Oracle® Database
Application Developer’'s Guide - Object-Relational Features

10g Release 1 (10.1)
Part No. B10799-01

December 2003

ORACLE

Oracle Database Application Developer's Guide - Object-Relational Features, 10g Release 1 (10.1)
Part No. B10799-01
Copyright © 1996, 2003 Oracle Corporation. All rights reserved.

Contributors: Geeta Arora, Eric Belden, Chandrasekharan lyer, Geoff Lee, Anand Manikutty, Valarie
Moore, Magdi Morsi, Helen Yeh, Adiel Yoaz, Qin Yu

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle Store, PL/SQL, Pro*C, Pro*C/C++, and SQL*Plus
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send US YOUT COMMENTS ..ottt Xiii
PIEIACE ... s XV
F A E o [1T o (ot TSRS USSP VRPN XVi
OFGANIZATION ...ttt b bbb bbb bbbt bt bttt XVi
Related DOCUMENTALIONo..ciiiiiieiiiciese ettt sttt XVii
(70] 01V 7=] 011 o] o LTS OT OO US PSRRI Xviii
Documentation ACCESSIDIITYcoviiiiiiii e XXi
What's New in Object-Relational FEatures? ... XXiii
Oracle 10g Release 1 (10.1) New in Object-Relational FEatures...........ccocvvvvvevererericieeieiesnannne XXiv
Oracle9i Release 2 (9.2) New in Object-Relational FEatUres...........ccocvvvveveieviericeiececeeeseeneas XXiv
Oracle9i Release 1 (9.0.1) New in Object-Relational FEAtUres............ccoovviiiiienenene e XXV

1 Introduction to Oracle Objects

ADOUL OFaCIe OB JECTS.oitiiiiiiiiti et se et s et be st e besbesbenbesaen 1-2
AdVANTAGES OF ODJECES ...ttt bbbttt sr bbb b 1-2
Key Features of the Object-Relational Model.............c.ccoooiiiiiiincc e 1-3
Core Database KEY FEATUIEScouiiiiieieieiieeee ettt ettt st see b e 1-4

L0] [=Tod A N o 1= LSOO PO P O PRRPRPRPRTPIOON 1-4

(@] o] 1= £SO 1-5

ODBJECT METNOUS ... bbb ettt be bt see s 1-6

TYPE INNEITTANCE ...t bbbttt 1-7

BN/ =3 Ao [o] o [SRS 1-7

2

L0 o =T ot A 1= o] 1= S OSPR 1-8

Row Objects and Column ODBJECTS..........cooiiiiiiiiiiice s 1-9
L@ 1=t AV A 1=V 1-9
RETEIEICES ...t b bbbt bbbt b et b bbb e 1-9
(7o) 1 [=Tw1 (o] o 13RS 1-12
Language BiNAING FEATUIES........cccviiieie ettt ne s e e anens 1-13

Basic Components of Oracle Objects

SQL Object Types and REFEFENCEScovvvvcieieiceese e nrennen 2-2
NUIl Objects and ALLHDULEScooiiieieccce et 2-2
Character LENGth SEMEANTICScviiiiiiiiiiiit et 2-3
Constraints for ObJECt TADIES ... e 2-4
INdexes FOr ODJECE TADIES.......cviiicice et re e saenreens 2-5
Triggers for ODJECT TADIES.......ooiii e 2-5
Rules for REF Columns and AtFDULESccooviiiiiiiees e 2-6
NAME RESOIUTION ... bbbttt ettt sbe e 2-6

When Table Aliases Are REQUITEA ..ottt 2-7
Restriction on Using User-Defined Types with a Remote Database............ccccccceevvivicvnnnnnn 2-8

(@ oY =T a1, L] 1 T Yo F ST S 2-8
MEMDBDEE IMETNOAS.......c.oiiic e ettt ettt sae e 2-9
Methods for Comparing OBJECEScccvieiericeec e ere s 2-10

MAP IMETNOAS ... ettt 2-10
OFrder METNOGS.......c.oiiie ettt ettt nesre e 2-12
Guidelines for Comparison Methodscccovviviiiiiiei s 2-13
Comparison Methods in Type Hierarchies...........ccooviiiiinneieeeeeeeseseees 2-13
STALIC METNOAS ...ttt sttt be e sb et e et ne et resbeebeneas 2-13
CONSLIUCLOr MELNOMSviiieiieeee et bbb b bt 2-14
External Implemented MethOdS ..o s 2-15

Inheritance iN SQL ODJECT TYPES....uciiiirieirieisiee ettt ene e 2-15
TYPES ANA SUDTYPES. ..ottt sttt sa et e et enaese e e eneerenrenes 2-15
FINAL and NOT FINAL Types and Methods...........ccccooiiiiiiiiiinine e 2-17
CrEatiNng SUDTYPES.c ittt ettt et b et b et b bbbt r e b b 2-18
NOT INSTANTIABLE Types and Methodscccooviviiiiininiin e 2-19
Inheriting, Overloading, and Overriding Methods.............cccccciiviiiiicncc e, 2-20

OVerloading MELNOAS ..o 2-21

Redefining MENOGS..........cooii e 2-21

Restrictions on Overriding Methodscoviiiiini e 2-22
Dynamic Method DISPatChccccviiiiiiiii e 2-23
Substituting Types in a TYPe HIETarChYcccooviiiiiiiiiise e 2-24
Column and ROW SUBDSEITULADTITYccociiiiiiiiiee e 2-25

Using OBJECT_VALUE and OBJECT _ID with Substitutable Rows...........cc.ccccveve.e. 2-26

Subtypes Having Supertype AttribDULeS ... 2-27

REF Columns and AttFDULES..........cooii e 2-28

COllECtION EIEMENTS ..ottt 2-28
Creating Subtypes After Creating Substitutable Columns..........c.ccocooiiiniiiiiiiiee 2-28
Dropping Subtypes After Creating Substitutable Columns............cccocoiiieiiiiiinince, 2-29
Turning Off Substitutability in a New Table.........cccccocvoiiini i 2-29
Constraining SUDSHITULADIIILY ..o e 2-30
Modifying SUDSTITUTADITITYccoiiic e 2-31
Restrictions on Modifying Substitutability..........cccccoviiiiiiiii i 2-31
ASSIGNMENTS ACFOSS TYPIES ..ttt sttt ettt b bbb bbbttt sbe bt 2-32

Objects aNd REFS t0 ODJECES......c.cciiiiiiieiirieieieesee et 2-32

(00] | [=Tox A To] W ATy To |] o 4 1-1 o1 <SSP 2-34
Comparisons of Objects, REF Variables, and Collections...........cc.coereviniieiniiiiinenee 2-34

Comparing ObJECT INSTANCEScoviiieiiee e 2-34

Comparing REF Variables...........cciiiiiiiiieeseese s 2-35

Functions and Operators Useful With ODJECtS...........ccccoeiiiiiiniie e 2-35
O N OSSR 2-35
CURSOR. ..otttk b e bbb bbbt bt bbbttt e 2-36
DEREF ..ttt ettt b bbbt b et E et E et b e bt e b et et et e are e 2-36
IS OF Y8 ittt 2-36
REF bbb bR bR E bR Rt b et b et b bt 2-38
SYS _TYPEID ...ttt bbbttt ettt 2-38
TABLE() .ttt ettt ettt sttt b et bbbttt ettt ettt et 2-39
LR {72 OO OO SOPTS T SOTST 2-39
VALUE ...ttt b e bt b et bttt b et b et b e bR et e e b et e ae e eae e 2-41

3 Support for Collection Datatypes

Creating ColleCtion DAatatyPESccoiiiriiriie ettt be bbb e 3-2
Creating an Instance of a VARRAY or Nested Table.......cccooviiiiiiniieieeeeese e 3-2

vi

Constructor Methods fOr COIECLIONS............coiiiii i 3-2

WAKTAYS ..ttt r e b e st b et b e R R e R AR R R et b et r e nre 3-3
NESTEA TADIES ...t bbbttt sttt ettt et 3-4
Specifying a Tablespace When Storing a Nested Table ..o 3-6
VAITAY SEOTAGE ettt et bt sr b b e e e et e b et erenr e nreare 3-6
Increasing the Size and Precision of VARRAYs and Nested Tables..........ccccocevvvviiviinnnnnns 3-7
INcreasing VARRAY LIMIt SIZEc.ccovoiiiiice ettt 3-8
Creating a Varray Containing LOB RETEIENCES.........ccviiriiriiriisiesee s 3-8
Multilevel COECLION TYPES ..oivvieiiieiee et r e e e neeresresrenrenes 3-9
Nested Table Storage Tables for Multilevel Collection TYPESccceveveiiiiieiinieneniene 3-9
Assignment and Comparison of Multilevel Collections............c.cccovvniiniinciicie, 3-11
Constructors for Multilevel COlleCtioNS ..o 3-11
Operations 0N Collection DatatyPeSccccoeieiiiiiiiiieie et 3-12
QUENYING COIBCTIONS. ..ottt ettt ettt b et b et eb e b b ene e 3-12
Nesting Results of Collection QUEKIES.........ccovevveieieeceee e 3-12
Unnesting Results of Collection QUETIESccccveieieeiesee e 3-13
Unnesting Queries Containing Table EXpression SUDQUETIEScccovievieiicnicienas 3-14
Unnesting Queries with Multilevel Collections...........cccccovvivvii i 3-15
Performing DML Operations 0N COHECIONS..........ccciiiiiiiiiiie s 3-15
Performing DML on Multilevel Collections ... 3-16
Comparisons Of COIEBCLIONScvccv it re e 3-17
Equal and Not Equal COMPAIISONSc.coueiiiiiiiiieiiesie et 3-17

[N COMIPATTISONS ...ttt b bbbt bbbt bbb 3-18
Subset of MUltiSet COMPATISONc..ocveieiiicieeee s ere e 3-18
Member of a Nested Table COMPAriSONcccoiiiiiiiiiii e 3-18
EMPLY COMPATISON ...ociiiitiieiiieeiee ettt b e b e bt ebenn b 3-19

1= A @0 0] o - Ut [0 o SR 3-19
MUITISEES OPEIALIONS ...ttt bbb b bbbttt e et ebeebesbe b 3-19
CARDINALITY ¢ttt bbbttt b ettt 3-19
COLLECT ettt bbbttt s b bbbt bbbttt enen 3-20
MULTISET EXCEPT ..ottt sttt sttt sttt st st s ne e 3-20
MULTISET INTERSECTIONoiiiiiiiiiiieiinis ettt 3-20
MULTISET UNION ..ottt et s 3-21
POWERMULTISET ..ottt ettt sttt ettt 3-22
POWERMULTISET_BY_CARDINALITY ..ottt 3-22

1S] OO 4-2
PL/SQL .ttt bbb bR bRt R et Rt E R et R Rt R e b e bbb nenenenrenen 4-2
Oracle Call INterface (OCI) ... e e resresresrenes 4-2
Associative AcCeSS IN OCI ProgramsS.......ccvcveiiiieiieecsie et se et se et e e te e sre e sre s 4-3
Navigational AcCess iN OCI ProgramS.........ccouiiiiirieiirieiinieiesieeseeesieesie s snenes 4-4

L@ o1 A O Tod 1= S 4-4
Building an OCI Program That Manipulates ODJECESccccevirereniiiiieceeescsene s 4-5
Defining User-Defined CONSrUCIONS iN C......ccoiviiiiiiiiiiiiieceeceesieesie s 4-6

o ol OF [O PRSPPSO 4-6
ASSOCIAtIVE ACCESS IN PrO*C/CH . it 4-7
Navigational ACCESS IN PrO*C/CH+ ..ottt 4-7
Converting Between Oracle TYPes and C TYPES ...ccvcvivririerereresiesiesieseesesseeessesessessessessesees 4-8
Oracle TYpe TranSIator (OTT) ..o ettt sb bbb e 4-8
Oracle C++ Call INterface (OCCI) ..o 4-8
OCCI Associative Relational and Object INterfaces.........ccocvververericieciesiese e 4-9
The OCCI Navigational INterface.........cccciiieii it 4-9
Oracle Objects FOr OLE (OO40) ..ottt ettt 4-10
Representing Objects in Visual Basic (OraODbject)ccovvvvieiiniereienenereeeeeeese e 4-11
Representing REFs in Visual Basic (OraRef) ... 4-12
Representing VARRAYSs and Nested Tables in Visual Basic (OraCollection)................... 4-12
Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object TYPES....c.ccvvvrereriereriereeeeesese e 4-12
JDBC Access to Oracle ODJECt DAta.........cccocviiiiiiiieie et 4-13
SQLJ ACCesS t0 Oracle ODJECT DAtaccucvrveiriiiriiisiesieee e 4-14
Choosing a Data Mapping STrategycccceveieieieereisiese s snens 4-14
Using JPublisher to Create Java Classes for JDBC and SQLJ Programs...........ccccceeevevvenen. 4-14
What JPublisher Produces for a User-Defined Object TYPEcccovvrrirvincineinnn 4-15

N\ WO oL Tot] (0] - Vo - S 4-16
Representing SQLJ TYPES t0 the SEIVEN ...t 4-17
Creating SQLJ ODJECT TYPES.. ..ot 4-17
Additional Notes ADOUt MaPPING.......cccvreriiieieiir e 4-18
EVOIVING SQLI TYPES ..ttt bbb ettt sb e 4-19

(0] 01511 =1 | £SO RSORPRPRP 4-19

Vii

QUENYING SQLJ ODJECESeveie et ene s 4-20

INSErtiNg JAVA ODJECTS.c.iiiiiiiicie e 4-20
Updating SQLJ ODJECLSvciiiieiise ettt st aeneere e enens 4-20
Defining User-Defined CONSLrUCLOrS iN JAVA..........ccviieiieiiiie e 4-20
KIMIL oottt ettt bttt b £ bR bR e b bt R et R et R et Re et et e et e R e ebe e et e e et e e e be e ete e eteean 4-21

5 Applying an Object Model to Relational Data

WHY USE ODJECT VIBWS ...ttt bbbtttk 5-2
(D CY (T YT Lo @ oYL= od A 4 1= Y S 5-3
Using Object VIews in APPHICALIONS ..o 5-4
Nesting ObjJects iN ODJECT VIBWS ..ot 5-4
Identifying NUll Objects in ODJECT VIBWS.......cocov i 5-6
Using Nested Tables and Varrays in ODJECt VIEWScccccveiiiicii i 5-6
Single-Level Collections iN ODJECT VIBWScc.ciiiiiiiciriciriesesi et 5-6
Multilevel Collections iN ObJECT VIBWS........cvciviiiieirese e see s 5-7
Specifying Object Identifiers for ObJECt VIBWS.........ccooiiiiiiiiiiieeeeee e 5-9
Creating References to VIEW ODjJECES. ... 5-10
Modelling Inverse Relationships With ObJect VIEWS ... vvvviiivinine e 5-11
UPAating ODJECT WIBWS ..ottt bbb bbbttt b bbb e 5-12
Updating Nested Table ColumNS iN VIEWScoiiiiiiiiiiicieesee e 5-13
Using INSTEAD OF Triggers to Control Mutating and Validation.............ccccccevvvivivennnne, 5-13
Applying the Object Model to Remote Tables..........cccooiiiiii e 5-14
Defining Complex Relationships in ODJEeCt VIEWS ... 5-15
Tables and Types to Demonstrate Circular View References........cccvvvvvvevvreieieenennnnn, 5-16
Creating Object Views with Circular REfErenCesS..........ccovvvveiiveii i 5-17
ODjJECt VIEW HIBIAICNIES. .. .c.iiiiiiiieiiee bbb e 5-19
Creating an Object VIEW HIErarChyccccccviiiiiiieic et 5-21
THE FIAE IMOAEN ... et 5-21

The HOFZoNtal MOGEL........c.ooiiieeeee e 5-23

The Vertical MOGEN ..o 5-25
Querying aView in @ HierarChy ... 5-26
Privileges for Operations on View Hierarchies...........c.ccccoooiiiinnninniee e 5-27

6 Managing Oracle Objects
Privileges on Object Types and Their Methods..........cccooiiiiiiiiiicee e 6-2

viii

System Privileges fOr ODJECT TYPES .. .ot et 6-2

SChema ODJECT PriVIIEOES. ..o 6-2
Using Types in NeW TYPeS OF TabIES......ccccvcicieiiicrce e 6-3
Example: Privileges 0N ODJECE TYPES....cc.oiiiiieiiiiieiiriese sttt 6-3
Privileges on Type Access and ODJECT ACCESScoeirieririeniiiisiieese e 6-4
Dependencies and INCOMPIETE TYPES ...ooveiciieeieire st sresresrens 6-5
Completing INCOMPIELE TYPES ..o ettt sbe s 6-7
Manually ReCOMPIlING @ TYPE.....ciiiiriiiiecirtee b 6-8
Type Dependencies of Substitutable Tables and Columns ... 6-8
THe FORCE OPLION ..ottt ettt sb bbb 6-9
Synonyms FOr USer-DefiNed TYPES. ..ot 6-9
Creating @ TYPE SYNONYMciiiiieieiieieiteeeeees e ee e e e re e seeste e e s esseeeseeseesessessessessesreseesees 6-9
USING 8 TYPE SYNONYIM ...ttt b bbb b bbbttt e b e b e bt b e b e 6-10
Describing Schema Objects That USe SYNONYMS........ccviiiiiiiriinisineeneecseeeseeenees 6-10
Dependents Of TYPE SYNONYIMScvcviieiiieiciese s re e snenns 6-11
Restriction on Replacing a TYPe SYNONYMccccviiiiiiiiininee e 6-11
Dropping TYPE SYNONYIMSc.ciiiiiitiiiteieeteneeieseete et sses bbb st sresessese b seeaes 6-11
RENAMING TYPE SYNONYIMS ...oovviiieierieieie ettt ste ettt se e e e e e eneeresneanesresrenns 6-12

Public Type Synonyms and Local Schema ODjJectscoceveieniiciiiicece 6-12
PerfOrmanCe TUNTNGcooiiiiii ettt b et b et ne et sr bbbt bt b et b e b 6-12
Tools Providing SUPPOrt fOr ODjJECEScviieiccc e sre s 6-13
Utilities Providing SUPPOrt fOr ODjJECEScco i e 6-14

7 Advanced Topics for Oracle Objects

] o] = o [0 H @ o] = £ S SUTPR 7-2
Leaf-LeVel ATIIIDULES ...ttt 7-2
How Row Objects Are Split ACrosS COIUMINScovcv i 7-2
Hidden Columns for Tables with Column ODBJECEScccocveviiiieii e 7-2
Hidden Columns for Substitutable Columns and Tables..........cccocoviiniiiiiicii 7-3
REFS .ottt bbb bR bR bR bbbt 7-4
Internal Layout of Nested TabIeS ..o 7-4
Internal LayOout OF VARRAYS ..ottt sne e 7-5

Creating Indexes on Typeids Or AttriDULES.........ccooviiiiciie s 7-5
Indexing a Type Discriminant COIUMN ...t e 7-5
Indexing Subtype Attributes of a Substitutable ColuMN............ccooiiiiiiicee 7-6

TYPE EVOIULION. ...t bbb bbb ettt ettt eb bbb e 7-7

Changes Involved When a Type IS AEred ... 7-9
] (=] oI (ol @ T= Vg T [= Y o 1= SRS 7-10
AVZ= 1L Lo Fot a1 To [T 1Y/ o LTS PO SOUPURPR PR 7-11
If a Type Change Validation FailS ... 7-15
ALTER TYPE Statement for Type EVOIULIONccocviviiiicse e 7-15
ALTER TABLE Statement for Type EVOIULIONccociiiiiiiiiiiieeeeceeeesee 7-19
The Attribute-Value CONSIIUCTOLoiiiiie ettt 7-19
Constructors and TYPe EVOIULION ..o 7-19
Advantages of User-Defined CONSLIUCTOIS...........cccviiiviiiieie e 7-20
Defining and Implementing User-Defined CONSIIUCTOrSccooerirennenneneesee e 7-20
Overloading and Hiding CONSIIUCLOIS........ccciiirieieiceceeece s 7-22
Calling User-Defined CONSIIUCLONS........coiieiiiicie et 7-22
Constructors for SQLJ ODJECT TYPEScuviieiiiiiieiite sttt 7-24
Transient aNd GENETIC TYPES ...cvcieeee et ettt e e e s e s et resresresre e see e ensenee e aneerenrenes 7-25
User-Defined Aggregate FUNCLIONSc.covoiiiieie et 7-28
Partitioning Tables That Contain Oracle ODJECTS ..o 7-29
How Locators Improve the Performance of Nested Tablesc..ccocvvvvevencveiecivccieieenne 7-30

Design Considerations for Oracle Objects

General Storage Considerations for ODJECTScccoiviiviivieiieiiire e 8-2
Storing ODbjects @s COIUMNS OF ROWSccviiiiiiicitieic sttt nae e sre s 8-2
COlUMN ODJECT STOTAGE ...ttt bbbttt 8-2

Row Object Storage in ObJeCt TaBIEScoeveieieecrc s 8-5

Storage Considerations for Object Identifiers (OIDS)........cccccoviievieiie i 8-6
Primary-Key Based OIDS ..ot 8-6
Performance of ObjJect COMPAIiSONSccvveieiiiicieise s sre e s 8-7
Design Considerations FOr REFS ...t 8-8
SEOrage SiZ8 OF REFS ..ottt 8-8
Integrity Constraints for REF COIUMNS.........ccccooiiiciice e 8-8
Performance and Storage Considerations for Scoped REFS.........ccccoccoiiiiiiiininien 8-9
INAEXING SCOPEA REFS ..ottt 8-9
Speeding up Object Access Using the WITH ROWID Option........ccccccevvvevevecicieiesnennn, 8-10
Design Considerations fOr COHECtIONS...........c.coi i 8-11

Viewing Object Data in Relational Form with Unnesting QUeriesccoeoveineiennenn 8-11

Using Procedures and Functions in Unnesting QUENIES...........ccccvvevveieeveieeiesiee e 8-12

Storage Considerations fOr VAITAYS.........cccuieiriiiriiiniseees et 8-13
Propagating VARRAY Siz€ ChanQecccccvvviiiirie e se e 8-13
Performance of Varrays Versus Nested Tables..........cccocooeiiiieiineiiccceese e 8-14
Design Considerations for Nested Tables..........ccooiiiiiiiiicc 8-14
Nested Table StOrAgEvcvviiiee e et erenrs 8-14

NeSted Table INAEXES.......ooi it 8-17

NESted Table LOCALOIScceiuiieiieieieeiee ettt sne e 8-18
Optimizing Set Membership QUETIES........ccccverieieicece s 8-19

Design Considerations for Multilevel Collections...........ccccccovoiiiiiiie e, 8-19
Design Considerations for Methods............cccooiiiiii e 8-24
Choosing a Language for Method FUNCLIONS ..o 8-25
STALIC MBLNOTS ...ttt bbb ettt e et b bbb 8-27
Using SELF IN OUT NOCOPY with Member Procedurescccovervineiineiineineniens 8-28
Function-Based Indexes on the Return Values of Type Methodscccccevvevveiivcvcnnnnn, 8-28
Writing Reusable Code Using INVoker RightS..........cccccviiiii i 8-29
Replicating Object Tables and COIUMNS.........cociiiiiiiii e 8-31
Replicating Columns of Object, Collection, or REF TYPE....c.ccccvivvevenereieceeeeee e 8-31
Replicating ODJECt TABIES ..o e e 8-32
CONSErAINTS ON ODJECTS. ... vttt bbbt b bbbt nn et 8-33
Considerations Related to Type EVOIULION ... 8-33
Pushing a Type Change QUL 10 CHENTScoviiiiiiiiiieic e 8-33
Changing Default CONSTIUCTONS.coiiriiiiiiieiries e 8-34
Altering the FINAL Property 0f @ TYPEcovoveicisecese s 8-34
Parallel Queries With Oracle OBJECLS ... 8-34
Design Consideration Tips and TECANIQUEScccciiiiiiiiineiiiei e 8-35
Deciding Whether to Evolve a Type or Create a Subtype Instead..........cccccevvevvevveivinnnnnn, 8-35
How ANYDATA Differs from User-Defined TYPESccviiiririnineieneeeeeeesese e 8-36
Polymorphic Views: An Alternative to an Object View Hierarchyccccocveininnnn, 8-36

LI LI 1O] I @] o] =T ot f I/ o T SR 8-37
The Intended Use Of SQLJ ODJECE TYPESc.viuiiiiiiiiiiiriirie sttt 8-37
Actions Performed When Creating a SQLJ Object TYPEcovvrvieriiniirieinieineens 8-38

(T o1 1@ I @] o] =T ot I/ o =TSSP 8-38

Uses 0of CUSTOM ODJECT TYPES ...ttt 8-38
Differences Between SQLJ and Custom Object Types Through JDBC..............ccco...... 8-39

Xi

MISCEITANEOUS THPS ..ttt ettt b e bbb bbbt s et et ebeebesbeabe s 8-39
Column Substitutability and the Number of Attributes in a Hierarchy 8-39
Circular DependencieS AMONG TYPES...cucvcieierieeeeesesesresiestesseseseessessesaeseesesessessessesses 8-40

9 A Sample Application Using Object-Relational Features
Introduction to the Sample APPLICAtION...........cooiiiiii e 9-2

Index

Xii

Send Us Your Comments

Oracle Database Application Developer's Guide - Object-Relational Features, 10g Release 1

(10.1)

Part No. B10799-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4o0p11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

Xiii

Xiv

Preface

Oracle Database Application Developer's Guide - Object-Relational Features describes
how to use the object-relational features of the Oracle Server, 10g Release 1 (10.1).
Information in this guide applies to versions of the Oracle Server that run on all
platforms, and does not include system-specific information.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XV

Audience

Oracle Database Application Developer's Guide - Object-Relational Features is intended
for programmers developing new applications or converting existing applications
to run in the Oracle environment. The object-relational features are often used in
content management, data warehousing, dataZinformation integration, and similar
applications that deal with complex structured data. The object views feature can be
valuable when writing new C++, Java, or XML applications on top of an existing
relational schema.

This guide assumes that you have a working knowledge of application
programming and that you are familiar with the use of Structured Query Language
(SQL) to access information in relational database systems.

Organization

XVi

This document contains:

Chapter 1, "Introduction to Oracle Objects"

Introduces the key features and explains the advantages of the object-relational
model.

Chapter 2, "Basic Components of Oracle Objects”

Explains the basic concepts and terminology that you need to work with Oracle
Objects.

Chapter 3, "Support for Collection Datatypes”
Discusses collection datatypes and operations on collection datatypes.

Chapter 4, "Object Support in Oracle Programming Environments”

Summarizes the object-relational features in SQL and PL/SQL; Oracle Call Interface
(OCI); Pro*C/C++; Oracle Objects For OLE; and Java, JDBC, and Oracle SQLJ. The
information in this chapter is high-level, for education and planning. The following
chapters explain how to use the object-relational features in greater detail.

Chapter 5, "Applying an Object Model to Relational Data"

Explains object views, which allow you to develop object-oriented applications
without changing the underlying relational schema.

Chapter 6, "Managing Oracle Objects”
Explains how to perform essential operations with objects and object types.

Chapter 7, "Advanced Topics for Oracle Objects"

Discusses features that you might need to manage storage and performance as you
scale up an object-oriented application.

Chapter 8, "Design Considerations for Oracle Objects"

Explains the implementation and performance characteristics of the Oracle
object-relational model.

Chapter 9, "A Sample Application Using Object-Relational Features”

Demonstrates how a relational program can be rewritten as an object-oriented one,
schema and all.

Related Documentation

For more information, see these Oracle resources:

PL/SQL User*s Guide and Reference for information on PL/SQL, the procedural
language extension to Oracle SQL

Oracle Database Application Developer’s Guide - Fundamentals for general
information about developing applications

Oracle XML DB Developer's Guide and Oracle XML Developer's Kit Programmer’s
Guide for information about developing applications with XML

Oracle Database JDBC Developer's Guide and Reference and Oracle Database Java
Developer's Guide to use Oracle object-relational features through Java

Oracle Call Interface Programmer®s Guide and Oracle C++ Call Interface
Programmer*s Guide for information on using the Oracle Call Interface (OCI) and
Oracle C++ Call Interface to build third-generation language (3GL) applications
that access the Oracle Server

Pro*C/C++ Programmer’s Guide for information on Oracle's Pro* series of
precompilers, which allow you to embed SQL and PL/SQL in 3GL application
programs written in Ada, C, C++, COBOL, or FORTRAN

Oracle Database SQL Reference and Oracle Database Administrator's Guide for
information on SQL

Oracle Database Concepts for information on basic Oracle concepts

XVii

Many of the books in the documentation set use the sample schemas of the seed
database, which is installed by default when you install Oracle. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. conf
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com nenber shi p/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle. com docunent ation/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis.

xviii

Ensure that the recovery catalog and target
database do not reside on the same disk.

Convention Meaning Example
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVMBER
nonospace elements supplied by the system. Such column.

(fixed-wi dth)
f ont

| ower case
nonospace
(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-w dth)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nment _i d, depar t ment _nane,
and | ocati on_i d columns are in the
hr . depart nent s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these
methods.

You can specify the par al | el _cl ause.

Run Uol d_r el ease. SQL where ol d_
r el ease refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM DBA_USERS WHERE username = 'M GRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Xix

Convention

Meaning

Example

[]

{1}

Other notation

Italics

UPPERCASE

XX

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}

{ENABLE | DI SABLE}
[COVPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col n FROM

enpl oyees;

col2, ...,

SQL> SELECT NAME FROM V$DATAFI LE;
NAME

[fsl/dbs/tbs_01. dbf
/fs1/dbs/thbs_02. dbf

[fsl/dbs/tbs_09. dbf
9 rows sel ected.

NUVBER(11, 2) ;
CONSTANT NUMBER(4) := 3;

acct bal
acct

CONNECT SYSTEM syst em password

DB_NAME = dat abase_name

SELECT | ast _nane, enployee_id FROM
enpl oyees;

SELECT * FROM USER_TABLES;

DROP TABLE hr. enpl oyees;

Convention

Meaning Example

| ower case

Lowercase typeface indicates SELECT | ast _nane, enployee_id FROM
programmatic elements that you supply. enpl oyees;

For example, lowercase indicates names

of tables, columns, or files. sqlplus hr/hr

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. CREATE USER nj ones | DENTI FI ED BY ty3MJ9;
Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://wwmv. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

XXi

XXii

What's New in Object-Relational Features?

This section describes the new object-relational features of Oracle 10g Release 1
(10.1). New features information from previous releases is also retained to help
those users upgrading to the current release.

The following sections describe the new features in Oracle object-relational features:
» Oracle 10g Release 1 (10.1) New in Object-Relational Features
» Oracle9i Release 2 (9.2) New in Object-Relational Features

» Oracle%i Release 1 (9.0.1) New in Object-Relational Features

XXili

Oracle 10g Release 1 (10.1) New in Object-Relational Features

New object-relational features for Oracle 10g Release 1 (10.1) include the following
collection enhancements:

New functionality for nested table and varray storage, including the evolution
of varray size and specification of a tablespace when storing nested tables. See
"Creating Collection Datatypes" on page 3-2.

New functionality for nested table comparisons and ANSI SQL multiset
operations for nested tables. See "Operations on Collection Datatypes" on
page 3-12.

Oracle9i Release 2 (9.2) New in Object-Relational Features

New object-relational features for Oracle9i release 2 (9.2) include:

XXiV

Character length semantics

Lengths for character types CHAR and VARCHAR2 may be specified as a number
of characters, instead of bytes, in object attributes and collections even if some
of the characters consist of multiple bytes. See "Character Length Semantics" on
page 2-3.

Modifying substitutability

In an existing table, you can change the substitutability of an object column by
using an ALTER TABLE statement with the [NOT] SUBSTI TUTABLE AT ALL
LEVELS clause. See "Modifying Substitutability” on page 2-31.

Type synonyms

Synonyms can be defined for user-defined types so that a type can be used
without having to qualify its name with the name of the schema in which the
type was defined. See "Synonyms for User-Defined Types" on page 6-9.

User-defined constructors

User-defined constructor functions make possible custom initialization of newly
created object instances. They also make it possible to evolve a type without
having to update calls to constructors in existing code to accommodate a newly
added attribute. See "Advantages of User-Defined Constructors" on page 7-20.

Oracle9i Release 1 (9.0.1) New in Object-Relational Features

New object-relational features for Oracle9i release 1 (9.0.1) include:

SQL type inheritance

User-defined types can be specialized as subtypes in a SQL type hierarchy. See
"Inheritance in SQL Object Types" on page 2-15.

Object view hierarchies

Hierarchies can be created of object views based on some or all of the types in a
type hierarchy. Object view hierarchies simplify targeting a particular subtype
(and perhaps its subtypes) in queries and other operations. See "Object View
Hierarchies" on page 5-19.

Type evolution

User-defined SQL types and their independent objects can be changed, or
evolved, instead of having to be re-created. See "Type Evolution" on page 7-7.

User-defined aggregate functions

Custom aggregate functions can be defined for working with complex data. See
"User-Defined Aggregate Functions" on page 7-28.

Generic and transient datatypes

External procedures can be given fields or parameters of a generic type, such as
SYS. ANYTYPE, that can contain values of any scalar or user-defined type,
making it unnecessary to implement multiple versions of the same external
procedure just to handle multiple datatypes. See "Transient and Generic Types"
on page 7-25.

Function-based indexes

Function-based indexes can be built on type method functions. See
"Function-Based Indexes on the Return Values of Type Methods" on page 8-28.

Multilevel collections

Collections (varrays and nested tables) can contain elements that are themselves
collections or have attributes that are. See Chapter 3, "Support for Collection
Datatypes" and Chapter 5, "Applying an Object Model to Relational Data".

C++ interface to Oracle

A C++ interface (OCCI) to Oracle, built on top of OCI, enables you to use the
object-oriented features, native classes, and methods of the C++ programing

XXV

language to access the Oracle database. See "Oracle C++ Call Interface (OCCI)"
on page 4-8.

« Java object storage

You can now create SQL types mapped to existing Java classes to provide
persistent storage for Java objects. Such SQL types are called SQL types of
Language Java, or SQLJ types. See "Java: JDBC, Oracle SQLJ, JPublisher, and
SQLJ Object Types" on page 4-12.

XXVi

1

Introduction to Oracle Objects

This chapter describes the advantages and key features of the Oracle
object-relational model. The chapter contains these topics:

« About Oracle Objects
« Advantages of Objects
« Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-1

About Oracle Objects

About Oracle Objects

Advantages

Oracle object types are user-defined types that make it possible to model real-world
entities such as customers and purchase orders as objects in the database.

Oracle object technology is a layer of abstraction built on Oracle relational
technology. New object types can be created from any built-in database types and
any previously created object types, object references, and collection types.
Metadata for user-defined types is stored in a schema that is available to SQL,
PL/SQL, Java, and other published interfaces.

Object types and related object-oriented features such as variable-length arrays and
nested tables provide higher-level ways to organize and access data in the database.
Underneath the object layer, data is still stored in columns and tables, but you are
able to work with the data in terms of the real-world entities, such as customers and
purchase orders, that make the data meaningful. Instead of thinking in terms of
columns and tables when you query the database, you can simply select a customer.

Internally, statements about objects are still basically statements about relational
tables and columns, and you can continue to work with relational data types and
store data in relational tables as before. But now you have the option to take
advantage of object-oriented features too. You can begin to use object-oriented
features while continuing to work with most of your data relationally, or you can go
over to an object-oriented approach entirely. For instance, you can define some
object data types and store the objects in columns in relational tables, which enables
you to extend the system built-in types with user-defined ones. You can also create
object views of existing relational data to represent and access this data according to
an object model. Or you can store object data in object tables, where each row is an
object.

of Objects

In general, the object-type model is similar to the class mechanism found in C++
and Java. Like classes, objects make it easier to model complex, real-world business
entities and logic, and the reusability of objects makes it possible to develop
database applications faster and more efficiently. By natively supporting object
types in the database, Oracle enables application developers to directly access the
data structures used by their applications. No mapping layer is required between
client-side objects and the relational database columns and tables that contain the
data. Object abstraction and the encapsulation of object behaviors also make
applications easier to understand and maintain.

1-2 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

Below are listed several other specific advantages that objects offer over a purely
relational approach.

Objects Can Encapsulate Operations Along with Data

Database tables contain only data. Objects can include the ability to perform
operations that are likely to be needed on that data. Thus a purchase order object
might include a method to sum the cost of all the items purchased. Or a customer
object might have methods to return the customer's buying history and payment
pattern. An application can simply call the methods to retrieve the information.

Objects Are Efficient
Using object types makes for greater efficiency:

= Object types and their methods are stored with the data in the database, so they
are available for any application to use. Developers can benefit from work that
is already done and do not need to re-create similar structures in every
application.

= You can fetch and manipulate a set of related objects as a single unit. A single
request to fetch an object from the server can retrieve other objects that are
connected to it. For example, when you select a customer object and get the
customer's name, phone, and the multiple parts of his address in a single
round-trip between the client and the server. When you reference a column of a
SQL object type, you retrieve the whole object.

Objects Can Represent Part-Whole Relationships

In a relational system, it is awkward to represent complex part-whole relationships.
A piston and an engine have the same status in a table for stock items. To represent
pistons as parts of engines, you must create complicated schemas of multiple tables
with primary key-foreign key relationships. Object types, on the other hand, give
you a rich vocabulary for describing part-whole relationships. An object can have
other objects as attributes, and the attribute objects can have their own object
attributes too. An entire parts-list hierarchy can be built up in this way from
interlocking object types.

Key Features of the Object-Relational Model

Oracle implements the object-type system as an extension of the relational model.
The object-type interface continues to support standard relational database
functionality such as queries (SELECT..FROM WHERE), fast commits, backup and

Introduction to Oracle Objects 1-3

Key Features of the Object-Relational Model

recovery, scalable connectivity, row-level locking, read consistency, partitioned
tables, parallel queries, cluster database, export and import, and loader. Plus SQL
and various programmatic interfaces to Oracle; including PL/SQL, Java, Oracle Call
Interface, Pro*C/C++, and O0O40; have been enhanced with new extensions to
support objects. The result is an object-relational model, which offers the
intuitiveness and economy of an object interface while preserving the high
concurrency and throughput of a relational database.

Core Database Key Features

This section lists the key features and concepts of the object-relational model that
are related to the database.

Object Types

An object type is a kind of datatype. You can use it in the same ways that you use
more familiar datatypes such as NUMBER or VARCHAR2. For example, you can
specify an object type as the datatype of a column in a relational table, and you can
declare variables of an object type. You use a variable of an object type to contain a
value of that object type. A value of an object type is an instance of that type. An
object instance is also called an object. Example 1-1 shows how to create a
user-defined object type named per son_t yp.

Example 1-1 Creating the Person_typ Object
CREATE TYPE person_typ AS OBJECT (

i dno NUMVBER,
name VARCHAR2(30) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get i dno RETURN NUMBER);
/

CREATE TYPE BODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
END;
/

Object types also have some important differences from the more familiar datatypes
that are native to a relational database:

1-4 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

« A setof object types does not come ready-made with the database. Instead, you
define the specific object types you want by extending built-in types with
user-defined ones as shown in Example 1-1.

« Object types are composed of parts, called attributes and methods.

— Attributes hold the data about an object's features of interest. For example,
a st udent object type might have nanme, maj or, and gr aduat i ondat e
attri but es. An attribute has a declared datatype which can in turn be
another object type. Taken together, the attributes of an object instance
contain that object's data.

— Methods are procedures or functions provided to enable applications to
perform useful operations on the attributes of the object type. Methods are
an optional element of an object type. They define the behavior of objects of
that type and determine what (if anything) that type of object can do.

— Object types are less generic than native datatypes. In fact, this is one of
their major virtues. You can define object types to model the actual
structure of the real-world entities, such as customers and purchase orders,
that application programs deal with. This can make it easier and more
intuitive to manage the data for these entities. In this respect object types
are like Java and C++ classes.

You can think of an object type as a blueprint or template which defines structure
and behavior. An instantiation of the object type creates an object built according to
the template. Object types are database schema objects, subject to the same kinds of
administrative control as other schema objects.

See Also: Chapter 6, "Managing Oracle Objects"

You can use object types to model the actual structure of real-world objects. Object
types enable you to capture the structural interrelationships of objects and their
attributes instead of flattening this structure into a two-dimensional, purely
relational schema of tables and columns. With object types you can store related
pieces of data in a unit along with the behaviors defined for that data. Application
code can then retrieve and manipulate these units as objects.

Objects

When you create a variable of an object type, you create an instance of the type and
the result is an object. An object has the attributes and methods defined for its type.
Because an object instance is a concrete thing, you can assign values to its attributes
and call its methods.

Introduction to Oracle Objects 1-5

Key Features of the Object-Relational Model

You use the CREATE TYPE statement to define object types. In Example 1-1, the
CREATE TYPE statement define the object type per son_t yp.

The indented elements i dno, nane, and phone in the CREATE TYPE statements are
attributes. Each has a datatype declared for it. These are simplified examples and do
not show how to specify member methods.

Defining an object type does not allocate any storage. After they are defined, object
types can be used in SQL statements in most of the same places you can use types
like NUMBER or VARCHAR?2.

For example, you might define a relational table to keep track of your contacts:

CREATE TABLE contacts (
cont act person_typ,
contact _date DATE);

I NSERT | NTO contacts VALUES (
person_typ (65, 'Vrinda MIls', '1-800-555-4412"), '24 Jun 2003');

The cont act s table is a relational table with an object type as the datatype of one
of its columns. Objects that occupy columns of relational tables are called column
objects.

See Also: "Row Objects and Column Objects" on page 1-9

Object Methods

Methods are functions or procedures that you can declare in an object type
definition to implement behavior that you want objects of that type to perform. For
example, a method is declared in Example 1-1 to allow comparisons between

per son_t yp objects.

The general kinds of methods that can be declared in a type definition are:
« Member

« Static

« Constructor

A principal use of methods is to provide access to the data of an object. You can
define methods for operations that an application is likely to want to perform on the
data so that the application does not have to code these operations itself. To perform
the operation, an application calls the appropriate method on the appropriate
object.

1-6 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

For example, the following SQL statement uses the get _i dno() method to display
the Id number of persons in the cont act s table:

SELECT c. contact. get_idno() FROM contacts c;

You can also define static methods to compare object instances and to perform
operations that do not use any particular object's data but instead are global to an
object type.

A constructor method is implicitly defined for every object type, unless this default
constructor is over-written with a user-defined constructor. A constructor method is
called on a type to construct or create an object instance of the type.

See Also: "Object Methods" on page 2-8

Type Inheritance

Type inheritance adds to the usefulness of objects by enabling you to create type
hierarchies by defining successive levels of increasingly specialized subtypes that
derive from a common ancestor object type, which is called a supertype of the
derived types. Derived subtypes inherit the features of the parent object type but
extend the parent type definition. The specialized types can add new attributes or
methods, or redefine methods inherited from the parent. The resulting type
hierarchy provides a higher level of abstraction for managing the complexity of an
application model.

For example, specialized types of persons, such as a student type or a part-time
student type with additional attributes or methods, might be derived from a general
person object type. See "Inheritance in SQL Object Types" on page 2-15.

Type Evolution

Using an ALTER TYPE statement, you can modify, or evolve, an existing
user-defined type to make the following changes:

« Add and drop attributes

« Add and drop methods

« Modify a numeric attribute to increase its length, precision, or scale
« Modify a varying length character attribute to increase its length

« Change atype's FI NAL and | NSTANTI ABLE properties

Introduction to Oracle Objects 1-7

Key Features of the Object-Relational Model

Dependencies of a type to be altered are checked using essentially the same
validations applied for a CREATE TYPE statement. If a type or any of its dependent
types fails the type validations, the ALTER TYPE statement rolls back.

Metadata for all tables and columns that use an altered type are updated for the
new type definition so that data can be stored in them in the new format. Existing
data can be converted to the new format either all at once or piecemeal, as it is
updated. In either case, data is always presented in the new type definition even if it
is still stored in the format of the older one.

Object Tables

An object table is a special kind of table in which each row represents an object. For
example, the following statement creates an object table for per son_t yp objects:

CREATE TABLE person_obj _table OF person_typ;

You can view this table in two ways:

« Asasingle-column table in which each row is a per son_t yp object, allowing
you to perform object-oriented operations

« Asamulti-column table in which each attribute of the object type per son_t yp;
such asi dno, name, and phone; occupies a column, allowing you to perform
relational operations

For example, you can execute the following instructions:

I NSERT | NTO person_obj _tabl e VALUES (
1, 'John Smith', '1-800-555-1212");

SELECT VALUE(p) FROM person_obj _table p
WHERE p. name = 'John Snmith';

The first statement inserts a per son_t yp object into per son_obj _t abl e, treating
per son_t abl e as a multi-column table. The second selects from per son_obj _

t abl e as a si ngl e- col um table, using the VALUE function to return rows as
object instances. See "VALUE" on page 2-41 for information on the VALUE function

By default, every row object in an object table has an associated logical object
identifier (OID) that uniquely identifies it in an object table. In a distributed and
replicated environment, the system-generated unique identifier lets Oracle identify
objects unambiguously.

1-8 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

See Also: "Storage Considerations for Object Identifiers (OIDs)"
on page 8-6 for information on Object Identifiers and using REFs to
OIDs

Row Objects and Column Objects

Objects that are stored in complete rows in object tables are called row objects.
Objects that are stored as columns of a table in a larger row, or are attributes of other
objects, are called column objects.

Object Views

An object view is a way to access relational data using object-relational features. It
lets you develop object-oriented applications without changing the underlying
relational schema.

Oracle allows the creation of an object abstraction over existing relational data
through the object view mechanism. You access objects that belong to an object view
in the same way that you access row objects in an object table. Oracle also supports
materialized view objects of user-defined types from data stored in relational
schemas and tables. By using object views, you can develop object-oriented
applications without having to modify existing relational database schemas.

Object views also let you exploit the polymorphism that a type hierarchy makes
possible. A polymorphic expression can take a value of the expression's declared
type or any of that type's subtypes. If you construct a hierarchy of object views that
mirrors some or all of the structure of a type hierarchy, you can query any view in
the hierarchy to access data at just the level of specialization you are interested in. If
you query an object view that has subviews, you can get back polymorphic
data—rows for both the type of the view and for its subtypes.

See Also: Chapter 5, "Applying an Object Model to Relational
Data"

References

A REF is a logical pointer to a row object that is constructed from the object
identifier (OID) of the referenced object and is an Oracle built-in datatype. REFs and
collections of REFs model associations among objects, particularly many-to-one
relationships, thus reducing the need for foreign keys. REFs provide an easy
mechanism for navigating between objects. You can use the dot notation to follow
the pointers. Oracle does joins for you when needed, and in some cases can avoid
doing joins.

Introduction to Oracle Objects 1-9

Key Features of the Object-Relational Model

You can use a REF to examine or update the object it refers to. You can also use a
REF to obtain the object it refers to. You can change a REF so that it points to a
different object of the same object type hierarchy or assign it a null value.

The following example illustrates a simple use of a REF.

Example 1-2 Using a REF to an Object

CREATE TYPE enp_person_typ AS OBJECT (
name VARCHAR2(30) ,
manager REF enp_person_typ);
/
CREATE TABLE enp_person_obj table OF enp_person_typ;

I NSERT | NTO enp_person_obj _tabl e VALUES (
enmp_person_typ ('John Smith', NULL));

I NSERT | NTO enp_person_obj _tabl e
SELECT enp_person_typ (' Bob Jones', REF(e))
FROM enp_person_obj _table e
VWHERE e. nane = 'John Smith';

See Also:
« "Rules for REF Columns and Attributes" on page 2-6

« "Design Considerations for REFs" on page 8-8

Scoped REFs

In declaring a column type, collection element, or object type attribute to be a REF,
you can constrain it to contain only references to a specified object table. Such a REF
is called a scoped REF. Scoped REF types require less storage space and allow more
efficient access than unscoped REF types.

The following example shows REF column cont act _r ef scoped to per son_obj _
t abl e which is an object table of type per son_t yp.

CREATE TABLE contacts_ref (
contact _ref REF person_typ SCOPE | S person_obj _table,
contact _date DATE);

To insert a row in the table, you could issue the following:

I NSERT | NTO contacts_ref
SELECT REF(p), '26 Jun 2003'

1-10 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

FROM person_obj _table p
VHERE p.idno = 1;

A REF can be scoped to an object table of the declared type (per son_t yp in the
example) or of any subtype of the declared type. If scoped to an object table of a
subtype, the REF column is effectively constrained to hold references only to
instances of the subtype (and its subtypes, if any) in the table.

See Also: "Inheritance in SQL Object Types" on page 2-15

Dangling REFs

It is possible for the object identified by a REF to become unavailable through either
deletion of the object or a revoking of privileges. Such a REF is called dangling.
Oracle SQL provides a predicate (called | S DANGLI NG) to allow testing REFs for
this condition.

Dangling REFs can be avoided by defining referential integrity constraints. See
"Rules for REF Columns and Attributes” on page 2-6.

Dereferencing REFs

Accessing the object referred to by a REF is called dereferencing the REF. Oracle
provides the DEREF operator to do this. Dereferencing a dangling REF returns a null
object. For example:

SELECT DEREF(c.contact_ref), c.contact_date FROM contacts_ref c;

Oracle also provides implicit dereferencing of REFs. For example, to access the
manager's name for an employee, you can use a SQL expression similar to the
following:

SELECT e. nane, e.nmnager.name FROM enp_person_obj table
WHERE e. nane = 'Bob Jones';

In the example, e. manager . nane follows the pointer from the person's manager,
and retrieves the manager's name. Following the REF like this is allowed in SQL,
but not in PL/SQL.

Obtaining REFs

You can obtain a REF to a row object by selecting the object from its object table and
applying the REF operator. For example, you can obtain a REF to the person with
identification number 1 as follows:

DECLARE

Introduction to Oracle Objects 1-11

Key Features of the Object-Relational Model

person_ref REF person_typ;
BEG N
SELECT REF(p) | NTO person_ref
FROM person_obj table p
VHERE p.idno = 1;
END;
/

The query must return exactly one row.

See Also: "Storage Size of REFs" on page 8-8

Collections

For modeling multi-valued attributes and many to many relationships, Oracle
supports two collection datatypes: varrays and nested tables. Collection types can
be used anywhere other datatypes can be used. You can have object attributes of a
collection type in addition to columns of a collection type. For example, you might
give a purchase order object type a nested table attribute to hold the collection of
line items for a given purchase order.

You use the CREATE TYPE statement to define collection types. In Example 1-3, the
CREATE TYPE statements define the object types peopl e_t yp and dept _
persons_typ.

Example 1-3 Creating a Collection Datatype

CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/

CREATE TYPE dept _persons_typ AS OBJECT (
dept _no CHAR(5),
dept _name CHAR(20),
dept _ngr person_typ,
dept _enps people_typ);
/

In this simplified example, peopl e_t yp is a collection type, specifically a nested
table type. The dept _per sons_t yp object type has an attribute peopl e_t yp of
this type. Each row in the people_typ nested table is an object of type per son_t yp
which was defined in Example 1-1 on page 1-4.

See Also: "Creating Collection Datatypes" on page 3-2

1-12 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

Language Binding Features

This section lists the key features of the object-relational model that are related to
languages and application programming interfaces (APISs).

SQL Object Extensions

To support the new object-related features, SQL extensions, including new DDL,
have been added to create, alter, or drop object types; to store object types in tables;
and to create, alter, or drop object views. There are DML and query extensions to
support object types, references, and collections.

See Also: "SQL" on page 4-2

PL/SQL Object Extensions

PL/SQL is an Oracle database programming language that is tightly integrated
with SQL. With the addition of user-defined types and other SQL types, PL/SQL
has been enhanced to operate on user-defined types seamlessly. Thus, application
developers can use PL/SQL to implement logic and operations on user-defined
types that execute in the database server.

See Also: "PL/SQL" on page 4-2

Java Support for Oracle Objects

Oracle Java VM is tightly integrated with the RDBMS and supports access to Oracle
Objects through object extensions to Java Database Connectivity (JDBC), which
provides dynamic SQL, and SQLJ, which provides static SQL. Thus, application
developers can use the Java to implement logic and operations on user-defined
types that execute in the database server. With Oracle, you can now also create SQL
types mapped to existing Java classes to provide persistent storage for Java objects
using SQLJ object types where all the methods are implemented in their
corresponding Java classes. See "Java Object Storage" on page 4-16.

See Also: Oracle Database JDBC Developer's Guide and Reference

External Procedures

Database functions, procedures, or member methods of an object type can be
implemented in PL/SQL, Java, or C as external procedures. External procedures are
best suited for tasks that are more quickly or easily done in a low-level language
such as C, which is more efficient at machine-precision calculation. External
procedures are always run in a safe mode outside the address space of the RDBMS

Introduction to Oracle Objects 1-13

Key Features of the Object-Relational Model

server. Generic external procedures can be written that declare one or more
parameters to be of a system-defined generic type. The generic type permits a
procedure that uses it to work with data of any built-in or user-defined type.

Object Type Translator/JPublisher

Object Type Translator (OTT) and Oracle JPublisher provide client-side mappings to
object type schemas by using schema information from the Oracle data dictionary
to generate header files containing Java classes and C structures and indicators.
These generated header files can be used in host-language applications for
transparent access to database objects.

Client-Side Cache

Oracle provides an object cache for efficient access to persistent objects stored in the
database. Copies of objects can be brought into the object cache. Once the data has
been cached in the client, the application can traverse through these at memory
speed. Any changes made to objects in the cache can be committed to the database
by using the object extensions to Oracle® Call Interface programmatic interfaces.

Oracle Call Interface and Oracle C++ Call Interface

Oracle Call Interface (OCI) and Oracle C++ Call Interface provide a comprehensive
application programming interface for application and tool developers seeking to
use the object capabilities of Oracle. Oracle Call Interface provides a run-time
environment with functions to connect to an Oracle server, and control transactions
that access objects in the server. It allows application developers to access and
manipulate objects and their attributes in the client-side object cache either
navigationally, by traversing a graph of inter-connected objects, or associatively by
specifying the nature of the data through declarative SQL DML. Oracle Call
Interface also provides a number of functions for accessing metadata information at
run-time about object types defined in the server. Such a set of functions facilitates
dynamic access to the object metadata and the actual object data stored in the
database.

See Also: "Oracle Call Interface (OCI)" on page 4-2 and "Oracle
C++ Call Interface (OCCI)" on page 4-8

Pro*C/C++ Object Extensions

The Oracle Pro*C™ precompiler provides an embedded SQL application
programming interface and offers a higher level of abstraction than Oracle Call
Interface. Like Oracle Call Interface, the Pro*C precompiler allows application
developers to use the Oracle client-side object cache and the Object Type Translator

1-14 Oracle Database Application Developer's Guide - Object-Relational Features

Key Features of the Object-Relational Model

Utility. Pro*C supports the use of C bind variables for Oracle object types.
Furthermore, Pro*C provides new simplified syntax to allocate and free objects of
SQL types and access them by either SQL DML, or through the navigational
interface. Thus, it provides application developers many benefits, including
compile-time type checking of (client-side) bind variables against the schema in the
server, automatic mapping of object data in an Oracle server to program bind
variables in the client, and simple ways to manage and manipulate database objects
in the client process.

See Also: "Oracle Call Interface (OCI)" on page 4-2

0040 Object Extensions

Oracle Objects For OLE (O040) is a set of COM Automation interfaces/objects for
connecting to Oracle database servers, executing queries and managing the results.
Automation interfaces in OO40 provide easy and efficient access to Oracle features
and can be used from virtually any programming or scripting language that
supports the Microsoft COM Automation technology. This includes Visual Basic,
Visual C++, VBA in Excel, VBScript and JavaScript in 1S Active Server Pages.

See Also: "Oracle Objects For OLE (O040)" on page 4-10

Introduction to Oracle Objects 1-15

Key Features of the Object-Relational Model

1-16 Oracle Database Application Developer's Guide - Object-Relational Features

2

Basic Components of Oracle Objects

This chapter provides basic information about working with objects. It explains
what object types, methods, and collections are and describes how to create and
work with a hierarchy of object types that are derived from a shared root type and
are connected by inheritance.

This chapter contains these topics:

« SQL Object Types and References
« Object Methods

« Inheritance in SQL Object Types

« Functions and Operators Useful with Objects

Basic Components of Oracle Objects 2-1

SQL Object Types and References

SQL Object Types and References

This section describes SQL object types and references, including:
= Null Objects and Attributes

« Character Length Semantics

« Constraints for Object Tables

« Indexes for Object Tables

« Triggers for Object Tables

« Rules for REF Columns and Attributes

=« Name Resolution

You can create a SQL object type with the CREATE TYPE statement. An example of
creating an object type is shown in Example 1-1 on page 1-4.

Null Objects and Attributes

A table column, object attribute, collection, or collection element is NULL if it has
been initialized to NULL or has not been initialized at all. Usually, a NULL value is
replaced by an actual value later on.

An object whose value is NULL is called atomically null. An atomically null object is
different from one that simply happens to have null values for all its attributes.
When all the attributes of an object are null, these attributes can still be changed,
and the object's methods can be called. With an atomically null object, you can do
neither of these things.

For example, consider the cont act s table which contains the per son_t yp object
type defined in Example 1-1 on page 1-4.

CREATE TABLE contacts (
cont act person_typ,
contact _date DATE);
The statement

I NSERT | NTO contacts VALUES (
person_typ (NULL, NULL, NULL),
24 Jun 2003');

gives a different result from

I NSERT | NTO contacts VALUES (

2-2 Oracle Database Application Developer's Guide - Object-Relational Features

SQL Object Types and References

NULL,
'24 Jun 2003');

In both cases, Oracle allocates space in cont act s for a new row and sets its DATE
column to the value given. But in the first case, Oracle allocates space for an object
in the cont act column and sets each of the object's attributes to NULL. In the
second case, Oracle sets the per son_t yp field itself to NULL and does not allocate
space for an object.

In some cases, you can omit checks for null values. A table row or row object cannot
be null. A nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null
collection is different from an empty one, that is, a collection containing no
elements.

Character Length Semantics

Lengths for character types CHAR and VARCHAR2 may be specified as a number of
characters, instead of bytes, in object attributes and collections even if some of the
characters consist of multiple bytes.

To specify character-denominated lengths for CHAR and VARCHAR? attributes, you
add a qualifier char to the length specification.

Like CHAR and VARCHAR2, NCHAR and NVARCHAR2 may also be used as attribute
types in objects and collections. These types are always implicitly measured in
terms of characters, so no char qualifier is used.

For example, the following statement creates an object with both a character-length
VARCHARZ attribute and an NCHAR attribute:

CREATE TYPE enpl oyee_typ AS OBJECT (

nane VARCHAR2(30 char),
| anguage NCHAR(10) ,
phone VARCHAR2(20));

/

For CHAR and VARCHARZ attributes whose length is specified without a char
qualifier (for example, the phone attribute), the default unit of measure characters
or bytes is determined by whether the NLS_LENGTH_SEMANTI CS initialization
parameter is set to CHAR or BYTE.

See Also: Oracle Database Globalization Support Guide for
information on character length semantics

Basic Components of Oracle Objects 2-3

SQL Object Types and References

Constraints for Object Tables

You can define constraints on an object table just as you can on other tables. You can
define constraints on the leaf-level scalar attributes of a column object, with the
exception of REFs that are not scoped.

The following examples illustrate the possibilities. The first example places a
PRI MARY KEY constraint on the i dno column of the object table per son_ext ent :

CREATE TYPE | ocation_typ (

bui I di ng_no NUMBER,

city VARCHAR2(40));
/

CREATE TYPE of fice_typ AS OBJECT (
office_id VARCHAR(10) ,
office_loc location_typ,
occupant person_typ);

/

CREATE TABLE office_tab OF office_typ (
office_id PRI MARY KEY);

The depar t nent _ngr s table in the next example has a column whose type is the
object type | ocat i on_t yp defined in the previous example. The example defines
constraints on scalar attributes of the | ocat i on_t yp objects that appear in the
dept _| oc column of the table.

CREATE TABLE department _ngrs (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _nor person_typ,
dept _| oc | ocation_typ,
CONSTRAI NT dept _| oc_consl
UNI QUE (dept _| oc. bui | ding_no, dept_loc.city),
CONSTRAI NT dept _| oc_cons2
CHECK (dept _loc.city I'S NOT NULL));

I NSERT | NTO department _mgrs VALUES
(101, 'Physical Sciences',
person_typ(65,' Vrinda MIIs', '1-800-555-4412"),
| ocation_typ(300, "Palo Alto'));

2-4 Oracle Database Application Developer's Guide - Object-Relational Features

SQL Object Types and References

Indexes for Object Tables

You can define indexes on an object table or on the storage table for a nested table
column or attribute just as you can on other tables.

You can define indexes on leaf-level scalar attributes of column objects, as shown in
the following example. You can only define indexes on REF attributes or columns if
the REF is scoped.

Here, dept _addr is a column object, and ci t y is a leaf-level scalar attribute of
dept _addr that we want to index:

CREATE TABLE department _| oc (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _addr location_typ);

CREATE | NDEX i _dept _addrl
ON departnent _|oc (dept_addr.city);

Wherever Oracle expects a column name in an index definition, you can also specify
a scalar attribute of an object column.

Triggers for Object Tables

You can define triggers on an object table just as you can on other tables. You cannot
define a trigger on the storage table for a nested table column or attribute. You
cannot modify LOB values in a trigger body. Otherwise, there are no special
restrictions on using object types with triggers.

The following example defines a trigger on the of f i ce_t ab table defined in
"Constraints for Object Tables" on page 2-4.

CREATE TABLE novenent (

i dno NUMBER,
ol d_of fice | ocation_typ,
new of fice | ocation_typ);

CREATE TRI GGER triggerl
BEFORE UPDATE
OF office_loc
ON office_tab
FOR EACH ROW
WHEN (new.office_loc.city = 'Redwood Shores')
BEG N
IF :new. office_loc.building_no = 600 THEN

Basic Components of Oracle Objects 2-5

SQL Object Types and References

I NSERT | NTO novenent (idno, old_office, new office)
VALUES (:ol d. occupant.idno, :old.office_loc, :new office_loc);
END | F;
END;

Rules for REF Columns and Attributes

In Oracle, a REF column or attribute can be unconstrained or constrained using a
SCOPE clause or a referential constraint clause. When a REF column is
unconstrained, it may store object references to row objects contained in any object
table of the corresponding object type.

Oracle does not ensure that the object references stored in such columns point to
valid and existing row objects. Therefore, REF columns may contain object
references that do not point to any existing row object. Such REF values are referred
to as dangling references.

A REF column may be constrained to be scoped to a specific object table. All the
REF values stored in a column with a SCOPE constraint point at row objects of the
table specified in the SCOPE clause. The REF values may, however, be dangling.

A REF column may be constrained with a REFERENTI AL constraint similar to the
specification for foreign keys. The rules for referential constraints apply to such
columns. That is, the object reference stored in these columns must point to a valid
and existing row object in the specified object table.

PRI MARY KEY constraints cannot be specified for REF columns. However, you can
specify NOT NULL constraints for such columns.

Name Resolution

Oracle SQL lets you omit qualifying table names in some relational operations. For
example, if dept _addr is a column in the depart nment _| oc tableand ol d_
of fi ce isacolumn inthe novenent tabl e, you can write:

SELECT * FROM department _| oc WHERE EXI STS
(SELECT * FROM movenent WHERE dept _addr = ol d_office);

Oracle determines which table each column belongs to.

Using the dot notation, you can qualify the column names with table names or table
aliases to make things more maintainable. For example:

SELECT * FROM departnment _| oc WHERE EXI STS
(SELECT * FROM movenent WHERE departnent _| oc. dept _addr = novenent. ol d_of fice);

2-6 Oracle Database Application Developer's Guide - Object-Relational Features

SQL Object Types and References

SELECT * FROM department _| oc d WHERE EXI STS
(SELECT * FROM movenent m WHERE d. dept _addr = mol d_office);

In some cases, object-relational features require you to specify the table aliases.

When Table Aliases Are Required

Using unqualified names can lead to problems. If you add an assi gnnent column
to dept s and forget to change the query, Oracle automatically recompiles the query
such that the inner SELECT uses the assi gnnment column from the dept s table.
This situation is called inner capture.

To avoid inner capture and similar problems resolving references, Oracle requires
you to use a table alias to qualify any dot-notational reference to methods or
attributes of objects. Use of a table alias is optional when referencing top-level
attributes of an object table directly, without using the dot notation.

For example, the following statements define two tables that contain the per son_
t yp object type. per son_obj _t abl e is an object table for objects of type per son_
t yp, and cont act s is a relational table that contains a column of an object type.

The following queries show some correct and incorrect ways to reference attribute
i dno:

SELECT idno FROM person_obj _table; --Correct
SELECT contact.idno FROM contacts; --111egal
SELECT contacts. contact.idno FROM contacts; --111egal
SELECT p. contact.idno FROM contacts p; --Correct

« Inthe first SELECT statement, i dno is the name of a column of per son_obj _
t abl e. It references this top-level attribute directly, without using the dot
notation, so no table alias is required.

« Inthe second SELECT statement, i dno is the name of an attribute of the
per son_t yp object in the column named cont act . This reference uses the dot
notation and so requires a table alias, as shown in the fourth SELECT statement.

« The third SELECT uses the table name itself to qualify this the reference. This is
incorrect; a table alias is required.

You must qualify a reference to an object attribute or method with a table alias
rather than a table name even if the table name is itself qualified by a schema name.

For example, the following expression tries to refer to the obj t est schema,
depart ment _| oc table, dept _addr column, and ci t y attribute of that column.

Basic Components of Oracle Objects 2-7

Object Methods

But the expression is incorrect because depart ment _| oc is a table name, not an
alias.

obj test. department _| oc. dept _addr.city

The same requirement applies to attribute references that use REFs.

Table aliases should uniquely pick out the same table throughout a query and
should not be the same as schema names that could legally appear in the query.

Note: Oracle recommends that you define table aliases in all
UPDATE, DELETE, and SELECT statements and subqueries and use
them to qualify column references whether or not the columns
contain object types.

Restriction on Using User-Defined Types with a Remote Database

User-defined types (specifically, types declared with a SQL CREATE TYPE
statement, as opposed to types declared within a PL/SQL package) are currently
useful only within a single database. You cannot use a database link to do any of the
following:

« Connect to a remote database to select, insert, or update a user-defined type or
an object REF on a remote table

You can use the CREATE TYPE statement with the optional keyword O Dto
create a user-specified object identifier (OID) that allows an object type to be
used in multiple databases. See the discussion on assigning an OID to an object
type in the Oracle Data Cartridge Developer's Guide.

« Use database links within PL/SQL code to declare a local variable of a remote
user-defined type

« Convey a user-defined type argument or return value in a PL/SQL remote
procedure call.

Object Methods

Methods are functions or procedures that you can declare in an object type
definition to implement behavior that you want objects of that type to perform. An
application calls the methods to invoke the behavior.

2-8 Oracle Database Application Developer's Guide - Object-Relational Features

Object Methods

For example, you might declare a method get _sunt() to get a purchase order
object to return the total cost of its line items. The following line of code calls such a
method for purchase order po and returns the amount intosum | i ne_i t ens:

sumline_items = po.get_sum);

In SQL, the parentheses are required for all method calls. Unlike with PL/SQL
functions and procedures, SQL requires parentheses for method calls that do not
have arguments.

Methods can be written in PL/SQL or virtually any other programming language.
Methods written in PL/SQL or Java are stored in the database. Methods written in
other languages, such as C, are stored externally.

The topics described in this section are:
« Member Methods

« Methods for Comparing Objects

« Static Methods

« Constructor Methods

« External Implemented Methods

Member Methods

Member methods are the means by which an application gains access to an object
instance's data. You define a member method in the object type for each operation
that you want an object of that type to be able to perform. For example, the method
get _sum() that sums the total cost of a purchase order's line items operates on the
data of a particular purchase order and is a member method.

Member methods have a built-in parameter named SELF that denotes the object
instance on which the method is currently being invoked. Member methods can
reference the attributes and methods of SELF without a qualifier. This makes it
simpler to write member methods. For example, the following code shows a
method declaration that takes advantage of SELF to omit qualification of the
attributes numand den:

CREATE TYPE rational _typ AS OBJECT (
num | NTEGER,
den | NTEGER,
MEMBER PROCEDURE nor mal i ze_proc);
/

Basic Components of Oracle Objects 2-9

Object Methods

CREATE TYPE BCDY rational _typ AS
MEMBER PROCEDURE normal i ze_proc IS
g | NTEGER,
BEG N
g := gcd(SELF. num SELF. den);
g := gcd(num den); -- equivalent to previous line
num:= num/ g;
den := den / g;
END nor el i ze_proc;
END;
/

SELF does not need to be explicitly declared, although it can be. It is always the first
parameter passed to the method.

« In member functions, if SELF is not declared, its parameter mode defaults to
I N.

« Inmember procedures, if SELF is not declared, its parameter mode defaults to
I NOUT. The default behavior does not include the NOCOPY compiler hint.

You can invoke a member method using the dot notation obj ect _

vari abl e. met hod() . This notation specifies the object on which to invoke the
method, then the method to call. Any parameters must be placed inside the
required parentheses.

See Also: "Using SELF IN OUT NOCOPY with Member
Procedures" on page 8-28

Methods for Comparing Objects

The values of a scalar datatype such as CHAR or REAL have a predefined order,
which allows them to be compared. But an object type, such as a cust omer _t yp,
which can have multiple attributes of various datatypes, has no predefined axis of
comparison. To be able to compare and order variables of an object type, you must
specify a basis for comparing them.

Two special kinds of member methods can be defined for doing this: map methods
and order methods.

Map Methods

A map method is an optional kind of method that provides a basis for comparing
objects by mapping object instances to one of the scalar types DATE, NUMBER,
VARCHAR2 or to an ANSI SQL type such as CHARACTER or REAL. With a map

2-10 Oracle Database Application Developer's Guide - Object-Relational Features

Object Methods

method, you can order any number of objects by calling each object's map method
once to map that object to a position on the axis used for the comparison, such as a
number or date. Example 1-1 on page 1-4 contains a simple map method.

From the standpoint of writing one, a map method is simply a parameter-less
member function that uses the MAP keyword and returns one of the datatypes just
listed. What makes a map method special is that, if an object type defines one, the
method is called automatically to evaluate such comparisons asobj 1 >o0bj 2
and comparisons implied by the DI STI NCT, GROUP BY, UNI ON, and ORDER BY
clauses which require sorting by rows.

Where obj 1 and obj _2 are two object variables that can be compared using a
map method map() , the comparison:

obj 1 > obj_2

is equivalent to:

obj _1.map() > obj 2. map()

And similarly for other relational operators besides the greater than (>) operator.

The following example defines a map method ar ea() that provides a basis for
comparing rectangle objects by their area:

CREATE TYPE rectangl e_typ AS OBJECT (

| en NUMBER,

wi d NUVBER,

MAP MEMBER FUNCTI ON ar ea RETURN NUMBER) ;
/

CREATE TYPE BCODY rectangle_typ AS
MAP MEMBER FUNCTI ON area RETURN NUMBER | S
BEG N
RETURN len * wid;
END area;
END;
/

An object type can declare at most one map method or one order method. A
subtype can declare a map method only if its root supertype declares one.

See Also: "Equal and Not Equal Comparisons" on page 3-17 for

the use of map methods when comparing collections that contain
object types

Basic Components of Oracle Objects 2-11

Object Methods

Order Methods

Order methods make direct object-to-object comparisons. Unlike map methods,
they cannot map any number of objects to an external axis. They simply tell you
that the current object is less than, equal to, or greater than the other object that it is
being compared to, with respect to the criterion used by the method.

An order method is a function with one declared parameter for another object of the
same type. The method must be written to return either a negative number, zero, or
a positive number. The return signifies that the object picked out by the SELF
parameter is respectively less than, equal to, or greater than the other parameter's
object.

As with map methods, an order method, if one is defined, is called automatically
whenever two objects of that type need to be compared.

Order methods are useful where comparison semantics may be too complex to use a
map method. For example, to compare binary objects such as images, you might
create an order method to compare the images by their brightness or number of
pixels.

An object type can declare at most one order method or one map method. Only a
type that is not derived from another type can declare an order method; a subtype
cannot define one.

The following example shows an order method that compares locations by building
number:

CREATE TYPE | ocation_typ AS OBJECT (

bui I ding_no NUMBER,

city VARCHAR2(40) ,

ORDER MEMBER FUNCTI ON match (I location_typ) RETURN | NTEGER);
/
CREATE TYPE BCDY | ocation_typ AS

ORDER MEMBER FUNCTI ON match (I location_typ) RETURN I NTEGER | S

BEG N

I'F building_no < |.building_no THEN

RETURN - 1; -- any negative nunber will do
ELSIF building_no > I.building_no THEN
RETURN 1; -- any positive nunber will do
ELSE
RETURN 0;
END | F;
END;

END;
/

2-12 Oracle Database Application Developer's Guide - Object-Relational Features

Object Methods

Guidelines for Comparison Methods

A map method maps object values into scalar values and can order multiple values
by their position on the scalar axis. An order method directly compares values for
two particular objects.

You can declare a map method or an order method but not both. If you declare a
method of either type, you can compare objects in SQL and procedural statements.
However, if you declare neither method, you can compare objects only in SQL
statements and only for equality or inequality. (Two objects of the same type count
as equal only if the values of their corresponding attributes are equal.)

When sorting or merging a large number of objects, use a map method. One call
maps all the objects into scalars, then sorts the scalars. An order method is less
efficient because it must be called repeatedly (it can compare only two objects at a
time).

See Also: "Performance of Object Comparisons” on page 8-7

Comparison Methods in Type Hierarchies

In a type hierarchy, where definitions of specialized types are derived from
definitions of more general types, only the root type—the most basic type, from
which all other types are derived—can define an order method. If the root type does
not define one, its subtypes cannot define one either.

If the root type specifies a map method, any of its subtypes can define a map
method that overrides the map method of the root type. But if the root type does
not specify a map method, no subtype can specify one either.

So if the root type does not specify either a map or an order method, none of the
subtypes can specify either a map or order method.

See Also:

« "Inheritance in SQL Object Types" on page 2-15

= "Inheriting, Overloading, and Overriding Methods" on
page 2-20

Static Methods

Static methods are invoked on the object type, not its instances. You use a static
method for operations that are global to the type and do not need to reference the
data of a particular object instance. A static method has no SELF parameter.

Basic Components of Oracle Objects 2-13

Object Methods

You invoke a static method by using the dot notation to qualify the method call
with the name of the object type, such as:

type_nane. met hod()

See Also: "Static Methods" on page 8-27 for information on
design considerations

Constructor Methods

Every object type has a constructor method implicitly defined for it by the system.
A constructor method is a function that returns a new instance of the user-defined
type and sets up the values of its attributes.

The system implicitly defines a constructor function called the attribute value
constructor for all object types that have attributes.

You can also define constructor functions of your own called user-defined
constructors to create and initialize objects of such types. Attribute value
constructors are convenient to use because they already exists, but user-defined
constructors have some important advantages with respect to type evolution.

See Also: "Advantages of User-Defined Constructors” on
page 7-20 for information on user-defined constructors and their
advantages

The name of the constructor method is just the name of the object type, as shown in
the following simple example:

person_typ (1, "John Smith', '1-800-555-1212"),
A literal invocation of a constructor method is a call to the constructor method in

which any arguments are either literals, or further literal invocations of constructor
methods.

For example, consider the peopl e_t yp object type that is a table of per son_t yp
that is defined in Example 1-1 on page 1-4.

CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/

See Also: "Constructor Methods for Collections” on page 3-2 for
information on user-defined constructors and their advantages

2-14 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

External Implemented Methods

You can use PL/SQL to invoke external subprograms that have been written in
other languages. This provides access to the strengths and capabilities of those
languages.

See Also: PL/SQL User's Guide and Reference for information on
external implemented methods

Inheritance in SQL Object Types

Object types enable you to model the real-world entities such as customers and
purchase orders that your application works with. But this is just the first step in
exploiting the capabilities of objects. With objects, you cannot only model an entity
such as a customer, you can also define different specialized types of customers in a
type hierarchy under the original type. You can then perform operations on a
hierarchy and have each type implement and execute the operation in a special way.

A type hierarchy is a sort of family tree of object types. It consists of a parent base
type, called a supertype, and one or more levels of child object types, called
subtypes, derived from the parent.

Subtypes in a hierarchy are connected to their supertypes by inheritance. This
means that subtypes automatically acquire the attributes and methods of their
parent type. It also means that subtypes automatically acquire any changes made to
these attributes or methods in the parent: any attributes or methods updated in a
supertype are updated in subtypes as well.

A subtype becomes a specialized version of the parent type by adding new
attributes and methods to the set inherited from the parent or by redefining
methods it inherits. Redefining an inherited methods gives a subtype its own way
of executing the method. Add to this that an object instance of a subtype can
generally be substituted for an object instance of any of its supertypes in code, and
you have polymorphism.

Polymorphism is the ability of a slot for a value in code to contain a value of either a
certain declared type or any of a range of the declared type's subtypes. A method
called on whatever value occupies the slot may execute differently depending on
the value's type because the various types might implement the method differently.

Types and Subtypes

A subtype can be derived from a supertype either directly, or indirectly through
intervening levels of other subtypes. A subtype can directly derive only from a

Basic Components of Oracle Objects 2-15

Inheritance in SQL Object Types

single supertype: it cannot derive jointly from more than one. A supertype can have
multiple sibling subtypes, but a subtype can have at most one direct parent
supertype. In other words, Oracle supports only single inheritance, not multiple
inheritance.

A subtype is derived from a supertype by defining a specialized variant of the
supertype. For example, from a per son_t yp object type you might derive the
specialized types st udent _t yp and enpl oyee_t yp. Each of these subtypes is still
at bottom a per son_t yp, but a special kind of person. What makes a subtype
special and distinguishes it from its parent supertype is some change made in the
subtype to the attributes or methods that the subtype received from its parent.

Figure 2-1 Subtypes

A
Supertype of all

T

B
Subtype of A;
supertype of C

1

C
Subtype of B

D
Subtype of A;

An object type's attributes and methods make the type what it is: they are its
essential, defining features. If a per son_t yp object type has the three attributes

i dno, nane, and phone and the method get _i dno() , then any object type that is
derived from per son_t yp will have these same three attributes and a method

get _i dno() . A subtype is a special case of its parent type, not a totally different
kind of thing. As such, it shares with its parent type the features that make the
general type what it is.

You can specialize the attributes or methods of a subtype in these ways:
« Add new attributes that its parent supertype does not have.

For example, you might specialize st udent _t yp as a special kind of per son__
t yp by adding to its definition an attribute for maj or . A subtype cannot drop

2-16 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

or change the type of an attribute it inherited from its parent; it can only add
new attributes.

« Add entirely new methods that the parent does not have.

« Change the implementation of some of the methods a subtype inherits from its
parent so that the subtype's version executes different code from the parent's.

For example, a shape object type might define a method cal cul ate_area().
Two subtypes of shape, rectil i near _shape,andci rcul ar _shape, might
each implement this method in a different way. See "Inheriting, Overloading,
and Overriding Methods" on page 2-20.

Attributes and methods that a subtype gets from its parent type are said to be
inherited. This means more than just that the attributes and methods are patterned
on the parent's when the subtype is defined. With object types, the inheritance link
remains live. Any changes made later on to the parent type's attributes or methods
are also inherited so that the changes are reflected in the subtype as well. Unless a
subtype reimplements an inherited method, it always contains the same core set of
attributes and methods that are in the parent type, plus any attributes and methods
that it adds.

Remember, a child type is not a different type from its parent; it is a particular kind
of that type. If the general definition of per son_t yp ever changes, the definition of
st udent _t yp changes also.

The inheritance relationship that holds between a supertype and its subtypes is the
source of both much of the power of objects and much of their complexity. It is a
very powerful feature to be able to change a method in a supertype and have the
change take effect in all the subtypes downstream just by recompiling. But this
same capability means that you have to think about such things as whether you
want to allow a type to be specialized or a method to be redefined. Similarly, it is a
powerful feature for a table or column to be able to contain any type in a hierarchy,
but then you must decide whether to allow this in a particular case, and you may
need to constrain DML statements and queries so that they pick out from the type
hierarchy just the range of types that you want. The following sections address
these aspects of working with objects.

FINAL and NOT FINAL Types and Methods

The definition of an object type determines whether subtypes can be derived from
that type. To permit subtypes, the object type must be defined as not final. This is
done by including the NOT FI NAL keyword in its type declaration. For example:

CREATE TYPE person_typ AS OBJECT (

Basic Components of Oracle Objects 2-17

Inheritance in SQL Object Types

i dno NUMBER,

narme VARCHAR2(30) ,

phone VARCHAR2(20))
NOT FI NAL;

/

The preceding statement declares per son_t yp to be a not final type such that
subtypes of per son_t yp can be defined. By default, an object type is declared as
final and subtypes cannot be derived from it.

You can change a final type to a not final type and vice versa with an ALTER TYPE
statement. For example, the following statement changes per son_t yp to a final

type:

ALTER TYPE person_typ FI NAL;

You can alter a type from NOT FI NAL to FI NAL only if the target type has no
subtypes.

Methods, too, can be declared to be final or not final. If a method is declared to be
final, subtypes cannot override it by providing their own implementation. Unlike
types, methods are not final by default and must be explicitly declared to be final.

The following statement creates a not final type containing a final member function:
CREATE TYPE person_typ AS OBJECT (

i dno NUVBER,

name VARCHAR2(30) ,

phone VARCHAR2(20)

FI NAL MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER)
NOT FI NAL;

/

See Also: "Redefining Methods" on page 2-21

Creating Subtypes

You create a subtype using a CREATE TYPE statement that specifies the immediate
parent of the subtype with an UNDER parameter:

CREATE TYPE student _typ UNDER person_typ (
dept _i d NUVBER,
maj or VARCHAR2(30))

NOT FI NAL;

/

2-18 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

The preceding statement creates st udent _t yp as a subtype of per son_typ. Asa
subtype of per son_t yp, st udent _t yp inherits all the attributes declared in or
inherited by per son_t yp and any methods inherited by per son_t yp or declared
in person_typ.

The statement that defines st udent _t yp specializes per son_t yp by adding two
new attributes. New attributes declared in a subtype must have names that are
different from the names of any attributes or methods declared in any of its
supertypes, higher up in its type hierarchy.

A type can have multiple child subtypes, and these can also have subtypes. The
following statement creates another subtype enpl oyee_t yp under per son_t yp.

CREATE TYPE enpl oyee_typ UNDER person_typ (
enp_i d NUMBER,
ngr VARCHAR2(30));

/

A subtype can be defined under another subtype. Again, the new subtype inherits
all the attributes and methods that its parent type has, both declared and inherited.
For example, the following statement defines a new subtype part _ti me_

st udent _t yp under st udent _t yp. The new subtype inherits all the attributes
and methods of st udent _t yp and adds another attribute.

CREATE TYPE part _time_student _typ UNDER student _typ (
nunber _hours NUMBER) ;
/

NOT INSTANTIABLE Types and Methods

A type can be declared to be NOT | NSTANTI ABLE. If a type is not instantiable, there
is no constructor (default or user-defined) for it, and you cannot instantiate
instances of that type (objects, in other words). You might use this option with types
that you intend to use solely as supertypes of specialized subtypes that you do
instantiate. For example:

CREATE TYPE address_typ AS OBJECT(...) NOT | NSTANTI ABLE NOT FI NAL;
CREATE TYPE USaddress_typ UNDER address_typ(...);
CREATE TYPE Intladdress_typ UNDER address_typ(...);

A method can also be declared to be not instantiable. Use this option when you
want to declare a method in a type without implementing the method there. A type
that contains a non-instantiable method must itself be declared not instantiable. For
example:

Basic Components of Oracle Objects 2-19

Inheritance in SQL Object Types

CREATE TYPE person_typ AS OBJECT (

i dno NUVBER,
name VARCHAR2(30) ,
phone VARCHAR2(20) ,

NOT | NSTANTI ABLE MEMBER FUNCTI ON get i dno() RETURN NUVBER)
NOT | NSTANTI ABLE NOT FI NAL;
/

A non-instantiable method serves as a placeholder. You might define a
non-instantiable method when you expect every subtype to override the method in
a different way. In such a case, there is no point in defining the method in the
supertype.

If a subtype does not provide an implementation for every inherited
non-instantiable method, the subtype itself, like the supertype, must be declared not
instantiable. A non-instantiable subtype can be defined under an instantiable
supertype.

You can alter an instantiable type to a non-instantiable type and vice versa with an
ALTER TYPE statement. In the following example, the ALTER TYPE statement
makes per son_t yp instantiable:

CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
nane VARCHAR2(30) ,
phone VARCHAR2(20))

NOT | NSTANTI ABLE NOT FI NAL;
/
ALTER TYPE person_typ | NSTANTI ABLE;

You can alter an instantiable type to a non-instantiable type only if the type has no
columns, views, tables, or instances that reference that type, either directly, or
indirectly through another type or subtype.

You cannot declare a non-instantiable type to be FI NAL, which would be pointless
anyway.

Inheriting, Overloading, and Overriding Methods

A subtype automatically inherits all methods (both member and static methods)
declared in or inherited by its supertype.

A subtype can redefine methods it inherits, and it can also add new methods. It can
even add new methods that have the same names as methods it inherits, such that
the subtype ends up containing more than one method with the same name.

2-20 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

Giving a type multiple methods with the same name is called method overloading.
Redefining an inherited method to customize its behavior in a subtype is either
overriding, in the case of member methods, or hiding, in the case of static methods.

Overloading Methods

Overloading is useful when you want to provide a variety of ways of doing
something. For example, a shape object might overload a dr aw() method with
another dr aw() method that adds a text label to the drawing and contains an
argument for the label's text.

When a type has several methods with the same name, the compiler uses the
methods’ signatures to tell them apart. A method's signature is a sort of structural
profile. It consists of the method's name and the number, types, and order of the
method's formal parameters (including the implicit sel f parameter). Methods that
have the same name but different signatures are called overloads (when they exist
in the same type).

In the following example, Subtype MySubType_t yp creates an overload of
draw():

CREATE TYPE MyType_typ AS OBJECT (...,
MEMBER PROCEDURE draw(x NUVBER), ...) NOT FINAL;

CREATE TYPE MySubType_typ UNDER MyType_typ (...,
MVEMBER PROCEDURE draw(x VARCHAR2(20)),
STATI C FUNCTI ON bar(...)...

)

MySubType_t yp contains two versions of dr aw() . One is an inherited version
with a NUMBER parameter and the other has a VARCHAR2 parameter.

Redefining Methods

Overriding and hiding redefine an inherited method to make it do something
different in the subtype. For example, a subtype ci r cul ar _shape derived from a
shape supertype might override a member method cal cul ate_area() to
customize it specifically for calculating the area of a circle.

Redefining a method is called overriding when the method that is redefined is a
member method; redefining is called hiding when the redefined method is a static
method. Overriding and hiding are similar in that, in either case, the version of the
method redefined in the subtype eclipses an inherited version of the same name
and signature such that the new version is executed instead of the inherited one

Basic Components of Oracle Objects 2-21

Inheritance in SQL Object Types

whenever an instance of the subtype invokes the method. If the subtype itself has
subtypes, these inherit the redefined method instead of the original version.

However, with overriding, the system relies on type information contained in the
member method s implicit self argument to dynamically choose the correct version
of the method to execute. With hiding, the correct version can be identified at
compile time, and dynamic dispatch is not necessary. See "Dynamic Method
Dispatch” on page 2-23.

It is possible that a supertype may contain overloads of a method that is redefined
in a subtype. Overloads of a method all have the same name, so the compiler uses
the signature of the subtype s method to identify the particular version in the
supertype that is superseded. This means that, to override or hide a method, you
must preserve its signature.

A subtype that overrides a member method must signal the override with the
OVERRI DI NG keyword in the type definition. No such special keyword is required
when a subtype hides a static method.

For example, in the following code, the subtype signals that it is overriding method
Print():

CREATE TYPE MyType_typ AS OBJECT (...,

VEMBER PROCEDURE Print (),

FI NAL MEMBER FUNCTI ON function_nytype(x NUMBER). ..
) NOT FI NAL;

CREATE TYPE MySubType_typ UNDER MyType_typ (...,
OVERRI DI NG MEMBER PROCEDURE Print(),

L)

As with new methods, you supply the declaration for a method that hides or
overrides in a CREATE TYPE BODY statement.

Restrictions on Overriding Methods

= You can override only methods that are not declared to be final in the
supertype.

« Order methods may appear only in the root type of a type hierarchy: they may
not be redefined (overridden) in subtypes.

« A static method in a subtype may not redefine a member method in the
supertype.

2-22 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

« A member method in a subtype may not redefine a static method in the
supertype.

« If amethod being overridden provides default values for any parameters, then
the overriding method must provide the same default values for the same
parameters.

Dynamic Method Dispatch

As a result of method overriding, a type hierarchy can define multiple
implementations of the same method. For example, in a hierarchy of the types
el lipse_typ,circle_typ,sphere_typ,eachtype might define a method
cal cul at e_ar ea() differently.

Figure 2-2 Hierarchy of Types

el lipse_typ | Basetype

T

circle_typ

Subtype of
sphere_typ [circle type

Subtype of
el lipse_type

When such a method is invoked, the type of the object instance that invokes it is
used to determine which implementation of the method to use. The call is then
dispatched to that implementation for execution. This process of selecting a method
implementation is called virtual or dynamic method dispatch because it is done at
run time, not at compile time.

A method call is dispatched to the nearest implementation, working back up the
inheritance hierarchy from the current or specified type. If the call invokes a
member method of an object instance, the type of that instance is the current type,
and the implementation defined or inherited by that type is used. If the call invokes
a static method of a type, the implementation defined or inherited by that specified
type is used.

For example, if c1 is an object instance of ci rcl e_typ, cl. proc() looks first for
an implementation of proc() definedincircl e_typ. If none is found, it looks up
the supertype chain for an implementationinel | i pse_t yp. The fact that

Basic Components of Oracle Objects 2-23

Inheritance in SQL Object Types

spher e_t yp also defines an implementation is irrelevant because the type
hierarchy is searched only upwards, toward the top. Subtypes of the current type
are not searched.

Similarly, a call to a static method ci r cl e_t yp. bar () looks firstincircle_typ
and then, if necessary, in the supertype(s) of ci r cl e_t yp. The subtype sphere_
t yp is not searched.

See Also: PL/SQL User's Guide and Reference for information on
how subprograms calls are resolved and the dynamic dispatch
feature

Substituting Types in a Type Hierarchy

In a type hierarchy, the subtypes are variant kinds of the root, base type. For
example, a st udent _t yp type and an enpl oyee_t yp are kinds of a per son_
t yp. The base type includes these other types.

When you work with types in a type hierarchy, sometimes you want to work at the
most general level and, for example, select or update all persons. But sometimes
you want to select or update only students, or only persons who are not students.

The (polymorphic) ability to select all persons and get back not only objects whose
declared type is per son_t yp but also objects whose declared (sub)type is
student _typ orenpl oyee_t yp is called substitutability. A supertype is
substitutable if one of its subtypes can substitute or stand in for it in a slot (a
variable, column, and so forth) whose declared type is the supertype.

In general, types are substitutable. Object attributes, collection elements and REFs
are substitutable. An attribute defined as a REF, type, or collection of type per son_
t yp can hold a REF to, an instance of, or instances of an instance of per son_t yp or
an instance of any subtype of per son_t yp.

This is what you would expect, given that a subtype is, after all, just a specialized
kind of any of its supertypes. Formally, though, a subtype is a type in its own right:
it is not the same type as its supertype. A column that holds all persons, including
all persons who are students and all persons who are employees, actually holds
data of multiple types.

Substitutability comes into play in attributes, columns, and rows (namely, of an
object view or object table) declared to be an object type, a REF to an object type, or
a collection type.

In principle, object attributes, collection elements and REFs are always
substitutable: there is no syntax at the level of the type definition to constrain their

2-24 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

substitutability to some subtype. You can, however, turn off or constrain
substitutability at the storage level, for specific tables and columns.

See Also:
« "Turning Off Substitutability in a New Table" on page 2-29
« "Constraining Substitutability" on page 2-30

Column and Row Substitutability

Object type columns are substitutable, and so are object-type rows in object tables
and views. In other words, a column or row defined to be of type t can contain
instances of t and any of its subtypes.

For example, consider the per son_t yp type hierarchy introduced in "Creating
Subtypes" on page 2-18.

An object table of per son_t yp can contain rows of all three types. You insert an
instance of a given type using the constructor for that type in the VALUES clause of
the | NSERT statement as shown in Example 2-1.

Example 2-1 Inserting Values into Substitutable Columns
CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _tabl e
VALUES (person_typ(12, 'Bob Jones', '111-555-1212"));

I NSERT | NTO person_obj _tabl e
VALUES (student _typ(51, 'Joe Lane', '1-800-555-1312', 12, 'H STORY'));

I NSERT | NTO person_obj _tabl e
VALUES (part_time_student typ(52, 'KimPatel', '1-800-555-1232", 14,
"PHYSICS' , 20));

Similarly, in a relational table or view, a substitutable column of type per son_t yp
can contain instances of all three types. The following example inserts a person, a
student, and a part-time student in the per son_t yp column cont act :

CREATE TABLE contacts (
cont act person_typ,
contact _date DATE);

I NSERT | NTO contacts
VALUES (person_typ (12, 'Bob Jones', '111-555-1212'), '24 Jun 2003');

Basic Components of Oracle Objects 2-25

Inheritance in SQL Object Types

I NSERT | NTO cont acts
VALUES (student _typ(51, 'Joe Lane', '1-800-555-1312', 12, 'H STORY'),
'24 Jun 2003);

I NSERT | NTO cont acts
VALUES (part_time_student typ(52, 'KimPatel', '1-800-555-1232", 14,
"PHYSICS', 20), '24 Jun 2003');

A newly created subtype can be stored in any substitutable tables and columns of
its supertype, including tables and columns that existed before the subtype was
created.

Attributes in general can be accessed using the dot notation. Attributes of a subtype
of a row or column's declared type can be accessed with the TREAT function. For
example:

SELECT TREAT(contact AS student _typ).major FROM contacts;

See Also: "TREAT" on page 2-39

Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows

The OBJECT _VALUE and OBJECT | D pseudocolumns allow you to access and
identify the value and OID of a substitutable row in an object table.

In Example 2-2, the cat egori es_t ab is a table of cat egory_t yp objects. The
conposite_category typandl eaf category_typ types are subtypes of
cat egor y_t yp. Both subtypes contain the cat egory_nane, cat egory__
descri ption,and cat egory_i d attributes of the cat egory_t yp supertype.
Additionally, | eaf _cat egory_typ contains the product _ref list_typ
nested table and conposi t e_cat egory_t yp contains the subcat egory_ref _
I i st nested table.

Example 2-2 Using OBJECT_VALUE and OBJECT_ID

CREATE TABLE categories_tab OF category_typ
(category_id PRI MARY KEY)
NESTED TABLE TREAT
(OBJECT_VALUE AS | eaf _category_typ).product _ref list
STORE AS product _ref _|ist_nestedtab
NESTED TABLE TREAT
(OBJECT_VALUE AS conposite_category_typ).subcategory ref _|ist
STORE AS subcategory_ref _|ist_nestedtab;

2-26 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

SELECT c.category_id, o.*

FROM cat egories_tab c,

TABLE (TREAT(c. OBJECT_VALUE AS | eaf _category_typ).product_ref list) o
WHERE c. category_id = 31;

SELECT c. OBJECT_ID, c.category_id, o.COLUW VALUE. category_id

FROM cat egories_tab c,

TABLE (TREAT(c. OBJECT VALUE AS conposite_category_typ).subcategory ref list) o
WHERE category_id = 10;

Subtypes Having Supertype Attributes
A subtype can have an attribute that is a supertype. For example:

CREATE TYPE student _typ UNDER person_typ (
dept _id NUMBER,
maj or VARCHAR2(30) ,
advisor person_typ);

/

However, columns of such types are not substitutable. Similarly, a subtype ST can
have a collection attribute whose element type is one of ST's supertypes, but, again,
columns of such types are not substitutable. For example, if st udent _t yp had a
nested table or varray of per son_t yp, the st udent _t yp column would not be
substitutable.

You can, however, define substitutable columns of subtypes that have REF
attributes that reference supertypes. For example, the conposi te_cat egory_typ
subtype shown in Example 2-2 contains the subcat egory_ref | i st nested
table. This table contains subcat egory_ref _|ist_typ which are REFs to

cat egory_t yp. The subtype was created as follows:

CREATE TYPE subcategory_ref list_typ
AS TABLE OF REF category_typ;
/

CREATE TYPE conposite_category_typ
UNDER cat egory_typ

(

subcategory_ref _|ist subcategory ref list_typ

See Also: "Turning Off Substitutability in a New Table" on
page 2-29

Basic Components of Oracle Objects 2-27

Inheritance in SQL Object Types

REF Columns and Attributes

REF columns and attributes are substitutable in both views and tables. For example,
in either a view or a table, a column declared to be REF per son_t yp can hold
references to instances of per son_t yp or any of its subtypes.

Collection Elements

Collection elements are substitutable in both views and tables. For example, a
nested table of per son_t yp can contain object instances of per son_t yp or any of
its subtypes.

Creating Subtypes After Creating Substitutable Columns

If you create a subtype, any table that already has substitutable columns of the
supertype is automatically enabled to store the new subtype as well. This means
that your options for creating subtypes are affected by the existence of such tables.
If such a table exists, you can only create subtypes that are substitutable, that is,
subtypes that Oracle can enable that table to store.

The following example shows an attempt to create a subtype st udent _t yp under

person_typ.

CREATE TYPE person_typ AS OBJECT (
i dno NUMBER,
nane VARCHAR2(30) ,
phone VARCHAR2(20))
NOT FI NAL;

/

CREATE TYPE enpl oyee_typ UNDER person_typ (
enp_i d NUMBER,
myr VARCHAR2(30))
NOT FI NAL;
/

CREATE TABLE person_obj table (p person_typ);

The following statement fails because st udent _t yp has a supertype attribute, and
table per son_obj _t abl e has a substitutable column p of the supertype.

CREATE TYPE student _typ UNDER person_typ (
advi sor person_typ);
/

2-28 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

The following attempt succeeds. This version of the st udent _t yp subtype is
substitutable. Oracle automatically enables table per son_obj _t abl e to store
instances of this new type.

CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30));
/
I NSERT | NTO person_obj _tabl e
VALUES (student _typ(51, 'Joe Lane', '1-800-555-1312"', 12, 'H STORY'));

Dropping Subtypes After Creating Substitutable Columns

You can drop a subtype with the VALI DATE option only if no instances of the
subtype are stored in any substitutable column of the supertype.

For example, the following statement fails because an instance of st udent _typ is
stored in substitutable column p of table per son_obj _t abl e:

DROP TYPE student _typ VALI DATE;

To drop the type, first delete any of its instances in substitutable columns of the
supertype:

DELETE FROM person_obj table WHERE p IS OF (student_typ);

DROP TYPE student _typ VALI DATE;

Turning Off Substitutability in a New Table

When creating a table, you can turn off all substitutability on a column or attribute,
including embedded attributes and collections nested to any level, with the clause
NOT SUBSTI TUTABLE AT ALL LEVELS.

In the following example, the clause confines column of f i ce of a relational table to
storing only of f i ce_t yp instances and disallows any subtype instances:

CREATE TYPE of fice_typ AS OBJECT (
office_id VARCHAR(10) ,

| ocation | ocation_typ,
occupant person_typ)
NOT FI NAL;

/

CREATE TABLE dept _office (
dept _no NUMBER,

Basic Components of Oracle Objects 2-29

Inheritance in SQL Object Types

of fice of fice_typ)
COLUWN of fice NOT SUBSTI TUTABLE AT ALL LEVELS;

With object tables, the clause can be applied to the table as a whole, like this:
CREATE TABLE office_tab OF office_typ
NOT SUBSTI TUTABLE AT ALL LEVELS;

Alternatively, the clause can also be applied to turn off substitutability in a
particular column that is, for a particular attribute of the object type of the table:

CREATE TABLE office_tab OF office_typ
COLUWN occupant NOT SUBSTI TUTABLE AT ALL LEVELS;

You can specify that the element type of a collection is not substitutable using
syntax like the following:

CREATE TABLE people_tab (
peopl e_col um people_typ)
NESTED TABLE peopl e_col um
NOT SUBSTI TUTABLE AT ALL LEVELS STORE AS peopl e_col um_nt;

There is no mechanism to turn off substitutability for REF columns.

Constraining Substitutability

You can impose a constraint that limits the range of subtypes permitted in an object
column or attribute to a particular subtype in the declared type's hierarchy. You do
this usingan | S OFt ype constraint.

For example, the following statement creates a table of of fi ce_t yp in which
occupants are constrained to just those persons who are employees:

CREATE TABLE office_tab OF office_typ

COLUW occupant IS OF (O\LY enpl oyee_typ);
Although the type of fi ce_t yp allows authors to be of type per son_t yp, the
column declaration imposes a constraint to store only instances of enpl oyee_t yp.

You can only use the | S OF t ype operator to constrain row and column objects to a
single subtype (not several), and you must use the ONLY keyword, as in the
preceding example.

You can use either | SOF t ype or NOT SUBSTI TUTABLE AT ALL LEVELS to
constrain an object column, but you cannot use both.

2-30 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

Modifying Substitutability

In an existing table, you can change an object column from SUBSTI TUTABLE to NOT
SUBSTI TUTABLE (or from NOT SUBSTI TUTABLE to SUBSTI TUTABLE) by using an
ALTER TABLE statement. To do so, you specify the clause [NOT] SUBSTI TUTABLE
AT ALL LEVELS for the particular column.

You can modify substitutability only for a specific column; you cannot modify
substitutability for an object table as a whole.

The following statement makes column of f i ce substitutable:

ALTER TABLE dept _office
MODI FY COLUWN of fice SUBSTI TUTABLE AT ALL LEVELS;

The following statement makes the column not substitutable. Notice that it also
uses the FORCE keyword. This keyword causes any hidden columns containing
typeid information or data for subtype attributes to be dropped:

ALTER TABLE dept_office
MODI FY COLUWN of fi ce NOT SUBSTI TUTABLE AT ALL LEVELS FORCE;

If the FORCE keyword is not used when a column is made not substitutable, the
column and all attributes of the type must be FI NAL or the ALTER TABLE statement
will fail.

A VARRAY column can be modified from SUBSTI TUTABLE to NOT
SUBSTI TUTABLE only if the element type of the varray is final itself and has no
embedded types (in its attributes or in their attributes, and so on) that are not final.

See "Hidden Columns for Substitutable Columns and Tables" on page 7-3 for more
information about hidden columns for typeids and subtype attributes.

Restrictions on Modifying Substitutability

You can change the substitutability of only one column at a time with an ALTER
TABLE statement. To change substitutability for multiple columns, you must issue
multiple statements.

In an object table, you can modify substitutability for a column only if
substitutability was not explicitly set at the table level, for the entire table, when the
table was created.

For example, the following attempt to modify substitutability for column address
succeeds because substitutability has not been explicitly turned on or off at the table
level in the CREATE TABLE statement:

Basic Components of Oracle Objects 2-31

Inheritance in SQL Object Types

CREATE TABLE office_tab OF office_typ;

ALTER TABLE office_tab
MODI FY COLUWN occupant NOT SUBSTI TUTABLE AT ALL LEVELS FORCE;

However, in the following example, substitutability is explicitly set at the table
level, so the attempt to modify the setting for column address fails:

CREATE TABLE office_tab OF office_typ
NOT SUBSTI TUTABLE AT ALL LEVELS;

/* Following SQL statenent generates an error: */
ALTER TABLE office_tab
MODI FY COLUWN occupant SUBSTI TUTABLE AT ALL LEVELS FORCE;

A column whose substitutability is already constrained by an | S OF t ype operator
cannot have its substitutability modified with a [NOT] SUBSTI TUTABLE AT ALL
LEVELS clause. See "Constraining Substitutability” on page 2-30 for information
about | SOFtype.

Assignments Across Types

The assignment rules described in this section apply to | NSERT/ UPDATE
statements, the RETURNI NGclause, function parameters, and PL/SQL variables.

Objects and REFs to Objects

Substitutability is the ability of a subtype to stand in for one of its supertypes. An
attempt to perform a substitution in the other direction, to substitute a supertype
for a subtype, raises an error at compile time.

An assignment of a source of type sour ce_t yp to a target of type t ar get _typ
must be of one of the following two patterns:

« Casel:source_typandtarget_typ are the same type
« Case2:source_typisasubtype oft arget _t yp (widening)

Case 2 illustrates widening. Widening is an assignment in which the declared type
of the source is more specific than the declared type of the target. For example,
assigning an employee instance to a variable of person type.

Intuitively, the idea here is that you are regarding an employee as a person. An
employee is a more narrowly defined, specialized kind of person, so you can put an
employee in a slot meant for a person if you do not mind ignoring whatever extra

2-32 Oracle Database Application Developer's Guide - Object-Relational Features

Inheritance in SQL Object Types

specialization makes that person an employee. All employees are persons, so a
widening assignment always works.

To illustrate widening, suppose that you have the following table:

TABLE T(pers_col person_typ, enp_col enployee_typ, stu_col student_typ)

The following assignments show widening. The assignments are valid unless
per scol has been defined to be not substitutable.

UPDATE T set pers_col = emp_col;

The following is a PL/SQL example:

declare
varl person_typ;
var2 enpl oyee_typ;
begin
varl := varz;
end;

Besides widening, there is also narrowing. Narrowing is the reverse of widening. It
involves regarding a more general, less specialized type of thing, such as a person,
as a more narrowly defined type of thing, such as an employee. Not all persons are
employees, so a particular assignment like this works only if the person in question
actually happens to be an employee.

To do a narrowing assignment, you must use the TREAT function to test that the
source instance of the more general declared type is in fact an instance of the more
specialized target type and can therefore be operated on as such. The TREAT
function does a runtime check to confirm this and returns NULL if the source value
the person in question is not of the target type or one of its subtypes.

For example, the following UPDATE statement sets values of per son_t yp in
column per scol into column enpcol of enpl oyee_t yp. For each value in

per scol , the assignment succeeds only if that person is also an employee. If
person George is not an employee, TREAT returns NULL, and the assignment returns
NULL.

UPDATE T set enp_col = TREAT(pers_col AS enpl oyee_typ);

The following statement attempts to do a narrowing assignment without explicitly
changing the declared type of the source value. The statement will return an error:

UPDATE T set enp_col = pers_col;

Basic Components of Oracle Objects 2-33

Inheritance in SQL Object Types

See Also: "TREAT" on page 2-39

Collection Assignments

In assignments of expressions of a collection type, the source and target must be of
the same declared type. Neither widening nor narrowing is permitted. However, a
subtype value can be assigned to a supertype collection. For example, suppose we
have the following collection types:

CREATE TYPE person_set AS TABLE OF person_typ;
/

CREATE TYPE student _set AS TABLE OF student_typ;
/

Expressions of these different collection types cannot be assigned to each other, but
a collection element of st udent _t yp can be assigned to a collection of Per sonSet

type:

DECLARE
varl person_set;
var2 student set;
el eml person_typ;
el en? student _typ;

begin
varl := var2; /* ILLEGAL - collections not of sane type */
varl : = person_set (elentl, elen®); /* LEGAL : Elenent is of subtype */

Comparisons of Objects, REF Variables, and Collections
This section discusses the comparison operators used in SQL conditions.

See Also: Oracle Database SQL Reference for information about
using SQL conditions

Comparing Object Instances

Two object instances can be compared if, and only if, they are both of the same
declared type, or one is a subtype of the other.

Map methods and order methods provide the mechanism for comparing objects.
You optionally define one or the other of these in an object type to specify the basis
on which you want objects of that type to be compared. If a method of either sort is
defined, it is called automatically whenever objects of that type or one of its
subtypes need to be compared.

2-34 Oracle Database Application Developer's Guide - Object-Relational Features

Functions and Operators Useful with Objects

If a type does not define either a map method or an order method, object variables
of that type can be compared only in SQL statements and only for equality or
inequality. Two objects of the same type count as equal only if the values of their
corresponding attributes are equal.

See Also: "Methods for Comparing Objects" on page 2-10

Comparing REF Variables

Two REF variables can be compared if, and only if, the targets that they reference
are both of the same declared type, or one is a subtype of the other.

Functions and Operators Useful with Objects

CAST

Several functions and operators are particularly useful for working with objects and
references to objects:

« CAST

« CURSOR

«» DEREF

« IS OF type

« REF

=« SYS_TYPEID
=« TABLE()

« TREAT

« VALUE

Examples are given throughout this book.

In PL/SQL the VALUE, REF and DEREF functions can appear only in a SQL
statement.

See Also: Oracle Database SQL Reference for information about
SQL functions

CAST converts one built-in datatype or collection-typed value into another built-in
datatype or collection-typed value.

Basic Components of Oracle Objects 2-35

Functions and Operators Useful with Objects

For example:

CREATE TYPE person_list_typ AS TABLE OF person_typ;
/

SELECT CAST(COLLECT(contact) AS person_|list_typ)
FROM cont act s;

See Also: Oracle Database SQL Reference

CURSOR
A CURSCR expression returns a nested cursor. This form of expression is equivalent
to the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a
function.
See Also: Oracle Database SQL Reference
DEREF
The DEREF function in a SQL statement returns the object instance corresponding to
a REF. The object instance returned by DEREF may be of the declared type of the
REF or any of its subtypes.
For example, the following statement returns per son_t yp objects from the table
contact _ref.
SELECT DEREF(c.contact_ref), c.contact_date
FROM contacts_ref c;
See "Dereferencing REFs" on page 1-11.
IS OF type

The | SCOF t ype predicate tests object instances for the level of specialization of
their type.

For example, the following query retrieves all student instances (including any
subtypes of students) stored in the per son_obj _t abl e table.

SELECT VALUE(p)
FROM person_obj _table p
WHERE VALUE(p) IS OF (student_typ);

2-36 Oracle Database Application Developer's Guide - Object-Relational Features

Functions and Operators Useful with Objects

For any object that is not of a specified subtype, or a subtype of a specified subtype,
I S OF returns FALSE. Subtypes of a specified subtype are just more specialized
versions of the specified subtype. If you want to exclude such subtypes, you can use
the ONLY keyword. This keyword causes | S OF to return FALSE for all types except
the specified types.

In the following example, the statement tests objects in object table per son_obj _
t abl e, which contains persons, employees, and students, and returns REFs just to
objects of the two specified person subtypes enpl oyee_typ, student typ, and
their subtypes, if any:

SELECT REF(p)
FROM person_obj _table p
WHERE VALUE(p) IS OF (enployee_typ, student typ);

Here is a similar example in PL/SQL. The code does something if the person is an
employee or student:

DECLARE
var person_t;
BEG N
if var is of (enployee_t, student_t) then

END;

The following statement returns only students whose most specific or specialized
type is st udent _t yp. If the table or view contains any objects of a subtype of
student _typ,suchaspart_tine_student _typ,these are excluded. The
example uses the TREAT function to convert objects that are students to st udent _
t yp from the declared type of the view, per son_t yp:

SELECT TREAT(VALUE(p) AS student_typ)
FROM person_obj _table p
WHERE VALUE(p) |'S OF(ONLY student _typ);

To test the type of the object that a REF points to, you can use the DEREF function to
dereference the REF before testing with the | S OF t ype predicate.

For example, if cont act _r ef is declared to be REF per son_t yp, you can get just
the rows for students as follows:

SELECT *
FROM cont act s_r ef
WHERE DEREF(contact_ref) IS OF (student_typ);

Basic Components of Oracle Objects 2-37

Functions and Operators Useful with Objects

REF

SYS_TYPEID

The REF function in a SQL statement takes as an argument a correlation name for
an object table or view and returns a reference (a REF) to an object instance from
that table or view. The REF function may return references to objects of the declared
type of the table, view, or any of its subtypes. For example, the following statement
returns the references to all persons, including references to students and
employees, whose i dno attribute is 12:

SELECT REF(p)
FROM person_obj _table p
VHERE p.idno = 12;

The SYS_TYPEI Dfunction can be used in a query to return the typeid of the most
specific type of the object instance passed to the function as an argument.

The most specific type of an object instance is the type to which the instance belongs
that is farthest removed from the root type. For example, if Tim is a part-time
student, he is also a student and a person, but his most specific type is part-time
student.

The function returns the typeids from the hidden type discriminant column that is
associated with every substitutable column. The function returns a null typeid for a
final, root type.

The syntax of the function is:
SYS _TYPEI D{ obj ect _type_val ue)
Function SYS_TYPEI D may be used only with arguments of an object type. Its

primary purpose is to make it possible to build an index on a hidden type
discriminant column.

All types that do belong to a type hierarchy are assigned a non-null typeid that is
unique within the type hierarchy. Types that do not belong to a type hierarchy have
a null typeid.

Every type except a final root type belongs to a type hierarchy. A final root type has
no types related to it by inheritance:

« It cannot have subtypes derived from it because it is final

« ltis notitself derived from some other type because it is a root type, so it does
not have any supertypes.

2-38 Oracle Database Application Developer's Guide - Object-Relational Features

Functions and Operators Useful with Objects

TABLE()

TREAT

See Also: "Hidden Columns for Substitutable Columns and
Tables" on page 7-3 for more information about type discriminant
columns

For an example of SYS_TYPEI D, consider the substitutable object table per son_
obj tabl e, of person_typ.person_typ is the root type of a hierarchy that has
student typasasubtypeandpart tinme_student typ asasubtype of

st udent _t yp. See Example 2-1 on page 2-25.

The following query uses SYS_TYPEI D. It gets the nane attribute and typeid of the
object instances in the per son_obj _t abl e table. Each of the instances is of a
different type:

SELECT name, SYS TYPEI D(VALUE(p)) typeid FROM person_obj table p;

See Also: "Hidden Columns for Substitutable Columns and
Tables" on page 7-3 for information about the type discriminant and
other hidden columns

Table functions are functions that produce a collection of rows, a nested table or a
varray, that can be queried like a physical database table or assigned to a PL/SQL
collection variable. You can use a table function like the name of a database table, in
the FROMclause of a query, or like a column name in the SELECT list of a query.

A table function can take a collection of rows as input. An input collection
parameter can be either a collection type, such as a VARRAY or a PL/SQL table, or a
REF CURSOR.

Use PI PELI NED to instruct Oracle to return the results of a table function
iteratively. A table function returns a nested table or varray collection type. You
guery table functions by using the TABLE keyword before the function name in the
FROMclause of the query.

See Also: PL/SQL User's Guide and Reference for information on
TABLE() functions

The TREAT function does a runtime check to confirm that an expression can be
operated on as if it were of a different specified type in the hierarchy normally, a
subtype of the expression s declared type. In other words, the function attempts to

Basic Components of Oracle Objects 2-39

Functions and Operators Useful with Objects

treat a supertype instance as a subtype instance to treat a person as a student, for
example. Whether this can be done in a given case depends on whether the person
in question actually is a student (or student subtype, such as a part-time student). If
the person is a student, then the person is returned as a student, with the additional
attributes and methods that a student may have. If the person happens not to be a
student, TREAT returns NULL in SQL.

The two main uses of TREAT are:

« Innarrowing assignments, to modify the type of an expression so that the
expression can be assigned to a variable of a more specialized type in the
hierarchy: in other words, to set a supertype value into a subtype.

« To access attributes or methods of a subtype of the declared type of a row or
column

A substitutable object table or column of type T has a hidden column for every
attribute of every subtype of T. These hidden columns are not listed by a DESCRI BE
statement, but they contain subtype attribute data. TREAT enables you to access
these columns.

The following example shows TREAT used in an assignment where a column of
person type is set into a column of employee type. For each row in per scol ,
TREAT returns an employee type or NULL, depending on whether the given person
happens to be an employee.

UPDATE T set enpcol = TREAT(perscol AS enployee_typ);

In the next example, TREAT returns all (and only) st udent _t yp instances from
per son_obj tabl e of type per son_t yp, asupertype of st udent _typ. The
statement uses TREAT to modify the type of p from per son_t yp to st udent _typ.

SELECT TREAT(VALUE(p) AS student typ)
FROM person_obj _tabl e p;

For each p, the TREAT modification succeeds only if the most specific or specialized
type of the value of p is st udent _t yp or one of its subtypes. If p is a person who is
not a student, or if p is NULL, TREAT returns NULL in SQL or, in PL/SQL, raises an
exception.

You can also use TREAT to modify the declared type of a REF expression. For
example:

SELECT TREAT(REF(p) AS REF student _typ)
FROM per son_obj _tabl e p;

2-40 Oracle Database Application Developer's Guide - Object-Relational Features

Functions and Operators Useful with Objects

VALUE

The previous example returns REFs to all st udent _t yp instances. In SQL it
returns NULL REFs for all person instances that are not students, and in PL/SQL it
raises an exception.

Perhaps the most important use of TREAT is to access attributes or methods of a
subtype of a row or column's declared type. The following query retrieves the
maj or attribute of all persons, students and part-time students, who have this
attribute. NULL is returned for persons who are not students:

SELECT name, TREAT(VALUE(p) AS student_typ).mjor major
FROM per son_obj _tabl e p;
The following query will not work because maj or is an attribute of st udent _typ
but not of per son_t yp, the declared type of table per sons:
SELECT name, VALUE(p).rmajor najor
FROM per son_obj _tabl e p;

The following is a PL/SQL example:

DECLARE

var Person_t;
BEG N

TREAT(var as Enpl oyee_t).raise_salary;
END;

See Also: "Assignments Across Types" on page 2-32 for
information on using TREAT in assignments.

In a SQL statement, the VALUE function takes as its argument a correlation variable
(table alias) for an object table or object view and returns object instances
corresponding to rows of the table or view. The VALUE function may return
instances of the declared type of the row or any of its subtypes. For example, the
following query returns all persons, including students and employees, from table
per son_obj _t abl e of person_typ:

SELECT VALUE(p) FROM person__obj table p;
To retrieve only part time students, that is, instances whose most specific type is
part _tine_student typ, usethe ONLY keyword to confine the selection:

SELECT VALUE(p) FROM person_obj _table p
WHERE VALUE(p) IS OF (ONLY part_tinme_student_typ);

Basic Components of Oracle Objects 2-41

Functions and Operators Useful with Objects

The following example shows VALUE used to return object instance rows for
updating:

UPDATE TABLE(SELECT d. dept _enps FROM depart nent _persons d

WHERE d.dept_no = 101) p
person_typ(2, 'Diane Smth', '1-800-555-1243")
2;

SET VALUE(p)
WHERE p. i dno

2-42 Oracle Database Application Developer's Guide - Object-Relational Features

3

Support for Collection Datatypes

This chapter provides basic information about working with objects. It explains
what object types, methods, and collections are and describes how to create and
work with a hierarchy of object types that are derived from a shared root type and
are connected by inheritance.

This chapter contains these topics:
« Creating Collection Datatypes

« Operations on Collection Datatypes

Support for Collection Datatypes 3-1

Creating Collection Datatypes

Creating Collection Datatypes
Oracle supports the varray and nested table collection datatypes.
« Avarray is an ordered collection of elements
« A nested table can have any number of elements

If you need to store only a fixed number of items, or to loop through the elements in
order, or you will often want to retrieve and manipulate the entire collection as a
value, then use a varray.

If you need to run efficient queries on a collection, handle arbitrary numbers of
elements, or do mass insert/update/delete operations, then use a nested table.

See Also: "Design Considerations for Collections” on page 8-11.

Creating an Instance of a VARRAY or Nested Table

You create an instance of a collection type in the same way that you create an
instance of any other object type, namely, by calling the type's constructor method.
The name of a type's constructor method is simply the name of the type. You
specify the elements of the collection as a comma-delimited list of arguments to the
method.

Calling a constructor method with an empty list creates an empty collection of that
type. Note that an empty collection is an actual collection that happens to be empty;
it is not the same as a null collection.

See Also:

« Oracle Database SQL Reference for information about nested
cursors

« "Design Considerations for Nested Tables" on page 8-14 for
more information on using nested tables

Constructor Methods for Collections

The following example illustrates a literal invocation of the constructor method for
the nested table type peopl e_t yp.

CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/
peopl e_typ (person_typ(1, 'John Smith', '1-800-555-1212"),
person_typ(2, 'Diane Smith', NULL))

3-2 Oracle Database Application Developer's Guide - Object-Relational Features

Creating Collection Datatypes

Varrays

The following examples show how it is used in SQL statements to insert values into
a nested table.

CREATE TABLE people_tab (
group_no NUMBER,
peopl e_col um people_typ)
NESTED TABLE peopl e_col um STORE AS peopl e_col um_nt;

I NSERT | NTO peopl e_tab VALUES (
100,
peopl e_typ(person_typ(1l, 'John Snmith', '1-800-555-1212"),
person_typ(2, 'Diane Smith', NULL)));

When you declare a table column to be of an object type or collection type, you can
include a DEFAULT clause. This provides a value to use in cases where you do not
explicitly specify a value for the column. The default clause must contain a literal
invocation of the constructor method for that object or collection.

The following example shows how to use literal invocations of constructor methods
to specify defaults:

Example 3-1 Creating the department_persons Table

CREATE TABLE depart nent _persons (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _ngr person_typ DEFAULT person_typ(10,'John Doe', NULL),
dept _enps peopl e_typ DEFAULT people_typ())
NESTED TABLE dept _enps STORE AS dept _enps_t ab;

Note that the term peopl e_t yp() is a literal invocation of the constructor method
for an empty peopl e_t yp table.

A varray is an ordered set of data elements. All elements of a given varray are of the
same datatype or a subtype of the declared one. Each element has an index, which
is a number corresponding to the element's position in the array. The index number
is used to access a specific element.

When you define a varray, you specify the maximum number of elements it can
contain, although you can change this number later. The number of elements in an
array is the size of the array. Oracle allows arrays to be of variable size, which is
why they are called varrays.

Support for Collection Datatypes 3-3

Creating Collection Datatypes

For example, the following statement declares an array type:

CREATE TYPE emmi| |ist_arr AS VARRAY(10) OF VARCHAR(80);
/

The VARRAYs of type emai | _| i st _arr have no more than ten elements, each of
datatype VARCHAR2(80) .

Creating an array type, as with a SQL object type, does not allocate space. It defines
a datatype, which you can use as:

« The datatype of a column of a relational table.
« An object type attribute.
« The type of a PL/SQL variable, parameter, or function return value.

A varray is normally stored in line, that is, in the same tablespace as the other data
in its row. If it is sufficiently large, Oracle stores it as a BLOB. See "Storage
Considerations for Varrays" on page 8-13.

You can create a VARRAY type of XMLType or of a LOB type for procedural
purposes, such as in PL/SQL or in view queries. However, database storage of a
varray of those types is not supported. This means that you cannot create an object
table or an object type column of a varray type of XMLType or of a LOB type.

See Also: Oracle Database SQL Reference for information and
examples on the STORE AS LOB clause of the CREATE TABLE
statement

Nested Tables

A nested table is an unordered set of data elements, all of the same datatype. No
maximum is specified in the definition of the table and the order of the elements is
not preserved. You select, insert, delete, and update in a nested table just as you do
with ordinary tables using the TABLE expression.

Elements of a nested table are actually stored in a separate storage table that
contains a column that identifies the parent table row or object to which each
element belongs. A nested table has a single column, and the type of that column is
a built-in type or an object type. If the column in a nested table is an object type, the
table can also be viewed as a multi-column table, with a column for each attribute
of the object type.

3-4 Oracle Database Application Developer's Guide - Object-Relational Features

Creating Collection Datatypes

In Example 3-2 on page 3-5, the table type used for the nested tables is declared
with the CREATE TYPE ... | S TABLE OF statement. A table type definition does not
allocate space. It defines a type, which you can use as:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

When a column in a relational table is of nested table type, Oracle stores the nested
table data for all rows of the relational table in the same storage table. Similarly,
with an object table of a type that has a nested table attribute, Oracle stores nested
table data for all object instances in a single storage table associated with the object
table. In Example 3-2, the NESTED TABLE clause specifies the storage name for the
nested table. The example uses per son_t yp defined in Example 1-1 on page 1-4.

See Also: See Figure 8-2, "Nested Table Storage" on page 8-15

Example 3-2 Creating and Populating Simple Nested Tables

CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/
CREATE TABLE students (
graduati on DATE,
mat h_maj ors peopl e_typ,
chem naj ors people_typ,
physi cs_naj ors peopl e_typ)
NESTED TABLE mat h_maj ors STORE AS mat h_maj ors_nt
NESTED TABLE chem maj ors STORE AS chem naj or s_nt
NESTED TABLE physics_maj ors STORE AS physics_majors_nt;

I NSERT | NTO students (graduation) VALUES ('01-JUN-03');
UPDATE st udents
SET math_mgjors =
peopl e_typ (person_typ(12, 'Bob Jones', '111-555-1212"),
person_typ(31, 'Sarah Chen', '111-555-2212"),
person_typ(45, 'Chris Wods', '111-555-1213")),
chem mgjors =
peopl e_typ (person_typ(51, 'Joe Lane', '111-555-1312"),
person_typ(31, 'Sarah Chen', '111-555-2212"),
person_typ(52, 'KimPatel', '111-555-1232")),
physics_majors =
peopl e_typ (person_typ(12, 'Bob Jones', '111-555-1212"),
person_typ(45, 'Chris Wods', '111-555-1213"))
WHERE graduation = "'01-JUN-03';

Support for Collection Datatypes 3-5

Creating Collection Datatypes

A convenient way to access the elements of a nested table individually is to use a
nested cursor.

Specifying a Tablespace When Storing a Nested Table

A nested table can be stored in a different tablespace than its parent table. In the
following SQL statement, the nested table is stored in the user s tablespace:

CREATE TABLE peopl e_tab (
peopl e_col um people_typ)
NESTED TABLE peopl e_col um STORE AS peopl e_col uim_nt (TABLESPACE users);

If the TABLESPACE clause is not specified, then the storage table of the nested table
is created in the tablespace where the parent table is created. For multilevel nested
tables, Oracle creates the child table in the same tablespace as its immediate
preceding parent table.

The user can issue ALTER TABLE MOVE statement to move a table to a different
tablespace. If the user issues ALTER TABLE MOVE statement on a table with nested
table columns, it only moves parent table, no action is taken on the nested table's
storage tables. If the user wants to move a nested table s storage table to a different
tablespace, issue ALTER TABLE MOVE on the storage table. For example:

ALTER TABLE peopl e_tab MOVE TABLESPACE users;
ALTER TABLE peopl e_col utm_nt MOVE TABLESPACE exanpl e;

Now the peopl e_tab tabl e isinusers tablespace and nested table is stored in
the exanpl e tablespace.

Varray Storage

3-6

Multilevel varrays are stored in one of two ways, depending on whether the varray
is a varray of varrays or a varray of nested tables.

« Inavarray of varrays, the entire varray is stored inline in the row unless it is
larger than approximately 4000 bytes or LOB storage is explicitly specified.

« Inavarray of nested tables, the entire varray is stored in a LOB, with only the
LOB locator stored in the row. There is no storage table associated with nested
table elements of a varray. The entire nested table collection is stored inside the
varray.

Oracle Database Application Developer's Guide - Object-Relational Features

Creating Collection Datatypes

You can explicitly specify LOB storage for varrays. The following example does this
for the varray elements of a nested table. As the example also shows, you can use
the COLUWN_VALUE keyword with varrays as well as nested tables.

CREATE TYPE emai | _|ist_arr AS VARRAY(10) OF VARCHAR2(80);
/

CREATE TYPE enmmil _list_typ AS TABLE OF email _|ist_arr;
/

CREATE TABLE dept _email _list (
dept _no NUMBER
emai | _addrs email _list_typ)
NESTED TABLE enmi | _addrs STORE AS emmi |l _addrs_nt
(VARRAY COLUWN_VALUE STORE AS LOB dept _emmils_l ob);

The following example shows explicit LOB storage specified for a varray of varray
type:
CREATE TYPE emai| _|ist_typ2 AS OBJECT (
section_no NUMBER,
emails emai |l _list_arr);
/

CREATE TYPE emai | _varray_typ AS VARRAY(5) OF email _list_typ2;
/

CREATE TABLE dept _email list2 (
dept _no NUMBER
emai | _addrs enai | _varray_typ)
VARRAY enmi | _addrs STORE AS LOB dept _emails_| ob2;

See Also: "Storage Considerations for Varrays" on page 8-13.

Increasing the Size and Precision of VARRAYs and Nested Tables

When the element type of a VARRAY type is a variable character or RAW type or a
numeric type, you can increase the size of the variable character or RAW type or
increase the precision of the numeric type. A new type version is generated for the
VARRAY type.

Options like | NVALI DATE and CASCADE are provided to either invalidate all
dependent objects or propagate the change to its type and table dependents

For example:

Support for Collection Datatypes 3-7

Creating Collection Datatypes

CREATE TYPE emmi| |ist_arr AS VARRAY(10) OF VARCHAR(80);
/

ALTER TYPE emai | _list_arr MODIFY ELEMENT TYPE VARCHAR2(100) CASCADE;

The same change can be applied to nested table types.
CREATE TYPE emai | _|ist_tab AS TABLE OF VARCHAR2(30);
/

ALTER TYPE emmi| |ist_tab MODIFY ELEMENT TYPE VARCHARZ(40) CASCADE;

Increasing VARRAY Limit Size

The ALTERTYPE ... MODI FY LI M T syntax allows increasing the number of
elements of a VARRAY type. If the number of elements of the VARRAY type is
increased, a new type version is generated for the VARRAY type and this is
maintained as part of the history of the type changes.

Options like | NVALI DATE and CASCADE are provided to either invalidate all
dependent objects or propagate the change to its type and table dependents.

For example:

CREATE TYPE emai | |ist_typ AS OBJECT (
section_no NUMBER,
email s emai |l _list_arr);

/

CREATE TYPE enmmil _varray_typ AS VARRAY(5) OF enmil _list_typ;
/

ALTER TYPE emmi| varray_typ MODIFY LIM T 100 | NVALI DATE;

When a VARRAY type is altered, changes are propagated to the dependent tables.
See "Propagating VARRAY Size Change" on page 8-13.

Creating a Varray Containing LOB References

In the following examples, ermai | _addr s of type enmi | _|i st _t yp already exists
intable dept _emai | _|i st as shown in the SQL examples in "Varray Storage" on
page 3-6.

To create a varray of LOB references, first define a VARRAY type of type REF
emai | _|ist_typ2. Forexample:

3-8 Oracle Database Application Developer's Guide - Object-Relational Features

Creating Collection Datatypes

CREATE TYPE ref _email _varray_typ AS VARRAY(5) OF REF email _|ist_typ2;
/

Next define a column of the array type in dept _erai | _|i st 3.

CREATE TABLE dept _email _list3 (
dept _no NUMBER
emai | _addrs ref_email _varray_typ)
VARRAY enmi | _addrs STORE AS LOB dept _emails_| ob3;

Multilevel Collection Types

Multilevel collection types are collection types whose elements are themselves
directly or indirectly another collection type. Possible multilevel collection types
are:

« Nested table of nested table type
« Nested table of varray type

« Varray of nested table type

= Varray of varray type

= Nested table or varray of a user-defined type that has an attribute that is a
nested table or varray type

Like ordinary, single-level collection types, multilevel collection types can be used
as columns in a relational table or with object attributes in an object table.

Nested Table Storage Tables for Multilevel Collection Types

A nested table type column or object table attribute requires a storage table where
rows for all nested tables in the column are stored. With a multilevel nested table
collection of nested tables, the inner set of nested tables also requires a storage table
just as the outer set does. You specify one by appending a second nested-table
storage clause.

Example 3-3 creates a multilevel collection type that is a nested table of nested
tables. The example models a system of stars in which each star has a nested table
collection of the planets revolving around it, and each planet has a nested table
collection of its satellites. In the example, the SQL statements create a table st ar s
that contains a column pl anet s whose type is a multilevel collection. This
multilevel collection is a nested table of an object type that has a nested table
attribute sat el | i t es. Separate nested table clauses are provided for the outer
pl anet s nested table and for the inner sat el | i t es one.

Support for Collection Datatypes 3-9

Creating Collection Datatypes

Example 3-3 Nested Table Storage

CREATE TYPE satellite_t AS OBJECT (
name VARCHAR2(20) ,
di anet er NUMBER) ;
/
CREATE TYPE nt_sat t AS TABLE OF satellite t;
/
CREATE TYPE pl anet _t AS OBJECT (
name VARCHAR2(20) ,
mass NUVBER,
satellites nt_sat_t);
/
CREATE TYPE nt_pl _t AS TABLE OF pl anet _t;
/
CREATE TABLE stars (
name VARCHAR2(20) ,
age NUMBER,
planets nt_pl _t)
NESTED TABLE pl anets STORE AS pl anets_tab
(NESTED TABLE satellites STORE AS satellites_tab);

The preceding example can refer to the inner sat el | i t e nested table by name
because this nested table is a named attribute of an object. However, if the inner
nested table is not an attribute, it has no name. The keyword COLUWN_VALUE is
provided for this case; you use it in place of a name for an inner nested table. For
example:

CREATE TYPE inner_table AS TABLE OF NUMBER;
/
CREATE TYPE outer _table AS TABLE OF inner_table;
/
CREATE TABLE tabl (
col 1 NUMBER,
col 2 outer_table)
NESTED TABLE col 2 STORE AS col 2_ntab
(NESTED TABLE COLUWN_VALUE STORE AS cv_ntab);

Physical attributes for the storage tables can be specified in the nested table clause.
For example:

CREATE TABLE stars (
name VARCHAR2(20) ,
age NUMBER,
planets nt_pl_t)
NESTED TABLE pl anets STORE AS pl anets_tab

3-10 Oracle Database Application Developer's Guide - Object-Relational Features

Creating Collection Datatypes

(PRIMARY KEY (NESTED TABLE I D, nane)
ORGANI ZATI ON | NDEX COWPRESS
NESTED TABLE satel lites STORE AS satellites_tab);

Every nested table storage table contains a column, referenceable by NESTED _
TABLE | D, that keys rows in the storage table to the associated row in the parent
table. A parent table that is itself a nested table has two system-supplied ID
columns: one, referenceable by NESTED _TABLE_| D, that keys its rows back to rows
in its own parent table, and one hidden column referenced by the NESTED _TABLE
| Dcolumn in its nested table children.

In the preceding example, nested table pl anet s is made an index-organized table
(10T) by adding the ORGANI ZATI ON | NDEX clause and assigning the nested table a
primary key in which the first column is NESTED_TABLE_| D. This column contains
the ID of the row in the parent table with which a storage table row is associated.
Specifying a primary key with NESTED_TABLE_| Das the first column and
index-organizing the table cause Oracle to physically cluster all the nested table
rows that belong to the same parent row, for more efficient access.

Each nested table needs its own table storage clause, so you must have as many
nested table storage clauses as you have levels of nested tables in a collection. See
"Nested Table Storage" on page 8-14.

Assignment and Comparison of Multilevel Collections

As with single-level collections, both the source and the target must be of the same
declared data type in assignments of multilevel collections.

Only items whose datatypes are nested table collection types, including multilevel
collection types, can be compared. See "Comparisons of Collections" on page 3-17.

Constructors for Multilevel Collections

Like single-level collection types, multilevel collection types are created by calling
the respective type's constructor method. Like the constructor methods for other
user-defined types, a constructor for a multilevel collection type is a system-defined
function that has the same name as the type and returns a new instance of it—in
this case, a new multilevel collection. Constructor parameters have the names and
types of the object type's attributes.

The following example calls the constructor for the multilevel collection type nt _
pl _t. This type is a nested table of planets, each of which contains a nested table of
satellites as an attribute. The constructor for the outer nested table calls the

pl anet _t constructor for each planet to be created; each planet constructor calls

Support for Collection Datatypes 3-11

Operations on Collection Datatypes

the constructor for the satellites nested table type to create its nested table of
satellites; and the satellites nested table type constructor callsthe satel lite_t
constructor for each satellite instance to be created.

I NSERT | NTO stars
VALUES(' Sun', 23,
nt_pl _t(
pl anet _t (
"Nept une',
10,
nt_sat _t(
satellite_t('Proteus', 67),
satellite_t('Triton', 82)
)
)
pl anet _t (
"Jupiter',
189,
nt_sat_t(
satellite_t('Callisto',97),
satellite_t(' Ganynede', 22)
)
)
)
);

Operations on Collection Datatypes

This section describes the operations on collection datatypes.

Querying Collections

There are two general ways to query a table that contains a column or attribute of a
collection type. One way returns the collections nested in the result rows that
contain them. The other way distributes or unnests collections such that each
collection element appears on a row by itself.

Nesting Results of Collection Queries

The following queries use the depar t ment _per sons table shown in Example 3-1
on page 3-3. The column dept _enps is a nested table collection of per son_t yp
type. The dept _enps collection column appears in the SELECT list like an
ordinary, scalar column. Querying a collection column in the SELECT list like this

3-12 Oracle Database Application Developer's Guide - Object-Relational Features

Operations on Collection Datatypes

nests the elements of the collection in the result row with which the collection is
associated.

For example, the following query retrieves the collection of employees. The
collection of employees is nested:

SELECT d. dept _enps
FROM depart nent _persons d;

DEPT_EMPS(1 DNO, NAME, PHONE)

PEOPLE_TYP(PERSON_TYP(1, 'John Smith', '1-800-555-1212'), PERSON TYP(2, 'Diane Smith',
" 1- 800- 555- 1243'))

Results are also nested if an object-type column in the SELECT list contains a
collection attribute, even if that collection is not explicitly listed in the SELECT list
itself. For example, the query SELECT * FROMdepar t nent _per sons would
produce a nested result.

Unnesting Results of Collection Queries

Not all tools or applications are able to deal with results in a nested format. To view
Oracle collection data using tools that require a conventional format, you must
unnest, or flatten, the collection attribute of a row into one or more relational rows.
You can do this by using a TABLE expression with the collection. A TABLE
expression enables you to query a collection in the FROMclause like a table. In effect,
you join the nested table with the row that contains the nested table.

The TABLE expression can be used to query any collection value expression,
including transient values such as variables and parameters.

Like the preceding example, the following query retrieves the collection of
employees, but the collection is unnested:

SELECT e. *
FROM depart nent _persons d, TABLE(d.dept_enps) e;

| DNO NAME PHONE
1 John Snith 1-800- 555- 1212
2 Diane Snith 1-800- 555- 1243

As the preceding example shows, a TABLE expression can have its own table alias.
In the example, a table alias for the TABLE expression appears in the SELECT list to
select columns returned by the TABLE expression.

Support for Collection Datatypes 3-13

Operations on Collection Datatypes

The TABLE expression uses another table alias to specify the table that contains the
collection column that the TABLE expression references. The expression

TABLE(d. dept _enps) specifies the depart ment _per sons table as containing
the dept _enps collection column. A TABLE expression can use the table alias of
any table appearing to the left of it in a FROMclause to reference a column of that
table. This way of referencing collection columns is called left correlation.

In the example, the depar t ment _per sons table is listed in the FROMclause solely
to provide a table alias for the TABLE expression to use. No columns from the
depart ment _per sons table other than the column referenced by the TABLE
expression appear in the result

The following example produces rows only for departments that have employees.
SELECT d. dept_no, e.*

FROM depart nent _persons d, TABLE(d.dept _enps) e;
To get rows for departments that have no employees, you can use outer-join syntax:
SELECT d. dept_no, e.*

FROM depart nent _persons d, TABLE(d. dept_enps) (+) e;

The (+) indicates that the dependent join between depar t ment _per sons and

e. dept _enps should be NULL-augmented. That is, there will be rows of

depart ment _per sons in the output for which e. dept _enps is NULL or empty,
with NULL values for columns corresponding to e. dept _enps.

Unnesting Queries Containing Table Expression Subqueries

The preceding examples show a TABLE expression that contains the name of a
collection. Alternatively, a TABLE expression can contain a subquery of a collection.

The following example returns the collection of employees whose department
number is 101.

SELECT *
FROM TABLE(SELECT d. dept _enps
FROM depart ment _persons d
VWHERE d. dept _no = 101);

There are these restrictions on using a subquery in a TABLE expression:
« The subquery must return a collection type

« The SELECT list of the subquery must contain exactly one item

3-14 Oracle Database Application Developer's Guide - Object-Relational Features

Operations on Collection Datatypes

« The subquery must return only a single collection; it cannot return collections
for multiple rows. For example, the subquery SELECT dept _enps FROM
depart ment _per sons succeeds in a TABLE expression only if table
depart ment _per sons contains just a single row. If the table contains more
than one row, the subquery produces an error.

Here is an example showing a TABLE expression used in the FROMclause of a
SELECT embedded in a CURSOR expression;

SELECT d. dept _no, CURSOR(SELECT * FROM TABLE(d. dept _enps))
FROM depart nent _persons d
WHERE d. dept _no = 101;

Unnesting Queries with Multilevel Collections

Unnesting queries can be used with multilevel collections, too, for both varrays and
nested tables. The following example shows an unnesting query on a multilevel
nested table collection of nested tables. From a table st ar s in which each star has a
nested table of planets and each planet has a nested table of satellites, the query
returns the names of all satellites from the inner set of nested tables.

SELECT t. nane
FROM stars s, TABLE(s.planets) p, TABLE(p.satellites) t;

Because no columns of the base table st ar s appear in the SELECT list, the query is
optimized to run directly against the sat el | i t es storage table.

Outer-join syntax can also be used with queries of multilevel collections.

See Also: "Viewing Object Data in Relational Form with
Unnesting Queries" on page 8-11

Performing DML Operations on Collections
Oracle supports the following DML operations on nested table columns:

« Inserts and updates that provide a new value for the entire collection
« Piecewise Updates

« Inserting new elements into the collection

« Deleting elements from the collection

« Updating elements of the collection.

Support for Collection Datatypes 3-15

Operations on Collection Datatypes

Oracle does not support piecewise updates on VARRAY columns. However, VARRAY
columns can be inserted into or updated as an atomic unit.

For piecewise updates of nested table columns, the DML statement identifies the
nested table value to be operated on by using the TABLE expression.

The following DML statements demonstrate piecewise operations on nested table
columns.

I NSERT | NTO TABLE(SELECT d. dept _enps
FROM depart ment _persons d
VWHERE d. dept _no = 101)
VALUES (5, 'Kevin Taylor', '1-800-555-6212");

UPDATE TABLE(SELECT d. dept _enps
FROM depart nent _persons d
VHERE d. dept_no = 101) e
SET VALUE(e) = person_typ(5, 'Kevin Taylor', '1-800-555-6233")
VHERE e.idno = 5;

DELETE FROM TABLE(SELECT d. dept _enps
FROM depart nent _persons d
VHERE d. dept_no = 101) e
WHERE e.idno = 5;

Performing DML on Multilevel Collections

For multilevel nested table collections, DML can be done atomically, on the
collection as a whole, or piecewise, on selected elements. For multilevel varray
collections, DML operations can be done only atomically.

Collections as Atomic Data Items The section "Constructors for Multilevel Collections"
on page 3-11 shows an example of inserting an entire multilevel collection with an

| NSERT statement. Multilevel collections can also be updated atomically with an
UPDATE statement. For example, suppose v_pl anet s is a variable declared to be of
the planets nested table type nt _pl _t . The following statement updates st ar s by
setting the pl anet s collection as a unit to the value of v_pl anet s.

UPDATE stars s
SET s.planets = :v_planets
WHERE s.nanme = 'Aurora Borealis';

Piecewise Operations on Nested Tables Piecewise DML is possible only on nested
tables, not on varrays.

3-16 Oracle Database Application Developer's Guide - Object-Relational Features

Operations on Collection Datatypes

The following example shows a piecewise insert operation on the pl anet s nested
table of nested tables: the example inserts a new planet, complete with its own
nested table of satellite t:

I NSERT | NTO TABLE(SELECT pl anets FROM stars WHERE name = ' Sun')
VALUES (' Saturn', 56,
nt_sat _t(
satellite_t('Rhea', 83)
)
)

The next example performs a piecewise insert into an inner nested table to add a
satellite for a planet. Like the preceding, this example uses a TABLE expression
containing a subquery that selects the inner nested table to specify the target for the
insert.

I NSERT | NTO TABLE(SELECT p.satellites
FROM TABLE(SELECT s. pl anets
FROM stars s
WHERE s.name = 'Sun') p
VWHERE p. name = 'Uranus')
VALUES (' Mranda', 31);

Comparisons of Collections

The conditions listed in this section allow comparisons of nested tables. There is no
mechanism for comparing varrays. The SQL examples in this section use the nested
tables created in Example 3-2 on page 3-5.

Equal and Not Equal Comparisons

The equal (=) and not equal (<>) conditions determine whether the input nested
tables are identical or not, returning the result as a Boolean value.

Two nested tables are equal if they have the same named type, have the same
cardinality, and their elements are equal. Elements are equal depending on whether
they are equal by the elements own equality definitions, except for object types
which require a map method.

For example:

SELECT p. nane
FROM st udents, TABLE(physics_mjors) p
WHERE mat h_maj ors = physi cs_mgj ors:

Support for Collection Datatypes 3-17

Operations on Collection Datatypes

In this example, the nested tables contain per son_t yp objects which have an
associated map method. See Example 1-1 on page 1-4.

In Comparisons

The | Ncondition checks whether a nested table is in a list of nested tables,
returning the result as a Boolean value. NULL is returned if the nested table is a null
nested table.

For example:

SELECT p.idno, p.nanme
FROM st udents, TABLE(physics_majors) p
WHERE physics_majors IN (math_mjors, chemmgjors);

Subset of Multiset Comparison

The SUBMULTI SET [OF] condition checks whether a nested table is a subset of a
another nested table, returning the result as a Boolean value. The OF keyword is
optional and does not change the functionality of SUBMULTI SET.

This operator is implemented only for nested tables because this is a multiset
function only.

For example:

SELECT p.idno, p.nane
FROM st udents, TABLE(physics_mjors) p
WHERE physi cs_maj ors SUBMULTI SET OF mat h_ngj ors:

Member of a Nested Table Comparison

The MEMBER[OF] or NOT MEMBER|[OF] condition tests whether an element is a
member of a nested table, returning the result as a Boolean value. The OF keyword
is optional and has no effect on the output.

For example:

SELECT graduation
FROM st udent s
WHERE person_typ(12, 'Bob Jones', '1-800-555-1212') MEMBER OF mat h_ngj ors;

where person_typ (12, 'Bob Jones', '1-800-555-1212") isan element
of the same type as the elements of the nested table mat h_maj or s.

3-18 Oracle Database Application Developer's Guide - Object-Relational Features

Operations on Collection Datatypes

Empty Comparison
The | S[NOT] EMPTY condition checks whether a given nested table is empty or not

empty, regardless of whether any of the elements are NULL. If a NULL is given for
the nested table, the result is NULL. The result is returned as a Boolean value.

SELECT p.idno, p.nane
FROM st udents, TABLE(physics_mjors) p
VWHERE physi cs_majors |'S NOT EMPTY;

Set Comparison

The I S[NOT] A SET condition checks whether a given nested table is composed of
unique elements, returning a Boolean value.

For example:

SELECT p.idno, p.nanme
FROM st udents, TABLE(physics_majors) p
WHERE physics_majors IS A SET;

Multisets Operations
This section describes multiset operations with nested tables. The SQL examples in
this section use the nested tables created in Example 3-2 on page 3-5.
See Also:

« Oracle Database SQL Reference for information about using
operators with nested tables

« "Comparisons of Objects, REF Variables, and Collections" on
page 2-34

CARDINALITY

The CARDI NALI TY function returns the number of elements in a varray or nested
table. The return type is NUMBER If the varray or nested table is a null collection,
NULL is returned.

For example:

SELECT CARDI NALI TY(mat h_maj or s)
FROM st udent s;

Support for Collection Datatypes 3-19

Operations on Collection Datatypes

COLLECT

The COLLECT function is an aggregate function which would create a multiset from
a set of elements. The function would take a column of the element type as input
and create a multiset from rows selected. To get the results of this function you must
use it within a CAST function to specify the output type of COLLECT.

See Also:
« "CAST" on page 2-35 for an example of the COLLECT function

« Oracle Database SQL Reference for syntax of the COLLECT
function

MULTISET EXCEPT

The MULTI SET EXCEPT operator inputs two nested tables and returns a nested
table whose elements are in the first nested table but not in the second nested table.
The input nested tables and the output nested table are all type name equivalent.

The ALL or DI STI NCT options can be used with the operator. The default is ALL.

« With the ALL option, for nt ab1l MULTI SET EXCEPT ALL nt ab2, all elements in
nt abl other than those in nt ab2 would be part of the result. If a particular
element occurs mtimes in nt ab1 and n times in nt ab2, the result will have (m-
n) occurrences of the element if mis greater than n otherwise 0 occurrences of
the element.

« With the DI STI NCT option, any element that is present in nt ab1 which is also
present in nt ab2 would be eliminated, irrespective of the number of
occurrences.

For example:

SELECT mat h_maj ors MULTI SET EXCEPT physi cs_ngj ors
FROM st udent s
WHERE graduation = '01-JUN-03';

MULTISET INTERSECTION

The MULTI SET | NTERSECT operator returns a nested table whose values are
common in the two input nested tables. The input nested tables and the output
nested table are all type name equivalent.

There are two options associated with the operator: ALL or DI STI NCT. The default
is ALL. With the ALL option, if a particular value occurs mtimes in nt abl and n
times in nt ab2, the result would contain the element M N(m n) times. With the

3-20 Oracle Database Application Developer's Guide - Object-Relational Features

Operations on Collection Datatypes

DI STI NCT option the duplicates from the result would be eliminated, including
duplicates of NULL values if they exist.

For example:

SELECT mat h_maj ors MULTI SET | NTERSECT physi cs_mgj ors
FROM st udent s
WHERE graduation = '01-JUN-03';

MULTISET UNION

The MULTI SET UNI ON operator returns a nested table whose values are those of the
two input nested tables. The input nested tables and the output nested table are all
type name equivalent.

There are two options associated with the operator: ALL or DI STI NCT. The default
is ALL. With the ALL option, all elements that are in nt ab1 and nt ab2 would be
part of the result, including all copies of NULLs. If a particular element occurs m
times in nt ab1 and n times in nt ab2, the result would contain the element (m+ n)
times. With the DI STI NCT option the duplicates from the result are eliminated,
including duplicates of NULL values if they exist.

For example:

SELECT mat h_maj ors MJLTI SET UNI ON DI STI NCT physics_ngjors
FROM st udent s
WHERE graduation = '01-JUN-03';

PECPLE_TYP(PERSON TYP(12, 'Bob Jones', '1-800-555-1212'),
PERSON TYP(31, 'Sarah Chen', '1-800-555-2212'),
PERSON TYP(45, 'Chris Wods', ' 1-800-555-1213"))

SELECT mat h_maj ors MULTI SET UNI ON ALL physics_ngjors
FROM st udent s
WHERE graduation = "'01-JUN-03';

PEOPLE_TYP(PERSON TYP(12, 'Bob Jones', '1-800-555-1212'),
PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212"),
PERSON_TYP(45, ' Chris Wods', '1-800-555-1213"),
PERSON _TYP(12, 'Bob Jones', '1-800-555-1212"),
PERSON_TYP(45, 'Chris Wods', '1-800-555-1213"))

Support for Collection Datatypes 3-21

Operations on Collection Datatypes

POWERMULTISET

The POAERMULTI SET function generates all non-empty submultisets from a given
multiset. The input to the PONERMULTI SET function could be any expression which
evaluates to a multiset. The limit on the cardinality of the multiset argument is 32.

For example:

SELECT * FROM TABLE(PONERMULTI SET(peopl e_typ (
person_typ(12, 'Bob Jones', '1-800-555-1212"),
person_typ(31, 'Sarah Chen', '1-800-555-2212"),
person_typ(45, 'Chris Wods', '1-800-555-1213"))));

POWERMULTISET _BY_CARDINALITY

The POAERMULTI SET_BY_CARDI NALI TY function returns all non-empty
submultisets of a nested table of the specified cardinality. The output would be rows
of nested tables.

POVNERMULTI SET_BY_CARDI NALI TY(x,) isequivalentto
TABLE(PONERMULTI SET(x)) p where CARDI NALI TY(val ue(p)) =1, wherex
is a multiset and | is the specified cardinality.

The first input parameter to the POAERMULTI SET_BY_CARDI NALI TY could be any
expression which evaluates to a nested table. The length parameter should be a
positive integer, otherwise an error will be returned. The limit on the cardinality of
the nested table argument is 32.

For example:

SELECT * FROM TABLE(PONERMULTI SET_BY_CARDI NALI TY(people_typ (
person_typ(12, 'Bob Jones', '1-800-555-1212"),
person_typ(31, 'Sarah Chen', '1-800-555-2212"),
person_typ(45, 'Chris Wods', '1-800-555-1213")),2));

SET

The SET function converts a nested table into a set by eliminating duplicates, and
returns a nested table whose elements are DI STI NCT from one another. The nested
table returned is of the same named type as the input nested table.

For example:

SELECT SET(physi cs_nmj ors)
FROM st udent s
WHERE graduation = '01-JUN-03';

3-22 Oracle Database Application Developer's Guide - Object-Relational Features

A

Object Support in Oracle Programming

Environments

In Oracle you can create object types with SQL data definition language (DDL)
commands, and you can manipulate objects with SQL data manipulation language
(DML) commands. Object support is built into Oracle application programming
environments.

This chapter discusses the following topics:

SQL
PL/SQL

Oracle Call Interface (OCI)

Pro*C/C++

Oracle C++ Call Interface (OCCI)

Oracle Objects For OLE (O040)

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types
XML

Object Support in Oracle Programming Environments 4-1

sQL

SQL
Oracle SQL DDL provides the following support for object types:
« Defining object types, nested tables, and arrays
« Specifying privileges
« Specifying table columns of user-defined types
« Creating object tables
Oracle SQL DML provides the following support for object types:
« Querying and updating objects and collections
« Manipulating REFs
See Also: For a complete description of Oracle SQL syntax, see
Oracle Database SQL Reference.
PL/SQL

Object types and subtypes can be used in PL/SQL procedures and functions in
most places where built-in types can appear.

The parameters and variables of PL/SQL functions and procedures can be of object
types.

You can implement the methods associated with object types in PL/SQL. These
methods (functions and procedures) reside on the server as part of a user's schema.

See Also: For a complete description of PL/SQL, see the PL/SQL
User's Guide and Reference.

Oracle Call Interface (OCI)

OCl is a set of C library functions that applications can use to manipulate data and
schemas in an Oracle database. OCI supports both traditional 3GL and
object-oriented techniques for database access, as explained in the following
sections.

An important component of OCI is a set of calls to manage a workspace called the
object cache. The object cache is a memory block on the client side that allows
programs to store entire objects and to navigate among them without additional
round trips to the server.

4-2 Oracle Database Application Developer's Guide - Object-Relational Features

Oracle Call Interface (OCI)

The object cache is completely under the control and management of the application
programs using it. The Oracle server has no access to it. The application programs
using it must maintain data coherency with the server and protect the workspace
against simultaneous conflicting access.

OCI provides functions to
= Access objects on the server using SQL.

« Access, manipulate and manage objects in the object cache by traversing
pointers or REFs.

« Convert Oracle dates, strings and numbers to C data types.
« Manage the size of the object cache's memory.

OCI improves concurrency by allowing individual objects to be locked. It improves
performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C datatypes
corresponding to a Oracle object types.

See Also: Oracle Call Interface Programmer's Guide for more
information about using objects with OCI

Associative Access in OCI Programs

Traditionally, 3GL programs manipulate data stored in a relational database by
executing SQL statements and PL/SQL procedures. Data is usually manipulated on
the server without incurring the cost of transporting the data to the client(s). OCI
supports this associative access to objects by providing an API for executing SQL
statements that manipulate object data. Specifically, OCI enables you to:

« Execute SQL statements that manipulate object data and object type schema
information

« Pass object instances, object references (REFs), and collections as input variables
in SQL statements

« Return object instances, REFs, and collections as output of SQL statement
fetches

« Describe the properties of SQL statements that return object instances, REFs,
and collections

« Describe and execute PL/SQL procedures or functions with object parameters
or results

Object Support in Oracle Programming Environments 4-3

Oracle Call Interface (OCI)

« Synchronize object and relational functionality through enhanced commit and
rollback functions

See Also: "Associative Access in Pro*C/C++" on page 4-7

Navigational Access in OCI Programs

In the object-oriented programming paradigm, applications model their real-world
entities as a set of inter-related objects that form graphs of objects. The relationships
between objects are implemented as references. An application processes objects by
starting at some initial set of objects, using the references in these initial objects to
traverse the remaining objects, and performing computations on each object. OCI
provides an API for this style of access to objects, known as navigational access.
Specifically, OCI enables you to:

« Cache objects in memory on the client machine

« De-reference an object reference and pin the corresponding object in the object
cache. The pinned object is transparently mapped in the host language
representation.

« Notify the cache when the pinned object is no longer needed

« Fetch a graph of related objects from the database into the client cache in one
call

« Lock objects
« Create, update, and delete objects in the cache

« Flush changes made to objects in the client cache to the database

See Also: "Navigational Access in Pro*C/C++" on page 4-7

Object Cache

To support high-performance navigational access of objects, OCI runtime provides
an object cache for caching objects in memory. The object cache supports references
(REFs) to database objects in the object cache, the database objects can be identified
(that is, pinned) through their references. Applications do not need to allocate or
free memory when database objects are loaded into the cache, because the object
cache provides transparent and efficient memory management for database objects.

Also, when database objects are loaded into the cache, they are transparently
mapped into the host language representation. For example, in the C programming
language, the database object is mapped to its corresponding C structure. The object

4-4 Oracle Database Application Developer's Guide - Object-Relational Features

Oracle Call Interface (OCI)

cache maintains the association between the object copy in the cache and the
corresponding database object. Upon transaction commit, changes made to the
object copy in the cache are propagated automatically to the database.

The object cache maintains a fast look-up table for mapping REFs to objects. When
an application de-references a REF and the corresponding object is not yet cached in
the object cache, the object cache automatically sends a request to the server to fetch
the object from the database and load it into the object cache. Subsequent
de-references of the same REF are faster because they become local cache access and
do not incur network round-trips. To notify the object cache that an application is
accessing an object in the cache, the application pins the object; when it is finished
with the object, it unpins it. The object cache maintains a pin count for each object in
the cache. The count is incremented upon a pin call and decremented upon an
unpin call. When the pin count goes to zero, it means the object is no longer needed
by the application. The object cache uses a least-recently used (LRU) algorithm to
manage the size of the cache. When the cache reaches the maximum size, the LRU
algorithm frees candidate objects with a pin count of zero.

Building an OCI Program That Manipulates Objects

When you build an OCI program that manipulates objects, you must complete the
following general steps:

1. Define the object types that correspond to the application objects.

2. Execute the SQL DDL statements to populate the database with the necessary
object types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you
must represent these types in the C host language format. You can do this by
representing the object types as C structs. You can use a tool provided by Oracle
called the Object Type Translator (OTT) to generate the C mapping of the object
types. The OTT puts the equivalent C structs in header (*.h) files. You include
these *.h files in the *.c files containing the C functions that implement the
application.

4. Construct the application executable by compiling and linking the application's
* ¢ files with the OCI library.

See Also: Oracle Call Interface Programmer’s Guide for tips and
techniques for using OCI program effectively with objects

Object Support in Oracle Programming Environments 4-5

Pro*C/C++

Defining User-Defined Constructors in C

When defining a user-defined constructor in C, you must specify SELF (and you
may optionally specify SELF TDO) in the PARAMETERS clause. On entering the C
function, the attributes of the C structure that the object maps to are all initialized to
NULL. The value returned by the function is mapped to an instance of the
user-defined type.

For example:

CREATE LI BRARY person_|ib TRUSTED AS STATIC
/

CREATE TYPE person AS OBJECT
(name VARCHAR2(30),
CONSTRUCTOR FUNCTI ON per son(nane VARCHAR2) RETURN SELF AS RESULT);
/

CREATE TYPE BODY person IS
CONSTRUCTOR FUNCTI ON per son(name VARCHAR2) RETURN SELF AS RESULT
|'S EXTERNAL NAME "cons_person_typ" LIBRARY person_lib WTH CONTEXT
PARAMETERS(cont ext, SELF, name OCl String, nanme | NDI CATOR sh4);

END;

/

The SELF parameter is mapped like an IN parameter, so in the case of a NOT FI NAL
type, itis mapped to (dvoi d *),not(dvoid **).

The return value's TDOmust match the TDOof SELF and is therefore implicit. The
return value can never be null, so the return indicator is implicit as well.

Pro*C/C++

The Oracle Pro*C/C++ precompiler allows programmers to use user-defined
datatypes in C and C++ programs.

Pro*C developers can use the Object Type Translator to map Oracle object types and
collections into C datatypes to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and
automatic type conversion from database types to C datatypes.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two
ways to access objects in the server:

4-6 Oracle Database Application Developer's Guide - Object-Relational Features

Pro*C/C++

SQL statements and PL/SQL functions or procedures embedded in Pro*C
programs.

An interface to the object cache (described under "Oracle Call Interface (OCI)"
on page 4-2), where objects can be accessed by traversing pointers, then
modified and updated on the server.

See Also: For a complete description of the Pro*C precompiler,
see Pro*C/C++ Programmer's Guide.

Associative Access in Pro*C/C++

For background information on associative access, see "Associative Access in OCI
Programs" on page 4-3.

Pro*C/C++ offers the following capabilities for associative access to objects:

Support for transient copies of objects allocated in the object cache

Support for transient copies of objects referenced as input host variables in
embedded SQL | NSERT, UPDATE, and DELETE statements, or in the WHERE
clause of a SELECT statement

Support for transient copies of objects referenced as output host variables in
embedded SQL SELECT and FETCH statements

Support for ANSI dynamic SQL statements that reference object types through
the DESCRI BE statement, to get the object's type and schema information

Navigational Access in Pro*C/C++

For background information on navigational access, see "Navigational Access in
OCI Programs" on page 4-4.

Pro*C/C++ offers the following capabilities to support a more object-oriented
interface to objects:

Support for de-referencing, pinning, and optionally locking an object in the
object cache using an embedded SQL OBJECT DEREF statement

Allowing a Pro*C/C++ user to inform the object cache when an object has been
updated or deleted, or when it is no longer needed, using embedded SQL
OBJECT UPDATE, OBJECT DELETE, and OBJECT RELEASE statements

Support for creating new referenceable objects in the object cache using an
embedded SQL OBJECT CREATE statement

Object Support in Oracle Programming Environments 4-7

Oracle C++ Call Interface (OCCI)

« Support for flushing changes made in the object cache to the server with an
embedded SQL OBJECT FLUSH statement

Converting Between Oracle Types and C Types

The C representation for objects that is generated by the Oracle Type Translator
(OTT) uses OCI types whose internal details are hidden, such as OCl Stri ng and
OCl Nunber for scalar attributes. Collection types and object references are similarly
represented using OCl Tabl e, OCl Ar r ay, and OCl Ref types. While using these
opaque types insulates you from changes to their internal formats, using such types
in a C or C++ application is cumbersome. Pro*C/C++ provides the following
ease-of-use enhancements to simplify use of OCI types in C and C++ applications:

= Object attributes can be retrieved and implicitly converted to C types with the
embedded SQL OBJECT CET statement.

« Object attributes can be set and converted from C types with the embedded
SQL OBJECT SET statement.

« Collections can be mapped to a host array with the embedded SQL
COLLECTI ONGET statement. Furthermore, if the collection is comprised of
scalar types, then the OCI types can be implicitly converted to a compatible C

type.

« Host arrays can be used to update the elements of a collection with the
embedded SQL COLLECTI ONSET statement. As with the COLLECTI ON GET
statement, if the collection is comprised of scalar types, C types are implicitly
converted to OCI types.

Oracle Type Translator (OTT)

The Oracle type translator (OTT) is a program that automatically generates C
language structure declarations corresponding to object types. OTT makes it easier
to use the Pro*C precompiler and the OCI server access package.

See Also: For complete information about OTT, see Oracle Call
Interface Programmer’s Guide and Pro*C/C++ Programmer's Guide.

Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is a C++ API that enables you to use the
object-oriented features, native classes, and methods of the C++ programing
language to access the Oracle database.

4-8 Oracle Database Application Developer's Guide - Object-Relational Features

Oracle C++ Call Interface (OCCI)

The OCCI interface is modeled on the JDBC interface and, like the JDBC interface, is
easy to use. OCCl itself is built on top of OCI and provides the power and
performance of OCI using an object-oriented paradigm.

OCl is a C API to the Oracle database. It supports the entire Oracle feature set and
provides efficient access to both relational and object data, but it can be challenging
to use—particularly if you want to work with complex, object datatypes. Object
types are not natively supported in C, and simulating them in C is not easy. OCCI
addresses this by providing a simpler, object-oriented interface to the functionality
of OCI. It does this by defining a set of wrappers for OCI. By working with these
higher-level abstractions, developers can avail themselves of the underlying power
of OCI to manipulate objects in the server through an object-oriented interface that
is significantly easier to program.

The Oracle C++ Call Interface, OCCI, can be roughly divided into three sets of
functionalities, namely:

« Associative relational access
« Associative object access

« Navigational access

OCCI Associative Relational and Object Interfaces

The associative relational APl and object classes provide SQL access to the database.
Through these interfaces, SQL is executed on the server to create, manipulate, and
fetch object or relational data. Applications can access any datatype on the server,
including the following:

« Large objects
« Objects/Structured types
« Arrays

« References

The OCCI Navigational Interface

The navigational interface is a C++ interface that lets you seamlessly access and
modify object-relational data in the form of C++ objects without using SQL. The
C++ objects are transparently accessed and stored in the database as needed.

Object Support in Oracle Programming Environments 4-9

Oracle Objects For OLE (O040)

With the OCCI navigational interface, you can retrieve an object and navigate
through references from that object to other objects. Server objects are materialized
as C++ class instances in the application cache.

An application can use OCCI object navigational calls to perform the following
functions on the server's objects:

« Create, access, lock, delete, and flush objects

« Get references to the objects and navigate through them

See Also: Oracle C++ Call Interface Programmer's Guide for a
complete account of how to build applications with the Oracle C++
API

Oracle Objects For OLE (0O040)

Oracle Objects for OLE (O040) provides full support for accessing and
manipulating instances of REFs, value instances, variable-length arrays (VARRAYS),
and nested tables in an Oracle database server.

On Windows systems, you can use Oracle Objects for OLE (O040) to write
object-oriented database programs in Visual Basic or other environments that
support the COM protocol, such as Excel, ActiveX, and Active Server Pages.

See Also: The "O040 Automation Server Reference" section of
the Oracle Objects for OLE online help or Oracle Objects for OLE
Developer's Guide online documentation for detailed information
and examples on using 0040 with Oracle objects

Figure 4-1 illustrates the containment hierarchy for value instances of all types in
0040.

4-10 Oracle Database Application Developer's Guide - Object-Relational Features

Oracle Objects For OLE (0040)

Figure 4-1 Supported Oracle Datatypes

—(OraObject)—[OraAttribute]]]
[OraField —(OraRef)—[OraAttribute]]]
[OraParameter —(OraCollection)—[Element Values]]]

}
—(OraCLOB }
}

—(Value of all other scalar types }

Instances of these types can be fetched from the database or passed as input or
output variables to SQL statements and PL/SQL blocks, including stored
procedures and functions. All instances are mapped to COM Automation Interfaces
that provide methods for dynamic attribute access and manipulation. These
interfaces may be obtained from:

« The value property of an OraField object in a Dynaset

« The value property of an OraParameter object used as an input or an output
parameter in SQL Statements or PL/SQL blocks

« An attribute of an object (REF)

« Anelementin a collection (varray or a nested table)

Representing Objects in Visual Basic (OraObject)

The OraObject interface is a representation of an Oracle embedded object or a value
instance. It contains a collection interface (OraAttributes) for accessing and
manipulating (updating and inserting) individual attributes of a value instance.
Individual attributes of an OraAttributes collection interface can be accessed by
using a subscript or the name of the attribute.

The following Visual Basic example illustrates how to access attributes of the
Addr ess object in the per son_t ab table:

Object Support in Oracle Programming Environments 4-11

Java; JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Di m Address OraQbj ect

Set Person = OrabDat abase. CreateDynaset ("sel ect * from person_tab", 08&)
Set Address = Person. Fiel ds("Addr"). Val ue

Msgbox Address. Zip

Msgbox. Address. City

Representing REFs in Visual Basic (OraRef)

The OraRef interface represents an Oracle object reference (REF) as well as
referenceable objects in client applications. The object attributes are accessed in the
same manner as attributes of an object represented by the OraObject interface.
OraRef is derived from an OraObiject interface by means of the containment
mechanism in COM. REF objects are updated and deleted independent of the
context they originated from, such as Dynasets. The OraRef interface also
encapsulates the functionality for navigating through graphs of objects utilizing the
Complex Object Retrieval Capability (COR) in OCI.

See Also: Oracle Call Interface Programmer*s Guide for tips and
techniques for using OCI program effectively with objects

Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)

The OraCollection interface provides methods for accessing and manipulating
Oracle collection types, namely variable-length arrays (VARRAYS) and nested tables
in O040. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the
EnaneLi st object from the depar t nent table:

Di m EnaneLi st OraCol | ection
Set Person = OraDat abase. CreateDynaset ("select * from department”, 08&)
Set EnanmeList = Departnent. Fiel ds("Enanes"). Val ue
"The following | oop accesses all elenents of the EnameList VArray
For 1=1 to |=EnaneList.Size
Msgbox EnaneLi st (1)
Next |

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Java has emerged as a powerful, modern object-oriented language that provides
developers with a simple, efficient, portable, and safe application development
platform. Oracle provides two ways to integrate Oracle object features with Java:

4-12 Oracle Database Application Developer's Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

JDBC and Oracle SQLJ. These interfaces enable you both to access SQL data from
Java and to provide persistent database storage for Java objects.

For an example of using Java APIs with Oracle objects, see the Oracle by Example
Series available on the Oracle Technology Network (OTN) Web site.

You can use the followings steps to navigate to the Oracle by Example Series.
« Goto http://otn.oracle.com

« Select Oracle Database under Products from the menu on the left side of the
page

« Select Oracle9i Database Release 1 under Previous Releases on the right side
of the page

« Under Technical Information, select Oracle9i by Example Series

« Select Build Application Components from the menu on the left side of the
page
« Select the Using Objects to Build an Online Product Catalog example

You can also search for Using Objects to Build an Online Product Catalog on the
OTN Web site.

JDBC Access to Oracle Object Data

JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.
Oracle provides tight integration between objects and JDBC. You can map SQL
types to Java classes with considerable flexibility.

Oracle JDBC:

= Allows access to objects and collection types (defined in the database) in Java
programs through dynamic SQL.

« Translates types defined in the database into Java classes through default or
customizable mappings.

Version 2.0 of the JDBC specification supports object-relational constructs such as
user-defined (object) types. JDBC materializes Oracle objects as instances of
particular Java classes. Using JDBC to access Oracle objects involves creating the
Java classes for the Oracle objects and populating these classes. You can either:

« Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the
classes for the attributes and populates them for you.

Object Support in Oracle Programming Environments 4-13

Java; JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Manually specify the mappings between Oracle objects and Java classes; that is,
customize your Java classes for object data. The driver then populates the
customized Java classes that you specify, which imposes a set of constraints on
the Java classes. To satisfy these constraints, you can choose to define your
classes according to either the SQLDat a interface or the ORADat a interface.

See Also: For complete information about JDBC, see the Oracle
Database JDBC Developer's Guide and Reference.

SQLJ Access to Oracle Object Data

SQLJ provides access to server objects using SQL statements embedded in the Java
code:

You can use user-defined types in Java programs.

You can use JPublisher to map Oracle object and collection types into Java
classes to be used in the application.

The object types and collections in the SQL statements are checked at compile
time.

See Also: For complete information about SQLJ, see the Oracle
Database Java Developer's Guide.

Choosing a Data Mapping Strategy

Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types (REFs), and collection types (varrays and nested tables)
to be used in iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a
particular object type, REF type, or collection type and must implement the
interface or acl e.sql .ORADat a. The Oracle JPublisher utility can automatically
generate such custom Java classes.

Weakly typed representations use the class or acl e.sql .STRUCT (for objects),
or acl e.sql .REF (for references), or or acl e.sqgl .ARRAY (for collections).

Using JPublisher to Create Java Classes for JDBC and SQLJ Programs

Oracle lets you map Oracle object types, reference types, and collection types to
Java classes and preserve all the benefits of strong typing. You can:

4-14 Oracle Database Application Developer's Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Use JPublisher to automatically generate custom Java classes and use those
classes without any change.

Subclass the classes produced by JPublisher to create your own specialized Java
classes.

Manually code custom Java classes without using JPublisher if the classes meet
the requirements stated in the Oracle Database JPublisher User's Guide.

We recommend that you use JPublisher and subclass when the generated classes do
not do everything you need.

What JPublisher Produces for a User-Defined Object Type

When you run JPublisher for a user-defined object type, it automatically creates the
following:

A custom object class to act as a type definition to correspond to your Oracle
object type

This class includes getter and setter methods for each attribute. The method
names are of the form get Xxx() and set Xxx() for attribute xxx.

Also, you can optionally instruct JPublisher to generate wrapper methods in
your class that invoke the associated Oracle object methods executing in the
server.

A related custom reference class for object references to your Oracle object type

This class includes a get Val ue() method that returns an instance of your
custom object class, and a set Val ue() method that updates an object value in
the database, taking as input an instance of the custom object class.

When you run JPublisher for a user-defined collection type, it automatically creates
the following:

A custom collection class to act as a type definition to correspond to your
Oracle collection type

This class includes overloaded get Array() and set Array() methods to
retrieve or update a collection as a whole, a get El enent () method and
set El enent () method to retrieve or update individual elements of a
collection, and additional utility methods.

JPublisher-produced custom Java classes in any of these categories implement the
ORADat a interface and the get Fact or y() method.

Object Support in Oracle Programming Environments 4-15

Java; JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

See Also: The Oracle Database JPublisher User's Guide for more
information about using JPublisher.

Java Object Storage

JPublisher enables you to construct Java classes that map to existing SQL types. You
can then access the SQL types from a Java application using JDBC.

You can also go in the other direction. That is, you can create SQL types that map to
existing Java classes. This capability enables you to provide persistent storage for
Java objects. Such SQL types are called SQL types of Language Java, or SQLJ object
types. They can be used as the type of an object, an attribute, a column, or a row in
an object table. You can navigationally access objects of such types—Java
objects—through either object references or foreign keys, and you can query and
manipulate such objects from SQL.

You create SQLJ types with a CREATE TYPE statement as you do other user-defined
SQL types. For SQLJ types, two special elements are added to the CREATE TYPE
statement:

« An EXTERNAL NAME phrase, used to identify the Java counterpart for each SQLJ
attribute and method and the Java class corresponding to the SQLJ type itself

« A USI NGclause, to specify how the SQLJ type is to be represented to the server.
The USI NGclause specifies the interface used to retrieve a SQLJ type and the
kind of storage.

For example:

CREATE TYPE ful | _address AS OBJECT (a NUMBER);
/

CREATE OR REPLACE TYPE person_t AS OBJECT
EXTERNAL NAME ' Person' LANGUAGE JAVA
USI NG SQLDat a (
ss_no NUMBER (9) EXTERNAL NAME 'social SecurityNo',
name varchar (100) EXTERNAL NAME 'nane',
address full _address EXTERNAL NAME 'addrs',
birth_date date EXTERNAL NAME 'birthDate',
MEMBER FUNCTI ON age RETURN NUMBER EXTERNAL NAME 'age () return int',
MEMBER FUNCTI ON addressf RETURN ful | _address
EXTERNAL NAME ' get _address () return |ong_address',
STATI C function createf RETURN person_t EXTERNAL NAME 'create ()
return Person',
STATI C function createf (name VARCHAR2, addrs full_address, bDate DATE)
RETURN person_t EXTERNAL NAME 'create (java.lang.String, Long_address,

4-16 Oracle Database Application Developer's Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

oracle.sql.date) return Person',
ORDER nenber FUNCTI ON conpare (in_person person_t) RETURN NUMBER
EXTERNAL NAME 'isSane (Person) return int')
/

SQLJ types use the corresponding Java class as the body of the type; you do not
specify a type body in SQL to contain implementations of the type's methods as you
do with ordinary object types.

Representing SQLJ Types to the Server

How a SQLJ type is represented to the server and stored depends on the interfaces
implemented by the corresponding Java class. Currently, Oracle supports a
representation of SQLJ types only for Java classes that implement a SQLDat a or
ORADat a interface. These are represented to the server and are accessible through
SQL. A representation for Java classes that implement the

java.io. Serializabl e interface is not currently supported.

In a SQL representation, the attributes of the type are stored in columns like
attributes of ordinary object types. With this representation, all attributes are public
because objects are accessed and manipulated through SQL statements, but you can
use triggers and constraints to ensure the consistency of the object data.

For a SQL representation, the USI NG clause must specify either SQLDat a or
ORADat a, and the corresponding Java class must implement one of those interfaces.
The EXTERNAL NAME clause for attributes is optional.

Creating SQLJ Object Types

The SQL statements to create SQLJ types and specify their mappings to Java are
placed in a file called a deployment descriptor. Related SQL constraints and
privileges are also specified in this file. The types are created when the file is
executed.

Below is an overview of the process of creating SQL versions of Java types/classes:
Design the Java types.
Generate the Java classes.
Create the SQLJ object type statements.

1

2

3

4. Construct the JAR file. This is a single file that contains all the classes needed.
5. Using the | oadj ava utility, install the Java classes defined in the JAR file.

6

Execute the statements to create the SQLJ object types.

Object Support in Oracle Programming Environments 4-17

Java; JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Additional Notes About Mapping
The following are additional notes to consider when mapping of Java classes to SQL
types:

You can map a SQLJ static function to a user-defined constructor in the Java
class. The return value of this function is of the user-defined type in which the
function is locally defined.

Java static variables are mapped to SQLJ static methods that return the value of
the corresponding static variable identified by EXTERNAL NAME. The EXTERNAL
NANME clause for an attribute is optional with a SQLDat a or ORADat a
representation.

Every attribute in a SQLJ type of a SQL representation must map to a Java field,
but not every Java field must be mapped to a corresponding SQLJ attribute: you
can omit Java fields from the mapping.

You can omit classes: you can map a SQLJ type to a non-root class in a Java class
hierarchy without also mapping SQLJ types to the root class and intervening
superclasses. Doing this enables you to hide the superclasses while still
including attributes and methods inherited from them.

However, you must preserve the structural correspondence between nodes in a
class hierarchy and their counterparts in a SQLJ type hierarchy. In other words,
for two Java classesj _Aand|j _Bthat are related through inheritance and are
mapped to two SQL types s_Aand s_ B, respectively, there must be exactly one
corresponding node on the inheritance path froms_Ato s_B for each node on
the inheritance path fromj _Atoj _B.

You can map a Java class to multiple SQLJ types as long as you do not violate
the restriction in the preceding paragraph. In other words, no two SQLJ types
mapped to the same Java class can have a common supertype ancestor.

If all Java classes are not mapped to SQLJ types, it is possible that an attribute of
a SQLJ object type might be set to an object of an unmapped Java class.
Specifically, to a class occurring above or below the class to which the attribute
is mapped in an inheritance hierarchy. If the object's class is a superclass of the
attribute's type/class, an error is raised. If it is a subclass of the attribute's
type/class, the object is mapped to the most specific type in its hierarchy for
which a SQL mapping exists

See Also: The Oracle Database JPublisher User's Guide for
JPublisher examples of object mapping

4-18 Oracle Database Application Developer's Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Evolving SQLJ Types
The ALTER TYPE statement enables you to evolve a type by, for example, adding or
dropping attributes or methods.

When a SQLJ type is evolved, an additional validation is performed to check the
mapping between the class and the type. If the class and the evolved type match,
the type is marked valid. Otherwise, the type is marked as pending validation.

Being marked as pending validation is not the same as being marked invalid. A
type that is pending validation can still be manipulated with ALTER TYPE and
GRANT statements, for example.

If a type that has a SQL representation is marked as pending evaluation, you can
still access tables of that type using any DML or SELECT statement that does not
require a method invocation.

You cannot, however, execute DML or SELECT statements on tables of a type that
has a serializable representation and has been marked as pending validation. Data
of a serializable type can be accessed only navigationally, through method
invocations. These are not possible with a type that is pending validation. However,
you can still re-evolve the type until it passes validation.

See Also: "Type Evolution” on page 7-7

Constraints

For SQLJ types having a SQL representation, the same constraints can be defined as
for ordinary object types.

Constraints are defined on tables, not on types, and are defined at the column level.
The following constraints are supported for SQLJ types having a SQL
representation:

« Unique constraints

« Primary Key

« Check constraints

« NOT NULL constraints on attributes
« Referential constraints

The | S OF TYPE constraint on column substitutability is supported, too, for SQLJ
types having a SQL representation.

See Also: "Constraining Substitutability" on page 2-30

Object Support in Oracle Programming Environments 4-19

Java; JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types

Querying SQLJ Objects
SQLJ types can be queried just like ordinary SQL object types. Methods called in a
SELECT statement must not attempt to change attribute values.

Inserting Java Objects

Inserting a row in a table containing a column of a SQLJ type requires a call to the
type's constructor function to create a Java object of that type.

The implicit, system-generated constructor can be used, or a static function can be
defined that maps to a user-defined constructor in the Java class.

Updating SQLJ Objects

SQLJ objects can be updated either by using an UPDATE statement to modify the
value of one or more attributes, or by invoking a method that updates the attributes
and returns SELF—that is, returns the object itself with the changes made.

For example, suppose that r ai se() is a member function that increments the
sal ary field/attribute by a specified amount and returns SELF. The following
statement gives every employee in the object table enpl oyee_obj t ab a raise of
1000:

UPDATE enpl oyee_objtab SET c=c. raise(1000);

A column of a SQLJ type can be set to NULL or to another column using the same
syntax as for ordinary object types. For example, the following statement assigns
column d to column c:

UPDATE enpl oyee_reltab SET c=d ;

Defining User-Defined Constructors in Java

When you implement a user-defined constructor in Java, the string supplied as the
implementing routine must correspond to a static function. For the return type of
the function, specify the Java type mapped to the SQL type.

Here is an example of a type declaration that involves a user-defined constructor
implemented in Java:

CREATE OR REPLACE TYPE Personl_typ AS OBJECT
EXTERNAL NAME ' pkgl.J_peson' LANGUAGE JAVA USI NG SQL.Dat a
(name VARCHAR2(30),
age NUMBER,
CONSTRUCTOR FUNCTI ON Personl_typ(nane VARCHAR2, age NUMBER)
RETURN Personl_typ AS RESULT

4-20 Oracle Database Application Developer's Guide - Object-Relational Features

XML

XML

AS LANGUAGE JAVA
NAME ' pkgl. J_Person.J_Person(java.lang. String, int) return J_Person'

XM_Type views wrap existing relational and object-relational data in XML formats.
These views are similar to object views. Each row of an XML Type view corresponds
to an XM_Type instance. The object identifier for uniquely identifying each row in
the view can be created using an expression such as ext r act () on the XMLType
value.

See Also: Oracle XML DB Developer's Guide for information and
examples on using XML with Oracle objects

Object Support in Oracle Programming Environments 4-21

XML

4-22 Oracle Database Application Developer's Guide - Object-Relational Features

D

Applying an Object Model to Relational Data

This chapter shows how to write object-oriented applications without changing the
underlying structure of your relational data.

The chapter contains these topics:

« Why Use Object Views

« Defining Object Views

« Using Object Views in Applications

« Nesting Objects in Object Views

« ldentifying Null Objects in Object Views

« Using Nested Tables and Varrays in Object Views
« Specifying Object Identifiers for Object Views

« Creating References to View Objects

« Modelling Inverse Relationships with Object Views
« Updating Object Views

« Applying the Object Model to Remote Tables

« Defining Complex Relationships in Object Views

« Object View Hierarchies

Applying an Object Model to Relational Data 5-1

Why Use Object Views

Why Use Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in
the view is an object: you can call its methods, access its attributes using the dot
notation, and create a REF that points to it.

Object views are useful in prototyping or transitioning to object-oriented
applications because the data in the view can be taken from relational tables and
accessed as if the table were defined as an object table. You can run object-oriented
applications without converting existing tables to a different physical structure.

Object views can be used like relational views to present only the data that you
want users to see. For example, you might create an object view that presents
selected data from an employee table but omits sensitive data about salaries.

Using object views can lead to better performance. Relational data that make up a
row of an object view traverse the network as a unit, potentially saving many round
trips.

You can fetch relational data into the client-side object cache and map it into C
structures or C++ or Java classes, so 3GL applications can manipulate it just like
native classes. You can also use object-oriented features like complex object retrieval
with relational data.

« By synthesizing objects from relational data, you can query the data in new
ways. You can view data from multiple tables by using object de-referencing
instead of writing complex joins with multiple tables.

« Because the objects in the view are processed within the server, not on the
client, this can result in significantly fewer SQL statements and much less
network traffic.

« The object data from object views can be pinned and used in the client side
object cache. When you retrieve these synthesized objects in the object cache by
means of specialized object-retrieval mechanisms, you reduce network traffic.

= You gain great flexibility when you create an object model within a view in that
you can continue to develop the model. If you need to alter an object type, you
can simply replace the invalidated views with a new definition.

« Using objects in views does not place any restrictions on the characteristics of
the underlying storage mechanisms. By the same token, you are not limited by
the restrictions of current technology. For example, you can synthesize objects
from relational tables which are parallelized and partitioned.

= You can create different complex data models from the same underlying data.

5-2 Oracle Database Application Developer's Guide - Object-Relational Features

Defining Object Views

See Also:

» Oracle Database SQL Reference for a complete description of SQL
syntax and usage.

« PL/SQL User's Guide and Reference for a complete discussion of
PL/SQL capabilities

« Oracle Database Java Developer’s Guide for a complete discussion
of Java.

« Oracle Call Interface Programmer’s Guide for a complete
discussion of those facilities.

Defining Object Views
The procedure for defining an object view is:

1. Define an object type, where each attribute of the type corresponds to an
existing column in a relational table.

2. Write a query that specifies how to extract the data from relational tables.
Specify the columns in the same order as the attributes in the object type.

3. Specify a unique value, based on attributes of the underlying data, to serve as
an object identifier, which enables you to create pointers (REFs) to the objects in
the view. You can often use an existing primary key.

If you want to be able to update an object view, you may have to take another step,
if the attributes of the object type do not correspond exactly to columns in existing
tables:

4. Write an | NSTEAD OF trigger procedure for Oracle to execute whenever an
application program tries to update data in the object view. See "Updating
Object Views" on page 5-12.

After these steps, you can use an object view just like an object table.

For example, the following SQL statements define an object view, where each row
in the view is an object of type enpl oyee _t:

CREATE TABLE enp_tabl e (
enpnum NUMBER (5),
enare VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));

Applying an Object Model to Relational Data 5-3

Using Object Views in Applications

CREATE TYPE enpl oyee_t AS OBJECT (
enpno NUMBER (5),
enane VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));
/

CREATE VI EWenp_viewl OF enpl oyee_t
W TH OBJECT | DENTI FI ER (enpno) AS
SELECT e.enpnum e.ename, e.salary, e.job
FROM enp_table e
VWHERE j ob = ' Devel oper';

To access the data from the enpnumcolumn of the relational table, you would
access the enpno attribute of the object type.

Using Object Views in Applications

Data in the rows of an object view may come from more than one table, but the
object still traverses the network in one operation. The instance appears in the client
side object cache as a C or C++ structure or as a PL/SQL object variable. You can
manipulate it like any other native structure.

You can refer to object views in SQL statements in the same way you refer to an
object table. For example, object views can appear in a SELECT list, in an
UPDATE- SET clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use
for objects from object tables. For example, you can use OCl Obj ect Pi n() for
pinning a REF and OCl Obj ect FI ush() for flushing an object to the server. When
you update or flush to the server an object in an object view, Oracle updates the
object view.

See Also: See Oracle Call Interface Programmer's Guide for more
information about OCI calls.

Nesting Objects in Object Views
An object type can have other object types nested in it as attributes.

If the object type on which an object view is based has an attribute that itself is an
object type, then you must provide column objects for this attribute as part of the

5-4 Oracle Database Application Developer's Guide - Object-Relational Features

Nesting Objects in Object Views

process of creating the object view. If column objects of the attribute type already
exist in a relational table, you can simply select them; otherwise, you must
synthesize the object instances from underlying relational data just as you
synthesize the principal object instances of the view. You synthesize, or create, these
objects by calling the respective object type's constructor method to create the object
instances, and you populate their attributes with data from relational columns that
you specify in the constructor.

For example, consider the department table dept :

CREATE TABLE dept (
dept no NUMBER PRI MARY KEY,
dept nane VARCHAR2(20) ,
deptstreet VARCHAR2(20),
deptcity VARCHAR2(10) ,
deptstate CHAR(2) ,
dept zip VARCHAR2(10)) ;

You might want to create an object view where the addresses are objects inside the
department objects. That would allow you to define reusable methods for address
objects, and use them for all kinds of addresses.

1. Create the type for the address object:

CREATE TYPE address_t AS OBJECT (
street VARCHAR2(20),
city VARCHAR2(10),
state CHAR(2),
zip VARCHAR2(10)) ;
/
2. Create the type for the department object:

CREATE TYPE dept _t AS OBJECT (
dept no NUMBER,
deptname VARCHAR2(20),
addr ess address_t);
/
3. Create the view containing the department number, name and address. The
addr ess objects are constructed from columns of the relational table.

CREATE VI EW dept _vi ew OF dept _t W TH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d. deptnane,
address_t (d.deptstreet,d.deptcity, d. deptstate,d.deptzip) AS
dept addr
FROM dept d;

Applying an Object Model to Relational Data 5-5

Identifying Null Objects in Object Views

Identifying Null Objects in Object Views

Because the constructor for an object never returns a null, none of the address
objects in the preceding view can ever be null, even if the city, street, and so on
columns in the relational table are all null. The relational table has no column that
specifies whether the department address is null. If we define a convention so that a
null dept st r eet column indicates that the whole address is null, then we can
capture the logic using the DECODE function, or some other function, to return
either a null or the constructed object:

CREATE VI EW dept _vi ew AS
SELECT d. dept no, d.deptnane,
DECODE(d. dept street, NULL, NULL,
address_t (d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS deptaddr
FROM dept d;

Using such a technique makes it impossible to directly update the department
address through the view, because it does not correspond directly to a column in the
relational table. Instead, we would define an | NSTEAD OF trigger over the view to
handle updates to this column.

Using Nested Tables and Varrays in Object Views

Collections, both nested tables and VARRAYS, can be columns in views. You can
select these collections from underlying collection columns or you can synthesize
them using subqueries. The CAST- MULTI SET operator provides a way of
synthesizing such collections.

Single-Level Collections in Object Views

Taking the previous example as our starting point, we represent each employee in
an enp relational table that has the following structure:

CREATE TABLE enp (
enpno NUMBER PRI MARY KEY,
empnane VARCHAR2(20),
salary NUMBER,
job VARCHAR?2 (20),
deptno NUMBER REFERENCES dept (dept no));

Using this relational table, we can construct a dept _vi ewwith the department
number, name, address and a collection of employees belonging to the department.

1. Define a nested table type for the employee type enpl oyee _t:

5-6 Oracle Database Application Developer's Guide - Object-Relational Features

Using Nested Tables and Varrays in Object Views

CREATE TYPE enpl oyee_list_t AS TABLE OF enpl oyee_t;
/

2. Define a department type having a department number, name, address, and a
nested table of employees:

CREATE TYPE dept _t AS OBJECT (
dept no NUMBER,
deptname VARCHAR2(20),
address address_t,
enp_list enployee_list_t);
/
3. Define the object view dept _vi ew.

CREATE VI EW dept _view OF dept _t W TH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d. deptnane,
address_t (d.deptstreet,d.deptcity, d. deptstate,d.deptzip) AS deptaddr,
CAST(MULTI SET (
SELECT e. enpno, e.enpnane, e.salary, e.job
FROM enp e
VHERE e. deptno = d. dept no)
AS enpl oyee_list _t)
AS enp_list
FROM dept d;

The SELECT subquery inside the CAST- MULTI SET block selects the list of
employees that belong to the current department. The MULTI SET keyword
indicates that this is a list as opposed to a singleton value. The CAST operator casts
the result set into the appropriate type, in this case to the enpl oyee | i st _t
nested table type.

A query on this view could give us the list of departments, with each department
row containing the department number, name, the address object and a collection of
employees belonging to the department.

Multilevel Collections in Object Views

Multilevel collections and single-level collections are created and used in object
views in the same way. The only difference is that, for a multilevel collection, you
must create an additional level of collections.

The following example builds an object view containing a multilevel collection. The
view is based on flat relational tables (that contain no collections). As a preliminary
to building the object view, the example creates the object and collection types it
uses. An object type (for example, enp_t) is defined to correspond to each
relational table, with attributes whose types correspond to the types of the

Applying an Object Model to Relational Data 5-7

Using Nested Tables and Varrays in Object Views

respective table columns. In addition, the employee type has a nested table
(attribute) of projects, and the department type has a nested table (attribute) of
employees. The latter nested table is a multilevel collection. The CAST- MULTI SET
operator is used in the CREATE VI EWstatement to build the collections.

These are the underlying relational tables:

CREATE TABLE depts
(deptno NUMBER,
deptname VARCHAR2(20));

CREATE TABLE enps
(ename VARCHAR2(20),
sal ary NUVBER,
deptnanme VARCHAR2(20));

CREATE TABLE proj ects
(projname VARCHAR2(20)
mgr VARCHAR2(20)) ;

These are the object and collection types the view will use:

CREATE TYPE project _t AS OBJECT
(projname VARCHAR2(20),
myr VARCHAR2(20)) ;
/
CREATE TYPE nt _project _t AS TABLE OF project_t;
/
CREATE TYPE enp_t AS OBJECT
(enane VARCHAR2(20) ,
sal ary NUMBER,
deptname VARCHAR2(20),
projects nt_project_t);
/
CREATE TYPE nt_enp_t AS TABLE OF enp_t:
/
CREATE TYPE depts_t AS OBJECT
(deptno NUMBER,
deptnane VARCHAR2(20),
enps nt_enmp_t);
/
The following statement creates the object view:

CREATE VIEWv_depts OF depts_t W TH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d.deptnane,
CAST(MULTI SET(SELECT e. enane, e.salary, e.deptnane,

5-8 Oracle Database Application Developer's Guide - Object-Relational Features

Specifying Object Identifiers for Object Views

CAST(MULT! SET(SELECT p. proj name, p. ngr
FROM proj ects p
VHERE p. ngr = e. enane)
AS nt_project_t)
FROM enps e
VHERE e. dept name = d. dept nane)
AS nt _enp_t)
FROM dept s d;

Specifying Object Identifiers for Object Views

You can construct pointers (REFs) to the row objects in an object view. Because the
view data is not stored persistently, you must specify a set of distinct values to be
used as object identifiers. The notion of object identifiers allows the objects in object
views to be referenced and pinned in the object cache.

If the view is based on an object table or an object view, then there is already an
object identifier associated with each row and you can reuse them. Either omit the
W THOBJECT | DENTI FI ER clause, or specify W THOBJECT | DENTI FI ER
DEFAULT.

However, if the row object is synthesized from relational data, you must choose
some other set of values.

Oracle lets you specify object identifiers based on the primary key. The set of unique
keys that identify the row object is turned into an identifier for the object. These
values must be unique within the rows selected out of the view, because duplicates
would lead to problems during navigation through object references.

The object view created with the W TH OBJECT | DENTI FI ER clause has an object
identifier derived from the primary key. If the W THOBJECT | DENTI FI ER
DEFAULT clause is specified, the object identifier is either system generated or
primary key based, depending on the underlying table or view definition.

For example, note the definition of the object type dept _t and the object view
dept _vi ewdescribed in "Single-Level Collections in Object Views" on page 5-6.

Because the underlying relational table has dept no as the primary key, each
department row has a unique department number. In the view, the dept no column
becomes the dept no attribute of the object type. Once we know that dept no is
unique within the view objects, we can specify it as the object identifier.

See Also: "Storage Considerations for Object Identifiers (OIDs)"
on page 8-6

Applying an Object Model to Relational Data 5-9

Creating References to View Objects

Creating References to View Objects

In the example we have been developing, each object selected out of the dept _

Vi ewview has a unique object identifier derived from the department number
value. In the relational case, the foreign key dept no in the enp employee table
matches the dept no primary key value in the dept department table. We used the
primary key value for creating the object identifier in the dept _vi ew. This allows
us to use the foreign key value in the enp_vi ewin creating a reference to the
primary key value in dept _vi ew.

We accomplish this by using MAKE _REF operator to synthesize a primary key object
reference. This takes the view or table name to which the reference points and a list
of foreign key values to create the object identifier portion of the reference that will
match with a particular object in the referenced view.

In order to create an enp_vi ewview which has the employee's number, name,
salary and a reference to the department in which she works, we need first to create
the employee type enp_t and then the view based on that type

CREATE TYPE enp_t AS OBJECT (
enpno NUMBER,
enane VARCHAR2(20) ,
salary NUMBER,
deptref REF dept_t);
/
CREATE OR REPLACE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(enpno)
AS SELECT e. enpno, e.enpname, e.salary,
MAKE_REF(dept _vi ew, e. deptno)
FROM enp e;

The dept r ef column in the view holds the department reference. We write the
following simple query to determine all employees whose department is located in
the city of San Francisco:

SELECT e.eno, e.salary, e.deptref.deptno
FROM enp_vi ew e
VWHERE e. deptref.address.city = 'San Francisco';

Note that we could also have used the REF modifier to get the reference to the dept_
view objects:

CREATE OR REPLACE VIEWenp_view OF enp_t W TH OBJECT | DENTI FI ER(enpno)
AS SELECT e.enpno, e.enpname, e.salary, REF(d)
FROM enp e, dept_view d
VHERE e. deptno = d. dept no;

5-10 Oracle Database Application Developer's Guide - Object-Relational Features

Modelling Inverse Relationships with Object Views

In this case we join the dept _vi ewand the enp table on the dept no key. The
advantage of using MAKE REF operator instead of the REF modifier is that in using
the former, we can create circular references. For example, we can create employee
view to have a reference to the department in which she works, and the department
view can have a list of references to the employees who work in that department.

Note that if the object view has a primary key based object identifier, the reference
to such a view is primary key based. On the other hand, a reference to a view with
system generated object identifier will be a system generated object reference. This
difference is only relevant when you create object instances in the OCI object cache
and need to get the reference to the newly created objects. This is explained in a
later section.

As with synthesized objects, we can also select persistently stored references as
view columns and use them seamlessly in queries. However, the object references to
view objects cannot be stored persistently.

Modelling Inverse Relationships with Object Views

Views with objects can be used to model inverse relationships.

One-to-One Relationships

One-to-one relationships can be modeled with inverse object references. For
example, let us say that each employee has a particular computer on her desk, and
that the computer belongs to that employee only. A relational model would capture
this using foreign keys either from the computer table to the employee table, or in
the reverse direction. Using views, we can model the objects so that we have an
object reference from the employee to the computer object and also have a reference
from the computer object to the employee.

One-to-Many and Many-to-One Relationships

One-to-many relationships (or many-to-many relationships) can be modeled either
by using object references or by embedding the objects. One-to-many relationship
can be modeled by having a collection of objects or object references. The
many-to-one side of the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, we
have the foreign key in the employee table. Using collections in views, we can
model the relationship between departments and employees. The department view
can have a collection of employees, and the employee view can have a reference to
the department (or inline the department values). This gives us both the forward

Applying an Object Model to Relational Data 5-11

Updating Object Views

relation (from employee to department) and the inverse relation (department to list
of employees). The department view can also have a collection of references to
employee objects instead of embedding the employee objects.

Updating Object Views

You can update, insert, and delete data in an object view using the same SQL DML
you use for object tables. Oracle updates the base tables of the object view if there is
no ambiguity.

A view is not directly updatable if its view query contains joins, set operators,
aggregate functions, or GROUP BY or DI STI NCT clauses. Also, individual columns
of a view are not directly updatable if they are based on pseudocolumns or
expression in the view query.

If a view is not directly updatable, you can still update it indirectly using

| NSTEAD OF triggers. To do so, you define an | NSTEAD OF trigger for each kind of
DML statement you want to execute on the view. In the | NSTEAD OF trigger, you
code the operations that must take place on the underlying tables of the view to
accomplish the desired change in the view. Then, when you issue a DML statement
for which you have defined an | NSTEAD COF trigger, Oracle transparently runs the
associated trigger.

See Also: "Using INSTEAD OF Triggers to Control Mutating and
Validation" on page 5-13 for an example of an | NSTEAD OF trigger

Something you want to be careful of: In an object view hierarchy, UPDATE and
DELETE statements operate polymorphically just as SELECT statements do: the set
of rows picked out by an UPDATE or DELETE statement on a view implicitly
includes qualifying rows in any subviews of the specified view as well. See "Object
View Hierarchies" on page 5-19 for a discussion of object view hierarchy and
examples defining St udent _v and Employee_v.

For example, the following statement, which deletes all persons from Per son_v,
also deletes all students from St udent _v and all employees from the Enpl oyee v
view.

DELETE FROM Person_v;
To exclude subviews and restrict the affected rows just to those in the view actually

specified, use the ONLY keyword. For example, the following statement updates
only persons and not employees or students.

UPDATE ONLY(Person_v) SET address = ...

5-12 Oracle Database Application Developer's Guide - Object-Relational Features

Updating Object Views

Updating Nested Table Columns in Views

A nested table can be modified by inserting new elements and updating or deleting
existing elements. Nested table columns that are virtual or synthesized, as in a view,
are not usually updatable. To overcome this, Oracle allows | NSTEAD OF triggers to
be created on these columns.

The | NSTEAD OF trigger defined on a nested table column (of a view) is fired when
the column is modified. Note that if the entire collection is replaced (by an update of
the parent row), the | NSTEAD COF trigger on the nested table column is not fired.

Using INSTEAD OF Triggers to Control Mutating and Validation

| NSTEAD OF triggers provide a way of updating complex views that otherwise
could not be updated. They can also be used to enforce constraints, check privileges
and validate the DML. Using these triggers, you can control mutation of the objects
created though an object view that might be caused by inserting, updating and
deleting.

For instance, suppose we wanted to enforce the condition that the number of
employees in a department cannot exceed 10. To enforce this, we can write an

| NSTEAD OF trigger for the employee view. The trigger is not needed for doing the
DML because the view can be updated, but we need it to enforce the constraint.

We implement the trigger by means of the following code:

CREATE TRI GGER enp_instr | NSTEAD OF | NSERT on enp_vi ew
FOR EACH ROW
DECLARE
dept _var dept _t;
enp_count i nteger;
BEG N
- Enforce the constraint
- First get the departnent number fromthe reference
UTL_REF. SELECT_OBJECT(: NEW deptref, dept_var);

SELECT COUNT(*) INTO enp_count

FROM enp
WHERE deptno = dept _var. dept no;
I F emp_count < 9 THEN

- Do the insert
| NSERT | NTO enp (enpno, enpnane, salary, deptno)
VALUES (: NEW enpno, :NEWename, :NEWsalary, dept_var.deptno);
END I F;
END;

Applying an Object Model to Relational Data 5-13

Applying the Object Model to Remote Tables

Applying the Object Model to Remote Tables

Although you cannot directly access remote tables as object tables, object views let
you access remote tables as if they were object tables.

Consider a company with two branches — one in Washington D.C., and another in
Chicago. Each site has an employee table. The headquarters in Washington has a
department table with the list of all the departments. To get a total view of the entire
organization, we can create views over the individual remote tables and then a
overall view of the organization.

First, we create an object view for each employee table:

CREATE VI EW enp_washi ngt on_vi ew (eno, enare, sal ary)
AS SELECT e. enpno, e.enpnane, e.salary
FROM emp@ashi ngton_link e;

CREATE VI EW enp_chi cago_vi ew
AS SELECT e.eno, e.name, e.salary
FROM enp_tab@hicago_link e;

We can now create the global view:

CREATE VI EWorgnzn_view OF dept_t WTH OBJECT | DENTI FIER (dno)
AS SELECT d. deptno, d.deptnane,
address_t (d.deptstreet,d.deptcity,d. deptstate,d. deptzip),
CAST(MULTI SET (
SELECT e.eno, e.ename, e.salary
FROM enp_washi ngt on_vi ew e)
AS enpl oyee_list_t)

FROM dept d
VHERE d. deptcity = 'Washi ngt on’'
UNI ON ALL

SELECT d. dept no, d. deptnane,
address_t(d.deptstreet,d.deptcity, d. deptstate,d. deptzip),
CAST(MULTI SET (
SELECT e.eno, e.nane, e.salary
FROM enp_chi cago_vi ew e)
AS enpl oyee_list _t)
FROM dept d
VWHERE d. deptcity = 'Chicago';

This view has the list of all employees for each department. We use UNI ONALL
because we cannot have two employees working in more than one department.

5-14 Oracle Database Application Developer's Guide - Object-Relational Features

Defining Complex Relationships in Object Views

Defining Complex Relationships in Object Views

You can define circular references in object views using the MAKE_REF operator:
vi ew_Acan refer to vi ew_B which in turn can refer to vi ew_A. This allows an
object view to synthesize a complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object
currently includes a list of employees. To conserve space, we may want to put
references to the employee objects inside the department object, instead of
materializing all the employees within the department object. We can construct
(pin) the references to employee objects, and later follow the references using the
dot notation to extract employee information.

Because the employee object already has a reference to the department in which the
employee works, an object view over this model contains circular references
between the department view and the employee view.

You can create circular references between object views in two different ways:
« Method 1: Re-create First View After Creating Second View

1. Create view A without any reference to view B.

2. Create view B, which includes a reference to view A.

3. Replace view A with a new definition that includes the reference to view B.
« Method 2: Create First View Using FORCE Keyword

1. Create view A with the reference to view B using the FORCE keyword.

2. Create view B with reference to view A. When view A is used, it is
validated and re-compiled.

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view
creation. You need to query the USER_ERRORS catalog view to see if there were any
errors during the view creation. Use this method only if you are sure that there are
no errors in the view creation statement.

Also, if errors prevent the views from being recompiled upon use, you must
recompile them manually using the ALTER VI EWCOWPI LE command.

We will see the implementation for both the methods.

Applying an Object Model to Relational Data 5-15

Defining Complex Relationships in Object Views

Tables and Types to Demonstrate Circular View References

First, we set up some relational tables and associated object types. Although the
tables contain some objects, they are not object tables. To access the data objects, we
will create object views later.

The enp table stores the employee information:

CREATE TABLE enp

(empno NUMBER PRI MARY KEY,
empnane VARCHAR2(20),
salary NUMBER,
deptno NUMBER);

The emp_t type contains a reference to the department. We need a dummy
department type so that the emp_t type creation succeeds.

CREATE TYPE dept _t;

/

The employee type includes a reference to the department:

CREATE TYPE enp_t AS OBJECT
(eno NUMBER,
ename VARCHAR2(20),
salary NUMBER
deptref REF dept_t);
/

We represent the list of references to employees as a nested table:
CREATE TYPE enpl oyee_list_ref _t AS TABLE OF REF enp_t;

/

The department table is a typical relational table:

CREATE TABLE dept

(deptno NUMBER PRI MARY KEY,
dept nane VARCHAR2(20) ,
dept street VARCHAR2(20) ,
deptcity VARCHAR2(10) ,
deptstate CHAR(2),
dept zip VARCHAR2(10));

To create object views, we need object types that map to columns from the relational
tables:

5-16 Oracle Database Application Developer's Guide - Object-Relational Features

Defining Complex Relationships in Object Views

CREATE TYPE address_t AS OBJECT

(street VARCHAR2(20) ,
city VARCHAR2(10) ,
state CHAR(2),
zip VARCHAR2(10)) ;

/

We earlier created an incomplete type; now we fill in its definition:
CREATE OR REPLACE TYPE dept _t AS OBJECT

(dno NUMBER,
dnanme VARCHAR2(20) ,
dept addr address_t,

enpreflist enpl oyee_list_ref_t);

Creating Object Views with Circular References

Now that we have the underlying relational table definitions, we create the object
views on top of them.

Method 1: Re-create First View After Creating Second View

We first create the employee view with a null in the dept r ef column. Later, we
will turn that column into a reference.

CREATE VI EW enp_vi ew OF enp_t W TH OBJECT | DENTI FI ER(eno)
AS SELECT e. enpno, e.enpname, e.salary, NULL
FROM enp e;

Next, we create the department view, which includes references to the employee
objects.

CREATE VI EW dept _vi ew OF dept _t W TH OBJECT | DENTI FI ER(dno)
AS SELECT d. deptno, d.deptnane,
address_t(d.deptstreet,d. deptcity, d. deptstate,d. deptzip),
CAST(MULTI SET (
SELECT MAKE_REF(enp_vi ew, e.enmpno)
FROM enp e
VWHERE e. deptno = d. dept no)
AS enmpl oyee_list _ref _t)
FROM dept d;

Applying an Object Model to Relational Data 5-17

Defining Complex Relationships in Object Views

We create a list of references to employee objects, instead of including the entire
employee object. WWe now re-create the employee view with the reference to the
department view.

CREATE OR REPLACE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(eno)
AS SELECT e. enpno, e.enpname, e.salary,
MAKE_REF(dept _vi ew, e. deptno)
FROM enp e;

This creates the views.

Method 2: Create First View Using FORCE Keyword

If we are sure that the view creation statement has no syntax errors, we can use the
FORCE keyword to force the creation of the first view without the other view being
present.

First, we create an employee view that includes a reference to the department view,
which does not exist at this point. This view cannot be queried until the department
view is created properly.

CREATE OR REPLACE FORCE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(eno)
AS SELECT e. enpno, e.enpnane, e.salary,
MAKE_REF(dept _vi ew, e. deptno)
FROM enp e;

Next, we create a department view that includes references to the employee objects.
We do not have to use the FORCE keyword here, because enp_vi ewalready exists.

CREATE OR REPLACE VI EW dept _vi ew OF dept _t W TH OBJECT | DENTI FI ER(dno)
AS SELECT d. deptno, d.deptnane,
address_t (d. deptstreet, d.deptcity, d. deptstate,d. deptzip),
CAST(MULTI SET (
SELECT MAKE_REF(enp_vi ew, e.enpno)
FROM enp e
VHERE e. deptno = d. dept no)
AS enpl oyee_list _ref_t)
FROM dept d;

This allows us to query the department view, getting the employee object by
de-referencing the employee reference from the nested table enprefli st:

SELECT DEREF(e. COLUMN_VALUE)
FROM TABLE(SELECT e.enpreflist FROM dept_view e WHERE e. dno = 100) e;

5-18 Oracle Database Application Developer's Guide - Object-Relational Features

Object View Hierarchies

COLUMN_VALUE is a special name that represents the scalar value in a scalar nested
table. In this case, COLUVMN_VALUE denotes the reference to the employee objects in
the nested table enprefli st.

We can also access only the employee number of all those employees whose hame
begins with John.

SELECT e. COLUMN_VALUE. eno
FROM TABLE(SELECT e. enpreflist FROM dept _view e WHERE e. dno = 100) e
VWHERE e. COLUWN_VALUE. enane |ike 'John%;

To get a tabular output, unnest the list of references by joining the department table
with the items in its nested table:

SELECT d. dno, e. COLUMN_VALUE. eno, e. COLUMN_VALUE. enane
FROM dept _view d, TABLE(d.enpreflist) e

VWHERE e. COLUMN _VALUE. enane |ike 'John%
AND d. dno = 100;

Finally, we can rewrite the preceding query to use the enp_vi ewinstead of the
dept _vi ewto show how you can navigate from one view to the other:

SELECT e. deptref.dno, DEREF(f.COLUWN VALUE)

FROM enp_vi ew e, TABLE(e. deptref.enpreflist) f
VWHERE e. deptref.dno = 100

AND f. COLUWN _VALUE. enane |ike 'John%;

Object View Hierarchies

An object view hierarchy is a set of object views each of which is based on a
different type in a type hierarchy. Subviews in a view hierarchy are created under a
superview, analogously to the way subtypes in a type hierarchy are created under a
supertype.

Each object view in a view hierarchy is populated with objects of a single type, but
gueries on a given view implicitly address its subviews as well. Thus an object view
hierarchy gives you a simple way to frame queries that can return a polymorphic
set of objects of a given level of specialization or greater.

For example, suppose you have the following type hierarchy, with per son_t yp as
the root:

Applying an Object Model to Relational Data 5-19

Object View Hierarchies

Figure 5-1 Object View Hierarchy

Person_typ

T

1 |
Student _typ Enpl oyee_typ

1

Par Ti meSt udent _typ

If you have created an object view hierarchy based on this type hierarchy, with an
object view built on each type, you can query the object view that corresponds to
the level of specialization you are interested in. For instance, you can query the
view of st udent _t yp to get a result set that contains only students, including
part-time students.

You can base the root view of an object view hierarchy on any type in a type
hierarchy: you do not need to start the object view hierarchy at the root type. Nor
do you need to extend an object view hierarchy to every leaf of a type hierarchy or
cover every branch. However, you cannot skip intervening subtypes in the line of
descent. Any subview must be based on a direct subtype of the type of its direct
superview.

Just as a type can have multiple sibling subtypes, an object view can have multiple
sibling subviews. But a subview based on a given type can participate in only one
object view hierarchy: two different object view hierarchies cannot each have a
subview based on the same subtype.

A subview inherits the object identifier (OID) from its superview. An OID cannot be
explicitly specified in any subview.

A root view can explicitly specify an object identifier using the W TH OBJECT 1D
clause. If the OID is system-generated or the clause is not specified in the root view,
then subviews can be created only if the root view is based on a table or view that
also uses a system generated OID.

The query underlying a view determines whether the view is updatable. For a view
to be updatable, its query must contain no joins, set operators, aggregate functions,
GROUP BY, DI STI NCT, pseudocolumns, or expressions. The same applies to
subviews.

5-20 Oracle Database Application Developer's Guide - Object-Relational Features

Object View Hierarchies

If a view is not updatable, you can define | NSTEAD OF triggers to perform
appropriate DML actions. Note that | NSTEAD OF triggers are not inherited by
subviews.

All views in a view hierarchy must be in the same schema.

Note: You can create views of types that are non-instantiable. A
non-instantiable type cannot have instances, so ordinarily there
would be no point in creating an object view of such a type.
However, a non-instantiable type can have subtypes that are
instantiable. The ability to create object views of non-instantiable
types enables you to base an object view hierarchy on a type
hierarchy that contains a non-instantiable type.

Creating an Object View Hierarchy

You build an object view hierarchy by creating subviews under a root view. You do
this by using the UNDER keyword in the CREATE VI EWstatement.

CREATE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT ssn, nane, address, deptid, ngjor
FROM Al | Per sons
VWHERE typeid = 2;

The same object view hierarchy can be based on different underlying storage
models. In other words, a variety of layouts or designs of underlying tables can
produce the same object view hierarchy. The design of the underlying storage
model has implications for the performance and updatability of the object view
hierarchy.

The following examples show three possible storage models. In the first, a flat
model, all views in the object view hierarchy are based on the same table. In the
second, a horizontal model, each view has a one-to-one correspondence with a
different table. And in the third, a vertical model, the views are constructed using
joins.

The Flat Model

In the flat model, all the views in the hierarchy are based on the same table. In the
following example, the single table Al | Per sons contains columns for all the
attributes of per son_t yp, student _typ, orenpl oyee_typ.

Applying an Object Model to Relational Data 5-21

Object View Hierarchies

Figure 5-2 Flat Storage Model for Object View Hierarchy

Table AllPersons

1,

TYPEID

2,0r3

Person attributes (columns)

Student attributes

Employee attributes

View Person_v

I

Person attributes

View Student_v

Person attributes

Student attributes

View Employee_v

Person attributes

Employee attributes

CREATE TABLE Al | Persons

(t
s
n

ypei d NUMBER(1),
sn NUMBER
ane VARCHAR2(30),

address VARCHAR2(100),

d

eptid NUMBER,

maj or VARCHAR2(30),

e

npi d NUVBER,

mgr VARCHAR2(30)) ;

The t ypei d column identifies the type of each row. Possible values are:

1 =
2 =
3

person_typ
student _typ

enpl oyee_typ

CREATE TYPE person_typ AS OBJECT

(s
n

addr ess VARCHAR2(100)) NOT FI NAL;

/

sn NUVBER,
ame VARCHAR2(30),

CREATE TYPE student _typ UNDER person_typ

(d

eptid NUMBER

maj or VARCHAR2(30)) NOT FI NAL;

5-22 Oracle Database Application Developer's Guide - Object-Relational Features

Object View Hierarchies

/

CREATE TYPE enpl oyee_typ UNDER person_typ
(enpid NUMBER,

mgr VARCHAR2(30)) ;
/

The following statements create the views that make up the object view hierarchy:

CREATE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS
SELECT ssn, nane, address
FROM Al | Per sons
VWHERE typeid = 1;

CREATE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT ssn, nane, address, deptid, ngjor
FROM Al | Per sons
VWHERE typeid = 2;

CREATE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT ssn, name, address, enpid, ngr
FROM Al | Per sons
WHERE typeid = 3;

The flat model has the advantage of simplicity and poses no obstacles to supporting
indexes and constraints. Its drawbacks are:

« Asingle table cannot contain more than 1000 columns, so the flat model
imposes a 1000-column limit on the total number of columns that the object
view hierarchy can contain.

« Each row of the table will have NULLs for all the attributes not belonging to its
type. Such non-trailing NULLs can adversely affect performance.

The Horizontal Model

On the horizontal model, each view or subview is based on a different table. In the
example, the tables are relational, but they could just as well be object tables for
which column substitutability is turned off.

Applying an Object Model to Relational Data 5-23

Object View Hierarchies

Figure 5-3 Horizontal Storage Model for Object View Hierarchy

Table only_person

Person attributes

>

Table only_students

View Person_v

Person attributes

View Student_v

Person attributes

Student attributes >

Person attributes

Student attributes

Table only_employees

View Employee_v

Person attributes

Employee attributes [y

Person attributes

Employee attributes

CREATE TABLE onl y_persons

(

ssn NUMBER,
name VARCHAR2(30),
address VARCHAR2(100));

CREATE TABLE only_students

(

ssn NUMBER,

name VARCHAR2(30),
address VARCHAR2(100),
deptid NUMBER,

maj or VARCHAR2(30));

CREATE TABLE onl y_enpl oyees

(

ssn NUMBER,

name VARCHAR2(30),
address VARCHAR2(100),
enpi d NUMBER,

mgr VARCHAR2(30)) ;

These are the views:

CREATE OR REPLACE VI EW Person_v OF person_typ

W TH OBJECT O D(ssn) AS
SELECT *
FROM onl y_per sons

CREATE OR REPLACE VI EW Student _v OF student _typ UNDER Person_v

5-24 Oracle Database Application Developer's Guide - Object-Relational Features

AS
SELECT *
FROM onl y_st udent s;

Object View Hierarchies

CREATE OR REPI ACE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT *
FROM onl y_enpl oyees;

The horizontal model is very efficient at processing queries of the form:

SELECT VALUE(p) FROM Person_v p
WHERE VALUE(p) IS OF (ONLY student_typ);

Such queries need access only a single physical table to get all the objects of the
specific type. The drawbacks of this model are that queries of the sort SELECT *
FROM view require performing a UNI ON over all the underlying tables and
projecting the rows over just the columns in the specified view. (See "Querying a
View in a Hierarchy" on page 5-26.) Also, indexes on attributes (and unique
constraints) must span multiple tables, and support for this does not currently exist.

The Vertical Model

In the vertical model, there is a physical table corresponding to each view in the
hierarchy, but each physical table stores only those attributes that are unique to its
corresponding subtype.

Figure 5-4 \Vertical Storage Model for Object View Hierarchy
Table all_personattrs View Person_v

typeid Person attributes:
1,2, 0r 3 | ssn, name, address

Person attributes

4

Table all_studentattrs View Student_v
Student attributes: ’ .
snn deptid, major Person attributes Student attributes
Table all_employeeattrs View Employee_v
Employee attributes: . .
snn empid, mgr Person attributes Employee attributes

A

Applying an Object Model to Relational Data 5-25

Object View Hierarchies

CREATE TABLE al | _personattrs
(typeid NUMBER

ssn NUMBER,

name VARCHAR2(30),

address VARCHAR2(100));

CREATE TABLE al | _studentattrs
(ssn NUMBER,

deptid NUMBER,

maj or VARCHAR2(30));

CREATE TABLE al | _enpl oyeeattrs
(ssn NUMBER,

enpi d NUMBER

mgr VARCHAR2(30)) ;

CREATE OR REPLACE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS

SELECT ssn, nane, address

FROM al | _personattrs

VWHERE typeid = 1;

CREATE OR REPLACE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT x.ssn, x.nane, Xx.address, y.deptid, y.ngjor
FROM al | _personattrs x, all_studentattrs y
VWHERE x.typeid = 2 AND x.ssn = y.ssh;

CREATE OR REPLACE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT x.ssn, x.nane, Xx.address, y.enpid, y.ngr
FROM al | _personattrs x, all_enployeeattrs y
VWHERE x.typeid = 3 AND x.ssn = y.ssn;

The vertical model can efficiently process queries of the kind SELECT * FROM
root_view, and it is possible to index individual attributes and impose unique
contraints on them. However, to re-create an instance of a type, a join over OIDs
must be performed for each level that the type is removed from the root in the
hierarchy.

Querying a View in a Hierarchy

You can query any view or subview in an object view hierarchy; rows are returned
for the declared type of the view that you query and for any of that type's subtypes.

5-26 Oracle Database Application Developer's Guide - Object-Relational Features

Object View Hierarchies

So, for instance, in an object view hierarchy based on the per son_t yp type
hierarchy, you can query the view of per son_t yp to get a result set that contains
all persons, including students and employees; or you can query the view of

st udent _t yp to get a result set that contains only students, including part-time
students.

In the SELECT list of a query, you can include either functions such as REF() and
VALUE() that return an object instance, or you can specify object attributes of the
view's declared type, such as the nane and ssn attributes of per son_t yp.

If you specify functions, to return object instances, the query returns a polymorphic
result set: that is, it returns instances of both the view's declared type and any
subtypes of that type.

For example, the following query returns instances of persons, employees, and
students of all types, as well as REFs to those instances.

SELECT REF(p), VALUE(p) FROM Person_v p;

If you specify individual attributes of the view's declared type in the SELECT list or
do a SELECT *, again the query returns rows for the view's declared type and any
subtypes of that type, but these rows are projected over columns for the attributes
of the view's declared type, and only those columns are used. In other words, the
subtypes are represented only with respect to the attributes they inherit from and
share with the view's declared type.

So, for example, the following query returns rows for all persons and rows for
employees and students of all types, but the result uses only the columns for the
attributes of per son_t yp—namely, nane, ssn, and addr ess. It does not show
rows for attributes added in the subtypes, such as the dept i d attribute of
student _typ.

SELECT * FROM Person_v;
To exclude subviews from the result, use the ONLY keyword. The ONLY keyword
confines the selection to the declared type of the view that you are querying:

SELECT VALUE(p) FROM ONLY(Person_v) p;

Privileges for Operations on View Hierarchies

Generally, a query on a view with subviews requires only the SELECT privilege on
the view being referenced and does not require any explicit privileges on subviews.
For example, the following query requires only SELECT privileges on Per son_v
but not on any of its subviews.

Applying an Object Model to Relational Data 5-27

Object View Hierarchies

SELECT * FROM Person_v;

However, a query that selects for any attributes added in subtypes but not used by
the root type requires the SELECT privilege on all subviews as well. Such subtype
attributes may hold sensitive information that should reasonably require additional
privileges to access.

The following query, for example, requires SELECT privileges on Per son_v and
also on St udent _v, Enpl oyee_v (and on any other subview of Per son_v)
because the query selects object instances and thus gets all the attributes of the
subtypes.

SELECT VALUE(p) FROM Person_v p;

To simplify the process of granting SELECT privileges on an entire view hierarchy,
you can use the H ERARCHY option. Specifying the H ERARCHY option when
granting a user SELECT privileges on a view implicitly grants SELECT privileges on
all current and future subviews of the view as well. For example:

CGRANT SELECT ON Person_v TO scott WTH H ERARCHY OPTI ON,

A query that excludes rows belonging to subviews also requires SELECT privileges
on all subviews. The reason is that information about which rows belong
exclusively to the most specific type of an instance may be sensitive, so the system

requires SELECT privileges on subviews for queries (such as the following one) that
exclude all rows from subviews.

SELECT * FROM ONLY(Person_v);

5-28 Oracle Database Application Developer's Guide - Object-Relational Features

6

Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the
database, and how to perform DML and DDL operations on them. It contains the
following major sections:

« Privileges on Object Types and Their Methods
« Dependencies and Incomplete Types

« Synonyms for User-Defined Types

« Performance Tuning

« Tools Providing Support for Objects

« Utilities Providing Support for Objects

Managing Oracle Objects 6-1

Privileges on Object Types and Their Methods

Privileges on Object Types and Their Methods

Privileges for object types exist at the system level and the schema object level.

System Privileges for Object Types

Oracle defines the following system privileges for object types:

CREATE TYPE enables you to create object types in your own schema
CREATE ANY TYPE enables you to create object types in any schema
ALTER ANY TYPE enables you to alter object types in any schema
DROP ANY TYPE enables you to drop named types in any schema

EXECUTE ANY TYPE enables you to use and reference nhamed types in any
schema

UNDER ANY TYPE enables you to create subtypes under any non-final object
types
UNDER ANY VI EWenables you to create subviews under any object view

The CONNECT and RESOURCE roles include the CREATE TYPE system privilege. The
DBA role includes all of these privileges.

Schema Object Privileges
Two schema object privileges apply to object types:

EXECUTE on an object type enables you to use the type to:

« Define a table.

« Define a column in a relational table.

« Declare a variable or parameter of the named type.

EXECUTE lets you invoke the type's methods, including the constructor.

Method execution and the associated permissions are the same as for stored
PL/SQL procedures.

UNDER enables you to create a subtype or subview under the type or view on
which the privilege is granted

The UNDER privilege on a subtype or subview can be granted only if the grantor
has the UNDER privilege on the direct supertype or superview W TH GRANT
OPTI ON.

6-2 Oracle Database Application Developer's Guide - Object-Relational Features

Privileges on Object Types and Their Methods

The phrase W THH ERARCHY OPTI ON grants a specified object privilege on all
subobjects of the object. This option is meaningful only with the SELECT object
privilege granted on an object view in an object view hierarchy. In this case, the
privilege applies to all subviews of the view on which the privilege is granted.

Using Types in New Types or Tables

In addition to the permissions detailed in the previous sections, you need specific
privileges to:

= Create types or tables that use types created by other users.
« Grant use of your new types or tables to other users.

You must have the EXECUTE ANY TYPE system privilege, or you must have the
EXECUTE object privilege for any type you use in defining a new type or table. You
must have received these privileges explicitly, not through roles.

If you intend to grant access to your new type or table to other users, you must
have either the required EXECUTE object privileges with the GRANT option or the
EXECUTE ANY TYPE system privilege with the option W THADM N OPTI ON. You
must have received these privileges explicitly, not through roles.

Example: Privileges on Object Types

Assume that three users exist with the CONNECT and RESOQURCE roles: USER1,
USER?2, and USER3.

USER1 performs the following DDL in the USER1 schema:

CREATE TYPE typel AS OBJECT (attrl NUMBER);

/

CREATE TYPE type2 AS OBJECT (attr2 NUMBER);

/

GRANT EXECUTE ON typel TO user2;

GRANT EXECUTE ON type2 TO user2 W TH GRANT OPTI ON,

USER2 performs the following DDL in the USER2 schema:

CREATE TABLE tabl OF userl.typel;

CREATE TYPE type3 AS OBJECT (attr3 userl.type2);
/

CREATE TABLE tab2 (col 1 userl.type2);

The following statements succeed because USER2 has EXECUTE on USER1's TYPE2
with the GRANT option:

Managing Oracle Objects 6-3

Privileges on Object Types and Their Methods

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT ON tab2 TO user3;

However, the following grant fails because USER2 does not have EXECUTE on
USERL. TYPE1 with the GRANT option:
GRANT SELECT ON tabl TO user3;

USERS3 can successfully perform the following actions:

CREATE TYPE type4 AS OBJECT (attr4 user2.typed);
/
CREATE TABLE tab3 OF type4;

Privileges on Type Access and Object Access

While object types only make use of EXECUTE privilege, object tables use all the
same privileges as relational tables:

« SELECT lets you access an object and its attributes from the table.
« UPDATE lets you modify attributes of objects in the table.

« | NSERT lets you add new objects to the table.

« DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of object
types.

Selecting columns of an object table does not require privileges on the type of the
object table. Selecting the entire row object, however, does.

Consider the following schema:

CREATE TYPE enp_type as object (
eno NUMBER,
enane VARCHAR2(36));

/

CREATE TABLE enp OF enp_type;

and the following two queries:

SELECT VALUE(e) FROM enp e;
SELECT eno, ename FROM enp;

For either query, Oracle checks the user's SELECT privilege for the enp table. For
the first query, the user needs to obtain the enp_t ype type information to interpret

6-4 Oracle Database Application Developer's Guide - Object-Relational Features

Dependencies and Incomplete Types

the data. When the query accesses the enp_t ype type, Oracle checks the user's
EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle
does not check type privileges.

Additionally, using the schema from the previous section, USER3 can perform the
following queries:

SELECT t.coll.attr2 fromuser2.tab2 t;
SELECT t.attr4.attr3.attr2 FROMtab3 t;

Note that in both selects by USER3, USER3 does not have explicit privileges on the
underlying types, but the statement succeeds because the type and table owners
have the necessary privileges with the GRANT option.

Oracle checks privileges on the following requests, and returns an error if the
requestor does not have the privilege for the action:

« Pinning an object in the object cache using its REF value causes Oracle to check
SELECT privilege on the object table containing the object and EXECUTE
privilege on the object type.

See Also: Oracle Call Interface Programmer's Guide for tips and
techniques for using OCI program effectively with objects

« Modifying an existing object or flushing an object from the object cache, causes
Oracle to check UPDATE privilege on the destination object table. Flushing a
new object causes Oracle to check | NSERT privilege on the destination object
table.

« Deleting an object causes Oracle to check DELETE privilege on the destination
table.

« Invoking a method causes Oracle to check EXECUTE privilege on the
corresponding object type.

Oracle does not provide column level privileges for object tables.

Dependencies and Incomplete Types

Types can depend upon each other for their definitions. For example, you might
want to define object types enpl oyee and depar t ment in such a way that one

Managing Oracle Objects 6-5

Dependencies and Incomplete Types

attribute of enpl oyee is the department the employee belongs to and one attribute
of depar t ment is the employee who manages the department.

Types that depend on each other in this way, either directly or through intermediate
types, are called mutually dependent. In a diagram that uses arrows to show the
dependency relationships among a set of types, connections among mutually
dependent types form a loop.

To define such a circular dependency, you must use REFs for at least one segment of
the circle.

For example, you can define the following types:

CREATE TYPE depart nent;
/

CREATE TYPE enpl oyee AS OBJECT (
nane VARCHAR2(30) ,
dept REF depart ment,
supv REF enpl oyee);

/

CREATE TYPE enp_list AS TABLE OF enpl oyee;
/

CREATE TYPE departnment AS OBJECT (
name VARCHAR2(30) ,
mor REF enpl oyee,
staff enp_list);

/

This is a legal set of mutually dependent types and a legal sequence of SQL DDL
statements. Oracle compiles it without errors.

Notice that the preceding code creates the type depar t nent twice. The first
statement:

CREATE TYPE depart nent;

/

is an optional, incomplete declaration of depar t nent that serves as a placeholder
for the REF attribute of enpl oyee to point to. The declaration is incomplete in that
it omits the AS OBJECT phrase and lists no attributes or methods. These are
specified later in the full declaration that completes the type. In the meantime,
depart ment is created as an incomplete object type. This enables the compilation
of enpl oyee to proceed without errors.

6-6 Oracle Database Application Developer's Guide - Object-Relational Features

Dependencies and Incomplete Types

To complete an incomplete type, you execute a CREATE TYPE statement that
specifies the attributes and methods of the type, as shown at the end of the example.
Complete an incomplete type after all the types that it refers to are created.

If you do not create incomplete types as placeholders, types that refer to the missing
types still compile, but the compilation proceeds with errors.

For example, if depar t nent did not exist at all, Oracle would create it as an
incomplete type and compile enpl oyee with errors. Then enpl oyee would be
recompiled the next time that some operation attempts to access it. This time, if all
the types it depends on are created and its dependencies are satisfied, it will
compile without errors.

Incomplete types also enable you to create types that contain REF attributes to a
subtype that has not yet been created. To create such a supertype, first create an
incomplete type of the subtype to be referenced. Create the complete subtype after
you create the supertype.

A subtype is just a specialized version of its direct supertype and consequently has
an explicit dependency on it. To ensure that subtypes are not left behind after a
supertype is dropped, all subtypes must be dropped first: a supertype cannot be
dropped until all its subtypes are dropped.

Completing Incomplete Types

When all the types that an incomplete type refers to have been created, there is no
longer any need for the incomplete type to remain incomplete, and you should
complete the declaration of the type. Completing the type recompiles it and enables
the system to release various locks.

You must complete an incomplete object type as an object type: you cannot
complete an object type as a collection type (a nested table type or an array type).
The only alternative to completing a type declaration is to drop the type.

You must also complete any incomplete types that Oracle creates for you because
you did not explicitly create them yourself. The example in the preceding section
explicitly creates depar t nent as an incomplete type. If depar t ment were not
explicitly created as an incomplete type, Oracle would create it as one so that the
enpl oyee type can compile (with errors). You must complete the declaration of
depart ment as an object type whether you or Oracle declared it as an incomplete

type.

Managing Oracle Objects 6-7

Dependencies and Incomplete Types

Manually Recompiling a Type

If a type was created with compilation errors, and you attempt an operation on it,
such as creating tables or inserting rows, you may receive an error. You need to
recompile type t ypenamne before attempting the operation. To manually recompile
atype, execute an ALTERTYPE t ypenane COVPI LE statement. After you have
successfully compiled the type, attempt the operation again.

Type Dependencies of Substitutable Tables and Columns

A substitutable table or column of type T is dependent not only on T but on all
subtypes of T as well. This is because a hidden column is added to the table for each
attribute added in a subtype of T. The hidden columns are added even if the
substitutable table or column contains no data of that subtype.

So, for example, a persons table of type per son_t yp is dependent not only on
per son_t yp but also on the per son_t yp subtypes st udent _typ and part _
ti me_student _typ.

If you attempt to drop a subtype that has a dependent type, table, or column, the
DROP TYPE statement returns an error and aborts. For example, trying to drop
part _tinme_student _typ will raise an error because of the dependent per sons
table.

If dependent tables or columns exist but contain no data of the type that you want
to drop, you can use the VALI DATE keyword to drop the type. The VALI DATE
keyword causes Oracle to check for actual stored instances of the specified type and
to drop the type if none are found. Hidden columns associated with attributes
unique to the type are removed as well.

For example, the first DROP TYPE statement in the following example fails because
part_tine_student _typ hasadependenttable (per sons). But if per sons
contains no instances of part _ti me_st udent _t yp (and no other dependent table
or column does, either), the VALI DATE keyword causes the second DROP TYPE
statement to succeed:

- Foll owing generates an error due to presence of Persons table

DROP TYPE part_time_student _typ;

- Following succeeds if there are no stored instances of part_tinme_student_typ
DROP TYPE part_time_student typ VALI DATE;

Note: Oracle recommends that you always use the VALI DATE
option while dropping subtypes.

6-8 Oracle Database Application Developer's Guide - Object-Relational Features

Synonyms for User-Defined Types

The FORCE Option

The DROP TYPE statement also has a FORCE option that causes the type to be
dropped even though it may have dependent types or tables. The FORCE option
should be used only with great care, as any dependent types or tables that do exist
are marked invalid and become inaccessible when the type is dropped. Data in a
table that is marked invalid because a type it depends on has been dropped can
never be accessed again. The only action that can be performed on such a table is to
drop it.

See Also: "Type Evolution" on page 7-7 for information about
how to alter a type

Synonyms for User-Defined Types

Just as you can create synonyms for tables, views, and various other schema objects,
you can also define synonyms for user-defined types.

Synonyms for types have the same advantages as synonyms for other kinds of
schema objects: they provide a location-independent way to reference the
underlying schema object. An application that uses public type synonyms can be
deployed without alteration in any schema of a database without having to qualify
a type name with the name of the schema in which the type was defined.

See Also: Oracle Database Administrator's Guide for more
information on synonyms in general

Creating a Type Synonym

You create a type synonym with a CREATE SYNONYMstatement. For example, these
statements create a type t ypl and then create a synonym for it:

CREATE TYPE typl AS OBJECT (x numnber);
/
CREATE SYNONYM synl FOR typl;

Synonyms can be created for collection types, too. The following example creates a
synonym for a nested table type:

CREATE TYPE typ2 AS TABLE OF NUMBER,
/
CREATE SYNONYM syn2 FOR typ2;

You create a public synonym by using the PUBLI C keyword:

Managing Oracle Objects 6-9

Synonyms for User-Defined Types

CREATE TYPE shape AS OBJECT (name VARCHAR2(10));
/
CREATE PUBLI C SYNONYM pub_shape FOR shape;

The REPLACE option enables you to have the synonym point to a different
underlying type. For example, the following statement causes syn1l to point to type
t yp2 instead of the type it formerly pointed to:

CREATE OR REPLACE SYNONYM synl FOR typ2;

Using a Type Synonym

You can use a type synonym anywhere that you can refer to a type. For instance,
you can use a type synonym in a DDL statement to name the type of a table column
or type attribute. In the following example, synonym syn1 is used to specify the
type of an attribute in type t yp3:

CREATE TYPE typl AS OBJECT (x number);
/
CREATE SYNONYM synl FOR typl,;

CREATE TYPE typ3 AS OBJECT (a synl):
/

The next example shows a type synonym syn1l used to call the constructor of the
user-defined type t yp1, for which syn1 is a synonym. The statement returns an
object instance of t yp1:

SELECT syn1(0) FROM dual ;

In the following example, syn2 is a synonym for a nested table type. The example
shows the synonym used in place of the actual type name in a CAST expression:
SELECT CAST(MULTI SET(SELECT eno FROM USER3. EMP) AS syn2) FROM dual ;

Type synonyms can be used in the following kinds of statements:

« DML statements: SELECT, | NSERT, UPDATE, DELETE, FLASHBACK TABLE,
EXPLAI NPLAN, and LOCK TABLE

« DDL statements: AUDI T, NOAUDI T, GRANT, REVCKE, and COMVENT

Describing Schema Objects That Use Synonyms

If a type or table has been created using type synonyms, the DESCRI BE command
will show the synonyms in place of the types they represent. Similarly, catalog

6-10 Oracle Database Application Developer's Guide - Object-Relational Features

Synonyms for User-Defined Types

views, such as USER _TYPE_ATTRS, that show type names will show the associated
type synonym names in their place.

You can query the catalog view USER_SYNONYMS to find out the underlying type of
a type synonym.

Dependents of Type Synonyms

A type that directly or indirectly references a synonym in its type declaration is a
dependent of that synonym. Thus, in the following example, typet yp3 is a
dependent type of synonym synl.

CREATE TYPE typ3 AS OBJECT (a synl);

Other kinds of schema objects that reference synonyms in their DDL statements also
become dependents of those synonyms. An object that depends on a type synonym
depends on both the synonym and on the synonym's underlying type.

A synonym's dependency relationships affect your ability to drop or rename the
synonym. Dependent schema objects are also affected by some operations on
synonyms. The following sections describe these various ramifications.

Restriction on Replacing a Type Synonym

You can replace a synonym only if it has no dependent tables or valid user defined
types. Replacing a synonym is equivalent to dropping it and then re-creating a new
synonym with the same name.

Dropping Type Synonyms
You drop a synonym with the DROP SYNONYMstatement. For example:
CREATE SYNONYM syn4 FOR typl,;

DROP SYNONYM syn4;

You cannot drop a type synonym if it has table or valid user-defined types as
dependents unless you use the FORCE option. The FORCE option causes any
columns that directly or indirectly depend on the synonym to be marked unused,
just as if the actual types of the columns were dropped. (A column indirectly
depends on a synonym if, for instance, the synonym is used to specify the type of
an attribute of the declared type of the column.)

Managing Oracle Objects 6-11

Performance Tuning

Any dependent schema objects of a dropped synonym are invalidated. They can be
revalidated by creating a local object of the same name as the dropped synonym or
by creating a new public synonym with same name.

Dropping the underlying base type of a type synonym has the same effect on
dependent objects as dropping the synonym.

Renaming Type Synonyms

You can rename a type synonym with the RENAME statement. Renaming a synonym
is equivalent to dropping it and then re-creating it with a new name. You cannot
rename a type synonym if it has dependent tables or valid user-defined types. The
following example fails because synonym synl has a dependent user-defined type:

RENAME synl TO syn3;

Public Type Synonyms and Local Schema Objects

You cannot create a local schema object that has the same name as a public
synonym if the public synonym has a dependent table or valid user-defined type in
the local schema where you want to create the new schema object. Nor can you
create a local schema object that has the same name as a private synonym in the
same schema.

For instance, in the following example, table shape_t ab is a dependent table of
public synonym pub_shape because the table has a column that uses the synonym
in its type definition. Consequently, the attempt to create a table that has the same
name as public synonym pub_shape, in the same schema as the dependent table,
fails:

- Fol I owi ng uses public synonym pub_shape
CREATE TABLE shape_tab (cl pub_shape);

- Following is not allowed

CREATE TABLE pub_shape (c1 NUMBER);

Performance Tuning

When tuning objects, the following items need to be addressed:

« How objects and object views consume CPU and memory resources during
runtime

« How to monitor memory and CPU resources during runtime

« How to manage large numbers of objects

6-12 Oracle Database Application Developer's Guide - Object-Relational Features

Tools Providing Support for Objects

Some of the key performance factors are the following:
« DBMS_STATS package to collect statistics
« tkprof to profile execution of SQL commands

« EXPLAI NPLANto generate the query plans

See Also: Oracle Database Performance Tuning Guide for details on
measuring and tuning the performance of your application

Tools Providing Support for Objects

This section describes several Oracle tools that provide support for Oracle objects.

JDeveloper

JDeveloper is a full-featured, integrated development environment for creating
multitier Java applications. It enables you to develop, debug, and deploy Java client
applications, dynamic HTML applications, web and application server components
and database stored procedures based on industry-standard models.

JDeveloper provides powerful features in the following areas:
« Oracle Business Components for Java

=« Web Application Development

« Java Client Application Development

« Javain the Database

« Component-Based Development with JavaBeans

« Simplified Database Access

« Visual Integrated Development Environment

« Java Language Support

JDeveloper runs on Windows platforms. It provides a standard GUI based Java
development environment that is well integrated with Oracle Application Server
and Database.

Business Components for Java (BC4J)

Supporting standard EJB and CORBA deployment architectures, Oracle Business
Components for Java simplifies the development, delivery, and customization of
Java business applications for the enterprise. Oracle Business Components for Java

Managing Oracle Objects 6-13

Utilities Providing Support for Objects

is an application component framework providing developers a set of reusable
software building blocks that manage all the common facilities required to:

« Author and test business logic in components which integrate with relational
databases

« Reuse business logic through multiple SQL-based views of data

« Access and update the views from servlets, JavaServer Pages (JSPs), and
thin-Java Swing clients

« Customize application functionality in layers without requiring modification of
the delivered application

JPublisher

JPublisher is a utility, written entirely in Java, that generates Java classes to
represent the following user-defined database entities in your Java program:

« Database object types

« Database reference (REF) types

« Database collection types (varrays or nested tables)
« PL/SQL packages

JPublisher enables you to specify and customize the mapping of database object
types, reference types, and collection types (varrays or nested tables) to Java classes,
in a strongly typed paradigm.

See Also: Oracle Database JPublisher User's Guide

Utilities Providing Support for Objects

This section describes several Oracle utilities that provide support for Oracle
objects.

Import/Export of Object Types

The Export and Import utilities move data into and out of Oracle databases. They
also back up or archive data and aid migration to different releases of the Oracle
RDBMS.

Export and Import support object types. Export writes object type definitions and
all of the associated data to the dump file. Import then re-creates these items from
the dump file.

6-14 Oracle Database Application Developer's Guide - Object-Relational Features

Utilities Providing Support for Objects

Types The definition statements for derived types are exported. On an Import, a
subtype may be created before the supertype definition has been imported. In this
case, the subtype will be created with compilation errors, which may be ignored.
The type will be revalidated after its supertype is created.

Object View Hierarchies View definitions for all views belonging to a view
hierarchy are exported

SQL*Loader

The SQL*Loader utility moves data from external files into tables in an Oracle
database. The files may contain data consisting of basic scalar datatypes, such as

| NTEGER, CHAR, or DATE, as well as complex user-defined datatypes such as row
and column objects (including objects that have object, collection, or REF attributes),
collections, and LOBs. Currently, SQL*Loader supports single-level collections only:
you cannot yet use SQL*Loader to load multilevel collections, that is, collections
whose elements are, or contain, other collections.

SQL*Loader uses control files, which contain SQL*Loader data definition language
(DDL) statements, to describe the format, content, and location of the datafiles.

SQL*Loader provides two approaches to loading data:

« Conventional path loading, which uses the SQL | NSERT statement and a bind
array buffer to load data into database tables

« Direct path loading, which uses the Direct Path Load API to write data blocks
directly to the database on behalf of the SQL*Loader client.

Direct path loading does not use a SQL interface and thus avoids the overhead
of processing the associated SQL statements. Consequently, direct path loading
tends to provide much better performance than conventional path loading.

Either approach can be used to load data of supported object and collection
datatypes.

See Also: Oracle Database Utilities for instructions on how to use
SQL*Loader

Managing Oracle Objects 6-15

Utilities Providing Support for Objects

6-16 Oracle Database Application Developer's Guide - Object-Relational Features

v

Advanced Topics for Oracle Objects

The other chapters in this book discuss the topics that you need to get started with
Oracle objects. The topics in this chapter are of interest once you start applying
object-relational techniques to large-scale applications or complex schemas.

The chapter contains these topics:

« Storage of Objects

« Creating Indexes on Typeids or Attributes

« Type Evolution

« Transient and Generic Types

« User-Defined Aggregate Functions

« Partitioning Tables That Contain Oracle Objects

Advanced Topics for Oracle Objects 7-1

Storage of Objects

Storage of Objects

Oracle automatically maps the complex structure of object types into the simple
rectangular structure of tables.

Leaf-Level Attributes

An object type is like a tree structure, where the branches represent the attributes.
Attributes that are objects sprout subbranches for their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type; such as NUVBER,
VARCHAR2, or REF; or a collection type, such as VARRAY or nested table. Each of
these leaf-level attributes of the original object type is stored in a table column.

The leaf-level attributes that are not collection types are called the leaf-level scalar
attributes of the object type.

How Row Objects Are Split Across Columns

In an object table, Oracle stores the data for every leaf-level scalar or REF attribute
in a separate column. Each VARRAY is also stored in a column, unless it is too large.
Oracle stores leaf-level attributes of nested table types in separate tables associated
with the object table. You must declare these tables as part of the object table
declaration. See "Internal Layout of VARRAYS" on page 7-4 and "Internal Layout of
Nested Tables" on page 7-4.

When you retrieve or change attributes of objects in an object table, Oracle performs
the corresponding operations on the columns of the table. Accessing the value of
the object itself produces a copy of the object, by invoking the default constructor
for the type, using the columns of the object table as arguments.

Oracle stores the system-generated object identifier in a hidden column. Oracle uses
the object identifier to construct REFs to the object.

Hidden Columns for Tables with Column Objects

When a table is defined with a column of an object type, Oracle adds hidden
columns to the table for the object type's leaf-level attributes. Each object-type
column also has a corresponding hidden column to store the NULL information for
the column objects (that is, the atomic nulls of the top-level and the nested objects).

7-2 Oracle Database Application Developer's Guide - Object-Relational Features

Storage of Objects

Hidden Columns for Substitutable Columns and Tables

A substitutable column or object table has a hidden column not only for each
attribute of the column's object type but also for each attribute added in any
subtype of the object type. These columns store the values of those attributes for
any subtype instances inserted in the substitutable column.

For example, a substitutable column of per son_t yp will have associated with it a
hidden column for each of the attributes of per son_t yp: i dno, nane, and phone.
It will also have hidden columns for attributes of the subtypes of per son_t yp. For
example, the attributes dept _i d and maj or (for st udent _t yp) and nunber _
hour s (forpart _ti me_student _typ).

When a subtype is created, hidden columns for attributes added in the subtype are
automatically added to tables containing a substitutable column of any of the new
subtype's ancestor types. These retrofit the tables to store data of the new type. If,
for some reason, the columns cannot be added, creation of the subtype is rolled
back.

When a subtype is dropped with the VALI DATE option to DROP TYPE, all such
hidden columns for attributes unique to the subtype are automatically dropped as
well if they do not contain data.

A substitutable column also has associated with it a hidden type discriminant
column. This column contains an identifier, called a typeid, that identifies the most
specific type of each object in the substitutable column. Typically, a typeid (RAW is
one byte, though it can be as big as four bytes for a large hierarchy.

You can find the typeid of a specified object instance using the function SYS_
TYPEI D. For example, suppose that the substitutable object table per son_obj _
t abl e contains three rows, as shown in Example 2-1 on page 2-25.

The following query retrieves typeids of object instances stored in the table:

SELECT nane, SYS_TYPEI D(VALUE(p)) typeid
FROM per son_obj _tabl e p;

NAVE TYPEI D
Bob Jones 01
Joe Lane 02
Ki m Pat el 03

The catalog views USER_TYPES, DBA TYPES and ALL_TYPES contain a TYPEI D
column (not hidden) that gives the typeid value for each type. You can join on this

Advanced Topics for Oracle Objects 7-3

Storage of Objects

column to get the type names corresponding to the typeids in a type discriminant
column.

See Also: "SYS_TYPEID" on page 2-38 for more information
about SYS_TYPEI Dand typeids

REFs

When Oracle constructs a REF to a row object, the constructed REF is made up of
the object identifier (OID), some metadata of the object table, and, optionally, the
ROW D.

The size of a REF in a column of REF type depends on the storage properties
associated with the column. For example, if the column is declared as a REF W TH
ROW D, Oracle stores the ROW D in the REF column. The ROW D hint is ignored for
object references in constrained REF columns.

If column is declared as a REF with a SCOPE clause, the column is made smaller by
omitting the object table metadata and the ROW D. A scoped REF is 16 bytes long.

If the object identifier is primary-key based, Oracle may create one or more internal
columns to store the values of the primary key depending on how many columns
comprise the primary key.

Note: When a REF column references row objects whose object
identifiers are derived from primary keys, we refer to it as a
primary-key-based REF or pkREF. Columns containing pkREFs
must be scoped or have a referential constraint.

Internal Layout of Nested Tables

The rows of a nested table are stored in a separate storage table. Each nested table
column has a single associated storage table, not one for each row. The storage table
holds all the elements for all of the nested tables in that column. The storage table
has a hidden NESTED_TABLE | D column with a system-generated value that lets
Oracle map the nested table elements back to the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table
index-organized. Include the ORGANI ZATI ON | NDEX clause inside the STORE AS
clause.

A nested table type can contain objects or scalars:

7-4 Oracle Database Application Developer's Guide - Object-Relational Features

Creating Indexes on Typeids or Attributes

« If the elements are objects, the storage table is like an object table: the top-level
attributes of the object type become the columns of the storage table. But
because a nested table row has no object identifier column, you cannot
construct REFs to objects in a nested table.

« If the elements are scalars, the storage table contains a single column called
COLUMN_VALUE that contains the scalar values.

See Also: "Nested Table Storage" on page 8-14

Internal Layout of VARRAYs

All the elements of a VARRAY are stored in a single column. Depending upon the
size of the array, it may be stored inline or in a BLOB. See Storage Considerations for
Varrays on page 8-13 for details.

Creating Indexes on Typeids or Attributes

This section discusses the use of indexes on typeids and attributes.

Indexing a Type Discriminant Column

Using the SYS_TYPEI D function, you can build an index on the hidden type
discriminant column that every substitutable column has. The type discriminant
column contains typeids that identify the most specific type of every object instance
stored in the substitutable column. This information is used by the system to
evaluate queries that use the | S OF predicate to filter by type, but you can access
the typeids for your own purposes using the SYS_TYPEI D function.

Note: Generally, a type discriminant column contains only a small
number of distinct typeids: at most, there can be only as many as
there are types in the related type hierarchy. The low cardinality of
this column makes it a good candidate for a bitmap index.

For example, the following statement creates a bitmap index on the type
discriminant column underlying the substitutable cont act column of table
cont act s. Function SYS_TYPEI Dis used to reference the type discriminant
column:

CREATE BI TMAP | NDEX typeid_idx ON contacts (SYS_TYPEID(contact));

Advanced Topics for Oracle Objects 7-5

Creating Indexes on Typeids or Attributes

Indexing Subtype Attributes of a Substitutable Column

You can build an index on attributes of any of the types that can be stored in a
substitutable column. Attributes of subtypes can be referenced in the CREATE

| NDEX statement by using the TREAT function to filter out types other than the
desired subtype (and its subtypes); you then use the dot notation to specify the
desired attribute.

For example, the following statement creates an index on the maj or attribute of all
students in the cont act s table. The declared type of the cont act column is

per son_t yp, of which st udent _t yp is a subtype, so the column may contain
instances of per son_t yp, st udent _t yp, and subtypes of either one:

CREATE | NDEX maj or1_idx ON contacts
(TREAT(contact AS student _typ).major);

st udent _t yp is the type that first defined the naj or attribute: the per son_t yp
supertype does not have it. Consequently, all the values in the hidden column for
the naj or attribute are values for st udent _typ orpartti nestudent typ
authors (a st udent _t yp subtype). This means that the hidden column's values are
identical to the values returned by the TREAT expression, which returns maj or
values for all students, including student subtypes: both the hidden column and the
TREAT expression list majors for students and nulls for authors of other types. The
system exploits this fact and creates index naj or 1_i dx as an ordinary B-tree index
on the hidden column.

Values in a hidden column are identical to the values returned by a TREAT
expression like the preceding one only if the type named as the target of the TREAT
function (st udent _t yp) is the type that first defined the attribute. If the target of
the TREAT function is a subtype that merely inherited the attribute, as in the
following example, the TREAT expression will return non-null maj or values for the
subtype (part-time students) but not for its supertype (other students).

CREATE | NDEX maj or2_i dx ON contacts
(TREAT(contact AS part _time_student _typ).najor);

Here the values stored in the hidden column for maj or may be different from the
results of the TREAT expression. Consequently, an ordinary B-tree index cannot be
created on the underlying column. In a case like this, Oracle treats the TREAT
expression like any other function-based expression and tries to create the index as
a function-based index on the result.

The following example, like the previous one, creates a function-based index on the
maj or attribute of part-time students, but in this case the hidden column for maj or
is associated with a substitutable object table per son_obj _t abl e:

7-6 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

CREATE | NDEX maj or 3_i dx ON person_obj table p
(TREAT(VALUE(p) AS part_tine_student_typ).mjor);

Type Evolution

Changing a user-defined type is called type evolution. You can make the following
changes to a user-defined type:

« Add and drop attributes

« Add and drop methods

« Modify a numeric attribute to increase its length, precision, or scale
« Modify a varying length character attribute to increase its length

« Change atype's FI NAL and | NSTANTI ABLE properties

« Modify limit and size of VARRAYsS

« Modify length, precision, and scale of collection elements

Changes to a type affect things that reference the type. For example, if you add a
new attribute to a type, data in a column of that type must be presented so as to
include the new attribute.

Schema objects that directly or indirectly reference a type and are affected by a
change to it are called dependents of the type. A type can have these kinds of
dependents:

« Table

« Type or subtype

« Program unit (PL/SQL block): procedure, function, package, trigger
« Indextype

« View (including object view)

« Function-based index

« Operator

How a dependent schema object is affected by a change to a type depends on the
dependent object and on the nature of the change to the type.

All dependent program units, views, operators and indextypes are marked invalid
when a type is modified. The next time one of these invalid schema objects is
referenced, it is revalidated using the new type definition. If the object recompiles

Advanced Topics for Oracle Objects 7-7

Type Evolution

successfully, it becomes valid and can be used again. Depending on the change to
the type, function-based indexes may be dropped or disabled and need to be
rebuilt.

If a type has dependent tables, then, for each attribute added to a type, one or more
internal columns are added to the table depending on the new attribute's type. New
attributes are added with NULL values. For each dropped attribute, the columns
associated with that attribute are dropped. For each modified attribute, the length,
precision, or scale of its associated column is changed accordingly.

These changes mainly involve updating the tables' metadata (information about a
table's structure, describing its columns and their types) and can be done quickly.
However, the data in those tables must be updated to the format of the new type
version as well. Updating this data can be time-consuming if there is a lot of it, so
the ALTER TYPE command has options to let you choose whether to convert all
dependent table data immediately or to leave it in the old format to be converted
piecemeal as it is updated in the course of business.

The CASCADE option for ALTER TYPE propagates a type change to dependent
types and tables. See "ALTER TYPE Statement for Type Evolution” on page 7-15.
CASCADE itself has options that let you choose whether to convert table data to the
new type format as part of the propagation: the option | NCLUDI NG TABLE DATA
converts the data; the option NOT | NCLUDI NG TABLE DATA does not convert it.
By default, the CASCADE option converts the data. In any case, table data is always
returned in the format of the latest type version. If the table data is stored in the
format of an earlier type version, Oracle converts the data to the format of the latest
version before returning it, even though the format in which the data is actually
stored is not changed until the data is rewritten.

You can retrieve the definition of the latest type from the system view USER _
SOURCE. You can view definitions of all versions of a type in the USER_TYPE_
VERSI ONS view.

The following example changes per son_t yp by adding one attribute and
dropping another. The CASCADE keyword propagates the type change to dependent
types and tables, but the phrase NOT | NCLUDI NG TABLE DATA prevents
conversion of the related data.

CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _table
VALUES (person_typ(12, 'Bob Jones', '111-555-1212"));

SELECT val ue(p) FROM person_obj _table p;

7-8 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

VALUE(P) (1 DNO, NAME, PHONE)

PERSON_TYP(12, 'Bob Jones', '111-555-1212")

ALTER TYPE person_typ
ADD ATTRI BUTE (emai| VARCHAR2(80)),
DROP ATTRI BUTE phone CASCADE NOT | NCLUDI NG TABLE DATA;

- disconnect and reconnect to accomrmodate the type change

- The data of table person_obj table has not been converted yet, but
- when the data is retrieved, Oracle returns the data based on

-- the latest type version. The new attribute is initialized to NULL.
SELECT val ue(p) FROM person_obj _table p;

VALUE(P) (1 DNO, NAME, EMAIL)

PERSON_TYP(12, ' Bob Jones', NULL)

During SELECT statements, even though column data may be converted to the
latest type version, the converted data is not written back to the column. If a certain
user-defined type column in a table is retrieved often, you should consider
converting that data to the latest type version to eliminate redundant data
conversions. Converting is especially beneficial if the column contains a VARRAY
attribute because a VARRAY typically takes more time to convert than an object or
nested table column.

You can convert a column of data by issuing an UPDATE statement to set the column
to itself. For example:

UPDATE dept _tab SET enp_array_col = enp_array_col;

You can convert all columns in a table by using ALTER TABLE UPGRADE DATA.
For example:

ALTER TYPE person_typ ADD ATTRI BUTE (photo BLOB)
CASCADE NOT | NCLUDI NG TABLE DATA,
ALTER TABLE dept _tab UPGRADE | NCLUDI NG DATA;

Changes Involved When a Type Is Altered

Only structural changes to a type affect dependent data and require the data to be
converted. Changes that are confined to a type's method definitions or behavior (in
the type body, where the type's methods are implemented) do not.

Advanced Topics for Oracle Objects 7-9

Type Evolution

These possible changes to a type are structural:

« Adding an attribute

« Dropping an attribute

« Modifying the length, precision, or scale of an attribute

« Changing the finality of a type (which determines whether subtypes can be
derived from it) from FI NAL to NOT FI NAL or from NOT FI NAL to FI NAL.

These changes result in new versions of the altered type and all its dependent types
and require the system to add, drop, or modify internal columns of dependent
tables as part of the process of converting to the new version.

When you make any of these kinds of changes to a type that has dependent types or
tables, the effects of propagating the change are not confined only to metadata but
affect data storage arrangements and require the data to be converted.

Besides converting data, you may also need to make other changes. For example, if
a new attribute is added to a type, and the type body invokes the type's constructor,
then each constructor in the type body must be modified to specify a value for the
new attribute. Similarly, if a new method is added, then the type body must be
replaced to add the implementation of the new method. The type body can be
modified by using the CREATE OR REPLACE TYPE BQODY statement.

Steps to Change a Type

This section describes the steps required to make a change to a type. Assume we
have the following schema based on the per son_t yp type:

CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/
CREATE TYPE departnent _typ AS OBJECT (
manager person_typ,
enpl oyee people_typ);
/
CREATE TABLE departmnment OF departnent _typ
NESTED TABLE enpl oyee STORE AS enpl oyee_store_nt;

1. Issue an ALTER TYPE statement to alter the type.

The default behavior of an ALTER TYPE statement without any option
specified is to check if there is any object dependent on the target type. The
statement aborts if any dependent object exists. Optional keywords allow
cascading the type change to dependent types and tables.

7-10 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

In the following code, conversion of table data is deferred by adding the phrase
NOT | NCLUDI NG TABLE DATA.

- Add new attributes to person_typ and propagate the change

- to enployee_store_nt and departnent_typ

ALTER TYPE person_typ ADD ATTRI BUTE (photo BLOB, emmi| VARCHAR2(80))
CASCADE NOT | NCLUDI NG TABLE DATA;

2. Use CREATE OR REPLACE TYPE BODY to update the corresponding type
body to make it current with the new type definition.

3. Upgrade dependent tables to the latest type version and convert the tables'
data.

ALTER TABLE department UPGRADE | NCLUDI NG DATA;

4. Alter dependent PL/SQL program units as needed to take account of changes
to the type.

5. Use OTT or JPUB (or another tool) to generate new header files for applications,
depending on whether the application is written in C or Java.

Adding a new attribute to a supertype also increases the number of attributes in
all its subtypes because these inherit the new attribute. Inherited attributes
always precede declared (locally defined) attributes, so adding a new attribute
to a supertype causes the ordinal position of all declared attributes of any
subtype to be incremented by one recursively. The mappings of the altered type
must be updated to include the new attributes. OTT and JPUB do this. If you
use some other tool, you must be sure that the type headers are properly
synchronized with the type definition in the server; otherwise, unpredictable
behavior may result.

6. Modify application code as needed and rebuild the application.

Validating a Type

When the system executes an ALTER TYPE statement, it first validates the
requested type change syntactically and semantically to make sure it is legal. The
system performs the same validations as for a CREATE TYPE statement plus some
additional ones. For example, it checks to be sure an attribute being dropped is not
used as a partitioning key. If the new spec of the target type or any of its dependent
types fails the type validations, the ALTER TYPE statement aborts. No new type
version is created, and all dependent objects remain unchanged.

Advanced Topics for Oracle Objects 7-11

Type Evolution

If dependent tables exist, further checking is done to ensure that restrictions relating
to the tables and any indexes are observed. Again, if the ALTER TYPE statement
fails the check of table-related restrictions, then the type change is aborted, and no
new version of the type is created.

When multiple attributes are added in a single ALTER TYPE statement, they are
added in the order specified. Multiple type changes can be specified in the same
ALTER TYPE statement, but no attribute name or method signature can be specified
more than once in the statement. For example, adding and modifying the same
attribute in a single statement is not allowed.

For example:

CREATE TYPE nytype AS OBJECT (attrl NUVBER attr2 NUVBER);
/
ALTER TYPE nytype ADD ATTRI BUTE (attr3 NUVBER),

DROP ATTRI BUTE attr2,

ADD ATTRI BUTE attr4 NUVBER CASCADE;

The resulting definition for mytype becomes:
(attrl NUMBER, attr3 NUMBER attr4 NUMBER);

The following ALTER TYPE statement, which attempts to make multiple changes to
the same attribute (at t r 5), is invalid:

- invalid ALTER TYPE st at enent
ALTER TYPE mytype ADD ATTRIBUTE (attr5 NUMBER, attr6 CHAR(10)),
DROP ATTRI BUTE attr5;

The following are other notes on validation constraints, table restrictions, and
assorted information about the various kinds of changes that can be made to a type.

Dropping an Attribute

« Dropping all attributes from a root type is not allowed. You must instead drop
the type. Because a subtype inherits all the attributes from its supertype,
dropping all the attributes from a subtype does not reduce its attribute count to
zero; thus, dropping all attributes declared locally in a subtype is allowed.

« Only an attribute declared locally in the target type can be dropped. You cannot
drop an inherited attribute from a subtype. Instead, drop the attribute from the
type where it is locally declared.

« Dropping an attribute which is part of a table partitioning or sub-partitioning
key in a table is not allowed.

7-12 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

Dropping an attribute of a primary key OID of an object table or an
index-organized table (I0T) is not allowed.

When an attribute is dropped, the column corresponding to the dropped
attribute is dropped.

Indexes, statistics, constraints, and any referential integrity constraints
referencing a dropped attribute are removed.

Modifying Attribute Type to Increase the Length, Precision, or Scale

Expanding the length of an attribute referenced in a function-based index,
clustered key or domain index on a dependent table is not allowed.

Dropping a Method

You can drop a method only from the type in which the method is defined (or
redefined): You cannot drop an inherited method from a subtype, and you
cannot drop an redefined method from a supertype.

If a method is not redefined, dropping it using the CASCADE option removes the
method from the target type and all subtypes. However, if a method is
redefined in a subtype, the CASCADE will fail and roll back. For the CASCADE to
succeed, you must first drop each redefined method from the subtype that
defines it and only then drop the method from the supertype.

You can consult the USER _DEPENDENCI ES table to find all the schema objects,
including types, that depend on a given type. You can also run the DBMS_
UTI LI TY. GET_DEPENDENCY utility to find the dependencies of a type.

You can use the | NVALI DATE option to drop a method that has been redefined,
but the redefined versions in the subtypes must still be dropped manually. The
subtypes will remain in an invalid state until they are explicitly altered to drop
the redefined versions. Until then, an attempt to recompile the subtypes for
revalidation will produce the error Met hod does not overri de.

Unlike CASCADE, | NVALI DATE bypasses all the type and table checks and
simply invalidates all schema objects dependent on the type. The objects are
revalidated the next time they are accessed. This option is faster than using
CASCADE, but you must be certain that no problems will be encountered
revalidating dependent types and tables. Table data cannot be accessed while a
table is invalid; if a table cannot be validated, its data remains inaccessible.

See Also: "If a Type Change Validation Fails" on page 7-15

Advanced Topics for Oracle Objects 7-13

Type Evolution

Modifying the FINAL or INSTANTIABLE Property

Altering a user-defined type from | NSTANTI ABLE to NOT | NSTANTI ABLE is
allowed only if the type has no table dependents.

Altering a user-defined type from NOT | NSTANTI ABLE to | NSTANTI ABLE is
allowed anytime. This change does not affect tables.

Altering a user-defined type from NOT FI NAL to FI NAL is allowed only if the
target type has no subtypes.

When you alter a user-defined type from FI NAL to NOT FI NAL or vice versa,
you must use CASCADE to convert data in dependent columns and tables
immediately. You may not use the CASCADE option NOT | NCLUDI NG TABLE
DATA to defer converting data.

If you alter a type from NOT FI NAL to FI NAL, you must use CASCADE

| NCLUDI NG TABLE DATA. If you alter a type from FI NAL to NOT FI NAL, you
may use either CASCADE | NCLUDI NG TABLE DATA or CASCADE CONVERT
TO SUBSTI TUTABLE.

When you alter a type from FI NAL to NOT FI NAL. the CASCADE option you
should choose depends on whether you want to be able to insert new subtypes
of the type you are altering in existing columns and tables.

By default, altering a type from FI NAL to NOT FI NAL enables you to create new
substitutable tables and columns of that type, but it does not automatically
make existing columns (or object tables) of that type substitutable. In fact, just
the opposite happens: existing columns and tables of the type are marked NOT
SUBSTI TUTABLE AT ALL LEVELS. If any embedded attribute of such a column
is substitutable, an error is generated. New subtypes of the altered type cannot
be inserted in such preexisting columns and tables.

To alter a user-defined type to NOT FI NAL in such a way as to make existing
columns and tables of the type substitutable (assuming that they are not
marked NOT SUBSTI TUTABLE), use the CASCADE option CONVERT TO
SUBSTI TUTABLE. For example:

CREATE TYPE shape AS OBJECT (
name VARCHAR2(30),
area NUMBER)
FI NAL;
/
ALTER TYPE shape NOT FI NAL CASCADE CONVERT TO SUBSTI TUTABLE;

This CASCADE option marks each existing column as SUBSTI TUTABLE AT
ALL LEVELS and causes a new, hidden column to be added for the Typeld of

7-14 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

instances stored in the column. The column can then store subtype instances of
the altered type.

If a Type Change Validation Fails

The | NVALI DATE option of the ALTER TYPE statement lets you alter a type without
propagating the type change to dependent objects. In this case, the system does not
validate the dependent types and tables to ensure that all the ramifications of the
type change are legal. Instead, all dependent schema objects are marked invalid.
The objects, including types and tables, are revalidated when next referenced. If a
type cannot be revalidated, it remains invalid, and any tables referencing it become
inaccessible until the problem is corrected.

A table may fail validation because, for example, adding a new attribute to a type
has caused the number of columns in the table to exceed the maximum allowable
number of 1000, or because an attribute used as a partitioning or clustering key of a
table was dropped from a type.

To force a revalidation of a type, users can issue the ALTER TYPE COWPI LE
statement. To force a revalidation of an invalid table, users can issue the ALTER
TABLE UPGRADE statement and specify whether the data is to be converted to the
latest type version. (Note that, in a table validation triggered by the system when a
table is referenced, table data is always updated to the latest type version: you do
not have the option to postpone conversion of the data.)

If a table is unable to convert to the latest type version, then | NSERT, UPDATE and
DELETE statements on the table are not allowed and its data becomes inaccessible.
The following DDLs can be executed on the table, but all other statements which
reference an invalid table are not allowed until the table is successfully validated:

« DROP TABLE
= TRUNCATE TABLE

All PL/SQL programs containing variables defined using YROM YPE of a table or
%I YPE of a column or attribute from a table are compiled based on the latest type
version. If the table fails the revalidation, then compiling any program units that
reference that table will also fail.

ALTER TYPE Statement for Type Evolution

Table 7-1 lists some of the important options in the ALTER TYPE statement for
altering the attribute or method definition of a type.

Advanced Topics for Oracle Objects 7-15

Type Evolution

Table 7-1 ALTER TYPE Options for Type Evolution

Option

Description

I NVALI DATE

CASCADE

I NCLUDI NG TABLE
DATA

Invalidates all dependent objects. Using this option bypasses all
the type and table checks, to save time.

Use this option only if you are certain that problems will not be
encountered validating dependent types and tables. Table data
cannot be accessed again until it is validated; if it cannot be
validated, it remains inaccessible.

Propagates the type change to dependent types and tables. The
statement aborts if an error is found in dependent types or tables
unless the FORCE option is specified.

If CASCADE is specified with no other options, then the
I NCLUDI NG TABLE DATA option for CASCADE is implied, and
Oracle converts all table data to the latest type version.

Converts data stored in all user-defined columns to the most
recent version of the column's type.

For each new attribute added to the column's type, a new
attribute is added to the data and is initialized to NULL. For
each attribute dropped from the referenced type, the
corresponding attribute data is removed from each row in the
table. All tablespaces containing the table's data must be in read
write mode; otherwise, the statement will not succeed.

7-16 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

Table 7-1 (Cont.) ALTER TYPE Options for Type Evolution

Option Description
NOT | NCLUDI NG Leaves column data as is, associated with the current type
TABLE DATA version. If an attribute is dropped from a type referenced by a

table, then the corresponding column of the dropped attribute is
not removed from the table. Only the metadata of the column is
marked unused. If the dropped attribute is stored out-of-line (for
example, VARRAY, LOB or nested table attribute) then the
out-of-line data is not removed. (Unused columns can be
removed afterward by using an ALTER TABLE DROP UNUSED
COLUMNS statement.)

This option is useful when you have many large tables and may
run out of rollback segments if you convert them all in one
transaction. This option enables you to convert the data of each
dependent table later in a separate transaction (using an ALTER
TABLE UPGRADE | NCLUDI NG DATA statement).

Specifying this option will speed up the table upgrade because
the table's data is left in the format of the old type version.
However, selecting data from this table will require converting
the images stored in the column to the latest type version. This is
likely to affect performance during subsequent SELECT
statements.

Because this option only requires updating the table's metadata
all tablespaces are not required to be on-line in read/write mode
for the statement to succeed.

FORCE Forces the system to ignore errors from dependent tables and
indexes. Errors are logged in a specified exception table so that
they can be queried afterward. This option must be used with
caution because dependent tables may become inaccessible if
some table errors occur.

CONVERT TO For use when altering a type from FINAL to NOT FINAL:

SUBSTI TUTABLE Converts data stored in all user-defined columns to the most
recent version of the column's type and then marks these
existing columns and object tables of the type SUBSTI TUTABLE
AT ALL LEVELS so that they can store any new subtypes of the
type that are created.

If the type is altered to NOT FI NAL without specifying this
option, existing columns and tables of the type are marked NOT
SUBSTI TUTABLE AT ALL LEVELS, and new subtypes of the
type cannot be stored in them. You will be able to store such
subtypes only in columns and tables created after the type was
altered.

Advanced Topics for Oracle Objects 7-17

Type Evolution

See Also: Oracle Database SQL Reference for information about
ALTER TYPE options

Figure 7-1 graphically summarizes the options for ALTER TYPE | NVALI DATE and
their effects. In the figure, T1 is a type and T2 is a dependent type. See the notes
following the figure.

Figure 7-1 ALTER TYPE Options

Alter Type Invalidate
Options

(1) A

q
Cascade Not Including A
Table Data
Dependent types F===F-=-=a F===f ===,

| Metadata I

1
1
1
1
1| TB2
1
1
1
1

9 | Metadata I

_|
w
s

Cascade Including
Table Data =~ =====~ ¢ @ ~TTT====°

Dependent tables

(3]

Other dependent objects A A

Notes on the figure:

7-18 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

1. Invalidate: All objects following line (1) are marked invalid

2. Cascade Not Including Table Data: All objects following line (2) are marked
invalid. Metadata of all dependent tables are upgraded to the latest type
version, but the table data are not converted.

3. Cascade Including Table Data: All objects following line (3) are marked
invalid. All dependent tables are upgraded to the latest type version, including
the table data.

ALTER TABLE Statement for Type Evolution

You can use ALTER TABLE to convert table data to the latest version of referenced
types. For an example of converting table data to latest type version, see "Steps to
Change a Type" on page 7-10. See Table 7-1 on page 7-16 for a discussion of the

| NCLUDI NG DATA option.

See Also: Oracle Database SQL Reference for information about
ALTER TABLE options

The Attribute-Value Constructor

The system-defined attribute value constructor requires you to pass the constructor
a value for each attribute of the type. The constructor then sets the attributes of the
new object instance to those values. For example:

CREATE TYPE shape AS OBJECT (
name VARCHAR2(30),
area NUMBER);
/
CREATE TABLE bui | di ng_bl ocks of shape;

- Attribute value constructor: Sets instance attributes to the specified val ues
I NSERT | NTO bui | di ng_bl ocks
VALUES (
NEW shape(' ny_shape', 4));

The keyword NEWpreceding a call to a constructor is optional but recommended.

Constructors and Type Evolution

The attribute value constructor function saves you the trouble of defining your own
constructors for a type. However, with an attribute-value constructor, you must

Advanced Topics for Oracle Objects 7-19

Type Evolution

supply a value for every attribute declared in the type. Otherwise the constructor
call will fail to compile.

This requirement of an attribute-value constructor can create a problem if you
evolve the type later on—by adding an attribute, for example. When you change the
attributes of a type, the type's attribute-value constructor changes, too. If you add
an attribute, the updated attribute-value constructor expects a value for the new
attribute as well as the old ones. As a result, all the attribute-value constructor calls
in your existing code, where values for only the old number of attributes are
supplied, will fail to compile.

See Also: "Type Evolution” on page 7-7

Advantages of User-Defined Constructors

User-defined constructors avoid the problem with the attribute-value constructor
because user-defined constructors do not need to explicitly set a value for every
attribute of a type. A user-defined constructor can have any number of arguments,
of any type, and these do not need to map directly to type attributes. In your
definition of the constructor, you can initialize the attributes to any appropriate
values. Any attributes for which you do not supply values are initialized by the
system to NULL.

If you evolve a type—for example, by adding an attribute—calls to user-defined
constructors for the type do not need to be changed. User-defined constructors, like
ordinary methods, are not automatically modified when the type evolves, so the call
signature of a user-defined constructor remains the same. You may, however, need
to change the definition of the constructor if you do not want the new attribute to be
initialized to NULL.

Defining and Implementing User-Defined Constructors

You define user-defined constructors in the type body, like an ordinary method
function. You introduce the declaration and the definition with the phrase
CONSTRUCTOR FUNCTI ON; you must also use the clause RETURN SELF AS
RESULT.

A constructor for a type must have the same name as the type. Example 7-1 defines
two constructor functions for the shape type. As the example shows, you can
overload user-defined constructors by defining multiple versions with different
signatures.

7-20 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

Example 7-1 Defining and Implementing User-Defined Constructors

CREATE TYPE shape AS OBJECT
(
name VARCHAR2(30),
area NUMBER,
CONSTRUCTOR FUNCTI ON shape(name VARCHAR2) RETURN SELF AS RESULT,
CONSTRUCTOR FUNCTI ON shape(name VARCHAR2, area NUMBER) RETURN
SELF AS RESULT
) NOT FI NAL;
/

CREATE TYPE BODY shape AS
CONSTRUCTOR FUNCTI ON shape(nane VARCHAR2) RETURN SELF AS RESULT IS
BEG N

SELF. nane : = nane;
SELF.area : = 0;
RETURN,

END;

CONSTRUCTOR FUNCTI ON shape(name VARCHAR2, area NUMBER) RETURN
SELF AS RESULT IS

BEG N
SELF. nane : = nane;
SELF. area := area;
RETURN,
END;
END;

/

A user-defined constructor has an implicit first parameter SELF. Specifying this
parameter in the declaration of a user-defined constructor is optional. If you do
specify it, its mode must be declared to be | N OUT.

The required clause RETURN SELF AS RESULT ensures that the most specific type
of the instance being returned is the same as the most specific type of the SELF
argument. In the case of constructors, this is the type for which the constructor is
defined.

For example, if the most specific type of the SELF argument on a call to the shape
constructor is shape, then this clause ensures that the shape constructor returns an
instance of shape (not an instance of a subtype of shape).

When a constructor function is called, the system initializes the attributes of the
SELF argument to NULL. Names of attributes subsequently initialized in the
function body may be qualified with SELF, as shown in the preceding example, to
distinguish them from the names of the arguments of the constructor function, if

Advanced Topics for Oracle Objects 7-21

Type Evolution

these are the same. If the argument names are different, no such qualification is
necessary. For example:

SELF. nane := namne;

or:
name : = pl;
The function body must include an explicitr et ur n; as shown. The return

keyword must not be followed by a r et ur n expression. The system automatically
returns the newly constructed SELF instance.

A user-defined constructor may be implemented in PL/SQL, C, or Java.

Overloading and Hiding Constructors

Like other type methods, user-defined constructors can be overloaded.

User-defined constructors are not inherited, so a user-defined constructor defined in
a supertype cannot be hidden in a subtype. However, a user-defined constructor
does hide, and thus supersede, the attribute-value constructor for its type if the
signature of the user-defined constructor exactly matches the signature of the
attribute-value constructor. For the signatures to match, the names and types of the
parameters (after the implicit SELF parameter) of the user-defined constructor must
be the same as the names and types of the type's attributes. The mode of each of the
user-defined constructor's parameters (after the implicit SELF parameter) must be

I N.

If an attribute-value constructor is not hidden by a user-defined constructor having
the same name and signature, the attribute-value constructor can still be called.

Note that, if you evolve a type—for example, by adding an attribute—the signature
of the type's attribute-value constructor changes accordingly. This can cause a
formerly hidden attribute-value constructor to become usable again.

Calling User-Defined Constructors

A user-defined constructor is called like any other function. You can use a
user-defined constructor anywhere you can use an ordinary function.

The SELF argument is passed in implicitly and may not be passed in explicitly. In
other words, usages like the following are not allowed:

NEW const ruct or (i nstance, argunment _|ist)

7-22 Oracle Database Application Developer's Guide - Object-Relational Features

Type Evolution

A user-defined constructor cannot occur in the DEFAULT clause of a CREATE or
ALTER TABLE statement, but an attribute-value constructor can. The arguments to
the attribute-value constructor must not contain references to PL/SQL functions or
to other columns, including the pseudocolumns LEVEL, PRI OR, and ROANUM or to
date constants that are not fully specified. The same is true for check constraint
expressions: an attribute-value constructor can be used as part of check constraint
expressions while creating or altering a table, but a user-defined constructor cannot.

Parentheses are required in SQL even for constructor calls that have no arguments.
In PL/SQL, parentheses are optional when invoking a zero-argument constructor.
They do, however, make it more obvious that the constructor call is a function call.
The following PL/SQL example omits parentheses in the constructor call to create a
new shape:

shape s := NEWny_schema. shape;

The NEWkeyword and the schema name are optional.

Example 7-2 Calling User-Defined Constructors with SQL and PL/SQL

CREATE TYPE rectangl e UNDER shape
(
| engt h NUMBER,
wi dt h NUMBER,
CONSTRUCTOR FUNCTI ON rect angl e(
name VARCHAR2, |ength NUMBER, wi dth NUVBER
) RETURN SELF as RESULT);
/

CREATE TYPE BODY rectangle IS
CONSTRUCTOR FUNCTI ON rect angl e(
name VARCHAR2, |ength NUMBER, w dth NUVBER
) RETURN SELF AS RESULT IS

BEG N
SELF. nane : = nang;
SELF. area : = | engt h*wi dt h;

SELF. I ength := length;
SELF.wi dth := width;
RETURN ;
END;
END,
/

CREATE TABLE shape_t abl e OF shape;

Advanced Topics for Oracle Objects 7-23

Type Evolution

I NSERT | NTO shape_t abl e VALUES(shape(' shapel', 20));
I NSERT | NTO shape_t abl e VALUES(rectangl e('rectangle', 2, 5));
I NSERT | NTO shape_tabl e VALUES(rectangl e(' Quad', 12, 3));

The following query selects the rows in the shape_t abl e:
SELECT VALUE(s) FROM shape_table s;

VALUE(S) (NAME, AREA)

SHAPE(' shapel', 20)
RECTANGLE(' rectangle', 10, 2, 5)
RECTANGLE(' Quad', 36, 12, 3)

The following PL/SQL code calls the constructor:
s shape := NEWshape('void');

Constructors for SQLJ Object Types

A SQLJ object type is a SQL object type mapped to a Java class. A SQLJ object type
has an attribute-value constructor. It can also have user-defined constructors that
are mapped to constructors in the referenced Java class.

Example 7-3 Creating a SQLJ Object

CREATE TYPE address AS OBJECT
EXTERNAL NAME ' university. address'
LANGUAGE JAVA USI NG SQ.Dat a

street VARCHAR2(100) EXTERNAL NAME 'street',

city VARCHAR2(50) EXTERNAL NAME 'city',

state VARCHAR2(50) EXTERNAL NAME 'state',

zi p_code nunber EXTERNAL NAME ' zi pCode',

CONSTRUCTOR FUNCTI ON address (full _address VARCHAR)

EXTERNAL NAME 'address (java.lang.String)');

/
A SQLJ type of a serialized representation can have only a user-defined constructor.
The internal representation of an object of SQLJ type is opaque to SQL, so an
attribute-value constructor is not possible for a SQLJ type.

7-24 Oracle Database Application Developer's Guide - Object-Relational Features

Transient and Generic Types

Transient and Generic Types

Oracle has three special SQL datatypes that enable you to dynamically encapsulate
and access type descriptions, data instances, and sets of data instances of any other
SQL type, including object and collection types. You can also use these three special
types to create anonymous types, including anonymous collection types.

The three SQL types are implemented as opaque types. In other words, the internal
structure of these types is not known to the database; their data can be queried only
by implementing functions (typically 3GL routines) for the purpose. Oracle
provides both an OCI and a PL/SQL API for implementing such functions.

The three generic SQL types are described in Table 7-2.

Table 7-2 Generic SQL Types

Type Description

SYS. ANYTYPE A type description type. A SYS. ANYTYPE can contain a type
description of any SQL type, named or unnamed, including
object types and collection types.

An ANYTYPE can contain a type description of a persistent type,
but an ANYTYPE itself is transient: in other words, the value in
an ANYTYPE itself is not automatically stored in the database. To
create a persistent type, use a CREATE TYPE statement from
SQL.

SYS. ANYDATA A self-describing data instance type. A SYS. ANYDATA contains
an instance of a given type, with data, plus a description of the
type. In this sense, a SYS. ANYDATA is self-describing. An
ANYDATA can be persistently stored in the database.

SYS. ANYDATASET A self-describing data set type. A SYS. ANYDATASET type
contains a description of a given type plus a set of data instances
of that type. An ANYDATASET can be persistently stored in the
database.

Each of these three types can be used with any built-in type native to the database
as well as with object types and collection types, both named and unnamed. The
types provide a generic way to work dynamically with type descriptions, lone
instances, and sets of instances of other types. Using the APIs, you can create a
transient ANYTYPE description of any kind of type. Similarly, you can create or
convert (cast) a data value of any SQL type to an ANYDATA and can convert an
ANYDATA (back) to a SQL type. And similarly again with sets of values and
ANYDATASET.

Advanced Topics for Oracle Objects 7-25

Transient and Generic Types

The generic types simplify working with stored procedures. You can use the generic
types to encapsulate descriptions and data of standard types and pass the
encapsulated information into parameters of the generic types. In the body of the
procedure, you can detail how to handle the encapsulated data and type
descriptions of whatever type.

You can also store encapsulated data of a variety of underlying types in one table
column of type ANYDATA or ANYDATASET. For example, you can use ANYDATA with
Advanced Queuing to model queues of heterogeneous types of data. You can query
the data of the underlying datatypes like any other data.

Example 7-4 defines and executes a PL/SQL procedure that uses methods built into
SYS. ANYDATA to access information about data stored in a SYS. ANYDATA table
column.

Example 7-4 Using SYS.ANYDATA

CREATE OR REPLACE TYPE dogowner AS OBJECT (
ownerno NUMBER, ownernane VARCHAR2(10));
/
CREATE OR REPLACE TYPE dog AS OBJECT (
breed VARCHAR2(10), dognane VARCHAR2(10));
/
CREATE TABLE nytab (id NUMBER data SYS. ANYDATA);
I NSERT I NTO nmytab VALUES (1, SYS. ANYDATA. Convert Nunber (5));
I NSERT I NTO nytab VALUES (2, SYS. ANYDATA. Convert Qbject (
dogowner (5555, 'John')));
commi t;

CREATE OR REPLACE procedure P IS
CURSOR cur |'S SELECT id, data FROM nytab;

v_id nytab.id%YPE;

v_data nytab. dat a%YPE;

v_type SYS. ANYTYPE;

v_typecode PLS | NTEGER,

v_typename VARCHAR2(60);

v_dumy PLS_| NTEGER,

v_n NUMBER,

v_dogowner dogowner ;

non_nul | _anytype_f or _NUVBER excepti on;
unknown_t ypenane excepti on;

BEG N
OPEN cur;

7-26 Oracle Database Application Developer's Guide - Object-Relational Features

Transient and Generic Types

LOoP
FETCH cur INTOv_id, v_data;
EXI T WHEN cur 9NOTFOUND;
v_typecode := v_data. Get Type (v_type /* QUT */);
CASE v_typecode
VWHEN Dbns_Types. Typecode_NUVBER THEN
IF v_type I'S NOT NULL
THEN RAI SE non_nul | _anytype_for _NUMBER;, END I|F;
v_dumy := v_data. Get NUMBER (v_n /* QUT */);
Dbns_Qut put . Put _Line (
To_Char(v_id) || ": NUMBER ="' || To_Char(v_n));
VWHEN Dbns_Types. Typecode_Chj ect THEN
v_typename : = v_data. Get TypeNane();
I F v_typename NOT IN (' OBJTEST1. DOGOMER)
THEN RAI SE unknown_t ypenane; END | F;
v_dumy := v_data. Get Object (v_dogowner /* OUT */);
Dons_Qut put . Put _Li ne (

To_Char(v_id) || ": user-defined type ="' || v_typename ||
"(" || v_dogowner.ownerno || ', ' || v_dogowner.ownernanme || ')');
END CASE;
END LOOP;
CLCSE cur;

EXCEPTI ON
VHEN non_nul | _anyt ype_f or _NUVBER THEN
RAI SE_Appl i cation_Error (-20000,
' Paradox: the return AnyType instance FROM Get Type ' ||
"shoul d be NULL for all but user-defined types');
VWHEN unknown_t ypenanme THEN
RAI SE_Application_Error (-20000,
" Unknown user-defined type ' || v_typenane ||
- programwitten to handl e only OBJTEST1. DOGOMER);
END;
/

SELECT t. data. gettypenane() FROM nytab t;
SET SERVERCUTPUT ON,
EXEC P;

The query and the procedure P in the preceding code sample produce output like
the following:
T. DATA. GETTYPENAVE()

SYS. NUMBER

Advanced Topics for Oracle Objects 7-27

User-Defined Aggregate Functions

OBJTEST1. DOGOWNER

1: NUMBER = 5
2: user-defined type = OBJTEST1. DOGOMER(5555, John)

Corresponding to the three generic SQL types are three OCI types that model them.
Each has a set of functions for creating and accessing the respective type:

« OCl Type, corresponding to SYS. ANYTYPE
« OCl AnyDat a, corresponding to SYS. ANYDATA
« OCl AnyDat aSet , corresponding to SYS. ANYDATASET

See Also:

« Oracle Call Interface Programmer*s Guide for the OCl Type,
OCl AnyDat a, and OCl AnyDat aSet APIs and details on how
to use them.

« PL/SQL Packages and Types Reference for information about the
interfaces to the ANYTYPE, ANYDATA, and ANYDATASET types
and about the DBM5_TYPES package, which defines constants
for built-in and user-defined types, for use with ANYTYPE,
ANYDATA, and ANYDATASET.

User-Defined Aggregate Functions

Oracle provides a number of pre-defined aggregate functions such as MAX; M N, SUM
for performing operations on a set of records. These pre-defined aggregate
functions can be used only with scalar data. However, you can create your own
custom implementations of these functions, or define entirely new aggregate
functions, to use with complex data—for example, with multimedia data stored
using object types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like Oracle's
own built-in aggregates. Once such functions are registered with the server, Oracle
simply invokes the aggregation routines that you supplied instead of the native
ones.

User-defined aggregates can be used with scalar data as well. For example, it may
be worthwhile to implement special aggregate functions for working with complex
statistical data associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You
implement them using ODCl Aggr egat e interface routines.

7-28 Oracle Database Application Developer's Guide - Object-Relational Features

Partitioning Tables That Contain Oracle Objects

See Also: Oracle Data Cartridge Developer’s Guide for information
on using the ODCl Aggr egat e interface routines to implement
user-defined aggregate functions

Partitioning Tables That Contain Oracle Objects

Partitioning addresses the key problem of supporting very large tables and indexes
by allowing you to decompose them into smaller and more manageable pieces
called partitions. Oracle extends partitioning capabilities by letting you partition
tables that contain objects, REFs, varrays, and nested tables. Varrays stored in LOBs
are equipartitioned in a way similar to LOBs.

Example 7-5 partitions the purchase order table along zip codes (ToZi p), which is
an attribute of the Shi pToAddr embedded column object. For the purposes of this
example, the Li nel t enli st nested table was made a varray to illustrate storage

for the partitioned varray.

Restriction: Nested tables are allowed in tables that are
partitioned; however, the storage table associated with the nested
table is not partitioned.

Assuming that the Li nel t enli st is defined as a varray:

Example 7-5 Partitioning a Table That Contains Objects

CREATE TYPE Lineltenlist_vartyp as varray(10000) of Lineltem objtyp;
/
CREATE TYPE PurchaseOrder _typ AS OBJECT (

PONo NUVBER,

Cust ref REF Custoner _objtyp,
OrderDate DATE,

Shi pDat e DATE,

OrderForm BLOB,

Li nel t enli st Li nel tenli st _vartyp,
Shi pToAddr Addr ess_obj typ,

VAP MEMBER FUNCTI ON
ret_val ue RETURN NUVBER
MEMBER FUNCTI ON
total _val ue RETURN NUMBER);
/
CREATE TABLE PurchaseOrders_tab of PurchaseOrder_typ

Advanced Topics for Oracle Objects 7-29

Partitioning Tables That Contain Oracle Objects

LOB (OrderForm store as (nocache |ogging)
PARTI TI ON BY RANGE (Shi pToAddr. zi p)
(PARTI TI ON Pur Or der Zonel_part
VALUES LESS THAN (' 59999")
LOB (OrderForm store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
VARRAY Lineltenlist store as LOB (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI TI ON Pur Or der Zone6_part
VALUES LESS THAN (' 79999")
LOB (OrderForm store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
VARRAY Lineltenlist store as LOB (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI TI ON Pur Or der ZoneO part
VALUES LESS THAN (' 99999')
LOB (OrderForm store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
VARRAY LineltenList store as LOB (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)));

How Locators Improve the Performance of Nested Tables

Collection types do not map directly to a native type or structure in languages such
as C++ and Java. An application using those languages must access the contents of
a collection through Oracle interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by
fetching the containing object), Oracle returns the entire collection value to the client
process. For performance reasons, a client may wish to delay or avoid retrieving the
entire contents of the collection. Oracle handles this case for you by using a locator
instead of the real nested table value. When you really access the contents of the
collection, they are automatically transferred to the client.

A nested table locator is like a handle to the collection value. It attempts to preserve
the value or copy semantics of the nested table by containing the database snapshot
as of its time of retrieval. The snapshot helps the database retrieve the correct
instantiation of the nested table value at a later time when the collection elements
are fetched using the locator. The locator is scoped to a session and cannot be used
across sessions. Because database snapshots are used, it is possible to get a
snapshot t oo ol derror if there is a high update rate on the nested table. Unlike
a LOB locator, the nested table locator is truly a locator and cannot be used to
modify the collection instance.

7-30 Oracle Database Application Developer's Guide - Object-Relational Features

8

Design Considerations for Oracle Objects

This chapter explains the implementation and performance characteristics of the
Oracle object-relational model. Use this information to map a logical data model

into an Oracle physical implementation, and when developing applications that use
object-oriented features. You should be familiar with the basic concepts behind
Oracle objects before you read this chapter.

This chapter covers the following topics:

General Storage Considerations for Objects
Performance of Object Comparisons

Design Considerations for REFs

Design Considerations for Collections
Design Considerations for Methods

Writing Reusable Code Using Invoker Rights
Replicating Object Tables and Columns
Constraints on Objects

Considerations Related to Type Evolution
Parallel Queries with Oracle Objects

Design Consideration Tips and Techniques

Design Considerations for Oracle Objects

8-1

General Storage Considerations for Objects

General Storage Considerations for Objects

This section discusses general storage considerations for various object types.

Storing Objects as Columns or Rows

You can store objects in columns of relational tables as column objects, or in object
tables as row objects. Objects that have meaning outside of the relational database
object in which they are contained, or objects that are shared among more than one
relational database object, should be made referenceable as row objects. That is,
such objects should be stored in an object table instead of in a column of a relational
table.

For example, an object of object type cust oner has meaning outside of any
particular purchase order, and should be referenceable; therefore, cust omer objects
should be stored as row objects in an object table. An object of object type addr ess,
however, has little meaning outside of a particular purchase order and can be one
attribute within a purchase order; therefore, addr ess objects should be stored as
column objects in columns of relational tables or object tables. So, addr ess might
be a column object in the cust omer row object.

Column Object Storage

The storage of a column object is the same as the storage of an equivalent set of
scalar columns that collectively make up the object. The only difference is that there
is the additional overhead of maintaining the atomic null values of the object and its
embedded object attributes. These values are called null indicators because, for
every column object, a null indicator specifies whether the column object is null and
whether each of its embedded object attributes is null. However, null indicators do
not specify whether the scalar attributes of a column object are null. Oracle uses a
different method to determine whether scalar attributes are null.

Consider a table that holds the identification number, name, address, and phone
numbers of people within an organization. You can create three different object
types to hold the name, address, and phone number. First, to create the nane_
obj t yp object type, enter the following SQL statement:

CREATE TYPE name_objtyp AS OBJECT (

first VARCHAR2(15) ,
m ddl e VARCHAR2(15) ,
| ast VARCHAR2(15)) ;

/
Next, to create the addr ess_obj t yp object type, enter the following SQL
statement:

8-2 Oracle Database Application Developer's Guide - Object-Relational Features

General Storage Considerations for Objects

CREATE TYPE address_objtyp AS OBJECT (

street VARCHAR2(200) ,
city VARCHAR2(200) ,
state CHAR(2),

zi pcode VARCHAR2(20)) ;

/
Finally, to create the phone_obj t yp object type, enter the following SQL
statement:

CREATE TYPE phone_objtyp AS OBJECT (
| ocation VARCHAR2(15) ,
num VARCHAR2(14)) ;

/

Because each person may have more than one phone number, create a nested table
type phone_nt abt yp based on the phone_obj t yp object type:

CREATE TYPE phone_ntabtyp AS TABLE OF phone_obj typ;
/

See Also: "Design Considerations for Nested Tables" on page 8-14
for more information about nested tables.

Once all of these object types are in place, you can create a table to hold the
information about the people in the organization with the following SQL statement:

CREATE TABLE people_reltab (
id NUVBER(4) CONSTRAINT pk_peopl e_reltab PRI MARY KEY,
name_obj name_obj typ,
addr ess_obj address_obj typ,
phones_ntab phone_nt abtyp)
NESTED TABLE phones_ntab STORE AS phone_store_nt ab;

Design Considerations for Oracle Objects 8-3

General Storage Considerations for Objects

Figure 8-1 Representation of the people_reltab Relational Table

Table PEOPLE_RELTAB

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Number Object Type Object Type Nested Table
NUMBER(4) NAME_OBJTYP | ADDRESS_OBJTYP | PHONE_NTABTYP

PK

-Nested Table PHONES_NTAB (of PHONE_NTABTYP)
LOCATION NUM

Text Number
VARCHAR(15) | VARCHAR(14)

—tColumn Object ADDRESS_OBJ (of ADDRESS_OBJTYP)
STREET CITY STATE ZIPCODE

Text Text Text Text
VARCHAR2(200) | VARCHAR(200) | CHAR(2) | VARCHAR(20)

Column Object NAME_OBJ (of NAME_OBJTYP)
FIRST MIDDLE LAST

Text Text Text
VARCHAR2(15) VARCHAR2(15) VARCHARZ2(15)

The peopl e_r el t ab table has three column objects: nane_obj , addr ess_obj ,
and phones_nt ab. The phones_nt ab column object is also a nested table.

8-4 Oracle Database Application Developer's Guide - Object-Relational Features

General Storage Considerations for Objects

Note: The peopl e_r el t ab table and its columns and related
types are used in examples throughout this chapter.

The storage for each object stored in the peopl e_r el t ab table is the same as that
of the attributes of the object. For example, the storage required for a name_obj
object is the same as the storage for thefi rst, m ddl e, and | ast attributes
combined, except for the null indicator overhead.

If the COMPATI BLE parameter is set to 8.1.0 or higher, the null indicators for an
object and its embedded object attributes occupy one bit each. Thus, an object with
n embedded object attributes (including objects at all levels of nesting) has a storage
overhead of CEl L(n/ 8) bytes. In the peopl e_r el t ab table, for example, the
overhead of the null information for each row is one byte because it translates to
CEl L(3/8) orCEI L(.37),which rounds up to one byte. In this case, there are
three objects in each row: nanme_obj , addr ess_obj , and phones_nt ab.

If, however, the COVPATI BLE parameter is set to a value lower than 8.1.0, such as
8.0.0, the storage is determined by the following calculation:

CEIL(n/8) + 6

Here, n is the total number of all attributes (scalar and object) within the object.
Therefore, in the peopl e_r el t ab table, for example, the overhead of the null
information for each row is seven bytes because it translates to the following
calculation:

CEIL(4/8) +6=7

CEI L(4/ 8) is CEl L(.5), which rounds up to one byte. In this case, there are three
objects in each row and one scalar.

Therefore, the storage overhead and performance of manipulating a column object
is similar to that of the equivalent set of scalar columns. The storage for collection
attributes are described in the "Viewing Object Data in Relational Form with
Unnesting Queries" section on page 8-11.

See Also: Oracle Database SQL Reference for more information
about CEI L.

Row Object Storage in Object Tables

Row objects are stored in object tables. An object table is a special kind of table that
holds objects and provides a relational view of the attributes of those objects. An

Design Considerations for Oracle Objects 8-5

General Storage Considerations for Objects

object table is logically and physically similar to a relational table whose column
types correspond to the top level attributes of the object type stored in the object
table. The key difference is that an object table can optionally contain an additional
object identifier (OID) column and index.

Storage Considerations for Object Identifiers (OIDs)

By default, every row object in an object table has an associated logical object
identifier (OID) that uniquely identifies it in an object table. Oracle assigns each row
object a unique system-generated OID, 16 bytes in length that is automatically
indexed for efficient OID-based lookups. The OID column is the equivalent of
having an extra 16-byte primary key column. In a distributed and replicated
environment, the system-generated unique identifier lets Oracle identify objects
unambiguously.

Oracle provides no documentation of or access to the internal structure of object
identifiers. This structure can change at any time. The OID column of an object table
is a hidden column. Once it is set up, you can ignore it and focus instead on fetching
and navigating objects through object references.

An OID allows the corresponding row object to be referred to from other objects or
from relational tables. A built-in datatype called a REF represents such references. A
REF encapsulates a reference to a row object of a specified object type.

REFs use object identifiers (OIDs) to point to objects. You can use either
system-generated OIDs or primary-key based OIDs. The differences between these
types of OIDs are outlined in "Row Object Storage in Object Tables" on page 8-5. If
you use system-generated OIDs for an object table, Oracle maintains an index on
the column that stores these OIDs. The index requires storage space, and each row
object has a system-generated OID, which requires an extra 16 bytes of storage for
each row.

Primary-Key Based OIDs

If a primary key column is available, you can avoid the storage and performance
overhead of maintaining the 16-byte OID column and its index. Instead of using the
system-generated OIDs, you can use a CREATE TABLE statement to specify that the
system use the primary key column(s) as the OIDs of the objects in the table.
Therefore, you can use existing columns as the OIDs of the objects or use
application generated OIDs that are smaller than the 16-byte globally unique OIDs
generated by Oracle.

You can avoid these added storage requirements by using the primary key for the
object identifiers, instead of system-generated OIDs. You can enforce referential

8-6 Oracle Database Application Developer's Guide - Object-Relational Features

Performance of Object Comparisons

integrity on columns that store references to these row objects in a way similar to
foreign keys in relational tables.

Primary-key based identifiers also make it faster and easier to load data into an
object table. By contrast, system-generated object identifiers need to be remapped
using some user-specified keys, especially when references to them are also stored.

However, if each primary key value requires more than 16 bytes of storage and you
have a large number of REFs, using the primary key might require more space than
system-generated OIDs because each REF is the size of the primary key. In addition,
each primary-key based OID is locally (but not necessarily globally) unique. If you
require a globally unique identifier, you must ensure that the primary key is
globally unique or use system-generated OIDs.

Performance of Object Comparisons

You can compare objects by invoking the map or order methods defined on the
object type. A map method converts objects into scalar values while preserving the
ordering of the objects. Mapping objects into scalar values, if it can be done, is
preferred because it allows the system to efficiently order objects once they are
mapped.

The way objects are mapped has significant performance implications when sorting
is required on the objects for ORDER BY or GROUP BY processing because an object
may need to be compared to other objects many times, and it is much more efficient
if the objects can be mapped to scalar values first. If the comparison semantics are
extremely complex, or if the objects cannot be mapped into scalar values for
comparison, you can define an order method that, given two objects, returns the
ordering determined by the object implementor. Order methods are not as efficient
as map methods, so performance may suffer if you use order methods. In any one
object type, you can implement either map or order methods, but not both.

Once again, consider an object type addr ess consisting of four character attributes:
street,city,state,and zi pcode. Here, the most efficient comparison method

is a map method because each object can be converted easily into scalar values. For
example, you might define a map method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In
this case, the comparison semantics may be too complex to use a map method; if so,
you can use an order method to perform comparisons. For example, you could
create an order method that compares images according to brightness or the
number of pixels in each image.

Design Considerations for Oracle Objects 8-7

Design Considerations for REFs

If an object type does not have either a map or order method, only equality
comparisons are allowed on objects of that type. In this case, Oracle performs the
comparison by doing a field-by-field comparison of the corresponding object
attributes, in the order they are defined. If the comparison fails at any point, a
FALSE value is returned. If the comparison matches at every point, a TRUE value is
returned. However, if an object has a collection of LOB attributes, then Oracle does
not compare the object on a field-by-field basis. Such objects must have a map or
order method to perform comparisons.

Design Considerations for REFs
This section discusses considerations when working with REFs.
« Storage Size of REFs
» Integrity Constraints for REF Columns
» Performance and Storage Considerations for Scoped REFs
« Speeding up Object Access Using the WITH ROWID Option

Storage Size of REFs

A REF contains the following three logical components:

« OID of the object referenced. A system-generated OID is 16 bytes long. The size
of a primary-key based OID depends on the size of the primary key column(s).

« OID of the table or view containing the object referenced, which is 16 bytes
long.

« Rowid hint, which is 10 bytes long.

Integrity Constraints for REF Columns

Referential integrity constraints on REF columns ensure that there is a row object for
the REF. Referential integrity constraints on REFs create the same relationship as
specifying a primary key/foreign key relationship on relational data. In general,
you should use referential integrity constraints wherever possible because they are
the only way to ensure that the row object for the REF exists. However, you cannot
specify referential integrity constraints on REFs that are in nested tables.

8-8 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for REFs

Performance and Storage Considerations for Scoped REFs

A scoped REF is constrained to contain only references to a specified object table.
You can specify a scoped REF when you declare a column type, collection element,
or object type attribute to be a REF.

In general, you should use scoped REFs instead of unscoped REFs because scoped
REFs are stored more efficiently. Whereas an unscoped REF takes at least 36 bytes to
store (more if it uses rowids), a scoped REF is stored as just the OID of its target
object and can take less than 16 bytes, depending on whether the referenced OID is
system-generated or primary-key based. A system-generated OID requires 16 bytes;
a PK-based OID requires enough space to store the primary key value, which may
be less than 16 bytes. However, a REF to a PK-based OID, which must be
dynamically constructed on being selected, may take more space in memory than a
REF to a system-generated OID.

Besides requiring less storage space, scoped REFs often enable the optimizer to
optimize queries that dereference a scoped REF into more efficient joins. This
optimization is not possible for unscoped REFs because the optimizer cannot
determine the containing table(s) for unscoped REFs at query-optimization time.

Unlike referential integrity constraints, scoped REFs do not ensure that the
referenced row object exists; they only ensure that the referenced object table exists.
Therefore, if you specify a scoped REF to a row object and then delete the row
object, the scoped REF becomes a dangling REF because the referenced object no
longer exists.

Note: Referential integrity constraints are scoped implicitly.

Unscoped REFs are useful if the application design requires that the objects
referenced be scattered in multiple tables. Because rowid hints are ignored for
scoped REFs, you should use unscoped REFs if the performance gain of the rowid
hint, as explained in the "Speeding up Object Access Using the WITH ROWID
Option" on page 8-10, outweighs the benefits of the storage saving and query
optimization of using scoped REFs.

Indexing Scoped REFs

You can build indexes on scoped REF columns using the CREATE | NDEX command.
Then, you can use the index to efficiently evaluate queries that dereference the
scoped REFs. Such queries are turned into joins implicitly. For certain types of

Design Considerations for Oracle Objects 8-9

Design Considerations for REFs

gueries, Oracle can use an index on the scoped REF column to evaluate the join
efficiently.

For example, suppose the object type addr ess_obj t yp is used to create an object
table named addr ess_obj t ab:

CREATE TABLE address_objtab OF address_objtyp ;

Then, apeopl e_r el t ab2 table can be created that has the same definition as the
peopl e_rel t ab table discussed in "Column Object Storage" on page 8-2, except
that a REF is used for the address:

CREATE TABLE peopl e_rel tabh2 (
id NUVBER(4) CONSTRAINT pk_peopl e_rel tab2 PRI MARY KEY,
nanme_obj name_obj typ,
address_ref REF address_objtyp SCOPE |'S address_objtab,
phones_ntab phone_nt abtyp)
NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

Now, an index can be created on the addr ess_r ef column:
CREATE | NDEX address_ref i dx ON people_reltab2 (address_ref) ;

The following query dereferences the addr ess_r ef:

SELECT id FROM peopl e_reltab2 p
WHERE p. address_ref.state = 'CA" ;

When this query is executed, the addr ess_ref _i dx index is used to efficiently
evaluate it. Here, addr ess_r ef is a scoped REF column that stores references to
addresses stored in the addr ess_obj t ab object table. Oracle implicitly transforms
the preceding query into a query with a join:

SELECT p.id FROM peopl e_reltab2 p, address_objtab a
WHERE p. address_ref = ref(a) AND a.state = 'CA'

The Oracle query optimizer might create a plan to perform a nested-loops join with
addr ess_obj t ab as the outer table and look up matching addresses using the
index on the addr ess_r ef scoped REF column.

Speeding up Object Access Using the WITH ROWID Option

If the W TH ROW D option is specified for a REF column, Oracle maintains the rowid
of the object referenced in the REF. Then, Oracle can find the object referenced
directly using the rowid contained in the REF, without the need to fetch the rowid
from the OID index. Therefore, you use the W TH RON D option to specify a rowid

8-10 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

hint. Maintaining the rowid requires more storage space because the rowid adds 10
bytes to the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal
(navigational access) in applications. The actual performance gain may vary from
application to application depending on the following factors:

« How large the OID indexes are.
« Whether the OID indexes are cached in the buffer cache.
« How many REF traversals an application does.

The W THROW D option is only a hint because, when you use this option, Oracle
checks the OID of the row object with the OID in the REF. If the two OIDs do not
match, Oracle uses the OID index instead. The rowid hint is not supported for
scoped REFs, for REFs with referential integrity constraints, or for primary
key-based REFs.

Design Considerations for Collections
This section discusses considerations when working with collections.
« Viewing Object Data in Relational Form with Unnesting Queries
« Storage Considerations for Varrays
« Performance of Varrays Versus Nested Tables
« Design Considerations for Nested Tables

« Design Considerations for Multilevel Collections

Viewing Object Data in Relational Form with Unnesting Queries

An unnesting query on a collection allows the data to be viewed in a flat (relational)
form. You can execute unnesting queries on single-level and multilevel collections
of either nested tables or varrays. This section contains examples of unnesting
gueries.

Nested tables can be unnested for queries using the TABLE syntax, as in the
following example:

SELECT p. nane_obj, n.num
FROM peopl e_rel tab p, TABLE(p. phones_ntab) n ;

Design Considerations for Oracle Objects 8-11

Design Considerations for Collections

Here, phones_nt ab specifies the attributes of the phones_nt ab nested table. To
retrieve even parent rows that have no child rows (no phone numbers, in this case),
use the outer join syntax, with the +. For example:

SELECT p. nanme_obj, n.num
FROM peopl e_rel tab p, TABLE(p.phones_ntab) (+) n ;

If the SELECT list of a query does not refer to any columns from the parent table
other than the nested table column, the query is optimized to execute only against
the nested table's storage table.

The unnesting query syntax is the same for varrays as for nested tables. For
instance, suppose the phones_nt ab nested table is instead a varray named
phones_var . The following example shows how to use the TABLE syntax to query
the varray:

SELECT p. nane_obj, v.num
FROM peopl e_rel tab p, TABLE(p.phones_var) v ;

Using Procedures and Functions in Unnesting Queries

You can create procedures and functions that you can then execute to perform
unnesting queries. For example, you can create a function called hone_phones()
that returns only the phone numbers where | ocat i on is hore. To create the
hone_phones() function, you enter code like the following:

CREATE OR REPLACE FUNCTI ON home_phones(al | phones I'N phone_nt abt yp)
RETURN phone_ntabtyp IS
homephones phone_ntabtyp : = phone_ntabtyp();

i ndx1 nunber ;
i ndx2 nunber := 0;
BEG N
FOR indx1 IN 1..all phones. count LOOP
IF
al | phones(indx1).location = 'homne'
THEN
honephones. ext end; -- extend the local collection
indx2 := indx2 + 1;
homephones(indx2) := al |l phones(indxl);
END I F;
END LOOP;

RETURN honephones;
END;
/

8-12 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

Now, to query for a list of people and their home phone numbers, enter the
following:

SELECT p. nane_obj, n.num
FROM peopl e_rel tab p, TABLE(
CAST(home_phones(p. phones_nt ab) AS phone_ntabtyp)) n ;

To query for a list of people and their home phone numbers, including those people
who do not have a home phone number listed, enter the following:

SELECT p. name_obj, n.num
FROM peopl e_reltab p,
TABLE(home_phones(p. phones_ntab) AS phone_ntabtyp)(+) n ;

See Also: Oracle Database SQL Reference for more information
about using the TABLE syntax.

Storage Considerations for Varrays

The size of a stored varray depends only on the current count of the number of
elements in the varray and not on the maximum number of elements that it can
hold. Because the storage of varrays incurs some overhead, such as null
information, the size of the varray stored may be slightly greater than the size of the
elements multiplied by the count.

Varrays are stored in columns either as raw values or LOBs. Oracle decides how to
store the varray when the varray is defined, based on the maximum possible size of
the varray computed using the LI M T of the declared varray. If the size exceeds
approximately 4000 bytes, then the varray is stored in LOBs. Otherwise, the varray
is stored in the column itself as a raw value. In addition, Oracle supports inline
LOBs which means that elements that fit in the first 4000 bytes of a large varray,
with some bytes reserved for the LOB locator, are stored in the column of the row.

Propagating VARRAY Size Change

When changing the size of a VARRAY type, a new type version is generated for the
dependent types. It is important to be aware of this when a VARRAY column is not
explicitly stored as a LOB and its maximum size is originally smaller than 4000
bytes. If the size is larger than or equal to 4000 bytes after the increase, the VARRAY
column has to be stored as a LOB. This requires an extra operation to upgrade the
metadata of the VARRAY column in order to set up the necessary LOB metadata
information including the LOB segment and LOB index.

Design Considerations for Oracle Objects 8-13

Design Considerations for Collections

The CASCADE option in the ALTER TYPE statement propagates the VARRAY size
change to its dependent types and tables. A new version is generated for each valid
dependent type and dependent tables metadata are updated accordingly based on
the different case scenarios described previously. If the VARRAY column isin a
cluster table, an ALTER TYPE statement with the CASCADE option fails because a
cluster table does not support a LOB.

The CASCADE option in the ALTER TYPE statement also provides the [NOT]

| NCLUDI NG TABLE DATA option. The NOT | NCLUDI NG TABLE DATA option only
updates the metadata of the table, but does not convert the data image. In order to
convert the VARRAY image to the latest version format, you can either specify

| NCLUDI NG TABLE DATA explicitly in ALTER TYPE CASCADE statement or issue
ALTER TABLE UPGRADE statement.

Performance of Varrays Versus Nested Tables

If the entire collection is manipulated as a single unit in the application, varrays
perform much better than nested tables. The varray is stored packed and requires
no joins to retrieve the data, unlike nested tables.

Varray Querying

The unnesting syntax can be used to access varray columns similar to the way it is
used to access nested tables.

See Also: "Viewing Object Data in Relational Form with
Unnesting Queries" on page 8-11 for more information.

Varray Updates

Piece-wise updates of a varray value are not supported. Thus, when a varray is
updated, the entire old collection is replaced by the new collection.

Design Considerations for Nested Tables
The following sections contain design considerations for using nested tables.

Nested Table Storage

Oracle stores the rows of a nested table in a separate storage table. A system
generated NESTED _TABLE I D, which is 16 bytes in length, correlates the parent
row with the rows in its corresponding storage table.

8-14 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

Figure 8-2 shows how the storage table works. The storage table contains each
value for each nested table in a nested table column. Each value occupies one row in
the storage table. The storage table uses the NESTED TABLE | Dto track the nested
table for each value. So, in Figure 8-2, all of the values that belong to nested table A
are identified, all of the values that belong to nested table B are identified, and so
on.

Figure 8-2 Nested Table Storage

DATAL | DATA2 | DATA3 | DATA4 | NT_DATA

mjg|O|m|>

\ Storage Table RS
NESTED_TABLE_ID | Values

mjo|O|>|O|eim|>|m|o|m|>|O|w|w
>
P
)

Nested Table in an Index-Organized Table (IOT)

If a nested table has a primary key, you can organize the nested table as an
index-organized table (IOT). If the NESTED_TABLE | Dcolumn is a prefix of the
primary key for a given parent row, Oracle physically clusters its child rows
together. So, when a parent row is accessed, all its child rows can be efficiently
retrieved. When only parent rows are accessed, efficiency is maintained because the
child rows are not inter-mixed with the parent rows.

Design Considerations for Oracle Objects 8-15

Design Considerations for Collections

Figure 8-3 shows how the storage table works when the nested table is in an IOT.
The storage table groups by NESTED _TABLE_| Dthe values for each nested table in
a nested table column. In Figure 8-3, for each nested table in the NT_DATA column
of the parent table, the data is grouped in the storage table: all of the values in
nested table A are grouped together, all of the values in nested table B are grouped
together, and so on.

Figure 8-3 Nested Table in IOT Storage

DATAL1 | DATA2 | DATAS3 | DATA4 | NT_DATA
B
C
D
E
\ S N
\ ~ ~
\ AN
\ > ~
\\ ~. R
| Storage Table \\\
NESTED_TABLE_ID | Values
Storage for A All
nested — A Al12
[[B B21
Storage for B B22
nested — B B23
table B B B24
B B25
Storage for =
nested — c c3l
Storage for table C c C32
nested L | D D41
table D T | E E51
Storage for
nested —| E E52
table E E ES3
. LE E54

In addition, the COMPRESS clause enables prefix compression on the IOT rows. It
factors out the key of the parent in every child row. That is, the parent key is not
repeated in every child row, thus providing significant storage savings.

In other words, if you specify nested table compression using the COVPRESS clause,
the amount of space required for the storage table is reduced because the NESTED _

TABLE_ I Dis not repeated for each value in a group. Instead, the NESTED TABLE_

| Dis stored only once for each group, as illustrated in Figure 8-4.

8-16 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

Figure 8—-4 Nested Table in IOT Storage with Compression

DATAL1 | DATA2 | DATA3 | DATA4 | NT_DATA
B
C
D
E
\ AN N
\ S ~
\ ~
\ ~
\‘ So .
| Storage Table S
~ | NESTED_TABLE_ID Values
Storage for All
nested — A Al2
table A | A13
B21
Storage for B22
nested — B B23
table B B24
Storage for — ggi
nested —| C
Storage for tableC | C32
nested——— | [D D41
table D < . T E51
orage for
nested — E E52
table E E53
L E54

In general, Oracle recommends that nested tables be stored in an 10T with the
NESTED_TABLE_| Dcolumn as a prefix of the primary key. Further, prefix
compression should be enabled on the IOT. However, if you usually do not retrieve
the nested table as a unit and you do not want to cluster the child rows, do not store
the nested table in an IOT and do not specify compression.

Nested Table Indexes

For nested tables stored in heap tables (as opposed to 10Ts), you should create an
index on the NESTED_TABLE_| Dcolumn of the storage table. The index on the
corresponding ID column of the parent table is created by Oracle automatically
when the table is created. Creating an index on the NESTED_TABLE_| D column
enables Oracle to access the child rows of the nested table more efficiently, because
Oracle must perform a join between the parent table and the nested table using the
NESTED TABLE | Dcolumn.

Design Considerations for Oracle Objects 8-17

Design Considerations for Collections

Nested Table Locators

For large child sets, the parent row and a locator to the child set can be returned so
that the child rows can be accessed on demand; the child sets also can be filtered.
Using nested table locators enables you to avoid unnecessarily transporting child
rows for every parent.

You can perform either one of the following actions to access the child rows using
the nested table locator:

« Call the OCI collection functions. This action occurs implicitly when you access
the elements of the collection in the client-side code, such as OCl Col | *
functions. The entire collection is retrieved implicitly on the first access.

See Also: Oracle Call Interface Programmer’s Guide for more
information about OCI collection functions.

« Use SQL to retrieve the rows corresponding to the nested table.

In a multilevel collection, you can use a locator with a specified collection at any
level of nesting. Following are described two ways in which to specify that a
collection is to be retrieved as a locator.

At Table Creation Time

When the collection type is being used as a column type and the NESTED TABLE
storage clause is used, you can use the RETURN AS LOCATOR clause to specify that a
particular collection is to be retrieved as a locator.

For instance, suppose thati nner _t abl e is a collection type consisting of three
levels of nested tables. In the following example, the RETURN AS LOCATOR clause
specifies that the third level of nested tables is always to be retrieved as a locator.

CREATE TYPE inner_table AS TABLE OF NUMBER
/
CREATE TYPE ni ddl e_tabl e AS TABLE OF inner_table;
/
CREATE TYPE outer _table AS TABLE OF niddl e _table;
/
CREATE TABLE tabl (
col 1 NUMBER,
col 2 outer_table)
NESTED TABLE col 2 STORE AS col 2_ntab
(NESTED TABLE COLUWN_VALUE STORE AS cval 1_ntab
(NESTED TABLE COLUWN VALUE STORE AS cval 2_ntab RETURN AS LOCATOR));

8-18 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

As a HINT During Retrieval

A query can retrieve a collection as a locator by means of the hint NESTED_TABLE _
CGET_REFS. Here is an example of retrieving the column col 2 from the table t abl
as a locator:

SELECT /*+ NESTED TABLE GET_REFS +*/ col 2
FROM t abl
VWHERE col 1 = 2;

Unlike with the RETURN AS LOCATOR clause, however, you cannot specify a
particular inner collection to return as a locator when using the hint.

Optimizing Set Membership Queries

Set membership queries are useful when you want to search for a specific item in a
nested table. For example, the following query tests the membership in a child-set;
specifically, whether the location hone is in the nested table phones_nt ab, which
is in the parent table peopl e_rel t ab:

SELECT * FROM peopl e_reltab p
WHERE ' home' | N (SELECT | ocation FROM TABLE(p. phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently
by transforming it internally into a semijoin. However, this optimization only
happens if the ALWAYS_SEM _JO Ninitialization parameter is set. If you want to
perform semijoins, the valid values for this parameter are MERGE and HASH; these
parameter values indicate which join method to use.

Note: In the preceding example, hone and | ocat i on are child
set elements. If the child set elements are object types, they must
have a map or order method to perform a set membership query.

Design Considerations for Multilevel Collections

Chapter 2 describes how to nest collection types to create a true multilevel
collection, such as a nested table of nested tables, a nested table of varrays, a varray
of nested tables, a varray of nested tables, or a varray or nested table of an object
type that has an attribute of a collection type.

You can also nest collections indirectly using REFs. For example, you can create a
nested table of an object type that has an attribute that references an object that has
a nested table or varray attribute. If you do not actually need to access all elements

Design Considerations for Oracle Objects 8-19

Design Considerations for Collections

of a multilevel collection, then nesting a collection with REFs may provide better
performance because only the REFs need to be loaded, not the elements themselves.

True multilevel collections (specifically multilevel nested tables) perform better for
gueries that access individual elements of the collection. Using nested table locators
can improve the performance of programmatic access if you do not need to access
all elements.

For an example of a collection that uses REFs to nest another collection, suppose
you want to create a new object type called per son_obj t yp using the object types
described in "Column Object Storage” on page 8-2, which are name_obj t yp,

addr ess_obj t yp, and phone_nt abt yp. Remember that the phone_nt abt yp
object type is a nested table because each person may have more than one phone
number.

To create the per son_obj t yp object type, issue the following SQL statement:

CREATE TYPE person_objtyp AS OBJECT (
id NUVBER(4) ,
name_obj nane_obj typ,
address_obj address_obj typ,
phones_ntab phone_ntabtyp);

To create an object table called peopl e_obj t ab of per son_obj t yp object type,
issue the following SQL statement:

CREATE TABLE peopl e_objtab OF person_objtyp (id PRI MARY KEY)
NESTED TABLE phones_ntab STORE AS phones_store_ntab ;

The peopl e_obj t ab table has the same attributes as the peopl e_r el t ab table
discussed in "Column Object Storage" on page 8-2. The difference is that the
peopl e_obj t ab is an object table with row objects, while the peopl e_rel t ab
table is a relational table with three column objects.

8-20 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

Figure 8-5 Object-Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB
Number Object Type Object Type Nested Table
NUMBER(4) NAME_OBJTYP | ADDRESS_OBJTYP | PHONE_NTABTYP
PK

rNested Table PHONES_NTAB (of PHONE_NTABTYP)

LOCATION NUM
Text Number
VARCHAR(15) | VARCHAR(14)

—rColumn Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

STREET CITY STATE ZIPCODE
Text Text Text Text
VARCHAR2(200) | VARCHAR(200) | CHAR(2) | VARCHAR2(20)

Column Object NAME_OBJ (of NAME_OBJTYP)

FIRST MIDDLE LAST
Text Text Text
VARCHAR2(15) VARCHAR2(15) VARCHARZ2(15)

Now you can reference the row objects in the peopl e_obj t ab object table from
other tables. For example, suppose you want to create a pr oj ect s_obj t ab table
that contains:

A project identification number for each project.

Design Considerations for Oracle Objects 8-21

Design Considerations for Collections

« The title of each project.

« The project lead for each project.

« A description of each project.

« Nested table collection of the team of people assigned to each project.

You can use REFs to the peopl e_obj t ab for the project leads, and you can use a
nested table collection of REFs for the team. To begin, create a nested table object
type called per sonr ef _nt abt yp based on the per son_obj t yp object type:

CREATE TYPE personref _ntabtyp AS TABLE OF REF person_objtyp;

/

Now you are ready to create the object table pr oj ect s_obj t ab. First, create the
object type pr oj ect s_obj t yp by issuing the following SQL statement;

CREATE TYPE proj ects_objtyp AS OBJECT (
id NUVBER(4) ,
title VARCHAR2(15) ,
proj | ead_r ef REF person_obj typ,
description CLOB,
team nt ab personref _ntabtyp);
/
Next, create the object table pr oj ect s_obj t ab based on the pr oj ect s_obj t yp:

CREATE TABLE projects_objtab OF projects_objtyp (id PRI MARY KEY)
NESTED TABLE team ntab STORE AS team store_ntab ;

8-22 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Collections

Figure 8-6 Object-Relational Representation of the projects_objtab Object Table

Table PROJECTS_OBJTAB (of PROJECTS_OBJTYP)
ID TITLE PROJLEAD_REF DESCRIPTION | TEAM_NTAB
Number Text Reference Text Nested Table Reference
NUMBER(4) | VARCHAR2(15)| PERSON_OBJTYP | CLOB PERSONREF_NTABTYP
PK
| |
| |
Refers to a Refers to multiple rows
row of the of the object table
object table
]

LObject Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Number Object Type Object Type Nested Table
NUMBER(4) | NAME_OBJTYP ADDRESS_OBJTYP PHONE_NTABTYP

PK

Once the peopl e_obj t ab object table and the pr oj ect s_obj t ab object table are
in place, you indirectly have a nested collection. That is, the pr oj ect s_obj t ab
table contains a nested table collection of REFs that point to the people in the

peopl e_obj t ab table, and the people in the peopl e_obj t ab table have a nested
table collection of phone numbers.

You can insert values into the peopl e_obj t ab table in the following way:

I NSERT | NTO peopl e_obj tab VALUES (
0001,
nane_obj typ(' JOHN , 'JACOB', 'SCHM DT'),
address_objtyp(' 1252 Maple Road', 'Fairfax', 'VA, '22033"),
phone_nt abt yp(
phone_obj typ(' hone', '650.339.9922"),
phone_obj typ(' work', '510.563.8792'))) ;

I NSERT | NTO peopl e_obj tab VALUES (
0002,
nane_obj typ(' MARY', 'ELLEN, 'MLLER),
address_objtyp(' 33 Spruce Street', 'MKees Rocks', 'PA", '15136'),

Design Considerations for Oracle Objects 8-23

Design Considerations for Methods

phone_nt abt yp(
phone_obj typ(' hone', '415.642.6722"),
phone_obj typ(' work', '650.891.7766"))) ;

I NSERT | NTO peopl e_obj tab VALUES (
0003,
nane_obj typ(' SARAH, 'MARIE', 'SINGER),
address_obj typ(' 525 Pine Avenue', 'San Mateo', 'CA', '94403'),
phone_nt abt yp(
phone_obj typ(' hone', '510.804.4378"),
phone_obj typ(' work', '650.345.9232"),
phone_obj typ(' cell', '650.854.9233"))) ;

Then, you can insert into the pr oj ect s_obj t ab relational table by selecting from
the peopl e_obj t ab object table using a REF operator, as in the following
examples:

I NSERT | NTO proj ects_objtab VALUES (
1101,
"Deno Product ',
(SELECT REF(p) FROM people_objtab p WHERE id = 0001),
"Deno the product, show all the great features.',
per sonr ef _nt abt yp(

(SELECT REF(p) FROM people_objtab p WHERE id = 0001),
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0002),
(SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

I NSERT | NTO proj ects_objtab VALUES (
1102,
' Create PRODDB ,
(SELECT REF(p) FROM people_objtab p WHERE id = 0002),
"Create a database of our products.',
personref _ntabtyp(
(SELECT REF(p) FROM peopl e_objtab p WHERE id
(SELECT REF(p) FROM people_objtab p WHERE id

0002),
0003))) ;

Note: This example uses nested tables to store REFs, but you also
can store REFs in varrays. That is, you can have a varray of REFs.

Design Considerations for Methods

This section discusses considerations when working with methods.

8-24 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Methods

« Choosing a Language for Method Functions
« Static Methods

« Function-Based Indexes on the Return Values of Type Methods

Choosing a Language for Method Functions

Method functions can be implemented in any of the languages supported by Oracle,
such as PL/SQL, Java, or C. Consider the following factors when you choose the
language for a particular application:

« Easeof use

« SQL calls

« Speed of execution

« Same/different address space

In general, if the application performs intense computations, C is preferable, but if
the application performs a relatively large number of database calls, PL/SQL or
Java is preferable.

A method implemented in C executes in a separate process from the server using
external procedures. In contrast, a method implemented in Java or PL/SQL
executes in the same process as the server.

Example: Implementing a Method

The example described in this section involves an object type whose methods are
implemented in different languages. In the example, the object type | nageType
has an | Dattribute, which is a NUVBER that uniquely identifies it, and an | MG
attribute, which is a BLOB that stores the raw image. The object type | mageType
has the following methods:

« The method get _nane fetches the name of the image by looking it up in the
database. This method is implemented in PL/SQL.

« The method r ot at e rotates the image. This method is implemented in C.

« The method cl ear returns a new image of the specified color. This method is
implemented in Java.

For implementing a method in C, a LI BRARY object must be defined to point to the
library that contains the external C routines. For implementing a method
implemented in Java, this example assumes that the Java class with the method has
been compiled and uploaded into Oracle.

Design Considerations for Oracle Objects 8-25

Design Considerations for Methods

Here is the object type specification and its methods:

CREATE LI BRARY nyCfuncs TRUSTED AS STATIC
/

CREATE TYPE | nageType AS OBJECT (

id NUMBER

ing BLOB,

MEMBER FUNCTI ON get _nane return VARCHARZ,

MEMBER FUNCTI ON rotate return BLOB,

STATI C FUNCTI ON cl ear (col or NUMBER) return BLOB);
/

CREATE TYPE BODY | mageType AS

MEMBER FUNCTI ON get _name RETURN VARCHAR2

IS

i ngname VARCHAR2(100) ;

sql stnt VARCHAR2(200);

BEG N
sqlstnmt :='SELECT name | NTO i ngnane FROM ingtab WHERE ingid = id';
EXECUTE | MVEDI ATE sql stnt;
RETURN i mgnane;

END;

MEMBER FUNCTI ON rotate RETURN BLOB
AS LANGUAGE C

NAMVE " Cr ot at e"

LI BRARY nyCf uncs;

STATI C FUNCTI ON cl ear (col or NUMBER) RETURN BLOB
AS LANGUAGE JAVA
NAME ' nyJavad ass. cl ear (oracle.sql . NUMBER) return oracle.sql.BLOB ;

END;
/

Restriction: Type methods can be mapped only to static Java
methods.

8-26 Oracle Database Application Developer's Guide - Object-Relational Features

Design Considerations for Methods

See Also:
» Oracle Database Java Developer*s Guide for more information

« Chapter 4, "Object Support in Oracle Programming
Environments” for more information about choosing a
language

Static Methods

Static methods differ from member methods in that the SELF value is not passed in
as the first parameter. Methods in which the value of SELF is not relevant should be
implemented as static methods. Static methods can be used for user-defined
constructors.

The following example is a constructor-like method that constructs an instance of
the type based on the explicit input parameters and inserts the instance into the
specified table:

CREATE TYPE atype AS OBJECT(

al NUVBER
STATI C PROCEDURE newa (
pl NUVBER,

tabname VARCHARZ,
schnane VARCHAR2));
/
CREATE TYPE BODY atype AS
STATI C PROCEDURE newa (pl NUMBER, tabname VARCHAR2, schname VARCHAR2)

IS
sql stmt VARCHAR2(100);
BEG N
sglstm :="INSERT INTO '||schnanme||'."'||tabname|| ' VALUES (atype(:1))';
EXECUTE | MVEDI ATE sql stnt USI NG p1;
END;

END;
/

CREATE TABLE atab OF atype;
BEG N
atype.newa(1, 'atab', 'OBJTEST1');

END;
/

Design Considerations for Oracle Objects 8-27

Design Considerations for Methods

Using SELF IN OUT NOCOPY with Member Procedures

In member procedures, if SELF is not declared, its parameter mode defaultsto | N
QUT. However, the default behavior does not include the NOCOPY compiler hint.

Because the value of the | NOUT actual parameter is copied into the corresponding
formal parameter, the copying slows down execution when the parameters hold
large data structures such as instances of large object types.

For performance reasons, you may want to include SELF | N OQUT NOCOPY when
passing a large object type as a parameter. For example:

MEMBER PROCEDURE ny_proc (SELF IN OUT NOOOPY ny_LOB)

See Also:

« PL/SQL User's Guide and Reference for information on
performance issues and restrictions on the use of NOCOPY

« Oracle Database SQL Reference for information about using
NOCOPY in the CREATE PROCEDURE statement

« "Member Methods" on page 2-9

Function-Based Indexes on the Return Values of Type Methods

A function-based index is an index based on the return values of an expression or
function. The function may be a method function of an object type.

A function-based index built on a method function precomputes the return value of
the function for each object instance in the column or table being indexed and stores
those values in the index. There they can be referenced without having to evaluate
the function again.

Function-based indexes are useful for improving the performance of queries that
have a function in the WHERE clause. For example, the following code contains a
guery of an object table enps:

CREATE TYPE enp_t AS OBJECT(
name VARCHAR2(36),
sal ary NUMBER,
MEMBER FUNCTI ON bonus RETURN NUMBER DETERM NI STI O);
/
CREATE TYPE BODY emp_t IS
MEMBER FUNCTI ON bonus RETURN NUMBER DETERM NISTIC | S
BEG N

8-28 Oracle Database Application Developer's Guide - Object-Relational Features

Writing Reusable Code Using Invoker Rights

RETURN sel f.salary * .1,
END;

END;

/

CREATE TABLE enps OF emp_t ;

SELECT e. nane
FROM enps e
VHERE e. bonus() > 2000;

To evaluate this query, Oracle must evaluate bonus() for each row object in the
table. If there is a function-based index on the return values of bonus() , then this
work has already been done, and Oracle can simply look up the results in the index.
This enables Oracle to return a result from the query more quickly.

Return values of a function can be usefully indexed only if those values are
constant, that is, only if the function always returns the same value for each object
instance. For this reason, to use a user-written function in a function-based index,
the function must have been declared with the DETERM NI STI Ckeyword, as in the
preceding example. This keyword promises that the function always returns the
same value for each object instance's set of input argument values.

The following example creates a function-based index on the method bonus() in
the table enps:

CREATE | NDEX enps_bonus_i dx ON enps x (x.bonus()) ;

See Also: Oracle Database Concepts and Oracle Database SQL
Reference for detailed information about function-based indexes

Writing Reusable Code Using Invoker Rights

To create generic object types that can be used in any schema, you must define the
type to use invoker rights, through the AUTHI D CURRENT _USER option of CREATE
ORREPLACE TYPE. In general, use invoker rights when both of the following
conditions are true:

« There are type methods that access and manipulate data.
« Users who did not define these type methods must use them.

For example, you can grant user OBJ TEST2 execute privileges on type at ype
created by OBJTEST1 in "Static Methods" on page 8-27, and then create table at ab
based on the type:

Design Considerations for Oracle Objects 8-29

Writing Reusable Code Using Invoker Rights

GRANT EXECUTE ON atype TO OBJTESTZ;
CONNECT OBJTEST2/ OBJTEST?2;
CREATE TABLE atab OF OBJTESTL. atype ;

Now, suppose user OBJTEST2 tries to use at ype in the following statement:

BEG N

OBJTESTL. atype. newa(1, 'atab', 'OBJTEST2'); -- raises an error
END;
/

This statement raises an error because the definer of the type (OBJTEST1) does not
have the privileges required to perform the insert in the newa procedure. You can
avoid this error by defining at ype using invoker rights. Here, you first drop the
at ab table in both schemas and re-create at ype using invoker rights:

DROP TABLE at ab;
CONNECT OBJTEST1/ OBJTESTY,
DROP TABLE atab; DROP TYPE atype; commit;

CREATE TYPE atype AUTH D CURRENT_USER AS OBJECT(

al NUMBER,

STATI C PROCEDURE newa(pl NUMBER, tabnane VARCHAR2, schnane VARCHAR?));
/
CREATE TYPE BODY atype AS

STATI C PROCEDURE newa(pl NUMBER, tabnane VARCHAR2, schnanme VARCHAR?)

'S
sql stmt VARCHAR2(100);
BEG N
sqlstnmt := "INSERT INTO '||schnane||'."'||tabname|]| '

VALUES (OBJTESTL. atype(:1))";
EXECUTE | MVEDI ATE sql stnt USI NG p1;
END;
END;
/

Nowy, if user OBJTEST? tries to use at ype again, the statement executes
successfully:

GRANT EXECUTE ON atype TO OBJTESTZ,
CONNECT OBJTEST2/ OBJTEST?2;
CREATE TABLE atab OF OBJTESTL. atype;

BEG N

OBJTESTL. atype. newa(1, 'atab', 'OBJTEST2');
END;

8-30 Oracle Database Application Developer's Guide - Object-Relational Features

Replicating Object Tables and Columns

/

The statement is successful this time because the procedure is executed under the
privileges of the invoker (OBJTEST2), not the definer (OBJTESTL1).

In a type hierarchy, a subtype has the same rights model as its immediate
supertype. That is, it implicitly inherits the rights model of the supertype and
cannot explicitly specify one. Furthermore, if the supertype was declared with
definer rights, the subtype must reside in the same schema as the supertype. These
rules allow invoker-rights type hierarchies to span schemas. However, type
hierarchies that use a definer-rights model must reside within a single schema. For
example:

CREATE TYPE deftypel AS OBJECT (...); --Definer-rights type

CREATE TYPE subtypel UNDER deftypel (...); --subtype in sane schena as supertype
CREATE TYPE schema2. subtype2 UNDER deftypel (...); --ERROR

CREATE TYPE invtypel AUTH D CURRENT_USER AS OBJECT (...); --Invoker-rights type
CREATE TYPE schema2. subtype2 UNDER invtypel (...); --LEGAL

Replicating Object Tables and Columns

Obiject tables and object views can be replicated as materialized views. You can also
replicate relational tables that contain columns of an object, collection, or REF type.
Such materialized views are called object-relational materialized views.

All user-defined types required by an object-relational materialized view must exist
at the materialized view site as well as at the master site. They must have the same
object type IDs and versions at both sites.

Replicating Columns of Object, Collection, or REF Type

To be updatable, a materialized view based on a table that contains an object
column must select the column as an object in the query that defines the view: if the
query selects only certain attributes of the column's object type, then the
materialized view is read-only.

The view-definition query can also select columns of collection or REF type. REFs
can be either primary-key based or have a system-generated key, and they can be
either scoped or unscoped. Scoped REF columns can be rescoped to a different table
at the site of the materialized view—for example, to a local materialized view of the
master table instead of the original, remote table.

Design Considerations for Oracle Objects 8-31

Replicating Object Tables and Columns

Replicating Object Tables

A materialized view based on an object table is called an object materialized view.
Such a materialized view is itself an object table. An object materialized view is
created by adding the OF t ype keyword to the CREATE MATERI ALI ZED VI EW
statement. For example:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp
AS SELECT * FROM Scott. Cust onmer _objtab@lbs1;

As with an ordinary object table, each row of an object materialized view is an
object instance, so the view-definition query that creates the materialized view must
select entire objects from the master table: the query cannot select only a subset of
the object type's attributes. For example, the following materialized view is not
allowed:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp
AS SELECT CustNo FROM Scott. Cust oner _objtab@bs1;

You can create an object-relational materialized view from an object table by
omitting the OF t ype keyword, but such a view is read-only: you cannot create an
updatable object-relational materialized view from an object table.

For example, the following CREATE MATERI ALl ZED VI EWstatement creates a
read-only object-relational materialized view of an object table. Even though the
view-definition query selects all columns and attributes of the object type, it does
not select them as attributes of an object, so the view created is object-relational and
read-only:
CREATE MATERI ALI ZED VI EW cust omer

AS SELECT * FROM Scott. Cust onmer _objtab@lbs1;

For both object-relational and object materialized views that are based on an object
table, if the type of the master object table is not FI NAL, the FROMclause in the
materialized view definition query must include the ONLY keyword. For example:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp
AS SELECT CustNo FROM ONLY Scott. Customer _objtab@lbsi;

Otherwise, the FROMclause must omit the ONLY keyword.

See Also: Oracle Database Advanced Replication for more
information on replicating object tables and columns

8-32 Oracle Database Application Developer's Guide - Object-Relational Features

Considerations Related to Type Evolution

Constraints on Objects

Oracle does not support constraints and defaults in type specifications. However,
you can specify the constraints and defaults when creating the tables:

CREATE TYPE cust oner _type AS OBJECT(
cust _id I NTEGER);

/

CREATE TYPE departnent _type AS OBJECT(
deptno | NTEGER);

/

CREATE TABLE custoner _tab OF customer_type (
cust _id default 1 NOT NULL);

CREATE TABLE department _tab OF department _type (
deptno PRI MARY KEY);

CREATE TABLE custoner_tabl (
cust custoner_type DEFAULT custoner_type(1)
CHECK (cust.cust_id IS NOT NULL),
sonme_ot her _col um VARCHAR2(32));

Considerations Related to Type Evolution

The following sections contain design considerations relating to type evolution.

Pushing a Type Change Out to Clients

Once a type has evolved on the server side, all client applications using this type
need to make the necessary changes to structures associated with the type. You can
do this with OTT/JPUB. You also may need to make programmatic changes
associated with the structural change. After making these changes, you must
recompile your application and relink.

Types may be altered between releases of a third-party application. To inform client
applications that they need to recompile to become compatible with the latest
release of the third-party application, you can have the clients call a release-oriented
compatibility initialization function. This function could take as input a string that
tells it which release the client application is working with. If the release string
mismatches with the latest version, an error is generated. The client application
must then change the release string as part of the changes required to become
compatible with the latest release.

For example:

Design Considerations for Oracle Objects 8-33

Parallel Queries with Oracle Objects

FUNCTI ON conpatibility_init(rel IN VARCHAR2, errmsg OUT VARCHAR2)
RETURN NUMBER;

where:
« rel isarelease string that is chosen by the product, such as,' Rel ease 10. 1'
« errnsg isany error message that may need to be returned

« The function returns 0 on success and a nonzero value on error

Changing Default Constructors

When a type is altered, its default, system-defined constructors need to be changed
in order (for example) to include newly added attributes in the parameter list. If you
are using default constructors, you need to modify their invocations in your
program in order for the calls to compile.

You can avoid having to modify constructor calls if you define your own
constructor functions instead of using the system-defined default ones.

See Also: "Advantages of User-Defined Constructors” on
page 7-20

Altering the FINAL Property of a Type

When you alter a type T1 from FI NAL to NOT FI NAL, any attribute of type T1 in
the client program changes from being an inlined structure to a pointer to T1. This
means that you need to change the program to use dereferencing when this
attribute is accessed.

Conversely, when you alter a type from NOT FlI NAL to FI NAL, the attributes of that
type change from being pointers to inlined structures.

For example, say that you have the types T1(a int) and T2(b T1),where T1's
property is FI NAL. The C/JAVA structure corresponding to T2 is T2(T1 b) . But if
you change T1's property to NOT FI NAL, then T2's structure becomes T2(T1 *b).

Parallel Queries with Oracle Objects

Oracle lets you perform parallel queries with objects and objects synthesized in
views, when you follow these rules:

8-34 Oracle Database Application Developer's Guide - Object-Relational Features

Design Consideration Tips and Techniques

« To make queries involving joins and sorts parallel (using the ORDER BY, GROUP
BY, and SET operations), a MAP function is required. In the absence of a MAP
function, the query automatically becomes serial.

« Parallel queries on nested tables are not supported. Even if there are parallel
hints or parallel attributes for the table, the query is serial.

« Parallel DML and parallel DDL are not supported with objects. DML and DDL
are always performed in serial.

« Parallel DML is not supported on views with | NSTEAD- COF trigger. However,
the individual statements within the trigger may be parallelized.

Design Consideration Tips and Techniques

The following sections provide assorted tips on various aspects of working with
Oracle object types.

Deciding Whether to Evolve a Type or Create a Subtype Instead

As an application goes through its life cycle, the question often arises whether to
change an existing user-defined type or to create a specialized subtype to meet new
requirements. The answer depends on the nature of the new requirements and their
context in the overall application semantics. Here are two examples:

Changing a Widely Used Base Type

Suppose that we have a user-defined type addr ess with attributes St r eet ,
St at e, and ZI P:

CREATE TYPE address AS OBJECT (
Street VARCHAR2(80),
State VARCHAR2(20),
ZlP VARCHAR2(10)) ;

/

We later find that we need to extend the addr ess type by adding a Count ry

attribute to support addresses internationally. Is it better to create a subtype of

addr ess or to evolve the addr ess type itself?

With a general base type that has been widely used throughout an application, it is
better to implement the change using type evolution.

Design Considerations for Oracle Objects 8-35

Design Consideration Tips and Techniques

Adding Specialization

Suppose that an existing type hierarchy of Graphic types (for example, curve, circle,
square, text) needs to accommodate an additional variation, namely, Bezier curve.
To support a new specialization of this sort that does not reflect a shortcoming of
the base type, we should use inheritance and create a new subtype Bezi er Cur ve
under the Cur ve type.

To sum up, the semantics of the required change dictates whether we should use
type evolution or inheritance. For a change that is more general and affects the base
type, use type evolution. For a more specialized change, implement the change
using inheritance.

How ANYDATA Differs from User-Defined Types

ANYDATA is an Oracle-supplied type that can hold instances of any Oracle datatype,
whether built-in or user-defined. ANYDATA is a self-describing type and supports a
reflection-like API that you can use to determine the shape of an instance.

While both inheritance, through the substitutability feature, and ANYDATA provide
the polymorphic ability to store any of a set of possible instances in a placeholder,
the two models give the capability two very different forms.

In the inheritance model, the polymorphic set of possible instances must form part
of a single type hierarchy. A variable can potentially hold instances only of its
defined type or of its subtypes. You can access attributes of the supertype and call
methods defined in the supertype (and potentially overridden by the subtype). You
can also test the specific type of an instance using the IS OF and the TREAT
operators.

ANYDATA variables, however, can store heterogeneous instances. You cannot access
attributes or call methods of the actual instance stored in an ANYDATA variable
(unless you extract out the instance). You use the ANYDATA methods to discover and
extract the type of the instance. ANYDATA is a very useful mechanism for parameter
passing when the function/procedure does not care about the specific type of the
parameter(s).

Inheritance provides better modeling, strong typing, specialization, and so on. Use
ANYDATA when you simply want to be able to hold one of any number of possible
instances that do not necessarily have anything in common.

Polymorphic Views: An Alternative to an Object View Hierarchy

Chapter 5 describes how to build up a view hierarchy from a set of object views
each of which contains objects of a single type. Such a view hierarchy enables

8-36 Oracle Database Application Developer's Guide - Object-Relational Features

Design Consideration Tips and Techniques

gueries on a view within the hierarchy to see a polymorphic set of objects contained
by the queried view or its subviews.

As an alternative way to support such polymorphic queries, you can define an
object view based on a query that returns a polymorphic set of objects. This
approach is especially useful when you want to define a view over a set of tables or
views that already exists.

For example, an object view of Per son_t can be defined over a query that returns
Per son_t instances, including Enpl oyee_t instances. The following statement
creates a view based on queries that select persons from a per sons table and
employees from an enpl oyees table.

CREATE VI EW Persons_vi ew OF Person_t AS
SELECT Person_t(...) FROM persons
UNI ON ALL
SELECT TREAT(Enpl oyee_t(...) AS Person_t) FROM enpl oyees;

An | NSTEAD OF trigger defined for this view can use the VALUE function to access
the current object and to take appropriate action based on the object's most specific

type.
Polymorphic views and object view hierarchies have these important differences:

« Addressability: In a view hierarchy, each subview can be referenced
independently in queries and DML statements. Thus, every set of objects of a
particular type has a logical name. However, a polymorphic view is a single
view, so you must use predicates to obtain the set of objects of a particular type.

« Evolution: If a new subtype is added, a subview can be added to a view
hierarchy without changing existing view definitions. With a polymorphic view,
the single view definition must be modified by adding another UNI ON branch.

« DML Statements: In a view hierarchy, each subview can be either inherently
updatable or can have its own | NSTEAD OF trigger. With a polymorphic view,
only one | NSTEAD OF trigger can be defined for a given operation on the view.

The SQLJ Object Type
This section discusses the SQLJ object type.

The Intended Use of SQLJ Object Types

According to the Information Technology - SQLJ - Part 2 document (SQLJ Standard), a
SQLJ object type is a database object type designed for Java. A SQLJ object type

Design Considerations for Oracle Objects 8-37

Design Consideration Tips and Techniques

maps to a Java class. Once the mapping is registered through the extended SQL
CREATE TYPE command (a DDL statement), the Java application can insert or
select the Java objects directly into or from the database through an Oracle JDBC
driver. This enables the user to deploy the same class in the client, through JDBC,
and in the server, through SQL method dispatch.

Actions Performed When Creating a SQLJ Object Type
The extended SQL CREATE TYPE command:

« Populates the database catalog with the external names for attributes, functions,
and the Java class. Also, dependencies between the Java class and its
corresponding SQLJ object type are maintained.

« Validates the existence of the Java class and validates that it implements the
interface corresponding to the value of the USI NGclause.

« Validates the existence of the Java fields (as specified in the EXTERNAL NAME
clause) and whether these fields are compatible with corresponding SQL
attributes.

« Generates an internal class to support constructors, external variable names,
and external functions that return sel f as a result.

Uses of SQLJ Object Types

The SQLJ object type is a special case of SQL object type in which all methods are
implemented in a Java class(es). The mapping between a Java class and its
corresponding SQL type is managed by the SQLJ object type specification. That is,
the SQLJ Object type specification cannot have a corresponding type body
specification.

Also, the inheritance rules among SQLJ object types specify the legal mapping
between a Java class hierarchy and its corresponding SQLJ object type hierarchy.
These rules ensure that the SQLJ Type hierarchy contains a valid mapping. That is,
the supertype or subtype of a SQLJ object type has to be another SQLJ object type.

Uses of Custom Object Types

The custom object type is the Java interface for accessing SQL object type. A SQL
object type may include methods that are implemented in languages such as
PLSQL, Java, and C. Methods implemented in Java in a given SQL object type can
belong to different unrelated classes. That is, the SQL object type does not map to a
specific Java class.

8-38 Oracle Database Application Developer's Guide - Object-Relational Features

Design Consideration Tips and Techniques

In order for the client to access these objects, JPub can be used to generate the
corresponding Java class. Furthermore, the user has to augment the generated
classes with the code of the corresponding methods. Alternatively, the user can
create the class corresponding to the SQL object type.

At runtime, the JDBC user has to register the correspondence between a SQL Type
name and its corresponding Java class in a map.

Differences Between SQLJ and Custom Object Types Through JDBC

The following table summarizes the differences between SQLJ object types and
custom object types.

Table 8-1 Differences Between SQLJ and Custom Object Types

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the Or acl eTypes. JAVA_STRUCT typecode to | Use the Or acl eTypes. STRUCT typecode to
register a SQLJ object type as a SQL OUT parameter. | register a custom object type as a SQL OUT
The Or acl eTypes. JAVA_STRUCT typecode isalso | parameter. The Or acl eTypes. STRUCT typecode
used in the _SQL_ TYPECODE field of a class is also used in the _SQ._TYPECODE field of a
implementing the ORADat a or SQLDat a interface. | class implementing the ORADat a or SQLDat a

interface.
Creation Create a Java class implementing the SQLDat a or Issue the extended SQL CREATE TYPE command

ORADat a and ORADat aFact ory interfaces first for a custom object type and then create the
and then load the Java class into the database. Next, | SQLDat a or ORADat a Java wrapper class using
you issue the extended SQL CREATE TYPE JPublisher or do this manually.

command for SQLJ object type.

Method Support

Supports external names, constructor calls, and There is no default class for implementing type
calls for member functions with side effects. methods as Java methods. Some methods may
also be implemented in SQL.

Type Mapping

Type mapping is automatically done by the Register the correspondence between SQL and
extended SQL CREATE TYPE command. However, | Java in atype map. Otherwise, the type is

the SQLJ object type must have a defining Java class | materialized as or acl e. sql . STRUCT.

on the client.

Inheritance

There are rules for mapping SQL hierarchy to a There are no mapping rules.
Java class hierarchy. See the Oracle Database SQL
Reference for a complete description of these rules.

Miscellaneous Tips

This section discusses miscellaneous tips.

Column Substitutability and the Number of Attributes in a Hierarchy

If a column or table is of type T, Oracle adds a hidden column for each attribute of
type T and, if the column or table is substitutable, for each attribute of every

Design Considerations for Oracle Objects 8-39

Design Consideration Tips and Techniques

subtype of T, to store attribute data. A hidden t ypei d column is added as well, to
keep track of the type of the object instance in a row.

The number of columns in a table is limited to 1,000. A type hierarchy with a
number of total attributes approaching 1,000 puts you at risk of running up against
this limit when using substitutable columns of a type in the hierarchy. To avoid
problems as a result of this, consider one of the following options for dealing with a
hierarchy that has a large number of total attributes:

« Useviews
« Use REFs
« Break up the hierarchy

Circular Dependencies Among Types

Avoid creating circular dependencies among types. In other words, do not create
situations in which a method of type T returns a type T1, which has a method that
returns atype T.

8-40 Oracle Database Application Developer's Guide - Object-Relational Features

9

A Sample Application Using
Object-Relational Features

This chapter describes a sample application that provides an overview of how to
create and use user-defined datatypes (Oracle Objects). An application is first
developed with the relational model and then with the object-relational model.

Note: The extended sample application description is not
included in the PDF version of this chapter but is included in the
HTML version of the chapter.

This chapter contains the following sections:

« Introduction to the Sample Application

A Sample Application Using Object-Relational Features 9-1

Introduction to the Sample Application

Introduction to the Sample Application

User-defined types are schema objects in which users formalize the data structures
and operations that appear in their applications.

The examples in this chapter illustrate the most important aspects of defining,
using, and evolving user-defined types. One important aspect of working with
user-defined types is creating methods that perform operations on objects. In the
example, definitions of object type methods use the PL/SQL language. Other
aspects of using user-defined types, such as defining a type, use SQL.

The examples develop different versions of a database schema for an application
that manages customer purchase orders. First a purely relational version is shown,
and then an equivalent, object-relational version. Both versions provide for the
same basic kinds of entities—customers, purchase orders, line items, and so on. But
the object-relational version creates user-defined types for these entities and
manages data for particular customers and purchase orders by instantiating
instances of the respective user-defined types.

PL/SQL and Java provide additional capabilities beyond those illustrated in this
chapter, especially in the area of accessing and manipulating the elements of
collections.

Client applications that use the Oracle Call Interface (OCI), Pro*C/C++, or Oracle
Objects for OLE (O040) can take advantage of its extensive facilities for accessing
objects and collections, and manipulating them on clients.

See Also:

« Oracle Database SQL Reference for a complete description of SQL
syntax and usage for user-defined types

« PL/SQL User's Guide and Reference for a complete discussion of
PL/SQL capabilities

« Oracle Database Java Developer's Guide for a complete discussion
of Java

« Oracle Call Interface Programmer’s Guide

» Pro*C/C++ Programmer's Guide

9-2 Oracle Database Application Developer's Guide - Object-Relational Features

A

Active Server Pages, 4-10
ActiveX, 4-10
ADMIN OPTION
with EXECUTE ANY TYPE, 6-3
aggregate functions
See user-defined aggregate functions
ALTER ANY TYPE privilege, 6-2
See also privileges
ALTER TABLE, 7-19
See also object types, evolving
ALTER TYPE statement, 4-19, 7-15
See also object types, evolving
ANYDATA datatype, 7-25, 8-36
ANYDATASET datatype, 7-25
ANYTYPE datatype, 7-25
arrays
size of VARRAYs, 3-3
variable (VARRAYs), 3-3
ASP, 4-10
atomic nulls, 2-2
attributes
leaf-level, 7-2
leaf-level scalar, 7-2
modifying, 7-13
of object types, 1-5

B

bind variables
user-defined types, 4-2

C

Index

caches
object cache, 4-2,4-7,5-4,6-5
object views, 5-4
capture avoidance rule, 2-7
CARDINALITY function, 3-19
CAST function, 2-35
COLLECT function, 3-20
collections
assigning, 2-34
comparing, 3-11, 3-17
constructing, 1-12
creating, 3-2
datatypes
DML on, 3-15
multilevel, 3-9, 8-11
constructing, 3-11
creating, 3-11
creating with REFs, 8-19
DML, 3-16
object views containing, 5-7
nested tables, 3-4
querying, 3-12,8-11
See also varrays, nested tables
substituting in, 2-24
supported datatypes, 1-12
variable arrays (VARRAYs), 3-3
column objects
versus row objects, 8-2
COLUMN_VALUE keyword, 3-10
columns
column objects, 1-9
hidden, 7-2,7-5

Index-1

indexes on column objects, 2-5
qualifying in queries, 2-6
qualifying names in queries, 2-7
comparisons
collections, 3-17
methods, 2-10
compilation of object types, 6-6
COMPRESS clause
nested tables, 8-16
CONNECT role
user-defined types, 6-2, 6-3
constraints
object tables, 2-4
on Oracle objects, 8-33
REFs, 8-8
constructor methods, 1-7,2-14,7-2
literal invocation of, 2-14
constructors
methods, 2-14
user-defined, 7-20
CREATE ANY TYPE privilege, 6-2
See also privileges
CREATE INDEX statement
object types, 2-5
CREATE TABLE statement
examples
column objects, 1-6
object tables, 1-8, 2-4
CREATE TRIGGER statement
examples
object tables, 2-5
CREATE TYPE privilege, 6-2
See also privileges
CREATE TYPE statement, 8-39
collection types, 1-12
example, 3-5
incomplete types, 6-6
nested tables, 2-14, 3-5
object types, 1-4,1-6, 2-2,2-14
varrays, 3-4
creating VARRAYs
containing references to LOBs, 3-8
CURSOR expression, 2-36

Index-2

D

dangling REFs, 1-11
database administrators (DBAS)

DBA role, 6-2
database links, 2-8
datatypes

array types, 3-3
nested tables, 3-4
See also object types, user-defined types
transient and generic, 7-25
DBA role
user-defined types, 6-2
default values
collections, 3-3
user-defined types, 3-3
DELETE privilege for object tables, 6-4, 6-5
DEREF function, 2-36
dereferencing, 1-11
implicit, 1-11
dot notation, 2-10
DROP ANY TYPE privilege, 6-2
See also privileges
DROP TYPE statement, 6-9
dump files
Export and Import, 6-14

E

equal and not equal conditions
nested tables, 3-17
Excel, 4-10
EXECUTE ANY TYPE privilege, 6-2,6-3
See also privileges
EXECUTE privilege
user-defined types, 6-3
See also privileges
Export utility
user-defined types, 6-14
EXTERNAL NAME phrase, 4-16

F

files
Export and Import dump file, 6-14
FINAL keyword, 2-17

modifying finality, 7-14,8-34
FORCE keyword, 5-18
FORCE option, 6-9
function-based indexes

on type methods, 8-28

G

GRANT option for EXECUTE privilege, 6-3
granting
execute user-defined type, 6-3

implicit dereferencing, 1-11
Import utility
user-defined types, 6-14
IN condition, 3-18
incomplete object types, 6-6
indexes
on REFs, 2-5
type-discriminant column, 7-5
user-defined types, 2-5
index-organized tables
storing nested tables as, 3-11, 8-15
inheritance, 1-7
See type inheritance
inner capture, 2-7
INSERT privilege for object tables, 6-4, 6-5
INSTANTIABLE keyword, 2-19
modifying instantiability, 7-14
INSTEAD OF triggers
nested tables, 5-13
invoker-rights
object types, 8-29
IS A SET condition, 3-19
IS EMPTY condition, 3-19
IS OF type predicate, 2-36

J

Java
object storage, 4-16
Oracle JDBC and Oracle objects, 4-13
Oracle SQLJ and Oracle objects, 4-14

with Oracle objects, 4-12
JDBC

See Oracle JDBC
JPublisher, 4-15

L

leaf-level attributes, 7-2
scalar, 7-2
literal invocation
constructor methods, 2-14
locators
returning nested tables as, 7-30, 8-18
using a hint, 8-19
locks
object level locking, 4-3

M

managing
object types, 6-1
map methods, 2-10, 8-7
comparing collections, 3-17
for comparing objects, 2-10
materialized views, 8-32
MEMBER condition, 3-18
methods, 1-6, 2-8
choosing a language for, 8-25
comparison methods, 2-10
in a type hierarchy, 2-13
constructor methods, 2-14,7-2
literal invocation, 2-14
dropping, 7-13
dynamic method dispatch, 2-23
execution privilege for, 6-2
final, 2-17
function-based indexes, 8-28
inheriting, 2-20
instantiability, 2-19
invoking, 2-10
map, 2-10, 8-7
map for comparing objects, 2-10
map required for collections, 3-17
member, 2-9
of object types, 1-5

Index-3

order, 2-12,8-7

overloading, 2-20

overriding, 2-18, 2-20, 2-21

PL/SQL, 4-2

SELF parameter, 2-9

static, 2-13, 8-27
multilevel collections

See collections, multilevel
MULTISET EXCEPT operator, 3-20
MULTISET INTERSECT operator, 3-20
multiset operations

with nested tables, 3-19
MULTISET UNION operator, 3-21

N

narrowing, 2-33, 2-40
nested tables, 3-4, 8-14
COMPRESS clause, 8-16
creating, 3-2
creating indexes on, 8-17
equal and not equal conditions, 3-17
in an index-organized table, 3-11, 8-15
indexes, 2-5
INSTEAD OF triggers, 5-13
multiset operations, 3-19
querying, 3-12
unnesting results, 3-13
returning as locators, 8-18
specifying storage in a tablespace, 3-6
storage, 3-9, 8-14
updating in views, 5-13
NESTED_TABLE_GET_REFS hint, 8-19
NESTED_TABLE_ID keyword, 3-11, 8-17
NLS_LENGTH_SEMANTICS initialization
parameter, 2-3
NOCOPY compiler hint, 2-10
performance issues, 8-28
NOT MEMBER condition, 3-18
nulls
atomic, 2-2
object types, 2-2

Index-4

O

object cache
object views, 5-4
OCl, 4-2
privileges, 6-5
Pro*C, 4-7
object identifiers, 1-8, 8-6
column and index, 8-6
for object types, 7-2
primary-key based, 8-6
REFs, 8-6
storage, 8-6
object instances, 1-4,1-5
comparing, 2-34
object tables, 1-8, 8-5
constraints, 2-4
indexes, 2-5
replicating, 8-31
row objects, 1-9
triggers, 2-5
virtual object tables, 5-2
object types, 1-2
assignments across, 2-32
attributes of, 1-5
column objects, 1-9
column objects versus row objects, 8-2
comparison methods for, 2-10
constructor methods for, 2-14,7-2
creating, 1-6
creating subtypes of, 2-19
dependents, 6-6, 7-7
evolving, 7-7,8-35
design considerations, 8-33
SQLJ types, 4-19
FINAL or NOT FINAL, 2-17
final/not final, 8-34
incomplete, 6-6, 6-7
indexes on column objects, 2-5
indexing, 7-5
instantiable/not instantiable, 2-19
invoker-rights, 8-29
locking in cache, 4-3
managing, 6-1
methods of, 1-5

PL/SQL, 4-2
mutually dependent, 6-6
Oracle type translator, 4-8
remote access to, 2-8,5-14
row objects, 1-9
See also type inheritance
specializing, 1-7
SQLJ types, 4-16
substituting, 2-24
use of table aliases, 2-7

object views, 5-1to5-19

advantages of, 5-2
circular references, 5-16
defining, 5-3
hierarchies, 5-19, 8-36
privileges, 5-27
queryingin, 5-26
modeling relationships, 5-11, 5-15
multilevel collections in, 5-7
nested tables, 5-13
null objects in, 5-6
OIDs with, 5-9
REFs to, 5-10
replicating, 8-31
updating through INSTEAD OF triggers, 5-12

OBJECT_ID pseudocolumn, 2-26
OBJECT_VALUE pseudocolumn, 2-26
object-relational model, 9-1

comparing objects, 8-7

constraints, 8-33

design considerations, 8-1

limitations of relational model, 1-2
methods, 1-6, 2-8

partitioning, 7-29

programmatic environments for, 4-1,4-12
replication, 8-31

objects

collection objects, 5-6

comparing, 2-34

in columns, 5-4

object references, 5-10

row objects and object identifiers, 5-6

OCCI, 4-9
OCl

associative access, 4-3

for Oracle objects
building a program, 4-5
navigational access, 4-4
object cache, 4-4
OCIlObjectFlush, 5-4
OCIObjectPin, 5-4
OIDs, 1-8
Oracle JDBC
accessing Oracle object data, 4-13
Oracle objects
See object-relational model
Oracle Objects for OLE
OraCollection interface, 4-12
OraObject interface, 4-11
OraRef interface, 4-12
support of object-relational features, 4-10
Oracle SQLJ
creating custom Java classes, 4-14
JPublisher, 4-14
support for Oracle objects, 4-14
Oracle type translator (OTT), 4-8
OraCollection interface, 4-12
ORAData interface, 4-17
OraObject interface, 4-11
OraRef interface, 4-12
order methods, 2-12, 8-7
OTT, 4-8

P

parallel query

objects, 8-34

restrictions for Oracle objects, 8-34

view objects, 8-34
partitioning

tables containing Oracle objects, 7-29
pkREFs, 7-4
PL/SQL

bind variables

user-defined types, 4-2

object views, 5-4
polymorphism, 2-15, 8-36

See also substitutability
POWERMULTISET function, 3-22
POWERMULTISET_BY_CARDINALITY

Index-5

function, 3-22
primary-key-based REFs, 7-4
privileges

system
user-defined types, 6-2
user-defined types
acquired by role, 6-2
ALTER ANY TYPE, 6-2

checked when pinning, 6-5
column level for object tables,

CREATE ANY TYPE, 6-2
CREATE TYPE, 6-2
DELETE, 6-4,6-5

DROP ANY TYPE, 6-2
EXECUTE, 6-3

EXECUTE ANY TYPE, 6-2,6-3
EXECUTE ANY TYPE with ADMIN

OPTION, 6-3

EXECUTE with GRANT option,

INSERT, 6-4,6-5
SELECT, 6-4,6-5
system privileges, 6-2
UPDATE, 6-4,6-5
using, 6-3
Pro*C/C++
associative access, 4-7

converting between Oracle and C types,

navigational access, 4-7

user-defined datatypes, 4-2
programmatic environments

for Oracle objects, 4-1, 4-12

Q

queries
set membership, 8-19
unnesting, 8-11
varrays, 8-14

R

REF function, 2-38

references See REFs

REFs, 1-9
comparing, 2-35

Index-6

constraints on, 2-6, 8-8
constructing from object identifiers, 7-2

dangling, 1-11,2-6
dereferencing of, 1-11

for rows of object views, 5-3
implicit dereferencing of, 1-11

indexes on, 2-5
indexing, 8-9
obtaining, 1-11
pinning, 5-4,6-5

scoped, 1-10, 2-6, 7-4, 8-9

size of, 7-4
storage, 8-8
substitutability and, 2

-24,2-28

use of table aliases, 2-8

WITH ROWID option,
RESOURCE role

8-10

user-defined types, 6-2, 6-3

roles

CONNECT role, 6-2,6-3

DBA role, 6-2

RESOURCE role, 6-2,6-3

row objects, 1-9
storage, 8-5

S

schemas

qualifying column names, 2-7

user-defined datatypes,

4-2

user-defined types, 1-5

scoped REFs, 1-10, 7-4

SELECT privilege for object tables,

SELF parameter, 2-9
SET function, 3-22
SQL

user-defined datatypes,

4-2

embedded SQL, 4-7

OCl, 4-3
SQLData interface, 4-17
SQLJ

See Oracle SQL

SQLJ object types, 4-12, 8-37

creating, 4-17
mapping Java classes,

4-18

6-4, 6-5

See also object types, Oracle SQLJ
storage

column objects, 8-2

nested tables, 7-4

object tables, 7-2

REFs, 7-4
SUBMULTISET condition, 3-18
substitutability, 2-24

attribute, 2-24

collections and, 2-24

column and row, 2-25,7-5

constraining, 2-30

dependencies, 6-8

narrowing, 2-33

OBJECT_ID, 2-26

OBJECT_VALUE, 2-26

turning off, 2-29

views and, 2-25, 8-36

widening, 2-32
subtypes, 2-15, 2-27

creating, 2-18

indexing attributes of, 7-6

specializing, 8-35
supertypes, 2-15, 2-27
SYS TYPEID function, 2-38,7-5
SYS.ANYDATA, 7-25
SYS.ANYDATASET, 7-25
SYS.ANYTYPE, 7-25
system privileges

ADMIN OPTION, 6-3

user-defined types, 6-2

See also privileges

T

TABLE
function, 2-39
TABLE expressions, 3-13, 8-11
tables
aliases, 2-7
functions, 2-39
nested tables, 3-4
indexes, 2-5
object tables, 1-8
constraints, 2-4

indexes, 2-5
triggers, 2-5
virtual, 5-2
qualifying column names, 2-6, 2-7
TREAT function, 2-26, 2-33, 2-37, 2-39, 7-6
triggers
INSTEAD OF triggers
object views and, 5-12
user-defined types, 2-5
type dependencies, 6-8
type evolution
See object types
type hierarchies, 1-7,2-15
methods in, 2-13
type inheritance, 2-15
finality, 2-17
instantiability, 2-19
See inheritance
specializing subtypes, 2-16
typeids, 2-38,7-5
types
See datatypes, object types

U

UNDER keyword, 2-18
unnesting queries, 8-11
UPDATE privilege for object tables, 6-4, 6-5
updates
object views, 5-12
user-defined aggregate functions, 7-28
user-defined constructors, 7-20
user-defined datatypes
See also user-defined types
user-defined types, 1-2
and remote databases, 2-8
collections
nested tables, 3-4
variable arrays (VARRAYs), 3-3
example of privileges, 6-3
Export and Import, 6-14
incomplete types, 6-5
managing, 6-1
object types
use of table aliases, 2-7

Index-7

performance tuning, 6-12
privileges, 6-2
See also object types
See also object-relational model
storage, 7-2
synonyms, 6-9
tools, 6-13
utilities, 6-14
USING clause, 4-16

\%

validation
failure, 7-15
object types, 7-11
VALUE function, 2-41
variables
bind variables
user-defined types, 4-2
object variables, 5-4
varrays, 3-3
accessing, 8-14
creating, 3-2
creating VARRAYs, 3-8
increasing the number of elements,
querying, 8-14
storage, 3-6, 8-13
updating, 8-14
views
See also object views
substitutability, 2-25
updatability, 5-12
Visual Basic, 4-10

w

3-8

widening
and substitutability, 2-32

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What's New in Object-Relational Features?
	Oracle 10g Release 1 (10.1) New in Object-Relational Features
	Oracle9i Release 2 (9.2) New in Object-Relational Features
	Oracle9i Release 1 (9.0.1) New in Object-Relational Features

	1 Introduction to Oracle Objects
	About Oracle Objects
	Advantages of Objects
	Key Features of the Object-Relational Model
	Core Database Key Features
	Object Types
	Objects
	Object Methods
	Type Inheritance
	Type Evolution
	Object Tables
	Row Objects and Column Objects
	Object Views
	References
	Collections

	Language Binding Features

	2 Basic Components of Oracle Objects
	SQL Object Types and References
	Null Objects and Attributes
	Character Length Semantics
	Constraints for Object Tables
	Indexes for Object Tables
	Triggers for Object Tables
	Rules for REF Columns and Attributes
	Name Resolution
	When Table Aliases Are Required

	Restriction on Using User-Defined Types with a Remote Database

	Object Methods
	Member Methods
	Methods for Comparing Objects
	Map Methods
	Order Methods
	Guidelines for Comparison Methods
	Comparison Methods in Type Hierarchies

	Static Methods
	Constructor Methods
	External Implemented Methods

	Inheritance in SQL Object Types
	Types and Subtypes
	FINAL and NOT FINAL Types and Methods
	Creating Subtypes
	NOT INSTANTIABLE Types and Methods
	Inheriting, Overloading, and Overriding Methods
	Overloading Methods
	Redefining Methods
	Restrictions on Overriding Methods

	Dynamic Method Dispatch
	Substituting Types in a Type Hierarchy
	Column and Row Substitutability
	Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
	Subtypes Having Supertype Attributes
	REF Columns and Attributes
	Collection Elements

	Creating Subtypes After Creating Substitutable Columns
	Dropping Subtypes After Creating Substitutable Columns
	Turning Off Substitutability in a New Table
	Constraining Substitutability
	Modifying Substitutability
	Restrictions on Modifying Substitutability
	Assignments Across Types
	Objects and REFs to Objects
	Collection Assignments

	Comparisons of Objects, REF Variables, and Collections
	Comparing Object Instances
	Comparing REF Variables

	Functions and Operators Useful with Objects
	CAST
	CURSOR
	DEREF
	IS OF type
	REF
	SYS_TYPEID
	TABLE()
	TREAT
	VALUE

	3 Support for Collection Datatypes
	Creating Collection Datatypes
	Creating an Instance of a VARRAY or Nested Table
	Constructor Methods for Collections
	Varrays
	Nested Tables
	Specifying a Tablespace When Storing a Nested Table
	Varray Storage
	Increasing the Size and Precision of VARRAYs and Nested Tables
	Increasing VARRAY Limit Size
	Creating a Varray Containing LOB References
	Multilevel Collection Types
	Nested Table Storage Tables for Multilevel Collection Types
	Assignment and Comparison of Multilevel Collections
	Constructors for Multilevel Collections

	Operations on Collection Datatypes
	Querying Collections
	Nesting Results of Collection Queries
	Unnesting Results of Collection Queries
	Unnesting Queries Containing Table Expression Subqueries
	Unnesting Queries with Multilevel Collections

	Performing DML Operations on Collections
	Performing DML on Multilevel Collections
	Collections as Atomic Data Items
	Piecewise Operations on Nested Tables

	Comparisons of Collections
	Equal and Not Equal Comparisons
	In Comparisons
	Subset of Multiset Comparison
	Member of a Nested Table Comparison
	Empty Comparison
	Set Comparison

	Multisets Operations
	CARDINALITY
	COLLECT
	MULTISET EXCEPT
	MULTISET INTERSECTION
	MULTISET UNION
	POWERMULTISET
	POWERMULTISET_BY_CARDINALITY
	SET

	4 Object Support in Oracle Programming Environments
	SQL
	PL/SQL
	Oracle Call Interface (OCI)
	Associative Access in OCI Programs
	Navigational Access in OCI Programs
	Object Cache
	Building an OCI Program That Manipulates Objects
	Defining User-Defined Constructors in C

	Pro*C/C++
	Associative Access in Pro*C/C++
	Navigational Access in Pro*C/C++
	Converting Between Oracle Types and C Types
	Oracle Type Translator (OTT)

	Oracle C++ Call Interface (OCCI)
	OCCI Associative Relational and Object Interfaces
	The OCCI Navigational Interface

	Oracle Objects For OLE (OO4O)
	Representing Objects in Visual Basic (OraObject)
	Representing REFs in Visual Basic (OraRef)
	Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)

	Java: JDBC, Oracle SQLJ, JPublisher, and SQLJ Object Types
	JDBC Access to Oracle Object Data
	SQLJ Access to Oracle Object Data
	Choosing a Data Mapping Strategy
	Using JPublisher to Create Java Classes for JDBC and SQLJ Programs
	What JPublisher Produces for a User-Defined Object Type

	Java Object Storage
	Representing SQLJ Types to the Server
	Creating SQLJ Object Types
	Additional Notes About Mapping
	Evolving SQLJ Types
	Constraints
	Querying SQLJ Objects
	Inserting Java Objects
	Updating SQLJ Objects

	Defining User-Defined Constructors in Java

	XML

	5 Applying an Object Model to Relational Data
	Why Use Object Views
	Defining Object Views
	Using Object Views in Applications
	Nesting Objects in Object Views
	Identifying Null Objects in Object Views
	Using Nested Tables and Varrays in Object Views
	Single-Level Collections in Object Views
	Multilevel Collections in Object Views

	Specifying Object Identifiers for Object Views
	Creating References to View Objects
	Modelling Inverse Relationships with Object Views
	Updating Object Views
	Updating Nested Table Columns in Views
	Using INSTEAD OF Triggers to Control Mutating and Validation

	Applying the Object Model to Remote Tables
	Defining Complex Relationships in Object Views
	Tables and Types to Demonstrate Circular View References
	Creating Object Views with Circular References

	Object View Hierarchies
	Creating an Object View Hierarchy
	The Flat Model
	The Horizontal Model
	The Vertical Model

	Querying a View in a Hierarchy
	Privileges for Operations on View Hierarchies

	6 Managing Oracle Objects
	Privileges on Object Types and Their Methods
	System Privileges for Object Types
	Schema Object Privileges
	Using Types in New Types or Tables
	Example: Privileges on Object Types
	Privileges on Type Access and Object Access

	Dependencies and Incomplete Types
	Completing Incomplete Types
	Manually Recompiling a Type
	Type Dependencies of Substitutable Tables and Columns
	The FORCE Option

	Synonyms for User-Defined Types
	Creating a Type Synonym
	Using a Type Synonym
	Describing Schema Objects That Use Synonyms
	Dependents of Type Synonyms
	Restriction on Replacing a Type Synonym
	Dropping Type Synonyms
	Renaming Type Synonyms
	Public Type Synonyms and Local Schema Objects

	Performance Tuning
	Tools Providing Support for Objects
	Utilities Providing Support for Objects

	7 Advanced Topics for Oracle Objects
	Storage of Objects
	Leaf-Level Attributes
	How Row Objects Are Split Across Columns
	Hidden Columns for Tables with Column Objects
	Hidden Columns for Substitutable Columns and Tables
	REFs
	Internal Layout of Nested Tables
	Internal Layout of VARRAYs

	Creating Indexes on Typeids or Attributes
	Indexing a Type Discriminant Column
	Indexing Subtype Attributes of a Substitutable Column

	Type Evolution
	Changes Involved When a Type Is Altered
	Steps to Change a Type
	Validating a Type
	If a Type Change Validation Fails
	ALTER TYPE Statement for Type Evolution
	ALTER TABLE Statement for Type Evolution
	The Attribute-Value Constructor
	Constructors and Type Evolution
	Advantages of User-Defined Constructors
	Defining and Implementing User-Defined Constructors
	Overloading and Hiding Constructors
	Calling User-Defined Constructors
	Constructors for SQLJ Object Types

	Transient and Generic Types
	User-Defined Aggregate Functions
	Partitioning Tables That Contain Oracle Objects
	How Locators Improve the Performance of Nested Tables

	8 Design Considerations for Oracle Objects
	General Storage Considerations for Objects
	Storing Objects as Columns or Rows
	Column Object Storage
	Row Object Storage in Object Tables

	Storage Considerations for Object Identifiers (OIDs)
	Primary-Key Based OIDs

	Performance of Object Comparisons
	Design Considerations for REFs
	Storage Size of REFs
	Integrity Constraints for REF Columns
	Performance and Storage Considerations for Scoped REFs
	Indexing Scoped REFs

	Speeding up Object Access Using the WITH ROWID Option

	Design Considerations for Collections
	Viewing Object Data in Relational Form with Unnesting Queries
	Using Procedures and Functions in Unnesting Queries

	Storage Considerations for Varrays
	Propagating VARRAY Size Change

	Performance of Varrays Versus Nested Tables
	Design Considerations for Nested Tables
	Nested Table Storage
	Nested Table Indexes
	Nested Table Locators
	Optimizing Set Membership Queries

	Design Considerations for Multilevel Collections

	Design Considerations for Methods
	Choosing a Language for Method Functions
	Static Methods
	Using SELF IN OUT NOCOPY with Member Procedures
	Function-Based Indexes on the Return Values of Type Methods

	Writing Reusable Code Using Invoker Rights
	Replicating Object Tables and Columns
	Replicating Columns of Object, Collection, or REF Type
	Replicating Object Tables

	Constraints on Objects
	Considerations Related to Type Evolution
	Pushing a Type Change Out to Clients
	Changing Default Constructors
	Altering the FINAL Property of a Type

	Parallel Queries with Oracle Objects
	Design Consideration Tips and Techniques
	Deciding Whether to Evolve a Type or Create a Subtype Instead
	How ANYDATA Differs from User-Defined Types
	Polymorphic Views: An Alternative to an Object View Hierarchy
	The SQLJ Object Type
	The Intended Use of SQLJ Object Types
	Actions Performed When Creating a SQLJ Object Type
	Uses of SQLJ Object Types
	Uses of Custom Object Types
	Differences Between SQLJ and Custom Object Types Through JDBC

	Miscellaneous Tips
	Column Substitutability and the Number of Attributes in a Hierarchy
	Circular Dependencies Among Types

	9 A Sample Application Using Object-Relational Features
	Introduction to the Sample Application

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

