
Oracle� Calendar API

Developer’s Guide

Release 2.5

August, 2002

Part No. B10097-01

This guide contains considerations and reference material for the use of the
Oracle Calendar API.

Oracle Calendar API Developer’s Guide, Release 2.5

Part No. B10097-01

Copyright © 1998, 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments .. vii

Preface.. ix

Intended Audience .. ix
Documentation Accessibility ... ix
Structure... x
Related Documents... x
Conventions.. xi

1 Implementation Considerations

Character Sets .. 1
iCalendar Support .. 1

iCalendar input ... 2
DTSTART, DTEND and DURATION .. 2
SUMMARY... 2
PRIORITY ... 2
CLASS ... 2
STATUS... 3
LOCATION .. 3
ATTENDEE .. 3
ATTACH... 3
DESCRIPTION... 3
CATEGORIES .. 3
VALARM.. 3
iii

UID .. 3
iCalendar output... 4

ORGANIZER ... 4
CLASS ... 4
PRIORITY ... 4
STATUS... 4
DESCRIPTION... 4
CATEGORIES .. 4
DURATION or DTEND ... 4
SUMMARY... 4
DTSTART.. 4
UID .. 5
ATTENDEE .. 5
RESOURCES .. 5
VALARM.. 5

Security Model .. 5
Alarms ... 6
Event Recurrences... 6

Format of returned iCalendar... 6
User identification .. 6
Data Streams .. 8
Access Control ... 10

2 Function Reference

CAPI_AuthenticateAsSysop... 2
CAPI_Connect ... 3
CAPI_CreateCallbackStream ... 5
CAPI_CreateFileStream... 6
CAPI_CreateFileStreamFromFilenames... 8
CAPI_CreateMemoryStream .. 10
CAPI_DeleteEvent .. 13
CAPI_DestroyHandles... 14
CAPI_DestroyStreams ... 15
CAPI_FetchEventByID .. 15
CAPI_FetchEventsByAlarmRange .. 16
iv

CAPI_FetchEventsByRange .. 18
CAPI_GetCapabilities ... 19
CAPI_GetHandle .. 19
CAPI_GetLastStoredUIDs .. 21
CAPI_GetStatusLevels... 23
CAPI_GetStatusString ... 23
CAPI_HandleInfo ... 24
CAPI_Logoff .. 25
CAPI_Logon... 27
CAPI_SetConfigFile ... 30
CAPI_SetIdentity .. 31
CAPI_StoreEvent .. 32

CAPI_STORE_REPLACE... 34
CAPI_STORE_UPDATE... 36
CAPI_STORE_DELPROP... 37

3 Configuration Settings

client_name .. 1
client_version... 2
cncachesize ... 2
emailcachesize ... 2
itemcachesize ... 3
log_activity ... 3
log_modulesinclude ... 4
tzcachesize .. 4

4 Types, Constants and Capabilities

Types.. 1
Typedefs ... 1

CAPIFlag Constants ... 1
Capabilities .. 2

5 Status codes
v

vi

Send Us Your Comments

Oracle Calendar API Developer’s Guide, Release 2.5

Part No. B10097-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 633-3836 Attn: Oracle Collaboration Suite Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Collaboration Suite Documentation Manager
500 Oracle Parkway, Mailstop 2op5
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

This manual contains considerations and reference material for the use of the Oracle
Calendar API, a collection of C-language function calls that provides access to
Oracle’s calendar server.

Intended Audience
This manual is intended for any programmers and developers who intend to use
the Oracle Calendar API to create custom applications for calendar access.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.
ix

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
This manual contains five chapters:

Chapter 1
This chapter contains an overview of various elements of the Oracle Calendar API,
as well as items to consider before implementation.

Chapter 2
This chapter contains detailed documentation on the functions provided with this
development kit.

Chapter 3
This chapter contains information on the configuration parameters that can be
supplied to the Oracle Calendar API.

Chapter 4
This chapter contains a variety of information on type definitions, constants and
capabilities.

Chapter 5
This chapter contains an alphabetical list and brief explanation of every status code
CAPI provides as feedback.

Related Documents
For more information, see the following manuals in the Oracle Collaboration Suite
documentation set:

■ Oracle Calendar API Release Notes

■ Oracle Calendar Server Administrator’s Guide
x

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
xi

xii

Implementation Consider
1

Implementation Considerations

This chapter discusses a variety of factors to be taken into consideration in your
Oracle Calendar API (CAPI) implementations:

■ Character Sets

■ iCalendar Support

■ Security Model

■ Alarms

■ Event Recurrences

■ User identification

■ Data Streams

■ Access Control

Character Sets
CAPI only supports text encoded in UTF-8. Strings passed to CAPI_Logon and
CAPI_GetHandle must be in UTF-8. All output data is in UTF-8. Input must be in
UTF-8; this means that MIME entities which specify a character set must specify
UTF-8 or US-ASCII (MIME defaults to US-ASCII if no character set is specified).

iCalendar Support
CAPI uses the iCalendar format (as specified in RFC 2445) for dealing with calendar
data. iCalendar information saved via CAPI can be retrieved later. However, not all
iCalendar data is actively supported by this revision of CAPI. In particular,
VTODO, VFREEBUSY and VJOURNAL components are not supported.
ations 1-1

iCalendar Support
iCalendar input
The essential iCalendar data is mapped to native data structures. Data for these
properties will not always be completely preserved. Some properties are stored only
per event, rather than per instance, so only one value is preserved. The following
are affected:

DTSTART, DTEND and DURATION
If DTEND is present, it will be used to calculate the event duration; the actual end
time is not stored. As event times are measured in minutes, the start time and
duration will have their 'seconds' component set to zero.

SUMMARY
This property is mapped to the event title. When using a 5.0 calendar server this
value will be truncated to 64 bytes.

PRIORITY
This property is mapped to one of the calendar server's 5 priority values. This
property is stored per event.

CLASS
This property is mapped to access level. The mapping between iCalendar and the
calendar server's access levels is as follows:

From iCalendar to calendar server:

■ PUBLIC->PUBLIC

■ PRIVATE->PERSONAL

■ CONFIDENTIAL->CONFIDENTIAL

From calendar server to iCalendar:

■ PUBLIC->PUBLIC

■ PERSONAL->PRIVATE

■ X-CST-NORMAL -> NORMAL

■ NORMAL->PRIVATE

■ CONFIDENTIAL->CONFIDENTIAL

This property is stored per event.
1-2 Developer’s Guide

iCalendar Support
STATUS
A value of TENTATIVE indicates a tentative event. Any other value (even
CANCELLED) will indicate a non-tentative event.

LOCATION
This is stored in the location field. When using a 5.0 calendar server, this value will
be truncated to 32 bytes.

ATTENDEE
When storing "ATTENDEE" properties an attempt will be made to correlate
attendee properties with the people to whom they refer by comparing them with
the supplied handles. If an attendee property represents a calendar user and there is
no corresponding handle for that user then the calendar user will not be invited to
the event.

ATTACH
Currently this property is ignored.

DESCRIPTION
This is set to the Event's details. It will be truncated if it is longer than 32 Kb. This
property is stored per event.

CATEGORIES
This is mapped to the event's type. Possible values are "APPOINTMENT", "DAILY
NOTE", "DAY EVENT", and "HOLIDAY". The event type is stored per event.

VALARM
Alarms are preserved separately for each attendee of an event. Users will not be
able to see each other's alarms.

UID
If a UID is not specified in stored data the server will assign a UID. These assigned
UIDs are accessible through the CAPI_GetLastStoredUIDs function described
below.

Other iCalendar data will be preserved and returned unchanged.
Implementation Considerations 1-3

iCalendar Support
iCalendar output
When data created with Oracle calendar clients is output, the following is a list of
available properties, and how they are obtained. Other properties stored with CAPI
are also available.

Instances of an event are all returned in separate VEVENT objects.

ORGANIZER
The event owner.

CLASS
The event access level.

PRIORITY
The event priority.

STATUS
A tentative event will have a TENTATIVE status. Non-tentative events will be
marked as CONFIRMED. No other STATUS values are generated.

DESCRIPTION
The event details.

CATEGORIES
The event type.

DURATION or DTEND
The duration of the event.

SUMMARY
The event title.

DTSTART
The start time of the event, in GMT.
1-4 Developer’s Guide

Security Model
UID
An id generated from internal ids.

ATTENDEE
A property is generated for each ATTENDEE. The parameters PARTSTAT, ROLE,
CUTYPE, and CN are obtained from the attendee and user information.

RESOURCES
Converted from native resource attendees.

VALARM
Converted from native reminders.

Security Model
There are two parts to the security model: storing and fetching events. These are
handled by different security paradigms.

The owner of an event can add or delete any property of that event. When an
"ATTENDEE" property is created for a calendar user, and a handle has been
supplied for that user, the property is created with default values for its parameters.
The owner of the event cannot modify the parameters of that property, only the user
to whom it corresponds can do that.

When a user is updating their "ATTENDEE" property no error will be returned if
there is an attempt to modify other event data, but the modifications will not occur.

It is possible for a user to refuse invitations from another user. In that case an
"ATTENDEE" property will not be created for that user and the status for that user's
handle will indicate that the invitation was refused. This may also occur when
attempting to double book resources.

When fetching events the security model is based on the iCalendar classification of
the event. Users grant other users different access levels to different classes of
events. The three access levels are: no read access, read the start and end times of
the event only, and read all details of the event. When fetching events with CAPI
this results in some events for which only the "DTSTART", "DURATION" and
"DTEND" properties will be returned. All other events will be invisible or all of
their properties will be returned.
Implementation Considerations 1-5

Alarms
CAPI does not allow users to modify the security records which govern this
behaviour.

Alarms
Alarms are considered private to each user, so users cannot read or write alarms for
each other. Since users cannot read each others alarms it is not possible for users to
do fetches by alarm range on each other's calendars. Any user may set an alarm for
an event which they are attending, so the same events can have a different alarm
when fetched by a different user.

Alarms will be returned by a fetch by id on the current user's agenda, and in fetches
by alarm range. The alarm always applies to the logged in user.

Event Recurrences
All event recurrences are expanded into separate recurrence dates. This affects
events which are stored with "RRULE" properties. Once an event is stored any
"RRULE" and "EXRULE" properties will be lost.

Format of returned iCalendar
When fetching events, iCalendar data is returned with a separate "VEVENT"
component for each instance of a recurring event. This may result in a lot of
repeated data for events with many instances. This behaviour may change in the
future.

User identification
Users are identified to CAPI by a userid string, or by using a search string
specifying, for example, the user's name. The string format is flexible and allows the
caller to specify a number of optional parameters. Depending on the server
configuration, some of these options (such as the Node ID) may be required in the
identification string. The same user identification string format is used both at logon
and when obtaining a handle, however not all options will be applicable in both
cases.

Logging into the server as a resource is not supported.

All options are specified using key-value pairs. The entire string is a collection of
such pairs. The userid is separated from the extended data by an ASCII '?' character.
The character immediately following this one is the delimiter of each subsequent
1-6 Developer’s Guide

User identification
field value pair. The delimiter may be any ASCII character except a digit, a letter,
NUL, '*' or '='. The rest of the string consists of field-value pairs separated by the
chosen delimiter. The string is terminated by a delimiter followed by a NUL
character. Field value pairs consist of a field name, followed by an equal sign ('='),
followed by the value. The value is a string which does not contain the delimiter
character, the NUL character, and for user identification strings, the slash ('/') (aka
solidus) character.

For example, the field name G denotes the given name, and S denotes the surname.
The following is a sample legal string for identifying a user. No userid is specified,
so the optional parameters would used to search for the user. (Note that if a search
results in multiple matches, CAPI will return an error to the caller; a userid is the
best method of specifying a user, if it is available.) Even with no userid, we still
have the question mark '?' character separating the userid from the extended string.
The character immediately following, in this case a slash '/', is used as the delimiter.
Note that the string ends with the delimiter character, and is NUL terminated.

?/S=Bunny/G=Bugs/

Any field used for identifying a user may be terminated with a '*', which is used as
a wildcard. This is not available for specifying nodes. The following will also match
the above user:

?/S=Bu*/G=Bugs/

Remember that if multiple users match a given search string, the CAPI call will
return an error.

Resources have a different name structure; they are identified with the single field
RS which indicates resource name.

The following grammar (in ABNF form, as described in RFC 2234) describes legal
logon strings:

The description below diverges from ABNF in that values in double quotes are
case-sensitive, ie. field names must be in uppercase. Also, the delimiter character
must be the same in all cases in a single string.

logon-string = userid "?" [DELIMITER ext-string] %x00

userid = *(ALPHA / DIGIT / "-")

ext-string = 1*(field)

field = (node / company-domain / surname / given-name / initials / generation /
org-unit / organization / country / admin / private / resource-name) DELIMITER
Implementation Considerations 1-7

Data Streams
Specifying a particular field more than once is, while silly, still legal, although only
the last field will be used.

node = "ND=" node-number
node-number = 1*DIGIT
company-domain = "CD=" 1*VALUE-CHAR
surname = "S=" 1*VALUE-CHAR ["*"]
given-name = "G=" 1*VALUE-CHAR ["*"]
initials = "I=" 1*VALUE-CHAR ["*"]
generation = "X=" 1*VALUE-CHAR ["*"]
org-unit = ("OU1" / "OU2" / "OU3" / "OU4") "=" 1*VALUE-CHAR ["*"]
organization = "O=" 1*VALUE-CHAR ["*"]
country = "C=" 1*VALUE-CHAR ["*"] DELIMITER
admin = "A=" 1*VALUE-CHAR ["*"] DELIMITER
private = "P=" 1*VALUE-CHAR ["*"] DELIMITER
resource-name = "RS=" 1*VALUE-CHAR ["*"] DELIMITER

DELIMITER = %x01-%x29 / %x2B-%x2F / %x3A-%x3C / %x3E-%x40 / %x5B-%x60 /
%x7B-%x7F

Note also that the DELIMITER cannot be used as a VALUE-CHAR.

VALUE-CHAR = %x01-29 / %x2B-2E / %x30-7F

Data Streams
CAPI deals with MIME (see RFC 2045) encapsulated iCalendar objects for both
input and output. A single request may fetch data from a list of calendars. A reply
to such a request will consist of a separate iCalendar object for each calendar in the
list, inside separate MIME parts. That is, a request for events from calendarA and
calendarB results in a MIME stream of this form:

... MIME envelope
--MIMEBOUNDARYasdfasdf
Content-type: text/calendar
Content-Transfer-Encoding: quoted-printable
BEGIN:VCALENDAR
... events from calendarA
END:VCALENDAR

--MIMEBOUNDARYasdfasdf
Content-type: text/calendar
Content-Transfer-Encoding: quoted-printable
1-8 Developer’s Guide

Data Streams
BEGIN:VCALENDAR
... events from calendarB
END:VCALENDAR

--MIMEBOUNDARYasdfasdf--

The order of the iCalendar objects corresponds to the order of the calendars in the
request list. If a request results in an empty solution set, the return stream will be an
empty iCalendar object. If there is any sort of error with a calendar the iCalendar
reply object corresponding to that calendar will be empty.

For example, in the example above if calendarB was deleted by someone else just
prior to an attempt to fetch data, the resulting stream would have the following
form:

Content-type: text/calendar
Content-Transfer-Encoding: 7bit
BEGIN:VCALENDAR
... events from calendarA
END:VCALENDAR
Content-type: text/calendar
Content-Transfer-Encoding: 7bit
BEGIN:VCALENDAR
END:VCALENDAR

On a successful fetch the "VCALENDAR" will contain many "VEVENT"
components, each containing the requested properties, if available. iCalendar allows
these different components to contain information about different instances of the
same event. The returned data may use any of the following methods to give
instance specific information:

■ Data for each instance can be placed in a different "VEVENT" component, with
a different "DTSTART".

■ Data for multiple instances can be placed in a single "VEVENT" by identifying
instances with the properties "RRULE", "RDATE", "EXRULE" and "EXDATE"

■ Hybrids of the above two methods allow grouping of multiple instances which
share all properties except their start time in a single "VEVENT" component,
and returning many such components.

Please note that the "DTSTART" property returned indicates the start time of the
first instance identified in the "VEVENT" component in which it resides and not the
start time of the first instance of the event in the Calendar Store. Furthermore the
number of "VEVENT" components returned in the calendar has no relation to the
Implementation Considerations 1-9

Access Control
number of instances of the event. Consequently, when fetching events, if the
recurrence identifying properties are not requested, there will be no way to
determine how many instances exist, and to which instances each returned property
applies.

When storing, data supplied to CAPI must consist of a single "VCALENDAR"
component inside a single MIME part. The calendar may contain many
"VEVENTS", but these must all be information about a single event. For example,
this is a valid input:

Content-type: text/calendar
Content-Transfer-Encoding: 7bit
BEGIN:VCALENDAR
BEGIN:VEVENT
event properties
END:VEVENT
BEGIN:VEVENT
event properties
END:VEVENT
END:VCALENDAR

Access Control
Access to data through CAPI is controlled by the calendar server. It is based on the
requester's identity and the data / operation being requested. CAPI provides an
interface to request reading any combination of properties. Properties that the
requesting user is not authorized to read will not be returned in the CAPI stream
and an appropriate status code will be returned by the function call. However, if the
user is allowed to read the proprty but it does not exist in the events requested, the
property will not be present in the CAPI stream and the return status is not affected.
For example, if the VEVENT.GEO property is requested, and it exists, but the
requester does not have permission to read it, the resulting CAPI stream will not
contain the VEVENT.GEO property in the data stream and an access violation status
code will be returned. If the requester has permission to read the VEVENT.GEO
property, but the components do not have a GEO property value, the data stream
will not contain the VEVENT.GEO property but no error will be returned because of
the missing property.

Users will only have access to modify the events to which they are invited, or which
they own. If the user is the owner of the event they will have full privileges to
modify the event (except for modifying other users' attendance information),
otherwise if they are invited to the event they will have restricted privileges to
1-10 Developer’s Guide

Access Control
modify information relating to their own attendance, such as acceptance and
alarms.

CAPI will silently ignore attempts to modify properties that the user is not
permitted to modify. This simplifies the implementation of modification in these
cases.

Errors may occur for specific agendas when attempting to modify events or when
creating events. These errors will be returned using a supplied array of status
values, allowing the rest of the operation to proceed.
Implementation Considerations 1-11

Access Control
1-12 Developer’s Guide

Function Refe
2

Function Reference

This chapter contains detailed information on the following functions:

■ CAPI_AuthenticateAsSysop

■ CAPI_Connect

■ CAPI_CreateCallbackStream

■ CAPI_CreateFileStream

■ CAPI_CreateFileStreamFromFilenames

■ CAPI_CreateMemoryStream

■ CAPI_DeleteEvent

■ CAPI_DestroyHandles

■ CAPI_DestroyStreams

■ CAPI_FetchEventByID

■ CAPI_FetchEventsByAlarmRange

■ CAPI_FetchEventsByRange

■ CAPI_GetCapabilities

■ CAPI_GetHandle

■ CAPI_GetLastStoredUIDs

■ CAPI_GetStatusLevels

■ CAPI_GetStatusString

■ CAPI_HandleInfo

■ CAPI_Logoff
rence 2-1

CAPI_AuthenticateAsSysop
■ CAPI_Logon

■ CAPI_SetConfigFile

■ CAPI_SetIdentity

■ CAPI_StoreEvent

CAPI_AuthenticateAsSysop
CAPIStatus CAPI_AuthenticateAsSysop (const char * in_password,

const char * in_host,
const char * in_nodeName,
CAPIFlag in_flags,
CAPISession * io_session

)

Logon as sysop.

Once logged on, the sysop can assume the identity of any user by calling CAPI_
SetIdentity().

A node should always be specified since masternode and calendar-domain
functionality is not available during logon as sysop.

If the host parameter specifies ACE mechanisms, these will be ignored. The admin
default ACE settings from the calendar server will be used.

Sysop authentication is only available with version 5.3 and newer servers. An error
will be returned if the provided host does not support this feature. A calendar
server may be configured to refuse sysop logon via CAPI in which case a security
error will be returned.

The operations available to sysops are limited to:

■ logging off by calling CAPI_Logoff()

■ switching identity to a user by calling CAPI_SetIdentity()

Once the identity has been set to a user, all operations will be performed as if that
user had logged in.

See CAPI_Connect() for the format of the in_host parameter.

Parameters:
■ in_password : Sysop's password. May be NULL.

■ in_host : Calendar server host name (optional port no.)
2-2 Developer’s Guide

CAPI_Connect
■ in_nodeName : node ID or alias to connect to as sysop. May be NULL for
default node.

■ in_flags : Bit flags modifying behaviour. This must be CAPI_FLAG_NONE
currently.

■ io_session : Session opened by CAPI_Connect

Returns:
CAPIStatus

Cleanup Required:
The sessions created by calling this routine must be destroyed by calling CAPI_
Logoff.

Example: Connect to myNode on the server running on the default port of
calserver.acme.com, to authenticate as sysop:

{
CAPIStatus myStatus = CAPI_AuthenticateAsSysop("theSysopPassword",

"calserver.acme.com",
"myNode",
CAPI_FLAG_NONE,
&mySession);

}

Example: Connect to the default node on the server running on the default port of
calserver.acme.com, to authenticate as sysop:

{
CAPIStatus myStatus = CAPI_AuthenticateAsSysop("theSysopPassword",

"calserver.acme.com",
NULL,
CAPI_FLAG_NONE,
&mySession);

}

CAPI_Connect
CAPIStatus CAPI_Connect (const char * in_host,

CAPIFlag in_flags,
CAPISession * out_session

)

Function Reference 2-3

CAPI_Connect
Establish a connection with a calendar service.

The session obtained in this manner can only be used with CAPI_GetCapabilities,
CAPI_Logon or CAPI_Logoff. The session cannot be used to perform any other
calendar operations until a user has authenticated using CAPI_Logon.

The format of the in_host parameter is:

host-string = hostname "?" ext-param x00
Nul-terminated string

hostname = *(ALPHA / DIGIT / ".") [":" port-number]
Identifies a calendar store, or calendar domain server (CDS)

port-number = 1*DIGIT
Identifies the port on which the server is listening (optional). In most cases this
should be left out so as to use the default port number

Parameters:
■ in_host : calendar server host (with optional port #)

■ in_flags : bit flags

■ out_session : returns new session

Returns:
CAPIStatus

Example:

{
CAPIStatus myStatus = CAPI_STAT_OK;
CAPISession mySession = NULL;
myStatus = CAPI_connect("calserver.acme.com", CAPI_FLAG_NONE, &mySession);

}

Example: Connect to port 12345 on host calserver.acme.com:

{
CAPIStatus myStatus = CAPI_STAT_OK;
CAPISession mySession = NULL;
myStatus = CAPI_connect("calserver.acme.com:12345", CAPI_FLAG_NONE, &mySession);

}

2-4 Developer’s Guide

CAPI_CreateCallbackStream
CAPI_CreateCallbackStream
CAPIStatus CAPI_CreateCallbackStream (CAPISession in_session,

CAPIStream * out_stream,
CAPICallback in_sendCallback,
void * in_sendUserData,
CAPICallback in_recvCallback,
void * in_recvUserData,
CAPIFlag in_flags

)

A callback stream can be used to either supply data to, or receive data from CAPI.

C function pointers are given to CAPI for each action (send, receive) which CAPI
will call to either read or send data.

During a CAPI_Store...() call, CAPI will call the function in_sendCallback passing in
the value in_sendUserData (which is typically used to store some context to be used
by the callback function).

During a CAPI_Fetch...() call, CAPI will call the function in_recvCallback passing in
the value in_recvUserData (which is typically used to store some context to be used
by the callback function).

Both types of callback functions use the same function signature:

typedef int (*CAPICallback)(
void * in_userData, // user-defined data (the value supplied in

// CAPI_CreateCallbackStream)
char * io_data, // buffer to read or write
size_t in_dataSize, // the number of characters to read or write
size_t * out_datSize); // the number of characters read or written

)

The return values from the callbacks must be:

Send callback:

■ CAPI_CALLBACK_CONTINUE: there is more data to be read from the stream

■ CAPI_CALLBACK_DONE: there is no more data to be read from the stream

■ a positive integer: an error has occurred. This positive integer will be returned
as part of the CAPIStatus returned in bit 5 with the value CAPI_STAT_API_
CALLBACK_ERROR

Receive callback:
Function Reference 2-5

CAPI_CreateFileStream
■ CAPI_CALLBACK_CONTINUE: no error

■ a positive integer: an error has occurred (e.g. the stream cannot receive any
more data). This positive integer will be returned as part of the CAPIStatus
returned in bit 5 with the value CAPI_STAT_API_CALLBACK_ERROR

When CAPI has finished writing data to the receive callback, the callback will be
called with in_dataSize == 0.

In many applications, it is easier to use either a memory stream, or file stream than a
callback stream.

Parameters:
■ in_session : login session handle

■ out_stream : on output, will point to new stream.

■ in_sendCallback : send data callback

■ in_sendUserData : a value which will be passed to in_sendCallback

■ in_recvCallback : receive data callback

■ in_recvUserData : a value which will be passed to in_recvCallback

■ in_flags : bit flags (must be CAPI_FLAG_NONE at this time)

Cleanup Required:
The stream returned by this function must be destroyed by calling CAPI_
DestroyStreams()

Returns:
CAPIStatus

Return values:
CAPI_STAT_API_NULL : both supplied callbacks were NULL

See also:
CAPI_CreateMemoryStream() , CAPI_CreateFileStreamFromFilenames()

CAPI_CreateFileStream
CAPIStatus CAPI_CreateFileStream (CAPISession in_session,
2-6 Developer’s Guide

CAPI_CreateFileStream
CAPIStream * out_stream,
FILE * in_readFile,
FILE * in_writeFile,
CAPIFlag in_flags

)

Creates file stream to allow CAPI to read from or write to open files.

For compatibility reasons, it is safer to use CAPI_CreateFileStreamFromFilenames
which will prevent the need for passing FILE * variables between your application
and CAPI.

Files must have been opened using fopen() with an appropriate mode.

Parameters:
■ in_session : login session handle

■ out_stream : in output, will point to new stream

■ in_readFile : FILE * to read from

■ in_writeFile : FILE * to write to

■ in_flags : bit flags (must be CAPI_FLAG_NONE at this time)

Returns:
CAPIStatus

Example: Store events from the file "events.ics":

FILE * myFileFullOfMIMEEncapsulatediCal = fopen("events.ics", "rb");
if (myFileFullOfMIMEEncapsulatediCal != NULL)
{

CAPIStream myInputStream = NULL;
CAPIStatus status = CAPI_CreateFileStream(mySession,

&myInputStream,
myFileFullOfMIMEEncapsulatediCal,
NULL, // no output file
CAPI_FLAG_NONE);

if (status == CAPI_STAT_OK)
{

status = CAPI_StoreEvent(mySession,
myHandles,
numHandles,
handleStatus,
CAPI_STORE_REPLACE,
myInputStream);
Function Reference 2-7

CAPI_CreateFileStreamFromFilenames
}
fclose(myFileFullOfMIMEEncapsulatediCal);
CAPI_DestroyStreams(mySession,

&myInputStream,
1,
CAPI_FLAG_NONE);

}

Example: Fetch events and write them to the file "myAgenda.ics":

FILE * outputFile = fopen("myAgenda.ics", "wb");
if (outputFile != NULL)
{

CAPIStream myOutputStream = NULL;
CAPIStatus status = CAPI_CreateFileStream(mySession,

&myOutputStream,
NULL, // no input file
outputFile,
CAPI_FLAG_NONE);

if (status == CAPI_STAT_OK)
{

status = CAPI_FetchEventsByRange(mySession,
myHandles,
numHandles,
handleStatus,
CAPI_FLAG_NONE,
"20020722T000000",
"20020722T235900",
NULL,
0,
myOutputStream);

}
fclose(outputFile);
CAPI_DestroyStreams(mySession,

&myOutputStream,
1,
CAPI_FLAG_NONE);

}

CAPI_CreateFileStreamFromFilenames
CAPIStatus CAPI_CreateFileStreamFromFilenames (CAPISession in_session,

CAPIStream * out_stream,
const char * in_readFileName,
const char * in_readMode,
const char * in_writeFileName,
2-8 Developer’s Guide

CAPI_CreateFileStreamFromFilenames
const char * in_writeMode,
CAPIFlag in_flags

)

Creates file stream to allow CAPI to read from or write to files.

Parameters:
■ in_session : login session handle

■ out_stream : in output, will point to new stream

■ in_readFileName : name of file to read from

■ in_readMode : mode to pass to fopen() while opening in_readFileName

■ in_writeFileName : name of file to write to

■ in_writeMode : mode to pass to fopen() while opening in_writeFileName

■ in_flags : bit flags (must be CAPI_FLAG_NONE at this time)

Returns:
CAPIStatus

Return values:
■ CAPI_STAT_SERVICE_FILE_MODE : an invalid mode was passed in

■ CAPI_STAT_SERVICE_FILE_OPEN : failed to open a file

Example: Store events from the file "events.ics":

CAPIStream myInputStream = NULL;
CAPIStatus status = CAPI_CreateFileStreamFromFilenames(mySession,

&myInputStream,
"events.ics",
"rb",
NULL, // no output file
NULL, // no output file mode
CAPI_FLAG_NONE);

if (status == CAPI_STAT_OK)
{

status = CAPI_StoreEvent(mySession,
myHandles,
numHandles,
handleStatus,
CAPI_STORE_REPLACE,
myInputStream);
Function Reference 2-9

CAPI_CreateMemoryStream
CAPI_DestroyStreams(mySession,
&myInputStream,
1,
CAPI_FLAG_NONE);

}

Example: Fetch events and write them to the file "myAgenda.ics":

CAPIStream myOutputStream = NULL;
CAPIStatus status = CAPI_CreateFileStreamFromFilenames(mySession,

&myOutputStream,
NULL, // no input file
NULL, // no input file mode
"myAgenda.ics",
"wb",
CAPI_FLAG_NONE);

if (status == CAPI_STAT_OK)
{

status = CAPI_FetchEventsByRange(mySession,
myHandles,
numHandles,
handleStatus,
CAPI_FLAG_NONE,
"20020722T000000",
"20020722T235900",
NULL,
0,
myOutputStream);

CAPI_DestroyStreams(mySession,
&myOutputStream,
1,
CAPI_FLAG_NONE);

}

CAPI_CreateMemoryStream
CAPIStatus CAPI_CreateMemoryStream (CAPISession in_session,

CAPIStream * out_stream,
const char * in_readBuffer,
const char ** out_writeBufferPtr,
CAPIFlag in_flags

)

A memory stream uses data buffers to pass data between your application and
CAPI.

This is often the simplest type of stream to use.
2-10 Developer’s Guide

CAPI_CreateMemoryStream
Read buffers are read by CAPI during CAPI_Store... calls and write buffers are
written to by CAPI during CAPI_Fetch... calls. The read buffers are managed by
your application, whereas CAPI will allocate and free the write buffers. The write
buffer is freed by CAPI when the memory stream is destroyed.

Parameters:
■ in_session : login session handle

■ out_stream : on output, will point to new stream.

■ in_readBuffer : buffer for CAPI to read from

■ out_writeBufferPtr : This address will point to the buffer CAPI is writing into.

■ in_flags : bit flags (must be CAPI_FLAG_NONE at this time)

Cleanup Required:
The stream returned by this function must be destroyed by calling CAPI_
DestroyStreams.

Returns:
CAPIStatus

Return values:
CAPI_STAT_API_NULL : both supplied buffers were NULL

Example: Store events from the buffer "events"

const char events[] = "MIME-Version: 1.0\n"
"Content-Type: text/calendar\n"
"Content-Transfer-Encoding: quoted-printable\n\n"
"BEGIN:VCALENDAR\n"
"VERSION:2.0\n"
...etc
"END:VCALENDAR\n";

CAPIStream myInputStream = NULL;
CAPIStatus status = CAPI_CreateMemoryStream(mySession,

&myInputStream,
events,
NULL, // no write buffer
CAPI_FLAG_NONE);

if (status == CAPI_STAT_OK)
{

Function Reference 2-11

CAPI_CreateMemoryStream
status = CAPI_StoreEvent(mySession,
myHandles,
numHandles,
handleStatus,
CAPI_STORE_REPLACE,
myInputStream);

CAPI_DestroyStreams(mySession,
&myInputStream,
1,
CAPI_FLAG_NONE);

}

Example: Fetch events and write them to a buffer

const char * todaysEvents = NULL;
CAPIStream myOutputStream = NULL;
CAPIStatus status = CAPI_CreateMemoryStream(mySession,

&myOutputStream,
NULL, // no read buffer
&todaysEvents,
CAPI_FLAG_NONE);

if (status == CAPI_STAT_OK)
{

status = CAPI_FetchEventsByRange(mySession,
myHandles,
numHandles,
handleStatus,
CAPI_FLAG_NONE,
"20020722T000000",
"20020722T235900",
NULL,
0,
myOutputStream);

if (status == CAPI_STAT_OK)
{

printf("Today's events:\n%s", todaysEvents);
}
CAPI_DestroyStreams(mySession,

&myOutputStream,
1,
CAPI_FLAG_NONE);

}

2-12 Developer’s Guide

CAPI_DeleteEvent
CAPI_DeleteEvent
CAPIStatus CAPI_DeleteEvent (CAPISession in_session,

CAPIHandle * in_handles,
int in_numHandles,
CAPIStatus * io_status,
CAPIFlag in_flags,
const char * in_UID,
const char * in_RECURRENCEID,
int in_modifier

)

This function deletes the specified event from the specified agendas.

The events to delete are identified by the UID, recurrence ID and modifiers. If the
recurrence ID is not specified it is assumed that all recurrences should be deleted.
The event is only removed from the agendas specified by the supplied
CAPIHandles.

Different agendas may have different events with the same UID, at most one of
which the current user may be able to modify. Each element in the array of errors
may be set to indicate that there was no such UID, that the current user cannot
modify that event, or that the event was found, and deleted from the agenda (OK).
If no event could be deleted from any agenda the returned status will be fatal. If any
agenda had a security error, the returned status will be a security error. If no agenda
had a security error, but at least one had a no such UID error, then the returned
status will be no such UID. Otherwise the returned status will be OK, (Unless an
error occured in processing).

Parameters:
■ in_session : login session handle

■ in_handles : calendar(s) from which to delete events

■ in_numHandles : number of handles in in_handles

■ io_status : array (preallocated) to hold 1 status/handle

■ in_flags : bit flags

■ in_UID : UID of the event to delete

■ in_RECURRENCEID : recurrence-id, NULL means ignore. Must be a
NUL-terminated string or NULL.

■ in_modifier : one of:
Function Reference 2-13

CAPI_DestroyHandles
– CAPI_THISINSTANCE

– CAPI_THISANDPRIOR

– CAPI_THISANDFUTURE

Returns:
CAPIStatus

CAPI_DestroyHandles
CAPIStatus CAPI_DestroyHandles (CAPISession in_session,

CAPIHandle * io_handles,
int in_numHandles,
CAPIFlag in_flags

)

Destroy handles returned by CAPI_GetHandle().

Parameters:
■ io_session : login session handle

■ io_handles : Array of handles (returned by CAPI_GetHandle) to destroy

■ in_handleCount : The size of the handle array

■ in_flags : bit flags (none at this time; set to CAPI_FLAG_NONE)

Returns:
CAPIStatus

Example:

{
CAPIHandle h1, h2;
CAPI_GetHandle(mySession, "arthur", CAPI_FLAG_NONE, &h1);
CAPI_GetHandle(mySession, "tim...", CAPI_FLAG_NONE, &h2);
...
CAPIHandle handles[] = {h1, h2};
CAPI_DestroyHandles(mySession, handles, 2, CAPI_FLAG_NONE);

}

2-14 Developer’s Guide

CAPI_FetchEventByID
CAPI_DestroyStreams
CAPIStatus CAPI_DestroyStreams (CAPISession in_session,

CAPIStream * in_streams,
int in_numStreams,
CAPIFlag in_flags

)

This function destroys streams created by the various CAPI_CreateXXXStream
functions.

Parameters:
■ in_session : the session to which streams are associated. Must be a session

returned by CAPI_Logon

■ in_streams : array of streams to destroy.

■ in_numStreams : the number of streams in in_streams to destroy

■ in_flags : bit flags modifying behavior. Must be CAPI_FLAG_NONE at this
time.

Returns:
CAPIStatus

CAPI_FetchEventByID
CAPIStatus CAPI_FetchEventByID (CAPISession in_session,

CAPIHandle in_handle,
CAPIFlag in_flags,
const char * in_UID,
const char * in_RECURRENCEID,
int in_modifier,
const char ** in_requestProperties,
int in_numProperties,
CAPIStream in_stream

)

This function fetches an event from the server using its iCalendar UID.

First the event with the specified UID is retrieved from the specified agenda. If the
property list is not NULL the event is stripped to include only those specified
properties. The event is then encapsulated in a calendar object inside a MIME object
and written to the supplied stream.
Function Reference 2-15

CAPI_FetchEventsByAlarmRange
If the event cannot be found an error is returned and nothing is written to the
stream. If a property is requested, but cannot be returned for security reasons a
non-fatal error is returned.

Parameters:
■ in_session : login session handle

■ in_handle : calendar from which to fetch events

■ in_flags : bit flags

■ in_UID : UID of the event to fetch

■ in_RECURRENCEID : recurrence-id, NULL means ignore

■ in_modifier : one of:

– CAPI_THISINSTANCE

– CAPI_THISANDPRIOR

– CAPI_THISANDFUTURE only used if recurrence-id is non-NULL

Parameters:
■ in_requestProperties : array of iCalendar properties to return (NULL ==>

return default set of properties)

■ in_numProperties : number of properties in in_requestProperties

■ in_stream : stream for CAPI to write into

Returns:
CAPIStatus

CAPI_FetchEventsByAlarmRange
CAPIStatus CAPI_FetchEventsByAlarmRange (CAPISession in_session,

CAPIHandle * in_handles,
int in_numHandles,
CAPIStatus * io_status,
CAPIFlag in_flags,
const char * in_DTSTART,
const char * in_DTEND,
const char ** in_requestProperties,
int in_numProperties,
CAPIStream in_stream
2-16 Developer’s Guide

CAPI_FetchEventsByAlarmRange
)

This function downloads events with alarms which fall in the specified time range
and returns them as MIME-Encapsulated iCalendar data via the CAPIStream.

For each handle; events are downloaded from that handle's associated agenda, as
long as the event has an alarm which falls in the time range between the indicated
start and end times. If in_requestProperties is non-NULL the events are stripped to
include only the indicated properties. The objects are then sent to the CAPIStream.

A single MIME multipart object is written to the stream. A part is created in the
MIME object for each handle which was passed. Each part contains a single
Calendar object. The calendar object will contain any events that were found on the
indicated agenda. The order of the returned calendar objects corresponds to the
order of the received handles.

If any of the indicated properties are not available for security reasons a non-fatal
error will be returned.

Parameters:
■ in_session : login session handle

■ in_handles : calendar(s) from which to fetch events

■ in_numHandles : number of handles in in_handles

■ io_status : array (preallocated) to hold 1 status/handle

■ in_flags : bit flags

■ in_DTSTART : range start time eg "20010709T000000Z"

■ in_DTEND : range end time eg "20020709T000000Z"

■ in_requestProperties : array of iCalendar properties to return (NULL ==>
return default set of properties)

■ in_numProperties : number of properties in in_requestProperties

■ in_stream : stream for CAPI to write into

Returns:
CAPIStatus
Function Reference 2-17

CAPI_FetchEventsByRange
CAPI_FetchEventsByRange
CAPIStatus CAPI_FetchEventsByRange (CAPISession in_session,

CAPIHandle * in_handles,
int in_numHandles,
CAPIStatus * io_status,
CAPIFlag in_flags,
const char * in_DTSTART,
const char * in_DTEND,
const char ** in_requestProperties,
int in_numProperties,
CAPIStream in_stream

)

This function downloads events which fall in the specified time range and returns
them as MIME-Encapsulated iCalendar data via the CAPIStream.

For each handle; events are downloaded from that handle's associated agenda, as
long as the event overlaps the time range between the indicated start and end times.
If in_requestProperties is non-NULL the events are stripped to include only the
indicated properties. The objects are then sent to the CAPIStream.

A single MIME multipart object is written to the stream. A part is created in the
MIME object for each handle which was passed. Each part contains a single
Calendar object. The calendar object will contain any events that were found on the
indicated agenda. The order of the returned calendar objects corresponds to the
order of the received handles.

If any of the indicated properties are not available for security reasons a non-fatal
error will be returned.

Please note that some vendors may not support the complete range of dates that
iCalendar supports. If this is the case then the CAPI should behave as if the server
supports the full range of iCalendar dates and that there are no events outside the
server supported range. However CAPI should indicate if a fetch range overlapped
the range not supported by the server by returning a non-fatal error. The server
supported date ranges can be obtained through a call to CAPI_GetCapabilities.

Parameters:
■ in_session : login session handle

■ in_handles : calendar(s) from which to fetch events

■ in_numHandles : number of handles in in_handles

■ io_status : array (preallocated) to hold 1 status/handle
2-18 Developer’s Guide

CAPI_GetHandle
■ in_flags : bit flags

■ in_DTSTART : range start time eg "20010709T000000Z"

■ in_DTEND : range end time eg "20020709T000000Z"

■ in_requestProperties : array of iCalendar properties to return (NULL ==>
return default set of properties)

■ in_numProperties : number of properties in in_requestProperties

■ in_stream : stream for CAPI to write into

Returns:
CAPIStatus

CAPI_GetCapabilities
CAPIStatus CAPI_GetCapabilities (CAPISession in_session,

CAPICapabilityID in_capabilityID,
CAPIFlag in_flags,
const char ** out_value

)

Returns information on this CAPI release and/or the calendar server.

Parameters:
■ in_session : session. If NULL, then no server capabilities can be requested.

■ in_capabilityID : ID for a capability (see CAPI_CAPAB_* in ctapi.h)

■ in_flags : CAPI_FLAG_NONE at this time

■ out_value : information is returned in this param. The values are returned as
read-only strings and are only valid until the next CAPI call which uses the
same session.

Changes:
CAPI 2.5: type of in_capabilityID was changed from "long" to "CAPICapabilityID"

CAPI_GetHandle
CAPIStatus CAPI_GetHandle (CAPISession in_session,

const char * in_user,
Function Reference 2-19

CAPI_GetHandle
CAPIFlag in_flags,
CAPIHandle * out_handle

)

This function returns a handle to a particular user's calendar store.

With this handle subsequent calls can access items in this agenda. If an error is
returned no CAPIHandle will be allocated and no cleanup is required.

The logon string follows the same format as that of the string used by CAPI_Logon.

A handle to the current user is returned if in_user is NULL.

This function is blocked for sysop that has not assumed the identity of a user.

Parameters:
■ in_session : login session handle

■ in_user : user as defined for CAPI_Login. May be NULL in which case a handle
to the current user is returned.

■ in_flags : bit flags (none at this time; set to CAPI_FLAG_NONE)

■ out_handle : handle for in_user. Must point to NULL on entry.

Returns:
CAPIStatus

Return values:
■ CAPI_STAT_OK

■ CAPI_STAT_DATA_USERID

■ CAPI_STAT_SERVICE_MEM

■ CAPI_STAT_SERVICE_FILE

■ CAPI_STAT_SERVICE_NET

■ CAPI_STAT_API_FLAGS

■ CAPI_STAT_API_NULL

■ CAPI_STAT_API_HANDLE

■ CAPI_STAT_API_SESSION

■ CAPI_STAT_LIBRARY
2-20 Developer’s Guide

CAPI_GetLastStoredUIDs
Cleanup Required:
This function allocates a handle which must be cleaned up with a call to CAPI_
DestroyHandles. If an error is returned no handle is allocated and no clean up is
required.

Example: Get a handle for a user whose userid is "roger":

{
CAPIHandle shrubber = NULL;
stat = CAPI_GetHandle(mySession, "roger", CAPI_FLAG_NONE, &shrubber);

}

Example: Get a handle for a user named "Arnold Layne" (Surname Layne, Given
name Arnold):

{
CAPIHandle arnold = NULL;
stat = CAPI_GetHandle(mySession, "?/S=Layne/G=Arnold/, CAPI_FLAG_NONE,

&arnold);
}

Example: Get a handle for a resource named "keg" on node "1234":

{
CAPIHandle keg = NULL;
stat = CAPI_GetHandle(mySession, "?/RS=keg/ND=1234/", CAPI_FLAG_NONE, &keg);

}

Example: Get a handle for the current user:

{
CAPIHandle currUser = NULL;
stat = CAPI_GetHandle(mySession, NULL, CAPI_FLAG_NONE, &currUser);

}

Changes:
CAPI 2.5: Resource names must be an exact match. (There used to be an implicit * at
the end of the string.)

CAPI_GetLastStoredUIDs
CAPIStatus CAPI_GetLastStoredUIDs (CAPISession in_session,

char const *const ** out_UIDs,
unsigned long * out_count,
Function Reference 2-21

CAPI_GetLastStoredUIDs
CAPIFlag in_flags
)

This function returns the UID(s) of the last event(s) stored by a successful call to
CAPI_StoreEvent, or no UID if the there was no call to CAPI_StoreEvent or the last
call was not successful.

The UIDs returned are static read-only strings. The strings are only valid until the
next call to CAPI_StoreEvent; hence, it may be desirable to copy (e.g. strcpy()) the
UIDs to another variable. These UIDs are appropriate for use in subsequent CAPI
calls.

Parameters:
■ in_session : login session handle

■ out_UIDs : on output, will point to an array of read-only strings

■ out_count : number of UIDs in out_UIDs

■ in_flags : bit flags (none at this time; set to CAPI_FLAG_NONE)

Returns:
CAPIStatus

Return values:
■ CAPI_STAT_OK

■ CAPI_STAT_API_SESSION_NULL : Indicating that in_session was NULL

■ CAPI_STAT_API_NULL : Indicating that out_UIDs was NULL

■ CAPI_STAT_API_FLAGS : Indicating that in_flags was not CAPI_FLAG_
NONE

Changes:
CAPI 2.5 : type of "out_count" changed from "long *" to "unsigned long *"

Example:

{
const char ** newUIDs = NULL;
unisigned long numUIDs = 0;
CAPI_StoreEvent(mySession, ...);
stat = CAPI_GetLastStoredUIDs(mySession, &newUIDs, &numUIDs, CAPI_FLAG_NONE);
for (unisigned long u = 0; u < numUIDs; u++)
2-22 Developer’s Guide

CAPI_GetStatusString
{
cout << "Stored UID:" << newUIDs[u] << endl;

}
}

CAPI_GetStatusLevels
void CAPI_GetStatusLevels (CAPIStatus in_status,

unsigned long * out_level1,
unsigned long * out_level2,
unsigned long * out_level3,
unsigned long * out_level4,
unsigned long * out_level5

)

This function decomposes a CAPIStatus into its sub-parts.

Each part of the status code specifies more precisely the actual error.

Parameters:
■ in_status : CAPI status

■ out_level1: will contain the int result for level1

■ out_level2: will contain the int result for level2

■ out_level3: will contain the int result for level3

■ out_level4: will contain the int result for level4

■ out_level5: will contain the int result for level5

Changes:
CAPI 2.5 : types of "out_level[12345]" changed from "int *" to "unsigned long *"

CAPI_GetStatusString
void CAPI_GetStatusString (CAPIStatus in_status,

const char ** out_string
)

This function returns a read-only string representation of a CAPIStatus.

This is generally more useful to a programmer than the numeric representation.
Function Reference 2-23

CAPI_HandleInfo
Parameters:
■ in_status : CAPI status

■ out_string: will contain const pointer to the result string

Cleanup Required:
None. The string returned is a const string that cannot be freed

CAPI_HandleInfo
CAPIStatus CAPI_HandleInfo (CAPISession in_session,

CAPIHandle in_handle,
CAPIFlag in_flags,
const char ** out_info

)

This function returns information about the agenda of the supplied handle.

Three pieces of information can be returned, chosen by the value of in_flags. The
information is returned as a pointer to a static read-only string.

CAPI_HANDLE_TYPE indicates the type of the handle, this can be "user" or
"resource" and indicates what type of agenda this is. CAPI_HANDLE_NAME
returns the name of the agenda owner, or resource, in the form of a sequence of
field-value pairs, separated by "/". This string, when prepended with a '?' is of an
appropriate format to be passed to CAPI_GetHandle. A description of this format is
given in "User identification" section of this manual. CAPI_HANDLE_MAILTO
returns the email address of who the agenda belongs to. Since not all users (and no
resources) will have e-mail addresses set on the calendar server, an error (CAPI_
STAT_DATA_EMAIL_NOTSET) will be returned when no e-mail address is set.

Parameters:
■ in_session : login session handle

■ in_handle : handle to get info for

■ in_flags : CAPI_HANDLE_TYPE, CAPI_HANDLE_NAME or CAPI_
HANDLE_MAILTO

■ out_info : read-only handle information

Returns:
CAPIStatus
2-24 Developer’s Guide

CAPI_Logoff
Changes:
CAPI 2.5: now returns CAPI_STAT_DATA_EMAIL_NOTSET if no e-mail address is
set on the server.

Example: Print the name of the logged in user:

{
CAPIHandle loginUser = NULL;
const char * fullName = NULL;
stat = CAPI_GetHandle(mySession, NULL, CAPI_FLAG_NONE, &loginUser);
stat = CAPI_HandleInfo(mySession, loginUser, CAPI_HANDLE_NAME, &fullName);
cout << "Currently logged in as " << fullName << endl;
CAPI_DestroyHandles(mySession,

&loginUser,
1,
CAPI_FLAG_NONE);

}

Example: Print out Doctor Winston's e-mail address:

{
CAPIHandle doctor = NULL;
const char * email = NULL;
stat = CAPI_GetHandle(mySession, "drwinston", CAPI_FLAG_NONE, &doctor);
stat = CAPI_HandleInfo(mySession, doctor, CAPI_HANDLE_MAILTO, &email);
cout << "drwinston's email address is " << email << endl;
CAPI_DestroyHandles(mySession,

&doctor,
1,
CAPI_FLAG_NONE);

}

CAPI_Logoff
CAPIStatus CAPI_Logoff (CAPISession * io_session,

CAPIFlag in_flags
)

Use CAPI_Logoff to either de-authenticate, or completely close your CAPISession.

To select which action to perform, use the in_flags parameter with either of these
values:

CAPI_MODE_NONE: De-authenticate and disconnect from the calendar server
Function Reference 2-25

CAPI_Logoff
CAPI_LOGOFF_STAY_CONNECTED: De-authenticate but stay connected. The
session can still be used to read capabilities and can be used to re-authenticate (as
the same user or a different user) using CAPI_Logon().

Parameters:
■ io_session : login session handle. Must be a session returned by CAPI_Logon()

or CAPI_Connect()

■ in_flags : Bit flags modifying behaviour: CAPI_MODE_NONE or CAPI_
LOGOFF_STAY_CONNECTED

Returns:
CAPIStatus

Return values:
■ CAPI_STAT_OK

■ CAPI_STAT_SERVICE_MEM

■ CAPI_STAT_SERVICE_FILE

■ CAPI_STAT_SERVICE_NET

■ CAPI_STAT_API_FLAGS

■ CAPI_STAT_API_NULL

■ CAPI_STAT_API_SESSION

■ CAPI_STAT_LIBRARY

Cleanup Required:
Since the "stay connected" mode does not destroy the session, a final call to CAPI_
Logoff is needed to destroy the sesssion in this case.

Example: Disconnect from a server:

{
...
stat = CAPI_Logoff(&mySession, CAPI_MODE_NONE);
// mySession should now be NULL

}

Example: Re-authenticate as a different user:
2-26 Developer’s Guide

CAPI_Logon
{
...
stat = CAPI_Logoff(&mySession, CAPI_LOGOFF_STAY_CONNECTED);
...
stat = CAPI_Logon("manfromscene24", "blue", "", CAPI_FLAG_NONE, &mySession);

}

CAPI_Logon
CAPIStatus CAPI_Logon (const char * in_user,

const char * in_password,
const char * in_host,
CAPIFlag in_flags,
CAPISession * io_session

)

Establish a session with the Calendar Store.

No session will be returned if an error occurs.

The session parameter can be used in 2 ways:

■ Preinitialize the session to NULL. In this case, the function will connect to the
calendar service, authenticate as the given user and return a new session.

■ Reuse an active session obtained from a previous call to CAPI_Connect (or
CAPI_Logon, when you use CAPI_Logoff without disconnecting) and
authenticate as a new user. Since the connection to a calendar service has
already been established, the hostname may be omitted.

With calendar servers that support the ACE framework, CAPI_Logon will try to use
the default ACE mechanisms set by the server. For authentication mechanisms that
don't require user credentials at each logon (e.g. gssapi:kerberos5 or web:CAL), an
empty string may be passed for the user and password parameters.

The in_host parameter is the same as documented in CAPI_Connect except it may
have extended parameters as shown:

host-string = hostname "?" ext-param x00

ext-param = DELIMITER fields
the extended string is used to specify ACE mechanisms

fields = [authentication-mech] [compression-mech] [encryption-mech]

authentication-mech = "AUTH=" ACE-mechanism DELIMITER
Function Reference 2-27

CAPI_Logon
compression-mech = "COMP=" ACE-mechanism DELIMITER

encryption-mech = "ENCR=" ACE-mechanism DELIMITER
To find out which ACE-mechanisms the server support
use CAPI_Connect followed by CAPI_GetCapabilities

DELIMITER = x01-29 / x2B-2F / x3A-3C / x3E-40 / %5B-60 / %7B-7F
Everything except NUL, "*", DIGIT, "=", ALPHA

Please refer to the section on User Identification for the format of the in_user
parameter.

Parameters:
■ in_user : Must be a null-terminated string

■ in_password : User's password. May be NULL.

■ in_host : Calendar server host name (optional port no.)

■ in_flags : Bit flags modifying behaviour. This must be 0 currently.

■ io_session : Session opened by CAPI_Connect, or NULL if opening a new
connection

Returns:
CAPIStatus

Cleanup Required:
The sessions created by calling this routine must be destroyed by calling CAPI_
Logoff.

Example: Connect to a server running on the default port of calserver.acme.com,
to authenticate as userid keithm using default ACE settings (when no node is
specified, either a master node or default node must be configured on the specified
host):

{
CAPISession mySession = NULL;
myStatus = CAPI_connect("calserver.acme.com", CAPI_FLAG_NONE, &mySession);
if (myStatus == CAPI_STAT_OK)
{

myStatus = CAPI_Logon("keithm",
"abcdefg",
"",
2-28 Developer’s Guide

CAPI_Logon
CAPI_FLAG_NONE,
&mySession);

}
}

Example: Connect to a server running on the default port of calserver.acme.com,
to authenticate as user "Keith MacDonald" using default ACE settings:

{
CAPISession mySession = NULL;
myStatus = CAPI_connect("calserver.acme.com", CAPI_FLAG_NONE, &mySession);
if (myStatus == CAPI_STAT_OK)
{

myStatus = CAPI_Logon("?/S=MacDonald/G=Keith/ND=200/",
"abcdefg",
"",
CAPI_FLAG_NONE,
&mySession);

}
}

Example: Connect to a server running on the default port of calserver.acme.com,
to authenticate as userid keithm on node 200 using default ACE settings:

{
CAPISession mySession = NULL;
myStatus = CAPI_connect("calserver.acme.com", CAPI_FLAG_NONE, &mySession);
if (myStatus == CAPI_STAT_OK)
{

myStatus = CAPI_Logon("keithm?/ND=200/",
"abcdefg",
"",
CAPI_FLAG_NONE,
&mySession);

}
}

Example: Connect to a server running on calserver.acme.com, using
gssapi:kerberos5 authenticatication:

{
CAPISession mySession = NULL;
myStatus = CAPI_connect("calserver.acme.com", CAPI_FLAG_NONE, &mySession);
if (myStatus == CAPI_STAT_OK)
{

Function Reference 2-29

CAPI_SetConfigFile
myStatus = CAPI_Logon("",
"",
"?/AUTH=gssapi:kerberos5/",
CAPI_FLAG_NONE,
&mySession);

}
}

(Note: for web authentication, replace "gssapi:kerberos5" with "web:CAL")

Example: Authenticate as user keithm using the company domain MYDOMAIN
hosted by the domain server "mycds.myasp.com"

{
CAPISession mySession = NULL;
CAPIStatus myStatus = CAPI_Logon("keithm?/CD=MYDOMAIN/",

"abcdefg",
"mycds.myasp.com"
CAPI_FLAG_NONE,
&mySession);

}

CAPI_SetConfigFile
CAPIStatus CAPI_SetConfigFile (const char * in_configFileName,

const char * in_logFileName
)

Calling this function will allow CAPI to read configuration settings which control
error logging, and the other configuration parameters listed in the "Configuration"
section of this manual.

Note: To use the "web" ACE authentication module, you MUST call this function
since the web authentication reads configuration settings from this file.

Note: If called, this function should be the first CAPI function called by your
process and should not be called by each thread.

Parameters:
■ const char * in_configFileName : A null-terminated string containing the

filename of the config file.

■ const char * in_logFileName : the name of a file to write log messages to
2-30 Developer’s Guide

CAPI_SetIdentity
Returns:
CAPIStatus

Return values:
CAPI_STAT_API_NULL : one of the input parameters was NULL

See also:
The Configuration section.

Example: Create a file "capi.ini" with the contents:

[LOG]
log_activity = true
log_modulesinclude = { CAPI }

and call CAPI_SetConfigFile:

CAPIStatus stat = CAPI_SetConfigFile("capi.ini", "capi.log");

This will turn on "activity" level logging in CAPI and the output will go into
capi.log.

CAPI_SetIdentity
CAPIStatus CAPI_SetIdentity (CAPISession in_session,

const char * in_user,
CAPIFlag in_flags

)

Allow an authenticated user (CAPI_Logon) to work on behalf of another calendar
user or resource.

For this to work, full designate rights must have been set in advance; otherwise a
security error will be returned.

The format of the in_user parameter is the same as in the CAPI_Logon function.
The authenticated user may revert to her original identity by using NULL as
username.

If you've logged in as sysop (CAPI_AuthenticateAsSysop), then designate rights are
ignored and you will be able to work as any calendar user or resource. All calendar
operations will appear to have been done by the user, rather than on behalf of the
user by a designate.
Function Reference 2-31

CAPI_StoreEvent
Parameters:
■ in_session : valid CAPI session

■ in_user : person (or resource) to work as - an X400 or uid

■ in_flags : CAPI_FLAG_NONE at this time

Returns:
CAPIStatus

Example:

myStatus = CAPI_SetIdentity(mySession, "keithm", CAPI_FLAG_NONE);
myStatus = CAPI_SetIdentity(mySession, "?/S=MacDonald/G=Keith/", CAPI_FLAG_NONE);
myStatus = CAPI_SetIdentity(mySession, "?/RS=Conference Room/ND=1234/", CAPI_FLAG_NONE);

Changes:
CAPI 2.5: Resource names must be an exact match. (There used to be an implicit * at
the end of the string.)

CAPI_StoreEvent
CAPIStatus CAPI_StoreEvent (CAPISession in_session,

CAPIHandle * in_handles,
int in_numHandles,
CAPIStatus * io_status,
CAPIFlag in_flags,
CAPIStream in_stream

)

Store events in the supplied list of calendars.

If an event is already in the Calendar (as identified by its UID and Recurrence-ID) it
will be updated. CAPI is not responsible for enforcing iCalendar security or data
integrity as defined by the "ORGANIZER", "SEQUENCE" and "DTSTAMP"
properties. It is the responsibility of the CAPI user to be familiar with this model
and to enforce it. CAPI_StoreEvent is capable of overwriting these properties.

When this function returns, the buffer for CAPIStatus return values, io_status, will
contain the status associated with each handle relative to the store operation. That
is, io_status[i] holds the status of the store operation for the calendar addressed by
in_handles[i]. io_status must be large enough to hold in_numHandles CAPIStatus
2-32 Developer’s Guide

CAPI_StoreEvent
codes. A failure for one particular handle will not cause a failure for the entire
operation.

CAPI_StoreEvent allows data to passed in several VEVENT components. Each
VEVENT may or may not refer to the same event. These will be processed as if they
had been supplied to many consecutive calls to CAPI_StoreEvent, one per call, in
the order in which they appear in the "VCALENDAR". Despite the fact that
behaviour is the same, it is preferable to make only one call to CAPI_StoreEvent, as
this is likely to be more efficient than many calls. A huge collection of VEVENTs
will however require more memory to process.

CAPI_StoreEvent can create new instances, either of a new event or of an event
which is already on the server. It can also be used to modify groups of instances,
either all, one or a range of instances of an existing event. The appropriate
behaviour is chosen through the specification of the properties "UID",
"RECURRENCE-ID", "DTSTART", "RDATE", "RRULE", "EXDATE" and "EXRULE".

If "UID" does not match an event that already exists on the server then it is a request
to create a new event on the server. In this case a "RECURRENCE-ID" property may
not be specified, and a "DTSTART" property must be specified.

If the "UID" property matches an event that already exists on the server, the
"RECURRENCE-ID" property is not present, and at least one of "DTSTART",
"RDATE", "RRULE", "EXDATE" and "EXRULE" is present then the request is to add
new instances to the event. If any instances on the server are identified by these
dates they will be overwritten.

If the "UID" property matches an event that already exists on the server, and none of
"RECURRENCE-ID", "DTSTART", "RDATE", "RRULE", "EXDATE" or "EXRULE" are
present, then this is a request to modify all of the instances of an event. In this case
the "DTEND" property may not be present.

If the "UID" property matches an event that already exists on the server, and the
"RECURRENCE-ID" property is present, and it has no "range" parameter, then this
is a request to modify a single instance. None of the properties "RDATE", "RRULE",
"EXDATE" and "EXRULE" can be specified in this case, but the "DTSTART" property
can be used to modify the start time of the particular instance.

If the "UID" property matches an event that already exists on the server, and the
"RECURRENCE-ID" property is present, and it has a "range" parameter, then this is
a request to modify a range of instances. None of the properties "DTSTART",
"RDATE", "RRULE", "EXDATE" and "EXRULE" can be specified in this case. Also,
"DTEND" may not be specified, although "DURATION" may be.
Function Reference 2-33

CAPI_StoreEvent
The iCalendar "RRULE" property is a concise way of specifying many instances of
an event, however CAPI expands recurrence rules to specific dates, storing only
these dates, and discarding the expanded recurrence rule. In the case of a recurrence
rule that goes for ever, the list of created dates will be limited to a server-defined
number of instances.

E-mail and wireless notification of newly created and modified events can be sent
using the CAPI_NOTIFY_EMAIL and CAPI_NOTIFY_SMS flags.

E-mail, wireless and audio reminders to be triggered in advance of an event are also
supported. Specify them using VALARM objects in the following format:

BEGIN:VALARM
ACTION:<name>
TRIGGER:-PT2H1M
END:VALARM

where <name> can take one of the following values:

■ "EMAIL" for an e-mail reminder

■ "X-STELTOR-SMS" for a wireless reminder, or AUDIO for an audio reminder.

■ TRIGGER specifies the time in advance of the event start time at which to set
the reminder.

CAPI_StoreEvent also provides the following mutually exclusive bit flags which
govern the interpretation of the rest of the specified properties:

■ CAPI_STORE_REPLACE

■ CAPI_STORE_UPDATE

■ CAPI_STORE_DELPROP

CAPI_STORE_REPLACE
This mode can be used when creating new instances or modifying existing ones.
When creating new instances they are created with all the properties as specified in
the data. When existing instances are being modified all their properties are
replaced with the ones specified in the supplied data.

Example: Event as it currently appears in the calendar store, prior to calling
CAPI_StoreEvent (applies to all examples):

BEGIN:VEVENT
ORGANIZER:Mailto:A@example.com
ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED;CN=BIG A:Mailto:A@example.com
2-34 Developer’s Guide

CAPI_StoreEvent
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=B:Mailto:B@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=C:Mailto:C@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=Hal:Mailto:D@example.com
ATTENDEE;RSVP=FALSE;TYPE=ROOM:conf_Big@example.com
ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:Mailto:E@example.com
DTSTAMP:19980611T190000Z
DTSTART:19980701T200000Z
DTEND:19980701T2100000Z
SUMMARY:Conference
LOCATION:The Big Conference Room
UID:calsrv.example.com-873970198738777@example.com
SEQUENCE:0
STATUS:CONFIRMED
END:VEVENT

Call CAPI_StoreEvent with the following ICAL stream, which modifies a particular
instance:

BEGIN:VCALENDAR
PRODID:-//ACME//NONSGML DesktopCalendar//EN
VERSION:2.0
BEGIN:VEVENT
ORGANIZER:Mailto:A@example.com
ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED;CN=BIG A:Mailto:A@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=B:Mailto:B@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=C:Mailto:C@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=Hal:Mailto:D@example.com
DTSTAMP:19980611T190000Z
RECURRENCE-ID:19980701T200000Z
DURATION:PT1H
SUMMARY:Conference
UID:calsrv.example.com-873970198738777@example.com
SEQUENCE:1
STATUS:CONFIRMED
END:VEVENT
END:VCALENDAR

Upon successful completion of the CAPI_StoreEvent call, the event stored on the
server will have its properties replaced the net effect being:

■ Two ATEENDEE properties were removed (conf_Big@example.com and
E@example.com)

■ The LOCATION property was removed

■ The SEQUENCE-NUMBER property was bumped.
Function Reference 2-35

CAPI_StoreEvent
CAPI_STORE_UPDATE
This mode can be used when creating new instances or modifying existing ones.
When creating new instances they are created with all the properties as specified in
the data. When existing instances are being modified, this mode only affects the
specified properties. Any property that is updated must be completely updated.
Effectively, all instances of any supplied property are completely deleted from the
event on the calendar store and replaced with supplied properties. Thus, even to
update a single ATTENDEE property, all ATTENDEE properties must be supplied.

Example: Call CAPI_StoreEvent with the following ICAL stream:

BEGIN:VCALENDAR
PRODID:-//ACME//NONSGML DesktopCalendar//EN
VERSION:2.0
BEGIN:VEVENT
RECURRENCE-ID:19980701T200000Z
DTEND:19980701T2200000Z
DESCRIPTION:We need to discuss the project schedule. Please come prepared.
UID:calsrv.example.com-873970198738777@example.com
SEQUENCE:1
END:VEVENT
END:VCALENDAR

Call CAPI_StoreEvent with the following ICAL stream:

BEGIN:VCALENDAR
PRODID:-//ACME//NONSGML DesktopCalendar//EN
VERSION:2.0
BEGIN:VEVENT
ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED;CN=BIG A:Mailto:A@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=B:Mailto:B@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=C:Mailto:C@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=Hal:Mailto:D@example.com
ATTENDEE;RSVP=FALSE;TYPE=ROOM:conf_Big@example.com
ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:Mailto:E@example.com
RECURRENCE-ID:19980701T200000Z
DTEND:19980701T2200000Z
DESCRIPTION:We need to discuss the project schedule. Please come prepared.
UID:calsrv.example.com-873970198738777@example.com
SEQUENCE:1
END:VEVENT
END:VCALENDAR
2-36 Developer’s Guide

CAPI_StoreEvent
When CAPI_StoreEvent is called with either one of the above ICAL streams, the
end time of the event recurrence will be moved, a description will be added, and the
sequence number will be bumped. The calendar store copy will be as follows:

BEGIN:VEVENT
ORGANIZER:Mailto:A@example.com
ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED;CN=BIG A:Mailto:A@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=B:Mailto:B@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=C:Mailto:C@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=Hal:Mailto:D@example.com
ATTENDEE;RSVP=FALSE;TYPE=ROOM:conf_Big@example.com
ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:Mailto:E@example.com
DTSTAMP:19980611T193000Z
DTSTART:19980701T200000Z
DTEND:19980701T2200000Z
SUMMARY:Conference
DESCRIPTION:We need to discuss the project schedule. Please come prepared.
LOCATION:The Big Conference Room
UID:calsrv.example.com-873970198738777@example.com
SEQUENCE:1
STATUS:CONFIRMED
END:VEVENT

CAPI_STORE_DELPROP
This mode can only be used when modifying existing instances of an event. The
non-indexing properties are deleted from the event. Some properties may appear
many times. To delete one of these an exact match is required on the property, and
its value, but not necessarily its parameters. For properties like "DURATION",
which do not have a text value, the string output by CAPI must be matched. To
delete all appearances of a particular property the property name only is specified,
with no value and no parameters.

Example: Call CAPI_StoreEvent with the following ICAL stream:

BEGIN:VCALENDAR
PRODID:-//ACME//NONSGML DesktopCalendar//EN
VERSION:2.0
BEGIN:VEVENT
LOCATION:The Big Conference Room
SUMMARY:Bla Bla Bla
UID:calsrv.example.com-873970198738777@example.com
END:VEVENT
END:VCALENDAR
Function Reference 2-37

CAPI_StoreEvent
Upon successful completion of the CAPI_StoreEvent call, the LOCATION property
will be deleted. The SUMMARY property will not be touched because it does not
match the current summary. The calendar store copy will be as follows:

BEGIN:VEVENT
ORGANIZER:Mailto:A@example.com
ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED;CN=BIG A:Mailto:A@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=B:Mailto:B@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=C:Mailto:C@example.com
ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL;CN=Hal:Mailto:D@example.com
ATTENDEE;RSVP=FALSE;TYPE=ROOM:conf_Big@example.com
ATTENDEE;ROLE=NON-PARTICIPANT;RSVP=FALSE:Mailto:E@example.com
DTSTAMP:19980611T190000Z
DTSTART:19980701T200000Z
DTEND:19980701T2100000Z
SUMMARY:Conference
UID:calsrv.example.com-873970198738777@example.com
SEQUENCE:0
STATUS:CONFIRMED
END:VEVENT

Parameters:
■ in_session : login session handle

■ in_handles : array of handles to store into

■ in_numHandles : number of handles in in_handles

■ io_status : array (preallocated) to hold 1 status/handle

■ in_flags : Flags modifying behavior:

– CAPI_NOTIFY_EMAIL

– CAPI_NOTIFY_SMS

– CAPI_STORE_REPLACE (in low 2 bits)

– CAPI_STORE_UPDATE (in low 2 bits)

– CAPI_STORE_DELPROP (in low 2 bits)

Parameters:
in_stream : stream for CAPI to read data from
2-38 Developer’s Guide

CAPI_StoreEvent
Returns:
CAPIStatus
Function Reference 2-39

CAPI_StoreEvent
2-40 Developer’s Guide

Configuration Se
3

Configuration Settings

This chapter contains information on the following configuration parameters that
can be supplied to the Oracle Calendar API through the CAPI_SetConfigFile
function.

■ client_name

■ client_version

■ cncachesize

■ emailcachesize

■ itemcachesize

■ log_activity

■ log_modulesinclude

■ tzcachesize

client_name
Used to set the application name that will be visible in the server stats.

Section:
CAPI

Values:
any string
ttings 3-1

client_version
Default Value:
""

client_version
Used to set the application version that will be visible in the server stats.

Section:
CAPI

Values:
any string

Default Value:
""

cncachesize
Used to set the maximum number of entries to hold in the common name cache.

Section:
CACHE

Values:
[0..U32MAX]

Default Value:
512

emailcachesize
Used to set the maximum number of entries to hold in the email address cache.

Section:
CACHE
3-2 Developer’s Guide

log_activity
Values:
[0..U32MAX]

Default Value:
512

itemcachesize
Used to set the maximum number of entries to hold in the item record cache.

Section:
CACHE

Values:
[0..U32MAX]

Default Value:
256

log_activity
Used to enable "activity" (high-level) logging.

Section:
LOG

Values:
true/false

Default Value:
false

See also:
log_modulesinclude
Configuration Settings 3-3

log_modulesinclude
log_modulesinclude
Used to control which modules have logging enabled.

This should be set to "{CAPI}", otherwise no logging will be performed even if it is
enabled (e.g. via log_activity = true)

Section:
LOG

Values:
"" or "{ CAPI }"

Default Value:
""

tzcachesize
Used to set the maximum number of entries to hold in the timezone record cache.

Section:
CACHE

Values:
[0..U32MAX]

Default Value:
256
3-4 Developer’s Guide

Types, Constants and Capab
4

Types, Constants and Capabilities

Types

Typedefs
typedef void * CAPISession
typedef void * CAPIHandle
typedef void * CAPIStream
typedef unsigned long CAPIStatus
typedef unsigned long CAPIFlag
typedef unsigned long CAPIFlag

CAPIFlag Constants

CAPI_FLAG_FETCH_EXCLUDE_APPOINTMENTS
Used with CAPI_FetchEvent* calls to exclude regular meetings (appointments).

CAPI_FLAG_FETCH_EXCLUDE_DAILYNOTES
Used with CAPI_FetchEvent* calls to exclude daily notes.

CAPI_FLAG_FETCH_EXCLUDE_DAYEVENTS
Used with CAPI_FetchEvent* calls to exclude day events.

CAPI_FLAG_FETCH_EXCLUDE_HOLIDAYS
Used with CAPI_FetchEvent* calls to exclude holidays.

CAPI_FLAG_NONE
Used to select the default behaviour.
ilities 4-1

Capabilities
CAPI_FLAG_STORE_DELPROPS
Used with CAPI_Store* functions to specify that the supplied properties are to be
cleared or deleted on the server.

CAPI_FLAG_STORE_MODPROPS
Used with CAPI_Store* functions to specify that the supplied properties are to be
modified on the server without changing other properties (where possible).

Capabilities
The following capabilities can be requested via CAPI_GetCapabilities.

Typedefs
typedef long CAPICapabilityID

CAPI_CAPAB_ABOUT_BOX
Returns information about CAPI.

CAPI_CAPAB_AUTH
Returns the authentication mechanisms supported by the server (e.g.
"cs-standard,gssapi:kerberos5,sasl:KERBEROS_V4"). A server connection must exist
to read this capability.

CAPI_CAPAB_CAPI_VERSION
Returns the CAPI version as a string. (e.g. "2.5.0")

CAPI_CAPAB_COMP
Returns the compression mechanisms supported by the server (e.g.
"cs-simple,none"). A server connection must exist to read this capability.

CAPI_CAPAB_ENCR
Returns the encryption mechanisms supported by the server (e.g. "cs-light,none"). A
server connection must exist to read this capability.

CAPI_CAPAB_MAXDATE
Returns the largest date which CAPI can handle ("20371129").
4-2 Developer’s Guide

Capabilities
CAPI_CAPAB_SERVER_VERSION
Returns the server version as a string. (e.g. "5.5"). A server connection must exist to
read this capability.

CAPI_CAPAB_UNSUPPORTED_ICAL_COMP
Returns a comma delimited list of iCal components which CAPI does not process.
("VJOURNAL,VFREEBUSY")

CAPI_CAPAB_UNSUPPORTED_ICAL_PROP
Returns a comma delimited list of iCal properties which CAPI does not process.
("GEO,COMMENT"). A server connection must exist to read this capability.

CAPI_CAPAB_VERSION
Same as CAPI_CAPAB_CAPI_VERSION.
Types, Constants and Capabilities 4-3

Capabilities
4-4 Developer’s Guide

Status
5

Status codes

This chapter documents all CAPI_Status values that may be returned by CAPI
functions, in alphabetical order. The functions CAPI_GetStatusString and CAPI_
GetStatusLevels may be useful when interpreting CAPI_Status values.

CAPI_STAT_API
API class status.

CAPI_STAT_API_BADPARAM
A bad parameter was passed.

CAPI_STAT_API_CALLBACK
There was a problem with a callback.

CAPI_STAT_API_CALLBACK_ERROR
The callback returned an error, which is returned in bit field 5.

CAPI_STAT_API_FLAGS
Bad flags were passed.

CAPI_STAT_API_HANDLE
There was a problem with a handle.

CAPI_STAT_API_HANDLE_BAD
The passed handle was corrupt.
codes 5-1

CAPI_STAT_API_HANDLE_NOTNULL
The passed handle was not null.

CAPI_STAT_API_HANDLE_NULL
The passed handle was null.

CAPI_STAT_API_NULL
A null pointer was passed.

CAPI_STAT_API_SESSION
There was a problem with a session.

CAPI_STAT_API_SESSION_BAD
The passed session was corrupt.

CAPI_STAT_API_SESSION_NOTNULL
The passed session was not null.

CAPI_STAT_API_SESSION_NULL
The passed session was null.

CAPI_STAT_API_STREAM
There was a problem with a stream.

CAPI_STAT_API_STREAM_BAD
The passed stream was corrupt.

CAPI_STAT_API_STREAM_NOTNULL
The passed stream was not null.

CAPI_STAT_API_STREAM_NULL
The passed stream was null.

CAPI_STAT_DATA
Data class status.
5-2 Developer’s Guide

CAPI_STAT_DATA_COOKIE
Information about the supplied cookie.

CAPI_STAT_DATA_DATE
Information about a date.

CAPI_STAT_DATA_DATE_FORMAT
The format of the date data is incorrect.

CAPI_STAT_DATA_DATE_INVALID
A specified date is invalid (e.g. Feb 30th)

CAPI_STAT_DATA_DATE_OUTOFRANGE
A specified date is out of the range supported by this implementation.

CAPI_STAT_DATA_DATE_RANGE
The date range is incorrect.

CAPI_STAT_DATA_EMAIL
Information about email.

CAPI_STAT_DATA_EMAIL_NOTSET
No email address is set on the server for 1 or more users/resources.

CAPI_STAT_DATA_ENCODING
Information about the encoding of supplied data.

CAPI_STAT_DATA_HOSTNAME
Information about a hostname.

CAPI_STAT_DATA_HOSTNAME_FORMAT
The format of the hostname string was wrong.

CAPI_STAT_DATA_HOSTNAME_HOST
The hostname string could not be resolved to a host.
Status codes 5-3

CAPI_STAT_DATA_HOSTNAME_SERVER
No server could be found on the specified host and port.

CAPI_STAT_DATA_ICAL
Information about iCalendar data.

CAPI_STAT_DATA_ICAL_COMPEXTRA
An extra component was encountered. Either multiple specifications of a
component which should only appear once, or a component which should not
appear.

CAPI_STAT_DATA_ICAL_COMPMISSING
An expected or required component was missing.

CAPI_STAT_DATA_ICAL_COMPNAME
There was a problem with a component name.

CAPI_STAT_DATA_ICAL_COMPVALUE
There was a problem with what a component contained.

CAPI_STAT_DATA_ICAL_FOLDING
There was a problem in the line folding.

CAPI_STAT_DATA_ICAL_IMPLEMENT
A problem with this particular iCalendar implementation.

CAPI_STAT_DATA_ICAL_LINEOVERFLOW
One of the iCal data lines was too long, breaching the iCalendar spec (RFC 2445).

CAPI_STAT_DATA_ICAL_NONE
The provided data was not iCalendar data.

CAPI_STAT_DATA_ICAL_OVERFLOW
There was an overflow when parsing the iCalendar data. This is caused by an
internal limitation of the iCalendar library, and not not by a breach of the spec.
5-4 Developer’s Guide

CAPI_STAT_DATA_ICAL_PARAMEXTRA
An extra parameter was encountered. Either multiple specifications of a parameter
which should only appear once, or a parameter which should not appear.

CAPI_STAT_DATA_ICAL_PARAMMISSING
An expected or required parameter was missing.

CAPI_STAT_DATA_ICAL_PARAMNAME
There was a problem with a parameter name.

CAPI_STAT_DATA_ICAL_PARAMVALUE
There was a problem with a parameter value.

CAPI_STAT_DATA_ICAL_PROPEXTRA
An extra property was encountered. Either multiple specifications of a property
which should only appear once, or a property which should not appear.

CAPI_STAT_DATA_ICAL_PROPMISSING
An expected or required property was missing.

CAPI_STAT_DATA_ICAL_PROPNAME
There was a problem with a property name.

CAPI_STAT_DATA_ICAL_PROPVALUE
There was a problem with a property value.

CAPI_STAT_DATA_ICAL_RECURMODE
There was a problem with the recurrence specification. The rules laid out in the
description of CAPI_StoreEvent were breached.

CAPI_STAT_DATA_MIME
Information about MIME data.

CAPI_STAT_DATA_MIME_CHARSET
There was a problem with a parameter name.
Status codes 5-5

CAPI_STAT_DATA_MIME_COMMENT
A comment could not be parsed.

CAPI_STAT_DATA_MIME_ENCODING
The encoding specified in the MIME object is not supported.

CAPI_STAT_DATA_MIME_FOLDING
There was a problem with a parameter name.

CAPI_STAT_DATA_MIME_HEADER
A header could not be parsed.

CAPI_STAT_DATA_MIME_IMPLEMENT
A restriction specific to this MIME implementation was breached.

CAPI_STAT_DATA_MIME_IMPLEMENT_NESTING
The MIME object was nested too deeply.

CAPI_STAT_DATA_MIME_LENGTH
One of the header lines was too long.

CAPI_STAT_DATA_MIME_NOICAL
No MIME parts were found whose headers indicated that they contain iCalendar
data.

CAPI_STAT_DATA_MIME_NONE
No MIME data was found.

CAPI_STAT_DATA_MIME_OVERFLOW
There was a problem with a parameter name.

CAPI_STAT_DATA_UID
Information about a UID.

CAPI_STAT_DATA_UID_FORMAT
The format of the UID string was wrong.
5-6 Developer’s Guide

CAPI_STAT_DATA_UID_NOTFOUND
An event with the supplied UID could not be found.

CAPI_STAT_DATA_UID_RECURRENCE
The specified recurrence could not be found.

CAPI_STAT_DATA_USERID
Information about a userid.

CAPI_STAT_DATA_USERID_EXT
There was a problem with the Extended part of the UserId string.

CAPI_STAT_DATA_USERID_EXT_CONFLICT
Either userid AND X.400 were specified, or both a node and a calendar domain
were specified.

CAPI_STAT_DATA_USERID_EXT_FORMAT
The format of the extended string was bad.

CAPI_STAT_DATA_USERID_EXT_INIFILE
There was a problem with the inifile.

CAPI_STAT_DATA_USERID_EXT_MANY
Multiple users were identified by the string.

CAPI_STAT_DATA_USERID_EXT_NODE
The specified node could not be found.

CAPI_STAT_DATA_USERID_EXT_NONE
No users were identified by the string.

CAPI_STAT_DATA_USERID_FORMAT
The format of the UserId string was wrong.

CAPI_STAT_DATA_USERID_ID
There was a problem with the Id part of the UserId string.
Status codes 5-7

CAPI_STAT_LIBRARY
Library class status.

CAPI_STAT_LIBRARY_IMPLEMENTATION
The feature is not fully implemented.

CAPI_STAT_LIBRARY_INTERNAL
An internal error occured in the library.

CAPI_STAT_LIBRARY_INTERNAL_COSMICRAY
Something completely unexpected happened internally.

CAPI_STAT_LIBRARY_INTERNAL_DATA
There was a corruption of data in the library.

CAPI_STAT_LIBRARY_INTERNAL_EXPIRY
The function has expired in this library.

CAPI_STAT_LIBRARY_INTERNAL_FUNCTION
The library miscalled a function.

CAPI_STAT_LIBRARY_INTERNAL_OVERFLOW
Some internal maximum was exceeded.

CAPI_STAT_LIBRARY_INTERNAL_PROTOCOL
The library abused a protocol.

CAPI_STAT_LIBRARY_INTERNAL_UNKNOWN_EXCEPTION
CAPI received an unknown C++ exception.

CAPI_STAT_LIBRARY_INTERNAL_UNKNOWN_LIBRARY_ERRCODE
Failed to map an error code from a dependant library.

CAPI_STAT_LIBRARY_SERVER
A limitation of or occurence on the server.
5-8 Developer’s Guide

CAPI_STAT_LIBRARY_SERVER_BUSY
The server cannot service the request right now because it is busy.

CAPI_STAT_LIBRARY_SERVER_SUPPORT
The server does not provide support.

CAPI_STAT_LIBRARY_SERVER_SUPPORT_CHARSET
There is no support for the required character set.

CAPI_STAT_LIBRARY_SERVER_SUPPORT_STANDARDS
There is no support for CAPI on this server.

CAPI_STAT_LIBRARY_SERVER_SUPPORT_UID
There is no support for storing UIDs.

CAPI_STAT_LIBRARY_SERVER_USERDATA
There is some problem with user data on the server.

CAPI_STAT_OK
Operation completed successfully. Value 0.

CAPI_STAT_SECUR
Security class status.

CAPI_STAT_SECUR_LOGON
There was a security error on logon.

CAPI_STAT_SECUR_LOGON_AUTH
Logon authentication failed.

CAPI_STAT_SECUR_LOGON_LOCKED
The specified account is locked.

CAPI_STAT_SECUR_LOGON_LOCKED_RESOURCE
Logon is locked for resources.
Status codes 5-9

CAPI_STAT_SECUR_LOGON_LOCKED_SYSOP
Logon is locked for Sysops.

CAPI_STAT_SECUR_READ
There was a security error on read.

CAPI_STAT_SECUR_READ_ALARM
There was a security error reading alarm data.

CAPI_STAT_SECUR_READ_PROPS
There was a security error reading properties.

CAPI_STAT_SECUR_SERVER
There was a security error in the server.

CAPI_STAT_SECUR_SERVER_LICENSE
There was a licensing error on the server.

CAPI_STAT_SECUR_SERVER_SET_IDENTITY_SYSOP
The server requires a SetIdentity call on the sysop logon to perform the operation.

CAPI_STAT_SECUR_WRITE
There was a security error on write.

CAPI_STAT_SECUR_WRITE_AGENDA
There was a security error writing to an agenda.

CAPI_STAT_SECUR_WRITE_EVENT
There was a security error writing to an event.

CAPI_STAT_SERVICE
Service class status.

CAPI_STAT_SERVICE_ACE
There was a problem caused by one of the ACE plugins.
5-10 Developer’s Guide

CAPI_STAT_SERVICE_ACE_LOAD
Required ACE plugin could not be loaded.

CAPI_STAT_SERVICE_ACE_SUPPORT
Requested ACE option not supported.

CAPI_STAT_SERVICE_FILE
There was a problem with system file services.

CAPI_STAT_SERVICE_FILE_CLOSE
There was a problem closing a file.

CAPI_STAT_SERVICE_FILE_DELETE
There was a problem deleting a file.

CAPI_STAT_SERVICE_FILE_MODE
There was a problem with the read or write mode for a file.

CAPI_STAT_SERVICE_FILE_OPEN
There was a problem opening a file.

CAPI_STAT_SERVICE_FILE_READ
There was a problem reading from a file.

CAPI_STAT_SERVICE_FILE_TEMP
There was a problem allocating a temporary file.

CAPI_STAT_SERVICE_FILE_WRITE
There was a problem writing to a file.

CAPI_STAT_SERVICE_LIBRARY
There was a problem with the standard library services.

CAPI_STAT_SERVICE_MEM
There was a problem with system memory services.
Status codes 5-11

CAPI_STAT_SERVICE_MEM_ALLOC
Could not allocate memory.

CAPI_STAT_SERVICE_NET
There was a problem with network services.

CAPI_STAT_SERVICE_NET_TIMEOUT
Timeout while waiting for network services.

CAPI_STAT_SERVICE_THREAD
There was a problem with system thread services.

CAPI_STAT_SERVICE_TIME
There was a problem with the standard time services.

CAPI_STAT_SERVICE_TIME_GMTIME
GMTime could not be obtained.

CAPI_STATMODE_FATAL
5-12 Developer’s Guide

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Implementation Considerations
	Character Sets
	iCalendar Support
	iCalendar input
	DTSTART, DTEND and DURATION
	SUMMARY
	PRIORITY
	CLASS
	STATUS
	LOCATION
	ATTENDEE
	ATTACH
	DESCRIPTION
	CATEGORIES
	VALARM
	UID

	iCalendar output
	ORGANIZER
	CLASS
	PRIORITY
	STATUS
	DESCRIPTION
	CATEGORIES
	DURATION or DTEND
	SUMMARY
	DTSTART
	UID
	ATTENDEE
	RESOURCES
	VALARM

	Security Model
	Alarms
	Event Recurrences
	Format of returned iCalendar

	User identification
	Data Streams
	Access Control

	2 Function Reference
	CAPI_AuthenticateAsSysop
	CAPI_Connect
	CAPI_CreateCallbackStream
	CAPI_CreateFileStream
	CAPI_CreateFileStreamFromFilenames
	CAPI_CreateMemoryStream
	CAPI_DeleteEvent
	CAPI_DestroyHandles
	CAPI_DestroyStreams
	CAPI_FetchEventByID
	CAPI_FetchEventsByAlarmRange
	CAPI_FetchEventsByRange
	CAPI_GetCapabilities
	CAPI_GetHandle
	CAPI_GetLastStoredUIDs
	CAPI_GetStatusLevels
	CAPI_GetStatusString
	CAPI_HandleInfo
	CAPI_Logoff
	CAPI_Logon
	CAPI_SetConfigFile
	CAPI_SetIdentity
	CAPI_StoreEvent
	CAPI_STORE_REPLACE
	CAPI_STORE_UPDATE
	CAPI_STORE_DELPROP

	3 Configuration Settings
	client_name
	client_version
	cncachesize
	emailcachesize
	itemcachesize
	log_activity
	log_modulesinclude
	tzcachesize

	4 Types, Constants and Capabilities
	Types
	Typedefs

	CAPIFlag Constants
	Capabilities

	5 Status codes

