ORACLE

Oracle® SQL*Module for Ada
Programmer's Guide

Release 8.0

Part No. A58231-03

December 2003

Oracle SQL*Module for Ada Programmer’s Guide, Release 8.0
Part No. A58231-03
Copyright © 1997, 2003, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SeNA US YOUT COMMEBNTES ...ttt iX
PLEIACE ...ttt Xi
| gkl [<Te NN E s hT<) s Lol <R RRRRTRR Xi
Documentation ACCeSSIDILILYcccuiiuiiiiiiiiiiiiii e Xi
StaNdards CONOIIIIAIICEoooveieeeieiieceie ettt ettt e eae e et e esaeeeaeesaeesseasseesateessessnseesseesnseanes Xii
1114 D6 1 1 o < TR STS RS RT Xii
REIATEA DIOCUIMIEIIES ..ottt ettt et s et e e sttt e e et e e s eateessaseeseaaeessseessnseeseaseessseessnsseesannes Xiii
(@163 4TS 41 Te) o L= TSROSO Xiv

1 Introduction to SQL*Module

What IS SQLFIMOAUIE?Y.........ooeiieieeeeecee ettt ettt ettt et e e st e e be e s taeebe e baeebaeeseeesbeessesaseessesnseens 1-1
BackgroUndoiei s 1-1
PreCOMPILETS ..o 1-2
The Module Language CONCEPL.......c.cccuiiuiiiiiiiiieieiiceeiceieieeie e seseeeaenes 1-3

SQL*Module as an Interface BUilder ... 1-6

What Is Supported by SQL*Module? ... 1-7

What SQL Statements are Not Supported by SQL*Module?.............ccccccovvinniiinninniiinn 1-8

2 Module Language

THE IMOAUILE ...ttt sttt et e et e e e st et e e st e s eessesseesseaseessesssessesnsensesssensenseans 2-1
An Example ModUIe..........ooi s 2-1

A Short Example Program in Ada.........ccccciiiiiiiiiiiiiiciccccccecceeseeennes 2-3
SHrUCEUTE Of @ IMOAULE........ooeeeeieeeeeeeeeee ettt ae st e b e s e e s e e ss e seessessaeseesseessensennsenes 2-6
PrEAMDIE ..ottt ettt b et e bt e et et e e re e be e e e beera e beesa e beesaebeenseereenes 2-6
MODULE CIAUSEcvivierietieiteeieeteeeeeteete ettt ettt et te et veeaseeseeasaeseeseeseensesseensesssenseersessesssens 2-6
LANGUAGE CIAUSE.....cceeuierieriiiiiririiieteietestestestessesesteseesessessessessessessessessessessessessessessessessesssses 2-6
AUTHORIZATION CIAUSEecvviveeniierieieeeesieeeesteereieetesveesesseesesssessesssessesssessssssessesssessesssens 2-6

CUTSOT DIECLATATIONS ...veveevietieiecieetecte ettt ettt ettt ettt e e teeteereeeseeaaesbeerbesseessesseenseseesseeseenns 2-7
Procedure DefiNItiONScoveieieieeieiiiitietestestest et et e b et e st esseseetessesbessessessessessessessessessassesseseesenss 2-8
ProcedUure NAINE......cc.ocieiicieieceeteceee ettt ettt e e s e teessesbeesaesseesaesseessesssessesssessensnans 2-8
Parameter LiST......cccuiiiiieieeieeie ettt et re et e et et e b e e ra e et e et eebe e saeenbeeraeenrean 2-8

SQLI2 SYNEAX ..ttt 2-8

SQL DatatyPescoovoiiiiiiiiiiccc e 2-9
SOL COMMANAScuveuieiieiieiieieeieeeeeteetesestes e et etestesteteseeseesesseesessessessensassassessensensensensessessessesessessensen 2-10

L U A (Y L0 LT 2-11

COMUMIEINES ..eviiiieeiiecieeie et ettt e e steestte e bt eetbe e beessbaeseesssesssaesssesssaasssaasseesssaenssesssesseassseesseenssasnsennns 2-11
INAiCAtOr PaArameEtersScoovvvuieiiiieieeieieeeeete ettt s et e st e te st et e e st e s asnsensesnsenseensenseensenseenes 2-11
SHatus PaArameEtersocooociiiiiiiiieeieeieeteee ettt ettt s e et e st e b e s abe e be e st e e beesate s baensaeenres 2-13

EITOT MESSAZEScovuvvviniiiitceiiictcc s 2-13
CONNECT Stat@mENt.........ooueeiieeieieeieieeieeetetetese et et e st e tesseesae s e e ssesseesasssesesssenseessensesnsessesnes 2-13

SET CONNECTION StatemeNt........cccccvieieriieierieeienieeieseecteseesesseesseseessesssessesseessessesssesssessessees 2-14
DISCONNECT Statementcc.oooiiiiiiiiiieiieeieeieesteeseeste et e e e eteesaeesbeessbeesseesssesssesssessessssasssesans 2-14
MUBE-EASKIIG. ...t 2-15

ENABLE THREADSoootitieteteeetteteetestt ettt te st ste et e te et e teessesse et assaessessaessesseessesssessensens 2-15

SQL_CONTEXT Datatypecccccevviiriviiiiiiiiiiiiiiiiiiiiii s 2-15

CONTEXT ALLOCATE ..ottt ettt sttt e et sse et e s e e e sss et e sseessesneesesnsensennean 2-16

CONTEXT FREE ..ottt ettt s testesaeste et e besssesbaessesssessasssessasssessesseessesssessenses 2-16

Multi-tasking RestriCtions.........ccccceuiiviiiiiiiiiiiiiiiiiiic s 2-16
Multi-tasking EXample..........ccccccoiiiiiiiiiiiiiccceee e 2-16

Accessing Stored Procedures

PLISOL....oiiie s 3-1
PrOCEAULIES.......oviiiiiiiicttc bt 3-2
Stored Procedures ... 3-2
Stored Packagescoiiiiiiiiiii 3-3
Accessing Stored Procedures ..o 3-3
Case of Package and Procedure Namesccccccovvviniiiininiinni s 3-4
Early and Late BInding ... 3-5
Cursor Variables ... 3-7
Cursor Variable Parameters..........c.cccoceiiiiiiieiiniiccicicirieie et 3-7
Allocating a Cursor Variable ..o eeenenes 3-7
Opening a Cursor Variable ... 3-7
Opening in a Stand-alone Stored Procedure...........cccouoviiiiniiiieiiiccce 3-8

RetUIN TYPES...ocviiiiiiiiic e 3-9
Closing a Cursor Variable............c.coiiiiii s 3-9
Restrictions on Cursor Variables ...t 3-9
Dynamic SQLcooiiiiiiii s 3-9
The WITH INTERFACE Clausecccccoviiiiiiiiiiiiiiicsssscsssssssssssssssssssssssssaenes 3-9
EXAMIPLES ...ttt s 3-10
SQL DatatyPescovvviuiuiiiiiiiiiiici s 3-11
DATE Datatype ...cocueveieiiiiiiicii s 3-12

The Default WITH INTERFACE Clause.........ccccoviiiiniiiiiiiiccireectreeicetese s 3-12
PrOCEAUTIES......ooviviiiiiiite s 3-12
FUNCHONS ..t 3-12
Storing Module Language Proceduresccocovvniiiiiiiniiniinscsss 3-14
Connecting to a Database ... 3-15

Developing the Ada Application

Program SErUuCtUTeccooiiiiiiiiiiii 4-1
Error Handling ... 4-2
SQLECODE ...t 4-2

Obtaining Error Message TeXtcouiiiiiiic 4-2

SQLSTATE ...t 4-3
Obtaining the Number of ROWs Processed..............cccoooviiiiiiiiiiiiincccecceeeeeeeeeae 4-4
Handling NULLS ..o 4-4

Indicator Variables ... 4-5
CUISOTS ..ot 4-6
Specification Files ... 4-6
Calling @ Procedure ..o s 4-6
Arrays as Procedure Argumentsccocoeiiiiiiiiiiiiii s 4-7
National Language SUPPOItcccccoeviiiiiiiiiiiii 4-7

Running SQL*Module

SQL*Module Input and Output ..o 5-1
INPUL SOUICES.....veiiiiitt st 5-1
OUEPUL FILES ... 5-2
Determining the INput SOUTCe........c.oviiiiieiiici s 5-2

Invoking SQL*Module...........cccooviiiiiiiiiii s 5-3
Running the COmPILETccouiuiiiiiiiiicececcccceeee e 5-3

Case Sensitivity in Program Names, Option Names, and Values.............ccccccccviiiinniinnnnnene. 5-4
Listing Options and Default Valuesccccoiiiiiiiic 5-4

How to Specify Command-Line OPtionsccccccceiiiririiiiiiiiniiiiirreeceeeeeee e 5-4
Valte LISES ..o 5-5
Default VAIUESccooviiiiiiiiici et 5-5

Configuration FIles............cooiiiiiiiiiii e 5-6

INPUE FALES ..o 5-6

OUEPUL FALES ..o 5-6
Source Code OUEPUL File.....c.coiiiiiiiiiiicccccccee e 5-7

Default File Names for Ada.......ccccovviiiiiiiiiniiiiiicse s 5-7
Specification File.........cccciiiiiiiii e 5-7
Default Specification Filenames for Ada.........ccccoeueuiuiiiriniiiiiiicccrceeeeeeeeeeeeenes 5-7
LiSHNG FIl@....oeeiiiet s 5-7
PL/SQL SOUTCE FILES.....ueiiuvieeeecee ettt ettt et e et ete e eveeeteeeveeeaeeenteesseeesseesesenseeeseeenrenn 5-8
Avoid Default Output FIIENamescccccociiiiiiiiiiiiiiccccceceeceeeeeeseseeeenenes 5-8

Command-Line OPtions ... 5-8
AUTO_CONNECT ...ttt 5-10
BINDING......oiitiiiitiieeteie st 5-10
CONEFIG ...t 5-11
ERRORS ...ttt 5-11
FIPS ..o 5-11
INAME ..o 5-12
LINAME ...ttt 5-12
LTYPE ..o 5-12
MAPPING ..ot 5-13
MAXLITERAL ..ottt 5-13
ONAME ... 5-13
OUTPUT ...t 5-14
PINAME ...ttt 5-14

vi

SELECT_ERROR ...c.coviititiieiinieinieenietrtetntet sttt ettt ettt sttt sttt sttt st 5-15
SINAME ...ttt ettt ettt sttt ettt 5-15
STORE_PACKAGE ...ttt sttt sttt s 5-16
SQLCHECK ...ttt ettt ettt sttt st sttt et b et st b et be e b e b e ene 5-16
USERID ..ottt ettt s ettt st ne et a st se s st seneseaenenenne 5-17
Compiling and Linking ... 5-17
An Example (Module Language)..........cccccevueviiiiiiiininininiiiiiiiiiiicnsessenns 5-17

Demonstration Programs

The SQL_STANDARD Package.........ccccocorriimiiiiiiciiiniiciinriecceeee e 6-1
SQLCODE ...ttt 6-1
SQLSTATE ..ottt 6-1

SAMPIe PIOGIAINScccooiiiiiiiiiiiii s 6-1
SAMPLE TADLES ... 6-2

MKTABLES.SQL ...t 6-2
DEPARTMT.SQL ..ooiiiiiciiriii e 6-3
INSTRUCS.SQL....ooiiiiiiiiiieiicit s 6-4
STUDENTS.SQL......coiiiiiiiiiiiiii s 6-4
COURSES.SQL ...ttt 6-5
EMROLMNT.SQL ..ottt 6-5
Module Language Sample Program............ccoceueiiiiiiieiiicieecitei s 6-7
Calling a Stored Procedure.............cccccoviiiiiiiiiiiiiiiiiiiiiicc s 6-12

SaMPle APPLICALIONS......c.oovvvieiiiiiciiiietecttreet ettt ettt et se e nesne 6-15
DEMOHOST.A ..ot 6-15
DEMUCALSP.A ..ottt 6-28

New Features

INEW STATEIMIEINESoooiieieiiieeeeee ettt e et e e e et e e e e esaateeeesesataseeessssasseessessnssesessnnnees A-1
Other NEW FEALUTIESoooeeeieeeeeieeeee et e e e e e e e e e e e eaeeeeeaeeeeereseenseeeneesensneseennnas A-1

Module Language Syntax

Module Language Syntax DIiagramscccccovuiiiiiiiniiiniiiiiiiineeereeeceeeeeeeeeeeeeeeeeeee e B-1
PrEAMDIE ..ottt ettt sttt ettt et e b et et e st et e e b e ereesbeere e aeesaesbeestenreenaeraans B-2
LANGUAGE ClaUSE....ueeivievieiieeieciieieeteeee et ete e esteseestesaestesssesteessesseessasseessesseessesssessesssessesses B-2
AUTHORIZATION CLAUSEeuvervenienrenienieieteeieeieesessessessessessessessessessessessessesssssessssessessessessenss B-2
CULSOTIS ..vteteetecteete et et e e tte e et e te et e s te e st esseesaesseessesseessesseesseessassaassassaessanseasseassessesseesseasaessenssessenssasenns B-2
Procedure DefinitiOnS......cc.ecveeiieiieiicieeieeie ettt ettt et ste et re et e s e eaesreesesrseseesaeseessenseessesenns B-2
WITH INTERFACE CLAUSE ..ottt st te st esbe et esse s essessesaesaessasassassessensansessens B-3

Reserved Words
Module RESEIVEA WOIASoooueieiiieeeeeeceeeeeeeeee ettt eae s et e et e saeeeaeeenessnteeeneeennes C-1

SQLSTATE Codes
SQOLSTATE COAES......ooouiieieeiieeieeetieete et ettt eteesteeete e aeesbeestaesase e sseeseeseeasseessseasseesssassseessseassennseens D-1

E System-Specific References

System-Specific Aspects of SQL*Modulecccccovniiiiiiiiii E-1
Supported COMPILETSc.ceiuiiiiiiiciciiec e E-1
Character Case in Command LiNESccceeverierierierienieeieneeeeseeteeee e sreesaeseesaesaessesssessesssessenns E-1
LOCAtION OFf FILES.....ccuiiiictieiieieieceeete ettt ettt ettt ettt et e e st e beeaeeraensesssenseesaessesssensesssesenns E-1
FIlename EXEEINSIONSccveveirieiriieriitietisieestetetete st eseeseesessassessessessessessessessessessesseseassesessessensensanes E-1
Ada Output FIles ... E-1
COMMANA LINE ..ceiiiiiiiiicieeeeeeeee ettt ettt ettt e et et e et e teesesbaessesssessessaebeessenseessensenns E-1
Ada SQL_STANDARD Packagec.cccceueuiuiuiiririiiiicieiriieieicieirieeeieieeieeeeeeeeeeesee s E-2

Index

Vii

viii

Send Us Your Comments

Oracle SQL*Module for Ada Programmer’s Guide, Release 8.0
Part No. A58231-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Preface

This book is a comprehensive user's guide and reference for SQL*Module, an Oracle
application development tool.

This Guide includes a complete description of Module Language, an ANSI/ISO SQL
standard for developing applications that access data stored in a relational database.
Module Language uses parameterized procedures to encapsulate SQL statements. The
procedures can then be called from an Ada application.

This Guide also describes how you can use SQL*Module to call PL/SQL procedures
stored in an Oracle database. A number of complete examples using Module
Language, Ada code, and stored database procedures are provided.

This Preface contains these topics:
= Intended Audience

= Documentation Accessibility
= Structure

= Related Documents

« Conventions

Intended Audience

Oracle SQL*Module for Ada Programmer’s Guide is intended for systems architects,
analysts, and developers who are writing large-scale applications that access an Oracle
Server. Chapter 1 of this Guide can also be used by managers who need to determine if
SQL*Module is an appropriate tool for a planned project.

To use this Guide effectively, you need a working knowledge of the following topics:
= applications programming in Ada

= the SQL database language

= Oracle database concepts and terminology

Familiarity with SQL-standard Module Language is not a prerequisite. This Guide
fully documents Module Language.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive

Xi

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e.com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Standards Conformance

Structure

Xii

SQL*Module conforms to the American National Standards Institute (ANSI) and
International Standards Organization (ISO) standards for Module Language. This
includes complete conformance with Chapter 7 of ANSI document X3.135-1989,
Database Language SQL with Integrity Enhancement.

In addition, SQL*Module conforms to the "Entry SQL" subset of the SQL92 standard,
as defined in Chapter 12 of the ANSI Document X3.135-1992.

Note: SQL92 is known officially as International Standard ISO/IEC 9075:1992,
Database Language SQL.

SQL*Module supports the Ada83 language standard for Ada.

Oracle has also implemented extensions to the SQL language and to Module
Language. This Guide describes both the SQL standard Module Language and the
complete set of Oracle extensions. SQL*Module provides an option, called the FIPS
flagger, which flags all non-standard extensions to SQL and to Module Language, as
mandated by the Federal Information Processing Standard for Database Language SQL,
FIPS publication 127-1. This publication is available from

National Technical Information Service
US Department of Commerce
Springfield VA 22161

US.A

This document contains:

Chapter 1, "Introduction to SQL*Module"

This chapter introduces you to Oracle's Module Language compiler. You learn what
SQL*Module is, when it is appropriate to use SQL*Module for a project, and what
features the SQL*Module compiler offers. The chapter also provides an overview
showing how to develop an application using SQL*Module.

Chapter 2, "Module Language”

This chapter documents SQL standard Module Language, and also describes the
Oracle extensions to the Module Language standard.

Chapter 3, "Accessing Stored Procedures"

This chapter describes how to use SQL*Module to generate code output files that
contain interface procedures (stubs) used to call PL/SQL procedures stored in an
Oracle database.

Chapter 4, "Developing the Ada Application"

This chapter describes the steps you take to develop an application using
SQL*Module. This chapter also includes a sample application in Module Language.
The Module Language code and the SQL scripts that build the sample database are
listed; they are also available on-line, in the demo directory.

Chapter 5, "Running SQL*Module"

This chapter tells you how to invoke SQL*Module, what input and output files are
required and are generated, and describes all the command-line options.

Chapter 6, "Demonstration Programs"

This chapter describes Ada-specific aspects of using SQL*Module, including
parameter passing conventions and binding of Ada datatypes to SQL datatypes. This
chapter also contains several sample programs that call stored procedures and Module
Language procedures.

Appendix A, "New Features"
This appendix provides lists of new statements and other new features in release 8.0.

Appendix B, "Module Language Syntax"
This appendix presents the formal syntax of Module Language using syntax diagrams.

Appendix C, "Reserved Words"

This appendix lists the keywords and reserved words that you cannot use for names of
modules, cursors, procedures, and procedure parameters in a Module Language
application.

Appendix D, "SQLSTATE Codes"
This appendix contains a table of the SQLSTATE codes.

Appendix E, "System-Specific References”

This appendix contains a list of all system-dependent aspects of SQL*Module for Ada
that are mentioned elsewhere in this guide.

Related Documents
Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. conf

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

Xiii

http://otn.oracl e. com nmenber shi p/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracl e. com docunent ati on/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

= Conventions in Code Examples

Conventions in Text

The style of the Ada Language Reference Manual is generally followed: reserved
words are lowercase, identifiers are uppercase. In running text, reserved words are
bold and identifiers are uppercase. Filenames are lowercase.

Additionally, we use various conventions in text to help you more quickly identify
special terms. The following table describes those conventions and provides examples

of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

| ower case
nonospace
(fixed-w dth)
f ont

Xiv

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depar t ment _nane, and

| ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED initialization

parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these methods.

Convention Meaning Example
| ower case Lowercase italic monospace font represents You can specify the par al | el _cl ause.
italic placeholders or variables.

Run ol d_rel . here ol d_r el
monospace unol d_rel ease. SQL where ol d_r el ease

(fixed-w dth)
f ont

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT username FROM dba_users WHERE username = ' M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of ~ { ENABLE | DI SABLE}

Other notation

Italics

which is required. Do not enter the braces.

A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to the
example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

{ENABLE | DI SABLE}
[COVPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col2, ... , coln FROM
enpl oyees;

SQL> SELECT NAME FROM V$DATAFI LE;
NAMVE

/fsl/dbs/ths_01. dbf
[fs1/ dbs/tbs_02. dbf

/1511 dbs/ t bs_09. dbf
9 rows sel ected.

acct bal NUMBER(11, 2);
acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB_NAME = dat abase_nane

XV

Convention Meaning Example
UPPERCASE Uppercase typeface indicates elements SELECT | ast _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish SE| ECT * FROM USER TABLES;
them from terms you define. Unless terms prop TABLE hr. enpl Byees;
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.
| ower case Lowercase typeface indicates SELECT | ast _name, enployee_id FROM

programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

enpl oyees;
sql plus hr/hr
CREATE USER nj ones | DENTI FI ED BY ty3MJ9;

XVi

1

Introduction to SQL*Module

Chapter 1 introduces you to SQL*Module. This chapter answers the following
questions:

What Is SQL*Module?

SQL*Module as an Interface Builder

What Is Supported by SQL*Module?

What SQL Statements are Not Supported by SQL*Module?

What Is SQL*Module?

You use SQL*Module to develop and manage Ada applications that access data in an
Oracle database. It allows an Ada application to access relational databases without
using embedded SQL, and without using a proprietary application programming
interface.

Background

SQL*Module fulfills three roles in application development:

It compiles SQL standard Module Language files. A Module Language file
contains parameterized procedures that encapsulate SQL statements. These
procedures are translated by the SQL*Module compiler into calls to a SQL runtime
library that interacts with the Oracle server.

It builds Ada code files that contain interface procedures (often called stubs). This
allows your application to call stored procedures in an Oracle database directly,
without requiring an anonymous PL/SQL block. The interface procedures can be
time-stamped, so if the stored procedure is recompiled after the interface
procedure was generated, a runtime error occurs.

SQL*Module can also generate stored procedures in a database, by compiling
Module Language files, and storing the procedures as part of stored packages,
with the appropriate interface mechanism automatically provided in the package's
procedure declarations.

The SQL language was designed to operate on entities in a relational database. SQL
was not designed to be a general-purpose programming language, and, in fact, it is
conceptually very different from 3GLs such as Ada or C. Some of these differences are:

SQL is a non-procedural database manipulation language, hence it deals with
database objects, such as tables, rows, columns, and cursors. A third-generation
language deals with data structures such as scalar variables, arrays, records, and
lists.

Introduction to SQL*Module 1-1

What Is SQL*Module?

= SQL has a limited ability to express complicated computational operations.

= SQL does not provide the procedural capabilities (such as flow of control
statements) that are required to implement efficient programs.

To achieve maximum flexibility when creating large applications, you must combine
SQL with host procedural programming language statements. There are several ways
to do this, and these are discussed briefly in the next section.

Precompilers

One way to use a procedural language to access data in a relational database is to
embed SQL statements directly in a program written in a host 3GL such as C or C++.
After the program is coded, you use a precompiler to translate the SQL statements into
calls to a runtime library that processes the SQL, and submits the SQL statements to
the database.

See Figure 1-1, "Developing with the Precompilers"” for details of this process.

While embedded SQL is very useful, it can have drawbacks when very large
applications are being developed. There are several reasons for this:

= Use of embedded SQL requires study of the technical details of the precompiler.

= SQL code does not follow the syntactic and semantic constraints of the host
language, and can confuse specialized tools, such as syntax-directed editors and
"lint" programs.

= When the precompiler processes code that contains embedded SQL, it introduces
extra data structures and code in the generated output code, making source-level
debugging more difficult.

= Techniques for error handling and recovery in embedded SQL programs can be
difficult to understand and apply, and subtle bugs can arise when developers do
not appreciate all the problems involved in embedded SQL error handling.

Figure 1-1 shows how you develop applications using the Oracle precompilers.

1-2 Oracle SQL*Module for Ada Programmer’s Guide

What Is SQL*Module?

Figure 1-1

Developing with the Precompilers

Source File with
Embedded SQL

Included Files
(SQLCA, ..)

I

I

Oracle Precompiler

Syntactic and
l Semantic Checking

Host Language
Program Files

I

Host Language Oracle8
Compiler Server

;

; ; SQL Library
Fil
Object Files (SOLLIB)
Host Linker
/ ™
Application <
Data
N >

The Module Language Concept

The ANSI SQL standards committee defined the embedded SQL standard in two
steps. A formalism called Module Language was defined, then the embedded SQL
standard was derived from Module Language.

Using Module Language is very straightforward: place all SQL code in a separate
module, and define an interface between the module containing the SQL code and the
host program written in Ada. At the most concrete level, the interface simply consists
of

« astandard way of calling Module Language procedures from Ada.
= astandard way to return error and warning information

= specification of conversions between SQL datatypes (such as DOUBLE
PRECISION or SMALLINT) and host language datatypes or derived types
defined in a standard package in Ada

Introduction to SQL*Module 1-3

What Is SQL*Module?

It is also possible to develop more abstract interfaces between the host language and
Module Language. One example of this is the SAMeDL (SQL Ada Module Description
Language) developed at Carnegie Mellon and the Software Engineering Institute.

Figure 1-2 shows how you would develop an application using SQL standard Module
Language.

Figure 1-2 Developing with Module Language

SQL Application
Developer

Ada Application
Developer

Source Procedures

Files

Application LModule LanguageJ

i

COMPILATION

SQL*Module

- < —
Compiler Compilation and
i l Semantic Checking

Specification Host Language

Files Generated Code
v v v
Oracle8
L Ada Compiler Server
ORACLE_SQLLIB L > Ada Runtime SQL Library
Package Library (SQLLIB)

v

Host Linker
- N
Application
<
Data
N~ -

A Module Language compiler such as SQL*Module generates a call-level interface to
procedures defined within a module, allowing them to be called like any other host
language procedure. Details of the implementation of these procedures are hidden
from the application.

The most immediate benefit of this approach is specialization. By separating SQL and
the host language, an application developer can focus on using the host language to

1-4 Oracle SQL*Module for Ada Programmer’s Guide

What Is SQL*Module?

perform application tasks, and a database developer can focus on using SQL to
perform database tasks.

The developer of the application does not need to know SQL. The procedures to be
called can be treated as canned routines that return variables of well defined datatypes
in the host language. Error handling becomes straightforward, since all module
procedures can return a single error indicator.

Figure 1-3 shows the operation of SQL*Module when it is used to compile SQL
standard modules. The module file contains a preamble, defining the host 3GL to be
Ada, and two simple procedures in Module Language. When SQL*Module compiles
this module, it produces two output files: a source code output file, that contains calls to
the runtime library SQLLIB that do the work of accessing the database, and a
specification file that declares the procedures in the source code file.

You include the specification files in the host application code that calls the module
procedures, using the appropriate language-specific mechanism.

Figure 1-3 Compiling a Module

Specifications File (Output)

Wth Oracle_Sqllib; use Oracle_Sqgllib;
with SQ._STANDARD;
Package enp_rec_nod is

procedure set_comm(enp_nunber: in sql_standard.int;
new_conm in sql_standard.real;
SQLCCDE: out sql _standard. sql code_type);

Module File (Compiled) sql _001 : constant string :=
" UPDATE EMP SET COMME: NEW COW WHERE EMPNO = : EMP_NUMBER ";

rocedure get_name(e nunber: in sql_standard.int;
MODULE enp_r ec_nod P get_ (enp_ q-

LANGLAGE Ada / S State. out sdl ot andard sqr st ate.type).
AUTHCR! ZATI ON scot t g : - e —Ype);

sgl _002 : constant string :=

"SELECT ENAME | NTO : EMP_NAME FROM EMP" &
"WHERE EMPNO = : EMP_NUMBER ";

end enp_rec_nod;

procedure set_comm (
renp_nunber | NTEGER,
:new_conm REAL,

SQLOODE) ;

UPDATE enp SET comm® : new_conm

VHERE enpno = : enp_nunber ; Source Code Output File (Output)

procedure get_nane (
s enp_nunber | NTEGER,
:enp_nanme CHARACTER(11),
SQLSTATE) ;

with Oracle_Sqgllib; use Oracle_Sqgllib;

with enp_rec_nod; use enp_rec_nod;

with SQ_STANDARD, use SQ._STANDARD;

package body enp_rec_nod is

use SQ._STANDARD. CHARACTER_SET;

SELECT ename | NTO : enp_nare procedure set_comm(enp_nunber: in sql_standard.int;
FROM enp new_conm in sqgl_standard.real;
WHERE enpno = - enp_nunber; SQLCCDE: out sql _standard. sql code_type) is

sgl stm: sql exd;

begi n

end set_comm
procedure get_nane(enp_nunber: in sql_standard.int;
enp_nane: out sql _standard. char;
sgl state: out sqgl_standard.sqlstate_type) is
sgl stm: sql exd;
SQLCCDE : sgl _standard. sql code_type := 0;
begi n

end get _nare;
end enp_rec_nod;

Introduction to SQL*Module 1-5

SQL*Module as an Interface Builder

SQL*Module as an Interface Builder

In addition to its role as a Module Language compiler, SQL*Module can also build
host language interfaces to procedures that are stored in an Oracle database.

Figure 1-4 shows schematically how SQL*Module functions as an interface builder.
The compiler extracts the interfaces to stored procedures, and creates an Ada output
file that contains calls to the procedures. YourAda application then accesses the stored
procedures in the database by calling these interface procedures.

When you create interface procedure files (output files that contain interface
procedures for calling stored procedures), you can choose either early binding or late
binding.

The early binding option creates a time stamp in the interface procedure for the time
that the stored procedure was last compiled. If the stored procedure has been
recompiled after the interface procedure was generated, a runtime error is generated
when the interface procedure is called from the host application.

The late binding option calls the stored procedure through an anonymous PL/SQL
block, and no time stamp is used. See "Early and Late Binding" on page 3-5 for more
information about binding.

1-6 Oracle SQL*Module for Ada Programmer’s Guide

What Is Supported by SQL*Module?

Figure 1-4 SQL*Module as an Interface Builder

PL/SQL
Developer

Application
Developer

Application PL/SQL

Source Files Stored Procedures
COMPILATION
SQL*Module

Compiler Derive Interface
Procedures from
l l Stored Procedures
Specification Host Language
Files Interface Program Files
v v !
Ada Oracle8
Compiler Server
ORACLE_SQLLIB] ,, [Ada Runtime SQL Library
Package Library (SQLLIB)
Host Linker
a8 I
Procedure
N Calls
Application
<
Data
N~ e

What Is Supported by SQL*Module?

SQL*Module supports international standards for Module Language. Refer to the
Preface to this Guide for more information about supported standards. In addition,
Oracle has extended the current standard in several ways. For example, datatype
conversions between Oracle datatypes and Ada datatypes are defined, comments can
be used in a module, and so forth. Chapter 2, "Module Language" describes the
Module Language capabilities of SQL*Module in detail. A compile time option, the
FIPS flagger, is available to flag use of non-standard extensions to Module Language
and to SQL.

In addition to the complete Module Language standard, SQL*Module also provides a
way for a host application to access PL/SQL stored procedures in an Oracle database.

Introduction to SQL*Module 1-7

What SQL Statements are Not Supported by SQL*Module?

If a package exists in an Oracle database that contains procedures, you can use
SQL*Module to build interface procedures corresponding to the PL/SQL procedures
in the package. Thus the application can call the stored procedures directly.

SQL*Module generates code and specification files that can be compiled with the Ada
compiler.

You can compile your stored procedures or modules to get an interface procedures file
and call the modules directly from an Ada host program.

What SQL Statements are Not Supported by SQL*Module?

= DDL (Data Definition Language) is not supported.

= DML (Data Manipulation Language) statements other than SELECT, UPDATE,
DELETE, and INSERT, are not supported.

« Transaction control statements other than COMMIT and ROLLBACK, and
CONNECT and DISCONNECT are not supported.

1-8 Oracle SQL*Module for Ada Programmer’s Guide

2

Module Language

This chapter describes SQL standard Module Language, including Oracle's extensions
to standard Module Language. It discusses the following topics:

« The Module

« Structure of a Module
= SQL Datatypes

« SQL Commands

« Textin a Module

» Indicator Parameters

» Status Parameters

=« CONNECT Statement
« DISCONNECT Statement
= Multi-tasking

= Multi-tasking Example

This chapter does not cover the use of SQL*Module to provide interfaces to stored
procedures. See Chapter 3, "Accessing Stored Procedures" for information about
calling stored procedures from a host application.

The Module

A module is a single file that contains

= introductory material, in a preamble

= optional cursor declarations for use by queries that can return multiple rows of data
= definitions of procedures to be called by the host application

The easiest way to see how a module is constructed is to look at an example. The small
module below contains a cursor declaration, procedures that open and close the
cursor, and a procedure that uses the cursor to fetch data from the familiar EMP table.
Two consecutive dashes (- -) begin a comment, which continues to the end of the line.
Case is not significant.

An Example Module

- the preanble (contains three clauses)

MODULE EXAMPLE1_MOD -- Define a modul e naned exanpl el_nod.

Module Language 2-1

The Module

LANGUAGE Ada -- The procedures are conpiled into
-- Ada, and called froman
-- Ada application.

AUTHORI ZATI ON SCOTT/ TIGER -- Use Scott's tables.
-- His password is "tiger"
-- (the password does not have to
-- be specified in the nodule file).

-- Declare a cursor for a SELECT statenent that
-- fetches four colums fromthe EMP table.

-- dept_nunber will be specified

-- in the procedure that opens the cursor.

DECLARE cursorl CURSCR FCR
SELECT enane, enpno, sal, comm
FROM enp
VHERE deptno = :dept_nunber

-- Define a procedure named "open_cursorl" to open the cursor.
-- After the procedure nane is a conma-separated paraneter |ist
-- enclosed in ()'s.
PROCEDURE open_cursorl (

: dept _nunber | NTEGER,

SQLOODE) ;

OPEN cursor1;

-- The "fetch_enp_data" procedure gets data fromthe cursor.
-- SQLCODE will return as 100 when there

-- is no nore data.

PROCEDURE fetch_enp_data (

. enpno | NTEGER,

: enpnane VARCHAR2(10) ,
:sal REAL,

:commi ssi on REAL,

:comm.i nd SMALLI NT,
SQLCODE) ;

-- the SQL command is a FETCH on the cursor
FETCH cursor1
I NTO : enpnane,
: enpno,
csal,
:conmmi ssi on | NDI CATOR : comm i nd;

-- Define a procedure to close the cursor.
PROCEDURE cl ose_cursorl (SQLCCDE);
CLOSE cursor1;

-- Connect to a database
PROCEDURE do_connect (

. dbname VARCHAR2(12) ,
: usernane VARCHAR2(12) ,
: passwd VARCHAR2(12) ,
SQLCODE) ;

2-2 Oracle SQL*Module for Ada Programmer’s Guide

The Module

CONNECT TO : dbname USER : usernanme USI NG : passwd;

- Di sconnect
PROCEDURE do_di sconnect (SQLCODE) ;

DI SCONNECT CURRENT;

Note: If you are familiar with the syntax of SQL89 Module Language, you should note
that the newer SQL92 syntax is used in this example. This includes parentheses around
a comma-separated parameter list, colons before parameters, and use of the
INDICATOR keyword. This syntax is supported by the current release of
SQL*Module, and is used throughout this Guide.

In this example, the LANGUAGE clause (in the second line of the module) specifies
"Ada". This module will be compiled into Ada code. For SQL*Module, this clause is
optional. When present, it is, in effect, a comment.

When SQL*Module compiles this module, it transforms the procedures into Ada
language procedures that open the cursor and call library routines to fetch the data.
SQL*Module also generates a package specification file, which must be compiled into
the Ada library and referenced in the host application using a with context clause. See
Chapter 5, "Running SQL*Module" in this Guide for information on running
SQL*Module, and Chapter 6, "Demonstration Programs" for information about Ada
specification files.

A Short Example Program in Ada

To complete the example, a short Ada program that calls the procedures defined in the
module file in "An Example Module" on page 2-1 follows.

- I'nclude TEXT_I O SQL_STANDARD and EXAMPLE1_MID package specs.

with
SQL_STANDARD,
TEXT 10
EXAVPLEL_MOD;
use
SQL_STANDARD;

- Define the main procedure.

procedure EXAMPLE1_DRV is

- Instantiate new packages for |/0O on SQL_STANDARD dat at ypes.
package STD INT_IOis
new text _io.integer_i o(SQL_STANDARD. | NT);
use STD INT_IQ

package SQLCODE IO is
new text_io.integer_i o(SQL_STANDARD. SQLCCDE_TYPE);
use SQLCODE | O

package STD FLOAT I10is

new text_io.float_i o(SQ._STANDARD. REAL) ;
use STD FLOAT IO

Module Language 2-3

The Module

-- Begin with declarations of all programvariables,
-- including parameters for the modul e procedures.

SERVI CE_NAME ;ostring(l..12)

:= "INST1_ALIAS ";
USERNAMVE string(1l..12)

;= "SCOrT "
PASSWORD ©ostring(l..12)

;= "TIGER "
DEPT_NUMBER SQL_STANDARD. | NT;
EMPLOYEE_NUMBER SQL_STANDARD. | NT;
EMPLOYEE _NAME string(1l..10);
SALARY SQL_STANDARD. REAL;
COW SSI ON SQL_STANDARD. REAL;
COWL_ | ND SQL_STANDARD. SMALLI NT;
SQLCCDE SQL_STANDARD. SQLCODE_TYPE;
LENGTH i nteger;
CONNECT_ERRCR exception;
SQLCODE_ERRCR exception;

begi n

-- Call a nodule procedure to connect
-- to the Oacle server.
EXAMPLE1_MOD. DO_CONNECT
(SERVI CE_NAME, USERNAME, PASSWORD, SQLCODE);

-- Test SQLCODE to see if the connect succeeded.
if SQLCODE /= 0 then
rai se CONNECT_ERROR;
end if;

TEXT | O NEW LI NE(2) ;

-- Get an input value fromuser to use

-- in opening the cursor.
TEXT_| O PUT("Enter departnent nunber: ");
STD_I NT_| O. GET(DEPT_NUMBER) ;
TEXT_I O. NEW LI NE;

-- Call the nodul e procedure to open the cursor.
-- You open the cursor using the input parameter (dept_nunber).
EXAMPLE1_MOD. OPEN_CURSCR1(DEPT_NUMBER, SQLCODE);
-- |f SQLCODE indicates error, call exception handler.
if SQLCODE < 0 then
rai se SQLCODE_ERROR;
end if;

TEXT_| O PUT_LI NE("Enpl oyee ID Nunmber Salary Comm ssion");
TEXT_| Q PUT("= - m - w e e e e e e e e e e O

-- Call the FETCH procedure in a loop, to get
-- the enpl oyee data.
| oop
EXAVPLE1_MOD. FETCH_EMP_DATA
(EMPLOYEE_NUMBER,
EMPLOYEE_NAME,
SALARY,

2-4 Oracle SQL*Module for Ada Programmer’s Guide

The Module

COWMM SSI ON,
COMM_ | ND,
SQLCODE) ;

TEXT_| O NEW LI NE;

- When SQLCODE = 100, no nore rows to fetch.
exit when SQLCODE = 100;

- When SQLCODE | ess than 0, an error occurred.
if SQLCODE < 0 then
rai se SQLCODE_ERROR;
end if;

TEXT_1 O. PUT(st ri ng(EMPLOYEE_NAME)) ;
STD_I NT_I O. PUT(EMPLOYEE_NUMBER, W DTH => 9);
STD_FLOAT | O. PUT(SALARY, FORE => 6, AFT => 2, EXP => 0);

if COWM.IND = 0 then
STD_FLOAT_I O. PUT(COWM SSION, FORE => 9, AFT => 2, EXP => 0);
el se
TEXT_I O PUT(" Nul I");
end if;
end | oop;

TEXT_I O NEW LI NE(2) ;

- Call the procedure to close the cursor.
EXAMPLE1_MOD. CLOSE_CURSOR1(SQLCODE) ;

- Call the procedure to disconnect.
EXAMPLE1_MOD. DO _DI SCONNECT(SQLCODE) ;

- Handl e the error exception.

exception
when SQLCODE ERRCOR =>
TEXT_I O NEW LI NE(2);
TEXT | Q PUT("Error fetching data, SQLCODE returns ");
PUT(SQLCODE) ;
TEXT_I O. NEW LI NE(2) ;

when CONNECT ERROR =>
TEXT_I O PUT(" Connect failure to " &
string(SERVI CE_NAME)) ;
TEXT_| O NEW LI NE(2);

end EXAMPLEL_DRV;

This example demonstrates several important points about SQL*Module:

The types of the parameters in the module procedures are SQL datatypes, for example
SMALLINT and REAL, not Ada datatypes.

= Parameters are passed to the generated output code procedures in the normal way.
Refer to Chapter 6, "Demonstration Programs"” for specific information concerning
parameter passing conventions.

= The error status of a call is returned in the SQLCODE or SQLSTATE parameter.
There must be a SQLCODE or SQLSTATE status parameter somewhere in the

Module Language 2-5

Structure of a Module

parameter list of each Module Language procedure. See the section "Status
Parameters" on page 2-13 for more information.

Structure of a Module

Preamble

This section is an informal guide to Module Language syntax, including Oracle's
extensions to the language. See Appendix B to this Guide for a formal description of
Module Language syntax.

A module is contained in a single file and consists of
= apreamble
= zero or more cursor declarations

= one or more procedure definitions

The preamble is a set of clauses at the beginning of a module file that describes the
module. The clauses are

« the MODULE clause
« the LANGUAGE clause
« the AUTHORIZATION clause

MODULE Clause
The MODULE clause gives a name to the module. The argument is the module name,
which must be a legal SQL identifier.

Note: A SQL identifier is a string containing only the 26 letters A through Z, the digits
0 through 9, and the underscore ("_"). The identifier must start with a letter, and cannot
be longer than 30 characters (18 characters to comply with the SQL89 standard). You
can use lowercase letters (a..z), but a SQL identifier is not case sensitive. So, the
identifiers "THIS_IDENTIFIER" and "this_identifier" are equivalent. The characters'$'
and'# are also allowed in a SQL identifier, but you should avoid using them, as they
have special meaning in many languages and operating systems.

The module name must be supplied. The module name must be the same as the name
of the Ada library unit that you use when you store the Ada-compiled output in your
Ada library.

LANGUAGE Clause

The LANGUAGE clause specifies the target language. It takes one argument — the
language name, which must be Ada (case is not significant).

The LANGUAGE clause is optional in SQL*Module. See Chapter 5, "Running
SQL*Module" for more information about running SQL*Module.

AUTHORIZATION Clause

The AUTHORIZATION clause is required. This clause can determine, or help to
determine, the database and schema that SQL*Module uses at compile time.

The argument to the AUTHORIZATION clause can take one of four forms:
« the username: scott

- scott

2-6 Oracle SQL*Module for Ada Programmer’s Guide

Structure of a Module

= the username plus a password, the two separated by a slash: scott/tiger

- scott/tiger

= the username plus a database to connect to:

scott @i nstance_alias | net8_connection_string}

}

= afull specification, consisting of the username, a password, and the database to
connect to: scott/tiger@{instance_alias | net8_connection_string}

- scott/tiger@instance_alias | net8_connection_string}

The instance_alias is an alias containing a database name defined in the tnsnames.ora
file. For more information, talk to your database administrator, or see the manual
Oracle Net Services Administrator’s Guide.

If you do not include the password in the AUTHORIZATION clause, you can specify
it when you run SQL*Module, using the USERID command line option. If you do not
specify a USERID value that contains a password, SQL*Module prompts you for a
password. If a database name is not supplied, SOL*Module connects using the default
database for the specified user.

Note: For security reasons, omit the password in the SQL*Module or in any
configuration file. You will be prompted for the password at runtime.

An application that calls module procedures is in effect submitting SQL cursor
declarations and SQL statements to Oracle for processing at runtime. The application
runs with the privileges of the user executing the application, not the schema specified
either in the AUTHORIZATION clause or at runtime, when the Module Language
code was compiled by SQL*Module.

So, when the application is executed, the user must be able to connect to the database
using the same schema as that specified when the modules were compiled, in order to
guarantee access to all database objects referenced in the modules.

Cursor Declarations

When a query can return multiple rows of data, you must declare a cursor for the
statement. There are two different kinds of cursor that you can use in Module
Language. You can declare an ANSI-standard cursor in your module file, and write
module language procedures to OPEN the cursor, FETCH from it, and CLOSE it. Or,
you can use a cursor variable. Cursor variables are described in "Cursor Variables" on
page 3-7.

Using a cursor, you retrieve data one row at a time using the SQL FETCH command.
Standard cursors are established in Module Language using the DECLARE CURSOR
statement.

Note: The cursor name is a SQL identifier; it is not a procedure name. So, the cursor
name does not need to be a valid Ada identifier.

The SQL statement in a DECLARE CURSOR clause must not include an INTO clause.
The INTO clause is used in the FETCH command in the procedure that references the
Cursor.

You cannot use parameters when you declare a standard cursor. A placeholder is used
instead. Placeholders in a cursor declaration must correspond by name to the
parameters in the procedure that opens the cursor.

Module Language 2-7

Structure of a Module

Note the way the variable dept_number is used in the following module fragment,
taken from the example used earlier in this chapter:

DECLARE cursorl CURSOR FOR
SELECT enane, enpno, sal, conm
FROM enp
VWHERE deptno = :dept _nunber

PROCEDURE open_cursorl (:dept_nunber |NTEGER, SQLCODE);
OPEN cursor1;

The cursor declaration is NOT terminated with a semicolon. If it is, SQL*Module
generates a syntax error.

Caution: If the application consists of several modules, a cursor cannot be declared in
one module, then referenced in another. Nevertheless, cursor names must be unique
across all modules in the application.

Procedure Definitions

A procedure definition consists of a
= procedure name
= parameter list

= single SQL statement

Procedure Name

The procedure name is a SQL identifier, and should also be a legal Ada identifier.
Procedure names must be unique in the application.

Each procedure in a module must have a distinct name. The procedure name space
extends over all modules of an application, so when the application uses more than
one module, each procedure must still have a distinct name.

Parameter List

The parameter list contains one or more formal parameters. Each parameter must have
a distinct name, which is a SQL identifier. One of the parameters must be a status
parameter: SQLSTATE or SQLCODE. It can appear anywhere in the parameter list.
You can include both. See "Status Parameters" on page 2-13 for more information
about status parameters.

SQL92 Syntax
In SQL89 Module Language, you defined a procedure using the syntax

PROCEDURE pr oc_namne
<param 1> <dat at ype_1>
<param 2> <dat at ype_2>
SQLCCDE;
<sql _st at ement >;

where <param_n> is a formal parameter name and <datatype_n> is a SQL datatype.
Following the SQL92 standard, SQL*Module allows the syntax

PROCEDURE proc_namne (
: <param 1> <dat at ype_1>,
. <param 2> <dat at ype_2>,
SQLSTATE | SQLCODE);

2-8 Oracle SQL*Module for Ada Programmer’s Guide

SQL Datatypes

<sql _stat enent >;

where the parameter list is surrounded by parentheses, and parameters are separated
by commas.

Note: You cannot mix SQL89 and SQL92 syntax. If you separate
the elements of the parameter list using commas, you must also
place parentheses around the parameter list.

When SQL*Module generates the output procedures, the formal parameters appear
with the same names, and in the same order, as they appear in the module procedure.
You can use the parameter access conventions appropriate for the Ada language when
calling the output procedure from the application. Thus Ada programmers can use
named parameter association in place of, or in addition to, positional parameter
association.

SQL Datatypes

The following table lists the SQL and Oracle datatypes that you can use in a module
parameter list.For more information about arrays, see "Arrays as Procedure
Arguments" on page 4-7.

Table 2-1 Datatypes

SQL Datatype Meaning

CHARACTER single character

CHARACTER(L) character string of length L bytes

IDOUBLE PRECISION approximate numeric

INTEGER exact numeric, no fractional part

REAL approximate numeric

SMALLINT exact numeric, no fractional part, equal to or smaller in range
than INTEGER

Oracle Datatype

IVARCHAR2(L) variable-length character string of length L bytes

Module Language 2-9

SQL Commands

Table 2-1 (Cont.) Datatypes

SQL Datatype Meaning

SQL*Module Datatypes:
SQL_CURSOR cursor variable type
SQL_CONTEXT task context

IARRAY(N) OF SQL_ IArrays of SQL Datatypes shown above. N is the number of
ICURSOR elements.

ARRAY(N) OF
CHARACTER

ARRAY(N) OF
CHARACTER(L)

ARRAY(N) OF DOUBLE
PRECISION

ARRAY(N) OF INTEGER
ARRAY(N) OF REAL

ARRAY(N) OF
SMALLINT

ARRAY(N) OF
VARCHAR2(L)

INote:
ICHARACTER can be abbreviated CHAR. INTEGER can be abbreviated INT.

The SQL standard for Module Language allows the use of only a subset of the SQL
datatypes for Ada.

Note: All parameters for Module Language procedures must be scalars, arrays, or
strings. Records and access types are not supported.

SQL Commands

Module Language supports the following SQL statement:
« ALLOCATE

« CLOSE

« COMMIT

« CONNECT TO

« CONTEXT ALLOCATE

« CONTEXT FREE

« DELETE

« DISCONNECT

« ENABLE THREADS

« FETCH

= INSERT

« OPEN

« ROLLBACK
« SELECT

2-10 Oracle SQL*Module for Ada Programmer’s Guide

Indicator Parameters

« SET CONNECTION
= UPDATE

The DELETE and UPDATE commands may be either searched (the normal mode) or
positioned (using the WHERE CURRENT OF <cursor_name> clause). You can use the
OPEN command only for ANSI-standard cursors. You must open cursor variables on
the Oracle Server, using PL/SQL code.

Text in a Module

Comments

In general, Module Language is not case sensitive. You can enter keywords and
identifiers in any mixture of uppercase and lowercase. Case is significant, however, in
character string literals.

Text in a module file is free form. White space (spaces, tabs, and new lines) can be
placed anywhere in the file to improve readability. The only exception to this is that
identifiers, keywords, and string literals cannot be continued to a new line.

The maximum length of a line in a module is 512 characters.

SQL*Module allows comments in a module file. You can place comments anywhere
that white space can appear, except in string literals.

There are two comment styles: SQL-style comments and C-style comments. A
SQL-style comment starts with two consecutive dashes, which can appear anywhere
on a line, and ends at the end of the line. For example:

- This is a SQL(or Ada)style coment.
- For nultiline conments, you nust place the coment
- dashes on each Iline.

A C-style comment begins with a slash immediately followed by an asterisk (/*), and
ends at the next occurrence of an asterisk immediately followed by a slash (*/). C-style
comments can span more than one line. C-style comments cannot be nested.

The following example demonstrates the C-style comment:

/*

* This commrent style is often used to
* introduce a procedure.

*/

Indicator Parameters

You use indicator parameters to set the null/not null status of another (associated)
parameter, or to "indicate" if a column value retrieved on a query was null. In the
module procedure parameter list, an indicator parameter always has a SMALLINT
type. In the SQL statement, the indicator parameter follows the associated parameter,
with no comma separation. The SQL92 standard allows the keyword INDICATOR to
be used to separate the indicator parameter and its associated parameter.

In the following example, grade_indic is an indicator parameter:

PROCEDURE get _grade (
. grade REAL,
:grade_indic SMALLI NT,
. cl ass_nunber | NTEGER,

Module Language 2-11

Indicator Parameters

:student _id | NTEGER,
SQLCODE) ;
SELECT grade
I NTO : grade | NDI CATOR : grade_i ndic
FROM enr ol | nent
VWHERE cl ass_no = :class_nunber AND student_id = :student_id,

Following the SQL89 standard, the SELECT statement above would be written
without the INDICATOR keyword, as follows:

SELECT grade
I NTO : grade :grade_indic
FROM enr ol | ment
WHERE cl ass_no = :class_nunber AND student _id = :student_id;

SQL*Module allows both uses of indicator parameters.

When an indicator parameter is returned from a procedure (an OUT parameter), as in
the query example above, its returned value has the following meanings:

-1

The Oracle column or expression is null. The value of the associated parameter (grade
in this example) is indeterminate.

0
Oracle assigned a column or expression value to the associated parameter.
>0

For character data, Oracle passed a truncated column value in the associated
parameter. The value of the indicator parameter shows the original length of the value
in the database column.

When indicator parameters are passed as IN parameters, you must set the value in
your Ada program. A value of -1 means that Oracle will assign null to the column
(regardless of the value of the associated parameter), and a value of zero or greater
means that Oracle will use the value of the associated parameter in the UPDATE or
INSERT command. Positive values greater than zero have no special meaning; they are
equivalent to zero.

Caution: If you try to assign a null to a database column that has
the NOT NULL constraint, an Oracle error is returned at runtime.

The following code fragment shows an Ada driver that calls a Module Language
procedure with a null indicator parameter value:

with SQL_STANDARD;

procedure DRV is
SQLCODE : SQL_STANDARD. SQLCODE_TYPE;
EMPLOYEE : string(l..10) := "SCOIT "
COW SSI ON : SQ._STANDARD. REAL : = 2000. 0;
COW IND : SQ._STANDARD. SMALLINT : = -1;

begin

UPDATE_COWM SSI ON(EMPLOYEE, COWM SSION, COW I ND, SQ.CODE) ;

end;

2-12 Oracle SQL*Module for Ada Programmer’s Guide

CONNECT Statement

The corresponding Module Language procedure is:

PROCEDURE updat e_conmmi ssion (
:enpl oyee_name VARCHAR2(10),
: conmmi ssi on REAL,
:comm.ind SMALLI NT,
SQLCODE) ;

UPDATE enp SET comm = : commi ssi on | NDI CATOR : comm i nd
WHERE ename = :enpl oyee_nane;

In this example, the parameter commission with a value of 2000.0 is passed to the
update_commission procedure. But, since the indicator parameter is set to -1, employee
Scott's commission is set to null in the EMP table.

Status Parameters

There are two special status parameters: SQLSTATE and SQLCODE. The status
parameters return values to the calling Ada application that show if

= the procedure completed without error
= an exception occurred, such as "no data found"
« an error occurred

You can place either one or both of the status parameters anywhere in the parameter
list. They are always shown last in this Guide, but that is just an informal coding
convention. The status parameters are not preceded by a colon, and they do not take a
datatype specification. You cannot directly access the status parameters in the SQL
statement in the procedure; they are set by SQL*Module.

SQLSTATE is the preferred status parameter; SQLCODE is retained for compatibility
with older standards.

For more information about the status parameters and the values they return, see
"Error Handling" on page 4-2.

Error Messages

SQL*Module compile time error messages have the MOD prefix. The codes and
messages are listed in Oracle Database Error Messages.

CONNECT Statement

The connect statement associates a program with a database, and sets the current
connection. The syntax of the command is shown in the following syntax diagram. Key
words, which you must spell exactly as shown, are in upper case; tokens you supply
are in lower case. If a clause is optional, it is shown off the main path, which flows to
from left to right. For a more complete discussion of syntax diagrams, see Appendix B,
"Module Language Syntax".

DEFAULT
USER usernam

Module Language 2-13

DISCONNECT Statement

A db-env (database environment) is a Net8 connect string or instance-alias. The
conn-name (connection name) is optional. For multiple connections, you must specify
the connection names. You can omit it if you will only use a single connection. The
USING clause is optional. A passwd is the password..

Connecting as DEFAULT results in a connection to Oracle using either TWO_TASK (if
it applies to your operating system) or ORACLE_SID and the account specified by the
parameter os_authent_prefix in your file init.ora. The optional token passwd is the
password.

The ANSI SQL92 standard does not allow db-env to be optional. This is an Oracle
extension (which will be flagged by the FIPS option) which enables a connection to the
default server as a specific user.

You must use Net8 in SQL*Module applications. Note that passwd can only be a
variable and not a character string literal. All other variables can be either a character
string literal or a variable previously defined, preceded by ":".

Here is a illustative code fragment from a module named demo.mad, which contains the
following procedure to do a connect:

PROCEDURE ora_connect (:dbid VARCHAR2(
: dbname VARCHAR2(
cuid VARCHAR2(
s pwd VARCHAR2(
SQLCODE) ;

CONNECT TO : dbid AS :dbname USER :uid USING : pwd;

14)
14),
14),
14)

An Ada application can contain these statenents to do the connect:
pwd : constant string := "tiger";

DEMO. ORA_CONNECT("i nst 1", " RMI'1", "scot t ", PWD, SQLCODE) ;
if SQLCODE /= 0 then

For more information, see the Oracle Net Services Administrator’s Guide.

SET CONNECTION Statement

The set connection statement sets the current connection. Its syntax is:
SET CONNECTION { connection-name | DEFAULT }
DEFAULT is a special case of the connection-name, '/', at the current ORACLE_SID.

DISCONNECT Statement

The disconnect command ends an association between an application and a database
environment. It can be summarized as:

DISCONNECT { connection-name | ALL | CURRENT | DEFAULT}

The full ANSI semantics are not followed. Instead of raising an exception condition if
the connection has an active transaction, the transaction is (implicitly) rolled back and
the connection(s) disconnected.

DISCONNECT ALL only disconnects connections which are established by SQLLIB
(that is, by SQL*Module).

2-14 Oracle SQL*Module for Ada Programmer’s Guide

Multi-tasking

DISCONNECT DEFAULT and DISCONNECT connection-name terminate only the
specified connection.

DISCONNECT CURRENT terminates the connection regarded by SQLLIB as the
"current connection" (either the last connection established or the last connection
specified in a SET CONNECTION statement).

After the current connection is disconnected, you must execute a set connection or a
connect statement to establish a new current connection. Then you can execute any
statement that requires a valid database connection.

You must explicitly commit or roll back the current transaction before disconnecting,. If
you do not commit the transaction before disconnecting, or if the program exits before
committing, the current transaction is automatically rolled back.

Here is an example of two procedures from the module demo.mad illustrating the
disconnect command:

PROCEDURE or a_di sconnect (:dbname VARCHAR2(14),
SQLCODE) ;
DI SCONNECT : dbnane;

PROCEDURE or a_conmi t (SQLCODE) ;
COW T WORK;

these procedures are called fromyour application as follows:

DEMD. ORA_COMM T(SQLCODE) ;
DEMD. ORA_DI SCONNECT(" RMI'L", SQLCODE) ;

A required commit command was executed using the procedure ora_commit (which is
also in the file demo.mad) just before the disconnect. .

Multi-tasking

Starting with release 8.0, multi-tasking Ada programs are supported by SQL*Module.
The new commands that you use in a multi-tasking program are described in the
following sections:

ENABLE THREADS

This command initializes the process for later use with Ada tasks. It must be called
prior to the creation of any Ada tasks. It is:

ENABLE THREADS,

SQL_CONTEXT Datatype

The datatype, SQL_CONTEXT, is used to support multi-tasking applications. It points
to SQLLIB's runtime context. You pass the context as a parameter to SQL*Module
procedures. If it is passed, then it indicates which SQLLIB runtime context will be used
for execution. If no SQL_CONTEXT parameter is passed, then SQL*Module uses the
global runtime context of SQLLIB.

For example, here is a procedure that uses SQL_CONTEXT:
PROCEDURE sel dept (:ctx SQL_CONTEXT,

Module Language 2-15

Multi-tasking Example

:dno | NTEGER,

SQLCODE) ;
SELECT deptno I NTO : dno FROM enp WHERE dnanme = ' SALES';

In this example, the select statement will use the runtime context pointed to by the
variable ctx. ctx must have been previously allocated in a CONTEXT ALLOCATE
statement. Note that you never reference the SQL_CONTEXT variable directly. It
appears only in the code that SQL*Module generates.

CONTEXT ALLOCATE

This command allocates storage in memory for a SQLLIB runtime context that is used
to support multi-tasking. An example is:

CONTEXT ALLOCATE : ctxvar;

ctxvar is of type SQL_CONTEXT. If sufficient storage is available, ctxvar will contain
the address of the runtime context. Otherwise, ctxvar will be zero and an error will be
returned in the provided status variables.

CONTEXT FREE

CONTEXT FREE frees all storage associated with the SQLLIB runtime context. It does
not disconnect any active connection. Prior to deallocating the runtime context, you
must execute the DISCONNECT command for each active connection.

The CONTEXT FREE statement always succeeds and ctxvar is zero after execution. If
the context is ctxvar, then, an example is:

CONTEXT FREE : ctxvar;

Multi-tasking Restrictions

= All database connections must be established prior to task activation.

= Multi-tasking applications cannot be used to access database stored procedures.

Multi-tasking Example

Here is part of a module, adademo.mad:

PROCEDURE enabl e_t hreads (SQLCODE);
ENABLE THREADS;
PROCEDURE al | ocate_context (:ctx SQL_CONTEXT, SQLCODE);
CONTEXT ALLOCATE : ctx;
PROCEDURE free_context (:ctx SQL_CONTEXT, SQLCCDE);
CONTEXT FREE : ctx;
PROCEDURE di sconn_db (:ctx SQL_CONTEXT,
: dbname VARCHAR2(14),
SQLCODE) ;
DI SCONNECT : dbnare;

these procedures are called as follows:
wi t h ADADEMO,

- Declare contexts CTX1l, CTX2
ADADEMO. ENABLE_THREADS(SQLCODE) :

ADADEMD. ALLOCATE_CONTEXT(CTX1, SQLCODE) ;
ADADEND. ALLOCATE_CONTEXT(CTX2, SQLCODE) ;

2-16 Oracle SQL*Module for Ada Programmer’s Guide

Multi-tasking Example

-- Spawn tasks that process data:

An exampl e of explicitly disconnecting and freeing contexts is:
-- After processing data:

ADADEMD. DI SCONN_DB(CTX1, DBNAML) ;
ADADEMD. DI SCONN_DB(CTX2, DBNAMR) ;
ADADEMD. FREE_CONTEXT(CTX1) ;
ADADEMD. FREE_CONTEXT(CTX2) ;

Module Language 2-17

Multi-tasking Example

2-18 Oracle SQL*Module for Ada Programmer’s Guide

3

PL/SQL

Accessing Stored Procedures

This chapter describes how to use SQL*Module to generate interface procedures to call
stored procedures. It covers the following topics:

PL/SQL

Stored Procedures

Stored Packages

Accessing Stored Procedures

Case of Package and Procedure Names
Early and Late Binding

Cursor Variables

Dynamic SQL

The WITH INTERFACE Clause
Storing Module Language Procedures

Connecting to a Database

Note: The examples in this chapter use the tables defined in Chapter 6,
"Demonstration Programs".

This section contains a brief overview of PL/SQL, Oracle's procedural language
extension to SQL. PL/SQL is a modern block-structured language that allows you to

declare constants and variables

control execution flow, using IF ... THEN ... ELSE, EXIT, GOTO, and other
procedural constructs

create loops, using WHILE ... LOOP and FOR ... LOOP
assign constant or variable expressions to a variable
issue SQL Data Manipulation Language and Transaction Control statements

define exceptions, handle them using WHEN EXCEPTION_NAME THEN ..., and
raise them using RAISE EXCEPTION_NAME

See the PL/SQL User’s Guide and Reference for complete information about the PL/SQL
language.

Accessing Stored Procedures 3-1

Stored Procedures

Procedures

A PL/SQL procedure is a named PL/SQL block. Unlike an anonymous block, a
procedure can

= take parameters

= beinvoked from a separate application

= be compiled once, but invoked many times

= be stored in compiled form in a database, independent of the shared SQL cache

A procedure contains one or more PL/SQL blocks. The following example computes
the grade point average. The student ID number is passed as a parameter to the
procedure, and the computed grade point average is returned by the procedure.

PROCEDURE get _gpa(
student id I N NUVBER

gpa OUT NUMBER) 1S
n NUMBER;
grade_tenp NUMBER,
gpa_tenp NUMBER, -- needed because PL/SQ cannot read

- an QUT paraneter |ike GPA
CURSOR c1(sid) IS
SELECT grade FROM enrol | ment
WHERE student _id = sid;

BEG N
n:=0;
gpa := 0;
OPEN c1(student_id);
LooP
FETCH c1 | NTO grade_tenp;
EXIT WHEN c1%NOTFOUND; -- C1YNOTFOUND is TRUE
- when no nore data found
gpa_tenp := gpa_tenp + grade_tenp;
n:=n+1;
END LOOP,
IFn>0 THEN
gpa := gpa_tenp / n;
END I F;
CLCSE c1;
END;

END PROCEDURE get _gpa;

The procedure declaration adds a parameter list to the PL/SQL block. In this example,
student_id is a parameter whose mode is IN. The mode of a parameter indicates
whether the parameter passes data to a procedure (IN), returns data from a procedure
(OUT), or can do both (IN OUT). The parameter gpa is an OUT parameter. It returns a
value, but you cannot use it to pass a value to the procedure. Nor can you read its
value inside the procedure, even after a value has been assigned to it.

Stored Procedures

You can store PL/SQL procedures in the database, and call these stored procedures
from Oracle applications. Storing a procedure in the database offers many advantages.
Only one copy of the procedure needs to be maintained, it is in the database, and it can
be accessed by many different applications. This considerably reduces maintenance
requirements for large applications. A stored procedure is not recompiled each time it
is called.

3-2 Oracle SQL*Module for Ada Programmer’s Guide

Accessing Stored Procedures

Procedures can be stored in the database using Oracle tools such as SQL*Plus. You
create the source for the procedure using your text editor, and execute the source using
SQL*Plus (for example, with the @ operator). When you input the source, use the
CREATE PROCEDURE command. (You can also use CREATE OR REPLACE
PROCEDURE, to replace an already stored procedure of the same name.)

See the Oracle Database Reference for complete information about the CREATE
PROCEDURE command.

Stored Packages

The examples of stored procedures shown so far in this chapter involve standalone
procedures (sometimes called top-level procedures). These are useful in small
applications. But, to gain the full power of stored procedures, you should use
packages.

A package encapsulates procedures, as well as other PL/SQL objects. Stored packages
that are used with Ada applications have two parts: a package specification and a
package body. The specification is the (exposed) interface to the host application; it
declares the procedures that are called by the application. A complete PL/SQL
package specification can also declare functions, as well as other PL/SQL objects such
as constants, variables, and exceptions. However, an Ada application using
SQL*Module cannot access or reference PL/SQL objects other than subprograms. The
package body contains the PL/SQL code that defines the procedures and other objects
that are declared in the package specification.

Although an Ada application can only access public subprograms, a called
subprogram can in turn call private subprograms, and can access public and private
variables and constants in the package.

For complete information about stored packages, see the PL/SQL User’s Guide and
Reference.

Accessing Stored Procedures

You can use SQL*Module to provide a bridge that enables your host application to
access procedures stored in the database. A host application written in Ada cannot call
a stored database subprogram directly. But you can use SQL*Module to construct an
interface procedure ("stub") that calls the stored database subprogram. Table 3-1
shows, in schematic form, how this process works.

Accessing Stored Procedures 3-3

Case of Package and Procedure Names

Figure 3-1 Accessing a Stored Procedure

Host .ﬁ.pp"l:ﬂ"nﬂ SOL*Medule Compde 5TUG
with 0L _STAMOAED, TEXT 0, NTEGER_O
EMADLLWENT 1
priczders EMPOLL_ DRV s APC_GEKERATE=YES
SOLLODE - 5L STAMNOARD SOLCOTE TYFE
S0 50, STANQ&RDNT. & _ 1
[¥
I?_l_ﬁuﬁ,hLI.'EiFl.El}.,E-TMDAFﬂIhT. | it Oiacin, gt 1o Orade, Soli |
teg | win50L STAMDAAD: i
ENROLL_EXTERNICLASS NUMBER, 5I0, SLCTCE], | Packape ENACLLMENT & |
o | pricsndere EMROLL EXTERMCLASS MO insgl standsnd inf; |
s STLOENT_IC: i sql_standardnt;
ered ERFICLL_DFYY, | 55LGO0E oul sgi_standond sohcode_typal I
B3l 001 constent Siving = |
| “begn* EMAOLLMERT SCOTT* ENROLL® T0LASS MO, *& |
| SETUCENT _I0; emd;, |
!_ erd ENFIOLLMENT; |
ia
¥
Oracled Sarner
r ______________ |
l CREATE OR AEPLUACE PACKKEE snmbnent 85
PROCEDVRE gl |
Nl IWSER
shudert_u WUNBER)
'WITH INTERFALE PROCZEDIUAE
ik
them_nolWTEGER,
sudent_d nirga
sohendal;
EM D enmlimen;

CREATE 08 AEMLACE PACKASE BODY enraliment A5
PROCEDRIRE animd |
SRR 1Y) st
sisdent_id numizer] 1
BEGIN
IKSERT INTD asiol_patks VALLES |
clesz g,
sudent_id]
ERD grwiztk
| EM D enmliment;

e e e e —

In this example, there is a procedure stored in the database called enroll. The PL/SQL
source code that created the procedure is shown in the right-hand box. The WITH
INTERFACE clause in the procedure is described in the section "The WITH
INTERFACE Clause" on page 3-9. The procedure has two database parameters: class_
no and student_id. The SQLCODE error return parameter is added in the interfacing
clause.

Case of Package and Procedure Names

The Oracle Server always translates to uppercase the names of database objects as they
are inserted into the database. This includes the names of packages and procedures.
For example, if you are loading a package into the database in the SCOTT schema, and
have a PL/SQL source file that contains the line

3-4 Oracle SQL*Module for Ada Programmer’s Guide

Early and Late Binding

CREATE PACKAGE school _records AS ...

then Oracle inserts the name into the schema as SCHOOL_RECORDS, not the
lowercase "school_records". The following SQL*Module command (in UNIX)

modada rpc_gener at e=yes pnane=school _records userid=scott

generates an error, since there is no package named "school_records" in the schema.

If you prefer to have your package and procedure names stored in lowercase in the
database, you must quote all references to the name in the PL/SQL source file, or as
you insert them into the database using SQL*Plus. So, you would code

CREATE PACKAGE "school _records" AS ...

Note also that SQL*Module preserves the case of subprogram names when creating
interface procedure files.

However, if you really do want uppercase names, some operating systems (OPEN
VMS is an example) require that you quote the name when you specify it on the
command line. So, you would enter the command as

modada rpc_generat e=yes pname="SCHOOL_RECORDS" user=scott

See your system-specific Oracle documentation, and your operating system
documentation, for additional information on case conventions for command lines
that are in effect for your operating system.

Early and Late Binding

When you generate RPCs (remote procedure calls) using SQL*Module, you have a
choice of early binding or late binding. Your choice of early or late binding is
controlled by the BINDING option.

When you choose early binding, SQL*Module generates a call to the procedure stored
in the database, and also uses a time stamp that is associated with the call. The time
stamp records the date and time (to the nearest second) that the stored procedure was
last compiled. The time stamp is created by the Oracle database. If a host application
calls the stored procedure through the interface procedure, and the time stamp
recorded with the interface procedure is earlier than the time stamp on the stored
procedure recorded in the database, an error is returned to the host application in the
SQLCODE and/or SQLSTATE status parameter. The SQLCODE error is 4062 "time
stamp of name has been changed".

The late binding option, on the other hand, does not use a time stamp. If your
application calls a stored procedure that has been recompiled since SQL*Module
generated the interface procedure, no error is returned to the application.

With late binding, SQL*Module generates the call to the stored procedure using an
anonymous PL/SQL block. The following example shows a specification for a stored
procedure that is part of a package in the SCOTT schema:

PACKAGE enppkg IS

PROCEDURE get _sal _conm (enp_num IN NUMBER,
sal ary OUT NUMBER,
conmi ssion OUT NUMBER)

W TH | NTERFACE

PROCEDURE get _sal _enmp (

enp_num | NTEGER,
sal ary REAL,

Accessing Stored Procedures 3-5

Early and Late Binding

commi ssion REAL | NDI CATOR comm i nd,
comm i nd SMALLI NT,
SQLCODE) ;

END enppkg;

If you generate an RPC interface procedures output file for the package using the
command

modada pname=EMPPKG r pc_gener at e=yes bi ndi ng=l ate userid=scott/tiger

SQL*Module generates a call in the output file, as follows:

Wth Oacle_Sgllib; use Oracle_Sqllib;
wi th SQ._STANDARD;
Package EMPPKG is

procedure GET_SAL_EMP(EMPNUM in sqgl _standard.int;
SALARY: out sql _standard.real;
COW SION: out sql _standard.real;
COW I ND: out sql _standard.smallint;
SQLCODE: out sql _standard. sql code_type);
sql _001 : constant string :=
"begin ""EMPPKG SCOTT""." &
"""GET_SAL_COW' " (: EMPNUM : SALARY, :COW SI ON. COWM IND); end;";

end EMPPKG

In other words, the call to the stored procedure get_sal_comm is performed using an
anonymous PL/SQL block. This is the way stored procedures are called from an
Oracle precompiler or Oracle Call Interface application.

The advantages of late binding are

= greater flexibility

= changes in the stored procedure(s) are transparent to the user

= gives behavior similar to interactive SQL (for example, SQL*PLus)
The disadvantages of late binding are

= There might be additional performance overhead at runtime, due to the necessity
of compiling the PL/SQL anonymous block.

« Itis difficult to detect runtime PL/SQL compilation errors in the host application.
For example, if the anonymous block that calls the late-bound procedure fails at
runtime, there is no convenient way for the host application to determine the
cause of the error.

= The lack of time-stamp capability means that changes, perhaps radical changes, in
the stored procedure could be made after the host application was built, and the
application would have no way of detecting this.

Use the BINDING={EARLY | LATE} command line option to select early or late
binding when generating RPC interface procedures. See Chapter 5, "Running
SQL*Module" for a description of this and other command line options.

3-6 Oracle SQL*Module for Ada Programmer’s Guide

Cursor Variables

Cursor Variables

You can use cursor variables in your application. A cursor variable is a reference to a
cursor that is defined and opened on the Oracle8 server. See the PL/SQL User’s Guide
and Reference for complete information about cursor types.

The advantages of cursor variables are

= Encapsulation: queries are centralized, placed in the stored procedure that opens
the cursor variable. The logic is hidden from the user.

= Ease of maintenance: if you need to change the cursor, you only need to make the
change in one place: the stored procedure. There is no need to change each
application.

= Convenient security: the user of the application is the username used when the
application connects to the server. The user must have execute permission on the
stored procedure that opens the cursor. But the user does not need to have read
permission on the tables used in the query. This capability can be used to limit
access to the columns and rows in the table.

Cursor Variable Parameters

You define a cursor variable parameter in your module using the type SQL_CURSOR.
For example:

PROCEDURE al | oc_cursor (
SQLCCDE,
scurs SQL_CURSOR);

In this example, the parameter curs has the type SQL_CURSOR.

Allocating a Cursor Variable

You must allocate the cursor variable. You do this using the Module Language
command ALLOCATE. For example, to allocate the SQL_CURSOR curs that is the
formal parameter in the example above, you write the statement:

ALLOCATE : curs;

Note: You use the ALLOCATE command only for cursor variables. You do not need to
use it for standard cursors.

Opening a Cursor Variable

You must open a cursor variable on the Oracle Server. You cannot use the OPEN
command that you use to open a standard cursor to open a cursor variable. You open a
cursor variable by calling a PL/SQL stored procedure that opens the cursor (and
defines it in the same statement).

For example, consider the following PL/SQL package, stored in the database:
CONNECT scott/tiger

CREATE OR REPLACE PACKAGE cursor_var_pkg AS

TYPE enp_record_type |I'S RECORD (enane EMP. enane% YPE;);
TYPE curtype IS REF CURSOR RETURN enp_record_type;

PROCEDURE OPENL(curl IN OUT curtype)
W TH | NTERFACE

Accessing Stored Procedures 3-7

Cursor Variables

PROCEDURE
OPENL (SQLCODE integer, curl SQL_CURSCR);

end cursor_var_pkg;
CREATE OR REPLACE PACKAGE BODY cursor_var_pkg AS

PROCEDURE OPEN1(curl IN QUT curtype) IS
BEG N
OPEN curl FOR SELECT ename FROM enp_vi ew;
END;
END cursor _var _pkg;

COWM T,

After you have stored this package, and you have generated the interface procedures,
you can open the cursor curs by calling the OPEN1 stored procedure from your Ada
driver program. You can then call module procedures that FETCH the next row from
the opened cursor. For example:

PROCEDURE fetch_fromcursor (
SQLCCDE,
scurs SQL_CURSOR,
senp_name VARCHAR2(11));

FETCH :curs INTO : enp_nane;

In your driver program, you call this procedure to fetch each row from the result
defined by the cursor. When there is no more data, the value +100 is returned in
SQLCODE.

Note: When you use SQL*Module to create the interface procedure to call the stored
procedure that opens the cursor variable, you must specify BINDING=LATE. Early
binding is not supported for cursor variables in this release.

Opening in a Stand-alone Stored Procedure

In the example above, a cursor type was defined inside a package, and the cursor was
opened in a procedure in that package. But it is not always necessary to define a cursor
type inside the package that contains the procedures that open the cursor.

If you need to open a cursor inside a stand-alone stored procedure, you can define the
cursor in a separate package, then reference that package in the stand-alone stored
procedure that opens the cursor. Here is an example:

PACKAGE dumy 1S
TYPE EnpNanme 1S RECORD (nanme VARCHAR2(10));
TYPE enp_cursor_type IS REF CURSOR RETURN EnpNane;
END;
- and then define a stand-al one procedure:
PROCEDURE open_enp_curs (
enp_cursor IN QUT dummy. enp_cursor _type;
dept_num IN NUMBER) 1S
BEG N
OPEN enp_cursor FOR
SELECT ename FROM enp WHERE deptno = dept_num
END;
END;

3-8 Oracle SQL*Module for Ada Programmer’s Guide

The WITH INTERFACE Clause

Return Types

When you define a reference cursor in a PL/SQL stored procedure, you must declare
the type that the cursor returns. See the PL/SQL User’s Guide and Reference for complete
information on the reference cursor type and its return types.

Closing a Cursor Variable

Use the Module Language CLOSE command to close a cursor variable. For example,
to close the emp_cursor cursor variable that was OPENed in the examples above, use
the statement

CLCSE : enp_cursor;

Note that the cursor variable is a parameter, and so you must precede it with a colon.

You can reuse ALLOCATEd cursor variables. You can OPEN, FETCH, and CLOSE as
many times as needed for your application. However, if you disconnect from the
server, then reconnect, you must reallocate cursor variables.

Restrictions on Cursor Variables

The following restrictions apply to the use of cursor variables:

1. You can only use cursor variables with the commands:

« ALLOCATE

« FETCH

« CLOSE

2. The DECLARE CURSOR command does not apply to cursor variables.
= You cannot FETCH from a CLOSEd cursor variable.

= You cannot FETCH from a non-ALLOCATEd cursor variable.

= Cursor variables cannot be stored in columns in the database.

= A cursor variable itself cannot be declared in a package specification. Only the
type of the cursor variable can be declared in the package specification.

= A cursor variable cannot be a component of a PL/SQL record.

Dynamic SQL

Dynamic SQL is the capability of executing SQL commands that are stored in character
string variables. The package DBMS_SQL parses Data Definition Language (DDL) and
Data Manipulation (DML) statements at runtime. DBMS_SQL has functions such as
OPEN_CURSOR, PARSE, DEFINE_COLUMN, EXECUTE, FETCH_ROWS,
COLUMN_VALUE, etc. Use these functions in your program to open a cursor, parse
the statement, and so on.

For more details on this package, see Oracle Database Application Developer’s Guide -
Fundamentals

The WITH INTERFACE Clause

The stored procedure format in the previous section can be used for stored procedures
that are to be called from applications written using Oracle tools. For example, a

Accessing Stored Procedures 3-9

The WITH INTERFACE Clause

Examples

SQL*Plus script can call the GET_GPA procedure in "Procedures” on page 3-2 just as it
is written.

You can code a WITH INTERFACE clause, or you can let SQL*Module generate a
default WITH INTERFACE clause for stored procedures that have been stored without
this clause.

This clause, when added to a procedure declaration in the package specification, lets
you add parameters that are essential to perform an RPC to a PL/SQL procedure,
through a calling interface procedure in the output file. In addition, the WITH
INTERFACE clause uses SQL datatypes, not the PL/SQL datatypes that are used in
the stored procedure definition. The additional features of the WITH INTERFACE
clause are

= use of SQL datatypes
= optional indicator parameters
« use of the SQLSTATE and SQLCODE status parameters

Note: The procedures names that you code in WITH INTERFACE clauses must be
unique within the entire application. If you let SQL*Module generate default WITH
INTERFACE, then overloaded procedure names are resolved using an algorithm
described in "MAPPING" on page 5-13.

Arrays are not allowed in WITH INTERFACE clauses.

The following package declaration shows how you use the WITH INTERFACE clause
to map PL/SQL datatypes to SQL datatypes, and add the SQLCODE and/or
SQLSTATE status parameters. Status parameters are filled in automatically as the
procedure executes. They are not directly accessible within the procedure body.

CREATE or REPLACE PACKAGE gpa_pkg AS

PROCEDURE get _gpa (student_id |N NUMBER,
gpa QUT NUMBER)

W TH | NTERFACE

PROCEDURE get _gpa_i f
(student _id |NTEGER
gpa REAL,
SQLCCDE | NTEGER
SQLSTATE CHARACTER(6)) ;

The interface procedure name specified in the WITH INTERFACE clause can be the
same as the name of the procedure itself, or, as in this example, it can be different.
However, the name specified in the WITH INTERFACE clause is the name that must
be used when you invoke the stored procedure from your host application.

In the example above, the datatypes in the WITH INTERFACE clause are SQL
datatypes (INTEGER and REAL). These types are compatible with the PL/SQL
datatype NUMBER.

You must include either a SQLCODE or a SQLSTATE parameter in the parameter list
of the WITH INTERFACE clause. You can include both. SQLSTATE is the
recommended parameter; SQLCODE is provided for compatibility with the SQL89
standard.

Note: Parameters in the PL/SQL procedure specification cannot be constrained.
Parameters in the WITH INTERFACE clause must be constrained where required.

3-10 Oracle SQL*Module for Ada Programmer’s Guide

The WITH INTERFACE Clause

The following package definition shows an example of the WITH INTERFACE clause:

CREATE OR REPLACE PACKAGE gpa_pkg AS

PROCEDURE get _gpa(student _id
student _| ast _nane
gpa

W TH | NTERFACE

PROCEDURE get _gpa_i f

(student_id
student _| ast _nane

snane_i nd

gpa

SQLSTATE

SQLCODE
END;

IN NUMBER
IN OUT CHARACTER,
QUT NUMBER)

| NTEGER,
CHARACTER(15)

| NDI CATOR snare_i nd,

SMALLI NT,
REAL,
CHARACTER(6) ,
| NTEGER) ;

In the example above, the student_last_name parameter is a CHARACTER, which is
both a PL/SQL and a SQL datatype. In the PL/SQL part of the procedure definition,
the parameter must be unconstrained, following the syntax of PL/SQL. But in the
WITH INTERFACE clause, you must specify the length of the parameter.

The student_last_name parameter also takes an indicator parameter, using the syntax
shown. See Appendix B for the formal syntax of the WITH INTERFACE clause.

SQL Datatypes

The SQL datatypes that you can use in the WITH INTERFACE clause are listed in
Table 3-1, along with their compatible PL/SQL datatypes.

Table 3-1 SQL Datatypes

Compatible PL/SQL

SQL Datatypes Range or Size SQL Meaning Datatypes
CHARACTER (N) [l < N < 32500 String of length N if N [VARCHAR2(N),
OR CHAR (N) bytes is omitted, N is CHAR(N), DATE
effectively 1)
IDOUBLE Implicit precision ~ |Approximate numeric =~ [NUMBER
IPRECISION 38 type
INTEGER System specific Integer type INUMBER, BINARY_
INTEGER
or INT
SMALLINT System specific Small (or short) integer [NUMBER, BINARY_
type INTEGER
REAL System-specific Approximate numeric [NUMBER
type
VARCHAR2(N) 1<N< Character array of VARCHAR2(N),
82500 bytes length N CHAR(N),DATE
SQL_CURSOR Cursor variable type REF cursor

Accessing Stored Procedures 3-11

The WITH INTERFACE Clause

Table 3-1 (Cont.) SQL Datatypes

Compatible PL/SQL
SQL Datatypes Range or Size SQL Meaning Datatypes

Notes
1. SQL datatypes compatible with NUMBER are also compatible with types derived from
INUMBER, such as REAL.

2. The size of integer and small integer types is system specific. For many systems, integers
are 32 bits wide and small integers are 16 bits, but check your system documentation for the
size on your system.

DATE Datatype

SQL*Module does not directly support the Oracle DATE datatype. You can, however,
use character strings when you fetch, select, update, or insert DATE values. Oracle
does the conversion between internal DATEs and character strings. See the Oracle
Database Reference for more information about the DATE datatype, and conversion
between DATEs and character strings.

The Default WITH INTERFACE Clause

If a package has already been defined in the database with no WITH INTERFACE
clauses for the subprograms, you can still generate interface procedures to call the
subprograms. The default WITH INTERFACE clause that is generated by SQL*Module
when there is no WITH INTERFACE clause in the package or procedure gives you all
the features of the standard WITH INTERFACE clause:

= the SQLCODE error handling parameter
= the SQLSTATE error handling parameter
= indicator parameters

« datatype mapping between PL/SQL base and derived datatypes and SQL types

Procedures

When SQL*Module generates an interface procedure with a default WITH
INTERFACE clause, it generates a SQLCODE parameter in the first parameter
position, and a SQLSTATE parameter in the second position. Then, for each actual
parameter in the stored procedure or stored function, a parameter is generated with
the appropriate mapped host language datatype. Each parameter is followed by an
indicator parameter, mapped to the correct host language type from the SQL datatype
SMALLINT.

Functions

If SQL*Module is generating a default WITH INTERFACE clause for functions in a
package, then the WITH INTERFACE clause is generated as if the function were a
procedure, with the return value and its indicator parameter as the last two
parameters in the clause.

Table 3-2 shows how predefined, or base, PL/SQL datatypes are mapped to SQL
datatypes, and then to host language datatypes. PL/SQL subtypes that are derived
from the base types are also supported, and are mapped as indicated for the base type.

3-12 Oracle SQL*Module for Ada Programmer’s Guide

The WITH INTERFACE Clause

Table 3-2 Mapping PL/SQL Datatypes to SQL Datatypes

PL/SQL Datatype Ada Language Datatype
BINARY INTEGER SQL_STANDARD.INT
INUMBER SQL_STANDARD.
INUMBER(P,S) IDOUBLE_PRECISION

RAW STRING

LONG RAW

LONG STRING

BOOLEAN SQL_STANDARD.INT
CHAR SQL_STANDARD.CHAR
VARCHAR?2 STRING

DATE SQL_STANDARD.CHAR
ROWID STRING

ICURSOR ORACLE_SQLLIB.SQL_CURSOR
Notes

Maximum length of a STRING is 32500 bytes.

Maximum length of a DATE is 2048 bytes.

Maximum length of ROWID and MLSLABEL is 256 bytes.

Suppose, for example, that a procedure stored in the SCOTT schema has the parameter
list

PROCEDURE procl (
PARAML | N NUMBER,
PARAM2 | N OUT DATE,
PARAMB QUT DOUBLE PRECI SI ON,
PARAMA CHARACTER,
PARANG BI NARY_| NTEGER)

If you run the module compiler, modada, as follows:

modada pnanme=PROC1 rpc_gener at e=yes user=scott/tiger onane=procl

then the Ada procedure specification in the generated output file procl_.a would be
created by SQL*Module as follows:

procedure PROCL(SQLCODE: in out sgl _standard.sql code_type;
sql state: in out sql _standard.sqgl state_type;
PARAML: in sql _standard. doubl e_preci sion;
PARAML_i nd: in sql _standard. smallint;
PARAMZ: in out oracle_sqllib.sql _date;
PARAM2_ind: in out sqgl _standard.smallint;
PARAMB: out sqgl _standard. doubl e_preci si on;
PARAMB i nd: out sqgl _standard.smallint;
PARAMA: in string;
PARAMA_i nd: in sql _standard. smallint;
PARAMG: in sqgl _standard.int;
PARAMG_ind: in sql _standard.smallint);

Function calls are generated as procedures with the last two parameters in the

generated prototype being the return parameter and the indicator variable for the
return parameter. For example:

Accessing Stored Procedures 3-13

Storing Module Language Procedures

FUNCTI ON funcl (
PARAML | N NUMBER) RETURN VARCHAR2

would have the Ada prototype:

procedure FUNC1(SQLCODE: in out sql _standard.sql code_type;
sql state: in out sql _standard.sql state_type;
PARAML: in sqgl _standard. doubl e_preci sion;
PARAML_i nd: in sql _standard.smallint;
mod_func_return: out string;
mod_func_return_ind: out sql_standard.smallint) is
begin

end FUNCL;

Storing Module Language Procedures

You can also use SQL*Module to create a stored package in the database from Module
Language procedures. By specifying the module file in the INAME command line
option (see Chapter 5, "Running SQL*Module" for details), and setting the option
STORE_PACKAGE=YES, the procedures in the module file are stored in a package in
the database, using the module name as the default package name. (The default name
can be overridden using the PNAME option. See Chapter 5, "Running SQL*Module"
for details.)

For example, the following module file:

MODULE test_sp
AUTHORI ZATI ON scot t

PROCEDURE get _enp (
: enpnane CHAR(10),
:enpnunber | NTEGER,
SQLCODE) ;
SELECT enane | NTO : enpnane
FROM enp
VWHERE enpno = : enmpnunber;

PROCEDURE put _enp (
: enpnarne CHAR(10),
:enpnunber | NTEGER,
: dept nunber | NTEGER,
SQLCODE) ;
I NSERT | NTO enp (ename, enpno, deptno) VALUES
(: enpname, :enpnunber, :deptnunber);

when stored as a package in the database would produce the following PL/SQL code
for the package specification:

package test_sp is

procedure get_enp
(empnane out char,
enpnunber in nunber)

with interface procedure get_enp

(empnane char (11),
enpnunber i nteger,
sqgl code integer);

procedure put_enp

3-14 Oracle SQL*Module for Ada Programmer’s Guide

Connecting to a Database

(empnane in char,
enpno in nunber,
deptno in nunber)
with interface procedure put_enp
(empnane char (11),
enpnunber i nteger,
dept nunber integer,
sgl code integer);
end test_sp;

Note: You cannot store module procedures that contain the ALLOCATE statement,
nor statements CONNECT, DISCONNECT, ENABLE THREADS, CONTEXT, nor
FETCH and CLOSE statements that refer to cursor variables.

Connecting to a Database

When you write an Ada program that calls RPC interface procedures that were
generated from stored procedures, you need a way to connect to a database at
runtime. The steps you can take to do this are

= Write a module that contains connect and disconnect procedures. See "CONNECT
Statement" on page 2-13 for the syntax of these procedures. See also the examples
in the demomod sample in Chapter 6, "Demonstration Programs".

= Compile the module using SQL*Module.

Add a with clause to the host application file referencing the generated specification
name.

= Compile the specification file.
= Compile the source output file.

= Link your main application.

Accessing Stored Procedures 3-15

Connecting to a Database

3-16 Oracle SQL*Module for Ada Programmer’s Guide

A

Developing the Ada Application

This chapter describes the criteria that a Ada application must meet when accessing
module procedures, or when calling RPC stubs generated by SQL*Module. Topics
covered include

= Program Structure

= Error Handling

= Obtaining the Number of Rows Processed
= Handling Nulls

» Cursors

= Specification Files

= Calling a Procedure

= Arrays as Procedure Arguments

= National Language Support

The sample programs in this chapter are source code listings for the Module Language
procedures that are called by the sample programs in Chapter 6, "Demonstration
Programs", and a set of SQL statements that create and partially populate the example
tables. These sources are also available on-line, in the demo directory.

Program Structure

The developer determines the structure of an application program that uses
SQL*Module. A significant advantage that you obtain from using SQL*Module is that
it imposes very few special requirements or constraints on the program design, unlike
some other SQL programmatic interfaces.

The code that you write is purely in the language of the host application program.
There is no need for special declare sections, embedded SQL statements, and special
error handling and recovery. Database operations are mostly transparent to the
application program developer, being taken care of by the Module Language or
PL/SQL stored procedures.

There are, however, some SQL concepts of which the host application developer must
be aware

= error handling, and the use of the SQLSTATE and /or SQLCODE status parameter.
= the concept of null, and how to use indicator variables to handle it

= the concept of a cursor

Developing the Ada Application 4-1

Error Handling

Error Handling

SQLCODE

Each Module Language procedure that is called from the host application must
contain a parameter that returns status information to the application. There are two
status parameters that you can use: SQLCODE and SQLSTATE. SQLCODE returns an
integer value, while SQLSTATE returns a five-character string that contains an
alphanumeric code.

SQLCODE is provided for compatibility with applications written to the 1989 SQL
standards; new applications should use the SQLSTATE parameter.

When calling stored database procedures through an RPC stub, you include
SQLCODE and/or SQLSTATE in the parameter list of the WITH INTERFACE clause in
the procedure's package specification. See "The WITH INTERFACE Clause" on

page 3-9.

SQLCODE is an output parameter that can be included in a module procedure, and in
the WITH INTERFACE clause in PL/SQL stored package specifications. SQLCODE
returns a value that indicates whether a procedure completed successfully, completed
with warnings, or did not complete due to an error.

SQLCODE returns three kinds of values:

0

Indicates that the procedure completed with no errors or warnings.
<0

Indicates that an error occurred during execution of the procedure.
+100

Indicates that a SQL statement did not find a row on which to operate.

Negative SQLCODE values are Oracle message numbers. See the Oracle Database Error
Messages manual for a complete list of Oracle codes and their accompanying messages.
See the next section, "SQLSTATE", for mappings between Oracle error numbers and
SQLSTATE values.

Obtaining Error Message Text

The procedure error_message in the public package oracle_sqllib was introduced in
release 8.0. This procedure obtains the text associated with the SQLCODE of the latest
error returned. The prototypes are (with and without a runtime context):

procedure ERROR_MESSAGE (ctx oracle_sqllib.sgl_context,
msg_buf system address,
msg_buf | en sql _standard.int);

and:

procedure ERROR MESSAGE (nsg_buf: out syst em addr ess,
msg_buf | en:out sqgl _standard.int);

4-2 Oracle SQL*Module for Ada Programmer’s Guide

Error Handling

SQLSTATE

SQLSTATE is a five-character alphanumeric output parameter that indicates the
completion status of the procedure. It is declared as SQL_STANDARD.SQLSTATE _
TYPE.

SQLSTATE status codes consist of a two-character class code followed by a
three-character subclass code. Aside from the class code 00 ("successful completion"),
the class code denotes the category of the exception. Also, aside from the subclass code
000 ("not applicable"), the subclass code denotes a specific exception within that
category. For example, the SQLSTATE value 22012’ consists of class code 22 ("data
exception") and subclass code 012 ("division by zero").

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin
letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range
A.H are reserved for the predefined conditions (those defined in the SQL92
specification). All other class codes are reserved for implementation-defined
sub-conditions. All other subclass codes are reserved for implementation-defined
sub-conditions. Table 4-1 shows the coding scheme.

Figure 4-1 SQLSTATE

First Char in Class Code

0..4 5..9 A..H I1..Z
0..4
First Char °--°

in Subclass

Code A..H
I..Z

. Predefined I:l Implementation- defined

Table 4-1 Predetermined Classes

Class Condition

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation
24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name
27 triggered data change violation

Developing the Ada Application 4-3

Obtaining the Number of Rows Processed

Table 4-1 (Cont.) Predetermined Classes

Class Condition

28 invalid authorization specification

2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation
3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Note: The class code HZ is reserved for conditions defined in International Standard
ISO/IEC DIS 9579-2, Remote Database Access.

Appendix D, "SQLSTATE Codes" shows how Oracle errors map to SQLSTATE status
codes. In some cases, several Oracle errors map to a status code. In other cases, no
Oracle error maps to a status code (so the last column is empty). Status codes in the
range 60000 .. 99999 are implementation-defined.

Obtaining the Number of Rows Processed

Starting with release 8.0, function rows_processed, in the public package oracle_sqllib,
returns the number of rows processed by the last SQL statement.

The prototypes are:
function ROANS_PROCESSED return integer;

and

function ROAS_PROCESSED (ctx oracle_sqgllib.sqgl_context) return integer;

where the context, ctx, has been allocated previously.

Handling Nulls

A database column or a SQL expression can have a value, or it can have a special
status called null. A null means the absence of a value. A numeric value or a special
string encoding cannot be used to indicate a null, since all allowable numeric or string
values are reserved for actual data. In a SQL*Module application, you must use an

4-4 Oracle SQL*Module for Ada Programmer’s Guide

Handling Nulls

indicator variable to test a returned value for a null, or to insert a null into a database
column.

Note: The term indicator variable is also referred to as an indicator parameter when
discussing a variable being passed to or retrieved from a procedure.

Indicator Variables

From the host language point of view, an indicator variable is a small integer that is
passed to a procedure. In the SQL statement of the procedure, the indicator is
associated with the corresponding host parameter. For example, the Module Language
procedure below performs a simple one-row SELECT (the host parameter in the
WHERE clause is assumed to be a primary key):

PROCEDURE get _conmi ssion (
cconmission REAL,
:comm.i nd SMALLI NT,
. enp_nunber | NTEGER,
SQLSTATE) ;
SELECT comm | NTO : cormmi ssi on | NDI CATOR : conm.i nd
FROM enp WHERE enpno = :enp_nunber;

In an Ada application, you call this procedure and test for a possible null in the
returned COMMISSION as follows:

EMPNO : = 7499;
GET_COWM SSI ON (COVM SSI ON, COWM_ | NDI CATOR, EMPNO, SQLSTATE) ;
if COWLINDI CATOR < 0 then

PUT_LI NE(" Commi ssion is null.");

el se
PUT(" Commi ssion is ");
PUT(COW SSI ON) ;
NEW LI NE;

end if;

So if an indicator variable is less than zero when a procedure returns, the associated
host parameter has an undefined value.

You can also associate indicator variables with input parameters, for column values
that are used to insert a new row into a table, or update an existing row. If the value in
the indicator variable is greater than or equal to zero, the value in the associated
parameter is used as the input value. If the indicator variable is set to -1, the value in
the associated parameter is ignored, and a null is inserted as the column value.

For example, the following module procedure inserts a new row into an inventory
table:

PROCEDURE new part (
. part_no | NTECGER,
:description CHAR(200),
:bi n_nunber | NTEGER,
:bin_no_ind SMALLI NT,
SQLSTATE) ;

I NSERT I NTO inventory (part_number, description, bin_no)

VALUES (:part_no, :description,
> bi n_nunber |1 NDI CATOR : bi n_no_i nd);

Developing the Ada Application 4-5

Cursors

When you call this procedure with the parameter bin_no_ind set to -1, any value in the
parameter bin_number is ignored, and a null is inserted into the BIN_NO column of the
table.

If the host language parameter is a character type, and has an associated indicator
variable, a returned indicator value greater than zero indicates that the returned value
was truncated. The value of the indicator is the original (un-truncated) length, in bytes,
of the column or expression value.

Cursors

Programs that retrieve data from a table can work in two different ways. In one case, a
query might be constructed that expects either one row of data to be returned, or no
row. For example, if the program performs a request such as "give me the name of the
employee whose employee number is 7499", where the employee number is a primary
key of the table (and hence, by definition, unique), the request either returns the name
of the employee whose employee number is 7499, or returns an indication that no such
employee exists in the table.

If no employee exists with that number, the query procedure returns a "no data found"
indication in the SQLCODE or SQLSTATE parameter.

For Oracle to process any SQL statement, a cursor is required. However, SQL*Module
implicitly defines a cursor for INSERT, UPDATE, and DELETE statements, as well as
SELECT statements.

However for queries that can return multiple rows, an explicit cursor must be defined
in the module or stored package to fetch all the rows. You can use static cursors, or
cursor variables. See "Cursors" on page 4-6 for a description of cursor variables.

See the code in "Module Language Sample Program" on page 6-7 for several examples
that use explicit cursors.

Specification Files

The SQL*Module compiler generates specification files. These are text files that contain
declarations for the module or interface procedures that SQL*Module generates.

You must include the specification file directly in the source of your host application.
The name of the specification file is the base name of the Module Language output file
for SQL*Module, with a system-specific extension. These extensions are documented
in "Specification File" on page 5-7.

In Ada applications, you must compile the specification file (or files) that SQL*Module
generates. You then include the specification for the module procedures or stubs in
each application that calls module procedures or stubs using the with context clause.

The naming of specification files is discussed in detail in Chapter 6, "Demonstration
Programs".

Calling a Procedure

You call procedures generated by SQL*Module using the normal procedure call format
of the host language. Procedures can only return values in parameters, including the
SQLCODE and SQLSTATE parameters. The generated procedures are not functions.

4-6 Oracle SQL*Module for Ada Programmer’s Guide

National Language Support

Arrays as Procedure Arguments

SQL*Module supports array bind and define variables as arguments to procedures
and functions:

PROCEDURE foo (:arrname ARRAY(n) OF type, SQ.CCDE);

where n is the size of arrname, and type is listed in "National Language Support" on
page 4-7.

For example:

PROCEDURE sel enpno (:eno ARRAY(14) of |NTEGER, SQLCODE);
SELECT enpno | NTO :eno FROM enp;

Note: Host arrays are allowed in SELECT, FETCH, INSERT, UPDATE and DELETE
statements only.

Restrictions:

1. Arrays may not be specified when RPC_GENERATE=yes or STORE_
PACKAGE-=yes. See "Stored Packages" on page 3-3 for more information. See both
these command-line options in Chapter 5, "Running SQL*Module".

2. The maximum dimension of an array is 32000

3. SQL*Module does not allow multi-dimension arrays.

National Language Support

Not all writing systems can be represented using the 7-bit or 8-bit ASCII character set.
Some languages require multi-byte character sets. Also, countries have differing ways
of punctuating numbers, and representing dates and currency symbols.

Oracle provides National Language Support (NLS), which lets you process single-byte
and multi-byte character data and convert between character sets. It also lets your
applications run in different language environments. With NLS, number and date
formats adapt automatically to the language conventions specified for a user session.
Thus, NLS allows users around the world to interact with Oracle in their native
languages.

You control the operation of language-dependent features by specifying various NLS
parameters. Default values for these parameters can be set in the Oracle initialization
file. The following table shows what each NLS parameter specifies:

NLS Parameter Specifies ...

INLS_ LANGUAGE language-dependent conventions
INLS_TERRITORY territory-dependent conventions
INLS_DATE_FORMAT date format

INLS_DATE_ language for day and month names
LANGUAGE

INLS_NUMERIC_ decimal character and group separator
CHARACTERS

INLS_CURRENCY local currency symbol
INLS_ISO_CURRENCY [[SO currency symbol

INLS_SORT sort sequence

Developing the Ada Application 4-7

National Language Support

The main parameters are NLS_LANGUAGE and NLS_TERRITORY. NLS_
LANGUAGE specifies the default values for language-dependent features, which
include

« language for Server messages
= language for day and month names
« sortsequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

» date format

= decimal character

= group separator

= local currency symbol
= ISO currency symbol

You can control the operation of language-dependent NLS features for a user session
by specifying the parameter NLS_LANG as follows:

NLS LANG = <l anguage> <territory>. <character set>

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding scheme
used for the terminal. An encoding scheme (usually called a character set or code page)
is a range of numeric codes that corresponds to the set of characters a terminal can
display. It also includes codes that control communication with the terminal.

You define NLS_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define NLS_LANG as
follows:

setenv NLS_LANG French_Canadi an. WVE8| SC8859P1

SQL*Module fully supports all the NLS features that allow your applications to
process multilingual data stored in an Oracle8 database. For example, you can run a
SQL*Module-derived client application that interacts with a remote server, where the
client and the server are using different character sets, possibly with a different
number of bytes per character. In these contexts, remember that specification of the
lengths of string types, such as the SQL datatype CHARACTER(N), is always specified
in bytes, not characters.

You can even pass NLS parameters to the TO_CHAR, TO_DATE, and TO_NUMBER
functions. For more information about NLS, see the Oracle Database Application
Developer’s Guide - Fundamentals.

4-8 Oracle SQL*Module for Ada Programmer’s Guide

D

Running SQL*Module

This chapter describes

= SQL*Module Input and Output

= Invoking SQL*Module

= Case Sensitivity in Program Names, Option Names, and Values
= How to Specify Command-Line Options

= Input Files

= Output Files

= Command-Line Options

= Compiling and Linking

SQL*Module Input and Output

Input sources

This section reviews the different ways that you can use the SQL*Module compiler.
This material was discussed in detail in Chapter 2, "Module Language" and Chapter 3,
"Accessing Stored Procedures'; here it is presented in terms of the ways that you run
the compiler, using the command-line options to get different SQL*Module
functionality.

Input to the compiler can come from two sources:

= module files written according to the SQL standard Module Language
specifications, as described in Chapter 2, "Module Language" of this Guide

= stored packages and procedures in an Oracle database (see Chapter 3, "Accessing
Stored Procedures")

You use a standard text editor to create module files, just as you would create a host
language application.

Stored procedures can be stand-alone procedures, or they can be encapsulated in a
stored package. You normally create PL/SQL code for stored packages and procedures
using a text editor, and then store it in a database using an Oracle tool such as
SQL*Plus. You can also use SQL*Module to encapsulate Module Language procedures
in a package, and store them in the database.

Running SQL*Module 5-1

SQL*Module Input and Output

Output Files

The output source file is always the host language code file that SQL*Module generates
from the input source. There are also other output files, such as the listing file and
specification file. You can run SQL*Module and generate no output source file, for
example if you just want to store procedures in the database from a Module Language
input file, or you just want to generate a listing file.

You compile output source files using the host language compiler, and link the
resulting object files together with the host application's object files to produce the
executable program. See the section "Compiling and Linking" on page 5-17 for more
information about handling output files.

Note: While many of the examples in this chapter assume, for simplicity, that the input
and output files are in the same directory, this does not have to be the case. Input and
output files can be in separate directories, and you can use the various NAME options
to specify the source of input, or the destination of output.

Determining the Input Source

There are three sources of input for SQL*Module, and four ways to determine the

input:

1. When compiling a module written in Module Language, the source is the Module
Language code file.

2. When generating RPC stubs from stored procedures, there is no input file. The
source of the input is the stored package in the database.

3. When creating a stored package in the database from a Module Language module
file, the source is the Module Language file.

4. You can combine methods 1 and 2 in one invocation of SQL*Module. A package
in the database is created from the Module Language module file, and an output
file that contains RPC stubs to call the database package procedures is produced.

Methods 1 and 4 are the most common ways to use SQL*Module. Method 1 is
described in Chapter 2, "Module Language" of this Guide, method 2 in Chapter 3,
"Accessing Stored Procedures". Methods 3 and 4 are much more specialized, and are
described in Chapter 3, "Accessing Stored Procedures".

STORE_PACKAGE
Determines whether SQL*Module should store a package in the database.
RPC_GENERATE

Determines whether an interface procedure output file is produced. When you specify
the option RPC_GENERATE as YES, the option PNAME specifies the name of the
package in the database that provides the input source.

Table 5-1 shows the how the command-line option values for STORE_PACKAGE and
RPC_GENERATE, together with the values for INAME and PNAME, determine the
input source.

Table 5-1 Datatypes

Input Source Options

TORE_ PC_ NAME NAME
ACKAGE ENERATE

5-2 Oracle SQL*Module for Ada Programmer’s Guide

Invoking SQL*Module

Table 5-1 (Cont.) Datatypes

Input Source Options

(1) Module =NO =NO Module file IN/A

source file name

(2) Procedure =NO =YES IN/A Stored package or

already stored procedure name

in database

(3) Module file |FYES =NO Module file Database package

to create SPs in name name (if not

database specified, becomes
same as module
filename)

(4) Store module EYES =YES Module file Database package

procedures, name name (if not

then do (2) specified, becomes
same as module
filename)

See the section "Command-Line Options" on page 5-8 for a detailed description of
these options. See the section "Compiling and Linking" on page 5-17, for examples
that show you how you can use these options. For an explanation of the default file
naming conventions, see the sections "Input Files" on page 5-6 and "Output Files" on
page 5-6.

Invoking SQL*Module

You can run the SQL*Module compiler interactively from the operating system
command line, from a command in a batch file, or, for some operating systems, a
makefile. The way you invoke the compiler can be system dependent. See your
system-specific Oracle documentation to find out the location on your system of the
compiler and associated files, such as configuration files and the SQL runtime library.

Running the Compiler
The name of the SQL*Module compiler itself is modada for Ada. The SQL*Module
compiler can be invoked from the operating system command line as follows:

modada <option=val ue> ...

where <option=value> is a command-line argument. For example, the command

nmodada i name=ny_test 1. mad oname=ny_test1l nod.a userid=nodt est

compiles the module file my_test1.mad to produce an output file called my_test1_mod.a.
The username is modtest. Since in this example no password was provided on the
command line, SQL*Module prompts you for one when it starts. SQL*Module requires
a valid username and password to compile a Module Language file. The objects
referenced in the cursors and procedures in the Module file must be available in the
schema named (MODTEST in this example) when you run SQL*Module.

When you use SQL*Module to generate interface procedure files that call stored
procedures in the database, you must specify the same USERID as the schema that
owns the stored procedures.

Running SQL*Module 5-3

Case Sensitivity in Program Names, Option Names, and Values

Case Sensitivity in Program Names, Option Names, and Values

For operating systems that are case sensitive, such as UNIX, the names of the
executables are normally in lowercase. For all systems, the names of the options and
their values are not case sensitive. In this Guide, the option name is in uppercase, and
the value is in lower case. However, when the option value is a filename, and your
operating system is case-sensitive, you must enter the filename using the correct
combination of upper and lowercase

Listing Options and Default Values

If you provide no command-line arguments, or the only argument is '?', the compiler
prints a list of all the options available, with their current default values. For example,
the command

nodada ?
runs the SQL*Module compiler for Ada and lists each option with its default value.
See "Default Values" on page 5-5 for information on what determines the defaults. (Be

sure to escape the '?' using '\ if you are running on a UNIX system and you are using
the C shell.)

If you just want to see the default value for a single option, you can issue the
command:

nodada <OPTI ON>=?

For example, the command

nodada OQUTPUT=?

shows the default values for the OUTPUT option for the SQL*Module compiler for
Ada.

nodada

produces a short help display.

A complete description of each option is given later in this chapter.

How to Specify Command-Line Options

The value of an option is a string literal, which can represent text or numeric values.
For example, for the option

| NAME=ny _t est

the value is a string literal that specifies a filename. But for the option

MAXLI TERAL=400

the value is numeric.

Some options take Boolean values, and these may be represented with the strings "yes"
or "no", or "true" or "false" (in upper or lowercase). For example:

STORE_PACKAGE=YES

is equivalent to

STORE_PACKAGE=t rue

5-4 Oracle SQL*Module for Ada Programmer’s Guide

How to Specify Command-Line Options

Value Lists

Default Values

both of which mean that the results of the compilation should be stored as a package
in the database.

The option value is always separated from the option name by an equals sign, with no
whitespace between the name or the value and the equals sign.

Some options can take multiple values. Multiple option values are specified in a list.
The list is a comma-separated list of values with surrounding parentheses. Do not put
any whitespace in the list. The following option specifies that SQL*Module should
generate source code and specification output files, but not listing files:

QUTPUT=(CODE, SPECI FI CATI ON)

A value list completely supersedes the value list specified by a previous default or
option value list. For example, if the system configuration file contains the line

QUTPUT=(CODE, SPECI FI CATI ON, LI ST)

and there is no user configuration file, and the command line contains the option

QUTPUT=(CODE, LI ST)

then the value of OUTPUT is (CODE,LIST). See the section "Configuration Files" on
page 5-6 for how default values are determined.

If a list-valued option is specified with a single value, that is not in parentheses, the
single value is added to the current default list. For example, if the system configuration
file contains the line

QUTPUT=(CODE, SPECI FI CATI ON)
there is no user configuration file that has an OUTPUT= option, and the command line
contains the option

QUTPUT=LI ST

then "LIST" is appended to the default list, so the value of OUTPUT is
(CODE,SPECIFICATION,LIST).

Note: If NONE is a member of the OUTPUT list, then nothing would be generated,
regardless of other entries in the list.

Most of the options have default values. Three things determine the default value:
= values built into the SQL*Module compiler

= values set in the system configuration file

= values set in a user configuration file

For example, the option MAXLITERAL specifies the maximum length of strings
generated by SQL*Module. The built-in SQL*Module default value for this option is
255 bytes. However, if MAXLITERAL=512 is specified in the system configuration file,
the default now becomes 512. The user configuration file could set it to yet another
value, which then overrides the system configuration value. Finally, if this option is set
on the command line, that value will take precedence over the SQL*Module default,
the system configuration file specification, and the user configuration file specification.
See "Configuration Files" below for more information about these files.

Running SQL*Module 5-5

Configuration Files

Some options, such as USERID, do not have a built-in default value. The built-in
default values for options that have them are listed in the section "Command-Line
Options" on page 5-8.

Configuration Files

A configuration file is a text file that contains SQL*Module options. Each record or line
in the file contains one option, with its associated value or list of values. For example, a
configuration file might contain the lines

Bl NDI NG=LATE
USERI D=MCDTEST

to set defaults for the BINDING and USERID options.

Note: You cannot put comments in a configuration file; there is no character or
character combination that lets you comment out a line.

There is one system-wide configuration file associated with each system. The system
configuration file is usually maintained by the project or group leader, or the database
administrator. The location of this file is system specific. For more information, see
your project leader, or your system-specific Oracle documentation.

If there is no system configuration file, the compiler prints a warning message, but
compilation continues normally.

In addition, each SQL*Module user can have one or more user (or local) configuration
files. To activate the user configuration file, its name and path must be specified using
the CONFIG= command-line option. See "Command-Line Options" on page 5-8. The
user configuration file is optional.

The CONFIG= option never specifies the system configuration file. The location of the
system configuration file is built into the SQL*Module compiler, and can vary from
system to system.

Input Files

A SQL*Module input file is a text file containing Module Language statements. You
specify the input filename using the INAME= command-line option.

Input files have default file extensions, also referred to as filetypes in some operating
systems. However, not all operating systems support file extensions. If your system
does not support file extensions, the last few characters of the filename might serve as
the extension. Refer to your operating system documentation and to your
system-specific Oracle documentation for more information about filenames and file
extensions.

If you do not specify an extension for the module input file, and your operating
system uses file extensions, the compiler assumes a default extension, .mad.

Output Files
SQL*Module can generate four types of output files:
= asource code file
= aspecification (or header) file

= alisting file

5-6 Oracle SQL*Module for Ada Programmer’s Guide

Output Files

= aPL/SQL source file for a stored procedure or a package

Source code files contain generated code in the host language. modada generates Ada
code. Specification or header files contain declarations for the procedures in the code
files

Source Code Output File

This file contains the host language code produced by the compiler. It is a source file in
the host language, and you must compile it using your host language compiler to
produce an object module. The object modules are in turn linked with the application's
object modules and the SQL runtime library to form the executable program.

Note: Oracle recommends that you name output files explicitly, either in a
configuration file or on the command line.

Default File Names for Ada

If you do not specify an output code filename when you run modada, the output code
filename defaults to a system-specific name. For example, on Sun workstations
running the Solaris 1.0 Sun Ada compiler, the command

modada i name=ny_t est 1. mad
generates an output code file named my_test1.a. On other platforms, a different name

might be generated. See your system-specific Oracle documentation for complete
information.

Specification File

Listing File

By default, modada generates a specification or header file. The specification file
contains declarations for the procedures in the generated output file.

Default Specification Filenames for Ada

The default specification filename is the name of the input file, or the package name,
followed by a system-dependent appendix, followed by a system-dependent file
extension. For example, on a Sun workstation running Solaris 1.0, the command

modada i name=ny_test 1. mad

generates a default specification output file with the name my_testIs.a. This is the value
of iname minus the extension, with "s" appended.

On other platforms, the filename appendix and the filename extension might be
different. See your system-specific Oracle documentation for complete information.

See Chapter 6, "Demonstration Programs" for language-dependent information about
the content of specification files.

If OUTPUT=LIST, SQL*Module produces a listing of the Module Language source
code, with errors, if any, flagged. Error codes and messages are interspersed in the list
file, at the point where the SQL*Module parser first detected the error. The line length
in the listing file defaults to 255 characters. If no end-of-line character is received
before 255 characters are received, a system-specific end-of-line character or character
sequence is output.

Running SQL*Module 5-7

Command-Line Options

PL/SQL Source Files

When you are generating interface procedure files from a stored package or procedure,
and you specify the option OUTPUT=PACKAGE, SQL*Module generates PL/SQL
source code output files. If the output is from a package, two files are generated. One
file has the default file extension .pks, and contains the package specification code. The
second file has the default extension .pkb, and contains the package body code. See the
PL/SQL User’s Guide and Reference for more information on package specifications and
package bodies.

Avoid Default Output Filenames

Use the ONAME and SNAME options to generate non-default output filenames. They
are described below.

Oracle strongly recommends that you use these options, rather than letting the output
filenames be generated by default.

Command-Line Options

When an option is entered on the command line, its value overrides SQL*Module
defaults, any values specified in a configuration file, or values specified in a module
file (for example, the AUTHORIZATION clause). The order of precedence is

= command-line options

= statements in the module file preamble
= user configuration file options

= system configuration file options

= default options built into the compiler
The format of a command-line option is:

CPTI ON_NAVE=VALUE

There should be no whitespace around the equals sign. For example:

modada | NAME=ny_app3_nod ONAME=ny_app3_nod SNAME=ny_app3_pkg

compiles the input file my_app3_mod.mad to produce an output file named my_app3_
mod.a, and a specification file named my_app3_mod_pkgs.a.

Note: The actual filename extensions are system specific. See your system-specific
Oracle documentation for more information.

If the option can take a list of values and more than one value is being supplied, a
comma-separated list of values is placed inside parentheses. For example:

QUTPUT=(CODE, SPECI FI CATI ON)

There should be no whitespace anywhere in the list.

The names as well as arguments of the command-line options can be abbreviated.
Instead of

QUTPUT=SPEC! FI CATI ON

you could enter

QUT=SPEC

5-8 Oracle SQL*Module for Ada Programmer’s Guide

Command-Line Options

or even

QU=SP

since neither "OU", "SPEC", nor "SP" is ambiguous. Filenames and package names

cannot be abbreviated.

The command-line options, together with their default values, are listed in Table 5-2,

and are described in the remainder of this chapter.

Table 5-2 The Command-line options

Option Name Option Purpose Values
IAUTO_CONNECT (Connect on first SQL [YES | NO
statement if not
already connected
BINDING Early or late binding? [EARLY | LATE
ICONFIG Name of a user <filename>
configuration file
IERRORS Destination of error IYES | NO
messages
IFIPS [Turns on FIPS flagger [YES | NO
INAME Name of input file <filename>
LNAME Name of listing file <filename>
LTYPE Kind of listing file INONE | SHORT | LONG
IMAPPING Resolves overloaded |() | OVERLOAD
procedure names for
the default WITH
INTERFACE
IPROCEDURE clause
IMAXLITERAL Maximum length of [10..1024
string literal in
generated host
language code
ONAME Name of source code [<filename>
output file
OUTPUT Kinds of output files [One of, or list of two or more of (NONE
generated | CODE | SPECIFICATION | LIST |
IPACKAGE
PNAME Name of packagein [|<package_name>
the database
IRPC_GENERATE Generate stubs from IYES | NO
stored package or
procedure?
SELECT_ERROR Should a query YES | NO
returning more than
one row generate a
runtime error?
SNAME Name of specification [|<filename>
output file
SQLCHECK Kind of compile-time [NONE | SYNTAX | SEMANTICS

checking done

Running SQL*Module 5-9

Command-Line Options

Table 5-2 (Cont.) The Command-line options

Option Name Option Purpose \Values

STORE_PACKAGE [Store module as a YES | NO
package in the
database

USERID Username and <string>
password

AUTO_CONNECT

BINDING

Values
{YES | NO}

Default Value
NO

Meaning

If AUTO_CONNECT=YES, and you are not already connected to a database, when
SQLLIB processes the first executable SQL statement, it attempts to connect using the
userid

OPS$<user nane>

where username is your current operating system user or task name and
OPS$username is a valid Oracle userid.

When AUTO_CONNECT=NO, you must use the CONNECT statement to connect to
Oracle.

Can be entered only on the command line or in a configuration file.

Values
{EARLY | LATE}

Default Value
EARLY

Meaning

The BINDING option is used when generating interface procedure files, that is, when
RPC_GENERATE=YES. Early binding means that a time stamp is derived from the
time of compilation of the stored procedure, and the time stamp is saved in the
interface procedures file.

When a stored procedure is called through a stub (specified in the interface procedures
file), if the current time stamp on the procedure in the database is later than that
specified in the stub, the message "time stamp of <stored procedure name> has been
changed" (ORA-04062) is returned.

5-10 Oracle SQL*Module for Ada Programmer’s Guide

Command-Line Options

CONFIG

ERRORS

FIPS

The stored package must have WITH INTERFACE clauses specified for each
procedure when RPC_GENERATE=YES, regardless of whether you choose early or
late binding using the BINDING option. See the section "Early and Late Binding" on
page 3-5 for more information.

Values
<filename>

Default Value
None.

Meaning

Specifies the name of a user configuration file that contains options. The user
configuration file is a text file. Each option in the file must be on a separate line
(record).

Values
{YES | NO}

Default Value
YES

Meaning

Specifies the destination for error message output. If ERRORS=YES, the output is both
to the terminal and to the listing (.lis) file. If ERRORS=NO, error messages are sent
only to the listing file.

Values
{YES | NO}

Default Value
NO

Meaning

Specifies whether instances of non-compliance with the ANSI/ISO SQL standards will
be flagged at compile time. If FIPS=YES, Oracle extensions to standard Module
Language and standard SQL, as well as use of standard constructs in ways that violate
the SQL standard format or syntax rules, are flagged by the FIPS flagger.

Running SQL*Module 5-11

Command-Line Options

INAME

LNAME

LTYPE

Values
<filename>

Default Value
None.

Meaning

Specifies the name of the input file. If the specified filename does not contain an
extension, the compiler supplies the default extension for the host language. Only one
input file is allowed. If more than one INAME option is specified, the last one prevails,
and the earlier ones are ignored.

If STORE_PACKAGE=NO and the PNAME option is specified, the INAME option
cannot be specified. In this case, there is no input file, since the input comes from the
stored package. If INAME is specified under these circumstances, SQL*Module
generates a warning message and continues, if possible.

Values
<filename>

Default Value

The base name of the listing file first defaults to the base name of INAME or, if INAME
is not specified, it defaults to the name of the package specified in the PNAME option.
The default file extension is .lis.

Meaning

Specifies the name of the listing file. This option is valid only if the LTYPE option is not
NONE.

Values
{NONE | SHORT | LONG}

Default Value
LONG

Meaning

Specifies the listing type. The OUTPUT option list must contain the VALUE LIST,
otherwise this option has no effect.

If the LTYPE value is NONE, no list file is generated, regardless of the setting of the
OUTPUT option. If the LTYPE value is SHORT, the list file contains no code, only error
messages. LTYPE=LONG generates a complete listing file, with errors and code.

Note: When INAME is specified, the listing file shows Module Language code, not the
generated host language code. When compiling an interface procedure, the listing

5-12 Oracle SQL*Module for Ada Programmer’s Guide

Command-Line Options

MAPPING

MAXLITERAL

ONAME

output contains only error messages, regardless of the LTYPE specification. See the
OUTPUT option for more information on how to generate PL/SQL output source.

Values
() | OVERLOAD

where () indicates an empty string.

Default Value
Empty string.

Meaning

The MAPPING option is used when generating prototypes for the default WITH
INTERFACE PROCEDURE clause. See "The Default WITH INTERFACE Clause" on
page 3-12 for more information.

When MAPPING=OVERLOAD, SQL*Module resolves overloaded stored procedure
and function names when generating stubs. It does this by prefixing MODn_ to the
second and subsequent procedure names, where 7 starts with 2, and increments by 1
until all stubs for all overloaded procedures of that name have been resolved.

Values
Numeric literal, range 10 to 1024 bytes

Default Value
255 bytes

Meaning

Specifies the maximum length of string literals generated by the SQL*Module
compiler, so that host language compiler limits are not exceeded. For example, if your
system's compiler cannot handle string literals longer than 512 bytes, specify
MAXLITERAL=512 in the system configuration file.

Values
<filename>

Default Value

The base name of the output file first defaults to the base name of INAME. If INAME
is not specified, then ONAME defaults to the name of the package specified in the
PNAME option, if present. The default file extension is system dependent, but is
generally .a. The default output directory is the current directory.

Running SQL*Module 5-13

Command-Line Options

OUTPUT

PNAME

Meaning

Specifies the name of the code output file. Whether an output file is actually generated
depends on the values of the OUTPUT option. The OUTPUT list must contain the
value CODE.

Values
Any one or more of CODE, LIST, NONE, PACKAGE, SPECIFICATION

Default Values
CODE, SPECIFICATION

Meaning
Specifies what output files SQL*Module generates. The values are

CODE An interface procedures file is generated.

LIST A listing file is generated. See the LNAME and LTYPE options for more
information.

NONE No files are generated. This option is used to do syntactic and semantic
checking of the input file, as error output is always generated.

PACKAGE PL/SQL source files are generated. These files contain the PL/SQL
package generated by SQL*Module. The default base filename is the same as the name
specified in either the INAME or the PNAME option. If both are specified, the default
is taken from INAME.

The default extensions are .pks (package specification) and .pkb (package body).

SPECIFICATION A specification file containing procedure declarations is generated.
The filename extension is language specific. See "Output Files" on page 5-2 for more
information.

Note: If the value NONE is included in the list, then no output of any kind is
generated, regardless of any other values that might be in the list.

Values

Name of a stored package or a stand-alone stored procedure in the Oracle database, or
the name to be given to a stored package to be created in the database when STORE_
PACKAGE=YES.

Default Value

For Output (when RPC_GENERATE=YES) There is no default value. You must
specify the name of a package in the database. However, you can specify a complete
pathname, including an extension, to serve as a default for ONAME. In this case, the
directory hierarchy and the filename extension are ignored, and the basename is taken
as the package name for database lookup.

5-14 Oracle SQL*Module for Ada Programmer’s Guide

Command-Line Options

For Input (when STORE_PACKAGE=YES) The default value is the module name in
the MODULE clause of the input file. If there is no module name, the default is taken
from the INAME value.

Meaning

Specifies the name of the package stored in the database (if STORE_PACKAGE=NO),
or the name of a package to be created by SQL*Module (if STORE_PACKAGE=YES).
The name must be a valid database object name.

RPC_GENERATE

Values
{YES INO}

Default Value
NO

Meaning

Specifies whether SQL*Module should produce an interface procedures file so that a
host program can call stored procedures. You can use this option with STORE_
PACKAGE=NO and PNAME=<package_name> to generate interface procedures for
stand-alone or packaged procedures that are already stored in the database. You can
also use this option with INAME=<filename> and STORE_PACKAGE=YES to store
procedures in a module file in the database, and generate an interface procedures file to
access them.

SELECT_ERROR

SNAME

Values
{YES | NO}

Default Value
YES

Meaning

Specifies whether an error is generated at runtime when a SELECT or FETCH
statement returns more than one row.

Values
<filename>

Default Value

The base name of the input file, if specified, plus the appropriate extension for a
specification file for the host language. For Ada, a system-specific filename addition
and extension is used, such as ora_dcl for VAX/OPEN VMS Ada, or *s.a for Verdix
Ada.

Running SQL*Module 5-15

Command-Line Options

Meaning
Specifies the name of the specification or header file. If INAME is not specified,

SNAME must be specified to get a specification file. The file is not generated if the
OUTPUT option does not include SPECIFICATION in its list of values.

STORE_PACKAGE

SQLCHECK

Values
{YES | NO}

Default Value
NO

Meaning

If STORE_PACKAGE=YES, SQL*Module compiles the module file specified in the
mandatory INAME option, and stores the packaged procedures in the database
schema specified by the USERID option. The name of the package is specified by the
PNAME option.

If you do not specify a PNAME option, the default package name becomes the name of
the module, as specified in the MODULE clause of the module file. If neither the
PNAME option nor the MODULE clause is specified, the package name is the base
name (omitting any path specification or file extension) of the input file specified in the
INAME option.

Note: When STORE_PACKAGE=YES, SQL*Module performs a CREATE OR
REPLACE PACKAGE statement. This statement overwrites, without any warning any
package of that name in the schema.

Values
{NONE | SYNTAX | SEMANTICS}

Default Value
SEMANTICS

Meaning

Determines the way SQL*Module processes the input file when INAME is specified.
This option has no meaning if there is no input file.

NONE SQL*Module processes the command line, issues any error messages
produced by configuration file or command-line options, then exits without compiling
any input and does not produce any output files.

SYNTAX SQL*Module compiles the input file specified in the INAME option, using
its own SQL parser. Errors detected are flagged, but no source code, specification, or
listing output files are produced.

SEMANTICS The input file is compiled on the server side, all syntactic and semantic
errors are flagged, and all appropriate output files are generated.

5-16 Oracle SQL*Module for Ada Programmer’s Guide

Compiling and Linking

USERID

Values
<string>

Default Value

None

Meaning

Specifies an Oracle username and, optionally, a password and a database to connect to.
The syntax of this option is

USER!I D=USER_NANE] / PASSWORD] [@)ATABASE.NAVE]

SQL*Module must be able to connect to a server when compiling an input file, to parse
the SQL and PL/SQL statements, do syntactic and semantic checking, and to store
packages if required. If the password is omitted, SQL*Module prompts for one. If a
database is not specified, the default (local) database for the user is used.

If you do not specify the USERID option, the default becomes the user name (and
possibly the password) specified in the AUTHORIZATION clause of the Module
Language input file, or the USERID value specified in a configuration file.

Note: SQL*Module always prompts for a password if one has not been supplied in a
configuration file, in an AUTHORIZATION clause in the module file, or on the
command line. So, there is no need to hard code passwords into text files.

Compiling and Linking

To produce an executable program, you must compile source code output files that
SQL*Module generates, then link these together with the compiled object files of any
sources that call modules or interface procedures, with SQLLIB, and with other Oracle
libraries. The details are necessarily both system and language dependent. The tables
in the next three sections show a few examples.

An Example (Module Language)

There is a Module Language file to be compiled. No stored database packages are
involved. The steps to take are shown in Table 5-3.

Note: This example is specific to VAX/OPEN VMS. For other Ada implementations,
using a linker for all Ada files might be required.

Running SQL*Module 5-17

Compiling and Linking

Table 5-3 Development Scenario

Step [File Name How Developed Action to Take
1 tst_app_drv.ada by Ada developer compile into Ada
library using host Ada
compiler
2 tst_app_mod.mad by SQL developer compile using
SQL*Module
¢ tst_app_mod.ora_dd [generated by compile into Ada
SQL*module in Step 2 [library using host Ada
compiler
4 tst_app_mod.ada generated by module compile into Ada
from Step 2 library using host Ada
compiler; make sure to
with this package in
tst_app_drv.ada
5 tst_app_drv.o extracted from Adalib [link (with SQLLIB)
6 tst_app_drv linked from step 5 run and test

5-18 Oracle SQL*Module for Ada Programmer’s Guide

6

Demonstration Programs

This chapter provides information about using SQL*Module host applications written
in Ada. This chapter also includes sample programs that demonstrate how you can use
SQL*Module with an Ada application.

Topics covered are:
« The SQL_STANDARD Package
= Sample Applications

The SQL_STANDARD Package

SQLCODE

SQLSTATE

You must use the datatypes defined in the supplied SQL_STANDARD package.The
SQL_STANDARD package defines the packages, Ada bindings to the SQL datatypes,
and the subtypes that are used for SQL*Module with Ada. You must compile the
supplied SQL_STANDARD package into your Ada library, and with this package in
each program unit that calls procedures generated from Module Language source, or
that calls interface procedures.

The SQL_STANDARD package is system specific. See your system-specific Oracle
documentation for the location of this file on your system.

The standard type of the SQLCODE parameter for Ada is SQL_
STANDARD.SQLCODE_TYPE.

The standard type of the SQLSTATE parameter for Ada is SQL_
STANDARD.SQLSTATE_TYPE. It is a five-character string.

Sample Programs

The Module Language sample programs are based on an example database for a small
college. This section demonstrates the tables that are used in the application, and a
module that contains cursors and procedures that query and update the tables.

The database contains tables that maintain records about
« students
= courses

« classes (instances of courses)

Demonstration Programs 6-1

Sample Programs

« enrollment in classes
« instructors
= departments

The SQL statements below are used to create the tables used in the demonstration
application. You can create the sample database, and fill it with some preliminary data,
by using SQL*Plus or SQL*DBA to execute these scripts.

These scripts, and all other sample code files, are shipped with SQL*Module. They are
in the demo directory on your system.

Sample Tables

The tables and sequence number generators are created by the MKTABLES.SQL script.
At the end of this script, five other scripts are called to partially populate the tables.
These five scripts are listed following MKTABLES.SQL.

MKTABLES.SQL

REM Create all tables for the sanple college database application.

REM Drop existing tables
REM Renove REMs next 6 |ines when running under SQ*PI us

REM CLEAR SCREEN

REM Pronpt WARNING ! About to recreate the SQL*Mdul e exanpl e tabl es.
REM Pronpt All previously entered data will be |ost.

REM Pronpt If you really want to do this, type ENTER or Return.

REM Pronpt El se, type your CANCEL (INTR) character to exit

REM Pause this script now.

REM Pronpt Dropping tables...

DROP TABLE st udents CASCADE CONSTRAI NTS;
DROP TABLE instructors CASCADE CONSTRAINTS;
DROP TABLE courses CASCADE CONSTRAI NTS;
DROP TABLE cl asses CASCADE CONSTRAI NTS;
DROP TABLE enrol | nent CASCADE CONSTRAI NTS;
DROP TABLE departments CASCADE CONSTRAINTS;

DROP SEQUENCE st udent _i d_seq;
DROP SEQUENCE i nstructor_id_seq;
DROP SEQUENCE cl ass_nunber _seq;
DROP SEQUENCE enrol | ment _seq;

CREATE SEQUENCE student _id_seq START W TH 1000;
CREATE SEQUENCE instructor_id_seq START W TH 100000;
CREATE SEQUENCE cl ass_nunber _seq START W TH 100;
CREATE SEQUENCE enrol | ment _seq START W TH 100;

REM Pronpt Creating tables...

CREATE TABLE departnents (name VARCHAR2(16) NOT NULL,
id NUVBER(6) PRI MARY KEY,
| ocation NUVBER(4) ,
chai r per son NUMBER(6) ,
budget NUMBER(9, 2)
);

CREATE TABLE instructors (last_name VARCHAR2(15) NOT NULL,

6-2 Oracle SQL*Module for Ada Programmer’s Guide

Sample Programs

first_name VARCHAR2(15) NOT NULL,
m VARCHAR2(3) ,

id NUVBER(6) PRI MARY KEY,
hire_date DATE,

dept NUMBER(6)

NOT NULL REFERENCES departments(id),
sal ary NUMBER(9, 2) ,

rank VARCHAR2(20)

);

CREATE TABLE students (last_nane VARCHAR2(15) NOT NULL,
first_name VARCHAR2(15) NOT NULL,
m VARCHAR2(3) ,

id NUVBER(6) PRI MARY KEY,
status VARCHAR2(5) NOT NULL,

date_of birth DATE,
matric_date DATE,

grad_date DATE,

maj or NUMBER(6)
REFERENCES depart ment s(id),
advisor _id NUMBER(6)
REFERENCES i nstructors(id)
)

CREATE TABLE cour ses (dept NUMBER(6)

NOT NULL REFERENCES departnents(id),
id NUMBER(6) ,
name VARCHAR2(38) NOT NULL
);

CREATE TABLE cl asses (cl ass_nunber NUMBER(6) PRI MARY KEY,

course_nunmber NUMVBER(6) NOT NULL,
dept NUVBER(6) NOT NULL,
max_enrol | ment NUVBER(4) NOT NULL,
bui | di ng_nunmber NUMBER(4),
room nunber NUMBER(5) ,
i nstructor NUMBER(6) ,
quarter NUMBER(1) ,
year NUMBER(4)
)

CREATE TABLE enrol I ment (e_sn NUVBER(6) PRI MARY KEY,
cl ass_no NUMBER(6) NOT NULL,
student _id NUVBER(6) NOT NULL,
grade NUMBER(3, 2) ,
coment s VARCHAR2(255)

)
REM Pronpt | NSERTi ng sanple data in tables...

@lepartnt. sql
@ nstrucs. sql
@t udent s. sql
@@our ses. sql

@@nrol mt . sql

DEPARTMT.SQL
DELETE FROM departments;

Demonstration Programs 6-3

Sample Programs

I NSERT | NTO departments VALUES (' BI OLOGY', 100, 2510, null,100000);

I NSERT | NTO departnents VALUES (' CHEM STRY', 110, 2510, null, 50000);

I NSERT | NTO departnents VALUES (' COWPUTER SCI ENCE', 120, 2530, null, 110000);
I NSERT | NTO departments VALUES (' ELECTRIC. ENG ', 130, 2530, null, 145000);

I NSERT | NTO departnents VALUES (' FINE ARTS' , 140, 2520, null, 10000);

I NSERT | NTO departnents VALUES (' H STORY', 150, 2520, null, 20000);

I NSERT | NTO departments VALUES (' MATHEMATICS , 160, 2580, null, 5000);

I NSERT | NTO departments VALUES (' MECH. ENG ', 170, 2520, null, 100000);

I NSERT I NTO departnents VALUES (' PHYSICS', 180, 2560, null, 300000);

INSTRUCS.SQL
DELETE FROM i nstructors;

REM Add some faculty to the college

I NSERT INTO instructors VALUES (' Webster', "Mlo', "B, 9000,
' 01- SEP-49', 140, 40000, 'PROFESSCR);

I NSERT INTO instructors VALUES (' Crown', 'Edgar', 'G, 9001,
' 03- SEP-70', 150, 35000, 'PROFESSCR);

I NSERT INTO instructors VALUES (' Golighty', 'Claire', "M, 9002,
'24- AUG 82', 120, 33000, 'ASSI STANT PROFESSCR);

I NSERT INTO instructors VALUES ('Wnterby', 'Hugh', '', 9003,
' 10- SEP-82', 120, 43000, 'PROFESSCR);

I NSERT I NTO instructors VALUES (' Wi ppl ethorpe', 'Francis', 'X,
9004, '01-SEP-78', 170, 50000, 'PROFESSCR);

I NSERT INTO instructors VALUES (' Shillingsworth', 'Susan', 'G,
9005, '22-AUG 87', 160, 65000, 'PROFESSCR);

I NSERT INTO instructors VALUES (' Herringbone', 'Leo', 'R, 9006,
'02-JAN-81', 110, 40000, ' ASSQCI ATE PROFESSOR);

I NSERT INTO instructors VALUES (' WI I owbough', 'George', 'T,
9007, '04-SEP-86', 180, 37000, 'ASSOCI ATE PROFESSOR);

I NSERT INTO instructors VALUES (' H gham, 'Earnest', 'V, 9008,
"10-JUN-76', 100, 55000, 'PROFESSCR);

STUDENTS.SQL
DELETE FROM st udents;

I NSERT | NTO students VALUES (' Brahns', 'Susan', 'F',
student _id_seq.nextval, 'FT', '10-JUN-75', sysdate, null, null, null);

I NSERT | NTO students VALUES ('Hiroki', '"Mnoru', "',
student _id_seq.nextval, 'FT', '12-AUG 71', sysdate, null, null, null);

6-4 Oracle SQL*Module for Ada Programmer’s Guide

Sample Programs

I NSERT I NTO students VALUES ('Hillyard', 'Janes', 'T',
student _id_seq.nextval, 'FT', '11-SEP-74', sysdate, null, null, null);

I NSERT | NTO students VALUES (' Kaplan', 'David', 'J',
student _id_seq.nextval, 'FT', '02-MAR-74', sysdate, null, null, null);

I NSERT | NTO students VALUES ('Jones', 'Roland', 'M,
student _id_seq.nextval, 'FT', '23-JAN-75', sysdate, null, null, null);

I NSERT | NTO students VALUES (' Rubin', "Naom', 'R,
student _id_seq.nextval, 'PT", '23-FEB-54', sysdate, null, null, null);

I NSERT I NTO students VALUES (' Gryphon', 'Melissa', 'E,
student _id_seq.nextval, 'FT', '08-JUL-75', sysdate, null, null, null);

I NSERT | NTO students VALUES (' Chen', 'Mchael', 'T,
student _id_seq.nextval, 'FT', '22-OCT-72', sysdate, null, null, null);

COURSES.SQL
DELETE FROM cour ses;

REM Add a few courses for demp purposes
-- H STORY
I NSERT I NTO courses VALUES (150, 101,
" | NTRODUCTI ON TO VENUSI AN CI VI LI ZATI ON') ;

I NSERT | NTO courses VALUES (150, 236,
" EARLY MEDI EVAL HI STORI OGRAPHY") ;

I NSERT | NTO courses VALUES (150, 237,
' M DDLE MEDI EVAL HI STORI OGRAPHY") ;

I NSERT | NTO courses VALUES (150, 238,
' LATE MEDI EVAL HI STORI OGRAPHY") ;

-- MATHEMATI CS
I NSERT I NTO courses VALUES (160, 101, 'ANALYSIS |');

I NSERT | NTO courses VALUES (160, 102, 'ANALYSIS I1');
I NSERT | NTO courses VALUES (160, 523, ' ADVANCED NUMBER THECRY');
I NSERT | NTO courses VALUES (160, 352, 'TOPOLOGY |');

-- COWPUTER SCI ENCE
I NSERT I NTO cour ses VALUES (120, 210, ' COVPUTER NETWORKS |');

I NSERT I NTO courses VALUES (120, 182, ' OBJECT- ORI ENTED DESIGN);
I NSERT | NTO courses VALUES (120, 141, '|NTRODUCTION TO Ada');

I NSERT I NTO courses VALUES (120, 140, ' ADVANCED 7090 ASSEMBLER);

EMROLMNT.SQL

REM Create sone classes and enrol| some students in
REM them to test the procedures that access
REM the ENROLLMENT table.

Demonstration Programs 6-5

Sample Programs

DELETE FROM cl asses;

REM Departnent 150 is H STORY

I NSERT | NTO cl asses VALUES (900, 101, 150, 300, 2520, 100, 9001, 1, 1990);
I NSERT I NTO cl asses VALUES (901, 236, 150, 20, 2520, 111, 9001, 3, 1990);
I NSERT I NTO cl asses VALUES (902, 237, 150, 15, 2520, 111, 9001, 4, 1990);
I NSERT I NTO cl asses VALUES (903, 238, 150, 10, 2520, 111, 9001, 1, 1991);

REM Departnent 120 is COVPUTER SCl ENCE
I NSERT I NTO cl asses VALUES (910, 210, 120, 60, 2530, 34, 9003, 1, 1990);

I NSERT INTO cl asses VALUES (911, 182, 120, 120, 2530, 440, 9003, 1, 1991);
I NSERT INTO cl asses VALUES (912, 141, 120, 60, 2530, 334, 9003, 2, 1990);
I NSERT I NTO cl asses VALUES (913, 140, 120, 300, 2530, 112, 9003, 1, 1989);
REM Now enrol | Susan and M chael in some courses.

DELETE FROM enrol | ment
WHERE student id =
(SELECT id FROM students
VHERE first_name = ' Susan'
AND | ast _name = 'Brahns');

DELETE FROM enrol | ment
WHERE student id =
(SELECT id FROM students
VHERE first _name = 'M chael’
AND | ast_name = ' Chen');

I NSERT I NTO enrol | ment VALUES (enrol | ment_seq. nextval,
900, 1000, 3.0, 'Good');

I NSERT | NTO enrol | ment VALUES (enrol | nent _seq. nextval,
901, 1000, 3.5, 'Very Good');

I NSERT I NTO enrol | ment VALUES (enrol | ment_seq. nextval,
902, 1000, 4.0, 'Excellent');

I NSERT | NTO enrol | ment VALUES (enrol | nent _seq. nextval,
903, 1000, 2.0, 'Fair');

I NSERT I NTO enrol | ment VALUES (enrol | ment_seq. nextval,
910, 1007, 3.0, ' ");

I NSERT | NTO enrol | ment VALUES (enrol | ment _seq. nextval,
911, 1007, 3.0, ' ');

I NSERT I NTO enrol | ment VALUES (enrol | ment_seq. nextval,
912, 1007, 4.0, ' ");

I NSERT I NTO enrol | ment VALUES (enrol | ment_seq. nextval,
913, 1007, 2.0, ' ");

6-6 Oracle SQL*Module for Ada Programmer’s Guide

Sample Programs

Module Language Sample Program

-- SQ.*Modul e deronstration nodul e.
-- Contains procedures to maintain the college database.

-- PREAMBLE
MODULE denonod
LANGUAGE Ada

AUTHOR!I ZATI ON nodt est

-- The following cursors and procedures access the STUDENTS table
-- or the STUDENT_I D SEQ sequence number generator.

-- Declare a cursor to select all students
-- in the college.

DECLARE CGET_STUDENTS CURS CURSOR FOR
SELECT | ast_nane, first_nane, m, id, status,
maj or, advisor_id
FROM st udent s

-- Define procedures to open and close this cursor.

PROCEDURE open_get _students_curs (
SQLCODE) ;

OPEN CGET_STUDENTS_CURS;

PROCEDURE cl ose_get _students_curs (
SQLCODE) ;

CLOSE GET_STUDENTS_CURS;
-- Define a procedure to fetch using the

-- get_students_curs cursor.

PROCEDURE get _al | _students (

;I name CHAR(15) ,

: fname CHAR(15),

cm CHAR(3),

;mo_ind SMALLI NT,

did | NTEGER,

:status CHAR(5),

. maj or | NTECER,

:mej or_ind SMALLI NT, -- indicator for major
s adv | NTEGER,

;adv_ind SMALLI NT, -- indicator for advisor
SQLCCDE) ;

FETCH get _students_curs
INTO : I nane, :fname, :m |ND CATOR :ni _ind,
:id, :status, :major |NDICATCR :mgjor_ind,
cadv | NDI CATOR : adv_i nd;

-- Add a new student
-- to the database. Sone of the colums in the

Demonstration Programs 6-7

Sample Programs

-- table are entered as null in this procedure.
-- The UPDATE_STUDENT procedure is used to fill
-- themin later.

PROCEDURE add_st udent (

:last_name CHARACTER(15) ,

:first_nane CHARACTER(15) ,

im CHARACTER(3) ,

:m _ind SMALLI NT,

:sid | NTEGER,

.status CHARACTER(5) ,

:date_of _birth CHARACTER(9),

:dob_ind SMALLI NT,

SQLCCDE) ;

I NSERT | NTO students VALUES (

:last _nane,
:first_nane,
'mio:mo_ind,
1sid,
:status,
:date_of birth :dob_ind,

sysdat e, -- use today's date

-- for start date

null, -- no graduation date yet
null, -- no declared major yet
nul | -- no advisor yet
).

-- Update a student's record to add or change
-- status, mmjor subject, advisor, and graduation date.

PROCEDURE updat e_st udent (

:sid | NTEGER, -- student's id nunmber
. maj or | NTECER, -- dept nunber of ngjor
:mej or_ind SMALLI NT, -- indicator for major
:advi sor | NTECGER, -- advisor's | D nunber
;advi sor_ind SMALLI NT,

:grd_date CHARACTER(9) ,

;grad_date_ind SMALLINT,

SQLCODE) ;

UPDATE st udents SET
grad_date = :grd_date | NDI CATOR :grad_date_ind,
maj or = :major | NDI CATOR : mgjor_ind,
advi sor _id = :advisor | NDI CATOR : advisor_ind
WHERE id = :sid;

PROCEDURE del et e_student (
:sid | NTEGER,
SQLCODE) ;

DELETE FROM students
VWHERE id = :sid;

-- Cet an ID nunber for a new student

-- using the student_id sequence generator. This
-- is done so that the ID nunber can be returned
-- to the add_student routine that calls

-- ENROLL.

6-8 Oracle SQL*Module for Ada Programmer’s Guide

Sample Programs

PROCEDURE get _new_student _id (

snew.id | NTEGER,
SQLCCDE) ;

SELECT student _i d_seq. nextval
I NTO : new_i d
FROM dual ;

-- Return the nanme
-- of a student, given the ID nunber.

PROCEDURE get _student _nane_from.id (

:sid | NTEGER,
.1 nane CHAR(15),
:fnane CHAR(15),
‘m CHAR(3),
SQLCCDE) ;

SELECT | ast _name, first_nane, m
I NTO : |l nane, :fname, :m
FROM st udent s
WHERE id = :sid;

-- Define a procedure to return an instructor's |ast

-- name, given the |D nunber.

PROCEDURE get _instructor_name_fromid (

iid | NTEGER,
.1 nane CHAR(15),
: fnane CHAR(15),
cim CHAR(3),
:m _ind SMALLI NT,
SQLCCDE) ;

SELECT | ast_nane, first_nane, m

INTO : I nane, :fnane, :im |NDI CATOR :ni_ind

FROM i nstructors
VWHERE id = :iid;

-- Define procedure to return the nane of a departnent

-- given its |ID nunber.

PROCEDURE get departnent _name_fromid (

:did | NTEGER,
: dept _name CHARACTER(16) ,
SQLCODE) ;

SELECT nane

I NTO : dept _nane
FROM depart nent s
WHERE id = :did;

Demonstration Programs 6-9

Sample Programs

-- Add a class to the classes table.

PROCEDURE add_cl ass (

.class_no | NTEGER,
:dept _no | NTEGER,
. course_no | NTEGER,
:max_students | NTECER,
vinstr_id | NTECER,
‘quarter | NTECER,
s year | NTEGER,
SQLCODE) ;
I NSERT | NTO cl asses VALUES (
: ¢l ass_no,
: cour se_no,
: dept _no,
:max_students,
null, -- bui |l di ng nunmber and
null, -- roomnot yet assigned
sinstr_id,
quarter,
s year
);

-- Drop a class.

PROCEDURE del ete_cl ass (
:class_no | NTEGER,
SQLCODE) ;

DELETE FROM cl asses
VWHERE cl ass_nunber = :class_no;

-- Get an ID nunber for a new cl ass.
-- Aclass is an instance of a course.
-- Use the class_nunber_seq sequence generator.

PROCEDURE get _new class_id (

cnew.id | NTEGER,
SQLCODE) ;

SELECT cl ass_nunber _seq. next val
I NTO : new_i d
FROM dual ;

-- Declare a cursor to return information about all

6-10 Oracle SQL*Module for Ada Programmer’s Guide

Sample Programs

-- classes a given student has or is enrolled in his
-- or her college career.

-- Inthis college, letter grades are assigned
-- nunbers, in the following fornat:
4.0

O NN WwW
oo ocuiowm

DECLARE get _enrol | _curs CURSOR FOR

SELECT cour ses. namne,
classes.instructor,
cl asses. year,
cl asses. quarter,
enrol | ment. grade,
enrol | ment. comment s
FROM cour ses, classes, enrol | nent
WHERE courses.id = cl asses. course_number
AND cl asses. cl ass_nunmber = enrol | nent. cl ass_no
AND enrol I ment. student _id = :sid

-- Define a procedure to open the GET_ENROLL_CURS cursor.
-- Note that this procedure requires an IN parameter to set
-- the student |ID nunber (sid).
PROCEDURE open_get _enrol | _curs (
:sid | NTEGER,
SQLCODE) ;
OPEN GET_ENROLL_CURS;

-- CLCOSE the get_enroll _curs cursor

PROCEDURE cl ose_get _enrol | _curs (
SQLCODE) ;

CLOSE get _enrol | _curs;

-- FETCH fromthe courses, classes, and enrol | nent table
-- using the get_enroll _curs cursor

PROCEDURE get _enrol | _by_student (
: cour se_name CHARACTER(38) ,

sinstructor | NTEGER,

s year | NTECGER,
;quarter | NTEGER,

. grade REAL,
:grade_ind SMALLI NT,
:coment s CHARACTER(255) ,
SQLCCDE) ;

FETCH get _enrol | _curs
I NTO : cour se_nane,
sinstructor,

year,

Demonstration Programs 6-11

Sample Programs

iquarter,
:grade | NDI CATOR : grade_i nd,
:comment s;

- Enroll a student in a class.
PROCEDURE enrol | _student _in_class (
. class_number | NTEGER,
:sid | NTEGER,
SQLCCDE) ;
I NSERT | NTO enrol | ment VALUES (
enrol | ment _seq. nextval,
. ¢l ass_nunber,
isid,
null, -- no grade yet
- no coments yet

- Conmt a transaction.

PROCEDURE do_comi t (
SQLCODE) ;

COWM T WORK;
- Connect to a database
PROCEDURE do_connect (
: dbname CHARACTER(14) ,
:username CHARACTER(14),
: passwd CHARACTER(14) ,
SQLCCDE) ;
CONNECT TO : dbname USER : usernanme USI NG : passwd;

- Di sconnect

PROCEDURE do_di sconnect (
SQLCODE) ;

DI SCONNECT CURRENT;
- Roll a transaction back.

PROCEDURE do_rol I back (
SQLCCDE) ;

ROLLBACK WORK;

Calling a Stored Procedure

The sample stored package defined below can be used to demonstrate how to call a
stored procedure from an Ada application. The package source is GPAPKG.SQL, andit
is in your demo directory. See the program "DEMCALSP.A" on page 6-28, written in

6-12 Oracle SQL*Module for Ada Programmer’s Guide

Sample Programs

the host language, that calls the GET_GPA_IF procedure in this package. Each of these
host programs is also on-line, in your demo directory.

-- Create the specification for a package

-- that contains the GET_GPA stored procedure.

-- Use the WTH I NTERFACE cl ause so that

-- the package procedure can be called froma 3G.

-- Note that the procedure paraneters have PL/SQ

-- datatypes, but in the WTH I NTERFACE cl ause

-- SQL datatypes nust be used, and they must be

-- constrained if required (for exanple, CHARACTER(15)).
-- The WTH I NTERFACE cl ause all ows you to

-- specify error-handling paranmeters, such as SQLSTATE,
-- as well as indicator parameters. These are filled
-- in as the procedure executes.

-- The calling host 3G application calls the procedure

-- named in the WTH | NTERFACE cl ause. This

-- would usually be given the same name as the procedure

-- inthe body. Here it is given a different name, to

-- denonstrate that (1) you can do this, and (2) it is

-- the WTH I NTERFACE cl ause nanme that gets

-- generated in the interface procedure as the procedure to call.

-- Note that this package will create

-- the package and procedure nanmes in uppercase. So the

-- rmodul e conpiler will generate interface procedures that have
-- the nanes

-- in uppercase, which means that you nmust call them using

-- upper case in your host program If you prefer |owercase,

-- sinply change the package and procedure names to be

-- quoted | owercase, for exanple:

-~ CREATE OR REPLACE PACKAGE "gpa_pkg" AS ...

CREATE OR REPLACE PACKAGE GPA_PKG AS

PROCEDURE GET_GPA(student _id IN NUMBER,
student |ast_name I N QUT CHARACTER,
gpa (e8)) NUMBER)

W TH | NTERFACE
PROCEDURE GET_GPA_|I F
(student _id | NTEGER,
student _| ast _nanme CHARACTER(15)
| NDI CATOR snane_i nd,

sname_i nd SMALLI NT,

gpa REAL,

sql state CHARACTER(5) ,
sql code | NTEGER) ;

-- Create the package body. There is no need for

-- a WTH I NTERFACE cl ause in the body.

-- The GET_GPA procedure conputes the cumul ative GPA

-- over all courses that the student has taken, and returns
-- the conputed value. |f the student has received no

-- grades yet, a null is returned (through the indicator

-- paraneter).

Demonstration Programs 6-13

Sample Programs

CREATE OR REPLACE PACKAGE BODY GPA_PKG AS

PROCEDURE GET_GPA(st udent _i d IN NUVBER,
student | ast _nanme | N OUT CHARACTER
gpa (e8]} NUMBER) 1S

-- The cursor selects all the classes that
-- the student has enrolled in.

CURSOR get _enrol | _curs(sid IN NUMBER) |S
SELECT enrol | nent. grade
FROM enrol | nent
WHERE enrol | ment.student id = sid
AND enrollment.grade |'S NOT NULL;

-- Declare local variables.
-- gpa_tenp needed because gpa is an OUT paraneter

n NUMBER := O;
grade NUMBER;
gpa_tenp NUMBER := 0;
BEG N

gpa := 0.0;

-- Get the last nane;

-- if not found, the no_data found
-- predefined exception is raised.
SELECT | ast_name
I NTO student _| ast _name

FROM st udent s
WHERE id = student id;

-- Otherwise, open the cursor and FETCH

open get _enrol | _curs(student_id);

| oop
FETCH get _enrol | _curs INTO grade;
exit when get_enrol | _curs%ot f ound;
gpa_tenp := gpa_tenp + grade;
n:=n+1;

end | oop;

close get_enroll _curs;

if n>0 then
gpa := gpa_tenp / n;
end if;
exception

-- The SQLCODE parameter in the WTH | NTERFACE
-- paraneter list will not be set to +100 because
-- the exception is handl ed here, but the indicator
-- variable will be set to -1 because of the null
-- assignnent.
when no_data_found then
student _last_nanme := null;
end GET_GPA

END;

6-14 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

Sample Applications
This section contains sample applications that may aid development.
DEMOHOST.A
-- Modul e Language denonstration program for Ada.
-- For an expl anation of the tables that are accessed
-- and the Mdul e Language procedures that
-- are called in this program see Sanple Prograns.
-- The modul e | anguage code that contains the procedures called
-- by this program and SQ. scripts to create and popul ate
-- the tables used, are included in the source distribution.
with
-- The required SQ standard package.
sql _standard,
-- The nodul e | anguage procedures package.
denmonod,
-- Qther 1/0 packages. ..
text_io,
float _text_io,
i nteger_text_io;
use
-- use the standard |/0O packages.
text_io,

sql _standard,
float _text_io,
integer_text_io;

procedure DEMOHOST is

-- instantiate new packages for 1/0 on SQL_STANDARD dat at ypes
package STD INT_IOis
new text_io.integer_i o(SQ._STANDARD. | NT);
use STD INT_IQ

package SQLCODE IO i s
new text_io.integer_i o(SQL_STANDARD. SQLCODE_TYPE) ;
use SQLCODE IO

package STD SMALLINT IO is
new text_io.integer_i o(SQL_STANDARD. SMALLI NT);
use STD SMALLINT IO

package STD FLOAT 10is
new text_io.float_i o(SQ._STANDARD. REAL);
use STD FLOAT_IO
-- declare main procedure variables and exceptions
-- handl e command i nput

type COMMAND i s

Demonstration Programs 6-15

Sample Applications

(AC, AS, DC, DS, ES, SE, SS, US, HELP, QUIT, BYE);
package COWAND IO is

new text _io.enureration_i o(COWAND) ;
use COWWAND_I O
COM_LI NE . COMVAND;

-- make SQLCODE gl obal since programstructure allows this

SQLCODE . SQL_STANDARD. SQLCODE_TYPE;
ANSVER »ostring(l..4);

LENGTH . integer;

SERVI CE_NAME : SQ._STANDARD. CHAR(1..14);
USERNAME : SQL_STANDARD. CHAR(1. . 14);
PASSWORD . SQL_STANDARD. CHAR(1. . 14);

-- declare top-level exceptions
CONNECT_ERROR : excepti on;
SQLCODE_ERRCOR : excepti on;

-- define procedures

-- get a user command
procedure GET_COVMAND(CMD : out COVWMAND) is
begi n
| oop
begin
new_|ine(2);
put ("Sel ect an option: ");
get (CVD);
return;
exception
when data_error =>
put _I'ine
(ascii.bel & "Invalid option, try again.");
end;
end | oop;
end GET_COWMVAND;

procedure MENU is

begi n
new | i ne(5);
put _line(" *** COLLEGE RECORDS ***");
new | i ne;
put_line("AC - add a class to curriculunt);
put_line("AS - enroll a new student in the college");
put_line("DC - drop a class fromcurriculun');
put_line("DS - drop a student");
put_line("ES - enroll a student in a class");
put_line("SE - show conmplete enrollnent records");
put _line("SS - show all students");
put _line("US - wupdate a student's record");
put _line("HELP - redisplay this nmenu");
put_line("QUT - quit progrant);
new | ine(3);

end MENU;

6-16 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

- Procedure to get an integer value fromthe user,
- pronpting first.
procedure GET_STANDARD | NT(PROWPT : string;
VALUE : out SQL_STANDARD.INT) is

begi n
put (pronpt);
get (i nteger (VALUE));
skip_line;

end GET_STANDARD_| NT;

- CGet atext string fromthe user, pronpting first.
- The string is bl ank-padded.
procedure GET_STANDARD TEXT(PROWPT : in string;
VALUE : out SQL_STANDARD. CHAR;
LENGTH : in out integer) is
COLD_LENGTH : integer;

begi n
OLD_LENGTH : = LENGTH,
put (PROVPT) ;
VALUE := (1..LENGTH => " ');
get _line(string(VALUE), LENGTH);

i f LENGTH = OLD LENGTH t hen
skip_line;
end if;

end GET_STANDARD TEXT;

- The followi ng procedures, all beginning with the prefix
- "CALL_", are called fromthe main procedure,

-and in turn call Mdul e Language procedures, defined

- in the DEMOMOD. nmad file.

procedure CALL_ADD CLASS is

CLASS_NUMBER : SQL_STANDARD. | NT;

DEPARTMENT_NUMBER : SQ._STANDARD. | NT;

COURSE_NUMBER : SQL_STANDARD. | NT;

MAX_ENROLLMENT : SQL_STANDARD. | NT;

I NSTRUCTOR_I D : SQL_STANDARD. I NT range

1000. . SQL_STANDARD. | NT' | ast ;

QUARTER . SQL_STANDARD. | NT range 1..4;

YEAR : SQL_STANDARD. I NT range 1900. . 2100;
begi n

new | ine(2);

put _line("Add a new class to the schedul e");

new_|ine(2);

DEMOMOD. GET_NEW CLASS._| D{ CLASS_NUVBER, SQLCODE) ;

if SQLCODE /= 0 then
put ("Cannot generate new class nunber. CODE is ");
put (SQLCCDE) ;
new | i ne;

Demonstration Programs 6-17

Sample Applications

put_line(" Call your database adninistrator.");
return;
el se
put ("New cl ass number is ");
put (CLASS_NUMBER) ;

new | i ne;
end if;
| oop
begin

new | i ne;

GET_STANDARD | NT
("Enter dept ID. ", DEPARTMENT NUVBER);

GET_STANDARD_| NT

("Enter course ID nunber: ", COURSE_NUMBER);
GET_STANDARD_| NT

("maxi mum enrol I nent: ", MAX_ENROLLMENT);
GET_STANDARD_| NT

("instructor 1D nunber: ", INSTRUCTOR ID);
GET_STANDARD_| NT

("quarter (1=spring, 2=sumer, ...: ", QUARTER);

CGET_STANDARD | NT("year (4 digits please): ", YEAR);

DEMOMOD. ADD_CLASS(CLASS_NUMBER, COURSE_NUMBER,
DEPARTMENT _NUMBER, MAX ENROLLMENT,
I NSTRUCTCR | D,
QUARTER, YEAR, SQLCODE);
if SQLCODE /= 0 then
put ("Error adding class. CODEis ");

put (SQLCODE) ;
new | ine;
el se
put _line("New class added.");
end if;
exit;
exception
when CONSTRAI NT_ERROR =>
new | i ne;
put _line("Last input not valid. Try again.");
new_| i ne;
end;
end | oop;

end CALL_ADD_CLASS;

procedure CALL_ADD STUDENT is

ERROR_COUNT @ integer := 0;

S| ZE : integer;

NEW | D : SQL_STANDARD. | NT;

M _IND : SQL_STANDARD. SMALLI NT;
TEMP_STRING : string(1..80);

FI RST_NAME : SQL_STANDARD. CHAR(1. . 15);
LAST_NAME : SQL_STANDARD. CHAR(1. . 15);
M : SQL_STANDARD. CHAR(1.. 3);
DATE_OF BIRTH : SQ._STANDARD. CHAR(1..9);
DOB_I ND : SQL_STANDARD. SMALLI NT;
STATUS : SQL_STANDARD. CHAR(1..5);
LENGTH . integer;

6-18 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

begi n
new | ine(2);
put _Iine("Add a new student to the database.");
new | ine(2);

DEMOMOD. GET_NEW STUDENT | D NEW | D, SQLCODE) ;
if SQLOODE /= 0 then

put _line("Cannot generate |D nunber for student.");

put ("CODE is ");
put (SQLCCDE) ;
new | i ne;
put_line("Call your database administrator.");
return;

end if;

skip_line;

| oop

begin

new | ine;
LENGTH : = 15;
CGET_STANDARD _TEXT("

LENGTH : = 15;
GET_STANDARD_TEXT("

LENGTH : = 3;
CGET_STANDARD _TEXT("

if LENGTH = 0 then
M_IND:= -1,
el se
M _IND := 0;
end if;
LENGTH : = 9;

GET_STANDARD_TEXT("

if LENGTH = 0 then
DOB IND := -1;
el se
DOB_IND : = 0;
end if;

LENGTH : = 5;
GET_STANDARD_TEXT("

Last nanme: ", LAST_NAME,
LENGTH) ;

First name: ", FIRST_NAME,
LENGTH) ;

Mddle initial: ", M,
LENGTH) ;

Date of birth (DD-MON-YY): ",
DATE_OF_BIRTH, LENGTH);

Status (FT, PT, JYA

STATUS, LENGTH);

DEMOMOD. ADD_STUDENT(LAST_NAME,

FI RST_NAME,
M, M_IND,
NEW | D,

STATUS,
DATE_OF_BI RTH,
DOB_| ND,
SQLCODE) ;

Demonstration Programs 6-19

Sample Applications

if SQLCODE /= 0 then
new_|ine;
put ("Error adding student. CODE is ");
put (SQLCODE, width => 5);
el se
new | i ne;
put (" Student added. |D nunber is");
put (NEWID, width => 6);
end if;
new_ | ine(3);
return;
exception
when constraint_error =>
ERROR_COUNT : = ERROR_COUNT + 1;
if ERROR_COUNT > 3 then
put _line
("Too many errors. Back to main program");
exit;
end if;
put_line("Invalid value. Try again.");
when ot hers =>
put_line("Data error or other error.");
exit;
end;
end | oop;
end CALL_ADD_STUDENT;

procedure CALL_DROP_CLASS is

CLASS_NUMBER : SQL_STANDARD. | NT;
begi n

new | ine(2);

put_line("Drop a class");

new_|ine(2);

CGET_STANDARD | NT
(" Enter class ID nunber: ", CLASS NUMBER);

DEMOMOD. DELETE_CLASS(CLASS_NUMBER, SQLOODE) ;

if SQLCODE /= 0 then

new_|ine;

put ("Error dropping the class. CODEis ");

put (SQLCODE) ;

new | i ne;

put_line("Call your database administrator.");
el se

put _line("d ass dropped.");
end if;

end CALL_DROP_CLASS;

procedure CALL_DROP_STUDENT is
LAST_NAME, FIRST_NAME : SQ._STANDARD. CHAR(1..15);

M : SQL_STANDARD. CHAR(1. . 3);
STUDENT I D . SQL_STANDARD. | NT;
ANSVER . ostring(1l..12);

ALEN . integer;

6-20 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

begi n
new | ine(2);
put _line("Drop a student fromthe college.");
new | ine(2);

GET_STANDARD_ | NT

(" Enter student ID nunber: ", STUDENT_ID);
DEMOMOD. GET_STUDENT_NAME_FROM | D(STUDENT _I D,
LAST_NAME,
FIRST_NAME, M,
SQLCODE) ;
if SQLCODE /= 0 then
new | i ne;
put ("Error getting student information. CODEis ");
put (SQLCODE) ;
new_| i ne;
put_line("Call your database administrator.");
return;
end if;

put_line("Student's name is--");
put _line(string(FIRST_NAME & M & LAST_NAME));
put ("Do you really want to do this? ");
get _l i ne(ANSVER, ALEN);
if ANSWER(1) = 'Y or ANSVER(1) ='y' then

DEMOMOD. DELETE_STUDENT(STUDENT_I D, SQLCODE) ;

if SQLCODE /= 0 then

put_line("Error dropping student. CODE is ");

put (SQLCODE) ;
return;
el se
put _line
(string(LAST_NAME) & " has been dropped!'");
end if;
el se
put _line("OK student will not be dropped.");
end if;

end CALL_DROP_STUDENT;

procedure CALL_ENROLL_STUDENT is
CLASS_NUMBER, STUDENT_ID : SQL_STANDARD. | NT;

LAST_NAME, FI RST_NAME : SQL_STANDARD. CHAR(1. . 15);

M : SQL_STANDARD. CHAR(1. . 3);
begi n

new | ine(2);

put_line("Enroll a student in a class.");

new | ine(2);

CET_STANDARD I NT(" Enter student ID: ", STUDENT_|ID);
CET_STANDARD INT(" Enter class ID ", CLASS_NUMBER);
DEMOMOD. GET_STUDENT _NAME_FROM | D(STUDENT _I D,

LAST_NAME,

FI RST_NAME,

M,

SQLCODE) ;
if SQLCODE /= 0 then

Demonstration Programs 6-21

Sample Applications

new | i ne;
put _|ine("That student |ID does not exist.");
put("CODE is ");
put (SQLCCDE) ;
new | i ne;
put _line("Recheck and try again.");
el se
put _line

(" The student's name is " & string(LAST_NAME));
put (" Enrolling...");
DEMOMOD. ENROLL_STUDENT | N_CLASS(CLASS_NUNVBER,

STUDENT _I D,
SQLCODE) ;
if SQLCODE /= 0 then
new | i ne;
put ("Error occurred enrolling student. CODEis ");
put (SQLCODE) ;
new | i ne;

put _line("Check class ID nunber and try again.");

el se
put _line("done");
end if;
end if;
end CALL ENROLL_STUDENT;

procedure CALL_SHOW ENROLLMENT is
COURSE_NAME : SQL_STANDARD. CHAR(1. . 38);
INSTR_ID, SID, YEAR QUARTER : SQ._STANDARD. | NT;

GRADE, GPA : SQL_STANDARD. REAL;
GRADE_I ND : SQL_STANDARD. SMALLI NT;
COWENTS : SQL_STANDARD. CHAR(1. . 255);
GRADE_COUNT, ROW COUNT . integer;

begi n
new | ine(2);
put _line("Show enrolInment in all courses for a student.");
new | ine(2);

CGET_STANDARD_| NT
(" Enter student ID nunber (try 1000): ", SID);

DEMOMOD. OPEN_GET_ENROLL_CURS(SI D, SQLCODE);
if SQLCODE /= 0 then

new | i ne;

put ("Error opening cursor. CODE is ");

put (SQLCCDE) ;

new_|ine;

put _line("Call your database administrator.");
el se

GPA :=0.0;

GRADE_COUNT : = 0;

ROW COUNT : = 0;

put (" COURSE TI TLE ")
put line("INSTRID YEAR QUARTER GRADE');

| oop
DEMOMOD. GET_ENROLL_BY_STUDENT(COURSE_NAME,

6-22 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

if SQLCODE = 100 then
exit;

el sif SQLCODE /= 0 then

I NSTR_I D,
YEAR, QUARTER
GRADE, GRADE_| ND,
COMMENTS,
SQLCODE) ;

put_line("Error fetching data. CODE is ");

new | i ne;
put (SQLCCDE) ;
new | i ne;

put _line("Call your database adninistrator.");

exit;
el se

ROW COUNT : = ROWCOUNT + 1;
put (string(COURSE_NAME)) ;
put (INSTR_ID, width => 6);
put (YEAR, width => 11);
put (QUARTER, width => 6);
if GRADE IND >= 0 then
GRADE_COUNT : = GRADE_COUNT + 1;
GPA : = GPA + GRADE;
put (GRADE, fore => 7, aft => 2, exp => 0);

end if;
end if;
new | i ne;
end | oop;

i f GRADE_COUNT > 0 and SQLCODE = 100 then

new | ine;

GPA 1= GPA /| REAL(GRADE_COUNT);

put ("Overall GPAis ");

put (GPA, fore => 1, aft => 2, exp => 0);

end if;

DEMOMOD. CLOSE_GET_ENROLL_CURS(SQLCODE) ;

if SQLCODE /= 0 then

put ("Error closing cursor. CODEis ");

new | i ne;
put (SQLCODE) ;
new | i ne;

end if;

end if;

end CALL_SHOW ENROLLNENT;

procedure CALL_SHOW STUDENTS is
LAST_NAME, Fl RST_NAME
M

| NSTR_LAST_NAME
| NSTR_FI RST_NAME
I NSTR_M

M _IND, INSTR.M _IND
SID, MAJOR, ADVISOR | NSTR
MAJOR | ND, ADVI SCR_| ND
STATUS

: SQL_STANDARD. CHAR(1.. 15
: SQL_STANDARD. CHAR(1. . 15);
: SQL_STANDARD. CHAR(1. . 3)

© SQL_STANDARD. CHAR(1. . 15);
© SQL_STANDARD. CHAR(1. . 3);

© SQL_STANDARD. SMALLI NT;

© SQL_STANDARD. | NT;

© SQL_STANDARD. SMALLI NT;

© SQL_STANDARD. CHAR(1. .5);

Demonstration Programs 6-23

Sample Applications

begi n
new | ine(2);
put_line(" ----- STUDENTS CURRENTLY ENRCLLED ----- ")
new | ine(2);
put (" LAST NAME FI RST NAME M ID NO STATUS');

put _line(" MAJOR ADVISCR');
DEMOMOD. OPEN_GET_STUDENTS_CURS(SQLCODE) ;
if SQLCODE /= 0 then

new | i ne;
put ("Error opening cursor. CODE is ");
put (SQLCCDE) ;
new | i ne;
put _line("Call your database admnistrator.");
return;
end if;
| oop
DEMOMOD. GET_ALL_STUDENTS(LAST_NAME,
FI RST_NAME,
M, M_IND,
SI D, STATUS,

MAJOR, MAJOR_I ND,
ADVI SOR, ADVI SOR_| ND,
SQLOODE) ;
if SQLCODE = 100 then
exit;
el sif SQLCODE /= 0 then
new_| i ne;
put _line("Error fetching data. CODE is ");
put (SQLCODE) ;
new | ine;
put_line("Call your database administrator.");
exit;
el se
put (string(LAST_NAME));
put (string(Fl RST_NAME));
put (string(M));
put (SID, width => 5);
put(" ");
put (string(STATUS));
")

if MMJORIND < 0 then
put (" (NONE)");
el se
put (MMOR);
end if;
if ADVISORIND = 0 then
DEMOMOD. GET_| NSTRUCTOR_NAVE_FROM | D
(ADVI SOR,
| NSTR_LAST_NAME,
I NSTR_FI RST_NAME,
INSTR_ M, INSTR_M _I ND,
SQLCODE) ;

if SQLCODE = 0 then

put (" " & string(lNSTR_LAST_NAME));
el se

put("[err =");

put

6-24 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

put (SQLCODE) ;
put("]1");
end if;
el se
put (" (NONE)");
end if;
end if;
new_|ine;
end | oop;

DEMOMOD. CLOSE_GET_STUDENTS_CURS(SQLCODE) ;
if SQLCODE /= 0 then

new | i ne;
put ("Error closing cursor. CODEis ");
put (SQLCCDE) ;
new | i ne;
put _line("Call your database adninistrator.");
new | i ne;
end if;

end CALL_SHOW STUDENTS;

procedure CALL_UPDATE_RECORD i s

SID, ADVI SOR, MAJOR : SQL_STANDARD. | NT;

GRAD_DATE : SQL_STANDARD. CHAR(1..9);

ADVI SOR_I ND, MAJOR_IND : SQ._STANDARD. SMALLI NT;

GRAD_DATE_I ND : SQL_STANDARD. SMALLI NT;

LENGTH . integer;

LAST_NAME : SQL_STANDARD. CHAR(1. . 20);

FI RST_NAME : SQL_STANDARD. CHAR(1. . 20);

M : SQL_STANDARD. CHAR(1.. 3);
begi n

new_|ine(2);

put _line("Update a student's records.");

new_ | ine(2);

CET_STANDARD I NT(" Enter student ID nunber: ", SID);
DEMOMOD. GET_STUDENT_NAME_FROM | D(SI D,

LAST_NAME,
FI RST_NAME,
M,
SQLCODE) ;
if SQLCODE /= 0 then
new | i ne;
put _line("That student |D does not exist.");
new_|ine;
put _|ine("Recheck and try again.");
return;
el se
put _l'ine
(" The student's last name is " & string(LAST_NAME));
new_|ine;
end if;

put (" Change mgjor? |f so, enter new department ");
CGET_STANDARD_I NT("nunber. If not, enter 0: ", MAJOR);

Demonstration Programs 6-25

Sample Applications

if MAJOR = 0 then
MAJOR IND : = -1;
el se
MAJOR_IND : = 0;
end if;

put (" New advisor? |If so, enter the instructor ID");
CGET_STANDARD | NT("nunber. If not, enter 0: ", ADVISOR);

if ADVISOR = 0 then
ADVISCR IND : = -1,

el se
ADVI SOR_IND : = 0;
end if;
put _Iine
(" Has the student graduated. |f so, enter date (DD-MON-YY)");
LENGTH : = 9;

CGET_STANDARD_TEXT
(" If not, press RETURN. ", GRAD_DATE, LENGTH);

if LENGTH = 0 then
GRAD _DATE_I ND :
el se
GRAD DATE IND :
end if;

1
!
=

T
<

DEMOMOD. UPDATE_STUDENT(SI D,
MAJOR, MAJCR | ND,
ADVI SCR, ADVI SCR_| ND,
GRAD DATE, GRAD_DATE_I ND,

SQLCODE) ;

if SQLCODE /= 0 then

new | i ne;

put ("Error updating records. Code is ");

put (SQLCCDE) ;

new_| i ne;

put_line("Call your database admnistrator.");
el se

new | i ne;

put _|ine("Records updated. ");
end if;

end CALL_UPDATE_RECORD,

begin

SQLCODE_| O default_width := 6;

SERVICE NAME := "instl alias ";
USERNAME = "nodt est "
PASSWORD = "yes

DEMOMOD. DO_CONNECT(SERVI CE_NAME, USERNAME, PASSWORD, SQLCODE);
if SQLCODE /= 0 then
raise connect_error;

6-26 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

end if;

put _|ine("Connected to ORACLE.");
new | ine;

MENU,;

| oop
CGET_COVMAND(COM LI NE) ;
case COMLINE is
when AC => CALL_ADD CLASS;
when AS => CALL_ADD STUDENT;
when DC => CALL_DROP_CLASS;
when DS => CALL_DROP_STUDENT;
when ES => CALL_ENROLL_STUDENT;
when SE => CALL_SHOW ENROLLMENT;
when SS => CALL_SHOW STUDENTS;
when US => CALL_UPDATE_RECORD;
when HELP => MENU;
when QUIT | BYE =>
skip_line;
new | ine(5);
put ("Commit all changes [yn]: ");
LENGTH : = 4;
get _l i ne(ANSVER, LENGTH);
if (ANSVER(1..1) = "y") then
DEMOMOD. DO_COWM T(SQLCODE) ;
put _l i ne("Changes comitted.");
el se
DEMO_MOD. DO_ROLLBACK;
put _|i ne("Changes discarded.");

end if;
new | ine(2);
put _line("G Day!");
new | ine(4);
exit;
end case;

end | oop;
DEMOMOD. DO_DI SCONNECT(SQLCODE) ;
if SQLCODE /= 0 then
put ("Error disconnecting. SQLCODE is ");

put (SQLCCDE) ;
put _Iine("Exiting anyway.");
end if;
exception

when CONNECT _ERROR =>
put_line("Error connecting to ORACLE.");
new_|ine(4);

when SQLCODE_ERROR =>
put("Error fetching data. CODE is ");
put (sql code);
new | ine(4);
DEMOMOD. DO DI SCONNECT(SQLCODE) ;

when ot hers =>
put _line("Unhandl ed error occurred. Fix the program");
new_|ine(4);

end DEMOHOST;

Demonstration Programs 6-27

Sample Applications

DEMCALSP.A

-- dental sp. a

-- Sanple programthat denonstrates howto call a
-- database stored procedure using the WTH | NTERFACE
-- PROCEDURE cl ause.

-- The stored package is in the file GPAPKG SQL.

-- Include the required specs. Denonod must be included
-- since it contains the connect and di sconnect procedures.

with TEXT_10Q
SQL_STANDARD,
GPA_PKG,
DEMOMOD,
FLOAT TEXT |0,
| NTEGER TEXT | O

use TEXT_IQ
SQ._ STANDARD,
FLOAT_TEXT I O,
| NTEGER_TEXT_I O

procedure DEMCALSP is

-- Define the required |/ O packages for SQL_STANDARD.
package STD INT_IOis
new TEXT_| O | NTEGER | O SQL_STANDARD. | NT) ;
use STD INT_IQ

package SQLCODE IO i s
new TEXT_| O | NTEGER | O SQL_STANDARD. SQLCCDE_TYPE) ;
use SQLCODE IO

package STD SMALLINT IO is
new TEXT_| O. | NTEGER | O(SQL_STANDARD. SMALLI NT) ;
use STD SMALLINT IO

package STD FLOAT IO is
new TEXT | O FLOAT | O(SQL_STANDARD. REAL);
use STD FLOAT_ IO

STUDENT_I D © SQL_STANDARD. | NT;
STUDENT_LAST_NAME : SQL_STANDARD. CHAR(1. . 15);
NAME_| ND © SQL_STANDARD. SMALLI NT;
GPA © SQL_STANDARD. REAL;
PASSWORD : SQL_STANDARD. CHAR(1..12);
SERVI CE_NAME : SQL_STANDARD. CHAR(1..12);
USERNAMVE © SQL_STANDARD. CHAR(1..12);
SQLCODE : SQL_STANDARD. SQLCCDE_TYPE;
SQLSTATE © SQL_STANDARD. SQLSTATE_TYPE;
CONNECT_ERROR . exception;
SQLCODE_ERROR . exception;

begin
PASSWORD = "yes "
SERVI CE_NAME : = "instl_alias ";

6-28 Oracle SQL*Module for Ada Programmer’s Guide

Sample Applications

USERNAME ;= "nodt est "

DEMOMOD. DO_CONNECT(SERVI CE_NAME, USERNAME, PASSWORD, SQLCODE) ;
if SQLCODE /= 0 then
rai se CONNECT_ERROR;

end if;
new | ine(2);
put _line("Cet grade point average--");
new | ine;
| oop
begi n
new | i ne;

put ("Enter student ID nunber (try 1000) (0 to quit): ");
get (STUDENT_I D) ;

new | i ne;

exit when STUDENT_ID = 0;

- Call the stored procedure.
GPA_PKG GET_GPA_| F(STUDENT_I D, STUDENT_LAST_NAME,
NAVE_I ND, GPA, SQLSTATE, SQLCODE);
if SQLCODE /= 0 then
rai se SQLCODE_ERROR;
end if;

if NAVE_IND = 0 then
new | ine;
put ("Last name is " & string(STUDENT_LAST_NAME));
put ("Overall GPAis");
put (GPA, fore => 4, aft => 2, exp => 0);
el se
put ("There is no student with I D nunber");
put (STUDENT_I D, width => 5);

new | i ne;
end if;
exception
when SQLCODE ERRCOR =>
new_|ine;

put ("Error fetching data, SQLCODE is ");
put (SQLCCDE, width => 5);

end;

end | oop;

- Disconnect fromthe server.
DEMOMOD. DO_DI SCONNECT(SQLCODE) ;
if SQLCODE /= 0 then
put ("Error disconnecting. SQLCODE is ");

put (SQLCODE) ;
put _line("Exiting anyhow.");
end if;
exception

when CONNECT_ERROR =>
put ("Error connecting to Oracle.");

end DEMCALSP;

Demonstration Programs 6-29

Sample Applications

6-30 Oracle SQL*Module for Ada Programmer’s Guide

A

New Features

This appendix contains a list of the new features in release 8.0 of SQL*Module for Ada.

New Statements

CONNECT. (See "CONNECT Statement" on page 2-13.)

SET CONNECTION. (See "SET CONNECTION Statement" on page 2-14.)
DISCONNECT. (See "DISCONNECT Statement" on page 2-14.)

ENABLE THREADS. (See "ENABLE THREADS" on page 2-15.)
CONTEXT ALLOCATE. (See "CONTEXT ALLOCATE" on page 2-16.)
CONTEXT FREE. (See "CONTEXT FREE" on page 2-16.)

Other New Features

New datatype for multi-tasking, SQL_CONTEXT. (See "SQL_CONTEXT Datatype"
on page 2-15.)

Support for procedure declaration with arrays. (See "Arrays as Procedure
Arguments" on page 4-7.)

Function for obtaining the rows processed. (See "Obtaining the Number of Rows
Processed" on page 4-4.)

Function for obtaining error message text. (See "Obtaining Error Message Text" on
page 4-2.)

Dynamic SQL. (See "Dynamic SQL" on page 3-9.)

New Features A-1

Other New Features

A-2 Oracle SQL*Module for Ada Programmer’s Guide

B

Module Language Syntax

This appendix describes the syntax of Module Language, using syntax diagrams.

For the complete syntax of all SQL statements, including syntax diagrams, see PL/SQL
User’s Guide and Reference.

Module Language Syntax Diagrams

Syntax diagrams use lines and arrows to show how procedure names, parameters, and
other language elements are sequenced to form statements. Follow each diagram in
the direction shown by the lines and arrows.

In these syntax diagrams, Module Language keywords appear in uppercase;
parameters or other variable items appear in lowercase. Delimiters and terminators

[

(suchas (', ', and so on) appear in their literal form inside circles.

If the syntax diagram contains more than one possible path, you must select the path
appropriate to your application.

If you have the choice of more than one keyword or parameter, your options appear in
a vertical list. If any of the parameters in a vertical list appears on the main path, then
one of them is required. That is, you must choose one of the parameters, but not
necessarily the one that appears on the main path.

Single required parameters appear on the main path, that is, on the horizontal line you
are currently traveling. If parameters appear in a vertical list below the main path,
they are optional, that is, you need not choose one of them. In the AUTHORIZATION
clause of the module preamble, the username is mandatory, but the password and
database to connect to are optional, as shown in this diagram:

DGty A Ge)

—>| AUTHORIZATION |->(usemame)

Loops let you repeat the syntax contained within them as many times as you like.

Here is the syntax diagram for a module:

i]
—(preamble) define_procedure

Module Language Syntax B-1

Module Language Syntax Diagrams

Thus, a module consists of a preamble, followed by zero or more cursor declarations,
followed by one or more procedures.

Preamble
The syntax of the preamble is:
—>| MODULE (authorization_clause }-
LANGUAGE Clause
The following diagram shows the syntax of the optional language clause (lang_clause)
of the preamble:
—{ LANGUAGE |y ADA |-
AUTHORIZATION Clause
The following diagram shows the syntax of the AUTHORIZATION clause:
—{ AUTHORIZATION (username)
Cursors

The syntax of the cursor declaration is:

_>| DECLARE |—><cursor_name)—>| CURSOR FOR |—><sql_statement>—

Procedure Definitions
The SQL92 syntax for a procedure definition is:

—>| PROCEDURE |e(procedure_name}{parameter_Iist)»@-(sql_statement)@—

where the parameter list is defined as:

B-2 Oracle SQL*Module for Ada Programmer’s Guide

WITH INTERFACE CLAUSE

SQL_CONTEXT

SQLCODE

M Ok

SQLSTATE |»©->| SQLCODE

Where type_dcl is defined as:

Length L has values: 1< L<32500. n is the size of the array.

0:3:0
4 CHARACTER
-| DOUBLE_PRECISION |7

—| INTEGER

REAL

L1
—| SMALLINT
OO

\| SQL_CURSOR

You can place the SQLSTATE and/or the SQLCODE status parameters anywhere in
the parameter list; they are conventionally shown at the end of the parameter list in
this Guide, as indicated in this syntax diagram. You must include either SQLSTATE
(recommended) or SQLCODE (for backward compatibility with SQL89). You can

include both, in any order. Do not place a colon before the status parameter, and do
not include a datatype after it.

WITH INTERFACE CLAUSE

The syntax of a procedure declaration that includes a WITH INTERFACE clause is
formally defined as:

Module Language Syntax B-3

WITH INTERFACE CLAUSE

el PROCEDURE |—>Cprocedure,name)—>

param_formal_name

—>| WITH INTERFACE PROCEDURE |—><interface_procedure_name)—>

SQLSTATE CHARACTER
ﬁ@-)L(int_param_formal_name))—ﬁ:: o e a » o

SQLCODE INTEGER

The int_param_formal_name is defined as:

{param_name){sqI_datatype)e
[—>| INDICATOR F@nd_param_name}»@e{ind_param_name>e| SMALLINT |—\

The SQL datatype in the WITH INTERFACE clause must be compatible with the
corresponding PL/SQL datatype in the procedure declaration parameter list.

The syntax of the mode attribute is:

If mode is omitted, the value is IN.

B-4 Oracle SQL*Module for Ada Programmer’s Guide

C

Reserved Words

The words listed in this appendix are reserved by Oracle or by SQL*Module. For
PL/SQL reserved words, see PL/SQL User’s Guide and Reference.

Module Reserved Words

The following words are reserved by Oracle and by SQL*Module. You cannot use
them to name a module, nor to name cursors, procedures, or procedure parameters in
a module.

ADA, ARRAY, ALL, ALLOCATE, ALTER, AND, ANGLE_BRK, ANSIC, AN,
AREASIZE, ARRAYLEN, AS, ASC, AT, AUDIT, AUTHORIZATION, AUTO, AVG,
BEGIN, BETWEEN, BIND, BREAK, BY, C, CASE, CAT, CHAR, CHARACTER, CLOSE,
COBOL, CODE, COMMENT, COMMIT, CONNECT, CONNECTION, CONTEXT,
CONST, CONTINUE, CREATE, CURRENT, CURRVAL, CURSOR, DATABASE, DATE,
DEC, DECI, DECIMAL, DECLARE, DEFAULT, DEFINE, DEFINED, DELETE, DESC,
DESCRIBE, DESCRIPTOR, DISCONNECT, DISPLAY, DISTINCT, DO, DOUBLE,
DROP, ELSE, ENABLE, END, ENDEXEC, ENDIF, ENUM, ERRORS, ESCAPE,
EXCLUSIVE, EXEC, EXECUTE, EXECORACLE, EXECORACLEELSE,
EXECORACLEENDIF, EXECSQL, EXECSQLBEGIN, EXECSQLEND, EXECSQLTYPE,
EXECSQLVAR, EXECUTE, EXISTS, EXTERN, FETCH, FIPS, FLOAT, FOR, FORCE,
FORTRAN, FOUND, FREE, FROM, FULL, FUNCTION, GET, GO, GOTO, GRANT,
GROUP, HAVING, HOLDCURSOR, IAF, IDENTIFIED, IF, IFDEF, IFNDEF,
IMMEDIATE, IN, INCLUDE, INCSQL, INDICATOR, INSERT, INT, INTEGER,
INTERSECT, INTO, IS, ISOLATION, KRC, LANGUAGE, LEVEL, LIKE, LIMITED,
LIST, LOCK, LOCKLONG, MAX, MAXLITERAL, MAXOPENCURSORS, MIN,
MINUS, MOD, MODE, MODULE, NEXTVAL, NO, NOAUDIT, NONE, NOT,
NOTFOUND, NOWAIT, NULL, NUMBER, NUMERIC, OF, ONLY, OPEN, OPTION,
OR, ORACA, ORACLE, ORACLE_C, ORDER, PACKAGE, PASCAL, PLI, PRECISION,
PREPARE, PRIOR, PROCEDURE, PUT, RAW, READ, REAL, REBIND, REENTRANT,
REFERENCE, REGISTER, RELEASE, RELEASE_CURSOR, REM, RENAME, RETURN,
REVOKE, ROLLBACK, ROW, ROWID, ROWNUM, SAVEPOINT, SECTION,
SEGMENT, SELECT, SELECTERROR, SEMANTICS, SERIALIZABLE, SET, SHARE,
SHORT, SIGNED, SIZEOF, SMALLINT, SOME, SQL, SQL2, SQL89, SQLCHECK,
SQLCODE, SQLERRM, SQLERROR, SQLROWS, SQLSTATE, SQLWARNING, SQL._
CONTEXT, SQL_CURSOR, START, STATEMENT, STATIC, STDDEV, STOP, STRING,
STRUCT, SUM, SWITCH, SYNTAX, SYSDATE, TABLE, THREADS, TO,
TRANSACTION, TYPEDEF, UID, UNDEF, UNION, UNIQUE, UNSIGNED, UPDATE,
USE, USER, USING, VALIDATE, VALUES, VARCHAR, VARCHAR?2, VARIABLES,
VARIANCE, VARNUM, VARRAW, VARYING, VOID, VOLATILE, WHEN,
WHENEVER, WHERE, WHILE, WITH, WORK, WORKWRITE, WRITE, XOR_EQ,
XOR_WQ, YES

Reserved Words C-1

Module Reserved Words

C-2 Oracle SQL*Module for Ada Programmer’s Guide

D

SQLSTATE Codes

This appendix contains a table of the SQLSTATE codes and the conditions and errors
associated with them.

SQLSTATE Codes

Code Condition Oracle Error

00000 successful completion ORA-00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data - right truncation

01005 insufficient item descriptor areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long for info schema

0100A query expression too long for info schema

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error

07001 using clause does not match parameter specs

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL-02126

SQLSTATE Codes D-1

SQLSTATE Codes

Code
07009
08000
08001

08002
08003
08004
08006
08007
0A000

0A001
21000

22000
22001

22002

22003

22005
22007
22008

22009
22011
22012
22015
22018
22019

22021
22022

Condition

invalid descriptor index

connection exception

SQL client unable to establish SQL connection
connection name in use

connection does not exist

SQL server rejected SQL connection
connection failure

transaction resolution unknown

feature not supported

multiple server transactions

cardinality violation

data exception

string data - right truncation

null value - no indicator parameter

numeric value out of range

error in assignment
invalid date-time format

date-time field overflow

invalid time zone displacement value
substring error

division by zero

interval field overflow

invalid character value for cast

invalid escape character

character not in repertoire

indicator overflow

D-2 Oracle SQL*Module for Ada Programmer’s Guide

Oracle Error

SQL-02121

ORA-03000 ..
03099

ORA-01427
SQL-02112

ORA-01401
ORA-01406
ORA-01405
SQL-02124
ORA-01426
ORA-01438
ORA-01455
ORA-01457

ORA-01800 ..
01899

ORA-01476

ORA-00911

ORA-01425

ORA-01411

SQLSTATE Codes

Code
22023

22024

22025
22026
22027
23000

24000

25000
26000
27000
28000
2A000
2B000
2C000
2D000
2E000
33000
34000
35000
37000
3C000
3D000
3F000

Condition

invalid parameter value

unterminated C string

invalid escape sequence
string data - length mismatch
trim error

integrity constraint violation

invalid cursor state

invalid transaction state

invalid SQL statement name

triggered data change violation

invalid authorization specification

direct SQL syntax error or access rule violation
dependent privilege descriptors still exist
invalid character set name

invalid transaction termination

invalid connection name

invalid SQL descriptor name

invalid cursor name

invalid condition number

dynamic SQL syntax error or access rule violation
ambiguous cursor name

invalid catalog name

invalid schema name

Oracle Error
ORA-01025
ORA-01488

ORA-04000 ..
04019

ORA-01479 ..
01480

ORA-01424

ORA-00001

ORA-02290 ..
02299

ORA-01001 ..
01003

ORA-01410
ORA-08006
SQL-02114
SQL-02117
SQL-02118
SQL-02122

SQLSTATE Codes D-3

SQLSTATE Codes

Code
40000

40001
40002
40003
42000

44000
60000

Condition

transaction rollback

serialization failure
integrity constraint violation
statement completion unknown

syntax error or access rule violation

with check option violation

system errors

D-4 Oracle SQL*Module for Ada Programmer’s Guide

Oracle Error

ORA-02091 ..
02092

ORA-00022
ORA-00251

ORA-00900 ..
00999

ORA-01031

ORA-01490 ..
01493

ORA-01700 ..
01799

ORA-01900 ..
02099

ORA-02140 ..
02289

ORA-02420 ..
02424

ORA-02450 ..
02499

ORA-03276 ..
03299

ORA-04040 ..
04059

ORA-04070 ..
04099

ORA-01402

ORA-00370 ..
00429

ORA-00600 ..
00899

ORA-06430 ..
06449

ORA-07200 ..
07999

ORA-09700 ..
09999

SQLSTATE Codes

Code
61000

62000

63000

64000

65000

66000

67000

69000

Condition

resource error

multi-threaded server and detached process errors

Oracle*XA and two-task interface errors

control file, database file, and redo file errors;

archival and media recovery errors

PL/SQL errors

SQL*Net driver errors

licensing errors

SQL*Connect errors

Oracle Error

ORA-00018 ..
00035

ORA-00050 ..
00068

ORA-02376 ..
02399

ORA-04020 ..
04039

ORA-00100 ..
00120

ORA-00440 ..
00569

ORA-00150 ..
00159

SQL-02128

ORA-02700 ..
02899

ORA-03100 ..
03199

ORA-06200 ..
06249

ORA-00200 ..
00369

ORA-01100 ..
01250

ORA-06500 ..
06599

ORA-06000 ..
06149

ORA-06250 ..
06429

ORA-06600 ..
06999

ORA-12100 ..
12299

ORA-12500 ..
12599

ORA-00430 ..
00439

ORA-00570 ..
00599

ORA-07000 ..
07199

SQLSTATE Codes D-5

SQLSTATE Codes

Code Condition Oracle Error
72000 SQL execute phase errors ORA-01000 ..
01099
ORA-01400 ..
01489
ORA-01495 ..
01499
ORA-01500 ..
01699
ORA-02400 ..
02419
ORA-02425 ..
02449
ORA-04060 ..
04069
ORA-08000 ..
08190
ORA-12000 ..
12019
ORA-12300 ..
12499
ORA-12700 ..
21999
82100 out of memory (could not allocate) SQL-02100
82101 inconsistent cursor cache: unit cursor/global cursor SQL-02101
mismatch
82102 inconsistent cursor cache: no global cursor entry SQL-02102
82103 inconsistent cursor cache: out of range cursor cache SQL-02103
reference
82104 inconsistent host cache: no cursor cache available SQL-02104
82105 inconsistent cursor cache: global cursor not found SQL-02105
82106 inconsistent cursor cache: invalid Oracle cursor number SQL-02106
82107 program too old for runtime library SQL-02107
82108 invalid descriptor passed to runtime library SQL-02108
82109 inconsistent host cache: host reference is out of range SQL-02109
82110 inconsistent host cache: invalid host cache entry type SQL-02110
82111 heap consistency error SQL-02111
82112 unable to open message file SQL-02113
82113 code generation internal consistency failed SQL-02115
82114 reentrant code generator gave invalid context SQL-02116
82115 invalid hstdef argument SQL-02119

D-6 Oracle SQL*Module for Ada Programmer’s Guide

SQLSTATE Codes

Code
82116
82117
82118
82119
82120
82121
82122
90000

99999
HZ000

Condition

first and second arguments to sqlren both null
invalid OPEN or PREPARE for this connection
application context not found

connect error; can't get error text
precompiler/SQLLIB version mismatch.
FETCHed number of bytes is odd

EXEC TOOLS interface is not available

debug events

catch all

remote database access

Oracle Error
SQL-02120
SQL-02122
SQL-02123
SQL-02125
SQL-02127
SQL-02129
SQL-02130

ORA-10000 ..
10999

all others

SQLSTATE Codes D-7

SQLSTATE Codes

D-8 Oracle SQL*Module for Ada Programmer’s Guide

E

System-Specific References

This appendix contains a complete list of the features of the SQL*Module compiler and
its libraries that are system specific.

System-Specific Aspects of SQL*Module

This section describes the system-specific aspects of the SQL*Module compiler
features and their libraries that are system specific.

Supported Compilers

The Ada compiler that you can use to compile the code generated by SQL*Module is
platform specific. See your system-dependent documentation.

Character Case in Command Lines

Operating systems differ in case sensitivity. See "Case of Package and Procedure
Names" on page 3-4 for more information.

Location of Files

The location in the directory hierarchy of the SQL*Module executable, the system
configuration file, and the SQLLIB and OCILIB libraries can differ from system to
system. See "Invoking SQL*Module" on page 5-3 and "Configuration Files" on
page 5-6.

Filename Extensions

The default filename extensions that SQL*Module generates for output files might
vary from platform to platform. See "Output Files" on page 5-6.

Ada Output Files

The default filenames and filename extensions for Ada depend on the supported
compiler for your system. See "Source Code Output File" on page 5-7 and "Listing File"
on page 5-7.

Command Line

The command line interpreter makes assumptions about defaults that are system
specific. See your system-specific Oracle documentation.

System-Specific References E-1

System-Specific Aspects of SQL*Module

Ada SQL_STANDARD Package

The SQL_STANDARD package that is shipped with the Ada version of SQL*Module
can differ from system to system, depending on the requirements of your Ada
compiler. See your system-specific Oracle documentation.

E-2 Oracle SQL*Module for Ada Programmer’s Guide

Symbols

@ operator
in SQL*Plus, 3-3

A

Ada

example code, 6-15

named parameter association, 2-9

positional parameter association, 2-9
Ada example for VAX/VMS, 5-17
anonymous blocks, 3-2
anonymous blocks in PL/SQL, 3-6
Application Programming Interfaces (APIs), 5-9
Arrays as Procedure Arguments, 4-7
AUTHORIZATION clause, 2-6
AUTO_CONNECT

command-line option, 5-10

B

BINDING

command-line option, 5-10
binding

early, 1-6,3-5

late, 1-6,3-5
BINDING command-line option, 3-6

C

case sensitivity in program names, option names, and
values, 5-4
case-sensitive characters
in names of executables, 5-4
in package and procedure names, 3-4
code page, 4-8
command-line option value lists, 5-5
command-line options
about, 5-8
case-sensitive characters in, 3-5
CONFIG, 5-6
specifying an option, 5-4
whitespace used in, 5-8
Comments, 2-11
comments
C-style, 2-11

Index

not allowed in a configuration file, 5-6
SQL-style, 2-11
compiling and linking
about, 5-17
CONFIG
command-line option, 5-11
CONFIG command-line option, 5-6
configuration files
system, 5-5,5-6
user, 5-5,5-6
CONNECT statement, 2-13
connecting to a database
AUTHORIZATION clause and, 2-7
calling RPC stubs and, 3-15
CONTEXT ALLOCATE statement, 2-16
CONTEXT FREE statement, 2-16
conventions
for text in a module file, 2-11
COURSES.SQL script, 6-5
CREATE PROCEDURE command, 3-2
cursor
concept of, 4-1
declaring, 2-1
name of, 2-7
namespace for, 2-8
syntax of, B-2
using in queries, 4-6
cursor declarations, 2-7
cursor variable
closing, 3-9
cursor variable parameters, 3-7
cursor variables, 2-7,3-7,4-6
allocating, 3-7
must use late binding, 3-8
not available for Ada, 3-7
opening, 3-7
opening in a standalone stored procedure, 3-8
return types, 3-9
cursor variables, restrictions on, 3-9

D

database concepts for host application
developer, 4-1
datatypes

conversion, 1-3

Index-1

SQL, 29
declaring a cursor, 2-1
demo directory, 0-xiii
DEPARTMT.SQL script, 6-3
DISCONNECT statement, 2-14
Dynamic SQL, 3-9

E

early binding, 1-6,3-5
EMROLMNT.SQL script, 6-5
ENABLE THREADS statement, 2-15
encoding scheme, 4-8
error messages, 2-13

handling of, 1-2,4-2
ERRORS

command-line option, 5-11

F

filename extension default values, 5-6
files
input, 5-6
output, 5-6
filetype, 5-6
FIPS
command-line option, 5-11
flagger, 0-xii

INAME

command-line option, 5-12
indicator parameters, 2-11,3-10

definition of, 4-5

truncation indicated by, 2-12

values greater than zero, 4-6
indicator variables, 4-5

concept of, 4-1

used to show nulls, 2-12
input files, 5-6
INSTRUCS.SQL script, 6-4
interface procedures

definition of, 1-6

files, 1-6

stubs, 1-6

L

LANGUAGE clause, 2-6
late binding, 1-6, 3-5
linking, 5-17
listing file output from SQL*Module,
listing options and default values, 5-4
LNAME

command-line option, 5-12
LTYPE

command-line option, 5-12

Index-2

5-7

M

makefile, 5-3
MAPPING
command-line option, 5-13
MAXLITERAL
command-line option, 5-13
MKTABLES.SQL script, 6-2
mode of a parameter in PL/SQL, 3-2
module
cursor declarations in, 2-1
definition of, 2-1
preamble to, 2-1
procedures in, 2-1
structure of, 2-6
MODULE clause, 2-6
module file
text conventions in, 2-11
Module Language
defined by ANSI committee, 1-3
sample program, 2-1,6-1
syntax diagrams for, B-1

Module Language Sample Program, 6-7

Multi-tasking, 2-15
Multi-tasking Example, 2-16
Multi-tasking Restrictions, 2-16

N
named parameter association, 2-9
NLS parameter
NLS_LANG, 4-8
null value

concept of, 4-1

handling, 4-4

indicator variable shows null, 2-12
Number of Rows Processed, obtaining,

O

ONAME

command-line option, 5-13
OPEN command

not used for cursor variables, 2-11
opening a cursor variable, 3-7
operating system command line, 5-3
options on command line, 5-4
Oracle Call Interface (OCI)

anonymous PL/SQL blocks and, 3-6
OUTPUT

command-line option, 5-14
output file default name for Ada, 5-7
output files

for SQL*Module, 5-6

P

packages, 3-3
parameter list, 2-8
password
in AUTHORIZATION clause, 2-6

supplied at runtime, 2-7

PL/SQL
about, 3-1
datatypes

in a stored procedure definition, 3-10
functions
return values for, 3-13

mode of a parameter, 3-2

sample program, 6-12
PL/SQL source files output from SQL*Module, 5-8
PNAME

command-line option, 5-14
positional parameter association, 2-9
preamble, 2-6

syntax of, B-2

to amodule, 2-1
precompiler default values, 5-5
precompilers, 3-6
privileges

database, 2-7

when running SQL*Module application, 2-7
procedure definitions, 2-8
procedure name, 2-8
procedures, 3-2

case of generated output code files, 3-5

in a module, 2-1

standalone, 3-3

stored, 3-2

top-level, 3-3
program structure, 4-1

program structure of a SQL*Module application, 4-1

R

reserved words, C-1
rows_processed function, 4-4
RPC, 3-10
BINDING command-line option used with, 3-6
call to PL/SQL, 3-10
RPC_GENERATE
command-line option, 5-15
RPC_GENERATE command-line option, 5-10
running the Mod*SQL compiler, 5-3
running the SQL*Module compiler, 5-3

S

SAMeDL, 1-4
sample application DEMCALSP.A, 6-28
sample application DEMOHOST.A, 6-15
sample programs

on-line location of, 6-2
sample tables

on-line location of, 6-2
schema name required when running

SQL*Module, 5-3

SELECT_ERROR

command-line option, 5-15
semicolon

does not terminate cursor declaration, 2-8

SET CONNECTION statement, 2-14
SNAME

command-line option, 5-15
source code output file, 5-7
specification files, 1-5,4-6

in Ada, 2-3
SQL
commands

allowed in Module Language, 2-10
list of, 2-10
datatypes
about, 2-9
in the WITH INTERFACE clause, 3-10
identifier
as a cursor name, 2-7
in module preamble, 2-6
SQL Ada Module Description Language, 1-4
SQL*Module
about, 1-1
development using Module Language, 1-4
executable names, 5-4
FIPS flagger, 0-xii
running the compiler, 5-3
standards conformance, 0-xii
supported features, 1-7
SQL*Plus
creating stored procedures with, 3-3
storing packages in a database, 5-1
SQL_CONTEXT datatype, 2-15
SQL_STANDARD package, 6-1
SQL92 syntax, 2-8
SQLCHECK
command-line option, 5-16
SQLCODE
concept of, 4-1
in the WITH INTERFACE clause, 3-10
parameter, 2-13
return values, 4-2
standard type, 6-1
SQLCODE parameter, 4-2
SQLLIB, 5-17
SQLSTATE
concept of, 4-1
declaring, 4-3
in the WITH INTERFACE clause, 3-10
parameter, 2-13
standard type, 6-1
SQLSTATE parameter, 4-3
SQLSTATE status variable
predefined status codes and conditions, 4-4
standalone procedure, 3-3
standards conformance, 0-xii
status parameters
about, 2-13
in the WITH INTERFACE clause, 3-10
STORE_PACKAGE
command-line option, 5-16
STORE_PACKAGE command-line option
does a CREATE or REPLACE PACKAGE, 5-16
stored packages, 3-3

Index-3

stored procedures
about, 3-2
created with SQL*Module, 3-14
string literal
on one line, 2-11
STUDENTS.SQL script, 6-4
syntax diagrams for Module Language, B-1
system configuration file, 5-5
system-specific Oracle documentation
Ada default filenames, 5-7
Ada default names, 5-7
case-sensitive command-line options, 3-5
filename extensions, 5-8
filenames and extensions, 5-6
invoking SQL*Module, 5-3
SQL_STANDARD package for Ada, 6-1
system configuration files, 5-6
system-specific references, E-1

T

terminal encoding scheme, 4-8
time stamp, 3-5
top-level procedure, 3-3

U

user configuration file, 5-5
USERID
command-line option, 5-17
compiling Module Language files, 5-3
generating interface procedure files, 5-3
username
in AUTHORIZATION clause, 2-6

Vv

values of command-line options, 5-4
w

WHERE CURRENT OF clause, 2-11
whitespace

not present in option lists, 5-8
whitespace in command-line options, 5-8
with context clause

for ADA, 2-3

for Ada, 6-1
WITH INTERFACE clause

about, 3-9

Index-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Standards Conformance
	Structure
	Related Documents
	Conventions

	1 Introduction to SQL*Module
	What Is SQL*Module?
	Background
	Precompilers
	The Module Language Concept

	SQL*Module as an Interface Builder
	What Is Supported by SQL*Module?
	What SQL Statements are Not Supported by SQL*Module?

	2 Module Language
	The Module
	An Example Module
	A Short Example Program in Ada

	Structure of a Module
	Preamble
	MODULE Clause
	LANGUAGE Clause
	AUTHORIZATION Clause

	Cursor Declarations
	Procedure Definitions
	Procedure Name
	Parameter List
	SQL92 Syntax

	SQL Datatypes
	SQL Commands
	Text in a Module
	Comments

	Indicator Parameters
	Status Parameters
	Error Messages

	CONNECT Statement
	SET CONNECTION Statement

	DISCONNECT Statement
	Multi-tasking
	ENABLE THREADS
	SQL_CONTEXT Datatype
	CONTEXT ALLOCATE
	CONTEXT FREE
	Multi-tasking Restrictions

	Multi-tasking Example

	3 Accessing Stored Procedures
	PL/SQL
	Procedures

	Stored Procedures
	Stored Packages
	Accessing Stored Procedures
	Case of Package and Procedure Names
	Early and Late Binding
	Cursor Variables
	Cursor Variable Parameters
	Allocating a Cursor Variable
	Opening a Cursor Variable
	Opening in a Stand-alone Stored Procedure
	Return Types

	Closing a Cursor Variable
	Restrictions on Cursor Variables

	Dynamic SQL
	The WITH INTERFACE Clause
	Examples
	SQL Datatypes
	DATE Datatype

	The Default WITH INTERFACE Clause
	Procedures
	Functions

	Storing Module Language Procedures
	Connecting to a Database

	4 Developing the Ada Application
	Program Structure
	Error Handling
	SQLCODE
	Obtaining Error Message Text
	SQLSTATE

	Obtaining the Number of Rows Processed
	Handling Nulls
	Indicator Variables

	Cursors
	Specification Files
	Calling a Procedure
	Arrays as Procedure Arguments
	National Language Support

	5 Running SQL*Module
	SQL*Module Input and Output
	Input sources
	Output Files
	Determining the Input Source

	Invoking SQL*Module
	Running the Compiler

	Case Sensitivity in Program Names, Option Names, and Values
	Listing Options and Default Values

	How to Specify Command-Line Options
	Value Lists
	Default Values

	Configuration Files
	Input Files
	Output Files
	Source Code Output File
	Default File Names for Ada

	Specification File
	Default Specification Filenames for Ada

	Listing File
	PL/SQL Source Files
	Avoid Default Output Filenames

	Command-Line Options
	AUTO_CONNECT
	BINDING
	CONFIG
	ERRORS
	FIPS
	INAME
	LNAME
	LTYPE
	MAPPING
	MAXLITERAL
	ONAME
	OUTPUT
	PNAME
	RPC_GENERATE
	SELECT_ERROR
	SNAME
	STORE_PACKAGE
	SQLCHECK
	USERID

	Compiling and Linking
	An Example (Module Language)

	6 Demonstration Programs
	The SQL_STANDARD Package
	SQLCODE
	SQLSTATE

	Sample Programs
	Sample Tables
	MKTABLES.SQL
	DEPARTMT.SQL
	INSTRUCS.SQL
	STUDENTS.SQL
	COURSES.SQL
	EMROLMNT.SQL

	Module Language Sample Program
	Calling a Stored Procedure

	Sample Applications
	DEMOHOST.A
	DEMCALSP.A

	A New Features
	New Statements
	Other New Features

	B Module Language Syntax
	Module Language Syntax Diagrams
	Preamble
	LANGUAGE Clause
	AUTHORIZATION Clause

	Cursors
	Procedure Definitions

	WITH INTERFACE CLAUSE

	C Reserved Words
	Module Reserved Words

	D SQLSTATE Codes
	SQLSTATE Codes

	E System-Specific References
	System-Specific Aspects of SQL*Module
	Supported Compilers
	Character Case in Command Lines
	Location of Files
	Filename Extensions
	Ada Output Files
	Command Line
	Ada SQL_STANDARD Package

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

