
Oracle® Database
Application Developer’s Guide - Workspace Manager

10g Release 1 (10.1)

Part No. B10824-01

December 2003

Provides usage and reference information about Oracle
Workspace Manager, which lets applications create
workspaces and group different versions of table row
values in different workspaces.

Oracle Database Application Developer’s Guide - Workspace Manager, 10g Release 1 (10.1)

Part No. B10824-01

Copyright © 2000, 2003 Oracle Corporation. All rights reserved.

Primary Author: Chuck Murray

Contributor: Sanjay Agarwal, Gopalan Arun, Ramkrishna Chatterjee, David Mor, Deborah Owens, Ben
Speckhard, Ramesh Vasudevan

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle Store, SQL*Plus, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

iii

Contents

Send Us Your Comments ... xvii

Preface.. xix

Audience ... xix
Documentation Accessibility ... xix
Organization.. xx
Related Documentation ... xxii
Conventions... xxii

New and Changed Features ... xxv

System Parameters for Workspace Manager.. xxv
Multiparent Workspaces ... xxv
Workspace Manager Events.. xxv
Valid Time Support ... xxvi
Exporting and Importing Data .. xxvi
Bulk Loading into Version-Enabled Tables ... xxvi
Compression, Commit Operations, and Batch Sizes .. xxvi
Continually Refreshed Workspaces: New Procedure .. xxvi
Physical Table Names (Infrastructure): New Procedure .. xxvii
DDL Support ... xxvii
Unique Constraint Support ... xxvii
Nested Table Column Support ... xxvii
Virtual Private Database (VPD) Support .. xxviii
Spatial Topology Support.. xxviii

iv

History Management Support ... xxviii
New Lock Modes: Workspace-Exclusive and Version-Exclusive .. xxviii
New Parameter for Compressing Workspaces.. xxix
Renaming a Constraint or Index.. xxix
New Parameter for RefreshWorkspace .. xxix
Workspace Manager Metadata Placement... xxix
Using Default Values for Nulls.. xxix
DBA_WM_SYS_PRIVS View ... xxix
Column Name Changes in xxx_HIST Views .. xxx
Sample Schema Example ... xxx

Part I Conceptual and Usage Information

1 Introduction to Workspace Manager

1.1 Workspace Manager Overview... 1-3
1.1.1 Workspace Hierarchy .. 1-4
1.1.2 Using Savepoints .. 1-5
1.1.2.1 Design Issue: Savepoint or Child Workspace? ... 1-7
1.1.3 Merging and Rolling Back Workspace Changes ... 1-7
1.1.4 Resolving Conflicts Before a Merge or Refresh Operation 1-8
1.1.5 Freezing and Unfreezing Workspaces .. 1-9
1.1.6 Removing Workspaces .. 1-10
1.1.7 Using Workspace Manager Events.. 1-10
1.1.8 Autocommitting of Workspace Manager Operations... 1-10
1.1.9 Continually Refreshed Workspaces .. 1-11
1.1.10 Multiparent Workspaces ... 1-11
1.1.11 Infrastructure for Version-Enabling of Tables ... 1-13
1.1.12 Workspace Manager Schema, Metadata, and Package... 1-13
1.2 Session Context Information for Workspace Manager .. 1-14
1.3 Lock Management with Workspace Manager .. 1-15
1.4 Privilege Management with Workspace Manager ... 1-17
1.5 System Parameters for Workspace Manager... 1-18
1.6 Import and Export Considerations ... 1-21
1.7 Bulk Loading into Version-Enabled Tables ... 1-21
1.8 DDL Operations Related to Version-Enabled Tables... 1-23

v

1.9 Constraint Support with Workspace Manager ... 1-25
1.9.1 Referential Integrity Support.. 1-25
1.9.2 Unique Constraints .. 1-28
1.10 Triggers on Version-Enabled Tables .. 1-28
1.11 Virtual Private Database Considerations... 1-29
1.12 Support for Table Synonyms ... 1-29
1.13 Materialized View Support.. 1-30
1.14 Spatial Topology Support .. 1-30
1.14.1 Locking Considerations with Topologies... 1-31
1.14.2 Additional Considerations with Topologies.. 1-32
1.15 DBMS_WM Subprogram Categories.. 1-32
1.15.1 Table Management Subprograms.. 1-32
1.15.2 Workspace Management Subprograms.. 1-33
1.15.3 Savepoint Management Subprograms.. 1-35
1.15.4 Privilege Management Subprograms.. 1-36
1.15.5 Lock Management Subprograms... 1-36
1.15.6 Conflict Management Subprograms ... 1-37
1.15.7 Replication Support Subprograms .. 1-38
1.15.8 Bulk Load Support Subprograms .. 1-38
1.16 Simplified Examples Using Workspace Manager .. 1-39
1.16.1 Example: Marketing Budget Options.. 1-39
1.16.2 Example: Warehouse Expansion Options .. 1-44

2 Workspace Manager Events

2.1 List of Workspace Manager Events .. 2-2
2.2 Event Parameters... 2-3
2.3 ALLOW_CAPTURE_EVENTS System Parameter ... 2-3
2.4 AQ Operations and Workspace Manager Events... 2-4
2.4.1 Workspace Manager Event Queue Administration.. 2-4
2.4.2 Privileges and Access Control for Queues ... 2-5
2.4.3 Rule-Based Subscription ... 2-6
2.4.4 Listening for Events ... 2-7
2.4.5 Asynchronous Notification... 2-8

vi

3 Workspace Manager Valid Time Support

3.1 Valid Time Support: Introduction and Example .. 3-1
3.2 WM_PERIOD Data Type.. 3-5
3.3 Valid Time Constants.. 3-5
3.4 API Features for Valid Time Support ... 3-6
3.5 Operators for Valid Time Support .. 3-7
3.5.1 WM_CONTAINS ... 3-8
3.5.2 WM_EQUALS... 3-8
3.5.3 WM_GREATERTHAN .. 3-9
3.5.4 WM_INTERSECTION ... 3-10
3.5.5 WM_LDIFF.. 3-11
3.5.6 WM_LESSTHAN.. 3-12
3.5.7 WM_MEETS.. 3-13
3.5.8 WM_OVERLAPS.. 3-14
3.5.9 WM_RDIFF.. 3-15
3.6 Queries and DML Operations with Valid Time Support .. 3-16
3.6.1 Queries ... 3-16
3.6.2 Data Manipulation (DML) Operations.. 3-16
3.6.2.1 Update Operations.. 3-17
3.6.2.2 Insert Operations... 3-18
3.7 Constraint Management for Valid Time Support... 3-19
3.7.1 Referential Integrity Constraints.. 3-19
3.7.2 Unique Constraints .. 3-19
3.8 Locking with Valid Time Support .. 3-20
3.9 Metadata Views Affected by Valid Time Support.. 3-20
3.9.1 xxx_CONF Views and Valid Time Support ... 3-20
3.9.2 xxx_DIFF Views and Valid Time Support .. 3-21
3.9.3 xxx_HIST Views and Valid Time Support.. 3-21
3.9.4 xxx_LOCK Views and Valid Time Support ... 3-21
3.9.5 xxx_MW Views and Valid Time Support ... 3-21
3.10 SQL* Loader Support for Valid Times ... 3-22
3.11 Adding Valid Time Support to an Existing Table .. 3-22

Part II Reference Information

vii

4 DBMS_WM Package: Reference

Add_Topo_Geometry_Layer... 4-2

AddAsParentWorkspace.. 4-4

AlterSavepoint ... 4-6

AlterVersionedTable ... 4-7

AlterWorkspace ... 4-11

BeginBulkLoading... 4-12

BeginDDL ... 4-16

BeginResolve .. 4-18

ChangeWorkspaceType ... 4-19

CommitBulkLoading .. 4-21

CommitDDL... 4-24

CommitResolve.. 4-27

CompressWorkspace .. 4-28

CompressWorkspaceTree .. 4-33

CopyForUpdate ... 4-37

CreateSavepoint .. 4-39

CreateWorkspace... 4-41

Delete_Topo_Geometry_Layer ... 4-44

DeleteSavepoint .. 4-46

DisableVersioning ... 4-49

DropReplicationSupport .. 4-52

EnableVersioning .. 4-53

Export .. 4-56

FindRICSet.. 4-61

FreezeWorkspace... 4-64

GenerateReplicationSupport ... 4-67

GetBulkLoadVersion... 4-69

GetConflictWorkspace.. 4-71

GetDiffVersions ... 4-72

GetLockMode... 4-73

viii

GetMultiWorkspaces... 4-74

GetOpContext .. 4-75

GetPhysicalTableName... 4-76

GetPrivs... 4-78

GetSessionInfo.. 4-79

GetSystemParameter... 4-81

GetValidFrom... 4-82

GetValidTill .. 4-83

GetWMMetadataSpace ... 4-84

GetWorkspace .. 4-85

GotoDate ... 4-86

GotoSavepoint.. 4-89

GotoWorkspace.. 4-90

GrantGraphPriv ... 4-92

GrantSystemPriv ... 4-95

GrantWorkspacePriv .. 4-97

Import.. 4-99

IsWorkspaceOccupied .. 4-103

LockRows.. 4-104

MergeTable ... 4-107

MergeWorkspace... 4-110

Move_Proc .. 4-113

RecoverAllMigratingTables ... 4-114

RecoverMigratingTable .. 4-116

RefreshTable... 4-118

RefreshWorkspace... 4-120

RelocateWriterSite ... 4-122

RemoveAsParentWorkspace ... 4-124

RemoveWorkspace.. 4-126

RemoveWorkspaceTree .. 4-127

ResolveConflicts .. 4-129

ix

RevokeGraphPriv ... 4-132

RevokeSystemPriv .. 4-134

RevokeWorkspacePriv ... 4-136

RollbackBulkLoading ... 4-138

RollbackDDL.. 4-140

RollbackResolve... 4-142

RollbackTable... 4-143

RollbackToSP ... 4-145

RollbackWorkspace... 4-147

SetCaptureEvent.. 4-149

SetCompressWorkspace ... 4-151

SetConflictWorkspace... 4-153

SetDiffVersions .. 4-154

SetLockingOFF... 4-157

SetLockingON.. 4-158

SetMultiWorkspaces ... 4-160

SetSystemParameter.. 4-162

SetTriggerEvents ... 4-164

SetValidTime.. 4-166

SetWoOverwriteOFF... 4-167

SetWoOverwriteON.. 4-168

SetWorkspaceLockModeOFF .. 4-169

SetWorkspaceLockModeON ... 4-170

SynchronizeSite ... 4-173

UnfreezeWorkspace .. 4-174

UnlockRows ... 4-175

UseDefaultValuesForNulls .. 4-178

5 Workspace Manager Metadata Views

5.1 ALL_MP_GRAPH_WORKSPACES ... 5-1
5.2 ALL_MP_PARENT_WORKSPACES.. 5-2

x

5.3 ALL_VERSION_HVIEW .. 5-3
5.4 ALL_WM_CONS_COLUMNS .. 5-3
5.5 ALL_WM_CONSTRAINTS ... 5-4
5.6 ALL_WM_IND_COLUMNS.. 5-5
5.7 ALL_WM_IND_EXPRESSIONS.. 5-5
5.8 ALL_WM_LOCKED_TABLES .. 5-6
5.9 ALL_WM_MODIFIED_TABLES... 5-6
5.10 ALL_WM_RIC_INFO ... 5-7
5.11 ALL_WM_TAB_TRIGGERS .. 5-8
5.12 ALL_WM_VERSIONED_TABLES.. 5-10
5.13 ALL_WM_VT_ERRORS ... 5-11
5.14 ALL_WORKSPACE_PRIVS ... 5-12
5.15 ALL_WORKSPACE_SAVEPOINTS ... 5-12
5.16 ALL_WORKSPACES .. 5-13
5.17 DBA_WM_SYS_PRIVS ... 5-15
5.18 DBA_WORKSPACE_SESSIONS ... 5-15
5.19 ROLE_WM_PRIVS .. 5-16
5.20 USER_MP_GRAPH_WORKSPACES ... 5-16
5.21 USER_MP_PARENT_WORKSPACES ... 5-16
5.22 USER_WM_CONS_COLUMNS.. 5-17
5.23 USER_WM_CONSTRAINTS ... 5-17
5.24 USER_WM_IND_COLUMNS ... 5-17
5.25 USER_WM_IND_EXPRESSIONS ... 5-17
5.26 USER_WM_LOCKED_TABLES .. 5-17
5.27 USER_WM_MODIFIED_TABLES .. 5-18
5.28 USER_WM_PRIVS... 5-18
5.29 USER_WM_RIC_INFO ... 5-18
5.30 USER_WM_TAB_TRIGGERS .. 5-18
5.31 USER_WM_VERSIONED_TABLES.. 5-19
5.32 USER_WM_VT_ERRORS... 5-19
5.33 USER_WORKSPACE_PRIVS... 5-19
5.34 USER_WORKSPACE_SAVEPOINTS... 5-19
5.35 USER_WORKSPACES .. 5-19
5.36 WM_COMPRESS_BATCH_SIZES.. 5-19
5.37 WM_COMPRESSIBLE_TABLES ... 5-20

xi

5.38 WM_EVENTS_INFO .. 5-21
5.39 WM_INSTALLATION ... 5-21
5.40 WM_REPLICATION_INFO... 5-21
5.41 xxx_CONF Views .. 5-22
5.42 xxx_DIFF Views... 5-23
5.43 xxx_HIST Views .. 5-24
5.44 xxx_LOCK Views .. 5-25
5.45 xxx_MW Views.. 5-26

Part III Supplementary Information

A Installing Workspace Manager with Custom Databases

B Migrating to Another Workspace Manager Release

B.1 Upgrading to the Current Release .. B-1
B.2 Downgrading to a Previous Release... B-3
B.3 History Management Changes for Release 10.1 ... B-5

C Using Replication with Workspace Manager

C.1 Setting Up Replication with Workspace Manager ... C-2
C.2 Enabling and Disabling Versioning of Tables with Replication Support C-2
C.3 DDL Operations with Replicated Version-Enabled Tables... C-3
C.4 Relocating the Writer Site... C-4

D Workspace Manager Error Messages

Glossary

Index

xii

List of Examples

1–1 DDL Operation on a Version-Enabled Table... 1-25
1–2 Adding a Referential Integrity Constraint ... 1-27
1–3 Marketing Budget Options... 1-39
1–4 Warehouse Expansion Options ... 1-44
2–1 Capturing Workspace Manager Events ... 2-4
2–2 Granting Privileges for Queue Access.. 2-5
2–3 Rule-Based Subscription for Workspace Manager Events .. 2-6
2–4 Listening for a Workspace Manager Event.. 2-7
2–5 Receiving Asynchronous Notification of Events .. 2-8
3–1 Valid Time Support ... 3-2
3–2 Setting the Session Valid Time to a Specific Date ... 3-5
3–3 Inserting a Row Valid for a Time Range .. 3-5
3–4 WM_CONTAINS Operator.. 3-8
3–5 WM_EQUALS Operator... 3-9
3–6 WM_GREATERTHAN Operator .. 3-10
3–7 WM_INTERSECTION Operator ... 3-11
3–8 WM_LDIFF Operator.. 3-12
3–9 WM_LESSTHAN Operator.. 3-13
3–10 WM_MEETS Operator .. 3-14
3–11 WM_OVERLAPS Operator .. 3-14
3–12 WM_RDIFF Operator.. 3-15
3–13 Sequenced Update Operation.. 3-17
3–14 Insert Operation Failing Because of Overlapping Time Periods.................................. 3-18
3–15 Adding Valid Time Support to an Existing Version-Enabled Table............................ 3-22

xiii

List of Figures

1–1 Workspace Tree ... 1-5
1–2 Savepoints... 1-6
1–3 Multiparent Workspace in a Workspace Hierarchy... 1-12

xiv

List of Tables

1–1 Freeze Results of Procedures .. 1-9
1–2 Workspace Manager Lock Modes and Data Modification Ability 1-16
1–3 Workspace Manager Privileges .. 1-17
1–4 Workspace Manager System Parameters.. 1-19
1–5 Table Management Subprograms .. 1-33
1–6 Workspace Management Subprograms .. 1-34
1–7 Savepoint Management Subprograms .. 1-35
1–8 Privilege Management Subprograms .. 1-36
1–9 Lock Management Subprograms ... 1-36
1–10 Conflict Management Subprograms.. 1-37
1–11 Replication Support Subprograms... 1-38
1–12 Bulk Loading Support Subprograms... 1-38
2–1 Workspace Manager Events.. 2-2
2–2 Workspace Manager Event Parameters .. 2-3
2–3 AQ Administrative Views for Workspace Manager ... 2-5
3–1 Constants for Valid Time Support ... 3-5
3–2 API Features for Valid Time Support .. 3-6
4–1 Add_Topo_Geometry_Layer Procedure Parameters.. 4-2
4–2 AddAsParentWorkspace Procedure Parameters... 4-4
4–3 AlterSavepoint Procedure Parameters .. 4-6
4–4 BeginBulkLoading Procedure Parameters.. 4-7
4–5 AlterWorkspace Procedure Parameters .. 4-11
4–6 BeginBulkLoading Procedure Parameters.. 4-12
4–7 BeginDDL Procedure Parameters .. 4-16
4–8 BeginResolve Procedure Parameters ... 4-18
4–9 ChangeWorkspaceType Procedure Parameters... 4-19
4–10 CommitBulkLoading Procedure Parameters ... 4-21
4–11 CommitDDL Procedure Parameters.. 4-24
4–12 CommitResolve Procedure Parameters... 4-27
4–13 CompressWorkspace Procedure Parameters ... 4-28
4–14 CompressWorkspaceTree Procedure Parameters ... 4-33
4–15 CopyForUpdate Procedure Parameters .. 4-37
4–16 CreateSavepoint Procedure Parameters.. 4-39
4–17 CreateWorkspace Procedure Parameters.. 4-41
4–18 Delete_Topo_Geometry_Layer Procedure Parameters... 4-44
4–19 DeleteSavepoint Procedure Parameters .. 4-46
4–20 DisableVersioning Procedure Parameters .. 4-49
4–21 EnableVersioning Procedure Parameters ... 4-53
4–22 Export Procedure Parameters ... 4-56

xv

4–23 FindRICSet Procedure Parameters .. 4-61
4–24 FreezeWorkspace Procedure Parameters ... 4-64
4–25 GenerateReplicationSupport Procedure Parameters .. 4-67
4–26 GetBulkLoadVersion Function Parameters.. 4-69
4–27 GetPrivs Function Parameters.. 4-76
4–28 GetPrivs Function Parameters.. 4-78
4–29 GetSessionInfo Procedure Parameters .. 4-79
4–30 GetSystemParameter Procedure Parameters ... 4-81
4–31 GotoDate Procedure Parameters.. 4-86
4–32 GotoSavepoint Procedure Parameters .. 4-89
4–33 GotoWorkspace Procedure Parameters .. 4-90
4–34 GrantGraphPriv Procedure Parameters.. 4-92
4–35 GrantSystemPriv Procedure Parameters .. 4-95
4–36 GrantWorkspacePriv Procedure Parameters ... 4-97
4–37 Import Procedure Parameters .. 4-99
4–38 IsWorkspaceOccupied Function Parameters ... 4-103
4–39 LockRows Procedure Parameters .. 4-104
4–40 MergeTable Procedure Parameters.. 4-107
4–41 MergeWorkspace Procedure Parameters.. 4-110
4–42 Move_Proc Procedure Parameters... 4-113
4–43 RecoverAllMigratingTables Procedure Parameters.. 4-114
4–44 RecoverMigratingTable Procedure Parameters... 4-116
4–45 RefreshTable Procedure Parameters.. 4-118
4–46 RefreshWorkspace Procedure Parameters ... 4-120
4–47 RelocateWriterSite Procedure Parameters.. 4-122
4–48 RemoveAsParentWorkspace Procedure Parameters .. 4-124
4–49 RemoveWorkspace Procedure Parameters .. 4-126
4–50 RemoveWorkspaceTree Procedure Parameters... 4-127
4–51 ResolveConflicts Procedure Parameters ... 4-129
4–52 RevokeGraphPriv Procedure Parameters... 4-132
4–53 RevokeSystemPriv Procedure Parameters ... 4-134
4–54 RevokeWorkspacePriv Procedure Parameters .. 4-136
4–55 RollbackBulkLoading Procedure Parameters .. 4-138
4–56 RollbackDDL Procedure Parameters... 4-140
4–57 RollbackResolve Procedure Parameters.. 4-142
4–58 RollbackTable Procedure Parameters.. 4-143
4–59 RollbackToSP Procedure Parameters .. 4-145
4–60 RollbackWorkspace Procedure Parameters.. 4-147
4–61 SetCaptureEvent Procedure Parameters... 4-149
4–62 SetCompressWorkspace Procedure Parameters.. 4-151
4–63 SetConflictWorkspace Procedure Parameters.. 4-153

xvi

4–64 SetDiffVersions Procedure Parameters ... 4-154
4–65 SetLockingON Procedure Parameters... 4-158
4–66 SetMultiWorkspaces Procedure Parameters .. 4-160
4–67 SetSystemParameter Procedure Parameters... 4-162
4–68 SetTriggerEvents Procedure Parameters... 4-164
4–69 SetSystemParameter Procedure Parameters... 4-166
4–70 SetWorkspaceLockModeOFF Procedure Parameters ... 4-169
4–71 SetWorkspaceLockModeON Procedure Parameters .. 4-170
4–72 SynchronizeSite Procedure Parameters... 4-173
4–73 UnfreezeWorkspace Procedure Parameters ... 4-174
4–74 UnlockRows Procedure Parameters .. 4-175
4–75 UseDefaultValuesForNulls Procedure Parameters ... 4-178
5–1 Columns in the xxx_CONF Views ... 5-22
5–2 Columns in the xxx_DIFF Views.. 5-23
5–3 Columns in the xxx_HIST Views ... 5-25
5–4 Columns in the xxx_LOCK Views ... 5-25
5–5 Columns in the xxx_MW Views... 5-26

xvii

Send Us Your Comments

Oracle Database Application Developer’s Guide - Workspace Manager, 10g Release 1 (10.1)

Part No. B10824-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

� Electronic mail: nedc-doc_us@oracle.com
� FAX: 603.897.3825 Attn: Workspace Manager Documentation
� Postal service:

Oracle Corporation
Oracle Workspace Manager Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please include your name and contact information.

If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

Oracle Database Application Developer's Guide - Workspace Manager describes Oracle
Workspace Manager, often referred to as Workspace Manager, which lets
applications create workspaces and group different versions of table row values in
different workspaces.

This preface contains these topics:

� Audience

� Documentation Accessibility

� Organization

� Related Documentation

� Conventions

Audience
Oracle Database Application Developer's Guide - Workspace Manager is intended for
application designers and developers. It is assumed that you have some experience
programming in PL/SQL.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other

xx

market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains the following elements:

This guide has two main parts (conceptual and usage information, and reference
information) and a third part with supplementary information (appendixes and a
glossary). The first part is organized for efficient learning about Workspace
Manager; it covers basic concepts and techniques first, and proceeds to more
advanced material (such as Workspace Manager events and valid time support).

This guide has the following elements.

Part I, "Conceptual and Usage Information"
Provides conceptual and usage information about Workspace Manager.

Chapter 1, "Introduction to Workspace Manager"
Explains workspace management concepts.

Chapter 2, "Workspace Manager Events"
Describes support for the Workspace Manager event framework, which is built on
the Oracle Advanced Queuing (AQ) capability.

xxi

Chapter 3, "Workspace Manager Valid Time Support"
Describes Workspace Manager support for valid time, also known as effective
dating, with version-enabled tables.

Part II, "Reference Information"
Provides reference information about the Workspace Manager PL/SQL API
(DBMS_WM package) and metadata views.

Chapter 4, "DBMS_WM Package: Reference"
Provides reference information about the Workspace Manager application
programming interface.

Chapter 5, "Workspace Manager Metadata Views"
Describes metadata views created and maintained by Workspace Manager.

Part III, "Supplementary Information"
Provides provides supplementary information about Workspace Manager
(appendixes and a glossary).

Appendix A, "Installing Workspace Manager with Custom Databases"
Describes how to install Workspace Manager with Oracle databases other than the
seed database and databases created using the Database Configuration Assistant
(DBCA). (Workspace Manager is installed by default in the seed database and
databases using DBCA.)

Appendix B, "Migrating to Another Workspace Manager Release"
Describes how to migrate (upgrade or downgrade) from one Workspace Manager
release to another, if you have version-enabled tables with data that you want to
preserve from one release to the other.

Appendix C, "Using Replication with Workspace Manager"
Describes Workspace Manager support for replication of all workspace-related
entities, operations, and DML and DDL operations on version-enabled tables.

Appendix D, "Workspace Manager Error Messages"
Lists the error messages for Workspace Manager, with the cause and suggested user
action for each error.

xxii

Glossary
Defines important terms specific to Workspace Manager.

Related Documentation
For more information about using this product in a development environment, see
the following documents:

� Oracle Call Interface Programmer's Guide

� Oracle Database Concepts

� PL/SQL User's Guide and Reference

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, go to the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this guide:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

xxiii

boldface text Boldface text indicates a term defined in the text, the glossary, or in
both locations.

italic text Italic text is used for book titles, emphasis, and some special terms.

monospace text Monospace text is used for the names of parameters, files, and
directory paths. It is also used for SQL and PL/SQL code examples.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

Convention Meaning

xxiv

xxv

New and Changed Features

This section describes new and changed Workspace Manager features for Oracle
Database 10g Release 1 (10.1).

System Parameters for Workspace Manager
Workspace Manager now provides a set of system parameters that allow a user
with the WM_ADMIN_ROLE role to enforce global Workspace Manager-specific
settings for the database. These system parameters are described in Section 1.5.

Multiparent Workspaces
A child workspace can now have two or more parent workspaces, in which case it
becomes a multiparent workspace. A multiparent workspace can see data from all
of its parent workspaces and their ancestor workspaces, and it can be merged with
and refreshed from its parent workspaces. Multiparent workspaces are described in
Section 1.1.10.

Workspace Manager Events
Several types of Workspace Manager operations can be captured as events, and can
be communicated to applications through the Oracle Advanced Queueing
framework. Support for Workspace Manager events includes the ALLOW_CAPTURE_
EVENTS system parameter, the SetCaptureEvent procedure, and the WM_EVENTS_
INFO metadata view. Chapter 2 describes Workspace Manager events and explains
how to use them in applications.

xxvi

Valid Time Support
You can specify a valid time, also known as effective dating, for use with
version-enabled tables. Workspace Manager valid time support is explained in
Chapter 3.

Exporting and Importing Data
The Export procedure exports data from a version-enabled table (all rows, or as
limited by any combination of several parameters) to a staging table.

The Import procedure imports data from a staging table into a version-enabled
table.

These procedures are described in Chapter 4.

Bulk Loading into Version-Enabled Tables
You can use SQL*Loader to perform bulk loading into version-enabled tables, but
you must also use some new Workspace Manager procedures, and some restrictions
apply, as explained in Section 1.7.

Compression, Commit Operations, and Batch Sizes
The new optional parameters commit_in_batches and batch_size are
available for the CompressWorkspace, CompressWorkspaceTree, and
DeleteSavepoint procedures.

The new WM_COMPRESS_BATCH_SIZES and WM_COMPRESSIBLE_TABLES
metadata views (described in Chapter 5) provide information related to
compression options. The new SetCompressWorkspace procedure populates the
WM_COMPRESSIBLE_TABLES view.

Continually Refreshed Workspaces: New Procedure
The ChangeWorkspaceType procedure (described in Chapter 4) lets you change a
workspace that is not continually refreshed to be continually refreshed.

xxvii

Physical Table Names (Infrastructure): New Procedure
The GetPhysicalTableName function (described in Chapter 4) lets you find the name
of the <table_name>_LT table associated with a version-enabled table. It also lets you
check whether or not a table is version-enabled by checking for the existence of a
<table_name>_LT table. (The Workspace Manager infrastructure and its use of
<table_name>_LT tables is explained in Section 1.1.11.)

DDL Support
Support for data definition language (DDL) operations on version-enabled tables
has been enhanced. The following new capabilities are supported for this release:

� Changing the length of a column of type VARCHAR2, VARCHAR, CHAR, NCHAR,
NVCHAR, or NVCHAR2

� Changing the scale or precision of a column of type NUMBER

� Adding, dropping, enabling, or disabling a unique constraint

For information about DDL operations related to version-enabled tables, see
Section 1.8.

Unique Constraint Support
Tables with several kinds of unique constraints and indexes on them are supported
for version-enabled tables, as explained in Section 1.9.2.

The following metadata views (described in Chapter 5) have been added to contain
information relating to Workspace Manger support for unique constraints:

� ALL_WM_CONSTRAINTS and USER_WM_CONSTRAINTS

� ALL_WM_IND_COLUMNS and USER_WM_IND_COLUMNS

� ALL_WM_IND_EXPRESSIONS and USER_WM_IND_EXPRESSIONS

� ALL_WM_CONS_COLUMNS and USER_WM_CONS_COLUMNS

Nested Table Column Support
Tables with nested table columns can now be version-enabled if you set the new
ALLOW_NESTED_TABLE_COLUMNS system parameter to ON, as explained in
Table 1–4 in Section 1.5.

xxviii

Virtual Private Database (VPD) Support
You can use Workspace Manager with the Oracle Virtual Private Database (VPD)
technology, subject to the considerations described in Section 1.11.

Spatial Topology Support
Special techniques have been implemented for using Workspace Manager with
tables in Oracle Spatial topologies, as explained in Section 1.14.

The Add_Topo_Geometry_Layer and Delete_Topo_Geometry_Layer were added to
the DBMS_WM package (documented in Chapter 4) to add and delete a topology
geometry layer in a version-enabled topology. These procedures have the same
format and meaning as the SDO_TOPO.ADD_TOPO_GEOMETRY and SDO_
TOPO.DELETE_TOPO_GEOMETRY procedures, documented in Oracle Spatial
Topology and Network Data Models; however, you must use the DBMS_WM
procedures with topology geometry layers in a version-enabled topology.

History Management Support
Workspace Manager implements history management changes that are especially of
interest if you want to perform an upgrade or downgrade operation. For release
10.1, Workspace Manager uses the TIMESTAMP WITH TIME ZONE type with
history data, whereas in previous releases it used the DATE type. For more
information, see Section B.3.

In addition the USE_TIMESTAMP_TYPE_FOR_HISTORY system parameter lets you
specify whether or not to use the TIMESTAMP WITH TIME ZONE or the DATE type
for CREATETIME and RETIRETIME columns. The system parameters are described
in Section 1.5

New Lock Modes: Workspace-Exclusive and Version-Exclusive
Workspace-exclusive (WE) locks and version-exclusive (VE) locks are new lock
types. They are forms of exclusive locking that control which users can and cannot
change data values, but (unlike exclusive locking) they do not prevent conflicts
from occurring. For more information, see Section 1.3.

xxix

New Parameter for Compressing Workspaces
The new remove_latest_deleted_rows parameter for the CompressWorkspace
and CompressWorkspaceTree procedures (documented in Chapter 4) lets you
control whether or not LATEST deleted rows are preserved.

Renaming a Constraint or Index
To rename a constraint or index on a version-enabled table, you can or must
(depending on the length of the constraint or index name) use the
AlterVersionedTable procedure (documented in Chapter 4).

New Parameter for RefreshWorkspace
The new copy_data parameter for the RefreshWorkspace procedure (documented
in Chapter 4) lets you control the amount of data copied to the child workspace.

Workspace Manager Metadata Placement
You can use the new Move_Proc procedure to move the Workspace Manager
metadata to a different tablespace. If you want to get an idea of space requirements
before you move the metadata, you can use the GetWMMetadataSpace function to
find out how much space is currently used for the Workspace Manager metadata.

Using Default Values for Nulls
You can use the new UseDefaultValuesForNulls procedure (described in Chapter 4)
to determine whether or not Workspace Manager, for the current session, uses the
default value for a column when the user specifies a null value for the column in an
insert operation on a version-enabled table.

DBA_WM_SYS_PRIVS View
The DBA_WM_SYS_PRIVS metadata view (described in Section 5.17) contains
information about all users that have Workspace Manager system-level privileges
(that is privilege names containing _ANY_WORKSPACE).

xxx

Column Name Changes in xxx_HIST Views
The names of the Workspace Manager-specific columns in the history views
(described in Section 5.43) were changed: all these names now start with WM_, and
some other spelling changes were made. However, the order of the columns and
their meanings were not changed.

Sample Schema Example
An example using the OE.WAREHOUSES table from the Oracle sample schemas was
added. See Section 1.16.2.

Part I
Conceptual and Usage Information

This document has three parts:

� Part I provides conceptual and usage information about Workspace Manager.

� Part II provides reference information about the Workspace Manager PL/SQL
API (DBMS_WM package) and metadata views.

� Part III provides supplementary information (appendixes and a glossary).

Part I is organized for efficient learning about Workspace Manager. It covers basic
concepts and techniques first, and proceeds to more advanced material (such as
Workspace Manager events and valid time support). Part I contains the following
chapters:

� Chapter 1, "Introduction to Workspace Manager"

� Chapter 2, "Workspace Manager Events"

� Chapter 3, "Workspace Manager Valid Time Support"

Introduction to Workspace Manager 1-1

1
Introduction to Workspace Manager

Oracle Workspace Manager, often referred to as Workspace Manager, provides an
infrastructure that lets applications conveniently create workspaces and group
different versions of table row values in different workspaces. Users are permitted
to create new versions of data to update, while maintaining a copy of the old data.
The ongoing results of the activity are stored persistently, assuring concurrency and
consistency.

Applications that can benefit from Workspace Manager typically do one or more of
the following operations:

� Manage a collection of updates and insertions as a unit before incorporating
them into production data

Workspace Manager lets you review changes and roll back undesirable ones
before making the changes public. Until you make the changes public, they are
invisible to other users of the database, who will access only the regular
production data. You can organize the changes in a simple set of workspaces or
in a complex workspace hierarchy. A typical example might be a life sciences
application in which Workspace Manager supports the discovery and quality
assurance (QA) processes by managing a collection of updates before they are
merged with the production data.

� Support a collaborative development effort

Workspace Manager lets a team share access to a collection of updates and
insertions for a collaborative project. Workspace privileges control access to a
workspace and its operations, and you can restrict workspace access to
single-writer, read-only, or no access. Workspace locks prevent update conflicts
between projects in separate workspaces. A typical example might be an
application to design an engineering project, in which multiple subprojects are
concurrently developed in separate workspaces.

1-2 Oracle Database Application Developer’s Guide - Workspace Manager

� Use a common data set to create multiple scenarios for what-if analyses or
multiple editions of data for publication

Workspace Manager lets you organize changes in workspaces to view them in
the context of the whole database, but without requiring that you actually copy
data between tables. It lets different users make simultaneous changes to the
same row, and it lets you detect and resolve conflicts. A typical example might
be a telecommunications application that lets you create multiple cell phone
coverage scenarios to find the optimal design.

� Keep a history of changes to data

Workspace Manager lets you navigate workspaces and row versions to view the
database as of a particular milestone or point in time. You can roll back changes
to a row or table in a workspace to a milestone. A typical example might be a
land information management application where Workspace Manager supports
regulatory requirements by maintaining a history of all changes to land parcels.

Workspace Manager is also useful in managing long-transaction scenarios, where
complex, long-duration database transactions can take days to complete, and
multiple users must access the same database.

This chapter explains concepts and operations that you must understand to use
Workspace Manager. It contains the following major sections:

� Section 1.1, "Workspace Manager Overview"

� Section 1.2, "Session Context Information for Workspace Manager"

� Section 1.3, "Lock Management with Workspace Manager"

� Section 1.4, "Privilege Management with Workspace Manager"

� Section 1.5, "System Parameters for Workspace Manager"

� Section 1.6, "Import and Export Considerations"

� Section 1.7, "Bulk Loading into Version-Enabled Tables"

� Section 1.8, "DDL Operations Related to Version-Enabled Tables"

� Section 1.9, "Constraint Support with Workspace Manager"

� Section 1.10, "Triggers on Version-Enabled Tables"

� Section 1.11, "Virtual Private Database Considerations"

� Section 1.12, "Support for Table Synonyms"

� Section 1.13, "Materialized View Support"

Workspace Manager Overview

Introduction to Workspace Manager 1-3

� Section 1.14, "Spatial Topology Support"

� Section 1.15, "DBMS_WM Subprogram Categories"

� Section 1.16, "Simplified Examples Using Workspace Manager"

For complete examples of Workspace Manager, see Section 1.16. However, you may
want to read the rest of this chapter first, to understand the concepts that the
examples illustrate.

1.1 Workspace Manager Overview
Workspace Manager lets you version-enable one or more user tables in the
database. When a table is version-enabled, all rows in the table can support multiple
versions of the data. The versioning infrastructure is not visible to the users of the
database, and application SQL statements for selecting, inserting, modifying, and
deleting data continue to work in the usual way with version-enabled tables,
although you cannot update a primary key column value in a version-enabled table.
(Workspace Manager implements these capabilities by maintaining system views
and creating INSTEAD OF triggers, as explained in Section 1.1.11; however,
application developers and users do not need to see or interact with the views and
triggers.)

After a table is version-enabled, users in a workspace automatically see the correct
version of the record in which they are interested. If you no longer need a table to be
version-enabled, you can disable versioning for the table.

A workspace is a virtual environment that one or more users can share to make
changes to the data in the database. A workspace logically groups collections of
new row versions from one or more version-enabled tables, and isolates these
versions until they are explicitly merged with production data or discarded, thus
providing maximum concurrency. Users can perform a variety of operations
involving workspaces: go to, create, refresh, merge, roll back, remove, compress,
alter, and other operations.

Note: Workspace Manager is installed by default in the Oracle
seed database and any database created using the Database
Configuration Assistant (DBCA). To use Workspace Manager in
any other Oracle database, you must first perform the installation
procedure described in Appendix A, "Installing Workspace
Manager with Custom Databases".

Workspace Manager Overview

1-4 Oracle Database Application Developer’s Guide - Workspace Manager

Users in a workspace always see a transactionally consistent view of the entire
database; that is, they see changes made in their current workspace plus the rest of
the data in the database as it existed either when the workspace was created or
when the workspace was most recently refreshed with changes from the parent
workspace. (Workspace hierarchy and parent and child workspaces are explained in
Section 1.1.1.)

Workspace Manager automatically detects conflicts, which are differences in data
values resulting from changes to the same row in a workspace and its parent
workspace. You must resolve conflicts before merging changes from a workspace
into its parent workspace. You can use workspace locks to avoid conflicts.

Savepoints are points in the workspace to which row changes in version-enabled
tables can be rolled back, and to which users can go to see the database as it existed
at that point. Savepoints are usually created in response to a business-related
milestone, such as the completion of a design phase or the end of a billing period.
(For more information about savepoints, see Section 1.1.2.)

The history option lets you timestamp changes made to all rows in a
version-enabled table and to save a copy of either all changes or only the most
recent changes to each row. If you keep all changes (specifying the "without
overwrite" history option) when version-enabling a table, you keep a persistent
history of all changes made to all row versions, and enable users to go to any point
in time to view the database as it existed from the perspective of that workspace.

Workspace Manager provides a comprehensive PL/SQL API that you can add to
new and existing applications to manage workspaces, savepoints, history
information, privileges, access modes, and Workspace Manager locks, and to detect
and resolve conflicts. You can also perform many of these operations using the
Oracle Enterprise Manager graphical user interface.

Another database object created by Workspace Manager is a database-wide system
table that maps row versions to workspaces. This table is not visible to users.

1.1.1 Workspace Hierarchy
There can be a hierarchy of workspaces in the database. For example, a workspace
can be a parent to one or more workspaces (child workspaces). By default, when a
workspace is created, it is created from the topmost, or LIVE, database workspace.
(Workspace names are case sensitive, and the workspace name of the live database
is spelled LIVE. The length of a workspace name must not exceed 30 characters.)
Users are included in a workspace by a GotoWorkspace operation.

Workspace Manager Overview

Introduction to Workspace Manager 1-5

Figure 1–1 shows a hierarchy of workspaces. Workspace1 and Workspace4 were
formed off the LIVE database workspace; Workspace2 and Workspace3 were
formed off Workspace1, and Workspace5 was formed off Workspace4. After
Workspace1 was created, a user executed a GotoWorkspace operation specifying
Workspace1, and then executed CreateWorkspace operations to create
Workspace2 and Workspace3. A comparable sequence was followed with
Workspace4 and Workspace5.

Figure 1–1 Workspace Tree

See also Section 1.1.2.1 for a discussion of design issues in deciding whether to
create a child workspace or a savepoint for certain needs

1.1.2 Using Savepoints
A savepoint is a point in the workspace to which data changes can be rolled back.
Workspace Manager accomplishes the rollback by deleting the row versions that
contain the unwanted changes.

An explicit savepoint is a savepoint that you create and name. You can later roll
back changes in version-enabled tables to the savepoint, or you can go to the
savepoint to view the state of the entire database (including versioned rows) at the
time the savepoint was created. In Figure 1–2, SP1, SP2, SP3, and SP4 are explicit
savepoints that were created in the workspaces indicated. (Savepoints are indicated
by dashed lines in Figure 1–2.)

LIVE workspace

 Workspace1

 Workspace2

 Workspace4

 Workspace3 Workspace5

Workspace Manager Overview

1-6 Oracle Database Application Developer’s Guide - Workspace Manager

Figure 1–2 Savepoints

In addition, implicit savepoints are created automatically whenever a new
workspace is created. An implicit savepoint is needed so that the users in the child
workspace get a view of the database that is frozen at the time of the workspace
creation. Thus, in Figure 1–2 two implicit savepoints (SPa and SPd) are created in
the LIVE workspace corresponding to Workspace1 and Workspace4 creation;
two implicit savepoints (SPb and SPc) are created in Workspace1 corresponding
to Workspace2 and Workspace3 creation; and one implicit savepoint (SPe) is
created in Workspace4 corresponding to Workspace5 creation.

Workspace Manager uses the name LATEST to designate a logical savepoint that
refers to the latest version in the workspace. LATEST is often the default when a
savepoint is an optional parameter for a DBMS_WM subprogram (procedure or
function).

A removable savepoint is a savepoint that can be deleted by the
CompressWorkspace, CompressWorkspaceTree, and DeleteSavepoint procedures. A
savepoint is removable if either of the following applies:

� It is an explicit savepoint.

� It is an implicit savepoint that does not have any child dependencies.

LIVE workspace

Workspace1

Workspace2

Workspace4

Workspace3 Workspace5

SPa
SPd

SPb

SPc
SPeSP1

SP3
SP2

SP4

Workspace Manager Overview

Introduction to Workspace Manager 1-7

1.1.2.1 Design Issue: Savepoint or Child Workspace?
A Workspace Manager design issue that you may face is whether to create a
savepoint or a child workspace to "save" a project at a given point. Both a savepoint
and a child workspace allow you to group a set of changes, compare changes in
different row versions, and roll back a set of changes. However, creating a savepoint
lets you continue to make changes in the same workspace, and it allows other users
in the workspace immediate access to the changes. (Changes in another workspace
are not visible to users until the current workspace is refreshed or merged.) Creating
a savepoint also makes it convenient to archive a set of changes, to which you can
later roll back.

On the other hand, creating a child workspace is convenient for providing an
isolated environment in which a complex set of changes can be made, completely
removed from the parent workspace (for example, the production data). If you want
to set up an independent environment for a scenario, and if regular users in the
parent workspace do not need access to this scenario’s data, you probably want to
create a child workspace instead of simply creating a savepoint in the parent
workspace.

1.1.3 Merging and Rolling Back Workspace Changes
Workspaces can be merged or rolled back.

Merging a workspace involves applying changes made in a child workspace to its
parent workspace, after which the child workspace is removed. To merge a
workspace, use the MergeWorkspace procedure.

Rolling back a workspace involves deleting either all data changes (row versions)
made in the workspace or all changes made after an explicit savepoint.

� To roll back all changes made in the workspace, use the RollbackWorkspace
procedure.

� To roll back changes made in the workspace after a savepoint, use the
RollbackToSP procedure.

Workspace Manager Overview

1-8 Oracle Database Application Developer’s Guide - Workspace Manager

A workspace cannot be rolled back when it has open database transactions.
Rollback of a workspace leaves behind the workspace structure for future use; only
the data in the workspace is deleted. (To completely remove a workspace, use the
RemoveWorkspace procedure, as described in Section 1.1.6.)

1.1.4 Resolving Conflicts Before a Merge or Refresh Operation
When a child workspace is merged, the row changes in the child workspace are
incorporated in its parent workspace; and when a child workspace is refreshed, row
changes in the parent workspace are incorporated in the child workspace. When a
row is changed in both the child and parent workspace, a data conflict is created.
Conflicts are automatically detected when a merge or refresh operation is requested,
and they are presented to the user in conflict views. There is one conflict view for
each table, as described in Section 5.41. This view lists the column values of the
rows in the two workspaces involved in the conflict.

Conflicts must be resolved manually using the ResolveConflicts procedure. For each
conflict you can choose to keep the row from the child workspace, the row from the
parent workspace, or the common base row (that is, no change: keep the original
data values for the row). You must resolve the conflicts before you can perform a
merge (MergeWorkspace) or refresh (RefreshWorkspace) operation. The general
process for resolving conflicts is as follows:

1. Examine the xxx_CONF views (described in Section 5.41) to see what conflicts
exist.

2. Execute the BeginResolve procedure.

3. Execute the ResolveConflicts procedure as often as needed: once for each
affected combination of table and workspace. After each successful execution of
ResolveConflicts, perform a standard database commit operation and execute
the MergeWorkspace or RefreshWorkspace procedure. (However, any changes
are not made permanent in the database until you execute CommitResolve, as
described in the next step.)

Note: You cannot roll back to a savepoint if any implicit
savepoints were created since the specified savepoint, unless you
first merge or remove the descendent workspaces that caused the
implicit savepoints to be created. For example, referring to
Figure 1–2 in Section 1.1.2, the user in Workspace1 cannot roll
back to savepoint SP1 until Workspace3 (which caused implicit
savepoint SPc to be created) is merged or removed.

Workspace Manager Overview

Introduction to Workspace Manager 1-9

4. After resolving all conflicts, execute one of the following procedures:

� CommitResolve to make permanent all changes from the preceding step

� RollbackResolve to discard all changes from the preceding step

1.1.5 Freezing and Unfreezing Workspaces
You can control read and write access to a workspace by freezing and unfreezing
the workspace. If a workspace is frozen, the ability of users to access the workspace
and to make changes to rows in version-enabled tables is restricted. You can freeze a
workspace in any of the following modes: no access, read-only, and one writer only
(1WRITER).

To make a workspace frozen, use the FreezeWorkspace procedure. To make a frozen
workspace not frozen, use the UnfreezeWorkspace procedure.

In addition, some procedures automatically freeze one or more workspaces.
Table 1–1 lists these procedures, the workspaces affected, and the mode in which
the workspaces are frozen. (For explanations of the mode values, see the
FreezeWorkspace procedure description in Chapter 4.)

Table 1–1 Freeze Results of Procedures

Procedure Workspace and Mode

BeginResolve Specified workspace: 1WRITER

MergeWorkspace Specified workspace: NO_ACCESS

Parent workspace: READ_ONLY

CompressWorkspace Specified workspace: NO_ACCESS (Also, checks to ensure that
there are no sessions on savepoints other than LATEST.)

CompressWorkspaceTree Specified workspace: NO_ACCESS (Also, checks to ensure that
there are no sessions on savepoints other than LATEST.)

CreateSavepoint Specified workspace: READ_ONLY

DeleteSavepoint Specified workspace: NO_ACCESS

CreateWorkspace Specified workspace: READ_ONLY

RemoveWorkspace Specified workspace: NO_ACCESS

RefreshWorkspace Specified workspace: READ_ONLY

Parent workspace: READ_ONLY

Workspace Manager Overview

1-10 Oracle Database Application Developer’s Guide - Workspace Manager

1.1.6 Removing Workspaces
A workspace can be removed with the RemoveWorkspace procedure.
RemoveWorkspace rolls back the data in a workspace and then deletes the
workspace structure. An entire tree of workspaces can be removed with the
RemoveWorkspaceTree procedure. This will remove the workspace and all its
descendant workspaces. A workspace cannot be removed when it has users in it.

1.1.7 Using Workspace Manager Events
Several types of Workspace Manager operations can be captured as events, and can
be communicated to applications through the Oracle Advanced Queueing (AQ)
framework. Messaging features provided by AQ, such as asynchronous notification,
persistence, propagation, access control, history, and rule-based subscription, can be
used for Workspace Manager events.

Support for Workspace Manager events includes the ALLOW_CAPTURE_EVENTS
Workspace Manager system parameter, the SetCaptureEvent procedure, and the
WM_EVENTS_INFO metadata view.

Chapter 2 describes Workspace Manager events and explains how to use them in
applications.

1.1.8 Autocommitting of Workspace Manager Operations
Many Workspace Manager operations are by default executed as autonomous
database transactions that will be committed when they finish. That is, each such
transaction is an independent transaction that is called from within the current
database transaction, leaves the context of the calling transaction, performs the
Workspace Manager operation and then automatically commits it, and then returns
to the calling transaction's context and continues with that transaction. Workspace
Manager (DBMS_WM) subprograms that operate in this way have an optional auto_
commit parameter, which has a default value of TRUE.

For example, the CompressWorkspace procedure by default starts an autonomous
transaction, compresses the workspace, commits the compression operation, and

RollbackResolve Specified workspace: 1WRITER

RollbackWorkspace Specified workspace: NO_ACCESS

Table 1–1 (Cont.) Freeze Results of Procedures

Procedure Workspace and Mode

Workspace Manager Overview

Introduction to Workspace Manager 1-11

returns to the calling transaction’s context, where the current database transaction
continues.

However, if you want such subprograms not to start an autonomous transaction,
but instead to execute in the context of the calling transaction, you can specify the
auto_commit parameter with a value of FALSE. In this case, the Workspace
Manager operation is executed as part of the current database transaction; and if
there is no current open transaction, the Workspace Manager operation starts a new
transaction. In either case, the Workspace Manager operation does not take effect
until that transaction ends with a commit operation. For example, if you call the
CompressWorkspace procedure with the auto_commit parameter specified as
FALSE, the workspace is not compressed until the transaction is committed; and if
the transaction is rolled back, the workspace is not compressed.

Note that if you specify FALSE for the auto_commit parameter, you must
remember to commit or roll back the transaction explicitly.

1.1.9 Continually Refreshed Workspaces
A continually refreshed workspace is a workspace that is automatically refreshed
from its parent workspace whenever data changes are committed in the parent
workspace or are merged into the parent workspace from another child workspace.
You do not need to call the RefreshWorkspace procedure for a continually refreshed
workspace.

To create a continually refreshed workspace, specify TRUE for the isrefreshed
parameter in the call to the CreateWorkspace procedure. See the Usage Notes for the
CreateWorkspace procedure for rules that apply to the creation of a continually
refreshed workspace.

To change a workspace that is not continually refreshed to be continually refreshed,
use the ChangeWorkspaceType procedure.

If a workspace is not continually refreshed, you must call the RefreshWorkspace
procedure whenever you want to ensure that data changes in its parent workspace
are visible in the workspace.

1.1.10 Multiparent Workspaces
A multiparent workspace is a child workspace that has two or more parent
workspaces. A workspace is initially created with a single parent workspace.
However, if the need arises, you can add other workspaces as parent workspaces to
an existing workspace, thus making it a multiparent workspace. The multiparent

Workspace Manager Overview

1-12 Oracle Database Application Developer’s Guide - Workspace Manager

workspace can see data from all of its parent workspaces and their ancestor
workspaces, and it can be merged with and refreshed from its parent workspaces.

Figure 1–3 shows the same hierarchy of workspaces in Figure 1–1, except that
Workspace3 is now a multiparent workspace with two parent workspaces:
Workspace1 and Workspace4.

Figure 1–3 Multiparent Workspace in a Workspace Hierarchy

A multiparent workspace is also called a multiparent leaf workspace. Thus, in
Figure 1–3, Workspace3 is a multiparent leaf workspace. The nearest common
ancestor of all parent workspaces of a multiparent lead workspace is called the
multiparent root workspace. In Figure 1–3, the LIVE workspace is the multiparent
root workspace of Workspace3. All of the workspaces in the directed acyclic graph
(DAG) formed as a result of adding parent workspaces as parents of a leaf
workspace are called multiparent graph workspaces. In Figure 1–3, Workspace1,
Workspace4, and Workspace3 are the multiparent graph workspaces.

Multiparent workspaces are allowed only if the ALLOW_MULTI_PARENT_
WORKSPACE Workspace Manager system parameter is set to ON. In addition, for a
continually refreshed workspace to be a multiparent workspace, the CR_
WORKSPACE_MODE Workspace Manager system parameter must be set to
PESSIMISTIC_LOCKING; and for a workspace that is not continually refreshed to
be a multiparent workspace, the NONCR_WORKSPACE_MODE Workspace Manager
system parameter must be set to PESSIMISTIC_LOCKING. For information about
Workspace Manager system parameters, see Section 1.5.

LIVE workspace

 Workspace1

 Workspace2

 Workspace4

 Workspace3 Workspace5
(multiparent)

Workspace Manager Overview

Introduction to Workspace Manager 1-13

To create a multiparent workspace, use the AddAsParentWorkspace procedure. To
remove a workspace as a parent of a multiparent workspace, use the
RemoveAsParentWorkspace procedure. To grant and revoke privileges on
multiparent graph workspaces, use the GrantGraphPriv and RevokeGraphPriv
procedures, respectively. These procedures are described in Chapter 4.

Workspace Manager provides the following metadata views (described in
Chapter 5) to store information about multiparent workspaces:

� USER_MP_GRAPH_WORKSPACES and ALL_MP_GRAPH_WORKSPACES
contain information about multiparent graph workspaces.

� USER_MP_PARENT_WORKSPACES and ALL_MP_PARENT_WORKSPACES
contain information about parent workspaces of multiparent leaf workspaces.

1.1.11 Infrastructure for Version-Enabling of Tables
When you version-enable a table using the EnableVersioning procedure, Workspace
Manager automatically performs operations and creates data structures that are
invisible to non-DBA users, but that permit Workspace Manager to function. Some
of the information maintained by Workspace Manager is stored in the metadata
views described in Chapter 5, and some is stored in system data structures not
accessible by users.

When a table is version-enabled, Workspace Manager renames the table to
<table-name>_LT, and it adds several columns to this table to store versioning
metadata. Note that users and applications should not specify the <table-name>_LT
table in SQL statements; they should continue to specify the original table name
(<table-name>). (If you ever need to find the name of the <table_name>_LT table
associated with a version-enabled table, or if you want to find out if a table is
version-enabled by checking for the existence of a <table_name>_LT table, use the
GetPhysicalTableName function.)

Workspace Manager also creates a view on the original table (<table-name>), as well
as INSTEAD OF triggers on the view for insert, update, and delete operations.
When an application executes a statement to insert, update, or delete data in a
version-enabled table, the appropriate INSTEAD OF trigger performs the actual
operation. When the view is accessed, it uses the workspace metadata to show only
the row versions relevant to the current workspace of the user.

1.1.12 Workspace Manager Schema, Metadata, and Package
Workspace Manager creates a user named WMSYS. The WMSYS schema is used to
store all the metadata information for Workspace Manager. A PL/SQL package

Session Context Information for Workspace Manager

1-14 Oracle Database Application Developer’s Guide - Workspace Manager

with the public synonym DBMS_WM contains the Workspace Manager subprograms
(procedures and functions).

The following privileges are granted to the PUBLIC user group:

� SELECT privilege on Workspace Manager metadata views (described in
Chapter 5)

� EXECUTE privilege on the DBMS_WM package (described in Chapter 4)

1.2 Session Context Information for Workspace Manager
Users perform Workspace Manager operations within a standard Oracle session. (A
session is a specific connection of a user to an Oracle instance through a user
process; a session lasts from the time the user connects until the time the user
disconnects or exits the database application.) When you perform Workspace
Manager operations, information relating to the session context is automatically
recorded.

The session context information includes the workspace name and a context value,
and it determines what data the session can see in the workspace and what
workspaces the session can enter. The context value is one of the following:

� LATEST: The session is currently set to the LATEST savepoint (explained in
Section 1.1.2), and it can see changes as they are made in the workspace. The
context is automatically set to LATEST when the session enters the workspace
(using the GotoWorkspace procedure).

� A savepoint name: The session is currently set to a savepoint in the workspace.
The session cannot see changes as they are made in the latest version of the
workspace, but instead sees a static view of the data as of the savepoint creation
time. The session context is set to the savepoint name after a call to the
GotoDate procedure.

� An instant (a point in time): The session is currently set to a specific point in
time. The session cannot see changes as they are made in the latest version of
the workspace, but instead sees a static view of the data as of the specific time.
The session context is set to an instant after a call to the GotoDate procedure.
(The exact time point depends on the history option for tracking modifications,
as set by the EnableVersioning procedure or modified by the
SetWoOverwriteOFF or SetWoOverwriteON procedure.)

You can retrieve information about the session context by using the GetSessionInfo
procedure. Retrieving this information can be useful if you need to know where a

Lock Management with Workspace Manager

Introduction to Workspace Manager 1-15

session is (workspace and context) -- for example, after you performed a
combination of GotoWorkspace, GotoDate, and GotoDate operations.

1.3 Lock Management with Workspace Manager
In addition to locks provided by regular Oracle database transactions, Workspace
Manager provides two types of version locks. These locks are primarily intended to
eliminate row conflicts between a parent workspace and a child workspace. You can
enable locking for the workspace, the session, or specified rows, or some
combination:

� Lock at the workspace level (SetWorkspaceLockModeON procedure) if the data
changes are in one or a few workspaces, or if you want all data changes in the
workspace to be locked.

� Lock at the session level (SetLockingON procedure) if the data changes are
being made in many workspaces. When locking is enabled for a session,
Workspace Manager locks rows in all workspaces in which the session
participates.

� Lock specific rows (LockRows procedure) either to lock the rows before they are
updated or to automatically lock rows after they are inserted (or updated if they
satisfy the WHERE clause after the update).

Workspace or session locks persist for the duration of the workspace or session,
respectively, or until the workspace is merged or rolled back.

Like database locks, Workspace Manager locks can be exclusive or shared:

� Exclusive locks - The locks are very similar to database transaction locks in that
once an exclusive lock is placed on a record, no other user in the database can
change the record except for the session (user) that locked it. When exclusive
locking is enabled for a user, any row that the user changes is locked
exclusively. In addition, the parent row to that row is also locked exclusively.
Thus, exclusive locking can be used to eliminate data conflicts between a child
and its parent workspace.

� Shared locks - Once a shared lock is placed on a row, only users in the
workspace in which it is locked are allowed to modify it. Shared locks are also
placed on the parent version of the row, thus protecting the row from conflicts.
The benefit of shared locks over exclusive locks is that all users in the
workspace where the row is locked can access the row for changes. An ideal use
for this kind of lock is on a row that needs to have no conflicts with its parent,
but that needs to be changed by a collection of users participating in a group

Lock Management with Workspace Manager

1-16 Oracle Database Application Developer’s Guide - Workspace Manager

project. Note that shared locking must be individually enabled for each session
in the workspace.

Workspace-exclusive locks and version-exclusive locks are forms of exclusive
locking that control which users can and cannot change data values, but (unlike
exclusive locking) they do not prevent conflicts from occurring.
Workspace-exclusive locks lock rows such that only the user that set the lock can
change the values in the current workspace; however, other users in other
workspaces can change the values. Version-exclusive locks lock rows such that
only the user that set the lock can change the values (and that user can be in any
workspace); no other users (in any workspace) can change the values.

Table 1–2 indicates, for a row locked by a specific user in a specific workspace,
which users in which workspaces can and cannot modify the row. For example, the
first two entries in Table 1–2 mean that when a shared (S) lock is placed on a row,
any user in the workspace in which the row was locked can modify the row, but any
user in a workspace different from the workspace in which the row was locked
cannot modify the row.

Table 1–2 Workspace Manager Lock Modes and Data Modification Ability

Lock Mode User Workspace of User Can Modify?

Shared (S) Any user Workspace in which row
was locked

Yes

Shared (S) Any user Different from workspace
in which row was locked

No

Exclusive (E) User that locked the row Workspace in which row
was locked

Yes

Exclusive (E) User that locked the row Different from workspace
in which row was locked

No

Exclusive (E) Different user from the one
that locked the row

Any workspace No

Workspace
Exclusive (WE)

User that locked the row Any workspace Yes

Workspace
Exclusive (WE)

Different user from the one
that locked the row

Different from workspace
in which row was locked

Yes

Workspace
Exclusive (WE)

Different user from the one
that locked the row

Workspace in which row
was locked

No

Version
Exclusive (VE)

User that locked the row Any workspace Yes

Privilege Management with Workspace Manager

Introduction to Workspace Manager 1-17

The xxx_LOCK metadata views (described in Section 5.44) contain information
about locks in each version-enabled table.

1.4 Privilege Management with Workspace Manager
Workspace Manager provides a set of privileges that are separate from standard
Oracle database privileges. Workspace Manager workspace-level privileges (with
names in the form xxx_WORKSPACE) allow the user to affect a specified workspace,
and system-level privileges (with names in the form xxx_ANY_WORKSPACE)
allow the user to affect any workspace.

Table 1–3 lists the Workspace Manager privileges.

Version
Exclusive (VE)

Different user from the one
that locked the row

Any workspace No

Table 1–3 Workspace Manager Privileges

Privilege Description

ACCESS_WORKSPACE Allows the user to go to a specified workspace. ACCESS_
WORKSPACE or ACCESS_ANY_WORKSPACE privilege is needed
for all other privileges.

ACCESS_ANY_WORKSPACE Allows the user to go to any workspace. ACCESS_WORKSPACE
or ACCESS_ANY_WORKSPACE privilege is needed for all other
privileges.

CREATE_WORKSPACE Allows the user to create a child workspace in a specified
workspace.

CREATE_ANY_WORKSPACE Allows the user to create a child workspace in any workspace.

REMOVE_WORKSPACE Allows the user to remove a specified workspace.

REMOVE_ANY_WORKSPACE Allows the user to remove any workspace.

MERGE_WORKSPACE Allows the user to merge the changes in a specified workspace
to its parent workspace.

MERGE_ANY_WORKSPACE Allows the user to merge the changes in any workspace to its
parent workspace.

ROLLBACK_WORKSPACE Allows the user to roll back the changes in a specified
workspace.

Table 1–2 (Cont.) Workspace Manager Lock Modes and Data Modification Ability

Lock Mode User Workspace of User Can Modify?

System Parameters for Workspace Manager

1-18 Oracle Database Application Developer’s Guide - Workspace Manager

Each privilege can be granted with or without the grant option. The grant option
allows the user to which the privilege is granted to grant the privilege to other
users.

The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant
option. By default, the database administrator (DBA role) is granted the WM_ADMIN_
ROLE role. Thus, after you decide which users should be granted which privileges,
either have the DBA grant the privileges, or have the DBA grant the WM_ADMIN_
ROLE role to one or more selected users and have these users grant the privileges.

The GrantWorkspacePriv and GrantSystemPriv procedures are used to grant
workspace-level privileges and system-level privileges, respectively.

The RevokeWorkspacePriv and RevokeSystemPriv procedures are used to revoke
workspace-level privileges and system-level privileges, respectively. These
procedures require that the user have sufficient privilege to revoke the specified
privilege from the specified user. The user that granted a privilege can revoke it.

1.5 System Parameters for Workspace Manager
Workspace Manager provides a set of system parameters that allow a user with the
WM_ADMIN_ROLE role (described in Section 1.4) to enforce global Workspace
Manager-specific settings for the database. (These Workspace Manager system
parameters are not Oracle initialization parameters. The only way to set Workspace
Manager system parameters is to use the SetSystemParameter procedure, described
in Chapter 4).

To set a system parameter, use the SetSystemParameter procedure. To get the
current setting for a system parameter, use the GetSystemParameter procedure.
Both procedures are described in Chapter 4.

Table 1–4 lists the Workspace Manager system parameters.

ROLLBACK_ANY_
WORKSPACE

Allows the user to roll back the changes in any workspace.

FREEZE_WORKSPACE Allows the user to freeze and unfreeze a specified workspace.

FREEZE_ANY_WORKSPACE Allows the user to freeze and unfreeze any workspace.

Table 1–3 (Cont.) Workspace Manager Privileges

Privilege Description

System Parameters for Workspace Manager

Introduction to Workspace Manager 1-19

Table 1–4 Workspace Manager System Parameters

Parameter Name Values

ALLOW_CAPTURE_EVENTS ON allows Workspace Manager events (described in Chapter 2)
to be captured. Setting this parameter to ON causes some
additional internal Workspace Manager processing operations;
therefore, for performance reasons you should not set the value
to ON unless you plan to capture events.

OFF (the default) does not allow Workspace Manager events to
be captured.

ALLOW_MULTI_PARENT_
WORKSPACES

ON allows multiparent workspaces (described in Section 1.1.10)
to be created. Setting this parameter to ON causes some
additional internal Workspace Manager processing operations;
therefore, for performance reasons you should not set the value
to ON unless you plan to use multiparent workspaces.

OFF (the default) does not allow multiparent workspaces to be
created.

ALLOW_NESTED_TABLE_
COLUMNS

ON allows tables containing a nested table column to be
version-enabled. Setting this parameter to ON causes some
additional internal Workspace Manager processing operations;
therefore, for performance reasons you should not set the value
to ON unless you plan to version-enable any tables with nested
table columns.

OFF (the default) does not allow tables containing a nested
table column to be version-enabled.

CR_WORKSPACE_MODE OPTIMISTIC_LOCKING (the default) allows a record to be
split between continually refreshed workspaces. If the split
occurs between parent and child workspaces, the record is
considered to be in conflict, and the conflict must be resolved
before the child workspace can be merged or refreshed.

PESSIMISTIC_LOCKING does not allow a record to be split
between continually refreshed workspaces. This setting
ensures that there are no conflicts between parent and child
workspaces.

System Parameters for Workspace Manager

1-20 Oracle Database Application Developer’s Guide - Workspace Manager

FIRE_TRIGGERS_FOR_
NONDML_EVENTS

ON (the default) causes user-defined triggers on
version-enabled tables to be fired when a workspace non-DML
operation (such as MergeWorkspace or MergeTable) is
executed, unless later overridden for specific triggers by the
SetTriggerEvents procedure.

OFF causes user-defined triggers on version-enabled tables not
to be fired when a workspace non-DML operation (such as
MergeWorkspace or MergeTable) is executed, unless later
overridden for specific triggers by the SetTriggerEvents
procedure.

NONCR_WORKSPACE_MODE OPTIMISTIC_LOCKING (the default) allows a record to be
split between workspaces that are not continually refreshed. If
the split occurs between parent and child workspaces, the
record is considered to be in conflict, and the conflict must be
resolved before the child workspace can be merged or
refreshed.

PESSIMISTIC_LOCKING does not allow a record to be split
between workspaces that are not continually refreshed. This
setting ensures that there are no conflicts between parent and
child workspaces.

NUMBER_OF_COMPRESS_
BATCHES

A number from 1 to 1000, identifying the number of batches to
be used when the batch_size parameter value is PRIMARY_
KEY_RANGE and general statistics, but not histogram statistics,
are available for a primary key column of type NUMBER,
INTEGER, DATE, or TIMESTAMP. (See the reference
information for any DBMS_WM subprogram that has a
batch_size parameter.)

UNDO_SPACE A string containing UNLIMITED (for no specified limit) or a
number representing the maximum number of bytes for undo
space available for Workspace Manager operations. Example:
'1048576' for 1 megabyte. Workspace manager tries to
minimize the amount of undo space used in a single
transaction so as not to exceed the UNDO_SPACE value.

You can override the value of the UNDO_SPACE system
parameter by specifying the undo_space parameter in the call
to the EnableVersioning procedure.

Table 1–4 (Cont.) Workspace Manager System Parameters

Parameter Name Values

Bulk Loading into Version-Enabled Tables

Introduction to Workspace Manager 1-21

1.6 Import and Export Considerations
Standard Oracle database import and export operations can be performed on
version-enabled databases; however, the following considerations and restrictions
apply:

� A database with version-enabled tables can be exported to another Oracle
database only if the other database has Workspace Manager installed and does
not currently have any version-enabled tables or workspaces (that is, other than
the LIVE workspace).

� Only database-wide import and export operations are supported for
version-enabled databases. No other export modes (such as schema, table,
partition, and workspace) are supported.

� For an import operation, you must specify IGNORE=Y.

� The FROMUSER and TOUSER capabilities of the Oracle9i Import utility are not
supported with version-enabled databases.

1.7 Bulk Loading into Version-Enabled Tables
You can use SQL*Loader to perform bulk loading into version-enabled tables, but
you must also call some special Workspace Manager procedures, and some
restrictions apply. You can perform both direct-path and conventional-path bulk
loading of data into either the latest version of any workspace or into the root
version (version number 0, which is in the LIVE workspace). The root version is the
ancestor of all other versions, so data in the root version is visible from all other
workspaces (unless non-LIVE workspaces have updated the data).

Follow these general steps for bulk loading into a version-enabled table:

USE_TIMESTAMP_TYPE_
FOR_HISTORY

ON (the default) causes Workspace Manager, if the Oracle
database release is 9.0.1 or later, to use the TIMESTAMP WITH
TIME ZONE type for CREATETIME and RETIRETIME
columns. (See Section B.3 for information about using this
type.)

OFF causes Workspace Manager to use the DATE type for
CREATETIME and RETIRETIME columns.

Table 1–4 (Cont.) Workspace Manager System Parameters

Parameter Name Values

Bulk Loading into Version-Enabled Tables

1-22 Oracle Database Application Developer’s Guide - Workspace Manager

1. Call the GetBulkLoadVersion function to fetch the reserved version number
with which the bulk loaded data needs to be tagged. All data bulk loaded into
the versioned table needs to be tagged with a version number that depends
upon the final destination of the data, namely, the latest version of a workspace
or the root version. Use the version number returned by the
GetBulkLoadVersion function in the SQL*Loader control file, as explained in
step 3.

2. Call the BeginBulkLoading procedure to prepare the table for bulk loading.
When data is being bulk loaded into a version-enabled table, DML and
workspace operations on the table are not allowed, although workspace
operations that do not involve this table are allowed. The BeginBulkLoading
procedure prevents invalid operations from being performed on this table.

3. Use SQL*Loader to perform the bulk loading. Only one line needs to be
changed in the control file, to specify the <table_name>_LT name and to include
the version number fetched in step 1. For example, assume that the existing
control file has the following line:

Load data into table departments (name, loc)

If the version number fetched in step 1 is 5, the line in the control file for bulk
loading into the version-enabled table should be changed to:

Load data into table departments_LT (name, loc, version constant '5')

This ensures that all the bulk-loaded rows will be tagged with version 5, and
that the other Workspace Manager-specific columns for these rows will have
null values. If the table was version-enabled with the history option, create and
retire times can be bulk loaded into the createtime and retiretime
columns of <table_name>_LT.

4. Complete the bulk loading process by calling either the CommitBulkLoading
procedure to commit the bulk loading changes or the RollbackBulkLoading
procedure to roll back the bulk loading changes.

If you commit the bulk loading changes, Workspace Manager ensures that the data
is updated in the required workspace and version. By default, the bulk-loaded data
is checked for each unique or referential constraint defined on the table, and any
bulk-loaded rows that are in violation of any constraints are moved to a discards
table specified as a parameter to the CommitBulkLoading procedure. If you
specified to check for duplicates (that is, records in the data to be bulk loaded that
have the same values in the primary key columns), for any duplicate records only
the record with the lowest ROWID value is loaded into the table, and the rest are
moved to the discards table.

DDL Operations Related to Version-Enabled Tables

Introduction to Workspace Manager 1-23

The following restrictions apply to bulk loading with version-enabled tables in the
current release:

� Bulk loading into a table with a self-referential integrity constraint is not
allowed.

� Bulk loading into a workspace, other than LIVE, that has continually refreshed
child workspaces is not allowed.

� Only the owner of a table or a user with the WM_ADMIN_ROLE role can bulk
load into a version-enabled table.

� The user that is bulk loading the version-enabled table must have the INSERT
privilege for <table_name>_LT.

� User-defined triggers on version-enabled tables are not executed during bulk
loading.

� Session locking mode is not enforced for the bulk-loaded rows. Use the
LockRows procedure to lock these rows.

1.8 DDL Operations Related to Version-Enabled Tables
To perform DDL (data definition language) operations on a version-enabled table,
you must use special Workspace Manager procedures before and after the DDL
operations, and you must specify the name of a special table created by Workspace
Manager. You cannot perform DDL operations in the usual manner on the table or
any index or trigger that refers to the table. For example, to add a column to a table
named EMPLOYEES that has been version-enabled, you cannot simply enter a
statement in the form ALTER TABLE EMPLOYEES ADD (column-name data-type).

The reason for these requirements is to ensure that Workspace Manager versioning
metadata is updated to reflect the DDL changes. Therefore, DDL operations
affecting a version-enabled table must be preceded by a call to the BeginDDL
procedure, and must be concluded by a call to either the CommitDDL or
RollbackDDL procedure. The BeginDDL procedure creates an empty temporary
table with a name in the form <table-name>_LTS (the S standing for skeleton). The
actual DDL statement must specify the name of the temporary <table-name>_LTS
table, and must not specify the <table-name> or <table-name>_LT name. The
CommitDDL and RollbackDDL procedures delete the temporary <table-name>_LTS
table.

DDL Operations Related to Version-Enabled Tables

1-24 Oracle Database Application Developer’s Guide - Workspace Manager

The following DDL operations related to version-enabled tables are supported:

� Column-related: ADD, DROP, MODIFY (but for MODIFY only the following
operations: changing the default value of a column; changing the data type of a
column that contains only null values or for which there are no existing data
rows; changing the length of a column of type VARCHAR2, VARCHAR, CHAR,
NCHAR, NVCHAR, or NVCHAR2; changing the scale or precision of a column of
type NUMBER)

Note that any new length, scale, or precision for a column should be adequate
for any existing data in the column.

� Index-related: CREATE INDEX, DROP INDEX, ALTER INDEX (but for ALTER
INDEX only the following options: logging, pctfree, initrans,
initialextent, minextents, nextextent, maxextents, pctincrease,
freelists, freelist groups, and buffer_pool)

If the name of the index on a version-enabled table is longer than 26 characters,
you must use the AlterVersionedTable procedure if you want to rename the
index; you cannot use the ALTER INDEX statement with the RENAME clause.
If the name of the index on a version-enabled table is 26 or fewer characters
long, you can do either of the following to rename the index: use the
AlterVersionedTable procedure, or use the ALTER INDEX statement with the
RENAME clause between calls to the BeginDDL and CommitDDL procedures.
See the Usage Notes for AlterVersionedTable for more information.

� Trigger-related: CREATE TRIGGER, DROP TRIGGER, ALTER TRIGGER
ENABLE/DISABLE

� Referential integrity constraint-related: add, drop, enable, or disable a
referential integrity constraint. For information about Workspace Manager
referential integrity support, see Section 1.9.1.

� Unique constraint-related: add, drop, enable, or disable a unique constraint. For
information about Workspace Manager unique constraint support, see
Section 1.9.2.

If you try to perform an unsupported DDL operation, the change will not be made,
and an exception might be raised by the CommitDDL procedure.

Note: An exception to this procedure is adding valid time support
to an existing version-enabled table. To add valid time support, use
the AlterVersionedTable procedure, as explained in Section 3.11.

Constraint Support with Workspace Manager

Introduction to Workspace Manager 1-25

If the DDL operation involving a version-enabled table is on a domain index (for
example, creating an R-tree index on the table), you must have the CREATE TABLE
privilege.

If you need to perform DDL operations on a version-enabled table in an Oracle
replication environment, see Section C.3 for additional guidelines.

Example 1–1 shows the statements needed to add a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the special table named COLA_
MARKETING_BUDGET_LTS. It also includes a DESCRIBE statement to show the
addition of the column.

Example 1–1 DDL Operation on a Version-Enabled Table

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');
ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
DESCRIBE cola_marketing_budget_lts;

 Name Null? Type
 --- -------- ----------------------------
 PRODUCT_ID NOT NULL NUMBER
 PRODUCT_NAME VARCHAR2(32)
 MANAGER VARCHAR2(32)
 BUDGET NUMBER
 COMMENTS VARCHAR2(100)

EXECUTE DBMS_WM.CommitDDL('COLA_MARKETING_BUDGET');

In Example 1–1, the ALTER TABLE statement specifies the COLA_MARKETING_
BUDGET_LTS table, which is created by the BeginDDL procedure. The CommitDDL
procedure applies the change to the COLA_MARKETING_BUDGET table and deletes
the COLA_MARKETING_BUDGET_LTS table.

1.9 Constraint Support with Workspace Manager
This section describes Workspace Manager considerations relating to the use of
database constraints.

1.9.1 Referential Integrity Support
Version-enabled tables can have referential integrity constraints, including
constraints with the CASCADE and RESTRICT options; however, the following
considerations and restrictions apply:

Constraint Support with Workspace Manager

1-26 Oracle Database Application Developer’s Guide - Workspace Manager

� If the parent table in a referential integrity relationship is version-enabled, the
child table must be version-enabled also. (The child table is the one on which
the constraint is defined.) For example, consider the following EMPLOYEE and
DEPARTMENT table definitions, with a foreign key constraint added after the
creation (that is, the dept_id value in each EMPLOYEE row must match an
existing dept_id value in a DEPARTMENT row).

CREATE TABLE employee (
 employee_id NUMBER,
 last_name VARCHAR2(32),
 first_name VARCHAR2(32),
 dept_id NUMBER);
CREATE TABLE department (
 dept_id NUMBER,
 name VARCHAR2(32);
ALTER TABLE employee ADD CONSTRAINT emp_forkey_deptid
 FOREIGN KEY (dept_id) REFERENCES department (dept_id)
 ON DELETE CASCADE;

In this example, DEPARTMENT is considered the parent and EMPLOYEE is
considered the child in the referential integrity relationship; and if DEPARTMENT
is version-enabled, EMPLOYEE must be version-enabled also. In this relationship
definition, when a DEPARTMENT row is deleted, all its child rows in the
EMPLOYEE table are deleted (cascading delete operation).

� A child table in a referential integrity relationship is allowed to be
version-enabled without the parent table being version-enabled.

� Multilevel referential integrity constraints are permitted on version-enabled
tables. For example, the table EMPLOYEE(emp_id, dept_id) could have the
constraint that the department ID must exist in the table DEPARTMENT(dept_
id, dept_name, loc_id); and the table DEPARTMENT(dept_id, dept_
name, loc_id) could have the constraint that the location ID must exist in
the table LOCATION(loc_id, loc_name). However, all tables that are
involved in multilevel referential integrity constraints must be version-enabled
and version-disabled together, unless all the referential integrity constraints
involved have the Restrict rule. If all the constraints involved have the
Restrict rule, you can version-enable the tables either all together or one at a
time with child tables preceding their parent tables. The table names must be
passed as a comma-delimited list to the EnableVersioning and
DisableVersioning procedures.

Constraint Support with Workspace Manager

Introduction to Workspace Manager 1-27

Workspace Manager uses the metadata views ALL_WM_RIC_INFO and USER_
WM_RIC_INFO (described in Chapter 5) to hold information pertinent to referential
integrity support.

If you need to add, drop, enable, or disable a referential integrity constraint that
involves two tables, it is more convenient if you perform the operation before
version-enabling the tables. However, you can add, drop, enable, or disable a
referential integrity constraint that involves two version-enabled tables if you
follow these steps:

1. Begin a DDL session specifying the parent table.

2. Begin a DDL session specifying the child table.

3. Alter the <table-name>_LTS table for the child table to add the foreign key
constraint. (See Section 1.8 for information about <table-name>_LTS tables and
performing DDL operations on version-enabled tables.)

4. Commit the DDL changes specifying the child table.

5. Commit the DDL changes specifying the parent table.

Example 1–2 adds a foreign key constraint. Assume that the EMPLOYEE and
DEPARTMENT tables are version-enabled and are defined as follows:

EMPLOYEE(emp_id number primary key, dept_id number)
DEPARTMENT(dept_id number primary key, dept_name varchar2(30))

Example 1–2 Adding a Referential Integrity Constraint

-- Begin a DDL session on the parent table.
DBMS_WM.BeginDDL('DEPARTMENT');

-- Begin a DDL session on the child table.
DBMS_WM.BeginDDL('EMPLOYEE');

-- Add the constraint between EMPLOYEE_LTS and DAPATMENT_LTS.
ALTER TABLE employee_lts ADD CONSTRAINT employee_fk FOREIGN KEY (dept_id)
 REFERENCES department_lts(dept_id);

-- Commit DDL on the child table (transfers the constraint on employee_lts
-- to employee and drops employee_lts).
EXECUTE DBMS_WM.CommitDDL('EMPLOYEE');

-- Commit DDL on the parent table (drops the department_lts table).
EXECUTE DBMS_WM.CommitDDL('DEPARTMENT');

Triggers on Version-Enabled Tables

1-28 Oracle Database Application Developer’s Guide - Workspace Manager

If you are in a DDL session (that is, if you have called the BeginDDL procedure),
you cannot add, drop, enable, or disable a referential integrity constraint that
involves two tables if one table is version-enabled and the other is not
version-enabled. Both tables must be version-enabled.

1.9.2 Unique Constraints
Tables with unique constraints defined on them can be version-enabled. The
following are supported:

� UNIQUE constraint on a single column or multiple columns

� Unique index on a single column or multiple columns

� Functional unique index on the table

The treatment of null values is the same for version-enabled tables as for tables that
are not version-enabled.

Workspace Manager uses the following metadata views (described in Chapter 5) to
hold information pertinent to support for unique constraints:

� ALL_WM_CONSTRAINTS and USER_WM_CONSTRAINTS contain
information about columns in unique constraints on version-enabled tables.

� ALL_WM_CONS_COLUMNS and USER_WM_CONS_COLUMNS contain
information about constraints on version-enabled tables.

� ALL_WM_IND_COLUMNS and USER_WM_IND_COLUMNS contain
information about indexes used for enforcing unique constraints on
version-enabled tables.

� ALL_WM_IND_EXPRESSIONS and USER_WM_IND_EXPRESSIONS contain
information about functional expressions on functional unique indexes on
version-enabled tables.

1.10 Triggers on Version-Enabled Tables
Version-enabled tables can have triggers defined; however, the following
considerations and restrictions apply:

� Only per-row triggers are supported. Per-statement triggers are not supported.

� Only whole-row triggers are supported. Before-update and after-update
triggers for specific columns are not supported.

Support for Table Synonyms

Introduction to Workspace Manager 1-29

� The only call-out supported is to PL/SQL procedures. That is, the action_
type must be PL/SQL.

Any triggers that are not supported for version-enabled tables are deactivated when
versioning is enabled, and are activated when versioning is disabled.

You can selectively enable specific user-defined triggers for certain kinds of events
by using the SetTriggerEvents procedure.

1.11 Virtual Private Database Considerations
You can use Workspace Manager in conjunction with the Oracle Virtual Private
Database (VPD) technology. (Virtual private databases are described in Oracle
Security Overview.) However, the following considerations apply Workspace
Manager in a VPD:

� Row-level security policies are not enforced during workspace operations, such
as MergeWorkspace. A call to MergeWorkspace will merge all the changes
made in a workspace, not just the changes that the current user can see. You can
use Workspace Manager privileges (such as MERGE_WORKSPACE) to control
workspace operations.

� Row-level security policies cannot be defined on a version-enabled table by
defining them only on the specified table (<table_name>). Instead, you must
define row-level security policies on all of the following that exist: <table_name>,
<table_name>_LOCK, <table_name>_CONF, <table_name>_DIFF, and <table_
name>_HIST. Do not use the Workspace Manager DDL framework described in
Section 1.8 (that is, do not use the BeginDDL and CommitDDL procedures)
when defining row-level security policies.

1.12 Support for Table Synonyms
For any Workspace Manager procedure or function input parameter that calls for a
table name, you can instead specify a synonym. When Workspace Manager looks
for a table, it searches in the following sequence and uses the first match for the
specified name:

1. A table in the specified schema (or local schema if no schema is specified)

2. A private synonym in the specified schema (or local schema if no schema is
specified)

3. A public synonym

Materialized View Support

1-30 Oracle Database Application Developer’s Guide - Workspace Manager

1.13 Materialized View Support
This section describes considerations for using Workspace Manager with
materialized views.

You can create a materialized view on a version-enabled table only if you specify
the complete refresh method (REFRESH COMPLETE) when you create the
materialized view. You cannot specify any of the following clauses in the CREATE
MATERIALIZED VIEW statement:

� FAST (incremental refresh)

� ON COMMIT

� FOR UPDATE

You cannot version-enable a materialized view or the base table of a materialized
view.

When the materialized view is created, its content is based on the workspace in
which the session is at that time. When the materialized view is refreshed, its
content is based on the workspace in which the session is when the DBMS_
MVIEW.REFRESH operation is performed. When the materialized view is created
or refreshed, it shows the same data in all workspaces.

1.14 Spatial Topology Support
This section describes special considerations and techniques for using Workspace
Manager with tables in Oracle Spatial topologies, which are documented in Oracle
Spatial Topology and Network Data Models.

A topology consists of feature tables, as well as tables with names in the form
<topology-name>_NODE$, <topology-name>_EDGE$, <topology-name>_
FACE$, <topology-name>_RELATION$, and <topology-name>_HISTORY$. If
you want to version-enable any topology tables, you must version-enable all tables
associated with the topology. To do so, you must specify the topology name as the
table_name parameter to the EnableVersioning procedure, and you must specify
the isTopology parameter as TRUE. For example:

EXECUTE DBMS_WM.EnableVersioning(table_name => 'xyz_topo', isTopology => TRUE);

The preceding example version-enables the xyz_topo topology; that is, it
version-enables all feature tables associated with the xyz_topo topology, as well as
the XYZ_TOPO_NODE$, XYZ_TOPO_FACE$, XYZ_TOPO_EDGE$, XYZ_TOPO_
RELATION$, and XYZ_TOPO_HISTORY$ tables.

Spatial Topology Support

Introduction to Workspace Manager 1-31

A version-enabled topology must have at least one feature table.

To disable versioning on any topology tables, you must disable versioning on all
tables associated with the topology by specifying the topology name as the table_
name parameter to the DisableVersioning procedure and the isTopology
parameter as TRUE.

However, exceptions apply to the preceding guidelines about version-enabling and
version-disabling topology tables in the following cases:

� If a feature table of a topology is the child table of a referential integrity
constraint with CASCADE option with a table that is not in the topology

� If a feature table of a topology is the parent table of a referential integrity
constraint with a table that is not in the topology

In these cases, you must version-enable or version-disable the feature table
separately. That is, first call the EnableVersioning or DisableVersioning procedure
on the feature table (along with any tables required by the referential integrity
constraint), and then invoke the EnableVersioning or DisableVersioning procedure
specifying the topology name.

1.14.1 Locking Considerations with Topologies
To lock or unlock rows in tables associated with a topology, you must specify the
topology name as the table_name parameter to the LockRows or UnlockRows
procedure, and you must identify the window containing the rows by using the
Xmin, Ymin, Xmax, and Ymax parameters. You must also not specify the where_
clause parameter. For example:

EXECUTE DBMS_WM.LockRows (workspace => 'ws1', table_name => 'xyz_topo', Xmin =>
0.1, Ymin => 0.1, Xmax => 0.5, Ymax => 0.5);

The preceding example puts version locks on all the rows of the specified topology
contained in the specified window. To edit the elements of a topology in a
workspace (including the LIVE workspace), follow these steps:

1. Invoke the LockRows procedure to put version locks on all the elements of the
topology contained in a window of interest.

2. Invoke the Oracle Spatial Topology Java client loadWindow method for the
same window of interest.

DBMS_WM Subprogram Categories

1-32 Oracle Database Application Developer’s Guide - Workspace Manager

1.14.2 Additional Considerations with Topologies
The following additional considerations apply to using Workspace Manager with
Spatial topologies:

� You must invoke the SDO_TOPO.INITIALIZE_METADATA procedure at least
once on a topology before you version-enable the tables associated with the
topology. (You can also invoke the SDO_TOPO.INITIALIZE_METADATA
procedure as needed after version-enabling a topology.)

� You must add all feature tables to a topology before you version-enable the
tables associated with the topology. A feature table cannot be added or removed
from a topology while its tables are version-enabled.

� Do not use the MergeTable, RefreshTable, or RollbackTable procedure on a
version-enabled table associated with a topology or on any table that is related
by a referential integrity constraint to a version-enabled table associated with a
topology. Instead, use the MergeWorkspace, RefreshWorkspace, or
RollbackWorkspace procedure to merge, refresh, or roll back tables associated
with a topology.

1.15 DBMS_WM Subprogram Categories
The Workspace Manager application programming interface (API) consists of
PL/SQL subprograms (procedures and functions) in a single PL/SQL package
named DBMS_WM. The subprograms can be logically grouped into the categories
described in this section.

Reference information for all subprograms is in Chapter 4.

1.15.1 Table Management Subprograms
Table management subprograms enable and disable workspace management on a
table, and perform other table-related operations.

Table 1–5 shows the subprograms available for table management.

Note: Most Workspace Manager subprograms are procedures, but
a few are functions. (A function returns a value; a procedure does
not return a value.)

Most functions have names starting with Get (such as
GetConflictWorkspace and CreateSavepoint).

DBMS_WM Subprogram Categories

Introduction to Workspace Manager 1-33

1.15.2 Workspace Management Subprograms
Workspace management subprograms perform operations on workspaces.

Table 1–6 shows the subprograms available for workspace management.

Table 1–5 Table Management Subprograms

Procedure Description

EnableVersioning Version-enables a table, creating the necessary structures to
enable the table to support multiple versions of rows.

DisableVersioning Deletes all support structures that were created to enable the
table to support versioned rows.

SetWoOverwriteOFF Disables the VIEW_WO_OVERWRITE history option that was
enabled by the EnableVersioning or SetWoOverwriteON
procedure, changing the option to VIEW_W_OVERWRITE
(with overwrite).

SetWoOverwriteON Enables the VIEW_WO_OVERWRITE history option that was
disabled by the SetWoOverwriteOFF procedure.

BeginDDL Starts a DDL (data definition language) session for a specified
table.

CommitDDL Commits DDL changes made during a DDL session for a
specified table, and ends the DDL session.

RollbackDDL Rolls back (cancels) DDL changes made during a DDL
session for a specified table, and ends the DDL session.

RecoverAllMigratingTables Attempts to complete the migration process on a table that
was left in an inconsistent state after the Workspace Manager
migration procedure failed.

RecoverAllMigratingTables Attempts to complete the migration process on all tables that
were left in an inconsistent state after the Workspace
Manager migration procedure failed.

CopyForUpdate Allows LOB columns (BLOB, CLOB, or NCLOB) in
version-enabled tables to be modified.

Export Exports data from a version-enabled table (all rows, or as
limited by any combination of several parameters) to a
staging table.

Import Imports data from a staging table (all rows, or as limited by
any combination of several parameters) into a
version-enabled table in a specified workspace.

DBMS_WM Subprogram Categories

1-34 Oracle Database Application Developer’s Guide - Workspace Manager

Table 1–6 Workspace Management Subprograms

Procedure Description

CreateWorkspace Creates a new workspace in the database.

GotoWorkspace Moves the current session to the specified workspace.

SetDiffVersions Finds differences in values in version-enabled tables for two
savepoints and their common ancestor (base). It creates rows in
the differences views describing these differences.

GetDiffVersions Returns the names of the (workspace, savepoint) pairs on which
the session has performed the SetDiffVersions operation.

MergeTable Applies changes to a table (all rows or as specified in the WHERE
clause) in a workspace to its parent workspace.

MergeWorkspace Applies all changes in a workspace to its parent workspace, and
optionally removes the workspace.

RollbackWorkspace Discards all data changes made in the workspace to
version-enabled tables.

RollbackTable Discards all changes made in the workspace to a specified table
(all rows or as specified in the WHERE clause).

RollbackToSP Discards all data changes made in the workspace to
version-enabled tables since the specified savepoint.

RefreshTable Applies to a workspace all changes made to a table (all rows or
as specified in the WHERE clause) in its parent workspace.

RefreshWorkspace Applies to a workspace all changes made in its parent
workspace.

AlterWorkspace Modifies the description of a workspace.

ChangeWorkspaceType Changes a workspace that is not continually refreshed to be
continually refreshed.

RemoveWorkspace Discards all row versions associated with a workspace and
deletes the workspace.

RemoveWorkspaceTree Discards all row versions associated with a workspace and its
descendant workspaces, and deletes the affected workspaces.

FreezeWorkspace Restricts access to a workspace and the ability of users to make
changes in the workspace.

UnfreezeWorkspace Enables access and changes to a workspace, reversing the effect
of the FreezeWorkspace procedure.

DBMS_WM Subprogram Categories

Introduction to Workspace Manager 1-35

1.15.3 Savepoint Management Subprograms
Savepoint management subprograms perform operations related to savepoints.

Table 1–7 shows the subprograms available for savepoint management.

CompressWorkspace Deletes removable savepoints in a workspace, and minimizes
the Workspace Manager metadata structures for the workspace.

CompressWorkspaceTree Deletes removable savepoints in a workspace and all its
descendant workspaces. It also minimizes the Workspace
Manager metadata structures for the affected workspaces, and
eliminates any redundant data that might arise from the deletion
of the savepoints.

IsWorkspaceOccupied Checks whether or not a workspace has any active sessions.

CreateSavepoint Returns the current workspace for the session.

SetMultiWorkspaces Makes the specified workspace or workspaces visible in the
multiworkspace views for version-enabled tables.

GetMultiWorkspaces Returns the names of workspaces visible in the multiworkspace
views for version-enabled tables.

GetOpContext Returns the context of the current operation for the current
session.

AddAsParentWorkspace Adds a workspace as a parent workspace to a child workspace
in a multiparent workspace environment.

RemoveAsParentWorksp
ace

Removes a workspace as a parent workspace in a multiparent
workspace environment.

Table 1–7 Savepoint Management Subprograms

Procedure Description

CreateSavepoint Creates a savepoint for the current version.

GotoDate Goes to the specified savepoint in the current workspace.

GotoDate Goes to a point at or near the specified date and time in the
current workspace.

Table 1–6 (Cont.) Workspace Management Subprograms

Procedure Description

DBMS_WM Subprogram Categories

1-36 Oracle Database Application Developer’s Guide - Workspace Manager

1.15.4 Privilege Management Subprograms
Privilege management subprograms grant and revoke Workspace Manager
privileges.

Table 1–8 shows the subprograms available for privilege management.

1.15.5 Lock Management Subprograms
Lock management subprograms control Workspace Manager locking.

Table 1–9 shows the subprograms available for lock management.

GetSessionInfo Retrieves information about the current workspace and session
context; useful for finding the session’s current savepoint or
instant in time.

AlterSavepoint Modifies the description of a savepoint.

DeleteSavepoint Deletes a savepoint and associated rows in version-enabled
tables.

Table 1–8 Privilege Management Subprograms

Procedure Description

GrantWorkspacePriv Grants workspace-level privileges to users, roles, or PUBLIC.

RevokeWorkspacePriv Revokes workspace-level privileges from users and roles.

GrantSystemPriv Grants privileges on all workspaces to users, roles, or PUBLIC.

RevokeSystemPriv Revokes system-level privileges from users and roles.

GetPrivs Returns a comma-delimited list of all privileges that the current
user has for the specified workspace.

Table 1–9 Lock Management Subprograms

Procedure Description

SetLockingON Enables Workspace Manager locking for the current session.

SetLockingOFF Disables Workspace Manager locking for the current
session.

Table 1–7 (Cont.) Savepoint Management Subprograms

Procedure Description

DBMS_WM Subprogram Categories

Introduction to Workspace Manager 1-37

1.15.6 Conflict Management Subprograms
Conflict management subprograms detect and resolve conflicts between
workspaces.

Table 1–10 shows the subprograms available for conflict management.

SetWorkspaceLockModeON Enables Workspace Manager locking for the specified
workspace.

SetWorkspaceLockModeOFF Disables Workspace Manager locking for the specified
workspace.

GetLockMode Returns the locking mode for the current session, which
determines whether or not access is enabled to versioned
rows and corresponding rows in the previous version.

LockRows Controls access to versioned rows in a specified table and to
corresponding rows in the parent workspace.

UnlockRows Enables access to versioned rows in a specified table and to
corresponding rows in the parent workspace.

Table 1–10 Conflict Management Subprograms

Procedure Description

SetConflictWorkspace Determines whether or not conflicts exist between a workspace
and its parent workspace.

GetConflictWorkspace Returns the name of the workspace on which the session has
performed the SetConflictWorkspace procedure.

BeginResolve Starts a conflict resolution session.

ResolveConflicts Resolves conflicts between workspaces.

CommitResolve Ends a conflict resolution session and saves (makes permanent)
any changes in the workspace since the BeginResolve procedure
was executed.

RollbackResolve Quits a conflict resolution session and discards all changes in the
workspace since the BeginResolve procedure was executed.

Table 1–9 (Cont.) Lock Management Subprograms

Procedure Description

DBMS_WM Subprogram Categories

1-38 Oracle Database Application Developer’s Guide - Workspace Manager

1.15.7 Replication Support Subprograms
Replication support subprograms provide support for Oracle replication in a
Workspace Manager environment. For information about using replication, see
Appendix C.

Table 1–11 shows the subprograms available for replication support.

1.15.8 Bulk Load Support Subprograms
Bulk load support subprograms enable SQL*Loader to be used for bulk loading
data into version-enabled tables, as explained in Section 1.7.

Table 1–12 shows the subprograms available for bulk loading support.

Table 1–11 Replication Support Subprograms

Procedure Description

GenerateReplicationSupport Creates necessary structures for multimaster replication of
Workspace Manager objects, and starts the master activity for
the newly created master group.

DropReplicationSupport Deletes replication support objects that were created by the
GenerateReplicationSupport procedure.

RelocateWriterSite Makes one of the nonwriter sites the new writer site in a
Workspace Manager replication environment. (The old writer
site becomes one of the nonwriter sites.)

SynchronizeSite Brings the local site (the old writer site) up to date in the
Workspace Manager replication environment after the writer
site was moved using the RelocateWriterSite procedure.

Table 1–12 Bulk Loading Support Subprograms

Procedure Description

GetBulkLoadVersion Returns a version number to be specified when you call the
BeginBulkLoading procedure.

BeginBulkLoading Starts the bulk loading process for a version-enabled table.

CommitBulkLoading Ends the bulk loading process for a version-enabled table by
committing the bulk load changes.

RollbackBulkLoading Rolls back changes made to a version-enabled table during a
bulk load operation.

Simplified Examples Using Workspace Manager

Introduction to Workspace Manager 1-39

1.16 Simplified Examples Using Workspace Manager
This section presents two simplified examples of using Workspace Manager to try
out some scenarios and select one of them. Each example uses workspaces and one
or more savepoints. One example (in Section 1.16.2) uses the OE.WAREHOUSES table
in the Oracle sample schemas.

The examples refer to concepts that were explained in this chapter, and they use
procedures documented in Chapter 4.

1.16.1 Example: Marketing Budget Options
In Example 1–3, a soft drink (cola) manufacturer has four products, each with a
marketing manager and a marketing budget. Because of an exceptional opportunity
for growth in the market for one product (cola_b), the company wants to do
what-if analyses involving different managers and budget amounts.

Example 1–3 Marketing Budget Options

-- INITIAL SET-UP

-- Create the user for schema objects.
CREATE USER wm_developer IDENTIFIED BY wm_developer;

-- Grant regular privileges.
GRANT connect, resource to wm_developer;
GRANT create table to wm_developer;

-- Grant WM-specific privileges (with grant_option = YES).
EXECUTE DBMS_WM.GrantSystemPriv ('ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE,
 CREATE_ANY_WORKSPACE, REMOVE_ANY_WORKSPACE, ROLLBACK_ANY_WORKSPACE',
 'wm_developer', 'YES');

-- CREATE AND POPULATE DATA TABLE --

CONNECT wm_developer/wm_developer

-- Cleanup: remove B_focus_2 workspace if it exists from previous run.
EXECUTE DBMS_WM.RemoveWorkspace ('B_focus_2');

-- Create a table for the annual marketing budget for
-- several cola (soft drink) products.

Simplified Examples Using Workspace Manager

1-40 Oracle Database Application Developer’s Guide - Workspace Manager

-- Each row will contain budget data for a specific
-- product. Note: This table does not reflect recommended
-- database design. (For example, a manager ID should
-- be used, not a name.) It is deliberately oversimplified
-- for purposes of illustration.

CREATE TABLE cola_marketing_budget (
 product_id NUMBER PRIMARY KEY,
 product_name VARCHAR2(32),
 manager VARCHAR2(32), -- Here a name, just for simplicity
 budget NUMBER -- Budget in millions of dollars. Example: 3 = $3,000,000.
);

-- Version-enable the table. Specify hist option of VIEW_WO_OVERWRITE so that
-- the COLA_MARKETING_BUDGET_HIST view contains complete history information
-- about data changes.
EXECUTE DBMS_WM.EnableVersioning ('cola_marketing_budget', 'VIEW_WO_OVERWRITE');

INSERT INTO cola_marketing_budget VALUES(
 1,
 'cola_a',
 'Alvarez',
 2.0
);
INSERT INTO cola_marketing_budget VALUES(
 2,
 'cola_b',
 'Baker',
 1.5
);
INSERT INTO cola_marketing_budget VALUES(
 3,
 'cola_c',
 'Chen',
 1.5
);
INSERT INTO cola_marketing_budget VALUES(
 4,
 'cola_d',
 'Davis',
 3.5
);
COMMIT;

-- Relevant data values now in LIVE workspace:

Simplified Examples Using Workspace Manager

Introduction to Workspace Manager 1-41

-- 1, cola_a, Alvarez, 2.0
-- 2, cola_b, Baker, 1.5
-- 3, cola_c, Chen, 1.5
-- 4, cola_d, Davis, 3.5

-- CREATE WORKSPACES --

-- Create workspaces for the following scenario: a major marketing focus
-- for the cola_b product. Managers and budget amounts for each
-- product can change, but the total marketing budget cannot grow.
--
-- One scenario (B_focus_1) features a manager with more expensive
-- plans (which means more money taken from other products' budgets).
-- The other scenario (B_focus_2) features a manager with less expensive
-- plans (which means less money taken from other products' budgets).
--
-- Two workspaces (B_focus_1 and B_focus_2) are created as child workspaces
-- of the LIVE database workspace.

EXECUTE DBMS_WM.CreateWorkspace ('B_focus_1');
EXECUTE DBMS_WM.CreateWorkspace ('B_focus_2');

-- WORK IN FIRST WORKSPACE --

-- Enter the B_focus_1 workspace and change the cola_b manager to Beasley and
-- raise the cola_b budget amount by 1.5 to bring it to 3.0. Reduce all other
-- products' budget amounts by 0.5 to stay within the overall budget.

EXECUTE DBMS_WM.GotoWorkspace ('B_focus_1');
UPDATE cola_marketing_budget
 SET manager = 'Beasley' WHERE product_name = 'cola_b';
UPDATE cola_marketing_budget
 SET budget = 3 WHERE product_name = 'cola_b';
UPDATE cola_marketing_budget
 SET budget = 1.5 WHERE product_name = 'cola_a';
UPDATE cola_marketing_budget
 SET budget = 1 WHERE product_name = 'cola_c';
UPDATE cola_marketing_budget
 SET budget = 3 WHERE product_name = 'cola_d';
COMMIT;

-- Relevant data values now in B_focus_1 workspace::
-- 1, cola_a, Alvarez, 1.5

Simplified Examples Using Workspace Manager

1-42 Oracle Database Application Developer’s Guide - Workspace Manager

-- 2, cola_b, Beasley, 3.0
-- 3, cola_c, Chen, 1.0
-- 4, cola_d, Davis, 3.0

-- Freeze this workspace to prevent any changes until workspace is unfrozen.
-- However, first go to the LIVE workspace, because a workspace cannot be frozen
-- if any users (including you) are in it.
EXECUTE DBMS_WM.GotoWorkspace ('LIVE');
EXECUTE DBMS_WM.FreezeWorkspace ('B_focus_1');

-- CREATE ANOTHER SCENARIO IN SECOND WORKSPACE --

-- Enter the B_focus_2 workspace and change the cola_b manager to Burton and
-- raise the cola_b budget amount by 0.5 to bring it to 2.0. Reduce only the
-- cola_d amount by 0.5 to stay within the overall budget.

EXECUTE DBMS_WM.GotoWorkspace ('B_focus_2');
UPDATE cola_marketing_budget
 SET manager = 'Burton' WHERE product_name = 'cola_b';
UPDATE cola_marketing_budget
 SET budget = 2 WHERE product_name = 'cola_b';
UPDATE cola_marketing_budget
 SET budget = 3 WHERE product_name = 'cola_d';
COMMIT;

-- Relevant data values now in B_focus_2 workspace::
-- 1, cola_a, Alvarez, 2.0 (no change from LIVE)
-- 2, cola_b, Burton, 2.0
-- 3, cola_c, Chen, 1.5 (no change from LIVE)
-- 4, cola_d, Davis, 3.0 (same manager, new budget)

-- Create a savepoint (B_focus_2_SP1), then change scenario to
-- raise cola_b budget and reduce cola_d budget by 0.5 each.

EXECUTE DBMS_WM.CreateSavepoint ('B_focus_2', 'B_focus_2_SP1');
UPDATE cola_marketing_budget
 SET budget = 2.5 WHERE product_name = 'cola_b';
UPDATE cola_marketing_budget
 SET budget = 2.5 WHERE product_name = 'cola_d';
COMMIT;

-- Relevant data values now in B_focus_2 workspace:
-- 1, cola_a, Alvarez, 2.0 (no change from LIVE)
-- 2, cola_b, Burton, 2.5

Simplified Examples Using Workspace Manager

Introduction to Workspace Manager 1-43

-- 3, cola_c, Chen, 1.5 (no change from LIVE)
-- 4, cola_d, Davis, 2.5 (same manager, new budget)

-- Discard this scenario; roll back to row values at the time savepoint
-- B_focus_2_SP1 was created. First, though, get out of the workspace
-- so it can be rolled back (no users in it).

EXECUTE DBMS_WM.GotoWorkspace ('LIVE');
EXECUTE DBMS_WM.RollbackToSP ('B_focus_2', 'B_focus_2_SP1');

-- Go back to the B_focus_2 workspace and display current values
-- (should include budget of 2 for cola_b and 3 for cola_d).
EXECUTE DBMS_WM.GotoWorkspace ('B_focus_2');
SELECT * FROM cola_marketing_budget;

-- SELECT SCENARIO AND UPDATE DATABASE --

-- Assume that you have decided to adopt the scenario of the second
-- workspace (B_focus_2) using that workspace's current values.

-- First go to the LIVE workspace, because a workspace cannot be removed
-- or merged if any users (including you) are in it.
EXECUTE DBMS_WM.GotoWorkspace ('LIVE');

-- Unfreeze the first workspace and remove it to discard any changes there.
EXECUTE DBMS_WM.UnfreezeWorkspace ('B_focus_1');
EXECUTE DBMS_WM.RemoveWorkspace ('B_focus_1');

-- Apply changes in the second workspace to the LIVE database workspace.
-- Note that the workspace is not removed by default after MergeWorkspace.
EXECUTE DBMS_WM.MergeWorkspace ('B_focus_2');

-- Display the current data values (which are in the LIVE database
-- workspace, which is the only workspace currently existing).
SELECT * FROM cola_marketing_budget;

-- DISABLE VERSIONING --

-- Disable versioning on the table because you are finished testing scenarios.
-- Also, users with version enabled tables cannot be dropped, in case you
-- want to drop the wm_developer user.
-- Set force parameter to TRUE if you want to force the disabling even
-- if changes were made in a non-LIVE workspace.

Simplified Examples Using Workspace Manager

1-44 Oracle Database Application Developer’s Guide - Workspace Manager

EXECUTE DBMS_WM.DisableVersioning ('cola_marketing_budget', TRUE);

1.16.2 Example: Warehouse Expansion Options
In Example 1–4, a company that uses the Oracle sample schemas decided that it
needs additional warehouse space. It wants to consider two scenarios: a single large
warehouse in Town A, and two smaller warehouses in Town B and Town C that
together offer more total storage capacity. There are potential advantages and
disadvantages to each scenario, and financial and legal issues to be resolved with
each. Later, the company decides that it might need even more warehouse space
under each scenario, so it wants to consider the same additional warehouse in each
scenario.

Example 1–4 creates a workspace for each scenario; and within each workspace it
creates a savepoint before adding an extra new warehouse to the table, because the
company might decide not to use the extra warehouse. The warehouse rows are
stored on the OE.WAREHOUSES table, which is part of the Oracle sample schemas.

Example 1–4 Warehouse Expansion Options

-- INITIAL SET-UP

-- Clean up from any previous running of this procedure.
DROP USER wm_developer CASCADE;

-- Create the user for schema objects.
CREATE USER wm_developer IDENTIFIED BY wm_developer;

-- Grant regular privileges.
GRANT connect, resource TO wm_developer;
GRANT create table TO wm_developer;

-- Grant privileges on tables to be modified.
GRANT select, insert, delete, update ON oe.warehouses TO wm_developer;
GRANT select, insert, delete, update ON hr.locations TO wm_developer;

-- Grant WM-specific privileges (with grant_option = YES).
EXECUTE DBMS_WM.GrantSystemPriv ('ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE,
 CREATE_ANY_WORKSPACE, REMOVE_ANY_WORKSPACE, ROLLBACK_ANY_WORKSPACE',
 'wm_developer', 'YES');

-- WM_ADMIN_ROLE required to version-enable a table in another schema.

Simplified Examples Using Workspace Manager

Introduction to Workspace Manager 1-45

GRANT wm_admin_role TO wm_developer;

-- Create rows for new locations, since a valid location ID is needed for each
-- proposed new warehouse.
INSERT INTO hr.locations VALUES
 (4000, '123 Any Street', '01234', 'Town A', 'MA', 'US');
INSERT INTO hr.locations VALUES
 (4100, '456 Some Street', '01235', 'Town B', 'MA', 'US');
INSERT INTO hr.locations VALUES
 (4200, '789 Other Street', '01236', 'Town C', 'MA', 'US');
INSERT INTO hr.locations VALUES
 (4300, '1 Yetanother Street', '01237', 'Town D', 'MA', 'US');

-- CREATE AND VERSION-ENABLE THE DATA TABLE --

CONNECT wm_developer/wm_developer
set echo on
set serveroutput on

-- Version-enable the OE.WAREHOUSES table. Specify hist option of
-- VIEW_WO_OVERWRITE so that the WAREHOUSES_HIST view contains
-- complete history information about data changes. However, because
-- OE.WAREHOUSES is the parent table in a referential integrity constraint
-- with OE.INVENTORIES, you must also version-enable that table.

EXECUTE DBMS_WM.EnableVersioning ('OE.WAREHOUSES, OE.INVENTORIES', hist =>
'VIEW_WO_OVERWRITE');

--
-- CREATE AND USE WORKSPACES --
--
-- The company has decided that it needs additional warehouse space.
-- It wants to consider two scenarios: a single large warehouse in Town A,
-- and two smaller warehouses in Town B and Town C that together offer more
-- total storage capacity. There are potential advantages and disadvantages
-- to each scenario, and financial and legal issues to be resolved with each.
--
-- Later, the company decides that it might need even more warehouse
-- space under each scenario, so it wants to consider the same additional
-- warehouse in each scenario.

-- Create a workspace for each scenario, with both created as child
-- workspaces of the LIVE database workspace.
-- In workspace large_warehouse, add one row for the single large warehouse.

Simplified Examples Using Workspace Manager

1-46 Oracle Database Application Developer’s Guide - Workspace Manager

-- In workspace smaller_warehouses, add two rows, one for each warehouse.
--
-- Also, within each workspace create a savepoint before adding the
-- extra warehouse, because the company might decide it does not
-- need the warehouse.

EXECUTE DBMS_WM.CreateWorkspace (workspace => 'large_warehouse');
EXECUTE DBMS_WM.CreateWorkspace (workspace => 'smaller_warehouses');

-- Set up the first scenario: Go to the large_warehouse workspace and first add
-- one row for a warehouse.

EXECUTE DBMS_WM.GotoWorkspace (workspace => 'large_warehouse');

INSERT INTO oe.warehouses VALUES (10, NULL, 'Town A', 4000,
MDSYS.SDO_GEOMETRY(2001, 8307,
MDSYS.SDO_POINT_TYPE(-71.00703, 42.27099, NULL), NULL, NULL));

UPDATE oe.warehouses SET warehouse_spec = sys.xmltype.createxml(
'<?xml version="1.0"?>
<Warehouse>
<Building>Owned</Building>
<Area>100000</Area>
<Docks>2</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>Y</RailAccess>
<Parking>Lot</Parking>
<VClearance>15 ft</VClearance>
</Warehouse>'
) WHERE warehouse_id = 10;

COMMIT;

-- Create a savepoint so that you can, if necessary, roll back to the point
-- before the extra warehouse was added.
EXECUTE DBMS_WM.CreateSavepoint ('large_warehouse', 'large_warehouse_add_wh');

-- Add another warehouse for this scenario.
INSERT INTO oe.warehouses VALUES (11, NULL, 'Town D', 4300,
MDSYS.SDO_GEOMETRY(2001, 8307,
MDSYS.SDO_POINT_TYPE(-71.00707, 42.35226, NULL), NULL, NULL));

UPDATE oe.warehouses SET warehouse_spec = sys.xmltype.createxml(
'<?xml version="1.0"?>

Simplified Examples Using Workspace Manager

Introduction to Workspace Manager 1-47

<Warehouse>
<Building>Leased</Building>
<Area>55000</Area>
<Docks>1</Docks>
<DockType>Rear load</DockType>
<WaterAccess>N</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Street</Parking>
<VClearance>10 ft</VClearance>
</Warehouse>'
) WHERE warehouse_id = 11;

COMMIT;

-- Freeze this workspace to prevent any changes until the workspace is unfrozen.
-- However, first go to the LIVE workspace, because a workspace cannot be frozen
-- if any users (including you) are in it.
EXECUTE DBMS_WM.GotoWorkspace ('LIVE');
EXECUTE DBMS_WM.FreezeWorkspace ('large_warehouse');

-- Set up the second scenario: Go to the smaller_warehouses workspace and first
-- add two rows for the smaller warehouses.

EXECUTE DBMS_WM.GotoWorkspace ('smaller_warehouses');

INSERT INTO oe.warehouses VALUES (10, NULL, 'Town B', 4100,
MDSYS.SDO_GEOMETRY(2001, 8307,
MDSYS.SDO_POINT_TYPE(-71.02439, 42.28628, NULL), NULL, NULL));

INSERT INTO oe.warehouses VALUES (11, NULL, 'Town C', 4200,
MDSYS.SDO_GEOMETRY(2001, 8307,
MDSYS.SDO_POINT_TYPE(-70.97980, 42.37961, NULL), NULL, NULL));

UPDATE oe.warehouses SET warehouse_spec = sys.xmltype.createxml(
'<?xml version="1.0"?>
<Warehouse>
<Building>Owned</Building>
<Area>60000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>Y</RailAccess>
<Parking>Lot</Parking>
<VClearance>15 ft</VClearance>
</Warehouse>'

Simplified Examples Using Workspace Manager

1-48 Oracle Database Application Developer’s Guide - Workspace Manager

) WHERE warehouse_id = 10;

UPDATE oe.warehouses SET warehouse_spec = sys.xmltype.createxml(
'<?xml version="1.0"?>
<Warehouse>
<Building>Leased</Building>
<Area>550000</Area>
<Docks>1</Docks>
<DockType>Rear load</DockType>
<WaterAccess>N</WaterAccess>
<RailAccess>Y</RailAccess>
<Parking>Street</Parking>
<VClearance>12 ft</VClearance>
</Warehouse>'
) WHERE warehouse_id = 11;

COMMIT;

-- Create a savepoint so that you can, if necessary, roll back to the point
-- before the extra warehouse was added.
EXECUTE DBMS_WM.CreateSavepoint ('smaller_warehouses', 'smaller_warehouses_add_
wh');

-- Add the extra warehouse for this scenario.
INSERT INTO oe.warehouses VALUES (12, NULL, 'Town D', 4300,
MDSYS.SDO_GEOMETRY(2001, 8307,
MDSYS.SDO_POINT_TYPE(-71.00707, 42.35226, NULL), NULL, NULL));

UPDATE oe.warehouses SET warehouse_spec = sys.xmltype.createxml(
'<?xml version="1.0"?>
<Warehouse>
<Building>Leased</Building>
<Area>55000</Area>
<Docks>1</Docks>
<DockType>Rear load</DockType>
<WaterAccess>N</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Street</Parking>
<VClearance>10 ft</VClearance>
</Warehouse>'
) WHERE warehouse_id = 12;

COMMIT;

Simplified Examples Using Workspace Manager

Introduction to Workspace Manager 1-49

-- SELECT A SCENARIO, AND APPLY IT --

-- Later, the company makes its decisions:
-- 1. Add two smaller warehouses.
-- 2. Do not add the extra warehouse (that is, no third new warehouse).
-- Consequently, you need to discard the first scenario (large_warehouse
-- workspace) completely, discard the warehouse addition in the second
-- scenario (roll back to smaller_warehouses_add_wh savepoint), and
-- apply the second scenario.

-- First go to the LIVE workspace, because a workspace cannot be removed
-- or merged if any users (including you) are in it.
EXECUTE DBMS_WM.GotoWorkspace ('LIVE');

-- Unfreeze the first workspace and remove it to discard any changes there.
EXECUTE DBMS_WM.UnfreezeWorkspace ('large_warehouse');
EXECUTE DBMS_WM.RemoveWorkspace ('large_warehouse');

-- Rollback the workspace for the second scenario to the savepoint created
-- before the extra warehouse was added.
EXECUTE DBMS_WM.RollbackToSP ('smaller_warehouses', 'smaller_warehouses_add_
wh');

-- Apply changes in the smaller_warehouses workspace to the LIVE database
-- workspace; use the remove_workspace parameter to remove the
-- smaller_warehouses workspace after the merge.
EXECUTE DBMS_WM.MergeWorkspace ('smaller_warehouses', remove_workspace => TRUE);

-- The OE.WAREHOUSES table now has the desired data (two additional warehouses
-- from the smaller_warehouses scenario). Display the IDs and names just to be
-- sure.
SELECT warehouse_id, warehouse_name FROM oe.warehouses
 ORDER BY warehouse_id;

-- Disable versioning on the table because you are finished testing scenarios.
-- Set the force parameter to TRUE to force disabling even though changes
-- were made in a non-LIVE workspace. You must also version-disable
-- the other tables previously version-enabled (along with OE.WAREHOUSES).

EXECUTE DBMS_WM.DisableVersioning ('OE.WAREHOUSES, OE.INVENTORIES', force =>
TRUE);

-- Clean up by deleting the rows that were added to the OE.WAREHOUSES table.
DELETE FROM oe.warehouses WHERE warehouse_id >= 10;

Simplified Examples Using Workspace Manager

1-50 Oracle Database Application Developer’s Guide - Workspace Manager

-- Clean up by deleting the locations that were added.
DELETE FROM hr.locations WHERE location_id >= 4000;

The SELECT statement near the end of Example 1–4 displays the IDs and names of
warehouses in the OE.WAREHOUSES table, including the newly added warehouses
in Town B and Town C, as shown in the following example:

SELECT warehouse_id, warehouse_name FROM oe.warehouses
 ORDER BY warehouse_id;

WAREHOUSE_ID WAREHOUSE_NAME
------------ -----------------------------------
 1 Southlake, Texas
 2 San Francisco
 3 New Jersey
 4 Seattle, Washington
 5 Toronto
 6 Sydney
 7 Mexico City
 8 Beijing
 9 Bombay
 10 Town B
 11 Town C

Workspace Manager Events 2-1

2
Workspace Manager Events

Certain applications may be interested in knowing what Workspace Manager
operations are being performed and may want to take some actions based on that.
Several types of Workspace Manager operations can be captured as events.
Workspace Manager provides a framework for communicating these events
asynchronously to the interested applications. The applications can then take some
actions based on the event. Some scenarios in which events can be used include the
following:

� An application wants to be notified whenever a workspace is merged to LIVE
so that it can refresh its data.

� Workspace data needs to be archived whenever a new savepoint is created.

The Workspace Manager event framework is built on the Oracle Advanced
Queuing (AQ) capability. Messaging features provided by AQ, such as
asynchronous notification, persistence, propagation, access control, history, and
rule-based subscription, can be used for Workspace Manager events.

Workspace Manager creates a multiconsumer queue where events are enqueued.
The relevant information about the event, such as the type of event, the user and
workspace that triggered the event, and the name of the versioned table, is
initialized in the event payload and enqueued. Applications can subscribe to these
events, optionally specifying a rule for their subscriptions. Only the events that
satisfy the rule will be applicable to the subscriber. Subscribers can get event
notification in variety of ways, such as listening for the events in the queue,
registering a callback for notification, or explicitly dequeuing events from the
queue.

Because events are communicated asynchronously to the other applications, the
performance of the workspace operation generating the event is not affected.

List of Workspace Manager Events

2-2 Oracle Database Application Developer’s Guide - Workspace Manager

This chapter contains the following major sections:

� Section 2.1, "List of Workspace Manager Events"

� Section 2.2, "Event Parameters"

� Section 2.3, "ALLOW_CAPTURE_EVENTS System Parameter"

� Section 2.4, "AQ Operations and Workspace Manager Events"

2.1 List of Workspace Manager Events
Table 2–1 lists the Workspace Manager events and when each occurs.

Note: To use Workspace Manager events in an application, you
must understand the relevant AQ concepts and techniques
described in Oracle Streams Advanced Queuing User's Guide and
Reference.

Table 2–1 Workspace Manager Events

Event Occurs

TABLE_MERGE_W_REMOVE_DATA When MergeTable is invoked with remove_data
set to TRUE.

TABLE_MERGE_WO_REMOVE_
DATA

When MergeTable is invoked with remove_data
set to FALSE.

TABLE_REFRESH When RefreshTable is invoked.

TABLE_ROLLBACK When RollbackTable is invoked.

WORKSPACE_COMPRESS When CompressWorkspace or
CompressWorkspaceTree is invoked.

WORKSPACE_CREATE When CreateWorkspace is invoked.

WORKSPACE_MERGE_W_REMOVE When MergeWorkspace is invoked with remove_
workspace set to TRUE.

WORKSPACE_MERGE_WO_
REMOVE

When MergeWorkspace is invoked with remove_
workspace set to FALSE.

WORKSPACE_REFRESH When RefreshWorkspace is invoked.

WORKSPACE_REMOVE When RemoveWorkspace or
RemoveWorkspaceTree is invoked.

ALLOW_CAPTURE_EVENTS System Parameter

Workspace Manager Events 2-3

2.2 Event Parameters
When an event occurs, information is stored in parameters that are bundled into an
object type called WMSYS.WM$EVENT_TYPE and enqueued into the event queue. A
subscriber can dequeue the event object on receiving notification. Table 2–2
describes the Workspace Manager event parameters.

2.3 ALLOW_CAPTURE_EVENTS System Parameter
Before you can capture any Workspace Manager events, you must use the
SetSystemParameter procedure to set the Workspace Manager system parameter

WORKSPACE_ROLLBACK When RollbackWorkspace is invoked.

WORKSPACE_VERSION When a new version is created in the workspace as
a result of the creation of an explicit or implicit
savepoint. (Savepoints are described in
Section 1.1.2.)

Table 2–2 Workspace Manager Event Parameters

Event Parameter Data Type Description

event_name VARCHAR2(100) Name indicating the type of event.

workspace_name VARCHAR2(30) Workspace that caused the event to occur.

parent_workspace_
name

VARCHAR2(30) Parent workspace of the workspace that caused
the event to occur.

user_name VARCHAR2(30) User that caused the event to occur.

table_name VARCHAR2(60) Version-enabled table on which the event
occurred. If this parameter does not apply to an
event, it is null.

aux_params WMSYS.WM$NV_
PAIR_NT_TYPE
(which is table of
WMSYS.WM$NV_
PAIR_TYPE)

A nested table of (name,value) pairs that can
contain additional information about the event.

For TABLE_xxx events, it has one row
containing the WHERE clause string used for the
operation.

For WORKSPACE_VERSION events, it has one
row containing the savepoint name associated
with the newly created version.

Table 2–1 (Cont.) Workspace Manager Events

Event Occurs

AQ Operations and Workspace Manager Events

2-4 Oracle Database Application Developer’s Guide - Workspace Manager

ALLOW_CAPTURE_EVENTS to the value ON. This does not, however, cause any
events to be captured; to capture events, you must use the SetCaptureEvent
procedure.

You can later disallow the capture of Workspace Manager events by using the
SetSystemParameter procedure to set ALLOW_CAPTURE_EVENTS to the value OFF,
but you must first ensure that no events are currently being captured. Example 2–1
shows the sequence of procedure calls for enabling and disabling the capture of all
events, and starting and stopping the capture all events.

Example 2–1 Capturing Workspace Manager Events

-- Allow Workspace Manager events to be captured. (Required for SetCaptureEvent)
EXECUTE DBMS_WM.SetSystemParameter ('ALLOW_CAPTURE_EVENTS', 'ON');
-- Start capturing all Workspace Manager events.
EXECUTE DBMS_WM.SetCaptureEvent ('ALL_EVENTS','ON');
 .
 .
 .
-- Stop capturing all Workspace Manager events.
EXECUTE DBMS_WM.SetCaptureEvent ('ALL_EVENTS','OFF');
-- Disallow capture of Workspace Manager events.
EXECUTE DBMS_WM.SetSystemParameter ('ALLOW_CAPTURE_EVENTS', 'OFF');

2.4 AQ Operations and Workspace Manager Events
This section describes Advanced Queuing objects and techniques relevant to
developers of applications that work with captured Workspace Manager events.

2.4.1 Workspace Manager Event Queue Administration
Workspace Manager creates a multiconsumer queue named WMSYS.WM$EVENT_
QUEUE based on a queue table named WMSYS.WM$EVENT_QUEUE_TABLE. The
queue payload type is WMSYS.WM$EVENT_TYPE, which is an object type.

AQ creates some views for the queue that can be used for administrative purposes.
Table 2–3 describes the views of interest to developers of Workspace Manager
applications.

AQ Operations and Workspace Manager Events

Workspace Manager Events 2-5

2.4.2 Privileges and Access Control for Queues
The database administrator has several options for granting privileges and access to
queues. Some possible scenarios include:

� Grant the system privileges ENQUEUE ANY QUEUE and DEQUEUE ANY QUEUE
directly to a database user by using the DBMS_AQADM.GRANT_SYSTEM_
PRIVILEGE procedure, and optionally later revoke privileges by using the
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE procedure.

� Grant the queue privileges ENQUEUE and DEQUEUE to the event queue
WMSYS.WM$EVENT_QUEUE to a database user by using the DBMS_
AQADM.GRANT_QUEUE_PRIVILEGE procedure, and optionally later revoke
privileges by using the DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE procedure.

� Grant the role AQ_ADMINISTRATOR_ROLE to a database user to give that user
administrative privileges on any queue.

Example 2–2 shows privileges being granted for a user to subscribe to the event
queue and dequeue events.

Example 2–2 Granting Privileges for Queue Access

-- Do the following while connected as SYSDBA.
-- These privileges are required for the user to execute AQ packages.
grant execute on DBMS_AQ to SCOTT ;
grant execute on DBMS_AQADM to SCOTT ;

Table 2–3 AQ Administrative Views for Workspace Manager

View Name Description

WMSYS.AQWMEVENT
_QUEUE_TABLE

Describes the queue table in which events are stored. This view
can be used for querying the events. The roles AQ_
ADMINISTRATOR_ROLE and WM_ADMIN_ROLE are granted
select privileges on this view.

WMSYS.AQWMEVENT
_QUEUE_TABLE_S

Displays all the subscribers for the event queue; also displays
the transformation for the subscriber if it was created with one.
The roles AQ_ADMINISTRATOR_ROLE and WM_ADMIN_ROLE
are granted select privileges on this view.

WMSYS.AQWMEVENT
_QUEUE_TABLE_R

Displays only the rule-based subscribers for all queues in a
given queue table, as well as the text of the rule defined by
each subscriber. Also displays the transformation for the
subscriber if one was specified. The roles AQ_
ADMINISTRATOR_ROLE and WM_ADMIN_ROLE are granted
select privileges on this view.

AQ Operations and Workspace Manager Events

2-6 Oracle Database Application Developer’s Guide - Workspace Manager

-- Grant privilege to SCOTT for subscribing to the event queue.
exec DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE('MANAGE_ANY','SCOTT') ;

-- Grant privilege to SCOTT to dequeue events. (As an alternative, you could use
-- DBMS_AQADM.GRANT_QUEUE_PRIVILEGE to grant the DEQUEUE privilege on
-- WMSYS.WM$EVENT_QUEUE.)
exec DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE('DEQUEUE_ANY','SCOTT') ;

2.4.3 Rule-Based Subscription
An event can be delivered to multiple recipients based on event parameters. You
can define a rule-based subscription for the event queue as the mechanism for
specifying interest in receiving events. Subscriber rules are then used to evaluate
recipients for event delivery. A null rule indicates that the subscriber wishes to
receive all events.

Example 2–3 creates a rule-based subscription for user SCOTT to deliver
WORKSPACE_MERGE_WO_REMOVE events when the parent workspace is the
LIVE workspace.

Example 2–3 Rule-Based Subscription for Workspace Manager Events

rem ===
rem Create queue subscribers
rem Register for MergeWorkspace event when
rem a workspace is merged to LIVE
rem ===

connect scott/tiger

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('MERGE_LISTENER', NULL, NULL);
 dbms_aqadm.add_subscriber(
 queue_name => 'WMSYS.WM$EVENT_QUEUE',
 subscriber => subscriber,
 rule => 'tab.user_data.event_name = ''WORKSPACE_MERGE_WO_REMOVE''
 and tab.user_data.parent_workspace_name = ''LIVE''');
END;
/

AQ Operations and Workspace Manager Events

Workspace Manager Events 2-7

2.4.4 Listening for Events
The listen call is a blocking call that can be used to wait for events on a queue or a
list of subscriptions. If the listen returns successfully, a dequeue must be used to
retrieve the event.

Example 2–4 listens for events on an event queue.

Example 2–4 Listening for a Workspace Manager Event

rem ==
rem The following example shows how an application can listen for
rem an event. Explicit dequeue must be performed to get the actual
rem event parameters. The user SCOTT must have sufficient privileges
rem as described in the "Access Control" section.
rem ==

connect scott/tiger

set serveroutput on

DECLARE
 qlist dbms_aq.aq$_agent_list_t;
 agent_w_msg sys.aq$_agent;
 listen_timeout exception;
 pragma exception_init(listen_timeout, -25254);
BEGIN
 qlist(0) := sys.aq$_agent('MERGE_LISTENER', 'WMSYS.WM$EVENT_QUEUE', NULL);

 dbms_output.put_line ('Listening on event queue.');

 BEGIN

 DBMS_AQ.LISTEN(
 agent_list => qlist,
 wait => 30,
 agent => agent_w_msg);

 dbms_output.put_line(agent_w_msg.name) ;

 /* The event can be dequeued here to get the event data */

 EXCEPTION
 when listen_timeout THEN
 null;

AQ Operations and Workspace Manager Events

2-8 Oracle Database Application Developer’s Guide - Workspace Manager

 END;

END;
/

2.4.5 Asynchronous Notification
Asynchronous notification allows clients to receive notification of an event of
interest. The client can use it to monitor multiple subscriptions. The client does not
have to be connected to the database to receive notifications regarding its
subscriptions.

If an application registers for asynchronous notification of Workspace Manager
events using callbacks, the minimum values for the following init.ora
parameters should be:

� aq_tm_processes = 1

� job_queue_processes = 2

Example 2–5 registers for a callback to receive asynchronous notification of events.

Example 2–5 Receiving Asynchronous Notification of Events

rem ===
rem Example of how to register for a callback to the event
rem queue on behalf of a subscriber. Subscriber has already
rem been defined in previous section. The callback is
rem invoked by the AQ framework whenever an event satisfying the
rem rule for the subscriber occurs. The minimum values for
rem the following init.ora parameters should be set as follows.
rem aq_tm_processes = 1
rem job_queue_processes = 2
rem The user SCOTT must have sufficient privileges.
rem ===

CONNECT scott/tiger

CREATE TABLE merge_log
(
 event_name varchar2(30),
 workspace_name varchar2(30),
 parent_workspace_name varchar2(30),
 user_name varchar2(30)
);

AQ Operations and Workspace Manager Events

Workspace Manager Events 2-9

CREATE OR REPLACE PROCEDURE scott.event_callback(
 context RAW , reginfo sys.aq$_reg_info, descr sys.aq$_descriptor,
 payload VARCHAR2, payloadl NUMBER)
AS
 deq_msgid RAW(16);
 dopt dbms_aq.dequeue_options_t;
 mprop dbms_aq.message_properties_t;
 event WMSYS.WM$EVENT_TYPE;
 no_messages exception;
 pragma exception_init(no_messages, -25228);

BEGIN
 dopt.consumer_name := 'MERGE_LISTENER';
 dopt.wait := 30;
 dopt.msgid := descr.msg_id;

 dbms_aq.dequeue(
 queue_name => 'WMSYS.WM$EVENT_QUEUE',
 dequeue_options => dopt,
 message_properties => mprop,
 payload => event,
 msgid => deq_msgid);

 INSERT INTO merge_log VALUES (event.event_name, event.workspace_name,
 event.parent_workspace_name, event.user_name);

 /* Note: If there are additional parameters stored in
 "aux_params" attribute, it can be accessed using
 event.aux_params(1).name, event.aux_params(1).value,
 event.aux_params(2).name … and so on. The number of
 parameters can be accessed using event.aux_params.count
 when aux_params is not null.
 */
END;
/

grant execute on scott.event_callback to public ;

rem ==
rem Register a callback for the event
rem Queue name and subscriber name have to be specified
rem while registering for a callback
rem ==

DECLARE

AQ Operations and Workspace Manager Events

2-10 Oracle Database Application Developer’s Guide - Workspace Manager

 reginfo1 sys.aq$_reg_info;
 reginfolist sys.aq$_reg_info_list;
BEGIN
 reginfo1 := sys.aq$_reg_info('WMSYS.WM$EVENT_QUEUE:MERGE_
LISTENER',1,'plsql://scott.event_callback?PR=1',HEXTORAW('FF'));

 reginfolist := sys.aq$_reg_info_list(reginfo1);

 sys.dbms_aq.register(reginfolist, 1);

 COMMIT;

END;
/

Workspace Manager Valid Time Support 3-1

3
Workspace Manager Valid Time Support

This chapter describes the support for valid time, also known as effective dating,
with version-enabled tables. It contains the following major sections:

� Section 3.1, "Valid Time Support: Introduction and Example"

� Section 3.2, "WM_PERIOD Data Type"

� Section 3.3, "Valid Time Constants"

� Section 3.4, "API Features for Valid Time Support"

� Section 3.5, "Operators for Valid Time Support"

� Section 3.6, "Queries and DML Operations with Valid Time Support"

� Section 3.7, "Constraint Management for Valid Time Support"

� Section 3.8, "Locking with Valid Time Support"

� Section 3.9, "Metadata Views Affected by Valid Time Support"

� Section 3.10, "SQL* Loader Support for Valid Times"

� Section 3.11, "Adding Valid Time Support to an Existing Table"

3.1 Valid Time Support: Introduction and Example
Some applications need to store data with an associated time range that indicates
the validity of the data. That is, each record is valid only within the time range
associated with the record.

Workspace Manager lets you enable valid time support when you version-enable a
table. (You can also add valid time support to an existing version-enabled table, as
explained in Section 3.11.) If you enable valid time support, each row contains an
added column to hold the valid time period associated with the row. You can

Valid Time Support: Introduction and Example

3-2 Oracle Database Application Developer’s Guide - Workspace Manager

specify a valid time range for the session, and Workspace Manager will ensure that
queries and insert, update, and delete operations correctly reflect and accommodate
the valid time range. The valid time range specified can be in the past or the future,
or it can include the past, present, and future.

Example 3–1 presents a simple example of valid time support. The example does
the following:

1. Creates a table of employees and their salaries.

2. Version-enables the table, specifying valid time support, which causes a column
named WM_VALID to be added to the table automatically.

3. Inserts rows into the table. For each row, it specifies the employee name, salary,
and valid time period.

4. Sets the valid time range for the session.

5. Updates a row, specifying a new salary and valid time period for an employee.

6. Disables versioning on the table.

Example 3–1:

� Refers to valid time support concepts and techniques that will be explained in
other sections of this chapter.

� Assumes that you are familiar with the Workspace Manager concepts and
techniques explained in Chapter 1.

� Does not create workspaces or savepoints. (These are shown in Example 1–3
and Example 1–4 in Section 1.16.)

Example 3–1 Valid Time Support

-- Create a very simple employees table (deliberately oversimplified
-- for purposes of illustration).
CREATE TABLE employees (
 name VARCHAR2(16) PRIMARY KEY,
 salary NUMBER
);

-- Version-enable the table. Specify TRUE for valid time support.
EXECUTE DBMS_WM.EnableVersioning ('employees', 'VIEW_WO_OVERWRITE', FALSE,
TRUE);

INSERT INTO employees VALUES(
 'Adams',

Valid Time Support: Introduction and Example

Workspace Manager Valid Time Support 3-3

 30000,
 WMSYS.WM_PERIOD(TO_DATE('01-01-1990', 'MM-DD-YYYY'),
 TO_DATE('01-01-2005', 'MM-DD-YYYY'))
);
INSERT INTO employees VALUES(
 'Baxter',
 40000,
 WMSYS.WM_PERIOD(TO_DATE('01-01-2000', 'MM-DD-YYYY'), DBMS_WM.UNTIL_CHANGED)
);

INSERT INTO employees VALUES(
 'Coleman',
 50000,
 WMSYS.WM_PERIOD(TO_DATE('01-01-2003', 'MM-DD-YYYY'),
 TO_DATE('12-31-9999', 'MM-DD-YYYY'))
);

COMMIT;

-- Set valid time period to virtually all time.
EXECUTE DBMS_WM.SetValidTime(TO_DATE('01-01-1900', 'MM-DD-YYYY'),
 TO_DATE('01-01-9999', 'MM-DD-YYYY'));

-- Operators for Workspace Manager Valid Time Support

-- WM_CONTAINS
SELECT * FROM employees e
 WHERE WM_CONTAINS(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY'))) = 1;

-- WM_OVERLAPS
SELECT * FROM employees e
 WHERE WM_OVERLAPS(e.wm_valid,
 wm_period(TO_DATE('01-01-1990', 'MM-DD-YYYY'),
 TO_DATE('01-01-2000', 'MM-DD-YYYY'))) = 1;

-- WM_MEETS
SELECT * FROM employees e
 WHERE WM_MEETS(e.wm_valid,
 wm_period(TO_DATE('01-01-2005', 'MM-DD-YYYY'),
 TO_DATE('01-01-2006', 'MM-DD-YYYY'))) = 1;

-- WM_EQUALS
SELECT * FROM employees e

Valid Time Support: Introduction and Example

3-4 Oracle Database Application Developer’s Guide - Workspace Manager

 WHERE WM_EQUALS(e.wm_valid,
 wm_period(TO_DATE('01-01-1990', 'MM-DD-YYYY'),
 TO_DATE('01-01-2005', 'MM-DD-YYYY'))) = 1;

-- WM_LESSTHAN
SELECT * FROM employees e
 WHERE WM_LESSTHAN(e.wm_valid,
 wm_period(TO_DATE('01-01-2010', 'MM-DD-YYYY'),
 TO_DATE('01-02-2010', 'MM-DD-YYYY'))) = 1;

-- WM_GREATERTHAN
SELECT * FROM employees e
 WHERE WM_GREATERTHAN(e.wm_valid,
 wm_period(TO_DATE('01-01-2001', 'MM-DD-YYYY'),
 O_DATE('01-02-2001', 'MM-DD-YYYY'))) = 1;

-- WM_INTERSECTION
SELECT e.name, WM_INTERSECTION(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY')))
 FROM employees e;

-- WM_LDIFF
SELECT e.name, WM_LDIFF(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY')))
 FROM employees e;

-- WM_RDIFF
SELECT e.name, WM_RDIFF(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY')))
 FROM employees e;

-- Update the salary for an existing employee. Perform "sequenced" update, so
-- that existing time-related information is preserved. This results in two rows
-- for Baxter.
-- First, set valid time to the intended range for Baxter's raise.
EXECUTE DBMS_WM.SetValidTime(TO_DATE('01-01-2003', 'MM-DD-YYYY'), DBMS_WM.UNTIL_
CHANGED);
-- Give Baxter a raise, effective 01-Jan-2003 until changed.
UPDATE employees SET salary = 45000 WHERE name = 'Baxter';

-- Disable versioning. By default (keepWMValid parameter value of TRUE),
-- the WM_VALID column is kept, with all its data.

Valid Time Constants

Workspace Manager Valid Time Support 3-5

COMMIT;
EXECUTE DBMS_WM.DisableVersioning ('employees');

3.2 WM_PERIOD Data Type
The WM_PERIOD data type is used to specify a valid time range for the session or
workspace, and for a row in a version-enabled table. The WM_PERIOD type is
defined as follows:

CREATE TYPE WM_PERIOD AS OBJECT (
 validFrom TIMESTAMP WITH TIME ZONE,
 validTill TIMESTAMP WITH TIME ZONE);

The validFrom date is inclusive, and the validTill period is exclusive; that is,
the valid date range starts on the validFrom date and extends up to but not
including the validTill date.

Example 3–2 sets the session valid time range to 01-Jan-2003.

Example 3–2 Setting the Session Valid Time to a Specific Date

EXECUTE DBMS_WM.SetValidTime(TO_DATE('01-01-2003', 'MM-DD-YYYY'), TO_
DATE('01-02-2003', 'MM-DD-YYYY'));

Example 3–3 inserts a row that is valid from 01-Jan-2003 until it is changed.

Example 3–3 Inserting a Row Valid for a Time Range

INSERT INTO employees VALUES(
 'Baxter',
 40000,
 WMSYS.WM_PERIOD(TO_DATE('01-01-2000', 'MM-DD-YYYY'), DBMS_WM.UNTIL_CHANGED)
);

3.3 Valid Time Constants
Table 3–1 lists constants that can be used in the validFrom and validTill
timestamps of a WM_PERIOD specification.

Table 3–1 Constants for Valid Time Support

Constant Explanation

DBMS_WM.DEFAULT_
VALID_FROM

The default timestamp for the validFrom timestamp of the
session valid time.

API Features for Valid Time Support

3-6 Oracle Database Application Developer’s Guide - Workspace Manager

3.4 API Features for Valid Time Support
Table 3–2 lists DBMS_WM subprograms that are devoted to valid time support or
that have parameters related to valid time support.

DBMS_WM.DEFAULT_
VALID_TILL

The default timestamp for the validTill timestamp of the
session valid time.

DBMS_WM.MIN_TIME The minimum (earliest) timestamp value supported by
Workspace Manager. Currently the beginning of the day on
01-Jan in the year -4713 (4713 BCE).

DBMS_WM.MAX_TIME The maximum (latest) timestamp value supported by
Workspace Manager. Currently the end of the day on
31-Dec-9999.

DBMS_WM.UNTIL_
CHANGED

A timestamp that is treated as DBMS_WM.MAX_TIME until a
subsequent modification overrides the value.

Table 3–2 API Features for Valid Time Support

Subprogram Valid Time Support

EnableVersioning If the validTime parameter value is TRUE, the table is
version-enabled with valid time support. A column named WM_
VALID of type WM_PERIOD is added to the table. For any
existing rows, the WM_VALID column is set with a validFrom
timestamp of SYSTIMESTAMP and a validTill timestamp of
DBMS_WM.UNTIL_CHANGED.

DisableVersioning The keepWMValid parameter determines whether to keep (the
default) or delete the WM_VALID column and its data when the
table is version-disabled.

SetValidTime Sets the session valid time period to the specified range. You can
execute the procedure with no parameters (to have the valid time
range set as from the current time and until changed), with only
the validFrom parameter, or with both the validFrom and
validTill parameters.

GetValidFrom Returns the validFrom timestamp from the session valid time
period.

GetValidTill Returns the validTill timestamp from the session valid time
period.

Table 3–1 (Cont.) Constants for Valid Time Support

Constant Explanation

Operators for Valid Time Support

Workspace Manager Valid Time Support 3-7

3.5 Operators for Valid Time Support
Workspace Manager provides relationship checking operators and set operators
that accept two time period parameters and that can be used to apply valid time
filters in a query.

The relationship checking operators return the integer value 1 if the relationship
between the two periods exists, and 0 if the relationship does not exist. The
following relationship checking operators for are provided for valid time support:

� WM_OVERLAPS checks if two periods overlap.

� WM_CONTAINS checks if the first period contains the second period.

� WM_MEETS checks if the end of the first period is the start of the second
period.

� WM_EQUALS checks if the end of the first period is equal to (that is, the same
as) the second period.

� WM_LESSTHAN checks if the end of the first period is less than (that is, earlier
than) the second period.

� WM_GREATERTHAN checks if the end of the first period is greater than (that
is, later than) the second period.

The set operators return the period reflecting the relationship between the two
periods, or a null value if the two periods do not have the specified relationship.
The following set operators for are provided for valid time support:

� WM_INTERSECTION returns the intersection of the two periods.

� WM_LDIFF returns the difference between the two periods on the left (that is,
earlier in time).

� WM_RDIFF returns the difference between the two periods on the right (that is,
later in time).

You can use the relationship checking operators as alternatives to using the wm_
valid.validFrom and wm_valid.validTill attributes of the row. For example, the
following two queries, which select data valid on 01-Jan-1991, are equivalent:

SELECT * FROM employees e WHERE WM_CONTAINS (e.wm_valid,
 WMSYS.WM_PERIOD(TO_DATE('01-01-1991', 'MM-DD-YYYY'),
 TO_DATE('01-02-1991', 'MM-DD-YYYY')) = 1;
SELECT * from employees e
 WHERE e.wm_valid.validFrom <= TO_DATE('01-01-1991', 'MM-DD-YYYY')
 AND e.wm_valid.validTill > TO_DATE('01-03-1991', 'MM-DD-YYYY');

Operators for Valid Time Support

3-8 Oracle Database Application Developer’s Guide - Workspace Manager

The rest of this section contains additional information about each operator. The
operators are listed in alphabetical order.

3.5.1 WM_CONTAINS
The WM_CONTAINS operator checks if the first period contains the second period.
WM_CONTAINS(p1, p2) returns 1 only if the period p1 contains the period p2;
otherwise, it returns 0.

For example:

WM_CONTAINS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1988', 'MM-DD-YYYY') = 1

WM_CONTAINS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY') = 0

Example 3–4 returns all rows in the EMPLOYEES table that were valid on
01-Jan-1995 (that is, where the WM_VALID column value contains the period for
01-Jan-1995).

Example 3–4 WM_CONTAINS Operator

SELECT * FROM employees e
 WHERE WM_CONTAINS(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY'))) = 1;

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Adams 30000
WM_PERIOD('01-JAN-1990 12:00:00 -04:00', '01-JAN-2005 12:00:00 -04:00')

3.5.2 WM_EQUALS
The WM_EQUALS operator checks if the first period is equal to (that is, the same
as) the second period. WM_CONTAINS(p1, p2) returns 1 only if the period p1 is
equal to the period p2; otherwise, it returns 0.

Operators for Valid Time Support

Workspace Manager Valid Time Support 3-9

For example:

WM_EQUALS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY') = 1

WM_EQUALS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY') = 0

Example 3–5 returns all rows in the EMPLOYEES table that are valid from
01-Jan-1990 until 01-Jan-2005 (that is, where the WM_VALID column value is equal to
that period).

Example 3–5 WM_EQUALS Operator

SELECT * FROM employees e
 WHERE WM_EQUALS(e.wm_valid,
 wm_period(TO_DATE('01-01-1990', 'MM-DD-YYYY'),
 TO_DATE('01-01-2005', 'MM-DD-YYYY'))) = 1;

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Adams 30000
WM_PERIOD('01-JAN-1990 12:00:00 -04:00', '01-JAN-2005 12:00:00 -04:00')

3.5.3 WM_GREATERTHAN
The WM_GREATERTHAN operator checks if the first period is greater than (that is,
occurs after) the second period. WM_CONTAINS(p1, p2) returns 1 only if the
entire period p1 is later than the period p2; otherwise, it returns 0.

For example:

WM_GREATERTHAN(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1970', 'MM-DD-YYYY'),
 TO_DATE('01-01-1980', 'MM-DD-YYYY') = 1

WM_GREATERTHAN(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')

Operators for Valid Time Support

3-10 Oracle Database Application Developer’s Guide - Workspace Manager

 TO_DATE('01-01-1970', 'MM-DD-YYYY'),
 TO_DATE('01-01-1981', 'MM-DD-YYYY') = 0

Example 3–6 returns all rows in the EMPLOYEES table that are valid only after
01-Jan-2001 (that is, where the WM_VALID column timestamps are both after
01-Jan-2001).

Example 3–6 WM_GREATERTHAN Operator

SELECT * FROM employees e
 WHERE WM_GREATERTHAN(e.wm_valid,
 wm_period(TO_DATE('01-01-2001', 'MM-DD-YYYY'),
 TO_DATE('01-02-2001', 'MM-DD-YYYY'))) = 1;

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Coleman 50000
WM_PERIOD('01-JAN-2003 12:00:00 -04:00', '31-DEC-9999 12:00:00 -04:00')

3.5.4 WM_INTERSECTION
The WM_INTERSECTION operator returns the intersection of the two periods. WM_
INTERSECTION(p1, p2) returns a period that is the intersection of periods p1
and p2.

The following example returns the period between 01-Jan-1985 to 01-Jan-1988:

WM_INTERSECTION(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1988', 'MM-DD-YYYY')

The following example returns the period between 01-Jan-1985 to 01-Jan-1990:

WM_INTERSECTION(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY')

The following example returns a null value, because there is no intersection of the
periods:

WM_INTERSECTION(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')

Operators for Valid Time Support

Workspace Manager Valid Time Support 3-11

 TO_DATE('01-01-1992', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY')

Example 3–7 returns, for each row in the EMPLOYEES table, the employee name and
the period in which the WM_PERIOD column value intersects the period on
01-Jan-1995.

Example 3–7 WM_INTERSECTION Operator

SELECT e.name, WM_INTERSECTION(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY')))
 FROM employees e;

NAME

WM_INTERSECTION(E.WM_VALID,WM_PERIOD(TO_DATE('01-01-1995','MM-DD-
--
Adams
WM_PERIOD('01-JAN-1995 12:00:00 -04:00', '02-JAN-1995 12:00:00 -04:00')

Baxter

Coleman

As you can see in the output of Example 3–7, only Adams has a row that is valid on
01-Jan-1995.

3.5.5 WM_LDIFF
The WM_LDIFF operator returns the difference between the two periods on the left
(that is, earlier in time). WM_LDIFF(p1, p2) returns a period that is the difference
between periods p1 and p2 on the left.

The following example returns the period between 01-Jan-1980 to 01-Jan-1985:

WM_LDIFF(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1988', 'MM-DD-YYYY')

The following example returns a null value because p1.validFrom is greater than
p2.validFrom:

Operators for Valid Time Support

3-12 Oracle Database Application Developer’s Guide - Workspace Manager

WM_LDIFF(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1975', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY')

The following example returns a null value because p2 is completely outside (in
this case, later than) p1:

WM_LDIFF(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1992', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY')

Example 3–8 returns, for each row in the EMPLOYEES table, the employee name and
the period in which the WM_PERIOD column value is different on the left from
01-Jan-1995.

Example 3–8 WM_LDIFF Operator

SELECT e.name, WM_LDIFF(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY')))
 FROM employees e;

NAME

WM_LDIFF(E.WM_VALID,WM_PERIOD(TO_DATE('01-01-1995','MM-DD-YYYY'),
--
Adams
WM_PERIOD('01-JAN-1990 12:00:00 -04:00', '01-JAN-1995 12:00:00 -04:00')

Baxter

Coleman

As you can see in the output of Example 3–8, only Adams has a row that is valid
during the period of difference on the left.

3.5.6 WM_LESSTHAN
The WM_LESSTHAN operator checks if the first period is less than (that is, occurs
before) the second period. WM_CONTAINS(p1, p2) returns 1 only if the entire
period p1 is less than the period p2; otherwise, it returns 0.

Operators for Valid Time Support

Workspace Manager Valid Time Support 3-13

For example:

WM_LESSTHAN(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1991', 'MM-DD-YYYY'),
 TO_DATE('01-01-1992', 'MM-DD-YYYY') = 1

WM_LESSTHAN(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1989', 'MM-DD-YYYY'),
 TO_DATE('01-01-1992', 'MM-DD-YYYY') = 0

Example 3–9 returns all rows in the EMPLOYEES table that are valid only before
01-Jan-2010 (that is, where the WM_VALID column timestamps are both before
01-Jan-2001).

Example 3–9 WM_LESSTHAN Operator

SELECT * FROM employees e
 WHERE WM_LESSTHAN(e.wm_valid,
 wm_period(TO_DATE('01-01-2010', 'MM-DD-YYYY'),
 TO_DATE('01-02-2010', 'MM-DD-YYYY'))) = 1;

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Adams 30000
WM_PERIOD('01-JAN-1990 12:00:00 -04:00', '01-JAN-2005 12:00:00 -04:00')

3.5.7 WM_MEETS
The WM_MEETS operator checks if the end of the first period is the start of the
second period. WM_MEETS(p1, p2) returns 1 only if p1.validTill =
p2.validFrom; otherwise, it returns 0.

For example:

WM_MEETS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1990', 'MM-DD-YYYY'),
 TO_DATE('01-01-1988', 'MM-DD-YYYY') = 1

WM_MEEETS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')

Operators for Valid Time Support

3-14 Oracle Database Application Developer’s Guide - Workspace Manager

 TO_DATE('01-01-1992', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY') = 0

Example 3–10 returns all rows in the EMPLOYEES table that are valid only if the
ending timestamp of the valid date period is the same as the start of the period from
01-Jan-2005 until 01-Jan-2006 (that is, if WM_VALID.validTill is equal to the start of
the specified period).

Example 3–10 WM_MEETS Operator

SELECT * FROM employees e
 WHERE WM_MEETS(e.wm_valid,
 wm_period(TO_DATE('01-01-2005', 'MM-DD-YYYY'),
 TO_DATE('01-01-2006', 'MM-DD-YYYY'))) = 1;

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Adams 30000
WM_PERIOD('01-JAN-1990 12:00:00 -04:00', '01-JAN-2005 12:00:00 -04:00')

3.5.8 WM_OVERLAPS
The WM_OVERLAPS operator checks if two periods overlap. WM_OVERLAPS(p1,
p2) returns 1 if the periods p1 and p2 overlap; otherwise, it returns 0.

For example:

WM_OVERLAPS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY') = 1

WM_OVERLAPS(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1970', 'MM-DD-YYYY'),
 TO_DATE('01-01-1980', 'MM-DD-YYYY') = 0

Example 3–11 returns all rows in the EMPLOYEES table whose valid date range
overlaps the period from 01-Jan-1990 until 01-Jan-2000.

Example 3–11 WM_OVERLAPS Operator

SELECT * FROM employees e

Operators for Valid Time Support

Workspace Manager Valid Time Support 3-15

 WHERE WM_OVERLAPS(e.wm_valid,
 wm_period(TO_DATE('01-01-1990', 'MM-DD-YYYY'),
 TO_DATE('01-01-2000', 'MM-DD-YYYY'))) = 1;

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Adams 30000
WM_PERIOD('01-JAN-1990 12:00:00 -04:00', '01-JAN-2005 12:00:00 -04:00')

3.5.9 WM_RDIFF
The WM_RDIFF operator returns the difference between the two periods on the
right (that is, later in time). WM_RDIFF(p1, p2) returns a period that is the
difference between periods p1 and p2 on the right.

The following example returns the period between 01-Jan-1988 to 01-Jan-1990:

WM_RDIFF(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1985', 'MM-DD-YYYY'),
 TO_DATE('01-01-1988', 'MM-DD-YYYY')

The following example returns a null value because p1.validTill is less than
p2.validTill:

WM_RDIFF(TO_DATE('01-01-1980', 'MM-DD-YYYY'),
 TO_DATE('01-01-1990', 'MM-DD-YYYY')
 TO_DATE('01-01-1975', 'MM-DD-YYYY'),
 TO_DATE('01-01-1995', 'MM-DD-YYYY')

Example 3–12 returns, for each row in the EMPLOYEES table, the employee name
and the period in which the WM_PERIOD column value is different on the right from
01-Jan-1995.

Example 3–12 WM_RDIFF Operator

SELECT e.name, WM_RDIFF(e.wm_valid,
 wm_period(TO_DATE('01-01-1995', 'MM-DD-YYYY'),
 TO_DATE('01-02-1995', 'MM-DD-YYYY')))
 FROM employees e;

NAME

Queries and DML Operations with Valid Time Support

3-16 Oracle Database Application Developer’s Guide - Workspace Manager

WM_RDIFF(E.WM_VALID,WM_PERIOD(TO_DATE('01-01-1995','MM-DD-YYYY'),
--
Adams
WM_PERIOD('02-JAN-1995 12:00:00 -04:00', '01-JAN-2005 12:00:00 -04:00')

Baxter

Coleman
WM_PERIOD('01-JAN-2003 12:00:00 -04:00', '31-DEC-9999 12:00:00 -04:00')

As you can see in the output of Example 3–12, only Adams and Coleman have rows
that are valid during the period of difference on the right.

3.6 Queries and DML Operations with Valid Time Support
This section describes some behaviors and considerations for queries and data
manipulation language (insert, update, and delete) operations related to valid time
support.

3.6.1 Queries
All queries issued against a version-enabled table with valid time support take into
account the current session's valid time setting (set using the SetValidTime
procedure). Unless the query specifies otherwise (for example, by using one of the
valid time support operators described in Section 3.5), each query displays all rows
from the underlying table having a valid time range that overlaps the session valid
time, and that satisfy the other conditions of the query.

By default (that is, if the SetValidTime procedure has not been invoked in the
session or if it was invoked with no parameters), all rows that are valid at the
current time are considered valid.

3.6.2 Data Manipulation (DML) Operations
All DML statements (INSERT, UPDATE, and DELETE) issued against a
version-enabled table with valid time support take into account the current
session's valid time setting. The DML statements can affect all rows that are valid
for the valid time period.

By default (that is, if the SetValidTime procedure has not been invoked in the
session or if it was invoked with no parameters), all rows that are valid at the

Queries and DML Operations with Valid Time Support

Workspace Manager Valid Time Support 3-17

current time can be affected by DML statements, and all modified rows have their
valid time range timestamps set as from the current time until changed.

The following sections describe additional considerations that apply to specific
kinds of DML operations.

3.6.2.1 Update Operations
Update operations to version-enabled tables with valid time support can be
sequenced or nonsequenced.

A sequenced update operation occurs when you do not specify a change to the WM_
VALID column in the UPDATE statement. In a sequenced update operation, the WM_
VALID.ValidTill value is changed to the ValidFrom timestamp of the current
session valid time range, and a new row is created in which the WM_VALID period
reflects the current session valid time range. Sequenced updates ensure that no
duplicate records are created by an UPDATE statement, because the WM_VALID
column values are different.

Example 3–13 shows a sequenced update operation, in which employee Baxter is
given a raise. Before the update, there is one row for Baxter, with a salary of 40000
and a valid time period from 01-Jan-2000 until changed.

Example 3–13 Sequenced Update Operation

-- Update the salary for an existing employee. Perform "sequenced" update, so
-- that existing time-related information is preserved. This results in two rows
-- for Baxter.
-- First, set valid time to the intended range for Baxter's raise.
EXECUTE DBMS_WM.SetValidTime(TO_DATE('01-01-2003', 'MM-DD-YYYY'),
 DBMS_WM.UNTIL_CHANGED);
-- Give Baxter a raise, effective 01-Jan-2003 until changed.
UPDATE employees SET salary = 45000 WHERE name = 'Baxter';

The update operation in Example 3–13 modifies the WM_VALID value of the existing
row and creates a new row with the new salary value and the WM_VALID value
reflecting the session valid time range, as shown by the following statements:

-- Set valid time to encompass virtually all time.
EXECUTE DBMS_WM.SetValidTime(TO_DATE('01-01-1900', 'MM-DD-YYYY'), TO_
DATE('01-02-9999', 'MM-DD-YYYY'));

-- See what data exists for Baxter.
SELECT * FROM employees WHERE name = 'Baxter';

Queries and DML Operations with Valid Time Support

3-18 Oracle Database Application Developer’s Guide - Workspace Manager

NAME SALARY
---------------- ----------
WM_VALID(VALIDFROM, VALIDTILL)
--
Baxter 45000
WM_PERIOD('01-JAN-2003 12:00:00 -04:00', NULL)

Baxter 40000
WM_PERIOD('01-JAN-2000 12:00:00 -04:00', '01-JAN-2003 12:00:00 -04:00')

A nonsequenced update operation occurs when you specify a change to the WM_
VALID column in the UPDATE statement. In a nonsequenced update operation, no
additional row is created, and the WM_VALID column value of the updated row or
rows reflects what you specified in the UPDATE statement. You must ensure that a
nonsequenced update operation will not result in multiple rows with the same
primary key value being valid in the period specified in the UPDATE statement;
otherwise, the update fails because of a primary key constraint violation.

If the UPDATE statement in Example 3–13 had been a nonsequenced update
operation, the result would have been only one row for Baxter: the existing row
would have had the salary set to 45000 and the WM_VALID column set to the period
specified in the UPDATE statement.

3.6.2.2 Insert Operations
When you insert a row into a version-enabled table with valid time support, you
can specify a valid time period for the row. If you specify null timestamps for the
period, the session valid time period is used.

When a row is inserted into a version-enabled table with valid time support,
Workspace Manager checks to ensure that no existing rows with the same primary
key value have a valid time range that overlaps the valid time range of the newly
inserted row. If such a row is found, an exception is raised. Example 3–14 shows an
attempted insert operation that violates a primary key constraint because
overlapping valid time periods.

Example 3–14 Insert Operation Failing Because of Overlapping Time Periods

-- Insert. Should violate primary key constraint, because of overlapping times:
-- existing Coleman row is valid from 01-Jan-2003 until 31-Dec-9999.
INSERT INTO employees VALUES(
 'Coleman',
 55000,
 WMSYS.WM_PERIOD(TO_DATE('01-01-2004', 'MM-DD-YYYY'),

Constraint Management for Valid Time Support

Workspace Manager Valid Time Support 3-19

 TO_DATE('12-31-9999', 'MM-DD-YYYY'))
);
)
*
ERROR at line 6:
ORA-20010: unique key violation
ORA-06512: at "WM_DEVELOPER.OVM_INSERT_10", line 1
ORA-04088: error during execution of trigger 'WM_DEVELOPER.OVM_INSERT_10'

To make the statement in Example 3–14 succeed, first change the WM_
VALID.ValidTill attribute for the Coleman row to a timestamp reflecting 01-Jan-2004
or an earlier date.

3.7 Constraint Management for Valid Time Support
This section describes considerations related to valid time support that affect
referential integrity constraints and unique constraints.

3.7.1 Referential Integrity Constraints
If a referential integrity constraint exists between two version-enabled tables that
have valid time support, the valid time periods of rows are considered when the
constraint is enforced. For example, assume that a DEPARTMENTS table has a
MANAGER_ID column that is a foreign key referencing the EMPLOYEE_ID column in
an EMPLOYEES table (that is, the department manager must be an existing
employee). If both tables are version-enabled with valid time support, and if an
insert or update operation would result in a new DEPARTMENTS.MANAGER_ID
value, the operation will fail if the DEPARTMENTS.WM_VALID value is not within
the range of the EMPLOYEES.WM_VALID value for the employee who is being made
the department manager. (That is, the operation will fail if the new department
manager is not a valid employee for the time period specified or defaulted for the
insert or update operation.)

If either or both tables in a referential integrity constraint are not version-enabled
with valid time support, valid time periods are ignored in enforcing the constraint.

3.7.2 Unique Constraints
If a unique constraint exists in a version-enabled table with valid time support, the
valid time periods of rows are considered when the constraint is enforced. For
example, assume that an EMPLOYEES table has an EMPLOYEE_ID column that has a
unique constraint. If an insert or update operation would result in a new

Locking with Valid Time Support

3-20 Oracle Database Application Developer’s Guide - Workspace Manager

EMPLOYEE_ID value that is the same as an existing EMPLOYEE_ID value, the
operation will fail if the WM_VALID values of the existing and inserted rows overlap.
(That is, the operation will fail if the new employee and an existing employee have
the same ID numbers and their rows are both valid at any given time. However, the
operation will succeed if the valid time periods for the two employees do not
overlap.)

3.8 Locking with Valid Time Support
If a row in a version-enabled table with valid time support is locked, it is
automatically locked for its entire valid time period. There is no way to lock a row
for a specified time period.

Any updates in a pessimistically locked workspace will lock the rows seen from an
ancestor workspace as the updates are performed in the workspace. The locked
rows in ancestor workspaces will not be further updatable in their valid time
periods as long as they are locked.

For an explanation of Workspace Manager locking, see Section 1.3.

3.9 Metadata Views Affected by Valid Time Support
This section describes the effect on valid time support on Workspace Manager
metadata views. These views are documented in Chapter 5.

3.9.1 xxx_CONF Views and Valid Time Support
For a versioned-enabled table with valid time support, the xxx_CONF view
(described in Section 5.41) will include any temporal conflicts. Such a conflict results
when the valid time of a row in a parent workspace, containing the same key as a
row in its child workspace, overlaps with the valid time of that row in the child
workspace. Setting the session context valid time has no effect on the results of the
xxx_CONF views, because all applicable conflicts are displayed for the entire time
dimension.

For a version-enabled table with valid time support, a column named WM_VALID, of
type WM_PERIOD, is added to the xxx_CONF view, to indicate the time period
during which the row is valid. A column named WM_CONFLICTPERIOD, of type
WM_PERIOD, is also added to the view, to indicate the overlapping period of the
rows for which conflicts were detected.

Metadata Views Affected by Valid Time Support

Workspace Manager Valid Time Support 3-21

3.9.2 xxx_DIFF Views and Valid Time Support
For a version-enabled table with valid time support, the xxx_DIFF view (described
in Section 5.42) will include temporal differences for a primary key between two
distinct workspaces or savepoints. Such a difference occurs when a row is modified
(inserted, updated, or deleted) in either a parent or child workspace. If two rows
with the same primary key value are modified in both a parent and child
workspace, the two rows are only correlated in the xxx_DIFF view when the valid
time ranges of the rows overlap. Setting the session context valid time has no effect
on the results of the xxx_DIFF views, because all applicable differences are
displayed for the entire time dimension.

For a version-enabled table with valid time support, a column named WM_VALID, of
type WM_PERIOD, is added to the xxx_DIFF view, to indicate the time period during
which the row is valid. A column named WM_DIFFPERIOD, of type WM_PERIOD, is
also added to the view, to indicate the overlapping period of the rows for which a
difference was detected.

3.9.3 xxx_HIST Views and Valid Time Support
The xxx_HIST views (described in Section 5.43) include information about both
valid times and transaction times. It also includes audit information, such as the
name of the user that created the row. For a version-enabled table with valid time
support, a column named WM_VALID, of type WM_PERIOD, is added to the xxx_
HIST view, to indicate the time period during which the row is valid.

3.9.4 xxx_LOCK Views and Valid Time Support
For a version-enabled table with valid time support, a column named WM_VALID, of
type WM_PERIOD, is added to the xxx_LOCK view (described in Section 5.44), to
indicate the time period during which the row is valid. The row is locked for its
entire valid time period, so this is also the locking period.

3.9.5 xxx_MW Views and Valid Time Support
For a version-enabled table with valid time support, a column named WM_VALID, of
type WM_PERIOD, is added to the xxx_MW view (described in Section 5.45), to
indicate the time period during which the row is valid. To see only the rows that are
valid during a specific period, use the WM_OVERLAPS operator.

SQL* Loader Support for Valid Times

3-22 Oracle Database Application Developer’s Guide - Workspace Manager

3.10 SQL* Loader Support for Valid Times
You can use the SQL* Loader utility to perform bulk loading into version-enabled
tables with valid time support. You can include a valid time period for each row. If
you do not specify a valid time period for a row in the SQL*Loader data file, the
row is loaded and the WM_VALID period is set as from the current time until
changed.

For usage and reference information about the SQL*Loader utility, see Oracle
Database Utilities.

You can use the valid_time_update_mode parameter to the
CommitBulkLoading procedure to specify what happens when a row to be loaded
has a valid time range that overlaps the valid time range of an existing row having
the same primary key. The possible values for the valid_time_update_mode
parameter are:

� SEQUENCED: The bulk loaded row will be treated as a sequenced update of the
existing rows with overlapping time ranges.

� NON-SEQENCED: The bulk loaded row will be treated as a nonsequenced
update of the existing rows with overlapping time ranges.

� DISCARD: (the default): The bulk loaded row will be moved to the discards
table.

3.11 Adding Valid Time Support to an Existing Table
You can add valid time support to an existing version-enabled table by using the
AlterVersionedTable procedure. You can specify a valid time period to be set in the
WM_VALID column of all existing rows, or you can accept the default period of the
current timestamp until changed.

Example 3–15 creates a table named MY_TABLE, version-enables it without valid
time support, and then adds valid time support. After the valid time support is
added, the WM_VALID column contains the default valid time period.

Example 3–15 Adding Valid Time Support to an Existing Version-Enabled Table

CREATE TABLE my_table (id NUMBER PRIMARY KEY);
EXECUTE DBMS_WM.EnableVersioning ('my_table');
INSERT INTO my_table VALUES (1);
SELECT * FROM my_table;

 ID

Adding Valid Time Support to an Existing Table

Workspace Manager Valid Time Support 3-23

 1

EXECUTE DBMS_WM.AlterVersionedTable('my_table', 'ADD_VALID_TIME');
SELECT * FROM my_table;

 ID

WM_VALID(VALIDFROM, VALIDTILL)
--
 1
WM_PERIOD('09-JUN-2003 10:04:13 -04:00', NULL)

Adding Valid Time Support to an Existing Table

3-24 Oracle Database Application Developer’s Guide - Workspace Manager

Part II
Reference Information

This document has three parts:

� Part I provides conceptual and usage information about Workspace Manager.

� Part II provides reference information about the Workspace Manager PL/SQL
API (DBMS_WM package) and metadata views.

� Part III provides supplementary information (appendixes and a glossary).

Part II contains the following chapters with reference information:

� Chapter 4, "DBMS_WM Package: Reference"

� Chapter 5, "Workspace Manager Metadata Views"

DBMS_WM Package: Reference 4-1

4
DBMS_WM Package: Reference

Workspace Manager includes PL/SQL subprograms (procedures and functions), in
a package named DBMS_WM, that perform the available features of the product. This
chapter provides reference information on each subprogram.

The subprograms are presented in alphabetical order. For a brief description of
subprograms according to their logical groupings, see Section 1.15.

Errors (exceptions) that can occur with Workspace Manager subprograms are
documented in Appendix D, including the cause and suggested user action for each
error.

Syntax notes:

� The DBMS_WM public synonym for the Workspace Manager PL/SQL package
must be used with the subprogram name. The DBMS_WM public synonym is
included in the format and in any examples.

� Subprogram calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

EXECUTE DBMS_WM.CreateWorkspace ('NEWWORKSPACE');
EXECUTE dbms_wm.createworkspace ('NEWWORKSPACE');
EXECUTE dBms_Wm.cReatEwoRksPace ('NEWWORKSPACE');

Note: Most Workspace Manager subprograms are procedures, but
a few are functions. (A function returns a value; a procedure does
not return a value.)

Most functions have names starting with Get (such as
GetConflictWorkspace and GetWorkspace).

Add_Topo_Geometry_Layer

4-2 Oracle Database Application Developer’s Guide - Workspace Manager

Add_Topo_Geometry_Layer

Adds a topology geometry layer from a version-enabled feature table to a topology.

Format
DBMS_WM.Add_Topo_Geometry_Layer(

topology IN VARCHAR2,

table_name IN VARCHAR2,

column_name IN VARCHAR2,

tg_layer_type IN VARCHAR2);

Parameters

Usage Notes
This procedure has the same format and meaning as the SDO_TOPO.ADD_TOPO_
GEOMETRY_LAYER procedure, which is documented in Oracle Spatial Topology and
Network Data Models. However, you must use DBMS_WM.Add_Topo_Geometry_
Layer, and not SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER, to add a topology
geometry layer from a version-enabled feature table to a topology. For information
about Workspace Manager support for topologies, see Section 1.14.

Table 4–1 Add_Topo_Geometry_Layer Procedure Parameters

Parameter Description

topology Topology to which to add the topology geometry layer containing the
topology geometries in the specified column. The topology must have
been created using the SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name Name of the topology geometry layer table containing the column
specified in column_name.

column_name Name of the column (of type SDO_TOPO_GEOMETRY) containing the
topology geometries in the topology geometry layer to be added to the
topology.

tg_layer_type Type of topology geometry layer: POINT, LINE, CURVE, or POLYGON.

Add_Topo_Geometry_Layer

DBMS_WM Package: Reference 4-3

The first call to this procedure for a given topology creates the <topology-name>_
RELATION$ table, which is described in Oracle Spatial Topology and Network Data
Models.

An exception is raised if topology, table_name, or column_name does not exist,
if topology or table_name is not version-enabled, or if tg_layer_type is not
one of the supported values.

Examples
The following example adds a topology geometry layer to the CITY_DATA
topology. The topology geometry layer consists of polygon geometries in the
FEATURE column of the LAND_PARCELS table.

EXECUTE DBMS_WM.Add_Topo_Geometry_Layer('CITY_DATA', 'LAND_PARCELS', 'FEATURE',
'POLYGON');

AddAsParentWorkspace

4-4 Oracle Database Application Developer’s Guide - Workspace Manager

AddAsParentWorkspace

Adds a workspace as a parent workspace to a child workspace in a multiparent
workspace environment.

Syntax
DBMS_WM.AddAsParentWorkspace(

workspace IN VARCHAR2,
parent_workspace IN VARCHAR2,
auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
This procedure is part of the support for the multiparent workspaces feature, which
is described in Section 1.1.10. If workspace has only one parent workspace, this
procedure makes workspace a multiparent workspace. If workspace is already a
multiparent workspace, this procedure adds another parent workspace to
workspace.

An exception is raised if one or more of the following apply:

Table 4–2 AddAsParentWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace to which to add the parent workspace. The
name is case sensitive.

parent_workspace Name of the workspace to add as a parent workspace of workspace.
The name is case sensitive.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

AddAsParentWorkspace

DBMS_WM Package: Reference 4-5

� The value of the Workspace Manager system parameter ALLOW_MULTI_
PARENT_WORKSPACES is OFF.

� The value of the Workspace Manager system parameter CR_WORKSPACE_MODE
or NONR_WORKSPACE_MODE (whichever is applicable, depending on whether or
not workspace is a continually refreshed workspace) is OPTIMISTIC_
LOCKING.

� workspace or parent_workspace does not exist.

� parent_workspace is already in the ancestor hierarchy of workspace.

� There is a violation of a primary key constraint, referential integrity constraint,
or unique constraint in the view of the data in a version-enabled table in
workspace.

Examples
The following example adds Workspace4 as a parent workspace of Workspace3.
(See the hierarchy illustration in Figure 1–3 in Section 1.1.10.)

-- Allow multiparent workspaces. (Required for AddAsParentWorkspace)
EXECUTE DBMS_WM.SetSystemParameter ('ALLOW_MULTI_PARENT_WORKSPACES', 'ON');
-- Make Workspace3 multiparent by adding Workspace4 as a parent.
EXECUTE DBMS_WM.AddAsParentWorkspace ('Workspace3', 'Workspace4');

AlterSavepoint

4-6 Oracle Database Application Developer’s Guide - Workspace Manager

AlterSavepoint

Modifies the description of a savepoint.

Syntax
DBMS_WM.AlterSavepoint(

workspace IN VARCHAR2,
sp_name IN VARCHAR2,
sp_description IN VARCHAR2);

Parameters

Usage Notes
To see the current description of the savepoint, examine the DESCRIPTION column
value for the savepoint in the ALL_WORKSPACE_SAVEPOINTS metadata view,
which is described in Section 5.15.

An exception is raised if the user is not the workspace owner or savepoint owner or
does not have the WM_ADMIN_ROLE role.

Examples
The following example modifies the description of savepoint SP1 in the
NEWWORKSPACE workspace.

EXECUTE DBMS_WM.AlterSavepoint ('NEWWORKSPACE', 'SP1', 'First set of changes for
scenario');

Table 4–3 AlterSavepoint Procedure Parameters

Parameter Description

workspace Name of the workspace in which the savepoint was created. The name is
case sensitive.

sp_name Name of the savepoint. The name is case sensitive.

sp_description Description of the savepoint.

AlterVersionedTable

DBMS_WM Package: Reference 4-7

AlterVersionedTable

Alters a version-enabled table to add valid time support, rename a constraint, or
rename an index.

Syntax
DBMS_WM.AlterVersionedTable(

table_name IN VARCHAR2,
alter_option IN VARCHAR2,
parameter_options IN VARCHAR2 DEFAULT NULL,
ignore_last_error IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–4 BeginBulkLoading Procedure Parameters

Parameter Description

table_name Name of the version-enabled table to which to add valid time
support. The name is not case sensitive.

alter_option One of the following values: ADD_VALID_TIME to add valid time
support, RENAME_CONSTRAINT to rename a constraint, or RANAME_
INDEX to rename an index. See the Usage Notes for information
about when you must and can use this procedure to rename an index
or a constraint.

parameter_options A quoted string (in the general format 'keyword=value,
keyword2=value2, ...') containing keywords valid for the specified
alter_option parameter value. See the Usage Notes for keywords
that are valid for each alter_option parameter value.

ignore_last_error A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the previous
call to the BeginBulkLoading procedure. Information about the last
error is stored in the USER_WM_VT_ERRORS and ALL_WM_VT_
ERRORS metadata views, which are described in Chapter 5. See the
Usage Notes for more information.

FALSE (the default) does not ignore the last error, if any, that
occurred during the previous call to the BeginBulkLoading
procedure.

AlterVersionedTable

4-8 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
Use this procedure to add valid time support, rename a constraint, or rename an
index for an existing version-enabled table. For more information about adding
valid time support, see Section 3.11.

If the alter_option value is ADD_VALID_TIME, you can specify none, one, or
more of the following parameter_options keywords:

� validFrom: Starting time period to be set in the WM_VALID column of all
existing rows. The default value is the current timestamp.

� validTill: Ending time period to be set in the WM_VALID column of all
existing rows. The default value is UNTIL_CHANGED.

� fmt: Date format. The default value is 'mmddyyyyhh24miss'. The options are
the same as for the TO_TIMESTAMP_TZ function, which is described in Oracle
Database SQL Reference.

� nlsparam: Globalization support options. The options are the same as for the
TO_TIMESTAMP_TZ function, which is described in Oracle Database SQL
Reference.

If the alter_option value is RENAME_CONSTRAINT, you must specify both of the
following parameter_options keywords:

� constraint_name: The current name of the constraint to be renamed. The
name is not case sensitive.

� new_constraint_name: The new name for the constraint. The name is not
case sensitive.

If the alter_option value is RENAME_INDEX, you must specify all of the
following parameter_options keywords:

� index_owner: The name of the schema that owns the index to be renamed.
The schema name is not case sensitive.

� index_name: The current name of the index to be renamed. The name is not
case sensitive.

� new_index_name: The new name for the index. The name is not case sensitive.

If the name of a constraint or index on a version-enabled table is longer than 26
characters, you must use the AlterVersionedTable procedure if you want to rename
the constraint or index; you cannot use the ALTER TABLE (for a constraint) or
ALTER INDEX (for an index) statement with the RENAME clause. If you use the

AlterVersionedTable

DBMS_WM Package: Reference 4-9

AlterVersionedTable procedure, you do not need to include it between calls to the
BeginDDL and CommitDDL procedures.

If the name of the constraint or index on a version-enabled table is 26 or fewer
characters long, you can do either of the following to rename the constraint or
index: use the AlterVersionedTable procedure, or use the ALTER TABLE (for a
constraint) or ALTER INDEX (for an index) statement with the RENAME clause
between calls to the BeginDDL and CommitDDL procedures (as explained in
Section 1.8).

If a call to the AlterVersionedTable procedure fails, you should try to fix the cause of
the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS
metadata views to see the SQL statement and error message. Fix the cause of the
error, and then call the AlterVersionedTable procedure again with the default
ignore_last_error parameter value of FALSE. However, if the call still fails and
you cannot fix the cause of the error, and if you are sure that it is safe and
appropriate to ignore this error, then you have the option to ignore the error by
calling the AlterVersionedTable procedure with the ignore_last_error
parameter value of TRUE. Note that you are responsible for ensuring that it is safe
and appropriate to ignore the error.

An exception is raised if one or more of the following apply:

� table_name does not exist.

� alterOptions is not ADD_VALID_TIME.

Examples
The following example creates a table named MY_TABLE, version-enables it without
valid time support, and then adds valid time support. After the valid time support
is added, the WM_VALID column contains the default valid time period.

CREATE TABLE my_table (id NUMBER PRIMARY KEY);
EXECUTE DBMS_WM.EnableVersioning ('my_table');
INSERT INTO my_table VALUES (1);
SELECT * FROM my_table;

 ID

 1

EXECUTE DBMS_WM.AlterVersionedTable('my_table', 'ADD_VALID_TIME');
SELECT * FROM my_table;

 ID

AlterVersionedTable

4-10 Oracle Database Application Developer’s Guide - Workspace Manager

WM_VALID(VALIDFROM, VALIDTILL)
--
 1
WM_PERIOD('09-JUN-2003 10:04:13 -04:00', NULL)

The following example creates a table named SCOTT.MY_TABLE, creates an index
named MY_INDEX on the VALUE column in that table, version-enables the table, and
then renames the index to MY_NEW_INDEX.

CREATE TABLE scott.my_table (id NUMBER PRIMARY KEY, value INTEGER);
CREATE INDEX scott.my_index on scott.my_table(value);
EXECUTE DBMS_WM.EnableVersioning ('scott.my_table');
EXECUTE DBMS_WM.AlterVersionedTable ('scott.my_table', 'RENAME_INDEX',
 'index_owner=scott, index_name=my_index, new_index_name=my_new_index');

AlterWorkspace

DBMS_WM Package: Reference 4-11

AlterWorkspace

Modifies the description of a workspace.

Syntax
DBMS_WM.AlterWorkspace(

workspace IN VARCHAR2,
workspace_description IN VARCHAR2);

Parameters

Usage Notes
To see the current description of the workspace, examine the DESCRIPTION column
value for the savepoint in the ALL_WORKSPACES metadata view, which is
described in Section 5.16.

An exception is raised if the user is not the workspace owner or does not have the
WM_ADMIN_ROLE role.

Examples
The following example modifies the description of the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.AlterWorkspace ('NEWWORKSPACE', 'Testing proposed scenario B');

Table 4–5 AlterWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

workspace_description Description of the workspace.

BeginBulkLoading

4-12 Oracle Database Application Developer’s Guide - Workspace Manager

BeginBulkLoading

Starts the bulk loading process for a version-enabled table.

Syntax
DBMS_WM.BeginBulkLoading(

table_name IN VARCHAR2,
workspace IN VARCHAR2,
version IN INTEGER,
check_for_duplicates IN BOOLEAN DEFAULT TRUE,
ignore_last_error IN BOOLEAN DEFAULT FALSE,
single_transaction IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–6 BeginBulkLoading Procedure Parameters

Parameter Description

table_name Name of the version-enabled table into which data will be bulk
loaded. The name is not case sensitive.

workspace Name of the workspace in which bulk loading will be performed.
The name is case sensitive.

version Version number returned by the GetBulkLoadVersion function.

check_for_duplicates A Boolean value (TRUE or FALSE).

TRUE (the default) checks for rows in the data to be bulk loaded
that have the same values in primary key columns. For any
duplicate records, only the record with the lowest ROWID value
is kept in the table, and the rest are moved to the discards table
specified in the call to the CommitBulkLoading procedure. See the
Usage Notes for more information about this parameter.

FALSE does not check if any rows in the data to be bulk loaded
have the same values in primary key columns.

BeginBulkLoading

DBMS_WM Package: Reference 4-13

Usage Notes
Before you can begin bulk loading data into a version-enabled table, you must call
the GetBulkLoadVersion and BeginBulkLoading procedures. You must end the bulk
loading session by calling either the CommitBulkLoading procedure (to commit
changes made when the data was loaded) or the RollbackBulkLoading procedure
(to roll back changes made when the data was loaded). For more information about
bulk loading with Workspace Manager, see Section 1.7.

If single_transaction is FALSE (the default), the BeginBulkLoading procedure
drops some internal Workspace Manager views on the table, to prevent DML
operations and certain Workspace Manager operations on the table; however, this
also prevents any queries from being made using the specified version-enabled
table. Regardless of the single_transaction parameter value, and especially if
it is FALSE, you should complete the bulk loading as quickly as possible and at a
time when applications and users will not need to access the table. The value of the

ignore_last_error A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the
previous call to the BeginBulkLoading procedure. Information
about the last error is stored in the USER_WM_VT_ERRORS and
ALL_WM_VT_ERRORS metadata views, which are described in
Chapter 5. See the Usage Notes for more information.

FALSE (the default) does not ignore the last error, if any, that
occurred during the previous call to the BeginBulkLoading
procedure.

single_transaction A Boolean value (TRUE or FALSE).

TRUE causes Workspace Manager not to perform an internal
commit operation after each of several steps that it will perform
after you call the CommitBulkLoading procedure, but instead to
perform a commit only after it has performed all the necessary
steps. TRUE also allows queries to be made on the version-enabled
table.

FALSE (the default) causes Workspace Manager to perform an
internal commit operation after each of several steps that it will
perform after you call the CommitBulkLoading procedure, and it
also disallows queries to be made on the table until a
CommitBulkLoading or RollbackBulkLoading operation is
complete.

See the Usage Notes for more information about this parameter.

Table 4–6 (Cont.) BeginBulkLoading Procedure Parameters

Parameter Description

BeginBulkLoading

4-14 Oracle Database Application Developer’s Guide - Workspace Manager

single_transaction parameter must be the same for both the
BeginBulkLoading and CommitBulkLoading procedures for a bulk loading session
with a specified table.

A TRUE value for the check_for_duplicates parameter does not cause any
existing data in the version-enabled table to be checked. If an existing row in the
version in which data is being bulk loaded (which could be the latest version of a
workspace or the root version) has the same primary key values as a row in the data
to be bulk loaded, the behavior depends on the history option setting for the table:
if VIEW_WO_OVERWRITE is set, the newly loaded row is chained to the existing row
that has the same primary key values; if VIEW_WO_OVERWRITE is not set, the new
data is not bulk loaded but is instead moved to the discards table.

If a call to the BeginBulkLoading procedure fails, you should try to fix the cause of
the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS
metadata views to see the SQL statement and error message. Fix the cause of the
error, and then call the BeginBulkLoading procedure again with the default
ignore_last_error parameter value of FALSE. However, if the call still fails and
you cannot fix the cause of the error, and if you are sure that it is safe and
appropriate to ignore this error, then you have the option to ignore the error by
calling the BeginBulkLoading procedure with the ignore_last_error parameter
value of TRUE. Note that you are responsible for ensuring that it is safe and
appropriate to ignore the error.

If performance is an issue, carefully consider whether or not you need to check for
duplicate records, because a check_for_duplicates value of TRUE (the default)
causes Workspace Manager to perform additional internal processing.

An exception is raised if one or more of the following apply:

� table_name does not exist.

� table_name is not version-enabled.

� The user does not own the table or does not have the WM_ADMIN_ROLE role.

Examples
The following example gets a bulk load version number for the W1 workspace, and
starts the bulk load operation into the EMP table in that workspace.

DECLARE
 version INTEGER;
BEGIN
 SELECT DBMS_WM.GetBulkLoadVersion ('W1') INTO version FROM DUAL;
 DBMS_WM.BeginBulkLoading ('EMP', 'W1', version);

BeginBulkLoading

DBMS_WM Package: Reference 4-15

END;
/

BeginDDL

4-16 Oracle Database Application Developer’s Guide - Workspace Manager

BeginDDL

Starts a DDL (data definition language) session for a specified table.

Syntax
DBMS_WM.BeginDDL(

table_name IN VARCHAR2);

Parameters

Usage Notes
This procedure starts a DDL session, and it creates a special table whose name is the
same as table_name but with _LTS added to the table name. After calling this
procedure, you can perform one or more DDL operations on the table or any
indexes or triggers that are based on the table, and then call either the CommitDDL
or RollbackDDL procedure.

In addition to creating the special <table-name>_LTS table, the procedure creates
other objects:

� The <table-name>_LTS table has the same triggers, columns, and indexes as the
<table-name> table.

� For each parent table with which the <table-name> table has a referential
integrity constraint, the same constraint is defined for the <table-name>_LTS
table.

� Triggers, columns, and referential integrity constraints on the <table-name>_LTS
table have the same names as the corresponding ones on the <table-name> table.

� For each index on the <table-name> table, the corresponding index on the
<table-name>_LTS table has a name in the form <index-name>_LTS.

� The primary key constraint on the <table-name>_LTS table has a name in the
form <primary-key>_LTS.

Table 4–7 BeginDDL Procedure Parameters

Parameter Description

table_name Name of the version-enabled table. The name is not case sensitive.

BeginDDL

DBMS_WM Package: Reference 4-17

� All unique constraints on the <table-name>_LTS table have a name in the form
<unique-constraint-name>_LTS.

For detailed information about performing DDL operations related to
version-enabled tables, see Section 1.8; and for DDL operations on version-enabled
tables in an Oracle replication environment, see also Section C.3.

An exception is raised if one or more of the following apply:

� table_name does not exist or is not version-enabled.

� table_name has a domain index defined on it, and the user has not been
directly granted the CREATE TABLE and CREATE SEQUENCE privileges.

� An open DDL session exists for table_name. (That is, the BeginDDL
procedure has already been called specifying this table, and the CommitDDL or
RollbackDDL procedure has not been called specifying this table.)

Examples
The following example begins a DDL session, adds a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the special table named COLA_
MARKETING_BUDGET_LTS, and ends the DDL session by committing the change.

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');
ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
EXECUTE DBMS_WM.CommitDDL('COLA_MARKETING_BUDGET');

BeginResolve

4-18 Oracle Database Application Developer’s Guide - Workspace Manager

BeginResolve

Starts a conflict resolution session.

Syntax
DBMS_WM.BeginResolve(

workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure starts a conflict resolution session. While this procedure is
executing, the workspace is frozen in 1WRITER mode, as explained in Section 1.1.5.

After calling this procedure, you can execute the ResolveConflicts procedure as
needed for various tables that have conflicts, and then call either the
CommitResolve or RollbackResolve procedure. For more information about conflict
resolution, see Section 1.1.4.

An exception is raised if one or more of the following apply:

� There are one or more open database transactions in workspace.

� The user executing the BeginResolve procedure does not have the privilege to
access workspace and its parent workspace.

Examples
The following example starts a conflict resolution session in Workspace1.

EXECUTE DBMS_WM.BeginResolve ('Workspace1');

Table 4–8 BeginResolve Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

ChangeWorkspaceType

DBMS_WM Package: Reference 4-19

ChangeWorkspaceType

Changes a workspace from not continually refreshed to continually refreshed.
(Continually refreshed workspaces are explained in Section 1.1.9.)

Syntax
DBMS_WM.ChangeWorkspaceType(

workspace IN VARCHAR2,
workspace_type IN VARCHAR2 DEFAULT DBMS_WM.CR_WORKSPACE_TYPE,
auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
For this release, you can only change a workspace that is not continually refreshed
to continually refreshed; you cannot change a continually refreshed workspace to
not continually refreshed.

An exception is raised if one or more of the following occur:

� The user is not the owner of workspace, and the user does not have the WM_
ADMIN_ROLE role.

� workspace_type is not valid.

Table 4–9 ChangeWorkspaceType Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

workspace_
type

Must be DBMS_WM.CR_WORKSPACE_TYPE (the default), for continually
refreshed.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

ChangeWorkspaceType

4-20 Oracle Database Application Developer’s Guide - Workspace Manager

� The workspace type cannot be changed. For example, the change cannot be
made if the Workspace Manager system parameter CR_WORKSPACE_MODE is set
to PESSIMISTIC_LOCKING, but the NONCR_WORKSPACE_MODE parameter is
set to OPTIMISTIC_LOCKING and there is versioned data in any continually
refreshed workspace.

Examples
The following example changes the NEWWORKSPACE workspace type from not
continually refreshed to continually refreshed.

EXECUTE DBMS_WM.ChangeWorkspaceType ('NEWWORKSPACE');

CommitBulkLoading

DBMS_WM Package: Reference 4-21

CommitBulkLoading

Ends the bulk loading process for a version-enabled table by committing the bulk
load changes.

Syntax
DBMS_WM.CommitBulkLoading(

table_name IN VARCHAR2,
discards_table IN VARCHAR2,
check_for_duplicates IN BOOLEAN DEFAULT TRUE,
enforceUCFlag IN BOOLEAN DEFAULT TRUE,
enforceRICFlag IN BOOLEAN DEFAULT TRUE,
ignore_last_error IN BOOLEAN DEFAULT FALSE,
single_transaction IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–10 CommitBulkLoading Procedure Parameters

Parameter Description

table_name Name of the version-enabled table into which data has been bulk
loaded. The name is not case sensitive.

discards_table Name of the table into which discard records are inserted. The
name is not case sensitive. If the table does not already exist, it is
created.

check_for_duplicates A Boolean value (TRUE or FALSE).

TRUE (the default) checks for rows in the data to be bulk loaded
that have the same values in primary key columns. For any
duplicate records, only the record with the lowest ROWID value
is kept in the table, and the rest are moved to the discards table.
See the Usage Notes for more information about this parameter.

FALSE does not check if any rows in the data to be bulk loaded
have the same values in primary key columns.

enforceUCFlag A Boolean value (TRUE or FALSE).

TRUE (the default) enforces any unique constraints defined on
to_table, ensuring that the bulk load operation does not violate
any such constraints.

FALSE does not enforce any unique constraints defined on to_
table for the bulk load operation.

CommitBulkLoading

4-22 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
For information about the requirements for bulk loading data into version-enabled
tables, see Section 1.7.

This procedure generates versioning metadata for newly loaded data and
synchronizes the newly loaded data with the existing versioned data in the table. It
can also enforce unique and referential constraints on the newly loaded data. It
re-creates all the views that were dropped by the BeginBulkLoading procedure.

A TRUE value for the check_for_duplicates parameter does not cause any
existing data in the version-enabled table to be checked. If an existing row in the

enforceRICFlag A Boolean value (TRUE or FALSE).

TRUE (the default) enforces any referential integrity constraints
defined on to_table, ensuring that the bulk load operation does
not violate any such constraints.

FALSE does not enforce any referential integrity constraints
defined on to_table for the bulk load operation.

ignore_last_error A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the
previous call to the CommitBulkLoading procedure. Information
about the last error is stored in the USER_WM_VT_ERRORS and
ALL_WM_VT_ERRORS metadata views, which are described in
Chapter 5. See the Usage Notes for more information.

FALSE (the default) does not ignore the last error, if any, that
occurred during the previous call to the CommitBulkLoading
procedure.

single_transaction A Boolean value (TRUE or FALSE).

TRUE causes Workspace Manager not to perform an internal
commit operation after each of several steps that it performs after
you call the CommitBulkLoading procedure, but instead to
perform a commit only after it has performed all the necessary
steps.

FALSE (the default) causes Workspace Manager to perform an
internal commit operation after each of several steps that it
performs after you call the CommitBulkLoading procedure.

The value of this parameter must be the same as when you called
the BeginBulkLoading procedure specifying the table in table_
name.

Table 4–10 (Cont.) CommitBulkLoading Procedure Parameters

Parameter Description

CommitBulkLoading

DBMS_WM Package: Reference 4-23

version in which data is being bulk loaded (which could be the latest version of a
workspace or the root version) has the same primary key values as a row in the data
to be bulk loaded, the behavior depends on the history option setting for the table:
if VIEW_WO_OVERWRITE is set, the newly loaded row is chained to the existing row
that has the same primary key values; if VIEW_WO_OVERWRITE is not set, the new
data is not bulk loaded but is instead moved to the discards table.

If a call to the CommitBulkLoading procedure fails, you should try to fix the cause
of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS
metadata views to see the SQL statement and error message. Fix the cause of the
error, and then call the CommitBulkLoading procedure again with the default
ignore_last_error parameter value of FALSE. However, if the call still fails and
you cannot fix the cause of the error, and if you are sure that it is safe and
appropriate to ignore this error, then you have the option to ignore the error by
calling the CommitBulkLoading procedure with the ignore_last_error
parameter value of TRUE. Note that you are responsible for ensuring that it is safe
and appropriate to ignore the error.

Note the following performance considerations:

� A TRUE value for check_for_duplicates requires additional processing
time, and a TRUE value for enforceUCFlag or enforceRICFlag may require
additional processing time.

� If performance is an issue, carefully consider whether or not you need to check
for duplicate records.

� If the table does not have unique or referential constraints, setting the
enforceUCFlag or enforceRICFlag parameter to TRUE does not have a
significant effect on performance.

An exception is raised if one or more of the following apply:

� table_name does not exist.

� table_name is not version-enabled.

� The BeginBulkLoading procedure has not been called on the table.

� The user does not own the table or does not have the WM_ADMIN_ROLE role.

Examples
The following example commits changes made to the EMP table during a bulk load
operation, and specifies DISCARDS as the table to hold discard records.

EXECUTE DBMS_WM.CommitBulkLoading ('EMP', 'DISCARDS');

CommitDDL

4-24 Oracle Database Application Developer’s Guide - Workspace Manager

CommitDDL

Commits DDL (data definition language) changes made during a DDL session for a
specified table, and ends the DDL session.

Syntax
DBMS_WM.CommitDDL(

table_name IN VARCHAR2,
ignore_last_error IN BOOLEAN DEFAULT FALSE,
enforce_unique_constraints IN BOOLEAN DEFAULT FALSE,
enforce_RICs IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–11 CommitDDL Procedure Parameters

Parameter Description

table_name Name of the version-enabled table. The name is not case sensitive.

ignore_last_
error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the previous call
to the CommitDDL procedure. Information about the last error is stored
in the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS metadata
views, which are described in Chapter 5. See the Usage Notes for more
information.

FALSE (the default) does not ignore the last error, if any, that occurred
during the previous call to the CommitDDL procedure.

enforce_
unique_
constraints

A Boolean value (TRUE or FALSE).

TRUE enforces any unique constraints defined on table_name on
existing versioned data in the table. This ensures that the DDL changes
do not cause any such constraints to be violated, but it causes Workspace
Manager to take additional time to perform the operation.

FALSE (the default) does not enforce any unique constraints defined on
table_name on existing versioned data in the table.

CommitDDL

DBMS_WM Package: Reference 4-25

Usage Notes
This procedure commits changes that were made to a version-enabled table and to
any indexes, triggers, and referential integrity constraints based on the
version-enabled table during a DDL session. It also deletes the special <table-name>_
LTS table that was created by the BeginDDL procedure.

For detailed information about performing DDL operations related to
version-enabled tables, see Section 1.8; and for DDL operations on version-enabled
tables in an Oracle replication environment, see also Section C.3.

The enforce_unique_constraints and enforce_RICs parameter settings
apply only to existing versioned data, and do not affect whether or not existing
constraints are enforced for future DML operations on the table.

If a call to the CommitDDL procedure fails, the table is left in an inconsistent state.
If this occurs, you should try to fix the cause of the error. Examine the USER_WM_
VT_ERRORS and ALL_WM_VT_ERRORS metadata views to see the SQL statement
and error message. For example, the CommitDDL procedure might have failed
because the tablespace was not large enough to add a column. Fix the cause of the
error, and then call the CommitDDL procedure again with the default ignore_
last_error parameter value of FALSE. However, if the call still fails and you
cannot fix the cause of the error, and if you are sure that it is safe and appropriate to
ignore this error, then you have the option to ignore the error by calling the
CommitDDL procedure with the ignore_last_error parameter value of TRUE.
Note that you are responsible for ensuring that it is safe and appropriate to ignore
the error.

An exception is raised if one or more of the following apply:

� table_name does not exist or is not version-enabled.

enforce_RICs A Boolean value (TRUE or FALSE).

TRUE enforces any referential integrity constraints defined on table_
name on existing versioned data in the table. This ensures that the
changes do not cause any such constraints to be violated, but it causes
Workspace Manager to take additional time to perform the operation.

FALSE (the default) does not enforce any referential integrity constraints
defined on table_name on existing versioned data in the table.

Table 4–11 (Cont.) CommitDDL Procedure Parameters

Parameter Description

CommitDDL

4-26 Oracle Database Application Developer’s Guide - Workspace Manager

� table_name has a domain index defined on it, and the user has not been
directly granted the CREATE TABLE and CREATE SEQUENCE privileges.

� An open DDL session does not exist for table_name. (That is, the BeginDDL
procedure has not been called specifying this table, or the CommitDDL or
RollbackDDL procedure was already called specifying this table.)

Some invalid DDL operations also cause an exception when CommitDDL
procedure is called. See Section 1.8 for information about DDL operations that are
supported.

Examples
The following example begins a DDL session, adds a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the special table named COLA_
MARKETING_BUDGET_LTS, and ends the DDL session by committing the change.

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');
ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
EXECUTE DBMS_WM.CommitDDL('COLA_MARKETING_BUDGET');

CommitResolve

DBMS_WM Package: Reference 4-27

CommitResolve

Ends a conflict resolution session and saves (makes permanent) any changes in the
workspace since the BeginResolve procedure was executed.

Syntax
DBMS_WM.CommitResolve(

workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure ends the current conflict resolution session (started by the
BeginResolve procedure), and saves all changes in the workspace since the start of
the conflict resolution session. Contrast this procedure with the RollbackResolve
procedure, which discards all changes.

For more information about conflict resolution, see Section 1.1.4.

An exception is raised if one or more of the following apply:

� There are one or more open database transactions in workspace.

� The procedure was called by a user that does not have the WM_ADMIN_ROLE
role or that did not execute the BeginResolve procedure on workspace.

Examples
The following example ends the conflict resolution session in Workspace1 and
saves all changes.

EXECUTE DBMS_WM.CommitResolve ('Workspace1');

Table 4–12 CommitResolve Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

CompressWorkspace

4-28 Oracle Database Application Developer’s Guide - Workspace Manager

CompressWorkspace

Deletes removable savepoints in a workspace and minimizes the Workspace
Manager metadata structures for the workspace. (Removable savepoints are explained
in Section 1.1.2.)

Syntax
DBMS_WM.CompressWorkspace(

workspace IN VARCHAR2,
compress_view_wo_overwrite IN BOOLEAN
firstSP IN VARCHAR2 DEFAULT NULL,
secondSP IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
commit_in_batches IN BOOLEAN DEFAULT FALSE,
batch_size IN VARCHAR2 DEFAULT 'PRIMARY_KEY_RANGE',
remove_latest_deleted_rows IN BOOLEAN DEFAULT FALSE);

or

DBMS_WM.CompressWorkspace(
workspace IN VARCHAR2,
firstSP IN VARCHAR2 DEFAULT NULL,
secondSP IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
commit_in_batches IN BOOLEAN DEFAULT FALSE,
batch_size IN VARCHAR2 DEFAULT 'PRIMARY_KEY_RANGE',
remove_latest_deleted_rows IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–13 CompressWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

CompressWorkspace

DBMS_WM Package: Reference 4-29

compress_
view_wo_
overwrite

A Boolean value (TRUE or FALSE).

TRUE causes history information between the affected savepoints to be deleted
even if VIEW_WO_OVERWRITE was specified when versioning was enabled.

FALSE causes history information (between the affected savepoints) for a table
not to be deleted if VIEW_WO_OVERWRITE was specified when versioning was
enabled. (If VIEW_WO_OVERWRITE was not specified for a table, history
information for the table is deleted regardless of the parameter value.) FALSE
is assumed if the procedure format without this parameter is used.

firstSP First savepoint. Savepoint names are case sensitive.

If only workspace and firstSP are specified, all removable savepoints
between workspace creation and firstSP (but not including firstSP) are
deleted.

If workspace, firstSP, and secondSP are specified, all removable
savepoints from firstSP (and including firstSP if it is a removable
savepoint) to secondSP (but not including secondSP) are deleted.

If only workspace is specified (no savepoints), all removable savepoints in
the workspace are deleted.

secondSP Second savepoint. All removable savepoints from firstSP (and including
firstSP if it is a removable savepoint) to secondSP (but not including
secondSP) are deleted.

However, if secondSP is LATEST, all removable savepoints from firstSP
(and including firstSP if it is a removable savepoint) to the end of the
workspace are deleted.

Savepoint names are case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

Table 4–13 (Cont.) CompressWorkspace Procedure Parameters

Parameter Description

CompressWorkspace

4-30 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
You can compress a workspace when the explicit savepoints (all or some of them) in
the workspace are no longer needed. The compression operation is useful for the
following reasons:

� You can reuse savepoint names after they are deleted. (You cannot create a
savepoint that has the same name as an existing savepoint.)

commit_in_
batches

A Boolean value (TRUE or FALSE).

TRUE causes an internal commit operation to be performed after compression
operations on batch_size rows in version-enabled tables. Periodic commit
operations can be useful or necessary if version-enabled tables have many
rows affected by the compression, which can cause substantial Oracle
database resources (such as rollback segments and undo tablespaces) to be
used. If you specify TRUE, the auto_commit value must also be TRUE.

FALSE (the default) causes internal commit operations not to be performed
during the compression operation.

batch_size Batch size for internal commit operations if commit_in_batches is TRUE;
otherwise, the parameter is ignored. If specified, must be TABLE or PRIMARY_
KEY_RANGE.

TABLE causes an internal commit operation to be performed after
compressing each version-enabled table that needs to be compressed.

PRIMARY_KEY_RANGE specifies that each table is divided into batches of
different ranges of primary key values, and an internal commit operation is to
be performed after compressing each batch of rows in each version-enabled
table that needs to be compressed. You must previously have generated
statistics on the first column of the primary key, such as by using the ANALYZE
TABLE statement on the <table_name>_LT table associated with each affected
version-enabled table. See the Usage Notes for more information. The
following example generates histogram statistics:

ANALYZE TABLE cola_marketing_budget_lt ESTIMATE
STATISTICS FOR COLUMNS SIZE 50 product_id;

remove_
latest_
deleted_
rows

A Boolean value (TRUE or FALSE).

TRUE causes any LATEST row that has been deleted and that will not
adversely affect conflict resolution to be removed, if workspace is LIVE. A
value of TRUE is ignored for other workspaces.)

FALSE (the default) causes any LATEST row that has been deleted to be
preserved.

Table 4–13 (Cont.) CompressWorkspace Procedure Parameters

Parameter Description

CompressWorkspace

DBMS_WM Package: Reference 4-31

� Runtime performance for Workspace Manager operations is improved.

� Less disk storage is used for Workspace Manager structures.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode, as explained in Section 1.1.5.

A workspace cannot be compressed if there are any sessions in the workspace
(except for the LIVE workspace), or if any user has executed a GotoDate operation
or a GotoSavepoint operation specifying a savepoint in the workspace.

If the procedure format without the compress_view_wo_overwrite parameter
is used, a value of FALSE is assumed for the parameter.

For information about VIEW_WO_OVERWRITE and other history options, see the
information about the EnableVersioning procedure.

To see if a version-enabled table can be compressed in primary key range batches,
check the value of the BATCH_SIZE column in the WM_COMPRESS_BATCH_
SIZES metadata view, which is described in Section 5.36.

To specify a batch_size value of PRIMARY_KEY_RANGE, you must first generate
either histogram statistics (for columns of type NUMBER, INTEGER, DATE,
TIMESTAMP, CHAR, or VARCHAR2) or general statistics (for columns of type NUMBER,
INTEGER, DATE, or TIMESTAMP) on the first column of the primary key. The
statement ANALYZE TABLE ... COMPUTE STATISTICS generates general
statistics. If general but not histogram statistics are available for columns of type
NUMBER, INTEGER, DATE, or TIMESTAMP, the Workspace Manager system
parameter NUMBER_OF_COMPRESS_BATCHES is used to compute the number of
batches when batch_size is specified as PRIMARY_KEY_RANGE. For more
information about statistics, see Oracle Database Performance Tuning Guide.

An exception is raised if the user does not have the privilege to access and merge
changes in workspace.

To compress a workspace and all its descendant workspaces, use the
CompressWorkspaceTree procedure.

Examples
The following example compresses NEWWORKSPACE.

EXECUTE DBMS_WM.CompressWorkspace ('NEWWORKSPACE');

The following example compresses NEWWORKSPACE, deleting all explicit savepoints
between the creation of the workspace and the savepoint SP1.

CompressWorkspace

4-32 Oracle Database Application Developer’s Guide - Workspace Manager

EXECUTE DBMS_WM.CompressWorkspace ('NEWWORKSPACE', 'SP1');

The following example compresses NEWWORKSPACE, deleting the explicit savepoint
SP1 and all explicit savepoints up to but not including SP2.

EXECUTE DBMS_WM.CompressWorkspace ('NEWWORKSPACE', 'SP1', 'SP2');

The following example compresses B_focus_1, accepts the default values for the
firstSP and secondSP parameters (that is, deletes all explicit savepoints), and
specifies FALSE for the auto_commit parameter.

EXECUTE DBMS_WM.CompressWorkspace ('B_focus_1', auto_commit => FALSE);

The following example analyzes the COLA_MARKETING_BUDGET_LT table to
generate the necessary histogram statistics for the next statement, and then it
compresses B_focus_1. The call to the CompressWorkspace procedure accepts
the default values for the firstSP, secondSP, and auto_commit parameters;
specifies TRUE for the commit_in_batches parameter; and specifies PRIMARY_
KEY_RANGE for the batch_size parameter.

ANALYZE TABLE cola_marketing_budget_lt ESTIMATE STATISTICS FOR COLUMNS SIZE 50
product_id;
EXECUTE DBMS_WM.CompressWorkspace ('B_focus_1', NULL, NULL, NULL, TRUE,
'PRIMARY_KEY_RANGE');

CompressWorkspaceTree

DBMS_WM Package: Reference 4-33

CompressWorkspaceTree

Deletes removable savepoints in a workspace and all its descendant workspaces.
(Removable savepoints are explained in Section 1.1.2.) It also minimizes the
Workspace Manager metadata structures for the affected workspaces, and
eliminates any redundant data that might arise from the deletion of the savepoints.

Syntax
DBMS_WM.CompressWorkspaceTree(

workspace IN VARCHAR2,
compress_view_wo_overwrite IN BOOLEAN DEFAULT FALSE,
auto_commit IN BOOLEAN DEFAULT TRUE,
commit_in_batches IN BOOLEAN DEFAULT FALSE,
batch_size IN VARCHAR2 DEFAULT 'PRIMARY_KEY_RANGE',
remove_latest_deleted_rows IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–14 CompressWorkspaceTree Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

compress_
view_wo_
overwrite

A Boolean value (TRUE or FALSE).

TRUE causes history information to be deleted even if VIEW_WO_OVERWRITE
was specified when versioning was enabled.

FALSE (the default) causes history information for a table not to be deleted if
VIEW_WO_OVERWRITE was specified when versioning was enabled. (If VIEW_
WO_OVERWRITE was not specified for a table, history information for the table
is deleted regardless of the parameter value.)

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

CompressWorkspaceTree

4-34 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
You can compress a workspace and all its descendant workspaces when the explicit
savepoints in the affected workspaces are no longer needed (for example, if you will
not need to go to or roll back to any of these savepoints). For example, in the
hierarchy shown in Figure 1–1 in Section 1.1.1, a CompressWorkspaceTree operation
specifying Workspace1 compresses Workspace1, Workspace2, and Workspace3. (For
an explanation of database workspace hierarchy, see Section 1.1.1.)

commit_in_
batches

A Boolean value (TRUE or FALSE).

TRUE causes an internal commit operation to be performed after compression
operations on batch_size rows in version-enabled tables. Periodic commit
operations can be useful or necessary if version-enabled tables have many
rows affected by the compression, which can cause substantial Oracle
database resources (such as rollback segments and undo tablespaces) to be
used. If you specify TRUE, the auto_commit value must also be TRUE.

FALSE (the default) causes internal commit operations not to be performed
during the compression operation.

batch_size Batch size for internal commit operations if commit_in_batches is TRUE;
otherwise, the parameter is ignored. If specified, must be TABLE or PRIMARY_
KEY_RANGE.

TABLE causes an internal commit operation to be performed after
compressing each version-enabled table that needs to be compressed.

PRIMARY_KEY_RANGE (the default) specifies that each table is divided into
batches of different ranges of primary key values, and an internal commit
operation is to be performed after compressing each batch of rows in each
version-enabled table that needs to be compressed. You must previously have
generated statistics on the first column of the primary key, such as by using
the ANALYZE TABLE statement on the <table_name>_LT table associated with
each affected version-enabled table. See the Usage Notes for more
information. The following example generates histogram statistics:

ANALYZE TABLE cola_marketing_budget_lt ESTIMATE
STATISTICS FOR COLUMNS SIZE 50 product_id;

remove_
latest_
deleted_
rows

A Boolean value (TRUE or FALSE).

TRUE causes any LATEST row that has been deleted and that will not
adversely affect conflict resolution to be removed, if workspace is LIVE. A
value of TRUE is ignored for other values of the workspace parameter.)

FALSE (the default) causes any LATEST row that has been deleted to be
preserved.

Table 4–14 (Cont.) CompressWorkspaceTree Procedure Parameters

Parameter Description

CompressWorkspaceTree

DBMS_WM Package: Reference 4-35

The compression operation is useful for the following reasons:

� You can reuse savepoint names after they are deleted. (You cannot create a
savepoint that has the same name as an existing savepoint.)

� Runtime performance for Workspace Manager operations is improved.

� Less disk storage is used for Workspace Manager structures.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode, as explained in Section 1.1.5.

A workspace cannot be compressed if there are any sessions in the workspace
(except for the LIVE workspace), or if any user has executed a GotoDate operation
or a GotoSavepoint operation specifying a savepoint in the workspace.

To see if a version-enabled table can be compressed in primary key range batches,
check the value of the BATCH_SIZE column in the WM_COMPRESS_BATCH_
SIZES metadata view, which is described in Section 5.36.

To specify a batch_size value of PRIMARY_KEY_RANGE, you must first generate
either histogram statistics (for columns of type NUMBER, INTEGER, DATE,
TIMESTAMP, CHAR, or VARCHAR2) or general statistics (for columns of type
NUMBER, INTEGER, DATE, or TIMESTAMP) on the first column of the primary key.
The statement ANALYZE TABLE ... COMPUTE STATISTICS generates general
statistics. If general but not histogram statistics are available for columns of type
NUMBER, INTEGER, DATE, or TIMESTAMP, the Workspace Manager system
parameter NUMBER_OF_COMPRESS_BATCHES is used to compute the number of
batches when batch_size is specified as PRIMARY_KEY_RANGE. For more
information about statistics, see Oracle Database Performance Tuning Guide.

An exception is raised if the user does not have the privilege to access and merge
changes in workspace.

If the CompressWorkspaceTree operation fails in any affected workspace, the entire
operation is rolled back, and no workspaces are compressed.

To compress a single workspace (deleting all explicit savepoints or just some of
them), use the CompressWorkspace procedure.

Examples
The following example compresses NEWWORKSPACE and all its descendant
workspaces.

EXECUTE DBMS_WM.CompressWorkspaceTree ('NEWWORKSPACE');

CompressWorkspaceTree

4-36 Oracle Database Application Developer’s Guide - Workspace Manager

The following example compresses NEWWORKSPACE and all its descendant
workspaces, accepts the default value for the compress_view_wo_overwrite
parameter, and specifies FALSE for the auto_commit parameter.

EXECUTE DBMS_WM.CompressWorkspaceTree ('NEWWORKSPACE', auto_commit => FALSE);

The following example compresses NEWWORKSPACE and all its descendant
workspaces; accepts the default value for the compress_view_wo_overwrite
and auto_commit parameters; specifies TRUE for the commit_in_batches
parameter; and specifies PRIMARY_KEY_RANGE for the batch_size parameter.

EXECUTE DBMS_WM.CompressWorkspaceTree ('NEWWORKSPACE', NULL, NULL, TRUE,
'PRIMARY_KEY_RANGE');

CopyForUpdate

DBMS_WM Package: Reference 4-37

CopyForUpdate

Allows LOB columns (BLOB, CLOB, or NCLOB) in version-enabled tables to be
modified. Use this procedure only if a version-enabled table has any LOB columns.

Syntax
DBMS_WM.CopyForUpdate(

table_name IN VARCHAR2,
where_clause IN VARCHAR2 DEFAULT '');

Parameters

Usage Notes
This procedure is intended for use only with version-enabled tables containing one
or more large object (LOB) columns. The CopyForUpdate procedure must be used
because updates performed using the DBMS_LOB package do not fire INSTEAD OF
triggers on the versioning views. Workspace Manager creates INSTEAD OF triggers
on the versioning views to implement the copy-on-write semantics. (For non-LOB
columns, you can directly perform the update operation, and the triggers work.)

Examples
The following example updates the SOURCE_CLOB column of TABLE1 for the
document with DOC_ID = 1.

 Declare
 clob_var

Table 4–15 CopyForUpdate Procedure Parameters

Parameter Description

table_name Name of the table containing one or more LOB columns. The name is not
case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows
affected. Example: 'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows in table_name
are affected.

CopyForUpdate

4-38 Oracle Database Application Developer’s Guide - Workspace Manager

 Begin
 /* This procedure copies the LOB columns if necessary, that is,
 if the row with doc_id = 1 has not been versioned in the
 current version */
 dbms_wm.copyForUpdate('table1', 'doc_id = 1');

 select source_clob into clob_var
 from table1
 where doc_id = 1 for update;

 dbms_lob.write(clob_var,<amount>, <offset>, buff);

 End;

CreateSavepoint

DBMS_WM Package: Reference 4-39

CreateSavepoint

Creates a savepoint for the current version.

Syntax
DBMS_WM.CreateSavepoint(
 workspace IN VARCHAR2,
 savepoint_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
There are no explicit privileges associated with savepoints; any user who can access
a workspace can create a savepoint in the workspace.

This procedure can be performed while there are users in the workspace; there can
be open database transactions.

While this procedure is executing, the current workspace is frozen in READ_ONLY
mode, as explained in Section 1.1.5.

Table 4–16 CreateSavepoint Procedure Parameters

Parameter Description

workspace Name of the workspace in which to create the savepoint. The name is case
sensitive.

savepoint_name Name of the savepoint to be created. The name is case sensitive.

description Description of the savepoint to be created.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

CreateSavepoint

4-40 Oracle Database Application Developer’s Guide - Workspace Manager

An exception is raised if one or more of the following apply:

� The user is not in the latest version in the workspace (for example, if the user
has called the GotoDate procedure).

� workspace does not exist.

� savepoint_name already exists.

� The user does not have the privilege to go to the specified workspace.

Examples
The following example creates a savepoint named Savepoint1 in the
NEWWORKSPACE workspace.

EXECUTE DBMS_WM.CreateSavepoint ('NEWWORKSPACE', 'Savepoint1');

CreateWorkspace

DBMS_WM Package: Reference 4-41

CreateWorkspace

Creates a new workspace in the database.

Syntax
DBMS_WM.CreateWorkspace(
 workspace IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE);
or

DBMS_WM.CreateWorkspace(
 workspace IN VARCHAR2,
 isrefreshed IN BOOLEAN,
 description IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–17 CreateWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive, and it must be unique
(no other workspace of the same name).

isrefreshed A Boolean value (TRUE or FALSE).

TRUE causes the workspace to be continually refreshed. In a continually
refreshed workspace (described in Section 1.1.9), changes made in the
parent workspace are automatically applied to the workspace whenever
data changes are committed in the parent workspace or are merged into the
parent workspace from another child workspace. That is, you do not need to
call the RefreshWorkspace procedure to apply the changes. See the Usage
Notes for more information about continually refreshed workspaces.

FALSE causes the workspace not to be continually refreshed. To refresh the
workspace, you must call the RefreshWorkspace procedure.

If you use the syntax without the isrefreshed parameter, the workspace is
not continually refreshed.

description Description of the workspace.

CreateWorkspace

4-42 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
The new workspace is a child of the current workspace. If the session has not
explicitly entered a workspace, it is in the LIVE database workspace, and the new
workspace is a child of the LIVE workspace. For an explanation of database
workspace hierarchy, see Section 1.1.1.

An implicit savepoint is created in the current version of the current workspace.
(The current version does not have to be the latest version in the current
workspace.) For an explanation of savepoints (explicit and implicit), see
Section 1.1.2.

While this procedure is executing, the current workspace is frozen in READ_ONLY
mode, as explained in Section 1.1.5.

This procedure does not implicitly go to the workspace created. To go to the
workspace, use the GotoWorkspace procedure.

The following rules apply to continually refreshed workspaces (isrefreshed
value of TRUE):

� A continually refreshed workspace must be created as a child of the LIVE
workspace.

� A continually refreshed workspace must be a leaf workspace (that is, have no
child workspaces).

� The session must be on the latest version in order to create a continually
refreshed workspace.

� You cannot turn off locking using the SetLockingOFF or
SetWorkspaceLockModeOFF procedure for a continually refreshed workspace.

An exception is raised if one or more of the following apply:

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Section 1.1.8.

Table 4–17 (Cont.) CreateWorkspace Procedure Parameters

Parameter Description

CreateWorkspace

DBMS_WM Package: Reference 4-43

� workspace already exists.

� The user does not have the privilege to create a workspace.

Examples
The following example creates a workspace named NEWWORKSPACE in the database.

EXECUTE DBMS_WM.CreateWorkspace ('NEWWORKSPACE');

Delete_Topo_Geometry_Layer

4-44 Oracle Database Application Developer’s Guide - Workspace Manager

Delete_Topo_Geometry_Layer

Deletes a topology geometry layer from a topology.

Format
DBMS_WM.Delete_Topo_Geometry_Layer(

topology IN VARCHAR2,

table_name IN VARCHAR2,

column_name IN VARCHAR2);

Parameters

Usage Notes
This procedure has the same format and meaning as the SDO_TOPO.DELETE_
TOPO_GEOMETRY_LAYER procedure, which is documented in Oracle Spatial
Topology and Network Data Models. However, you must use DBMS_WM.Delete_
Topo_Geometry_Layer, and not SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER,
to delete a topology geometry layer from a version-enabled feature table from a
topology. For information about Workspace Manager support for topologies, see
Section 1.14.

This procedure deletes data associated with the specified topology geometry layer
from the edge, node, and face tables (described in Oracle Spatial Topology and
Network Data Models).

Table 4–18 Delete_Topo_Geometry_Layer Procedure Parameters

Parameter Description

topology Topology from which to delete the topology geometry layer containing the
topology geometries in the specified column. The topology must have
been created using the SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name Name of the topology geometry layer table containing the column
specified in column_name.

column_name Name of the column (of type SDO_TOPO_GEOMETRY) containing the
topology geometries in the topology geometry layer to be deleted from the
topology.

Delete_Topo_Geometry_Layer

DBMS_WM Package: Reference 4-45

An exception is generated if topology or table_name is not version-enabled, or if
table_name is the only feature table in topology.

Examples
The following example deletes the topology geometry layer that is based on the
geometries in the FEATURE column of the LAND_PARCELS table from the topology
named CITY_DATA.

EXECUTE DBMS_WM.Delete_Topo_Geometry_Layer('CITY_DATA', 'LAND_PARCELS',
'FEATURE');

DeleteSavepoint

4-46 Oracle Database Application Developer’s Guide - Workspace Manager

DeleteSavepoint

Deletes a savepoint and associated rows in version-enabled tables.

Syntax
DBMS_WM.DeleteSavepoint(

workspace IN VARCHAR2,
savepoint_name IN VARCHAR2,
compress_view_wo_overwrite IN BOOLEAN DEFAULT FALSE,
auto_commit IN BOOLEAN DEFAULT TRUE,
commit_in_batches IN BOOLEAN DEFAULT FALSE,
batch_size IN VARCHAR2 DEFAULT 'PRIMARY_KEY_RANGE');

Parameters

Table 4–19 DeleteSavepoint Procedure Parameters

Parameter Description

workspace Name of the workspace in which the savepoint was created. The name is
case sensitive.

savepoint_name Name of the savepoint to be deleted. The name is case sensitive.

compress_view_
wo_overwrite

A Boolean value (TRUE or FALSE).

TRUE causes history information to be deleted even if VIEW_WO_
OVERWRITE was specified when versioning was enabled.

FALSE (the default) causes history information for a table not to be
deleted if VIEW_WO_OVERWRITE was specified when versioning was
enabled. (If VIEW_WO_OVERWRITE was not specified for a table, history
information for the table is deleted regardless of the parameter value.)

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

DeleteSavepoint

DBMS_WM Package: Reference 4-47

Usage Notes
You can delete a savepoint when it is no longer needed (for example, you will not
need to go to it or roll back to it).

Deleting a savepoint is useful for the following reasons:

� You can reuse a savepoint name after it is deleted. (You cannot create a
savepoint that has the same name as an existing savepoint.)

� Runtime performance for Workspace Manager operations is improved.

� Less disk storage is used for Workspace Manager structures.

commit_in_
batches

A Boolean value (TRUE or FALSE).

TRUE causes an internal commit operation to be performed after
compression operations on batch_size rows in version-enabled tables.
Periodic commit operations can be useful or necessary if version-enabled
tables have many rows affected by the savepoint deletion, which can
cause substantial Oracle database resources (such as rollback segments
and undo tablespaces) to be used. If you specify TRUE, the auto_commit
value must also be TRUE.

FALSE (the default) causes internal commit operations not to be
performed during the savepoint deletion operation.

batch_size Batch size for internal commit operations if commit_in_batches is
TRUE; otherwise, the parameter is ignored. If specified, must be TABLE or
PRIMARY_KEY_RANGE.

TABLE causes an internal commit operation to be performed after
compressing each version-enabled table that needs to be compressed.

PRIMARY_KEY_RANGE specifies that each table is divided into batches of
different ranges of primary key values, and an internal commit operation
is to be performed after compressing each batch of rows in each
version-enabled table that needs to be compressed. You must previously
have generated statistics on the first column of the primary key, such as
by using the ANALYZE TABLE statement on the <table_name>_LT table
associated with each affected version-enabled table. See the Usage Notes
for more information. The following example generates histogram
statistics:

ANALYZE TABLE cola_marketing_budget_lt ESTIMATE
STATISTICS FOR COLUMNS SIZE 50 product_id;

Table 4–19 (Cont.) DeleteSavepoint Procedure Parameters

Parameter Description

DeleteSavepoint

4-48 Oracle Database Application Developer’s Guide - Workspace Manager

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode, as explained in Section 1.1.5.

To delete a savepoint, you must have the WM_ADMIN_ROLE role or be the owner of
the workspace or the savepoint.

This procedure cannot be executed if there are any sessions with an open database
transaction, or if any user has executed a GotoDate operation or a GotoSavepoint
operation specifying a savepoint in the workspace.

To specify a batch_size value of PRIMARY_KEY_RANGE, you must first generate
either histogram statistics (for columns of type NUMBER, INTEGER, DATE,
TIMESTAMP, CHAR, or VARCHAR2) or general statistics (for columns of type NUMBER,
INTEGER, DATE, or TIMESTAMP) on the first column of the primary key. The
statement ANALYZE TABLE ... COMPUTE STATISTICS generates general
statistics. If general but not histogram statistics are available for columns of type
NUMBER, INTEGER, DATE, or TIMESTAMP, the Workspace Manager system
parameter NUMBER_OF_COMPRESS_BATCHES is used to compute the number of
batches when batch_size is specified as PRIMARY_KEY_RANGE. For more
information about statistics, see Oracle Database Performance Tuning Guide.

An exception is raised if one or more of the following apply:

� One or more sessions are already in workspace (unless the workspace is
LIVE).

� workspace does not exist.

� savepoint_name does not exist.

� savepoint_name is not a removable savepoint. (Removable savepoints are
explained in Section 1.1.2.)

� The user does not have the privilege to go to the specified workspace.

Examples
The following example deletes a savepoint named Savepoint1 in the
NEWWORKSPACE workspace.

EXECUTE DBMS_WM.DeleteSavepoint ('NEWWORKSPACE', 'Savepoint1');

DisableVersioning

DBMS_WM Package: Reference 4-49

DisableVersioning

Deletes all support structures that were created to enable the table to support
versioned rows.

Syntax
DBMS_WM.DisableVersioning(
 table_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 ignore_last_error IN BOOLEAN DEFAULT FALSE,
 isTopology IN BOOLEAN DEFAULT FALSE,
 keepWMValid IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–20 DisableVersioning Procedure Parameters

Parameter Description

table_name Name of the table or (if isTopology is TRUE) Oracle Spatial topology, or a
comma-delimited list of names of tables related by multilevel referential
integrity constraints. (Multilevel referential integrity constraints are
explained in Section 1.9.1.) Table names are not case sensitive.

force A Boolean value (TRUE or FALSE).

TRUE forces all data in workspaces other than LIVE to be discarded before
versioning is disabled.

FALSE (the default) prevents versioning from being disabled if table_
name was modified in any workspace other than LIVE and if the workspace
that modified table_name still exists.

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the previous call to
the DisableVersioning procedure. Information about the last error is stored
in the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS metadata
views, which are described in Chapter 5. See the Usage Notes for more
information.

FALSE (the default) does not ignore the last error, if any, that occurred
during the previous call to the DisableVersioning procedure.

DisableVersioning

4-50 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
This procedure is used to reverse the effect of the EnableVersioning procedure. It
deletes the Workspace Manager infrastructure (support structures) for versioning of
rows, but does not affect any user data in the LIVE workspace. The workspace
hierarchy and any savepoints still exist, but all rows are the same as in the LIVE
workspace. (If there are multiple versions in the LIVE workspace of a row in the
table for which versioning is disabled, only the most recent version of the row is
kept.)

If table_name has valid time support (described in Chapter 3), this procedure
deletes the WM_VALID column and all data in that column. If deleting the WM_
VALID column would cause a primary key constraint violation, only the row valid
at the current time is retained.

If a call to the DisableVersioning procedure fails, the table is left in an inconsistent
state. If this occurs, you should try to fix the cause of the error (examine the USER_
WM_VT_ERRORS and ALL_WM_VT_ERRORS metadata views to see the SQL
statement and error message), and then call the DisableVersioning procedure again
with the default ignore_last_error parameter value of FALSE. However, if the
call still fails and you cannot fix the cause of the error, and if you are sure that it is
safe and appropriate to ignore this error, then you have the option to ignore the
error by calling the DisableVersioning procedure with the ignore_last_error
parameter value of TRUE. Note that you are responsible for ensuring that it is safe
and appropriate to ignore the error.

isTopology A Boolean value (TRUE or FALSE).

TRUE indicates that the value specified for the table_name parameter is the
name of an Oracle Spatial topology (not a database table name), as explained
in Section 1.14.

FALSE (the default) indicates that the value specified for the table_name
parameter is not an Oracle Spatial topology name.

keepWMValid A Boolean value (TRUE or FALSE). Applies only if valid time support
(described in Chapter 3) has been enabled for the table.

TRUE (the default) causes the WM_VALID column and all data in that column
to be kept in the table after the procedure completes.

FALSE causes the WM_VALID column to be dropped and all data in that
column deleted as a result of the procedure. Only the current row for each
primary key value is kept.

Table 4–20 (Cont.) DisableVersioning Procedure Parameters

Parameter Description

DisableVersioning

DBMS_WM Package: Reference 4-51

Some causes for the failure of the DisableVersioning procedure include the
following:

� The table contains much data in workspaces and the size of the undo tablespace
required for the DisableVersioning procedure is not sufficient.

� A compilation error occurred while transferring user-defined triggers from the
version-enabled table to the version-disabled table.

The DisableVersioning operation fails if the force value is FALSE and any of the
following apply:

� The table is being modified by any user in any workspace other than the LIVE
workspace.

� There are versioned rows of the table in any workspace other than the LIVE
workspace.

Only the owner of a table or a user with the WM_ADMIN_ROLE role can disable
versioning on the table.

Tables that are version-enabled and users that own version-enabled tables cannot be
deleted. You must first disable versioning on the relevant table or tables.

An exception is raised if the table is not version-enabled.

If you want to disable versioning on a table in an Oracle replication environment,
see Section C.2 for guidelines and other information.

For information about Workspace Manager support for tables in an Oracle Spatial
topology, see Section 1.14.

Examples
The following example disables the EMPLOYEE table for versioning.

EXECUTE DBMS_WM.DisableVersioning ('employee');

The following example disables the EMPLOYEE table for versioning and ignores the
last error that occurred during the previous call to the DisableVersioning procedure.

EXECUTE DBMS_WM.DisableVersioning ('employee', ignore_last_error => true);

The following example disables the EMPLOYEE, DEPARTMENT, and LOCATION
tables (which have multilevel referential integrity constraints) for versioning.

EXECUTE DBMS_WM.DisableVersioning('employee,department,location');

DropReplicationSupport

4-52 Oracle Database Application Developer’s Guide - Workspace Manager

DropReplicationSupport

Deletes replication support objects that were created by the
GenerateReplicationSupport procedure.

Syntax
DBMS_WM.DropReplicationSupport();

Parameters
None.

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Appendix C. You must also understand the major
Oracle replication concepts and techniques, which are documented in Oracle
Database Advanced Replication and Oracle Database Advanced Replication Management
API Reference.

You must execute this procedure as the replication administrator user at the writer
site.

This procedure drops replication support for any version-enabled tables at the
nonwriter sites; however, it does not version-disable any version-enabled tables.

Examples
The following example drops replication support that had previously been enabled
using the GenerateReplicationSupport procedure.

DBMS_WM.DropReplicationSupport();

EnableVersioning

DBMS_WM Package: Reference 4-53

EnableVersioning

Version-enables a table, creating the necessary structures to enable the table to
support multiple versions of rows.

Syntax
DBMS_WM.EnableVersioning(
 table_name IN VARCHAR2,
 hist IN VARCHAR2 DEFAULT 'NONE',
 isTopology IN BOOLEAN DEFAULT FALSE,
 validTime IN BOOLEAN DEFAULT FALSE,
 undo_space IN VARCHAR2 DEFAULT NULL);

Parameters

Table 4–21 EnableVersioning Procedure Parameters

Parameter Description

table_name Name of the table or (if isTopology is TRUE) Oracle Spatial topology, or a
comma-delimited list of names of tables related by multilevel referential
integrity constraints. (Multilevel referential integrity constraints are explained
in Section 1.9.1.) The length of a table name must not exceed 25 characters.
The table must not contain any columns with names that start with WM_ or
WM$. The table name is not case sensitive.

hist History option, for tracking modifications to table_name. Must be one of the
following values:

NONE: No modifications to the table are tracked. (This is the default.)

VIEW_W_OVERWRITE: The with overwrite (W_OVERWRITE) option. A view
named <table_name>_HIST (described in Section 5.43) is created to contain
history information, but it will show only the most recent modifications to the
same version of the table. A history of modifications to the version is not
maintained; that is, subsequent changes to a row in the same version
overwrite earlier changes. (The CREATETIME column of the <table_name>_
HIST view contains only the time of the most recent update.)

VIEW_WO_OVERWRITE: The without overwrite (WO_OVERWRITE) option. A
view named <table_name>_HIST (described in Section 5.43) is created to
contain history information, and it will show all modifications to the same
version of the table. A history of modifications to the version is maintained;
that is, subsequent changes to a row in the same version do not overwrite
earlier changes.

EnableVersioning

4-54 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
The table that is being version-enabled must have a primary key defined.

Only the owner of a table or a user with the WM_ADMIN role can enable versioning
on the table.

Tables that are version-enabled and users that own version-enabled tables cannot be
deleted. You must first disable versioning on the relevant table or tables.

Tables owned by SYS cannot be version-enabled.

An exception is raised if one or more of the following apply:

� table_name is already version-enabled.

� table_name contains a list of tables and any of the tables has a referential
integrity constraint with a table that is not in the list.

� table_name contains any columns whose names start with WM_ or WM$.

If the table is version-enabled with the VIEW_WO_OVERWRITE hist option specified,
this option can later be disabled and re-enabled by calling the SetWoOverwriteOFF
and SetWoOverwriteON procedures.

The history option enables you to log and audit modifications.

isTopology A Boolean value (TRUE or FALSE).

TRUE indicates that the value specified for the table_name parameter is the
name of an Oracle Spatial topology (not a database table name), as explained
in Section 1.14.

FALSE (the default) indicates that the value specified for the table_name
parameter is not an Oracle Spatial topology name.

validTime A Boolean value (TRUE or FALSE).

TRUE causes valid time support to be included. Workspace Manager valid
time support is explained in Chapter 3.

FALSE (the default) causes valid time support not to be included.

undo_space A string containing UNLIMITED (for no specified limit) or a number
representing the maximum number of bytes for undo space available for the
version-enable operation. Example: '1048576' for 1 megabyte. Any value
specified overrides the value of the UNDO_SPACE Workspace Manager system
parameter (described in Section 1.5).

Table 4–21 (Cont.) EnableVersioning Procedure Parameters

Parameter Description

EnableVersioning

DBMS_WM Package: Reference 4-55

The history option affects the behavior of the GotoDate procedure. See the Usage
Notes for that procedure.

If you want to version-enable a table in an Oracle replication environment, see
Section C.2 for guidelines and other information.

For information about Workspace Manager support for tables in an Oracle Spatial
topology, see Section 1.14.

Current notes and restrictions include the following:

� If you have referential integrity constraints on version-enabled tables, note the
considerations and restrictions in Section 1.9.1.

� If you have triggers defined on version-enabled tables, note the considerations
and restrictions in Section 1.10.

� Constraints and privileges defined on the table are carried over to the
version-enabled table.

� DDL operations on version-enabled tables are subject to the procedures and
restrictions described in Section 1.8.

� Index-organized tables cannot be version-enabled.

� Object tables cannot be version-enabled.

� A table with one or more columns of LONG data type cannot be
version-enabled.

� A table with one or more nested table columns cannot be version-enabled
unless the ALLOW_NESTED_TABLE_COLUMNS Workspace Manager system
parameter is set to ON.

Examples
The following example enables versioning on the EMPLOYEE table.

EXECUTE DBMS_WM.EnableVersioning('employee');

The following example enables versioning on the EMPLOYEE, DEPARTMENT, and
LOCATION tables, which have multilevel referential integrity constraints.

EXECUTE DBMS_WM.EnableVersioning('employee,department,location');

Export

4-56 Oracle Database Application Developer’s Guide - Workspace Manager

Export

Exports data from a version-enabled table (all rows, or as limited by any
combination of several parameters) to a staging table.

Syntax
DBMS_WM.Export(
 table_name IN VARCHAR2,
 staging_table IN VARCHAR2,
 workspace IN VARCHAR2,
 where_clause IN VARCHAR2 DEFAULT NULL,
 export_scope IN VARCHAR2 DEFAULT DBMS_WM.EXPORT_MODIFIED_DATA_ONLY,
 after_savepoint_name IN VARCHAR2 DEFAULT NULL,
 as_of_savepoint_name IN VARCHAR2 DEFAULT NULL,
 after_instant IN DATE DEFAULT NULL,
 as_of_instant IN DATE DEFAULT NULL,
 versioned_db IN BOOLEAN DEFAULT TRUE,
 overwrite_existing_data IN BOOLEAN DEFAULT FALSE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–22 Export Procedure Parameters

Parameter Description

table_name Name of the table containing the data to be exported. The name is not
case sensitive.

staging_table Name of the table to hold the exported data. The name is not case
sensitive. If the table does not exist, a new table with this name is
created, with a structure suitable for Workspace Manager export and
import operations. (See the Usage Notes for more information about
the staging table.)

workspace Name of the workspace from which to export the data. The name is
case sensitive.

Export

DBMS_WM Package: Reference 4-57

where_clause The WHERE clause (excluding the WHERE keyword) identifying the
rows to be exported. Example: 'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows in table_
name are exported.

export_scope The scope (amount of data) for the export operation.

DBMS_WM.EXPORT_ALL_DATA exports all relevant data in
workspace.

DBMS_WM.EXPORT_MODIFIED_DATA_ONLY (the default) exports only
relevant data that was inserted, updated, or deleted in workspace.

after_savepoint_
name

Name of a savepoint: only data inserted, updated, or deleted after this
savepoint is exported.

If you do not specify after_savepoint_name or as_of_
savepoint_name, savepoints are ignored in determining the data to
be exported.

See the Usage Notes for guidelines relating to the savepoint-related
and instant-related parameters.

as_of_savepoint_
name

Name of a savepoint: only data in the workspace at the time the
savepoint was created is exported.

If you do not specify after_savepoint_name or as_of_
savepoint_name, savepoints are ignored in determining the data to
be exported.

See the Usage Notes for guidelines relating to the savepoint-related
and instant-related parameters.

after_instant Date/time specification: only data inserted, updated, or deleted after
this time is exported.

If you do not specify after_instant or as_of_instant, time is
ignored in determining the data to be exported.

See the Usage Notes for guidelines relating to the savepoint-related
and instant-related parameters.

Table 4–22 (Cont.) Export Procedure Parameters

Parameter Description

Export

4-58 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
All data that satisfies the where_clause in the version-enabled table table_
name, the export_scope parameter, and any parameters relating to a time or a
savepoint in workspace is exported to the staging table (staging_table
parameter).

Each row of data to be exported is considered to be one of the following: inserted,
updated, or deleted in workspace (that is, modified data); or data that was not
modified in workspace but can be seen in it (that is, ancestor data). If data is
exported from the LIVE workspace, it is all modified data. If a workspace is created

as_of_instant Date/time specification: only data that was in the workspace at this
time is exported.

If you do not specify after_instant or as_of_instant, time is
ignored in determining the data to be exported.

See the Usage Notes for guidelines relating to the savepoint-related
and instant-related parameters.

versioned_db A Boolean value (TRUE or FALSE).

TRUE (the default) creates a staging table that contains versioning
information.

FALSE creates a staging table that contains only user-defined columns
and user-visible data.

overwrite_
existing_data

A Boolean value (TRUE or FALSE).

TRUE overwrites existing data in the staging table with the data that is
exported.

FALSE (the default) preserves all existing data in the staging table, and
raises an exception if the exported data conflicts with the existing data.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

Table 4–22 (Cont.) Export Procedure Parameters

Parameter Description

Export

DBMS_WM Package: Reference 4-59

and no data has yet been versioned in it, and the Export procedure is called, all the
data is ancestor data.

The first time you export data from a version-enabled table, the staging table should
not exist; that is, do not try to create a staging table, but let the procedure create one
for you using the name specified for the staging_table parameter. The staging
table will contain all columns in the original table (table_name parameter), plus
some columns for use by Workspace Manager.

After the staging table is created, you can use it for subsequent export operations
from the original table, as long as you have not done any of the following DDL
operations on the original table: altered any column names or data types, or
modified or deleted the primary key constraint. If you have made any of these
alterations to the original table, drop the staging table before you call the Export
procedure, so that Workspace Manager can create a new staging table. (If you want
to overwrite data in an existing staging table, you must also specify overwrite_
existing_data as TRUE.)

The staging table must be in the current user’s schema; or if it is in another schema,
the current user must have the CREATE ANY TABLE and INSERT ANY TABLE
privileges.

It is recommended that you specify no more than one of the following
savepoint-related and instant-related parameters: after_savepoint_name, as_
of_savepoint_name, after_instant, as_of_instant. If you specify after_
savepoint_name and after_instant, the interaction of the two parameters can
have complex results. You cannot specify the following parameter combinations:
after_savepoint_name and as_of_savepoint_name, after_instant and
as_of_instant, or as_of_savepoint_name and as_of_instant.

An exception is raised if one or more of the following apply:

� A specified table, workspace, or savepoint does not exist.

� staging_table exists but is not in a valid format for the export operation.

� staging_table is not in the current user’s schema and the current user does
not have the CREATE TABLE and INSERT TABLE privileges.

� The user does not have the ACCESS_WORKSPACE privilege for workspace or
the ACCESS_ANY_WORKSPACE privilege.

� overwrite_existing_data is FALSE and data that needs to be exported
already exists in staging_table.

Export

4-60 Oracle Database Application Developer’s Guide - Workspace Manager

Examples
The following example exports all data from the COLA_MARKETING_BUDGET table
in workspace B_Focus_2 into the staging table COLA_MARKETING_BUDGET_STG.
(The EXECUTE statement is actually on a single line.)

EXECUTE DBMS_WM.Export(table_name => 'COLA_MARKETING_BUDGET', staging_table =>
'COLA_MARKETING_BUDGET_STG', workspace => 'B_focus_2');

FindRICSet

DBMS_WM Package: Reference 4-61

FindRICSet

Finds tables that need to be version-enabled along with a specified table, due to
referential integrity constraint relationships.

Syntax
DBMS_WM.FindRICSet(
 table_name IN VARCHAR2,
 result_table IN VARCHAR2);

Parameters

Usage Notes
Workspace Manager has several considerations relating to referential integrity
constraints, as explained in Section 1.9.1. Sometimes, before you can version-enable
a table, you must version-enable other tables that are in referential integrity
constraints affecting the table. The FindRICSet procedure lets you find all these
other tables.

To display the results, use the SET SERVEROUTPUT ON statement before calling
this procedure.

If the result table is not in the current user’s schema, the following requirements
apply:

� If the result table does not exist, the current user must have the CREATE ANY
TABLE privilege.

Table 4–23 FindRICSet Procedure Parameters

Parameter Description

table_name Name of the table for which to find all other tables that will need to be
version-enabled along with it, because of referential integrity
constraint relationships. The name is not case sensitive.

result_table Name of the table to hold the results. The name is not case sensitive.

This table must have two columns, TABLE_OWNER and TABLE_NAME,
both of type VARCHAR2. If the table does not exist, a new table with
this name and the required columns is created.

FindRICSet

4-62 Oracle Database Application Developer’s Guide - Workspace Manager

� If the result table already exists, the current user must have the required
privileges to insert into the table.

An exception is raised if one or more of the following apply:

� table_name does not exist.

� result_table exists but is not in a valid format.

� result_table exists and the current user does not have the required
privileges to insert into the table.

� result_table does not exist, is specified for a schema other than the current
user’s schema, and the current user does not have the CREATE ANY TABLE
privilege.

Examples
The following example creates two tables, EMPLOYEES and DEPARTMENTS, where
DEPARTMENTS.MANAGER_ID has a foreign key relationship referencing
EMPLOYEES.EMPLOYEE_ID. The example then finds all tables that would need to
be version-enabled if EMPLOYEES and DEPARTMENTS were version-enabled.

The results show that is you want to version-enable the EMPLOYEES table, you must
version-enable both the EMPLOYEES and DEPARTMENTS tables; but if you want to
version-enable the DEPARTMENTS table, you do not need to version-enable any
other tables.

create table employees (employee_id number primary key, employee_name
varchar2(30));
create table departments (dept_id number primary key, manager_id number
references employees(employee_id));

-- Check RICs; result table does not already exist.
EXECUTE DBMS_WM.FindRICSet('EMPLOYEES', 'EMPLOYEES_RESULTS');
SELECT * FROM employees_results;

TABLE_OWNER TABLE_NAME
------------------------------ ------------------------------
WM_DEVELOPER EMPLOYEES
WM_DEVELOPER DEPARTMENTS

EXECUTE DBMS_WM.FindRICSet('DEPARTMENTS', 'DEPARTMENTS_RESULTS');
SELECT * FROM departments_results;

TABLE_OWNER TABLE_NAME
------------------------------ ------------------------------

FindRICSet

DBMS_WM Package: Reference 4-63

WM_DEVELOPER DEPARTMENTS

FreezeWorkspace

4-64 Oracle Database Application Developer’s Guide - Workspace Manager

FreezeWorkspace

Restricts access to a workspace and the ability of users to make changes in the
workspace.

Syntax
DBMS_WM.FreezeWorkspace(
 workspace IN VARCHAR2,
 freezemode IN VARCHAR2 DEFAULT 'NO_ACCESS',
 freezewriter IN VARCHAR2 DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE);
or

DBMS_WM.FreezeWorkspace(
 workspace IN VARCHAR2,
 session_duration IN BOOLEAN,
 freezemode IN VARCHAR2 DEFAULT 'NO_ACCESS',
 freezewriter IN VARCHAR2 DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–24 FreezeWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

session_
duration

A Boolean value (TRUE or FALSE).

TRUE causes the workspace to be unfrozen when the session that called the
FreezeWorkspace procedure disconnects from the database. This value is
valid for all freeze modes.

FALSE causes the workspace not to be unfrozen when the session that
called the FreezeWorkspace procedure disconnects from the database.

FreezeWorkspace

DBMS_WM Package: Reference 4-65

Usage Notes
If you specify the procedure syntax that does not include the session_duration
parameter, it is equivalent to specifying FALSE for that parameter: that is, the
workspace is not unfrozen when the session that called the FreezeWorkspace
procedure disconnects from the database.

The operation fails if one or more of the following apply:

� workspace is already frozen (unless force is TRUE).

� Any sessions are in workspace and freezemode is NO_ACCESS (specified or
defaulted).

freezemode Mode for the frozen workspace. Must be one of the following values:

NO_ACCESS: No sessions are allowed in the workspace. (This is the
default.)

READ_ONLY: Sessions are allowed in the workspace, but no write
operations (insert, update, delete) are allowed.

1WRITER: Sessions are allowed in the workspace, but only one user (see
the freezewriter parameter) is allowed to perform write operations
(insert, update, delete).

1WRITER_SESSION: Sessions are allowed in the workspace, but only the
database session (as opposed to the database user) that called the
FreezeWorkspace procedure is allowed to perform write operations (insert,
update, delete). The workspace is unfrozen after the session that called the
FreezeWorkspace procedure disconnects from the database.

WM_ONLY: Only Workspace Manager operations are permitted. No sessions
can directly modify data values; however, child workspaces can be merged
into the workspace, and savepoints can be created in the workspace.

freezewriter The user that is allowed to make changes in the workspace. Can be
specified only if freezemode is 1WRITER. The default is USER (the current
user).

force A Boolean value (TRUE or FALSE).

TRUE forces the workspace to be frozen even if it is already frozen. For
example, this value lets you freeze the workspace with a different
freezemode parameter value without having first to call the
UnfreezeWorkspace procedure.

FALSE (the default) prevents the workspace from being frozen if it is
already frozen.

Table 4–24 (Cont.) FreezeWorkspace Procedure Parameters

Parameter Description

FreezeWorkspace

4-66 Oracle Database Application Developer’s Guide - Workspace Manager

� session_duration is FALSE and freezemode is 1WRITER_SESSION.

If freezemode is READ_ONLY or 1WRITER, the workspace cannot be frozen if there
is an active database transaction.

You can freeze a workspace only if one or more of the following apply:

� You are the owner of the specified workspace.

� You have the WM_ADMIN_ROLE, the FREEZE_ANY_WORKSPACE privilege, or the
FREEZE_WORKSPACE privilege for the specified workspace.

The LIVE workspace can be frozen only if freezemode is READ_ONLY or
1WRITER.

To reverse the effect of FreezeWorkspace, use the UnfreezeWorkspace procedure.

Examples
The following example freezes the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.FreezeWorkspace ('NEWWORKSPACE');

GenerateReplicationSupport

DBMS_WM Package: Reference 4-67

GenerateReplicationSupport

Creates necessary structures for multimaster replication of Workspace Manager
objects, and starts the master activity for the newly created master group.

Syntax
DBMS_WM.GenerateReplicationSupport(
 mastersites IN VARCHAR2,
 groupname IN VARCHAR2,
 groupdescription IN VARCHAR2 DEFAULT 'Replication Group for OWM');

Parameters

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Appendix C. You must also understand the major
Oracle replication concepts and techniques, which are documented in Oracle
Database Advanced Replication and Oracle Database Advanced Replication Management
API Reference.

You must execute this procedure as the replication administrator user at the writer
site.

Before executing this procedure, ensure that the following are true:

� There are no workspaces, savepoints, or version-enabled tables on any of the
remote sites specified in the mastersites list.

Table 4–25 GenerateReplicationSupport Procedure Parameters

Parameter Description

mastersites Comma-delimited list of nonwriter site names (database links) to be
added to the Workspace Manager replication environment. Do not
include the local site (the writer site) in the list.

groupname Name of the master group to be created. This group will appear as a
regular replication master group, and it can be managed from all the
Oracle replication interfaces, including Oracle Enterprise Manager.

groupdescription Description of the new master group. The default is Replication
Group for OWM.

GenerateReplicationSupport

4-68 Oracle Database Application Developer’s Guide - Workspace Manager

� All the remote sites and the local site have the same version of Workspace
Manager installed. You can check the Workspace Manager version number in
the WM_INSTALLATION metadata view.

� If there are version-enabled tables on the local site, these tables must exist and
must not be version-enabled on each of the remote sites.

This procedure performs the following operations:

� Verifies that the local site and all the sites specified in the mastersites list are
running the same version of Workspace Manager.

� Verifies that there are no workspaces, savepoints, or version-enabled tables on
any of the remote sites specified in the mastersites list.

� Creates a master group, having the name specified in the groupname
parameter, with the local site as the master definition site and the writer site.

� Adds the Workspace Manager metadata tables to this group.

� Disables Workspace Manager operations at all the nonwriter sites (the remote
sites specified in the mastersites list).

� If there are any version-enabled tables at the local site, version-enables these
tables at each of the remote sites specified in the mastersites list and sets
them up for replication.

� Starts the master activity for the newly created master group.

To drop replication support for the Workspace Manager environment, use the
DropReplicationSupport procedure.

Examples
The following example generates replication support for the Workspace Manager
environment at a hypothetical company.

DBMS_WM.GenerateReplicationSupport(
 mastersites => 'BACKUP-SITE1.ACME.COM, BACKUP-SITE2.ACME.COM');
 groupname => 'OWM-GROUP',
 groupdescription => 'OWM Replication group for Acme Corp.');

GetBulkLoadVersion

DBMS_WM Package: Reference 4-69

GetBulkLoadVersion

Returns a version number to be specified in the call to the BeginBulkLoading
procedure and in the SQL*Loader control file.

Format
DBMS_WM.GetBulkLoadVersion(
 workspace IN VARCHAR2,
 savepoint_var IN DEFAULT LATEST) RETURN INTEGER;

Parameters

Usage
Before you can begin bulk loading data into a version-enabled table, you must call
the GetBulkLoadVersion and BeginBulkLoading procedures. You must end the bulk
loading session by calling either the CommitBulkLoading procedure (to commit
changes made when the data was loaded) or the RollbackBulkLoading procedure
(to roll back changes made when the data was loaded). For more information about
bulk loading with Workspace Manager, see Section 1.7.

An exception is raised if one or more of the following apply:

� workspace does not exist.

� savepoint_var is not a valid value.

Table 4–26 GetBulkLoadVersion Function Parameters

Parameter Description

workspace Name of the workspace for which to return the list of bulk load version. The
name is case sensitive.

savepoint_
var

The version in the workspace in which data will be bulk loaded. Must be one
of the following: LATEST or ROOT_VERSION.

LATEST (the default) is the current version in the workspace.

ROOT_VERSION is into the root version (version number 0, which is in the
LIVE workspace). The root version is the ancestor of all other versions, so data
in the root version is visible from all other workspaces (unless non-LIVE
workspaces have updated the data). You can specify ROOT_VERSION only if
workspace is LIVE.

GetBulkLoadVersion

4-70 Oracle Database Application Developer’s Guide - Workspace Manager

� savepoint_var is ROOT_VERSION but workspace is not LIVE.

Examples
The following example gets a bulk load version number for the W1 workspace, and
starts the bulk load operation into the EMP table in that workspace.

DECLARE
 version INTEGER;
BEGIN
 SELECT DBMS_WM.GetBulkLoadVersion ('W1') INTO version FROM DUAL;
 DBMS_WM.BeginBulkLoading ('EMP', 'W1', version);
END;
/

GetConflictWorkspace

DBMS_WM Package: Reference 4-71

GetConflictWorkspace

Returns the name of the workspace on which the session has performed the
SetConflictWorkspace procedure.

Format
DBMS_WM.GetConflictWorkspace() RETURN VARCHAR2;

Parameters
None.

Usage Notes
If the SetConflictWorkspace procedure has not been executed, the name of the
current workspace is returned.

Examples
The following example displays the name of the workspace on which the session
has performed the SetConflictWorkspace procedure.

SELECT DBMS_WM.GetConflictWorkspace FROM DUAL;

GETCONFLICTWORKSPACE

B_focus_2

GetDiffVersions

4-72 Oracle Database Application Developer’s Guide - Workspace Manager

GetDiffVersions

Returns the names of the (workspace, savepoint) pairs on which the session has
performed the SetDiffVersions operation.

Format
DBMS_WM.GetDiffVersions() RETURN VARCHAR2;

Parameters
None.

Usage Notes
The returned string is in the format '(WS1,SP1), (WS2,SP2)'. This format,
including the parentheses, is intended to help you if you later want to use parts of
the returned string in a call to the SetDiffVersions procedure.

Examples
The following example displays the names of the (workspace, savepoint) pairs on
which the session has performed the SetDiffVersions operation.

SELECT DBMS_WM.GetDiffVersions FROM DUAL;

GETDIFFVERSIONS
--
(B_focus_1, LATEST), (B_focus_2, LATEST)

GetLockMode

DBMS_WM Package: Reference 4-73

GetLockMode

Returns the locking mode for the current session, which determines whether or not
access is enabled to versioned rows and corresponding rows in the previous
version.

Format
DBMS_WM.GetLockMode() RETURN VARCHAR2;

Parameters
None.

Usage Notes
This function returns E, S, C, or NULL.

� For explanations of E (exclusive), S (shared), and C (carry-forward), see the
description of the lockmode parameter of the SetLockingON procedure.

� NULL indicates that locking is not in effect. (Calling the SetLockingOFF
procedure results in this setting.)

For an explanation of Workspace Manager locking, see Section 1.3. See also the
descriptions of the SetLockingON and SetLockingOFF procedures.

Examples
The following example displays the locking mode in effect for the session.

SELECT DBMS_WM.GetLockMode FROM DUAL;

GETLOCKMODE
--
C

GetMultiWorkspaces

4-74 Oracle Database Application Developer’s Guide - Workspace Manager

GetMultiWorkspaces

Returns the names of workspaces visible in the multiworkspace views for
version-enabled tables.

Format
DBMS_WM.GetMultiWorkspaces() RETURN VARCHAR2;

Parameters
None.

Usage Notes
This procedure returns the names of workspaces visible in the multiworkspace
views, which are described in Section 5.45.

If no workspaces are visible in the multiworkspace views, NULL is returned. If more
than one workspace name is returned, names are separated by a comma (for
example: workspace1,workspace2,workspace3).

To make a workspace visible in the multiworkspace views, use the
SetMultiWorkspaces procedure.

Examples
The following example displays the names of workspaces visible in the
multiworkspace views.

SELECT DBMS_WM.GetMultiWorkspaces FROM DUAL;

GetOpContext

DBMS_WM Package: Reference 4-75

GetOpContext

Returns the context of the current operation for the current session.

Format
DBMS_WM.GetOpContext() RETURN VARCHAR2;

Parameters
None.

Usage Notes
This function returns one of the following values:

� DML: The current operation is driven by data manipulation language (DML)
initiated by the user.

� MERGE_REMOVE: The current operation was initiated by a MergeWorkspace
procedure call with the remove_workspace parameter set to TRUE or a
MergeTable procedure call with the remove_data parameter set to TRUE.

� MERGE_NOREMOVE: The current operation was initiated by a MergeWorkspace
procedure call with the remove_workspace parameter set to FALSE or a
MergeTable procedure call with the remove_data parameter set to FALSE.

The returned value can be used in user-defined triggers to take appropriate action
based on the current operation.

Examples
The following example displays the context of the current operation.

SELECT DBMS_WM.GetOpContext FROM DUAL;

GETOPCONTEXT
--
DML

GetPhysicalTableName

4-76 Oracle Database Application Developer’s Guide - Workspace Manager

GetPhysicalTableName

Returns the name (<table_name>_LT form) of the physical table for a
version-enabled table.

Format
DBMS_WM.GetPrivs(
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2) RETURN VARCHAR2;

Parameters

Usage
If table_name is a version-enabled table, this function returns the name of the
table, whose name is in the form <table_name>_LT, that was created by Workspace
Manager when the EnableVersioning procedure was called. For information about
these <table_name>_LT tables, see Section 1.1.11.

If table_name is a not a version-enabled table, this function returns table_name.
Thus, you can also use this function to check whether or not a table is
version-enabled (that is, by checking whether a name in the form <table_name>_LT
or the original table name is returned).

Examples
The following example displays the physical table name associated with the COLA_
MARKETING_BUDGET table after that table is version-enabled.

SELECT DBMS_WM.GetPhysicalTableName('wm_developer', 'cola_marketing_budget')
 FROM DUAL;

DBMS_WM.GETPHYSICALTABLENAME('WM_DEVELOPER','COLA_MARKETING_BUDGET')
--

Table 4–27 GetPrivs Function Parameters

Parameter Description

table_owner Name of the schema that owns table_name.

table_name Name of the version-enabled table for which to return the name of its
associated physical table.

GetPhysicalTableName

DBMS_WM Package: Reference 4-77

COLA_MARKETING_BUDGET_LT

GetPrivs

4-78 Oracle Database Application Developer’s Guide - Workspace Manager

GetPrivs

Returns a comma-delimited list of all privileges that the current user has for the
specified workspace.

Format
DBMS_WM.GetPrivs(
 workspace IN VARCHAR2) RETURN VARCHAR2;

Parameters

Usage
For information about Workspace Manager privileges, see Section 1.4.

Examples
The following example displays the privileges that the current user has for the B_
focus_2 workspace.

SELECT DBMS_WM.GetPrivs ('B_focus_2') FROM DUAL;

DBMS_WM.GETPRIVS('B_FOCUS_2')
--
ACCESS,MERGE,CREATE,REMOVE,ROLLBACK

Table 4–28 GetPrivs Function Parameters

Parameter Description

workspace Name of the workspace for which to return the list of privileges. The name is
case sensitive.

GetSessionInfo

DBMS_WM Package: Reference 4-79

GetSessionInfo

Retrieves information about the current workspace and session context.

Format
DBMS_WM.GetSessionInfo(
 workspace OUT VARCHAR2,
 context OUT VARCHAR2,
 context_type OUT VARCHAR2);

Parameters

Usage Notes
This procedure is useful if you need to know where a session is (workspace and
context) -- for example, after you have performed a combination of GotoWorkspace,
GotoSavepoint, and GotoDate operations.

After the procedure successfully executes, the context parameter contains one of
the following values:

� LATEST: The session is currently on the LATEST logical savepoint (explained in
Section 1.1.2), and it can see changes as they are made in the workspace. The
context is automatically set to LATEST when the session enters the workspace
(using the GotoWorkspace procedure).

� A savepoint name: The session is currently on a savepoint in the workspace.
The session cannot see changes as they are made in the latest version of the
workspace, but instead sees a static view of the data as of the savepoint creation

Table 4–29 GetSessionInfo Procedure Parameters

Parameter Description

workspace Name of the workspace that the current session is in.

context The context of the current session in the workspace, expressed as one of the
following: LATEST, a savepoint name, or an instant (point in time) in
'DD-MON-YYYY HH24:MI:SS' date format. (See the Usage Notes for details.)

context_
type

The type of context for the current session in the workspace. Specifically, one
of the following values: LATEST (if context is LATEST), SAVEPOINT (if
context is a savepoint name), or INSTANT (if context is an instant).

GetSessionInfo

4-80 Oracle Database Application Developer’s Guide - Workspace Manager

time. The session context is set to the savepoint name after a call to the
GotoSavepoint procedure.

� An instant (a point in time): The session is currently on a specific point in time.
The session cannot see changes as they are made in the latest version of the
workspace, but instead sees a static view of the data as of the specific time. The
session context is set to an instant after a call to the GotoDate procedure.

For detailed information about the session context, see Section 1.2.

Examples
The following example retrieves and displays information about the current
workspace and context in the session.

DECLARE
 current_workspace VARCHAR2(30);
 current_context VARCHAR2(30);
 current_context_type VARCHAR2(30);
BEGIN
 DBMS_WM.GetSessionInfo(current_workspace,
 current_context,
 current_context_type);
 DBMS_OUTPUT.PUT_LINE('Session currently in workspace: ' ||current_workspace);
 DBMS_OUTPUT.PUT_LINE('Session context is: ' ||current_context);
 DBMS_OUTPUT.PUT_LINE('Session context is on: ' ||current_context_type);
END;
/
Session currently in workspace: B_focus_2
Session context is: LATEST
Session context is on: LATEST

PL/SQL procedure successfully completed.

GetSystemParameter

DBMS_WM Package: Reference 4-81

GetSystemParameter

Returns the value of a Workspace Manager system parameter.

Syntax
DBMS_WM.GetSytstemParameter(

name IN VARCHAR2) RETURN VARCHAR2;

Parameters

Usage Notes
For information about Workspace Manager system parameters, see Section 1.5.

An exception is raised if the name value is not valid.

Examples
The following checks if multiparent workspaces (described in Section 1.1.10) are
allowed.

SELECT DBMS_WM.GetSystemParameter ('ALLOW_MULTI_PARENT_WORKSPACES') FROM DUAL;

DBMS_WM.GETSYSTEMPARAMETER('ALLOW_MULTI_PARENT_WORKSPACES')
--
ON

Table 4–30 GetSystemParameter Procedure Parameters

Parameter Description

name Name of the Workspace Manager system parameter for which to set the value.
The name must be one of the following: ALLOW_CAPTURE_EVENTS, ALLOW_
MULTI_PARENT_WORKSPACES, ALLOW_NESTED_TABLE_COLUMNS, CR_
WORKSPACE_MODE, FIRE_TRIGGERS_FOR_NONDML_EVENTS, NONCR_
WORKSPACE_MODE.

GetValidFrom

4-82 Oracle Database Application Developer’s Guide - Workspace Manager

GetValidFrom

Returns the ValidFrom attribute of the current session valid time. (Valid time
support is described in Chapter 3.)

Format
DBMS_WM.GetValidFrom() RETURN TIMESTAMP WITH TIME ZONE;

Parameters
None.

Usage Notes
To set the session valid time period, use the SetValidTime procedure.

To get the ValidTill attribute of the current session valid time, use the
GetValidTill function.

Examples
The following example displays the ValidFrom attribute of the current session
valid time.

SELECT DBMS_WM.GetValidFrom FROM DUAL;

GETVALIDFROM

01-JAN-1995 12:00:00 -04:00

GetValidTill

DBMS_WM Package: Reference 4-83

GetValidTill

Returns the ValidTill attribute of the current session valid time. (Valid time
support is described in Chapter 3.)

Format
DBMS_WM.GetValidTill() RETURN TIMESTAMP WITH TIME ZONE;

Parameters
None.

Usage Notes
To set the session valid time period, use the SetValidTime procedure.

To get the ValidFrom attribute of the current session valid time, use the
GetValidFrom function.

Examples
The following example displays the ValidTill attribute of the current session
valid time.

SELECT DBMS_WM.GetValidTill FROM DUAL;

GETVALIDTILL

01-JAN-1996 12:00:00 -04:00

GetWMMetadataSpace

4-84 Oracle Database Application Developer’s Guide - Workspace Manager

GetWMMetadataSpace

Returns the number of bytes currently used to store the Workspace Manager
metadata.

Format
DBMS_WM.GetWMMetadataSpace() RETURN NUMBER;

Parameters
None.

Usage Notes
The Workspace Manager metadata (views, internal tables, and other objects) is by
default stored in the default tablespace of the WMSYS user. You cannot directly
control the size of the Workspace Manager metadata, but you can control its
placement by using the Move_Proc procedure to move the metadata to a different
tablespace. You can use the GetWMMetadataSpace function to determine the
approximate minimum space that you will need to have available in the tablespace
into which you are considering moving the Workspace Manager metadata.

Examples
The following example displays the number of bytes currently used to store the
Workspace Manager metadata.

SELECT DBMS_WM.GetWMMetadataSpace FROM DUAL;

GETWMMETADATASPACE

 6750208

GetWorkspace

DBMS_WM Package: Reference 4-85

GetWorkspace

Returns the current workspace for the session.

Format
DBMS_WM.GetWorkspace() RETURN VARCHAR2;

Parameters
None.

Usage Notes
None.

Examples
The following example displays the current workspace for the session.

SELECT DBMS_WM.GetWorkspace FROM DUAL;

GETWORKSPACE
--
B_focus_2

GotoDate

4-86 Oracle Database Application Developer’s Guide - Workspace Manager

GotoDate

Goes to a point at or near the specified date and time in the current workspace.

Syntax
DBMS_WM.GotoDate(
 in_date IN VARCHAR2,
 fmt IN VARCHAR2 DEFAULT 'mmddyyyyhh24miss',
 nlsparam IN VARCHAR2 DEFAULT NULL,
 tsWtz IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
You are presented a read-only view of the current workspace at or near the specified
date and time. The exact time point depends on the history option for tracking
changes to data in version-enabled tables, as set by the EnableVersioning procedure
or modified by the SetWoOverwriteOFF or SetWoOverwriteON procedure:

� NONE: The read-only view reflects the first savepoint after in_date.

Table 4–31 GotoDate Procedure Parameters

Parameter Description

in_date Date and time for the read-only view of the workspace. (See the Usage Notes
for details.)

If in_date is a VARCHAR2 string, it is a date string or a timestamp with time
zone, depending on the value of the tsWtz parameter.

fmt Date format. The options are the same as for the TO_TIMESTAMP_TZ function,
which is described in Oracle Database SQL Reference.

Default: 'mmddyyyyhh24miss'

nlsparam Globalization support options. The options are the same as for the TO_
TIMESTAMP_TZ function, which is described in Oracle Database SQL Reference.

tsWtz Timestamp with time zone flag. A Boolean value (TRUE or FALSE).

TRUE means that in_date is considered a timestamp with time zone
information.

FALSE (the default) means that in_date is a date string.

GotoDate

DBMS_WM Package: Reference 4-87

� VIEW_W_OVERWRITE: The read-only view reflects the data values in effect at
in_date, except if in_date is between two savepoints and data was changed
between the two savepoints. In this case, data that had been changed between
the savepoints might be seen as empty or as having a previous value. To ensure
the most complete and accurate view of the data, specify the VIEW_WO_
OVERWRITE history option when version-enabling a table.

� VIEW_WO_OVERWRITE: The read-only view reflects the data values in effect at
in_date.

For an explanation of the history options, see the description of the hist parameter
for the EnableVersioning procedure.

The following example scenario shows the effect of the VIEW_WO_OVERWRITE
setting. Assume the following sequence of events:

1. The MANAGER_NAME value in a row is Adams.

2. Savepoint SP1 is created.

3. The MANAGER_NAME value is changed to Baxter.

4. The time point that will be specified as in_date (in step 7) occurs.

5. The MANAGER_NAME value is changed to Chang. (Thus, the value has been
changed both before and after in_date since the first savepoint and before the
second savepoint.)

6. Savepoint SP2 is created.

7. A GotoDate operation is executed, specifying the time point in step 4 as in_
date.

In the preceding scenario:

� If the history option in effect is VIEW_WO_OVERWRITE, the MANAGER_NAME
value after step 7 is Baxter. After step 5, the versioned table has three rows,
each with a different MANAGER_NAME value (Adams, Baxter, Chang), because
each change is made in a new copy of the row.

� If the history option in effect is VIEW_W_OVERWRITE, no value is seen after step
7. The updates in steps 3 and 5 are made in the same copy of the row, and the
update in step 5 overwrites the update in step 3. As a result, after step 5 the
versioned table has two rows, with MANAGER_NAME values Adams and Chang.
Because the MANAGER_NAME value (Baxter) that was in effect at the specified
instant has been overwritten, no row is visible.

GotoDate

4-88 Oracle Database Application Developer’s Guide - Workspace Manager

� If the history option in effect is NONE, the MANAGER_NAME value after step 7 is
Chang, because the first savepoint after the specified instant is SP2. After step
5, the versioned table has two rows, with MANAGER_NAME values Adams and
Chang.

The GotoDate procedure should be executed while users exist in the workspace.
There are no explicit privileges associated with this procedure.

Examples
The following example goes to a point at or near midnight at the start of
29-Jun-2001, depending on the history option currently in effect.

EXECUTE DBMS_WM.GotoDate ('29-JUN-01');

GotoSavepoint

DBMS_WM Package: Reference 4-89

GotoSavepoint

Goes to the specified savepoint in the current workspace.

Syntax
DBMS_WM.GotoSavePoint(
 savepoint_name IN VARCHAR2 DEFAULT 'LATEST');

Parameters

Usage Notes
You are presented a read-only view of the workspace at the time of savepoint
creation. This procedure is useful for examining the workspace from different
savepoints before performing a rollback to a specific savepoint by calling the
RollbackToSP procedure to delete all rows from that savepoint forward.

This operation can be executed while users exist in the workspace. There are no
explicit privileges associated with this operation.

If you do not want to roll back to the savepoint, you can call the GotoSavepoint
procedure with a null parameter to go to the currently active version in the
workspace. (This achieves the same result as calling the GotoWorkspace procedure
and specifying the workspace.)

For more information about savepoints, including the LATEST savepoint, see
Section 1.1.2.

Examples
The following example goes to the savepoint named Savepoint1.

EXECUTE DBMS_WM.GotoSavepoint ('Savepoint1');

Table 4–32 GotoSavepoint Procedure Parameters

Parameter Description

savepoint_name Name of the savepoint. The name is case sensitive. If savepoint_name
is not specified, the default is LATEST.

GotoWorkspace

4-90 Oracle Database Application Developer’s Guide - Workspace Manager

GotoWorkspace

Moves the current session to the specified workspace.

Syntax
DBMS_WM.GotoWorkspace(
 workspace IN VARCHAR2);

Parameters

Usage Notes
After a user goes to a workspace, modifications to data can be made there.

To go to the live database, specify workspace as LIVE. Because many operations
are prohibited when any users (including you) are in the workspace, it is often
convenient to go to the LIVE workspace before performing operations on created
workspaces.

An exception is raised if one or more of the following apply:

� workspace does not exist.

� The user does not have ACCESS_WORKSPACE privilege for workspace.

� workspace has been frozen in NO_ACCESS mode (see the FreezeWorkspace
procedure).

Examples
The following example includes the user in the NEWWORKSPACE workspace. The
user will begin to work in the latest version in that workspace.

EXECUTE DBMS_WM.GotoWorkspace ('NEWWORKSPACE');

The following example includes the user in the LIVE database workspace. By
default, when users connect to a database, they are placed in this workspace.

Table 4–33 GotoWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

GotoWorkspace

DBMS_WM Package: Reference 4-91

EXECUTE DBMS_WM.GotoWorkspace ('LIVE');

GrantGraphPriv

4-92 Oracle Database Application Developer’s Guide - Workspace Manager

GrantGraphPriv

Grants privileges on multiparent graph workspaces to users and roles. The grant_
option parameter enables the grantee to grant the specified privileges to other
users and roles.

Syntax
DBMS_WM.GrantGraphPriv(
 priv_types IN VARCHAR2,
 leaf_workspace IN VARCHAR2,
 grantee IN VARCHAR2,
 node_types IN VARCHAR2 DEFAULT '(''R'',''I'',''L'')',
 grant_option IN VARCHAR2 DEFAULT 'NO',
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–34 GrantGraphPriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Section 1.4
discusses Workspace Manager privileges.) Use commas to separate
privilege keywords. The available keywords are ACCESS_WORKSPACE,
MERGE_WORKSPACE, CREATE_WORKSPACE, REMOVE_WORKSPACE,
ROLLBACK_WORKSPACE, and FREEZE_WORKSPACE.

leaf_
workspace

Name of the leaf workspace in the directed acyclic graph. (Leaf
workspaces, directed acyclic graphs, and other concepts related to
multiparent workspaces are explained in Section 1.1.10.) The name is case
sensitive.

grantee Name of the user (can be the PUBLIC user group) or role to which to grant
priv_types.

node_types List of letters (in parentheses and comma-delimited) representing the types
of nodes on which to grant the privileges: R for the root of the graph, I for
the specified intermediate node, L for the leaf of the graph. The default is
all types of nodes.

grant_option Specify YES to enable the grant option for grantee, or NO (the default) to
disable the grant option for grantee. The grant option allows grantee to
grant the privileges specified in priv_types on the workspace specified
in leaf_workspace to other users and roles.

GrantGraphPriv

DBMS_WM Package: Reference 4-93

Usage Notes
Contrast this procedure with GrantWorkspacePriv, which grants workspace-level
Workspace Manager privileges on workspaces other than multiparent graph
workspaces.

If a user gets a privilege from more than one source and if any of those sources has
the grant option for that privilege, the user has the grant option for the privilege.
For example, assume that user SCOTT has been granted the ACCESS_WORKSPACE
privilege with grant_option as NO, but that the PUBLIC user group has been
granted the ACCESS_WORKSPACE privilege with grant_option as YES. Because
user SCOTT is a member of PUBLIC, user SCOTT has the ACCESS_WORKSPACE
privilege with the grant option.

The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant
option. The WM_ADMIN_ROLE role is automatically given to the DBA role.

The ACCESS_WORKSPACE or ACCESS_ANY_WORKSPACE privilege is needed for all
other Workspace Manager privileges.

To revoke workspace-level privileges on multiparent graph workspaces, use the
RevokeGraphPriv procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You do not have the privilege to grant priv_types.

Examples
The following example enables user Smith to access all types of nodes in the
directed acyclic graph in which the NEWWORKSPACE workspace is the leaf

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Section 1.1.8.

Table 4–34 (Cont.) GrantGraphPriv Procedure Parameters

Parameter Description

GrantGraphPriv

4-94 Oracle Database Application Developer’s Guide - Workspace Manager

workspace and to merge changes in these workspaces, and it allows Smith to grant
the two specified privileges on the leaf workspace to other users.

DBMS_WM.GrantGraphPriv ('ACCESS_WORKSPACE, MERGE_WORKSPACE', 'NEWWORKSPACE',
'Smith', 'YES');

GrantSystemPriv

DBMS_WM Package: Reference 4-95

GrantSystemPriv

Grants system-level privileges (not restricted to a particular workspace) to users
and roles. The grant_option parameter enables the grantee to grant the specified
privileges to other users and roles.

Syntax
DBMS_WM.GrantSystemPriv(
 priv_types IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN VARCHAR2 DEFAULT 'NO',
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–35 GrantSystemPriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Section 1.4
discusses Workspace Manager privileges.) Use commas to separate
privilege keywords. The available keywords are ACCESS_ANY_
WORKSPACE, MERGE_ANY_WORKSPACE, CREATE_ANY_WORKSPACE,
REMOVE_ANY_WORKSPACE, ROLLBACK_ANY_WORKSPACE, and FREEZE_
ANY_WORKSPACE.

grantee Name of the user (can be the PUBLIC user group) or role to which to grant
priv_types.

grant_option Specify YES to enable the grant option for grantee, or NO (the default) to
disable the grant option for grantee. The grant option allows grantee to
grant the privileges specified in priv_types to other users and roles.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Section 1.1.8.

GrantSystemPriv

4-96 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
Contrast this procedure with GrantWorkspacePriv, which grants workspace-level
Workspace Manager privileges with keywords that do not contain ANY and which
has a workspace parameter.

If a user gets a privilege from more than one source and if any of those sources has
the grant option for that privilege, the user has the grant option for the privilege.
For example, assume that user SCOTT has been granted the ACCESS_ANY_
WORKSPACE privilege with grant_option as NO, but that the PUBLIC user group
has been granted the ACCESS_ANY_WORKSPACE privilege with grant_option as
YES. Because user SCOTT is a member of PUBLIC, user SCOTT has the ACCESS_
ANY_WORKSPACE privilege with the grant option.

The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant
option. The WM_ADMIN_ROLE role is automatically given to the DBA role.

The ACCESS_WORKSPACE or ACCESS_ANY_WORKSPACE privilege is needed for all
other Workspace Manager privileges.

To see which users have been granted Workspace Manager system-level privileges,
examine the DBA_WM_SYS_PRIVS metadata view, which is described in
Section 5.17.

To revoke system-level privileges, use the RevokeSystemPriv procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You do not have the privilege to grant priv_types.

Examples
The following example enables user Smith to access any workspace in the
database, but does not allow Smith to grant the ACCESS_ANY_WORKSPACE
privilege to other users.

EXECUTE DBMS_WM.GrantSystemPriv ('ACCESS_ANY_WORKSPACE', 'Smith', 'NO');

GrantWorkspacePriv

DBMS_WM Package: Reference 4-97

GrantWorkspacePriv

Grants workspace-level privileges to users and roles. The grant_option
parameter enables the grantee to grant the specified privileges to other users and
roles.

Syntax
DBMS_WM.GrantWorkspacePriv(
 priv_types IN VARCHAR2,
 workspace IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN VARCHAR2 DEFAULT 'NO',
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–36 GrantWorkspacePriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Section 1.4
discusses Workspace Manager privileges.) Use commas to separate
privilege keywords. The available keywords are ACCESS_WORKSPACE,
MERGE_WORKSPACE, CREATE_WORKSPACE, REMOVE_WORKSPACE,
ROLLBACK_WORKSPACE, and FREEZE_WORKSPACE.

workspace Name of the workspace. The name is case sensitive.

grantee Name of the user (can be the PUBLIC user group) or role to which to grant
priv_types.

grant_option Specify YES to enable the grant option for grantee, or NO (the default) to
disable the grant option for grantee. The grant option allows grantee to
grant the privileges specified in priv_types on the workspace specified
in workspace to other users and roles.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Section 1.1.8.

GrantWorkspacePriv

4-98 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
Contrast this procedure with GrantSystemPriv, which grants system-level
Workspace Manager privileges with keywords in the form xxx_ANY_WORKSPACE
(ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE, and so on). Contrast this
procedure also with GrantGraphPriv, which grants privileges on multiparent graph
workspaces to users and roles.

If a user gets a privilege from more than one source and if any of those sources has
the grant option for that privilege, the user has the grant option for the privilege.
For example, assume that user SCOTT has been granted the ACCESS_WORKSPACE
privilege with grant_option as NO, but that the PUBLIC user group has been
granted the ACCESS_WORKSPACE privilege with grant_option as YES. Because
user SCOTT is a member of PUBLIC, user SCOTT has the ACCESS_WORKSPACE
privilege with the grant option.

The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant
option. The WM_ADMIN_ROLE role is automatically given to the DBA role.

The ACCESS_WORKSPACE or ACCESS_ANY_WORKSPACE privilege is needed for all
other Workspace Manager privileges.

To revoke workspace-level privileges, use the RevokeWorkspacePriv procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You do not have the privilege to grant priv_types.

Examples
The following example enables user Smith to access the NEWWORKSPACE
workspace and merge changes in that workspace, and allows Smith to grant the
two specified privileges on NEWWORKSPACE to other users.

DBMS_WM.GrantWorkspacePriv ('ACCESS_WORKSPACE, MERGE_WORKSPACE', 'NEWWORKSPACE',
'Smith', 'YES');

Import

DBMS_WM Package: Reference 4-99

Import

Imports data from a staging table (all rows, or as limited by any combination of
several parameters) into a version-enabled table in a specified workspace.

Syntax
DBMS_WM.Import(
 staging_table IN VARCHAR2,
 to_table IN VARCHAR2,
 to_workspace IN VARCHAR2,
 from_workspace IN VARCHAR2 DEFAULT NULL,
 where_clause IN VARCHAR2 DEFAULT NULL,
 import_scope IN VARCHAR2 DEFAULT DBMS_WM.IMPORT_ALL_DATA,
 ancestor_savepoint_workspace IN VARCHAR2 DEFAULT NULL,
 ancestor_savepoint_name IN VARCHAR2 DEFAULT NULL,
 apply_locks IN BOOLEAN DEFAULT FALSE,
 enforceUCFlag IN BOOLEAN DEFAULT TRUE,
 enforceRICFlag IN BOOLEAN DEFAULT TRUE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–37 Import Procedure Parameters

Parameter Description

staging_table Name of the table that holds the data that had previously been
exported using the Export procedure. The name is not case sensitive.

to_table Name of the table into which to import the data. The name is not case
sensitive.

to_workspace Name of the workspace in which to import the data. The name is case
sensitive.

from_workspace Name of the workspace from which to import the data. The name is
case sensitive. If the staging table contains versioning information, you
must specify from_workspace.

Import

4-100 Oracle Database Application Developer’s Guide - Workspace Manager

where_clause The WHERE clause (excluding the WHERE keyword) identifying the
rows to be imported. Example: 'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows in
staging_table are imported.

import_scope The scope (amount of data) for the import operation.

DBMS_WM.IMPORT_ALL_DATA (the default) imports all relevant data.

DBMS_WM.IMPORT_MODIFIED_DATA_ONLY imports only relevant
data that has been inserted, updated, or deleted in from_workspace.

ancestor_
savepoint_
workspace

Name of the workspace containing the ancestor savepoint specified in
ancestor_savepoint_name. For the current release, if you specify
ancestor_savepoint_workspace, the value must be LIVE.

If you specify this parameter, you must also specify ancestor_
savepoint_name.

ancestor_
savepoint_name

Name of a savepoint in ancestor_savepoint_workspace. All data
that was ancestor data at the time of the export operation (see the
Usage Notes for the Export procedure) is imported to the specified
savepoint. For the current version, if you specify ancestor_
savepoint_name, the value must be DBMS_WM.ROOT_VERSION.

If you specify this parameter, you must also specify ancestor_
savepoint_workspace.

apply_locks A Boolean value (TRUE or FALSE).

TRUE causes any locks that were present on the exported data to be
applied to the data when importing, unless a more restrictive lock
mode is in effect for the current session.

FALSE (the default) ignores any locks on rows in the staging table, but
instead always uses the lock mode is in effect for the current session.

enforceUCFlag A Boolean value (TRUE or FALSE).

TRUE (the default) enforces any unique constraints defined on to_
table, ensuring that the import operation does not violate any such
constraints.

FALSE does not enforce any unique constraints defined on to_table
for the import operation.

Table 4–37 (Cont.) Import Procedure Parameters

Parameter Description

Import

DBMS_WM Package: Reference 4-101

Usage Notes
All data that satisfies the where_clause parameter value in the staging table
named staging_table and the import_scope parameter value is imported into
the version-enabled table named to_table.

The data must have been previously exported to the staging table using the Export
procedure.

Each row of data to be imported is considered to be one of the following: inserted,
updated, or deleted in from_workspace (that is, modified data); or data that was
not modified in from_workspace but can be seen in it (that is, ancestor data). If
data is exported from the LIVE workspace, it is all modified data.

An exception is raised if one or more of the following apply:

� A specified table or workspace does not exist.

� staging_table is not in a valid format for the import operation.

� to_table is not a version-enabled table, or does not have an appropriate
definition (for example, contains columns not in the staging table).

� from_workspace is null and staging_table contains versioning
information.

enforceRICFlag A Boolean value (TRUE or FALSE).

TRUE (the default) enforces any referential integrity constraints
defined on to_table, ensuring that the import operation does not
violate any such constraints.

FALSE does not enforce any referential integrity constraints defined on
to_table for the import operation.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

Table 4–37 (Cont.) Import Procedure Parameters

Parameter Description

Import

4-102 Oracle Database Application Developer’s Guide - Workspace Manager

� ancestor_savepoint_name is not a valid savepoint in ancestor_
savepoint_workspace.

Examples
The following example imports modified data from the staging table COLA_
MARKETING_BUDGET_STG in workspace B_focus_2 into the COLA_MARKETING_
BUDGET table in workspace B_Focus_1. (The EXECUTE statement is actually on a
single line.)

EXECUTE DBMS_WM.Import(staging_table => 'COLA_MARKETING_BUDGET_STG',
 to_table => 'COLA_MARKETING_BUDGET', to_workspace => 'B_focus_1',
 from_workspace => 'B_focus_2');

IsWorkspaceOccupied

DBMS_WM Package: Reference 4-103

IsWorkspaceOccupied

Checks whether or not a workspace has any active sessions.

Syntax
DBMS_WM.IsWorkspaceOccupied(
 workspace IN VARCHAR2) RETURN VARCHAR2;

Parameters

Usage Notes
This function returns YES if the workspace has any active sessions, and it returns NO
if the workspace has no active sessions.

An exception is raised if the LIVE workspace is specified or if the user does not
have the privilege to access the workspace.

Examples
The following example checks if any sessions are in the B_focus_2 workspace.

SELECT DBMS_WM.IsWorkspaceOccupied('B_focus_2') FROM DUAL;

DBMS_WM.ISWORKSPACEOCCUPIED('B_FOCUS_2')
--
YES

Table 4–38 IsWorkspaceOccupied Function Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

LockRows

4-104 Oracle Database Application Developer’s Guide - Workspace Manager

LockRows

Controls access to versioned rows in a specified table and to corresponding rows in
the parent workspace.

Syntax
DBMS_WM.LockRows(
 workspace IN VARCHAR2,
 table_name IN VARCHAR2,
 where_clause IN VARCHAR2 DEFAULT '',
 lock_mode IN VARCHAR2 DEFAULT 'E',
 Xmin IN NUMBER DEFAULT NULL,
 Ymin IN NUMBER DEFAULT NULL,
 Xmax IN NUMBER DEFAULT NULL,
 Ymax IN NUMBER DEFAULT NULL);

Parameters

Table 4–39 LockRows Procedure Parameters

Parameter Description

workspace Name of the workspace. The latest versions of rows visible from the
workspace are locked. If a row has not been modified in this workspace,
the locked version could be in an ancestor workspace. The name is case
sensitive.

A value of NONE can be used if lock_mode is set to VE (version-exclusive).
This causes the latest versions of rows to be locked, regardless of the
workspaces from which they are visible.

table_name Name of the table or (if Xmin, Ymin, Xmax, and Ymax are specified) Spatial
topology in which rows are to be locked. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be locked. Example: 'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows in table_name are locked.

Do not specify the where_clause parameter if table_name specifies a
Spatial topology name.

LockRows

DBMS_WM Package: Reference 4-105

Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle database locking. For an explanation of Workspace Manager
locking, see Section 1.3.

This procedure does not affect whether Workspace Manager locking is set on or off
(determined by the SetLockingON and SetLockingOFF procedures).

To unlock rows, use the UnlockRows procedure.

For information about Workspace Manager locking for tables in an Oracle Spatial
topology, see Section 1.14.1.

lock_mode Mode with which to set the locks: E (exclusive), WE (workspace-exclusive),
VE (version-exclusive), or S (shared). The default is E.

E (exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version; no other users in the workspace
for either version can change any values.

WE (workspace-exclusive) mode locks the rows in the previous version and
the corresponding rows in the current version such that only the user that
set the lock can change the values in the current workspace; however, other
users in other workspaces can change the values.

VE (version-exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version such that only the user that set
the lock can change the values; no other users (in any workspace) can
change the values.

S (shared) mode locks the rows in the previous version and the
corresponding rows in the current version; however, other users in the
workspace for the current version (but no users in the workspace for the
previous version) can change values in these rows.

Xmin, Ymin For Oracle Spatial topologies only (see Section 1.14.1), the X and Y
coordinate values, respectively, of the lower-left corner of the window
containing the rows to be locked.You must specify these parameters if you
specified a topology name for table_name; otherwise, do not specify
these parameters.

Xmax, Ymax For Oracle Spatial topologies only (see Section 1.14.1), the X and Y
coordinate values, respectively, of the upper-right corner of the window
containing the rows to be locked.You must specify these parameters if you
specified a topology name for table_name; otherwise, do not specify
these parameters.

Table 4–39 (Cont.) LockRows Procedure Parameters

Parameter Description

LockRows

4-106 Oracle Database Application Developer’s Guide - Workspace Manager

Examples
The following example locks rows in the EMPLOYEES table where last_name =
'Smith' in the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.LockRows ('NEWWORKSPACE', 'employees', 'last_name = ''Smith''');

MergeTable

DBMS_WM Package: Reference 4-107

MergeTable

Applies changes to a table (all rows or as specified in the WHERE clause) in a
workspace to its parent workspace.

For a multiparent workspace (explained in Section 1.1.10), applies changes to a table
(all rows or as specified in the WHERE clause) from all non-root workspaces in the
directed acyclic graph to the multiparent root workspace.

Syntax
DBMS_WM.MergeTable(
 workspace IN VARCHAR2,
 table_id IN VARCHAR2,
 where_clause IN VARCHAR2 DEFAULT '',
 create_savepoint IN BOOLEAN DEFAULT FALSE,
 remove_data IN BOOLEAN DEFAULT FALSE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–40 MergeTable Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

table_id Name of the table containing rows to be merged into the parent
workspace. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the
rows to be merged into the parent workspace. Example:
'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows in table_
name are merged.

MergeTable

4-108 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
All data that satisfies the where_clause parameter value in the version-enabled
table named table_name in workspace is applied to the parent workspace of
workspace.

Any locks that are held by rows being merged are released.

If there are conflicts between the workspace being merged and its parent
workspace, the merge operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in
Section 1.1.4.)

create_savepoint A Boolean value (TRUE or FALSE).

TRUE creates an implicit savepoint in the parent workspace before the
merge operation. For a multiparent workspace, creates an implicit
savepoint in the multiparent root workspace before the merge
operation. (Implicit and explicit savepoints are described in
Section 1.1.2.)

FALSE (the default) does not create an implicit savepoint in the parent
workspace before the merge operation.

remove_data A Boolean value (TRUE or FALSE).

TRUE removes the data in the table (as specified by the where_
clause parameter) in the child workspace. For a multiparent
workspace, it removes the data in the table (as specified by the
where_clause parameter) in the non-root workspaces in the directed
acyclic graph. The remove_data option is permitted only if
workspace has no child workspaces (that is, it is a leaf workspace).

FALSE (the default) does not remove the data in the table in the child
workspace.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

Table 4–40 (Cont.) MergeTable Procedure Parameters

Parameter Description

MergeTable

DBMS_WM Package: Reference 4-109

A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace).

A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

An exception is raised if one or more of the following apply:

� The user does not have access to table_id.

� The user does not have the MERGE_WORKSPACE privilege for workspace or the
MERGE_ANY_WORKSPACE privilege.

� remove_data is TRUE and there are any child workspaces of any workspace to
be removed.

� The merge involving a multiparent workspace would cause the violation of a
referential integrity constraint or unique constraint in any continually refreshed
child workspace of the multiparent root workspace.

Examples
The following example merges changes to the EMP table (in the USER3 schema)
where last_name = 'Smith' in NEWWORKSPACE to its parent workspace.

EXECUTE DBMS_WM.MergeTable ('NEWWORKSPACE', 'user3.emp', 'last_name =
''Smith''');

MergeWorkspace

4-110 Oracle Database Application Developer’s Guide - Workspace Manager

MergeWorkspace

Applies all changes in a workspace to its parent workspace, and optionally removes
the workspace.

For a multiparent workspace (explained in Section 1.1.10), applies all changes in the
workspace to all other workspaces in the directed acyclic graph, and optionally
removes the non-root workspaces in the directed acyclic graph.

Syntax
DBMS_WM.MergeWorkspace(
 workspace IN VARCHAR2,
 create_savepoint IN BOOLEAN DEFAULT FALSE,
 remove_workspace IN BOOLEAN DEFAULT FALSE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–41 MergeWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

create_savepoint A Boolean value (TRUE or FALSE).

TRUE creates an implicit savepoint in the parent workspace before the
merge operation. (Implicit and explicit savepoints are described in
Section 1.1.2.)

FALSE (the default) does not create an implicit savepoint in the parent
workspace before the merge operation.

remove_workspace A Boolean value (TRUE or FALSE).

TRUE removes workspace after the merge operation. For a
multiparent workspace, all non-root workspaces in the directed acyclic
graph are removed.

FALSE (the default) does not remove workspace after the merge
operation; the workspace continues to exist.

MergeWorkspace

DBMS_WM Package: Reference 4-111

Usage Notes
All data in all version-enabled tables in workspace is merged to the parent
workspace of workspace, and workspace is removed if remove_workspace is
TRUE.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode and the parent workspace is frozen in READ_ONLY mode, as explained in
Section 1.1.5.

If there are conflicts between the workspace being merged and its parent
workspace, the merge operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in
Section 1.1.4.)

If the remove_workspace parameter value is TRUE, the workspace to be merged
must be a leaf workspace, that is, a workspace with no descendant workspaces. (For
an explanation of workspace hierarchy, see Section 1.1.1.)

An exception is raised if one or more of the following apply:

� The user does not have the MERGE_WORKSPACE privilege for workspace or the
MERGE_ANY_WORKSPACE privilege.

� auto_commit is TRUE and there is an open database transaction in any
workspace under workspace in the workspace hierarchy.

� remove_workspace is TRUE and there are any sessions in any workspaces
under workspace in the workspace hierarchy.

� remove_workspace is TRUE and there are any child workspaces of any
workspace to be removed.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

Table 4–41 (Cont.) MergeWorkspace Procedure Parameters

Parameter Description

MergeWorkspace

4-112 Oracle Database Application Developer’s Guide - Workspace Manager

� The merge of a multiparent workspace would cause the violation of a referential
integrity constraint or unique constraint in any continually refreshed child
workspace of the multiparent root workspace.

Examples
The following example merges changes in NEWWORKSPACE to its parent workspace.

EXECUTE DBMS_WM.MergeWorkspace ('NEWWORKSPACE');

Move_Proc

DBMS_WM Package: Reference 4-113

Move_Proc

Moves the Workspace Manager metadata to a specified tablespace.

Syntax
DBMS_WM.Move_Proc(
 dest_tablespace IN VARCHAR2 DEFAULT 'SYSAUX');

Parameters

Usage Notes
The Workspace Manager metadata (views, internal tables, and other objects) is by
default stored in the default tablespace of the WMSYS user. You cannot directly
control the size of the Workspace Manager metadata, but you can control its
placement by using this procedure to move the metadata from its current tablespace
to a different tablespace. If you call this procedure without specifying the dest_
tablespace parameter, the Workspace manager metadata is moved to the
SYSAUX tablespace.

Before you move the metadata, you can use the GetWMMetadataSpace function to
determine the approximate minimum space that you will need to have available in
the tablespace into which you are considering moving the Workspace Manager
metadata.

Examples
The following example moves the Workspace Manager metadata to the TBLSP_1
tablespace.

EXECUTE DBMS_WM.Move_proc('TBLSP_1');

Table 4–42 Move_Proc Procedure Parameters

Parameter Description

dest_
tablespace

The table space to which to move the Workspace Manager metadata. The
default value is the SYSAUX tablespace.

RecoverAllMigratingTables

4-114 Oracle Database Application Developer’s Guide - Workspace Manager

RecoverAllMigratingTables

Attempts to complete the migration process on all tables that were left in an
inconsistent state after the Workspace Manager migration procedure failed.

Syntax
DBMS_WM.RecoverAllMigratingTables(
 ignore_last_error IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
If an error occurs while you are upgrading (migrating) to the current Workspace
Manager release, one or more version-enabled tables can be left in an inconsistent
state. (For information about upgrading to the current release, see Section B.1.) If the
upgrade procedure fails, you should try to fix the cause of the error (examine the
USER_WM_VT_ERRORS or ALL_WM_VT_ERRORS metadata view to see the SQL
statement and error message), and then call the RecoverMigratingTable procedure
(for a single table) or RecoverAllMigratingTables procedure (for all tables) with the
default ignore_last_error parameter value of FALSE, to try to complete the
upgrade process.

However, if the call still fails and you cannot fix the cause of the error, and if you are
sure that it is safe and appropriate to ignore this error, then you have the option to
ignore the error by calling the RecoverMigratingTable or
RecoverAllMigratingTables procedure with the ignore_last_error parameter
value of TRUE. Note that you are responsible for ensuring that it is safe and
appropriate to ignore the error.

Table 4–43 RecoverAllMigratingTables Procedure Parameters

Parameter Description

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the migration process.
Information about the last error is stored in the USER_WM_VT_ERRORS and
ALL_WM_VT_ERRORS metadata views, which are described in Chapter 5.
See the Usage Notes for more information.

FALSE (the default) does not ignore the last error, if any, that occurred during
the migration process.

RecoverAllMigratingTables

DBMS_WM Package: Reference 4-115

Examples
The following example attempts to recover all version-enabled tables that were left
in an inconsistent state when the upgrade procedure failed.

EXECUTE DBMS_WM.RecoverAllMigratingTables;

The following example attempts to recover all version-enabled tables that were left
in an inconsistent state when the upgrade procedure failed, and it ignores the last
error that caused the upgrade procedure to fail.

EXECUTE DBMS_WM.RecoverAllMigratingTables(TRUE);

RecoverMigratingTable

4-116 Oracle Database Application Developer’s Guide - Workspace Manager

RecoverMigratingTable

Attempts to complete the migration process on a table that was left in an
inconsistent state after the Workspace Manager migration procedure failed.

Syntax
DBMS_WM.RecoverMigratingTable(
 table_name IN VARCHAR2,
 ignore_last_error IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
If an error occurs while you are upgrading to the current Workspace Manager
release, one or more version-enabled tables can be left in an inconsistent state. (For
information about upgrading to the current release, see Section B.1.) If the upgrade
procedure fails, you should try to fix the cause of the error (examine the USER_
WM_VT_ERRORS or ALL_WM_VT_ERRORS metadata view to see the SQL
statement and error message), and then call the RecoverMigratingTable procedure
(for a single table) or RecoverAllMigratingTables procedure (for all tables) with the
default ignore_last_error parameter value of FALSE, to try to complete the
upgrade process.

However, if the call still fails and you cannot fix the cause of the error, and if you are
sure that it is safe and appropriate to ignore this error, then you have the option to
ignore the error by calling the RecoverMigratingTable or

Table 4–44 RecoverMigratingTable Procedure Parameters

Parameter Description

table_name Name of the version-enabled table to be recovered from the migration error.
The name is not case sensitive.

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the migration process.
Information about the last error is stored in the USER_WM_VT_ERRORS and
ALL_WM_VT_ERRORS metadata views, which are described in Chapter 5.
See the Usage Notes for more information.

FALSE (the default) does not ignore the last error, if any, that occurred during
the migration process.

RecoverMigratingTable

DBMS_WM Package: Reference 4-117

RecoverAllMigratingTables procedure with the ignore_last_error parameter
value of TRUE. Note that you are responsible for ensuring that it is safe and
appropriate to ignore the error.

An exception is raised if table_name does not exist or is not version-enabled.

Examples
The following example attempts to recover the COLA_MARKETING_BUDGET table
from the error that caused the upgrade procedure to fail.

EXECUTE DBMS_WM.RecoverMigratingTable('COLA_MARKETING_BUDGET');

The following example attempts to recover the COLA_MARKETING_BUDGET table
and ignores the last error that caused the upgrade procedure to fail.

EXECUTE DBMS_WM.RecoverMigratingTable('COLA_MARKETING_BUDGET', TRUE);

RefreshTable

4-118 Oracle Database Application Developer’s Guide - Workspace Manager

RefreshTable

Applies to a workspace all changes made to a table (all rows or as specified in the
WHERE clause) in its parent workspace.

For a multiparent workspace (explained in Section 1.1.10), applies changes from the
non-leaf workspaces in the directed acyclic graph to the specified leaf workspace for
a specified table. (The table data in the intermediate workspaces is not changed.)

Syntax
DBMS_WM.RefreshTable(
 workspace IN VARCHAR2,
 table_id IN VARCHAR2,
 where_clause IN VARCHAR2 DEFAULT '',
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–45 RefreshTable Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

table_id Name of the table containing the rows to be refreshed using values from
the parent workspace. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be refreshed from the parent workspace. Example: 'department_id =
20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows in table_name are
refreshed.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Section 1.1.8.

RefreshTable

DBMS_WM Package: Reference 4-119

Usage Notes
This procedure applies to workspace all changes in rows that satisfy the where_
clause parameter value in the version-enabled table named table_id in the
parent workspace since the time when workspace was created or last refreshed.

If there are conflicts between the workspace being refreshed and its parent
workspace, the refresh operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in
Section 1.1.4.)

This procedure is ignored if workspace is a continually refreshed workspace.

A table cannot be refreshed in the LIVE workspace (because that workspace has no
parent workspace).

A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

An exception is raised if the user does not have access to table_id, or if the user
does not have the MERGE_WORKSPACE privilege for workspace or the MERGE_
ANY_WORKSPACE privilege.

Examples
The following example refreshes NEWWORKSPACE by applying changes made to the
EMPLOYEES table where last_name = 'Smith' in its parent workspace.

EXECUTE DBMS_WM.RefreshTable ('NEWWORKSPACE', 'employees', 'last_name =
''Smith''');

RefreshWorkspace

4-120 Oracle Database Application Developer’s Guide - Workspace Manager

RefreshWorkspace

Applies to a workspace all changes made in its parent workspace.

For a multiparent workspace (explained in Section 1.1.10), applies changes from the
non-leaf workspaces in the directed acyclic graph to the specified leaf workspace.
The changes are propagated beginning with the multiparent root workspace and
continuing with the intermediate workspaces.

Syntax
DBMS_WM.RefreshWorkspace(
 workspace IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 copy_data IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–46 RefreshWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

copy_data A Boolean value (TRUE or FALSE).

TRUE causes all changes in the parent workspace since the creation or last
refresh of the child workspace to be copied to the child workspace. No
changes occur in any descendent of the child workspace, and the history of
changes to the child workspace is preserved.

FALSE (the default) causes minimal data to be copied to the child workspace.
The parent version of the child workspace is updated in order for the child
workspace and its descendents to have access to the modified rows from the
parent workspace. No history of changes to the child workspace is recorded
for the operation.

RefreshWorkspace

DBMS_WM Package: Reference 4-121

Usage Notes
This procedure applies to workspace all changes made to version-enabled tables in
the parent workspace since the time when workspace was created or last
refreshed.

If there are conflicts between the workspace being refreshed and its parent
workspace, the refresh operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in
Section 1.1.4.)

The specified workspace and the parent workspace are frozen in READ_ONLY mode,
as explained in Section 1.1.5.

The LIVE workspace cannot be refreshed (because it has no parent workspace).

This procedure is ignored if workspace is a continually refreshed workspace.

An exception is raised if the user does not have the MERGE_WORKSPACE privilege
for workspace or the MERGE_ANY_WORKSPACE privilege.

Examples
The following example refreshes NEWWORKSPACE by applying changes made in its
parent workspace.

EXECUTE DBMS_WM.RefreshWorkspace ('NEWWORKSPACE');

RelocateWriterSite

4-122 Oracle Database Application Developer’s Guide - Workspace Manager

RelocateWriterSite

Makes one of the nonwriter sites the new writer site in a Workspace Manager
replication environment. (The old writer site becomes one of the nonwriter sites.)

Syntax
DBMS_WM.RelocateWriterSite(
 newwritersite IN VARCHAR2,
 oldwritersiteavailable IN BOOLEAN);

Parameters

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Appendix C. You must also understand the major
Oracle replication concepts and techniques, which are documented in Oracle
Database Advanced Replication and Oracle Database Advanced Replication Management
API Reference.

You must execute this procedure as the replication administrator user. You can
execute it at any master site.

You should specify the oldwritersiteavailable parameter as TRUE if the old
writer site is currently available. If you specify the oldwritersiteavailable

Table 4–47 RelocateWriterSite Procedure Parameters

Parameter Description

newwritersite Name of a current nonwriter site (database link) to be made the
new writer site in the Workspace Manager replication
environment.

oldwritersiteavailable A Boolean value (TRUE or FALSE).

TRUE causes the old writer site to be updated to reflect the fact
that the writer site has changed.

FALSE causes the old writer site not to be updated to reflect the
fact that the writer site has changed. In this case, you must use
the SynchronizeSite procedure when the old writer site
becomes available.

RelocateWriterSite

DBMS_WM Package: Reference 4-123

parameter as FALSE, you must execute the SynchronizeSite procedure after the old
writer site becomes available, to bring that site up to date.

This procedure performs the following operations:

� If oldwritersiteavailable is TRUE, disables workspace operations and
DML and DDL operations for all version-enabled tables on the old writer site.

� Enables workspace operations and DML and DDL operations for all
version-enabled tables on the new writer site.

� Invokes replication API procedures to relocate the master definition site to
newwritersite for the main master group and for the master groups for all
the version-enabled tables.

Examples
The following example relocates the writer site for the Workspace Manager
environment to BACKUP-SITE1 at a hypothetical company.

DBMS_WM.RelocateWriterSite(
 newwritersite => 'BACKUP-SITE1.ACME.COM');
 oldwritersiteavailable => TRUE);

RemoveAsParentWorkspace

4-124 Oracle Database Application Developer’s Guide - Workspace Manager

RemoveAsParentWorkspace

Removes a workspace as a parent workspace in a multiparent workspace
environment.

Syntax
DBMS_WM.RemoveAsParentWorkspace(

mp_leafworkspace IN VARCHAR2,
parent_workspace IN VARCHAR2,
auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
This procedure is part of the support for the multiparent workspaces feature, which
is described in Section 1.1.10. This procedure must be used only on a parent
workspace that was previously added to the child workspace using the
AddAsParentWorkspace procedure.

This procedure does not remove any workspaces. It only makes parent_
workspace no longer a parent workspace of mp_leaf_workspace.

Table 4–48 RemoveAsParentWorkspace Procedure Parameters

Parameter Description

mp_leaf_workspace Name of the child workspace (multiparent leaf workspace) from
which to remove parent_workspace as a parent workspace. The
name is case sensitive.

parent_workspace Name of the workspace to remove as a parent workspace of mp_
leaf_workspace. The name is case sensitive.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s
open database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction.
In either case, the caller is responsible for committing the transaction.
For more information, see Section 1.1.8.

RemoveAsParentWorkspace

DBMS_WM Package: Reference 4-125

An exception is raised if one or more of the following apply:

� mp_leaf_workspace or parent_workspace does not exist.

� mp_leaf_workspace has versioned any data in parent_workspace or an
ancestor of parent_workspace, and this workspace would no longer be an
ancestor of mp_leaf_workspace if the operation were to be performed.

� There are any sessions with open database transactions in mp_leaf_
workspace.

Examples
The following example removes Workspace4 as a parent workspace of
Workspace3. (See the hierarchy illustration in Figure 1–3 in Section 1.1.10.)

EXECUTE DBMS_WM.RemoveAsParentWorkspace ('Workspace3', 'Workspace4');

RemoveWorkspace

4-126 Oracle Database Application Developer’s Guide - Workspace Manager

RemoveWorkspace

Discards all row versions associated with a workspace and deletes the workspace.

Syntax
DBMS_WM.RemoveWorkspace(
 workspace IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
The RemoveWorkspace operation can only be performed on leaf workspaces (the
bottom-most workspaces in a branch in the hierarchy). For an explanation of
database workspace hierarchy, see Section 1.1.1.

There must be no other users in the workspace being removed.

An exception is raised if the user does not have the REMOVE_WORKSPACE privilege
for workspace or the REMOVE_ANY_WORKSPACE privilege.

Examples
The following example removes the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.RemoveWorkspace('NEWWORKSPACE');

Table 4–49 RemoveWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

RemoveWorkspaceTree

DBMS_WM Package: Reference 4-127

RemoveWorkspaceTree

Discards all row versions associated with a workspace and its descendant
workspaces, and deletes the affected workspaces.

Syntax
DBMS_WM.RemoveWorkspaceTree(
 workspace IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
The RemoveWorkspaceTree operation should be used with extreme caution,
because it removes support structures and rolls back changes in a workspace and all
its descendants down to the leaf workspace or workspaces. For example, in the
hierarchy shown in Figure 1–1 in Section 1.1.1, a RemoveWorkspaceTree operation
specifying Workspace1 removes Workspace1, Workspace2, and Workspace3.
(For an explanation of database workspace hierarchy, see Section 1.1.1.)

There must be no other users in workspace or any of its descendant workspaces.

An exception is raised if the user does not have the REMOVE_WORKSPACE privilege
for workspace or any of its descendant workspaces.

Table 4–50 RemoveWorkspaceTree Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

RemoveWorkspaceTree

4-128 Oracle Database Application Developer’s Guide - Workspace Manager

Examples
The following example removes the NEWWORKSPACE workspace and all its
descendant workspaces.

EXECUTE DBMS_WM.RemoveWorkspaceTree('NEWWORKSPACE');

ResolveConflicts

DBMS_WM Package: Reference 4-129

ResolveConflicts

Resolves conflicts between workspaces.

Syntax
DBMS_WM.ResolveConflicts(
 workspace IN VARCHAR2,
 table_name IN VARCHAR2,
 where_clause IN VARCHAR2,
 keep IN VARCHAR2);

Parameters

Table 4–51 ResolveConflicts Procedure Parameters

Parameter Description

workspace Name of the workspace to check for conflicts with other workspaces. The
name is case sensitive.

table_name Name of the table to check for conflicts. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be refreshed from the parent workspace. Example: 'department_id =
20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

keep Workspace in favor of which to resolve conflicts: PARENT, CHILD, or BASE.

PARENT causes the parent workspace rows to be copied to the child
workspace.

CHILD does not cause the child workspace rows to be copied immediately
to the parent workspace. However, the conflict is considered resolved, and
the child workspace rows are copied to the parent workspace when the
child workspace is merged.

BASE causes the base rows to be copied to the child workspace but not to
the parent workspace. However, the conflict is considered resolved; and
when the child workspace is merged, the base rows are copied to the
parent workspace. Note that BASE is ignored for insert-insert conflicts
where a base row does not exist; in this case, the keep parameter value
must be PARENT or CHILD.

ResolveConflicts

4-130 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
This procedure checks the condition identified by the table_name and where_
clause parameters, and it finds any conflicts between row values in workspace
and its parent workspace. This procedure resolves conflicts by using the row values
in the parent or child workspace, as specified in the keep parameter; however, the
conflict resolution is not actually merged until you commit the transaction
(standard database commit operation) and call the CommitResolve procedure to
end the conflict resolution session. (For more information about conflict resolution,
including an overall view of the process, see Section 1.1.4.)

For example, assume that for Department 20 (DEPARTMENT_ID = 20), the
MANAGER_NAME in the LIVE and Workspace1 workspaces is Tom. Then, the
following operations occur:

1. The manager_name for Department 20 is changed in the LIVE database
workspace from Tom to Mary.

2. The change is committed (a standard database commit operation).

3. The manager_name for Department 20 is changed in Workspace1 from Tom to
Franco.

4. The MergeWorkspace procedure is called to merge Workspace1 changes to the
LIVE workspace.

At this point, however, a conflict exists with respect to MANAGER_NAME for
Department 20 in Workspace1 (Franco, which conflicts with Mary in the
LIVE workspace), and therefore the call to MergeWorkspace does not succeed.

5. The ResolveConflicts procedure is called with the following parameters:
('Workspace1', 'department', 'department_id = 20', 'child').

After the MergeWorkspace operation in step 7, the MANAGER_NAME value will
be Franco in both the Workspace1 and LIVE workspaces.

6. The change is committed (a standard database commit operation).

7. The MergeWorkspace procedure is called to merge Workspace1 changes to the
LIVE workspace.

For more information about conflict resolution, see Section 1.1.4.

Examples
The following example resolves conflicts involving rows in the DEPARTMENT table
in Workspace1 where DEPARTMENT_ID is 20, and uses the values in the child
workspace to resolve all such conflicts. It then merges the results of the conflict

ResolveConflicts

DBMS_WM Package: Reference 4-131

resolution by first committing the transaction (standard commit) and then calling
the MergeWorkspace procedure.

EXECUTE DBMS_WM.BeginResolve ('Workspace1');
EXECUTE DBMS_WM.ResolveConflicts ('Workspace1', 'department', 'department_id =
20', 'child');
COMMIT;
EXECUTE DBMS_WM.CommitResolve ('Workspace1');

RevokeGraphPriv

4-132 Oracle Database Application Developer’s Guide - Workspace Manager

RevokeGraphPriv

Revokes (removes) privileges on multiparent graph workspaces from users and
roles for a specified leaf workspace.

Syntax
DBMS_WM.RevokeGraphPriv(
 priv_types IN VARCHAR2,
 leaf_workspace IN VARCHAR2,
 grantee IN VARCHAR2.
 node_types IN VARCHAR2 DEFAULT '(''R'',''I'',''L'')',
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–52 RevokeGraphPriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Section 1.4
discusses Workspace Manager privileges.) Use commas to separate privilege
keywords. The available keywords are ACCESS_WORKSPACE, MERGE_
WORKSPACE, CREATE_WORKSPACE, REMOVE_WORKSPACE, and ROLLBACK_
WORKSPACE.

leaf_
workspace

Name of the leaf workspace in the directed acyclic graph. (Leaf workspaces,
directed acyclic graphs, and other concepts related to multiparent workspaces
are explained in Section 1.1.10.) The name is case sensitive.

grantee Name of the user (can be the PUBLIC user group) or role from which to
revoke priv_types.

node_types List of letters (in parentheses and comma-delimited) representing the types of
nodes on which to revoke the privileges: R for the root of the graph, I for the
specified intermediate node, L for the leaf of the graph. The default is all types
of nodes.

RevokeGraphPriv

DBMS_WM Package: Reference 4-133

Usage Notes
Contrast this procedure with RevokeWorkspacePriv, which grants workspace-level
Workspace Manager privileges on workspaces other than multiparent graph
workspaces.

To grant workspace-level privileges on multiparent graph workspaces, use the
GrantGraphPriv procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You were not the grantor of priv_types to grantee.

Examples
The following example disallows user Smith from accessing all types of nodes in
the directed acyclic graph in which the NEWWORKSPACE workspace is the leaf
workspace and from merging changes in these workspaces.

EXECUTE DBMS_WM.RevokeWorkspacePriv ('ACCESS_WORKSPACE, MERGE_WORKSPACE',
'NEWWORKSPACE', 'Smith');

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

Table 4–52 (Cont.) RevokeGraphPriv Procedure Parameters

Parameter Description

RevokeSystemPriv

4-134 Oracle Database Application Developer’s Guide - Workspace Manager

RevokeSystemPriv

Revokes (removes) system-level privileges from users and roles.

Syntax
DBMS_WM.RevokeSystemPriv(
 priv_types IN VARCHAR2,
 grantee IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
Contrast this procedure with RevokeWorkspacePriv, which revokes
workspace-level Workspace Manager privileges with keywords in the form xxx_
WORKSPACE (ACCESS_WORKSPACE, MERGE_WORKSPACE, and so on).

To grant system-level privileges, use the GrantSystemPriv procedure.

An exception is raised if one or more of the following apply:

Table 4–53 RevokeSystemPriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Section 1.4
discusses Workspace Manager privileges.) Use commas to separate privilege
keywords. The available keywords are ACCESS_ANY_WORKSPACE, MERGE_
ANY_WORKSPACE, CREATE_ANY_WORKSPACE, REMOVE_ANY_WORKSPACE,
and ROLLBACK_ANY_WORKSPACE.

grantee Name of the user (can be the PUBLIC user group) or role from which to
revoke priv_types.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

RevokeSystemPriv

DBMS_WM Package: Reference 4-135

� grantee is not a valid user or role in the database.

� You were not the grantor of priv_types to grantee.

Examples
The following example disallows user Smith from accessing workspaces and
merging changes in workspaces.

EXECUTE DBMS_WM.RevokeSystemPriv ('ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE',
'Smith');

RevokeWorkspacePriv

4-136 Oracle Database Application Developer’s Guide - Workspace Manager

RevokeWorkspacePriv

Revokes (removes) workspace-level privileges from users and roles for a specified
workspace.

Syntax
DBMS_WM.RevokeWorkspacePriv(
 priv_types IN VARCHAR2,
 workspace IN VARCHAR2,
 grantee IN VARCHAR2.
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
Contrast this procedure with RevokeSystemPriv, which revokes system-level
Workspace Manager privileges with keywords in the form xxx_ANY_WORKSPACE
(ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE, and so on). Also contrast

Table 4–54 RevokeWorkspacePriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Section 1.4
discusses Workspace Manager privileges.) Use commas to separate privilege
keywords. The available keywords are ACCESS_WORKSPACE, MERGE_
WORKSPACE, CREATE_WORKSPACE, REMOVE_WORKSPACE, and ROLLBACK_
WORKSPACE.

workspace Name of the workspace. The name is case sensitive.

grantee Name of the user (can be the PUBLIC user group) or role from which to
revoke priv_types.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

RevokeWorkspacePriv

DBMS_WM Package: Reference 4-137

this procedure with RevokeGraphPriv, which grants workspace-level Workspace
Manager privileges on multiparent graph workspaces

To grant workspace-level privileges, use the GrantWorkspacePriv procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You were not the grantor of priv_types to grantee.

Examples
The following example disallows user Smith from accessing the NEWWORKSPACE
workspace and merging changes in that workspace.

EXECUTE DBMS_WM.RevokeWorkspacePriv ('ACCESS_WORKSPACE, MERGE_WORKSPACE',
'NEWWORKSPACE', 'Smith');

RollbackBulkLoading

4-138 Oracle Database Application Developer’s Guide - Workspace Manager

RollbackBulkLoading

Rolls back changes made to a version-enabled table during a bulk load operation.

Syntax
DBMS_WM.RollbackBulkLoading(

table_name IN VARCHAR2,
ignore_last_error IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
For information about the requirements for bulk loading data into version-enabled
tables, see Section 1.7.

This procedure re-creates all the views that were dropped by the BeginBulkLoading
procedure.

If a call to the RollbackBulkLoading procedure fails, you should try to fix the cause
of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS
metadata views to see the SQL statement and error message. Fix the cause of the
error, and then call the RollbackBulkLoading procedure again with the default
ignore_last_error parameter value of FALSE. However, if the call still fails and
you cannot fix the cause of the error, and if you are sure that it is safe and

Table 4–55 RollbackBulkLoading Procedure Parameters

Parameter Description

table_name Name of the version-enabled table into which data will be bulk
loaded. The name is not case sensitive.

ignore_last_error A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the
previous call to the RollbackBulkLoading procedure.
Information about the last error is stored in the USER_WM_VT_
ERRORS and ALL_WM_VT_ERRORS metadata views, which
are described in Chapter 5. See the Usage Notes for more
information.

FALSE (the default) does not ignore the last error, if any, that
occurred during the previous call to the RollbackBulkLoading
procedure.

RollbackBulkLoading

DBMS_WM Package: Reference 4-139

appropriate to ignore this error, then you have the option to ignore the error by
calling the RollbackBulkLoading procedure with the ignore_last_error
parameter value of TRUE. Note that you are responsible for ensuring that it is safe
and appropriate to ignore the error.

An exception is raised if one or more of the following apply:

� table_name does not exist.

� table_name is not version-enabled.

� The BeginBulkLoading procedure has not been called on the table.

� The user does not own the table or does not have the WM_ADMIN_ROLE role.

Examples
The following example rolls back changes made to EMP table during a bulk load
operation.

EXECUTE DBMS_WM.RollbackBulkLoading ('EMP');

RollbackDDL

4-140 Oracle Database Application Developer’s Guide - Workspace Manager

RollbackDDL

Rolls back (cancels) DDL (data definition language) changes made during a DDL
session for a specified table, and ends the DDL session.

Syntax
DBMS_WM.RollbackDDL(
 table_name IN VARCHAR2);

Parameters

Usage Notes
This procedure rolls back (cancels) changes that were made to a version-enabled
table and to any indexes and triggers based on the version-enabled table during a
DDL session. It also deletes the <table-name>_LTS skeleton table that was created by
the BeginDDL procedure.

For detailed information about performing DDL operations related to
version-enabled tables, see Section 1.8; and for DDL operations on version-enabled
tables in an Oracle replication environment, see also Section C.3.

An exception is raised if one or more of the following apply:

� table_name does not exist or is not version-enabled.

� An open DDL session does not exist for table_name. (That is, the BeginDDL
procedure has not been called specifying this table, or the CommitDDL or
RollbackDDL procedure was already called specifying this table.)

Examples
The following example begins a DDL session, adds a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the skeleton table named COLA_
MARKETING_BUDGET_LTS, and ends the DDL session by canceling the change.

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');

Table 4–56 RollbackDDL Procedure Parameters

Parameter Description

table_name Name of the version-enabled table. The name is not case sensitive.

RollbackDDL

DBMS_WM Package: Reference 4-141

ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
EXECUTE DBMS_WM.RollbackDDL('COLA_MARKETING_BUDGET');

RollbackResolve

4-142 Oracle Database Application Developer’s Guide - Workspace Manager

RollbackResolve

Quits a conflict resolution session and discards all changes in the workspace since
the BeginResolve procedure was executed.

Syntax
DBMS_WM.RollbackResolve(
 workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure quits the current conflict resolution session (started by the
BeginResolve procedure), and discards all changes in the workspace since the start
of the conflict resolution session. Contrast this procedure with CommitResolve,
which saves all changes.

While the conflict resolution session is being rolled back, the workspace is frozen in
1WRITER mode, as explained in Section 1.1.5.

For more information about conflict resolution, see Section 1.1.4.

An exception is raised if one or more of the following apply:

� There are one or more open database transactions in workspace.

� The procedure was called by a user that does not have the WM_ADMIN_ROLE
role or that did not execute the BeginResolve procedure on workspace.

Examples
The following example quits the conflict resolution session in Workspace1 and
discards all changes.

EXECUTE DBMS_WM.RollbackResolve ('Workspace1');

Table 4–57 RollbackResolve Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

RollbackTable

DBMS_WM Package: Reference 4-143

RollbackTable

Discards all changes made in the workspace to a specified table (all rows or as
specified in the WHERE clause).

Syntax
DBMS_WM.RollbackTable(
 workspace IN VARCHAR2,
 table_id IN VARCHAR2,
 sp_name IN VARCHAR2 DEFAULT '',
 where_clause IN VARCHAR2 DEFAULT '',
 remove_locks IN BOOLEAN DEFAULT TRUE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 4–58 RollbackTable Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

table_id Name of the table containing rows to be discarded. The name is not case
sensitive.

sp_name Name of the savepoint to which to roll back. The name is case sensitive.
The default is to discard all changes (that is, ignore any savepoints).

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be discarded. Example: 'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows that meet the
criteria of the other parameters are discarded.

remove_locks A Boolean value (TRUE or FALSE).

TRUE (the default) releases those locks on rows in the parent workspace
that satisfy the condition in the where_clause parameter and that were not
versioned in the child workspace. This option has no effect if a savepoint is
specified (sp_name parameter).

FALSE does not release any locks in the parent workspace.

RollbackTable

4-144 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
You cannot roll back to a savepoint if any implicit savepoints were created since the
specified savepoint, unless you first merge or remove the descendant workspaces
that caused the implicit savepoints to be created. For example, referring to
Figure 1–2 in Section 1.1.2, the user in Workspace1 cannot roll back to savepoint SP1
until Workspace3 (which caused implicit savepoint SPc to be created) is merged or
removed.

An exception is raised if one or more of the following apply:

� workspace does not exist.

� You do not have the privilege to roll back workspace or any affected table.

� A database transaction affecting table_id is open in workspace.

Examples
The following example rolls back all changes made to the EMP table (in the USER3
schema) in the NEWWORKSPACE workspace since that workspace was created.

EXECUTE DBMS_WM.RollbackTable ('NEWWORKSPACE', 'user3.emp');

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Section 1.1.8.

Table 4–58 (Cont.) RollbackTable Procedure Parameters

Parameter Description

RollbackToSP

DBMS_WM Package: Reference 4-145

RollbackToSP

Discards all data changes made in the workspace to version-enabled tables since the
specified savepoint.

Syntax
DBMS_WM.RollbackToSP(
 workspace IN VARCHAR2,
 savepoint_name IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
While this procedure is executing, the workspace is frozen in NO_ACCESS mode.

Contrast this procedure with RollbackWorkspace, which rolls back all changes
made since the creation of the workspace.

You cannot roll back to a savepoint if any implicit savepoints were created since the
specified savepoint, unless you first merge or remove the descendant workspaces
that caused the implicit savepoints to be created. For example, referring to
Figure 1–2 in Section 1.1.2, the user in Workspace1 cannot roll back to savepoint

Table 4–59 RollbackToSP Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

savepoint_name Name of the savepoint to which to roll back changes. The name is case
sensitive.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Section 1.1.8.

RollbackToSP

4-146 Oracle Database Application Developer’s Guide - Workspace Manager

SP1 until Workspace3 (which caused implicit savepoint SPc to be created) is
merged or removed.

An exception is raised if one or more of the following apply:

� workspace does not exist.

� savepoint_name does not exist.

� One or more implicit savepoints were created in workspace after
savepoint_name, and the descendant workspaces that caused the implicit
savepoints to be created still exist.

� You do not have the privilege to roll back workspace or any affected table.

� Any sessions are in workspace.

Examples
The following example rolls back any changes made in the NEWWORKSPACE
workspace to all tables since the creation of Savepoint1.

EXECUTE DBMS_WM.RollbackToSP ('NEWWORKSPACE', 'Savepoint1');

RollbackWorkspace

DBMS_WM Package: Reference 4-147

RollbackWorkspace

Discards all data changes made in the workspace to version-enabled tables.

Syntax
DBMS_WM.RollbackWorkspace(
 workspace IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
Only leaf workspaces can be rolled back. That is, a workspace cannot be rolled back
if it has any descendant workspaces. (For an explanation of workspace hierarchy,
see Section 1.1.1.)

Contrast this procedure with RollbackToSP, which rolls back changes to a specified
savepoint.

Like the RemoveWorkspace procedure, RollbackWorkspace deletes the data in the
workspace; however, unlike the RemoveWorkspace procedure, RollbackWorkspace
does not delete the Workspace Manager workspace structure.

While this procedure is executing, the specified workspace is frozen in NO_ACCESS
mode, as explained in Section 1.1.5.

An exception is raised if one or more of the following apply:

Table 4–60 RollbackWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Section 1.1.8.

RollbackWorkspace

4-148 Oracle Database Application Developer’s Guide - Workspace Manager

� workspace has any descendant workspaces.

� workspace does not exist.

� You do not have the privilege to roll back workspace or any affected table.

� Any sessions are in workspace.

Examples
The following example rolls back any changes made in the NEWWORKSPACE
workspace since that workspace was created.

EXECUTE DBMS_WM.RollbackWorkspace ('NEWWORKSPACE');

SetCaptureEvent

DBMS_WM Package: Reference 4-149

SetCaptureEvent

Enables or disables the capture of all Workspace Manager events or events of a
specific type.

Syntax
DBMS_WM.SetCaptureEvent(
 event_name IN VARCHAR2,
 capture IN VARCHAR2 DEFAULT 'ON');

Parameters

Usage Notes
For information about Workspace Manager events, see Chapter 2.

This procedure requires that the Workspace Manager system parameter ALLOW_
CAPTURE_EVENTS be set to ON. To check the value of a Workspace Manager system
parameter, use the GetSystemParameter procedure; to set a Workspace Manager
system parameter, use the SetSystemParameter procedure.

You can use this procedure to control which types of events are captured. For
example, you can enable the capture of all events, and then disable the capture of a
few types of events; or you can disable the capture of all events, and then enable the
capture of a few types of events.

Table 4–61 SetCaptureEvent Procedure Parameters

Parameter Description

event_name One of the following values: ALL_EVENTS, TABLE_MERGE_W_REMOVE_DATA,
TABLE_MERGE_WO_REMOVE_DATA, TABLE_REFRESH, TABLE_ROLLBACK,
WORKSPACE_COMPRESS, WORKSPACE_CREATE, WORKSPACE_MERGE_W_
REMOVE, WORKSPACE_MERGE_WO_REMOVE, WORKSPACE_REFRESH,
WORKSPACE_REMOVE, WORKSPACE_ROLLBACK, WORKSPACE_VERSION.

ALL_EVENTS includes all Workspace Manager events. The other values reflect
specific event types, which are listed and explained in Section 2.1.

capture ON (the default) enables the capture of event_name events.

OFF disables the capture of event_name events.

SetCaptureEvent

4-150 Oracle Database Application Developer’s Guide - Workspace Manager

To see which types of events are currently being captured, examine the WM_
EVENTS_INFO metadata view, which is described in Section 5.38.

If this procedure completes successfully, it commits the caller’s open database
transaction.

An exception is raised if one or more of the following apply:

� You do not have WM_ADMIN_ROLE role.

� The value of the ALLOW_CAPTURE_EVENTS system parameter is OFF and you
are trying to set event_name to ON (the default value for that parameter).

� event_name is not valid.

Examples
The following example captures all Workspace Manager events except workspace
compression events, by first specifying that all events are to be captured, and then
excluding workspace compression events.

-- Allow Workspace Manager events to be captured. (Required for SetCaptureEvent)
EXECUTE DBMS_WM.SetSystemParameter ('ALLOW_CAPTURE_EVENTS', 'ON');
-- Start capturing all Workspace Manager events.
EXECUTE DBMS_WM.SetCaptureEvent ('ALL_EVENTS','ON');
-- Exclude workspace compression events.
EXECUTE DBMS_WM.SetCaptureEvent ('WORKSPACE_COMPRESS','OFF');

SetCompressWorkspace

DBMS_WM Package: Reference 4-151

SetCompressWorkspace

Creates rows in the WM_COMPRESSIBLE_TABLES metadata view with
information about version-enabled tables that need to be compressed if workspace
compression operations are performed.

Syntax
DBMS_WM.SetCompressWorkspace(

workspace IN VARCHAR2,
firstSP IN VARCHAR2 DEFAULT NULL,
secondSP IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
You can (but do not need to) use this procedure before calling the
CompressWorkspace or CompressWorkspaceTree procedure.

Table 4–62 SetCompressWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

firstSP Savepoint on the first version of the compression range. Savepoint names are
case sensitive.

If only workspace and firstSP are specified, all rows in version-enabled
tables affected between workspace creation and firstSP are checked to see if
they need to be compressed in a workspace compression operation is
performed.

If workspace, firstSP, and secondSP are specified, all rows in
version-enabled tables affected between firstSP and secondSP are
checked.

If only workspace is specified (no savepoints), all rows in version-enabled
tables are checked.

secondSP Savepoint on the first version of the compression range. All rows in
version-enabled tables from firstSP to secondSP are checked to see if they
need to be compressed in a workspace compression operation is performed.
Savepoint names are case sensitive.

SetCompressWorkspace

4-152 Oracle Database Application Developer’s Guide - Workspace Manager

This procedure creates rows in the WM_COMPRESSIBLE_TABLES metadata view
(described in WM_COMPRESSIBLE_TABLES) only for version-enabled tables that
would need to be compressed during a workspace compression operation.

Examples
The following example creates rows in the WM_COMPRESSIBLE_TABLES
metadata view for any version-enabled tables that would need to be compressed
during an operation that compressed the B_focus_1 workspace.

EXECUTE DBMS_WM.SetCompressWorkspace ('B_focus_1');

SetConflictWorkspace

DBMS_WM Package: Reference 4-153

SetConflictWorkspace

Determines whether or not conflicts exist between a workspace and its parent.

Syntax
DBMS_WM.SetConflictWorkspace(
 workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure checks for any conflicts between workspace and its parent
workspace, and it modifies the content of the <table_name>_CONF views
(explained in Section 5.41) as needed.

A SELECT operation from the <table_name>_CONF views for all tables modified in
a workspace displays all rows in the workspace that are in conflict with the parent
workspace. (To obtain a list of tables that have conflicts for the current conflict
workspace setting, use the SQL statement SELECT * FROM ALL_WM_
VERSIONED_TABLES WHERE conflict = 'YES';. The SQL statement SELECT
* FROM <table_name>_CONF displays conflicts for <table_name> between the
current workspace and its parent workspace.)

Any conflicts must be resolved before a workspace can be merged or refreshed. To
resolve a conflict, you must use the ResolveConflicts procedure, and then merge the
result of the resolution by using the MergeWorkspace procedure.

Examples
The following example checks for any conflicts between B_focus_2 and its parent
workspace, and modifies the contents of the <table_name>_CONF views as needed.

EXECUTE DBMS_WM.SetConflictWorkspace ('B_focus_2');

Table 4–63 SetConflictWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

SetDiffVersions

4-154 Oracle Database Application Developer’s Guide - Workspace Manager

SetDiffVersions

Finds differences in values in version-enabled tables for two savepoints and their
common ancestor (base). It modifies the contents of the differences views that
describe these differences.

Syntax
DBMS_WM.SetDiffVersions(

workspace1 IN VARCHAR2,
workspace2 IN VARCHAR2);

or

DBMS_WM.SetDiffVersions(
workspace1 IN VARCHAR2,
savepoint1 IN VARCHAR2,
workspace2 IN VARCHAR2,
savepoint2 IN VARCHAR2);

Parameters

Table 4–64 SetDiffVersions Procedure Parameters

Parameter Description

workspace1 Name of the first workspace to be checked for differences in version-enabled
tables. The name is case sensitive.

savepoint1 Name of the savepoint in workspace1 for which values are to be checked.
The name is case sensitive.

If savepoint1 and savepoint2 are not specified, the rows in
version-enabled tables for the LATEST savepoint in each workspace are
checked. (The LATEST savepoint is explained in Section 1.1.2.)

workspace2 Name of the second workspace to be checked for differences in
version-enabled tables. The name is case sensitive.

savepoint2 Name of the savepoint in workspace2 for which values are to be checked.
The name is case sensitive.

SetDiffVersions

DBMS_WM Package: Reference 4-155

Usage Notes
This procedure modifies the contents of the differences views (xxx_DIFF), which are
described in Section 5.42. Each call to the procedure populates one or more sets of
three rows, each set consisting of:

� Values for the common ancestor

� Values for workspace1 (savepoint1 or LATEST savepoint values)

� Values for workspace2 (savepoint2 or LATEST savepoint values)

You can then select rows from the appropriate xxx_DIFF view or views to check
comparable table values in the two savepoints and their common ancestor. The
common ancestor (or base) is identified as DiffBase in xxx_DIFF view rows.

Examples
The following example checks the differences in version-enabled tables for the B_
focus_1 and B_focus_2 workspaces. (The output has been reformatted for
readability.)

-- Add rows to difference view: COLA_MARKETING_BUDGET_DIFF
EXECUTE DBMS_WM.SetDiffVersions ('B_focus_1', 'B_focus_2');

-- View the rows that were just added.
SELECT * from COLA_MARKETING_BUDGET_DIFF;

PRODUCT_ID PRODUCT_NAME MANAGER BUDGET WM_DIFFVER WMCODE
---------- ------------ ------- ------ ----------- --------
 1 cola_a Alvarez 2 DiffBase NC
 1 cola_a Alvarez 1.5 B_focus_1, LATEST U
 1 cola_a Alvarez 2 B_focus_2, LATEST NC
 2 cola_b Burton 2 DiffBase NC
 2 cola_b Beasley 3 B_focus_1, LATEST U
 2 cola_b Burton 2.5 B_focus_2, LATEST U
 3 cola_c Chen 1.5 DiffBase NC
 3 cola_c Chen 1 B_focus_1, LATEST U
 3 cola_c Chen 1.5 B_focus_2, LATEST NC
 4 cola_d Davis 3.5 DiffBase NC
 4 cola_d Davis 3 B_focus_1, LATEST U
 4 cola_d Davis 2.5 B_focus_2, LATEST U

12 rows selected.

SetDiffVersions

4-156 Oracle Database Application Developer’s Guide - Workspace Manager

Section 5.42 explains how to interpret and use the information in the differences
(xxx_DIFF) views.

SetLockingOFF

DBMS_WM Package: Reference 4-157

SetLockingOFF

Disables Workspace Manager locking for the current session.

Syntax
DBMS_WM.SetLockingOFF();

Parameters
None.

Usage Notes
This procedure turns off Workspace Manager locking that was set on by the
SetLockingON procedure. Existing locks applied by this session remain locked. All
new changes by this session are not locked.

Examples
The following example sets locking off for the session.

EXECUTE DBMS_WM.SetLockingOFF;

SetLockingON

4-158 Oracle Database Application Developer’s Guide - Workspace Manager

SetLockingON

Enables Workspace Manager locking for the current session.

Syntax
DBMS_WM.SetLockingON(

lockmode IN VARCHAR2);

Parameters

Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle database locking. Workspace Manager locks can be used to prevent
conflicts. When a user locks a row, the corresponding row in the parent workspace

Table 4–65 SetLockingON Procedure Parameters

Parameter Description

lockmode Locking mode. Must be E, WE, VE, S, or C.

E (exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version; no other users in the workspace for
either version can change any values.

WE (workspace-exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version such that only the user that set the
lock can change the values in the current workspace; however, other users in
other workspaces can change the values.

VE (version-exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version such that only the user that set the
lock can change the values; no other users (in any workspace) can change the
values.

S (shared) mode locks the rows in the previous version and the corresponding
rows in the current version; however, other users in the workspace for the
current version (but no users in the workspace for the previous version) can
change values in these rows.

C (carry-forward) mode locks rows in the current workspace with the same
locking mode as the corresponding rows in the previous version. (If a row is
not locked in the previous version, its corresponding row in the current
version is not locked.)

SetLockingON

DBMS_WM Package: Reference 4-159

is also locked. Thus, when this workspace merges with the parent at merge time, it
is guaranteed that this row will not have a conflict.

For information about Workspace Manager lock management, see Section 1.3.

Exclusive locking (lockmode value of E) prevents the use of what-if scenarios in
which different values for one or more columns are tested. Thus, plan any testing of
scenarios when exclusive locking is not in effect.

Locking is enabled at the user session level, and the locking mode stays in effect
until any of the following occurs:

� The session goes to another workspace or connects to the database, in which
case the locking mode is set to C (carry-forward) unless another locking mode
has been specified using the SetWorkspaceLockModeON procedure.

� The session executes the SetLockingOFF procedure.

The locks remain in effect for the duration of the workspace, unless unlocked by the
UnlockRows procedure. (Existing locks are not affected by the SetLockingOFF
procedure.)

There are no specific privileges associated with locking. Any session that can go to a
workspace can set locking on.

Examples
The following example sets exclusive locking on for the session.

EXECUTE DBMS_WM.SetLockingON ('E');

All rows locked by this user remain locked until the workspace is merged or rolled
back.

SetMultiWorkspaces

4-160 Oracle Database Application Developer’s Guide - Workspace Manager

SetMultiWorkspaces

Makes the specified workspace or workspaces visible in the multiworkspace views
for version-enabled tables.

Syntax
DBMS_WM.SetMultiWorkspaces(

workspaces IN VARCHAR2);

Parameters

Usage Notes
This procedure adds rows to the multiworkspace views (xxx_MW). See Section 5.45
for information about the contents and uses of these views.

To see the names of workspaces visible in the multiworkspace views, use the
GetMultiWorkspaces function.

An exception is raised if one or more of the following apply:

� The user does not have the privilege to go to one or more of the workspaces
named in workspaces.

� A workspace named in workspaces is not valid.

Examples
The following example adds information to the multiworkspace views for
version-enabled tables in the B_focus_1 workspace.

EXECUTE DBMS_WM.SetMultiWorkspaces ('B_focus_1');

Table 4–66 SetMultiWorkspaces Procedure Parameters

Parameter Description

workspaces The workspace or workspaces for which information is to be added to the
multiworkspace views (described in Section 5.45). The workspace names are
case sensitive.

To specify more than one workspace (but no more than eight), use a comma to
separate workspace names. For example: 'workspace1,workspace2'

SetMultiWorkspaces

DBMS_WM Package: Reference 4-161

The following example shows the use of the SetMultiWorkspaces procedure to view
information without leaving the current workspace, and the use of the
GotoWorkspace procedure to view the same information.

-- These two pairs of statements select the same information.
EXECUTE DBMS_WM.SetMultiWorkspaces ('myworkspace');
SELECT * from mytable_mw;

EXECUTE DBMS_WM.GotoWorkspace ('myworkspace');
SELECT * from mytable;

To select only the rows modified in myworkspace, change the first SELECT
statement in the preceding example to the following:

SELECT * from mytable_mw WHERE wm_modified_by = 'myworkspace';

The following example shows the latest rows in the combined ancestor versions of
the workspaces named myworkspace and yourworkspace. If the same row is
selected from more than workspace, that row is shown only once. Note that there
may be more than one row for a primary key because different workspaces might
be selecting different versions of the primary key.

EXECUTE DBMS_WM.SetMultiWorkspaces ('myworkspace,yourworkspace');
SELECT * from mytable_mw;

SetSystemParameter

4-162 Oracle Database Application Developer’s Guide - Workspace Manager

SetSystemParameter

Sets the value of a Workspace Manager system parameter.

Syntax
DBMS_WM.SetSytstemParameter(

name IN VARCHAR2,
value IN VARCHAR2);

Parameters

Usage Notes
For information about Workspace Manager system parameters, see Section 1.5.

If this procedure completes successfully, it commits the caller’s open database
transaction.

An exception is raised if one or more of the following apply:

� The user does not have the WM_ADMIN_ROLE role.

� The system parameter name is not valid.

� The value is not valid for the system parameter.

� You tried to disallow capturing of events, and one or more types of events were
being captured. You must first disable the capturing of all events (for example,
by calling the SetCaptureEvent procedure and specifying ALL_EVENTS for
event_type and OFF for capture).

Table 4–67 SetSystemParameter Procedure Parameters

Parameter Description

name Name of the Workspace Manager system parameter for which to set the value.
The name must be one of the following: ALLOW_CAPTURE_EVENTS, ALLOW_
MULTI_PARENT_WORKSPACES, ALLOW_NESTED_TABLE_COLUMNS, CR_
WORKSPACE_MODE, FIRE_TRIGGERS_FOR_NONDML_EVENTS, NONCR_
WORKSPACE_MODE.

value Value for the specified Workspace Manager system parameter, as explained in
Table 1–4 in Section 1.5

SetSystemParameter

DBMS_WM Package: Reference 4-163

� You tried to disallow multiparent workspaces, and one or more multiparent
workspaces already existed. You must first ensure that all workspaces have no
more than one parent workspace (for example, by calling the
RemoveAsParentWorkspace procedure as needed).

� You tried to disallow nested table columns, and one or more tables with a
nested table column were version-enabled. You must first disable versioning on
all tables with nested table columns.

� You tried to change CR_WORKSPACE_MODE or NONCR_WORKSPACE_MODE to
PESSIMISTIC_LOCKING, and data exists in a non-LIVE workspace for the
corresponding type of workspace (continually refreshed or not continually
refreshed).

Examples
The following example allows multiparent workspaces (described in Section 1.1.10)
to be created.

EXECUTE DBMS_WM.SetSystemParameter ('ALLOW_MULTI_PARENT_WORKSPACES', 'ON');

SetTriggerEvents

4-164 Oracle Database Application Developer’s Guide - Workspace Manager

SetTriggerEvents

Enables the execution of a trigger for a specified set of triggering events. The trigger
will not be executed for events not specified

Syntax
DBMS_WM.SetTriggerEvents(

triggerName IN VARCHAR2,
triggerEvents IN VARCHAR2);

Parameters

Usage Notes
For information about using triggers with Workspace Manager, see Section 1.10.

By default, user-defined triggers are executed for both DML and workspace events,
unless the default behavior is changed by using the Workspace Manager system
parameter FIRE_TRIGGERS_FOR_NONDML_EVENTS (described in Section 1.5). You
can use the SetTriggerEvents procedure to override the current FIRE_
TRIGGERS_FOR_NONDML_EVENTS setting for specific triggers; however, if you later
change the value of the FIRE_TRIGGERS_FOR_NONDML_EVENTS system

Table 4–68 SetTriggerEvents Procedure Parameters

Parameter Description

triggerName Name of the trigger for which to set one or more events.

triggerEvents A comma-delimited list of trigger event names, where each trigger event
name is one of the following string constants:

DBMS_WM.DML: Only for DML operations.

DBMS_WM.TABLE_IMPORT: Import table (using the Import procedure).

DBMS_WM.TABLE_MERGE_W_REMOVE_DATA: Merge table and remove
data.

DBMS_WM.TABLE_MERGE_WO_REMOVE_DATA: Merge table without
removing data.

DBMS_WM.WORKSPACE_MERGE_W_REMOVE: Merge workspace and
remove the workspace

DBMS_WM.WORKSPACE_MERGE_WO_REMOVE: Merge workspace without
removing the workspace.

SetTriggerEvents

DBMS_WM Package: Reference 4-165

parameter, this new value overrides any setting previously specified using the
SetTriggerEvents procedure.

If this procedure completes successfully, it commits the caller’s open database
transaction.

An exception is raised if one or more of the following apply:

� The user is not the trigger owner or does not have the WM_ADMIN_ROLE role.

� triggerName does not exist.

� One of more triggerEvents values are not valid.

Examples
The following example enables the trigger SCOTT.InsertTrigger only for DML
events.

EXECUTE DBMS_WM.setTriggerEvents('SCOTT.InsertTrigger', DBMS_WM.DML);

The following example enables the trigger SCOTT.InsertTrigger for DML
events and table merge operations.

EXECUTE DBMS_WM.setTriggerEvents('SCOTT.InsertTrigger', dbms_wm.DML || ',' ||
 dbms_wm.TABLE_MERGE_WO_REMOVE_DATA || ',' ||
 dbms_wm.TABLE_MERGE_W_REMOVE_DATA);

SetValidTime

4-166 Oracle Database Application Developer’s Guide - Workspace Manager

SetValidTime

Sets the session valid time period. (Valid time support is described in Chapter 3.)

Syntax
DBMS_WM.SetValidTime(

validFrom IN VARCHAR2 DEFAULT DBMS_WM.CURRENT_TIME,
validTill IN VARCHAR2 DEFAULT DBMS_WM.UNTIL_CHANGED,
validFromFormat IN VARCHAR2 DEFAULT DEFAULT_DATE_FMT,
validTillFormat IN VARCHAR2 DEFAULT DEFAULT_DATE_FMT);

Parameters

Usage Notes
For information about Workspace Manager valid time support, see Chapter 3.
Section 3.2 explains how validFrom and validTill values are interpreted.

Examples
The following example sets the session valid time to include all of the year 1998.

EXECUTE DBMS_WM.SetValidTime(TO_DATE('01-01-1998', 'MM-DD-YYYY'), TO_
DATE('01-01-1999', 'MM-DD-YYYY'));

Table 4–69 SetSystemParameter Procedure Parameters

Parameter Description

validFrom The start of the session valid time period. The default value is the
current timestamp value.

validTill The end of the session valid time period. The default is that the time
remains valid until the session valid time is changed.

validFromFormat Date format string to be used with validFrom. The default is the
current Oracle default date format.

validTillFormat Date format string to be used with validTill. The default is the
current Oracle default date format.

SetWoOverwriteOFF

DBMS_WM Package: Reference 4-167

SetWoOverwriteOFF

Disables the VIEW_WO_OVERWRITE history option that was enabled by the
EnableVersioning or SetWoOverwriteON procedure, changing the option to VIEW_
W_OVERWRITE (with overwrite).

Syntax
DBMS_WM.SetWoOverwriteOFF();

Parameters
None.

Usage Notes
This procedure affects the recording of history information in the views named
<table_name>_HIST by changing the VIEW_WO_OVERWRITE option to VIEW_W_
OVERWRITE. That is, from this point forward, the views show only the most recent
modifications to the same version of the table. A history of modifications to the
version is not maintained; that is, subsequent changes to a row in the same version
overwrite earlier changes.

This procedure affects only tables that were version-enabled with the hist
parameter set to VIEW_WO_OVERWRITE in the call to the EnableVersioning
procedure.

The <table_name>_HIST views are described in Section 5.43. The VIEW_WO_
OVERWRITE and VIEW_W_OVERWRITE options are further described in the
description of the EnableVersioning procedure.

The history option affects the behavior of the GotoDate procedure. See the Usage
Notes for that procedure.

The result of the SetWoOverwriteOFF procedure remains in effect only for the
duration of the current session. To reverse the effect of this procedure, use the
SetWoOverwriteON procedure.

Examples
The following example disables the VIEW_WO_OVERWRITE history option.

EXECUTE DBMS_WM.SetWoOverwriteOFF;

SetWoOverwriteON

4-168 Oracle Database Application Developer’s Guide - Workspace Manager

SetWoOverwriteON

Enables the VIEW_WO_OVERWRITE history option that was disabled by the
SetWoOverwriteOFF procedure.

Syntax
DBMS_WM.SetWoOverwriteON();

Parameters
None.

Usage Notes
This procedure affects the recording of history information in the views named
<table_name>_HIST by changing the VIEW_W_OVERWRITE option to VIEW_WO_
OVERWRITE (without overwrite). That is, from this point forward, the views show all
modifications to the same version of the table. A history of modifications to the
version is maintained; that is, subsequent changes to a row in the same version do
not overwrite earlier changes.

This procedure affects only tables that were affected by a previous call to the
SetWoOverwriteOFF procedure.

The <table_name>_HIST views are described in Section 5.43. The VIEW_WO_
OVERWRITE and VIEW_W_OVERWRITE options are further described in the
description of the EnableVersioning procedure.

The VIEW_WO_OVERWRITE history option can be overridden when a workspace is
compressed by specifying the compress_view_wo_overwrite parameter as
TRUE with the CompressWorkspace or CompressWorkspaceTree procedure.

The history option affects the behavior of the GotoDate procedure. See the Usage
Notes for that procedure.

To reverse the effect of this procedure, use the SetWoOverwriteOFF procedure.

Examples
The following example enables the VIEW_WO_OVERWRITE history option.

EXECUTE DBMS_WM.SetWoOverwriteON;

SetWorkspaceLockModeOFF

DBMS_WM Package: Reference 4-169

SetWorkspaceLockModeOFF

Disables Workspace Manager locking for the specified workspace.

Syntax
DBMS_WM.SetWorkspaceLockModeOFF(

workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure turns off Workspace Manager locking that was set on by the
SetWorkspaceLockModeON procedure. Existing locks applied by this session
remain locked. All new changes by this session or a subsequent session are not
locked, unless the session turns locking on by executing the SetLockingON
procedure.

An exception is raised if any of the following occurs:

� The user does not have the WM_ADMIN_ROLE role or is not the owner of
workspace.

� There are any open database transactions in workspace.

� workspace is a continually refreshed workspace (see the description of the
isrefreshed parameter of the CreateWorkspace procedure).

Examples
The following example sets locking off for the workspace named NEWWORKSPACE.

EXECUTE DBMS_WM.SetWorkspaceLockModeOFF('NEWWORKSPACE');

Table 4–70 SetWorkspaceLockModeOFF Procedure Parameters

Parameter Description

workspace Name of the workspace for which to set the locking mode off. The name is
case sensitive.

SetWorkspaceLockModeON

4-170 Oracle Database Application Developer’s Guide - Workspace Manager

SetWorkspaceLockModeON

Enables Workspace Manager locking for the specified workspace.

Syntax
DBMS_WM.SetWorkspaceLockModeON(

workspace IN VARCHAR2,
lockmode IN VARCHAR2,
override IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–71 SetWorkspaceLockModeON Procedure Parameters

Parameter Description

workspace Name of the workspace for which to enable Workspace Manager locking. The
name is case sensitive.

lockmode Default locking mode for row-level locking. Must be E, WE, VE, S, or C.

E (exclusive) mode locks the rows in the parent workspace and the
corresponding rows in the current workspace; no other users in either
workspace can change any values.

WE (workspace-exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version such that only the user that set the
lock can change the values in the current workspace; however, other users in
other workspaces can change the values.

VE (version-exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version such that only the user that set the
lock can change the values; no other users (in any workspace) can change the
values.

S (shared) mode locks the rows in the parent workspace and the
corresponding rows in the current workspace; however, other users in the
current workspace (but no users in the parent workspace) can change values
in these rows.

C (carry-forward) mode locks rows in the current workspace with the same
locking mode as the corresponding rows in the parent workspace. (If a row is
not locked in the parent workspace, its corresponding row in the child
workspace is not locked.)

SetWorkspaceLockModeON

DBMS_WM Package: Reference 4-171

Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle database locking. Workspace Manager locks can be used to prevent
conflicts. When a user locks a row, the corresponding row in the parent workspace
is also locked. Thus, when this workspace merges with the parent at merge time, it
is guaranteed that this row will not have a conflict.

For information about Workspace Manager lock management, see Section 1.3.

Exclusive locking (lockmode value of E) prevents the use of what-if scenarios in
which different values for one or more columns are tested. Thus, plan any testing of
scenarios when exclusive locking is not in effect.

If the override parameter value is TRUE, locking can also be enabled and disabled at
the user session level with the SetLockingON and SetLockingOFF procedures,
respectively.

All new changes by this session or a subsequent session are locked, unless the
session turns locking off by executing the SetLockingOFF procedure.

An exception is raised if any of the following occurs:

� The user does not have the WM_ADMIN_ROLE role or is not the owner of
workspace.

� There are any open database transactions in workspace.

� workspace is a continually refreshed workspace (see the description of the
isrefreshed parameter of the CreateWorkspace procedure).

Examples
The following example sets exclusive locking on for the workspace named
NEWWORKSPACE.

EXECUTE DBMS_WM.SetWorkspaceLockModeON ('NEWWORKSPACE', 'E');

override A Boolean value (TRUE or FALSE)

TRUE allows a session in the workspace to change the lockmode value by
using the SetLockingON and SetLockingOFF procedures.

FALSE (the default) prevents a session in the workspace from changing the
lockmode value.

Table 4–71 (Cont.) SetWorkspaceLockModeON Procedure Parameters

Parameter Description

SetWorkspaceLockModeON

4-172 Oracle Database Application Developer’s Guide - Workspace Manager

All locked rows remain locked until the workspace is merged or rolled back.

SynchronizeSite

DBMS_WM Package: Reference 4-173

SynchronizeSite

Brings the local site (the old writer site) up to date in the Workspace Manager
replication environment after the writer site was moved using the
RelocateWriterSite procedure.

Syntax
DBMS_WM.SynchronizeSite(
 newwritersite IN VARCHAR2);

Parameters

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Appendix C. You must also understand the major
Oracle replication concepts and techniques, which are documented in Oracle
Database Advanced Replication and Oracle Database Advanced Replication Management
API Reference.

You must execute this procedure as the replication administrator user.

You must execute this procedure on the old writer site if you specified the
oldwritersiteavailable parameter as FALSE when you executed the
RelocateWriterSite procedure.

Examples
The following example brings the local system up to date with the new writer site
(BACKUP-SITE1.ACME.COM) in the Workspace Manager replication environment.

DBMS_WM.SynchronizeSite('BACKUP-SITE1.ACME.COM');

Table 4–72 SynchronizeSite Procedure Parameters

Parameter Description

newwritersite Name of the new writer site (database link) with which the local site
needs to be brought up to date.

UnfreezeWorkspace

4-174 Oracle Database Application Developer’s Guide - Workspace Manager

UnfreezeWorkspace

Enables access and changes to a workspace, reversing the effect of the
FreezeWorkspace procedure.

Syntax
DBMS_WM.UnfreezeWorkspace(

workspace IN VARCHAR2);

Parameters

Usage Notes
The operation fails if any sessions are in workspace.

You can unfreeze a workspace only if one or more of the following apply:

� You are the owner of the specified workspace.

� You have the WM_ADMIN_ROLE, the FREEZE_ANY_WORKSPACE privilege, or the
FREEZE_WORKSPACE privilege for the specified workspace.

Examples
The following example unfreezes the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.UnfreezeWorkspace ('NEWWORKSPACE');

Table 4–73 UnfreezeWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

UnlockRows

DBMS_WM Package: Reference 4-175

UnlockRows

Enables access to versioned rows in a specified table and to corresponding rows in
the parent workspace.

Syntax
DBMS_WM.UnlockRows(

workspace IN VARCHAR2,
table_name IN VARCHAR2,
where_clause IN VARCHAR2 DEFAULT '',
all_or_user IN VARCHAR2 DEFAULT 'USER',
lock_mode IN VARCHAR2 DEFAULT 'ES',
Xmin IN NUMBER DEFAULT NULL,
Ymin IN NUMBER DEFAULT NULL,
Xmax IN NUMBER DEFAULT NULL,
Ymax IN NUMBER DEFAULT NULL);

Parameters

Table 4–74 UnlockRows Procedure Parameters

Parameter Description

workspace Name of the workspace: locked rows in this workspace and corresponding
rows in the parent workspace will be unlocked, as specified in the
remaining parameters. The name is case sensitive.

A value of NONE can be used if lock_mode is set to VE (version-exclusive).
This causes rows locked by any workspace to be unlocked.

table_name Name of the table or (if Xmin, Ymin, Xmax, and Ymax are specified) Spatial
topology in which rows are to be unlocked. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be unlocked. Example: 'department_id = 20'

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If the where_clause parameter is not specified, all rows in table_name
are made accessible.

Do not specify the where_clause parameter if table_name specifies a
Spatial topology name.

UnlockRows

4-176 Oracle Database Application Developer’s Guide - Workspace Manager

Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle database locking. For an explanation of Workspace Manager
locking, see Section 1.3.

This procedure unlocks rows that were previously locked (see the LockRows
procedure). It does not affect whether Workspace Manager locking is set on or off
(determined by the SetLockingON and SetLockingOFF procedures).

For information about Workspace Manager locking for tables in an Oracle Spatial
topology, see Section 1.14.1.

all_or_user Scope of the request: ALL or USER.

ALL: All locks accessible by the user in the specified workspace are
considered.

USER (default): Only locks owned by the user in the specified workspace
are considered.

lock_mode Locking mode: E, WE, VE, S, or ES (default).

E (exclusive): Only exclusive mode locks are considered.

WE (workspace-exclusive): Only workspace-exclusive mode locks are
considered.

VE (version-exclusive): Only version-exclusive mode locks are considered.

S (shared): Only shared mode locks are considered.

ES (exclusive and shared: the default): Both exclusive mode and shared
mode locks are considered.

Xmin, Ymin For Oracle Spatial topologies only (see Section 1.14.1), the X and Y
coordinate values, respectively, of the lower-left corner of the window
containing the rows to be locked.You must specify these parameters if you
specified a topology name for table_name; otherwise, do not specify
these parameters.

Xmax, Ymax For Oracle Spatial topologies only (see Section 1.14.1), the X and Y
coordinate values, respectively, of the upper-right corner of the window
containing the rows to be locked.You must specify these parameters if you
specified a topology name for table_name; otherwise, do not specify
these parameters.

Table 4–74 (Cont.) UnlockRows Procedure Parameters

Parameter Description

UnlockRows

DBMS_WM Package: Reference 4-177

Examples
The following example unlocks the EMPLOYEES table where last_name =
'Smith' in the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.UnlockRows ('employees', 'NEWWORKSPACE', 'last_name =
''Smith''');

UseDefaultValuesForNulls

4-178 Oracle Database Application Developer’s Guide - Workspace Manager

UseDefaultValuesForNulls

Determines whether or not Workspace Manager, for the current session, uses the
default value for a column when the user specifies a null value for the column in an
insert operation on a version-enabled table.

Syntax
DBMS_WM.UseDefaultValuesForNulls(

mode_var IN VARCHAR2);

Parameters

Usage Notes
This procedure affects what Workspace Manager does only if an INSERT statement
into a version-enabled table explicitly specifies NULL for a column when the column
has been defined as having a default value. For example, assume the following table
definition:

CREATE TABLE players (name VARCHAR2(20), rating NUMBER DEFAULT 10);

If the PLAYERS table is version-enabled and if you have not executed this procedure
with a mode_val parameter value of OFF, the following statement inserts a row for
Smith with a null RATING value:

INSERT INTO players VALUES ('Smith', NULL);

However, if you have executed the UseDefaultValuesForNulls procedure with a
mode_val parameter value of ON, that statement inserts a row for Smith with a
RATING value of 10.

If the INSERT statement does not specify a value for a column that has a default
value, the default value is inserted regardless of whether or not you previously

Table 4–75 UseDefaultValuesForNulls Procedure Parameters

Parameter Description

mode_var Mode for handling the insertion of null values: OFF or ON.

OFF: A null value is inserted into the column. (This is the normal Oracle
behavior.)

ON: The default value for the column is inserted into the column.

UseDefaultValuesForNulls

DBMS_WM Package: Reference 4-179

called the UseDefaultValuesForNulls procedure or what the mode_val parameter
value was. For example, the following statement always inserts a row for Smith
with a RATING value of 10:

INSERT INTO players VALUES ('Smith');

Examples
The following example causes the column default value to be used during the rest
of the current session whenever an INSERT statement into a version-enabled table
specifies a null value for a column that has a default value.

EXECUTE DBMS_WM.UseDefaultValuesForNulls('ON');

UseDefaultValuesForNulls

4-180 Oracle Database Application Developer’s Guide - Workspace Manager

Workspace Manager Metadata Views 5-1

5
Workspace Manager Metadata Views

Workspace Manager creates and maintains metadata views to hold information
about such things as version-enabled tables, workspaces, savepoints, users,
privileges, locks, and conflicts. These views are read-only to users. You can use the
information in these views to help administer the Workspace Manager environment
and diagnose problems.

There are also views created for each version-enabled table, as follows:

� Conflict view, each having a name in the form <table_name>_CONF. (See
Section 5.41.)

� Difference view, each having a name in the form <table_name>_DIFF. (See
Section 5.42.)

� History view (if history tracking is enabled), each having a name in the form
<table_name>_HIST. (See Section 5.43.)

� Lock view, each having a name in the form <table_name>_LOCK. (See
Section 5.44.)

� Multiworkspace view, each having a name in the form <table_name>_MW. (See
Section 5.45.)

5.1 ALL_MP_GRAPH_WORKSPACES
ALL_MP_GRAPH_WORKSPACES contains information about multiparent graph
workspaces (explained in Section 1.1.10) for which the leaf workspace can be
accessed by the current user.

Related View

ALL_MP_PARENT_WORKSPACES

5-2 Oracle Database Application Developer’s Guide - Workspace Manager

� USER_MP_GRAPH_WORKSPACES (Section 5.20) contains information about
multiparent graph workspaces for which the leaf workspace is owned by the
current user.

5.2 ALL_MP_PARENT_WORKSPACES
ALL_MP_PARENT_WORKSPACES contains information about parent workspaces
of multiparent workspaces (explained in Section 1.1.10) that the current user can
access.

Related View

� USER_MP_PARENT_WORKSPACES (Section 5.21) contains information about
parent workspaces of multiparent workspaces that the current user owns.

Column Datatype Null? Description

MP_LEAF_WORKSPACE VARCHAR2(30) NOT
NULL

Name of the multiparent leaf workspace.

GRAPH_WORKSPACE VARCHAR2(30) NOT
NULL

Name of the multiparent graph workspace.

GRAPH_FLAG VARCHAR2(22) L if the multiparent graph workspace is the leaf
workspace in the multiparent graph; I if the multiparent
graph workspace is an intermediate workspace in the
multiparent graph; R if the multiparent graph workspace
is the root workspace in the multiparent graph.

Column Datatype Null? Description

MP_LEAF_WORKSPACE VARCHAR2(30) NOT
NULL

Name of the multiparent leaf workspace.

PARENT_WORKSPACE VARCHAR2(30) NOT
NULL

Name of the parent workspace.

CREATOR VARCHAR2(30) Name of the user that made PARENT_WORKSPACE a
parent workspace of MP_LEAF_WORKSPACE.

CREATETIME DATE The date and time when PARENT_WORKSPACE became a
parent workspace of MP_LEAF_WORKSPACE.

ISREFRESHED VARCHAR2(3) YES if the multiparent leaf workspace is a continually
refreshed workspace; NO if the multiparent leaf workspace
is not a continually refreshed workspace.

ALL_WM_CONS_COLUMNS

Workspace Manager Metadata Views 5-3

5.3 ALL_VERSION_HVIEW
ALL_VERSION_HVIEW contains information about the version hierarchy. It is used
by Workspace Manager to perform queries against the xxx_HIST views (described
in Section 5.43).

5.4 ALL_WM_CONS_COLUMNS
ALL_WM_CONS_COLUMNS contains information about columns in unique
constraints on version-enabled tables on which the current user has one or more of
the following privileges: SELECT, INSERT, UPDATE, or DELETE.

Related View

� USER_WM_CONS_COLUMNS (Section 5.22) contains information about
columns in unique constraints on version-enabled tables of which the current
user is the owner.

PARENT_FLAG VARCHAR2(17) DP if PARENT_WORKSPACE is the default parent of MP_
LEAF_WORKSPACE; MP if PARENT_WORKSPACE was
added as a parent of MP_LEAF_WORKSPACE.

Column Datatype Null? Description

VERSION NUMBER(38) NOT
NULL

Version number of the workspace identified in the
WORKSPACE column.

PARENT_VERSION NUMBER(38) Version number of the parent version of the version
identified in the VERSION column.

WORKSPACE VARCHAR2(30) Name of the workspace associated with the version
number in the VERSION column.

Column Datatype Null? Description

OWNER VARCHAR2(30) User name of the constraint owner.

CONSTRAINT_NAME VARCHAR2(30) Name of the constraint.

TABLE_NAME VARCHAR2(30) Name of the version-enabled table on which the
constraint is defined.

COLUMN_NAME VARCHAR2(4000) Column in the constraint definition.

Column Datatype Null? Description

ALL_WM_CONSTRAINTS

5-4 Oracle Database Application Developer’s Guide - Workspace Manager

5.5 ALL_WM_CONSTRAINTS
ALL_WM_CONSTRAINTS contains information about constraints on
version-enabled tables on which the current user has one or more of the following
privileges: SELECT, INSERT, UPDATE, or DELETE. It provides information about the
following kinds of constraints: UNIQUE constraint, unique index, PRIMARY KEY
constraints, and CHECK constraints.

Related View

� USER_WM_CONSTRAINTS (Section 5.23) contains information about
constraints on version-enabled tables of which the current user is the owner.

POSITION NUMBER Position of the column in the constraint.

Column Datatype Null? Description

OWNER VARCHAR2(30) NOT
NULL

User name of the constraint owner. (Same as the owner of
TABLE_NAME.)

CONSTRAINT_NAME VARCHAR2(30) Name of the constraint.

CONSTRAINT_TYPE VARCHAR2(2) One of the following values: P = primary constraint, PU =
primary constraint enforced using unique index, PN =
primary constraint enforced using non-unique index, U =
unique constraint, UU = unique constraint enforced using
unique index, UN = unique constraint enforced using
non-unique index, UI = unique index.

TABLE_NAME VARCHAR2(30) Name of the table on which the constraint is defined.

SEARCH_CONDITION CLOB Condition for checking the constraint.

STATUS VARCHAR2(8) ENABLED if the constraint is enabled; DISABLED if the
constraint is disabled.

INDEX_OWNER VARCHAR2(30) Owner of the index used for enforcing the constraint.

INDEX_NAME VARCHAR2(30) Name of the index used for enforcing the constraint.

INDEX_TYPE VARCHAR2(40) NORMAL if the index is not a function-based index;
FUNCTION-BASED NORMAL for a function-based index.

Column Datatype Null? Description

ALL_WM_IND_EXPRESSIONS

Workspace Manager Metadata Views 5-5

5.6 ALL_WM_IND_COLUMNS
ALL_WM_IND_COLUMNS contains information about indexes used for enforcing
unique constraints on version-enabled tables on which the current user has one or
more of the following privileges: SELECT, INSERT, UPDATE, or DELETE.

Related View

� USER_WM_IND_COLUMNS (Section 5.24) contains information about indexes
used for enforcing unique constraints on version-enabled tables of which the
current user is the owner.

5.7 ALL_WM_IND_EXPRESSIONS
ALL_WM_IND_EXPRESSIONS contains information about functional expressions
on functional unique indexes on version-enabled tables on which the current user
has one or more of the following privileges: SELECT, INSERT, UPDATE, or DELETE.

Related View

� USER_WM_IND_EXPRESSIONS (Section 5.25) contains information about
functional expressions on functional unique indexes on version-enabled tables
of which the current user is the owner.

Column Datatype Null? Description

INDEX_OWNER VARCHAR2(30) User name of the index owner.

INDEX_NAME VARCHAR2(30) Name of the index.

OWNER VARCHAR2(30) User name of the owner of the version-enabled table on
which the index is defined.

TABLE_NAME VARCHAR2(30) Name of the version-enabled table on which the index
is defined.

COLUMN_NAME VARCHAR2(4000) Column on which the index is defined.

COLUMN_POSITION NUMBER Position of the column in the index.

COLUMN_LENGTH NUMBER Length of the column.

DESCEND VARCHAR2(4) ASC if the column data in the index is in ascending
order; DESC if the column data in the index is in
descending order.

ALL_WM_LOCKED_TABLES

5-6 Oracle Database Application Developer’s Guide - Workspace Manager

5.8 ALL_WM_LOCKED_TABLES
ALL_WM_LOCKED_TABLES contains information about Workspace Manager
locks on rows in version-enabled tables that the current user can access.

Related View

� USER_WM_LOCKED_TABLES (Section 5.26) contains information about
Workspace Manager locks on rows in version-enabled tables of which the
current user is the owner.

5.9 ALL_WM_MODIFIED_TABLES
ALL_WM_MODIFIED_TABLES contains information about all version-enabled
tables that have been modified and on which the current user has one or more of
the following privileges: SELECT, INSERT, DELETE, UPDATE.

Related View

Column Datatype Null? Description

INDEX_OWNER VARCHAR2(30) User name of the index owner.

INDEX_NAME VARCHAR2(30) Name of the index.

OWNER VARCHAR2(30) User name of the owner of the version-enabled table on
which the index is defined.

TABLE_NAME VARCHAR2(30) Name of the version-enabled table on which the index is
defined.

COLUMN_EXPRESSION VARCHAR2(4000) Test of the functional expression on which the index is
defined.

COLUMN_POSITION NUMBER Position of the expression in the index.

Column Datatype Null? Description

TABLE_OWNER VARCHAR2(40) User name of the table owner.

TABLE_NAME VARCHAR2(40) Name of the table.

LOCK_MODE VARCHAR2(9) Type of lock: EXCLUSIVE or SHARED.

LOCK_OWNER VARCHAR2(4000) User name of the owner of the lock.

LOCKING_WORKSPACE VARCHAR2(4000) Workspace in which the lock was placed.

ALL_WM_RIC_INFO

Workspace Manager Metadata Views 5-7

� USER_WM_MODIFIED_TABLES (Section 5.27) contains information about
version-enabled tables that have been modified and of which the current user is
the owner.

5.10 ALL_WM_RIC_INFO
ALL_WM_RIC_INFO contains information about referential integrity constraints in
version-enabled tables that the current user can access. Workspace Manager uses
this information to provide referential integrity support, which is described in
Section 1.9.1.

Related View

� USER_WM_RIC_INFO (Section 5.29) contains information about referential
integrity constraints in version-enabled tables of which the current user is the
owner.

Column Datatype Null? Description

TABLE_NAME VARCHAR2(61) Name of a version-enabled table.

WORKSPACE VARCHAR2(30) NOT
NULL

Workspace in which the modification occurred.

SAVEPOINT VARCHAR2(30) Name of the savepoint associated with the most recent
modification, or LATEST if a savepoint does not yet exist
is the workspace.

Column Datatype Null? Description

CT_OWNER VARCHAR2(40) NOT
NULL

Owner of the child table in the referential integrity
constraint.

CT_NAME VARCHAR2(40) Name of the child table in the referential integrity
constraint.

PT_OWNER VARCHAR2(40) Owner of the parent table in the referential integrity
constraint.

PT_NAME VARCHAR2(40) Name of the parent table in the referential integrity
constraint.

RIC_NAME VARCHAR2(40) NOT
NULL

Name of the referential integrity constraint.

CT_COLS VARCHAR2(4000) List of foreign key columns in the child table in the
referential integrity constraint.

ALL_WM_TAB_TRIGGERS

5-8 Oracle Database Application Developer’s Guide - Workspace Manager

5.11 ALL_WM_TAB_TRIGGERS
ALL_WM_TAB_TRIGGERS contains information about triggers that the current
user created and for version-enabled tables owned by the current user that have
triggers defined on them. If the current user has the CREATE ANY TRIGGER
privilege, trigger information is displayed for all version-enabled tables.

Related View

� USER_WM_TAB_TRIGGERS (Section 5.30) contains information about triggers
that are owned by the current user and that are on version-enabled tables.

PT_COLS VARCHAR2(4000) List of foreign key columns in the parent table in the
referential integrity constraint.

R_CONSTRAINT_NAME VARCHAR2(40) Name of the unique constraint defined on the parent
table in the referential integrity constraint.

DELETE_RULE VARCHAR2(2) Rule to apply when deletion occurs in the parent table.
C (Cascade) causes related child table rows to be
deleted; R (Restrict) prevents the deletion if any related
child table rows exist.

STATUS VARCHAR2(8) ENABLED if the referential integrity constraint is
enabled; DISABLED if the referential integrity
constraint is disabled.

Column Datatype Null? Description

TRIGGER_OWNER VARCHAR2(50) NOT
NULL

Owner (schema) of the trigger.

TRIGGER_NAME VARCHAR2(50) NOT
NULL

Name of the trigger.

TABLE_OWNER VARCHAR2(50) Owner (schema) of the table on which the trigger is
defined.

TABLE_NAME VARCHAR2(50) Name of the table on which the trigger is defined.

TRIGGER_TYPE VARCHAR2(3) Trigger type: one of the codes described following this
table.

STATUS VARCHAR2(10) ENABLED if the trigger is enabled; DISABLED if the
trigger is disabled.

Column Datatype Null? Description

ALL_WM_TAB_TRIGGERS

Workspace Manager Metadata Views 5-9

TRIGGER_TYPE is one of the following values:

� BIR: before insert for each row

� AIR: after insert for each row

� BUR: before update for each row

� AUR: after update for each row

� BDR: before delete for each row

� ADR: after delete for each row

WHEN_CLAUSE VARCHAR2(4000) Clause that must evaluate to TRUE for the trigger body
(TRIGGER_BODY) to execute.

DESCRIPTION VARCHAR2(4000) Description of the trigger. Useful if the trigger must be
re-created.

TRIGGER_BODY CLOB Statements executed by the trigger.

TAB_MERGE_WO_
REMOVE

VARCHAR2(4) ON if DBMS_WM.TABLE_MERGE_WO_REMOVE_DATA has
been set (see the SetTriggerEvents procedure), or OFF if
DBMS_WM.TABLE_MERGE_WO_REMOVE_DATA has not
been set.

TAB_MERGE_W_
REMOVE

VARCHAR2(4) ON if DBMS_WM.TABLE_MERGE_W_REMOVE_DATA has
been set (see the SetTriggerEvents procedure), or OFF if
DBMS_WM.TABLE_MERGE_W_REMOVE_DATA has not
been set.

WSPC_MERGE_WO_
REMOVE

VARCHAR2(4) ON if DBMS_WM.WORKSPACE_MERGE_WO_REMOVE_
DATA has been set (see the SetTriggerEvents procedure),
or OFF if DBMS_WM.WORKSPACE_MERGE_WO_REMOVE_
DATA has not been set.

WSPC_MERGE_W_
REMOVE

VARCHAR2(4) ON if DBMS_WM.WORKSPACE_MERGE_W_REMOVE_DATA
has been set (see the SetTriggerEvents procedure), or
OFF if DBMS_WM.WORKSPACE_MERGE_W_REMOVE_
DATA has not been set.

DML VARCHAR2(4) ON if DBMS_WM.DML has been set (see the
SetTriggerEvents procedure), or OFF if DBMS_WM.DML
has not been set.

TABLE_IMPORT VARCHAR2(4) ON if DBMS_WM.TABLE_IMPORT has been set (see the
SetTriggerEvents procedure), or OFF if DBMS_
WM.TABLE_IMPORT has not been set.

Column Datatype Null? Description

ALL_WM_VERSIONED_TABLES

5-10 Oracle Database Application Developer’s Guide - Workspace Manager

� BIS: before insert for each statement

� AIS: after insert for each statement

� BUS: before update for each statement

� AUS: after update for each statement

� BDS: before delete for each statement

� ADS: after delete for each statement

5.12 ALL_WM_VERSIONED_TABLES
ALL_WM_VERSIONED_TABLES contains information about all version-enabled
tables on which the current user has one or more of the following privileges:
SELECT, INSERT, DELETE, UPDATE.

Related View

� USER_WM_VERSIONED_TABLES (Section 5.31) contains information about
version-enabled tables of which the current user is the owner.

Column Datatype Null? Description

TABLE_NAME VARCHAR2(30) NOT
NULL

Name of a version-enabled table.

OWNER VARCHAR2(30) NOT
NULL

Owner (schema) of the table.

STATE VARCHAR2(13) State of the table: one of the values described following
this table.

HISTORY VARCHAR2(50) History option for the table: NONE, VIEW_W_
OVERWRITE, or VIEW_WO_OVERWRITE. (For an
explanation of the history option values, see the
information about the EnableVersioning procedure in
Chapter 4.)

NOTIFICATION VARCHAR2(3) (Not used for this release.)

NOTIFYWORKSPACES VARCHAR2(3999) (Not used for this release.)

CONFLICT VARCHAR2(4000) YES if there are any conflicts on the table between the
workspace that performed the SetConflictWorkspace
operation and its parent workspace; otherwise, NO.

DIFF VARCHAR2(4000) YES if there are any differences for this table as a result
of a SetDiffVersions operation; otherwise, NO.

ALL_WM_VT_ERRORS

Workspace Manager Metadata Views 5-11

STATE is one of the following values:

� VERSIONED: The table has been version-enabled.

� DV: The table is being version-disabled.

� EV: The table is being version-enabled.

� DDL: The table is active in a DDL session.

� BDDL: The BeginDDL procedure is being performed on the table.

� CDDL: The CommitDDL procedure is being performed on the table.

� LWDV: The table is being lightweight version-disabled (an internal operation).

� LWEV: The table is being lightweight version-enabled (an internal operation).

� LW_DISABLED: The table has been lightweight version-disabled (an internal
operation).

5.13 ALL_WM_VT_ERRORS
ALL_WM_VT_ERRORS contains information about the error that occurred during
the last call to the DisableVersioning or CommitDDL procedure that specified a
table on which the current user has one or more of the following privileges:
SELECT, INSERT, DELETE, UPDATE.

Related View

� USER_WM_VT_ERRORS (Section 5.32) contains information about the error
that occurred during the last call to the DisableVersioning or CommitDDL
procedure that specified a table of which the current user is the owner and on
which the current user has one or more of the following privileges: SELECT,
INSERT, DELETE, UPDATE.

Column Datatype Null? Description

OWNER VARCHAR2(30) NOT
NULL

Owner (schema) of the table.

TABLE_NAME VARCHAR2(30) NOT
NULL

Name of a version-enabled table.

STATE VARCHAR2(13) State of the table. For example, VERSIONED means that
the table is version-enabled, and DV means that the table
is being version-disabled.

ALL_WORKSPACE_PRIVS

5-12 Oracle Database Application Developer’s Guide - Workspace Manager

5.14 ALL_WORKSPACE_PRIVS
ALL_WORKSPACE_PRIVS contains information about Workspace Manager
privileges in all workspaces that the current user can access.

Related View

� USER_WORKSPACE_PRIVS (Section 5.33) contains information about
Workspace Manager privileges in workspaces created by the current user.

5.15 ALL_WORKSPACE_SAVEPOINTS
ALL_WORKSPACE_SAVEPOINTS contains information about savepoints in all
workspaces that the current user can access.

Related View

� USER_WORKSPACE_SAVEPOINTS (Section 5.34) contains information about
savepoints in workspaces created by the current user.

SQL_STR VARCHAR2(4000) The SQL statement that failed during the processing of
the DisableVersioning or CommitDDL procedure.

STATUS VARCHAR2(100) Information about the state of the SQL statement that
failed during the processing of the DisableVersioning or
CommitDDL procedure.

ERROR_MSG VARCHAR2(200) Error message caused by the SQL statement that failed
during the processing of the DisableVersioning or
CommitDDL procedure.

Column Datatype Null? Description

GRANTEE VARCHAR2(30) User or role to which the privilege was granted.

WORKSPACE VARCHAR2(30) Name of the workspace.

PRIVILEGE VARCHAR2(22) Name of the Workspace Manager privilege.

GRANTOR VARCHAR2(30) User or role that granted the privilege.

GRANTABLE VARCHAR2(3) YES if grantee was given the grant option (that is, can
grant the privilege to other users); NO if grantee was not
given the grant option.

Column Datatype Null? Description

ALL_WORKSPACES

Workspace Manager Metadata Views 5-13

5.16 ALL_WORKSPACES
ALL_WORKSPACES contains information about all workspaces that the current
user can access.

Related View

� USER_WORKSPACES (Section 5.35) contains information about workspaces
created by the current user.

Column Datatype Null? Description

SAVEPOINT VARCHAR2(30) NOT
NULL

Name of the savepoint. Explicit savepoints are named by
users; implicit savepoints are named by Workspace
Manager.

WORKSPACE VARCHAR2(30) NOT
NULL

Workspace in which the savepoint was created.

IMPLICIT VARCHAR2(3) YES if the savepoint is implicit (that is, was created
automatically by Workspace Manager); NO if the
savepoint is explicit (that is, was created by a user).

POSITION NUMBER(38) Position of the savepoint in the sequence in which
savepoints were created.

OWNER VARCHAR2(30) Name of the user that created the savepoint.

CREATETIME DATE Date and time that the savepoint was created.

DESCRIPTION VARCHAR2(1000) Description of the savepoint.

CANROLLBACKTO VARCHAR2(3) YES if the savepoint can be rolled back to; NO if the
savepoint cannot be rolled back to. In a RollbackToSP
operation, if any implicit savepoints have greater
POSITION values than the position of the savepoint to
be rolled back to, you must first merge or remove the
workspaces that caused these intervening implicit
savepoints to be created.

REMOVABLE VARCHAR2(3) YES if the savepoint can be removed; NO if the savepoint
cannot be removed. An implicit savepoint cannot be
removed if it has any child dependencies; all other
implicit savepoints and all explicit savepoints can be
removed.

Column Datatype Null? Description

WORKSPACE VARCHAR2(30) Name of the workspace.

ALL_WORKSPACES

5-14 Oracle Database Application Developer’s Guide - Workspace Manager

PARENT_WORKSPACE VARCHAR2(30) Parent workspace of this workspace.

PARENT_SAVEPOINT VARCHAR2(30) Implicit savepoint that was created in the parent
workspace when this workspace was created.

OWNER VARCHAR2(30) Name of the user that created the workspace.

CREATETIME DATE Date and time that the workspace was created.

DESCRIPTION VARCHAR2(1000) Description of the workspace.

FREEZE_STATUS VARCHAR2(8) FROZEN if the workspace is frozen (by a
FreezeWorkspace operation); UNFROZEN if the
workspace is not frozen.

FREEZE_MODE VARCHAR2(20) NO_ACCESS, READ_ONLY, 1WRITER, or 1WRITER_
SESSION. See the freezemode parameter description
for the FreezeWorkspace procedure in Chapter 4.

FREEZE_WRITER VARCHAR2(30) The user allowed to make changes in the workspace; or
null if the workspace is not frozen or if it is frozen in
NO_ACCESS or READ_ONLY mode. See the
freezewriter parameter description for the
FreezeWorkspace procedure in Chapter 4.

FREEZE_OWNER VARCHAR2(30) Name of the user that froze the workspace.

SESSION_DURATION VARCHAR2(3) YES if the workspace is frozen only for the duration of
the current session; NO if the workspace is frozen until
an explicit UnfreezeWorkspace procedure call is made;
null if the workspace is not currently frozen.

CURRENT_SESSION VARCHAR2(3) YES if the current session is allowed to make changes in
the workspace; NO if the current session is not allowed
to make changes in the workspace; null if the workspace
is not currently frozen in session_duration mode.

RESOLVE_STATUS VARCHAR2(8) ACTIVE if a conflict resolution session is in progress;
INACTIVE if a conflict resolution session is not in
progress.

RESOLVE_USER VARCHAR2(30) Name of the user that started the conflict resolution
session if resolve_status is ACTIVE; otherwise, null.

CONTINUALLY_
REFRESHED

VARCHAR2(3) YES if the workspace is continually refreshed (see the
description of the isrefreshed parameter of the
CreateWorkspace procedure); NO if the workspace is not
continually refreshed.

Column Datatype Null? Description

DBA_WORKSPACE_SESSIONS

Workspace Manager Metadata Views 5-15

5.17 DBA_WM_SYS_PRIVS
DBA_WM_SYS_PRIVS contains information about all users that have Workspace
Manager system-level privileges (that is, privilege names containing _ANY_
WORKSPACE, as explained in Section 1.4). This view is only available to users with
the WM_ADMIN_ROLE role.

5.18 DBA_WORKSPACE_SESSIONS
DBA_WORKSPACE_SESSIONS contains information about all users and
workspaces (except for the LIVE workspace). This view is only available to users
with the WM_ADMIN_ROLE role. It is useful for monitoring users in the different
workspaces.

WORKSPACE_
LOCKMODE

VARCHAR2(9) EXCLUSIVE if the locking mode is exclusive; SHARED is
the locking mode is shared; CARRY if the locking mode
is carry-forward. See the lockmode parameter
description for the SetWorkspaceLockModeON
procedure in Chapter 4.

WORKSPACE_
LOCKMODE_OVERRIDE

VARCHAR2(3) YES if the override option is TRUE; NO if the override
option is FALSE; null if the workspace lock mode is not
set. See the override parameter description for the
SetWorkspaceLockModeON procedure in Chapter 4.

Column Datatype Null? Description

GRANTEE VARCHAR2(30) User or role to which the system-level privilege was
granted.

PRIVILEGE VARCHAR2(22) Name of the Workspace Manager system-level privilege.

GRANTOR VARCHAR2(30) User or role that granted the system-level privilege.

GRANTABLE VARCHAR2(3) YES if grantee was given the grant option (that is, can
grant the privilege to other users); NO if grantee was
not given the grant option.

Column Datatype Null? Description

USERNAME VARCHAR2(30) User name.

WORKSPACE VARCHAR2(30) NOT
NULL

Workspace that the user is currently in.

Column Datatype Null? Description

ROLE_WM_PRIVS

5-16 Oracle Database Application Developer’s Guide - Workspace Manager

5.19 ROLE_WM_PRIVS
ROLE_WM_PRIVS contains information about privileges that all roles granted to
the current user have in each workspace.

Related View

� USER_WM_PRIVS (Section 5.28) contains information about privileges that the
current user has in each workspace.

5.20 USER_MP_GRAPH_WORKSPACES
USER_MP_GRAPH_WORKSPACES contains information about multiparent graph
workspaces (explained in Section 1.1.10) for which the leaf workspace is owned by
the current user. Its columns are the same as those in ALL_MP_GRAPH_
WORKSPACES in Section 5.1.

5.21 USER_MP_PARENT_WORKSPACES
USER_MP_PARENT_WORKSPACES contains information about parent
workspaces of multiparent workspaces (explained in Section 1.1.10) that the current
user owns. Its columns are the same as those in ALL_MP_PARENT_WORKSPACES
in Section 5.2.

SID NUMBER Session ID.

STATUS VARCHAR2(8) ACTIVE if the user currently has an open transaction
(that is, a database transaction); INACTIVE if the user
does not have an open transaction.

Column Datatype Null? Description

ROLE VARCHAR2(30) Name of the role.

WORKSPACE VARCHAR2(30) Name of the workspace.

PRIVILEGE VARCHAR2(22) Name of the Workspace Manager privilege.

GRANTABLE VARCHAR2(3) YES if the role was given the grant option (that is, can
grant the privilege to other users); NO if the role was not
given the grant option.

Column Datatype Null? Description

USER_WM_LOCKED_TABLES

Workspace Manager Metadata Views 5-17

5.22 USER_WM_CONS_COLUMNS
USER_WM_CONS_COLUMNS contains information about columns in unique
constraints on version-enabled tables of which the current user is the owner. Its
columns are the same as those in ALL_WM_CONS_COLUMNS in Section 5.4,
except it does not contain an OWNER column.

5.23 USER_WM_CONSTRAINTS
USER_WM_CONSTRAINTS contains information about constraints on
version-enabled tables of which the current user is the owner. It provides
information about the following kinds of constraints: UNIQUE constraint, unique
index, PRIMARY KEY constraints, and CHECK constraints. Its columns are the same
as those in ALL_WM_CONSTRAINTS in Section 5.5, except it does not contain an
OWNER or INDEX_OWNER column.

5.24 USER_WM_IND_COLUMNS
USER_WM_IND_COLUMNS contains information about indexes used for
enforcing unique constraints on version-enabled tables of which the current user is
the owner. Its columns are the same as those in ALL_WM_IND_COLUMNS in
Section 5.6, except it does not contain an OWNER column.

5.25 USER_WM_IND_EXPRESSIONS
USER_WM_IND_EXPRESSIONS contains information about indexes used for
enforcing unique constraints on version-enabled tables of which the current user is
the owner. Its columns are the same as those in ALL_WM_IND_EXPRESSIONS in
Section 5.7, except it does not contain an OWNER column.

5.26 USER_WM_LOCKED_TABLES
USER_WM_LOCKED_TABLES contains information about Workspace Manager
locks on rows in version-enabled tables of which the current user is the owner. Its
columns are the same as those in ALL_WM_LOCKED_TABLES in Section 5.8.

USER_WM_MODIFIED_TABLES

5-18 Oracle Database Application Developer’s Guide - Workspace Manager

5.27 USER_WM_MODIFIED_TABLES
USER_WM_MODIFIED_TABLES contains information about version-enabled
tables that have been modified and of which the current user is the owner. Its
columns are the same as those in ALL_WM_MODIFIED_TABLES in Section 5.9.

5.28 USER_WM_PRIVS
USER_WM_PRIVS contains information about privileges that the current user has
in each workspace.

Related View

� ROLE_WM_PRIVS (Section 5.19) contains information about privileges that all
roles granted to the current user have in each workspace.

5.29 USER_WM_RIC_INFO
USER_WM_RIC_INFO contains information about referential integrity constraints
in version-enabled tables of which the current user is the owner. Its columns are the
same as those in ALL_WM_RIC_INFO in Section 5.10.

Workspace Manager uses this information to provide referential integrity support,
which is described in Section 1.9.1.

5.30 USER_WM_TAB_TRIGGERS
USER_WM_TAB_TRIGGERS contains information about triggers that are owned by
the current user and that are on version-enabled tables. Its columns are the same as
those in ALL_WM_TAB_TRIGGERS in Section 5.11, except that it does not contain
the TRIGGER_OWNER column.

Column Datatype Null? Description

WORKSPACE VARCHAR2(30) Name of the workspace.

PRIVILEGE VARCHAR2(22) Name of the Workspace Manager privilege.

GRANTOR VARCHAR2(30) Name of the user that granted the privilege to the current
user.

GRANTABLE VARCHAR2(3) YES if the user was given the grant option (that is, can
grant the privilege to other users); NO if the user was not
given the grant option.

WM_COMPRESS_BATCH_SIZES

Workspace Manager Metadata Views 5-19

5.31 USER_WM_VERSIONED_TABLES
USER_WM_VERSIONED_TABLES contains information about version-enabled
tables of which the current user is the owner. Its columns are the same as those in
ALL_WM_VERSIONED_TABLES in Section 5.12.

5.32 USER_WM_VT_ERRORS
USER_WM_VT_ERRORS contains information about the error that occurred during
the last call to the DisableVersioning or CommitDDL procedure that specified a
table of which the current user is the owner and on which the current user has one
or more of the following privileges: SELECT, INSERT, DELETE, UPDATE. Its
columns are the same as those in ALL_WM_VT_ERRORS in Section 5.13.

5.33 USER_WORKSPACE_PRIVS
USER_WORKSPACE_PRIVS contains information about Workspace Manager
privileges in workspaces created by the current user. Its columns are the same as
those in ALL_WORKSPACE_PRIVS in Section 5.14.

5.34 USER_WORKSPACE_SAVEPOINTS
USER_WORKSPACE_SAVEPOINTS contains information about savepoints in
workspaces created by the current user. Its columns are the same as those in ALL_
WORKSPACE_SAVEPOINTS in Section 5.15.

5.35 USER_WORKSPACES
USER_WORKSPACES contains information about workspaces created by the
current user. Its columns are the same as those in ALL_WORKSPACES in
Section 5.16.

5.36 WM_COMPRESS_BATCH_SIZES
WM_COMPRESS_BATCH_SIZES contains information related to compression
capabilities for version-enabled tables. This view is only available to users with the
WM_ADMIN_ROLE role.

WM_COMPRESSIBLE_TABLES

5-20 Oracle Database Application Developer’s Guide - Workspace Manager

5.37 WM_COMPRESSIBLE_TABLES
WM_COMPRESSIBLE_TABLES contains information about version-enabled tables
that need to be compressed (if compression is to be performed) between two
savepoints in a workspace. To create rows in this view, use the
SetCompressWorkspace procedure.

Column Datatype Null? Description

OWNER VARCHAR2(30) NOT
NULL

User name of the table owner.

TABLE_NAME VARCHAR2(30) NOT
NULL

Name of the version-enabled table.

BATCH_SIZE VARCHAR2(23) TABLE if the table can be compressed as a single batch
only; TABLE/PRIMARY_KEY_RANGE if the table can be
compressed as a single batch or in multiple batches.

NUM_BATCHES NUMBER 1 if BATCH_SIZE is TABLE, or a number specifying the
number of batches to be used for compression operations
when a batch size of PRIMARY_KEY_RANGE is used.

Column Datatype Null? Description

OWNER VARCHAR2(30) NOT
NULL

User name of the table owner.

TABLE_NAME VARCHAR2(30) NOT
NULL

Name of the version-enabled table.

WORKSPACE VARCHAR2(256) Name of a workspace that was set as a result of a call to
the SetCompressWorkspace procedure.

BEGIN_SAVEPOINT VARCHAR2(256) Savepoint on the first version of the compression range. If
the firstSP parameter was null in the call to the
SetCompressWorkspace procedure, this column contains
BEGINNING.

END_SAVEPOINT VARCHAR2(256) Savepoint on the last version of the compression range. If
both the firstSP and secondSP parameters were null
in the call to the SetCompressWorkspace procedure, this
column contains LATEST.

WM_REPLICATION_INFO

Workspace Manager Metadata Views 5-21

5.38 WM_EVENTS_INFO
WM_EVENTS_INFO contains information about the capture of Workspace
Manager events. For information about Workspace Manager events, see Chapter 2.

5.39 WM_INSTALLATION
WM_INSTALLATION contains information about the installed release of
Workspace Manager. The information includes the Workspace Manager version
number (OWM_VERSION) and the Workspace Manager system parameters.

5.40 WM_REPLICATION_INFO
WM_REPLICATION_INFO contains information about the Workspace Manager
replication environment. For information about using Oracle replication with
Workspace Manager, see Appendix C.

Column Datatype Null? Description

EVENT_NAME VARCHAR2(30) NOT
NULL

Name indicating the type of event.

CAPTURE VARCHAR2(30) ON if events of this type are being captured; OFF if events
of this type are not being captured.

Column Datatype Null? Description

NAME VARCHAR2(100) Name of an informational item or system parameter
pertaining to the current release of Workspace Manager
on the system. (System parameters are explained in
Section 1.5.)

VALUE VARCHAR2(4000) Value associated with the informational item or system
parameter identified in the NAME column.

Column Datatype Null? Description

GROUPNAME VARCHAR2(30) NOT
NULL

Name of the main group for replication.

WRITERSITE VARCHAR2(128) Name of the writer site in the replication environment.

xxx_CONF Views

5-22 Oracle Database Application Developer’s Guide - Workspace Manager

5.41 xxx_CONF Views
There is one conflict view for each version-enabled table. Each conflict view has a
name in the form <table_name>_CONF. For example, if the EMPLOYEE table is
version-enabled, the EMPLOYEE_CONF metadata view exists.

Each conflict view contains the columns shown in Table 5–1.

The following example lists the key value and all column values of conflicting rows
in the EMPLOYEE table in the current workspace and the parent workspace. This
view is available after the SetConflictWorkspace procedure has been called
specifying the child workspace (the current workspace in this case).

SELECT * FROM EMPLOYEE_CONF;

If ID, NAME, and CITY are the columns in the EMPLOYEE table, then assume the
following values:

WM_WORKSPACE ID NAME CITY WM_DEL
NEWWORKSPACE 12 SMITH NASHUA NO
DiffBase 12 SMITH NY NO
LIVE 12 SMITH BOSTON NO

The database row identified by ID = 12 was changed in NEWWORKSPACE and
LIVE workspaces. In NEWWORKSPACE the city was changed to NASHUA, and in the
LIVE workspace the city was changed to BOSTON. When NEWWORKSPACE is merged

Table 5–1 Columns in the xxx_CONF Views

Column Datatype Description

WM_WORKSPACE VARCHAR2(256) Workspace in which the conflict exists.

(One column for each
column in original table)

(Same as column
in original table)

Value of the column in this workspace.

WM_VALID WM_PERIOD Time period during which the row is valid,
if the table has valid time support
(described in Chapter 3).

WM_DELETED VARCHAR2(3) YES if the row has been deleted; NO if the
row has not been deleted; NE if the row is
nonexistent (does not exist).

WM_CONFLICTPERIOD WM_PERIOD Overlapping period of the rows for which
conflicts were detected, if the table has
valid time support (described in
Chapter 3).

xxx_DIFF Views

Workspace Manager Metadata Views 5-23

into LIVE, this row will show up as a conflict. The application must pick between
the choices and resolve conflicts in favor of the workspace with the desired value.

The following example begins a conflict resolution session, calls the
ResolveConflicts procedure to delete the conflicting row from the NEWWORKSPACE
workspace and to insert the value in the parent workspace (LIVE) into both
workspaces, commits the transaction, and ends the conflict resolution session.

DBMS_WM.BeginResolve ('NEWWORKSPACE');
DBMS_WM.ResolveConflicts ('NEWWORKSPACE', 'EMPLOYEE', 'ID = 12', 'PARENT');
COMMIT;
DBMS_WM.CommitResolve ('NEWWORKSPACE');

For additional information about conflict resolution, see Section 1.1.4.

5.42 xxx_DIFF Views
There is one difference view for each version-enabled table. Each difference view
has a name in the form <table_name>_DIFF. For example, if the EMPLOYEE table is
version-enabled, the EMPLOYEE_DIFF metadata view exists. Rows are added to one
or more xxx_DIFF views each time the SetDiffVersions procedure is executed.

Each difference view contains the columns shown in Table 5–2.

Table 5–2 Columns in the xxx_DIFF Views

Column Datatype Description

(One column for each
column in original table)

(Same as column in
original table)

Value of the column in this workspace.

WM_VALID WM_PERIOD Time period during which the row is valid,
if the table has valid time support
(described in Chapter 3).

WM_DIFFVER VARCHAR2(256) Branch from which the values in the
preceding columns are taken. (See the
explanation following this table.)

WM_CODE VARCHAR2(2) One of the following codes describing the
change: U (updated), D (deleted), I
(inserted), NC (no change), NE
(nonexistent).

WM_DIFFPERIOD WM_PERIOD Overlapping period of the rows for which a
difference was detected were detected, if
the table has valid time support (described
in Chapter 3).

xxx_HIST Views

5-24 Oracle Database Application Developer’s Guide - Workspace Manager

The WM_DIFFVER value is in one of the following formats:

� '<workspace1>, <savepoint1>'

� '<workspace2>, <savepoint2>'

� 'DiffBase'

If the two-parameter version of the SetDiffVersions procedure was used, the value
of savepoint1 or savepoint2 is LATEST.

Note the following about the possible values for WM_CODE:

� NC will appear for rows in workspaces that did not change the value when
another workspace did change the value. For example, if '<workspace2>,
<savepoint2>' updated the row, the code for that row is U, but the code for
the '<workspace1>, <savepoint1>' and 'DiffBase' rows is NC if they
did not modify the row.

� NE will appear for 'DiffBase' if a row is inserted in one or more branches,
and NE will appear for 'DiffBase' and a branch if only one branch has had
any insert operations.

For more information, including an example showing rows being added to a
differences view, see the section on the SetDiffVersions procedure in Chapter 4.

5.43 xxx_HIST Views
There is one history view for each version-enabled table if the table was
version-enabled with the hist parameter set to VIEW_W_OVERWRITE or VIEW_WO_
OVERWRITE in the call to the EnableVersioning procedure. Each history view has a
name in the form <table_name>_HIST. For example, if the EMPLOYEE table is
version-enabled with the hist parameter set to VIEW_W_OVERWRITE or VIEW_WO_
OVERWRITE, the EMPLOYEE_HIST metadata view exists.

You can use the history views to log and audit modifications to version-enabled
tables.

Each history view contains the columns shown in Table 5–3.

xxx_LOCK Views

Workspace Manager Metadata Views 5-25

5.44 xxx_LOCK Views
There is one lock view for each version-enabled table. Each lock view has a name in
the form <table_name>_LOCK. For example, if the EMPLOYEE table is
version-enabled, the EMPLOYEE_LOCK metadata view exists. (For an explanation of
Workspace Manager locking, see Section 1.3.)

Each lock view contains the columns shown in Table 5–4.

Table 5–3 Columns in the xxx_HIST Views

Column Datatype Description

(One column for
each column in
original table)

(Same as column in
original table)

Value of the column in this workspace.

WM_VALID WM_PERIOD Time period during which the row is valid, if
the table has valid time support (described in
Chapter 3).

WM_WORKSPACE VARCHAR2(30) Name of the workspace containing the row.

WM_VERSION NUMBER(30) Version number of the row with which the data
is associated.

WM_USERNAME VARCHAR2(4000) Name of the user that created the row.

WM_OPTYPE VARCHAR2(1) Type of change operation that was performed
on the row: D (delete), I (insert), or U (update).

WM_CREATETIME TIMESTAMP WITH
TIME ZONE

Time when the row was created or updated.

WM_RETIRETIME TIMESTAMP WITH
TIME ZONE

Time when the row was deleted or modified.

Table 5–4 Columns in the xxx_LOCK Views

Column Datatype Description

(One column for each
column in original table)

(Same as column in
original table)

Value of the column in this workspace.

WM_VALID WM_PERIOD Time period during which the row is
valid, if the table has valid time support
(described in Chapter 3).

WM_LOCKMODE VARCHAR2(19) Type of lock: EXCLUSIVE, WORKSPACE
EXCLUSIVE, VERSION EXCLUSIVE, or
SHARED.

xxx_MW Views

5-26 Oracle Database Application Developer’s Guide - Workspace Manager

5.45 xxx_MW Views
There is one multiworkspace view for each version-enabled table. Each
multiworkspace view has a name in the form <table_name>_MW. For example, if
the EMPLOYEE table is version-enabled, the EMPLOYEE_MW metadata view exists.
Rows are added to one or more xxx_MW views each time the SetMultiWorkspaces
procedure (described in Chapter 4) is executed.

Each multiworkspace view contains the columns shown in Table 5–5.

You can use the <table_name>_MW view to see changes in another workspace
without leaving the current workspace (for example, to check if there is a conflict
with the other workspace). Each row in the view shows the data as it would be in
that workspace if the workspace had been merged when the row was inserted in the
view.

WM_USERNAME VARCHAR2(4000) User name of the owner of the lock.

WM_LOCKINGWORKSPACE VARCHAR2(4000) Name of the workspace in which the lock
was placed.

WM_INCURWORKSPACE VARCHAR2(3) YES if the row is contained in the current
workspace; NO if the row is not contained
in the current workspace.

Table 5–5 Columns in the xxx_MW Views

Column Datatype Description

(One column for each
column in original table)

(Same as column in
original table)

Value of the column in this workspace.

WM_VALID WM_PERIOD Time period during which the row is valid,
if the table has valid time support
(described in Chapter 3).

WM_MODIFIED_BY VARCHAR2(30) Workspace containing the row that was
modified.

WM_SEEN_BY VARCHAR2(4000) Comma-delimited list of workspaces from
which the row is visible.

WM_OPTYPE VARCHAR2(1) One of the following codes describing the
change: U (updated), I (inserted).

Table 5–4 (Cont.) Columns in the xxx_LOCK Views

Column Datatype Description

xxx_MW Views

Workspace Manager Metadata Views 5-27

You can also use the <table_name>_DIFF view (see Section 5.42) to see changes in
another workspace without leaving the current workspace; however, the <table_
name>_DIFF view can be used for only two workspaces, whereas the <table_
name>_MW view can be used for any number of workspaces. In addition, the
<table_name>_DIFF view shows deleted rows, whereas the <table_name>_MW
view does not show deleted rows.

For more information and several examples, see the information about the
SetMultiWorkspaces procedure in Chapter 4.

xxx_MW Views

5-28 Oracle Database Application Developer’s Guide - Workspace Manager

Part III
Supplementary Information

This document has three parts:

� Part I provides conceptual and usage information about Workspace Manager.

� Part II provides reference information about the Workspace Manager PL/SQL
API (DBMS_WM package) and metadata views.

� Part III provides supplementary information (appendixes and a glossary).

Part III contains the following:

� Appendix A, "Installing Workspace Manager with Custom Databases"

� Appendix B, "Migrating to Another Workspace Manager Release"

� Appendix C, "Using Replication with Workspace Manager"

� Appendix D, "Workspace Manager Error Messages"

� Glossary

Installing Workspace Manager with Custom Databases A-1

A
Installing Workspace Manager with Custom

Databases

Workspace Manager is installed by default in the seed database and in all databases
created by the Database Configuration Assistant (DBCA). However, in all other
Oracle databases, such as those you create with a customized procedure, you must
install Workspace Manager before you can use its features.

To install Workspace Manager in a custom database, do the following:

1. At the system command prompt, change the current directory to the directory
that contains Workspace Manager installation script and packages, as shown in
the following example:

cd <ORACLE_HOME>/rdbms/admin

2. Connect as SYS to the Oracle instance with a command in the following format:

sqlplus sys/<sys-password>

3. Run the owminst.plb script:

SQL> @owminst.plb

4. Verify the installation of Workspace Manager by entering the following
command while connected as any valid database user, and ensure that the
output is as shown here:

SQL> select dbms_wm.getWorkspace from dual;

GETWORKSPACE
--
LIVE

A-2 Oracle Database Application Developer’s Guide - Workspace Manager

Migrating to Another Workspace Manager Release B-1

B
Migrating to Another Workspace Manager

Release

This appendix describes how to migrate version-enabled tables from one release of
Workspace Manager to another release. You can either upgrade to the current
release or downgrade to a previous major release (no earlier than release 9.0.1). For
example:

� If you have been working with version-enabled tables with a previous Oracle
Workspace Manager release (9.0.1.0.0 or higher), you can upgrade to release
10.1 to preserve your existing work and then continue working with release
10.1. (Note that an Oracle Workspace Manager release lower than 10.1 could
have been installed on a release 8.1.6.0.0 or higher Oracle database.)

� If you are using Workspace Manager with Oracle Database 10g but need to go
back to release 9.2 or 9.0.1, you can downgrade to release 9.2 or 9.0.1 to preserve
your existing work and then continue working with release 9.2 or 9.0.1.

For an upgrade or downgrade operation, the tables can remain version-enabled.
You do not need to disable versioning before performing an upgrade or downgrade.

B.1 Upgrading to the Current Release
To upgrade to the current Workspace Manager release from a previous release,
perform the following steps.

1. At a system prompt, change to the installation directory of the release to which
you are upgrading. If you are upgrading to the Workspace Manager release that
is included in the current Oracle Database 10g installation, change to $ORACLE_
HOME/rdbms/admin.

2. Start SQL*Plus.

Upgrading to the Current Release

B-2 Oracle Database Application Developer’s Guide - Workspace Manager

3. Connect to the database instance as a user with SYSDBA privileges.

4. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

5. Start the instance in RESTRICT mode:

SQL> STARTUP RESTRICT

6. Determine the current release of the Workspace Manager software by finding
the value of OWM_VERSION in the WM_INSTALLATION view:

SQL> SELECT * FROM wm_installation;

If the OWM_VERSION value is NOT_INSTALLED, Workspace Manager is not
currently installed.

If the OWM_VERSION value is BETA_RELEASE, the upgrade is not supported.
Use DisableVersioning on all version-enabled tables, uninstall the old release of
Workspace Manager using the old uninstall script, and install the new release of
the Workspace Manager software.

If the WM_INSTALLATION view does not exist, run the following script to
create the view.

SQL> @owmcmdv.plb

7. Set the system to spool results to a log file for later verification of success. For
example:

SQL> SPOOL catoutowmu.log

8. Run the owmupgrd.plb upgrade script:

SQL> @owmupgrd.plb

9. Verify whether or not the upgrade was successful:

SELECT * FROM all_wm_vt_errors;

This view should be empty. If it has any rows, the upgrade did not complete
successfully. To recover one or more tables that were left in an inconsistent state
because of the upgrade failure, use the RecoverAllMigratingTables or
RecoverAllMigratingTables procedure, both of which are described in
Chapter 4.

10. Verify the current version of Workspace Manager:

Downgrading to a Previous Release

Migrating to Another Workspace Manager Release B-3

SELECT * FROM wm_installation;

The value of OWM_VERSION is the new version of Workspace Manager.

11. Turn off the spooling of script results to the log file:

SQL> SPOOL OFF

12. Disable the RESTRICTED SESSION feature for the instance:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION;

B.2 Downgrading to a Previous Release
To downgrade from the current Workspace Manager release to a previous major
release, perform the following steps.

1. Copy the downgrade scripts from the current release to the installation
directory of the release to which you are downgrading.

If you are downgrading to the Workspace Manager release shipped with the
RDBMS installation, copy the downgrade scripts to $ORACLE_
HOME/rdbms/admin.

If you are downgrading to release 9.0.1.0.0 or 9.0.1.2.0, copy the following file:
owmd901.plb

If you are downgrading to release 9.2.0.1.0, copy the following file:
owmd920.plb

2. At a system prompt, change to the installation directory of the release to which
you are downgrading. If you are downgrading to the Workspace Manager
release shipped with the RDBMS installation, change to $ORACLE_
HOME/rdbms/admin

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

6. Start the instance in RESTRICT mode:

SQL> STARTUP RESTRICT

Downgrading to a Previous Release

B-4 Oracle Database Application Developer’s Guide - Workspace Manager

7. Set the system to spool results to a log file for later verification of success. For
example:

SQL> SPOOL catoutowmd.log

8. Run the appropriate downgrade script depending on the release to which you
are downgrading.

To downgrade Workspace Manager, you must first run one procedure in the
context of the new Oracle database (higher release number), and then run
another procedure in the context of the old Oracle database (lower release
number). Here, context refers to the installation directory under $ORACLE_
HOME where Workspace Manager files reside (usually $ORACLE_
HOME/rdbms/admin).

To downgrade Workspace Manager in the context of the new Oracle database
(higher release number), run a procedure whose fourth character is e
(owmexxx.sql). To downgrade Workspace Manager in the context of the old
Oracle database (lower release number), run a procedure whose fourth
character is d (owmdxxx.plb). (If the Oracle RDBMS is being downgraded,
Workspace Manager is automatically downgraded in the context of the new
Oracle database as part of the procedure; however, you must still run the
appropriate downgrade procedure in the context of the old Oracle database.)

If you are downgrading to Workspace Manager release 9.0.1.0.0 or 9.0.1.2.0 in
the context of release 10.1 or higher of the Oracle database (that is, not
downgraded), run owme901.sql:

SQL> @owme901.sql

If you are downgrading to Workspace Manager release 9.0.1.0.0 or 9.0.1.2.0 in
the context of a downgraded Oracle database, run owmd901.plb:

SQL> @owmd901.plb

If you are downgrading to Workspace Manager release 9.2.0.1.0 in the context of
release 10i or higher of the Oracle RDBMS (that is, not downgraded), run
owme920.sql:

SQL> @owme920.sql

If you are downgrading to Workspace Manager release 9.2.0.1.0 in the context of
a downgraded Oracle RDBMS, run owmd920.plb:

SQL> @owmd920.plb

History Management Changes for Release 10.1

Migrating to Another Workspace Manager Release B-5

9. Verify whether or not the downgrade was successful:

SELECT * FROM wm_downgrade_tables;

This table should not exist. If it exists and has any rows, the downgrade did not
complete successfully; contact Oracle Support Services.

10. Verify the current version of Workspace Manager:

SELECT * FROM wm_installation;

The value of OWM_VERSION is the new version of Workspace Manager.

11. Turn off the spooling of script results to the log file:

SQL> SPOOL OFF

12. Disable the RESTRICTED SESSION feature for the instance:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION;

B.3 History Management Changes for Release 10.1
For Oracle Database release 10.1, Workspace Manager implements history
management changes that are especially of interest if you want to perform an
upgrade or downgrade operation. For release 10.1, Workspace Manager uses the
TIMESTAMP WITH TIME ZONE type with history data, whereas in previous
releases it used the DATE type.

Using a timestamp with a time zone has several benefits:

� Finer granularity. Workspace Manager uses a time granularity of microseconds,
whereas for the DATE type the granularity is seconds.

� Correct interpretation of times when information is imported, exported, or
replicated across time zones.

The following considerations apply to the history management changes for release
10.1:

� The TIMESTAMP WITH TIME ZONE type is used only on Oracle9i and higher
releases. On release 8.1.7, Workspace Manager uses the DATE type for history
management.

� The GotoDate procedure has a format (with the fmt parameter) that allows you
to specify a timestamp or a date, with the same options as for the TO_DATE
function, described in Oracle Database SQL Reference. The in_date parameter is

History Management Changes for Release 10.1

B-6 Oracle Database Application Developer’s Guide - Workspace Manager

of type VARCHAR2 to support Workspace Manager on all relevant Oracle
releases (because the TIMESTAMP WITH TIME ZONE type is not available on
Oracle releases before Oracle9i).

� Workspace Manager allows tables with history columns of DATE and
TIMESTAMP WITH TIME ZONE types to coexist, so that data exported from
release 8.1.7 can be imported into Oracle9i. Tables that are version-enabled
using the release 10.1 will use the TIMESTAMP WITH TIME ZONE type for
history management.

� You can upgrade the history columns of either all version-enabled tables or an
individual version-enabled table:

SYS.OWM_MIG_PKG.UpgradeHistoryColumns with no parameters
upgrades the history columns of all version-enabled tables

SYS.OWM_MIG_PKG.UpgradeHistoryColumns(owner_var VARCHAR2,
table_name_var VARCHAR2)upgrades the history column of a specified
version-enabled table.

� Downgrading to an earlier version of Workspace Manager changes the history
columns back to the DATE type.

Using Replication with Workspace Manager C-1

C
Using Replication with Workspace Manager

Workspace Manager supports replication of all workspace-related entities (such as
workspaces and savepoints), operations (such as CreateWorkspace and
MergeWorkspace), and DML and DDL operations on version-enabled tables. To use
replication in a Workspace Manager environment, you must understand the major
replication concepts and techniques, as documented in Oracle Database Advanced
Replication and Oracle Database Advanced Replication Management API Reference.
However, some special guidelines and procedures apply to replication with
Workspace Manager, as described in this appendix.

Workspace Manager supports multimaster replication in an asynchronous mode
with certain restrictions. The main restriction imposed on the replication sites is that
only the master definition site in the multimaster setup can perform workspace
operations and DML and DDL operations on version-enabled tables. All other sites
are disallowed from performing any write operations. All read operations, such as
GotoWorkspace or SELECT queries on version-enabled tables, are allowed on all
sites in the replication environment.

In a Workspace Manager replication environment, the master definition site is
referred to as the writer site, and all other master sites in the multimaster group are
referred to as nonwriter sites.

To call any of the Workspace Manager replication support subprograms, you must
be the replication administrator at all the master sites. You must also be registered
as the receiver for all groups at the local master definition site. If the master
definition site is changed using the RelocateWriterSite procedure, you must be
registered as the receiver for all groups at the new writer site.

Setting Up Replication with Workspace Manager

C-2 Oracle Database Application Developer’s Guide - Workspace Manager

C.1 Setting Up Replication with Workspace Manager
This section describes the typical steps for setting up a replication environment for a
database with workspaces and version-enabled tables.

1. Set up users and database links for replication, according to the guidelines and
procedures in Oracle Database Advanced Replication.

2. Generate replication support for the Workspace Manager environment by
executing the GenerateReplicationSupport procedure at the site chosen to be the
writer site. The following example creates a replication group named
OWM-GROUP and designates BACKUP-SITE1.ACME.COM and
BACKUP-SITE2.ACME.COM as nonwriter sites.

DBMS_WM.GenerateReplicationSupport(
 mastersites => 'BACKUP-SITE1.ACME.COM, BACKUP-SITE2.ACME.COM'),
 groupname => 'OWM-GROUP',
 groupdescription => 'OWM Replication group for Acme Corp.');

If you need to drop replication support for the Workspace Manager
environment, execute the DropReplicationSupport procedure.

For reference and usage information about these procedures, see the sections on
the GenerateReplicationSupport and DropReplicationSupport procedures in
Chapter 4.

After replication is set up, the specified group appears as a regular group in the
Replication catalog. In addition, for each version-enabled table at the local
master definition site, Workspace Manager creates a group with a name in the
form WM$<object-id>, where <object-id> is the object ID of the table
<table-name>_LT at the local site. The groups that you specify and the groups
created by Workspace Manager can be managed using standard the replication
API or Oracle Enterprise Manager.

C.2 Enabling and Disabling Versioning of Tables with Replication
Support

After Workspace Manager replication support has been set up (as described in
Section C.1), you can version-enable a table to be replicated by executing the
EnableVersioning procedure on the writer site, as long as the table is defined in
exactly the same way on all the nonwriter sites. For example, to enable versioning
on the SCOTT.EMP table on all master sites, execute the following as the replication
administrator on the writer site:

DDL Operations with Replicated Version-Enabled Tables

Using Replication with Workspace Manager C-3

SQL> EXECUTE DBMS_WM.EnableVersioning('SCOTT.EMP');

This example performs the following operations:

� Version-enables SCOTT.EMP at the local (writer) site and at all remote
(nonwriter) sites.

� Creates a new master group for this table. The group name is in the format
WM$<obj#>, where <obj#> is the Oracle object ID for the table SCOTT.EMP_LT.
This is a regular replication group that can be managed through the Oracle
Enterprise Manager Replication tool.

� Starts the master activity for the newly created master group.

To disable versioning on a table in a Workspace Manager replication environment,
execute the DisableVersioning procedure on the writer site. For example, to disable
versioning on the SCOTT.EMP table on all master sites, execute the following as the
replication administrator on the writer site:

SQL> EXECUTE DBMS_WM.DisableVersioning('SCOTT.EMP');

This example performs the following operations:

� Version-disables SCOTT.EMP at the local (writer) site and at all remote
(nonwriter) sites.

� Drops the master group that was created for this table.

C.3 DDL Operations with Replicated Version-Enabled Tables
To perform DDL operations on any version-enabled table, you must follow the
guidelines in Section 1.8. If the version-enabled table is replicated, the following
additional guidelines apply:

� If a version-enabled table is replicated, BeginDDL, CommitDDL, and
RollbackDDL operations on the table can be done only by the replication
administrator and only at the writer site.

� The replication group associated with a version-enabled table must be quiesced
before a CommitDDL operation on the table, and unquiesced after a
CommitDDL operation on the table.

Relocating the Writer Site

C-4 Oracle Database Application Developer’s Guide - Workspace Manager

C.4 Relocating the Writer Site
The writer site in a Workspace Manager replication environment can be changed
after the environment is set up without quiescing the master groups. Relocating the
writer site is especially useful when the writer site becomes unavailable and a new
writer site needs to be specified.

To relocate the writer site, execute the RelocateWriterSite procedure. For guidelines
and an example, see the reference information about the RelocateWriterSite
procedure in Chapter 4.

If the old writer site is not available when you relocate the writer site, you must
execute the SynchronizeSite procedure after the old writer site becomes available.
For guidelines and an example, see the reference information about the
SynchronizeSite procedure in Chapter 4.

Workspace Manager Error Messages D-1

D
Workspace Manager Error Messages

This appendix lists the Workspace Manager error messages, including the cause and
recommended user action for each.

WM_ERROR_1 name of column ’string’ has more than 28 characters
Cause: An attempt was made to version-enable a table that had a column with
a name that has more than 28 characters.

Action: Ensure that all column names for the table are 28 characters or less.

WM_ERROR_2 ’string’ is not allowed for workspace: ’string’ frozen in ’string’
mode
Cause: An operation was executed on a workspace that was frozen.

Action: Unfreeze the workspace before retrying the operation.

WM_ERROR_3 cannot modify primary key values for version-enabled table
Cause: A DML operation that modifies one or more values in columns in the
primary key constraint was performed on a version-enabled table.

Action: Do not perform DML operations on columns in the primary key con-
straints of version-enabled tables.

WM_ERROR_4 There are open short transactions on this table.
Cause: DisableVersioning failed because there were open database transactions
on the table to be version-disabled.

Action: The user with the open database transaction should issue a standard
database commit or rollback.

WM_ERROR_5 integrity constraint (’string’.’string’) violated - child record found
Cause: An attempt was made to delete or update a record in a parent table of a
referential integrity constraint with the RESTRICT option, and there was a

D-2 Oracle Database Application Developer’s Guide - Workspace Manager

matching record in the child table of the integrity constraint. RESTRICT is a
default property of a referential integrity constraint, the other being ON
DELETE CASCADE, where the dependent rows in the child tables are deleted if
corresponding rows in the parent table are deleted. The CASCADE option
applies only to a deletion from the parent table. An update of the parent table
always follows the RESTRICT option.

Action: Delete all matching records from the child table first.

WM_ERROR_6 integrity constraint (’string’.’string’) violated - parent key not
found
Cause: An attempt was made to insert or update a record in a child table of a
referential integrity constraint, and there was no matching record in the parent
table of the integrity constraint.

Action: Insert a matching record in the parent table first.

WM_ERROR_7 WM not found on the import platform
Cause: Import of a version-enabled database failed because the import
platform did not have Workspace Manager installed.

Action: Install Workspace Manager on the import platform and retry.

WM_ERROR_8 the import platform cannot have any versioned tables
Cause: Import of a version-enabled database failed because the import
platform already had one or more version-enabled tables.

Action: The import platform may not have any version-enabled tables. A clean
install of Workspace Manager is needed on the import platform.

WM_ERROR_9 the import platform has non-"LIVE" workspaces or explicit
savepoints
Cause: Import of a version-enabled database failed because the import
platform had either non-LIVE workspaces in the workspace hierarchy or
explicit savepoints in the LIVE workspace.

Action: The import platform may have only the LIVE workspace and there
may be no explicit savepoints. A clean install of Workspace Manager is needed
on the import platform.

WM_ERROR_10 unique key violation
Cause: An insert operation failed because it violated the table's primary key
constraint.

Workspace Manager Error Messages D-3

Action: Ensure that the primary key is not violated by the insert operation in
the current workspace.

WM_ERROR_11 need to be on the latest version to delete
Cause: A delete operation failed because the delete was being made in a
non-LATEST version of a workspace.

Action: Ensure that the current session is on the LATEST version in the work-
space by using the GotoWorkspace or GotoSavepoint procedures.

WM_ERROR_12 need to be on the latest version to insert
Cause: An insert operation failed because the insert was being made in a
non-LATEST version of a workspace.

Action: Ensure that the current session is on the LATEST version in the work-
space by using the GotoWorkspace or GotoSavepoint procedures.

WM_ERROR_13 need to be on the latest version to update
Cause: An update operation failed because the update was made in a
non-LATEST version of a workspace.

Action: Ensure that the current session is on the LATEST version in the work-
space by using the GotoWorkspace or GotoSavepoint procedures.

WM_ERROR_14 ’string’.’string’ has not been version enabled
Cause: This operation failed because it can only be invoked on a
version-enabled table.

Action: Verify that the table is version-enabled.

WM_ERROR_15 "/" is not allowed in a workspace name
Cause: CreateWorkspace failed because the workspace name contained a "/".

Action: Choose another workspace name that does not contain a "/".

WM_ERROR_16 "WM_ADMIN_ROLE" is required to version disable a table in
another schema
Cause: DisableVersioning failed because only a user with WM_ADMIN_ROLE
role can version-disable a table in another schema.

Action: Ensure that the invoking user has the required privileges before
attempting to version-disable this table. Otherwise, have the owner of the table
version-disable it.

D-4 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_17 "WM_ADMIN_ROLE" is required to version enable a table in
another schema
Cause: EnableVersioning failed because only a user with WM_ADMIN_ROLE can
version-enable a table in another schema.

Action: Ensure that the invoking user has the required privileges before
attempting to version-enable this table. Otherwise, have the owner of the table
version-enable it.

WM_ERROR_18 "WM_ADMIN_ROLE" or ownership is required to alter
workspace attributes
Cause: AlterWorkspace failed because only a user with WM_ADMIN_ROLE or
the owner of the workspace can alter workspace attributes.

Action: Ensure that the invoking user has the required privileges before
attempting to alter the workspace attributes. Otherwise, have the owner of the
workspace alter the workspace attributes.

WM_ERROR_19 "WM_ADMIN_ROLE" or ownership is required to freeze a
workspace
Cause: FreezeWorkspace failed because only a user with WM_ADMIN_ROLE or
the owner of the workspace can freeze a workspace.

Action: Ensure that the invoking user has the required privileges before
attempting to freeze the workspace. Otherwise, have the owner of the work-
space freeze it.

WM_ERROR_20 "WM_ADMIN_ROLE" or ownership is required to set
workspace lock mode
Cause: SetWorkspaceLockModeOn failed because only a user with WM_ADMIN_
ROLE role or the owner of the workspace can set the workspace lock mode.

Action: Ensure that the invoking user has the required privileges before
attempting to set the workspace lock mode. Otherwise, have the owner of the
workspace set the workspace lock mode.

WM_ERROR_21 insufficient privileges to change savepoint attributes
Cause: AlterSavepoint failed because only a user with WM_ADMIN_ROLE role or
the owner of the workspace or savepoint can alter the savepoint attributes.

Action: Ensure that the invoking user has the required privileges before
attempting to alter the savepoint attributes. Otherwise, have the workspace
owner or the savepoint owner alter the savepoint attributes.

WM_ERROR_22 insufficient privileges to delete savepoint

Workspace Manager Error Messages D-5

Cause: DeleteSavepoint failed because only a user with WM_ADMIN_ROLE role
or the owner of the workspace or savepoint can delete the savepoint.

Action: Ensure that the invoking user has the required privileges before
attempting to delete the savepoint. Otherwise, have the workspace owner or the
savepoint owner delete the savepoint.

WM_ERROR_23 a workspace already exists with the name: ’string’
Cause: CreateWorkspace failed because a workspace with the same name
already existed in the system. Workspace Manager requires that workspace
names be unique across the database.

Action: Choose another workspace name and retry.

WM_ERROR_24 a workspace cannot be rolled back over an implicit savepoint
Cause: A RollbackWorkspace operation was invoked on a non-leaf workspace
across an implicit savepoint.

Action: Do not rollback over an implicit savepoint. To remove the implicit
savepoint, merge or remove the descendant workspace.

WM_ERROR_25 a table cannot be merged from the "LIVE" workspace
Cause: MergeTable was invoked with the input workspace specified as the
LIVE workspace. The LIVE workspace is the root workspace in the workspace
hierarchy tree.

Action: Do not invoke MergeTable with the workspace parameter LIVE.

WM_ERROR_27 a table cannot be refreshed to the "LIVE" workspace
Cause: RefreshTable was invoked with the input workspace specified as the
LIVE workspace. The LIVE workspace is the root workspace in the workspace
hierarchy tree.

Action: Do not invoke RefreshTable with the workspace parameter LIVE.

WM_ERROR_28 a table cannot be rolled back over an implicit savepoint
Cause: A RollbackTable operation was invoked on a non-leaf workspace across
an implicit savepoint.

Action: Do not rollback over an implicit savepoint. To remove the implicit
savepoint, merge or remove the descendant workspace.

WM_ERROR_29 cannot rollback this table using RollbackTable
Cause: RollbackTable failed because the table to be rolled back is part of a
referential integrity constraint.

D-6 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Use RollbackWorkspace or RollbackToSP instead.

WM_ERROR_30 cannot merge this table using MergeTable
Cause: MergeTable failed because the table to be merged is part of a referential
integrity constraint.

Action: Use MergeWorkspace instead.

WM_ERROR_31 All version enabled tables owned by ’string’ must be disabled
first.
Cause: An attempt was made to drop a database user who owns one or more
version-enabled tables.

Action: Ensure that all the version-enabled tables owned by the user have been
explicitly disabled before attempting to drop the database user.

WM_ERROR_32 An index-organized table cannot be version enabled.
Cause: Workspace Manager does not support index-organized tables.

Action: Ensure the table to be version-enabled is not index-organized.

WM_ERROR_33 attempt to ’string’ a row locked by: ’string’ in workspace ’string’
Cause: A DML operation failed because the row was previously locked.

Action: Wait for the lock on the row to be released or have the lock owner use
the UnlockRows procedure to unlock the row. Consult the table's _LOCK view
to see which rows in this table are locked.

WM_ERROR_34 attempt to ’string’ a row locked by ’string’ in workspace: ’string’
Cause: A DML operation failed because the row was previously locked.

Action: Wait for the lock on the row to be released or have the lock owner use
the UnlockRows procedure to unlock the row. Consult the table's _LOCK view
to see which rows in this table are locked.

WM_ERROR_35 attempt to lock a row locked in workspace: ’string’
Cause: The operation failed because a lock could not be obtained on the row,
since it was already locked.

Action: Wait for the lock on the row to be released or have the lock owner use
the UnlockRows procedure to unlock the row. Consult the table's _LOCK view
to see which rows in this table are locked.

WM_ERROR_36 attempt to lock a row locked by ’string’

Workspace Manager Error Messages D-7

Cause: The operation failed because a lock could not be obtained on the row,
since it was already locked.

Action: Wait for the lock on the row to be released or have the lock owner use
the UnlockRows procedure to unlock the row. Consult the table's _LOCK view
to see which rows in this table are locked.

WM_ERROR_37 attempt to modify a WM generated procedure
Cause: An attempt to drop or re-create a database procedure failed because
that procedure was created by Workspace Manager.

Action: Do not drop or re-create this procedure.

WM_ERROR_38 cannot disable version a table modified in non-LIVE
workspaces
Cause: DisableVersioning failed because the table had been modified in
non-LIVE workspaces.

Action: Remove or merge all workspaces that have modified this table. Other-
wise, use the FORCE option of DisableVersioning.

WM_ERROR_39 cannot drop tables involved in foreign key relationships
Cause: An attempt to drop a database table failed because it was involved in a
foreign key relationship with a version-enabled table.

Action: Consult the WM_RIC_INFO view and version-disable the table that is
involved in the foreign key relationship before attempting to drop the table.

WM_ERROR_40 only grantor of a privilege may revoke it
Cause: An attempt was made to revoke a privilege that was not granted by the
current user.

Action: Do not attempt to revoke this privilege.

WM_ERROR_41 unable to set workspace lock mode
Cause: SetWorkspaceLockModeOn failed because the workspace contained
modifications from one or more version-enabled tables.

Action: Use SetLockingOn to set the session's lock mode. Use SetWorkspace-
LockModeOn only for those workspaces that have not yet modified any ver-
sion-enabled tables.

WM_ERROR_42 cannot version enable tables owned by SYS
Cause: EnableVersioning failed because Workspace Manager can only
version-enable tables owned by users other than SYS.

D-8 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Do not invoke EnableVersioning on tables owned by SYS.

WM_ERROR_43 A continually refreshed workspace must be a leaf workspace.
Cause: CreateWorkspace failed because the workspace to be created was to be
a child of a continually refreshed workspace. Continually refreshed workspaces
carry with them the restriction that they must be leaf workspaces.

Action: Do not create a workspace off of a continually refreshed workspace.

WM_ERROR_44 insufficient privileges to merge data
Cause: The merge operation failed because the user does not have both
ACCESS and MERGE privileges on the workspace on which it was invoked; or, in
a multiparent workspace environment, the user does not have both ACCESS
and MERGE privileges on the non-root workspaces and ACCESS privilege on the
root workspace of the multiparent workspace graph.

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges.

WM_ERROR_45 merge operation requires ACCESS privileges on the parent
workspace
Cause: The operation invoked failed because it required ACCESS privileges on
the parent workspace of the workspace it was invoked on.

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges on the parent workspace.

WM_ERROR_46 commit/rollback open short transactions before calling
CommitResolve
Cause: CommitResolve failed because open database transactions existed.

Action: The user with the open database transaction should issue a standard
database commit or rollback.

WM_ERROR_47 commit/rollback open short transactions before calling
CompressWorkspace
Cause: CompressWorkspace failed because open database transactions existed.

Action: The user with the open database transaction should issue a standard
database commit or rollback.

WM_ERROR_48 commit/rollback open short transactions before calling
CompressWorkspaceTree
Cause: CompressWorkspaceTree failed because open database transactions
existed.

Workspace Manager Error Messages D-9

Action: The user with the open database transaction should issue a standard
database commit or rollback.

WM_ERROR_49 commit/rollback open short transactions before calling
DeleteSavepoint
Cause: DeleteSavepoint failed because open database transactions existed.

Action: The user with the open database transaction should issue a standard
data

WM_ERROR_50 commit/rollback open short transactions before calling
GotoWorkspace
Cause: GotoWorkspace failed because open database transactions existed.

Action: The user with the open database transaction should issue a standard
database commit or rollback.

WM_ERROR_51 commit/rollback open short transactions before calling
RollbackResolve
Cause: RollbackResolve failed because open database transactions existed.

Action: The user with the open database transaction should issue a standard
database commit or rollback.

WM_ERROR_52 CommitResolve can be called only after BeginResolve has been
invoked
Cause: CommitResolve failed because BeginResolve was not previously
invoked.

Action: To resolve conflicts, first issue a BeginResolve, then issue ResolveCon-
flicts, and finally issue CommitResolve.

WM_ERROR_53 CompressWorkspace operation requires ACCESS and MERGE
privileges on the workspace
Cause: The operation invoked failed because it required both ACCESS and
MERGE privileges on the workspace on which it was invoked.

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges on the workspace.

WM_ERROR_54 CompressWorkspace operation requires ACCESS privilege on
the workspace
Cause: The operation invoked failed because it required ACCESS privileges on
the workspace on which it was invoked.

D-10 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges on the workspace.

WM_ERROR_55 conflicts detected for workspace: ’string’ in table: ’string’
Cause: An operation failed because there were conflicts detected for the table.

Action: To resolve conflicts, first issue a BeginResolve, then issue ResolveCon-
flicts, and finally issue CommitResolve. Otherwise, refrain from calling this
operation.

WM_ERROR_56 conflicts detected for workspace: ’string’ in table: ’string’.’string’
Cause: An operation failed because there were conflicts detected for the table.

Action: To resolve conflicts, first issue a BeginResolve, then issue ResolveCon-
flicts, and finally issue CommitResolve. Otherwise, refrain from calling this
operation.

WM_ERROR_57 CreateSavepoint operation requires ACCESS privileges on the
workspace
Cause: The operation invoked failed because it required ACCESS privileges on
the workspace on which it was invoked.

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges on the workspace.

WM_ERROR_58 RemoveWorkspace operation requires ACCESS and REMOVE
privileges on the workspace
Cause: The operation invoked failed because it required both ACCESS and
REMOVE privileges on the workspace on which it was invoked.

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges on the workspace.

WM_ERROR_59 entry already exists in spatial metadata table for ’string’_WM
Cause: EnableVersioning of the spatial table failed because the spatial metadata
table already contained an entry for the table.

Action: Contact Oracle Support Services.

WM_ERROR_60 user must call BeginResolve or have WM_ADMIN_ROLE to
invoke RollbackResolve
Cause: RollbackResolve can be successful only if the user invoking it also
invoked BeginResolve, or if the user invoking it had the WM_ADMIN_ROLE role.

Workspace Manager Error Messages D-11

Action: Ensure that the invoking user has the required privileges before
attempting to invoke RollbackResolve. Otherwise, have the user that issued the
BeginResolve operation invoke RollbackResolve.

WM_ERROR_61 versioned objects have to be version disabled before being
dropped
Cause: An attempt to drop a database table or view failed because it was
associated with a version-enabled table.

Action: version-disable the table first. In the case of a view, version-disable the
table associated with the view.

WM_ERROR_62 versioned table: ’string’ does not exist
Cause: The operation failed because the table passed in as input did not exist
or was not version-enabled.

Action: Pass in an existing, version-enabled table as input.

WM_ERROR_63 need to be on the latest version to create a continually refreshed
workspace.
Cause: CreateWorkspace failed because the session was in a non-LATEST
version of the workspace.

Action: Ensure that the current session is on the LATEST version in the work-
space by using the GotoWorkspace or GotoSavepoint procedures.

WM_ERROR_64 need to be on the latest version to create a savepoint
Cause: CreateSavepoint failed because the session was in a non-LATEST
version of the workspace.

Action: Ensure that the current session is on the LATEST version in the work-
space by using the GotoWorkspace or GotoSavepoint procedures.

WM_ERROR_65 grantor and grantee may not be the same user
Cause: An attempt was made to grant or revoke a privilege from or to the same
user.

Action: Do not attempt to grant or revoke privileges from or to the same user.
Privileges can only be granted or revoked between different users.

WM_ERROR_66 unable to version enable this table with history option
Cause: An attempt was made to version-enable a table with VIEW_WO_
OVERWRITE or VIEW_W_OVERWRITE option and the cumulative length of the
names of the primary key columns was greater than 600.

D-12 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Rename the primary key columns.

WM_ERROR_67 grantee must be an existing user, an existing role or PUBLIC
Cause: A grant operation was attempted with an invalid grantee parameter.

Action: The grantee may only be an existing user, role, or PUBLIC. Verify cor-
rect spelling of the grantee parameter.

WM_ERROR_68 input parameter grant_option must be "YES" or "NO"
Cause: An attempt was made to invoke the GrantWorkspacePriv or
GrantSystemPriv procedure with an invalid input parameter.

Action: Ensure that the valid parameters are passed to the GrantWorkspace-
Priv or GrantSystemPriv procedure. The grant_option parameter may only
be YES or NO.

WM_ERROR_69 invalid in_date time for GotoDate
Cause: GotoDate was invoked with an in_date time less than the create time
of the current workspace.

Action: The in_date parameter for GotoDate must be greater than or equal to
the create time for the current workspace.

WM_ERROR_70 insufficient privileges on ’string’ to lock rows
Cause: An attempt was made to invoke the LockRows procedure on a
versioned table without the required privileges on the table.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. The lockRows procedure requires the invoking user to have
SELECT, INSERT, UPDATE and DELETE privileges on the versioned table.

WM_ERROR_71 insufficient privileges on ’string’ to unlock rows
Cause: An attempt was made to invoke the UnlockRows procedure on a
versioned table without the required privileges on the table.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. The UnlockRows procedure requires the invoking user to
have SELECT, INSERT, UPDATE and DELETE privileges on the versioned table.

WM_ERROR_72 insufficient privileges on ’string’.’string’
Cause: An attempt was made to invoke the ResolveConflicts procedure on a
versioned table without the required privileges on the table.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. The ResolveConflicts procedure requires the invoking user to

Workspace Manager Error Messages D-13

have SELECT, INSERT, UPDATE and DELETE privileges on the versioned table
being conflict resolved.

WM_ERROR_73 insufficient privileges to ACCESS the workspace: ’string’
Cause: An attempt was made to invoke an operation that required the specified
privileges on the input workspace.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. Privileges can be granted using the GrantWorkspacePriv or
the GrantSystemPriv procedures. Use the function GetPrivs to see which privi-
leges you have on a workspace.

WM_ERROR_74 insufficient privileges to ACCESS the parent workspace:
’string’
Cause: An attempt was made to invoke an operation that required the specified
privileges on the parent workspace of the input workspace.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. Privileges can be granted using the grantWorkspacePriv or
the grantSystemPriv procedures. Use the function GetPrivs to see which privi-
leges you have on a workspace.

WM_ERROR_75 insufficient privileges to create a child workspace of: ’string’
Cause: An attempt was made to invoke the CreateWorkspace procedure from a
workspace without the required privileges on the workspace.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. The invoking user must have CREATE privileges on a work-
space to be allowed to create a workspace off of it. Privileges can be granted
using the grantWorkspacePriv or the grantSystemPriv procedures. Use the
function GetPrivs to see which privileges you have on a workspace.

WM_ERROR_76 insufficient privileges to grant ’string’
Cause: An attempt was made to invoke the GrantWorkspacePriv or
GrantSystemPriv procedure without the required privileges to do so.

Action: Ensure that the invoking user has the required privileges to grant the
privilege. A user needs to have been granted a privilege with the GRANT option
to be able to grant it to others.

WM_ERROR_77 insufficient privileges on the versioned table ’string’
Cause: An attempt was made to invoke a Workspace Manager procedure
without the required privileges on the versioned table.

D-14 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. All Workspace Manager workspace wide operations require
the invoking user to have SELECT, INSERT, UPDATE and DELETE privileges on
all versioned tables that were modified in the input workspace.

WM_ERROR_78 insufficient privileges on the versioned table: ’string’.’string’
Cause: An attempt was made to invoke a Workspace Manager procedure
without the required privileges on the versioned table.

Action: Ensure that the invoking user has the required privileges before invok-
ing the operation. All Workspace Manager workspace wide operations require
the invoking user to have SELECT, INSERT, UPDATE and DELETE privileges on
all versioned tables that were modified in the input workspace.

WM_ERROR_79 WM internal error [’string’]
Cause: A Workspace Manager operation resulted in an internal error.

Action: Contact Oracle Support Services to resolve the issue.

WM_ERROR_80 invalid "hist" parameter for EnableVersioning
Cause: An invalid value was specified for the hist parameter of procedure
EnableVersioning.

Action: Valid values for the hist parameter are NONE, VIEW_W_OVERWRITE,
and VIEW_WO_OVERWRITE.

WM_ERROR_81 invalid column name specified in the where-clause
Cause: An attempt was made to invoke a Workspace Manager procedure with
an invalid where_clause parameter as input.

Action: Ensure that the input where_clause parameter contains only valid
column names and has proper syntax.

WM_ERROR_82 invalid privilege type: ’string’ was specified as input
Cause: An attempt was made to invoke a Grant or Revoke Privilege procedure
with an invalid priv_type parameter.

Action: Ensure that the valid parameters are passed to the Grant or Revoke
Privilege operation. The valid privilege types are: ACCESS_WORKSPACE,
MERGE_WORKSPACE, ROLLBACK_WORKSPACE, REVOKE_WORKSPACE, and
CREATE_WORKSPACE.

WM_ERROR_83 invalid user specified for the freezewriter parameter
Cause: The FreezeWorkspace procedure was called with an invalid
freezewriter parameter.

Workspace Manager Error Messages D-15

Action: Ensure that the freezewriter parameter passed in as input to the Freeze-
Workspace procedure is an existing database user.

WM_ERROR_84 invalid value for lock_mode - "E" or "S" expected
Cause: An invalid value was specified for the lock_mode parameter of
procedure LockRows.

Action: Specify a valid value for lock_mode. The valid values for lock_mode
are E and S (default is E).

WM_ERROR_85 invalid value for the lock_mode argument - "E", "S" or "ES"
expected
Cause: An invalid value has been specified for the lock_mode parameter (fifth
parameter) of procedure UnlockRows.

Action: Specify a valid value for lock_mode. The valid values for lock_mode
are E, S, and ES (default is ES).

WM_ERROR_86 invalid value for the all_or_user argument - "ALL" or "USER"
expected
Cause: An invalid value has been specified for the all_or_user parameter
(fourth parameter) of procedure UnlockRows.

Action: Specify a valid value for all_or_user. The valid values for all_or_
user are ALL and USER (default is USER).

WM_ERROR_87 IsWorkspaceOccupied cannot be used for "LIVE" workspace
Cause: A user attempted to invoke IsWorkspaceOccupied on the LIVE
workspace.

Action: Workspace Manager allows IsWorkspaceOccupied to be invoked only
on workspaces other than LIVE. The LIVE workspace is the default workspace
for any session that is connected and Workspace Manager does not monitor
users in the LIVE workspace. Do not invoke this method on the LIVE work-
space.

WM_ERROR_88 IsWorkspaceOccupied requires ACCESS privilege on the
workspace
Cause: IsWorkspaceOccupied was invoked for a workspace on which the user
did not have ACCESS privilege.

Action: IsWorkspaceOccupied can only be invoked for a workspace on which
the user has ACCESS privilege.

D-16 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_89 "LIVE" workspace can be frozen only in (READ_ONLY,
1WRITER, 1WRITER_SESSION, WM_ONLY) modes
Cause: An attempt was made to Freeze the LIVE workspace in NO_ACCESS
mode. Workspace Manager does not support this mode for the LIVE
workspace.

Action: Use one of (READ_ONLY, 1WRITER, 1WRITER_SESSION, WM_ONLY)
modes to freeze the LIVE workspace.

WM_ERROR_90 lock operation requires ACCESS privilege on the parent
workspace
Cause: LockRows was invoked for a workspace whose parent workspace was
not accessible to the user.

Action: The user requires ACCESS privilege on the parent workspace of the
workspace for which lockRows in invoked.

WM_ERROR_91 lock operation requires ACCESS privilege on the workspace
Cause: LockRows was invoked for a workspace on which the user did not have
ACCESS privilege.

Action: The user requires ACCESS privilege on the workspace for which Lock-
Rows in invoked.

WM_ERROR_92 cannot ’string’ because locking is on and row is already
versioned
Cause: An attempt to place a shared or exclusive lock on a row in a versioned
table failed because the row was already versioned in some other workspace.

Action: To update, delete, or insert a row that was already versioned in some
other workspace, the current session must turn locking off. Consult the table's _
LOCK view to see which rows in this table are locked.

WM_ERROR_93 The multi-workspace view requires ACCESS privilege on the
workspace : ’string’
Cause: SetMultiWorkspaces was invoked with the name of a workspace on
which the user did not have ACCESS privilege.

Action: Names of only those workspaces for which the user has ACCESS privi-
lege can be passed to SetMultiWorkspaces.

WM_ERROR_94 non-existent versioned table: ’string’.’string’
Cause: This operation was invoked on a non-version-enabled table.

Workspace Manager Error Messages D-17

Action: This operation can only be invoked on a version-enabled table. Verify
that the table is version-enabled. The xxx_VERSIONED_TABLES views show all
the versioned tables in the database.

WM_ERROR_95 null savepoint name passed in as input
Cause: An attempt was made to invoke a Workspace Manager procedure with
a null savepoint name parameter.

Action: Pass in a non-null savepoint parameter for this procedure to succeed

WM_ERROR_96 null workspace name passed in as input
Cause: A null value was passed in as input to a Workspace Manager operation

Action: Pass in a non-null workspace parameter for this operation to succeed

WM_ERROR_97 null table name parameter passed in
Cause: MergeTable was invoked with a null table name.

Action: Specify the name of the version-enabled table to be merged.

WM_ERROR_98 Number of workspaces in the multi-workspace view cannot be
greater than 8.
Cause: SetMultiWorkspaces was invoked with more than 8 workspace names.

Action: Invoke SetMultiWorkspaces with 8 or fewer workspace names.

WM_ERROR_99 WM failed to install - system triggers not properly created
Cause: One of the Workspace Manager generated database triggers was not
created properly.

Action: Contact Oracle Support Services to resolve the issue.

WM_ERROR_100 ’string’ is both parent and child tables of referential integrity
constraints
Cause: An attempt was made to version-enable a table that was both parent
and child tables of referential integrity constraints.

Action: Version-enable both tables (specifying a comma-delimited list of table
names) in the same call to the EnableVersioning procedure.

WM_ERROR_101 child table must be version enabled
Cause: An attempt was made to version-enable the parent table of a referential
integrity constraint whose child table was not version-enabled.

D-18 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Before version-enabling a table, all tables that are child tables of refer-
ential integrity constraints (excluding self referential integrity constraints) that
have this table as the parent table must be version-enabled.

WM_ERROR_102 cannot version enable this table
Cause: An attempt was made to version-enable a table that was the child table
of a non-self referential integrity constraint with the CASCADE option and that
had a self referential integrity constraint defined on it.

Action: If application semantics permit, change the CASCADE option to the
RESTRICT option.

WM_ERROR_103 cannot version disable this table with force option
Cause: The FORCE option was specified while version-disabling a table that
was the parent table of a referential integrity constraint.

Action: The FORCE option cannot be specified while version-disabling a table
that is the parent table of a referential integrity constraint. Commit or roll back
all changes done on this table in non-LIVE workspaces and then version-dis-
able the table without the FORCE option.

WM_ERROR_104 cannot version disable this table
Cause: An attempt has been made to version-disable the child table of a
referential integrity constraint whose parent table was still version-enabled.

Action: Version-disable the parent table before version-disabling this table.

WM_ERROR_105 owner of constraint (’string’.’string’) must have select privilege
on the parent
Cause: An attempt was made to version-enable a table that was the child table
of a referential integrity constraint with another table, and the owner of the
table to be version-enabled did not have SELECT privilege on the parent table.

Action: Workspace Manager requires that before version-enabling the child
table of a integrity constraint, the child table owner must have SELECT privi-
lege on the parent table. Grant the required privilege before version-enabling.

WM_ERROR_106 select and delete privileges needed on the child of constraint
(’string’.’string’)
Cause: An attempt was made to version-enable a table that was the parent
table of a referential integrity constraint with another table and the owner of the
table to be version-enabled did not have SELECT or DELETE privilege on the
child table.

Workspace Manager Error Messages D-19

Action: Workspace Manager requires that before version-enabling the parent
table of a referential integrity constraint, the parent table owner must have
SELECT and DELETE privileges on the child table. Grant SELECT and DELETE
privileges on the child table to the owner of the table being version-enabled.

WM_ERROR_107 select privilege needed on the child of constraint
(’string’.’string’)
Cause: An attempt was made to version-enable a table that was the parent
table of a referential integrity constraint with another table and the owner of the
table to be version-enabled did not have SELECT privilege on the child table.

Action: Workspace Manager requires that before version-enabling the parent
table of a referential integrity constraint, the parent table owner must have
SELECT and DELETE privileges on the child table. Grant SELECT and DELETE
privileges on the child table to the owner of the table being version-enabled.

WM_ERROR_108 triggering event ’string’ not allowed
Cause: A triggering event of the form "insert OR update OR delete" was
specified.

Action: Drop the trigger and re-create separate triggers (with identical bodies)
for insert, update, and delete.

WM_ERROR_109 a table with unique constraints cannot be version enabled
Cause: An attempt was made to version-enable a table that had unique
constraints defined on it.

Action: Drop the unique constraint on this table before version-enabling it. If
the table needs to have a index for performance reasons, create a non-unique
index on the relevant set of columns. Oracle will use the created index to opti-
mize queries on the version-enabled table whenever appropriate.

WM_ERROR_112 insufficient privileges to refresh data
Cause: The refresh operation failed because the user does not have both
ACCESS and MERGE privileges on the child workspace on which it was invoked;
or, in a multiparent workspace environment, the user does not have both
ACCESS and MERGE privileges on the non-root workspaces and ACCESS
privilege on the root workspace of the multiparent workspace graph.

Action: Use the GetPrivs function to ensure that the user invoking this opera-
tion has the required privileges.

WM_ERROR_113 refresh operation requires ACCESS privileges on the parent
workspace

D-20 Oracle Database Application Developer’s Guide - Workspace Manager

Cause: An attempt was made to invoke RefreshTable or RefreshWorkspace and
the user did not have ACCESS privilege on the parent workspace.

Action: Ensure that the invoking user has ACCESS privilege on the parent
workspace before invoking RefreshTable or RefreshWorkspace. Privileges can
be granted using the GrantWorkspacePriv or the GrantSystemPriv procedures.
Use the GetPrivs function to see which privileges the current user has on a
workspace.

WM_ERROR_114 Continually refreshed workspaces can be created only off of
the "LIVE" workspace
Cause: An attempt was made to create a continually refreshed workspace off a
non-LIVE workspace.

Action: Workspace Manager only supports creation of continually refreshed
workspaces off the LIVE workspace. The user needs to be in the LIVE work-
space before invoking CreateWorkspace for creating a continually refreshed
workspace.

WM_ERROR_115 ResolveConflicts can be called only after BeginResolve is
invoked
Cause: The ResolveConflicts procedure was invoked without calling the
BeginResolve procedure first.

Action: Ensure that BeginResolve is invoked by the current user on a work-
space before invoking ResolveConflicts for a version-enabled table in that work-
space. (See the Resolving Conflicts section of the User Guide for details on the
process of resolving conflicts for version-enabled tables.)

WM_ERROR_116 rollback operation requires ACCESS and ROLLBACK
privileges on the workspace
Cause: An attempt was made to invoke RollbackTable or RollbackWorkspace
and the user did not have ACCESS or ROLLBACK privilege on the workspace.

Action: Ensure that the invoking user has ACCESS and ROLLBACK privileges
on the workspace before invoking RollbackTable or RollbackWorkspace. Privi-
leges can be granted using the GrantWorkspacePriv or the GrantSystemPriv
procedures. Use the function GetPrivs to see which privileges the current user
has on a workspace.

WM_ERROR_117 RollbackResolve can be called only after BeginResolve has
been invoked
Cause: RollbackResolve procedure was invoked without calling the
BeginResolve procedure first.

Workspace Manager Error Messages D-21

Action: Ensure that BeginResolve is invoked before you invoke RollbackRe-
solve. (See the Resolving Conflicts section of the User Guide for details on the
process of resolving conflicts for version-enabled tables.)

WM_ERROR_118 savepoint names may not be longer than 30 characters
Cause: An attempt was made to create a savepoint whose name had more than
30 characters.

Action: Choose a shorter savepoint name.

WM_ERROR_119 savepoint names may not begin with \"ICP-\"
Cause: An attempt was made to create a savepoint whose name began with the
string "ICP-".

Action: Choose a savepoint name that does not begin with the string "ICP-".
Workspace Manager reserves names starting with "ICP-" for naming implicit
savepoints.

WM_ERROR_120 savepoint: ’string’ already exists in workspace: ’string’
Cause: An attempt was made to create a savepoint with the same name as an
existing savepoint. Workspace Manager savepoint names must be unique
within a workspace.

Action: Choose another savepoint name.

WM_ERROR_121 savepoint: ’string’ does not exist in workspace: ’string’
Cause: An attempt was made to invoke a Workspace Manager operation on a
savepoint that did not exist in the specified workspace.

Action: Verify that the savepoint name is spelled correctly and that it exists in
the specified workspace. Workspace names and savepoint names are case sensi-
tive.

WM_ERROR_122 workspace ’string’ does not exist
Cause: An attempt was made to invoke a Workspace Manager operation on a
workspace that did not exist.

Action: Pass in an existing workspace name as input. Workspace names and
savepoint names are case sensitive.

WM_ERROR_123 workspace ’string’ is currently frozen in ’string’ mode
Cause: The user invoked a Workspace Manager operation that cannot proceed
because the specified workspace has been frozen in the specified mode.

D-22 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Wait for the database session that holds the lock to release the lock. See
the Workspace Manager documentation for a description of the Workspace
Manager operations allowed for different workspace freeze modes. Consult the
xxx_WM_WORKSPACES view to see which workspaces are currently frozen.

WM_ERROR_124 workspace name may not be "BASE"
Cause: A user attempted to create a workspace with the name BASE.

Action: Workspace Manager considers "BASE" to be a reserved keyword.
Therefore, Workspace Manager does not allow the workspace to be named
BASE. Choose another workspace name.

WM_ERROR_125 workspace name may not be "LIVE"
Cause: A user attempted to create a workspace with the name LIVE.

Action: Workspace Manager considers "LIVE" to be a reserved keyword. There-
fore, Workspace Manager does not allow new workspaces to be named LIVE.
Choose another workspace name.

WM_ERROR_126 workspace name may not exceed 30 characters
Cause: A user attempted to create a workspace with the workspace name
length greater than 30 characters.

Action: Workspace Manager limits workspace names to 30 characters. Choose a
shorter workspace name.

WM_ERROR_127 workspace: ’string’ is already being conflict resolved by user:
’string’
Cause: A user attempted to invoke BeginResolve on a workspace that was
already being conflict resolved by some other user.

Action: Workspace Manager allows only one user to resolve conflicts for a
workspace at the same time. Wait until the user is finished resolving conflicts in
the workspace and verify that the conflicts you are attempting to resolve still
exist. Use the xxx_WORKSPACES views to check on the current resolve status
of the workspace.

WM_ERROR_128 workspace: ’string’ is temporarily frozen in an internal mode
for a ’string’ operation
Cause: A user attempted to invoke a Workspace Manager operation on a
workspace that was frozen internally for another Workspace Manager
operation.

Action: Workspace Manager acquires internal freezes on workspaces for the
duration of various Workspace Manager operations. Wait until Workspace Man-

Workspace Manager Error Messages D-23

ager releases the internal freeze on the workspace. See the User Guide for
details on the freezes that Workspace Manager acquires for various work-
space-wide operations. Use the xxx_WORKSPACES views to check on the cur-
rent freeze status of the workspace.

WM_ERROR_129 table ’string’ does not exist
Cause: An attempt was made to invoke a Workspace Manager operation on a
table that did not exist.

Action: Verify that the table exists.

WM_ERROR_130 table ’string’ has been modified in an open transaction
Cause: An attempt was made to execute a Workspace Manager operation that
required that there be no open database transactions on the table.

Action: Ensure that all open database transactions on the specified table have
completed before invoking the Workspace Manager operation.

WM_ERROR_131 table ’string’ is already version enabled
Cause: The specified table is already version-enabled.

Action: To version-disable it, execute the DisableVersioning procedure. The
xxx_VERSIONED_TABLES views show all the versioned tables in the database.

WM_ERROR_132 table ’string’ is not version enabled
Cause: This operation can only be invoked on a version-enabled table.

Action: Verify that the specified table is version-enabled. The xxx_
VERSIONED_TABLES views show all the versioned tables in the database.

WM_ERROR_133 table ’string’ needs to have a primary key
Cause: An attempt was made to version-enable a table that did not have a
primary key defined on it. Workspace Manager requires that a primary key
exist on a version-enabled table.

Action: Add a primary key constraint on this table before version-enabling it.

WM_ERROR_134 table ’string’ is already being version disabled
Cause: An attempt was made to version-disable a table which another
transaction was in the process of version-disabling.

Action: Wait until the other transaction finishes version-disabling the specified
table. The xxx_VERSIONED_TABLES views show all the versioned tables in the
database.

D-24 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_135 table ’string’ is being version enabled
Cause: An attempt was made to version-enable a table which another
transaction was in the process of version-enabling.

Action: Wait until the other transaction finishes version-enabling the specified
table. The xxx_VERSIONED_TABLES views show all the versioned tables in the
database.

WM_ERROR_136 table names are limited to 25 characters
Cause: An attempt was made to version-enable a table whose name was longer
than 25 characters.

Action: Rename the table to a shorter table name.

WM_ERROR_138 table: ’string’ is in use in other sessions
Cause: An attempt to version-disable a table has failed due to the existence of
database transaction locks on the table.

Action: To successfully version-disable this table, verify that there are no data-
base transaction locks on the table.

WM_ERROR_140 invalid value for FreezeMode parameter
Cause: An attempt was made to invoke the FreezeWorkspace procedure with
an invalid freezemode parameter.

Action: The freezemode parameter for the FreezeWorkspace procedure must be
one of (NO_ACCESS, READ_ONLY, 1WRITER, 1WRITER_SESSION, WM_ONLY).
Ensure that FreezeWorkspace is invoked with the correct parameters.

WM_ERROR_141 the parameter freezewriter can be non-null only for the
1WRITER mode
Cause: An attempt was made to invoke the FreezeWorkspace procedure with
an invalid freezewriter parameter.

Action: The freezewriter parameter for the FreezeWorkspace procedure can
be non-null only when the freezemode parameter is 1WRITER. Ensure that
FreezeWorkspace is invoked with the correct parameters.

WM_ERROR_142 the keep parameter must be one of
("PARENT","CHILD","BASE")
Cause: The ResolveConflicts procedure was called with an invalid keep
parameter.

Action: Ensure that the keep parameter to the ResolveConflicts procedure is
one of (CHILD,PARENT,BASE). This parameter is not case sensitive. See the

Workspace Manager Error Messages D-25

Resolving Conflicts section of the Workspace Manager documentation for
details on the process of conflict resolution.

WM_ERROR_143 the "LIVE" workspace can only be rolled back to a savepoint
Cause: An attempt was made to rollback the entire LIVE workspace.
Workspace Manager only supports the RollbackToSP operation for the LIVE
workspace.

Action: Use RollbackToSP to achieve the desired result.

WM_ERROR_144 the "LIVE" workspace cannot be merged
Cause: A user attempted to invoke MergeWorkspace on the LIVE workspace.

Action: Workspace Manager disallows commit of the LIVE workspace. Do not
invoke MergeWorkspace on the LIVE workspace.

WM_ERROR_145 the "LIVE" workspace cannot be removed
Cause: A user attempted to invoke RemoveWorkspace on the LIVE workspace.

Action: To rollback changes in the LIVE workspace, use the RollbackToSP
operation. To remove descendants to the LIVE workspace, use the Remove-
Workspace operation on the child workspaces.

WM_ERROR_147 the "LIVE" workspace cannot be refreshed
Cause: A user attempted to invoke RefreshWorkspace on the LIVE workspace.

Action: Workspace Manager disallows the Refresh operation on the LIVE
workspace. Do not invoke RefreshWorkspace on the LIVE workspace.

WM_ERROR_148 the lock mode is currently not set for this session
Cause: The user invoked a SetLockingOFF operation without having called
SetLockingON earlier in the current session.

Action: A user can only execute SetLockingOff if the user had called SetLockin-
gOn in the session. To see what the current lock mode is, use the GetLockMode
function.

WM_ERROR_149 the lock mode must be one of ("C","E","S")
Cause: The user invoked a SetLockingON operation with an invalid lockmode
parameter.

Action: Use a lock mode that Workspace Manager currently supports: E (exclu-
sive) or S (shared). For a discussion of the differences and similarities between
these two modes, see the Workspace Manager documentation.

D-26 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_150 the lock mode is already set for workspace: ’string’
Cause: An attempt was made to invoke the SetWorkspaceLockModeON
operation for a workspace whose lock mode has already been set.

Action: To change the lock mode for a workspace, use the SetWorkspaceLock-
ModeOFF procedure to first unset the lock mode.

WM_ERROR_151 the parent workspace ’string’ is currently frozen in
’string’mode
Cause: An attempt was made to invoke a Workspace Manager operation that
required the specified parent workspace to be unfrozen.

Action: Wait for the workspace to be unfrozen before invoking the Workspace
Manager operation. The workspace can be unfrozen by the owner of the work-
space or by a user with the WM_ADMIN_ROLE using the UnfreezeWorkspace
procedure.

WM_ERROR_152 the workspace ’string’ is not a leaf workspace
Cause: A workspace wide operation was invoked on an intermediate
workspace. Workspace Manager supports this operation only on leaf
workspaces. A leaf workspace is one that does not have any descendants.

Action: Invoke the operation only on leaf workspaces.

WM_ERROR_153 the workspace: ’string’ has savepoints in the branch specified
Cause: A CompressWorkspace or CompressWorkspaceTree operation resulted
in this internal error.

Action: Contact Oracle Support Services to resolve the issue.

WM_ERROR_154 the workspaceLockMode for ’string’ has been set to ’string’
without override
Cause: An attempt was made to invoke the SetLockingON or the
SetLockingOFF procedure while the current session was in a workspace whose
lock mode was set without override.

Action: The lock mode can be changed by the current session only if the ses-
sion is in a workspace whose lock mode has not been set or if the session is in a
workspace whose lock mode has been set with the override option. Privileged
users can change the lock mode for a workspace using the SetWorkspaceLock-
ModeON and the SetWorkspaceLockModeOFF procedures.

WM_ERROR_155 the where-clause can involve only primary key columns

Workspace Manager Error Messages D-27

Cause: An attempt was made to invoke a Workspace Manager operation with
an invalid where_clause parameter as input.

Action: Ensure that the input where_clause parameter contains only valid
column names and has proper syntax. The where_clause parameter for this
Workspace Manager operation can contain only columns that are part of the
primary key.

WM_ERROR_156 there are active sessions in the workspace: ’string’
Cause: An attempt was made to invoke a Workspace Manager operation that
required that there be no sessions in the specified workspace (or, in a
multiparent workspace environment, in any non-root workspaces in the
multiparent workspace graph).

Action: To successfully invoke the Workspace Manager operation on the speci-
fied workspace, ensure that there are no sessions in the workspace or work-
spaces involved. Privileged users can view all the sessions in a workspace using
the DBA_WORKSPACE_USERS view.

WM_ERROR_157 there are sessions on non-latest versions in the workspace:
’string’
Cause: An attempt was made to invoke CompressWorkspace with some
sessions in the workspace being on non-LATEST savepoints in the workspace.
CompressWorkspace requires that all sessions in the specified workspace be on
the LATEST version of the workspace.

Action: All sessions in the specified workspace must either go to another work-
space using GotoWorkspace or must go to the LATEST savepoint using
GotoSavepoint. Privileged users can view all the sessions in a workspace using
the DBA_WORKSPACE_USERS view.

WM_ERROR_158 this procedure cannot be invoked on the "LIVE" workspace
Cause: An attempt was made to invoke a Workspace Manager procedure on
the LIVE workspace.

Action: Invoke this Workspace Manager procedure only on non-LIVE work-
spaces.

WM_ERROR_159 unable to exclusively lock table: ’string’.’string’
Cause: An attempt to version-disable a table failed due to the existence of
database transaction locks on the table.

Action: To successfully version-disable this table, verify that there are no data-
base transaction locks on the table.

D-28 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_160 unable to grant/revoke appropriate privileges
Cause: An attempt to version-disable a table failed due to an internal error in
granting or revoking appropriate privileges on the table being version-enabled.

Action: Contact Oracle Support Services to resolve the issue.

WM_ERROR_161 unable to lock ’string’: ’string’ in ’string’ mode
Cause: An attempt was made to invoke a Workspace Manager operation that
failed because Workspace Manager was unable to acquire an exclusive lock on
the specified resource.

Action: The specified resource may have been locked by some other database
session performing a Workspace Manager operation. Wait for the lock on the
resource to be released before proceeding with the Workspace Manager opera-
tion.

WM_ERROR_162 unlock operation requires ACCESS privilege on the
workspace
Cause: The user attempted to invoke the UnlockRows operation on a
workspace without ACCESS privileges on the workspace.

Action: The UnlockRows operation requires ACCESS privileges on the work-
space. Invoke the UnlockRows operation only on workspaces that you have
ACCESS privileges for.

WM_ERROR_163 use Commit/Rollback Resolve to unfreeze workspaces being
conflict resolved
Cause: A user attempted to invoke UnfreezeWorkspace on a workspace
undergoing conflict resolution. This workspace was frozen due to a user having
issued a BeginResolve operation on it.

Action: To unfreeze the workspace, call the CommitResolve or a RollbackRe-
solve procedure. Only a user with WM_ADMIN_ROLE or the user who initiated
the BeginResolve operation on the workspace can issue a CommitResolve or
RollbackResolve call for that workspace.

WM_ERROR_164 use the RemoveWorkspaceTree procedure to drop non-leaf
workspaces
Cause: A user attempted to invoke RemoveWorkspace on an intermediate
workspace. To prevent the occurrence of orphaned workspaces,
RemoveWorkspace can only be invoked on leaf workspaces.

Action: Execute the RemoveWorkspaceTree procedure to remove the work-
space and all its descendants.

Workspace Manager Error Messages D-29

WM_ERROR_165 use the force parameter to freeze a currently frozen workspace
Cause: An attempt was made to invoke the FreezeWorkspace procedure for a
workspace that was already frozen.

Action: To freeze workspaces that are already frozen, use the FreezeWorkspace
procedure with the force parameter.

WM_ERROR_166 only a BeginResolve invoker or a WM_ADMIN_ROLE user
can call CommitResolve
Cause: A user attempted to invoke CommitResolve without having initiated
the BeginResolve operation earlier and without having the WM_ADMIN_ROLE.

Action: CommitResolve can be invoked only by the user who initiated the
BeginResolve operation or by a user who has the WM_ADMIN_ROLE.

WM_ERROR_167 null lockMode parameter passed in
Cause: A user called a procedure that requires that the lockMode parameter
have a non-null value.

Action: The user must pass in a non-null lockmode parameter for this opera-
tion to succeed.

WM_ERROR_168 Cannot disable workspace lockmode for continually refreshed
workspaces
Cause: An attempt was made to set the workspace lock mode off for a
continually refreshed workspace.

Action: Do not attempt to turn off locking for continually refreshed work-
spaces.

WM_ERROR_169 "WM_ADMIN_ROLE" or ownership is required to UnFreeze a
workspace
Cause: UnfreezeWorkspace failed because only a user with the WM_ADMIN_
ROLE role or the owner of the workspace can unfreeze a frozen workspace.

Action: Ensure that the invoking user has the required privileges before
attempting to unfreeze the workspace. Otherwise, have the owner of the work-
space unfreeze it.

WM_ERROR_170 The row to be locked has already been versioned
Cause: LockRows failed because the row specified to be locked was already
versioned.

D-30 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Do not attempt to lock rows that have already been versioned. Use the
where_clause parameter of LockRows to specify those rows that have not
already been versioned.

WM_ERROR_171 WM error: ’string’
Cause: A Workspace Manager error occurred.

Action: See the Workspace Manager documentation.

WM_ERROR_172 all version enabled tables have to be disabled before
uninstalling
Cause: An attempt was made to uninstall Workspace Manager with existing
version-enabled tables.

Action: Version-disable all version-enabled tables before attempting to unin-
stall Workspace Manager. Version-enabled tables can be disabled using the Dis-
ableVersioning procedure.

WM_ERROR_173 cannot create workspaces that are more than 30 levels deep
Cause: An attempt was made to create a workspace that is more than 30 levels
in depth from the LIVE workspace.

Action: Do not create workspaces that are more than 30 levels in depth from
the LIVE workspace.

WM_ERROR_174 table: ’string’ contains columns with unsupported data types
Cause: An attempt was made to version-enable a table with one or more
columns with an unsupported data type.

Action: Ensure that all the columns in the table being version-enabled are of
supported data types. The currently unsupported data types for ver-
sion-enabled tables are: LONG and LONG RAW.

WM_ERROR_175 cannot delete implicit savepoints with dependent child
workspaces
Cause: An attempt was made to invoke the DeleteSavepoint procedure on an
implicit savepoint with dependent child workspaces.

Action: Ensure that the savepoint being deleted is not implicit or it does not
have any child workspaces created off of it. The xxx_WORKSPACES views
show the parent savepoints for all the workspaces in the system. Ensure that the
savepoint being deleted is not a parent savepoint for some workspace.

WM_ERROR_176 A user trigger defined on ’string’.’string’ has compilation
errors.

Workspace Manager Error Messages D-31

Cause: An attempt was made to version-enable a table that has a user-defined
trigger with compilation errors defined on it.

Action: Ensure that all user-defined triggers on the table to be version-enabled
have no compilation errors.

WM_ERROR_177 sum of length of all column names of ’string’.’string’ exceeds
8250 characters
Cause: An attempt was made to version-enable a table where the sum of the
column name lengths exceeded 8250 characters.

Action: Rename some of the table's columns to reduce the sum of the column
name lengths.

WM_ERROR_178 user-defined trigger body defined on ’string’.’string’ exceeds
28000 characters
Cause: An attempt was made to version-enable a table that has a user-defined
trigger with a trigger body length of more than 28,000 characters defined on it.

Action: Ensure that all user-defined triggers on the table to be version-enabled
have trigger body lengths that are less than 28,000 characters.

WM_ERROR_179 combination of column name sizes and user-defined trigger
lengths too large
Cause: An attempt was made to version-enable a table where the length of all
of the column names combined with the length of the largest trigger body
defined on the table was too large.

Action: Reduce the length of the largest trigger body defined on this table,
rename some of the table's columns to reduce the sum of the column name
lengths, or do both.

WM_ERROR_180 table ’string’.’string’ has too many primary key columns
Cause: An attempt was made to version-enable a table that has more than 31
primary key columns.

Action: Decrease the number of primary key columns on the table to 31, at
most.

WM_ERROR_181 attempt to modify a WM generated trigger
Cause: An attempt to drop or re-create a database trigger failed because that
trigger was created by Workspace Manager.

Action: Do not drop or re-create this trigger.

D-32 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_182 attempt to modify a WM generated view
Cause: An attempt to re-create a database view failed because it was associated
with a version-enabled table.

Action: Do not re-create this view. The view will automatically be dropped
when the table associated with it is version-disabled.

WM_ERROR_183 reserved column name found
Cause: An attempt to version-enable the table failed because it had a column
whose name started with WM$ or WM_ or had the same name as one of the
following: VERSION, NEXTVER, DELSTATUS, LTLOCK, CREATETIME, or
RETIRETIME.

Action: Rename the column to a different name.

WM_ERROR_184 reserved index name found
Cause: An attempt to version-enable the table failed because it had an index on
it with the index name being the name of the table (to version-enabled) with the
prefix _PKI$ or _TI$.

Action: Re-create the index using a different name.

WM_ERROR_185 operation disallowed on workspace ’string’ involved in a
conflict resolution session
Cause: An attempt was made to execute an operation on a Workspace
undergoing conflict resolution. A Workspace is under conflict resolution if
BeginResolve method has been called on the workspace but CommitResolve or
RollbackResolve has not been called yet.

Action: Wait for conflict resolution to either commit or rollback before trying
the operation on the workspace.

WM_ERROR_186 the parameter freezewriter must be null when session_
duration is true',
Cause: An attempt was made to invoke the FreezeWorkspace procedure with
an invalid freezewriter parameter.

Action: The freezewriter parameter of the FreezeWorkspace procedure
must be null whenever the session_duration parameter is TRUE. The
freezewriter is implicitly assumed to be the currently connected session.
Ensure that FreezeWorkspace is invoked with the correct parameters.

WM_ERROR_187 the parameter session_duration must be true for the
1WRITER_SESSION mod

Workspace Manager Error Messages D-33

Cause: An attempt was made to invoke the FreezeWorkspace procedure with
an invalid session_duration parameter.

Action: The session_duration parameter of the FreezeWorkspace must be
TRUE when attempting to freeze a workspace in 1WRITER_SESSION mode.
Ensure that FreezeWorkspace is invoked with the correct parameters.

WM_ERROR_188 At least one table failed during lwDisableVersioning. Please
query all_wm_vt_errors view to get the errors ’string’
Cause: If lightweight disable-versioning fails for some reason during the
upgrade or downgrade.

Action: Contact Oracle Support Services with the upgrade or downgrade log.

WM_ERROR_189 workspaces, savepoints, or versioned tables cannot be present
on the IMPORT platform
Cause: The instance you are importing Workspace Manager into has some
savepoints, workspaces, or version-enabled tables.

Action: Clean up savepoints, workspaces and version-enabled tables, or rein-
stall Workspace Manager before importing other Workspace Manager data.

WM_ERROR_190 table ’string’ is in mutating state, no structural operations can
be performed
Cause: When a structural operation (for example, DisableVersioning) is in
progress on a table, another structural operation (for example, BeginDDL) was
invoked.

Action: Complete the ongoing operation before calling a new one.

WM_ERROR_191 LWDisableVersioning not called on the table ’string’
Cause: Internal error during the upgrade or downgrade.

Action: Contact Oracle Support Services with the upgrade or downgrade out-
put log.

WM_ERROR_192 At least one table failed during temporary disable-versioning
’string’
Cause: Internal error during downgrade.

Action: Contact Oracle Support Services with downgrade output log.

WM_ERROR_194 At least one table failed during lwEnableVersioning. Please
query all_wm_vt_errors view to get the errors ’string’

D-34 Oracle Database Application Developer’s Guide - Workspace Manager

Cause: Lightweight enable-versioning failed for some reason during the
upgrade or downgrade.

Action: Internal error: contact Oracle Support Services with the upgrade or
downgrade output log.

WM_ERROR_195 Following tables with VIEW_WO_OVERWRITE failed during
recreation of PRIMARY KEY constraint ’string’
Cause: The primary key constraint could not be re-created during the upgrade
or downgrade.

Action: Internal error: contact Oracle Support Services with the upgrade or
downgrade log.

WM_ERROR_196 ’string’ operation requires ''FREEZE_WORKSPACE'' privilege
on the workspace or ''FREEZE_ANY_WORKSPACE'' or ''WM_ADMIN_
ROLE'' system privilege
Cause: Insufficient privilege for freezing or unfreezing a workspace.

Action: Grant FREEZE_WORKSPACE privilege on the workspace, or FREEZE_
ANY_WORKSPACE or WM_ADMIN_ROLE system privilege, to the user trying the
operation.

WM_ERROR_197 a ddl operation is being committed on ’string’
Cause: A DDL operation is in the process of being committed on the table.

Action: Wait until the DDL operation is complete and then retry the current
operation.

WM_ERROR_198 primary key constraint of a version enabled table cannot be
renamed
Cause: An attempt was made to rename the primary key constraint of the
skeleton table associated with a version-enabled table.

Action: Rename the primary key constraint of the skeleton table to its original
name and call the CommitDDL procedure again.

WM_ERROR_199 primary key columns cannot be
added/dropped/modified/reordered for version enabled tables
Cause: An attempt was made to add, drop, modify, or reorder the primary key
columns of the skeleton table associated with a version-enabled table.

Action: Restore the primary key columns to their original state and call the
CommitDDL procedure again.

Workspace Manager Error Messages D-35

WM_ERROR_200 unsupported constraint ’string’ detected
Cause: A check or unique constraint was detected on the skeleton table
associated with a version-enabled table.

Action: Check or unique constraints cannot be defined on a version-enabled
table. Remove the constraint from the skeleton table and call the CommitDDL
procedure again.

WM_ERROR_201 creation of partitioned/join indexes on version enabled tables
is not supported
Cause: A partitioned or join index was detected on the skeleton table
associated with a version-enabled table.

Action: Drop all partitioned or join indexes on the skeleton table and call the
CommitDDL procedure again.

WM_ERROR_202 index name ’string’ is longer than 26 characters
Cause: An index name with more than 26 characters was detected on the
skeleton table associated with a version-enabled table.

Action: Rename the index and call the CommitDDL procedure again.

WM_ERROR_203 enable/disable versioning or begin/commitDDL is being
executed on ’string’
Cause: Versioning is being enabled or disabled, or BeginDDL or CommitDDL
is being executed, on this table.

Action: Wait until the version-enabling, version-disabling, or BeginDDL or
CommitDDL operation is complete, and then retry the current operation. The
operation getting executed on the table can be found by querying the ALL_
WM_VERSIONED_TABLES view.

WM_ERROR_204 beginDDL not called on ’string’
Cause: BeginDDL needs to executed on the table before the current operation
can be performed.

Action: Call BeginDDL on the table and then perform the current operation
again.

WM_ERROR_205 ’string’ contains data - cannot be modified
Cause: A column of the skeleton table associated with a version-enabled table
was modified, and the versioned table contains non-null data in this column.

Action: Restore the column to its original state and call the CommitDDL proce-
dure again.

D-36 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_206 column reordering is not supported
Cause: Columns of the skeleton table associated with a version-enabled table
were reordered.

Action: Restore the columns to their original state and call the CommitDDL
procedure again. Reordering of columns can be achieved by first dropping col-
umns in a DDL session and then adding columns in a subsequent DDL session.

WM_ERROR_207 referential integrity constraint exists with a table not
contained in the list of specified tables
Cause: A referential integrity constraint exists with a table not contained in the
list of tables passed to the EnableVersioning or DisableVersioning procedure.

Action: Add the table to the list passed to enable or disable versioning. If you
do not want to version-enable this table not contained in the list, you need to
version-enable the tables one at a time.

WM_ERROR_208 cycle detected in referential integrity constraints on specified
tables
Cause: A cycle exists in the referential integrity constraints between tables
passed to enable or disable versioning or a new referential constraint added
between two skeleton tables caused a cycle in the referential constraints.

Action: Drop one of the referential constraints in the cycle and implement it
using user-defined triggers.

WM_ERROR_209 table ’string’ has been modified in non-LIVE workspaces
Cause: DisableVersioning failed because the table had been modified in
non-LIVE workspaces.

Action: Remove or merge all workspaces that have modified this table. Other-
wise, use the FORCE option of DisableVersioning.

WM_ERROR_210 multi-level referential integrity constraint with cascade option
detected
Cause: DisableVersioning failed because the table has a cascade referential
constraint with a version-enabled child table that, in turn, is the parent table of
another referential constraint.

Action: Version-disable the child and parent tables together.

WM_ERROR_211 DDL is being done on ’string’
Cause: A DDL session has already been started on the table.

Workspace Manager Error Messages D-37

Action: Wait until the previous DDL session has been committed or rolled
back.

WM_ERROR_212 deferrable option not supported for integrity constraints
Cause: Deferrable option is not supported for referential integrity constraints
defined on version-enabled tables.

Action: Re-create any referential constraints that have the deferrable option so
that they do not have the deferrable option.

WM_ERROR_213 unsupported referential constraint with ’string’ detected
Cause: The skeleton table associated with a version-enabled table has a
referential constraint with a table that is not a skeleton table.

Action: Drop this referential constraint. You can only define referential con-
straints between two skeleton tables.

WM_ERROR_214 ’string’ has a cascade referential constraint with a non-version
enabled table
Cause: A new referential integrity constraint was added between the skeleton
tables of two version-enabled tables, but the parent table already had a
cascading referential constraint with a table that is not version-enabled.

Action: Drop the new referential integrity constraint between the skeleton
tables and perform the current operation again.

WM_ERROR_215 A savepoint cannot be created with the name "LATEST"
Cause: A savepoint cannot be named "LATEST".

Action: Choose another name for the savepoint.

WM_ERROR_216 workspace operations are disallowed for nonwriter replication
sites
Cause: A workspace operation or DML or DDL on a versioned table was
attempted at a nonwriter replication site.

Action: Workspace Manager supports workspace operations and operations on
versioned tables only on the writer site in a replication environment. Perform
the operation on the writer site.

WM_ERROR_217 all replicated sites must have the same version of OWM
installed
Cause: An attempt was made to generate replication support between sites
running different versions of Workspace Manager.

D-38 Oracle Database Application Developer’s Guide - Workspace Manager

Action: Replication can be set up only between sites running the same version
of Workspace Manager. The version of Workspace Manager installed can be ver-
ified using the WM_INSTALLATION view.

WM_ERROR_218 workspaces, savepoints or versioned tables cannot be present
on nonwriter replication sites
Cause: An attempt was made to generate replication support with one of the
nonwriter sites containing workspaces, savepoints, or versioned tables.

Action: All the nonwriter sites in a replication environment are restricted from
having any workspaces, savepoints, or versioned tables when replication sup-
port is generated. Ensure that all the nonwriter sites do not contain any of the
previously mentioned objects. Versioned tables can be disabled using the Dis-
ableVersioning procedure. Workspaces can be dropped using the RemoveWork-
space procedure. Savepoints can be removed using the
CompressWorkspaceTree procedure.

WM_ERROR_219 replication error at site ‘string’: [‘string’]
Cause: A Workspace Manager operation was issued in the presence of a
replication environment.

Action: Look up the error specified and take the necessary action recom-
mended for that error.

WM_ERROR_220 Following tables failed during sentinel row adjustment
‘string’
Cause: An error occurred when Workspace Manager was being migrated from
one version to another.

Action: Examine the spool file to find the Oracle error that caused this error to
occur. Correct the error and enter the following SQL statement while connected
AS SYSDBA:
SQL> EXECUTE SYS.OWM_MIG_PKG.AllFixSentinelVersion;

WM_ERROR_221 ‘string’ could not be recovered from Migration Error: [‘string’]
Cause: An error occurred when Workspace Manager was being migrated from
one version to another.

Action: The ALL_WM_VT_ERRORS view can be queried for more detailed
information about the error. The RecoverMigratingTable or RecoverAllMigra-
tingTables procedures can be used to recover one or more tables that were left in
an inconsistent state. For more information, see Appendix B, "Migrating to
Another Workspace Manager Release".

Workspace Manager Error Messages D-39

WM_ERROR_222 Following tables could not be recovered from Migration Error:
‘string’
Cause: An error occurred when Workspace Manager was being migrated from
one version to another.

Action: The ALL_WM_VT_ERRORS view can be queried for more detailed
information about the error. The RecoverMigratingTable or RecoverAllMigra-
tingTables procedures can be used to recover one or more tables that were left in
an inconsistent state. For more information, see Appendix B, "Migrating to
Another Workspace Manager Release" in the Workspace Manager documenta-
tion.

WM_ERROR_223 WM_ADMIN_ROLE is required to invoke this procedure
Cause: A Workspace Manager operation was invoked without the requisite
privileges.

Action: The WM_ADMIN_ROLE is required to invoke this specific operation.
Ensure that the current user has the required privileges to invoke this operation.

WM_ERROR_224 replication error: [‘string’]
Cause: A Workspace Manager operation was invoked in the presence of a
replication environment.

Action: Look up the error specified and take the necessary action recom-
mended for that error.

WM_ERROR_225 replication error for table ‘string’: [‘string’]
Cause: A Workspace Manager operation was invoked on the specified table in
the presence of a replication environment.

Action: Look up the error specified for the table specified and take the neces-
sary action recommended for that error.

WM_ERROR_227 replicated sites database versions must all be < '9.0.0.0.0' or >=
'9.0.0.0.0'
Cause: An attempt was made to generate replication support between sites
running incompatible versions of the database.

Action: Replication can be set up only between sites running the compatible
versions of the Oracle database. All the different sites must run either a data-
base version < ‘9.0.0.0.0’, or all the sites must have a database installed with ver-
sion >= ‘9.0.0.0.0’. A configuration with some sites running a database with
version < ‘9.0.0.0.0’ and some sites running a database with version >=
‘9.0.0.0.0’ is not supported.

D-40 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_228 this operation is not allowed for table ‘string’ with version
state ‘string’
Cause: An attempt was made to invoke a workspace operation on a table with
a version state that is invalid.

Action: The table on which the operation was invoked has a version state that
disallows the operation from being performed. Query the ALL_WM_
VERSIONED_TABLES view to look up the version state for the specified table,
and see the documentation for the ALL_WM_VERSIONED_TABLES view (in
Section 5.12) for a definition of the possible version state values.

WM_ERROR_229 statement 'string' failed during EnableVersioning. Error:
string'
Cause: Enable Versioning of the table failed due to some error. This may occur
due to insufficient resources or some unexpected Oracle error.

Action: Retry the operation after fixing the cause of the error.

WM_ERROR_230 table 'string' failed during
UndoEnableVersioning/DisableVersioning. Error: string'
Cause: If EnableVersioning fails for some reason, an attempt is made to bring
back the table to original state. This error occurs when this undo attempt fails
on the partially versioned tables.

Action: Check the ALL_WM_VT_ERRORS view to see the statement that failed
and the error that occurred. After fixing the cause of the error, you can ver-
sion-enable the table using EnableVersioning or disable versioning on the table
using DisableVersioning. (Be careful if you specify ’ignore_last_error =>
TRUE’ with DisableVersioning.)

WM_ERROR_231 table 'string' failed during DisableVersioning. Error: string'
Cause: DisableVersioning of the table failed due to some error. This may occur
due to insufficient resources or some unexpected Oracle error.

Action: See the Usage Notes for the DisableVersioning procedure for informa-
tion about handling the error.

WM_ERROR_232 unique constraint 'string'.'string' violated'
Cause: The DML operation or workspace operation violated the unique
constraint 'string'.'string' on a version-enabled table.

Action: Find the row that violates the constraint, and attempt the operation
without the row.

Workspace Manager Error Messages D-41

WM_ERROR_233 deadlock detected when trying to acquire lock for 'string':
'string', session may have open database transactions'
Cause: The workspace operation with an auto_commit value of TRUE is
invalid if the current session has an open database transaction on that
workspace.

Action: Commit or roll back the current database transaction before invoking
the procedure, or invoke the procedure with an auto_commit value of FALSE.

WM_ERROR_234 continually-refreshed workspaces may have only
continually-refreshed workspaces as children
Cause: An attempt was made to create a workspace that is not continually
refreshed as a child of a continually refreshed workspace

Action: Continually refreshed workspaces can have only continually refreshed
workspaces as child workspaces.

WM_ERROR_235 invalid system parameter name or value
Cause: An invalid string was passed as a name or value for a parameter for
GetSystemParameter or SetSystemParameter.

Action: Check the documentation for valid names and values of Workspace
Manager system parameters.

WM_ERROR_236 system setting does not allow invocation of this procedure'
Cause: UnlockRows cannot be called if the Workspace Manager system
parameter NONCR_WORKSPACE_MODE is set to PESSIMISTIC_LOCKING.

Action: If no data exists in workspaces that are not continually refreshed, you
can set NONCR_WORKSPACE_MODE is set to OPTIMISTIC_LOCKING. To see the
current Workspace Manager system parameter settings, use the WM_INSTAL-
LATION metadata view.

WM_ERROR_237 integrity constraint ('string'.'string') violated in workspace
'string' or one of its descendants - child record found
Cause: An attempt was made to delete or update a record in a parent table of a
referential integrity constraint with the RESTRICT option, and there was a
matching record in the child table of the integrity constraint in the identified
workspace or one of its continually refreshed descendant workspaces.

Action: Delete or roll back matching child table records first.

WM_ERROR_238 integrity constraint ('string'.'string') violated in workspace
'string' or one of its descendants - parent key not found

D-42 Oracle Database Application Developer’s Guide - Workspace Manager

Cause: An attempt was made to insert or update a record in a child table of a
referential integrity constraint, and there was no matching record in the parent
table of the integrity constraint in the identified workspace or one its
continually refreshed descendant workspaces.

Action: Insert a matching record in the parent table or roll back deleted match-
ing parent table records first.

WM_ERROR_239 integrity constraint ('string'.'string') violated in a descendant
workspace - parent key not found
Cause: An attempt was made to insert or update a record in a child table of a
referential integrity constraint, and there was no matching record in the parent
table of the integrity constraint in a continually refreshed descendant
workspace of the current workspace.

Action: Insert a matching record in the parent table or roll back deleted match-
ing parent table records first.

WM_ERROR_240 reserved character found in workspace name
Cause: The name of a workspace contains one or more of these characters: "/",
"*", ",", "$", "#"

Action: Remove these characters or replace them with valid characters.

WM_ERROR_241 system parameter 'string' should be set to 'string' for
multiparent functionality'
Cause: The Workspace Manager system parameter is not set correctly to allow
multiparent workspaces.

Action: Check the documentation about Workspace Manager system parame-
ters, and be sure that any values required for multiparent workspace support
are set correctly.

WM_ERROR_242 'string' already in ancestor hierarchy of 'string’
Cause: The workspace that is being added as a parent workspace is already an
ancestor of the (child) workspace.

Action: Ensure that a workspace is not already an ancestor of a workspace to
which it is to be added as a parent workspace.

WM_ERROR_243 all workspaces under the root of multiparent graph must be
same type'
Cause: In a multiparent workspace graph, all workspaces must be either
continually refreshed or not continually refreshed.

Workspace Manager Error Messages D-43

Action: Ensure that the workspaces under the root of a multiparent graph are
either all continually refreshed or all not continually refreshed. You can use the
ChangeWorkspaceType procedure to change the workspace type between con-
tinually refreshed and not continually refreshed.

WM_ERROR_244 AddAsParentWorkspace operation requires ACCESS privilege
on all nodes except root in the graph and CREATE privilege on the new
parent workspace'
Cause: The user in the multiparent workspace environment does not have the
specified privileges.

Action: Use the function GetPrivs to ensure that the user invoking this opera-
tion has the required privileges.

WM_ERROR_245 'string' is not multi-parent of 'string'
Cause: For a RemoveWorkspaceAsParent operation, the workspace to be
removed was not previously added as a parent workspace.

Action: Ensure that you have specified the correct workspace.

WM_ERROR_246 'string' cannot be removed because data has been versioned
from the workspace branch being removed
Cause: In a multiparent workspace environment, if data has been versioned in
the multiparent leaf workspace from any of the workspaces that will be
removed as ancestors by this operation, the operation is not allowed.

Action: Roll back the leaf workspace to remove the versioned data from the
branch being removed.

WM_ERROR_247 the multi-parent graph formed by 'string' is not a leaf graph
Cause: In a multiparent workspace environment, there is a workspace that is a
child of some non-root workspace of the multi-parent graph on which this
operation was invoked.

Action: Remove all the workspaces that are children of non-root workspaces of
the graph before performing this operation.

WM_ERROR_248 intermediate workspaces of a multiparent graph cannot be
refreshed
Cause: In a multiparent workspace environment, only the leaf workspace of a
multiparent graph can be refreshed.

Action: Ensure that you are refreshing the correct workspace.

WM_ERROR_249 primary key constraint violated for 'string.string'

D-44 Oracle Database Application Developer’s Guide - Workspace Manager

Cause: In a multiparent workspace environment, the primary key constraint
for the table is violated, as viewed from the leaf workspace of the multiparent
graph.

Action: Delete or roll back one of the rows that is shown as a duplicate.

WM_ERROR_250 workspace name may not be "NULL"
Cause: An attempt was made to name a workspace "NULL".

Action: Choose another name for the workspace.

WM_ERROR_251 attempt to 'string' a row locked by 'string' in workspace 'string'
in mode '"WE"
Cause: Only the user that locked the row in WE mode can further edit the row
in the same workspace.

Action: The row cannot be edited by the current user until the locking user
removes the lock on the row.

WM_ERROR_252 attempt to 'string' a row locked by 'string' in mode "VE"
Cause: Only the user who locked the row in VE mode can further edit the row.

Action: The row cannot be edited by the current user until the locking user
removes the lock on the row.

WM_ERROR_253 lock_mode of only ''VE'' is allowed when workspace is
"NONE"
Cause: A value of NONE for the workspace parameter is permitted only with
VE as the value for lock_mode.

Action: Specify the name of an existing workspace when specifying a lock_
mode value other than VE.

WM_ERROR_254 cannot 'string' because PESSIMISTIC_LOCKING is on and
row is already versioned'
Cause: The DML operation cannot be executed because system parameter CR_
WORKSPACE_MODE or NONCR_WORKSPACE_MODE is set to PESSIMISTIC_
LOCKING and the DML operation violates the system setting.

Action: If data has not been versioned in non-LIVE workspaces, you can
change the PESSIMISTIC_LOCKING setting to OPTIMISTIC_LOCKING. To see
the current Workspace Manager system parameter settings, use the WM_
INSTALLATION metadata view.

WM_ERROR_255 insufficient privileges ['string']

Workspace Manager Error Messages D-45

Cause: An attempt was made to invoke an import or export operation without
the required privileges.

Action: Ensure that the user has the required privileges before invoking the
operation. To import from or export to a staging table, the user must have privi-
leges to select from and perform DML operations on the staging table.

WM_ERROR_256 'string' cannot be invoked with a null 'string' parameter
Cause: The specified parameter cannot be null.

Action: Reissue the operation using a non-null value for the specified parame-
ter.

WM_ERROR_257 savepoint 'string' does not exist in 'string'’s hierarchy
Cause: The ancestor savepoint for an import operation does not exist in the
hierarchy of the workspace.

Action: Specify a savepoint that is contained in the workspace's hierarchy.

WM_ERROR_258 specified system where clause is invalid ['string'']
Cause: An import or export operation was invoked with an invalid system
WHERE clause.

Action: Ensure the compatibility of the system WHERE clause in conjunction
with the parameters for the operation.

WM_ERROR_259 table 'string' is invalid ['string']
Cause: The staging table has been modified from its original state required for
an import or export operation.

Action: Restore the staging table to its original state.

WM_ERROR_260 Export error ['string']
Cause: Unable to perform the export operation due to the specified error.

Action: Fix the error and retry the appropriate operation.

WM_ERROR_261 Import error ['string']
Cause: Unable to perform the import operation due to the specified error.

Action: Fix the error and retry the appropriate operation.

WM_ERROR_262 this parameter cannot be set to ’PESSIMISTIC_LOCKING' if
data has been versioned in Non-LIVE workspaces'
Cause: This setting is not permitted if data exists in non-LIVE workspaces.

D-46 Oracle Database Application Developer’s Guide - Workspace Manager

Action: If you want to use the PESSIMISTIC_LOCKING setting, ensure that
there is no data versioned in non-LIVE workspaces for the workspace type
(continually refreshed or not continually refreshed) for which the parameter is
being set.

WM_ERROR_ 263 minimum version of workspace manager with replication
support is 9.0.1.0.0
Cause: An attempt was made to set up replication support on a database with a
release number less than 9.0.1.0.0.

Action: Upgrade to release 9.0.1.0.0 or higher of the database.

WM_ERROR_264 replication group 'string' already exists on this site
Cause: An attempt was made to set up replication support with a group name
that already exists on the local site.

Action: Choose a different group name.

WM_ERROR_265 replication is already set up for this site with group 'string'
Cause: An attempt was made to set up replication support on a site where
replication support already exists.

Action: Drop existing replication support before setting it up again.

WM_ERROR_266 replication support does not exist on this site
Cause: An operation related to replication was invoked without replication
support existing on the local site.

Action: Set up support for replication using the DBMS_WM.GenerateReplica-
tionSupport procedure before invoking this operation.

WM_ERROR_267 this operation has to be executed from the writer site 'string'
Cause: An operation related to replication was invoked on a site which is not
the master definition (same as writer) site.

Action: Invoke this operation from the specified writer site.

WM_ERROR_268 the new master definition site must be a master site for the
group
Cause: An operation related to replication was invoked with a site name
passed in as a parameter that is not a master site for the replication group set up
for Workspace Manager.

Action: Invoke the operation by passing a master site as the site name for the
new master definition site parameter.

Workspace Manager Error Messages D-47

WM_ERROR_269 'string' is already the master definition site for the group
'string'
Cause: An attempt was made to change the master definition site to a site
which is already the master definition site for the replication group set up for
Workspace Manager.

Action: Invoke the operation by passing a different master site as the site name
for the new master definition site parameter.

 WM_ERROR_270 this operation has to be executed from the old writer site
'string'
Cause: An attempt was made to invoke a replication related operation, such as
DBMS_WM.SynchronizeSite, from a site which is not the old writer site.

Action: Invoke the operation from the old writer site.

WM_ERROR_271 all version-enabled tables at the local site must exist at all
remote sites as non-versioned tables
Cause: An attempt was made to set up replication with a mismatch in the set of
version-enabled tables between the master definition site and other master sites.
Workspace Manager requires that all version-enabled tables at the local master
definition site exist as non-versioned tables at all remote sites specified as
master sites.

Action: Invoke the operation after ensuring that all version-enabled tables at
the local master definition site exist as non-versioned tables at all remote sites
specified as master sites.

WM_ERROR_272 invalid event name: ’string’
Cause: An invalid Workspace Manager event name was passed as an argument
to the function.

Action: Pass a valid event name. See the WM_EVENTS_INFO view for a list of
all valid events.

WM_ERROR_273 set system parameter ’ALLOW_CAPTURE_EVENTS’ to ’ON’
for capturing events
Cause: An attempt was made to capture an event even though the Workspace
Manager system parameter ALLOW_CAPTURE_EVENTS was set to OFF.

Action: Call SetSystemParameter to set ALLOW_CAPTURE_EVENTS to ON, and
retry the operation.

D-48 Oracle Database Application Developer’s Guide - Workspace Manager

WM_ERROR_274 this parameter cannot be set to 'OFF' when some events are
set to be captured
Cause: An attempt was made to disallow the capture of Workspace Manager
events while one or more types of events were set to be captured.

Action: Turn off event capture by calling SetCaptureEvents('ALL_
EVENTS','OFF'), and retry the operation.

WM_ERROR_275 invalid value for capture - 'ON' or 'OFF' expected
Cause: The SetCaptureEvent procedure was called with an invalid value for
the capture parameter.

Action: Specify either ON or OFF for the capture parameter.

WM_ERROR_276 this parameter cannot be set to 'OFF' when some multiparent
workspaces exist
Cause: An attempt was made to set ALLOW_MULTI_PARENT_WORKSPACES to
OFF when one or more multiparent workspaces existed in the system.

Action: Remove all multiparent workspaces by using any combination of the
RemoveAsParentWorkspace, MergeWorkspace, and RemoveWorkspace proce-
dures.

WM_ERROR_277 system parameter 'ALLOW_NESTED_TABLE_COLUMNS'
cannot be set to 'OFF' when a version enabled table exists containing a nested
table column
Cause: An attempt was made to set ALLOW_NESTED_TABLE_COLUMNS to OFF
when one or more version-enabled tables contained a nested table column.

Action: Disable versioning on all tables that contain a nested table column.

WM_ERROR_278 'string' cannot be version enabled because system parameter
'ALLOW_NESTED_TABLE_COLUMNS' has been set to 'OFF'
Cause: An attempt was made to version-enable a table containing a nested
table column and the Workspace Manager system parameter ALLOW_NESTED_
TABLE_COLUMNS was set to OFF.

Action: Call DBMS_WM.SetSystemParameter to set ALLOW_NESTED_TABLE_
COLUMNS to ON, and retry the operation.

WM_ERROR_279 histogram stats not found for table 'string.string' on column
’string’
Cause: Required histogram statistics have not been collected on the specified
column.

Workspace Manager Error Messages D-49

Action: Use ANALYZE TABLE ... ESTIMATE STATISTICS FOR COL-
UMNS ... to collect the histogram statistics; then try the operation again.

WM_ERROR_280 datatype of column ’string’ in table 'string.string' not
supported for batch updates
Cause: The specified data type cannot be used for batches of PRIMARY_KEY_
RANGE.

Action: Specify the batch size as TABLE.

WM_ERROR_281 batch_size parameter must be ’TABLE’ or ’PRIMARY_KEY_
RANGE’
Cause: The batch_size parameter value was invalid.

Action: Specify the batch_size parameter value as TABLE or PRIMARY_
KEY_RANGE.

WM_ERROR_282 number of batches must be between 1 and 1000
Cause: The value specified for the Workspace Manager system parameter
NUMBER_OF_COMPRESS_BATCHES was invalid.

Action: Specify a number from 1 to 1000 (inclusive).

D-50 Oracle Database Application Developer’s Guide - Workspace Manager

Glossary-1

Glossary

active version

See current version.

child workspace

A workspace created from its parent workspace.

See also parent workspace and workspace hierarchy.

conflicts

Differences in data values resulting from changes to rows in the child and parent
workspace. Conflicts are detected at merge time and presented to the user in
conflict views.

See also merging (a workspace).

context

Information about the workspace that determines what data the session can see in
the workspace. The context can be retrieved using the GetSessionInfo procedure

current version

The version in which the changes are currently being made.

exclusive locking

A Workspace Manager lock mode that prevents any other user from changing a
locked row.

See also locks.

Glossary-2

explicit savepoint

A savepoint that is explicitly created. It can later be used to perform partial
rollbacks in workspaces.

See also savepoint, implicit savepoint, and removable savepoint.

freezing (a workspace)

Causing the condition in which no changes can be made to data in version-enabled
rows in a workspace, and access to the workspace is restricted.

implicit savepoint

A savepoint that is created automatically whenever a new workspace is created.

See also savepoint, explicit savepoint, and removable savepoint.

LATEST

The name of the logical savepoint that refers to the latest version in the workspace.

See also savepoint.

LIVE

The name of the topmost workspace in the workspace hierarchy.

See also workspace hierarchy.

locks

Version locks provided by Workspace Manager, separate from locks provided by
conventional Oracle database transactions. These locks are primarily intended to
eliminate row conflicts between a parent workspace and a child workspace. Locking
is enabled at a session level and is a session property independent of the workspace
in which the session is. When locking is enabled for a session, it locks rows in all
workspaces in which it participates.

merging (a workspace)

Applying changes made in a workspace to its parent workspace.

nonwriter site

A master site in a multimaster group in a Workspace Manager replication
environment that is not the writer site. A nonwriter site cannot perform any write
operations, but can perform all read operations, such as CreateSavepoint or SELECT
queries on version-enabled tables.

Glossary-3

See also writer site.

parent workspace

A workspace from which another workspace (a child workspace) was created.

See also child workspace and workspace hierarchy.

privileges

A set of privileges for Workspace Manager that are separate from standard Oracle
database privileges. Workspace-level privileges (with names in the form xxx_
WORKSPACE) that allow the user to affect a specified workspace. System-level
privileges (with names in the form xxx_ANY_WORKSPACE) that allow the user to
affect any workspace.

removable savepoint

A workspace that can be deleted by the CompressWorkspace,
CompressWorkspaceTree, and DeleteSavepoint procedures. A savepoint is
removable if it is an explicit savepoint or if it is an implicit savepoint that does not
have any child dependencies.

See also savepoint, explicit savepoint, and implicit savepoint.

rolling back (a workspace)

Deleting either all changes made in the workspace or all changes made after a
savepoint (that is, an explicit savepoint).

savepoint

A point in the workspace to which operations can be rolled back. It is analogous to a
firewall, in that by creating a savepoint you can prevent any damage to the "other
side" of the wall (that is, operations performed in the workspace before the
savepoint was created).

See also explicit savepoint, implicit savepoint, and removable savepoint.

session context

See context.

shared locking

A Workspace Manager lock mode that allows only users in the workspace in which
the row was locked to modify the row.

See also locks.

Glossary-4

unfreezing (a workspace)

Reversing the effect of a freeze operation.

See also freezing (a workspace).

version-enabled table

A table in the database in which all rows in the table can now support multiple
versions of data. The versioning infrastructure is not visible to the database users.
After a table has been version-enabled, users automatically see the correct version
of the record in which they are interested.

workspace

A virtual environment that one or more users can share to make changes to the data
in the database. Workspace management involves managing one or more
workspaces that can be shared by many users.

workspace hierarchy

The hierarchy of workspaces in the database. For example, a workspace can be a
parent to one or more workspaces. By default, when a workspace is created, it is
created from the topmost, or LIVE, database workspace.

workspace management

The ability of the database to hold different versions of the same record (that is,
row) in one or more workspaces.

writer site

The master definition site in a Workspace Manager replication environment. Only
the writer site can perform workspace operations and DML and DDL operations on
version-enabled tables. All other sites in the multimaster group are nonwriter sites.

See also nonwriter site.

Index-1

Index
Symbols
_LT tables

created for Workspace Manager
infrastructure, 1-13

getting name of, 4-76

A
ACCESS_ANY_WORKSPACE privilege, 1-17
ACCESS_WORKSPACE privilege, 1-17
Add_Topo_Geometry_Layer procedure, 4-2
AddAsParentWorkspace procedure, 4-4
Advanced Queueing

and Workspace Manager events, 2-1
ALL_MP_GRAPH_WORKSPACES view, 5-1
ALL_MP_PARENT_WORKSPACES view, 5-2
ALL_VERSION_HVIEW view, 5-3
ALL_WM_CONS_COLUMNS view, 5-3
ALL_WM_CONSTRAINTS view, 5-4
ALL_WM_IND_COLUMNS view, 5-5
ALL_WM_IND_EXPRESSIONS view, 5-5
ALL_WM_LOCKED_TABLES view, 5-6
ALL_WM_MODIFIED_TABLES view, 5-6
ALL_WM_RIC_INFO view, 5-7
ALL_WM_TAB_TRIGGERS view, 5-8
ALL_WM_VERSIONED_TABLES view, 5-10
ALL_WM_VT_ERRORS view, 5-11
ALL_WORKSPACE_PRIVS view, 5-12
ALL_WORKSPACE_SAVEPOINTS view, 5-12
ALL_WORKSPACES view, 5-13
ALLOW_CAPTURE_EVENTS system

parameter, 1-19, 2-3
ALLOW_MULTI_PARENT_WORKSPACES system

parameter, 1-19
ALLOW_NESTED_TABLE_COLUMNS system

parameter, 1-19
altering

savepoint description, 4-6
version-enabled table to add valid time

support, 4-7
workspace description, 4-11

AlterSavepoint procedure, 4-6
AlterVersionedTable procedure, 4-7
AlterWorkspace procedure, 4-11
asynchronous notification for Workspace Manager

events, 2-8
auditing modifications

EnableVersioning history option, 4-54
history views (xxx_HIST), 5-24

auto_commit parameter, 1-10
autocommitting of operations, 1-10

B
BeginBulkLoading procedure, 4-12
BeginDDL procedure, 4-16
BeginResolve procedure, 4-18
bulk loading, 1-21

BeginBulkLoading procedure, 4-12
EndBulkLoading procedure, 4-21
RollbackBulkLoading procedure, 4-138

C
ChangeWorkspaceType procedure, 4-19
child workspace, 1-4

as alternative to creating savepoint, 1-7

Index-2

merging, 4-110
refreshing, 4-118, 4-120
removing, 4-127

CommitDDL procedure, 4-24
CommitResolve procedure, 4-27
compressing

workspaces, 4-28, 4-33
compression

NUMBER_OF_COMPRESS_BATCHES system
parameter, 1-20

compression (Workspace Manager)
SetCompressWorkspace procedure, 4-151
WM_COMPRESS_BATCH_SIZES view, 5-19
WM_COMPRESSIBLE_TABLES view, 5-20

CompressWorkspace procedure, 4-28
CompressWorkspaceTree procedure, 4-33
conflict management, 1-37, 4-129

beginning resolution, 4-18
committing resolution, 4-27
rolling back resolution, 4-142
showing conflicts, 4-153

conflict resolution
example, 5-22

conflict views (xxx_CONF), 5-22
context (session), 1-14

GetSessionInfo function, 4-79
context of current operation

getting, 4-75
continually refreshed workspaces, 1-11

changing workspace type, 4-19
CR_WORKSPACE_MODE system

parameter, 1-19
creating, 4-41

CopyForUpdate procedure, 4-37
CR_WORKSPACE_MODE system parameter, 1-19
CREATE_ANY_WORKSPACE privilege, 1-17
CREATE_WORKSPACE privilege, 1-17
CreateSavepoint procedure, 4-39
CreateWorkspace procedure, 4-41
creating

savepoints, 4-39
workspaces, 4-41

D
DBA_WM_SYS_PRIVS view, 5-15
DBA_WORKSPACE_SESSIONS view, 5-15
DBMS_WM package

Add_Topo_Geometry_Layer, 4-2
AddAsParentWorkspace, 4-4
AlterSavepoint, 4-6
AlterVersionedTable, 4-7
AlterWorkspace, 4-11
BeginBulkLoading, 4-12
BeginDDL, 4-16
BeginResolve, 4-18
ChangeWorkspaceType, 4-19
CommitDDL, 4-24
CommitResolve, 4-27
CompressWorkspace, 4-28
CompressWorkspaceTree, 4-33
CopyForUpdate, 4-37
CreateSavepoint, 4-39
CreateWorkspace, 4-41
Delete_Topo_Geometry_Layer, 4-44
DeleteSavepoint, 4-46
DisableVersioning, 4-49
DropReplicationSupport, 4-52
EnableVersioning, 4-53
EndBulkLoading, 4-21
Export, 4-56
FindRICSet, 4-61
FreezeWorkspace, 4-64
GenerateReplicationSupport, 4-67
GetBulkLoadVersion, 4-69
GetConflictWorkspace, 4-71
GetDiffVersions, 4-72
GetLockMode, 4-73
GetMultiWorkspaces, 4-74
GetOpContext, 4-75
GetPhysicalTableName, 4-76
GetPrivs, 4-78
GetSessionInfo, 4-79
GetSystemParameter, 4-81
GetValidFrom, 4-82
GetValidTill, 4-83
GetWMMetadataSpace, 4-84
GetWorkspace, 4-85

Index-3

GotoWorkspace, 4-90
GrantGraphPriv, 4-92
GrantSystemPriv, 4-95
GrantWorkspacePriv, 4-97
Import, 4-99
IsWorkspaceOccupied, 4-103
LockRows, 4-104
MergeTable, 4-107
MergeWorkspace, 4-110
Move_Proc, 4-113
RecoverAllMigratingTables, 4-114
RecoverMigratingTable, 4-116
RefreshTable, 4-118
RefreshWorkspace, 4-120
RelocateWriterSite, 4-122
RemoveAsParentWorkspace, 4-124
RemoveWorkspace, 4-126
RemoveWorkspaceTree, 4-127
ResolveConflicts, 4-129
RevokeGraphPriv, 4-132
RevokeSystemPriv, 4-134
RevokeWorkspacePriv, 4-136
RollbackBulkLoading, 4-138
RollbackDDL, 4-140
RollbackResolve, 4-142
RollbackTable, 4-143
RollbackToSP, 4-145
RollbackWorkspace, 4-147
SetCaptureEvent, 4-149
SetCompressWorkspace, 4-151
SetConflictWorkspace, 4-153
SetDiffVersions, 4-154
SetLockingOFF, 4-157
SetLockingON, 4-158
SetMultiWorkspaces, 4-160
SetSystemParameter, 4-162
SetTriggerEvents, 4-164
SetValidTime, 4-166
SetWoOverwriteOFF, 4-167
SetWoOverwriteON, 4-168
SetWorkspaceLockModeOFF, 4-169
SetWorkspaceLockModeON, 4-170
SynchronizeSite, 4-173
UnfreezeWorkspace, 4-174
UnlockRows, 4-175

UseDefaultValuesForNulls, 4-178
DBMS_WM public synonym, 4-1
DDL (data definition language) operations

requirements and restrictions, 1-23
Delete_Topo_Geometry_Layer procedure, 4-44
DeleteSavepoint procedure, 4-46
deleting

savepoints, 4-46
workspace, 1-10, 4-126

difference views (xxx_DIFF), 5-23
DisableVersioning procedure, 4-49
disabling

workspace changes, 4-64
downgrading to another Workspace Manager

release, B-1
DropReplicationSupport procedure, 4-52

E
effective dating

See valid time support
EnableVersioning procedure, 4-53
EndBulkLoading procedure, 4-21
event parameters, 2-3
events (Workspace Manager), 2-1

ALLOW_CAPTURE_EVENTS system
parameter, 1-19, 2-3

asynchronous notification, 2-8
capturing, 4-149
event parameters, 2-3
list of events, 2-2
listening for, 2-7
WM_EVENTS_INFO view, 5-21

example
conflict resolution, 5-22
using Workspace Manager (Oracle sample

schemas), 1-44
exclusive locks, 1-15, 4-158
explicit savepoints, 1-5
export considerations, 1-21
Export procedure, 4-56

F
FindRICSet procedure, 4-61

Index-4

FIRE_TRIGGERS_FOR_NONDML_EVENTS system
parameter, 1-20

foreign keys with version-enabled tables, 1-25
FREEZE_ANY_WORKSPACE privilege, 1-18
FREEZE_WORKSPACE privilege, 1-18
FreezeWorkspace procedure, 4-64
freezing

workspace changes, 1-9, 4-64

G
GenerateReplicationSupport procedure, 4-67
GetBulkLoadVersion function, 4-69
GetConflictWorkspace function, 4-71
GetDiffVersions function, 4-72
GetLockMode function, 4-73
GetMultiWorkspaces function, 4-74
GetOpContext function, 4-75
GetPhysicalTableName function, 4-76
GetPrivs function, 4-78
GetSessionInfo procedure, 4-79
GetSystemParameter function, 4-81
GetValidFrom function, 4-82
GetValidTill function, 4-83
GetWMMetadataSpace function, 4-84
GetWorkspace function, 4-85
GotoWorkspace procedure, 4-90
grant option, 1-18
GrantGraphPriv procedure, 4-92
granting

Workspace Manager privileges
multiparent graph workspaces, 4-92
system, 4-95
workspace, 4-97

GrantSystemPriv procedure, 4-95
GrantWorkspacePriv procedure, 4-97

H
hierarchy

removing, 4-127
workspaces, 1-4

history columns
upgrading, B-6

history management changes for release 10.1, B-5

history option
EnableVersioning procedure, 4-53

history views (xxx_HIST), 5-24

I
implicit savepoints, 1-6
import considerations, 1-21
Import procedure, 4-99
infrastructure for version-enabling of tables, 1-13
IsWorkspaceOccupied function, 4-103

L
LATEST savepoint, 1-6
LIVE workspace, 1-4
LOB columns with versioned tables, 4-37
lock management, 1-15, 1-36
lock mode

getting, 4-73
lock views (xxx_LOCK), 5-25
locking mode

optimistic, 1-19, 1-20
pessimistic, 1-19, 1-20

locking table rows, 4-104
LockRows procedure, 4-104
locks

disabling, 4-157
enabling, 4-158
exclusive, 1-15
shared, 1-15
version-exclusive, 1-16
workspace-exclusive, 1-16

logging of modifications
EnableVersioning history option, 4-54
history views (xxx_HIST), 5-24

long transactions, 1-2
LT tables

created for Workspace Manager
infrastructure, 1-13

getting name of _LT (physical) table, 4-76

M
materialized views

Index-5

version management with, 1-30
MERGE_ANY_WORKSPACE privilege, 1-17
MERGE_WORKSPACE privilege, 1-17
MergeTable procedure, 4-107
MergeWorkspace procedure, 4-110
merging

table changes, 4-107
workspaces, 1-7, 4-110

metadata space
getting, 4-84

migrating to another Workspace Manager
release, B-1

Move_Proc procedure, 4-113
multilevel referential integrity constraints, 1-26
multiparent workspaces, 1-11

ALLOW_MULTI_PARENT_WORKSPACES
system parameter, 1-19

multiworkspace views (xxx_MW), 5-26

N
nested table columns

ALLOW_NESTED_TABLE_COLUMNS system
parameter, 1-19

NONCR_WORKSPACE_MODE system
parameter, 1-20

nonsequenced update operations, 3-18
nonwriter sites, C-1
null values

using default values for, 4-178
NUMBER_OF_COMPRESS_BATCHES system

parameter, 1-20

O
OE.WAREHOUSES table

Workspace Manager example, 1-44
operation context

getting, 4-75
operators for valid time support, 3-7

WM_CONTAINS, 3-8
WM_EQUALS, 3-8
WM_GREATERTHAN, 3-9
WM_INTERSECTION, 3-10
WM_LDIFF, 3-11

WM_LESSTHAN, 3-12
WM_MEETS, 3-13
WM_OVERLAPS, 3-14
WM_RDIFF, 3-15

optimistic locking, 1-19, 1-20
Oracle sample schemas

Workspace Manager example, 1-44
OWM_VERSION

Workspace Manager version number, 5-21

P
parent workspace, 1-4

conflicts with, 4-153
pessimistic locking, 1-19, 1-20
physical table name

and Workspace Manager infrastructure, 1-13
getting, 4-76

privilege management, 1-36
privileges

ACCESS_ANY_WORKSPACE, 1-17
ACCESS_WORKSPACE, 1-17
CREATE_ANY_WORKSPACE, 1-17
CREATE_WORKSPACE, 1-17
description, 1-17
FREEZE_ANY_WORKSPACE, 1-18
FREEZE_WORKSPACE, 1-18
getting, 4-78
grant option, 1-18
granting, 4-95, 4-97

multiparent graph workspaces, 4-92
managing, 1-17
MERGE_ANY_WORKSPACE, 1-17
MERGE_WORKSPACE, 1-17
REMOVE_ANY_WORKSPACE, 1-17
REMOVE_WORKSPACE, 1-17
revoking, 1-18, 4-134, 4-136

multiparent graph workspaces, 4-132
ROLLBACK_ANY_WORKSPACE, 1-18
ROLLBACK_WORKSPACE, 1-17
viewing users having Workspace Manager

system-level privileges, 5-15

Index-6

R
RecoverAllMigratingTables procedure, 4-114
RecoverMigratingTable procedure, 4-116
referential integrity constraints

finding affected tables, 4-61
referential integrity support, 1-25

multilevel constraints, 1-26
refreshing

workspaces, 4-120
refreshing tables, 4-118
RefreshTable procedure, 4-118
RefreshWorkspace procedure, 4-120
RelocateWriterSite procedure, 4-122
removable savepoints, 1-6
REMOVE_ANY_WORKSPACE privilege, 1-17
REMOVE_WORKSPACE privilege, 1-17
RemoveAsParentWorkspace procedure, 4-124
RemoveWorkspace procedure, 4-126
RemoveWorkspaceTree procedure, 4-127
removing workspaces, 1-10, 4-126
replication

dropping support for, 4-52
generating support for, 4-67
relocating writer site, 4-122
synchronizing local site, 4-173
using with Workspace Manager, C-1
WM_REPLICATION_INFO view, 5-21
writer and nonwriter sites, C-1

ResolveConflicts procedure, 4-129
resolving conflicts, 4-129

beginning, 4-18
committing, 4-27
rolling back, 4-142

RevokeGraphPriv procedure, 4-132
RevokeSystemPriv procedure, 4-134
RevokeWorkspacePriv procedure, 4-136
revoking privileges, 1-18, 4-134, 4-136

multiparent graph workspaces, 4-132
ROLE_WM_PRIVS view, 5-16
ROLLBACK_ANY_WORKSPACE privilege, 1-18
ROLLBACK_WORKSPACE privilege, 1-17
RollbackBulkLoading procedure, 4-138
RollbackDDL procedure, 4-140
RollbackResolve procedure, 4-142

RollbackTable procedure, 4-143
RollbackToSP procedure, 4-145
RollbackWorkspace procedure, 4-147
rolling back

changes in a table, 4-143
workspace changes, 1-7, 4-147
workspaces to savepoint, 4-145

row-level security (VPD)
Workspace Manager considerations, 1-29

rows
locking, 4-104
unlocking, 4-175

rule-based subscription for Workspace Manager
events, 2-6

S
sample schemas

Workspace Manager example, 1-44
savepoint management, 1-35
savepoints, 1-4

altering description of, 4-6
as alternative to creating child workspaces, 1-7
creating, 4-39
deleting, 4-46
explicit, 1-5
implicit, 1-6
removable, 1-6
rolling back to, 4-145

sequenced update operations, 3-17
session context, 1-14

GetSessionInfo function, 4-79
SetCaptureEvent procedure, 4-149
SetCompressWorkspace procedure, 4-151
SetConflictWorkspace procedure, 4-153
SetDiffVersions procedure, 4-154
SetLockingON procedure, 4-157, 4-158
SetMultiWorkspaces procedure, 4-160
SetSystemParameter procedure, 4-162
SetTriggerEvents procedure, 4-164
SetValidTime procedure, 4-166
SetWoOverwriteOFF procedure, 4-167
SetWoOverwriteON procedure, 4-168
SetWorkspaceLockModeOFF procedure, 4-169
SetWorkspaceLockModeON procedure, 4-170

Index-7

shared locks, 1-15, 4-158
skeleton tables, 1-23
spatial topologies

version management with, 1-30
subscription (rule-based) for Workspace Manager

events, 2-6
SynchronizeSite procedure, 4-173
synonyms

support for, 1-29
SYS.OWM_PKG.UpgradeHistoryColumns

procedure, B-6
system parameters

ALLOW_CAPTURE_EVENTS, 1-19
ALLOW_MULTI_PARENT_

WORKSPACES, 1-19
ALLOW_NESTED_TABLE_COLUMNS, 1-19
CR_WORKSPACE_MODE, 1-19
FIRE_TRIGGERS_FOR_NONDML_

EVENTS, 1-20
for Workspace Manager, 1-18
NONCR_WORKSPACE_MODE, 1-20
NUMBER_OF_COMPRESS_BATCHES, 1-20
shown in WM_INSTALLATION view, 5-21
UNDO_SPACE, 1-20
USE_TIMESTAMP_TYPE_FOR_HISTORY, 1-21

system privileges, 4-95
viewing users having Workspace Manager

system-level privileges, 5-15

T
table management, 1-32
table name

and Workspace Manager infrastructure, 1-13
getting physical table name, 4-76

table synonyms, 1-29
time zone

support with Workspace Manager, B-5
timestamp with time zone

support with Workspace Manager, B-5
topologies

version management with, 1-30
topology geometry layer

adding, 4-2
deleting, 4-44

trigger events
setting, 4-164

triggers on version-enabled tables, 1-28

U
UNDO_SPACE system parameter, 1-20
UnfreezeWorkspace procedure, 4-174
unfreezing

workspaces, 1-9, 4-174
unlocking

table rows, 4-175
UnlockRows procedure, 4-175
UpgradeHistoryColumns procedure, B-6
upgrading to another Workspace Manager

release, B-1
USE_TIMESTAMP_TYPE_FOR_HISTORY system

parameter, 1-21
UseDefaultValuesForNulls procedure, 4-178
USER_MP_GRAPH_WORKSPACES view, 5-16
USER_MP_PARENT_WORKSPACES view, 5-16
USER_WM_CONS_COLUMNS view, 5-17
USER_WM_CONSTRAINTS view, 5-17
USER_WM_IND_COLUMNS view, 5-17
USER_WM_IND_EXPRESSIONS view, 5-17
USER_WM_LOCKED_TABLES view, 5-17
USER_WM_MODIFIED_TABLES view, 5-18
USER_WM_PRIVS view, 5-18
USER_WM_RIC_INFO view, 5-18
USER_WM_TAB_TRIGGERS view, 5-18
USER_WM_VERSIONED_TABLES view, 5-19
USER_WM_VT_ERRORS view, 5-19
USER_WORKSPACE_PRIVS view, 5-19
USER_WORKSPACE_SAVEPOINTS view, 5-19
USER_WORKSPACES view, 5-19

V
valid time support, 3-1

altering version-enabled table to add valid time
support, 4-7

operators, 3-7
setting valid time for session, 4-166

version number
Workspace Manager (OWM_VERSION), 5-21

Index-8

version-enabled tables
definition, 1-3

version-exclusive locks, 1-16
versioning

disabling, 4-49
enabling, 4-53
infrastructure created for, 1-13

VIEW_WO_OVERWRITE mode
disabling, 4-167
enabling, 4-168

virtual private databases
with Workspace Manager, 1-29

VPD (virtual private database)
with Workspace Manager, 1-29

W
WM_ADMIN_ROLE role, 1-18
WM_COMPRESS_BATCH_SIZES view, 5-19
WM_COMPRESSIBLE_TABLES view, 5-20
WM_CONTAINS operator, 3-8
WM_EQUALS operator, 3-8
WM_EVENTS_INFO view, 5-21
WM_GREATERTHAN operator, 3-9
WM_INSTALLATION view, 5-21
WM_INTERSECTION operator, 3-10
WM_LDIFF operator, 3-11
WM_LESSTHAN operator, 3-12
WM_MEETS operator, 3-13
WM_OVERLAPS operator, 3-14
WM_RDIFF operator, 3-15
WM_REPLICATION_INFO view, 5-21
workspace lock mode

disabling, 4-169
enabling, 4-170

Workspace Manager metadata space
getting, 4-84

workspace-exclusive locks, 1-16
workspaces

altering description of, 4-11
changing type, 4-19
child

as alternative to creating savepoints, 1-7
compressing, 4-28, 4-33
continually refreshed, 1-11, 4-19, 4-41

CR_WORKSPACE_MODE system
parameter, 1-19

creating, 4-41
freezing, 1-9, 4-64
getting, 4-85
going to, 4-90
hierarchy, 1-4
management of, 1-3, 1-33
merging, 1-7
multiparent, 1-11

ALLOW_MULTI_PARENT_WORKSPACES
system parameter, 1-19

rolling back, 1-7
unfreezing, 1-9, 4-174

writer site, C-1

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	New and Changed Features
	System Parameters for Workspace Manager
	Multiparent Workspaces
	Workspace Manager Events
	Valid Time Support
	Exporting and Importing Data
	Bulk Loading into Version-Enabled Tables
	Compression, Commit Operations, and Batch Sizes
	Continually Refreshed Workspaces: New Procedure
	Physical Table Names (Infrastructure): New Procedure
	DDL Support
	Unique Constraint Support
	Nested Table Column Support
	Virtual Private Database (VPD) Support
	Spatial Topology Support
	History Management Support
	New Lock Modes: Workspace-Exclusive and Version-Exclusive
	New Parameter for Compressing Workspaces
	Renaming a Constraint or Index
	New Parameter for RefreshWorkspace
	Workspace Manager Metadata Placement
	Using Default Values for Nulls
	DBA_WM_SYS_PRIVS View
	Column Name Changes in xxx_HIST Views
	Sample Schema Example

	Part I� Conceptual and Usage Information
	1 Introduction to Workspace Manager
	1.1� Workspace Manager Overview
	1.1.1� Workspace Hierarchy
	1.1.2� Using Savepoints
	1.1.2.1� Design Issue: Savepoint or Child Workspace?

	1.1.3� Merging and Rolling Back Workspace Changes
	1.1.4� Resolving Conflicts Before a Merge or Refresh Operation
	1.1.5� Freezing and Unfreezing Workspaces
	1.1.6� Removing Workspaces
	1.1.7� Using Workspace Manager Events
	1.1.8� Autocommitting of Workspace Manager Operations
	1.1.9� Continually Refreshed Workspaces
	1.1.10� Multiparent Workspaces
	1.1.11� Infrastructure for Version-Enabling of Tables
	1.1.12� Workspace Manager Schema, Metadata, and Package

	1.2� Session Context Information for Workspace Manager
	1.3� Lock Management with Workspace Manager
	1.4� Privilege Management with Workspace Manager
	1.5� System Parameters for Workspace Manager
	1.6� Import and Export Considerations
	1.7� Bulk Loading into Version-Enabled Tables
	1.8� DDL Operations Related to Version-Enabled Tables
	1.9� Constraint Support with Workspace Manager
	1.9.1� Referential Integrity Support
	1.9.2� Unique Constraints

	1.10� Triggers on Version-Enabled Tables
	1.11� Virtual Private Database Considerations
	1.12� Support for Table Synonyms
	1.13� Materialized View Support
	1.14� Spatial Topology Support
	1.14.1� Locking Considerations with Topologies
	1.14.2� Additional Considerations with Topologies

	1.15� DBMS_WM Subprogram Categories
	1.15.1� Table Management Subprograms
	1.15.2� Workspace Management Subprograms
	1.15.3� Savepoint Management Subprograms
	1.15.4� Privilege Management Subprograms
	1.15.5� Lock Management Subprograms
	1.15.6� Conflict Management Subprograms
	1.15.7� Replication Support Subprograms
	1.15.8� Bulk Load Support Subprograms

	1.16� Simplified Examples Using Workspace Manager
	1.16.1� Example: Marketing Budget Options
	1.16.2� Example: Warehouse Expansion Options

	2 Workspace Manager Events
	2.1� List of Workspace Manager Events
	2.2� Event Parameters
	2.3� ALLOW_CAPTURE_EVENTS System Parameter
	2.4� AQ Operations and Workspace Manager Events
	2.4.1� Workspace Manager Event Queue Administration
	2.4.2� Privileges and Access Control for Queues
	2.4.3� Rule-Based Subscription
	2.4.4� Listening for Events
	2.4.5� Asynchronous Notification

	3 Workspace Manager Valid Time Support
	3.1� Valid Time Support: Introduction and Example
	3.2� WM_PERIOD Data Type
	3.3� Valid Time Constants
	3.4� API Features for Valid Time Support
	3.5� Operators for Valid Time Support
	3.5.1� WM_CONTAINS
	3.5.2� WM_EQUALS
	3.5.3� WM_GREATERTHAN
	3.5.4� WM_INTERSECTION
	3.5.5� WM_LDIFF
	3.5.6� WM_LESSTHAN
	3.5.7� WM_MEETS
	3.5.8� WM_OVERLAPS
	3.5.9� WM_RDIFF

	3.6� Queries and DML Operations with Valid Time Support
	3.6.1� Queries
	3.6.2� Data Manipulation (DML) Operations
	3.6.2.1� Update Operations
	3.6.2.2� Insert Operations

	3.7� Constraint Management for Valid Time Support
	3.7.1� Referential Integrity Constraints
	3.7.2� Unique Constraints

	3.8� Locking with Valid Time Support
	3.9� Metadata Views Affected by Valid Time Support
	3.9.1� xxx_CONF Views and Valid Time Support
	3.9.2� xxx_DIFF Views and Valid Time Support
	3.9.3� xxx_HIST Views and Valid Time Support
	3.9.4� xxx_LOCK Views and Valid Time Support
	3.9.5� xxx_MW Views and Valid Time Support

	3.10� SQL* Loader Support for Valid Times
	3.11� Adding Valid Time Support to an Existing Table

	Part II� Reference Information
	4 DBMS_WM Package: Reference
	Add_Topo_Geometry_Layer
	AddAsParentWorkspace
	AlterSavepoint
	AlterVersionedTable
	AlterWorkspace
	BeginBulkLoading
	BeginDDL
	BeginResolve
	ChangeWorkspaceType
	CommitBulkLoading
	CommitDDL
	CommitResolve
	CompressWorkspace
	CompressWorkspaceTree
	CopyForUpdate
	CreateSavepoint
	CreateWorkspace
	Delete_Topo_Geometry_Layer
	DeleteSavepoint
	DisableVersioning
	DropReplicationSupport
	EnableVersioning
	Export
	FindRICSet
	FreezeWorkspace
	GenerateReplicationSupport
	GetBulkLoadVersion
	GetConflictWorkspace
	GetDiffVersions
	GetLockMode
	GetMultiWorkspaces
	GetOpContext
	GetPhysicalTableName
	GetPrivs
	GetSessionInfo
	GetSystemParameter
	GetValidFrom
	GetValidTill
	GetWMMetadataSpace
	GetWorkspace
	GotoDate
	GotoSavepoint
	GotoWorkspace
	GrantGraphPriv
	GrantSystemPriv
	GrantWorkspacePriv
	Import
	IsWorkspaceOccupied
	LockRows
	MergeTable
	MergeWorkspace
	Move_Proc
	RecoverAllMigratingTables
	RecoverMigratingTable
	RefreshTable
	RefreshWorkspace
	RelocateWriterSite
	RemoveAsParentWorkspace
	RemoveWorkspace
	RemoveWorkspaceTree
	ResolveConflicts
	RevokeGraphPriv
	RevokeSystemPriv
	RevokeWorkspacePriv
	RollbackBulkLoading
	RollbackDDL
	RollbackResolve
	RollbackTable
	RollbackToSP
	RollbackWorkspace
	SetCaptureEvent
	SetCompressWorkspace
	SetConflictWorkspace
	SetDiffVersions
	SetLockingOFF
	SetLockingON
	SetMultiWorkspaces
	SetSystemParameter
	SetTriggerEvents
	SetValidTime
	SetWoOverwriteOFF
	SetWoOverwriteON
	SetWorkspaceLockModeOFF
	SetWorkspaceLockModeON
	SynchronizeSite
	UnfreezeWorkspace
	UnlockRows
	UseDefaultValuesForNulls

	5 Workspace Manager Metadata Views
	5.1� ALL_MP_GRAPH_WORKSPACES
	5.2� ALL_MP_PARENT_WORKSPACES
	5.3� ALL_VERSION_HVIEW
	5.4� ALL_WM_CONS_COLUMNS
	5.5� ALL_WM_CONSTRAINTS
	5.6� ALL_WM_IND_COLUMNS
	5.7� ALL_WM_IND_EXPRESSIONS
	5.8� ALL_WM_LOCKED_TABLES
	5.9� ALL_WM_MODIFIED_TABLES
	5.10� ALL_WM_RIC_INFO
	5.11� ALL_WM_TAB_TRIGGERS
	5.12� ALL_WM_VERSIONED_TABLES
	5.13� ALL_WM_VT_ERRORS
	5.14� ALL_WORKSPACE_PRIVS
	5.15� ALL_WORKSPACE_SAVEPOINTS
	5.16� ALL_WORKSPACES
	5.17� DBA_WM_SYS_PRIVS
	5.18� DBA_WORKSPACE_SESSIONS
	5.19� ROLE_WM_PRIVS
	5.20� USER_MP_GRAPH_WORKSPACES
	5.21� USER_MP_PARENT_WORKSPACES
	5.22� USER_WM_CONS_COLUMNS
	5.23� USER_WM_CONSTRAINTS
	5.24� USER_WM_IND_COLUMNS
	5.25� USER_WM_IND_EXPRESSIONS
	5.26� USER_WM_LOCKED_TABLES
	5.27� USER_WM_MODIFIED_TABLES
	5.28� USER_WM_PRIVS
	5.29� USER_WM_RIC_INFO
	5.30� USER_WM_TAB_TRIGGERS
	5.31� USER_WM_VERSIONED_TABLES
	5.32� USER_WM_VT_ERRORS
	5.33� USER_WORKSPACE_PRIVS
	5.34� USER_WORKSPACE_SAVEPOINTS
	5.35� USER_WORKSPACES
	5.36� WM_COMPRESS_BATCH_SIZES
	5.37� WM_COMPRESSIBLE_TABLES
	5.38� WM_EVENTS_INFO
	5.39� WM_INSTALLATION
	5.40� WM_REPLICATION_INFO
	5.41� xxx_CONF Views
	5.42� xxx_DIFF Views
	5.43� xxx_HIST Views
	5.44� xxx_LOCK Views
	5.45� xxx_MW Views

	Part III� Supplementary Information
	A Installing Workspace Manager with Custom Databases
	B Migrating to Another Workspace Manager Release
	B.1� Upgrading to the Current Release
	B.2� Downgrading to a Previous Release
	B.3� History Management Changes for Release 10.1

	C Using Replication with Workspace Manager
	C.1� Setting Up Replication with Workspace Manager
	C.2� Enabling and Disabling Versioning of Tables with Replication Support
	C.3� DDL Operations with Replicated Version-Enabled Tables
	C.4� Relocating the Writer Site

	D Workspace Manager Error Messages
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

