher>, which defines an uploaded dispatcher. There can only be 

Note:  Entering an incorrect reference id might lead to incorrect 
behavior. 



Overview of the Oracle Sensor Edge Server Configuration File

Configuring the Oracle Sensor Edge Server 1-7

one <DispatcherList> in the <EdgeServer> node. Each <Dispatcher> is an 
extension and is in the format described in Table 1–3.

1.2.2.2 Drivers
The <DriverList> element defines all of the uploaded driver extensions. All 
supported drivers must be listed within this element. The <DriverList> contains a 
list of <Driver> elements. For the format of the <Driver> element, refer to 
Table 1–3. Only one <DriverList> can be defined in the system.

1.2.2.3 Filters
The <FilterList> section lists all of the filters available to the Oracle Sensor Edge 
Server. Each filter is defined within <Filter>. 

1.2.3 The Current Dispatcher Method for the Oracle Sensor Edge Server
<CurrentDispatcher> defines which dispatcher the Oracle Sensor Edge Server 
uses as well as the dispatcher’s parameters. This is the only instance object that is not 
defined in the <DeviceGroup> section (described in Section 1.2.4). An Oracle Sensor 
Edge Server can use only one dispatcher at a time. Even if you have only one 
dispatcher defined within <DispatcherList>, the Oracle Sensor Edge Server can 
use it only if it is defined within the <CurrentDispatcher> element. After you 
assign a dispatcher as current, you must stop and then start the Oracle Sensor Edge 
Server. For more information setting the current dispatcher method in 
edgeserver.xml, refer to Section 1.4.1. For information on starting and stopping the 
Oracle Sensor Edge Server, refer to Section 1.3. 

1.2.4 Filters, Dispatchers and Devices Used by the Oracle Sensor Edge Server
Device groups are similar to the root or top-level directories of a file system. Because 
all devices (the instances of drivers) and filter instances must be part of a device group, 
you must create one or many device groups before you can connect devices and set up 
filters. You can group devices in terms of management if you want to treat them as a 
logical unit to manage, or you can group them by the type of filtering that they 
perform. For example, if you group devices by cross-reader filtering, then you create a 
group of related devices and then attach filters to that group.

The <DeviceGroups> section of the configuration file defines all the device groups in 
the system. All of the instances of devices and filters are defined within this element. 
The <DeviceGroups> element contains an array of <DeviceGroup> elements. Each 
<DeviceGroup> tag contains the following:

■ <Device>

One of many <Device> elements that can be defined in a device group. Each 
<Device> defines a device instance.

■ <EventCollectWaitTime>

The interval for the group to pull events out of the filtered window of events, in 
milliseconds.

■ <FilterInsts>

Defines the list of group filter instances

■ <IsDefault>

Set to false for all user groups



Overview of the Oracle Sensor Edge Server Configuration File

1-8 Oracle Sensor Edge Server Administrator’s Guide

■ <Name>

The name of the device group

For more information on defining devices, refer to Section 1.5. For more information 
on creating filter instances, refer to Section 3.3.1.

1.2.4.1 Setting the Parameters for Instances
Instance configurations include:

Instance Details
The name of the instance.

Instance Type
The type of the instance (device,  filter instance, or current dispatcher) as well as a 
reference to the declaration of the component in the template section of 
edgeserver.xml. In Example 1–2, the <Extension> tag for the Itermec Device has 
the reference attribute set to 35  and refers to <Driver id="35">, the 
IntermecDevice driver defined in the <DriverList> element of edgeserver.xml.

Example 1–2 Extension Reference to a Driver

<Name>Intermec Device</Name>
<DriverName>IntermecDevice</DriverName>   
<Extension Reference="35">/

Parameter Configurations
The parameters required by the instance. These parameters must also point to the 
declaration of the parameters for the component defined in the template section of 
edgeserver.xml. 

The tag <ParameterInsts>, defines the parameters for an instance. The individual 
parameters are defined with the tag, <ParameterInst> (described in Example 1–3). 

<ParameterInst> requires the following elements:

■ <Name>

The name of the parameter. The value must match the name attribute of the 
corresponding <Parameter> of the extension.

■ <ParameterMetaData>

The reference attribute must be set to the id of the corresponding parameter in 
the extension (which is defined within the <DispatcherList>, <DriverList>, 
or <FilterList> elements.) 

■ <Value>

The value for the parameter for this instance.  

Example 1–3 The <ParameterInst> Element

<ParameterInst id="79">
        <Name>password</Name>
        <ParameterMetaData reference="8"/>
        <Value>oracle</Value>
</ParameterInst>



Starting and Stopping the Oracle Sensor Edge Server

Configuring the Oracle Sensor Edge Server 1-9

1.3 Starting and Stopping the Oracle Sensor Edge Server
The Oracle Sensor Edge Server starts by default when you start the Oracle Application 
Server Containers for J2EE instance (OC4J instance) and stops once you have stopped 
the OC4J instance. You can also start the Oracle Edge Sensor Server by running the 
runSensorEdgeServer.bat or runSensorEdgeServer.sh commands. If you 
modify the configuration file, then you must stop and restart the Oracle Sensor Edge 
Server. For information on starting and stopping the Oracle Sensor Edge Server after 
adding extensions, refer to Section 4.3.

1.3.1 Starting the Oracle Sensor Edge Server by Starting an OC4J Instance
To start the OC4J instance from a command line: 

1. Start a command shell (on Windows, for example, use cmd.exe).

2. Navigate to ORACLE_HOME/j2ee/home.

3. Execute java -jar oc4j.jar to start the OC4J instance.

A message similar to the one illustrated in Example 1–4 displays if the Oracle Sensor 
Edge Server has been installed properly.

Example 1–4 Confirmation Message

04/11/17 20:36:07 Extension upload monitoring is not enabled...
04/11/17 20:36:07 EdgeServer: finished initialization
04/11/17 20:36:07 Oracle Application Server Containers for J2EE 10g (10.1.2.0.0) 
initialized

1.3.2 Stopping Oracle Sensor Edge Server by Stopping the OC4J Instance
You can stop the Oracle Sensor Edge Server by using the OC4J administrative tools or 
you stop the OC4J instance itself from the command line. In either case, the Oracle 
Sensor Edge Server is notified and shuts down gracefully. To stop the OC4J instance 
from the command-line, send a kill signal to the OC4J instance. For example, on 
Windows, click Ctrl+C to kill the instance.

1.3.3 Starting the Oracle Edge Sensor Server From the Command Line
In addition to starting the Oracle Sensor Edge Server by starting an OC4J instance, you 
can also start the Oracle Sensor Edge Server by running the following:

On Windows:

ORACLE_HOME\edge\runSensorEdgeServer.bat 

On UNIX:

ORACLE_HOME/edge/runSensorEdgeServer.sh

If you do not provide the argument specifying the ORACLE_HOME, then the system 
prompts you with the following message:

Note:  You must install JDK 1.4. or higher to run the Oracle Sensor 
Edge Server. 

Tip: Refer to the Containers for J2EE User’s Guide for information on 
other methods of starting or stopping an OC4J instance.



Configuring the Dispatchers for an Oracle Sensor Edge Server

1-10 Oracle Sensor Edge Server Administrator’s Guide

Must provide the  for this Sensor Edge Server.Usage: 
runSensorEdgeServer.bat ORACLE_HOMEORACLE_HOME

If you provided the ORACLE_HOME argument, then a message simular to the one 
described in Example 1–5 appears.

Example 1–5 Confirmation Message

04/11/17 20:36:07 Extension upload monitoring is not enabled...
04/11/17 20:36:07 EdgeServer: finished initialization
04/11/17 20:36:07 Oracle Application Server Containers for J2EE 10g (10.1.2.0.0) 
initialized

1.4 Configuring the Dispatchers for an Oracle Sensor Edge Server 
The <DispatcherList> element of the configuration file (described in Section 1.2.2) 
defines the dispatchers that have been uploaded to the Oracle Sensor Edge Server. For 
the Oracle Sensor Edge Server to use a dispatcher, you must create a dispatcher, an 
instance of an available dispatcher, by defining the <CurrentDispatcher> element 
(described in Section 1.4.1). An Oracle Sensor Edge Server can use only one dispatcher. 
By defining the elements within <CurrentDispatcher> you can direct the Oracle 
Sensor Edge Server to send event messages using Oracle Streams, Oracle’s Java 
Message Service provider (OC4J JMS) remote Web Services or HTTP (to a client 
application). 

1.4.1 Setting the Current Dispatcher Used by the Oracle Sensor Edge Server
To set the current dispatcher for the Oracle Sensor Edge Server:

1. Select from among the dispatchers defined within <DispatcherList>.

2. In <CurrentDispatcher>, change the element content of <DispatcherName> 
to the name of the dispatcher, which could be any one of the following:

■ Streams Dispatcher (Section 1.4.1.1)

■ JMS Dispatcher (Section 1.4.1.2)

■ HTTP Dispatcher (Section 1.4.1.3.

■ Web Services (Section 1.4.1.4)

■ NullDispatcher (Section 1.4.1.5).

3. Compare the definition of <Dispatcher> within <DispatcherList> to ensure 
that each <ParameterInst> within <CurrentDispatcher> corresponds with 
each <Parameter> defined within <Dispatcher>.

4. Save edgeserver.xml and restart the Oracle Sensor Edge Server. The server 
then loads the selected dispatcher upon startup.

Example 1–6 illustrates configuring the <CurrentDispatcher> elements for the 
Streams dispatcher.

Example 1–6 Configuring <CurrentDispatcher> in edgeserver.xml

<CurrentDispatcher id="76">
   <DispatcherName>StreamsDispatcher</DispatcherName>
       <Extension class="Dispatcher" reference="5"/>
       <Name>StreamsDispatcher</Name>
       <NeedReload>false</NeedReload>
   <ParameterInsts id="77">



Configuring the Dispatchers for an Oracle Sensor Edge Server

Configuring the Oracle Sensor Edge Server 1-11

       <ParameterInst id="78">
          <Name>username</Name>
          <ParameterMetaData reference="7"/>
          <Value>edge</Value>
      </ParameterInst>
      <ParameterInst id="79">
         <Name>password</Name>
         <ParameterMetaData reference="8"/>
         <Value>oracle</Value>
      </ParameterInst>
      <ParameterInst id="80">
         <Name>url</Name>
         <ParameterMetaData reference="9"/>
         <Value>jdbc:oracle:thin:@(description=(address=(host=soclxs3db02)
                      (protocol=tcp)(port=9105))(connect_data=(sid=PRJ1)))</Value>
      </ParameterInst>
    </ParameterInsts>
 </CurrentDispatcher>

1.4.1.1 Configuring the Oracle Sensor Edge Server to Use Oracle Streams
Configuring the dispatcher as Oracle Streams and Advanced Queuing enables you to 
control how the dispatcher retrieves and distributes event messages. Unlike the OC4J 
JMS, Web Services, or HTTP dispatcher options, event messages dispatched using the 
Oracle Streams dispatcher do not have to be relayed directly to an entry point. The 
Oracle Streams dispatcher supports rule-based process and agent technologies. In 
addition, the Oracle Streams dispatcher only supports UTF-8 encoding.

Once the event messages are captured and placed into the staging queue, the event 
message data can be processed through the Rules Evaluation Job, which takes event 
messages from the staging queue and then compares them to the Oracle Sensor Edge 
Server rule set. Each rule has an action, which is executed if the rule applies. These 
actions include a PL/SQL callback for propagating the event message to other queues 
which could then be consumed by other applications. For more informationon Oracle 
Sensor Edge Server Rule Set, refer to the Oracle Application Server Wireless Developer’s 
Guide

Event messages are data that is deposited to a staging area (an internal queue). This 
data, in turn, can be aggregated in different ways for different client devices and 
applications (the consumers of the event messages). Using Oracle Streams as the 
dispatcher, the Data and Event layer of the database, not the Oracle Sensor Edge 
Server or applications, determines what an event is and when it is generated. The Data 
and Event layer provides a rule-based process that determines the appropriate event 
message for each client device or application.

In addition to the these rule-based actions, the Rule Evaluation Job invokes 
applications by calling the Sensor Data Hub (SDH), which receives sensor data from 
the Oracle Sensor Edge Server or from other sources. The SDH includes the  Sensor 
Data Archive,  a set of archive tables that store all of the filtered sensor events in the 
system.

Tips:

■ Because Oracle Streams enables the propagation and management 
of data, transactions, and events in a data stream on one -- or 
across many -- databases, this dispatcher option provides the 
greatest flexibility of the seeded dispatcher options. 

■ The Oracle Streams dispatcher requires JDK 1.4.x.



Configuring the Dispatchers for an Oracle Sensor Edge Server

1-12 Oracle Sensor Edge Server Administrator’s Guide

To configure the Streams dispatcher:

1. Within <CurrentDispatcher>, change the element content of 
<DispatcherName> to <StreamsDispatcher>. 

2. Compare the attributes defined for the following connection information for the 
Streams staging area in the <ParameterInst> elements to those defined in the 
<Parameter> elements for the Streams Dispatcher:

■ url

The JDBC connection string to the database where the staging area resides. By 
default, this value is set to the OracleAS infrastructure database. Enter the 
URL to an application database providing optimal access and archiving of 
events and observations. The URL depends upon the driver type. For 
example, for a thin driver, enter

jdbc:oracle:thin@(description=(address=(host=<hostname>)<p
rotocol=tcp)(port=<port>))(connect_data=(sid=<sid>)))

where <hostname> is the host name or IP of the database server, <port> is 
the port number for the listener (1521, by default) and <sid> is the service id 
of the instance. 

■ username

The name of the user of the database where the staging area resides.

■ password

The password to the user of the database where the staging area resides.

3. Save the edgeserver.xml and restart the Oracle Sensor Edge Server. The server 
loads the Oracle Streams dispatcher upon startup.

1.4.1.1.1 Post-Installation Steps for the Streams Dispatcher  

If you configure database streams as the event dispatcher method, you must perform 
the following post-installation steps: 

1. Set up a database instance to run the Oracle Streams disptacher. This database 
instance holds the staging area for the Oracle Streams dispatcher, as well as its 
rules, queues, Sensor Data Archive (SDH), and other related data. You can use 
either the Standard or Enterprise Edition of the database as long as it is Version 9.2 
or higher. Be sure to note the connect string and password. After you set up the 
database, you must set up the schema used by the Oracle Streams dispatcher.

2. Enter the database password.

3. Navigate to the SQL directory (such as ORACLE_HOME/edge/sql).

4. Use SQL*Plus to connect to the database (using the system account).

Note: Applications requiring raw, unfiltered event data that has not 
been processed by the rules can connect to the staging area using 
either AQ notification or JMS. 

Note: if the database instance is on a separate box, you must edit the 
ORACLE_HOME/network/admin/tnsnames.ora file on the 
machine running the Oracle Sensor Edge Server or add the GDN to it.



Configuring the Dispatchers for an Oracle Sensor Edge Server

Configuring the Oracle Sensor Edge Server 1-13

5. Run create_edg_user.sql to create a user permission.  

6. Enter a password for the user. You can enter any password. Be sure to note the 
password.

7. Disconnect as system.

8. Reconnect as the user of the Oracle Sensor Edge Server using the password that 
you entered in Step 6.

9. Run edg_create_streams.sql.

10. Install the Sensor Data Hub (SDH) and then run edg_create_sdh.sql(as the 
EDGE user). The database includes a user called EDGE after you execute these 
scripts. All of the required schemas and data are created under that user. 
Background jobs start automatically.

1.4.1.2 Configuring the Dispatcher to Send Messages Through OC4J JMS
OC4J JMS (OracleAS Containers for J2EE and Java Message Service), which is 
compatible with J2EE 1.3, is a Java Message Service based on Advanced Queuing (AQ) 
that provides guaranteed message delivery with auditing. 

To enable event message dispatching using OC4J JMS, you must configure a JMS topic 
queue called edgeTopic to which the dispatcher posts new event messages. You must 
also specify a topic connection factory, edgeEventsConnectionFactory. To enable 
the Oracle Sensor Edge Server components to access this topic, you must configure the 
jms.xml file under the OC4J container. For more information on configuring the JMS 
queue, refer to Oracle Application Server Containers for J2EE Services Guide. 

1.4.1.2.1 Configuring jms.xml Under the OC4J Container  To configure the jms.xml file 
under the OC4J container:

1. Note all of the OC4J JMS Server information, such as hostname, JMS username 
(typically admin), JMS password, and the RMI port information.

2. Navigate to ORACLE_HOME/j2ee/home/config.

3. Edit the jms.xml file by adding the following lines:

<topic-connection-factory

         host="<hostname>"

         location="jms/TopicConnectionFactory"

         password="<password>"

         port="<jmsport>"

         username="admin" />

Note: In the current release, the OC4J JMS dispatcher configuration 
(that is, the JMS dispatcher) cannot send messages back to sensor 
devices. Only Oracle Streams supports this functionality. 

Note: Upon startup, the JMS dispatcher looks for the edgeTopic 
queue using the JNDI (Java Naming Directory Interface) service 
implemented by the OC4J container. If the dispatcher cannot locate 
edgeTopic, it returns an error and then exits.



Configuring the Dispatchers for an Oracle Sensor Edge Server

1-14 Oracle Sensor Edge Server Administrator’s Guide

<topic name="jms/edgeTopic" location="jms/edgeTopic">

         <description>The edge server event 
topic</description>

</topic>

4. Save jms.xml and then close it. 

5. Start the Oracle Sensor Edge Server using the the userThreads option.  For 
example: java -jar oc4j.jar -userThreads

1.4.1.2.2 Creating the JMS Dispatcher  To create a JMS dispatcher that enables the Oracle 
Sensor Edge Server to send event messages to the JMS topic queue, edgeTopic: 

1. Within <CurrentDispatcher>, change the element content of 
<DispatcherName> to JMS Dispatcher.

2. Compare the <ParameterInst> elements with the <Parameter> attributes for 
the following:

■ provider

The URI of the OC4J instance where the edgeTopic queue is stored. This URI 
is used internally by OC4J ORMI to connect to the server. For example, enter 
ormi://oc4j.us.oracle.com. 

■ username

The user name of the administrator of the OC4J instance where the 
edgeTopic queue is stored.

■ password

The password used by the administrator of the OC4J instance where the 
edgeTopic queue is stored. 

■ ack

Set the acknowledgement mode to CLIENT_ACKNOWLEDGE or AUTO_
ACKNOWLEDGE. The default mode is AUTO_ACKNOWLEDGE. 

3. Save edgeserver.xml and restart the Oracle Sensor Edge Server. The server 
then loads the JMS Dispatcher upon startup.

1.4.1.3 Configuring the Dispatcher to Send Event Messages to a Web Service
A client device or application can register a SOAP call which the Oracle Sensor Edge 
Server invokes when a new message must be delivered. 

To configure the Web Service dispatcher to distribute event messages through Web 
Services

1. Within <CurrentDispatcher>, change the element content of 
<DispatcherName> to WebService Dispatcher.

2. Compare the url attribute defined in <Parameter> elements for the WebService 
dispatcher with that defined in the <ParameterInst> element for the 
<CurrentDispatcher>. The url attribute must point to the EndPoint (port) of 
the Web Service. For example, enter 
http://localhost:8888/wsdl/mytest.wsdl. 

The WSDL (Web Service Definition Language) document must contain the 
portType of EdgeClientCallback and the call, processEvent, as its child 
element. For more information about the message parameters of the WSDL and a 



Connecting Readers and Sensors

Configuring the Oracle Sensor Edge Server 1-15

sample of the WSDL document used for generating the Web Service stub, refer to 
the Oracle Application Server Wireless Developer’s Guide.

Save edgeserver.xml and restart the Oracle Sensor Edge Server. The Oracle 
Sensor Edge Server then loads the WebService dispatcher upon startup.

1.4.1.4 Configuring the Dispatcher to Send Event Messages Through HTTP
Configuring the dispatcher to route events to clients using HTTP 1.0 results in the 
Oracle Sensor Edge Server posting each event message to the client separately. Because 
the Oracle Sensor Edge Server performs these posts sequentially, if one post is blocked, 
then all following posts are also blocked.   

To set the HTTP dispatcher:

1. Within <CurrentDispatcher>, change the element content of 
<DispatcherName> to HTTP Dispatcher.

2. Compare the url attribute defined in <Parameter> elements for the HTTP 
Dispatcher with that defined in the <ParameterInst> element for the 
<CurrentDispatcher>.The value for this attribute is the URL of the servlet, 
JSP, or CGI to which the Oracle Sensor Edge Server posts event messages 
whenever they are dispatched. To configure this dispatcher, enter the URL in the 
following format:

http://hostname:port/serverPath

If the Oracle Sensor Edge Server uses the HTTP dispatcher, then the client 
interface must tell the Oracle Sensor Edge Server how (and when) to call it. 

3. Save edgeserver.xml and restart the Oracle Sensor Edge Server. The server 
then loads the HTTP Dispatcher upon startup. For more information on the 
configuring the dispatcher to route events through HTTP, refer to the tutorial, 
Writing Sensor Based Applications Using JSP, on the Oracle Technology Network 
(http:/www.oracle.com/technology/). 

Refer to the Oracle Application Server Wireless Developer’s Guide for a description of 
the parameters posted by the Oracle Sensor Edge Server to the client application.

1.4.1.5 Using the Nulldispatcher
The Nulldispatcher discards all of the events passed to it. These events are not saved 
or spooled. Use this dispatcher only if you want to prevent the Oracle Sensor Edge 
Server from dispatching events. 

To set the Nulldispatcher:

1. Within <CurrentDispatcher>, change the element content of 
<DispatcherName> to Nulldispatcher.

2. Save edgeserver.xml and restart the Oracle Sensor Edge Server. The Oracle 
Sensor Edge Server then loads the HTTP dispatcher upon startup. 

1.5 Connecting Readers and Sensors
To enable the Oracle Edge Sensor Server to use a driver for a reader or sensor, you 
must edit the <DeviceGroups> section of edgeserver.xml to create a device, an 
instance of the driver. 



Connecting Readers and Sensors

1-16 Oracle Sensor Edge Server Administrator’s Guide

1.5.1 Creating a Device
To create a device:

1. Locate the <DeviceGroup> to which to add the device. If needed, add a new 
<DeviceGroup> element. For more information on the children of the 
<DeviceGroup>, refer to Section 1.2.4.

2. Add a new <Device> section. (You can copy a <Device> section from an existing 
device to use as a template.) 

3. Set the name of the device within the <Name> tag.

4. Set the element definition in the <DriverName> tag to the name of a driver listed 
in the <DriverList> section.

5. Within the <Extension> element, set the value of the reference attribute to 
that of the driver.

6. Set the <ParameterInsts> to match the attribute values set for the driver’s 
<Parameters> element.

7. If needed, add a filter instance to this device by defining the <FilterInsts> 
section.

8. Save edgeserver.xml and restart the Oracle Sensor Edge Server to instantiate 
the device. 

Example 1–7 illustrates configuring the Oracle Edge Sensor Server to use a device 
called stack 1, an instance of a driver called Edge Device Driver. 

Example 1–7 Configuring a Device

<DeviceGroups>
    <DeviceGroup>
      <DeviceList>
        <Device>
          <Name>stack1</Name>
          <DriverName>Edge Device Driver</DriverName>
          <Extension reference="49"/>
          <ParameterInsts>
            <ParameterInst>
              <Name>PortNo</Name>
              <ParameterMetaData reference="51"/>
              <Value>7878</Value>
            </ParameterInst>
            <ParameterInst>
              <Name>IPAddress</Name>
              <ParameterMetaData reference="52"/>
              <Value>152.69.156.193</Value>
            </ParameterInst>
          </ParameterInsts>
          <FilterInsts/>
        </Device>
   </DeviceList>
      <EventCollectWaitTime>500</EventCollectWaitTime>
      <FilterInsts id="108"/>
      <IsDefault>true</IsDefault>
      <IsSystem>true</IsSystem>
      <Name>Unassigned</Name>
    </DeviceGroup>
  </DeviceGroups>



Enabling Devices to Filter Events

Configuring the Oracle Sensor Edge Server 1-17

1.6 Enabling Devices to Filter Events
A filter instance is an instantiated object of a filter. Whenever a filter is applied to a 
device (or to a device group), a filter instance is created, enabling the device or device 
group to use the filter. Filter instances can be attached to either a specific device or to a 
device group. Some filters are written as group-level filters and can only be attached to 
a device group. Likewise, some filters are written only for device-level filtering and 
only function if they are attached to a specific device. Fore more information on 
creating filters and configuring edgeserver.xml to filter events at both the device 
group and device level, refer to Section 3.3.

1.6.1 Creating a Filter Instance
To create a filter instance:

1. Within the <DeviceGroups>, locate the <Device> to which to add the filter 
instance.

2. Add a <FilterInst> element to the device’s <FilterInsts> section.

3. For the <Extension> element, specify the name of the filter for the class 
attribute, and the id of the filter for the reference attribute.

4. Set the <ParameterInsts> to match the attribute values set for the filter’s 
<Parameters> element.

5. Save edgeserver.xml and then restart the Oracle Sensor Edge Server.

Example 1–8 illustrates configuring a device to use a filter instance by defining the 
<FilterInsts> element. In this example, the PalletPassFilter has a <Sequence> 
value set a 1. The number specified within the <Sequence> tag determines the 
order in which filter instances are applied. For more information or setting the 
order of the filter instances, refer to Section 3.3.1.1. 

Example 1–8 Configuring a Filter Instance for a Device

<FilterInsts>
      <FilterInst>
          <Sequence>1</Sequence>
          <FilterName>PalletPassFilter</FilterName>
          <Extension class="Filter" reference="50"/>
          <ParameterInsts>
            <ParameterInst>
              <ParameterMetaData reference="52"/>
              <Value>11</Value>
              <Name>ExitEventThresholdTime</Name>
            </ParameterInst>
            <ParameterInst>
              <ParameterMetaData reference="53"/>
              <Value>12</Value>
              <Name>EventCollectControlTime</Name>
            </ParameterInst>
          </ParameterInsts>
          <NeedReload>false</NeedReload>
          <Name>PalletPassFilter</Name>
        </FilterInst>
 </FilterInsts>



Enabling Devices to Filter Events

1-18 Oracle Sensor Edge Server Administrator’s Guide



Managing Drivers 2-1

2
Managing Drivers

This chapter, through the following sections, describes how to manage and configure 
the drivers for the Oracle Sensor Edge Server. 

■ Section 2.1, "Managing Drivers"

■ Section 2.2, "Configuring the Pre-Seeded Drivers"

2.1 Managing Drivers
Drivers read events. Because a driver object is not executed, the Oracle Sensor Edge 
Server can only use a driver’s functionality if you create an instance of a driver called a 
device. For more information on creating devices, refer to Section 1.5.1.   

The <DriverList> element of edgesever.xml (illustrated in Example 2–1) lists all 
of the driver that have been uploaded to (and can be used by) the Oracle Sensor Edge 
Server.

Example 2–1 The <DriverList> Element of edgeserver.xml

<DriverList id="23">
    <Driver id="24">
      <ClassName>oracle.edge.impl.driver.EdgeSimulator</ClassName>
      <Description>This is internal simulator</Description>
      <Name>Edge Simulator Driver</Name>
      <Parameters id="25">
        <Parameter id="26" name="FileName"
         defaultValue="..\..\edge\config\Simulation.xml" 
         description="Simulator’s configuration file" encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="27">
      <ClassName>oracle.edge.impl.driver.AlienReader</ClassName>
      <Description>This is an alien device</Description>
      <Name>AlienDevice</Name>
      <Parameters id="28">
        <Parameter id="29" name="PortNo" defaultValue="23" 
                           description="Alien reader’s open port number that edge
                           device listens to" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="30" name="IPAddress" defaultValue="144.25.171.23" 



Managing Drivers

2-2 Oracle Sensor Edge Server Administrator’s Guide

                           description="Alien reader’s IP address"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="31" name="UserName" defaultValue="alien"
                           description="Alien reader’s access user"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="32" name="Password" defaultValue="password" 
                           description="Alien reader’s access password"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="33" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each
                           antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="34" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="35">
      <ClassName>oracle.edge.impl.driver.IntermecReader</ClassName>
      <Description>This is Intermec reader: IntelliTag 500</Description>
      <Name>IntermecDevice</Name>
      <Parameters id="36">
                              
        <Parameter id="37" name="PortNo" defaultValue="6543" 
                           description="Reader’s open port number that edge device
                           listens to" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
                              
        <Parameter id="38" name="IPAddress" defaultValue="192.168.0.52" 
                           description="Reader’s IP address" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="39" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each
                           antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="40" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="41">



Configuring the Pre-Seeded Drivers

Managing Drivers 2-3

      <ClassName>oracle.edge.impl.driver.EdgeEventDevice</ClassName>
      <Description>This is EMS reader.</Description>
      <Name>EMSDevice</Name>
      <Parameters id="42">
        <Parameter id="43" name="PortNo" defaultValue="6666" 
                           description="Reader’s open port number that edge device
                           listens to"
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="44" name="IPAddress" defaultValue="144.25.168.131" 
                           description="Reader’s IP address" encrypted="false" 
<valueType type="string"/>
        </Parameter>
        <Parameter id="45" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each 
antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="46" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="47">
      <ClassName>oracle.edge.impl.driver.EdgeDevice</ClassName>
      <Description>Edge Device Driver</Description>
      <Name>Edge Device Driver</Name>
      <Parameters id="48">
        <Parameter id="49" name="PortNo" defaultValue="23" 
                           description="Edge device’s open port number that edge
                           device listens to" 
                           displayName="Port Number" encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="50" name="IPAddress" defaultValue="" description="Edge
                           device’s IP address" 
                           displayName="IP Address" encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>

2.2 Configuring the Pre-Seeded Drivers
The Oracle Sensor Edge Server provides the following drivers out of the box:

■ EdgeSimulator (Section 2.2.1)

– Version: 10.1.2

■ Alien (Section 2.2.2)

– Model: 9RE-001

– SDK Version: Alien SDK Version 2.1.0



Configuring the Pre-Seeded Drivers

2-4 Oracle Sensor Edge Server Administrator’s Guide

■ Intermec (Section 2.2.3)

– Models: Penn Reader, Delaware Reader, PCMCIA Reader

– SDK Version: COM API Version 2.0

■ Patlite (Section 2.2.4)

– Model: New PHE-3FB PC-Controlled Light

– Protocol: PHE-3FB System Control Protocol

2.2.1 Configuring the EdgeSimulator
The EdgeSimulator (the Edge Simulator Driver) generates events to simulate a real 
device. In general, you use the EdgeSimulator to test configurations and deployment 
designs; however, you can also use it for internal functional testing to see how events 
are processed throughout the system. The EdgeSimulator acts the same as any driver, 
except that instead of connecting to a physical device to read events, it takes 
parameters from an input file (such as Example 2–5) as instructions on when to 
generate fake events. This begins as soon as the device starts (which, in turn, starts 
when the Oracle Sensor Edge Server starts).

2.2.1.1 Defining the Parameters of the EdgeSimulator
To configure the EdgeSimulator, define the <Parameter> tag of the <Driver> 
element by entering the name of the input file, which is an XML file describing the 
configuration for the EdgeSimulator. In Example 2–2, the defaultValue attribute for 
this file in the <Parameter> tag is ..\..\edge\config\Simulation.xml. 

The file resides at:

ORACLE_HOME/edge/config

Example 2–2 The Driver Definition for the EdgeSimulator in edgeserver.xml

<DriverList id="23">
    <Driver id="24">
      <ClassName>oracle.edge.impl.driver.EdgeSimulator</ClassName>
      <Description>This is the internal simulator</Description>
      <Name>Edge Simulator Driver</Name>
      <Parameters id="25">
        <Parameter id="26" name="FileName"
         defaultValue="..\..\edge\config\Simulation.xml" description="Simulator’s 
         configuration file" encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>

The input file tells the simulator how to generate the fake events using the following 
instructions:

■ <EventList>

The <EventList> element defines a loop. This element is also the main block 
that groups all of the other instructions together. <EventList> has one attribute, 
repeat, which must be present to control looping. The value for repeat must be 
a decimal number from 0 to LONG_MAX. To generate events only once, set the 



Configuring the Pre-Seeded Drivers

Managing Drivers 2-5

repeat attribute to 1. Setting repeat to n results in all instructions looping n 
times. Setting repeat to 0 disables the block and causes the parser to skip it.

Example 2–3 illustrates the syntax for generating two events, pausing, generating 
two more events, and then looping 20 times:

Example 2–3 Defining a Loop

<EventList repeat=’20’>
<Event> … </Event>
<Event> … </Event>
<EventInterval>…</ EventInterval>
<Event> … </Event>
<Event> … </Event>
</EventList>

You can include any number of instructions inside the <EventList> element. 
The order in which they are defined is the order in which they are executed.

■ <EventInterval>

The EventInterval element instructs the Simulator to pause for a certain period 
of time before proceeding. This is usually used to throttle the data rate. A decimal 
number defines the time period, in milliseconds, to wait for before executing the 
next instruction. Example 2–4 illustrates instructions for the Simulator to wait for 
half a second between each event and three seconds between loops:

Example 2–4 EventInterval

<EventList repeat=’20’>
   <Event> … </Event>
   <EventInterval>500</ EventInterval>
   <Event> … </Event>
   <EventInterval>500</ EventInterval>
   <Event> … </Event>
   <EventInterval>3000</ EventInterval>
</EventList>

■ <Event>

The <Event> element tells the Simulator to send an event. The child elements 
(described in Table 2–1) control the event’s fields.

Table 2–1 Event Elements for the Simulator

Event Field Value

<type> The number value that corresponds to the type of 
event. Table 1–1 describes the values of the <type> 
field. The Oracle Application Server Wireless Developer’s 
Guide describes the values for the <type> field in 
further detail.

<subtype> The number value for the subtype. For example, the 
subtype value in Example 2–5 corresponds with a 
General Instruction Event, which is an event sent 
by application or a device to tell a specific device 
to perform an operation. In Example 2–5, the value 
of 1 turns on the device. Refer to the Oracle 
Application Server Wireless Developer’s Guide for more 
information on Instruction Events.



Configuring the Pre-Seeded Drivers

2-6 Oracle Sensor Edge Server Administrator’s Guide

Example 2–5 illustrates an input file which includes two groups of events: the first 
one runs only once and the second runs 20 times.

Example 2–5 Simulator Input File

<EdgeEventSimulation>
      <EventList repeat=’1’>
         <Event>
            <type>100</type>
            <subtype>1</subtype>
            <id>03ffff045679</id>
            <data>No Data</data>
            <deviceName>My Device</deviceName>
        </Event>
   <EventInterval>500</ EventInterval>
      <Event>
         <type>100</type>
            <subtype>1</subtype>
            <id>03ffff045680</id>
            <data>No Data</data>
            <deviceName>My Device</deviceName>
     </Event>
          <EventInterval>3000</ EventInterval>
   </EventList>
   <EventList repeat=’20’>
      <Event>
         <type>100</type>
         <subtype>1</subtype>
         <id>04ffff045679</id>
         <data>No Data</data>
         <deviceName>My Device</deviceName>
    </Event>
         <EventInterval>500</ EventInterval>
     <Event>
         <type>100</type>
          <subtype>1</subtype>
          <id>04ffff045680</id>
          <data>No Data</data>
          <deviceName>My Device</deviceName>
     </Event>
   </EventList>
</EdgeEventSimulation>

<id> The text value of this field identifies a tag (that is, 
a read or target) to an event instruction. In 
Example 2–5, one of the <id> values for a tag is 
03ffff045679.

<data> The tag data. This is an optional field

<deviceName> The name of the device or application that 
generates the event. The <deviceName> enables the 
Simulator to appear as if it is another device when 
generating events.

Table 2–1 (Cont.) Event Elements for the Simulator

Event Field Value



Configuring the Pre-Seeded Drivers

Managing Drivers 2-7

Although the format of the Event type is fixed, you can extend the Event type by 
mapping its fields to different meanings depending on the type of event.

2.2.1.2 Connecting the Simulator to the Oracle Sensor Edge Server
To connect the Simulator to the Oracle Sensor Edge Server, create a device from the 
driver by defining the <Name>. 

To create a device for the Simulator driver:

1. Locate the <DeviceGroup> to which to add the Simulator device. If needed, add 
a new <DeviceGroup> element. For more information on the children of the 
<DeviceGroup>, refer to Section 1.2.4.

2. Add a new <Device> section for the Simulator. (You can copy a <Device> 
section from an existing device to use as a template. 

3. Set the name of the device within the <Name> tag.

4. Set the element definition in the <DriverName> tag to Edge Simulator 
Driver.

5. Within the <Extension> element, set the value of the reference attribute to 
that of the Edge Simulator Driver.

6. Within the <ParameterInsts> element, set the location of the simulator’s input 
XML file.

7. Save edgeserver.xml and restart the Oracle Sensor Edge Server to instantiate 
the device.

2.2.2 Configuring the AlienDevice Driver
The AlienDevice driver, which is defined within the <DriverList> element of 
edgeserver.xml (Example 2–6) supports all of the Alien Technology RFID readers. 
The ALR series of readers has been tested for this release of the Oracle Sensor Edge 
Server. For more information on the ALR series, refer to:

http://www.alientechnology.com/

Configuring the AlienDevice driver includes:

■ Finding the IP Address of the Alien RFID reader using the discoverer included in 
the RFID Gateway demo software provided by Alien Technology (Section 2.2.2.1).

■ Connecting the Alien RFID reader to a Web browser (Section 2.2.2.2). 

■ Connecting the Alien RFID reader to the Oracle Edge Server by creating a device 
using the AlienDevice driver (Section 2.2.2.3).

Example 2–6 The Alien Device Driver

<Driver id="27">
      <ClassName>oracle.edge.impl.driver.AlienReader</ClassName>
      <Description>This is an alien device</Description>
      <Name>AlienDevice</Name>
      <Parameters id="28">
        <Parameter id="29" name="PortNo" defaultValue="23" 
                           description="Alien reader’s open port number that edge  
                           device listens to" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="30" name="IPAddress" defaultValue="127.0.0.1" 



Configuring the Pre-Seeded Drivers

2-8 Oracle Sensor Edge Server Administrator’s Guide

                           description="Alien reader’s IP address"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="31" name="UserName" defaultValue="alien" description="Alien
                           reader’s access user" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="32" name="Password" defaultValue="password" 
                           description="Alien reader’s access password"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="33" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each
                           antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="34" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>

2.2.2.1 Finding the IP Address of the Alien RFID Reader
By default, the Alien RFID reader uses DHCP (Dynamic Host Configuration Protocol) 
to get its IP address upon connection to the network. To discover the IP address 
without a DCHP server, use the RFID Gateway Demo software as follows: 

1. Install the RFID Gateway Demo software.

1. Run the setup.exe (on the Alien Technology CD).

2. Select Install RFID Gateway Demo Software and follow the installation 
instructions. A folder called Alien RFID Gateway appears in the Programs folder 
of the Start menu. 

2. When the RFID Gateway Demo Software is installed, use it to discover the IP 
address as follows:

1. Start the Alien RFID software by selecting Alien RFID Gateway (located in 
the Alien RFID Gateway folder of the Start menu). Upon startup, the Alien 
RFID Gateway software scans the serial ports of the computer and the 
network and displays a list of the Alien RFID readers and their IP addresses in 
the window that appears. For example, a reader might be listed as Alien RFID 
Reader@144.25.171.209.

2. Get the IP address of the Alien RFID Reader from the list. Using this address, 
you can configure the Alien RFID reader to the Web browser.

2.2.2.2 Connecting the Alien RFID Reader to a Web Browser
Because the Alien reader has a built-in Web Server, you can connect it to a Web 
browser by pointing the browser to the IP address of the Alien device, such as 
http://144.25.171.209. When prompted, enter a user name and password. 



Configuring the Pre-Seeded Drivers

Managing Drivers 2-9

Because the default settings should be correct, you can then create a device from the 
RFID reader, which is an instance of the device. For more information on creating 
devices, see Section 1.5.

2.2.2.3 Creating a Device for the Alien RFID Reader
To connect the Alien RFID reader to the Oracle Sensor Edge Server,  you must create a  
device (that is, an instance of) the Alien RFID reader.  

To create a device for the Alien RFID reader:

1. Locate the <DeviceGroup> to which to add the Alien RFID reader’s device. If 
needed, add a new <DeviceGroup> element. For more information on the 
children of the <DeviceGroup>, refer to Section 1.2.4.

2. Add a new <Device> section for the Alien Device. (You can copy a <Device> 
section from an existing device to use as a template. 

3. Set the name of the device within the <Name> tag.

4. Enter AlienDevice as the element content for the <DriverName> tag.

5. Within the <Extension> element, set the value of the reference attribute to 
that of the AlienDevice driver.

6. Within the <ParameterInsts> element, create the following 
<ParameterInst> elements as described in Section 1.2.4.1. Table 2–2 describes 
the element content for the <ParameterInst> elements for an Alien Reader 
device.

Table 2–2 <ParameterInst> Elements for the Alien Reader Device

<Name> <ParameterMetaData> <Value>

IP Address Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
IPAddress attribute.

Enter the hostname or IP 
address of the machine 
running the Device 
Controller as its element 
content. If the machine 
runs on the same 
machine as the Oracle 
Sensor Edge Server, enter 
127.0.0.1

PortNo Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the Portno 
attribute.

Enter the port number 
used to communicate 
with the device (23 is the 
default).

Username Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
Username attribute.

Enter the access user of 
the Alien RFID reader.



Configuring the Pre-Seeded Drivers

2-10 Oracle Sensor Edge Server Administrator’s Guide

7. Save edgeserver.xml and restart the Oracle Sensor Edge Server to instantiate 
the device. 

2.2.3 Configuring the IntermecDevice Driver
The IntermecDevice driver, which is defined within the <DriverList> element of 
edgeserver.xml (Example 2–7), supports all of the RFID readers manufactured by 
Intermec, including the OEM Reader (Microwave, UHF), the PC Reader (PCMCIA), 
and the Fixed Reader (Serial or Ethernet). Other Intermec readers that support the 
Intellitag IDK also work with the IntermecDevice driver. For more information, refer 
to 

http://www.intermec.com

Example 2–7 The Driver Definition for the IntermecDevice Driver in edgeserver.xml 

</Driver>
    <Driver id="35">
      <ClassName>oracle.edge.impl.driver.IntermecReader</ClassName>
      <Description>This is Intermec reader: IntelliTag 500</Description>
      <Name>IntermecDevice</Name>
      <Parameters id="36">
         <Parameter id="37" name="PortNo" defaultValue="6666" 
                            description="Reader’s open port number that edge
                            device listens to" 
                            encrypted="false">
          <valueType type="int"/>
        </Parameter>
          <Parameter id="38" name="IPAddress" defaultValue="127.0.0.1" 
                             description="Reader’s IP address"
                             encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="39" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each
                           antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="40" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">

Password Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
password attribute.

Enter the password for 
the Alien RFID reader

AntennaSeqIDList Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
AntennaSeqIDList attribute

Enter a list of identifiers 
to identify each antenna.

AntennaMappedDeviceNameList Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
AntennaMappedDeviceNameList 
attribute

Enter a list of mapped 
device names associated 
with each antenna.

Table 2–2 (Cont.) <ParameterInst> Elements for the Alien Reader Device

<Name> <ParameterMetaData> <Value>



Configuring the Pre-Seeded Drivers

Managing Drivers 2-11

          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>

Requirements
The IntermecDevice requires the following components, which are bundled and 
shipped with the Intermec driver: 

■ IntelliTag IDK

The IntelliTag IDK (the IDK) is a set of Intermec-supported software libraries and 
tools. This library, which is the only supported method of communicating with 
Intermec devices, is supported only on the Windows 32 platform (that is, 
Windows 2000 and Windows XP). The IntelligTag IDK is available at the Oracle 
Technology Network (http://www.oracle.com/technology/)

■ Oracle Sensor Edge Server Device Controller

The Oracle Sensor Edge Server Device Controller (the Device Controller) 
communicates with the local IDK API and exposes a network protocol that enables 
the Oracle Sensor Edge Server to communicate with the IDK.

■ IntermecDevice Driver

The IntermecDevice driver is the counterpart to the Device Controller, as it 
communicates with the Device Controller to drive the underlying devices.

The Oracle Sensor Edge Server can run on the same server as the Device Controller 
and the IDK, or on a separate server. Because the Intermec hardware exposes a 
Windows 32- based API, you must run the Oracle Sensor Edge Server on a Windows 
box or dedicate another Windows machine to only the Device Controller and the IDK. 

Configuration Steps
Configuring the IntermecDevice driver involves the following tasks:

■ Installing the IDK (Section 2.2.3.1).

■ Registering Serial and PCMCIA readers (Section 2.2.3.2).

■ Configuring the Intermec readers (Section 2.2.3.3).

■ Using the Intermec tools to test the Intermec readers (Section 2.2.3.4).

■ Installing the Device Controller (Section 2.2.3.5).

■ Starting the Device Controller for the Intermec reader (Section 2.2.3.6).

■ Creating a device using the IntermecDevice driver to enable communication 
between the Oracle Sensor Edge Server and the Device Controller for the Intermec 
reader (Section 2.2.3.7). 

2.2.3.1 Installing the IntelliTag IDK
To install the IDK and tools:

1. Connect the RFID reader to either a serial port, the PCMCIA slot of a PC, or a 
network segment. Connect a serial reader with a null modem (2/3 swap) cable. 
For more information, refer to the Intermec documentation.



Configuring the Pre-Seeded Drivers

2-12 Oracle Sensor Edge Server Administrator’s Guide

2. Extract the content of the compressed file to a temporary directory, such as 
(c:\temp):ORACLE_HOME\edge\lib\IDK_Beta_4.0.1.tgz. (You can also 
download the latest version of the IDK from Intermec’s Web site)

3. Install the IDK by running the install at C:\temp\setup.exe.

4. At the installer’s first page, select Next.

5. In the Agreements page, read the license agreement and select Yes or No. Selecting 
No prevents you from proceeding.

6. On the next page, enter your name, the company name, and then select Anyone 
who uses this computer. Click Next.

7. Select a directory for the IDK. Use the default, if possible.

8. Select Typical for the setup type and then click Next.

9. Click Next to install the IDK and programs to the PC.

2.2.3.2 Registering the Serial and PCMCIA Readers
You must register devices for the Serial and PCMCIA readers. The following steps to 
register these devices to do not apply to Ethernet readers.

To register devices:

1. From the Start menu, select Intellitag IDK and then Device Registry Application.

2. Select the Register Readers tab. Be sure that the reader is connected.

3. Select an existing reader from the Select Reader drop-down list or enter the name of 
a new reader in the New Reader Name field and then click Register New Reader.

4. In the Port Name field, enter the name of the port that you use to connect to the 
reader.

Accept the default settings (unless you have changed the device).

2.2.3.3 Configuring Readers
Once you register a reader, you next configure it by editing the rfconfig.ini file. 
Open the rfconfig.ini file from the Start menu, select IntelliTag IDK and then 
rfconfig.ini. The file, which opens in Notepad is formatted as a standard Windows INI 
file. Each section of the file represents a new reader configuration, as illustrated by the 
[Reader_One] section in Example 2–8.

Example 2–8 Configuring rfconfig.ini

[Reader_One]
RFID_SWTT_FILE_NAME=C:\Program Files\Intermec\Intellitag IDK\swtt.ini
RFID_ATTR_TYPE=IT500 UAP Reader
IT500_PORT_TYPE=TCPIP
IT500_PORT_NUMBER=6543
IT500_CONNECT_TRIES=1
IT500_PORT_NAME=192.168.200.47
IT500_DEBUG_FILE_NAME="c:\IT500_Reader.log"
IT500_ANTENNA_TRIES=5
IT500_ANTENNAS=1 2 0 0 0 0 0 0
IT500_READ_TRIES=5
IT500_WRITE_TRIES=5
IT500_INTERR_DEBUG=0
IT500_READER_DEBUG=0
dll_name=C:\Program Files\Intermec\Intellitag IDK\it500.dll



Configuring the Pre-Seeded Drivers

Managing Drivers 2-13

IT500_IDENTIFY_TRIES=1
IT500_INITIALIZATION_TRIES=1
IT500_SIM_TAGS=5
IT500_IDENTIFY_READ_END_ADDR=17
IT500_HARDWARE_TYPE_CHECK=0
IT500_AUTOID_TIMEOUT=20

Although you can rename [Reader One] to any name, note this name for future 
reference. Modify (or verify) the following settings for the rfconfig.ini file:

■ IT500_PORT_TYPE

This parameter tells the API the type of connection to use, such as TCPIP for a 
network reader or serial or PCMCIA reader.

■ IT500_PORT_NAME

If it is a serial or PCMCIA reader, this parameter sets the name of the reader that 
you registered (see Section 2.2.3.2). For network readers, this is the hostname or IP 
address of the reader.

■ IT500_PORT_NUMBER

This parameter specifies the TCP/IP port used to connect to the reader. The 
default setting is 6543. This parameter should only be defined for a network 
reader.

■ IT500_ANTENNAS

This is a mask for the antennae that are active and connected to the reader. The 
first digit corresponds to the first antenna. For example, if you have Antennas 1 
and 3 connected to the reader and Antenna 1 is the first antenna, then set the 
parameter to IT500_ANTENNAS=1 0 3 0 0 0 0 0. For four antennae 
connected consecutively, set this parameter to T500_ANTENNAS=1 2 3 4 0 0 
0 0. 

Save the Notepad file and then close it after you complete the configuration.

2.2.3.4 Testing the Readers
To test the reader using Intermec tools:

1. From the Programs folder of the Start menu, click Intellitag IDK and then RF Tag 
Map.

2. Click Select to select a reader configuration. A dialog box appears listing the 
configurations defined in the rfconfig.ini file.

3. Select a reader configuration and then click Select. The Open button is activated. 

4. Click the Open button to connect to the device

5. If then reader is connected properly, then the buttons in the Tag Map section are 
enabled.

6. Click Start to start the reader.

7. Wave the sample tags in front of the antenna. The tag ID and payload should be 
read and appear on the screen.



Configuring the Pre-Seeded Drivers

2-14 Oracle Sensor Edge Server Administrator’s Guide

2.2.3.5 Installing the Oracle Sensor Edge Server Device Controller
Install the Device Controller by extracting the ORACLE_
HOME\edge\controller\deviceController.zip file into the C:\ directory. 
This extracts the Device Controller files into the C:\controller directory. 

2.2.3.6 Starting the Oracle Sensor Edge Server Device Controller
To start the device controller:

1. Start a command-line console (cmd.exe) 

2. Navigate to the C:\deviceController directory and then run the following 
command:

startIntermec.bat <ReaderName> <Port>

where <ReaderName> is the is the configuration name of the reader in the 
rfconfig.ini file and <Port> is the port on which the IntermecDevice driver listens 
so that it can communicate with this Device Controller.

For example, to start the Device Controller for the reader called Penn_A at port 
6666, run the following command:

startIntermec.bat Penn_A 6666

After the Device Controller for the reader starts, create a device from the 
IntermecDevice driver that enables the Oracle Sensor Edge Server to communicate 
to the reader through this Device Controller.

2.2.3.7 Configuring the Oracle Sensor Edge Server to Communication with the 
Device
You must create a device, an instance of the IntermecDriver driver, to enable the 
Oracle Sensor Edge Server to communicate with the Device Controller by editing the 
<DeviceGroups> element of edgeserver.xml (Example 2–9). 

Example 2–9 The Device Configuration for the IntermecDevice Driver

<DeviceGroups id="81">
    <DeviceGroup id="82">
      <DeviceList id="83">
         <Device id="84">
          <Name>Intermec Device</Name>
          <DriverName>IntermecDevice</DriverName>
       <Extension reference="35"/>
          <ParameterInsts id="85">
            <ParameterInst id="86">
              <Name>PortNo</Name>
              <ParameterMetaData reference="37"/>
              <Value>6666</Value>
            </ParameterInst>
            <ParameterInst id="87">
              <Name>IPAddress</Name>
              <ParameterMetaData reference="38"/>
              <Value>192.168.0.52</Value>
            </ParameterInst>
            <ParameterInst id="88">
              <Name>AntennaSeqIdList</Name>
              <ParameterMetaData reference="39"/>
              <Value>12000000</Value>
            </ParameterInst>
            <ParameterInst id="89">



Configuring the Pre-Seeded Drivers

Managing Drivers 2-15

              <Name>AntennaMappedDeviceNameList</Name>
             <ParameterMetaData reference="40"/>
              <Value>IT500_READER</Value>
            </ParameterInst>
          </ParameterInsts>
          <FilterInsts id="90"/>
        </Device>
      </DeviceList>
      <EventCollectWaitTime>500</EventCollectWaitTime>
      <FilterInsts id="91"/>
      <IsDefault>false</IsDefault>
      <IsSystem>true</IsSystem>
      <Name>Unassigned</Name>
    </DeviceGroup>
  </DeviceGroups>

To create a device:

1. Locate the <DeviceGroup> to which to add the device for the IntermecDevice 
reader. If needed, add a new <DeviceGroup> element. For more information on 
the children of the <DeviceGroup>, refer to .

2. Add a new <Device> section for the Intermec Device. (You can copy a <Device> 
section from an existing device to use as a template. 

3. Set the name of the device within the <Name> tag.

4. Enter IntermecDevice as the element content for the <DriverName> tag.

5. Within the <Extension> element, set the value of the reference attribute to 
that of the IntermecDevice driver.

6. Within the <ParameterInsts> element, create the following 
<ParameterInst> elements as described in Section 1.2.4.1. Table 2–3 describes 
the element content for the <ParameterInst> elements for the device.

Table 2–3 <ParameterInst> Elements for the Intermec Device Driver

<Name> <ParameterMetaData> <Value>

IP Address Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
IPAddress attribute

Enter the hostname or IP 
address of the machine 
running the Device 
Controller as its element 
content. If the machine 
runs on the same 
machine as the Oracle 
Sensor Edge Server, enter 
127.0.0.1.



Configuring the Pre-Seeded Drivers

2-16 Oracle Sensor Edge Server Administrator’s Guide

7. Save edgeserver.xml and restart the Oracle Sensor Edge Server to instantiate 
the device. For more information on starting and stopping the Oracle Sensor Edge 
Server, refer to Section 1.3.

2.2.4 Configuring the Patlite Driver
Unlike the RFID readers or other sensors, the Patlite series of lightstacks and trees do 
not generate events, but instead act as indicator lights and signals. Sending events to 
Patlite lightstacks and trees turns on lights or causes them to blink for certain intervals. 

Configuring the Patlite driver involves the following tasks:

■ Installing the Patlite hardware (Section 2.2.4.1).

■ Configuring the Device Controller for the Patlite device (Section 2.2.4.2).

■ Starting the Device Controller for the Patlite device (Section 2.2.4.3).

■ Configuring the Oracle Sensor Edge Server to communicate with the Device 
Controller for the Patlite device by creating a device instance (Section 2.2.4.4). 

Supported Patlite Devices
Patlite’s products include those  that support both Serial and Ethernet connection. The 
current version of the Patlite driver in this release supports the Serial connection only.

2.2.4.1 Installing the Patlite Hardware
To connect the Patlite device, you must have the following hardware:

■ A free RS232C communication port

■ A Female/Female, nine-pin RS232 cable with a straight-through pin type (such as 
a modem cable).

To set up the hardware:

1. Connect the lightstack to a power supply.

2. Connect one end of the serial cable to the lightstack.

3. Connect the other end of the serial cable to the serial port.

PortNo Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the Portno 
attribute.

Enter the port number 
used to start the Device 
Controller (6666 is the 
default).

AntennaSeqIDList Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
AntennaSeqIDList attribute.

Enter a list of identifiers 
to identify each antenna.

AntennaMappedDeviceNameList Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
AntennaMappedDeviceNameList 
attribute.

Enter a list of mapped 
device names associated 
with each antenna.

Table 2–3 (Cont.) <ParameterInst> Elements for the Intermec Device Driver

<Name> <ParameterMetaData> <Value>



Configuring the Pre-Seeded Drivers

Managing Drivers 2-17

2.2.4.2 Configuring the Oracle Edge Server Device Controller for the Patlite Device
After you install the Device Controller (as described in Section 2.2.3.5), edit the 
deviceController/config/dcconfig.xml file as follows:

■ Change the comName parameter to the com port that you are using.

■ If the default port is currently in use on the local machine, change the value for 
lcPort to an available TCP/IP port number. 

In Example 2–10, the dcconfig.xml file uses COM3 as the value for comName and 
the default port of 7878 for the lcPort parameter.

Example 2–10 Configuring the Com Port in dcconfig.xml

<?xml version="1.0"?>
   <Configuration>
      <ConfigParam name="lcPort" value="7878" />
      <ConfigParam name="comName" value="COM3" />
   </Configuration>

2.2.4.3 Starting the Device Controller for the Patlite Device
To start the device controller:

1. Navigate to deviceController/deploy/win.

2. Run startLight.bat. A message similar to Example 2–10 appears.

Example 2–11 Status Message

C:\deviceController\deploy\win>startlight
Local ip is: 144.25.168.146
Establishing the listener at port:  [7878]...
Waiting for connections...

After the Device Controller starts, you can enable communication between the Oracle 
Sensor Edge Server and the Device Controller for the Patlite device by creating a 
device from the Patlite Device driver.

2.2.4.4 Configuring the Oracle Sensor Edge Server to Communicate with the 
Device Controller
You must create a device, an instance of the Patlite Device driver, to enable the Oracle 
Sensor Edge Server to communicate with the Device Controller. 

To create a device: 

1. Locate the <DeviceGroup> to which to add the device for the Patlite driver. If 
needed, add a new <DeviceGroup> element. For more information on the 
children of the <DeviceGroup>, refer to Section 1.2.4.

2. Add a new <Device> section for the Patlite device. (You can copy a <Device> 
section from an existing device to use as a template. 

3. Set the name of the device within the <Name> tag.

4. Enter PatliteDriver as the element content for the <DriverName> tag.

Note: The Intermec and Lightstack Device Controllers are available 
for download from Oracle Technology Network 
(http://www.oracle.com/technology/)



Configuring the Pre-Seeded Drivers

2-18 Oracle Sensor Edge Server Administrator’s Guide

5. Within the <Extension> element, set the value of the reference attribute to 
that of the Patlite driver.

6. Within the <ParameterInsts> element, create the following 
<ParameterInst> elements as described in Section 1.2.4. Table 2–4 describes the 
element content for the <ParameterInst> elements for the device.

7. Save edgeserver.xml and restart the Oracle Sensor Edge Server to instantiate 
the device. For more information on starting and stopping the Oracle Sensor Edge 
Server, refer to Section 1.3.

Table 2–4 <ParameterInst> Elements for the Patlite Device

<Name> <ParameterMetaData> <Value>

IP Address Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the 
IPAddress attribute.

Enter the hostname or IP 
address of the machine 
running the Device 
Controller as its element 
content. 

PortNo Enter the reference number for the 
extension reference that points to 
<Parameter> tag containing the Portno 
attribute.

Enter the port number 
set in the dcconfig.ini file 
(7878 is the default)



Managing Filters 3-1

3
Managing Filters

This chapter, through the following sections, describes how to manage and configure 
the filters for the Oracle Sensor Edge Server. 

■ Section 3.1, "Managing Filters"

■ Section 3.2, "Defining the Parameters of the Pre-Seeded Filters"

■ Section 3.3, "Enabling Event Filtering for Devices or Device Groups"

3.1 Managing Filters
A filter is a class that strains out unwanted events or translates higher-level events 
from groups or events or specific conditions. An event is a message that is sent from 
either a sensor device or an application that signals that a state has changed. The 
Oracle Sensor Edge Server, which receives the data from these sensor devices or 
applications, normalizes the contents of these event messages by putting them in a 
common data format and then applies filters to strip them of extraneous information 
or unwanted events.

The <FilterList> element (Example 3–1) of edgeserver.xml defines the filters 
that are available to the Oracle Sensor Edge Server. 

Example 3–1 The <FilterList> Element of edgeserver.xml

<FilterList id="51">
    <Filter id="52">
      <ClassName>oracle.edge.impl.filter.PassFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single
      reader.</Description>
      <Name>PassRedundantFilter</Name>
      <Parameters id="53">
        <Parameter id="54" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in
                           milliseconds since a tag has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="55">
      <ClassName>oracle.edge.impl.filter.PalletPassFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single 
reader.</Description>
      <Name>PalletPassFilter</Name>
      <Parameters id="56">



Managing Filters

3-2 Oracle Sensor Edge Server Administrator’s Guide

        <Parameter id="57" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                           has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="58" name="EventCollectControlTime" defaultValue="1500" 
                           description="Time elapsed in milliseconds since a 
                           new tag has been detected last time"
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="59">
      <ClassName>oracle.edge.impl.filter.PalletShelfFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single reader.
     </Description>
      <Name>PalletShelfFilter</Name>
      <Parameters id="60">
        <Parameter id="61" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                           has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="62" name="EventCollectControlTime" defaultValue="1500" 
                           description="Time elapsed in milliseconds since a new
                           tag has been detected last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="63">
      <ClassName>oracle.edge.impl.filter.ShelfFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single reader.
      </Description>
      <Name>ShelfRedundantFilter</Name>
      <Parameters id="64">
        <Parameter id="65" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                           has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="66">
      <ClassName>oracle.edge.impl.filter.CrossReaderRedundantFilter</ClassName>
      <Description>Filter redundant tag ids from multiple readers.</Description>
      <Name>CrossReaderRedundantFilter</Name>
      <Parameters id="67"/>
      <Version>1.0</Version>
    </Filter>
    <Filter id="68">
      <ClassName>oracle.edge.impl.filter.CheckTagFilter</ClassName>



Managing Filters

Managing Filters 3-3

      <Description>Check Tag Filter</Description>
      <Name>Check Tag Filter</Name>
      <Parameters id="69">
        <Parameter id="70" name="CheckTagId" defaultValue="" 
                           description="Tag id to be checked" displayName="Check
                           Tag Id" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="71" name="TagCheckInterval" defaultValue="60000" 
                           description="Time interval in milliseconds between two
                           tag-checking window" 
                           displayName="Tag Check Interval" encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="72" name="TagCheckTimeWindow" defaultValue="60000" 
                           description="Time window in milliseconds for each
                           tag-checking" 
                           displayName="Tag Check Time Window"
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="73">
      <ClassName>oracle.edge.impl.filter.DebugFilter</ClassName>
      <Description>Debug Filter</Description>
      <Name>Debug Filter</Name>
      <Parameters id="74">
        <Parameter id="75" name="EventOutputFile" defaultValue="" 
                           description="Output file for dumping events"
                           displayName="Debug Output File" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
  </FilterList>

Because a filter object is not executed and therefore cannot be used by a device, you 
must a create an instance of the filter (a filter instance) to enable a device to use the 
filter.

3.1.1 Device- and Device Group-Level Filtering
Filters can be attached to either a specific device or to a device group. Some filters are 
written as group-level filters and can only be attached to a device group. Likewise, 
some filters are written only for device-level filtering and only function if they are 
attached to a specific device. The filter object implements three levels of filtering: 

■ Pre-Device Filtering

■ Post-Device Filtering

■ Device Group Filtering



Defining the Parameters of the Pre-Seeded Filters

3-4 Oracle Sensor Edge Server Administrator’s Guide

Pre-Device Filtering
Pre-device filtering provides filtering against a batch of pass-in events before they are 
routed to the Oracle Sensor Edge Server device. 

Post-Device Filtering
Post-device filtering provides any filtering against the events before they are merged 
up to a device group.

Device Group Filtering
Device group filtering provides filtering against events before they are delivered to an 
edge client.

The Oracle Sensor Edge Server enables you to add filters that provide pre-device and 
post-device filtering. For more information on device group- and device-level filtering, 
refer to Section 3.3.1. 

3.2 Defining the Parameters of the Pre-Seeded Filters
The Oracle Sensor Edge Server provides a set of pre-seeded filters (described in 
Table 3–1). If needed, you can develop your own filter extensions and then upload 
them. For more information on uploading extensions, refer to Chapter 4. 

Note: Pre- and post-device filters apply only to devices; device 
group filtering applies only to device groups.

Note: Only the filters that you create enable pre- and post-device 
filtering. For more information on developing filters, refer to the 
Oracle Application Server Wireless Developer’s Guide.

Table 3–1 The Pre-Seeded Filters of the Oracle Sensor Edge Server

Filter Name Function

Applied to Device 
Group? (Supports 
Group-Level Filtering)

Applied to Devices? 
(Supports 
Device-Level Filtering)

Check Tag ID Filter A diagnostic tool that checks if a 
device is reading tags during a 
specified interval. See 
Section 3.2.1

No Yes

Cross-Reader Redundant 
Filter

Blocks redundant events that 
are sent from the devices of a 
device group. See Section 3.2.2

Yes No

Debug Filter Tracks events passing 
through the system and then 
writes these events to a log 
file. See Section 3.2.3

No Yes



Defining the Parameters of the Pre-Seeded Filters

Managing Filters 3-5

The following sections describe how the pre-seeded filters generate events and their 
configuration parameters:

■ Section 3.2.1, "Configuring the Check Tag ID Filter"

■ Section 3.2.2, "Using the Cross-Reader Redundant Filter"

■ Section 3.2.3, "Using the Debug Filter"

■ Section 3.2.4, "Configuring the Pass Filter"

■ Section 3.2.5, "Configuring the Shelf Filter"

■ Section 3.2.6, "Configuring the Pallet Pass Thru Filter"

■ Section 3.2.7, "Configuring the Pallet Shelf Filter"

3.2.1 Configuring the Check Tag ID Filter
A Check Tag is any normal tag used to test if the device (in this case, a reader) is 
reading tags. Because the Check Tag itself should be physically located within the field 
of the reader, it should always be read; when other tags move through the field of the 
reader, the device also reads the Check Tag in conjunction with them. 

The Check Tag ID Filter ensures that the device reads a Check Tag periodically. Using 
this filter enables you to check the status of a driver, its corresponding reader, and 
attached antennae. Because the Check Tag ID Filter is used solely for diagnostic 
purposes, it does not provide any events for dispatching to client devices. Instead, this 
filter generates an event if it does not detect that the device has read a Check Tag for a 
specified period of time. 

Pass Filter Notifies applications that a 
tag has passed through a 
device’s field. This filter also 
blocks events, so that only 
one event, rather than 
duplicate events, is generated 
when a tag is detected by a 
device. See Section 3.2.4

No Yes

Shelf Filter Signals that an item has 
entered, or exited the field or 
gateway of a device reader. 
See Section 3.2.5

No Yes

Pallet Pass-Thru Filter Enables you to see all of the 
tag IDs for items held in a 
container or on a pallet. See 
Section 3.2.6

No Yes

Pallet Shelf Filter Sends events that signal new 
containers or pallets entering 
or exiting the field or gateway 
of a device reader See 
Section 3.2.7

No Yes

Table 3–1 (Cont.) The Pre-Seeded Filters of the Oracle Sensor Edge Server

Filter Name Function

Applied to Device 
Group? (Supports 
Group-Level Filtering)

Applied to Devices? 
(Supports 
Device-Level Filtering)



Defining the Parameters of the Pre-Seeded Filters

3-6 Oracle Sensor Edge Server Administrator’s Guide

Table 3–2 describes the parameters (and associated values) of the Check Tag ID filter. 

To define the parameters for the Check Tag ID Filter, you must note the ID of the 
Check Tag itself (which must be placed within the field of the reading device). Enter 
this ID as the String value of <CheckTagId>. If the filter does not detect that a 
device has read a Check Tag bearing the specified ID for the period defined in the 
<TagCheckTimeWindow> parameter, it generates an event. Table 3–3 describes the 
signature of the generated event. Refer to Section 1.1.2 for more information on the 
Event type. 

3.2.2 Using the Cross-Reader Redundant Filter
The Cross-Reader Redundant Filter blocks redundant events that are sent from the 
devices of a device group and does not generate any events. This filter considers 
events redundant if it finds they have the same tag ID.   

The Cross-Reader Redundant Filter is for group-level filtering only; it performs no 
functions if applied to a device. This filter has no parameters to configure.

3.2.3 Using the Debug Filter
The Debug Filter traces events passing through the system. Upon receiving events 
from its associated device, this filter writes events to a log file. This filter has a single 
parameter called <EventOutputFile>. To define this parameter, enter the full path 
of the log file to which the Debug Filter writes events. (The server must make this file 
writable.) The format of the Debug Filter’s output is:

"Devicename: <devicename> Type: <type> Subtype: <subtype> 
EventTime: <time>TagIds:<tagid(,tagid)*>Data:<dat(,data)*>\n"

Each event is on a separate line; each line is separated by a newline character (LF or 
CRLF, depending on the operating system). The <time> value is a long as returned 
by the time(2) call.

This filter can only be attached to a device, not to a device group.

3.2.4 Configuring the Pass Filter
When a tag passes through the range of transmission, or through the gateway of a 
device reader, it generates a series of "tag is seen" events. The device reports these 
events periodically, starting when the tag enters the transmission field. The reporting 
stops when the tag moves out of the reader field. 

Note: You can apply the Check Tag ID Filter only to devices.

Table 3–2 Parameters of the Check Tag ID Filter

Name Value Type Description

CheckTagId A String value. The tag ID of the Check Tag, which 
is the ID that the filter searches for 
to see if the tag is being read.

TagCheckTimeWindow An int value. The period of time, in milliseconds, 
after which an event is generated if 
the filter has not seen the specified 
Check Tag. 



Defining the Parameters of the Pre-Seeded Filters

Managing Filters 3-7

Applications often do not require the series of events that a device reader generates; 
instead, these applications only need to know that a tag has passed through a device’s 
gateway or range of transmission. The Pass Filter applies to such situations, as it 
reduces all of the "tag is seen" events into single events for each unique tag that passes 
through the field of a reader device.   

The Pass Filter has one parameter, <ExitEventThresholdTime>. To define this 
parameter, enter the time (an int value), in milliseconds, since the device last read the 
tag before it is considered to have moved out of the device’s transmission field. The 
parameter settings, which range from 50 milliseconds to under two seconds, dictate 
the frequency (that is, the reader cycle) in which the device reports these "tag is seen" 
events. If you set this frequency too high, such as to two seconds, then the device may 
miss the tag altogether.

When the device first reads a tag, the Pass Filter caches the tag’s ID (tagid), notes the 
time that the tagid was read into the cache, and then immediately sends the 
pass-through event. The filter blocks subsequent reads for this cached tagid. Each time 
the filter receives a new read from the device, it updates the time that it read the tagid 
into the cache. If the sum of the caching time and the value set for 
<ExitEventThresholdTime> is less than the current time, then the Pass Filter 
clears the tagid from the cache. The next time the device reads this tag, the filter 
considers it a new event, caches its tagid and sends out a new pass-through event. 
Refer to Section 1.1.2 for more information on the Event type.

Table 3–3 describes the signature of the pass-through event.

3.2.5 Configuring the Shelf Filter
The Shelf Filter is a device-level filter that generates events when a tag is detected 
within the field of a reader or when the tag has left the field. Like the Pass Filter, the 
Shelf Filter has a single parameter, <ExitEventThresholdTime>. To define this 
parameter, enter the time (an int value), in milliseconds, since the device last read the 
tag before it is considered to have moved out of the device’s transmission field. Unlike 
the Pass Filter, however, the Shelf Filter silently clears its cache once the interval 
defined for the <ExitEventThresholdTime> parameter elapses and does not 
generate an event.

Table 3–3 Signature of the Pass-Through Event

Event Field Value

sourceName This field identifies the originator of the event. This is an 
optional field.

correlationId The client sets the value for this field, which is used for message 
responses to a particular client (such as checking if a device 
functions). Any message sent back by the client has the same ID. 
This is an optional field.

siteName The name of the site that generated this event.

deviceName The name of the device that generated this event.

time The time that the event was generated.

type Event.OBSERVATION

subtype Event.PASS

id The ID of the tag.

data The data payload of the tag.



Defining the Parameters of the Pre-Seeded Filters

3-8 Oracle Sensor Edge Server Administrator’s Guide

3.2.5.1 Events Generated by the Shelf Filter
 The Shelf Filter generates two events:

■ IN FIELD Event

■ OUT FIELD Event

IN FIELD Event
The Shelf Filter generates this event when the device first detects the tag. Table 3–4 
describes the signature for this event. Refer to Section 1.1.2 for more information on 
the Event type. 

OUT FIELD Event
The Shelf Filter generates this event when the interval defined for the Exit Event 
Threshold Time parameter elapses. Table 3–5 describes the signature for this event. Refer 
to Section 1.1.2 for more information on the Event type.

Table 3–4 Signature of the IN FIELD Event

Event Field Value

sourceName This field identifies the originator of 
the event. This is an optional field.

correlationId The client sets the value for this field, 
which is used for message responses 
to a particular client (such as checking 
if a device functions). Any message 
sent back by the client has the same 
ID. This is an optional field.

siteName The name of the site that generated 
this event.

deviceName The name of the device that generated 
this event.

time The time that the Shelf Filter generated 
this event.

type Event.OBSERVATION

subtype Event.INFIELD

id The ID of the tag.

data The data payload of the tag.

Table 3–5 Signature of the OUT FIELD Event

Event Field Value

sourceName This field identifies the originator of 
the event. This is an optional field.

correlationId The client sets the value for this field, 
which is used for message responses 
to a particular client (such as checking 
if a device functions). Any message 
sent back by the client has the same 
ID. This is an optional field.

siteName The name of the site that generated 
this event.



Defining the Parameters of the Pre-Seeded Filters

Managing Filters 3-9

When a device first detects the tag, the Shelf Filter caches the ID of the tag and then 
generates an IN FIELD event. At this point, the tag is read during every reader cycle. 
While the tag may not be read during some of these cycles, it is read during others. 
When the device does not read the tag consistently for a period longer than that 
designated for the <EventExitThresholdTime> parameter, then the filter removes 
the tag’s ID from the cache and generates an OUT FIELD event. The devices stops 
reading the tag once it passes from the field of the device.

3.2.6 Configuring the Pallet Pass Thru Filter
The Pallet Pass Thru Filter collects all of the events received during a specified period 
and sends them out as a single event. When a pallet or container passes through a 
gateway or through the field of transmission of a reader device, this filter generates a 
single event for all of these tags. This filter enables you to see what items a container or 
pallet may hold. 

The Pallet Pass Thru Filter includes the following parameters:

■ <ExitEventThresholdTime>

■ <EventCollectControlTime>

<ExitEventThresholdTime>
To define this parameter, enter the time (an int value), in milliseconds, since the 
device last read a tag before it is considered to have moved out of the device’s 
transmission field. The parameter settings, which range from 50 milliseconds to under 
two seconds, dictate the frequency (that is, the reader cycle) in which the device 
reports these "tag is seen" events. If you set this frequency too high, such as to two 
seconds, then the device may miss the tag altogether.

<EventCollectControlTime>
To define this parameter, enter the time (an int value), in milliseconds, for a device to 
complete a reading cycle of the tags included in a pallet or container before starting a 
new reading cycle. When this time elapses, the reading cycle concludes (that is, the 
device has read all of the new tags) and the Pallet Pass Thru Filter then generates an 
event with the following signature (described in Table 3–6). Refer to Section 1.1.2 for 
more information on the Event type.

deviceName The name of the device that generated 
this event.

time The time that the Shelf Filter generated 
this event.

type Event.OBSERVATION

subtype Event.OUTFIELD

id The ID of the tag.

data The data payload of the tag.

Table 3–5 (Cont.) Signature of the OUT FIELD Event

Event Field Value



Defining the Parameters of the Pre-Seeded Filters

3-10 Oracle Sensor Edge Server Administrator’s Guide

3.2.7 Configuring the Pallet Shelf Filter
The Pallet Shelf Filter collects all of the events received during a set interval and then 
sends them as a single event. This filter enables you to identify when new containers 
or pallets holding many items enters an area, or exits the field or gateway of a device 
reader.

The Pallet Shelf Filter has the following parameters:

■ <ExitEventThresholdTime>

■ <EventCollectControlTime>

<ExitEventThresholdTime>
To define <ExitEventThresholdTime>, enter the time (an int value), in 
milliseconds, from the last time that the device read the tag before it is considered to 
have moved out of the device’s transmission field. The Pallet Shelf Filter silently clears 
its cache once the interval defined for the <ExitEventThresholdTime> parameter 
elapses and does not generate an event.

<EventCollectControlTime>
To define <EventCollectControlTime>, enter the time (an int value), in 
milliseconds, for a device to complete a reading cycle for the tags of a pallet or 
container before starting a new reading cycle. When this time elapses, the reading 
cycle concludes (that is, the device has read all of the new tags) and the Pallet Shelf 
Filter then generates an event.

3.2.7.1 Events Generated by the Pallet Shelf Filter
The Pallet Shelf Filter generates two events:

■ MULTIPLE IN FIELD Event

■ MULTIPLE OUT FIELD Event

Table 3–6 Signature of the Pallet Pass Thru Event

Event Field Value

sourceName This field identifies the originator of the event. This is an 
optional field.

correlationId The client sets the value for this field, which is used for message 
responses to a particular client (such as checking if a device 
functions). Any message sent back by the client has the same ID. 
This is an optional field.

siteName The name of the site that generated this event.

deviceName The name of the device that generated this event.

time The time that the event was generated.

type Event.OBSERVATION

subtype Event.MULTIPLE_PASS

id A comma-separated list of tag IDs.

data A comma-separated list of datum.



Defining the Parameters of the Pre-Seeded Filters

Managing Filters 3-11

MULTIPLE IN FIELD Event
The Pallet Shelf Filter generates the MULTIPLE IN FIELD event when the device first 
detects the tags. This event has the following signature (described in Table 3–7).

MULTIPLE OUT FIELD Event
The Pallet Shelf Filter generates the MULTIPLE OUT FIELD event when the interval 
defined for the <ExitEventThresholdTime> parameter elapses. This event has the 
following signature (described in Table 3–8):

Table 3–7 Signature of the MULTIPLE IN FIELD Event

Event Field Value

sourceName This field identifies the originator of 
the event. This is an optional field.

correlationId The client sets the value for this field, 
which is used for message responses 
to a particular client (such as checking 
if a device functions). Any message 
sent back by the client has the same 
ID. This is an optional field.

siteName The name of the site that generated 
this event.

deviceName The name of the device reading the 
pallet or container that generated this 
event.

time The time that the Pallet Shelf Filter 
generated this event.

type Event.OBSERVATION

subtype Event.MULTIPLE_INFIELD

id A comma-separated list of tag IDs.

data A comma-separated list of datum.

Table 3–8 Signature of the MULTIPLE OUT FIELD Event

Event Field Value

sourceName This field identifies the originator of 
the event. This is an optional field.

correlationId The client sets the value for this field, 
which is used for message responses 
to a particular client (such as checking 
if a device functions). Any message 
sent back by the client has the same 
ID. This is an optional field.

siteName The name of the site generating this 
event.

deviceName The name of the device reading the 
pallet or container that generated this 
event.

time The time that the Pallet Shelf Filter 
generated this event.

type Event.OBSERVATION



Enabling Event Filtering for Devices or Device Groups

3-12 Oracle Sensor Edge Server Administrator’s Guide

3.3 Enabling Event Filtering for Devices or Device Groups
Filter instances enable events to be filtered for both devices and device groups. To 
enable filtering, you create a filter instance from a filter object defined in the 
edgeserver.xml file’s <FilterList> element (Example 3–1). You define these filter 
instances (that is, the <FilterInsts> tags) within the <DeviceGroups> elements 
of edgeserver.xml (illustrated in Example 3–2). 

3.3.1 Creating a Filter Instance
To create a filter instance:

1. Within the <DeviceGroups>, locate the <Device> to which to add the filter 
instance.

2. Add a <FilterInst> element to the device’s <FilterInsts> section.

3. For the <Extension> element, specify the name of the filter for the class 
attribute, and the id of the filter for the reference attribute.

4. Set the <ParameterInsts> to match the attribute values set for the filter’s 
<Parameters> element.

5. Save edgeserver.xml and then restart the Oracle Sensor Edge Server. For more 
information on starting and stopping the Oracle Sensor Edge Server, refer to 
Section 1.3.

3.3.1.1 Prioritizing Filter Instances for Devices and Device Groups
You can stack filters together. For example, you can configure a device to first filter out 
redundant events and then aggregate them with another custom filter. While you can 
stack both of these filters on top of the same device, you must prioritize these filters, as 
the order in which the device’s filters process events is crucial; the proper filter 
sequence for the aforementioned device would not first aggregate events and then 
filter for the redundant events.

The <Sequence> tag within the <FilterInsts> element for a device sets the order 
in which filters are invoked when a device reads an event. This sequence ranges from 0 
to 65535. The filter assigned the lowest value in the sequence is placed closest to the 
data source (a device or a device group). The filters process the events according to the 
numbers that you assign to them. After a device reads an event, the filter with the 
lowest number first processes the event and then passes the output onto the filter 
assigned to the next number in the sequence. 

If two or more filters have the same sequence number, then the order in which the 
filters process events is random. For example, there are five filters with sequence 

subtype Event.MULTIPLE_OUTFIELD

id A comma-separated list of Tag IDs.

data A comma-separated list of datum.

Note: You define device-level filters using the <FilterInsts> tag 
of the <Device> element. You define device group-level filters using 
the <Filterinsts> tag of the <DeviceGroup> element. 

Table 3–8 (Cont.) Signature of the MULTIPLE OUT FIELD Event

Event Field Value



Enabling Event Filtering for Devices or Device Groups

Managing Filters 3-13

numbers of 0, 1, 2, 3, 3, 4 set for a device. When the device receives an event, it first 
passes it to the filter assigned with 0 (Filter 0). Filter 0 processes the event and then 
passes the output to the next filter, Filter 1, which in turn processes the output from 
Filter 0 and passes its own output on to Filter 2, which continues the filtering cycle and 
passes its output to Filter 3. Because the device has two filters that are assigned the 
same value in the sequence, The Oracle Edge Sensor Server selects one of these filters 
at random to first process the output generated by Filter 2. When the next Filter 3 
completes its task, it passes its output to Filter 4. 

Example 3–2 illustrates configuring a device to use a filter instance by defining the 
<FilterInsts> element. In this example, the PalletPassFilter has a <Sequence> 
value set at 1.

Example 3–2 Configuring a Filter Instance for a Device

<FilterInsts>
      <FilterInst>
          <Sequence>1</Sequence>
          <FilterName>PalletPassFilter</FilterName>
          <Extension class="Filter" reference="50"/>
          <ParameterInsts>
            <ParameterInst>
              <ParameterMetaData reference="52"/>
              <Value>11</Value>
              <Name>ExitEventThresholdTime</Name>
            </ParameterInst>
            <ParameterInst>
              <ParameterMetaData reference="53"/>
              <Value>12</Value>
              <Name>EventCollectControlTime</Name>
            </ParameterInst>
          </ParameterInsts>
          <NeedReload>false</NeedReload>
          <Name>PalletPassFilter</Name>
        </FilterInst>
 </FilterInsts>



Enabling Event Filtering for Devices or Device Groups

3-14 Oracle Sensor Edge Server Administrator’s Guide



Managing Extensions 4-1

4
Managing Extensions

This chapter, through the following sections, describes the extensions for the Oracle 
Sensor Edge Server’s driver, filters, and dispatchers.

■ Section 4.1, "Overview of Extensions"

■ Section 4.2, "Extension Archive Files"

■ Section 4.3, "Uploading Extensions"

■ Section 4.4, "Extension Class Hierarchy"

■ Section 4.5, "Implementing Extensions"

■ Section 4.6, "Managing the Parameters of an Instance"

4.1 Overview of Extensions
An extension is a custom-built driver, dispatcher or filter which you upload to the 
Oracle Sensor Edge Server by packaging the component in an Extension Archive file. 
The Extension Archive file is a JAR file containing all of the class files and native 
binaries for the driver, filter, or dispatcher,  as well as properties files or static data 
files. In addition, the Extension Archive includes the Extension Archive Descriptor file, 
an XML file containing instructions for the Oracle Sensor Edge Server on loading and 
managing the extension. 

For information on the packaging an Extension Archive and the Device Management 
API, refer to the Oracle Application Server Wireless Developer’s Guide.

4.2 Extension Archive Files
Before you can upload a custom extension, such as a driver, dispatcher, or filter, you 
must package the extension files into an Extension Archive. An Extension Archive 
contains all of the extension’s binaries, startup data, and configuration information. 
Each Extension Archive contains only one extension implementation, which is loaded 
at runtime. The Extension Archive contains the following directories:

Note: Setting the element content of 
<IsExtensionMonitorEnabled> to true enables an extension to 
be dynamically uploaded to the Oracle Sensor Edge Server. You do 
not have have to restart the Oracle Sensor Edge Server. However, for 
the Oracle Edge Sensor Server to use the instances created from an 
extension, you must restart the Oracle Edge Sensor Server as 
described in Section 1.3.1..



Extension Archive Files

4-2 Oracle Sensor Edge Server Administrator’s Guide

■ Meta-INF

■ classes

■ lib

Meta-INF
This directory contains any meta information about the archive. This directory must 
include the Extension Archive Descriptor file. The Extension Archive Descriptor file is 
an XML file located in the META-INF directory that contains the information needed 
by the Oracle Sensor Edge Server to load and manage the extension.

The Extension Archive Descriptor file is called ext.xml. Example 4–1 illustrates an 
Extension Archive Descriptor file (ext.xml) for a filter extension called Loop Back 
Filter.

Example 4–1 The Extension Archive Descriptor File for a Filter Extension

<?xml version="1.0"?>
<Extension>
<name>Loop Back Filter</name>
<version>1.0</version>
<className>oracle.edge.impl.filter.LoopBackFilter</className>
<type>Filter</type>
<Parameters>
        <Parameter name="TagID" defaultValue="" description="The Invalid Tag ID">
            <valueType type="string"/>
        </Parameter>
        <Parameter name="LightStackName" defaultValue="stack1" description="The 
Light Stack Instance Name">
            <valueType type="string"/>
        </Parameter>
    </Parameters>

Example 4–2 describes a simplified version of the DTD for ext.xml; Table 4–1 describes 
this DTD’s elements. 

Example 4–2 The DTD for the Extension Archive Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Extension (name, version, className, type, Parameters)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT className (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT Parameters (Parameter+)>
<!ELEMENT Parameter (valueType)>
<!ATTLIST Parameter
  name CDATA #REQUIRED
  displayName CDATA #IMPLIED
  defaultValue CDATA #IMPLIED
  description CDATA #IMPLIED
  encrypted (true|false)  #IMPLIED
  isClearText (true|false) #IMPLIED
  required  (true|false)  #IMPLIED>
<!ELEMENT valueType EMPTY>
<!ATTLIST valueType
 type (int | string | double | boolean) #REQUIRED>



Extension Archive Files

Managing Extensions 4-3

classes
This directory includes all of the classes files, native binaries, files, or static data. The 
classes files packaged into JAR files must be expanded on top of this directory. This 
release does not support loading JAR libraries.

Table 4–1 Elements and Attributes of the DTD for the Extension Archive Descriptor File

Element Attribute or Text Description

Extension Defines the properties of an extension. 

name #text The name of the extension. 

type #text The type of the extension, such as a driver, 
filter, or dispatcher. Although the match is not 
case-sensitive, there must be no extra spaces or 
special characters in the text. The reserved 
values are: Device, Filter, Dispatcher.

version #text A text representation of the version number of 
the extension.

className #text The name of the class to load and instantiate 
the driver. This is the entry class that 
implements one of the standard extension 
interfaces. You must include a package name to 
form a fully qualified class name.

Parameters (Parent of the <Parameter> element.) The parameters that users can edit after an 
extension has been uploaded. 

Parameter Attributes include:

■ name

■ displayName

■ defaultValue

■ encrypted

■ isClearText

■ required

■ name -- The name of the parameter.

■ displayName -- The display name of the 
parameter. 

■ defaultValue -- The default value for 
the parameter.

■ encrypted -- Indicates whether the value 
for the parameter should be encrypted so 
that the value does not have to be stored in 
clear-text format. 

■ isClearText -- Enables the default value 
(and the value for the parameter instance) 
to be reset to clear-text format. If the 
encrypted parameter is set to true, then 
the clear-text format is read and then set to 
encrypted format the next time the Oracle 
Sensor Edge Server starts.

■ required -- Indicates whether the 
parameter value is required.

valueType type The type of the parameter (which can be one of 
the following):

■ int -- if the parameter is a 32-bit signed 
integer.

■ string -- for a string of variable length.

■ double -- for a double precision number.

■ boolean -- for a boolean value (true, 
false).



Uploading Extensions

4-4 Oracle Sensor Edge Server Administrator’s Guide

lib
The Extension Archive file also includes the lib directory, where you specify 
third-party libraries. Example 4–3 illustrates an Extension Archive file for an Alien 
device driver, where the lib directory includes the library specific to the Alien device 
driver, Gateway.jar. 

Example 4–3 Extension Archive File for an Alien Device Driver

meta-inf/ext.xml
meta-inf/Manifest.mf
classes/oracle/edge/impl/driver/AlienReader.class
lib/Gateway.jar

4.2.1 Packaging an Extension Archive File
To package an Extension Archive file:

1. Build a sandbox directory. Use this directory as the JAR source directory. 

2. At the top of this directory, create the META-INF and classes directories.

3. Copy all class files and properties files (if any) to the classes directory. In the 
META-INF directory, create ext.xml, the Extension Archive Descriptor file. 

4. Archive the files. You can use the JAR tool included in the JDK, or any other 
standard compression utility. Run the JAR tool from top-level directory of the 
sandbox. For example, executing jar cvMf test.jar archives the files in the 
sandbox directory into test.jar. You can then upload test.jar to the Oracle 
Sensor Edge Server. Do not archive the META-INF and classes directories as 
part of the sandbox directory. For example, the command c:/work> jar tvf 
test.jar displays the files in test.jar have been properly archived as follows:

0 Thu Apr 08 14:36:56 PDT 2004 META-INF/
71 Thu Apr 08 14:36:56 PDT 2004 META-INF/ext.xml
0 Thu Apr 08 13:42:52 PDT 2004 classes/
0 Thu Apr 08 13:42:52 PDT 2004 classes/my/
0 Thu Apr 08 13:42:58 PDT 2004 classes/my/test.class

4.3 Uploading Extensions
To upload an extension:

1. Package the driver, filter, or dispatcher in an Extension Archive File as described in 
Section 4.2.1.

2. Copy this JAR file to:

ORACLE_HOME/edge/extensions

3. Restart the Oracle Sensor Edge Server by restarting the OC4J Instance.

Note: No slashes or other directory indicators appear before the 
META-INF and classes directories. Including the entire path in the 
JAR prevents the Oracle Sensor Edge Server from locating the 
Extension Archive Descriptor file or the classes. As a result, the 
extension cannot be deployed. 



Implementing Extensions

Managing Extensions 4-5

4.4 Extension Class Hierarchy
All of the extensions of the Oracle Sensor Edge Server are arranged as:

EdgeObject—The basic root class, which contains a unique identifier

■ AbstractEdgeExtensionImpl—Implements the EdgeExtension interface.

– AbstractDispatcher—An abstract class that defines a base for a filter 
extension.

– AbstractFilter—A basic filter.

– AbstractDevice—A basic device.

* AbstractEventDevice—A common sensor or indicator device.

* AbstractSocketDevice—A network-based device driver.

4.5 Implementing Extensions
The doInit() method implements extensions, as this call initializes the instance of an 
extension at runtime. 

4.5.1 Extension Context
When the instance of an extension is created at runtime, the corresponding Context is 
created that enables the extension to:

■ Set (or retrieve) the runtime Context data.

■ Locate and communicate with other extensions of the Oracle Edge Sensor Server.

■ Access the system facilities of the Oracle Edge Sensor Server.

■ Retrieve information about the instance itself (described in Section 4.5.1.1).

4.5.1.1 Retrieving Information About the Instance
The base class, EdgeExtension, provides utility functions for an instance to retrieve 
information about itself. These methods include:

■ getContext()

Returns the runtime context.

■ getName()

Returns the name of the extension.

Tip: If the <IsExtensionMonitorEnabled> element has been set 
to true in edgeserver.xml, then you only need to copy the JAR file 
to ORACLE_HOME/edge/extensions. The running Oracle Sensor 
Edge Server then picks up the extension automatically and does not 
need to be stopped and then restarted. Because this method of adding 
an extension slows performance, it is recommended only for 
development instances.

Note: Extend from AbstractDispatcher, AbstractFilter, 
AbstractDevice (or from a descendant class) when you create an 
extension.



Managing the Parameters of an Instance

4-6 Oracle Sensor Edge Server Administrator’s Guide

■ getDescription()

Returns the description of the extension.

■ getVersion()

Returns the version string of the extension.

4.5.1.2 Accessing the Runtime Context of an Instance
To retrieve the instance’s Context object, use

EdgeExtensionContext context = super.getContext();

The method call, getContext(), returns the Context object of the current instance.

4.6 Managing the Parameters of an Instance
An instance of an extension does not hold its own persistent data or configuration; 
configuration data is passed in at runtime when the instance is initialized. The 
configuration data is defined as parameters, which are composed of name/value pairs. 
Each parameter has a unique name and an optional value. 

4.6.1 Exposing Custom Parameters
Extensions often have specific configurations. For example, a driver might include 
such configuration parameters as serial port name, baud rate, IP address, port number, 
login and password. These parameters must be defined to enable the driver to 
communicate with the device. 

To expose parameters for a driver implementation, you must modify the Extension 
Archive Descriptor file. Example 4–4 illustrates a device that has two parameters that 
can be configured: serial port name and baud rate, defined within the <Parameter> 
extract tags.   

Example 4–4 An Extension Archive Descriptor File with Exposed Parameters

<Extension>
         <name>My Driver</name>
         <type>Device</type>
         <className>my.testdriver</className>
         <Parameters>
                   <Parameter name="port" displayName="Serial Port">
                          <valueType type="string"/>
                   </Parameter>
                   <Parameter name="baud" displayName="Baud Rate">
                         <valueType type="int"/>
                   </Parameter>
         </Parameters>
</Extension>

4.6.2 Retrieving Parameter Values
Once you have defined the Extension Archive Descriptor file’s <Parameter> tags, 
you can fetch the values for the parameters using the EdgeExtensionConfigInfo 

Note: This release of the Oracle Sensor Edge Server does not directly 
support trees or arrays of values. You are responsible for 
un-marshalling the data when forming non-scalar type data.



Managing the Parameters of an Instance

Managing Extensions 4-7

object. The values defined within the <Parameter> tags are retrieved using the 
Context object (illustrated in Example 4–5). 

Example 4–5 Retrieving Parameter Values Using the Context Object

EdgeExtensionContext context = super.getContext();
ConfigParameter filenameParam = ct.getParameter( fileName );

The getParameter() method returns a ConfigParameter object. The 
getParameter() method returns the value for a parameter. (In Example 4–5, the 
ConfigParamter object is called filenameParam and the getParameter() 
method returns the value for a parameter called fileName.)The name of the target 
parameter must be passed to the ConfigParameter object. Further, the name of this 
parameter must match the name given to the name attribute of the <Parameter> 
element of the Extension Archive Descriptor file. Once you obtain the 
ConfigParameter object, you can get the value of the parameter (illustrated in 
Example 4–6).

Example 4–6 Retrieving the Value of a Parameter

m_fileName = filenameParam.getStringValue();

Note: The getStringValue()method returns the string value of 
the parameter. If the value for the parameter is an int, call the 
getIntegerValue() method, which returns an Integer object.



Managing the Parameters of an Instance

4-8 Oracle Sensor Edge Server Administrator’s Guide



Sample edgeserver.xml File A-1

A
Sample edgeserver.xml File

This appendix describes the configuration file for the Oracle Sensor Edge Sever, 
edgeserver.xml.

A.1 edgeserver.xml
Example A–1 illustrates edgeserver.xml with comments. In this example, the 
configuration connects an Intermec device to the Oracle Sensor Edge Server, which 
disaptches events using the Oracle Streams dispatcher. 

Example A–1 edgeserver.xml

<EdgeServer id="1">
  <Name>MyEdgeServer</Name>
  <SiteName>MySite</SiteName>
  <DispatcherMode>persist</DispatcherMode>
  <IsRunJmx>false</IsRunJmx>
  <JmxConsolePort>8989</JmxConsolePort>
  <JmxConsolePassword>welcome</JmxConsolePassword>
  <IsExtensionMonitorEnabled>false</IsExtensionMonitorEnabled>
  <LogLevel>notify</LogLevel>
  <ShutDownTimeOut>10000</ShutDownTimeOut>
  <DispatcherList id="2">
    <Dispatcher id="3">
      <ClassName>oracle.edge.rt.NullDispatcher</ClassName>
      <Description>Dispatcher that does nothing</Description>
      <Name>NullDispatcher</Name>
      <Parameters id="4"/>
      <Version>1.0</Version>
    </Dispatcher>
    <Dispatcher id="5">
      <ClassName>oracle.edge.impl.dispatcher.StreamsConnector</ClassName>
      <Description>StreamsDispatcher</Description>
      <Name>StreamsDispatcher</Name>
      <Parameters id="6">
        <Parameter id="7" name="username" defaultValue="edge" 
                          description="stream access user name"
                          displayName="DBUsername" 
                          encrypted="false">
          <valueType type="string"/>
        </Parameter>
                  --**CHANGED default value for password
        <Parameter id="8" name="password" defaultValue="oracle"
                          description="stream access password"
                          displayName="DB password" encrypted="false">
          <valueType type="string"/>



edgeserver.xml

A-2 Oracle Sensor Edge Server Administrator’s Guide

        </Parameter>
                   --**CHANGED value for URL to machine name PORT to 9105 and SID
                   to PRJ1
        <Parameter id="9"      
name="url"defaultValue="jdbc:oracle:thin:@(description=(address=(host=soclxs3db02) 
                                             
defaultValue="jdbc:oracle:thin:@(description=(address=(host=soclxs3db02)   
                                                                   
(protocol=tcp)(port=9105))(connect_data=(sid=PRJ1)))" 
                                            description="stream access url" 
displayName="DB Connect String" 
                                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Dispatcher>
    <Dispatcher id="10">
      <ClassName>oracle.edge.impl.dispatcher.HTTPEventDispatcher</ClassName>
      <Description>Http Dispatcher</Description>
      <Name>HTTP Dispatcher</Name>
      <Parameters id="11">
        <Parameter id="12" name="url" 
defaultValue="http://localhost:8888/rfid/test" 
                                             description="HTTP url" 
encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="13" name="disableAcceptCookieDialog" defaultValue="true" 
                           description="Whether to disable the accept/reject
                           cookie dialog from HttpClient" 
                           encrypted="false">
          <valueType type="boolean"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Dispatcher>
    <Dispatcher id="14">
      <ClassName>oracle.edge.impl.dispatcher.JMSEventDispatcher</ClassName>
      <Description>JMS Dispatcher</Description>
      <Name>JMS Dispatcher</Name>
      <Parameters id="15">
        <Parameter id="16" name="provider" defaultValue="ormi://localhost" 
                           description="JMS provider url" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="17" name="username" defaultValue="admin" 
                           description="JMS user name" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="18" name="password" defaultValue="mobile" 
                           description="JMS user password" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="19" name="ack" defaultValue="CLIENT_ACKNOWLEDGE" 
                           description="JMS acknowledge mode" encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>



edgeserver.xml

Sample edgeserver.xml File A-3

    </Dispatcher>
    <Dispatcher id="20">
      <ClassName>oracle.edge.impl.dispatcher.WSEventDispatcher</ClassName>
      <Description>WebService Dispatcher</Description>
      <Name>WebService Dispatcher</Name>
      <Parameters id="21">
        <Parameter id="22" name="url" defaultValue="http://localhost:8888/wsdl/" 
                           description="url to locate wsdl" encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Dispatcher>
  </DispatcherList>
  <DriverList id="23">
    <Driver id="24">
      <ClassName>oracle.edge.impl.driver.EdgeSimulator</ClassName>
      <Description>This is internal simulator</Description>
      <Name>Edge Simulator Driver</Name>
      <Parameters id="25">
        <Parameter id="26" name="FileName" 
defaultValue="..\..\edge\config\Simulation.xml" 
                           description="Simulator’s configuration file"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="27">
      <ClassName>oracle.edge.impl.driver.AlienReader</ClassName>
      <Description>This is an alien device</Description>
      <Name>AlienDevice</Name>
      <Parameters id="28">
        <Parameter id="29" name="PortNo" defaultValue="23" 
                           description="Alien reader’s open port number that edge
                           device listens to" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="30" name="IPAddress" defaultValue="144.25.171.23" 
                                             description="Alien reader’s IP 
address" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="31" name="UserName" defaultValue="alien" description="Alien
                           reader’s access user" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="32" name="Password" defaultValue="password" 
                           description="Alien reader’s access password"
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="33" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each
                           antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>



edgeserver.xml

A-4 Oracle Sensor Edge Server Administrator’s Guide

        <Parameter id="34" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="35">
      <ClassName>oracle.edge.impl.driver.IntermecReader</ClassName>
      <Description>This is Intermec reader: IntelliTag 500</Description>
      <Name>IntermecDevice</Name>
      <Parameters id="36">
                               --**CHANGED default value for PORTNO to 6543 (where 
DeviceManager is listening
        <Parameter id="37" name="PortNo" defaultValue="6543" 
                           description="Reader’s open port number that edge device
                           listens to" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
                   --**CHANGED value for IPADDRESS (IP of machine RFID hardware is 
connected to)
        <Parameter id="38" name="IPAddress" defaultValue="192.168.0.52" 
                           description="Reader’s IP address" encrypted="false">
                          <valueType type="string"/>
        </Parameter>
        <Parameter id="39" name="AntennaSeqIdList" defaultValue="" 
                           description="List of identifiers to identify each
                           antenna" encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="40" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="41">
      <ClassName>oracle.edge.impl.driver.EdgeEventDevice</ClassName>
      <Description>This is EMS reader.</Description>
      <Name>EMSDevice</Name>
      <Parameters id="42">
        <Parameter id="43" name="PortNo" defaultValue="6666" 
                           description="Reader’s open port number that edge device
                           listens to" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="44" name="IPAddress" defaultValue="144.25.168.131" 
                           description="Reader’s IP address" encrypted="false" 
<valueType type="string"/>
        </Parameter>
        <Parameter id="45" name="AntennaSeqIdList" defaultValue="" 
                           escription="List of identifiers to identify each 
antenna" encrypted="false">



edgeserver.xml

Sample edgeserver.xml File A-5

          <valueType type="string"/>
        </Parameter>
        <Parameter id="46" name="AntennaMappedDeviceNameList" defaultValue="" 
                           description="List of mapped device names associated
                           with each antenna" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
    <Driver id="47">
      <ClassName>oracle.edge.impl.driver.EdgeDevice</ClassName>
      <Description>Edge Device Driver</Description>
      <Name>Edge Device Driver</Name>
      <Parameters id="48">
        <Parameter id="49" name="PortNo" defaultValue="23" 
                           description="Edge device’s open port number that edge
                           device listens to" 
                           displayName="Port Number" encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="50" name="IPAddress" defaultValue="" description="Edge
                                             device’s IP address" 
                           displayName="IP Address" encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Driver>
  </DriverList>
  <FilterList id="51">
    <Filter id="52">
      <ClassName>oracle.edge.impl.filter.PassFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single 
reader.</Description>
      <Name>PassRedundantFilter</Name>
      <Parameters id="53">
        <Parameter id="54" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                                        has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="55">
      <ClassName>oracle.edge.impl.filter.PalletPassFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single 
reader.</Description>
      <Name>PalletPassFilter</Name>
      <Parameters id="56">
        <Parameter id="57" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                                        has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="58" name="EventCollectControlTime" defaultValue="1500" 



edgeserver.xml

A-6 Oracle Sensor Edge Server Administrator’s Guide

                                             description="Time elapsed in 
milliseconds since a new tag has been detected last 
time"
 encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="59">
      <ClassName>oracle.edge.impl.filter.PalletShelfFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single 
reader.</Description>
      <Name>PalletShelfFilter</Name>
      <Parameters id="60">
        <Parameter id="61" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                                        has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="62" name="EventCollectControlTime" defaultValue="1500" 
                           description="Time elapsed in milliseconds since a new
                                        tag has been detected last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="63">
      <ClassName>oracle.edge.impl.filter.ShelfFilter</ClassName>
      <Description>Filter redundant in range tag ids from a single 
reader.</Description>
      <Name>ShelfRedundantFilter</Name>
      <Parameters id="64">
        <Parameter id="65" name="ExitEventThresholdTime" defaultValue="800" 
                           description="Time elapsed in milliseconds since a tag
                           has been seen last time" 
                           encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="66">
      <ClassName>oracle.edge.impl.filter.CrossReaderRedundantFilter</ClassName>
      <Description>Filter redundant tag ids from multiple readers.</Description>
      <Name>CrossReaderRedundantFilter</Name>
      <Parameters id="67"/>
      <Version>1.0</Version>
    </Filter>
    <Filter id="68">
      <ClassName>oracle.edge.impl.filter.CheckTagFilter</ClassName>
      <Description>Check Tag Filter</Description>
      <Name>Check Tag Filter</Name>
      <Parameters id="69">
        <Parameter id="70" name="CheckTagId" defaultValue="" 
                           description="Tag id to be checked" displayName="Check
                           Tag Id" 



edgeserver.xml

Sample edgeserver.xml File A-7

                         encrypted="false">
          <valueType type="string"/>
        </Parameter>
        <Parameter id="71" name="TagCheckInterval" defaultValue="60000" 
                           description="Time interval in milliseconds between two
                                        tag-checking window" 
                           displayName="Tag Check Interval" encrypted="false">
          <valueType type="int"/>
        </Parameter>
        <Parameter id="72" name="TagCheckTimeWindow" defaultValue="60000" 
                           description="Time window in milliseconds for each
                                        tag-checking" 
                           displayName="Tag Check Time Window" encrypted="false">
          <valueType type="int"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
    <Filter id="73">
      <ClassName>oracle.edge.impl.filter.DebugFilter</ClassName>
      <Description>Debug Filter</Description>
      <Name>Debug Filter</Name>
      <Parameters id="74">
        <Parameter id="75" name="EventOutputFile" defaultValue="" 
                           description="Output file for dumping events" 
                           displayName="Debug Output File" 
                           encrypted="false">
          <valueType type="string"/>
        </Parameter>
      </Parameters>
      <Version>1.0</Version>
    </Filter>
  </FilterList>
  <CurrentDispatcher id="76">
                               --**CHANGED DispatcherName to StreamsDispatcher
    <DispatcherName>StreamsDispatcher</DispatcherName>
                               --**CHANGED reference to point to StreamsDispatcher 
"5"
    <Extension class="Dispatcher" reference="5"/>
                               --**CHANGED default identify name to 
StreamsDispatcher
    <Name>StreamsDispatcher</Name>
    <NeedReload>false</NeedReload>
                               --**ADDED ParameterInsts tag
    <ParameterInsts id="77">
                               --**ADDED ParameterInst tag for username
      <ParameterInst id="78">
        <Name>username</Name>
        <ParameterMetaData reference="7"/>
        <Value>edge</Value>
      </ParameterInst>
                      -**ADDED ParameterInst tag for password
      <ParameterInst id="79">
        <Name>password</Name>
        <ParameterMetaData reference="8"/>
        <Value>oracle</Value>
      </ParameterInst>
                      --**ADDED ParameterInst tag for URL
      <ParameterInst id="80">
        <Name>url</Name>



edgeserver.xml

A-8 Oracle Sensor Edge Server Administrator’s Guide

        <ParameterMetaData reference="9"/>
        <Value>jdbc:oracle:thin:@(description=(address=(host=soclxs3db02)
                      (protocol=tcp)(port=9105))(connect_data=(sid=PRJ1)))</Value>
      </ParameterInst>
    </ParameterInsts>
  </CurrentDispatcher>
  <DeviceGroups id="81">
    <DeviceGroup id="82">
      <DeviceList id="83">
                         --**ADDED Device tag for Intermec reader
        <Device id="84">
          <Name>Intermec Device</Name>
          <DriverName>IntermecDevice</DriverName>
                               --**NOTE make sure that extension reference points 
to IntermecDevice listed above
          <Extension reference="35"/>
          <ParameterInsts id="85">
            <ParameterInst id="86">
              <Name>PortNo</Name>
                               --**NOTE make sure that extension reference points 
to IntermecDevice listed above
              <ParameterMetaData reference="37"/>
              <Value>6543</Value>
            </ParameterInst>
            <ParameterInst id="87">
              <Name>IPAddress</Name>
                               --**NOTE make sure that extension reference points 
to IntermecDevice listed above
              <ParameterMetaData reference="38"/>
              <Value>192.168.0.52</Value>
            </ParameterInst>
            <ParameterInst id="88">
              <Name>AntennaSeqIdList</Name>
                               --**NOTE make sure that extension reference points 
to IntermecDevice listed above
              <ParameterMetaData reference="39"/>
              <Value>12000000</Value>
            </ParameterInst>
            <ParameterInst id="89">
              <Name>AntennaMappedDeviceNameList</Name>
                               --**NOTE make sure that extension reference points 
to IntermecDevice listed above
              <ParameterMetaData reference="40"/>
              <Value>IT500_READER</Value>
            </ParameterInst>
          </ParameterInsts>
          <FilterInsts id="90"/>
        </Device>
      </DeviceList>
      <EventCollectWaitTime>500</EventCollectWaitTime>
      <FilterInsts id="91"/>
      <IsDefault>false</IsDefault>
      <IsSystem>true</IsSystem>
      <Name>Unassigned</Name>
    </DeviceGroup>
  </DeviceGroups>
</EdgeServer>



Troubleshooting B-1

B
Troubleshooting

This appendix describes the following:

■ Section B.1, "Error Messages after Start-Up"

■ Section B.2, "Tag Reads Are Not Dispatched to the Back-End"

■ Section B.3, "Exceptions Thrown When Stopping the Oracle Sensor Edge Server"

■ Section B.4, "Additional Information About the Oracle Sensor Edge Server"

■ Section B.5, "Installation Requirements"

B.1 Error Messages after Start-Up

Problem
After configuration, the Oracle Sensor Edge Server displays error messages while 
starting up, such as:

End tag does not match start tag ’ParameterInst’

or

No such field 
oracle.edge.jmx.model.DispatcherInstanceImpl.ParameterInst

Solution
An invalid XML document might cause this error. Check if the edgeserver.xml file 
is well-formed by opening the edgeserver.xml file with an XML editor or with 
Internet Explorer. In addition, check whether the reference values point to the correct 
ids and verify that all id values in the edgeserver.xml are unique.

B.2 Tag Reads Are Not Dispatched to the Back-End

Problem
The Oracle Sensor Edge Server starts properly, but the tag reads are not dispatched to 
the back-end.

Solution
Check the log file for any problems in starting the device.



Exceptions Thrown When Stopping the Oracle Sensor Edge Server

B-2 Oracle Sensor Edge Server Administrator’s Guide

B.3 Exceptions Thrown When Stopping the Oracle Sensor Edge Server

Problem
Exceptions are thrown when I stop the Oracle Sensor Edge Server.

Solution
Improper shut-down of the device controller might cause exceptions to be thrown. 
Stop the Oracle Sensor Edge Server before the device controller.

B.4 Additional Information About the Oracle Sensor Edge Server

Problem
I need additional information about the Oracle Sensor Edge Server. Where can I find 
more information and access the downloads? Is there a Web site specific to the Oracle 
Sensor Edge Server?

Solution

Oracle Technology Network (http://www.oracle.com/technology/) provides 
the lastest filters, drivers, and the Edge Development Kit for developing extensions to 
the Oracle Sensor Edge Server, as well as information and  tutorials. 

B.5 Installation Requirements
The Oracle Edge Sensor Server requires JDK 1.4.x and free ports.



tag

Glossary-1

Glossary

antenna

Each tag has at least one antenna. On the other side of the communication link, the 
reader must also have an antenna. Some readers can drive multiple antennae at the 
same time. Depending on the protocol, frequency and application, these antennae vary 
from thin strips of metal laid across a surface, to a portal doorway antenna that is 
meters tall

chip

A silicon chip, with embedded memory, is used in a tag. The chip implements the 
wireless protocol and access functions to its embedded memory. Note that in Active 
Tags, this is not a single chip but an entire board. See tag.

device

An end point of a sensor-based architecture, such as an RFID reader, a dry contact, a 
laser diode, carousel, or a robotic picker.

Oracle Sensor Edge Server

The server that resides between all of the readers and the application middle tier. It is 
responsible for interfacing with all of the readers and sending normalized data back to 
the application server.

Radio Frequency Identification (RFID)

RFID is the use of small transponders with embedded Electronic Serial Numbers 
(ESNs) or memory, which transmit identifiers across one or more frequencies. 

reader

A reader reads from, and writes to, the tags to which it is connected. Readers usually 
have serial interfaces used to communicate with a host computer. There is no 
widely-accepted standard for this protocol. The process of retrieving data stored on an 
RFID tag by sending radio waves to the tag and then converting the waves the tag 
sends back into data is known as a read.

reader field

The area of coverage for a reader. If tags are outside of a reader field, then they cananot 
receive radio waves and cannot be read. 

Real Time Location System (RTLS)

A technology that uses radio-frequency to produce real-time location information for 
tagged items.

tag

(Also known as an RFID tag. ) A single unit that contains a chip, one or more 
antennae, and a power source. If it is battery-driven or from a external source, the tag 
is an Active Tag. If the power source is inductive-based (which means that it relies on 
photoelectric effect to generate power from remotely generated radio waves), the tag is 
a Passive Tag. A tag containing data that cannot be changed is a read-only tag. See chip.



tag

Glossary-2



Index-1

Index

D
device groups

elements of, 1-7
devices

creating, 1-16
dispatchers

available to the Oracle Sensor Edge Server, 1-6
configuring the HTTP dispatcher, 1-15
configuring the Nulldispatcher, 1-15
configuring the OC4J JMS dispatcher, 1-13
configuring the Streams dispatcher, 1-11
configuring the Web Services dispatcher, 1-14
setting the current dispatcher, 1-7, 1-10

drivers
available to the Oracle Sensor Edge Server, 1-7
configuing the Simulator, 2-4
configuring pre-seeded drivers, 2-3
configuring the AlienDevice driver, 2-7
configuring the IntermecDevice driver, 2-10
configuring the Patlite driver, 2-16
creating instances of, 1-16
defined in the configuration file, 2-1

E
edgeserver.xml

basic structure, 1-4
Error, B-1
Event type, 1-2
Extension Archive Descriptor, 4-2
Extension Archive files

packaging, 4-4
structure, 4-1
uploading, 4-4

extensions
defining instances, 1-5
Extension Archive files, 4-1
packaging an Extension Archive file, 4-4
structure of, 1-5
uploading Extension Archive files, 4-4

F
filter instances

creating, 1-17, 3-12

prioritizing filters for a device, 3-12
filters

available to the Oracle Sensor Edge Server, 1-7
configuring the Check Tag ID filter, 3-5
configuring the Cross-Reader Redundant 

filter, 3-6
configuring the Debug filter, 3-6
configuring the Pallet Pass Thru filter, 3-9
configuring the Pallet Shelf filter, 3-10
configuring the Pass filter, 3-6
configuring the Shelf filter, 3-7
creating instances of, 1-17, 3-12
defined in the configuration file, 3-1
defining the pre-seeded filters, 3-4
device group filters and device filters, 3-3

I
instances

elements of, 1-8

O
OC4J instance

starting and stopping, 1-9
Oracle Sensor Edge Server

starting and stopping, 1-9

P
pre-seeded drivers

configuring the AlienDevice driver, 2-7
configuring the Intermec driver, 2-10
configuring the Patlite driver, 2-16
configuring the Simulator, 2-4

pre-seeded filters
configuring the Check Tag ID Filter, 3-5
configuring the Cross-Reader Redundant 

filter, 3-6
configuring the Debug filter, 3-6
configuring the Pallet Pass Thru filter, 3-9
configuring the Pallet Shelf filter, 3-10
configuring the Pass filter, 3-6
configuring the Shelf filter, 3-7



Index-2


	Contents
	Send Us Your Comments
	Preface
	Documentation Accessibility
	Structure
	Related Documents
	Conventions
	1 Configuring the Oracle Sensor Edge Server
	1.1 Overview of the Oracle Sensor Edge Server
	1.1.1 Deploying Drivers, Filters and Dispatchers to the Oracle Sensor Edge Server
	1.1.2 Overview of Events

	1.2 Overview of the Oracle Sensor Edge Server Configuration File
	1.2.1 The General Settings and Parameters for the Oracle Sensor Edge Server
	1.2.2 Available Dispatchers, Filters, and Drivers
	1.2.2.1 Dispatchers
	1.2.2.2 Drivers
	1.2.2.3 Filters

	1.2.3 The Current Dispatcher Method for the Oracle Sensor Edge Server
	1.2.4 Filters, Dispatchers and Devices Used by the Oracle Sensor Edge Server
	1.2.4.1 Setting the Parameters for Instances


	1.3 Starting and Stopping the Oracle Sensor Edge Server
	1.3.1 Starting the Oracle Sensor Edge Server by Starting an OC4J Instance
	1.3.2 Stopping Oracle Sensor Edge Server by Stopping the OC4J Instance
	1.3.3 Starting the Oracle Edge Sensor Server From the Command Line

	1.4 Configuring the Dispatchers for an Oracle Sensor Edge Server
	1.4.1 Setting the Current Dispatcher Used by the Oracle Sensor Edge Server
	1.4.1.1 Configuring the Oracle Sensor Edge Server to Use Oracle Streams
	1.4.1.1.1 Post-Installation Steps for the Streams Dispatcher

	1.4.1.2 Configuring the Dispatcher to Send Messages Through OC4J JMS
	1.4.1.2.1 Configuring jms.xml Under the OC4J Container
	1.4.1.2.2 Creating the JMS Dispatcher

	1.4.1.3 Configuring the Dispatcher to Send Event Messages to a Web Service
	1.4.1.4 Configuring the Dispatcher to Send Event Messages Through HTTP
	1.4.1.5 Using the Nulldispatcher


	1.5 Connecting Readers and Sensors
	1.5.1 Creating a Device

	1.6 Enabling Devices to Filter Events
	1.6.1 Creating a Filter Instance


	2 Managing Drivers
	2.1 Managing Drivers
	2.2 Configuring the Pre-Seeded Drivers
	2.2.1 Configuring the EdgeSimulator
	2.2.1.1 Defining the Parameters of the EdgeSimulator
	2.2.1.2 Connecting the Simulator to the Oracle Sensor Edge Server

	2.2.2 Configuring the AlienDevice Driver
	2.2.2.1 Finding the IP Address of the Alien RFID Reader
	2.2.2.2 Connecting the Alien RFID Reader to a Web Browser
	2.2.2.3 Creating a Device for the Alien RFID Reader

	2.2.3 Configuring the IntermecDevice Driver
	2.2.3.1 Installing the IntelliTag IDK
	2.2.3.2 Registering the Serial and PCMCIA Readers
	2.2.3.3 Configuring Readers
	2.2.3.4 Testing the Readers
	2.2.3.5 Installing the Oracle Sensor Edge Server Device Controller
	2.2.3.6 Starting the Oracle Sensor Edge Server Device Controller
	2.2.3.7 Configuring the Oracle Sensor Edge Server to Communication with the Device

	2.2.4 Configuring the Patlite Driver
	2.2.4.1 Installing the Patlite Hardware
	2.2.4.2 Configuring the Oracle Edge Server Device Controller for the Patlite Device
	2.2.4.3 Starting the Device Controller for the Patlite Device
	2.2.4.4 Configuring the Oracle Sensor Edge Server to Communicate with the Device Controller



	3 Managing Filters
	3.1 Managing Filters
	3.1.1 Device- and Device Group-Level Filtering

	3.2 Defining the Parameters of the Pre-Seeded Filters
	3.2.1 Configuring the Check Tag ID Filter
	3.2.2 Using the Cross-Reader Redundant Filter
	3.2.3 Using the Debug Filter
	3.2.4 Configuring the Pass Filter
	3.2.5 Configuring the Shelf Filter
	3.2.5.1 Events Generated by the Shelf Filter

	3.2.6 Configuring the Pallet Pass Thru Filter
	3.2.7 Configuring the Pallet Shelf Filter
	3.2.7.1 Events Generated by the Pallet Shelf Filter


	3.3 Enabling Event Filtering for Devices or Device Groups
	3.3.1 Creating a Filter Instance
	3.3.1.1 Prioritizing Filter Instances for Devices and Device Groups



	4 Managing Extensions
	4.1 Overview of Extensions
	4.2 Extension Archive Files
	4.2.1 Packaging an Extension Archive File

	4.3 Uploading Extensions
	4.4 Extension Class Hierarchy
	4.5 Implementing Extensions
	4.5.1 Extension Context
	4.5.1.1 Retrieving Information About the Instance
	4.5.1.2 Accessing the Runtime Context of an Instance


	4.6 Managing the Parameters of an Instance
	4.6.1 Exposing Custom Parameters
	4.6.2 Retrieving Parameter Values


	A Sample edgeserver.xml File
	A.1 edgeserver.xml

	B Troubleshooting
	B.1 Error Messages after Start-Up
	B.2 Tag Reads Are Not Dispatched to the Back-End
	B.3 Exceptions Thrown When Stopping the Oracle Sensor Edge Server
	B.4 Additional Information About the Oracle Sensor Edge Server
	B.5 Installation Requirements

	Glossary
	Index
	D
	E
	F
	I
	O
	P


